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Preface to ”Machine Learning Techniques Applied to

Geoscience Information System and Remote Sensing”

As computer and space technologies have been developed, geoscience information systems (GIS)

and remote sensing (RS) technologies, which deal with the geospatial information, have been rapidly

maturing. Moreover, over the last few decades, machine learning techniques including artificial

neural network (ANN), deep learning, decision tree, and support vector machine (SVM) have been

successfully applied to geospatial science and engineering research fields. The machine learning

techniques have been widely applied to GIS and RS research fields and have recently produced

valuable results in the areas of geoscience, environment, natural hazards, and natural resources.

This Special Issue of Applied Sciences on the machine learning techniques applied to geoscience

information systems and remote sensing aims to attract novel contributions. We have invited original

research papers addressing the state-of-the-art in the following areas:

1) Application of machine learning techniques combined with GIS;

2) Application of machine learning techniques to remote sensing;

3) Application of machine learning techniques to global positioning system (GPS);

4) Spatial analysis and geocomputation based on machine learning techniques;

5) Spatial prediction using machine learning techniques;

6) Data processing of geoinformation using machine learning techniques;

7) Comparative analysis among several machine learning techniques applied to GIS and RS;

8) Application of machine learning techniques on geosciences, environments, natural hazards, and

natural resources as case studies.

Twenty-one papers have been selected which reflect the topics of interest for this Special Issue.

This Special Issue would not have been possible without the contributions of professional authors

and reviewers, and the excellent editorial team of Applied Sciences.

Saro Lee, Hyung-Sup Jung

Special Issue Editors

xi





applied  
sciences

Editorial

Special Issue on Machine Learning Techniques
Applied to Geoscience Information System and
Remote Sensing

Hyung-Sup Jung 1,* and Saro Lee 2,3,*

1 Department of Geoinformatics, University of Seoul, 163 Seoulsiripdaero, Dongdaemun-gu, Seoul 02504,
Korea

2 Geoscience Platform Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM),
124 Gwahak-ro, Yuseong-gu, Daejeon 34132, Korea

3 Geophysical Exploration, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu,
Daejeon 34113, Korea

* Correspondence: hsjung@uos.ac.kr (H.-S.J.); leesaro@kigam.re.kr (S.L.)

Received: 10 June 2019; Accepted: 11 June 2019; Published: 14 June 2019

1. Introduction

As computer and space technologies have been developed, geoscience information systems
(GIS) and remote sensing (RS) technologies, which deal with the geospatial information, have been
maturing rapidly. Moreover, over the last few decades, machine learning techniques, including
artificial neural network (ANN), deep learning, decision tree, and support vector machine (SVM),
have been successfully applied to geospatial science and engineering research fields. The machine
learning techniques have been widely applied to GIS and RS research fields and have recently produced
valuable results in the areas of geoscience, environment, natural hazards and natural resources.

This special issue of applied sciences on machine learning techniques applied to geoscience
information system and remote sensing aims to attract novel contributions. We have invited original
research papers addressing the state-of-the-art in the following:

(1) Application of machine learning techniques combined with GIS;
(2) Application of machine learning techniques to remote sensing;
(3) Application of machine learning techniques to Global Positioning System (GPS);
(4) Spatial analysis and geocomputation based on machine learning techniques;
(5) Spatial prediction using machine learning techniques;
(6) Data processing of geoinformation using machine learning techniques;
(7) Comparison analysis among several machine learning techniques applied to GIS and RS;
(8) Application of machine learning techniques on geosciences, environments, natural hazards, and

natural resources as case studies.

Twenty-one papers have been selected, which reflect the topics of interest for this special issue.

2. Machine Learning Techniques and Their Applications

Truong et al. [1] in their paper entitled “Enhancing Prediction Performance of Landslide
Susceptibility Model Using Hybrid Machine Learning Approach of Bagging Ensemble and Logistic
Model Tree” performed landslide modeling via proposing a new machine learning ensemble method
that integrates logistic model trees (LMTree) algorithm and bagging ensemble (BE). The proposed
method was named as BE-LMtree, and the proposed method enhanced the performance of the
landslide model.

Appl. Sci. 2019, 9, 2446; doi:10.3390/app9122446 www.mdpi.com/journal/applsci1
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Seo et al. [2] in their paper entitled “Learning-Based Colorization of Grayscale Aerial Images
Using Random Forest Regression” exploited the random forest (RF) regression for aerial imagery
colorization, developed an efficient algorithm to establish color relationships based on unchanged
regions, and performed visual and quantitative analyses.

Arabameri et al. [3] in their paper entitled “Spatial Modelling of Gully Erosion Using GIS and
R Programing: A Comparison among Three Data Mining Algorithms” determined the relationship
between gully occurrence and conditioning factors using weights-of-evidence (WoE) Bayes theory;
assessed the capability of RF, multivariate adaptive regression spline (MARS), and boosted regression
tree (BRT) machine learning models to predict gully erosion (GE) susceptibility; and validated the
models using the area under the curve (AUC) and seed cell area index (SCAI) methods.

Deng and Pu [4] in their paper entitled “Single-Class Data Descriptors for Mapping Panax
notoginseng through P-Learning” mapped Panax notoginseng fields through a stack of single-class data
descriptors (SCDDs) as the future technical milestone for planting pattern analysis, evaluated the
abilities of SCDDs in identifying small Panax notoginseng fields in the complex agricultural landscapes,
and provided the potential possibilities for monitoring the planting pattern changes of Panax notoginseng
fields, further giving us new insights into the planting pattern transitions of the perennial ginseng
in macrocosm.

Wiratama et al. [5] in their paper entitled “Dual-Dense Convolution Network for Change Detection
of High-Resolution Panchromatic Imagery” proposed a dual-dense convolutional network to recognize
pixel-wise change that is based on dissimilarity analysis of neighborhood pixels on panchromatic
(PAN) images with high spatial resolution. The proposed method exploits two fully convolutional
neural networks employed to measure dissimilarity of neighborhood pixels, and hence it showed a
better performance in qualitative and quantitative evaluation.

Zhang et al. [6] in their paper on “Convolutional Neural Network-Based Remote Sensing Images
Segmentation Method for Extracting Winter Wheat Spatial Distribution” proposed a new method to
map winter wheat field areas using GF-2 high-resolution PAN images. A deep learning model named
as a Hybrid Structure Convolutional Neural Network (HSCNN) was successfully applied to map the
winter wheat field areas.

Liu et al. [7] in their paper titled “A New Weighting Approach with Application to Ionospheric
Delay Constraint for GPS/GALILEO Real-Time Precise Point Positioning” adopted a weighting
approach in the precise point positioning with integer and zero-difference ambiguity resolution
demonstrator (PPP-WIZARD). The weighting method integrates a weight factor searching method
with a moving-window average filter. The proposed method can significantly reduce convergence
time as well as improve the reliability of positioning solutions in real-time precise point positioning.

Chen et al. [8] in their paper titled “Landslide Susceptibility Modeling Using Integrated Ensemble
Weights of Evidence with Logistic Regression and Random Forest Models” employed the integrated
ensemble WoE with logistic regression (LR) and RF models to map landslide susceptibility and
quantitatively compared and analyzed by receiver operating characteristic (ROC) curves and AUC.

Azeez et al. [9] in their paper entitled “Modeling of CO Emissions from Traffic Vehicles Using
Artificial Neural Networks” proposed a hybrid model to generate microscale prediction maps with toll
gate locations. The proposed model combines the metaheuristic optimization technique and ANN
model to predict traffic emissions. The achieved performance of the method was about 80.6%. The
authors said that the developed model can be a promising tool for vehicular CO simulations in highly
congested areas.

Kwak and Park [10] in their paper entitled “Impact of Texture Information on Crop Classification
with Machine Learning and UAV Images” focused on the evaluation of the effectiveness of texture
information for crop classification with unmanned aerial vehicle (UAV) images. The classification
performance was compared between a single-date UAV image and a time-series UAV image set. The
used classification algorithms were RF and SVM.
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Park and Kim [11] in their paper entitled “Landslide Susceptibility Mapping Based on Random
Forest and Boosted Regression Tree Models, and a Comparison of Their Performance” analyzed and
compared the performance between the RF and boosted regression tree (BRT) models for landslide
susceptibility analysis. The performance of the RF model was about 0.865 and that of the BRT model
was about 0.851. The performance of the two ensemble models were very similar.

Li et al. [12] in their paper on “A Single Point-Based Multilevel Features Fusion and Pyramid
Neighborhood Optimization Method for ALS Point Cloud Classification” proposed (i) two local
features including the normal angle distribution (NAD) histogram and latitude sampling histogram
(LSH), (ii) a multilevel single-point features fusion method based on a multi-neighborhood space and
multi-resolution, and (iii) a fast classification optimization method based on a multi-scale pyramid.
They validated the proposed method using large-scale airborne laser scanning (ALS) point clouds.

Choung and Kim [13] in their paper titled “Study of the Relationship between Urban Expansion
and PM10 Concentration Using Multi-Temporal Spatial Datasets and the Machine Learning Technique:
Case Study for Daegu, South Korea” assessed a possible relation between urban expansion and PM10

concentration in Daegu, Korea, from ten-year monitoring data acquired from 2007 to 2017 using
the SVM method. The experiment result showed no relation between the urban expansion and the
PM10 concentrations.

Wang et al. [14] in their paper entitled “Deep Fusion Feature Based Object Detection Method for
High Resolution Optical Remote Sensing Images” proposed a novel transfer deep learning method
to detect objects in high-resolution remote-sensed images. In addition, they improved the candidate
window selection process and designed a deep feature extraction method with context scene feature
fusion and detection. They validated the proposed method using high-resolution remote-sensed images.

Oh et al. [15] in their paper entitled “Land Subsidence Susceptibility Mapping Using Bayesian,
Functional, and Meta-Ensemble Machine Learning Models” investigated the achieved performance
of several models that have never been applied to land subsidence prediction. They produced land
subsidence susceptibility (LSS) maps in abandoned subsurface coal mining areas using machine
learning techniques such as the logit boost meta-ensemble model, Bayes net model, naïve Bayes (NB)
model, logistic model, and multilayer perceptron model. The reliability and accuracy of the models
were performed by the area under the receiver operating characteristic (ROC) curves.

Wiratama and Sim [16] in their paper entitled “Fusion Network for Change Detection of
High-Resolution Panchromatic Imagery” proposed a fusion network by combining front- and back-end
networks to perform the low- and high-level differential detection in one structure and a combining loss
function between contrastive loss and binary cross entropy loss to accomplish fusion of the proposed
networks in training stage. In addition, the two-stage decision as a post-processing is presented to
validate and ensure the changes prediction at the inference stage to better obtain the final change map.

Mao et al. [17] in their paper entitled “Comparison of Machine Learning Regression Algorithms
for Cotton Leaf Area Index Retrieval Using Sentinel-2 Spectral Bands” compared the algorithm
performance of five advanced machine learning regression algorithms, including ANN, support vector
regression (SVR), Gaussian process regression (GPR), RF, and gradient boosting regression tree (GBRT),
to retrieve cotton leaf area index (LAI) in a relatively comprehensive manner. Although the five models
showed different performance, all of the models showed a potential for cotton LAI retrieval.

Liu et al. [18] in their paper entitled “Spatial Data Reconstruction via ADMM and Spatial Spline
Regression” proposed a novel constrained spatial smoothing (CSS) algorithm to reconstruct a spatial
field of densities. They evaluated the proposed method from the problem of reconstructing the spatial
distribution of cellphone traffic volumes based on aggregate volumes recorded at sparsely scattered
base stations.

Utomo et al. [19] in their paper entitled “Landslide Prediction with Model Switching” provided a
total solution in the form of an early warning system. The system is called the Model Switch-based
Landslide Prediction System (MoSLaPS). To address the data imbalance problem, they also adapted
the popular adaptive synthetic sampling (ADASYN) method to landslide prediction. Moreover, to
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address the low true-positive rate (TPR) problem, they proposed a novel event-class model switch
predictor design that significantly improves TPR.

Li [20] in the paper entitled “A Critical Review of Spatial Predictive Modeling Process in
Environmental Sciences with Reproducible Examples in R” assisted spatial modelers and scientists
by critically reviewing the spatial predictive modeling process, developing guidelines for selecting
the most appropriate spatial predictive methods, and identifying and developing the most accurate
predictive model to generate spatial predictions.

Xu et al. [21] in their paper entitled “Mapping Areal Precipitation with Fusion Data by ANN
Machine Learning in Sparse Gauged Region” showed an efficient method to map areal precipitation with
the data fused from the remote-sensing precipitation acquired from Tropical Precipitation Measurement
Satellite (TRMM) product and ground gauge precipitation using the ANN method.

Funding: This work was supported by the National Research Foundation of Korea funded by the Korea
government under Grant NRF-2018M1A3A3A02066008 for H.J. and it was also supported by the Basic Research
Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) funded by the Ministry of Science
and ICT for S.L.

Acknowledgments: This special issue would not be possible without the contributions of professional authors
and reviewers, and the excellent editorial team of Applied Sciences.
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Abstract: The objective of this research is introduce a new machine learning ensemble approach that
is a hybridization of Bagging ensemble (BE) and Logistic Model Trees (LMTree), named as BE-LMtree,
for improving the performance of the landslide susceptibility model. The LMTree is a relatively new
machine learning algorithm that was rarely explored for landslide study, whereas BE is an ensemble
framework that has proven highly efficient for landslide modeling. Upper Reaches Area of Red River
Basin (URRB) in Northwest region of Viet Nam was employed as a case study. For this work, a GIS
database for the URRB area has been established, which contains a total of 255 landslide polygons
and eight predisposing factors i.e., slope, aspect, elevation, land cover, soil type, lithology, distance
to fault, and distance to river. The database was then used to construct and validate the proposed
BE-LMTree model. Quality of the final BE-LMTree model was checked using confusion matrix and a
set of statistical measures. The result showed that the performance of the proposed BE-LMTree model
is high with the classification accuracy is 93.81% on the training dataset and the prediction capability
is 83.4% on the on the validation dataset. When compared to the support vector machine model and
the LMTree model, the proposed BE-LMTree model performs better; therefore, we concluded that
the BE-LMTree could prove to be a new efficient tool that should be used for landslide modeling.
This research could provide useful results for landslide modeling in landslide prone areas.

Keywords: landslide; bagging ensemble; Logistic Model Trees; GIS; Vietnam
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1. Introduction

The problem of rainfall-induced landslides, which are triggered by high intense and long lasting
precipitation, seems to be more serious in recent years in many regions around the world due to
the effects of climate changes i.e., extreme rainfall events [1–8]. The rainfall-triggered landslide is
especially exacerbated in countries that are located in storm centers of the world, such as Vietnam [9],
Philippines [10], and China [11]. For example, the tropical typhoon of Rasmussen caused various
floods and landslides with the total damages were estimated at $7 billion [12]. It anticipates that
the number of landslides in the future will continue to rise due to effects of extreme rainfall events
and changes of hydrological cycles [13]. Thus, landslide has become one of the hottest subject of
the research community, however, accurately prediction of landslide still is a challenging real-world
problem [14]. Therefore, more researches on landslide are still urgently required for deriving better
detailed knowledge of slope failure and its mechanisms for designing remedial measures.

The development of a hazard map that provides detailed dimensional information of spatial
distributions, temporal predictions, and destructive power of landslide is considered as an efficient
tool for designing mitigation measures and management policies. However, the hazard map at the
regional scale requires very detailed temporal landslide inventories that are hardly available, especially
in developing countries [15]. For this context, a landslide susceptibility map (LS-map) could be
alternatively employed since it helps to identify areas with high landslide probability. According to
Ciampalini, et al. [16], LS-map is a valuable decision-support tool that assists local authorities in land
use infrastructural planning and management

To produce susceptibility map, a variety of studying approaches has been introduced because the
accuracy of the susceptibility map at regional analysis scale is controlled not only by the quality of the
input maps, but also the algorithms and techniques that are employed [17]. These approaches vary from
expert weighting methods to deterministic and statistical models. Evaluation of these approaches has
been well presented i.e., in Chacon et al. [18] and Van Westen, et al. [19]. In recent years, new approaches
that are based on advanced statistical and machine learning methods have been proposed i.e.,
fuzzy k-Nearest Neighbor [17]; fuzzy rule based models [20–23]; neural networks [24–30]; support
vector machines [31–38]; Random Forests; metaheuristic optimized least squares support vector
machines [39,40]; Cuckoo optimized relevance vector machines [41]; Chi-squared automatic interaction
detection (CHAID) [42]; tree-based algorithms [43–47]; and, gene expression programming [48].
The main advantage of these methods is that they are capable of involving several to a large number of
variables for reliable results, and overall, these methods are able to provide better performance models
when compared to those of conventional methods [43,49,50].

In the last years, the integration of advanced machine learning algorithms and homogeneous
ensemble frameworks has been explored for landslide susceptibility modeling with promising results.
For example, Tien Bui, et al. [51] show that the landslide model based on a combination of functional
trees with Bagging performs better than the neural network models. Pham et al. [23] concluded that
the hybridization of Fuzzy Unordered Rules Induction Algorithm and Rotation forest ensemble has
increased the prediction performance of the landslide model when compared to the benchmark of
support vector machines model. Pham et al. [26] reported that the landslide model derived from
a combinations of MultiBoost and Dagging with neural networks has significantly improved the
prediction power of the landslide model using only the neural network. Thus, it could be concluded
that homogeneous ensembles of machine learning are promising and should be further investigated
aiming to improve the prediction capability of landslide susceptibility model.

Based on the mentioned motivation, this research aim is to expand the body knowledge of
landslide modeling through introducing a new machine learning ensemble approach that combines the
Logistic Model Trees (LMTree) algorithm [52] and Bagging Ensemble (BE) [53], named as BE-LMtree,
for enhancing the performance of the landslide model. LMTree is a relative new and promising machine
learning algorithm that was rarely explored for the landslide study, whereas Bagging ensemble is an
framework that has proven efficient in landslide modeling [51,54]. Consequently, a combination of
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BE and LMTree has resulted in a new powerful prediction method, and to the best of our knowledge,
this is the first time that the BE-LMTree is studied for landslide susceptibility.

2. Theoretical Background of the Methods

2.1. Logistic Model Tree

Logistic Model Trees (LMTree), which is a relatively new machine learning algorithm, is developed
based on the integration of tree induction algorithm and additive logistic regression [52]. The difference
of LMTree when compared to the other decision tree algorithms is that the tree growing process
is carried out using the LogitBoost algorithm [52,55] and the tree pruning is performed using
Classification And Regression Tree (CART) [56].

Given a training dataset T = (xi, yi)
ds
i=1 with xi ∈ RD is the input vector, ds is the number of data

samples, D is the dimension of the training dataset, and yi ∈ (1, 0) is the label class. In this research
context, the input vector consists of eight variables (slope, aspect, elevation, land cover, soil type,
lithology, distance to fault, and distance to river), whereas the label class contains two classes, landslide
(LS) and non-landslide (Non-LS). The landslide class is coded as “1” and the non-landslide is coded as
“0”. The objective of LMTree is to construct a tree-like structure model that is capable of classifying the
training dataset into the two above classes in term of probability. The predicted numeric value to the
landslide class of sample is used as susceptibility index.

Structurally, the LMTree model consists of a root node, a set of inner nodes, and a set of leaves.
The aim of the training phase that includes the tree growing and the tree pruning processes is to
determine the best tree structure with numbers of inner nodes and leaves. Accordingly, first, a logistic
regression model Equation (1) is built at the root note using the binary LogitBoost algorithm [57] and
the training dataset. In the next step, the training dataset at the root is split using the C4.5 splitting
rule [58] in order to sort appropriate sub-datasets for the inner nodes, and then, logistic regression
models Equation (1) for these inner nodes is built using their associated sorted datasets and the binary
LogitBoost. The tree continues growing in the same procedure until it meets the stopping criterion of
less than 15 samples at nodes. Finally, to prevent the LMTree model from over-fitting, the tree pruning
is performed using the CART algorithm that is based on a combination of the model error and the
model complexity [52].

In the LMTree building process, the binary LogitBoost algorithm [57] is used to generate logistic
regression models Equation (1) for all of the inner nodes and leaves, as follows.

fLS,Non−LS(x) = ∑D
i=1 βixi + β0 (1)

where D is the total number of landslide input factors and βi is the logistic coefficient.
The membership probability [52] of the landslide class at the leaves of the LMTree model is

posterior probabilities derived using Equation (2) and is used as landslide susceptibility index.

p((LS, Non − LS) |x ) = exp fLS,Non−LS(x)
exp fLS(x) + exp fNon−LS(x)

(2)

The complexity of the LMTree model could be estimated using the following equation [52]:

MC = O(dept ∗ ds ∗ log n + ds ∗ D2 ∗ dept + nt2) (3)

where MC is the model complexity; dept is the depth of the initial unpruned tree; nt is the number
of nodes in the LMTree; ds is the number of training samples; and, D is the number of landslide
predisposing factors.
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2.2. Bagging Ensemble

Ensemble learning is a machine learning paradigm where multiple classifiers are trained and
combined to enhance the prediction capability of a model. Different from popular machine learning
approaches where one model is built from the training data, ensemble frameworks try to generate a
set of sub-datasets from the training data, and then, each sub-dataset is used to construct a classifier,
which is also called a based learner. At last, all of the based learners are combined to form the final
prediction model using combination techniques i.e., averaging or majority voting [59].

Different ensemble techniques have been successfully proposed i.e., Bagging, AdaBoost,
Multiboost, Stacking, and Rotation forest [60]; however, in landslide modeling, Bagging ensemble has
proven robust and better than other ensembles [26,51,54], therefore, it is selected for this study.

Bagging also called Bootstrap aggregating in the full name is one of the earliest procedure for
generating sub-datasets and combining based learners proposed by Breiman [53]. Using the training
dataset, this technique generates bootstrap samples in which some of the samples are replicated and
some samples are omitted. These bootstrap samples, which are called bootstrapped sub-datasets,
are used to construct based learners using the same classification algorithm i.e., the LMTree in this
work. These based learners are then combined using the majority voting strategy.

3. The Study Area and Spatial Datasets

3.1. Description of the Upper Reaches Area of Red River Basin

The study area is the Upper reaches area of the Red River Basin (URRB) (103◦33′36′ ′–104◦30′50” E,
22◦05′40′ ′–22◦47′52” N) that belongs to the Lao Cai, a north-western mountainous province in Vietnam
(Figure 1). The URRB covers an area of 3273.5 km2 with complex topography, steep slopes, and narrow
valleys. The topography is highly fragmented with high mountains ranges, wide valleys, and deep
streams, which result in high relief amplitudes [40]. The altitude varies from 48.1 m to 2812.6 m
above sea level, with the mean and the standard deviation of 528.6 m and 484.9 m, respectively.
Topographically, 61.8% of the URRB is occupied by slope angles that are higher than 15◦, whereas
areas with slopes less than 5◦ cover approximately 7.3% the total area of the URRB. The remaining
30.9% are areas located in the slope group 5–15◦.

 

Figure 1. Location of the Upper Reaches Area of Red River Basin (Vietnam).

9



Appl. Sci. 2018, 8, 1046

Hydrologically, due to the fragmentation of the terrain, the river system in the study area is dense
and evenly distributed (Figure 1). These rivers are characterized by being narrow and steep, which
are favorable conditions for the occurrence of flash flood and landslides. The Red River, which is the
second largest river in Vietnam, is the major channel system of the URRB. This river originates from
Yunnan province (China) and flows south-eastward to the study area [61].

The climate of URRB is divided into two seasons: the rainy season begins from April to October
and the dry season lasts from November to March next year. The average temperature ranges range
from 23 ◦C to 29 ◦C [62] and the average annual rainfall is from 1400 mm to 1900 mm [63].

The URRB is located in an active tectonic region with the relatively fast movement of the Red River
fault zone that results in continuously landslide occurrences over the years [40]. It should be noted that
the Red River fault zone is one of the four main tectonic features in north Vietnam that begins from
Tibetan plateau (China) and extends to the Red River area of Vietnam [64,65]. Twenty seven geological
formations outcrop in the basin with varied area and space distribution (Figure 2). Quaternary deposits,
which consist of mainly granule, grit, breccia, pebble, boulder, and sand, cover 7.04% of the total area of
the basin. Whereas, 86.68% of the basin is covered by nine geological formations, Suoi Chieng (23.62%),
Ha Giang (10.96%), Nui Con Voi (10.54%), Sinh Quyen (10.43%), Ngoi Chi (8.44%), Cam Duong (8.29%),
Ye Yen Sun (6.23%), Po Sen (5.96%), and Muong Hum (2.21%). The main lithologies are biotite schist,
garnet-biotite gneiss, coaly shale, marble cherty shale, quartz-plagioclase-biotite schist, and two-mica
schist. Detailed distribution of the lithological formations in the basin is shown in Figure 2.

 

Figure 2. Geological map of the study area.
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3.2. Geospatial Data

Landslide inventory map for the URRB was constructed from two main sources: (i) historic
landslides from the project VAST05.02/14-15 in 2015, which was prepared by Tien Bui et al. [40]; and,
(ii) landslide polygons from the State-Funded Landslide Project (SFLP) 2016 [9], a national landslide
program that is carrying out in Vietnam. The SFLP project has systematically investigated and collected
historic landslides for all northwest mountainous provinces in Vietnam, including the study area.
Accordingly, these landslides were mainly interpreted and mapped using aerial photos and field
investigations. Detailed descriptions of methods and techniques for obtaining these historic landslides
in the SFLP project are present in [9].

As result, a total of 255 historic soil-mixed-boulder slides that occurred during the last two
decades were registered for the landslide inventory map (Figure 1). It is noted that many rock falls
were excluded out of this research because their falling mechanism are very different when compared
to that of the soil-mixed-boulder slides. Analysis of the landslide inventory map showed that these
slides occurred due to rainfall during tropical rainstorms [40]. Our statistical analysis of these slides
showed that the largest and the smallest landslides are 116627.9 m2 and 6.2 m2, respectively, with the
mean is 3742.5 m2 and the standard deviation is 11467.3 m2. Approximately 9.1% of the landslide
inventories are large landslides (>10,000 m2), whereas 9.1% of the landslide inventories are medium
landslides (1000–10,000 m2), and the remaining are landslides less than 1000 m2. Two examples of
landslide photos in the study area are shown in Figure 3.

  

(a) (b) 

Figure 3. Two photos of landslides in the study area: (a) Landslide at the Mong Sen area and
(b) Landslide at Km 7 Lao Cai. The two photos were taken by Xuan-Luan Truong in August 2014.

Because the rainfall-trigged landslides in this study area occurred due to interactions of
various geo-environmental factors, including topography, land cover, lithology, soil type, and river
network [9,40,66,67], these factors were selected for this analysis. Digital elevation model (DEM) with
resolution of 25 × 25 m for the URRB area was constructed using digital topographic maps 1:50,000
scale provided by the Ministry of Natural Resource and Environment of Vietnam. Using this DEM,
three morphometric factors, slope, elevation, and aspect, were generated. To build the slope map
(Figure 4a), seven categories were used. For the elevation map (Figure 4b), eight categories were
considered. These categories were determined using Jenks natural break available in ArcGIS. For the
aspect map, nice facing slopes were used (Figure 4c).

Land cover map (Figure 4d) at scale of 1:50,000 with nine classes for the URRB area was derived
from the project No.02/2012/ HD-HTSP funded by Ministry of Education and Training of Vietnam.
The nine classes were obtained through the classification of Landsat 8 OLI imagery in 2013 using
ENVI software. Soil type map (Figure 4e) at 1:100,000 scale with 13 soil types for the URRB area was
provided by Department of Agriculture and Rural Development of the Lao Cai province.
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Lithological map for the URRB area was constructed based on National Geological and Mineral
Resources Maps at scale of 1: 200,000, as provided by the Ministry of Natural Resource and
Environment of Vietnam. Our analysis showed that more than 15 formations outcrop in the URRB
area (see Figure 2). For this research, the lithological map with seven categories was constructed
(Figure 4f) and these categories were separated based on clay composition, weathering characteristics,
and material strength [24,68,69]. Detailed characteristics of the seven categories could be found in Tien
Bui, et al. [70]. Fault is an popular factor for landslide susceptibility that was used various works i.e.,
in [71–73], and especially, it is an important factor for landslide modeling in areas that are affected by
tectonic activities [74]. In this research, distance to fault map (Figure 4g) with seven classes [40] for the
URRB area was constructed by buffering the fault lines extracted from the National Geological and
Mineral Resources Maps above.

  

  

  

Figure 4. Cont.
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Figure 4. Landslide predisposing factors used in this study: (a) Slope; (b) Aspect; (c) Elevation; (d) Land
cover; (e) Soil type ; (f) Lithology; (g) Distance to fault; and, (h) Distance to river.

Soil type (e) legend: D: Sloping soil; Fl: Cultivated rice yellowish red soil; Fs: Yellowish red
soil on claystone and metamorphic rocks; Py: Alluvial soil deposited by river; Pe: neutral-less acidic
and light texture alluvial soil; Fp: Brown-yellowish soil on old alluvium; Fq: Light yellowish soil on
sandstone; Pbe: Neutral and less acidic alluvial soil; Flv: Red soil on limestone; Fn: Brown-yellowish
soil on limestone; He: Humus yellow red soil on claystone and metamorphic rocks; Fa: Yellowish red
soil on acid magmatic rock; and Ha: Humus yellow red soil on acid igneous rock. Lithology (f) legend:
AciNeu-Mag: Acid-neutral magmatic rocks; Extrus-R: Extrusive rocks; Mafic-ultra: Mafic-ultramafic
rocks; Meta-Alumi: Metamorphic rock with aluminosilicate components; Meta-Quart: Metamorphic rock
with rich quarts components; Q-DP: Quaternary deposits; and, Sed-Cacb: Sedimentary carbonate rocks.

4. Proposed a Hybrid Machine Learning Approach of Bagging Ensemble (BE) and Logistic Model
Tree (LMTree)

In this section, the proposed hybrid machine learning approach for Landslide Susceptibility
Modeling at Upper Reaches Area of Red River Basin (Viet Nam) is described and presented in the first
time. Methodological concept of the proposed BE-LMT model used in this study is shown in Figure 5.

 

Figure 5. Methodological concept of the proposed Bagging ensemble (BE)-Logistic Model Trees
(LMTree) model used in this study.
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The proposed approach is a hybridization of LMTree and BE and is named as BE-LMTree. It should
be noted that the data processing and coding were conducted using IDRISI Selva 17.0 (Clark University,
Worcester, MA, USA, 2017) and ArcGIS 10.4 (ESRI Inc., Redlands, CA, USA 2017). The BE code is from
Kuncheva [59] whereas the Logistic Model Tree algorithm is available at Weka’s API [75]. The proposed
BE-LMTree model was programmed by the authors in the Matlab environment.

4.1. Establishment of GIS Database, the Training Dataset and the Validation Dataset

In the first step, a GIS database for this project was designed and established using ArcCatalog
software. Accordingly, the File Geodatabase format was used due to the ability to host and process very
large geographic datasets with their different data types in a only one file system [76]. Accordingly,
the GIS database consists of 255 landslide polygons and eight predisposing factors (slope, aspect,
elevation, land cover, soil type, lithology, distance to fault, and distance to river). These landslide
polygons and factors were converted to raster format with a resolution of 25 m. In this research,
the categories of the eight predisposing factors were coded and normalized, as suggested in [24,77],
to avoid the imbalance of categorical magnitudes [78].

In landslide modeling, cross validation [79] that has proven efficient for evaluating the model
performance should be used. Accordingly, in this research, 179 landslide polygons (70%, 1006 pixels)
were randomly extracted [80] and used for training the landslide models, whereas the other
76 landslides (30%, 441 pixels) were used for assessing the prediction capability of the models. Because
the proposed approach in this study employs “on-off” classification, the equal amount of non-landslide
pixels were also randomly sampled in the not-yet landslide areas of the basin, area with slope angles
less than 5o, as suggested in [32]. Detailed discussions on sampling strategies can be found at [81].
In the next step, values of the eight predisposing factors for all of the aforementioned pixels were
extracted to build the training dataset and the validation dataset. Finally, the coding process that was
proposed in [17] was performed, in which the landslide pixels were assigned “1” and the non-landslide
pixels were assigned “0”.

Because the aforementioned partition of the landslide dataset into the training and validation
datasets was randomly generated only once; therefore, a further cross validation was additionally used
to ensure that the modeling result is the objective. Accordingly, 10-fold cross validation was employed
in the training phase with the training dataset to build landslide models. Thus, the training dataset was
randomly partitioned into 10 equally sized subsets; nine subsets were used for building the landslide
model, whereas the remaining subset was used for testing the landslide model. This procedure was
repeated 10 times where each subset was being used once as the testing dataset. Once the model was
successfully trained using the training dataset with the 10-fold cross validation procedure, the model
was again validated using the validation dataset.

4.2. Merit Evaluation of Factor

Identification of relevant features is an essential task when employing machine learning techniques
for landslide susceptibility [82]. This is because landslide is a typical real-world problem that is
influenced by various factors, but the contribution of these factors to the prediction model is different.
If non-contribution factors are included in the model, then they may cause noises that reduce the
prediction power of the final model; therefore, these factors should be excluded.

To detect non-relevant factors in this study, Pearson technique was employed to quantify the
predictive power of all landslide predisposing factors. Accordingly, the meritof these features were
estimated using Pearson correlation values [83] of the predisposing factors and the output using the
following equation:

Meriti =
covr(IFi, y)√

varr(IFi) ∗ varr(y)
(4)

where Meriti is the correlation value of landslide predisposing factor IFi and the label class y; covr(.) is
the covariance; and, varr(.) is the variance.
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4.3. Configuration and Training of the BE-LMTree Model

Configuration of the BE-LMTree model consists of two steps: (i) Determining the minimum
number of samples (NS) that are used for growing the LMTree; and, (ii) Determining the number
of bootstrap subsets (BS) used for BE. Because at least five samples are required to build a logistic
regression model at a tree node [52], we varied NS from 5 to 100 with a step size of 1, and then,
estimating the classification rate of the corresponding LMTree model on both the training dataset and
the validation dataset. As a result, minimum of 10 samples is the best for the data at hand; therefore,
NS of 10 was selected. For the case of determining the number of the bootstrap subsets, since no
thumb rule is available, an empirical test was carried out by varying BS from 2 to 100, and then,
compute their classification rates of the LMTree model both on the training dataset and the validation
dataset. The test result revealed that the BE-LMTree with 50 tree-based classifiers provided the highest
classification accuracy for the data at hand; therefore, BS of 50 is selected. Once the BE-LMTree model
had been configured, the training process was carried out to derive the final BE-LMTree model.

4.4. Performance Assessment of the Final BE-LMTree Model

Because the landslide modeling in this research is considered to be a binary form of pattern
recognition, therefore the performance of the final BE-LMTree model could be assessed using confusion
matrix (Figure 6) [40], both on the training dataset and the validation dataset. Based on the matrix,
several model measures are further derived i.e., sensitivity (SEN), specificity (SPE), positive predictive
power (PP2), and negative predictive power (NP2), Kappa statistics, and classification accuracy (CLA)
for the assessment, as suggested in [50]. It should be noted that a perfect landslide model will have
100% for SEN, SPE, PP2, NP2, and CLA.

Figure 6. Confusion matrix and model measures used in this research.

For the case of CLA, although CLA provides the overall performance of the landslide model,
however, a landslide model with a high CLA value may not classify the landslide pixels well. Therefore,
the likelihood ratio (LLR) is additionally used [84]. LLR is a metric that assesses the trade-off of both
SEN and SPE of landslide models. The higher the LLR value, the better the landslide model.

Global performance of the BE-LMTree model is summarized and assessed using the Receiver
Operating Characteristic (ROC) Curve and Area Under the curve (AUC) [40,41,85]. In general,
the closer the curve to the upper left corner, the better performance of the landslide model. Once the
ROC curve is constructed, AUC for the model is computed and used to quantify the quality of the
model. Accordingly, the performance of the model is excellent (AUC belong to 0.9–1), good (AUC
belong to 0.8–0.9), fair (AUC belong to 0.7–0.8), and poor (AUC is less than 0.7) [86].

15



Appl. Sci. 2018, 8, 1046

4.5. Computing Landslide Susceptibility Index

When the final BE-LMTree model is satisfied in the performance assessment check, the model is
used to compute susceptibility index for all the pixels of the study area. These susceptibility indices are
then converted to the ASCII raster format in ArcGIS using a Python application that was developed by
the authors. Finally, the landslide susceptibility map is classified by five susceptibility classes: very
high, high, moderate, low, and very low [87].

5. Results and Discussion

5.1. Predictive Ability Assessment

Result of the predictive ability evaluation of the eight predisposing factors is shown in Table 1. It is
noted that the 10-fold cross validation was used to ensure the stable assessment result, as suggested
in [88]. It could be seen that slope the highest predictive with the average merit (AM) is 0.225, followed
by distance to river (AM of 0.171), lithology (AM of 0.148), aspect (AM of 0.129), and elevation (AM
of 0.102). In contrast, soil type (AM of 0.038), distance to fault (AM of 0.055), and land cover (AM of
0.077) have low predictive ability values (Table 1).

The findings are reasonable because slope is widely recognized as the most important factor for
landslide in various projects [89,90]. From the above results, it could be seen that all predisposing
factors revealed predictive values to landslide model; therefore, we concluded that they are all relevant
factors and are included in this analysis.

Table 1. Predictive ability of eight landslide predisposing factors using Pearson technique and 10-fold
cross validation techniques.

No. Predisposing Factors Average Merit Standard Deviation

1 Slope 0.225 0.008
2 Distance to river 0.171 0.008
3 Lithology 0.148 0.008
4 Aspect 0.129 0.008
5 Elevation 0.102 0.006
6 Land cover 0.077 0.008
7 Distance to fault 0.055 0.005
8 Soil type 0.038 0.005

5.2. Model Training and Evaluation

Using the eight predisposing factors, the BE-LMTree model was trained using the training dataset
with the 10-fold cross validation technique. The training result is shown in Figure 7. It could be
seen that the CLA of the BE-LMTree model is 93.81%, indicating a high degree of fit of the model
with the dataset. Kappa statistics of 0.876 indicates the high agreement of the model and the training
dataset. SEN of the BE-LMTree model is 93.02%, indicating that the proportion of the landslide pixels
is correctly classified to the landslide class is 93.02%. Whereas, SPE is 94.63%, indicating that the
proportion of the non-landslide pixels is correctly classified to the non-landslide class is 94.63%. PP2 is
94.72%, indicating that the probability that the BE-LMTree model correctly classifies pixels to the
landslide class is 94.72%. NP2 is 92.89% indicating that the probability the BE-LMTree model correctly
classifies pixels to the non-landslide class is 92.89%. Overall, these above measures have demonstrated
that the BE-LMTree model performed very well with the training dataset.

To assess the contribution of landslide factors to the BE-LMT model, each factor was removed,
and then, the classification accuracy (CLA) was estimated. The reduction of CLA of the BE-LMT
model when one or more factors were removed indicates the contribution of these factors to the model.
The result is shown in Table 2. It could be seen that when Distance to Fault and Soil type were removed
from the LMT model, the CLA was reduced 2.12%. Therefore, although the average merit of Distance to
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fault (0.055) and Soil type (0.038) are small (see Table 1), the two factors contributed to 2.12% increasing
classification accuracy of the BE-LMT model. An even larger accuracy decrease (4.3%, see Table 2)
occurred when the four most significant variables (Slope, Distance to river, Lithology, and Aspect) are
used into the BE-LMT model. Overall, it is reasonable of the to keep all factors in this research.

 

Figure 7. Confusion matrices and performance measures of the three landslide models using the
training dataset: (a) the BE-LMTree model; (b) the LMTree model; and (c) the SVMC model.

Table 2. Contribution of the landslide predisposing factors to the BE-LMT model.

No. Removing Factor Classification Accuracy-CLA (%)

1 Slope 91.74
2 Aspect 92.31
3 Elevation 92.49
4 Land cover 93.60
5 Soil type 93.59
6 Lithology 91.97
7 Distance to fault 92.83
8 Distance to river 93.35
9 Distance to Fault and Soil type 91.69
10 Elevation, Land cover, Distance to fault and Soil type 89.51

The prediction performance of the BE-LMTree model is assessed using the validation dataset
and the result is shown in Figure 8. It could be observed that the CLA is 87.89%, indicating a high
prediction result. Kappa statistics of 0.759 indicates that the prediction performance of the model is
75.9% better than random. SEN of the BE-LMTree model is 92.25%, indicating that the proportion of
the landslide pixels, which is accurately predicted, is 92.25%. SPE of the BE-LMTree model is 84.35%,
indicating that the proportion of the non-landslide pixels is accurately predicted is 84.35%. PP2 of the
model is 82.73%, indicating that the probability that the BE-LMTree model accurately predicts pixels to
the landslide class is 82.73%. NP2 is 93.05%, indicating that the probability that the BE-LMTree model
accurately predicts pixels to the non-landslide class is 93.05%.

Figure 9 shows 72 mispredicted landslide pixels (false positive) and 29 mispredicted non-landslide
pixels (false negative) for the study area. We see that the 76.4% and 20.8% of the mispredicted
landslide pixels were located in areas with slope angles <8.86◦ or slope angles from 36.39◦ to 5.87◦,
respectively. The mispredicted landslide pixels were also mainly located in elevation 174.78–358.94 m
(76.4%), the lithology of sedimentary carbonate rocks (73.6%), the yellowish red soil on claystone and
metamorphic rocks (87.5%), distance to fault >700 m (76.4%), and distance to river >200 m (79.2%).
Distribution of the mispredicted landslide pixels in the classes in the other factors was more even.
Regarding the mispredicted non-landslide pixels, they were mainly located in the distance to river
>200 m (79.3%), the dense forest land (69.0%), and the yellowish red soil on claystone and metamorphic
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rocks (62.1%). For the other factors, the distribution of the mispredicted non-landslide pixels in their
classes was quite even.

 

Figure 8. Confusion matrices and prediction measures of the three landslide models using the
validation dataset: (a) the BE-LMTree model; (b) the LMTree model; and (c) the SVMC model.

 

Figure 9. Mispredicted landslide pixels (false positive) and mispredicted non-landslide pixels in the
validation dataset versus the eight landslide predisposing factors (legend for the eight factors was the
same as in Figure 4). (a) Slope; (b) Aspect; (c) Elevation; (d) Landcover; (e) Soil type; (f) Lithology;
(g) Distance to fault; and (h) Distance to river.
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The global prediction capability of the BE-LMTree model is summarized and presented using
the ROC curve and AUC (Figure 10). It can be seen that AUC is 0.834, indicating that the prediction
capability of the proposed model is 83.4%, which is a high prediction capability.

 

Figure 10. Receiver Operating Characteristic (ROC) curve and Area Under the curve (AUC) of the
BE-LMTree model, the LMTree model, and the SVMC model using the validation dataset. SE: Standard
Error; CI: Confidence Interval.

5.3. Comparison of the BE-LMTree Model with Benchmark

Because this is the first time that the BE-LMTree model is investigated for landslide modeling, the
validity of the proposed model therefore was evaluated and compared with the benchmark. We select
support vector machine (SVMC) as a benchmark because SVMC has proven efficient and outperforms
other conventional methods [38,91]. For constructing the SVMC model, the radial basic function (RBF)
kernel [41,92,93] was selected and the grid-search method [94–96] was used to derive the best the
regularization (C = 9) and kernel width (γ = 0.245). In addition, the performance of the LMTree model
was also included to present the merit of the proposed BE-LMTree model that is an integration of the
Bagging ensemble and the LMTree.

The result is shown in Figures 7, 8, and 10. Using the training dataset, the CLA of the SVMC
model (90.08%) and the LMTree model (92.03%) is slightly lower than CLA (93.81%) of the BE-LMTree
model. Regarding LLR, the SVMC model (7.93) and the LMTree model (13.13) have lower values when
compared to that of the BE-LMTree model (17.31). The other detailed metrics of the two models are
shown in Figure 7. Overall, the BE-LMTree model performs better than the SVMC model and the
LMTree model in the training dataset.

Using the validation dataset, the prediction performance of the SVMC model and the LMTree
model is evaluated (Figure 8). It could be seen that the proposed BE-LMTree model (CLA = 87.98,
LLR = 5.89) has a higher prediction performance when compared to those of the SVMC model
(CLA = 86.45%, LLR = 5.09) and the LMTree model (CLA = 82.85%, LLR = 4.05). The global prediction
capabilities of the three landslide models are assessed using the ROC curve and AUC (Figure 10).
It could be been that the proposed BE-LMTree model (AUC = 0.834) is slightly higher than those of
the SVMC model (AUC = 0.825) and the LMTree model (AUC = 0.813). Other detailed prediction
performances of the three models are presented in Figure 8. Based on the aforementioned analysis,
it could be concluded that the proposed BE-LMTree model is capable of producing the best landslide
susceptibility result for this study area.
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5.4. The Landslide Susceptibility Map

The final BE-LMTree model derived from the training step above was then used to compute
landslide susceptibility indices for the Upper Reaches Area of Red River Basin (URRB), Vietnam.
Accordingly, all of the predisposing factors in the raster maps were converted into ASCII format,
and then fed to the BE-LMTree model to generate susceptibility indices. Distribution of these
susceptibility indices is shown in Figure 11.

 

Figure 11. Distribution of these susceptibility indices versus of the five susceptibility classes.

These landslide susceptibility indices were then transformed to the raster format to manage in
ArcGIS software using a python application that was programmed by the authors. Finally, the landslide
susceptibility map (Figure 12) for the URRB was cartographically presented by five classes: very high
(10%), high (10%), moderate (15%), low (25%), and very low (40%). To determine the thresholds for
these classes, the extensively used graphic curve method has been considered to be the most suitable;
a detailed explanation of it is available in [87,97,98]. The thresholds for these classes were determined
based on an analysis of the susceptibility index map and the landslide inventory map, and then,
the percentage of the landslide pixel versus the percentage of the susceptibility indices was calculated.
At last, the four thresholds for the five classes were obtained.

Characteristics of the five landslide susceptibility classes that were derived from the BE-LMTree
model the study area are shown in Table 3. Accordingly, the overall landslide frequency (OLF)
proposed in [99] for the five classes was derived, and theoretically, the overall frequency should
gradually grow from the very low class to the very high class [87]. It can be seen that the very high
occupied only 10% of the study area, but it has the highest OLF value (4.40), followed by the high
class (OLF = 1.59), the moderate class (OLF = 0.86), the low class (OLF = 0.43), and the very low class
(OLF = 0.41). These confirm that the BE-LMTree model performed well with the URRB area.

Table 3. Characteristics of the landslide susceptibility classes derived from the BE-LMTree model the
study area.

No. Index Interval
Landslide

Susceptibility (%)
Expression

Overall Landslide
Frequency (OLF)

Areas (km2)

1 1.000–0.981 90–100 Very high 4.40 327.4
2 0.965–0.980 80–90 High 1.59 327.4
3 0.925–0.964 65–80 Moderate 0.86 491.0
4 0.795–0.924 40–65 Low 0.43 818.4
5 0.000–0. 794 0–50 Very low 0.41 1309.4
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Figure 12. Landslide susceptibility map for the study area using the proposed BE-LMTree model.

Visual interpretation of the map (Figure 12) shows that the high probability of landslide is for areas
i.e., Sapa, Bat Xat, and Bao Yen, therefore these areas should receive more attention in the development
of remedial measures for the landslide prevention. Inversely, the low probability of landslide is for
the Van Ban area. In fact, this area belongs to the Hoang Lien National Park, which is covered by the
protected and dense tropical forest [100], therefore, having a low probability of landslide.

6. Concluding Remarks

This paper proposes a new modeling approach that is a hybrid intelligence of BE-LMTree
for landslide susceptibility mapping with a case study at URRB. According to current literature,
the BE-LMTree model has not been used for landslide modeling. For this purpose, the GIS database for
the URRB area has been established, which contains a total of 255 historic soil-mixed-boulder slides
and eight geo-environmental factors. These factors checked their merits to landslide using the Pearson
correlation. The GIS database was then used to construct and verify the BE-LMTree model. Quality of
the final BE-LMTree model was checked using confusion matrices and several model measures.

The results in this study point out that the new approach of the BE-LMTree could help to model
landslide susceptibility with desirable prediction capability. When compared to the support vector
machines (SVMC), a recognized benchmark in landslide modeling, the proposed BE-LMTree model
presents a better performance. Therefore, the BE-LMTree is a new promising tool that could be used to
enhance the quality of landslide susceptibility mapping.

For the case of the LMTree, this technique has been recently investigated for landslide
susceptibility mapping with promising results i.e., in [50], the performance of the LMTree model in this
research is lower than that of the SVMC model and the BE-LMTree model (Figures 4 and 5). Therefore,
it could be concluded that the integration of the BE and the LMTree has significantly improved the

21



Appl. Sci. 2018, 8, 1046

quality of the LMTree model. This is due to the stability and robustness of the BE procedures itself
with the ability to reduce variances [101]. This finding agrees with [51], who concluded that the
performance of the landslide model is enhanced with the use of ensemble frameworks.

The main disadvantage of the proposed approach is that the quality of the BE-LMTree model is
heavily controlled by the minimum number of samples (NS) that is used for growing the LMTree and
the number of bootstrap subsets (BS) used in the BE. In this research, NS and BS were determined using
an empirical test. Although the NS and the BS found results in the high performance BE-LMTree model,
however these do not warrant them being the optimal parameters. Therefore, the performance of the
BE-LMTree model may be further enhanced if optimization algorithms are considered to integrate
in the model. In addition, the BE-LMTree may create a complex forest trees i.e., 50 trees in this
research. Therefore, the interpretation of the BE-LMTree model may be complicated. Despite the
aforementioned limitations, the BE-LMTree can be considered as a new and valid tool for landslide
susceptibility modeling.
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Abstract: Image colorization assigns colors to a grayscale image, which is an important yet difficult
image-processing task encountered in various applications. In particular, grayscale aerial image
colorization is a poorly posed problem that is affected by the sun elevation angle, seasons, sensor
parameters, etc. Furthermore, since different colors may have the same intensity, it is difficult to solve
this problem using traditional methods. This study proposes a novel method for the colorization of
grayscale aerial images using random forest (RF) regression. The algorithm uses one grayscale image
for input and one-color image for reference, both of which have similar seasonal features at the same
location. The reference color image is then converted from the Red-Green-Blue (RGB) color space to
the CIE L*a*b (Lab) color space in which the luminance is used to extract training pixels; this is done
by performing change detection with the input grayscale image, and color information is used to
establish color relationships. The proposed method directly establishes color relationships between
features of the input grayscale image and color information of the reference color image based on the
corresponding training pixels. The experimental results show that the proposed method outperforms
several state-of-the-art algorithms in terms of both visual inspection and quantitative evaluation.

Keywords: colorization; random forest regression; grayscale aerial image; change detection

1. Introduction

Image colorization can be described as the process of assigning colors to the pixels of a grayscale
image in order to increase the image’s visual appeal [1]. This application is often utilized in the
image processing community to colorize old grayscale images or movies [2]. Particularly in aerial
and satellite imagery, the problem with colorization occurs in a multitude of scenarios that seek to
replace topographic maps with vivid, photorealistic renderings of terrain models [3]. There are three
main reasons for colorizing aerial and satellite images: (1) grayscale satellite images are available at
higher spatial resolutions than their color counterparts are; (2) there are many old grayscale aerial
and satellite images that should be represented by color images, typically for monitoring purposes;
and (3) grayscale aerial–satellite images can be obtained for approximately one-tenth the cost of color
images of the same resolution [3].

In the case of satellite images, modern systems acquire a panchromatic (grayscale) image, with high
spatial and low spectral resolutions, and a multispectral (color) image that has complementary properties [4].
In other words, grayscale and color images with different resolutions over the same time period are
provided. In order to perform colorization through the color information of the multispectral image while
maintaining the high resolution of the panchromatic image, the two components are fused, which is
called pansharpening [5]. The fused images provide increased interpretation capabilities and more reliable
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results [6]. However, this colorization method is confined to satellite images that provide panchromatic and
multispectral images of the same time periods, making this type of colorization of aerial images impossible.

On the other hand, grayscale aerial image colorization is a poorly posed problem with more than one
solution [7]. As mentioned above, the satellite images fuse the grayscale and color images from the same
time period to perform colorization, whereas aerial images do not usually have the two types of imagery
available. Furthermore, in contrast to the natural images, this colorization solution depends on the sun
elevation angle, season, sensor parameters, etc. It is also problematic that the same intensity may represent
different colors, so there is no exact solution [8]. In general, existing colorization methods can be divided
into three main categories, all of which have limitations: user-scribbled methods, example-based methods,
and those that employ a large number of training images [9]. User-scribbled techniques [10–13] require
a user to manually add colored marks to a grayscale image [13]. The colors from these marks are then
smoothly propagated across the entire image, based on an optimization framework. A key weakness is that
such methods require users to provide a considerable number of scribbles on the grayscale image, which is
time-consuming and requires expertise [14]. Moreover, it is almost impossible to add such markings to large
volumes (gigabytes) of aerial imagery. In the case of the example-based method [1,8,9,14–16], it typically
transfers the color information from a similar reference image to the input grayscale image rather than
obtaining chromatic values from the user, thereby reducing the burden on users. However, as feature
matching is critical to the quality of the results, satisfactory results cannot be obtained if feature matching is
not performed correctly [15]. Moreover, the procedure is very sensitive to image brightness and contrast,
whereas real aerial images always include large areas of shadow and low contrast, due to relief, vignetting,
and so on. An alternative approach is to employ a large number of training images [17–19], which is a recent
example of deep learning. These methods use multiple color images to automatically transfer the color
information to the grayscale image, and deep neural networks are used to solve the colorization problem.
A large database of color images comprising all kinds of objects is used for training the neural networks.
The trained model can then be used to efficiently colorize grayscale images. However, this approach is
computationally expensive, and the training is significantly slow [15].

In order to overcome these limitations, this study presents a new, fast learning-based technique
for the colorization of grayscale aerial images that colorizes them without any user intervention.
The algorithm uses one grayscale image as the input and one-color image for reference, both of which
have similar seasonal features at the same location. Then, the reference color image is converted
from the Red-Green-Blue (RGB) color space to a CIE L*a*b (Lab) color space in which luminance and
two-dimensional (2D) color information are stored. Change detection between the input grayscale
image and the luminance of the reference color image is performed, and the unchanged region is
selected as training pixels, which allows for the extraction of meaningful training data. For colorization,
the relationships are established through learning between features of the input grayscale image and
the 2D color information of the reference color image based on training pixels. In other words,
for the corresponding unchanged region, the color relationships between the two images are directly
established, and the colors for the changed region are predicted. At this time, the study’s main
technical framework is random forest (RF) regression. Random forest is a data-mining method that has
some advantages over most statistical modeling methods [20], including: the ability to model highly
nonlinear dimensional relationships; resistance to overfitting; relative robustness with respect to the
presence of noise in the data; and the capacity to determine the relevance of the variables used.

The main contributions of this paper can be summarized as follows: (1) to the best of our knowledge,
this is the first work that exploits RF regression for aerial imagery colorization, although it has been
used for natural image colorization [21–23]; (2) this paper develops a novel algorithm that establishes
color relationships based on unchanged regions, which predict the color values of the changed regions;
(3) this paper establishes color relationships by directly mapping the features of the input grayscale image
with the color information of the reference color image; and (4) this paper performs visual and quantitative
analyses that show that our method outperforms the current state-of-the-art methods. The rest of this paper
is organized as follows. Section 2 describes the materials used in detail, the background of RF regression,
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and the proposed algorithm. Section 3 presents the colorization results and a detailed comparison with
other state-of-the-art colorization algorithms. Section 4 presents the conclusions of the study.

2. Materials and Methods

2.1. Study Site and Data

The study sites are located in Gwangjin-gu, in the central–western part of South Korea. The input
grayscale images were acquired on 10 June 2013, and the reference color images were acquired on
2 June 2016; both are aerial images at 1 m resolution. Coordinate definition and geometric correction
were performed on the images using Environment for Visualizing Images (ENVI) geospatial analytical
software (version 4.7, HARRIS Geospatial Solutions, Broomfield, CO, USA). The coordinate system
of each image was projected as World Geodetic System (WGS) 84 Universal Transverse Mercator
Coordinate System (UTM) 52N, and 30 Ground Control Points (GCPs) were selected for image
registration. The 30 GCPs returned a total root mean square error of 0.4970, satisfying values within
0.5 m. Then, based on these GCPs, image registration was performed using the “Warp from GCPs:
Image to Image” tool in ENVI. Finally, to achieve reasonable computational time, only a portion of the
image was extracted prior to conducting the experiments, which was selected to be 1200 × 1200 pixels.
A total of four sites were extracted and are shown in Figures 1–4.

(a) (b)

Figure 1. Experimental area of site 1: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

(a) (b)

Figure 2. Experimental area of site 2: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.
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(a) (b)

Figure 3. Experimental area of site 3: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

(a) (b)

Figure 4. Experimental area of site 4: (a) input grayscale image acquired on 10 June 2013, (b) reference
color image acquired on 2 June 2016.

2.2. Random Forest

Random forest is a highly versatile ensemble of decision trees that performs well for linear and
non-linear prediction by finding a balance between bias and variance [20]. This ensemble learning
method constructs and subsequently averages a large number of decision trees for classification or
regression purposes [24,25]. At this time, to avoid correlation among the trees, RF increases the diversity
of the trees by forcing them to grow from different training data created through a procedure called
bootstrap aggregating (bagging) [26]. Bagging refers to aggregating base learners trained through
bootstrapping, which creates training data subsets by randomly resampling a given original dataset [27].
That is, as a process of de-correlating trees to train different datasets, it increases stability and makes it
more robust when facing slight variations in the input data [28]. Furthermore, approximately one-third
of the samples are excluded for the tree training in the bagging process, which is known as the
“out-of-bags” (OOB) samples. These OOB samples can be used to evaluate performance, which allows
the RF to compute an unbiased estimation of the generalization error without using an external data
subset [29]. From the predictions of the OOB samples for every tree in the forest, the mean square error
(MSE) is calculated, and the overall MSE is obtained by aggregation, as shown in Equation (1):

MSEOOB =
1
n

n

∑
i=1

(yi − ŷiOOB)
2 (1)
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where n is the number of trees, yi denotes the prediction for the ith observation, and ŷiOOB denotes the
average of the OOB predictions for the ith observation.

Furthermore, the use of RF requires the specification of two standard parameters: the number
of variables to be selected and tested for the best split at each node (mtry), and the number of trees
to be grown (ntree). At each node per tree, the number of mtry variables from the total variables in
the model is selected at random, the variable that best splits the input space and the corresponding
split are computed, and the input space is split at this point [30]. In a regression problem, the standard
value for mtry is one-third of the total number of variables due to computational benefits [31,32]. In the
case of ntree, the majority of the studies set the ntree value to 500 since the errors are stabilized before
this number of regression trees is achieved [33]. However, recent studies have found that the number
of trees does not significantly affect performance improvement, which allows the selection of ntree to
consider the performance and training time together [34–36].

Random forest can also be used to assess the importance of each variable during modeling.
To determine the importance of input variables, a variable is randomly permuted, and regression
trees are grown on the modified dataset. The measure of each variable’s importance is then calculated
as the difference in the MSE between the original OOB dataset and the modified dataset [37,38].
A key advantage of RF variable importance is that it not only deals with the impact of each variable
individually but also looks at multivariate interactions with other variables [39].

2.3. Method

The proposed colorization framework can be decomposed into four steps: (1) pre-processing,
(2) feature extraction, (3) colorization, and (4) post-processing, all of which are shown in Figure 5.
The first step is to convert the color space and to select the pixels to be used in training for colorization.
The second step is to extract feature descriptors of the input grayscale image to be used in learning for
color prediction. In the third step, color relationships are established through the proposed method,
and colorization is performed on the input grayscale image. The fourth step improves the colorization
result by adjusting the histogram. Each of these steps is described below.

Figure 5. The flowchart of the proposed method. RGB: Red-Green-Blue color space, Lab: CIE L*a*b
color space, L component: grayscale axis, a and b components: two-color axes, RF: random forest.

2.3.1. Preprocessing

As mentioned above, the proposed preprocessing step is divided into color-space conversion
and extraction of training pixels. First, in this study, a Lab color space is selected since its underlying
metric has been designed to express color coherency. Furthermore, Lab has three coordinates: L is the
luminance, or lightness, which consequently represents the grayscale axis, whereas a and b represent
the two-color axes [16]. In other words, the L component can be known in advance through the
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input grayscale image, and only the remaining 2D color information, a and b, can be predicted [23].
Thus, the color space of the reference color image is converted from RGB to Lab, and, in the colorization
step, only the color relationships for a and b are established through regression. Then, in order to
extract a meaningful set of training data, change detection between the input grayscale image and
the L component of the reference color image is performed. The change detection method used
here comprises two steps for accurate extraction. The first step is a pixel-based method that uses
principal component analysis (PCA) [40], and the threshold for distinguishing between changed and
unchanged pixels is selected using Otsu’s method. However, this process will result in fragmentation
and incomplete expression of the change [41]. Therefore, the second step applies the object-based
method, which consists of four sub-steps: (1) the morphological closing operation, (2) gap filling,
(3) the morphological opening operation, and (4) elimination of small patches.

The morphological closing operation is the combination of dilation followed by erosion, which is
used to remove holes in the image [42]. Thus, the closing operation is applied to the image to fill
the spaces. Then, gaps within the changed regions that are not filled by the closing operation are
additionally filled, which makes the changed information more complete [41]. The morphological
opening is then applied, in which erosion is conducted on the image, and it is followed by a dilation
operation. The aim of the opening is to remove unnecessary portions. For the structure elements used
in the morphological operation, the closing and the opening are set to 3 × 3 and 5 × 5, respectively,
as selected in Xiao et al. [41]. Small, insignificant patches persist following the opening processing,
which can be removed by applying an area threshold. The area threshold is set based on the
minimum object size and is acquired through a zero-parameter version of simple linear iterative
clustering (SLICO). The SLICO is a spatially localized version of the k-means [43]. To initialize it,
the k-cluster centers, which are located on a regular grid and spaced S pixels apart, are sampled [44].
Then, an iterative procedure assigns each pixel to a cluster center using the distance measure D,
as defined in Equation (2), which combines the distance of color proximity (Equation (3)) and the
distance of spatial proximity (Equation (4)) [45]:

D =

√(
dc

m

)2
+

(
ds

S

)2
(2)

dc =

√
∑

si∈S
(I(x1, y1, si)− I(x2, y2, si))

2 (3)

ds =

√
(x1 − x2)

2 + (y1 − y2)
2 (4)

where dc and ds represent the color and spatial distance between pixels I(x1, y1, si) and I(x2, y2, si)

in the spectral band Si, respectively; and m controls the compactness of the superpixels,
which is adaptively chosen for each superpixel. In this study, the number of iterations is set to
ten, which is sufficient for error convergence [46], and the initial size of the superpixels is set to 10 × 10,
which represents optimal accuracy and computational time [45]. Finally, the unchanged regions are
used for training, which consists of establishing color relationships in the unchanged regions from
which those of the changed regions can be predicted.

2.3.2. Feature Extraction

The gray level of one pixel is not informative for color prediction, so additional information
such as texture and local context is necessary [15]. In order to extract the maximum information for
color prediction, features that describe the textural information of local neighborhoods of pixels are
considered. Previous automatic colorization methods used Speed-Up Robust Features, Gabor features,
or a histogram of oriented gradients as base tools for textural analysis [14,15]. These descriptors are
known to be discriminative but also computationally and memory intensive due to their high number

33



Appl. Sci. 2018, 8, 1269

of features. Moreover, recent approaches have separated texture from structure using relative total
variation, but their descriptors are not sufficiently accurate to discriminate textures among themselves.
Consequently, statistical features are utilized here, as this approach is simple, easy to implement,
and has strong adaptability and robustness, among which the gray-level co-occurrence matrix (GLCM)
is used [47,48]. The GLCM is used extensively in texture description, and the co-occurrence matrices
provide better results than do other forms of texture discrimination [49,50]. For remote sensing images,
four types of statistics—angular second moment, contrast, correlation, and entropy—are better suited
to texture feature extraction, so they have been selected for statistics in this study [51]. Also, in order to
calculate the GLCM values, the window size should be set. The present study has ultimately selected
a 5 × 5 window size, which better reflects coarse and fine textures [48]. Furthermore, the intensity
value and the mean and standard deviation of the intensity within a 5 × 5 neighborhood are included
as supplementary components.

2.3.3. Colorization

Like other learning-based approaches, this step consists of two components: (1) a training
component and (2) a prediction component, which are described below.

In the training component, image colorization is formulated as a regression problem and is solved
using RF. The training data employ seven features of the input grayscale image corresponding to the
unchanged regions extracted from the preprocessing step. At this time, these features are trained
with the a and b components of the reference color image at the same pixel location. In other words,
rather than establishing the color relationships between the L component and the a and b components
of the reference color image like other colorization methods do [15,18,19,23], this study establishes
color relationships directly between the input grayscale image and the a and b components of the
reference color image. Then, the RF regression parameters—mtry and ntree values—are defined.
The mtry value is generally set to one-third of the number of features in the regression problem due to
computational advantages, but, in this study, the total number of features is utilized, as in the original
classification and regression trees procedure, since the number of features is not large enough to affect
the computational time [32]. Furthermore, the ntree value is set to 32, which takes into account the
performance and training time of the RF regression [35].

The prediction portion of this step uses the RF regression obtained from the training component to
predict the colors for the a and b components of the input grayscale image. Then, the input grayscale image
is used as the L component, and it is combined with the predicted a and b components. Finally, the Lab
image is converted to the RGB color space.

2.3.4. Post-Processing

Finally, the colorized image acquired above is adjusted to reflect global properties
based on histogram specification. Histogram specification is a useful technique for modifying
histograms via image enhancement without losing the original histogram characteristics [52,53].
Essentially, the input histogram is transformed into a histogram of the specified image to highlight
specific ranges. The histogram specification procedure is defined below.

First, the cumulative density functions (CDFs) of the input and specified images are acquired,
as shown in Equations (5) and (6):

sk = Cr(rk) =
k

∑
i=0

P(ri) =
k

∑
i=0

ni
n

(5)

vk = Cz(zk) =
k

∑
i=0

P(zi) (6)
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where sk and vk are the respective histograms of the input and specified images, Cr(rk) and Cz(zk)
are the CDFs of the respective input and specified images, P(ri) and P(zi) are the probability density
functions of the respective input and specified images, k = 0, 1, 2, . . . , L−1, L is the total number
of gray levels, and ni is the total number of gray levels ri [53]. Then, the value of zk, which satisfies
Equation (7), is identified:

{ (Cz(zk)− sk) = (vk − sk) } → 0 (7)

In other words, the smallest integer between vk and sk should be determined. Finally, the mapping
table of zk will be the output of Equation (8):

zk = Cz
−1(sk) = Cz

−1(Cr(rk)) (8)

In this study, the colorization image that is converted to the RGB color space is selected as the
input image, and the reference color image is selected as the specified image; histogram specification is
carried out for the red, green, and blue bands.

3. Results and Discussion

3.1. Implementation and Performance

This section presents the colorization results of the proposed algorithm and compares these with
the results of other state-of-the-art colorization algorithms. To ensure a fair comparison, colorization
algorithms that use only a single-color image as the reference (exemplar-based method) and that
are based on RF regression are compared, so that the methods of Welsh et al. [1], Bugeau et al. [14],
Gupta et al. [15], Gupta et al. [21], and Deshpande et al. [22] are selected. When performing the
colorization using these other methods, we used the same parameter settings suggested by their
respective authors. In addition, two of the latest deep learning-based methods [18,19] are included for
visual comparison, using the codes provided by the authors. The results of the various algorithms
are compared by visual inspection (see Figures 6–9) and quantitative evaluation with ground-truth
images, which are the actual color images of the input grayscale images.

Ground truth image Our method [1] [14] [15]

[21] [22] [18] [19]

Figure 6. Comparison with existing state-of-the-art colorization methods at site 1.
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Ground truth image Our method [1] [14] [15]

[21] [22] [18] [19]

Figure 7. Comparison with existing state-of-the-art colorization methods at site 2.

Ground truth image Our method [1] [14] [15]

[21] [22] [18] [19]

Figure 8. Comparison with existing state-of-the-art colorization methods at site 3.

Ground truth image Our method [1] [14] [15]

[21] [22] [18] [19]

Figure 9. Comparison with existing state-of-the-art colorization methods at site 4.

From the overall visual inspection, the proposed algorithms appear to show better results than do
the five existing methods for most cases. The Welsh et al. method [1] is based on transferring color
from one initial color image considered as an example. Color prediction is performed by minimizing
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the distance in the simple statistics of a luminance image. However, as the results show, only a few
colors are dealt with, and the results include many artifacts due to the lack of any spatial coherency
criteria. In the case of the Bugeau et al. method [14], image colorization is solved by computing the
colors using different features and associated metrics. Then, the best colors are automatically selected
via a variational framework. Overall, the results fail to select the best colors and have a desaturating
effect, confirming the limitations of the variational framework. The Gupta et al. method [15] performs
image colorization by automatically exploiting multiple image features. This method transfers color
information by performing feature-matching between a reference color image and an input grayscale
image—a process that is critical to the quality of the results. This achieves better colorization than the
other exemplar-based methods but still only deals with a few colors, resulting in incorrect matches in
challenging scenarios.

The other Gupta et al. method [21] is a learning-based method in which learning is performed in
superpixel units to enforce higher color consistency. Superpixels are extracted, features are computed
for each superpixel, and learning is performed based on an RF regression. The results of this method
contain more color information than do the results of the other exemplar-based methods, but the
approach still does not retrieve certain colors such as blue or red (Figure 7), and it sometimes predicts
completely different colors (as in Figures 8 and 9). The Deshpande et al. method [22] is also based on RF
regression, which is performed within the LEArning to seaRCH (LEARCH) framework. Furthermore,
histogram correction is performed on the colorization image to improve the visual appeal of the results.
In the state-of-the-art-methods used for comparison, this method predicts sufficient color information.
However, halo effects exist in the object boundaries, especially in Figure 7. Moreover, as shown in
Figure 9, the more complex the structure, the more halo effects are added, leading to many artifacts.

In addition to exemplar-based and RF regression-based methods, deep learning-based
methods [18,19] are used for comparison. These colorization algorithms use millions of images
for training neural networks, which are based on ImageNet and convolutional neutral networks
(CNN). Both results contain color information that is completely different from the ground-truth or
reference color images, as shown in Figures 6–9. For example, although the colors of the tree are
somewhat predicted, the colors of the buildings or the roads are not predicted at all, which suggests
that artifacts are more obvious when the structure is complex. In other words, it is impossible to
colorize aerial images through a model that is trained with natural images.

As can be seen in Figures 6–9, our approach more accurately predicts colors than do the other
methods, producing results with fewer artifacts. In Figure 6, the color determined by our method is
much clearer, especially in the red portion of the ground that is correctly recovered without artifacts.
Figure 7 is a site with many human-made objects, and our method demonstrates remarkably high
performance in color prediction, while other methods completely fail to correctly predict colors or
contain halo effects. Figure 8 also has many human-made objects that contain multiple colors in the
area of vegetation, which makes it more difficult to predict the color values at this site. Except for our
method and that of Deshpande et al. [22], the colors of human-made objects are not correctly predicted,
which indicates that our method is robust for color prediction. Figure 9, the urban area, contains the
most complex structure and the greatest variety of colors for prediction. Although the results of the
proposed method also contain slightly turbid colors, our method produces significantly better results
than do the other methods. In other words, our method retrieves more color values with fewer artifacts
from the reference image; these details can be confirmed in Figures 10–13.
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Our method [1] [14] [15] [21] [22]

Figure 10. Enlargement of site 1: our method retrieves color values well in this region, compared with
other methods.

Our method [1] [14] [15] [21] [22]

Figure 11. Enlargement of site 2: our method retrieves color values well in this region, compared with
other methods.

Our method [1] [14] [15] [21] [22]

Figure 12. Enlargement of site 3: our method retrieves color values well in this region, compared with
other methods.
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Our method [1] [14] [15] [21] [22]

Figure 13. Enlargement of site 4: our method retrieves color values well in this region, compared with
other methods.

Although visual inspection is a simple and direct way of appreciating the quality of the
colorization results, it is highly subjective and cannot accurately evaluate the results of the various
colorization methods. Therefore, for quantitative evaluation of the results, we employ the standard
peak signal-to-noise ratio (PSNR) and normalized color difference (NCD). The PSNR, which is
expressed in terms of the decibel (dB), is an estimate of the quality of the reconstructed (colorization)
image compared with the ground-truth color image [54]. Given an m × n ground-truth color image u0

and a colorization result u, PSNR is defined as:

PSNR = 10 · log(
3mn (MAX)2

∑RGB ∑m−1
i=0 ∑n−1

j=0 [u(i, j)− u0(i, j)]2
) (9)

where MAXI is the maximum possible pixel value of the image (i.e., 255 with standard 8-bit samples),
and ∑RGB() denotes summation over the red, green, and blue bands. The higher the PSNR value,
the better the reconstruction process. Normalized color difference is used to measure the color quality
degradation in color images [55]. For the NCD calculation, Lab space is used and is defined as:

NCD =
∑m−1

i=0 ∑n−1
i=0 [ (ΔL)2 + (Δa)2 +

(
Δb)2]1/2

∑m−1
i=0 ∑n−1

i=0 [ (Lu0)
2 + (au0)

2 + (bu0)2]
1/2

, (10)

where ΔL, Δa and Δb are the differences between the components of the ground-truth color image
and the colorization result, and Lu0, au0, and bu0 are each component values of the ground-truth color
image [56]. The lower the NCD value, the better the color quality.

The PSNRs and NCDs of the various algorithms are shown in Tables 1 and 2. In the case of
PSNR, the proposed method (Max: 35.0906, Min: 29.6542, Average (Avg): 32.8773) significantly
outperforms those of Welsh et al. [1] (Max: 27.1564, Min: 23.5535, Avg: 25.9514), Bugeau et al. [14]
(Max: 29.1172, Min: 26.2594, Avg: 27.5596), Gupta et al. [15] (Max: 30.6962, Min: 27.1006, Avg: 29.3068),
Gupta et al. [21] (Max: 32.6280, Min: 28.0476, Avg: 30.6694), and Deshpande et al. [22] (Max: 31.5879,
Min: 24.2211, Avg: 29.6766). The performance difference from the state-of-the-art methods ranges from
2.4626 to 7.9342 for the maximum PSNR, 1.6066–6.1007 for the minimum PSNR, and 2.1779–6.9259 for
the average PSNR, which indicates high performance for all results, regardless of site. That is, it is
possible to colorize images stably regardless of the object included in the image or the complexity of
the included structure.
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Table 1. Quantitative evaluation of algorithm performance using standard peak signal-to-noise ratio
(PSNR). dB: decibel.

PSNR (dB)

Method Our Method [1] [14] [15] [21] [22]

Site 1 35.0906 26.9364 29.1172 30.6962 32.628 31.5879
Site 2 34.8936 27.1564 26.2594 29.9741 31.6331 31.8681
Site 3 31.8709 26.1595 28.0316 29.4565 30.369 31.0295
Site 4 29.6542 23.5535 26.8302 27.1006 28.0476 24.2211

Table 2. Quantitative evaluation of algorithm performance using normalized color difference (NCD).

NCD

Method Our Method [1] [14] [15] [21] [22]

Site 1 0.0707 0.1472 0.127 0.0963 0.0858 0.1042
Site 2 0.0716 0.1408 0.1573 0.1334 0.0929 0.1069
Site 3 0.1098 0.2094 0.1722 0.1472 0.1386 0.1373
Site 4 0.1244 0.2304 0.1677 0.1679 0.1422 0.1801

The NCD of the proposed method (Max: 0.0707, Min: 0.1244, Avg: 0.0941) also show better
performance than do Welsh et al. [1] (Max: 0.1408, Min: 0.2304, Avg: 0.1819), Bugeau et al. [14]
(Max: 0.1270, Min: 0.1722, Avg: 0.1561), Gupta et al. [15] (Max: 0.0963, Min: 0.1679, Avg: 0.1362),
Gupta et al. [21] (Max: 0.0858, Min: 0.1422, Avg: 0.1148), and Deshpande et al. [22] (Max: 0.1042,
Min: 0.1801, Avg: 0.1231), in which the range of the improved performance difference is 0.0151–0.0701
for the maximum NCD, 0.0178–0.1244 for the minimum NCD, and 0.0207–0.0878 in the average NCD.
This means that the degradation in color quality is lowest when performing colorization through the
proposed method. In other words, both visual and quantitative evaluations confirm the superiority of
the method proposed herein.

3.2. Limitations

The results show that the proposed algorithm can realize better results than can the existing
methods; however, there remain several limitations. Firstly, if there are errors in orthorectification or
image registration, incorrect extraction can be performed during selection of the training pixels in the
preprocessing step. Although RF regression is robust to training data, some color relationships can be
established incorrectly. Secondly, our method retrieves more color values than do the other methods,
but, if the structure is complex, it contains somewhat turbid colors. The histogram specification for the
reference color image is performed by post-processing, but there are still limitations. Thirdly, in this
study, aerial images three years apart are used. However, further verification is needed to determine
the extent of the period in which the colorization can properly be performed. Finally, our method
is established by directly correlating color relationships between the input grayscale image and the
reference color image, making it dependent on the availability of reference color aerial imagery of
the same input area with matching seasonal characteristics. Consequently, when suitable color aerial
images are unavailable, colorization may fail.

4. Conclusions

This paper presents a colorization algorithm for aerial imagery. The proposed method uses
a reference color image with similar seasonal features at the same location as an input grayscale image.
The color space of the reference color image is converted to Lab, and unchanged regions are selected
by applying change detection to the input grayscale image and the L component of the reference color
image, which serves as meaningful training data. Moreover, color relationships are established in
direct correspondence between the feature descriptors of the input grayscale image and the a and b
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components of the reference color image based on the RF regression. Finally, histogram specification
is applied to the colorization image to improve the results and is compared with state-of-the-art
methods. Experimental results for multiple sites show that our method achieves visually appealing
colorizations with significantly improved quantitative performance. In other words, the proposed
algorithm performs well and outperforms existing colorization approaches for aerial images.

Future work will include other complex descriptors or features in order to retrieve more color
values for complex structures. In particular, we intend to find the combination of features that best
describes the characteristics of the aerial images for colorization. We will also extend our application
of the technique by applying satellite images obtained from various sensors other than aerial images.
Furthermore, to overcome the limitations that may prevent colorization from being performed when
reference color images are unavailable, a method of using reference color images that are obtained
with different sensors or contain different seasons or resolutions will be sought out. Finally, we plan
to colorize past grayscale aerial images using a time-series approach, possibly by incorporating
monitoring frameworks.
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Abstract: Gully erosion triggers land degradation and restricts the use of land. This study assesses
the spatial relationship between gully erosion (GE) and geo-environmental variables (GEVs) using
Weights-of-Evidence (WoE) Bayes theory, and then applies three data mining methods—Random
Forest (RF), boosted regression tree (BRT), and multivariate adaptive regression spline (MARS)—for
gully erosion susceptibility mapping (GESM) in the Shahroud watershed, Iran. Gully locations were
identified by extensive field surveys, and a total of 172 GE locations were mapped. Twelve gully-related
GEVs: Elevation, slope degree, slope aspect, plan curvature, convergence index, topographic wetness
index (TWI), lithology, land use/land cover (LU/LC), distance from rivers, distance from roads,
drainage density, and NDVI were selected to model GE. The results of variables importance by RF
and BRT models indicated that distance from road, elevation, and lithology had the highest effect on
GE occurrence. The area under the curve (AUC) and seed cell area index (SCAI) methods were used
to validate the three GE maps. The results showed that AUC for the three models varies from 0.911 to
0.927, whereas the RF model had a prediction accuracy of 0.927 as per SCAI values, when compared
to the other models. The findings will be of help for planning and developing the studied region.

Keywords: gully erosion; environmental variables; data mining techniques; SCAI; GIS

1. Introduction

Today, reducing natural resources, especially soil and water, is one of the major problems and
major threats to human life and is one of the most important environmental problems worldwide that
has intensified in recent years, with increasing population and the alternation of human activities [1].
According to the data from United Nations research, the world’s population is growing at a rate of 1.8%
per year and it is expected to rise from 8 billion in 2025 to 9.4 billion in 2050 [2]. This increase in world
population would demand the need for food, water, forage, and others, which consequently would
add huge pressure on land exploitation, non-standard exploitation, and eventually lead to an increase
in erosion rates [1,3]. Soil erosion is one of the factors that endangers water and soil [1]. Soil erosion by
water, such as GE, is considered as a major cause of land degradation around the world [4,5]. It leads
to a range of problems, such as desertification, flooding and sediment deposition in reservoirs [6,7],
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the destructive effects on the ecosystem reducing soil fertility, and imposes huge economic costs [8].
GE is typically defined as a deep channel that has been eroded by concentrated water flow, removing
surface soils and materials [9,10]. The amount of moisture and its changes as a result of the dry
and wet seasons is a main parameter in creating cracks and grooves in fine-grained clay formations
containing clay and silt, and ultimately developing rilled erosion and gullies [10]. The alternation of
warm and dry seasons makes it possible to create cracks, in the formation of fine grains, in warm
seasons with the drying of the land and the wilting of the vegetation, and these cracks at the time of the
first sudden rainfall concentrate the runoff and therefore cause rill and GE to emerge [11]. GE occurs
when the erosion of the water flow or the erodibility of the sediments or the formation of the area
is higher than the geomorphological threshold of the area [11]. Mapping gully erosion systems is
essential for implementing soil conservation measures [6]. GEVs that influence gully occurrence are
rainfall, topography-derived factors such as elevation, slope degree, slope aspect, and plan curvature,
lithology [12], soil properties [13], and LU/LC [14]. The distribution of precipitation affects the
hydraulic flow and moisture content of the soil, and the erosion strength of the flow and soil resistance
to erosion is different before and after erosion [11]. Generally, the amount and volume of flow are
controlled by the topographic features of the area including slope, aspect, and drainage area of the area.
Depth and morphology of the cross section of the gullies are controlled by soil erodibility features of
the geological layers of the area. The characteristics of the region’s soil affect the subsurface flow and
the phenomenon of piping erosion, and the pipes cause a gully when their ceiling collapses [10].

Susceptibility maps of GE are essential for conservation of natural resources, and for evaluating
the relationship among gully occurrence and relevant GEVs [12]. Several models have been applied to
assess soil erosion and GE rate in a quantitative and qualitative way, such as the Universal Soil Loss
Equation (USLE) [1,15], Erosion Potential Method, Modified Pacific Southwest Interagency Committee
Model (MPSIAC) [16], Water Erosion Prediction Project (WEEP) [17], European Soil Erosion Model
(EUROSEM) [18], Ephemeral Gully Erosion Model (EGEM) [19], and Chemicals, Runoff, and Erosion
from Agricultural Management Systems (CREAMS) [20].

Within the soil conservation research field, the distribution of soil erosion is one of the primary
sources of information. This is also relevant for GE; however, in the above mentioned methods,
spatial distribution of gullies has not been addressed. Remote sensing-based methods to identify GE
have been developed [21], including with RF machine learning, though they serve more to validate
susceptibility models and to explain the actual erosion presence and distribution. In recent years,
scientific research for susceptibility analysis of GE, and work on the statistical relationships between
GEVs and the spatial distribution of gullies, have been addressed using various statistical and machine
learning methods including bivariate statistics (BS) [1], weights-of-evidence (WoE) [13], index of
entropy (IofE) [8], logistic regression (LR) [22–26], information value (IV) [24,25], random forest
(RF) [27], bivariate statistical models [28,29], maximum entropy (ME) [30,31], frequency ratio (FR) [28],
analytical hierarchy processes (AHP) [29], artificial neural network (ANN) [12,31], support vector
machine (SVM) [31], and boosted regression trees (BRT) [12]. For this purpose, various GEVs such as
topography (e.g., elevation, slope, aspect, plan curvature, profile curvature, slope length), lithology,
land use, soil properties (e.g., soil texture, soil type, erosivity, soil water content), land use, climate
(rainfall intensity, rainfall period, and spatial distribution of rainfall), infrastructures (road, bridge)
and hydrology (e.g., TWI, SPI, drainage density) were used.

A comprehensive literature review shows that there are still dimensions that require further
research, and that a large number of potentially useful methods have not yet been fully implemented
to provide GE susceptibility maps. The main objectives of this study are: (i) To determine the
relationship between gully occurrence and conditioning factors using Weights-of-Evidence Bayes
theory, (ii) assessing the capability of RF, MARS, and BRT data mining/machine learning models to
predict GE susceptibility; and (iii) validation of models using the AUC curve and SCAI methods. Study
of the research background showed that using MARS, BRT, and RF data mining models in GE zonation
is very new. It will help managers in future planning to prevent human intervention in sensitive areas.

45



Appl. Sci. 2018, 8, 1369

2. Materials and Methods

2.1. Study Area

The Shahroud watershed, with an area of about 848 km2 and elevation range from 1084 to 2131 m
a.s.l., is located in the northeastern part of Semnan Province, Iran (Figure 1). The study area receives
an average rainfall of less than 250 mm has an arid and semi-arid climate [32]. Various types of
lithological formations cover this watershed, and the landforms are mainly low level pediment fans
and valley terrace deposits. The dominant land use is rangelands, but irrigation farming and bare
lands are also present.

Figure 1. (a) Location of the Semnan provinces in Iran, (b) location of study area, and (c) gully erosion
locations with the digital elevation model map of the Shahroud watershed.

2.2. Data and Method

Figure 2 shows the methodological approach applied to map GE susceptibility in the Shahroud
watershed using BRT, MARS, and RF models. For preparing an accurate and reliable gully inventory
map, extensive field surveys with a DGPS device were performed in the study area to determine
the location of the Gullies [27,28]. Then, among 172 detected gully locations, randomly (70/30 ratio),
121 gully locations (70%) and 51 gully locations (30%) in the polygon format were used for training the
testing models [28]. The locations of training and testing gullies are shown in Figure 1. Interventionary
studies involving animals or humans, and other studies require ethical approval must list the authority
that provided approval and the corresponding ethical approval code.
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Figure 2. Flowchart of research methodology.

The tools used in present study are ArcGIS10.5, ENVI 4.8, SAGA-GIS 2.1.1, and a DGPS. The basic
maps used were geological maps [33], at a scale of 1:100,000, topographic maps, at a scale of 1:50,000,
satellite images acquired by Landsat8, and ASTER GDEM with spatial resolution of 30 m [34].
In this study, based on literature review [24,26,31] and local conditions of the study area, twelve factors
were selected. Elevation map was divided into six classes: <1200 m, 1200–<1350 m, 1350–<1450 m,
1450–1600 m, and >1600 m (Figure 3a). Slope degree affects surface runoff [35], soil erosion, and pattern
of drainage density. Slope degree map was classified into six classes [24,26]: <5◦, 5–<10◦, 10–<15◦,
15–<20◦, 20–<25◦, 25–30◦, and >30◦ (Figure 3b).

The aspect map was classified into nine classes (Figure 3c). Positive and negative values of plan
curvatures define convexity and concavity of slope curvature, whereas zero is flat surface. The plan
curvature map was divided into 3 categories: Concave, Flat, and Convex. The TWI indicator is
important for identifying prone areas to GE [36]. TWI is calculated by Equation (1):

TWI = ln
(

S
tan ∝

)
(1)

TWI map of study area is divided into four classes [24,26,37] including <5, 5–<7.5, 7.5–11, and >11
(Figure 3e). The convergence index (CI) gives a measure of how flow in a cell diverges (convergence
index in negative and positive values) [38]. The CI map was prepared in SAGA-GIS 2.1.1 and divided
into 3 classes: <0, 0–10, and >10 (Figure 3f). In this research, for the computation of the effect of
drainage network and infrastructures on GE, the distance from rivers and roads was considered [14]
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and divided into four classes: <170 m, 170–<370 m, 370–650 m, and >650 m for rivers (Figure 3g)
and <500 m, 500–<1500 m, 1500–3000 m, and >3000 m for roads (Figure 3h). The line density tool
in ArcGIS 10.5 was used for calculating drainage density and then its map was divided into four
categories: <1.4, 1.4–<2.4, 2.4–3.7, and >3.7 km/km2 (Figure 3i). A geological map at a 1:100,000 scale
was used to prepare the lithological unit layer. The lithological units were classified into ten categories
based on their sensitivity to gully occurrence using expert knowledge method (Figure 3j and Table 1).
The advantage of this method is it is easy to use, however this method has certain disadvantages, such
as the possibility of a mistake by the expert.

Table 1. Lithology of the study area.

Code Lithology Geological Age

Murmg Gypsiferous marl Miocene
Qft2 Low level piedment fan and vally terrace deposits Quaternary
Ku Upper cretaceous, undifferentiated rocks Cretaceous

Jd Well—bedded to thin—bedded, greenish—grey argillaceous
limestone with intercalations of calcareous shale (DALICHAI FM) Jurassic

PeEz Reef-type limestone and gypsiferous marl (ZIARAT FM) Paleocene-Eocene
PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone. Pliocene-Quaternary
Jl Light grey, thin—bedded to massive limestone (LAR FM) Jurassic-Cretaceous
E2c Conglomerate and sandstone Eocene
PlQc Fluvial conglomerate, Piedmont conglomerate and sandstone. Pliocene-Quaternary
E1c Pale-red, polygenic conglomerate and sandstone Paleocene-Eocene

The LU/LC map was obtained using Landsat 8 images [39–41]. The main LU/LC types identified
in the study area were range, irrigation farming, and bare lands (Figure 3k). The NDVI map was
also produced using Landsat 8 images and classified into 3 categories: <0.11, 0.11–0.25, and >0.25
(Figure 3l).

For multi-collinearity checking, the tolerance (TOL) and variance inflation factor (VIF) were used.
If during modeling there is collinearity among the variables, the accuracy of the model’s prediction
decreases. Values of TOL and VIF were ≤0.1 and ≥10, respectively, indicating that multi-collinearity
among parameters [28].

 

Figure 3. Cont.
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Figure 3. Gully erosion conditioning factors: (a) Elevation, (b) slope, (c) aspect, (d) plan curvature,
(e) TWI, (f) convergence index, (j) geology, (h) distance from road, (i) drainage density, (g) distance
from road, (k) land use/land cover (LU/LC), and (l) NDVI.

2.3. Gully Erosion Modelling

2.3.1. WoE Model

WoE is according to the Bayesian probability framework, to predict the significance of effective
factor classes through a statistical approach [42–51]. In this method, the spatial relationship between
GE areas and GEVs are identified. The WoE model is based on the calculation of positive (W+) and
negative (W−) weights. This model computes the weight of each GEVs according to the existence or
absence of the gully inventory [52] as follows:

W+
i = ln

(
p{B|L}

P
{

B
∣∣L}

)
(2)

W−
i = ln

(
P
{

B
∣∣L}

P
{

B
∣∣L}

)
(3)

C = W+ + W− (4)

S(C) =
√

S2(W+) + S2(W−) (5)

S2(W+
)
=

1
N{B ∩ L} +

1
{B ∩ L} (6)

S2(W−) = 1{
B ∩ L

} +
1{

B ∩ L
} (7)

W =

(
C

S(C)

)
(8)

where ln is the natural log function and P is the probability, B and B indicate the presence and absence
of the gully geo-environmental factor, respectively, L is the presence of gully, and L is the absence of
a gully. W+ and W− are positive and negative weights, with W+ indicating that a geo-environmental
factor is present in the gully inventory. S2(W+

)
is the variance of the W+ and S2(W−) is the variance

of W−. C indicates the overall association between GEVs and gully occurrence. S (C) is the standard
deviation of the contrast and W is final weight of each class factor.

2.3.2. RF Model

RF is a controlled learning method that uses multiple trees in the classification [21]. The RF
algorithm, by replacing and continuously changing the factors that affect the target, leads to the creation
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of a large number of decision trees, then all trees are combined to make decisions [21]. The RF consists of
3 user-defined parameters, which include: (1) The number of variables used in the construction of each
tree, which expresses the power of each independent tree; (2) number of trees in RF; and (3) minimum
number of nodes [43]. RF prediction power increases with the increasing strength of independent trees
and reducing the correlation between them [44]. This algorithm uses 66% of the data to grow a tree
called Bootstrap, and then a predictor variable is introduced randomly during the growing process to
split a node in the tree construction. The remaining 33% of the data is also used to evaluate the fitted
tree [45]. This process is repeated several times and the average of all predicted values is used as the
final prediction of the algorithm. In this model, two factors, including the mean decrease accuracy and
mean decrease Gini, are used to prioritize of each of the effective factors. The use of the mean decrease
accuracy in comparison to mean decrease Gini index is more effective in determining the priority
of effective factors, especially in the context of the relationship between environmental factors [46].
The RF analyses were carried out in R 3.3.1, using the “Randomforest” package [21].

2.3.3. BRT Model

BRT is one of several techniques that can help improve the performance of a single model by
combining multiple models [47]. BRT uses two algorithms for modeling: Boosting and regression [48].
Boosting is a way to increase the accuracy of the model, and based on this, the construction,
combination, and averaging of a large number of models are better and more accurate than
an individual model on its own [49]. BRT overcomes the greatest weakness of the single decision
tree, which is relatively weak in data processing. In BRT, only the first tree of all the training data is
constructed, the next trees are grown on the remaining data from the tree before it; trees are not built
on all data and only use a number of data [50]. The main idea in this method is to combine a set of
weak predictor models (high predictive error) to arrive at strong prediction (low predictive error) [51].
Thus, in this study, BRT was used for GE spatial modeling using GMB (Generalized Boosted Models)
and dismo (Species Distribution Modeling) packages in R 3.3.1.3.

2.3.4. MARS Model

The MARS model is a form of regression algorithm that was introduced by Friedman in 1991 to
predict continuous numerical outputs [52]. This technique generates flexible regression models for
predicting the target variable by means of dividing the problem space into intervals of input variables
and processing a basic function in each interval.

The base function represents information in relation to one or more independent variables. A base
function is defined in a given interval, in which the primary and end points are called knote. The knote
is the key concept in this method and represents the point at which the behavior of the function
changes at that point. The base function expresses the relationship between the input variables and the
target variable and is in the form of Max (0, X − c) or Max (0, c − X), in which c is threshold value and
X is the impute variable. The general form of the MARS model is as follows:

f (x) = β0 +
P

∑
j=1

B

∑
b=1

[
β jb(+)Max

(
0, xi − Hbj

)
+ β jb(−) Max

(
0, Hbj − xJ

)]
(9)

where x = input, f (x) = output, P = predictor variables, and B = basis function. Max (0, x − H) and Max
(0, H − x) are basis function and do not have to be present if their coefficients are 0. β0 is constant,
β jb is the coefficient of the jth base function (BF), and the H values are called knots. The MARS
model includes three main steps: (1) A forward stepwise algorithm to select certain spline basis
functions, (2) a backward stepwise algorithm to delete base functions (BFs) until the best set is
found, and (3) a smoothing method which gives the final MARS approximation a certain degree of
continuity [52]. First, the MARS model estimates the value of the target function with a constant value,
and then generates the best processing in the forward direction by searching among the variables.
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The search process continues as long as all possible (BFs) are added to the model. At this stage, a very
complex model with a large number of knotes is obtained. In the next step, through the process of
pruning backward, BFs that are less important are identified and deleted by using the generalized
cross-validation (GCV) criterion [27]. GCV is a criterion for data fitting and eliminates a large number
of BFs and reduces the probability of overfitting. This indicator is obtained by using Equation (10):

GCV =
1
2

N

∑
i=1

[yi − f (xi)]
2/
[

1 − C (B)
N

]2
(10)

where N is the number of data and C (B) is a complexity penalty that increases with the number of BF
in the model and which is defined as:

C (B) = (B = 1) + dB (11)

where d is a penalty for each BF included into the model. This process continues until a complete
review of all the basic functions, and at the end of the optimal model is obtained by applying base
functions [52]. MARS model is an adaptive approach, since the selection of BFs and node locations is
based on the data and type of purpose. After determining the optimal MARS model, the analysis of
variance (ANOVA) method can be used to estimate the participation rate of each of the input variables
and BFs. A detailed description of the MARS model can be found in [45]. MARS was run with R 3.3.1
and the “Earth” package [53].

2.4. Validation of GESMs Using Three Data Mining Models

A single criterion is not enough to select the best model among a large number of models,
and judging about choosing a superior model by one criteria. It is not a suitable approach and it
raises the chance of mistake in choosing the suitable model [27,37,54]. In this study, to compare the
performance between data mining models and select the appropriate model, AUC and SCAI were
used [28,36,55]. For calculating AUC, different thresholds were considered from 0 to 1, and for each
threshold, the number of cells detected by the model as gully erosion was compared with observed
gully erosion cells and positive and negative ratio indicators was calculated. After calculating these
two indicators, we arranged them in ascending order, then they were plotted to calculate AUC.
The AUC values range from 0.5 to 1. If a model cannot estimate the occurrence of an event better than
a probable or random viewpoint, its AUC is 0.5 and therefore it will have the least accuracy, while if
the AUC is equal to one, the model will have the highest accuracy [56,57]. The quantitative–qualitative
relationship between AUC value and prediction accuracy can be classified as follows: 0.5–0.6, poor;
0.6–0.7, average; 0.7–0.8, good; 0.8–0.9, very good; and 0.9–1, excellent. SCAI is the ratio of the
percentage area of each of the zoning classes to the percentage of gullies occurring on each class.
Based on the SCAI indicator, the values of SCAI in very high sensitivity class are lower than very low
sensitivity class.

3. Results

3.1. Multi-Collinearity Analysis

Multicollinearity is a condition of very high inter-correlations or inter-associations among the
independent variables. Therefore, it is a type of disturbance in the data, and if present in the data,
the statistical conclusions of the data may not be reliable [27]. A TOL value less than 0.1 or a VIF value
larger than 10 indicates a high multicollinearity [56]. The outcomes of the coherent analysis among the
12 GEVs are shown in Table 2. The outcomes showed that the TOL and VIF of all GEVs were ≥0.1 and
≤5, respectively. As a result, no multi-collinearity is seen among the GEVs.
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Table 2. Multi-collinearity of effective factors using tolerance (TOL) and variance inflation factor (VIF).

Conditioning Factors
Collinearity Statistics

Tolerance VIF

Constant Coefficient - -
Slope degree 0.998 1.002

Distance from road 0.672 1.489
Distance from river 0.323 3.094

Plan curvature 0.674 1.483
Lithology 0.945 1.058

LU 0.864 1.158
Drainage density 0.826 1.211

Elevation 0.920 1.087
Convergence index 0.666 1.503

Aspect 0.299 3.343
TWI 0.942 1.062

NDVI 0.941 1.063

3.2. Spatial Relationship Using WoE Model

The outcomes of WoE model are shown in Table 3. In elevation, the results of WoE indicate that
there is a direct correlation between classes of elevation and GE, and with an increase in elevation,
GE also increases. Therefore, the class of >1600 m with WoE 47.95 had the greatest impact on gully
occurrence. The result of slope degree indicate that classes 5–<10 with WoE 34.96 had a strong relation
with GEIM. For slope aspect, NE–facing slopes with a value of 19.46 show high probability of gully
occurrence. In the case of plan curvature, among the three classes of concave, flat, and convex,
the concave class had the highest value (78.04), and thus a positive correlation with GE. This result is
in line with [11,50]. In TWI, the class of >11 has the strongest relationship with GE with the highest
value (78.04). In the case of the convergence index, the class of 0–10 with values of 13.18 has a positive
relation with gully occurrence. With respect to distance from river, class of >650 with value of 25.86
and regarding distance from road the class of >3000 m with values of 16.25 had the greatest effect on
gully occurrence. For the drainage density factor, the class of <1.4 km/km2 showed the highest value
(14.23) and thus high correlation with gully occurrence. According to the lithology factor, Gypsiferous
marl with greatest value (51.23) is more prone to GE than other lithology units. Concerning LU/LC,
most gullies are located in the range land use type and this class with the highest value (21.02) has the
strongest relationship with gully occurrence. In NDVI, results indicated that all gullies are located in
the class of <0.11, showing that very low vegetation density renders slopes susceptible to GE.

Table 3. Relationship between conditioning factors and gully erosion using weights-of-evidence
(WoE) model.

Factor Class
Number of Pixels

in Domain
Pixels of Gullies

Weights-of-Evidence (WoE)

C S2 (w+) S2 (w−) S W

1

<1200 144,200 21 −3.16 0.05 0.00 0.22 −14.41
1200–<1350 348,463 89 −2.87 0.01 0.00 0.11 −26.60
1350–<1450 230,735 502 −0.37 0.00 0.00 0.05 −7.52
1450–1600 133,305 1057 0.33 0.00 0.00 0.00 0.00

>1600 85,376 1074 1.88 0.00 0.00 0.04 47.95

2

<5 705,163 896 −1.83 0.00 0.00 0.04 −44.90
5–<10 171,923 1259 1.34 0.00 0.00 0.04 34.96
10–<15 38,854 397 1.38 0.00 0.00 0.05 25.36
15–<20 13,936 121 1.13 0.01 0.00 0.09 12.13
20–<25 6223 50 1.03 0.02 0.00 0.14 7.22
25–30 3396 15 0.42 0.07 0.00 0.26 1.62
>30 2584 5 −0.41 0.20 0.00 0.45 −0.92
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Table 3. Cont.

Factor Class
Number of Pixels

in Domain
Pixels of Gullies

Weights-of-Evidence (WoE)

C S2 (w+) S2 (w−) S W

3

Flat 16,770 2 −3.22 0.50 0.00 0.71 −4.55
N 72,345 208 −0.01 0.00 0.00 0.07 −0.19

NE 79,383 209 −0.11 0.00 0.00 0.07 −1.52
E 72,794 43 −1.66 0.02 0.00 0.15 −10.81

SE 91,567 54 −1.68 0.02 0.00 0.14 −12.24
S 114,731 246 −0.34 0.00 0.00 0.07 −5.13

SW 119,263 396 0.15 0.00 0.00 0.05 2.81
W 142,533 459 0.12 0.00 0.00 0.05 2.35

NW 232,693 1126 0.76 0.00 0.00 0.04 19.46

4
Concave 54,613 1493 2.99 0.00 0.00 0.04 78.04

Flat 574,180 749 −1.43 0.00 0.00 0.04 −33.33
Convex 313,286 501 −0.80 0.00 0.00 0.05 −16.27

5

<7 24,272 63 0.00 0.00 0.00 0.02 −0.15
5–<7.5 42,453 91 −0.32 0.01 0.00 0.11 −3.00
7.5–11 89,328 225 −0.16 0.00 0.00 0.07 −2.29

>11 786,026 2364 0.21 0.00 0.00 0.06 3.87

6
<0 75,370 26 −2.21 0.04 0.00 0.20 −11.21

0–10 776,920 2534 0.95 0.00 0.00 0.07 13.18
>10 89,789 183 −0.39 0.01 0.00 0.08 −5.08

7

<170 382,383 522 −1.07 0.00 0.00 0.05 −21.99
170–<370 329,586 835 −0.21 0.00 0.00 0.04 −4.99
370–650 179,671 914 0.75 0.00 0.00 0.04 18.62

>650 50,444 472 1.31 0.00 0.00 0.05 25.86

8

<500 90,285 0 −0.10 0.00 0.00 0.02 −5.29
500–<1500 102,453 0 −0.12 0.00 0.00 0.02 −6.05
1500–3000 113,685 12 −3.44 0.08 0.00 0.29 −11.91

>3000 635,661 2731 4.70 0.00 0.08 0.29 16.25

9

<1.4 277,251 1150 0.55 0.00 0.00 0.04 14.23
1.4–<2.4 353,215 1000 −0.04 0.00 0.00 0.04 −1.12
2.4–3.7 231,503 573 −0.21 0.00 0.00 0.05 −4.49

>3.7 80,115 20 −2.54 0.05 0.00 0.22 −11.32

10

Murmg 144,412 1544 1.97 0.00 0.00 0.04 51.23
Qft2 617,176 417 −2.36 0.00 0.00 0.05 −44.47
Ku 23,972 0 −0.03 0.00 0.00 0.02 −1.35
Jd 18,232 0 −0.02 0.00 0.00 0.02 −1.03

PeEz 1449 0 0.00 0.00 0.00 0.02 −0.08
PlQc 71,058 600 1.24 0.00 0.00 0.05 26.85

Jl 3,274 0 0.00 0.00 0.00 0.02 −0.18
E2c 58,380 174 0.03 0.01 0.00 0.08 0.33
E1c 4,820 8 −0.56 0.13 0.00 0.35 −1.60

11
Range 708,879 2669 2.48 0.00 0.01 0.12 21.02

Farming 193,682 33 −3.06 0.03 0.00 0.18 −17.47
Bare land 39,523 41 −1.06 0.02 0.00 0.16 −6.75

12
<0.11 863,198 2743 0.09 0.00 0.00 0.02 4.59

0.11–0.25 56,745 0 −0.06 0.00 0.00 0.02 −3.26
>0.25 22,140 0 −0.02 0.00 0.00 0.02 −1.25

1. Elevation, 2. Slope degree, 3. Slope aspect, 4. Plan curvature, 5. topographic wetness index (TWI), 6. Convergence
index, 7. Distance from river, 8. Distance from road, 9. Drainage density, 10. Lithology, 11. land use (LU), 12. NDVI.

3.3. Applying RF Model

The outcomes of the confusion matrix for RF model are shown in Table 4. The result shows
that the model predicted 2487 non-gully pixels as non-gullies and 256 non-gullies as gully. On the
other hand, the RF model predicted 2677 gullies as gullies and 66 gullies as non-gullies. Moreover,
the out-of-bag error (OOB) for RF was 5.82%. This means that the model has a precision of 94.18%,
which expresses the excellent accuracy of the model in predicting gully erosion.
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Table 4. Confusion matrix from the random forest (RF) model (0 = no gully, 1 = gully).

0 1 Class Error

0 2487 256 0.0933
1 66 2677 0.0240

Prioritization results of RF are shown in Table 5 and Figure 4. The results show that the distance
from roads (381.67, 22%), elevation (335.06, 19%), and lithology (234.21, 14%) had the highest values,
followed by slope degree, drainage density, distance from river, NDVI, convergence index, slope aspect,
TWI, plan curvature, and LU/LC.

Table 5. Relative influence of effective conditioning factors in the RF model.

Conditioning Factors Weight

Distance from road 381.67
Elevation 335.06
Lithology 234.21
Slope degree 153.85
Drinage density 126.72
Distance from river 106.84
NDVI 105.26
Convergence index 73.97
Slope aspect 72.41
TWI 71.3
Plan curvature 42.43
LU 25.38
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Figure 4. Relative influence of effective conditioning factors in the random forest (RF) model.

Finally, the GESM by the RF model was prepared in ArcGIS 10.5 and divided into five classes from
very low to very high (Figure 5a), using a natural break classification [8]. According to the results, of
the entire study area (847.87 km2), 525.97 km2 (62.03%) are located in the very low susceptibility class,
148.28 km2 (17.49%) in the low susceptibility, 79.42 km2 (9.37%) in the moderate class, 56.34 km2 (6.64%)
in the high class, and 37.88 km2 (4.47%) are located in the very high susceptibility class. Of the total area
of GE (0.729 km2) in the study area, 0.86% (0.01 km2) are located in the very low susceptibility class,
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5.67% (0.04 km2) in the low susceptibility, 14.80% (0.11 km2) in the moderate susceptibility, 21.95%
(0.16 km2) in the high susceptibility, and 56.72% (0.41 km2) in the very high susceptibility classes.

 

Figure 5. Gully erosion susceptibility maps using: (a) RF model, (b) BRT model, and (c) multivariate
adaptive regression spline (MARS) model.

3.4. Applying BRT Model

The BRT model was used to reveal the spatial correlation between the existing GE and the GEVs
in the study area. The results of the model are shown in Figure 6. They indicate that the factors distance
from roads (31.1%), elevation (27.2%), and lithology (11%) had the highest importance on GE, mirroring
the outcomes of the RF model, followed by slope degree (7%), drainage density (6.7%), distance from
river (5.1%), slope aspect (3.8%), convergence index (2.4%), NDVI (2.2%), plan curvature (1.6%),
TWI (1.6%), and LU/LC (0.3%). The gully susceptibility map by the BRT model was also prepared in
ArcGIS 10.5 and divided into five classes of very low to very high (Figure 6c). The results of the GE
susceptibility class by the BRT model covered 847.87 km2 of the study area an area distribution in the
very low, low, moderate, high, and very high susceptibility classes are 605.37 km2, 88.38 km2, 52.01 km2,
34.13 km2, and 67.98 km2, and percentage distribution in the susceptibility classes of are 71.40, 10.42,
6.13, 4.03, and 8.02, respectively. Of the actual GE area of 0.729 km2, 0.04 (5.55%), 0.03 (4.56%), 0.06
(8.26%), 0.08 (11.34%), and 0.51 km2 (70.28%) are located in the very low to very high susceptibility
classes, respectively.
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Figure 6. Relative influence of effective conditioning factors in boosted regression tree (BRT) model.

3.5. Applying MARS Model

The optimal MARS model included 28 terms, and the GCV was 0.157. MARS model provides
the optimal model only by selecting the necessary parameters. In this research, nine GEVs including
lithology, distance from road, distance from river, drainage density, elevation, aspect, convergence
index, slope, and NDVI were used to construct the optimal model from the 12 GEVs. The GESM by
the MARS model was implemented in ArcGIS 10.5 using Equation (12). According to Equation (12),
distance from roads, elevation, and lithology were the most important variables. Values of GESM
by MARS model varies from −9.8 to 7.3. At first, GESM classified using quantile, equal interval,
natural break, and geometrical interval classification techniques, then, by comparatively analyses of
the distribution of training and validation gullies in high and very high classes, the natural break
classification technique was most accurate. As a result, GESM by MARS were classified into very low
(−9.86–−6.24), low (−6.24–−2.31), moderate (−2.3–0.04), high (0.04–0.38), and very high (0.38–7.32)
gully erosion susceptibility zones by natural break classification technique (Figure 5c). The results
indicate that 0.02 km2 (2.10%) of GE in the study area are located in the very low susceptibility
class, with 339.01 km2 (39.98% of total study area) and 0.58 km2 (79.16%) located in the very high
susceptibility class with 105.50 km2 (0.58%) (Table 6). In general, the results indicate that for all three
models with increasing susceptibility (from very low to very high), the area of the respective classes
decreased, while in contrast the areas of GE increased. These results is in line with Youssef et al. (2015).

Table 6. Area under the curve (AUC) values of RF, MARS, and BRT data mining models.

Models AUC Standard Error
Asymptotic
Significant

Asymptotic 95% Confidence
Interval

Lower Bound Upper Bound

RF 0.927 0.007 0.000 0.914 0.941
MARS 0.911 0.008 0.000 0.896 0.926

BRT 0.919 0.007 0.000 0.905 0.933
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3.6. Validation of Models

The results of the validation of the models using the AUC curve and SCAI indicator are shown in
Figure 7, and in Tables 6 and 7. The results show that the values of the AUC for the three models vary
from 0.911 to 0.927, indicating very good prediction accuracy for all models, with RF resulting in the
highest value. In addition, the SCAI values for the three models, RF (61.08–0.00), MARS (10.45–0.03),
BRT (12.59–0.01), show that the RF model has higher SCAI values compared to the other models in
the very low, low, and very high susceptibility classes (Figure 7). In spite of the high efficiency and
accuracy of the RF model for GE sensitivity mapping, so far this model has not been used by the
research community.

GESPMARS = 0.74 + (0.659 × Lithology1) + (0.656 × Lithology7)− 0.0001
×max(0, 13445 − Distance f rom road) + 0.0001
×max(0, Distance f rom road − 13445)− 0.0002
×max(0, 2907.97 − Distance f rom River)− 0.087
×max(0, 2.377 − Drainage density)− 0.106
×max(0, Drainage density − 2.377) + 0.001 × max(0, 1793
−Elevation)− 0.002 × max(0, Elevation − 1793)− 0.605
×Lithology7 × Aspect4 − 0.0001 × max(0, 7355.32
−Distance f rom road)× Lithology1 − 0.0001
×max(0, 11249.2 − Distance f rom road)× Lithology7
−0.00002 × max(0, Distance f rom road − 11249.2)
×Lithology7 + 0.0001 × max(0, 13445
−Distance f rom road)× Lithology10 − 0.005
×max(0, 84.853 − Distance f rom River)× Lithology1
−0.0003 × max(0, Distance f rom River − 84.853)
×Lithology1 + 0.001 × Lithology2 × max(0, Elevation
−1249)− 0.001 × Lithology2 × max(0, 1249 − Elevation)
−0.019 × Lithology7 × max(0, 0.772 − Convergence)− 23.54
×Lithology7 × max(0, NDVI − 0.055)− 22.23 × Lithology7
×max(0, 0.055 − NDVI)− 0.00001 × max(0, 7.65 − Slope)
×max(0, Distance f rom road − 13445) + 0.00001
×max(0, Slope − 7.65)× max(0, Distance f rom road − 13445)
−0.0001 × max(0, 8.186 − Slope)× max(0, 1793 − Elevation)
+0.00004 × max(0, Slope − 8.19)× max(0, 1793 − Elevation)
−0.0000001 × max(0, Distance f rom road − 3877.78)
×max(0, 907.97 − Distance f rom River) + 0.00000004
×max(0, 8861.03 − Distance f rom road)× max(0, 907.97
−Distance f rom River) + 0.0000001 × max(0, Road
−8861.03)× max(0, 907.97 − Distance f rom River)− 0.001
×max(0, Distance f rom road − 13445)
×max(0, Drainage density − 1.821)− 0.000001
×max(0, Distance f rom road − 11435.4)× max(0, 1793
−Elevation)− 0.000001 × max(0, Distance f rom road
−13238.3)× max(0, 1793 − Elevation)

(12)
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Figure 7. Seed cell area index (SCAI) values for different susceptibility classes in RF, MARS, and BRT
data mining models.

Table 7. Seed cell area index (SCAI) values in RF, multivariate adaptive regression spline (MARS), and
boosted regression tree (BRT) data mining models.

Model
Susceptibility

Classes

Total Area of Classes Gully in Classes No Gully
Area (km)

Seed
Cell (%)

SCAI
Area (km) % Area (km) %

RF

Very Low 525.97 62.03 0.01 0.86 525.96 0.01 61.08
Low 148.28 17.49 0.04 5.67 148.24 0.24 0.74

Moderate 79.42 9.37 0.11 14.80 79.31 1.15 0.08
High 56.34 6.64 0.16 21.95 56.18 2.41 0.03

Very High 37.88 4.47 0.41 56.72 37.46 9.27 0.00

MARS

Very Low 339.01 39.98 0.02 2.10 339.00 0.04 10.45
Low 194.83 22.98 0.01 1.48 194.82 0.05 4.89

Moderate 131.17 15.47 0.04 5.67 131.13 0.27 0.58
High 77.35 9.12 0.08 11.59 77.26 0.93 0.10

Very High 105.50 12.44 0.58 79.16 104.92 4.64 0.03

BRT

Very Low 605.37 71.40 0.04 5.55 605.33 0.06 12.59
Low 88.38 10.42 0.03 4.56 88.34 0.32 0.33

Moderate 52.01 6.13 0.06 8.26 51.95 0.98 0.06
High 34.13 4.03 0.08 11.34 34.05 2.06 0.02

Very High 67.98 8.02 0.51 70.28 67.46 6.40 0.01

4. Discussion

Determining effective parameters in GE and providing a GESM are the first steps in risk
management. In regards to this, prediction of areas susceptible to erosion is associated with uncertainty,
various models can be used to predict it accurately. Over the past decades, numerous statistical and
empirical models have been developed to predict environmental hazards, such as GE, by various
researchers around the world [12,14,28,30,31,45]. Due to some of the limitations of the aforementioned
models such as time consuming, complexity, costly, and need a lot of data, in recent years data
mining methods have been presented. Data mining is a process of discovery of relationships, patterns,
and trends that consider the vast amount of information stored in databases with template recognition
technology [51,58,59]. The most important applications of data mining are categorization, estimation,
forecasting, group dependency, clustering, and descriptions. The results of data mining models show
that in RF, BRT, and MARS mode, distance from roads had the highest impact in the occurrence
of gully erosion in the study area. This result is in line with [10,49]. If the engineering measures
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are not considered in site selection and construction of roads as anthropogenic structures in nature,
they can act as a causative factor in environmental hazards such as landslide and gully erosion.
The construction of roads in bare lands with erosion-sensitive formations has led to the expansion
of gully erosion in the study area, so that the construction of a road without proper culverts causes
disrupted of natural drainage and runoff concentrations, thus eroding the bare lands and resulting
in the formation of a gully. The results of the validation of data mining models showed that the RF
model more accurately predicted areas that are sensitive to gully erosion. These results are consistent
with the results of [36,43,46,59], which introduced the RF model as a strong and high-performance
model. One of the most widely used data mining methods is the RF model. The advantages of the
RF method over other models is that this model can apply several input factors without eliminating
any factors, and return a very small set of categories that support high prediction accuracy [6].
The classification accuracy of this model is affected by many factors such as the number, scale, type,
and precision of input data. Thus, in the processing, the use of all suitable factors causes the accuracy
of the model to increase. Compared with other models, RF has higher sufficiency to apply a very
high number of datasets [6]. The RF model has the potential as a tool of spatial model for assessing
environmental issues and environmental hazards. The RF model combines several tree algorithms to
generate a repeated prediction of each phenomenon. This method can learn complicated patterns and
consider the nonlinear relationship between explanatory variables and dependent variables. It can
also incorporate and combine different types of data in the analysis, due to the lack of distribution
of assumptions about the data used. This model can use and apply thousands of input variables
without deleting one of them. This method is less sensitive to artificial neural networks, in case of
noise data, and can better estimate the parameters [60]. The greatest advantages of RF model are
high predictive accuracy, the ability to learn nonlinear relationships, the ability to determine the
important variables in prediction, its nonparametric nature, and in dealing with distorted data, it
works better than other algorithms for categorization. The main disadvantages of this algorithm
include high memory occupation, hard and time-consuming in implementation for large datasets,
high cost of pruning, high number of end nodes in case of overlap, and the accumulation of layers
of errors in the case of the tree growing. [15,61] stated that the CART, BRT, and RF models showed
better accuracy compared to bivariate and multivariate methods. Pourghasemi et al. concluded that
the RF and maximum entropy (ME), models have high performance and precision in modeling [31].
Mojaddadi et al. showed that BRT, CART, and RF methods are suitable for modelling [55]. Chen et al.
indicates that the MARS and RF models are good estimators for mapping [36]. Lai et al. indicated that
the RF model has significant potential for weight determination on landslide modelling [62]. Kuhnert
et al stated that RF with AUC = 97.0 is suitable for landslide susceptibility [27]. Lee et al stated that the
prediction accuracy of RF model is high (90.8) and that this model had a high capability for landslide
prediction [43]. They applied RF and boosted-tree models for spatial prediction of flood susceptibility
in Seoul metropolitan city, Korea [43]. They stated that the RF model has better performance compared
to boosted-tree. As a scientific achievement, the methodology framework used in this research has
shown that the proper selection of effective variables in gully erosion, along with the use of modern
data mining models and Geography Information System (GIS) technique, are able to successfully
identify areas susceptible to gully erosion. The susceptibility map prepared using this methodology is
a suitable tool for sustainable planning to protect the land against gully erosion processes. Therefore,
this methodology can be used to assess gully erosion in other similar areas, especially in arid and
semi-arid regions.

5. Conclusions

GE is one of the main processes causing soil degradation and there is a need to improve methods
to predict susceptible areas and responsible environmental factors, to allow early intervention to
prevent, limit, or reverse gully formation. The utility of three data mining models, RF, BRT, and MARS,
to predict GE in the Shahroud watershed, Iran, was assessed. For this purpose, twelve causative
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factors and 121 gully locations (70%) are used for applying the models. In addition, 51 gully locations
(30%) are used for validation of models. The correlation between GE and conditioning factor classes
was researched with a WoE Bayes theory. Distance to roads, elevation, and lithology were the key
factors. Validation of the models showed that all three models have high accuracy for GE mapping.
Data mining/machine learning methods have a unique ability and accuracy for GESM. The results
also showed that the southwestern part of the study region has a high susceptibility to GE.

Therefore, it is recommended that the following suggestions should be made to prevent and
reduce soil erosion and its subsequent risks in the Sharoud watershed: (1) Control of gullies by
restoration of vegetation adaptable with the natural conditions of the area; (2) gully controlling by
building dams that could prevent soil erosion by slowing down the flow of water and aggravation
of sedimentation; (3) awareness of farmers by environmental officials of the region, in terms of the
type and principles of proper cultivation and prevention of overgrazing and destruction of vegetation;
(4) correction of land use based on natural ability and restrictions related to geomorphologic and
physiographic soil characteristics of the area.
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Abstract: Machine learning-based remote-sensing techniques have been widely used for the
production of specific land cover maps at a fine scale. P-learning is a collection of machine learning
techniques for training the class descriptors on the positive samples only. Panax notoginseng is a rare
medicinal plant, which also has been a highly regarded traditional Chinese medicine resource in China
for hundreds of years. Until now, Panax notoginseng has scarcely been observed and monitored from
space. Remote sensing of natural resources provides us new insights into the resource inventory of
Chinese materia medica resources, particularly of Panax notoginseng. Generally, land-cover mapping
involves focusing on a number of landscape classes. However, sometimes a subset or one of the
classes will be the only part of interest. In term of this study, the Panax notoginseng field is the right unit
class. Such a situation makes single-class data descriptors (SCDDs) especially significant for specific
land-cover interpretation. In this paper, we delineated the application such that a stack of SCDDs were
trained for remote-sensing mapping of Panax notoginseng fields through P-learning. We employed and
compared SCDDs, i.e., the simple Gaussian target distribution, the robust Gaussian target distribution,
the minimum covariance determinant Gaussian, the mixture of Gaussian, the auto-encoder neural
network, the k-means clustering, the self-organizing map, the minimum spanning tree, the k-nearest
neighbor, the incremental support vector data description, the Parzen density estimator, and the
principal component analysis; as well as three ensemble classifiers, i.e., the mean, median, and voting
combiners. Experiments demonstrate that most SCDDs could achieve promising classification
performance. Furthermore, this work utilized a set of the elaborate samples manually collected
at a pixel-level by experts, which was intended to be a benchmark dataset for the future work.
The measuring performance of SCDDs gives us challenging insights to define the selection criteria
and scoring proof for choosing a fine SCDD in mapping a specific landscape class. With the increment
of remotely sensed satellite data of the study area, the spatial distribution of Panax notoginseng could
be continuously derived in the local area on the basis of SCDDs.

Keywords: mapping; single-class data descriptors; materia medica resource; Panax notoginseng;
one-class classifiers; geoherb

1. Introduction

Traditional Chinese medicine (TCM) [1] originated in ancient China and has evolved over
thousands of years as the only health care and disease healing [2]. A long time before the birth
of modern Western medicine, traditional medicinal recipes were handed down orally generation by
generation in many parts of the world [3]. Given that TCM is a practical medicine built on experience,
and has been mainly practiced and researched in China [4,5], the essence of TCM has always been the
most advanced and experienced medicine in the world [6]. Moreover, scientists proved that TCM can
coexist with Western medicine [3,7]. Geoherb is a type of Chinese herb with a geographical indication
corresponding to a specific geographical location or origin, which has a certification that the product
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possesses certain qualities, and its production will be protected by intellectual property rights law [8,9].
Compared to the herbal resources produced in other areas, the quality and efficacy of geoherbs are
much better [10]. As a highly-regarded TCM resource and a rare kind of geoherb in China [11,12],
Panax notoginseng (see Figure 1) has been cultivated for more than 400 years in the south-west region
of China [13], especially in Wenshan Prefecture, Yunnan province. The conventional methods of
TCM resource surveys mainly focus on the qualitative description of species rather than the natural
storage or dynamic changes of the planting fields, resulting in a problematic situation that TCM
resources appear difficult to monitor over time, which is not conducive to the sustainable development
of TCM [14]. In the past few decades, a resource census of TCM has been carried out three times
(e.g., 1960–1962, 1969–1973, and 1983–1987). Until 2009, the government of China proposed “To carry
out a nationwide census of TCM resources, strengthen the monitoring of TCM resources and the construction of
an information network” [15]. Furthermore, the State Council of China highlighted “Strengthening the
landscape-scale dynamic monitoring and protection of TCM” [16] again. From 2011, the government of
China planned to conduct the fourth national census of TCM resources, and remote-sensing techniques
were regarded as the core-key technologies for surveying and monitoring TCM resources in a large
area. The inheritance, innovation, modernization, and internationalization of TCM would be the four
basic tasks for a considerable period of time [17,18].

 

Figure 1. Panax notoginseng is a well-known geoherb, which has acquired a very favorable reputation
for the treatment of blood disorders, including blood stasis, bleeding, and blood deficiency. Its root can
be turned to powder as a medicinal material, and the shadenet cover can be observed from space by
means of satellite imagery.

Remote-sensing techniques have been applied to monitor land cover at a range of spatial and
temporal scales, in order to satisfy a range of scientific and practical requirements [19–21]. In particular,
remote-sensing mapping is an efficient technique to acquire spatial and temporal cropland information
repeatedly and consistently [22,23]. In many cases, remotely-sensed data are utilized to derive
landscape information on a specific land-cover class of interest [24]. The ability to map and monitor
land-cover types and their dynamics for diverse applications has been enhanced by the availability
and constantly increased coverage, of satellite images [25,26]. Many problems are encountered
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in mapping land cover from remotely sensed data by a classification analysis or landscape class
description [27] in order to quantify the relationships among all the pixels in an image, such as
similarities or differences in spectra signature or spatial texture [22], and extract land cover classes
from remote-sensing images [28–30]. The application of remote-sensing techniques plays a significant
role in the quantitative resource survey of TCM, particularly in exploring monitoring abilities for the
sustainable utilization and bio-diversity protection of Chinese materia medica resources in macrocosm.
Under the prerequisite that remote-sensing techniques provide up-to-date landscape surveying at
a fine scale [31], one of the motivations for this work comes from the fact that only a single class of
interest is involved in a mapping task.

Recently, there has been a number of applications [32], i.e., geological products [33], vegetation
indices [34], aerosol products [35], ocean data products [36], dust source identification [37], and crops
identification [38] in remote-sensing based on machine learning techniques. In this study, we present
an original innovation to apply most of the available single-class data descriptors (SCDDs) through
P-learning to conduct mapping of Panax notoginseng fields. After that, the work of measuring
performance will give us profound insights into defining the selection criteria and scoring proof
for choosing a fine SCDD. As such, the introduction of SCDDs for remote-sensing mapping of
Panax notoginseng fields will be helpful to promoting the development of a Panax notoginseng resource
inventory and dynamic monitoring towards the quantitative direction. Attributing to the standardized
cultivation technique of good agricultural practice (GAP) [39], or so-called controlled-environment
agriculture using shade houses provide a distinct image texture to interpret Panax notoginseng fields
visually [40]. Additionally, due to only Panax notoginseng fields being the target class, the task of
mapping Panax notoginseng fields becomes a specific typology of land-cover classification, which could
be regarded as a problem of single-class data description or a special type of one-class classification [41].
SCDDs are the appealing alternatives to the conventional supervised classifiers because they can be
trained with only the target training samples [42]. These kinds of algorithms have emerged to only
require training samples from the target class, which are referred to as P-learning [43]. Notice that
the single class meant no more than one landscape class, and the P-learning based class description
may depict the sight that no negative samples are used for training. Such a classification approach
aims to identify only one landscape class of interest regardless of the other classes presented in the
study area [44]. In the case of single-class data description, we always face an imbalanced binary
classification [45,46] including (1) the positive class (i.e., Panax notoginseng fields); and (2) the negative
class (i.e., the other classes). In this case, the positive class is assumed to be sampled well, while the
other classes may be sampled very sparsely or totally absent. When no samples of the other classes
are available, most classification errors (e.g., false negative) cannot be estimated [47]. In addition,
the procedure that trains an accurate SCDD is challenging, particularly in the face of a large number
of unlabeled samples; or say, only a small class or relatively few training samples are available [42].
Therefore, it might be very expensive to collect the negative samples which are so abundant that
a good sampling seems elusive. Although this was an extreme case, we carefully designed the training
and test sets, which were composed of the qualified positive and negative samples. Note that if we
want to improve the overall performance of the numerous classifiers which may differ in complexity,
a combination of these classifiers will always be a viable solution [48].

Regarding another motivation of this work with respect to TCM, the quality control of TCM
remains a significant issue that affects medicinal herbs, formulations, and even TCM practice. Due
more to the lax enforcement of standards [49], resulting in the diminishing popularity of TCM
rather than a failure of remedies, particularly, the patchy regulation has led to inconsistent herb
quality, unqualified practitioners, unsubstantiated claims for secret formulas, and both deliberate
and inadvertent mislabeling and adulteration, sometimes with fatal consequences. Considering
Panax notoginseng is a vulnerable crop which has a serious succession cropping obstacle [50],
consequently the continuous planting of the same crop in the same field will lead to the decrease of
yield and quality. In order to promote the quality of production, it is crucial to monitor the spatial
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planting patterns of Panax notoginseng fields, such as crop rotation [51,52]. The planting pattern implies
standardized planting with the specific crop structure and spatio-temporal configuration in the same
field for a specific region under the particular natural resource and socio-economic conditions [53,54] so
as to realize the sustainable utilization of agricultural resources and crop yield. Until now, the concrete
planting pattern changes of Panax notoginseng are still poorly known. To the best of our knowledge,
until now no such work has been done which, on the one hand, enriches the approaches to monitor
spatial planting pattern changes of the perennial ginseng from space; on the other hand, employs
SCDDs for mapping Panax notoginseng.

Our studies on mapping Panax notoginseng aim to provide fruitful information for studies on
the quality assurance of TCM production, precision farming, the construction of agro-ecosystems,
sustainable development, and the protection of the biodiversity of Panax notoginseng. Furthermore,
determining the planting area of Panax notoginseng is an important part of obtaining more accurate
information about annual yield and natural storage, except for mapping the spatial distribution.
The current study, which involves mapping the planting parcels of Panax notoginseng at a 30 m spatial
resolution, has three aims: (1) mapping Panax notoginseng fields through a stack of SCDDs as the
future technical milestone for planting pattern analysis; (2) evaluating the abilities of SCDDs in
identifying small Panax notoginseng fields in the complex agricultural landscapes; and (3) providing the
potential possibilities for monitoring the planting pattern changes of Panax notoginseng fields, further
giving us new insights into the planting pattern transitions of the perennial ginseng in macrocosm.
The case study area is located in Wenshan City of China, which is characterized by a distinctive crop
rotation agricultural system. The highlights of this study include: (1) striving for the research of the
landscape-scale remote-sensing interpretation of TCM resources for the first time; (2) employing a stack
of SCDDs with a comparative perspective to conduct mapping of Panax notoginseng fields; (3) defining
the selection criteria and scoring proof for choosing a most appropriate SCDD; and (4) evaluating
the abilities of SCDDs in identifying the fragmented parcels of Panax notoginseng in the complex
agricultural landscapes.

The rest of this paper is structured as follows. The description of materials and methods
is introduced in Section 2, and the experiments and analysis are presented and discussed in
Sections 3 and 4, respectively. Finally, the conclusions of this work are summarized in Section 5.

2. Materials and Methods

2.1. Study Area and Data

Our study area comprises two independent blocks which are situated in Wenshan City,
Wenshan Prefecture, Yunnan Province, in the south-west region of China (see Figure 2). These
places mainly lie between longitude 103.71◦ E–104.46◦ E and latitude 23.07◦ N–23.73◦ N. Wenshan
Prefecture is on a plateau, where the temperatures are quite constant throughout the year, with more
precipitation during the summer months. Due to its low latitude and tempered by its high elevation,
Wenshan Prefecture has a mild, humid, and subtropical climate, particularly suitable for planting
Panax notoginseng. This is the reason why Wenshan Prefecture is the specific geographical location and
origin of Panax notoginseng (i.e., why it is called a geoherb).

The “sa” and “sb” are two typical square regions. There are 151 × 151 pixels in the image space,
respectively, corresponding to an area 20.5209 km2 or equivalent to 2052.09 ha for both. The two
blocks have a typical representation of the dense Panax notoginseng fields, upon which mapping
Panax notoginseng fields will be carried out using multiple SCDDs. Multi-spectral cloud-free images
acquired by the Landsat-8 Operational Land Imager (OLI) at a 30 m spatial resolution were utilized
in this study. Their acquisition date was 18 March 2015. Since only one scene (path/row: 128/044)
was utilized for the analysis in this study, the atmosphere can be considered to be homogeneous,
and therefore the atmospheric correction may be not necessary [41,55]. Note that the planting fields
of Panax notoginseng are rather sparse in most cases, and the cloud-free satellite images are not easy
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to collect because of the special geographical environment (i.e., a mountainous area is often in heavy
clouds, refer to Table 1).

Wenshan 
Prefecture

Wenshan 
City

sa

sb

Figure 2. Study area in Wenshan City, Wenshan Prefecture, Yunnan Province, China.

Table 1. Cloud cover statistics of a 16-day revisited Landsat-8 OLI scene (path/row 128/044) until
May 2017.

Cloud (%) Number Percentages

0–10 3 3.41
10–20 7 7.95
20–40 13 14.77
40–60 17 19.32
60–80 23 26.14
80–100 25 28.41

2.2. Shadenet Structures

Plastic sheets are used as materials to build the shadenet structure which can be regarded as
a micro-scale planting environment and are relatively common [56], having unique characteristics [57],
i.e., optical transparency, shade percentages, gas-tightness, and high-reflectivity. Agriculturalists have
long known the importance of the planting environment for crop growth, always by manipulating
the growing environment to provide a more conducive environment for crop growth. As for
Panax notoginseng, sunlight is often modified by shading to provide the more optimal growing
environments so as to enhance their production. Therefore, the production of Panax notoginseng
takes place within an enclosed growing structure called a shade house. The shade house (see Figure 3)
provides the protection and maintains the optimal growing conditions throughout the development
of Panax notoginseng. The shade house of Panax notoginseng is a framed structure often covered with
the black plastic nets which are made of the polyethylene thread with different shade percentages.
It provides a partially-controlled atmosphere and environment by reducing the light intensity and
effective heat during daytime to Panax notoginseng grown under the very large plastic sheets.
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Figure 3. Shade house. Sub-figures are the snapshots and photos in the different phases of the
construction of a shade house of Panax notoginseng including the materials for building, i.e., sticks
(5 cm × 2 m), upright rods, and black plastic net over the poles; viewpoints for the observation,
i.e., parallel to bed, perpendicular to bed, at close range, over a long distance, and from a satellite image.

Additionally, attributed to the standardized cultivation technique of GAP, the shade house
provides a distinct spatial texture to interpret the spatial distribution of Panax notoginseng fields in
reference to Google Earth historical images based on a calendar, i.e., there are 20 days when the satellite
images were captured from 6 March 2013, to 12 December 2015, which is associated with the different
sampling sites (see Figure 4), i.e., there are a total of 123 sites in Wenshan City. Polypropylene fabric
shade is the dominant shade for field-cultivated Panax notoginseng in Wenshan City. Its black color
maintains the proper shade and also forms the distinct texture of the shade net in satellite images,
which can be visually interpreted and makes it easier to collect training samples using region of interest
(ROI) tools.
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Figure 4. Sampling sites. (a) The site #45; (b) the sites in Wenshan City.

2.3. Design Sets

Good classification depends not only on the factors associated with classifiers, but fine design
sets also play a significant role in assessing the classification results objectively [58]. There is
a non-negligible truth that, if only given positive samples, we cannot estimate most of the classification
errors. Therefore, both positive and negative samples are supposed to be prepared for this study.
Silva, et al. [41] utilized a manually-collected set of samples of the target class and a random sampling
of samples of all classes, to keep the training effort low. In that case, they used the non-pure negative
samples under the assumption of which few samples of the target class would be submerged.

In this study, we manually collected the positive (i.e., 1211) and negative (i.e., 8522) samples
with a class-wise separability of 1.9918. Subsequently, we prepared three kinds of design sets,
i.e., the training set (i.e., 727 positive samples, and 5114 negative samples at a 60% split); test set
(484 positive samples, and 3408 negative samples, the remaining 40% split); and validation set (only 51
positive samples for the “sa”, and 94 positive samples for the “sb”); as well as additional reference
results (see Figure 5) obtained by the expert processing software. The training and test sets are random
subsets of the raw collected samples by splitting operation. Note that once determined, they should be
fixed so that all SCDDs could be fairly compared. For a good estimate, the test set should be labeled,
randomly drawn from the class of interest, independent from the training set, and as large as possible.
The validation set (i.e., only comprising true labels of the positive class) is used for validation and
a nominal set. Note that the raw samples covering the whole of Wenshan City are specially designed
for training and testing SCDDs. Meanwhile, the true labels for validation set are applied to calculate
a representative accuracy (i.e., a correct rate) of the classification results as a final validation.

 

Figure 5. Reference results. (a) a regular subset, (b) the overlap, (c) an irregular subset of Landsat-8
OLI image, and (d) the reference result for the “sa”; (e) a regular subset, (f) the overlap, (g) an irregular
subset of Landsat-8 OLI image, and (h) the reference result for the “sb”.
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2.4. Single-Class Data Descriptors (SCDDs)

The SCDD [47] is a trained mapping to predict classes. Additionally, they can be divided into
several categories depending on the type of the training data and the discrimination function [59].
For example, the positive samples only (i.e., P-learning) or the positive and unlabeled samples
(i.e., PU-learning) [31,59]. In general, for certain SCDDs, the corresponding model can be defined as

h(x) =

{
target, f (x) ≤ θ

other, f (x) > θ
, (1)

or vice versa in the opposite conditions.
The threshold θ is set according to the target error. Formally, each instance is mapped to one

element of the set of the positive and negative class labels. In this study, due to only the target class
(i.e., Panax notoginseng fields) is the class of interest, and the task of mapping Panax notoginseng fields can
be regarded as a specific single-class data description problem. Hence, 10 SCDDs [47], i.e., the simple
Gaussian target distribution data description (SGTD coded as c1) [60]; the robust Gaussian target
distribution data description (RGTD coded as c2) [60]; the minimum covariance determinant Gaussian
data description (MCDG coded as c3) [60]; the mixture of Gaussian data description (MoG coded
as c4) [60]; the auto-encoder neural network data description (AENN coded as c6) [61]; the k-means
clustering data description (k-means coded as c7) [62]; the self-organizing map data description (SOM
coded as c10) [63]; the minimum spanning tree data description (MST coded as c11) [64]; the k-nearest
neighbor data description (K-NN coded as c13) [65]; the incremental support vector data description
(IncSVDD coded as c17) [66]; the Parzen density estimator data description (PDE coded as c5, which is
a known underestimated descriptor) [67]; and the principal component analysis data description (PCA
coded as c9, which is known as an overestimated descriptor) [68].

In addition to the SCDDs mentioned above, three ensemble classifiers, i.e., the mean combiner
(meanc coded as cmea), the median combiner (medianc coded as cmed), and the voting combiner
(votec coded as cvot), taking the mean, median, and vote strategies, respectively. The ensemble-based
approach refers to the multiple-classifier system in which the outputs of all member classifiers are
combined to derive an accurate classification. We combine the SCDDs which should be accurate but
different in an ensemble strategy because each of them can focus on a specific feature or characteristic
in the feature space [24]. Thus, a much more flexible and outstanding classifier can be obtained
by combining all the strong points of the different SCDDs. There are three strategies of combining
the different SCDDs, which are referred to as (1) sequential, (2) parallel, and (3) stacked [47]. Here,
the above-enumerated SCDDs (i.e., c1–c17) are computed in the same feature space, and which are
typically combined in a stacked way. Notice that, the combining procedure is computationally intensive
in the face of many different base classifiers. Thus, the action that prunes the base classifiers according
to their performance (i.e., underestimated or overestimated) is inevitable sometimes. In this study, ten
SCDDs except for the underestimated and overestimated ones, which are regarded as the qualified
member classifiers. The abovementioned SCDDs and combiners have been well implemented with
a Matlab toolbox for data description developed and distributed by Dr. David Tax.

2.5. Performance Evaluation

In this study, the error computation and performance evaluation involve several accuracy metrics,
i.e., the basic errors (see Table 2), F1 measure, receiver operating characteristics (ROC) curve, area
under the ROC curve (AUC) error, cost curve, confusion matrix, and correct rate, which are employed
to evaluate the SCDDs in a more comprehensive way. In order to find a good SCDD, four basic errors
can be calculated, and two of them have to be minimized, namely the false positives (FP) and false
negatives (FN). Hence, we put forward and discuss several representative measures which can reflect
the probability that the prediction is informed versus chance. The FN can be estimated on the positive
set. In fact, the FN is much harder to estimate when no negative samples are available [47]. If only
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minimizing the FN will lead to the SCDD which may wrongly label a number of the negative samples
as the positive class. In order to avoid such a degenerate solution, the negative samples have to be
collected as well. This is the reason why we elaborately prepared the design sets and the reference
results for training and testing. Moreover, two other measures, such as precision and recall (i.e., the true
positive (TP) rate), are often used in performance evaluation. Finally, a derived performance indicator
F1 score can be computed. Note that a good SCDD should have both small rates of the FN and FP.

Table 2. Binary error matrix.

Types
Predicted Label

Target Other

Actual Label
Target true positive (TP) false positive (FP)
Other false negative (FN) true negative (TN)

Due to the error on the positive class can be estimated relatively well, assuming that, a threshold
can be set beforehand on the target error for the SCDDs, and then a ROC curve can be obtained by
varying this threshold and measuring the error on the negative samples. The ROC graph [69,70] shows
how the FP varies for varying the FN, which is a technique for visualizing and selecting the best
classifiers based on their performance. The smaller these fractions are, the more the SCDD is to be
preferred. Although the ROC graph shows an intuitive metric of the performance of the SCDD, as one
side, it is a bit difficult to compare the ROC curves; for another, we want to reduce the ROC curve to
a single scalar value representing the expected performance. Thus, the AUC error [71,72] often is taken,
and which is computed from the ROC curve, which integrates the fraction TP over varying thresholds
(or by varying fraction FP equivalently). The larger the AUC value, the better the SCDD’s performance.
That is, the higher values may indicate a better separation between the positive and negative samples.
As for the ROC graph [70], there are many thresholds that may be suboptimal. That is, there is another
operating point for which at least one of the errors is lower. Nevertheless, this concern can be indicated
by a cost curve [73], which will be another method for visualizing the performance of the SCDD.
For a varying cost-ratio between both classes, the expected cost is computed. Additionally, once
a trained mapping has been determined, we can obtain the sufficient site-specific metrics derived from
a confusion matrix (i.e., a binary contingency table for the SCDD). The binary confusion matrix (see
Table 2) is a specific table layout that allows the visualization of the performance of the SCDD [74].
Such an error matrix is constructed via classifying a predefined test set or comparing two sets of labels,
and which combines the spatial position and quantitative information of the classification results to
implement a performance evaluation. What is important is that the very small changes of labels are
well reflected in a confusion matrix.

3. Results and Analysis

3.1. Resultant Maps

After the SCDDs have been performed, and then the final outputs associated with mapping
Panax notoginseng fields can be derived. For one side, we conduct a statistical analysis from
a perspective of quantitative evaluation. Besides, we want an intuitive comparison by showing
the paired maps which are overlapped in false-color style between the classification and reference
maps regarding the spatial distribution of Panax notoginseng fields.

As such, the classification map of each SCDD in comparison with the reference map that can be
simultaneously graphed for the “sa” and “sb” (see Figures 6 and 7). By visual inspection, the obvious
differences have been observed with respect to the underestimated PDE (see Figures 6 and 7) and the
overestimated PCA (see Figures 6 and 7). The heavy magenta patches mean seriously underestimated,
while a large number of green patches mean severely overestimated. The majority of the rest of the
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SCDDs arise from the predominately magenta and slightly green patches, which mean underestimated.
Meanwhile, AENN is different (see Figures 6 and 7). Notice that the error threshold on the positive
class is set by a default float value of 0.1 for all SCDDs. In a number of clusters a default integer value
of 2 will be acceptable because only two classes are available (i.e., the positive and negative class).
Additionally, the number of components is set to 5 in terms of PCA.

Figure 6. Classification results which are shown in false-color style in comparison with the reference
result for the “sa”. (a) Reference result; (b) simple Gaussian target distribution (SGTD); (c) robust
Gaussian target distribution (RGTD); (d) minimum covariance determinant Gaussian (MCDG);
(e) mixture of Gaussian (MoG); (f) Parzen density estimator (PDE); (g) auto-encoder neural network
(AENN); (h) k-means; (i) principal component analysis (PCA); (j) self-organizing map (SOM);
(k) minimum spanning tree (MST); (l) k-nearest neighbor (K-NN); (m) incremental support vector data
description (IncSVDD); (n) mean combiner (meanc); (o) median combiner (medianc); and (p) voting
combiner (votec). Here, the white pixels means the well estimated, the magenta means underestimated,
and the green means overestimated.
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Figure 7. Classification results which are shown in false-color style in comparison with the reference
result for the “sb”. (a) Reference result; (b) SGTD; (c) RGTD; (d) MCDG; (e) MoG; (f) PDE; (g) AENN;
(h) k-means; (i) PCA; (j) SOM; (k) MST; (l) K-NN; (m) IncSVDD; (n) meanc; (o) medianc; and (p) votec.

3.2. Measuring Performance

Performance evaluation is crucial in the assessment of a set of SCDDs. For Table 3, the false
negative rate (FNR) gives the error on the positive class, while the false positive rate (FPR) shows
the error on the negative class. Meanwhile, P is precision, and R denotes recall equivalent with TPR.
The statistical metrics can be grouped into (1) a group that the smaller is the better, i.e., the FNR
and FPR, and (2) another group that the greater is the better, i.e., P, R, F1, and AUC. Although it is
difficult to describe all SCDDs together, we attempt to make it possible by rating them on a rank
table later. Table 3 illustrates that the FNR (e.g., the c5) and FPR (e.g., the c2 and c9) are prominently
higher than two known inferior SCDDs (e.g., the c5 and c9), and a slightly inferior one (e.g., c2) is
marked as well. Additionally, these unqualified SCDDs are again attention-catching in the second
group. For all SCDDs, the precision (e.g., the c2 and c9), recall (e.g., the c5), and F1 score (e.g., the c2, c5,
and c9) support the analysis drawn from the first group, while the AUC error always appears mediocre.
However, there are some differences owing to the measuring ability of statistical metrics and the
intrinsic characteristics of the diverse SCDDs. The ROC curve (see Figure 8) gives a two-dimensional
depiction of the performance of the SCDD. This is due to too many SCDDs with the approximate
accuracies so that discriminating the individual ROC curve seems difficult. Thus, we plot them one
by one, and the aforementioned inferior SCDDs still can be well reflected. Note that the c5 has the
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lowest operation point, while the c2 and c9 are found in terms of the ROC curve. In addition, the c6
deserves attention. Here, the ROC graphs are not going to be read significantly, as the purpose is
achieved. The cost curve (see Figure 9) is a specific performance visualizer using the expected cost,
another technique to measure the performance of SCDDs. Each operating point appears as a line in
this plot, while the certain one of them is indicated by the dotted line. The combination of operating
points that forms the lower hull is indicated by the thick curve and shows the best operating points
over the range of costs. Here, the dotted line of c5, and the thick arcs of c2 and c9, again support the
performance analysis drawn from the Figure 8. In particular, c6 has a representation that is the same as
the ROC graph.

(a) c1 (b) c2 (c) c3

(d) c4 (e) c5 (f) c6

(g) c7 (h) c9 (i) c10

(j) c11

(o) cvot(n) cmed(m) cmea

(l) c17(k) c13

Figure 8. ROC curves. (a) c1: SGTD; (b) c2: RGTD; (c) c3: MCDG; (d) c4: MoG; (e) c5: PDE; (f) c6:
AENN; (g) c7: k-means; (h) c9: PCA; (i) c10: SOM; (j) c11: MST; (k) c13: K-NN; (l) c17: IncSVDD;
(m) cmea: meanc; (n) cmed: medianc; and (o) cvot: votec.
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(a) c1 (b) c2 (c) c3

(d) c4 (e) c5 (f) c6

(g) c7 (h) c9 (i) c10

(j) c11

(o) cvot(n) cmed(m) cmea

(l) c17(k) c13

Figure 9. Cost curves. (a) c1: SGTD; (b) c2: RGTD; (c) c3: MCDG; (d) c4: MoG; (e) c5: PDE; (f) c6:
AENN; (g) c7: k-means; (h) c9: PCA; (i) c10: SOM; (j) c11: MST; (k) c13: K-NN; (l) c17: IncSVDD;
(m) cmea: meanc; (n) cmed: medianc; and (o) cvot: votec.

The confusion matrix is often applied to visualize the performance of the SCDD by a specific
table layout. The OA means overall accuracy, K is the Kappa coefficient, PA denotes the producer’s
accuracy, and UA represents the user’s accuracy. It is somewhat intricate that we structure two kinds
of confusion matrices together (see Figure 10), which look similar but not identical. That is the reason
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why we design two types of confusion matrix (1) classifier-dependent (i.e., OAt, Kt, PAt, and UAt),
which is generated using the test set; and (2) classifier-independent (i.e., OAa, Ka, PAa, UAa, OAb,
Kb, PAb, and UAb), which is produced by utilizing the reference result for “sa” and “sb”. For the two
classifier-independent error matrices, which give an analogous presentation and a comforting result,
though with a slight discrepancy in the amplitude, the inferior SCDDs, i.e., the c5 has a smaller K and
PA while the c9 has a smaller K and UA. As for the classifier-dependent confusion matrix, all SCDDs
have good performance except for the c5 has a lower K and PA while the c9 has a lower K and UA.

The summary can be drawn as (1) overall accuracy appears mediocre or fails in the face of the
SCDD for the imbalanced data; and (2) two classifier-independent error matrices demonstrate that
the SCDDs are, indeed, fixed by unchangeable splitting samples. Meanwhile, they seem worse and
more unstable compared to the classifier-dependent matrices, which may be disturbed in the presence
of more uncertainty. The correct rate (see Figure 10, and Table 4) is a custom performance measure,
which is used for validation. Here, the true labels used are a subset of the positive samples drawn
from a merged set for the “sa” and “sb”. This measure is a simple attempt to repeat and verify the
previous analysis.
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Figure 10. Accuracy metrics derived from the confusion matrix. Here, the postfix “t” means taking the
test set as the true labels, while the “a” and “b” mean taking the reference results as the true labels,
respectively. The CRa and CRb are the correct rates of the classification results in comparison with the
true labels for the “sa” and “sb”.
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4. Discussion

4.1. Selection Criteria

Although sufficient statistical analyses have been conducted, it is not known how to recognize
which SCDD looks good. In fact, it is not easy to determine which is a fine, or even the best in the face
of so many SCDDs with multiple performance measures. Therefore, we want to set up a handful of
naive selection criteria to achieve such a goal by means of a rank board (see Table 4). For this work,
more empirical selection criteria are adopted. Intrinsically, most of the statistical metrics are derived
from the basic errors (i.e., the true positive, the true negative, the false positive, and the false negative).
The derived measures (i.e., the precision, recall, F1, AUC, OA, KC, PA, and UA) could be quantitatively
analyzed with actions such as rating and scoring. Note that the AUC measure appears mediocre
herein. The OA may not be a reliable metric for the real performance of the SCDD in this study,
because it yields misleading results supposing the training data are imbalanced when the numbers of
observations in different classes vary greatly. The ROC curve and cost graph are used for supporting
numerical indicators, which are especially suitable for classification problems in which there are only
two classes (i.e., the positive and negative classes). The limitation [70] of both ROC analysis and
cost curve is the lack of any effective method to show the performance results obtained from several
different data sets in a single plot. This difficulty follows the fact that only two dimensions are used to
present the performance of a single data set.

It is important to realize the optimal selection criteria for the hybrid classifiers, such as comparing
the performance of an ensemble classifier with a member classifier, which is also presented in this
study. The fixed combination strategies or so-called rules (i.e., the mean rule, median rule, and voting
rule), are more likely to obtain better classification results, just as the inferior classifiers will reduce
the whole performance. In particular, the time taken will be an insufferable problem. It is crucial
to address the question of under what criteria does one classifier outperform another. Additionally,
a decision needs to be made to determine which classifier should be selected over others. That is
if, given the current operating conditions, a set of selection criteria can be derived. It is often easy,
by varying the parameter setting, such as a threshold or the variables of the mathematical model, or
by varying the class distribution in the training set, to create a whole set of SCDDs. One commonly
used selection criterion is to select the SCDD whose parameter settings and training conditions most
closely agree with the current operating conditions, which is called the performance-independent
criterion [75]. This is the reason why we try to fix all irrelevant conditions prior to developing the
performance-dependent selection criteria. A plain criterion is to choose the qualified SCDDs regardless
of their training conditions or parameter settings.

4.2. Scoring Model

For SCDDs with multiple performance measures, it would be expected for them to be scored.
Then, there is always one possibility that all SCDDs can be quantitatively evaluated and scored.
Consequently, a score-oriented method is presented here to clarify this concern. In this study, we put
forward a kind of scoreboard on the basis of the rank board to give each SCDD an explicit score so that
we can determine which SCDD is optimal.

According to Table 5, we use the rows (M.) to denote the measures and the columns (C.) to
represent the different SCDDs. Signs are used to identify the metric belonging to which group: “–”
denotes the error metric (i.e., the smaller the better), while “+” is the accuracy metric (i.e., the greater
the better). The score variable Scj is calculated by the following equation:

sij(x) =

⎧⎨⎩ n − xij−Min(xi)

(Max(xi)−Min(xi))/n if sign = “–”
xij−Min(xi)

(Max(xi)−Min(xi))/n if sign = “ + ”
, (2)
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or

sij(x) =

⎧⎨⎩
Max(xi)−xij

(Max(xi)−Min(xi))/n if sign = “–”

n − Max(xi)−xij
(Max(xi)−Min(xi))/n if sign = “ + ”

, (3)

and
Scj = ∑ sj, (4)

where xi represents the measures in the ith row, xj represents SCDDs in the jth column, and xij denotes
the measured value of the jth SCDD with ith metric. The si represents the scores in the ith row, the sj
represents the scores in the jth column, and the sij denotes the score value of the jth SCDD with the
ith metric. Scj represents the total score of the jth SCDD. For simplicity, we assume that there are five
SCDDs and five measures herein to facilitate the illustration of the scoreboard and the derivation of
Equations (2)–(4). The n is a key scale to slice a certain metric for all SCDDs so that each SCDD can
be assigned a normalized float value (ranging from 0 to n) associated with this metric. In the end,
the gross score of every SCDD can be obtained and plotted by performing the summation by column.
Figure 11 illustrates that two inferior SCDDs, i.e., the c5 is underestimated, and the c9 is overestimated,
which are prominently identified. Meanwhile, two slightly inferior SCDDs, i.e., the c2 and c6, are apt
to be observed again.

Table 5. Score table. Here, we assume five SCDDs with five metrics.

M./C. j1 j2 j3 j4 j5 Sign–

i1 x11|s11 x12|s12 x13|s13 x14|s14 x15|s15 –
i2 x21|s21 x22|s22 x23|s23 x24|s24 x25|s25 –
i3 x31|s31 x32|s32 x33|s33 x34|s34 x35|s35 +
i4 x41|s41 x42|s42 x43|s43 x44|s44 x45|s45 +
i5 x51|s51 x52|s52 x53|s53 x54|s54 x55|s55 +

Score Sc1 Sc2 Sc3 Sc4 Sc5 Sign+

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c13 c17
cmea

cmed cvot
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Figure 11. Scoring result, n = 4.
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4.3. McNemar’s Test

The four-cell confusion matrix is very intuitive to show the similarities and differences between
the proportions (i.e., the true and false allocated parts) concerning two sets of specific labels. On the
basis of the error table, we wish to achieve the statistical significance of the differences between the
proportions using McNemar’s test [76] so as to assess two allocated results, which are obtained by
two SCDDs, or just given, under a position-specific comparison. Here, McNemar’s test is specifically
useful for comparing paired proportions derived from two sets of samples. In the formulas below,
we use the notations:

pdisc = pF+ + pF−
pdi f f = pF+ − pF−

, (5)

where the pF+ is the proportion of testing samples that the first SCDD is true, and the second is false;
meanwhile, the pF− denotes the proportion of testing samples that the first SCDD is false while the
second is true. Thus, McNemar’s test focuses on the proportions of testing samples that one SCDD is
true while another is false (and vice versa) [41].

SEp =
√
(pdisc − pdi f f 2)/N, (6)

where SEp represents the standard error derived from the difference between the proportions, and N is
the total number of the pairs of objects. McNemar’s test will perform the evaluation of the 100(1 − α)%
confidence interval for comparing the difference between two accuracy values based on the differences
(Dα) between the proportions. Assuming a normal distribution zα, the general expression of the
confidence interval [76] can be expressed as:

Da ± zαSEp. (7)

For exploring in a straightforward manner, we split Equation (7) into a real image, then the image
part may be more crucial to give the proper assessment with regard to a confusion matrix. In this way,
the statistical assessment of the differences is carried out to determine if these are significantly different
or not [76]. Since three kinds of error matrices are presented in this study, here we name them as CDt
(i.e., the classifier-dependent using the test set), CIa (i.e., the classifier-independent using the reference
map of the “sa”), and CIb (i.e., the classifier-independent using the reference map of the “sb“).

The difference between the accuracies yielded by the paired SCDDs (or two sets of labels) is Dα,
ranging from Da − |zα|SEp to Da + |zα|SEp at the 100 × (1 − 0.05)% confidence interval. In order
to make all confidence intervals comparable, the one-sided absolute range (|zα|SEp) around Da is
exhibited in Table 6. Two inferior SCDDs (i.e., the c5 and c9) have their appearances again. As for two
slightly inferior SCDDs (i.e., the c2 and c6), only the c2 can be observed. Such results estimated by
McNemar’s test provide a useful back-up to previous analysis.

Table 6. Statistical significance (×1000).

c1 c2 c3 c4 c5 c6 c7 c9 c10 c11 c13 c17 Cmea Cmed Cvot

CDt 3 4 3 3 7 3 3 6 3 3 3 3 2 3 3
CIa 1 2 1 1 2 1 1 3 1 1 1 1 1 1 1
CIb 1 2 1 1 2 1 1 3 1 2 1 1 1 1 1

4.4. Special Concerns and Limitations

Panax notoginseng is a rare kind of ginseng, and which also is an antique and endangered medicinal
plant (i.e., a traditional Chinese geoherb). This paper aims to explore its potential and provides some
insights into the application of SCDDs for the landscape-scale mapping of Panax notoginseng. We wish
this work could be the referenced technical basis for exploring more novel points that make outstanding
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contributions and provide the fruitful information for studies on the quality assurance of the production
of TCM, precision farming, the construction of agro-ecosystems, sustainable development, and the
protection of biodiversity of Panax notoginseng. Special concerns and limitations of this study can be
summarized as follows:

This work utilizes a manually-collected set of samples of the target class and grid-constraint
uniformly-collected negative samples. The uncertainty exists that a few possible land-cover classes
may be left out, even though the classification results look rather good.

Thirteen SCDDs are employed and compared, however, there may be many other algorithms and
their variants. Anyhow, the available ones have been used in this study.

The comparison with the different SCDDs does not judge them to be good or not. Actually,
we wish to extend the ability of SCDDs to achieve the expected experiences in a straightforward way
to find the optimal approach to monitoring the plant pattern changes of Panax notoginseng.

The class imbalance is a non-negligible problem in terms of a real specific land-cover classification
using SCDDs. We strive for trying to observe what influences it would cause, and find two
mediocre-appearing measures, i.e., the OA and AUC.

The selection criteria and scoring model are presented to determine the optimal SCDD which is
outstanding and deserves attention.

The division of the site-specific error matrices by discriminating if the SCDD is dependent on the
training set or not provides a more comprehensive approach to assess the final results.

The combination of SCDDs which are taken as the base classifiers can reduce the error or improve
the accuracy. However, lower computational efficiency would be an annoying problem. Additionally,
the pruned ensembles can give better performance.

Some classification accuracies may not be the reliable indicators, particularly if the training data
are imbalanced [41,77]. As single-class data description is a special type of one-class classification,
there are difficulties that may exist when trying to fit a single-class learner using the positive samples
only. If SCDDs are trained with the samples of the single target class, then only the sensitivity can be
estimated. There is a possibility that using only the sensitivity to fine-tune an algorithm may result
in a class descriptor with high sensitivity but low specificity and overestimating the true extension
of the class of interest [41]. In terms of the scope of this study, the introduction of single-class data
description regarding remote-sensing mapping of Panax notoginseng fields based on P-learning, which
provides us the new insights to promote the development of the resource inventory and dynamic
monitoring of Panax notoginseng.

5. Conclusions

Natural TCM resources have seldom been observed and monitored from space before. Due to
the promoted GAP technique, the small or fragmented parcels covered by black plastic sheets create
the opportunity and probability for us to recognize and analyze the eco-geographic characteristics of
Panax notoginseng at a landscape-scale. This paper delineates an application whereby a stack of SCDDs
is used for remote-sensing mapping of Panax notoginseng fields through P-learning. The measuring
performance of SCDDs provides us the challenging insights to define the selection criteria and scoring
proof for choosing an optimal SCDD for remote-sensing mapping a specific landscape class. Future
work would involve (1) developing new algorithms to enrich the approaches of specific land cover
mapping; (2) improving the design sets, updating the sampling strategy, and overcoming the imbalance
issue; and (3) extending to the state-of-the-art SCDDs published, which have not been presented in
this study.
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Abstract: This paper presents a robust change detection algorithm for high-resolution panchromatic
imagery using a proposed dual-dense convolutional network (DCN). In this work, a joint structure of
two deep convolutional networks with dense connectivity in convolution layers is designed in order
to accomplish change detection for satellite images acquired at different times. The proposed network
model detects pixel-wise temporal change based on local characteristics by incorporating information
from neighboring pixels. Dense connection in convolution layers is designed to reuse preceding
feature maps by connecting them to all subsequent layers. Dual networks are incorporated by
measuring the dissimilarity of two temporal images. In the proposed algorithm for change detection,
a contrastive loss function is used in a learning stage by running over multiple pairs of samples.
According to our evaluation, we found that the proposed framework achieves better detection
performance than conventional algorithms, in area under the curve (AUC) of 0.97, percentage correct
classification (PCC) of 99%, and Kappa of 69, on average.

Keywords: change detection; convolutional network; deep learning; panchromatic; remote sensing

1. Introduction

Change detection is a challenging task in remote sensing for identifying changed areas between
two images acquired at different times from the same geographical area. It has been widely used in
both civil and military fields such as agricultural monitoring, urban planning, environment monitoring,
and reconnaissance. In general, change detection is performed in three steps. First, a preprocessing
step is commonly used to conduct registration of two images and to correct geometric and radiometric
distortions. In the second step, a feature map is extracted, for example, a difference image is computed
in order to generate change features with the assumption that two images are not perfectly registered
for all of the pixels. Lastly, a classification or clustering algorithm is driven in order to distinguish
changed pixels and unchanged pixels based on statistical characteristics.

For change detection, many manually designed features such as a difference image (DI) [1–7],
local change vector [8], and texture vector [9–11] have been proposed. In further classification analysis,
an unsupervised change detection was proposed based on fuzzy c-mean (FCM) clustering [12,13].
The optimization algorithm based on Markov random field (MRF) and genetic algorithm was employed
so as to optimize the FCM. On the other hand, a supervised learning algorithm was presented based
on an active learning and MRF in order to detect change areas [14]. In addition, a support vector
machine (SVM) has widely been used to perform binary classification based on texture information
and change vector analysis [9,15–17]. Since the classification process mainly depends on extracted
features, the selection of handcrafted features for effective image representation is known to be crucial.
In general, handcrafted features in change detection are sensitive due to geometric and radiometric
distortions, as well as imperfect registration. All of those mentioned classification algorithms would be
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reasonably good for training data sets. However, those algorithms are not able to incorporate accurate
and reliable statistical characteristics for a huge amount of data sets, and thus would not yield good
detection performance for new data sets.

Recently, a deep convolution neural network (DCNN) was developed to produce a hierarchy
feature-maps via learned filters, and it can automatically learn a complex feature space from a huge
amount of image data. The DCNN can achieve superior performance compared to conventional
classification algorithms with handcrafted features. Recently, several change detection methods using
deep learning algorithms have been proposed [18–20]. A difference image is fed into the deep neural
networks as input data [18]. In addition, the neighboring features on each pixel on the difference image
are taken as inputs. The restricted Boltzmann machine (RBM) is used for pre-training and is then
unrolled in order to create a deep neural network. On the other hand, the change detection is performed
by combining a sparse autoencoder, convolutional neural network (CNN), and unsupervised clustering
algorithm [19]. In addition, a log-ratio map was used and transformed by a sparse autoencoder into
a suitable feature space. A change detection map is directly extracted from the two images using a
pre-trained CNN [20]. A unique higher dimensional feature map is produced by the CNN through
different convolutional layers. The change map is computed using pixel-wise Euclidean distance of
hyper dimensional features. Another change detection algorithm has also been proposed that adopts a
log-ratio difference [21]. It is used as a feature input for detecting changes between multi-temporal
synthetic aperture radar (SAR) images. In addition, a deep neural network was developed by stacking
RBMs to learn and recognize changed pixels and unchanged pixels. In addition, a combined algorithm
with the deep belief networks (DBNs) and change analysis are presented to highlight changes [22].
The presented algorithm merges and vectorizes local pixel features into DBN inputs. Then, the DBN
model is established in order to capture key information for discrimination and to suppress irrelevant
variations. An unsupervised clustering algorithm is then used to classify changed and unchanged
pixels. Another approach utilizes joint features for change detection [23]. This work proposed an
efficient change rule with a reliable expression of difference information. It learns the reliable change
rule by recording the change information for a long-term sequence of remote sensing data with long
short-term memory (LSTM) model. As mentioned above, all of the deep learning-based change
detection algorithms yield relatively good performance. However, most of them still rely on the
difference image as a feature input of their networks, resulting in them being sensitive to noisy
conditions caused by geometric, radiometric distortions, and different viewing angles. In order to
solve these problems, an alternative approach for change detection was developed by measuring
similarity. A Siamese convolutional network was proposed to detect changed areas for optical aerial
images [24]. The Siamese convolutional network with shared weights learns to extract features directly
from image pairs. This work uses shared weights that are dependent from those of two branch
networks. The shared weights can reduce parameters to be optimized, resulting in faster convergence.
However, this model is also less flexible, which leads to overfitting due to shared weights with some
other neurons.

In order to overcome the problems described above, this paper proposes a dual-dense
convolutional network for recognizing pixel-wise change based on dissimilarity analysis of
neighborhood pixels on high resolution panchromatic (PAN) images. In this proposed algorithm,
two fully convolutional neural networks are employed to measure dissimilarity of neighborhood
pixels. Furthermore, dense connection in convolution layers is applied to reuse preceding feature maps
by connecting them to all subsequent layers. It is proposed to enhance a feature-map representation.
While the conventional change detection algorithm [24] and conventional Siamese network use shared
weights, the proposed algorithm removes shared weights in order to obtain independent optimal
weights for two points of input data. So, each network can independently learn for optimal weights,
called the “dual-dense convolutional network (dual-DCN)”. During its training, the dual-DCN is
driven to learn more robust different representations to better distinguish different types of changes.
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The proposed algorithm gives better performance compared to conventional methods in qualitative
and quantitative evaluation. It yields AUC of 0.97, PCC of 99%, and Kappa of 69 on average.

The rest of this paper is organized into five sections: In Section 2, the conventional convolutional
neural network and problem statements will be described. Section 3 presents the proposed algorithm in
detail. Section 4 will present and analyze experiment results. Finally, we conclude it in the last section.

2. Convolutional Neural Network and Problem Statement

The convolutional neural networks (CNNs) are a category of neural networks which are very
effective in image recognition, classification, and so on [25]. The CNN is one of the deep learning
approaches that is composed of multiple convolutional and nonlinearity layers with optional pooling,
followed by fully-connected layers, as shown in Figure 1.

Figure 1. Traditional convolutional neural network (CNN) architecture.

Let I be an image (m × n × c) to be input, where m, n, and c are the height, width, and channel
numbers of the image, respectively. In the convolutional layers, I is convolved by 2D k kernels and
mapped by a nonlinearity function, called rectified linear units (ReLU), to build k feature-maps (F).
The feature-map output of the lth layer is connected to the input of the (l + 1)th convolution and
pooling layer. The final feature-maps are connected to a fully-connected layer. The last layer of
fully-connected layer produces the class probability output (Pclass). A cross-entropy function is then
used to compute an objective loss. All of the weighting parameters of the network can be trained using
the backpropagation algorithm.

Changes on remote-sensed images can be detected by analyzing two registered images over
the same geographical area. For change detection, CNN could be employed to learn changed image
characteristics and detect changed areas on remote-sensed imagery. However, the difference image
(DI) or the feature fusion (FF) is widely used as an input feature of CNN, as shown in Figure 2.
The DI is extracted by image subtraction or log ratio. Then, the FF is constructed by concatenating
the two images. Note that these approaches are sensitive to noise as direct pixel-wise comparison
features; thus, the traditional CNNs with DI or FF features could be weak to distorted data. In practice,
distorted images and data are common in the remote sensing field. This distortion can be caused by
not only radiometric but also geometric and viewing angle factors. In general, a geometric distortion
is generated when satellites or aircrafts acquire images. In addition, image registration is required
to align two images, even over the same geographical area, in a pre-processing stage. However, it is
almost impossible to perfectly achieve distortion correction through automated methods. In addition,
a viewing angle difference in acquisition is another challenging issue in registration and change
detection. This problem cannot be resolved without precise 3-D building models, complicated
algorithms, and manual intervention. For robust change detection, a robust and stable classification
model is required that resolves all of the problems described above.
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(a) 

(b) 

Figure 2. Conventional approaches. (a) Difference Image (DI) + CNN and (b) Feature Fusion (FF)
+ CNN.

3. Change Detection with the Proposed Dual-Dense Convolutional Neural Network

In general, generic change detection algorithms consist of two phases: pre-processing and
change detection. Figure 3a depicts a general procedure of the conventional change detection
system. The pre-processing stage performs radiometric correction, geometric rectification, and image
registration. The registered images are then fed into a change detection algorithm in order to identify
changed areas with feature vectors, for example, a difference image. In the general change detection
systems, the radiometric correction and image registration stages are important and indispensable
for better performance. The radiometric correction is performed in order to alleviate distortion for
radiometric consistency. Then, the geometric correction is performed by aligning the global earth
coordinates with the corresponding image points. Even though two images are compensated using
multiple steps, they are still not perfectly registered, as they are independently processed with many
error factors. Thus, an additional registration between two images is frequently required in order to
reduce mis-alignment.

(a) 

 
(b) 

Figure 3. Change detection system schema. (a) Conventional change detection system and (b) the
change detection system with the proposed dual-DCN.
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In urban and mountainous areas in particular, most automatic image registration methods remain
ineffective. It would degrade performance of change detection by direct pixel-wise comparison using
the difference image. In order to resolve imperfect registration impacting on the change detection,
a dual-DCN, as shown in Figure 3b is proposed by employing a dissimilarity distance in order to
overcome the mis-alignment problem for better performance of change detection even without a
perfect image registration. The proposed algorithm employs two deep convolution networks to keep
all the information of the original data. The generic characteristics of the CNN handle some local
distortion and alignment, thus, the proposed algorithm absorbs the misalignment problem. In addition,
the dense connectivity in the convolution layer is introduced by reusing all preceding feature-maps to
enhance the feature-map representation.

3.1. Pre-Processing for Change Detection

As mentioned previously, an atmospheric correction is required to remove scattering and
absorption effects from the atmosphere to characterize the surface reflectance effects for a time-series
image analysis. This work uses KOMPSAT-3 images with product level 1G. In these images,
the radiometric correction has been done by converting the image pixel values (Digital Numbers/DNs)
to surface reflectance values. It involves the conversion of DNs to a radiance value, and then to
top-of-atmosphere (TOA) radiance. On the other hand, gain and offset values are provided by
KOMPSAT-3 to derive the TOA reflectance values [26]. After the atmosphere errors are corrected,
the geometric correction is performed in order to ensure that the pixels in the image are in their
proper geometric positions on the Earth’s surface. For our test images, geo-rectification and
orthorectification are each conducted. For the geo-rectification, ground control points (GCPs)
are identified in an unrectified image and correspond to their real coordinates to estimate the
parameters (polynomial coefficients) of polynomial functions by the least square fitting. In addition,
orthorectification can partly correct the image for image distortions caused by variations in the
terrain topography in tandem with non-optimal satellite sensor viewing angle. Optical distortions are
corrected, and terrain effects are corrected using coarse digital elevation model (DEM), namely shuttle
radar topography mission DEM (SRTM DEM) for KOMPSAT-3 imagery [26].

In general change detection systems, an image registration is applied in order to ensure that two
images become spatially aligned. Even though the correction of geometric distortion is performed,
the spatial alignment of two images could contain a relatively large error of up to ±6 pixels. In order
to overcome this distortion, automatic image registration is widely used. However, it requires high
computational load, and is furthermore not easy to obtain perfect registration. They impact the
performance of change detection algorithms, resulting in the possibility that a great deal of false
change areas could occur. The proposed dual-DCN is proposed so as to handle distortion problems
and simplify image registration. The dissimilarity distance of local characteristics is measured in order
to identify a change with the dense dual-DCN model.

3.2. Dual-Dense Convolutional Neural Network for Change Detection

In order to achieve accurate change detection without a perfect registration, this paper proposes a
dual-dense convolutional network (dual-DCN) with two deep convolutional networks, as shown in
Figure 4. This proposed network identifies the change areas by measuring the dissimilarity distance of
two inputs at the last stage for use of all the information of the two input images. Two branch networks,
N1 and N2, handle two input images acquired at different time instances, respectively. The proposed
network is based on CNN, thus, it can robustly conduct a pixel-wise change detection by inspecting
the neighboring pixels.
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Figure 4. The proposed dual-DCN architecture for change detection.

A pair of images is cropped into two patches (40 × 40) by sliding in the raster scan order and
two cropped patches (I1 and I2) are fed into the proposed network. The center pixel of the cropped
patch is identified as changed or unchanged with the presence of a single dissimilar value between
the cropped two patches. The Siamese network proposed by Reference [24] extracts features from
an image pair. The pair of the convolutional networks is used to capture similarity characteristics by
sharing the weights of the two network paths.

However, the shared weights of Siamese network reduce the parameters optimized during
training for fast convergence. However, it is known to be frequently overfitted. Thus, the proposed
network does not employ the shared weights to provide more flexible optimization than a restricted
Siamese network. The parameters of each network branch of the proposed algorithm can be
independently optimized in order to avoid early overfitted convergence. In addition, the proposed
network employs dense connection [27] in the convolutional layers by reusing all the preceding
feature-maps, in order to enhance representation capability of the feature-maps, as shown in Figure 4.
The preceding feature maps are directly connected to all of the subsequent layers. The traditional CNN
connects the output of the (l − 1)th layer as input to the lth [28]. In the proposed dual-DCN model,
the lth layer receives all of the preceding feature-maps. The feature map of the lth layer at the rth dense
block and the ith network can be computed by

Fi
l,dr

= Hi
l−1,dr

([
Fi

0,dr
Fi

1,dr
, . . . , Fi

l−1,dr

])
, r = 0, 1; i = 1, 2 (1)

where
[

Fi
0,dr

, Fi
1,dr

, . . . , Fi
l−1,dr

]
indicates concatenation of the feature-maps of all of the previous layers,

layer 0, . . . , layer (l − 1). Each dense block is a group of convolution layers with the dense connectivity
to avoid variant sizes of the feature maps. H(·) plays a role in batch normalization (BN) [29],
3 × 3 convolution, and ReLU. The BN is used to normalize parameters change of the preceding
layers. The ReLU is used by thresholding at zero following 3 × 3 convolution. The convergence of
the stochastic gradient descent algorithm can be accelerated. G including 3 × 3 convolution followed
by ReLU is employed before a dense block in order to generate the feature-map F0. In the proposed
architecture, each dense block contains three H(·), including 64 feature maps of each layer. After a
dense block is performed, a down-sampling operation is applied to produce variety scales with
2 × 2 maximum pooling. Furthermore, the feature maps at the last convolutional layer are vectorized
and fed into the fully-connected layer consisting of 64 neurons and 0.5 drop-out. The probability
output, Oi, at the last stage is computed by the sigmoid function. Furthermore, Euclidean distance (D)
is employed in order to measure the dissimilarity between I1 and I2 computed by

D = O1 − O2
2 (2)
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When the value of D approaches 1, the center pixel of the 40 × 40 patch is set to a changed one,
otherwise, it is set to unchanged.

3.3. Training of the Proposed Dual-DCN for Change Detection

Given a training set consisting of image pairs, the proposed network can be end-to-end trained
by the backpropagation algorithm. For each image pair, let Y be a binary label of the ground truth in
which Y = 0 if both inputs are similar, and Y = 1 if both inputs are dissimilar. The proposed dual-DCN
is trained based on dissimilarity by computing the contrastive loss L(D, Y) as an objective function [30].
This loss function employs a partial loss function for similar and dissimilar of a pair image. It produces
a low value of D for unchanged pixels pair and high value for a pair of change pixels.

This proposed network is optimized using the stochastic gradient descent (SGD) optimizer.
Each mini-batch arises from a single image pair that contains many changes and many absences
of changes. The proposed algorithm randomly initializes all new layers by drawing weights from
Glorot uniform [31]. The learning rate, decay rate, and momentum are set to 0.01, 1 × 10−6 and 0.9,
respectively. The epoch number is set to 30.

4. Experimental Evaluation and Discussion

This paper uses a KOMPSAT-3 image dataset that was captured over South Korea.
The KOMPSAT-3 image data set is provided by the Korea Aerospace Research Institute. Note that
panchromatic band images which provide 0.7 m GSD are used for change detection. Figure 5 shows
the example of an overlapped panchromatic images (1214 × 886) of the training dataset. These images
were cropped by 40 × 40 sliding patch. The labels for the dataset were manually constructed for all of
the center pixels of cropped patch pair.

 
(a) 

 
(b) 

 
(c) 

Figure 5. Seoul training data set: (a) image acquired in March 2014, (b) image acquired in
December 2015, and (c) ground truth.
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Figure 6 shows the two panchromatic images of (29, 368 × 27, 388) and (29, 188 × 28, 140) used in
our experiments, which were acquired by KOMPSAT-3 on March 2014 and October 2015, respectively.
These two images were acquired not only at different time instances, but also with different viewing
angles. They have geometric misalignment of approximately ±6 pixels for overlapped area.

 

Figure 6. PAN images of Seoul area, overlapped area denoted by blue lines. (Left image: March 2014,
right image: October 2015).

Figure 7 shows four selected urban areas from Figure 6, and they contain changed areas due to
building construction. In Area 1, there are two types of construction changes, under construction
changes and completed construction changes. Moreover, in certain areas, there are tall buildings,
which could lead to false changes in change detection due to differing viewing angles. Rather than
construction changes and tall buildings, we can find a forest area in Area 2. There are many tall
buildings in Area 3, and accurate detection is not easy due to a large different viewing angle.

Area 4 is used to assess the influence of change detection due to differing seasons for a forest
area. This case is challenging because the change due to the season should be disregarded for practical
applications. Note that the labels for four areas were manually obtained, as shown in Figure 7.

In order to evaluate the change detection performance of the proposed algorithm and conventional
algorithms, several metrics are used in this study, including receiver operating characteristic (ROC)
curve, area under the curve (AUC), percentage correct classification (PCC), and Kappa coefficient [32].
For existing algorithms, DI + CNN, FF + CNN, and Siamese network were implemented. This CNN
architecture includes 8 depth convolutional, 2 pooling, and 2 fully connected layers. For fair
comparison, the same parameters of training parameters, the number feature maps, and training
dataset were used in our evaluation.
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 

Figure 7. Four areas of Figure 6. (a) Input image for Area 1 (March 2014). (b) Input image for Area
1 (October 2015). (c) Ground truth for Area 1. (d) Input image for Area 2 (March 2014). (e) Input
image for Area 2 (October 2015). (f) Ground truth for Area 2. (g) Input image for Area 3 (March 2014).
(h) Image input for Area 3 (October 2015). (i) Ground truth for Area 3. (j) Input image for Area
4 (March 2014) (k) Input image for Area 4 (October 2015). (l) Ground truth for Area 4.

Figure 8 shows detection results for four areas with the exiting algorithms and the proposed
algorithm. As shown in Figure 8, the proposed algorithm and FF + CNN generate better detection
accuracy for Area 1. On the other hand, DI + CNN and Siamese network produce many false positives
for the area. For urban surfaces, it is relatively difficult to handle the misalignment and the different
viewing angle impacts because there exists tall buildings and complex constructions, resulting in
the fact that false detections are likely to be performed. For Area 2, FF + CNN and DI + CNN yield
more false positives, particularly in forest and urban areas. Moreover, Siamese net achieves a better
detection result than other conventional algorithms. However, many false positives are still detected
in certain areas. Overall, the proposed dual-DCN gives proper change detection performance, even in
different viewing angle conditions. For Area 3, the proposed algorithm is still able to properly detect
the changes.
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(a) (b) (c) (d) 

Figure 8. Detection results for four areas with the existing algorithms and proposed algorithm.
(a) FF+ CNN, (b) DI + CNN, (c) Siamese network, and (d) the proposed dual-DCN.

The other algorithms result in more false positives. Note that input images for Area 4 were
acquired in difference seasons for a forest area. For the test data, Siamese net produces some false
positives. As shown in Figure 8, the proposed algorithm yields a better detection result with the
proposed dual-DCN. The proposed algorithm can alleviate the impacts of distortions caused by
imperfect geometric correction and different viewing angles. As mentioned previously, the proposed
dual-DCN was designed to learn the dissimilarity of two local images in order to avoid false changes.
That is why the false positive rate is relatively lower by the proposed algorithm. In contrast,
DI + CNN and FF + CNN yield higher false positive rates, particularly for Areas 2 and 3. Moreover,
the Siamese network produces higher false positives in Area 1, due to less optimized parameters.
Figure 9 shows that the proposed algorithm can give better ROC than the conventional algorithms.
According to ROC curves, the proposed dual-DCN shows better quantitative detection performance in
AUC of 0.97, on average, as tabulated in Table 1. FF + CNN is slightly better in AUC than the proposed
dual-DCN for Area 2, because it has better true positive for this case. However, the proposed algorithm
has a lower false positive rate than FF + CNN. Table 1 summarizes the PCC and Kappa values of
different methods for the three areas. As shown in Table 1, the proposed algorithm achieves higher
PCC and Kappa values. We can say that the proposed dual dense convolutional network architecture
has the ability to identify both changed and unchanged areas by disregarding irrelevant variations
and false changes, even in cases of complicated urban surfaces, geometric distortion, and different
viewing angles.

97



Appl. Sci. 2018, 8, 1785

 
(a) (b) 

(c) 

Figure 9. ROC for three areas. (a) ROC for Area 1, (b) ROC for area 2, and (c) ROC for Area 3.

Table 1. Quantitative assessments of the existing and proposed algorithms.

Metrics Algorithms Area 1 Area 2 Area 3 Avg

AUC

FF + CNN 0.95 0.95 0.98 0.96
DI + CNN 0.70 0.68 0.88 0.75

Siamese net 0.96 0.92 0.91 0.93
The proposed 0.99 0.93 0.99 0.97

PCC (%)

FF + CNN 97 92 98 96
DI + CNN 94 97 97 96

Siamese net 96 98 99 98
The proposed 98 99 99 99

Kappa

FF + CNN 78 19 47 48
DI + CNN 30 32 28 30

Siamese net 52 35 68 52
The proposed 78 60 69 69

Regarding time complexity, the proposed DCN requires more computational complexity than the
single architecture using FF + CNN and DI + CNN by a factor of approximately two with sequential
machines. However, the proposed dual-DCN can work in parallel, thus, throughput can be enhanced
with a parallel machine such as GPU. In addition, the proposed also takes about 20% more running
time than the Siamese network because it includes additional preceding of feature maps.
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5. Conclusions

In this paper, we presented a robust change detection algorithm for high-resolution panchromatic
imagery. The proposed algorithm learns and analyzes the dissimilarity of two input images with
the densely convolutional network by incorporating local information. We found that the proposed
algorithm achieves higher detection accuracy, even with noisy conditions such as geometric distortion
and different viewing angles in qualitative and quantitative analysis. Further work can be conducted
to extend the framework for other modalities such as multi-spectrum images and SAR data.
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Featured Application: In Gaofen-2 images, it is difficult to accurately extract winter wheat

spatial distribution using traditional methods. Because our approach can better solve this

problem, it has played an important role in agricultural surveys and improved the efficiency of

agricultural surveys. Our approach has been utilized by the Department of Agriculture and the

Meteorological Bureau of Shandong Province, China.

Abstract: When extracting winter wheat spatial distribution by using convolutional neural network
(CNN) from Gaofen-2 (GF-2) remote sensing images, accurate identification of edge pixel is the key
to improving the result accuracy. In this paper, an approach for extracting accurate winter wheat
spatial distribution based on CNN is proposed. A hybrid structure convolutional neural network
(HSCNN) was first constructed, which consists of two independent sub-networks of different depths.
The deeper sub-network was used to extract the pixels present in the interior of the winter wheat
field, whereas the shallower sub-network extracts the pixels at the edge of the field. The model was
trained by classification-based learning and used in image segmentation for obtaining the distribution
of winter wheat. Experiments were performed on 39 GF-2 images of Shandong province captured
during 2017–2018, with SegNet and DeepLab as comparison models. As shown by the results,
the average accuracy of SegNet, DeepLab, and HSCNN was 0.765, 0.853, and 0.912, respectively.
HSCNN was equally as accurate as DeepLab and superior to SegNet for identifying interior pixels,
and its identification of the edge pixels was significantly better than the two comparison models,
which showed the superiority of HSCNN in the identification of winter wheat spatial distribution.

Keywords: remote sensing image segmentation; convolutional neural networks; Gaofen-2;
hybrid structure convolutional neural networks; winter wheat spatial distribution;
classification-based learning
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1. Introduction

Winter wheat is the most important food crop in China, comprising 21.38% of the gross cropped
area of the domestic food crops in 2017 according to the data released by the National Bureau of
Statistics, with its output accounting for 21.00% of the total food crop production [1]. For national
food security, the Chinese government has assigned a minimum area of arable land in each region that
needs to be safeguarded (the “red line”) [2]. Timely and accurate acquisition of the size and spatial
distribution of winter wheat fields assists the relevant government departments in guiding the farming
activities, estimating the yield, and adjusting the agricultural structure for ensuring food security [3].

Remote sensing is capable of imaging and large-area monitoring, making it a good data source
for rapid and accurate extraction of winter wheat planting information. Researchers have successfully
extracted winter wheat spatial distribution information from MODIS (moderate-resolution imaging
spectroradiometer) and ETM/TM (enhanced thematic mapper plus/thematic mapper), achieving
accuracies of 85.5% and 89.1%, respectively [4,5]. This exhibits the advantage of remote sensing in
this application. However, owing to limitations in the spatial resolution of the data source, the spatial
resolution of the extraction results is also rather coarse and unable to satisfy the requirement of the
application [6–10]. With the development of high-resolution remote sensing satellites, a crop planting
area can be monitored more accurately using the corresponding images as the data source [11,12].
The winter wheat cultivation information is extracted from the remote-sensing images captured
by Gaofen-1 of the Gaofen series of Chinese satellites, yielding satisfactory results, with maximum
accuracy reaching about 89% [13–18]. Most researchers still use traditional methods, such as decision
trees and textures features. These methods can only take advantage of low-level features, which make
it easy to make mistakes in identifying pixels at the edge of winter wheat planting area.

Image segmentation has been successfully used in the processing of camera images and applied
by researchers to high-resolution remote sensing images, achieving significantly more accurate
classification by a pixel-by-pixel segmentation [19–21]. Feature extraction is the key step in remote
sensing image segmentation. In high-resolution remote sensing images, as the spectral difference
between the same type of objects is increased, and between different types of objects is diminished,
the former has more probability of exhibiting different spectral properties, whereas the latter tends to
be spectrally similar, which makes feature extraction increasingly difficult [22,23]. Traditional methods
including k-nearest neighbors and maximum entropy can only identify low-level image features such
as color, shape, and texture. They are not capable of visually providing a semantic description.
This hinders the extraction of higher-level features and limits the use of these methods in the
segmentation of high-resolution remote sensing images [24,25].

With the development of machine learning, algorithms such as neural networks (NNs) [26]
and support vector machine (SVM) [27,28] are being used in the segmentation of high-resolution
images [29–31]. In some studies, when compared with traditional statistical methods and
object-oriented methods, machine learning algorithms yielded better image segmentation results [32,
33]. Both SVM and NNs are shallow-learning algorithms [34–36], which do not express complex
functions well owing to the limitations in their network structure. Therefore, these models cannot adapt
to the continuously increasing complexity caused by the increasing sample size and diversity [37,38].

Progress in deep learning has facilitated solving these problems by using deep neural networks
(DNNs) [39–42]. As an important branch of deep learning, a convolutional NN (CNN) is widely
used with visual data because of its excellent feature learning ability [43–45]. A CNN is a deep
learning network, composed of several layers, capable of nonlinear mapping. Its strength in learning
is exemplified by the good image segmentation results achieved [46–52]. Further, the capacity of many
large CNNs can be scaled according to the size of the training data and complexity and processing
ability of the model, and their performance in image segmentation has improved significantly [53–60].

A fully convolutional network (FCN) is a deep learning network for image segmentation,
which was proposed in 2015. Taking advantage of convolution computation in its feature
organization and extraction abilities, an FCN realizes pixel-by-pixel segmentation of camera images
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by constructing a multi-layer convolutional structure and setting appropriate deconvolutional
layers [61–63]. Accordingly, a series of convolution-based segmentation models has been developed
including SegNet [64], UNet [65], DeepLab [66], multi-scale FCN [67], and ReSeg [68]. Of these models,
SegNet and UNet are clearly structured, and it is easy to understand the convolution structure of the
model. The processing speed is fast. DeepLab uses a method called “Atrous Convolution”, which has
a strong advantage in processing detailed images. multi-scale FCN is designed to address the huge
scale gap between different classes of targets, i.e., sea/land and ships. ReSeg exploits the local generic
features extracted by Convolutional Neural Networks and the capacity of Recurrent Neural Networks
(RNN) to retrieve distant dependencies. Each model has its own strengths and is adept at dealing with
certain image types.

In the work of extracting the spatial distribution of crops with high GF-1 as the data source,
in addition to methods such as decision trees, textures features, and maximum entropy, research has
also been carried out using deep learning. However, most of these studies directly use the existing
deep learning model as a tool, and seldom consider the influence of characteristics difference of edge
pixels and inner pixels in the crop planting area are large.

On board the Gaofen-2 satellite is a panchromatic camera with a spatial resolution of 1 m,
and a multi-spectral camera with a spatial resolution of 4 m, which provides ideal data for extracting
winter wheat plantation information. Before the application of a CNN to GF-2 remote-sensing images
for this purpose, trial extraction is performed with classical network architectures (such as SegNet)
where misidentified pixels are categorized, of which approximately 90% are found at the edge of the
crop field. Further analysis indicates the structure of the convolutional layer as the source of this
problem. The outcome produced by operating the convolution kernel in the pixel block is treated as
the eigenvalue of the central pixel of the pixel block. As such, for the pixels at the edge, 50% of the
pixels involved in each convolution are from negative samples, whereas, for the pixels at the corner,
this number is 75% or higher. This results in a significant difference between the eigenvalues of the
pixels at these locations and those at the center of the image, and an increase in the probability of the
recognition results being placed in a wrong category. To avoid these problems, a new method is herein
proposed for the extraction of the winter wheat field information from the GF-2 remote sensing images.
The main procedures are as follows.

1. First, a CNN consisting of two independent sub-networks of different depths is established.
The deep and shallow sub-networks are trained to be sensitive only to the pixels at the interior
and edge of a winter wheat planting field, respectively, and only these pixels are extracted.
This model is named as a Hybrid Structure Convolutional Neural Network (HSCNN).

2. A classification algorithm is adopted in the model training. For initial training of the sub-network
used for the edge pixel extraction, edge pixels are considered as positive samples, with the
pixels at other locations being treated as negative samples. The inner pixels are then designated
as positive samples, with the pixels at other locations as negative samples, for training the
sub-network used for the inner pixel extraction. After the successful completion of the training,
the neural network is able to extract the winter wheat field from the GF-2 images accurately.

3. Finally, a GF-2 image is segmented by the trained model. Because SegNet and DeepLab are classic
semantic segmentation models of images, and, the working principles of these two models are
very similar to our work, we choose these two models as the comparison model, and a comparison
is performed with them to evaluate the accuracy of the segmentation results.
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2. Data Sources and Methods

2.1. Data Sources

2.1.1. Study Region

The whole study region is Shandong province, China. Shandong is located along the eastern coast
of China (in the lower stream of the Yellow river), within 34◦22′ N–38◦24′ N and 114◦47.5′ E–122◦42′ E.
It measures 721.03 km from east to west, and 437.28 km from north to south. The land area of the
province is 155,800 km2, of which 14.59% is mountainous, 5.56% is water (such as lakes), 15.98%
is forest, and 53.82% is cultivated land. The annual total planting area of crops in the province is
approximately 162 million mu. The main food crops of this region are wheat and maize. In 2016,
the wheat planting area was 57.45405 million mu, and in 2017 it was 57.6435 million mu [69].

In this paper, we used the ground data and remote sensing data of Feicheng county, Ningyang
county and Zhangqiu county, Shandong province. The three counties are similar in topography, all
relatively flat, which can eliminate the influence of topographic fluctuations on the experimental results.

2.1.2. Ground-Based Data

For manufacturing sample to train our model, we conducted a field survey in Feicheng county,
Ningyang county and Zhangqiu county in 2017 and 2018, and obtained the land use data of 369 sample
points, among which 257 were winter wheat sample points and 112 were bare land. The survey results
include the time, location and type of land use.

2.1.3. Remote Sensing Data

We selected 39 GF-2 remote sensing image, size of each image is 7300 × 6900. Of these images,
15 were captured on 17 February 2017, 11 were captured on 21 March 2018 and 13 were captured on
12 April 2018. We select images from different periods to increase the anti-interference abilities of the
HSCNN. These remote sensing data cover Feicheng county, Ningyang county and Zhangqiu county,
and are matched with ground investigation time. At the same time, the selected remote sensing data
have fewer clouds and better clarity.

The Environment for Visualizing Images (ENVI) software was used for preprocessing the tasks,
including fusion of panchromatic spectrum and multispectral band to obtain 1-m spatial resolution
multispectral data, and the contrast stretch to generate a color-enhanced color composite image.

2.2. Network Architecture of Our Method

The HSCNN model is divided into five functional groups of components, input (a), inner-CNN
(b), edge-CNN (f), vote function (j), and output (k), as shown in Figure 1. Both the edge-CNN and
inner-CNN have convolution layers, an encoder layer, and a classifier layer. In the training stage,
the inputs are original images and artificial classification labels. In the classification stage, the inputs
are original GF-2 images, output is a single-band file, and content of each pixel in the output is the
category number of the corresponding original image pixel. The HSCNN indicates the winter wheat
area using category number 100, and category number 200 distinguishes other land use. The reason
for adopting the two numbers is to fit with the coding value table we are working on to obtain detailed
land use information.

2.2.1. Inner-Layers and Edge-Layers

The operational characteristics of the pixel block-based convolution for image segmentation are
described in Section 1, in addition to the effect of the pixel block location on the convolution results.
Based on this analysis, two convolution sub-structures of different depths are setup for the feature
extraction of the winter wheat field. The deep convolution sub-network is used to extract the features
of the pixels in the interior of the winter wheat plantation, shown as inner-layers (c) in Figure 1.
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The shallower sub-network is used to extract the features of the pixels at the edge of the winter wheat
plantation, shown as edge-layers (g) in Figure 1. The benefits of this design are discussed in Section 4
based on the experimental results.

In our approach, an inner pixel refers to the pixel that only contains winter wheat pixels in the
pixel block when convolution operation is carried out with the pixel as the center pixel. An edge pixel
refers to the pixel that contains winter wheat pixels and other pixels when computing the feature of
the pixel.

 

Figure 1. Network architecture of the Hybrid Structure Convolutional Neural Network (HSCNN):
(a) input; (b) inner-CNN; (c) inner-layers; (d) inner-encoder; (e) inner-classifier; (f) edge-CNN;
(g) edge-layers; (h) edge-encoder; (i) edge-classifier; (j) vote function; (k) output.

All kernels of the HSCNN take the form, w × h × c, where w is the width, h is the height, and c is
the number of channels of a kernel. Two types of kernels are used in the first convolutional layers of
inner-layers (c) and edge-layers (g). For one type w and h are set to 1, and for the other type the values
are set to 3. In both cases, c is set to 4 because the data in the four multi-spectral bands of GF-2 are
used. Kernels of the form 1 × 1 × 4 are used to extract the features of the pixels. The generated feature
map is used instantaneously as the input of the encoder, and does not participate in the subsequent
convolution. Convolution kernels of the form 3 × 3 × 4 are used to extract the spatial relation between
the pixels and generate the spatial semantics by multi-level convolution.

After the operation of first convolution layer on the original image, we obtain a feature map
which has only one channel. Because the input of convolution layer is the feature map calculated by
the previous convolution layer, so the w and h values of the kernels used in all other convolutional
layers are set to 3, and c is 1 from the second layer. To extract more features from the edge pixels of the
crop field, the number of kernels used in each convolutional layer of edge-layers (g) is twice that used
in the corresponding layer of inner-layers (c).

In the HSCNN, each convolution layer has only one activation layer attached, and there is no pool layer.
Accordingly, the convolution result of each pixel block can be used directly as the feature of its central pixel,
without the need to determine the position of the pixel that the feature corresponds to through deconvolution.
As such, the HSCNN does not utilize a deconvolutional layer. This reduces the extent of computation and
positioning error of the deconvolution, thereby improving the accuracy of the segmentation.
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2.2.2. Inner-Encoder and Edge-Encoder

The inner-encoder and edge-encoder are used to encode the eigenvector extracted by the
convolution layers on the pixel, ensuring that the classifier can establish the relationship between
the eigenvector and pixel type. In the HSCNN model, the inner- and edge-encoders are both 2 × n
matrices, where n is the length of the eigenvector.

Let X denote the eigenvector of the pixel, W denote the encoder matrix, and R the encoded vector
result. The encoding calculation is displayed in Equation (1).[

r1

r2

]
=

[
w11 w12 · · · w1n

w21 w22 · · · w2n

]
×
[

x1 x2 · · · xn

]T
+

[
b1

b2

]
(1)

where each row of matrix w represents a fitting function for a particular type of pixel, b1 and b2 are the
respective biases, and the corresponding component of r is the encoded value of eigenvector x on that
pixel type. The inner- and edge-encoders are trained separately.

2.2.3. Inner-Classifier and Edge-Classifier

For each pixel, the inner-classifier converts its vector of the encoded values given by the inner-encoder
into a probability distribution over a set of classes, and classifies the pixel as an inner pixel or a non-inner
pixel of the winter wheat plantation based on the location of the component with the highest probability.
Similarly, the edge-classifier distinguishes between the edge and non-edge pixels of the winter wheat field
using the vectors of the encoded values generated on the pixels by the edge-encoder.

In reference to the classic softmax classifier [60–65], Equation (2) is used here to convert vector r
of the encoded values to vector p of the class probabilities for each pixel.

[
p1
p2

]
=

⎡⎢⎣
er1

er1 + er2

er2

er1 + er2

⎤⎥⎦ (2)

After the transformation, the index of max(p1 and p2) is taken as the predicted category of the
pixel. For the inner-classifier, index numbers of 1 and 0 are assigned to the inner pixels of the winter
wheat field and other pixels, respectively. Accordingly, index numbers of 1 and 0 are assigned to the
edge pixels of the winter wheat field and other pixels, respectively.

2.2.4. Vote-Function

The vote-function determines the category number of a pixel given by the inner-classifier and
edge-classifier and writes it to the output file. As described in the beginning of Section 2.2, the HSCNN
indicates the winter wheat area using category number 100 and other land uses using category number
200. The category number of a pixel is calculated in Equation (3).

o =

{
100 pinner = 1 or pedge = 1
200 pinner = 0 and pedge = 0

(3)

where o represents the final category number of a pixel and pinner and pedge are the outputs of the
inner-classifier and edge-classifier, respectively.

2.3. HSCNN Training

We manually labeled all images at the pixel level as ground truth (GT) label data. In other words,
for each image, there exists a 7300 × 6900 label map, having a pixel-class (row-col indexed) correspondence
with it. We used 36 images for training, and the remaining 3 images for testing. The GF-2 images and their
corresponding artificial classification labels will be input to the HSCNN as training samples.
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The training process includes error calculation, error back propagation and weight update.
This process is iterated until the difference becomes smaller than the predetermined threshold.

We calculated the errors between the predicted classification label and manual classification label
by the chain rule. The chain rule, the derivative rule in calculus, is used to find the derivative of
a complex function, which is a common way to do the derivative calculation of calculus. The derivative
of a composite function is the product of the derivatives of this finite number of functions at
the corresponding point, as a chain. Then, the errors are back-propagated through the network.
The backward propagation algorithm is a kind of training and learning method in deep learning,
which can spread the error of the output layer backward to realize weight adjustment, adjust the
weight between each node in the deep network, and achieve the goal that the sample tag output from
the network is consistent with the actual tag. We use gradient descent method to update HSCNN
parameters. Gradient descent method is the most commonly used optimization method. The idea
is to use the negative gradient direction of the current position as the search direction, because that
direction is the fastest descending direction of the current position.

2.3.1. Sample Labeling

We use the ENVI software for labeling and designing a preprocessor to build the labels.
The process of artificial labeling is as follows:

1. The region-of-interest (RoI) tool in the ENVI software is used to select the winter wheat regions
and other regions in the image. Then, the map locations of the pixels in each region are output to
different files based on the category.

2. A band is added to the image file by the preprocessor as a mask band. The spatial resolution, size,
and other parameters of the mask band are the same as the original image. Then, the category
number of each pixel is written to the mask band according to the map location of the pixel
previously output. We manually label all the images at the pixel level. Thus, for each image,
there exists a 7300 × 6900 label map, with a row-column-indexed pixel-class correspondence.

3. The pixels marked as winter wheat are further categorized as edge pixels and inner pixels. Based on
the parameters given above, the inner-layers comprise of eight convolutional layers, each with
a 3 × 3 (length × width) convolution kernel. Therefore, the feature extraction from pixel s involves
a 9 × 9 pixel block centered at s in the calculation. As defined in Section 2.2.1, the winter wheat
pixels are divided sequentially into edge pixels and inner pixels. For training class by class, we use
temporary code 160 to denote edge pixels and 170 to denote inner pixels in the mask band.

Figure 2 shows an example of an image-label pair.

Figure 2. Image-label pair example: (a) original image; and (b) labels.
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2.3.2. Loss Function

In our method, new loss functions are defined for the inner-CNN and edge-CNN, which still use
the cross entropy as the basic element for the calculation, as expressed in Equation (4).

H(p, q) = −∑2
i=1 qi log(pi) (4)

where p and q are, respectively the predicted and actual probability distribution, and i is index of
a component in the probability distribution. On this basis, the loss function of the inner-CNN is
defined as

loss = − 1
m ∑m ∑2

i=1 qi log(pi) (5)

When computing loss of inner-CNN, m is obtained by subtracting the number of edge pixels of
the winter wheat field from the total number of samples, and when computing loss of edge-CNN, m is
obtained by subtracting the number of inner pixels of the winter wheat field from the total number
of samples.

2.3.3. Model Training

Images from two different periods were selected as the training data. We selected images
from different periods for increasing the anti-interference abilities of the HSCNN and mitigating
the complications such as the change in the seasons, and thus enhancing applicability. The training
stage proceeded through the following steps:

1. Image-label pairs are input into the HSCNN as training samples. Network parameters
are initialized.

2. Forward propagation is performed on the sample images.
3. The [loss]_inner is calculated and back propagated to the inner-CNN, whereas the [loss]_edge is

calculated and back propagated to the edge-CNN.
4. The network parameters are updated using the stochastic gradient descent (SGD) [41,48]

with momentum.
5. Steps (2)–(4) are iterated until both [loss]_inner and [loss]_edge are less than the predetermined

threshold values.

The training yields two sub-networks, an inner-CNN and edge-CNN. The former can accurately
extract the inner pixels of the winter wheat plantation from the sweet GF-2 remote sensing images,
whereas the latter allows the best possible distinction between the edge pixels of the winter wheat
planting region and other pixels.

In our training, the SGD method with momentum was used for parameter updates, which is
illustrated in the following expression:

W(n+1) = W(n) − ΔW(n+1) (6)

where W(n) denote the old parameters, W(n+1) denote the new parameters, and ΔW(n+1) is the increment
in the current iteration, which is a combination of the old parameters, gradient, and historical
increment, i.e.,

ΔW(n+1) = ϑ

(
dw·W(n) +

∂J(W)

∂W(n)

)
+ m·ΔW(n) (7)

where J(W) is the loss function, ϑ is the learning rate for step length control, dw denotes the weight
decay, and m denotes the momentum.
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2.4. Segmentation Using the Trained Network

After successful training, the HSCNN can be used to segment an input imagery pixel-by-pixel.
According to our design, the output is written in a new band. The benefit of this design avoids
damaging the original file.

3. Experiments and Results

The data used in the experiment are presented in Section 2.1. In this section, the models used for
comparison are described in Section 3.1, and the experimental results and assessment of accuracy are
given in Section 3.2.

3.1. Comparison Model

Feature selection is the basis of remote sensing image segmentation. At present, there are
mainly two methods based on artificial feature selection and machine learning. Haralick et al. (1973)
put forward the method of gray level co-occurrence matrix, which is a classical artificial selection
feature method. This method is mainly used to select image texture features. Since the texture is
formed by repeated alternating changes of gray distribution in image space, so there is a certain
gray-scale relationship between two separate pixels away certain distance, Haralick et al. described
this correlation through a matrix [70]. Based on the artificial selection feature, only limited, shallow
features can generally be selected. The feature selection based on machine learning can fully explore
the deep feature and spatial semantic feature of the image. SegNet and DeepLab are classic semantic
segmentation models of images, which have achieved very good results in the processing of images.
Moreover, the working principles of these two models are very similar to our work, so we choose
these two models as the comparison model, which can better reflect the advantages of our model in
feature extraction. A comparative experiment was conducted using the methods established in the
published literature.

3.1.1. SegNet

For the SegNet model, we directly employed the structure proposed by Badrinarayanan et al. [64],
which consists of an encoder, a decoder, and a classifier. The encoder uses the first 13 convolutional
layers of the VGG16 network, each having its corresponding decoder layer, totaling 13 decoder layers.
The last decoder generates a multi-channel feature map as the input to the classifier, which outputs
a probability vector of length K, where K is the number of classes. The final predicted category
corresponds to the class having maximum probability at each pixel. In terms of training, SegNet can
be trained end-to-end using SGD.

3.1.2. DeepLab

For DeepLab, we directly employed the DeepLab v3 model proposed by Liang-Chieh Chen et al. [66].
DeepLab was also developed based on the VGG network. To ensure that the output size would not be not
too small without excessive padding, DeepLab changes the stride of the pool4 and pool5 layers of the VGG
network from the original 2 to 1, plus 1 padding. To compensate for the effect of the stride change on the
receptive field, DeepLab uses a convolution method called “atrous convolution” to ensure that the receptive
field after pooling remains unchanged and the output is more refined. Finally, DeepLab incorporates a fully
connected conditional random field (CRF) model to refine the segmentation boundary.

3.2. Results and Result Comparison

In the comparative experiment, we applied our trained model to three GF-2 images for
segmentation. These images were only used for testing and not involved in training. Figure 3 illustrates
the results obtained from the comparison methods and proposed method. In Figure 3, the first column

109



Appl. Sci. 2018, 8, 1981

illustrates the results of Experiment 1, the second column illustrates the results of Experiment 2 and
the third column illustrates the results of Experiment 3.

Tables 1–3 are confusion matrices c for the segmentation results of SegNet model, DeepLab model,
and HSCNN model, respectively. Each row of the confusion matrix represents the proportion taken
by the actual category, and each column represents the proportion taken by the predicted category.
As can be seen from the tables, our method achieves better classification results. In the example above,
the proportion of “winter wheat” wrongly categorized as “background” is on average 0.069, and the
proportion of “background” wrongly classified as “winter wheat” is on average 0.019, resulting in an
overall accuracy of 91.2%.

Figure 3. Cont.
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Figure 3. Segmentation results for Gaofen-2 (GF-2) images: (a) original images; (b) ground truth,
(c) results of SegNet corresponding to the images in (a); (d) errors of SegNet; (e) results of DeepLab;
(f) errors of DeepLab; (g) results of HSCNN; and (h) errors of HSCNN.
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Table 1. Confusion matrix of the SegNet approach for Figure 4.

Experiment GT/Predicted Winter Wheat Others

Experiment-1 winter wheat 0.621 0.129
Others 0.087 0.163

Experiment-2 winter wheat 0.387 0.153
Others 0.084 0.376

Experiment-3 winter wheat 0.217 0.123
Others 0.129 0.531

Table 2. Confusion matrix of the DeepLab approach for Figure 4.

Experiment GT/Predicted Winter Wheat Others

Experiment-1 winter wheat 0.653 0.107
Others 0.055 0.185

Experiment-2 winter wheat 0.432 0.086
Others 0.039 0.443

Experiment-3 winter wheat 0.301 0.108
Others 0.045 0.546

Table 3. Confusion matrix of our HSCNN approach for Figure 4.

Experiment GT/Predicted Winter Wheat Others

Experiment-1 winter wheat 0.681 0.075
Others 0.027 0.217

Experiment-2 winter wheat 0.458 0.062
Others 0.013 0.467

Experiment-3 winter wheat 0.329 0.071
Others 0.017 0.583

Accuracy, precision, recall, and the Kappa coefficient were used to evaluate the models.
These indices are calculated via mixing matrix c.

Accuracy is the ratio of the number of correctly classified samples to the total number of samples,
and is given in this case by the following equation:

Accuracy =
∑2

i=1 Cii

∑2
i=1 ∑2

j=1 Cij
(8)

Here, Cii denotes the number of correctly classified samples, and Cij denotes the number of
samples of class i misidentified as class j.

Precision denotes the average proportion of pixels correctly classified to one class from the total
retrieved pixels. Precision is calculated as:

Precision =
1
2 ∑i Cii/ ∑j Cij (9)

Recall represents the average proportion of pixels that are correctly classified in relation to the
actual total pixels of a given class. Recall is computed as:

Recall =
1
2 ∑i Cii/ ∑i Cij (10)
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The Kappa coefficient measures the consistency of the predicted classes with artificial labels.
The Kappa coefficient is computed as:

Kappa =

∑2
i=1 Cii

∑2
i=1 ∑2

j=1 Cij
− ∑2

i=1 Cii ∑2
j=1 Cij

(∑2
i=1 ∑2

j=1 Cij)
2

1 − ∑2
i=1 Cii ∑2

j=1 Cij

(∑2
i=1 ∑2

j=1 Cij)
2

(11)

Equations (8)–(11) use the definitions given in Reference [18] and are modified according to our
actual situation. The minimum accepted precision is 89% according to practical application.

The indicator values are listed in Table 4.

Table 4. Comparison of the approaches using SegNet, DeepLab, and HSCNN.

Approach Index Experiment-1 Experiment-2 Experiment-3 Average

SegNet

Accuracy 0.784 0.763 0.748 0.765
Precision 0.740 0.767 0.721 0.743

Recall 0.718 0.766 0.720 0.734
Kappa 0.579 0.617 0.564 0.586

DeepLab

Accuracy 0.838 0.875 0.847 0.853
Precision 0.815 0.877 0.830 0.840

Recall 0.778 0.877 0.852 0.836
Kappa 0.665 0.778 0.716 0.720

HSCNN

Accuracy 0.898 0.925 0.912 0.912
Precision 0.895 0.927 0.897 0.906

Recall 0.853 0.927 0.921 0.900
Kappa 0.776 0.860 0.826 0.821

4. Analysis and Discussion

From the experimental results in Section 3, it is clear that our method significantly improves the
accuracy of winter wheat extraction. In this section, the advantages of our model are discussed in
terms of the differences between the remote sensing images and camera images. This is followed by
more specific comparisons with SegNet and DeepLab. Finally, the role of our model in the classification
of land uses by remote sensing is discussed briefly.

4.1. Advantages of the HSCNN Model

CNNs have achieved significant success in camera image segmentation, which has motivated
researchers to apply them to remote sensing images. The HSCNN model proposed here is developed
based on a previous work followed by a further in-depth analysis of the fundamental difference
between camera images and remote sensing images. Thus, it possesses clear advantages compared
with the traditional practice of the straightforward application of camera image segmentation model
to remote sensing images.

Camera images and remote sensing images essentially differ in information representation.
Owing to their advantages in shooting distance and the pixel quality of the camera, camera images
are superior in terms of the rich details they contain, such that one object is formed by multiple
pixels. Thus, the color of a pixel reflects the information at a certain point on an object but not the
spatial relation between the pixels, which is found and expressed only by convolution. The nature
of convolution is to represent the spatial correlation between the pixels by constructing a complex
fitting function by operating on the pixel value of a pixel block. Particularly because it makes good use
of the essential characteristics of camera images, deep convolution is extremely successful in camera
image processing.
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In remote sensing images, particularly for crop fields, a pixel generally contains multiple
objects. For example, generally in GF-2 images 1 m2 of ground is covered by a pixel, which contains
600–700 winter wheat plants. A pixel embodies the color information of the plants and the spatial
information between them. However, at the edge of a winter wheat field, the region covered by a pixel
is often a mixture of the winter wheat and bare land or winter wheat and other geographical objects,
with varying percentages of winter wheat in the space. In this view, the information contained in
a pixel at the edge region is significantly different from that at the interior. These two types of pixels
can even be regarded as two different types of objects.

Based on the above analyses, the HSCNN network architecture is designed with a complete
consideration of the properties of the remote sensing image and extraction target, and it makes
good use of the characteristics of the winter wheat field captured in the GF-2 remote sensing images.
The strengths of this model are exhibited in the following three aspects:

1. Considering the significant difference between the pixels of the interior and edge region of the
winter wheat plantation (during extraction), these two regions are treated as two subclasses.
Accordingly, the features of the inner pixels are more focused, which facilitates the model training.
Two sub-networks with different depths are then designed with respect to the characteristics of
the two subclasses. The deep sub-network extracts the pixels at the interior, whereas the shallower
sub-network extracts those at the edge. This scheme reduces the effect of the non-winter wheat
pixels on the features and improves the stability of the model for edge pixel extraction.

2. Two types of kernels are used in the first convolutional layer. The 1 × 1 × 4 kernels are used
to extract the feature of the pixels, and the 3 × 3 × 4 kernels are used to extract the spatial
relation between pixels. This design takes advantage of the ability of convolution for extracting
higher-level spatial semantics and for obtaining the rich pixel information contained in the remote
sensing images.

3. Our model does not utilize pooling, instead the convolution result is taken as the eigenvalue
of the central pixel of the pixel block. In the application of the convolutional network to image
classification, the basic target (sample) for the classification is the entire image. Thus, pooling can
produce the main features of the feature map and reduce the amount of subsequent computation.
Although the information on the accurate position of the features is lost during this process,
their relative positions are nevertheless retained, which ensures the normal operation of the
subsequent computational steps. However, in image segmentation, the basic target (sample) for
the classification is an individual pixel, whose exact location must be mapped by the eigenvalue.
Therefore, the major advantage of our model is its ability to preserve the spatial location of the
eigenvalue, which makes it possible to remove the deconvolution adopted by the traditional
FCN. Accordingly, the amount of computation is reduced. Further, the loss in precision due to
positioning error is reduced, as the accurate position of the eigenvalue is kept.

4.2. Comparison with SegNet and Analysis

SegNet is founded on the FCN model. Its main strength lies in the search and extraction of the
rich details of an image by deep convolution, and it is very distinct when extracting target objects
with relatively few pixels. If the target objects contain only a few pixels or even one pixel, the deep
convolution does not generate more details and may introduce more noise owing to the expanded
field of view, affecting the determination of the pixel type.

In the remote sensing images of GF-2, the edge and interior of the winter wheat plantation are
very different in composition, which makes it more difficult for SegNet to locate the common features,
because of its structure containing a single convolutional network. In comparison, the HSCNN is
equipped with two sub-networks of different depths and is adaptable to the characteristics of the edge
and interior. It also uses two different sizes of kernel, which are capable of uncovering the spatial
relation between the pixels, and the information embedded in the pixels.
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As shown in Figure 3, the segmentation results of HSCNN and SegNet are nearly identical for the
interior of the winter wheat field. SegNet, however, produces prominent errors at the edge of the field,
while HSCNN does not.

Both HSCNN and SegNet use classifiers to generate the probability distribution of the classes,
and consider the class with the maximum probability (max) in the distribution as the type to which
the pixel belongs. Clearly, a larger difference between the max and background implies a higher
separability of the pixels and more reliable results. The probability differences given by the HSCNN
and SegNet model for the inner wheat and edge wheat classes are presented in Figures 4 and 5,
respectively. It is clear in Figure 4 that HSCNN and SegNet lead to significant probability differences
for many pixels in the interior, which demonstrates the high separability of this region and the strength
of CNN. In the probability distribution in Figure 5, fewer pixels are noted as having large probability
differences in both the HSCNN and SegNet; nevertheless, the number is maintained at a quite high
level for the HSCNN, whereas SegNet exhibits a reduced performance.

Figure 4. Distribution of the probability differences for the inner wheat pixels.

Figure 5. Distribution of the probability differences for the edge wheat pixels.

4.3. Comparison with DeepLab and Analysis

Compared with the FCN and SegNet, DeepLab has significant improvements in two aspects:
(1) the deconvolution; and (2) the refinement of the boundary of the segmentation result by fully
connected CRFs. These two improvements are beneficial for the segmentation of individual objects
covering numerous pixels. Based on the published literature, DeepLab displays a higher segmentation
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accuracy at the boundary than the FCN and SegNet, because it better utilizes the detailed information
contained in the image and the large-scale spatial correlation between the pixels. However, in its
application to winter wheat identification, the strength of DeepLab is not fully realized, because the
details within a pixel block of the winter wheat plantation do not change significantly. Therefore, less
information is available to the model, and the spatial correlation within the farmlands and woods is
not strong over large regions.

As mentioned in Section 4.2, the HSCNN completely utilizes the characteristics of the pixels and
the spatial relation between them. Therefore, it is well adapted to the data characteristics of the winter
wheat plantation. Further, it effectively avoids the deficiencies of DeepLab and ensures the accuracy
of segmentation.

As in Section 4.2, the probability differences between the HSCNN and DeepLab models in the inner
wheat and edge wheat class are displayed in Figures 6 and 7, respectively. It is clear in Figure 6 that
both the models produce large probability differences for many pixels in the interior. In the probability
distribution of Figure 7, a considerable number of pixels still display large probability differences
after the HSCNN processing, whereas DeepLab shows a much poorer performance (even lower than
SegNet), proving again the notion that the atrous convolution is not suitable for farmlands.

Figure 6. Distribution of the probability differences for the inner wheat pixels.

Figure 7. Distribution of the probability differences for the edge wheat pixels.
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4.4. Benefits of Using the Proposed Approach to Classify Land Use

Accurate land use classification is of tremendous importance in scientific research and agriculture
with the use of remote sensing data as an increasingly common practice for this purpose. Based on
a CNN and taking complete advantage of the convolution in feature extraction, the design of the CNN
architecture adapting to the features of the remote-sensing images is the key in land use classification
by this method.

We have taken the feature difference between the edge pixel and the inner pixel in the white wheat
planting area into full consideration, this significantly improve the extraction accuracy of the edge
pixel. Compared with earlier research, the model presented in this paper has the following advantages.

Firstly, two types of kernels were used in the convolution of the model, which allowed the full
utilization of the strength of the convolution in the extraction of spatial semantics and made appropriate
use of the rich information contained in the pixels of the remote sensing images, thus achieving a more
accurate segmentation.

Secondly, pooling layers were not used in the model. Although the speed of the feature
aggregation was consequently reduced, the information of the exact location to which an eigenvalue
corresponds was retained, thereby effectively mitigating the loss in the accuracy due to the positioning
error of the deconvolution and improving the overall effect of the segmentation.

The model presented in this paper provides a solution for the edge extraction problem or the
segmentation of the winter wheat plantation using GF-2 images. It has an important role to play and
enhances the efficiency of the agricultural survey. This model has been utilized by the Department of
Agriculture and the Meteorological Bureau of Shandong Province, China.

5. Conclusions

This paper presents a novel approach for the extraction of the winter wheat distribution from GF-2
remote-sensing images. Compared with the two typical deep learning-based approaches, the extraction
accuracy is obviously improved. Our approach combines the segmentation and classification stages,
taking the accuracy as the only constraint, and achieves high quality classification in an end-to-end
way. The GT classes of ground objects are taken as the supervised information that guides both the
feature extraction and the region generation. Taking into account the significant differences between
pixel and edge pixel in the planting area, different convolution structures were used to extract the
feature of edge and interior pixels, focusing on the common features in the two subclasses for more
effective model training, and obtained a high resolution class prediction.

Our model is still limited in many aspects, and further improvements could be made in the
following two areas: (1) The current encoder uses a relatively simple regression algorithm for encoding;
thus, a regression that can express the complex relationship between the eigenvalues needs to be
explored. (2) A new pooling method, which allows for expedited feature aggregation without the loss
of the spatial information of the eigenvalues, should be established. We will continue our work in the
future to improve the current model and obtain better classification performance.
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Abstract: The real-time precise point positioning (RT PPP) technique has attracted increasing attention
due to its high-accuracy and real-time performance. However, a considerable initialization time,
normally a few hours, is required in order to achieve the proper convergence of the real-valued
ambiguities and other estimate parameters. The RT PPP convergence time may be reduced by
combining quad-constellation global navigation satellite system (GNSS), or by using RT ionospheric
products to constrain the ionosphere delay. But to improve the performance of convergence
and achieve the best positioning solutions in the whole data processing, proper and precise
variances of the observations and ionospheric constraints are important, since they involve the
processing of measurements of different types and with different accuracy. To address this issue,
a weighting approach is proposed by a combination of the weight factors searching algorithm and
a moving-window average filter. In this approach, the variances of ionospheric constraints are
adjusted dynamically according to the principle that the sum of the quadratic forms of weighted
residuals is the minimum, and the filter is applied to combine all epoch-by-epoch weight factors
within a time window. To evaluate the proposed approach, datasets from 31 Multi-GNSS Experiment
(MGEX) stations during the period of DOY (day of year) 023-054 in 2018 are analyzed with different
positioning modes and different data processing methods. Experimental results show that the new
weighting approach can significantly improve the convergence performance, and that the maximum
improvement rate reaches 35.9% in comparison to the traditional method of priori variance in
the static dual-frequency positioning mode. In terms of the RMS (Root Mean Square) statistics of
positioning errors calculated by the new method after filter convergence, the same accuracy level as
that of RT PPP without constraints can be achieved.

Keywords: real-time precise point positioning; convergence time; ionospheric delay constraints;
precise weighting

1. Introduction

With the rapid development of Global Navigation Satellite System (GNSS), real-time precise point
positioning (RT PPP) with integer ambiguities resolution is possible thanks to the real-time precise

Appl. Sci. 2018, 8, 2537; doi:10.3390/app8122537 www.mdpi.com/journal/applsci121



Appl. Sci. 2018, 8, 2537

orbits, clocks, and code/phase biases products of satellites, provided freely by the Center National
d’Etudes Spatiales (CNES) [1]. These real-time products in the CLK93/CLK92 stream have been
broadcasted by the CNES real-time analysis center since 14/09/2014 [2]. Based on these products,
the integer property of user ambiguities can be recovered to improve positioning accuracy and
reliability. However, ambiguities and other parameters (e.g., tropospheric delay) need a few hours
to achieve the proper convergence, even with good satellite geometries and observation quality [3].
Therefore, how to reduce the RT PPP convergence time has become one of the key issues for further
improving RT PPP performance [4].

Three different methods have been proposed to reduce the convergence time in RT PPP. One is
to fix ambiguity parameters to integer values. Many researchers have demonstrated that ambiguity
resolution can improve the PPP in terms of both precision and convergence performance [5–7].
The second method is to utilize multi-frequency and/or other GNSS constellation observations [8–10].
With the application of observations from multi-frequency or other satellite positioning systems,
the PPP convergence time can be reduced due to high measurement redundancy and improved
degrees of freedom [11]. The third method is to apply RT ionospheric or tropospheric correction
products [7,12,13]. Accuracy better than 10 cm can be achieved in a few minutes with dual-frequency
signals by using precise ionospheric and tropospheric correction products [13]. Compared to the
other two methods, ionosphreric products are the more effective in terms of reducing the convergence
time [14]. Thanks to the standardized RT message of Vertical Total Electron Content (VTEC) models in
CLK93/CLK92 stream from CNES [15], the convergence time of RT PPP can be reduced significantly
by using an uncombined functional model with RT ionospheric correction products [3]. When RT
ionospheric products are applied as an extra constraint in the RT PPP, proper and precise variances
of the raw observations and ionospheric constraint are important as they involve the processing of
measurements of different types whose quality is different in terms of residual errors. Currently,
a priori variances are mainly used to determine the weights of observation and ionospheric constraint
in the whole process of data processing. However, this method may not be precise, especially when
the accuracy of ionospheric products is uncertain, and it will lead to unreliable positioning results.
To address this issue, a weighting approach is proposed by combining a weight factor searching
algorithm with a moving-window average filter. Weight factors are utilized to adjust the priori
variances of ionospheric constraint and the moving-window average filter is introduced to improve the
precision and reliability of the weight factors. In this paper, we adopt this method in the Precise Point
Positioning With Integer and Zero-difference Ambiguity Resolution Demonstrator (PPP-WIZARD) by
the CNES. Both static and kinematic experiments in single-frequency and dual-frequency cases are
conducted to assess the performance of the new weighting approach. The results indicate that this new
method can significantly reduce convergence time and improve reliability of positioning solutions in
RT PPP.

The rest of the paper is organized as follows: Firstly, the uncombined functional model with
ionospheric constraint for GPS/GALILEO RT PPP is presented. Secondly, the RT ionospheric products
from CNES are compared with post-processing GIM (global ionospheric map) products from CODE
(Center for Orbit Determination in Europe) agencies. Afterwards, the weight factors searching
algorithm with a moving-window average filter is proposed. Finally, the converging performance and
positioning accuracy of the proposed weighting approach are assessed in RT PPP by different methods
and different positioning modes.
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2. Approach of GPS/GALILEO RT PPP with Ionospheric Constraint

2.1. Function Models of GPS/GALILEO RT PPP

In the RT PPP model, satellite clock and position are calculated by broadcast ephemerides with
RT precise orbit/clock corrections products from CNES. The uncombined raw observable model for
GPS/GALILEO PPP can be written as [3]:

Psys,s
r,i = Dsys,s

r,i + γ
sys,s
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1 + bsys
r,Pi
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+ cdtsys
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where Psys,s
r,i and Lsys,s

r,i are the raw pseudorange (or code) and phase measurements at frequency
fi (i = 1, 2) to the system “sys” (for GPS and GALILEO) for the specific satellite s and receiver r.
The pseudorange measurements are expressed in meters, while phase measurements are expressed
in cycles. λ
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where Dsys,s
r is the geometric distance with satellite orbit, satellite code clock and tropospheric delay

Tw fixed. DCBsys
r,12 is differential code bias (DCB) of receiver. Note that both the ionospheric delay Isys,s

1

and DCBsys
r,12 of receiver are perfectly correlated, and they are estimated as lumped terms Isys,s

1 in the
traditional uncombination PPP functional model. The estimated parameter vector can be expressed as:

X =
[

x, c · dtr, Tw, Isys,s
1 , Nsys,s

1 , Nsys,s
W

]
(4)

If the ionosphere products are introduced as pseudo-measurements to constraint slant the
ionosphere delay, the DCB of the receiver estimated parameter needs to be added in (4) to keep
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consistency between the estimated ionospheric delay and ionospheric products. The estimated
parameter vector in the ionospheric delay constraint PPP can be expressed as:

X =
[

x, c · dtr, DCBsys
r,12, Tw, Isys,s

1 , Nsys,s
1 , Nsys,s

W

]
(5)

2.2. RT Ionosphere Products and Post-Processing GIM Products

The RT ionospheric products using spherical harmonic expansions are broadcasted with
an updating rate of 60 s in CLK92/CLK93 RT stream from the CNES caster [3]. A spherical harmonic
expansion allows a global and continuous model of the ionosphere, but can also be applied to
regional representation [3]. Based on these products and ionospheric mapping function, the slant
TEC of each satellite can be used for positioning in real time. In contrast to RT ionospheric products,
the post-processing GIM products from CODE agency are maps that contain a globally-distributed
grid [16]. The spatial resolution of latitude and longitude is 2.5◦ and 5◦ in these maps, respectively, and
the map is updated at an interval of one or two hours [16]. When the GNSS users obtain the vertical
total electron content value VTEC from the ionosphere products, the slant ionosphere delay can be
computed as follows:

Isys,s
product = m ·

(
40.3 · VTEC

f 2
1

)
(6)

m = cos−1
(

arcsin
(

RE
RE + H

· sin z
))

(7)

where Isys,s
product is the ionospheric delay of the pseudo-observable, m is the ionospheric mapping function

as expressed in Equation (7), z is the zenith angle from the satellites to the receiver, RE is the radius of
the Earth (m) and H is the height of the ionosphere shell (m), where the value of H is 450 km for the
products of CNES and CODE agency. Since the post-processing GIM products form CODE agency,
that are computed by the stations distributed globally, has the highest accuracy (about 2~4 TECU)
compared with those of other agencies [17], we use the post-processing GIM product as a reference
to assess the RT ionosphere products. Figure 1 shows the slant TEC of GPS/GALILEO satellites for
stations GMSD on day of year (DOY) 045, 2018. The slant TEC variation of RT ionosphere products
and post-processing GIM products are quite consistent for a whole day, but there are obvious offsets
with different products at some times, and the maximum offsets can be up to about 10 TECU, which is
equivalent to a range error of about 1.6 m of the f1 frequency of GPS. If the imprecise and unreliable
variances of ionospheric constraint are used, these offsets have a negative impact on the accuracy
of positioning.
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(a) 

(b) 

Figure 1. Slant TEC of GPS (a) and GALILEO (b) derived from different agencies at station GMSD.

2.3. Weight Factors Searching Algorithm with Moving-Window Average Filter

In order to achieve fast convergence and high-accuracy positioning solutions after convergence,
a weighting approach is presented which combines a weight factors searching algorithm and
a moving-window average filter. The weight factors searching algorithm is similar to the method of
Helmert variance component estimation; it is based on the principle that the post-fit weighted sum
residuals of squares is the minimum. A moving-window average filter is applied to improve the
precision and reliability of this searching algorithm.

When RT ionospheric products are introduced, the variances matrix of measurement errors R and
measurement error vector V in the Extended Kalman Filter (EKF) can be written as follows [18]:

R =

[
R2

observa 0
0 R2

constra

]
(8)

V =
[

Vobserva Vconstra

]T
(9)
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where the subscript “observa” and “constra” denote the raw observation (pseudorange and phase
measurements) and ionospheric constraints, respectively. The variance matrix of observation errors
R2

observa depends on the elevation Es of satellite s and can be expressed as follows [19]:

R2
observa =

⎡⎢⎣ σ2
0 /sin2 E1 0 0

0
. . . 0

0 0 σ2
0 /sin2 Es

⎤⎥⎦ (10)

In the Equation (10), the value of the standard deviation σ0 for GPS/GALILEO are set as 1 m and
0.01 m for the pseudorange and phase observations, respectively. Different from the variance matrix
of observation, the variance of ionospheric constraints R2

constra would be expressed as a product of
a weight factor λ and an initial variance matrix R̃2

constra, as follows:

R2
constra = λ · R̃2

constra = λ ·
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σ2

constra,1 0 0

0
. . . 0

0 0 σ2
constra,s

⎤⎥⎥⎦ (11)

The initial ionospheric constraints σ2
constra are set as the same as σ2

0 of pseudorange observations
(this value of σ2

constra is suggested in PPP-WIZARD ducumentation). The computation procedure of
the weight factors searching algorithm comprises the following steps:

(1) Assign an initial weight factor (λ = 1) to the variance of ionospheric constraints R2
constra.

(2) Initialize the variance matrix of measurement errors R by using Equation (10) and (11).
(3) Compute post-fit measurement error vector V after performing the EKF.
(4) Compute the post-fit weighted sum residuals of squares VT R−1V.
(5) Update the weight factor λ = λ + 1 (λ ≤ T), where T is a search space, which will be determined

through the case studies later in the paper.

Repeat steps (2)–(5) to find the optimal weight factor λoptimal that satisfies the following equation:

VT R−1V = min (12)

After step (6) is fulfilled, the final variance matrix of measurement errors R can be determined by
using the optimal weight factor λoptimal .

In order to determine a suitable search space T of the weight factors searching algorithm, different
positioning modes are conducted with ionospheric constraints. Figure 2 displays the relationships
between the weight factors and the post-fit weighted sum-squared residuals. It is clearly seen
that varying trend of post-fit sum-squared residuals are quite consistent in different positioning
modes. Due to the imprecise R̃2

constra used in RT PPP, the post-fit weighted sum residuals of squares
is large when the variance matrix of ionospheric constraints is small. As the weight factor increases,
the ionospheric constraints are weakened, and the post-fit weighted sum residuals of squares decreases
gradually and then tends to be convergent. It was found that different positioning modes have the
same characteristics, the post-fit weighted sum residuals of squares was close to stable when the
distance between the point and the origin of the coordinate is the shortest. Therefore, to improve the
efficiency of the searching algorithm, the Equation (12) can be replaced:

Di =

√
i2 +

(
VT

i R−1
i Vi

)2
= min (13)

where subscript “i” denotes i − th search of searching algorithm, Di is the distance from the i − th
point to origin of the coordinate. If the distance Di+1 is greater than distance Di, the search will be
stopping and the λi+1 of (i + 1)− th searching will be taken as the optimal weight factor.
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(a) 

(b) 

Figure 2. Relationships between the weight factors and the post-fit weighted sum-squared residuals
for kinematic (a) and static (b).

Since the epoch-by-epoch determines the optimal weight factor, λoptimal is not always available
due to the limited number of the visible satellites and low redundancy of single-epoch data. To further
enhance the reliability of the solutions, a moving-window average filter is applied to determine the
smoothed optimal weight factor as follows:

λMW(k) =
1
n

k

∑
i=k−n+1

λ(i) (14)

127



Appl. Sci. 2018, 8, 2537

where n is the size of the smoothing window in average filter, λMW(k) is a smoothed optimal weight
factor over n multiple epochs within a time window from epoch (k − n + 1) to epoch k. A long window
size would tend to blend these changes into the previous open sky conditions, while a short one would
change quickly to the conditions but would be prone to larger errors [20]. Since the observation data
of MGEX station is obtained under good operating conditions, a suitable window size is set as 10.
The effectiveness of this window size will be verified through experiments later in the paper.

3. Results and Analysis

3.1. Data Description and Process Schemes

In order to test the proposed weighting approach for GPS/GALILEO RT PPP with ionospheric
constraints, both static and kinematic experiments are conducted at single- and dual-frequencies.
Three data processing methods, as listed in Table 1, were established to evaluate the impact on
convergence time and positioning with different variances of ionospheric constraint. The first is using
the GPS/GALILEO raw observations without ionospheric constraints, and the estimated parameter
vector can be expressed as Equation (4). The second method is to determine the weight between
observations and ionospheric constraints using priori variances by Equation (10). The third method is
to determine the weight using the proposed approach. The estimated parameter vector of the second
and the third method can be expressed as Equation (5). As shown in Figure 3, the observation data of
31 MGEX stations for 30-days (23 January 2018 to 23 February 2018) are selected. All these stations can
track GPS/GALILEO satellites. The station coordinates were estimated every 30 s. The strategy of RT
GPS/GALILEO PPP is summarized in Table 2. The RT precise orbit/clock correction and code/phase
biases products in CLK92 stream from the CNES caster are used. Moreover, the correction of receiver
PCO (phase center offset) and PCV (Phase Center Variations) for GALILEO are assumed to be the
same as that of GPS.

Table 1. List of Data Processing Methods.

Modes Details

Without constraint GPS/GALILEO observations without ionospheric constraints
Priori variance GPS/GALILEO observations+ionospheric constraints with a priori variance
New method GPS/GALILEO observations+ionospheric constraints with proposed method

 
Figure 3. The distribution of MGEX stations in the experiment.
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Table 2. Strategies for RT GPS/GALILEO PPP.

Item Setting

Observations Raw pseudo range and phase observations
Frequency GPS: L1/L2; GALILEO: E1/E5
Estimator Extended Kalman filter

Elevation cutoff 10◦
Sampling offset 30 s

Observations weight Elevation dependent weighting; 0.01 m and 1 m for GPS/GALILEO
phase and pseudo range observables in zenith direction;

Phase windup Phase polarization effects applied [21]
Attitude law Nominal attitude for GPS and GALILEO

Station displacement Solid Earth tides, ocean tide loading and pole tides [22]
A priori Troposphere delay Saastamoinen model and Niell mapping function [23]

Zenith wet tropospheric delay Estimated as random walk (1 × 10−8m2/s)
Ionosphere Estimated as random walk processes (1 × 10−6m2/s);

Station coordinate Estimated as constant/white noise (602 m2) in static/kinematic modes
Receiver clock Estimated as white noise for each GNSS system

Satellite antenna PCO and PCV PCV and PCO values for GPS/GALILEO were corrected with igs14.atx;
Receiver antenna PCO and PCV Corrected by igs14.atx; Applied the same values as GPS to GALILEO;

Phase ambiguities Float solution [24,25]

3.2. Data Processing and Analysis

In GPS/GALILEO RT PPP, the position filter is considered to have converged when the absolute
values of the positioning errors in East and North directions reach 0.1 m and keep within 0.1 m for
consecutive 20 epochs (ten minutes) in dual-frequency static and kinematic cases. Given that the RT
PPP errors in the single-frequency case are larger than those of dual-frequency case, the definition of
the convergence of the single-frequency cases is enlarged to 0.3 m in the East and North directions.
The convergence time is the period from the first epoch to the converged epoch. We compare the station
coordinates calculated from different methods with coordinates supplied by IGS weekly solutions and
calculate the RMS in three directions of them.

3.2.1. The Static RT PPP with Different Data Processing Methods

Figure 4a shows the positioning errors of static RT PPP with dual-frequency for stations ANRK
on DOY 045, 2018. We can see that the result of three data processing methods is very similar when
the filter converges to stable values. But there is great difference in convergence time with different
processing methods. As seen from the blue curves, the convergence time of GPS/GALILEO RT PPP is
about 116 min. After the ionospheric products are introduced for positioning with priori variance, it is
clear that the convergence time can be reduced distinctly, especially in the UP direction. Compared
with the priori variance method, the weights calculated by using new method are more reliable,
and thus, convergence time can be further reduced; it only takes 26 min to achieve vertical accuracy of
better than 0.1 m. The number of visible GPS/GALILEO satellites is shown in Figure 4b, together with
the PDOP (position dilution of precision). The average number of visible GPS and GALILEO satellites
are 9.3 and 5.4, respectively, leading to an average PDOP of 1.7. Figure 4c shows the weight factors of
ionospheric constraints for different processing methods. The weight factors solutions vary in a range
of 2.0 to 8.0 by using the new method. Since the priori variance for the ionospheric constraints does
not correspond to reality, the weight factors of the new method are larger than that of a priori variance
when the filter is not convergent; this is the reason why the convergence performance can be improved
by using the new method.

To test the effectiveness of the new method in static single-frequency RT PPP, an experiment was
conducted for station METG on DOY 051, 2018. Figure 4d shows the time series of single-frequency RT
PPP positioning errors. The convergence performance of the without-constraints method is the worst
of the three methods, especially in the East and Up direction, and its convergence time is up to 106 min.
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When ionospheric products are introduced as a pseudo-observable to constrain ionosphere delay in
RT PPP, the convergence time can be reduced greatly. Using the new method, the convergence time is
further reduced to 37 min and the positioning solutions are more precise than those of a priori variance.
Figure 4f provides the weight factors for different processing methods. Due to the small weight factors
calculated by the new method during the process of filter convergence, the contribution of ionospheric
constraints is proper, and thus, convergence time can be reduced. The reason why positioning accuracy
is high after filter convergence is that the weight factors calculated by the new method is larger than
that of the priori variance method, and the contribution of low-accuracy (compared to carrier-phase
measurements) RT ionospheric products is small. Table 3 summarizes the RMS of positioning error and
convergence time for static single- and dual-frequency GPS/GALILEO RT PPP with three processing
methods. The RMS computations are based on the position errors without considering the process
of the filter convergence. From the Table 3, we can see that three methods have similar positioning
accuracies after filter convergence in the dual-frequency case, but the positioning accuracy of the priori
variance method becomes slightly worse than new methods in the single-frequency case. Compared to
the other two methods, the proposed approach significantly improves convergence performance in
static dual- and single-frequency cases. The convergence time improvement rate of the new method
refers to the that of other two methods which are listed in the right column of “convergence time”,
in which the largest improvement rate is 77%.
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Figure 4. Cont.
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(f) 

Figure 4. Static positioning errors (a,b), number of satellites, PDOP (c,d), weight factors (e,f) of
dual-frequency RT PPP by station ANRK (a,c,e) and single-frequency RT PPP by station METG (b,d,f).

Table 3. Static RT PPP for three processing methods.

Frequency Methods Convergence Time (min) E (m) N (m) U (m)

Dual-frequency
Without constraint 116 (77%) 0.0033 0.0038 0.0346
A priori variance 50 (48%) 0.0030 0.0039 0.0349

New method 26 0.0019 0.0038 0.0336

Single-frequency
Without constraint 106 (65%) 0.0102 0.0748 0.0832
A priori variance 52 (28%) 0.0129 0.0848 0.0732

New method 37 0.0092 0.0687 0.0514

In order to ensure a reliable value of the window size in the proposed weighting approach,
Figure 5 provides the convergence time of dual- and single-frequencies using different window sizes
of 1, 5, 10, 15, and 20. As a result, the varying trend of convergence times is quite consistent in dual-
and single-frequency cases, the improvement of the convergence time is less significant when the
window size is increased from 10 to 20. This suggests that the window size of 10 is suitable, which will
be applied for the rest of our data analysis.
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Figure 5. Convergence time using the proposed weighting approach with different smoothing window
sizes for dual-frequency and single-frequency METG station.

3.2.2. The Kinematic RT PPP with Different Data Processing Methods

Different from static RT PPP positioning, the station coordinates will be estimated epoch-by-epoch
in kinematic positioning. To assess the performance of the new weighting approach for single- and
dual-frequency kinematic RT PPP, the datasets at MAT1 and WROC station on DOY 047, 2018 are
conducted in the three processing methods.

The kinematic GPS/GALILEO RT PPP solutions with different methods are illustrated in
Figure 6a,d for the dual- and single-frequency cases, respectively. The PDOP and number of satellites
for MAT1 and KRGG station are provided in Figure 6b,e. Figure 6c,f shows the weight factors based
on the new method and priori variance. We can find that the weight factors calculated by the new
method are increased gradually when the positioning filter converges to a stable value, resulting
in high-accuracy positioning solutions. Similar to the static RT PPP, we calculated the statistics of
positioning accuracy and convergence times in different methods; these are given in Table 4. It is noted
that both single- and dual-frequency convergence performance are improved after adding ionospheric
constraints. Using our proposed approach, the RT PPP solution can converge within 15 min and
20 min for dual- and single-frequency cases, respectively, and the largest improvement rate can reach
73%. In terms of the RMS statistics of positioning errors, using the new method can achieve nearly
the same positioning performance compared to the method without constraints. But using the priori
variance method, obvious offsets exist in three directions after filter convergence, especially in the
single-frequency case, which is caused by unreasonable weight in the ionospheric constraints.
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(e) 

(f) 

Figure 6. The kinematic positioning errors (a,b), number of satellites, PDOP (c,d), weight factors (e,f)
of dual-frequency by station MAT1 (a,c,e) and single-frequency by station KRGG (b,d,f).

Table 4. Kinematic RT PPP for three processing methods.

Frequency Methods Convergence Time (min) E (m) N (m) U (m)

Dul-frequency
Without constraint 56 (73%) 0.0682 0.0821 0.1186
A priori variance 38 (32%) 0.0852 0.0798 0.1634

New method 15 0.0568 0.0825 0.1183

Single-frequency
Without constraint 61 (67%) 0.1152 0.1007 0.3257
A priori variance 31 (35%) 0.1655 0.1534 0.3760

New method 20 0.1062 0.1186 0.3009
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3.2.3. Convergence Performance and Positioning Accuracy Assessment

To further assess the convergence time and positioning accuracy in RT PPP using our proposed
approach, the method of priori variance and without constraints, as listed in Table 1, are compared with
a weight factors searching algorithm using datasets collected at 31 MGEX stations over 30 consecutive
days from 23 January 2018 to 23 February 2018. A total of 11,160 sets of results are used to derive
a statistical estimate on the convergence time as well as the positioning accuracy. The definition of the
convergence time is the same as that described in Section 3.2. The distribution of the 11,160 sets of
convergence times is plotted in minutes in Figure 7. It is observed that the performance of convergence
can be improved in all positioning modes by using ionospheric constraints, but only to a slight degree.
Using our proposed weighting approach, the convergence time of RT PPP is significantly decreased.
The percentage of position solutions converging within 20 min is up to about 54%, 39%, 52%, and 50%
in the dual-frequency static, dual-frequency kinematic, single-frequency static, and single-frequency
kinematic positioning modes, respectively. The statistical results in terms of mean convergence time
are also given in Figure 7. According to the mean values, the improvement of the new method on the
convergence time is about 35.9%, 25.9%, 20.4%, and 25.2% over the method of priori variance in four
positioning modes, respectively.

Figure 7. Distribution of convergence time for dual-frequency static, dual-frequency kinematic,
single-frequency static, and single-frequency kinematic using datasets at 31 MGEX stations over
thirty days.

During the converging procedure of the RT PPP position filter, the size of position errors over time
can also reflect the converging speed of the position filter [17]. Figure 8 illustrates the RMS statistical
values of vertical and horizontal for all stations at the beginning of 30 min (left) and all day (right).
Since the position solutions in the first two hours are still in the converging stage, they are not used for
the accuracy statistics of all day. From the statistical results of 30 min, it is noted that positioning errors
in four positioning modes sharply decrease after using RT ionospheric products at the beginning of
the filter processing, especially in the single-frequency case. There is no denying that RT ionospheric
products play an important role in accelerating filter convergence. But the method of priori variance
exhibits slightly worse performance than the other two methods in the RMS statistical values of all
day, as shown in Figure 8 (right), which indicates the negative impact of unreliable weighting on
the convergence position accuracy. In terms of the RMS statistical values of all day, our proposed
weighting approach can achieve the same precision as the method without constraints.
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Figure 8. RMS statistics of positioning errors for different RT PPP processing methods at the beginning
of 30 min (left) and all day (right).

4. Conclusions

RT PPP can provide centimeter accuracy-level solutions based on real-time precise products,
for orbits, clocks, and code/phase biases, provided by CNES. Nevertheless, a significant challenge for
the RT PPP to achieve high-accuracy position solutions is its long convergence time, i.e., up to a few
hours. Thanks to the standardization of RT message of VTEC models in CLK92/CLK93 stream from
CNES, the convergence time of RT PPP can be reduced by using an uncombined functional model with
RT ionospheric correction products. In order to significantly reduce the convergence time and achieve
the high-accuracy positioning solutions after filter convergence, the proper weight of ionospheric
constraints are important.

To solve this issue, a weight factors searching algorithm with a moving-window average filter
is proposed. This approach is similar to the method of Helmert variance component estimation;
it searches for the optimal weight of ionospheric constraints according to the principle that the sum
of the quadratic forms of weighted residuals is the minimum, and makes good use of the weight
information at previous epochs. Datasets collected at 31 MGEX stations on 30 consecutive days are
exploited to evaluate the proposed approach. Both static and kinematic experiments have been carried
out in dual- and single-frequency, and the statistical results indicate that the new method significantly
improves the performance of RT PPP convergence. The maximum improvement reaches 35.9% in
comparison to the method of priori variance. By using the new method, the final positioning accuracy
is not affected by the accuracy of RT ionosphere products, and the same accuracy as that of without
constraints can be achieved. Overall, our proposed weighting approach can not only accelerate the
convergence at the beginning of filter processing, but can also achieve high-accuracy position solutions
after filter convergence. Future work will include the application of the proposed weighting approach
to multi-GNSS combinations with tropospheric constraints.
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Abstract: The main aim of this study was to compare the performances of the hybrid approaches
of traditional bivariate weights of evidence (WoE) with multivariate logistic regression (WoE-LR)
and machine learning-based random forest (WoE-RF) for landslide susceptibility mapping.
The performance of the three landslide models was validated with receiver operating characteristic
(ROC) curves and area under the curve (AUC). The results showed that the areas under the curve
obtained using the WoE, WoE-LR, and WoE-RF methods were 0.720, 0.773, and 0.802 for the
training dataset, and were 0.695, 0.763, and 0.782 for the validation dataset, respectively. The results
demonstrate the superiority of hybrid models and that the resultant maps would be useful for land
use planning in landslide-prone areas.

Keywords: landslide; weights of evidence; logistic regression; random forest; hybrid model

1. Introduction

Landslides are common geological hazards caused by multiple factors including landform [1,2],
geological evolution [3], groundwater [4], land use type [5], precipitation [6,7], irrigation [8],
earthquake [9], engineering construction [10], and climate change [11–13]. To avoid casualties caused
by landslides and guarantee the stable development of mountainous areas, it is critical to determine a
control and prevention scheme for landslides in a region. Generally, regional landslide susceptibility
maps are beneficial to mitigate the effects of landslide hazards.

At present, various methods have been proposed and introduced into landslide susceptibility
mapping. The existing modeling approaches can be put into two categories: qualitative approaches
and quantitative approaches [14,15]. In recent years, conventional qualitative approaches have been
gradually abandoned by many researchers due to the risk that expert opinion can make the results stray
from objective reality [16]. Compared with qualitative approaches, quantitative approaches are mainly
based on the hidden information of objective data instead of subjective experience. Additionally,
quantitative approaches mainly include traditional mathematical statistic methods, deterministic
models, and some state-of-the-art machine learning algorithms.

For traditional statistical methods, the probability-frequency ratio (FR) [17,18], weight of evidence
(WoE) [19,20], statistical index (SI) [21,22], index of entropy (IoE) [23,24], certainty factors (CF) [25–27],
evidential belief function (EBF) [28–30], and logistic regression (LR) [31,32] models have been
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extensively adopted in landslide susceptibility mapping. However, one limitation for all traditional
statistical methods is that some hypotheses exist [33]. In deterministic models, the detail characteristics
of slopes are necessary to construct the calculation model [34]. Although deterministic models
conform to basic physical laws of landslide, these models are not very suitable for regional landslide
susceptibility assessments due to the complex process of modeling and computing [34].

In the past decade, with the rise of machine learning and data mining, a number of relevant
algorithms have been developed for landslide susceptibility zonation [35–39]. For instance, the logistic
regression model (LRM), artificial neural network (ANN), support vector machine (SVM), and decision
tree (DT) were the top four machine learning algorithms in landslide susceptibility mapping during the
period of 2005–2016 [16]. It is clear that machine learning algorithms improve the prediction accuracy
of regional landslide occurrence, but the generalization performance of single classifiers still needs to
be promoted [40]. In this way, a series of ensemble approaches have recently become more and more
popular in geo-hazard susceptibility mapping [37,41–43].

In terms of ensemble approaches, several single classifiers have been combined using ensemble
frameworks including random subspace [44], random forest [45,46], Bagging [47], AdaBoost [48],
MultiBoost [49], and so on [37,50–52]. Currently, some novel ensemble techniques have been proposed
and applied in landslide susceptibility assessment, flood susceptibility mapping, and groundwater
potential analysis [41,53,54]. Additionally, the excellent performance of ensemble algorithms on
predictive ability and generalization capacity has also been proven. For example, Kadavi et al. [55]
compared four ensemble-based machine learning models (AdaBoost, LogitBoost, Multiclass Classifier,
and Bagging) with the traditional frequency ratio model (FRM) in the task of landslide susceptibility
mapping. Furthermore, the results demonstrated that all of the AUC values of the four ensemble-based
machine learning models were higher than that of FRM. In addition, many scholars preferred to
construct ensemble learning models by integrating machine learning algorithms with bivariate
statistical models because some of the hypotheses of the conventional models can be weakened
through hybrid models [56]. Meanwhile, part of the merits of bivariate statistical models and machine
learning models can remain by integrating together. Weights of evidence models, as a classic bivariate
statistical approach, can calculate the weights of various categories of a conditioning factor based on
sturdy mathematical theories [57]. Furthermore, the weights of evidence models can be integrated with
other machine learning approaches to reveal the hidden correlations between different conditioning
factors and landslide occurrence. Therefore, in the present study, based on GIS tools, the integrated
ensemble weights of evidence with logistic regression and random forest models were employed to
map landslide susceptibility, and the results were compared and analyzed quantitatively by receiver
operating characteristic curves (ROC) and area under the curve (AUC).

2. Study Area

The study area was located in Shaanxi Province, China (Figure 1) where the average annual
temperature is 14.2 ◦C, the average annual rainfall is 909.8 mm, and the evaporation is 1537.1 mm.
Topographically, the study area is part of the Qinba Mountain. The general trend is high in the south
and low in the north. Elevation ranges from 442 m to 2410 m above sea level, with an average elevation
of 1171 m. Slope angles in the study area are in the range of 0 to 70◦. Most of the slope angles are in
classes of 10–20◦ (29.27%), followed by 20–30◦ (26.29%), 0–10◦ (23.64%), and 30–40◦ (14.99%). Only
5.81% of slope angles are higher than 40◦.
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Figure 1. Location of the study area.

Geologically, the study area is located at the northern margin of the Yangtze plate. There are
five major faults crossing the area including (1) the Gangchang fault (SW–NE direction), (2) the
Xiaolengba–Qinjiaba fault (NW–SE direction), (3) the Xiaoba–Haitang fault (SW–NE direction), (4) the
Moujiaba–Shuimohe fault (W–E direction), and (5) the Jiangjiawan–Zhujiaba–Tuqiangping fault
(SW–NE direction) (Figure 2).
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Figure 2. Geological map of the study area.

3. Materials and Methods

3.1. Data Preparation

A landslide inventory includes the locations of the past and recent landslides [21]. A landslide
inventory can give insight into landslide location, dates, type, frequency of occurrence, state of
activity, magnitude or size, failure mechanisms, causal factors, and damage caused [58,59]. In the
present study, the landslide inventory map was prepared on the basis of satellite images (Google
Earth and ZY03 images) and historical landslide records of the area, which were verified by GPS.
A total of 202 landslides were identified to prepare the landslide susceptibility map, of which most
of the landslides were slides (190), the others included 12 rock falls [60]. According to an analysis
in the GIS environment, the smallest landslide was nearly 160 m3, the largest landslide was more
than 1,000,000 m3, while the average was 33,000 m3. Finally, 141 landslides were randomly selected
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as training data and rest of them were used for the verification of the landslide susceptibility map
(Figure 1).

There are no universal guidelines for selecting landslide conditioning factors [33,61]. A total of
16 landslide conditioning factors were used for landslide susceptibility mapping including slope angle,
slope aspect, elevation, plan curvature, profile curvature, topographic wetness index (TWI), stream
power index (SPI), sediment transport index (STI), distance to rivers, distance to roads, distance to
faults, soil, land use, normalized difference vegetation index (NDVI), lithology, and rainfall, which are
considered as controlling factors in the occurrence of landslides in the study area.

Slope angle is an important factor that affects the stress state of slope mass, and these positions
where stress exceeds failure strength may contribute to landslide hazards [62,63]. In this case, as shown
in Figure 3a, the thematic data layer of the slope angle was reclassified into seven categories with an
interval of 10◦, namely, (0–10◦), (10–20◦), (20–30◦), (30–40◦), (40–50◦), (50–60◦), and (60–72.83◦).

Slope aspect is another common conditioning factor for the task of landslide susceptibility
mapping [64,65]. It has been proven that most landslides usually occur at a certain slope aspect
for a given study area, but the mechanism has not been revealed clearly [66]. Therefore, slope aspect
was also employed as a conditioning factor. Here, slope aspect categories include flat, north, northeast,
east, southeast, south, southwest, west, and northwest (Figure 3b).

Generally, it is considered that elevation has a firm relationship with landslide occurrence [67].
There is no denying that elevation can influence the topography, vegetation, temperature, humidity,
human activities, and many other conditions that have a connection with slope stability [30,68].
In Figure 3c, the elevation of the study area was divided into ten classes with an interval of 200 m, i.e.,
(442–600 m), (600–800 m), (800–1000 m), (1000–1200 m), (1200–1400 m), (1400–1600 m), (1600–1800 m),
(1800–2000 m), (2000–2200 m), and (2200–2410 m).

Plan curvature and profile curvature are two quantitative indices that embody topographic
characteristics and trend from different perspectives [69]. Various curvature values indicate different
runoff and erosion conditions of water. For instance, the upwardly convex surfaces have positive
curvature values while negative curvature values mean upwardly concave surfaces [30]. In this study,
the plan curvature and profile curvature values were both reclassified into three groups (Figure 3d,e).

TWI was proposed to indicate the local groundwater potential by Moore [70] in 1991. Currently,
TWI is regarded as an extensively-used causative factor in landslide susceptibility assessment [71].
It is expressed as TWI = ln( α

tan β ), where β is the slope angle (radian), and α is the flow accumulation
through a point [72]. The TWI values of the study area can be calculated by GIS software and
reclassified as (<4), (4–5), (5–6), (6–7), and (>7) with an interval of 1 (Figure 3f).

SPI can directly measure the erosion capacity of the stream. A higher SPI value indicates that the
stream has more powerful erosion on the slope surface [55]. The SPI values are mainly determined as
SPI = α tan β [54,70]. In this study, the SPI values were identified as five categories with an interval of
20, namely, (<20), (20–40), (40–60), (60–80), and (>80) (Figure 3g).

As another topographic index, STI has also been considered to construct the landslide
susceptibility model [73]. Similar to SPI, STI can quantitatively reflect the regional topographic
features and erosion conditions [74]. For the present study, STI values contained five categories with
an interval of 10: (<10), (10–20), (20–30), (30–40), (>40) (Figure 3h).

Rivers can not only affect the moisture distribution in slopes, but can also erode the toes of slopes,
which cause slope deformation and failure [75]. Thus, it is necessary to consider the river effects when
producing landslide susceptibility maps. In this study, based on the distance to rivers, five buffer
zones with an interval of 200 m were generated for each river: (<200 m), (200–400 m), (400–600 m),
(600–800 m), and (>800 m) (Figure 3i).

Generally speaking, road construction in mountainous areas, which always produce an
engineering load and destroy the integrity of slope structure, have significant negative impacts
on the slope stability [76]. Hence, the distance to roads is usually selected as a conditioning factor to
embody the influence of road engineering activities on landslide occurrence [77]. Here, values of the
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distance to roads were divided into five groups with an interval of 300 m, i.e., (<300 m), (300–600 m),
(600–900 m), (900–1200 m), and (>1200 m) (Figure 3j).

Fault structures affect the spatial distribution and characteristics of landslides in a certain
region [50]. According to relevant studies [30,78], the integrity of rock and soil mass generally decrease
as the distance to the faults shorten. In this way, landslide hazards are more likely to occur in the
neighboring area of faults. Ultimately, buffers of various faults in the study area were obtained and
reclassified into five categories with an interval of 1000 m: (<1000 m), (1000–2000 m), (2000–3000 m),
(3000–4000 m), and (>4000 m) (Figure 3k).

In terms of soil, this is an essential factor that has a strong correlation with landslide
occurrence [79]. To a great extent, the strength, root cohesion, permeability, and vegetation coverage
of the soil mass depend on the soil type [80,81], which can impact the failure characteristics of
slopes [82,83]. In this study area, a total of nine soil types were identified including cumulic anthrosol,
dystric cambisol, eutric cambisol, calcaric fluvisol, haplic luvisol, chromic luvisol, eutric planosol,
calcaric regosol, and eutric regosol (Figure 3l).

Land use is one of the most frequently used conditioning factors, and the correlation between
landslides and land use has been confirmed [84]. For instance, in some farmland regions, landslides
are frequent and common under long-term irrigation [85]. For the study area, the types of land use
mainly consist of farmland, forestland, grassland, water, residential areas, and bareland (Figure 3m).

NDVI is a very popular index to measure the degree of vegetation in a region. NDVI values
can be figured out by the formula NDVI = (I − R)/(IR + R), where IR is the infrared band and R is
the red band of the electromagnetic spectrum [86]. The range of NDVI values is from −1 to 1, and a
positive value means that the local ground is covered by vegetation. Five categories of NDVI values
were generated based on the natural break method [87], namely (–0.21–0.21), (0.21–0.36), (0.36–0.44),
(0.44–0.52), and (0.52–0.65) (Figure 3n).

Like soil, lithology is one of the most important factors that directly determines slope stability.
According to many existing studies, the physical and mechanical properties of rock mass usually
change dramatically with lithological units [88]. Therefore, most landslides occur in the sliding-prone
lithological units that have lower strength and a higher moisture content. For this study area, the strata
were mainly reclassified into twelve lithological units based on the lithofacies and geological ages, and
the specific distribution of various lithologies was illustrated in Figure 3o.

Rainfall is a crucial triggering factor that causes massive landslides by means of raising the
groundwater level and increasing pore water pressure [89]. It can be observed that the probability
of landslide occurrence indeed grows under the actions of long-term or heavy rainfall. Based on the
meteorological data of the study area, the corresponding rainfall map with an interval of 100 mm/yr
was produced, i.e., (<900 mm/yr), (900–1000 mm/yr), (1000–1100 mm/yr), (1100–1200 mm/yr),
(1200–1300 mm/yr), (1300–1400 mm/yr), (1400–1500 mm/yr), (1500–1600 mm/yr), (1600–1700
mm/yr), and (>1700 mm/yr) (Figure 3p).
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Figure 3. Thematic maps: (a) Slope angle; (b) Slope aspect; (c) Elevation; (d) Plan curvature; (e) Profile
curvature; (f) TWI; (g) SPI; (h) STI; (i) Distance to rivers; (j) Distance to roads; (k) Distance to faults; (l)
Soil; (m) Land use; (n) NDVI; (o) Lithology; and (p) Rainfall.

3.2. Weight of Evidence

Weight of evidence (WoE) is one of the most popular models that uses the Bayesian theory of
conditional probability to quantify spatial associations between evidence layers and known mineral
occurrences [90]. In the WoE method, conditional independence is the most important issue that
should be considered. The WoE is based on the calculation of positive weight W+ and negative weight
W− as follows:

W+ = ln
p{B|A}
p
{

B
∣∣A} (1)

W− = ln
p
{

B
∣∣A}

p
{

B
∣∣A} (2)

where B is the presence predictive factor; B is the absence of the predictive factor; A is the presence
of landslide; and A is the absence of landslide. In landslide susceptibility prediction, the weight
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contrast Wf = W+ −W− was used to measure and reflect the spatial association between the landslide
conditioning factors and landslide occurrence [91].

3.3. Logistic Regression

Logistic regression (LR) is one type of regression analysis where categorical outcomes can be
predicted based on a certain predictor [92]. By using the logistic functions, probabilities of the possible
outcomes can be modeled [93].

The logistic regression model is useful for two-class classification. Assuming there are n samples
of the pairs, (xi, yi), i = 1, 2, . . . , n, yi ∈ {−1,+1} is a binary class label for each sample i = 1, 2, . . . , n
and weights (w, b). In the logistic regression for binary classification, the occurrence probability of the
class is modeled with the below function:

P(y = ±1|x, w) =
1

1 + exp(−y(wTx + b))
(3)

where b is the intercept; T is the matrix transposition; and the k-dimensional coefficient vector, w =

(w1, w2, . . . wk)
T are parameters to be estimated.

3.4. Random Forest

Random forests (RF) are an ensemble of separately trained binary decision trees [94]. In the
random forest algorithm, a random vector ik is naturally produced, independent from the previous
random vectors and distributed to all trees, and each tree is grown using the training dataset and
random vector ik, and outcomes are in the collection of tree-structured classifiers h(x, ik), k = 1, 2, . . . n
at input vector x. In this study, ik is the landslide conditioning factors. The random forest consisted
of two trees, namely, landslide and non-landslide, each constructed while considering sixteen
random features.

Generally, in a random forest algorithm, the generalization error is described as below [95]:

GE = Px,y(mg(x, y) < 0) (4)

where x and y are the landslide conditioning factors indicating the probability over the x, y space,
and mg is the margin function, which is defined as below:

mg(x, y) = avk I(hk(x) = y)− maxj �=yavk I(hk(x) = j) (5)

Which measures the extent to which the average number of votes at random vectors for the right
output exceeds the average vote for any other output. The I(∗) is the indicator function [96].

4. Results

4.1. Correlation Analysis

The correlation between the conditioning factors and probability of landslides occurrence was
measured by the weight contrast Wf , and the calculation results of the WoE model are listed in
Table 1. The LR method was employed to produce the landslide susceptibility map, and one of
the most critical applicable conditions of LR is that the landslide conditioning factors are mutually
independent [97]. Therefore, it is necessary to diagnose the multicollinearity of various conditioning
factors when evaluating landslide susceptibility [98]. Currently, the tolerance (TOL) (TOL = 1 − R2,
and R is the coefficient of determination of the regression equation) and variance inflation factor (VIF)
(VIF = 1/TOL) have been applied in multicollinearity diagnosis [99–101].
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Table 1. Correlation between landslides and conditioning factors using the WoE model.

Factors Class
No. of

Landslide
No. of Pixels
in Domain

W+ W− Wf

Slope angle (◦) 0–10 36 738,360 0.077 −0.025 0.102
10–20 63 914,163 0.423 −0.246 0.669
20–30 29 821,142 −0.246 0.075 −0.320
30–40 11 468,077 −0.653 0.081 −0.734
40–50 2 155,377 −1.255 0.037 −1.292
50–60 0 24,357 0.000 0.008 0.000

60–72.83 0 1710 0.000 0.001 0.000
Slope aspect Flat 0 874 0.000 0.000 0.000

North 16 443,863 −0.225 0.033 −0.258
Northeast 16 405,251 −0.134 0.019 −0.153

East 17 376,207 0.001 0.000 0.001
Southeast 23 390,547 0.266 −0.044 0.310

South 32 374,222 0.639 −0.130 0.769
Southwest 13 344,928 −0.181 0.020 −0.201

West 9 354,647 −0.576 0.055 −0.631
Northwest 15 432,647 −0.264 0.037 −0.301

Elevation (m) 442–600 28 413,571 0.405 −0.079 0.485
600–800 48 512,157 0.730 −0.237 0.968

800–1000 31 377,619 0.598 −0.119 0.717
1000–1200 17 326,381 0.143 −0.018 0.161
1200–1400 15 398,407 −0.182 0.024 −0.206
1400–1600 2 385,439 −2.163 0.117 −2.281
1600–1800 0 376,083 0.000 0.128 0.000
1800–2000 0 247,350 0.000 0.083 0.000
2000–2200 0 78,216 0.000 0.025 0.000
2200–2410 0 7963 0.000 0.003 0.000

Plan curvature −14.0– −0.05 58 144,0116 −0.114 0.088 −0.203
−0.05–0.05 13 215,290 0.291 −0.025 0.316
0.05–13.07 70 1,467,780 0.055 −0.051 0.106

Profile curvature −14.28–−0.05 66 1,428,952 0.023 −0.020 0.042
−0.05–0.05 16 177,891 0.689 −0.062 0.751
0.05–14.77 59 1,516,343 −0.149 0.123 −0.271

TWI <4 11 558,428 −0.829 0.116 −0.945
4–5 50 1,000,955 0.101 −0.052 0.153
5–6 48 746,522 0.354 −0.143 0.497
6–7 20 393,490 0.119 −0.018 0.137
>7 12 423,791 −0.467 0.057 −0.523

SPI <20 88 1,740,663 0.113 −0.164 0.277
20–40 20 497,521 −0.116 0.021 −0.137
40–60 12 231,236 0.139 −0.012 0.151
60–80 5 133,800 −0.189 0.008 −0.197
>80 16 519,966 −0.383 0.062 −0.445

STI <10 90 1,722,652 0.146 −0.215 0.361
10–20 32 702,426 0.009 −0.003 0.012
20–30 6 295,062 −0.798 0.056 −0.853
30–40 5 141,300 −0.244 0.010 −0.254
>40 8 261,746 −0.390 0.029 −0.419

Distance to rivers (m) <200 27 521,129 0.138 −0.030 0.168
200–400 22 463,390 0.050 −0.009 0.059
400–600 18 427,717 −0.070 0.011 −0.081
600–800 19 374,831 0.116 −0.017 0.133

>800 55 1,336,119 −0.092 0.064 −0.156
Distance to roads (m) <300 33 343,852 0.754 −0.150 0.904

300–600 16 279,559 0.237 −0.027 0.264
600–900 8 245,226 −0.325 0.023 −0.348

900–1200 15 219,752 0.413 −0.040 0.453
>1200 69 2,034,797 −0.286 0.382 −0.668
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Table 1. Cont.

Factors Class
No. of

Landslide
No. of Pixels
in Domain

W+ W− Wf

Distance to faults (m) <1000 32 671,796 0.054 −0.015 0.069
1000–2000 18 503,008 −0.232 0.039 −0.271
2000–3000 21 412,189 0.121 −0.020 0.141
3000–4000 8 348,794 −0.677 0.060 −0.737

>4000 62 1,187,399 0.145 −0.101 0.246

Soil Cumulic
Anthrosol 20 360,361 0.206 −0.030 0.237

Dystric
Cambisol 4 113,893 −0.251 0.008 −0.259

Eutric Cambisol 31 249,592 1.012 −0.165 1.177
Calcaric Fluvisol 0 37,035 0.000 0.012 0.000
Haplic Luvisol 80 2,211,459 −0.222 0.393 −0.615

Chromic Luvisol 0 10,045 0.000 0.003 0.000
Eutric Planosol 3 14,836 1.500 −0.017 1.516

Calcaric Regosol 1 82,141 −1.311 0.020 −1.330
Eutric Regosol 2 43,824 0.011 0.000 0.011

Land use Farmland 86 90,0284 0.750 −0.601 1.351
Forestland 4 96,7369 −2.390 0.342 −2.732
Grassland 51 1,202,442 −0.062 0.037 −0.100

Water 0 18,838 0.000 0.006 0.000
Residential areas 0 33,563 0.000 0.011 0.000

Bareland 0 690 0.000 0.000 0.000
NDVI −0.21–0.21 4 67,502 0.272 −0.007 0.279

0.21–0.36 10 207,991 0.063 −0.005 0.068
0.36–0.44 63 651,020 0.762 −0.358 1.121
0.44– 0.52 56 1,089,392 0.130 −0.077 0.207
0.52–0.65 8 1,107,281 −1.832 0.379 −2.212

Lithology 1 27 363,139 0.499 −0.089 0.588
2 0 1694 0.000 0.001 0.000
3 2 136,901 −1.128 0.031 −1.159
4 6 398,403 −1.098 0.093 −1.191
5 0 7470 0.000 0.002 0.000
6 0 107,848 0.000 0.035 0.000
7 5 225,834 −0.713 0.039 −0.751
8 10 319,450 −0.366 0.034 −0.401
9 9 276,290 −0.326 0.027 −0.353

10 1 39,158 −0.570 0.005 −0.575
11 32 435,539 0.487 −0.107 0.594
12 49 811,460 0.291 −0.126 0.417

Rainfall (mm/yr) <900 8 189,533 −0.067 0.004 −0.071
900–1000 29 582,217 0.098 −0.024 0.122
1000–1100 23 282,006 0.591 −0.083 0.675
1100–1200 35 329,319 0.856 −0.174 1.030
1200–1300 16 271,086 0.268 −0.030 0.298
1300–1400 18 629,601 −0.457 0.089 −0.545
1400–1500 7 351,254 −0.818 0.068 −0.886
1500–1600 3 270,784 −1.405 0.069 −1.474
1600–1700 1 135,625 −1.812 0.037 −1.849

>1700 1 81,761 −1.306 0.019 −1.325

Generally, a TOL value less than 0.1 or a VIF value larger than 10 is regarded as a symbol of
multicollinearity [61]. In this study, the results of the WoE model were used as inputs to calculate the
TOL and VIF values of all of the conditioning factors. In accordance with the calculated results, there
was no multicollinearity among the landslide conditioning factors (Table 2).
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Table 2. Multicollinearity analysis.

Landslide Conditioning Factors
Collinearity Statistics

Tolerance (TOL) Variance inflation factors (VIF)

Slope angle 0.761 1.315
Slope aspect 0.883 1.133

Elevation 0.650 1.539
Plan curvature 0.714 1.400

Profile curvature 0.855 1.170
TWI 0.828 1.208
SPI 0.434 2.303
STI 0.402 2.489

Distance to rivers 0.946 1.057
Distance to roads 0.779 1.284
Distance to faults 0.908 1.101

NDVI 0.774 1.292
Soil 0.642 1.557

Land use 0.627 1.595
Lithology 0.765 1.308
Rainfall 0.664 1.507

4.2. Application of the WoE Model

In terms of slope angle, the slope angle between 10◦–20◦ (0.669) is more prone to landslide
occurrence. Additionally, the Wf values of the region where slope angles larger than 50◦ are 0. For the
slope aspect factor, Wf was the highest for south-facing (0.769). Furthermore, southeast-facing (0.310)
and east-facing (0.001) also had a positive correlation with landslide occurrence. In the case of elevation,
most landslides were distributed in the classes of 442–600 m (0.485), 600–800 m (0.968), and 800–1000 m
(0.717). When the elevation was larger than 1200 m, elevation had an inhibitory effect on landslides.
In the case of plan curvature, flat areas had a more important impact on landslides, whereas the Wf
values of convex areas and concave areas were 0.106 and −0.203, respectively. In the case of profile
curvature, the Wf values of the concave class, flat class, and convex class ere 0.042, 0.751, and −0.271,
respectively. For TWI, the highest Wf value was observed for the interval of 5–6 (0.497) while the
class <4 (−0.945) had the lowest value. For SPI, the class <20 (0.277) had the highest Wf value, and
the areas of SPI 20–40 and >60 were negative for landslides. For STI, the class <10 had the highest
Wf value of 0.361, while the class 20–30 had the lowest value of −0.853. In the case of distance to
rivers, the classes of <200 m (0.168) and 600–800 m (0.133) occupied higher Wf values when compared
to the other classes. In the case of distance to roads, the class of <300 m (0.904) had a more intimate
correlation with landslide occurrence. In the case of distance to faults, it can be seen that the class
>4000 m had the highest Wf value of 0.246. For soil, eutric cambisol (1.177) and eutric planosol (1.516)
were more likely to induce landslides due to the dramatic falling of soil strength under saturated
conditions [85]. For land use, farmland (1.351) had the highest probability of landslide occurrence,
which may be essentially caused by irrigation. According to the Wf values of NDVI, the class of
0.36–0.44 (1.121) mainly contributed to landslide occurrence, while the lowest value was for the class
of 0.52–0.65 (−2.212), which indicates that high vegetation coverage can restrain landslides. In the case
of lithology, the Wf values of group 1 (Q) (0.588), group 11 (Ar) (0.594), and group 12 (Pt, Pz) (0.417)
were larger than 0, indicating that these lithological groups had the highest susceptibility to landslide.
In the case of rainfall, the range between 1100–1200 mm/yr (1.030) showed high susceptibility for
landslide occurrence.

The calculated Wf values for all landslide conditioning factors were summed using the following
equation to construct the landslide susceptibility map (LSM):
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LSMWoE = Slope angleWf + Slope aspectWf + ElevationWf + Plan curvatureWf
+Profile curvatureWf + TWIWf + SPIWf + STIWf + Distance to riversWf
+Distance to roadsWf + Distance to faultsWf + NDVIWf + SoilWf + LanduseWf
+LithologyWf + RainfallWf

(6)

The integrated result of the WoE model is shown in Figure 4. The LSM was reclassified into five
classes based on the natural break method: very low, low, moderate, high, and very high.

Figure 4. Landslide susceptibility map using the WoE model.

4.3. Application of the WoE-LR Model

In this case, SPSS 18.0 software was applied to build a landslide susceptibility model with the
WoE-LR model. The input table of the LR model can be generated by the determined class values
of variables based on the WoE model [54]. In the analysis process, a forward stepwise LR was
adopted, and the analysis results are given in Tables 3 and 4. The Cox and Snell R Square (0.245) and
Nagelkerke R Square (0.326) are two pseudo determined coefficients that are used to reflect the degree
of independent variables explaining dependent variables [102,103]. According to Table 4, the LR
equation and landslide occurrence probability P can be expressed as Equations (7) and (8), respectively.

y = 1.122 × Slope angle + 2.157 × Slope aspect + 0.986 × Elevation
+2.505 × Plan curvature + 0.868 × Profile curvature + 1.764 × TWI
+1.427 × SPI + 1.142 × STI + 0.512 × Distance to rivers
+1.445 × Distance to roads + 0.972 × Distance to faults
+0.859 × NDVI + 1.392 × Soil + 1.634 × Landuse + 1.032 × Lithology
+1.594 × Rainfall + 0.806

(7)

P =
ey

1 + ey (8)

155



Appl. Sci. 2019, 9, 171

Table 3. Maximum likelihood estimation and Cox and Snell’s and Nagelkerke’s R-square.

−2 Log Likelihood Cox & Snell R Square Nagelkerke R Square

311.780 0.245 0.326

Table 4. Coefficients of WoE-LR model.

Landslide Conditioning Factors Coefficients

Slope angle 1.122
Slope aspect 2.157

Elevation 0.986
Plan curvature 2.505

Profile curvature 0.868
TWI 1.764
SPI 1.427
STI 1.142

Distance to rivers 0.512
Distance to roads 1.445
Distance to faults 0.972

NDVI 0.859
Soil 1.392

Land use 1.634
Lithology 1.032
Rainfall 1.594

Constant 0.806

Ultimately, the landslide susceptibility index (LSI) for the LR model were obtained based on
Equation (8), moreover, the LSI values were reclassified into five categories by the natural break
method: very low, low, moderate, high, and very high (Figure 5).

Figure 5. Landslide susceptibility map using the WoE-LR model.
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4.4. Application of the WoE-RF Model

Similarly, the calculated results of the WoE model can be used as input for the RF model. In this
study, training of the RF model was implemented by WEKA software. During the analyzing process,
the importance of various conditioning factors can be measured quantitatively and ordered by MDA
(mean decrease accuracy) and MDG (mean decrease Gini). Generally, MDA is determined during
the Out-Of-Bag error calculation phase, while MDG is a measure of how each variable contributes
to the homogeneity of the nodes and leaves [104]. The values of the above-mentioned two metrics
of the conditioning factors are illustrated in Figure 6, and a larger value of MDA or MDG means a
higher importance of the corresponding variable. Accordingly, in terms of MDA, land use is the most
critical factor in the RF model, while soil is second in importance only to land use. For the MDG,
the importance of elevation was first, followed by rainfall and land use. Finally, based on ArcGIS
software, the landslide susceptibility map using the WoE-RF was generated and is shown in Figure 7.

Figure 6. Mean decrease accuracy and mean decrease Gini.

4.5. Validation of Landslide Models

Currently, the ROC and AUC have been widely applied to validate the performance of determined
landslide susceptibility models [64,69,105]. The ROC curve can be generated by plotting the false
positive rate (100-specificity) in the x-axis versus the sensitivity in the y-axis [71]. The area under
the ROC curve (AUC) is an indicator of the global summary measure of the performance of a
model [106–108]. In the present study, to assess the validation of the WoE, WoE-LR, and WoE-RF
models, the ROC curves of three models with training and validation datasets are described in Figures 8
and 9.
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Figure 7. Landslide susceptibility map using the WoE-RF model.

Figure 8. ROC curves using the training dataset.
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Figure 9. ROC curves using the validation dataset.

In the case of the training dataset, the WoE-RF model had the best performance with the highest
AUC value of 0.802, while the AUC values of the WoE model and WoE-LR model were 0.720 and
0.773, respectively. Meanwhile, the WoE-RF model had the lowest standard error (0.0275) and a 95%
confidence interval of 0.729–0.829. Thus, the WoE-RF and WoE-LR models can improve the accuracy of
the traditional WoE model in this study, and the WoE-RF model showed a relatively better performance.

In the case of the validation data, it can be seen that the AUC values of the various models
decreased slightly when compared with the training dataset. The AUC values were 0.695, 0.763,
and 0.782 for the WoE model, WoE-LR model, and WoE-RF model, respectively. Similarly, the lowest
standard error was 0.0430 for the WoE-RF model, followed by the WoE-LR model (0.0440), and the
WoE model (0.0484). The detailed results demonstrated that the WoE-RF model had a prominent
prediction capacity on landslide susceptibility mapping.

5. Discussions

Under the action of environmental factors and human activities, the frequency of landslide
occurrence has been increasing in recent decades, which may result in catastrophic losses on lives,
resources, and property [109,110]. Currently, numerous approaches have been used in landslide
susceptibility mapping such as FR [23], WoE [19], IoE [111], machine learning [64,112], and ensemble
learning models [53,54]. In the above-mentioned models, the probabilistic meaning and calculation
procedure of the WoE model are relatively concise and specific, which makes the WoE a classical and
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widely used method in landslide susceptibility mapping. Nevertheless, due to the uncertainties and
fuzziness in the data of the conditioning factors [113], for different datasets, the performance of the
WoE models were significantly distinguished [114–116]. In the present study, the integrated ensemble
WoE with LR and RF models were proposed and applied for landslide susceptibility modeling in order
to improve the accuracy and generalization ability of the traditional WoE model.

Landslide inventory map is a preliminary step toward landslide susceptibility, hazard and
risk assessment [59]. Generally, there are two classes of Landslide inventories: landslide-event
inventories that are associated with a trigger and historical landslide inventories [59,117]. In the
present study, we adopted the latter formation, which was the sum of many landslide events
over a long time. However, the evidence of many smaller landslides might has been lost due to
various degrees of modification by subsequent landslides, erosional processes, vegetation growth and
anthropic influences [59]. Therefore, application of multi-temporal high-resolution satellites images for
interpretation of smaller landslides may be an effective supplement to the current landslide inventory
and efficient for improving the accuracies of landslide susceptibility maps.

According to the existing literature and multicollinearity analysis, sixteen conditioning factors
were selected: slope angle, slope aspect, elevation, plan curvature, profile curvature, TWI, STI, SPI,
distance to rivers, distance to roads, distance to faults, NDVI, soil, land use, lithology, and rainfall.
Furthermore, based on the Wf values, the relationships between landslide occurrence and these factors
were analyzed. It was demonstrated that all factors had nonlinear relationships with landslides. In
addition, the RF model was employed to measure the importance of factors with two indices, the MDA
and MDG. In terms of MDA, it could be observed that the most critical factor was land use, followed
by soil and elevation. Slope angle had the lowest impact on landslide occurrence. However, for MDG,
the importance of elevation, rainfall, and land use ranked first, second, and third, respectively, while
the lowest MDG value was for profile curvature.

There are some classification techniques for a landslide susceptibility map in GIS software, such
as manual, defined interval, natural break, equal interval, quantile, standard deviation, geometrical
interval, and landslide percentage [118]. Generally, user-defined classification is more difficult for
the reader to interpret and justify. Therefore, current automatic classification systems should be used
instead of a user-defined classification [118]. Besides, when landslide susceptibility indexes have
positive or negative skewness, the best classification methods are quantile or natural break [119]. In the
present study, natural break method, which is the most commonly used models [120,121], is the most
suitable method for modelling landslide susceptibility according to the histogram of data distribution.

In this paper, a comparison study of the WoE, WoE-LR, and WoE-RF models was implemented.
LR is a widely used model for classification, particularly for binary classification problems [122].
Thus, we integrated the WoE with the LR model to acquire a better classifier. The WoE-RF model
is a combination of the weight of evidence and random forest approach. It has been proven that
RF is one of the most popular classification algorithms and can improve the performance of single
classifiers [96,123]. Moreover, RF can decrease the dependence of the WoE model on independence
among the conditioning factors. Accordingly, the results showed that both the LR model (AUC = 0.773
for training data; AUC = 0.763 for validation data) and RF model (AUC = 0.802 for training data; AUC
= 0.782 for validation data) can increase the performance of the traditional WoE model (AUC = 0.720
for training data; AUC = 0.695 for validation data), and the WoE-RF model produced the best results.

Comparing the overall classification results of the three models, the results confirmed that the
RF model had a better performance on improving the generalization ability of a weak classifier and
raising the corresponding prediction accuracy. Therefore, the landslide susceptibility maps generated
by the WoE-RF and WoE-LR models contain reference meaning for the study area to a certain extent.
Furthermore, the procedure of factor selection and ensemble model construction is of some value to
similar studies.
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6. Conclusions

The results are indicative of the quality of the maps drawn by the hybrid approaches of traditional
bivariate weights of evidence (WoE) with multivariate logistic regression (WoE-LR) and machine
learning-based random forest (WoE-RF). In general, the following conclusions can be drawn:

(1) Geomorphological factors, geological factors, geo-environmental factors, and anthropogenic
factors were used for the development of the landslide model. The preliminary selection of these
16 conditioning factors was based on the multicollinearity diagnosis. The TOL and VIF values of all
the conditioning factors indicated no multicollinearity.

(2) According to the results of the WoE model, most occurred at slopes of 10–20◦ with the south
aspect, elevations of 600–800 m, distance to rivers of <200 m, distance to roads of <300 m, and a
farmland land cover category.

(3) WoE-RF possessed relatively good accuracy when compared to the WoE-LR and WoE models.
By using the ROC curve, the AUC values of the training dataset produced by these three methods
were 0.802, 0.773, and 0.720, respectively. For the validation dataset, the AUC values were 0.782, 0.763,
and 0.695, respectively. It can be concluded that the proposed hybrid models are promising approaches
for the spatial prediction of landslides and can also be applied in other landslide-prone areas.
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Abstract: Traffic emissions are considered one of the leading causes of environmental impact in
megacities and their dangerous effects on human health. This paper presents a hybrid model based
on data mining and GIS models designed to predict vehicular Carbon Monoxide (CO) emitted from
traffic on the New Klang Valley Expressway, Malaysia. The hybrid model was developed based on
the integration of GIS and the optimized Artificial Neural Network algorithm that combined with the
Correlation based Feature Selection (CFS) algorithm to predict the daily vehicular CO emissions and
generate prediction maps at a microscale level in a small urban area by using a field survey and open
source data, which are the main contributions to this paper. The other contribution is related to the
case study, which represents the spatial and quantitative variations in the vehicular CO emissions
between toll plaza areas and road networks. The proposed hybrid model consists of three steps:
the first step is the implementation of the correlation-based Feature Selection model to select the best
model’s predictors; the second step is the prediction of vehicular CO by using a multilayer perceptron
neural network model; and the third step is the creation of micro scale prediction maps. The model
was developed using six traffic CO predictors: number of vehicles, number of heavy vehicles, number
of motorbikes, temperature, wind speed and a digital surface model. The network architecture and its
hyperparameters were optimized through a grid search approach. The traffic CO concentrations were
observed at 15-min intervals on weekends and weekdays, four times per day. The results showed
that the developed model had achieved validation accuracy of 80.6 %. Overall, the developed models
are found to be promising tools for vehicular CO simulations in highly congested areas.

Keywords: traffic CO; traffic CO prediction; neural networks; GIS; land use/land cover (LULC)

1. Introduction

The transport infrastructure like expressways and roads has a significant importance in the
development of any country’s economy by linking cities. These infrastructures are rapidly developing
due to the changing in the traffic modes, leading to congested roads. Hence, road traffic emissions are
increasing, creating many negative impacts on air quality on roadways, intersections and toll roads.
Traffic emissions, such as carbon monoxide (CO), are the primary contributor to overall air pollution
from this infrastructure, and the primary source of traffic emissions is vehicular exhausts.

Spatial prediction models are effectively used as a decision-making support tool for prediction
and simulation of traffic emissions on road networks [1–3]. There are various negative impacts that
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can result from inappropriate traffic levels, including high levels of noise and high concentrations
of gaseous pollutants [4,5]. Several diseases e.g., cancers, heart diseases, respiratory problems and
preterm births, can occur when human beings are exposed to high concentrations of CO [6–8].

The measurement of vehicular emissions on roadways and toll gates may be costly, risky and
requires a lot of time and effort. Moreover, the designers do not have the opportunity to determine the
vehicular emissions through the design process. In the most recent planning techniques for design
of highways and road networks, traffic emission models are often required to support sustainable
transportation planning and the reduction of traffic emissions from sources such as congestion and
tollgate areas. Thus, the GIS-based modeling of traffic emission and intra-urban air pollution exposure
can be an effective tool in the environmental assessment for sustainable road planning. This tool can
distinguish the areas affected by different types of pollutants and the related ecological and social
factors. This would be able to determine the best strategy to support the decision makers [9]. On the
other hand, GIS can save costs and time in the traffic emission modeling and can therefore be used in
sustainable planning.

Different types of traffic CO prediction approaches are mentioned in the literature [10–12].
Early methods of traffic CO modelling were based on traditional techniques using data sampling and
global position system (GPS) techniques. Several thematic maps and vehicle emission equations are
combined to model the traffic emission distribution in a region and produce informative maps that
could help in effective decision making [10]. Recent methods are mostly based on land-use regression
analysis using statistical and soft computing algorithms [10,13]. These statistical and computing
techniques allow the input of various traffic and road geometry factors. Almost all these models
are designed by using experimental samples; consequently, these models are highly influenced by
the traffic flow condition and the measurement style and the geographic locations [14]. The main
drawback of these models is that they can not be generalized because of the local environment like
vehicle model and type and the weather [15,16]. Ref. [17] presented an approach of recognizing the
road geometric features from positioning information surveyed by collecting vehicle data.

2. Previous Works

Many models have been developed to predict CO emissions and other traffic emissions, such as
NOx, NO2, CO2 and SO2. In a paper, Ref. [18] presented a methodology by integrating the spatial
analysis techniques and the neighborhood statistic function algorithm to evaluate the spatial diffusion
of the gaseous pollutant in north of Italy by using the air pollutant records obtained from monitoring
stations and GIS data (i.e., administrative borders, built-up areas, emission sources and road networks).
Their results were illustrated on grids with a cell size of (4 × 4) km. Although this method showed
a significant spatial representation of air pollution, the methodology was constrained by the limited
spatial resolution. Therefore, it cannot be used for high-resolution data. Ref. [19] developed a
GIS-based tool by combining the operational street pollution model (OSPM) and a multi-agent-based
transportation model (MATSIM) to estimate the air pollutant concentrations in Munich, Germany.
Their results showed hourly prediction of NOx from traffic. This approach can be used as an effective
tool for air quality studies in urban areas. Nevertheless, its disadvantages appear in the complexity of
a system that comprises different models where the non-expert users are not able to use it. Ref. [20]
developed a model based on land-use regression algorithm and land-use types, meteorological
variables and vehicle-kilometers-travelled (VKTs) and linear regression algorithm to estimate the
concentrations of Nitrogen Dioxide (NO2) in Seoul, Korea. The results showed the significant impacts
of the residential, commercial land use, wind speed, temperature and humidity on the concentrations
of NO2. The air pollutants recorded by the fixed air quality monitoring stations can be affected by
several factors such as terrain and buildings altitude. Moreover, the weather factors are not suitable
to model and produce high-resolution products such as roadmaps. Ref. [21] presented a statistical
model based on the fuzzy logic system to predict CO concentrations in Tehran, Iran. This model
mainly relied on historical data, which were obtained from monitoring stations. Fuzzy logic algorithms
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were applied to combine the parameters. Their results showed that lowest Room Mean Square
Error (RMSE) was recorded at 2.13. Another study related to statistical modeling was conducted
by [22] to forecast air pollutants in Hong Kong based on the integration of two statistical models,
i.e., the generalized additive models and the Global Forecast System, which linked the air pollution
with meteorological data. Results showed a contrast in the air pollutant levels between urban and
suburban areas. This model is useful for predicting air quality in complex terrain areas. These models
lack the spatial aspect and could not be used to produce prediction maps. Ref. [23] developed a
methodology by using two commercial programs to estimate the traffic emissions in small area in
Madrid, Spain. The VISSIM program was used for traffic simulation to calculate a velocity-time profile.
Then, the related emissions at the vehicle level were completed using the VERSIT + micro program.
Results showed the spatial variation in NOx and PM10 concentrations are based on microscale maps
with high resolution, cell size (5 × 5) m. This model depends on the estimated emissions data based
on prediction simulations without using actual samples based on sampling equipment.

Recently, machine-learning technologies have attracted researchers. The neural network (NN)
models are the most popular models in the Artificial Intelligence models. Ref. [24] developed a model
by integrating the artificial neural network (ANN) algorithm and evolutionary polynomial regression
(EPR) to estimate the CO concentrations in Tabriz City, Iran. The EPR is one of the data mining
algorithms developed based on evolutionary computing and the integration of numerical regression
and genetic algorithm. The EPR model involves two stages: a genetic algorithm is used in the first
stage based on the numerical regression to search for symbolic structures, whereas in the second
stage, symbolic structure parameters are determined based on the linear least squares techniques.
Their results showed that the ANN model is more reliable than the EPR model. The highest value
of the correlation coefficient was measured at 0.85 based on NN and 0.41 using EPR. This study
indicated that NN modeling can be efficiently utilized for air quality forecasting. On the other hand,
ref. [25] developed a model based on the NN algorithm and data obtained from field survey to
estimate the hourly traffic emissions near roads. The authors used different parameters such as traffic
data, meteorology, proximity to roads and road direction. This model is considered as an efficient
approach for predicting pollutant near a road. Although they used geographic information as a
parameter, their results did not contain spatial prediction results such as maps. They only presented
a statistical analysis. Results showed that the highest correlation coefficient for the CO prediction
was 0.879. Ref. [26] conducted the most relevant studies that combined the NN model and the spatial
prediction model. They presented an approach that combined the linear-chain conditional random field
algorithm and ANN model to generate real-time air pollution maps. They utilized the data recorded
from monitoring stations and the traffic data collected from the field while geographic parameters
like land use and road network were derived using GIS data. Their results showed the air pollutants
prediction on maps with (1 × 1) km spatial resolution. However, the developed model did not consider
many issues like uncertainty, modeling multifactor and nonlinearity. Although several authors have
attempted to overcome these issues, they principally focused on the integration of big data and the
large scale modeling. On the other hand, most of these models deal with large quantities of data,
expensive equipment, and complex data processing models, which require substantial time, cost and
other resources.

In this paper, we presented a hybrid model to produce microscale prediction maps considering
toll gate locations, as well as the other parameters listed in the literature. The model is developed by
combining the metaheuristic optimization technique and ANN algorithm to predict traffic emissions
based on a small number of training data and avoiding transferability issues. The metaheuristic
optimization algorithms like correlation-based feature selection models which have the ability to
find best model’s predictors in a short time were compared to other optimization techniques. Also,
ANN algorithms are suitable for prediction based on few training data. The major contributions of
this work lie in producing highly accurate predictive maps and providing a description of the high
variation of traffic emissions on roads and tollgate areas. Other significant advantages may include
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easy implementation of the proposed model in open source GIS software where the non-expert users
can utilize the model for rapid simulations and assessments of vehicular emissions based on microscale
prediction maps. Also, the users can design GIS models based on their needs. We proposed that the
combination of metaheuristic optimization and machine learning algorithms could help improving the
forecasting of CO emissions on roads, highways and in tollgate areas.

3. Materials and Methods

3.1. Study Area

This study was conducted near of Subang jaya toll plaza which links the New Klang Valley
Expressway (NKVE) and the federal expressway in Peninsular Malaysia. Subang toll plaza is located
within a highly dense populated area in Petaling Jaya, Selangor, Malaysia (Figure 1). The total length
of NKVE is 35 km, which connects urban and industrial areas in the capital city of Kuala Lumpur. It is
a major highway for citizens who are living in the main cities like Kuala Lumpur, Subang, Shah Alam,
Damansara, Sungai Buloh, Klang and Petaling Jaya. The vehicular speed limits are standardized to 110
and 90 km/h on Bukit Raja to Bukit Lanjan stretch and Bukit Lanjan to Jalan Duta stretch, respectively.
The study area contains different types of land use such as tollgate area, commercial, industrial and
residential areas, making it well suited for vehicular emissions studies.

 

Figure 1. Location map of the study area.

3.2. Data and Method

Several data (i.e., vehicular CO samples, meteorology and traffic flow data) were collected from
the field during April 2017. Light Detection and Ranging (LiDAR) data were collected in March 2017,
and the Worldview3 satellite image was captured in May 2017. Figure 2 shows the overall methodology,
which consists of several steps. The hybrid model is designed to predict CO emissions at a specific
time and location, for example, prediction maps based on different times of a day. The first step is data
collection, which was achieved based on a gas analyzer and data loggers to simultaneously collect CO,
temperature, humidity, and traffic information. The LULC map was extracted from the Worldview-3
image with spatial resolution of 0.3 m. The digital surface model (DSM) was derived from the Airborne
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LiDAR point clouds by using Environment for Visualizing Images (ENVI) software. The second step
is the statistical modelling, which was applied by combining two models i.e., the correlation based
feature selection (CFS) and Multilayer Perceptron (MLP) by using Weka software. The final step is
the spatial modelling based on the regression equations derived from regression analysis and GIS
techniques to generate microscale prediction maps for the traffic CO emissions during different times
of the day.

 

Figure 2. The overall methodological flow chart employed in this study.

3.3. Field Surveying

3.3.1. Sampling Selection

The vehicular CO, traffic condition and meteorology data are important for the development of
vehicular CO emissions models [27]. Many studies have described approaches of collecting traffic
flow data from the field, and the most important aspect has been determined to be the distribution
of air pollutants samples and their suitability [28,29]. The accuracy of the spatial interpolation is
highly affected by the sampling design and the variations between traffic CO samples [30]. Moreover,
the density of points must be good enough to achieve high accuracy of interpolated data. Conversely,
a large number of samples should be avoided to decrease the processing time. Most importantly,
the samples density should be adjusted by considering the vehicular CO diffusion characteristics.
In this paper, traffic CO data were collected according to a procedure given by [31]. Their method was
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implemented by creating sampling locations based on a random selection method by using spatial
analysis techniques. This approach generates the optimum number of samples compared to the study
area [31].

First, three layers (residential, commercial and industrial) from the land-use map were extracted.
These layers were converted into points with a spatial constraint to force them inside the land-use
polygons. Next, the density of points was estimated using a 150 m search radius and the resolution of
the output density raster was set to 25 m. The density rasters were then integrated based on different
coefficients (industrial = 1, commercial = 2, and residential = 3). The next step is the rescaling of the
final density raster from 0 to 1 depending on linear approach led to the creation of the probability
raster which was used to select the samples of the traffic CO. Next, the geospatial balanced points
were then created within the study area by using the probability raster. The total number of points
were generated based on the length of the road network, the cost of the project and the capability of
traffic emissions detection equipment used in the data gathering. As a result, the locations of the traffic
CO samples were distributed along the study area. Therefore, extra steps should be implemented to
improve the created points in order to select the final sample locations depending on the transportation
characteristics. Tessellated grids with a spatial resolution 25 m were generated. Then, these grids
were intersected with the created points and the road network layer and the remaining tessellated
grids were removed. Subsequently, the final traffic CO samples were selected within the intersected
tessellated grids and road network.

3.3.2. Data Collection

Traffic CO concentrations were collected from the field by using a low cost Gas Analyzer device
model Micro-clip5 (1 ppm resolution). The data were collected continuously in 15-min intervals
(recording the 15-min minimum, maximum, and average). The traffic flow data and meteorology
information were simultaneously collected using a data logger and GPS device (Garmin GPS etrex
10, Olathe, KS, USA; available at University Putra Malaysia). Figure 3 shows the sampling procedure.
The traffic CO analyzer was installed in the location of samples by using a Global Navigation System
(GPS), at least 2 m from the road edge. The GPS was used to determine the geographic location of
samples and to manually verify the locations using land-use maps. The traffic CO was measured four
times a day on weekends and weekdays, in the morning (6.30 a.m. to 8.30 a.m.), afternoon (11.30 a.m.
to 1.30 p.m.), evening (6.30 p.m. to 8.30 p.m.), and at night (11 p.m. to 12 midnight). In addition,
the traffic data were collected by using digital cameras installed in the road’s side in the sample’s
location. The traffic flow data were classified into several types (the number of cars, the number of
heavy vehicles and the number of motorbikes), where the cars were private cars and taxi cars. On the
other hand, the heavy vehicles refer to the following: medium truck, heavy truck, super-heavy/special
duty truck and buses, while the motorbikes refer to any type of motorbikes. The meteorological data
(temperature, humidity, wind speed and wind direction) were collected for two days, including on
weekdays and weekends, to examine various scenarios in the study area for accurate and effective
study of traffic CO modelling and mapping (e.g., hazard maps, risk maps, and further analysis).
Figure 4 shows the data collection procedure adopted in this study.
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Figure 3. The sampling locations.

 

Figure 4. Location of traffic CO and meteorological parameter measurement on a highway section.

3.4. Vehicular CO Prediction Model

3.4.1. Vehicular CO Model Parameters

The presented model aims to predict the daily traffic CO emissions and create prediction maps
at different times of a day by using GIS techniques. The traffic CO descriptor (i.e., the dependent
parameter) in the current study is the vehicular CO emissions measured every 15 min. The contributing
parameters to vehicular CO emission were first selected depending on the previous studies and with
consideration of traffic condition, weather characteristics, the surrounding (LULC), topography, and the
building heights in the study area. These parameters are the number of vehicles, number of heavy
vehicles, the number of motorbikes, temperature, humidity, wind speed, wind direction, LULC and
digital surface model (DSM). Many studies have been conducted based on these parameters [32–36].
There are many factors that could affect the vehicular emissions such as engine condition and the fuel
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type (gasoline, diesel); however, these data cannot be detected through field survey. On the other hand,
the data collection did not contain vehicle speed information because the study area is very small
and the variation between the vehicles speed is difficult to differentiate. Consequently, the vehicle
speed profile is stable during the day. There are many vehicular emissions studies conducted without
adopting vehicle speed, such as [25]. The parameters’ statistics are shown in Table 1. The NN model
was used to find out the degree of contribution of each mentioned parameter for estimating the
vehicular CO emission. The NN has the ability to model the complex simulations of non-linear
problems such as vehicular CO emission. However, contributing parameters to vehicular CO emission
may not be directly used as inputs in the NN model, because of high levels of correlation between the
factors resulting in multicollinearity, which can reduce the precision of estimating the vehicular CO
emission. Moreover, using a large number of contributing parameters to vehicular CO emission (traffic
CO predictors) as input layers of NN can generate over-fitting problems and increase the complexity
ratio to run NN model. In the proposed NN model, only relevant and low-correlated parameters were
used as inputs. The relevant and significant factors were selected using the CFS model. Table 2 shows
the traffic CO measurements results.

Table 1. Summary statistics of traffic CO predictors.

Parameter Average Minimum Maximum

Number of vehicles (per 15 min) 1172 126 2762
Number of heavy vehicles (per 15 min) 78 16 325

Number of motorbikes (per 15 min) 112 9 489
Temperature (◦C) 29.9 25.6 37.7

Humidity (%) 73.5 54.3 94.5
Wind Speed (mph) 16.87 16 18.20

Wind Direction (angle) 247.1 0 350
DSM (m) 25.7 10.03 129.5

Table 2. Summary statistics of traffic CO measurements.

Time

Weekend Weekday

Average CO Concentration (per 15 min) (ppm) Average CO Concentration (per 15 min) (ppm)

Min Max Mean Min Max Mean

Morning 0 8 2.36 0 30.5 8.5
Afternoon 0 14.5 3.5 0 12.8 4.5
Evening 0 9.3 3.92 0 27.3 5.84

Night 0 3.6 1.47 0 5.6 1.9

3.4.2. Correlation-Based Feature Selection (CFS) Model

The CFS algorithm is one of the machine learning algorithms which is considered as a filter
algorithm that choose the features based on correlation concepts [37]. A major characteristic of the
correlation-based function is the ability to choose sub-groups that include features that are unusually
correlated to the targeted class but unassociated with each other. On the other hand, this algorithm
neglects the features with low correlation with the targeted class, and this algorithm is used to delete
the duplicated features because they will be correlated with one of the rest of the features at least.
The acknowledgement of a feature will rely on the degree to which it predicts classes in territories of
the instance space not currently anticipated by different features.

The CFS’s feature subset assessment function is presented in Equation (1):

Ms = krc f /
√

k + k( k − 1) r f f (1)

where Ms is the heuristic “merit” of a feature subset S containing k features, rc f is the mean of the
feature-class correlation (f ∈ S), and r f f is the average of the feature-feature intercorrelation.
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3.4.3. Multilayer Perceptron (MLP) Neural Network

The MLP algorithm is one of the ANN algorithms which results from adding hidden layers
to the simple perceptron. In this algorithm, the structure of the NN is generally trained based on
backpropagation algorithm and some related variants. Therefore, the models are designed based on
the integration of the MLP algorithm and a backpropagation algorithm called backpropagation neural
network [38–43]. The multilayer perceptron algorithm was developed due to the computational
limitations that resulted from single-layered perceptron models. According to the experiments,
the multilayer perceptron algorithm has the ability to represent complex simulations and mapping and
process high level non-linear problems. Also, the MLP algorithm has the ability to process the nonlinear
features, thus allowing the representation of a continuous function of non-linear activation functions
such as sigmoid functions [44], which has a clear analogy with the conventional representation of a
periodic function such as a Fourier series (i.e., as the sum of simple sine waves). Therefore, the MLP
can be considered as a universal functional approximation. Figure 3 shows the architecture of an MLP
with several layers of neurons and nonlinear activation functions.

The MLP is considered as a feed-forward system with single or multiple layer of segments among
network output and input layers [38–45]. With the assumption of L-layer MPL, the system can signified
by NL

n0,n1,..., nL
, where nl , l = 0, 1, . . . , L indicate the number of segments in the input layer (l = 0),

the l is number of hidden layers that can range (l = 0, 2, . . . , L − 1), L is the number of layers, and the

output layer is (l = L). X(0) =
[

x(0)0 u1u2 . . . un0

]T
is the input vector and X(l) =

[
x(l)0 x(l)1 . . . x(l)ni

]T

denotes the lth layer output vector in the interval [0, T]. At this time, {ui}, j = 1, 2, . . . n0 represents
the input attribute pattern while x(l)j indicates the output of the jth segments of lth network layer.

The threshold input is represented by x(l)0 with a fixed value at one. The neuron weight of the jth

segment of lth layer from the ith segment of (l − 1) can be represented by ω
(l)
ji . The activation function,

which is connected with all the segments of the system except the input layer, is the tanh function
specified by ρ(S) = tan h(S) =

(
1−e−2S

1+e−2S

)
. The restricted derivative of the ρ(S) based on S is signified

by ρ′(S) that is known as ρ′(S) =
(
1 − ρ2(S)

)
. Also, the linear sum of the jth segment of lth layer is

symbolized by S(l)
j .

In the forward part, at the kth time direct, the input attribute pattern vector of X(0) is implemented
in the system, while the corresponding preferred output is

{
yj
}

, for j = 1, 2, . . . , nL. Since no calculation

is applied, the input layer of the MLP is known by x(0)j = uj for j = 1, 2, . . . , n0. For other layers,
l = 1, 2, . . . , L, and j = 1, 2, . . . , n1, the outputs are computed as:

x(0)j = ρ(S(l)
j ) and S(l)

j = ∑ni−1
i=0 ω

(1)
ji x(l−1)

i .

The probable output is identified by
{

ŷJ
}

and is assumed as
{

ŷJ
}
=
{

x(L)
j

}
for all j = 1, 2, . . . , nL.

The mean square error for the system can be formulated as e2

nL where ej = yj − ŷJ is the error signal for
the jth output. Furthermore, the instantons squared error can be computed by e2 = ∑n L

j=1 e2
j .

However, in the learning part, the BP procedure reduces the squared error by varying {ω
(l)
ji }

according to the gradient search method, recursively. The squared error derivatives connected with
the jth segment in layer l are described as Equation (2):

δ
(1)
j = −1

2
δe2

δS(1)
i

(2)

Then, these derivatives can be formulated as in Equation (3):
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δ
(1)
j =

⎧⎨⎩ ρ′
(

S(l)
j

)
.ej f or l = L

ρ′
(

S(l)
j

)
. ∑n l+1

i=1 ω
(l+1)
i .δ(l+1)

i f or l = L − 1, L − 2, . . . , 1.
(3)

Eventually, the weights of the MLP are reorganized at the kth instant as in Equation (4):

ω
(l)
ji (k + 1) = ω

(l)
ji (k) + Δ(l)

ji (k) and Δ(l)
ji (k) = μδ

(l)
i x(l−1)

i + γΔ(l)
ji (k − 1) (4)

where μ is the learning rate and γ signifies the momentum rate hyper-parameters.
The final proposed network architecture for traffic CO prediction is illustrated in Figure 5.

The proposed network is designed based on the results of the best traffic predictors that resulted from
the CFS model, optimization and hyper-parameter, which are used to select the best predictors.
By using the open source machine learning software (Weka), different MLP structures have
been used to select the optimal MLP neural network model for the traffic CO prediction model.
The proposed methodology was designed by combining the correlation-based feature selection model
and multilayer perceptron.

 

Figure 5. The architecture of the proposed neural network for traffic CO prediction (6-3-1).

3.4.4. Optimization Method

The capacity of the prediction in MLP model relies on its hyperparameter and structure. In this
paper, several network structure hyperparameter combinations were tested to determine a sub-optimal
network model for modeling vehicular CO. Table 3 shows the structures and hyperparameters
evaluated in the current study and their search space domain. In general, there are two main categories
of NN, MLP and radial basis function (RBF). The former uses dot products between inputs and weights
and monotonic activation functions such as sigmoid. The MLP uses dot products between inputs and
weights and monotonic activation functions such as sigmoid while the RBF uses Euclidean distances
between inputs and weights and usually Gaussian activation functions. Both of the networks can be
trained with the back-propagation algorithm. In the RBF model, it is not necessary to use multiple
hidden layers whereas with MLP, multiple hidden layers are used. In addition, the RBF model is
less sensitive to noise than the MLP model. Other parameters of the network are the number of
hidden units, training algorithm, error function, activation function, learning rate, and momentum.
The number of hidden layers controls the complexity of the designed network. A small number
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of hidden units may result in low prediction capacity due to insufficient learning whereas a large
number of hidden layers can reduce the ability of the model to be generalized and can also create
overfitting problems. The training algorithm is the optimization method for calculating the weight for
each node in the network. There are many training algorithms for NN based on back-propagation;
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) and radial basis function training algorithm (RBFT)
are the most recommended back-propagation algorithms used for optimization of NN architecture [46].
During training of the network, an objective function or optimization score function was minimized
according to the labeled training dataset. The optimizer usually has a learning rate and gradient
momentum parameters. In addition, many activation functions such as identity, logistic, and Gaussian
could be used in the hidden layers and the output layers of the neural network.

Table 3. Hyper parameters of the proposed model for traffic CO prediction and their search spaces
used for fine-tuning.

Parameter Search Domain

Type of network MLP, RBF
Number of hidden units (3–40)

Training Algorithm BFGS, RBFT
Hidden Activation Identity, Logistic, Tanh, Exponential, Gaussian
Output Activation Identity, Logistic, Tanh, Exponential, Gaussian

Learning rate (0.1, 0.5)
Momentum (0.1–0.9)

The total number of instances was 352, which was separated into training 70% (246) and testing
30% (106). This sample size is still small compared to other studies. However, it needs a good approach
to handle overfitting problems. One approach is to design a cross-validation evaluation procedure.
Other methods are data augmentation or collecting new samples. There are also methods such as
transfer learning which requires retrained networks. Overall, training of the neural networks with
small datasets requires careful analysis and evaluation before using them in practice. There are also
some tricks to improve the performance of neural networks for small datasets. Those include batch
normalization, rectified linear unit (relu) activations and regularization methods such as l1 and l2.
On the other hand, the hyperparameters of the NN for predicting vehicular CO were chosen based on
the implementation of systematic grid-based search that can be applied with the Scikit-Learn algorithm
using 100 epochs. Although this method demands high quality of computation, more accurate outputs
could result by fine tuning the hyperparameter values. Many models based on various integrations of
parameters were generated. Cross validation (10-fold) was applied to validate each model. Therefore,
the parameters that resulted in higher accuracy are the best parameters.

3.4.5. GIS Modelling

Collecting traffic CO data, especially on the highways, is dangerous and expensive. Therefore,
predicting traffic CO concentrations on highways helps to generate traffic CO data that can be used for
further studies. In this research, the measured and predicted traffic CO concentrations are used for GIS
modelling based on a grid analysis. GIS modelling and mapping are mainly applied to assess affected
people and environments due to inappropriate traffic emissions from traffic activities. The observed
traffic CO samples are an important factor in the model, for computing the relationship between the
predictive factors and carbon concentrations which were applied in the training data, and for the
validation process. After training the NN model with the CO measurements from the field, the NN
model produced a regression equation based on weighted values for each predictor factor, in order
to calculate the predicted values based on the predictor factors that can be easily applied in a GIS
platform; this is the main contribution of the proposed model. This equation has been applied using
GIS to produce a spatial prediction of traffic CO concentration in the study area. This step was applied
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by implementing the final prediction equations on the 5 × 5 m GRID, using ArcGIS tools which are
very efficient for spatial representation [23].

4. Results and Discussion

4.1. Contribution of Traffic CO Predictors

As shown in Table 4, the traffic CO predictors make different contributions to the traffic CO values
that resulted from this study. The statistical analysis based on the Chi-square method shows that the
parameters that contributed the most are the number of heavy vehicles (F = 32.784) and the number of
vehicles (F = 18.277). Conversely, the findings indicated that the other traffic CO predictors (number of
motorbikes, DSM, wind speed and temperature) did not make a significant contribution (Table 4).

Table 4. Results of assessing the contribution of traffic CO predictors using the Chi-square method.

Road Traffic CO Predictors R-Squared F-Statistic

Number of heavy vehicles 0.7546 32.784
Number of vehicles 0.5322 18.277

Number of motorbikes 0.0472 1.951
DSM (m) 0.0168 1.231

Wind speed (mph) 0.0016 0.124
Temperature (◦C) 0.0014 0.1178

4.2. Traffic CO Prediction Results

Two MLP models were trained and tested. The first model was trained based on MLP algorithm
using nine parameters (those listed in Table 1 plus LULC) to predict the traffic CO concentration.
The second model was trained based on the combination with the correlation-based feature selection
(CFS-MLP) and six parameters that resulted from the CFS model. These parameters were: number
of vehicles, number of heavy vehicles, number of motorbikes, temperature, wind speed, and DSM.
The CFS algorithm was implemented to select the highly correlated parameters and best parameters to
predict the traffic CO that led to increased accuracy of the prediction process.

Table 5 shows the proposed model’s results when the input parameters were filtered and reduced
from nine parameters to six based on the CFS algorithm which finds features that have higher
correlation with the class but are uncorrelated with each other. Therefore, the highest correlated
parameters were used for the prediction analysis, which resulted in improving the prediction accuracy.
The relative absolute error decreased from 30.94% to 21.99% and the root relative square error also
decreased from 23.48% to 19.40%. On the other hand, the correlation coefficient increased from
0.866 ppm to 0.98 ppm. The mean absolute error (MAE) was reduced from 0.99 ppm to 0.89 ppm.
The root mean square error (RMSE) also decreased from 1.29 ppm to 1.27 ppm. The prediction results
showed that the prediction improvement occurred after the implementation of the CFS algorithm
which is able to reduce the high dimensionality, remove the low correlated data and improve the
learning accuracy.

Table 5. Results of predictions with MLP model and the proposed model (CFS-MLP) model.

MLP Model CFS-MLP Model

Best structure 9-4-1 Best structure 6-3-1
Correlation coefficient 0.8657 Correlation coefficient 0.980

Mean absolute error (ppm) 0.991 Mean absolute error (ppm) 0.8925
Root mean squared error (ppm) 1.2862 Root mean squared error (ppm) 1.2736

Relative absolute error % 30.94% Relative absolute error % 21.99%
Root relative squared error % 23.48% Root relative squared error % 19.40%

Total number of instances 247 Total number of instances 247
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4.3. Traffic CO Prediction at Different Times of Day

Regression equations were created, based on the results from the CFS-MLP model; the coefficients
of vehicular emissions predictors are calculated to formulate regression models to easily predict
vehicular emission in the study area using a set of predictors that can be gathered from the field and
existing databases in order to facilitate connection with the GIS-based model by applying parameter
coefficients in the spatial model. The decision makers can notice the effect of causative parameters on
vehicular emissions occurrence, which was assessed by the corresponding coefficient that appears in
the regression function [47]. Regression equations were simulated at different times during the day
(morning, afternoon, evening and night) to predict traffic CO at these times. The highest RMSE was
2.9817 ppm during evening observations, while the lowest RMSE was 0.387 ppm at night. Table 6
shows the results of the regression analysis at different times.

Table 6. Regression models for traffic CO prediction based on the CFS-MLP model.

Traffic CO Predictors
Estimated Coefficient

Morning Afternoon Evening Night

Number of vehicles −0.0016 0.0142 0.0108 0.0147
Number of heavy vehicles 0.0622 0.01 0.0319 −0.0216

Number of motorbikes 0.0135 −0.0378 −0.0376 −0.0093
Temperature ◦C −0.4501 0.5512 0.4888 −0.0333

Wind speed mph 0.0752 −0.194 −0.4084 0.0135
DSM m −0.2085 0.213 0.0812 0.1116

Intercept 16.8559 −22.2525 −15.8113 −2.1367
RMSE 2.914 ppm 2.0347 ppm 2.9817 ppm 0.387 ppm

4.4. GIS Modelling Results

A GIS model was applied to generate prediction maps at different times a day (Figures 6 and 7).
The resultant spatial prediction maps showed that the concentrations of traffic CO increased more on
weekdays than on weekends. These maps also showed that there was significant variation between
traffic CO concentrations according to the time of day, with the traffic CO ranging from a high of
35.23 ppm per 15 min during the weekday morning to a low of 4.76 ppm per 15 min during the
weekend night. The prediction maps showed that the highest values of traffic CO are located near the
toll areas compared to other areas such as residential green areas, because of the traffic congestion
at toll gates. The lowest values of traffic CO are concentrated near residential areas which reached
zero values.

4.5. Comparison with Other Models

The developed model was compared with other popular models such as the support vector
machine for regression (SVR) and the linear regression (LR) models. These models generated two
statistical equations based on model parameters. Testing data were used for model validation;
these equations are shown below:

Traffic CO = 0.0022 × Number of vehicles + 0.0403 × Number of heavy vehicles
− 0.0187 × Number of Motorbikes + 0.1957 × Temperature
− 0.0984 × Wind speed − 0.0102 × DSM − 4.4382

(4)

For the LR model:

Traffic CO = 0.05 × Number of heavy vehicles + 0.21 (5)
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Figure 6. Prediction maps during the weekend at different times (morning, afternoon, evening
and night).

181



Appl. Sci. 2019, 9, 313

 

Figure 7. Prediction maps during weekdays at different times (morning, afternoon, evening and night).

4.6. Validation of Traffic CO Prediction Maps

The traffic CO spatial prediction maps were verified using the test sites of traffic CO samples,
and the verification method was then performed by comparing the traffic CO test data and the traffic
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CO spatial prediction maps. The lowest accuracy of the validation was at night time (72.48%) and the
highest accuracy was during the evening (92.75%).

Table 7 shows the comparison between CFS-MLP, SVR and LR model. The comparative analysis
was conducted by using the training data and the proposed model, support vector regression model,
linear regression, land use regression model and dispersion model i.e., CALINE4 model based on
many criteria not only Root mean square RMSE, but we also compared the proposed model with other
baseline models based on mean absolute error (MAE), relative absolute error, root relative squared
error and correlation coefficient. Results showed that the proposed model is superior to the compared
models. The correlation coefficient based on our proposed model was 0.980, which is higher than the
SVR (0.8668) and LR (0.851). The MAE of the proposed model was 0.896 ppm which is lower than SVR
(1.640 ppm) and LR (1.851 ppm). On the other hand, the RMSE results indicated that the proposed
model has the lowest RMSE (1.286 ppm) compared to SVR (2.752 ppm) and LR models (2.849 ppm).
The RAE ratio for the proposed model was calculated to be 21.99%, which was lower than the RAE
ratio of SVR (51.646%) and LR (55.048%). The root relative squared error indicated that the proposed
model has the lowest value (19.40%) among the other models (49.784% and 48.292%).

Table 7. The comparison between CFS-MLP, SVR and LR models.

CFS-MLP Model SVR Model LR Model

Correlation coefficient 0.980 Correlation coefficient 0.8668 Correlation coefficient 0.851
Mean absolute error (ppm) 0.896 Mean absolute error (ppm) 1.640 Mean absolute error (ppm) 1.851

Root mean squared error (ppm) 1.286 Root mean squared error (ppm) 2.752 Root mean squared error (ppm) 2.849
Relative absolute error (%) 21.99 Relative absolute error (%) 51.646 Relative absolute error (%) 55.048

Root relative squared error (%) 19.40 Root relative squared error (%) 49.784 Root relative squared error (%) 48.292
Total number of instances 247 Total number of instances 247 Total number of instances 247

Table 7 shows the comparison between CFS-MLP, SVR and LR model. The comparative analysis
was conducted by using the training data and the proposed models, i.e., SVR, LR, land use regression
model and dispersion model, i.e., CALINE4 model based on many criteria, not only RMSE. We also
compared the proposed model with other baseline models based on mean absolute error (MAE),
relative absolute error, root relative squared error and correlation coefficient. Results showed that the
proposed model is superior to the other models. The CO emission prediction rate can be justified as
highly accurate, where the accuracy is more than 90%; 90% to 80% is a good forecast; 80% to 50% is a
reasonable forecast; and more than 50% is an inaccurate forecast [48–50].

The correlation coefficient based on our proposed model was 0.980, which is higher than the SVR
(0.8668) and LR (0.851). The MAE of the proposed model was 0.896 ppm which is lower than SVR
(1.640 ppm) and LR (1.851 ppm). On the other hand, the RMSE results indicated that the proposed
model has the lowest RMSE (1.286 ppm) compared to SVR (2.752 ppm) and LR models (2.849 ppm).
The RAE ratio for the proposed model was calculated to be 21.99%, which was lower than the RAE
ratio of SVR (51.646%) and LR (55.048%). The root relative squared error indicated that the proposed
model has the lowest value (19.40%) among the other models (49.784% and 48.292%). Table 8 shows the
results of the prediction models when combining the correlation-based feature selection; the correlation
coefficients of the CFS-SVR and CFS-LR are 0. 0.7578 and 0.82, respectively. These values indicated
that there is decrease in the correlation coefficient. The MAE increased for the CFS-SVR and CFS-LR
and reached 1.972 ppm and 1.9713 ppm, respectively. The EMSE also increased to 3.7109 ppm and
3.1057 ppm. Figure 8 illustrates the variations of the traffic CO concentrations in the testing data.
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Table 8. The comparison between CFS-MLP, CFS-SVR and CFS-LR models.

CFS-MLP Model CFS-SVR Model CFS-LR Model

Correlation coefficient 0.980 Correlation coefficient 0.7578 Correlation coefficient 0.82
Mean absolute error (ppm) 0.896 Mean absolute error (ppm) 1.972 Mean absolute error (ppm) 1.9713

Root mean squared error (ppm) 1.286 Root mean squared error (ppm) 3.7109 Root mean squared error (ppm) 3.1057
Relative absolute error (%) 21.99 Relative absolute error (%) 64.3605 Relative absolute error (%) 64.333

Root relative squared error (%) 19.40 Root relative squared error (%) 67.2464 Root relative squared error (%) 56.2795
Total number of instances 247 Total number of instances 247 Total number of instances 247

 

Figure 8. Accuracy assessment of the predicted maps (morning, afternoon, evening and night).

The first model that we compared with one of the baseline models is the CALINE4 model.
The ALINE4 model is a dispersion model, which depends on a plume dispersion model used to predict
the vehicular CO on roadways [48]. The CALINE4 model simulates the data based on a Gaussian
diffusion algorithm and characterizes the pollutants dispersion on roads. We defined the proposed
road network, weather data, traffic flow information, and receptor locations, and the prediction of
traffic CO emissions was obtained. The MAE and RMSE values were 2.376 ppm and 4.2254 ppm,
respectively, whereas and the correlation coefficient value was 0.6504. The prediction results appeared
worse than our proposed model. This may due to the fact that the Gaussian diffusion, which was
assumed in CL4, is not very realistic.

We also compared our work with the Land Use Regression (LUR) Model. This model is generally
applied to predict air pollutants depending on the land use, traffic flow information, meteorology data
and combined them based on a linear regression algorithm. The LUR model showed the following
values: MAE 2.21 ppm, RMSE 4.50 ppm and a correlation coefficient of 0.5989 (Figure 9).

The final LUR equation used is given below:

Predicted CO = 0.0018 × Car + 0.0423 × HV − 0.0219 × Motorbike + 0.2211 ×
Temp/C + 0.0312 × Relative Humidity − 0.1315 × Wind speed + 0.0018 × Wind

Angle Degree − 0.0232 ∗ DSM + 0.0006 × Builtup area + 0.0064 × Highway −
8.6627.

There are many models developed based on GIS and machine learning, for example [26] designed
a model based on the integration of the ANN algorithm and the linear-chain conditional random field
algorithm to produce real-time and fine-grained air pollution prediction maps.
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Figure 9. Comparison between the proposed and other models.
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The air quality data were obtained from fixed air quality stations, the traffic data were collected
from vehicle trajectory, and the meteorology data were collected from monitoring stations. Other data
used were land use, road geometry and social information. Their results presented the prediction maps
with low resolution, cell size (1 × 1) km2 in local scale. The limitation of this model can be summarized
in some points. The data collection from the standard fixed air quality monitoring stations may not be
able to measure the air quality that people are exposed on the ground level due to the limitation of
monitoring location and height. On the other hand, the data obtained from the fixed stations are not
suitable for high-resolution prediction maps such as microscale maps. Moreover, this study did not
contain information about the terrain and buildings.

The proposed model in this research is different from the aforementioned study based on some
points. We developed a GIS-based NN and data were obtained from a field survey. Moreover,
the land use and DSM were extracted from a very high resolution LiDAR data clouds. The proposed
methodology is designed to predict the vehicular CO and produce high-resolution maps at a microscale
level (5 × 5) m2 whereas the aforementioned paper estimated air pollutants based on a low-resolution
grid (1 × 1) km2.

Regarding the meteorology parameters shown in Table 4, it is evident that the correlation between
wind speed and vehicular emissions is 0.0016, which is considered weak in the short-term prediction
and in a small area compared to other factors. In addition, the temperature has the lowest correlation
with vehicular emissions 0.0014; therefore, the variation in the vehicular emissions (i.e., CO) may not
be significantly affected by the weather condition in the prediction in small areas. On the other hand,
the DSM, which was used to extract the terrain and building’s altitude in the study area, has a good
correlation with vehicular emissions (more than meteorology parameters). Therefore, the geographic
factors are important in prediction studies. This study adopted high-resolution elevation data in order
to extract results that are more accurate. In urban areas, building altitude is an important parameter
because it can resist vehicular emissions and prevent the distribution of pollutants in urban areas.

5. Conclusions

Traffic emissions (e.g., traffic CO) are considered the major source of air pollution in congested
urban areas, including road corridors in toll plaza areas. Traffic emission prediction models are utilized
to evaluate the impacts of traffic CO emissions on the population and environment and some models
are used to illustrate the spatial prediction of these emissions. In this paper, a hybrid prediction model
was proposed by combining three models (CFS, MLP and GIS) to predict the traffic CO emissions and
create micro-scale prediction maps in a small area at different times during the day. The final findings
have shown that the proposed model scored an accuracy of 80.6% and the correlation coefficient
of 0.980, RMSE of 1.2736 ppm and mean absolute error of 0.8925 ppm. We used CFS to identify
and remove highly correlated parameters so that redundancy was reduced to choose the optimum
parameters used in the prediction model through MLP. The simulation results showed that nine
predictors were reduced to six, which contributed to an increase in the prediction accuracy.

The data were collected from the field and remote sensing data (i.e., LiDAR and very
high-resolution WorldView-3 satellite image), and modelling was performed in a GIS environment.

In this study, we produced microscale maps for vehicular emissions. The simulated traffic
CO emissions ranged from 35 ppm inside the toll plaza area to 0 ppm for areas that were located
far away from the toll area. As per the microscale-prediction maps, high spatial variation in the
traffic CO emissions was identified. The highest value of CO concentrations is found in traffic jam
areas. Conversely, the lowest values of traffic CO emissions are distributed far from traffic activities.
The highest concentrations of traffic CO were located inside the toll plaza because of the traffic jam that
occurs daily in the toll areas these results give a clear indication about the relationship between the
traffic activities and the traffic CO emissions. The traffic CO emissions may have a significant impact
on the health of toll plaza workers, drivers and the passengers. Therefore, such a prediction model can
aid decision makers to implement plans to mitigate the traffic emissions that can protect people who
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are working, passing through or living near toll plaza areas; this will be the main advantage of the
proposed forecasting system.

Traffic CO emission prediction models and GIS modeling are both efficient tools for transportation
planning and traffic emission assessment. The prediction maps produced by the proposed model
can be used as an effective tool in the decision-making process to identify optimum solutions
which can be used to mitigate traffic jams in toll plaza areas as well as on highways and road
networks. As traffic emission pollution assessment by decision makers is very complicated and usually
expensive because of the high level of requirements for expert knowledge and the developed support
systems, the presented traffic CO assessment model is not expensive and can easily implemented.
Moreover, the traffic CO pollution concentrations vary based on the traffic condition and the number
of vehicles, which requires a periodic monitoring of traffic emissions by government agencies or
relevant departments. The best parameter selection analysis could be used to reduce the data collection
requirements, which can lead to reduced time required, resources utilized and processing time needed.
GIS modeling is a useful tool for non-expert users to implement the traffic CO impact assessments in
various applications. Finally, these models can be improved by using more advanced algorithms such
as deep learning algorithms and a large number of samples that can be used to increase the accuracy
of the prediction process.
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Abbreviations

GIS
A Geospatial Information System is a system designed to collect, manage, analyze, store and
produce different types of spatial data.

CO
Carbon Monoxide is a toxic gas and it has no has no color, taste, or smell, resulting from the
incomplete combustion of fuel.

RMSE
The algorithm of the root mean square is used to calculate the differences between values
estimated by a model and the observed values.

VISSIM
Software designed for traffic flow simulation at a micro-scale level, which is designed by
Planning Transport Verkehr (PTV), Germany.

EPR
The evolutionary polynomial regression, EPR, is one of the data-mining algorithms developed
based on evolutionary computing and the integration of numerical regression and
genetic algorithm.

CFS
A correlation-based feature selection algorithm, which is a type of filter algorithm that selects
features based on a heuristic (correlation-based) function.

LiDAR
Light Detection and Ranging is an advanced surveying technology usually used to create 3D
models by measure the distance between targets and the Laser Sensor.

ENVI
Environment for Visualizing Images: professional software used for image analysis and
remote sensing applications.

MLP
A multilayer perceptron (MLP) is a class of feedforward artificial neural networks. An MLP
consists of, at least, three layers of nodes: an input layer, a hidden layer and an output layer.
Except for the input nodes, each node is a neuron that uses a nonlinear activation function.

LULC
Land Use and Land Cover are data files that describe the land surfaces such as water,
vegetation and cultural features.

CFS-MLP
The proposed model that is the combination of two models, the correlation based feature
selection algorithm and multilayer perceptron Neural Network algorithm.
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CALINE4
California Line Source Dispersion is one of the dispersion models used to estimate carbon
monoxide emissions near roads based on various parameters related to geographic locations.

MAE

Mean Absolute Error, MAE, measures the average magnitude of the errors in a set of
predictions, without considering their direction. It is the average over the test sample of the
absolute differences between prediction and actual observation where all individual
differences have equal weight.

RAE
Relative Absolute Error is defined as the absolute error relative to the size of the measurement,
and it depends on both the absolute error and the measured value. The relative error is large
when the measured value is small, or when the absolute error is large.

ANN

An Artificial Neural Network is a computational model based on the structure and functions
of biological neural networks. Information that flows through the network affects the structure
of the ANN because a neural network changes—or learns, in a sense—based on that input
and output.
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Abstract: Unmanned aerial vehicle (UAV) images that can provide thematic information at much
higher spatial and temporal resolutions than satellite images have great potential in crop classification.
Due to the ultra-high spatial resolution of UAV images, spatial contextual information such as
texture is often used for crop classification. From a data availability viewpoint, it is not always
possible to acquire time-series UAV images due to limited accessibility to the study area. Thus, it is
necessary to improve classification performance for situations when a single or minimum number
of UAV images are available for crop classification. In this study, we investigate the potential
of gray-level co-occurrence matrix (GLCM)-based texture information for crop classification with
time-series UAV images and machine learning classifiers including random forest and support vector
machine. In particular, the impact of combining texture and spectral information on the classification
performance is evaluated for cases that use only one UAV image or multi-temporal images as input.
A case study of crop classification in Anbandegi of Korea was conducted for the above comparisons.
The best classification accuracy was achieved when multi-temporal UAV images which can fully
account for the growth cycles of crops were combined with GLCM-based texture features. However,
the impact of the utilization of texture information was not significant. In contrast, when one August
UAV image was used for crop classification, the utilization of texture information significantly
affected the classification performance. Classification using texture features extracted from GLCM
with larger kernel size significantly improved classification accuracy, an improvement of 7.72%p in
overall accuracy for the support vector machine classifier, compared with classification based solely
on spectral information. These results indicate the usefulness of texture information for classification
of ultra-high-spatial-resolution UAV images, particularly when acquisition of time-series UAV images
is difficult and only one UAV image is used for crop classification.

Keywords: unmanned aerial vehicle; texture; gray-level co-occurrence matrix; machine learning; crop

1. Introduction

Agricultural environments are known to be sensitive to abnormal weather conditions and climatic
disasters such as drought and flood [1,2], thus rendering essential systematic monitoring of crop
conditions and crop yield forecasting [3,4]. Remote sensing technology received attention in the
agriculture community due to its ability to provide periodic and regional information for crop
monitoring and thematic mapping [5,6].

Crop type maps derived from classification of remote sensing images are important resources
for crop yield estimation and forecasting. Since any error in the crop type maps affects outputs
of crop yield and forecasting models, it is critical to generate reliable crop type maps [6]. The most
important elements of input remote sensing images for crop classification are their spatial and temporal
resolutions. Since each individual crop has its own growth cycle, time-series images are necessary to
fully account for variations of physical characteristics that accompany crop growth [7,8]. According to
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the scale of the target area of interest, satellite images with proper spatial resolution should be used as
input for crop classification. If coarse-resolution satellite images are used, mixed pixel problems are
likely and classification performance decreases [9,10]. This is a common issue in Korea, where various
types of crops are cultivated in small areas. The use of high-resolution satellite images and aerial
photos can contribute to resolving the mixed pixel issues [11,12]. Despite the increased discrimination
capability of high-resolution images, it is difficult to collect time-series datasets over the full growth
cycles of crops. Acquisition of optical satellite images depends heavily on atmospheric conditions;
thus, the images are often contaminated and masked by clouds. In addition, it is difficult to acquire
time-series aerial photos at desired times due to cost issues.

In recent years, there was a growing interest in imaging of unmanned aerial vehicles (UAV) [11–15].
The advantage of UAV images over satellite images is their ability to provide local thematic information
with much higher spatial and temporal resolutions [15]. UAV images with ultra-high spatial
resolution [16,17] can improve the discrimination capability of various surface objects, leading to
an increase in the number of detectable targets. Compared with satellite images, low-cost flexible
control of unmanned aerial systems (UAS) enables easier acquisition of images at the desired times
between sowing and harvesting of crops [12,15,16].

Despite the great potential of UAV imaging, the technique has several practical issues. Firstly,
the ultra-high spatial resolution of UAV images usually causes noise effects due to increased
detectable targets when conventional pixel-based approaches are applied for classification [11,18,19].
The common approach to mitigate noise effects is to either use spatial contextual information or apply
an object-oriented classification approach. For the spatial contextual information approach, texture
information is firstly extracted from a gray-level co-occurrence matrix (GLCM) [20] and then combined
with spectral information for classification [21–23]. The utilization of such texture information can
reduce the impacts of isolated pixels within the pixel-based approach. The object-oriented approach
first extracts meaningful objects via multi-resolution segmentation [24] and classification is then carried
out on object units [25–27]. These two approaches are known to achieve better classification accuracy
than the pixel-based approach based purely on spectral information [19,22]. The second issue is heavy
computational load related to data preprocessing and processing [11]. Most UAV images are acquired
using a narrow field-of-view, which requires mosaicking of many sub-images to obtain a complete
image set. If the sub-images are taken at different solar conditions and flight altitudes, radiometric
calibration should be employed during mosaicking. The ultra-high spatial resolution of UAV images
makes preprocessing complex and requires much processing time for classification [11].

Another important issue is that it is not always possible to construct a time-series UAV image set
for crop classification. Although the acquisition of UAV images is less affected by atmospheric
conditions than satellite images, it may be difficult to take UAV images in some season [12],
particularly the rainy season which coincides with the growing season of crops in Korea. From an
operational viewpoint, the acquisition of time-series UAV images for crop classification essentially
has a prerequisite that operators make several visits to the area of interest. From a practical point
of view, it is necessary to acquire optimal images at certain times, achieving classification accuracy
comparable to the use of a complete time-series image set. Crop classification using UAV images is
primarily conducted using a single UAV image [21,28], but accuracy comparisons with the case using
a time-series image set are yet to be considered fully.

In addition to data acquisition issues, selection of proper classification methodology is important
in order to generate reliable crop classification results. Since the 2000s, machine learning algorithms
such as random forest (RF) and support vector machine (SVM) were widely applied to crop
classification with remote sensing data [29–34].

Along with the aforementioned issues related to crop classification with UAV images and selection
of appropriate classification methodology, this paper focuses on the evaluation of the effectiveness
of texture information for crop classification with UAV images. In particular, the classification
performance using a single-date UAV image is compared with that of a time-series image set.
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In this study, two machine learning algorithms, RF and SVM, are applied as classification models,
and the GLCM-based texture features [20] are used as additional features to reduce noise effects.
From a practical viewpoint, we also investigate how much the utilization of texture information can
improve classification accuracy when only a single-time UAV image is available. A case study of crop
classification with UAV images in Anbandegi, a highland Kimchi cabbage cultivation area in Korea,
was conducted to illustrate and discuss the two issues including the limited use of the UAV image and
the impact of GLCM-based texture features on classification performance.

2. Materials and Methods

2.1. Study Area

Anbandegi, in the Gangwon Province of Korea, a major highland Kimchi cabbage cultivation
area, was selected as the case study area (Figure 1). Summer Kimchi cabbage is usually cultivated in
highlands in Korea because high temperature and humidity causes physiological disorders, insect
pests, and diseases [35]. The altitude of the study area is about 1000 meters above mean sea level
and is relatively higher than the surrounding terrain, which is suitable for highland Kimchi cabbage
cultivation [35]. In the study area, cabbage and potatoes are also grown along with highland Kimchi
cabbage. The total area of all crop parcels in the study area is 42.5 ha and the average size of each crop
parcel is about 0.6 ha. The land-cover type of non-crop areas is mainly forest.

Figure 1. Location of the study area and the unmanned aerial vehicle (UAV) image mosaic acquired in
the study area.

2.2. Datasets

2.2.1. UAV Images

We used six UAV image mosaics taken from June to September 2017, by considering the growth
cycle of highland Kimchi cabbage (Table 1). The preprocessed UAV image mosaics provided by the
National Institute of Agricultural Sciences (NAAS) were acquired from a fixed-wing unmanned aerial
system (UAS; eBee, Sensefly, Swiss) equipped with a Cannon S110 camera that includes green (550 nm),
red (625 nm), and near-infrared (NIR; 850 nm) spectral bands (hereafter referred to as VNIR). The UAV
image mosaics with a ground sampling distance of 12 cm were upscaled to 25 cm resolution to facilitate
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data processing without loss of information. Upscaling may result in loss of textural image information.
However, a significant change in the generation of texture features and classification results was not
observed in our preliminary experiment at subareas in the study area, which was attributed to the
size of crop parcels in the study area. Hence, the image mosaics with a 25 cm resolution were used as
inputs for classification. To examine the applicability of a single-date image with texture information,
the UAV image mosaic acquired on 25 August was selected due to the peak in vitality of highland
Kimchi cabbage. This selection is explained in detail in Section 3.

Table 1. List of unmanned aerial vehicle (UAV) image mosaics acquired in the study area in 2017.

No. Acquisition Date

1 29 June
2 12 July
3 27 July
4 25 August
5 13 September
6 21 September

2.2.2. Ground-Truth Data and Land-Cover Map

Ground-truth crop types were obtained by field surveys, which were also provided by NAAS.
These data were used to both extract training data and to evaluate the classification performance.
Table 2 presents crop classes for supervised classification and area information of each crop type.
To mimic a case with limited available training data, 20,000 pixels (about 0.3% of ground-truth
data) were randomly selected and used for training data for supervised learning. The remaining
6,710,210 pixels (99.7% of ground-truth data) were used as reference data. Note that a relatively small
training dataset and a large reference dataset are used for classification and evaluation, respectively.
Since the main targets of classification were crops in the study area, non-crop areas, including forests,
were masked out prior to classification using land-cover maps from the Ministry of Environment [36].

Table 2. Crop classes and their respective area information in the study area.

Classes Total Area (ha) Average Area per Parcel (ha)

Highland Kimchi Cabbage 22.38 0.59
Cabbage 8.35 0.59

Potato 8.65 0.86
Fallow 3.08 0.31

2.3. Classification Methods and Feature Extraction

2.3.1. Random Forest

The RF classifier developed by Breiman [37] performs classification by extending decision trees to
multiple trees rather than a single tree. Its classification performance is superior to a single decision tree
due to its ability to maximize diversity through tree ensembles. It also demonstrates greater stability
due to the synthesis of classification results from a large number of trees and the determination of final
class labels through majority voting. In addition, RF requires a few parameters (i.e., the number of
variables for node partitioning and the number of trees to be grown) to be set, unlike other machine
learning algorithms.

The RF classifier applies bootstrap aggregating (bagging) to tree learners. Bagging repeatedly
selects a random sample to replace the training data and fits trees to these samples. The remaining
training data, the out-of-bag (OOB) data, are used to validate trees [37]. The OOB error that is the
error rate of the OOB classifiers is often used as a measure of the generalization error on the training
data [37]. To avoid overfitting the training data, each node of the trees determines the partitioning
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condition, and each tree chooses the random predictor variable and divide node using a genie index,
as a measure of heterogeneity. An additional function of the RF classifier is to compute quantitative
measures for variable importance using mean decrease impurity (MDI) and mean decrease accuracy
(MDA) [28]. When constructing a large number of trees, MDI and MDA can be calculated by averaging
the weighted impurity of each tree and the degree of accuracy improvement, respectively, by randomly
changing the variable. In this study, the variable importance was used to quantify how useful texture
information is for crop classification.

2.3.2. Support Vector Machine

SVM is a machine learning algorithm for finding the optimal decision boundary of training data
located at the boundary of classes [38]. The SVM classifier is known to be effective for classification with
a limited amount of training data [39]. The main concept of SVM is to solve the optimization problem
which maximizes the margin between decision boundaries [40]. To solve non-linear optimization
problems, kernel functions such as radial basis function (RBF) are commonly used [39]. When the RBF
kernel is used, the parameters of cost and gamma should be optimally determined. Large values of
cost and gamma result in overfitting to the training data, yielding poor generalization ability of the
classifier [41]. In this study, these two hyper-parameters were determined using a grid search based on
10-fold cross-validation of training data [42].

2.3.3. Texture Information

To reduce the noise effects of isolated pixels in classification results, texture information is
considered as an auxiliary feature for classification. Image texture analysis methods can be divided
into four categories: statistical, geometric, model-based, and signal processing [43]. GLCM, developed
by Haralick et al. [20], is a widely applied statistical method for remote sensing data processing
such as vegetation structure modeling [44] and land-cover classification [45]. The original image is
first converted to gray-scale. Then, the spatial features of the gray-scale image are extracted using
the relationship of the brightness values between the center pixel and its neighborhood within the
predefined kernel. The relationship of the brightness values is represented by a matrix which consists
of the occurrence frequency of sequential pairs of pixel values existing simultaneously along the
defined direction. By using this relationship, the GLCM can generate different texture information
according to gray-scale level, kernel size, and direction. Fourteen texture features defined by Haralick
et al. [20] are correlated, indicating that using all possible texture features provides redundant spatial
contextual information which is not useful for classification. In this study, six texture features [46] were
considered: (1) mean (ME), (2) standard deviation (STD), (3) homogeneity (HOM), (4) dissimilarity
(DIS), (5) entropy (ENT), and (6) angular second moment (ASM), presented in Equations (1) to (6):

ME =
N−1

∑
i=0

N−1

∑
j=0

i × P(i, j), (1)

STD =

√√√√N−1

∑
i=0

N−1

∑
j=0

P(i, j)× (i − ME)2, (2)

HOM =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)
1 + (i − j)2 , (3)

DIS =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)× |i − j|, (4)

ENT =
N−1

∑
i=0

N−1

∑
j=0

−P(i, j)× ln(p(i, j)), (5)
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ASM =
N−1

∑
i=0

N−1

∑
j=0

P(i, j)2, (6)

where N denotes gray-scale level, while P(i, j) is the normalized gray-scale value at positions i and j
within the kernel, and its sum is 1.

The above texture features were generated from omnidirectional 64-shade gray-scale images.
To test the impacts of the kernel size, we used three different kernel sizes: 3 × 3 (GK3), 15 × 15 (GK15),
and 31 × 31 (GK31).

2.4. Classification Procedures

The entire procedure for crop classification with UAV images is presented in Figure 2. For each
classifier, optimal parameters were first sought during a training phase. To investigate the impacts
of both the number of input images and texture features, we tested eight combination cases for each
classifier: UAV images (two cases: with the August image and with six multi-temporal images),
and texture features (four cases: with texture features from three different kernel sizes (GK3, GK15,
and GK31), and without texture features). These combinations were considered for comparison
purposes since the main objective of this study was to evaluate the effectiveness of using texture
information when a single-date UAV image is used for crop classification. The classification accuracy
was assessed using quantitative measures based on a confusion matrix such as overall accuracy (OA),
producer’s accuracy (PA), and user’s accuracy (UA).

Figure 2. Schematic diagrams of all crop classification procedures applied in this study. GLCM:
gray-level co-occurrence matrix; RF: random forest; SVM: support vector machine.

2.5. Implementation

ENVI software version 4.8 was used for generation of GLCM-based features and visualization
of classification results. All procedures for classification and evaluation were done within the
R software environment [47]. SVM and RF models were built using the R packages e1071 [42] and
randomForest [48], respectively.
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3. Results and Discussion

3.1. Parameterization of RF and SVM Classifiers

For the RF classifier, two parameters, the number of variables required for node partitioning
and the number of trees to be grown, have to be selected. Firstly, the number of variables for node
partitioning was set to

√
n of the total number of variables. For example, for the case using the

August image with texture information, there were nine variables (three spectral bands and six texture
features); thus, the number of variables for node partitioning was set to 3. To determine the number
of trees to be grown, variations of OOB errors with respect to the number of trees were investigated.
From the variations of OOB errors, one can judge whether a sufficient number of trees were used for
the RF modeling. In general, the OOB errors tend to decrease as the number of trees increases, and
then converge to a certain value at the specific number of trees. When six multi-temporal UAV images
were used as inputs, no distinctive differences in OOB errors were observed, and the error values
were also very low for different texture feature cases. Figure 3 shows the variations of OOB errors
when using the August image without and with texture features. The four combination cases showed
different convergence values, but the variation patterns were very similar. As the number of trees
increased to about 50, the OOB errors of all four combination cases decreased sharply. Then, the OOB
errors reached the convergence values when the number of trees was about 150. By considering the
convergence of OOB errors and processing time, the number of trees to be grown was set to 150.

Figure 3. Variations of out-of-bag (OOB) errors of RF models with respect to the number of trees for
the case using the August UAV image without and with texture features: (a) visible and near infrared
(VNIR) spectral bands only; (b) VNIR + 3 × 3 kernel (GK3); (c) VNIR + 15 × 15 kernel (GK15); and
(d) VNIR + 31 × 31 kernel (GK31).

Two parameters (cost and gamma) of the RBF kernel for the SVM classifier were tuned using
a grid search. The optimal combination of the two parameters was determined through 10-fold
cross-validation of training data. The optimal cost and gamma values were similar for combination
cases of different kernel sizes of GLCM and input UAV images. Figure 4 presents the grid search results
for the cases using the August image and six multi-temporal UAV images with texture feature GK31,
showing the different training accuracy values. The training accuracy obtained by the grid search
ranged between 52 and 82.4% for the case using the August image with texture features, while the
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maximum training accuracy for the case using six UAV images increased to 94%. It should be noted
that this accuracy was obtained during the training phase; hence, higher training accuracy may fail to
achieve higher prediction performance. It was found that the performance difference with respect to
variations of the model parameters for the SVM classifier was also great, compared to the RF classifier,
which indicates the importance of optimal parameter search for the SVM classifier.

Figure 4. Cross-validation accuracy of SVM classifiers through a grid search. The case with the best
accuracy is underlined: (a) using a single August image with VNIR and GK31 texture features; and (b)
using six UAV images with VNIR and GK31 texture features.

3.2. Visual Assessment of Classification Results

Once optimal parameters were determined, the RF and SVM classifiers were applied to the
different case combinations. Prior to quantitative accuracy assessment, the visual assessment of
classification results was first conducted. When the RF and SVM classification results were compared
for different combinations of input images and kernel sizes, the RF classifier showed misclassifications
at some parcels in the southeastern parts of the study area, but significant differences in classification
patterns were not observed. Figure 5 shows some classification results using the SVM classifier. When
three spectral bands of the August image were used for classification, misclassification and noise
effects by isolated pixels were the greatest in visual inspection of classification results. Confusion
between highland Kimchi cabbage and cabbage was most common, as shown in Figure 5b, mainly due
to their similar spectral characteristics in August (this is further discussed in Section 3.5). When texture
features were combined with spectral information for the case using the August image only, the
number of misclassified and isolated pixels decreased, but some misclassified pixels were still shown
(Figure 5c). Using multi-temporal images greatly reduced misclassified pixels within each parcel,
except for some around the parcel boundaries (Figure 5d). As expected, the use of texture features as
additional information with multi-temporal spectral information showed the best agreement with the
ground-truth data from visual inspection (Figure 5e), indicating the necessity of time-series images
and texture features for crop classification.

The impacts of texture features generated by different kernel sizes on the classification results
were also visually compared. The classified patterns were significantly affected by kernel size. When a
very small kernel size, such as GK3, was used to extract texture features, the classification result was
very similar to the case with spectral information only. As the kernel size increased, the noise effect was
greatly alleviated. When multi-temporal images were used for classification, however, the combination
of texture features with multi-temporal spectral information was less affected by the change in kernel
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size. The increase in kernel size resulted in the reduction of isolated noise patterns, but the difference
was subtle compared to the case using the August UAV image.

Figure 5. Comparison of SVM-based classification results with ground-truth data: (a) ground-truth
data; (b) August image with VNIR; (c) August image with VNIR and GK31 texture features; (d) six
multi-temporal images with VNIR; and (e) six multi-temporal with VNIR and GK31 texture features.

3.3. Quantitative Accuracy Assessment

The aforementioned visual and qualitative comparison results were further evaluated
quantitatively by computing and comparing accuracy statistics. Confusion matrices were first prepared
for all combination cases of each classifier, and related accuracy statistics were calculated by comparing
classification results with reference data that were not used for training.

Figure 6. Overall accuracy of classification results without texture features and with texture
features generated from different kernel sizes for the cases using the August image and six
multi-temporal images.
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Figure 6 shows variations in OA of classification results without texture features (VNIR) and with
texture features generated from different kernel sizes (GK3, GK15, and GK31) using the August image
and multi-temporal images. Although a very small portion of ground-truth data were used as training
data, the OA values for the two classifiers were notably high (i.e. over 97%) when multi-temporal
images were used for classification. Regardless of the number of input images and the classifier type,
the combination of texture features and spectral information led to an increase in OA. The OA also
increased with kernel size; however, only a slight improvement of OA was achieved for classification
with multi-temporal images as kernel size increased. This result can be explained by the fact that
most useful information for the discrimination of crops was already provided by time-series spectral
information; hence, the contribution of texture features was minimal. In contrast, the improvement
in OA by accounting for texture features was much more significant in the classification result using
the August image only than using the multi-temporal images. Furthermore, the kernel size of GLCM
greatly affected the OA using the August image. As kernel size increased, OA increased for both SVM
and RF classifiers, and the use of GK31 texture features showed the best classification accuracy.

When comparing classification performance of both classifiers, the SVM classifier exhibited better
OA than the RF classifier for the classification with the August image, indicating the superiority of
the SVM classifier for the classification of crops in this study area. The difference in OA between
SVM and RF classifiers was significant at the 5% significance level from the McNemar test [49],
regardless of kernel sizes. It is noteworthy that the small difference in OA between two classifiers
was significant at the 5% significance level even for all classification results based on multi-temporal
images. Despite the similar OA values between two classifiers in the classification of multi-temporal
images, this statistically significant difference was mainly due to evaluation with a very large amount
of reference data (6,710,210 pixels). Even though parameter tuning is more demanding in the SVM
classifier than the RF classifier, the optimal two parameters of the SVM classifier which were determined
during a training stage with a relatively small training dataset could avoid overfitting the training
data, leading to generalization ability for the large amount of reference data in this study.

Some confusion matrices for typical combination cases of the SVM classifier (one image versus
multi-temporal images and with or without texture features) are listed in Table 3. Considering only
the August image, combining texture features (GK31) with spectral information led to an increase of
7.72%p in OA, compared with the classification result with spectral information only (from 83.13%
to 90.85%). The increase of class-wise accuracies was also achieved, as well as the improvement in
OA. As discussed in the visual analysis of classification results, the confusion among four classes
in Table 3 (particularly between highland Kimchi cabbage and cabbage) was significantly reduced,
yielding increases in both PA and UA for all classes. When the August image with VNIR only was
considered for classification, the similar vegetation vitality of highland Kimchi cabbage, cabbage, and
weeds within the fallow class resulted in severe confusion. By accounting for texture features with
spectral information, the confusion could be reduced. However, PA and UA of cabbage were relatively
lower than that of other crops, indicating a persistent misclassification of cabbage to highland Kimchi
cabbage. When multi-temporal images were used for classification, the accuracy values of all classes
increased, particularly with cabbage. Texture features with multi-temporal spectral information proved
most useful in the cabbage class because it alleviated the misclassification of cabbage to highland
Kimchi cabbage.

Based on all evaluation results in Figure 6 and Table 3, it can be concluded that texture information
extracted by the proper kernel size can improve classification performance, and the impact of using
texture features is most significant when using a single image for crop classification. The latter
finding implies the usefulness of texture information when only one UAV image is available for crop
classification, due to difficulty acquiring time-series UAV images in the area of interest.
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Table 3. Confusion matrices and accuracy statistics of some combination cases for the support vector
machine (SVM) classifier. VNIR: visible and near infrared; UA: user’s accuracy; PA: producer’s
accuracy; OA: overall accuracy; GK31: kernel size of 31 × 31.

August Image: VNIR Spectral Information

Classification

Reference Highland Kimchi
Cabbage

Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,074,131 342,355 49,838 84,726 86.57
Cabbage 230,661 869,250 65,288 6627 74.18

Potato 107,897 124,020 1,259,483 31,883 82.68
Fallow 67,045 12,343 9497 375,166 80.85
PA (%) 88.34 64.49 91.00 75.27
OA (%) 83.13

August Image: VNIR Spectral Information and GK31 Texture Features

Classification

Reference Highland Kimchi
Cabbage

Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,317,807 237,669 22,404 44,455 91.59
Cabbage 128,847 1,050,991 57,648 2636 84.75

Potato 16,522 54,544 1,294,756 18,465 93.53
Fallow 16,558 4764 9298 432,846 93.39
PA (%) 95.35 77.97 93.54 86.85
OA (%) 90.85

Multi-Temporal Images: VNIR Spectral Information

Classification

Reference Highland Kimchi
Cabbage

Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,421,871 46,150 11,031 41,618 97.19
Cabbage 15,143 1,294,009 10,189 4185 97.77

Potato 2092 4562 1,360,566 200 99.50
Fallow 40,628 3247 2320 452,399 90.73
PA (%) 98.34 96.00 98.30 90.77 97.30
OA (%) 97.30

Multi-Temporal Images: VNIR Spectral Information and GK31 Texture Features

Classification

Reference Highland Kimchi
Cabbage

Cabbage Potato Fallow UA (%)

Highland Kimchi cabbage 3,461,811 35,558 5349 16,199 98.38
Cabbage 7159 1,309,847 5323 2337 98.88

Potato 1346 792 1,372,686 186 99.83
Fallow 9418 1771 748 479,680 97.57
PA (%) 99.48 97.17 99.17 96.24 98.72
OA (%) 98.72

3.4. Comparison of Spectral and Texture Information

To examine which variable was most influential for classification performance, quantitative
measures for variable importance were computed using the MDA in the RF classifier. MDA values of
input variables with respect to different kernel sizes of GLCM are shown in Figure 7. Since 54 input
variables were used for the classification of six multi-temporal images, only the top nine variables
with the highest MDA values are presented for illustration purposes. Regardless of input images and
the kernel size of GLCM, NIR and green bands were the most influential variables of the RF classifier.
In particular, the NIR bands from July to September were included as important variables for the
classification of multi-temporal images. Note that spectral information was more useful than texture
information, and only one texture feature, such as ME, was helpful for multi-temporal images. ME,
which is an estimate of the intensity of all pixels in spatial relationships that contribute to the GLCM,
was the most important variable among the six texture features, irrespective of input images.
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Figure 7. Mean decrease accuracy (MDA) values of input spectral and texture variables with respect to
kernel size: (a) August image; and (b) multi-temporal images. ME: mean; ENT: entropy; ASM: angular
second moment; STD: standard deviation; HOM: homogeneity; DIS: dissimilarity.

The MDA values of input variables were quite different according to the input images. When six
multi-temporal images were used for classification, the MDA value for each variable was relatively
small due to contributions of many input variables, but information content provided by many input
variables led to very high classification accuracy, as shown in Table 3. Although multi-temporal
spectral bands were considered the most informative, the influence of ME increased with kernel size
(see the MDA value of ME for GK31 in Figure 7). With classification using only the August image,
ME was the second most important variable for GK15 and GK31, indicating that the ME feature is
very useful for the classification of crops in the study area. The contribution of other texture features
increased with kernel size. For GK3, MDA values of texture features were much smaller than those of
spectral bands. With increasing kernel size, gains in MDA values were most significant for texture
features, including DIS and ENT. Texture information extracted from the GLCM with the proper kernel
size can fill gaps in multi-spectral information, leading to an improvement in classification accuracy,
as shown in Figure 6 and Table 3.

Figure 8. Some texture features (GK31) in subareas of the August image.

For further qualitative inspection of texture features, some texture features in four subareas of
GK31 are provided in Figure 8. Brighter colors represent larger values in each texture feature. ME,
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which is regarded as the GLCM mean, provides low-pass filtered spatial information that is useful
to mitigate noise effects in the ultra-high-resolution UAV image. As an index for measuring the
randomness of contrast distributions, ENT increased with greater change of brightness values between
the center pixel and its neighboring pixels. ENT values for different classes appear in Figure 8. ASM,
which measures uniformity of contrast, also changed with the four classes. This visual inspection of
texture features further confirmed the usefulness of texture information.

When considering the spatial resolution of the UAV image used for crop classification (i.e., 25 cm),
GK3 and GK31 texture information represents 0.75 m and 7.75 m on the ground, respectively. The GK31
texture features are likely to represent the serial line patterns of crop cultivation well, consequently
leading to superior OA. However, this is the particular result in the study area. If the spatial resolution
of input images and the crop types change, the optimal kernel size of GLCM should be determined
by considering spatial resolution, as well as cultivation patterns and crop characteristics such as size
and shape.

3.5. Time-Series Analysis of Normalized Difference Vegetation Index for Selection of Optimal UAV Image

Spectral characteristics of crops depend on crop type and health conditions, but different crops
may exhibit similar spectral response [35,50]. Accordingly, time-series images acquired during growth
cycles of crops are often used to examine how well these images account for temporal variations
of spectral response. For example, if temporal patterns in spectral responses of crops in the study
area are significantly different, classification based on multi-temporal images can achieve satisfactory
classification accuracy. Conversely, discrimination of crops with similar temporal variations of spectral
responses may be difficult, even when multi-temporal images are used.

Figure 9. Temporal profiles of average normalized difference vegetation index (NDVI) values for
three crops.

Figure 9 shows temporal variations in the average of normalized difference vegetation index
(NDVI) values at pixels belonging to each crop. NDVI is a standardized index that quantifies greenness
by using the difference in reflectance between NIR and red bands [51]. The average NDVI value of
highland Kimchi cabbage was significantly lower than other crops on 12 July, and peaked in late
August. In late July, cabbage had the highest NDVI value, followed by potatoes. The difference in
average NDVI values between highland Kimchi cabbage and cabbage was not great in the August
image (Figure 9), which led to difficulty in discerning the two crops. Although the difference was
greater on 27 July, as shown in Figure 9, the lowest NDVI value of highland Kimchi may have resulted
in the confusion with fallow and other small vegetation in the classification result using the 27 July
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image. If only one UAV image should be acquired, the image needs to be acquired when the vegetation
vitality of the crop of interest reaches its maximum. Since highland Kimchi cabbage reached its
maximum NDVI value in the 25 August image, we selected that image as the optimal single image.
Actually, the classification accuracy using either the 12 July or the 27 July image was either similar
to or lower than that using the August image. Despite the risk of misclassification using only the
August image, similar spectral responses of different crops highlight the necessity of using additional
information such as texture features, as applied in this study. Since the time to reach the maximum
peak in NDVI may differ every year depending on weather conditions, however, the selection of
the most appropriate acquisition date should be made by considering conditions and types of crops.
Therefore, more extensive experiments should be carried out in other areas with different crop types.
In addition, if phenological characteristics can be estimated from the entire time-series image set [52,53],
a single-image acquisition date can be determined more optimally.

3.6. Classification Methods

In this study, two machine learning algorithms including RF and SVM were applied to crop
classification. Recently, deep learning algorithms including convolutional neural network (CNN) were
widely applied to remote sensing data classification [54–56]. Despite the promising performance of
CNN, Kim et al. [57] reported that the training sample size has greater effects on the accuracy of CNN
than that of SVM in crop classification, indicating a need for numerous training samples for improved
CNN classification performance. Furthermore, Yu et al. [58] also reported that SVM with adjacent
region features showed better accuracy than CNN for moderate-resolution land-cover classification.
Therefore, deep learning is not always superior for all cases, and conventional machine learning
algorithms can achieve classification performance comparable to, or even better than deep learning
algorithms if proper spatial contextual features are combined with spectral information. To further
evaluate the usefulness of texture features for crop classification, comparison with a patch-based CNN
classifier will be conducted.

4. Conclusions

This study investigated the potential of GLCM-based texture information for crop classification
with time-series UAV images and machine learning algorithms. The main focus was on the evaluation
of the benefit of utilization of texture features along with spectral information when using a single UAV
image. A case study of crop classification in the highland Kimchi cabbage cultivation area demonstrated
the most accurate classification of multi-temporal UAV images with GLCM-based texture features.
However, the utilization of texture features with spectral information from multi-temporal images
did not lead to a significant improvement in classification accuracy. In contrast, when only a single
UAV image was used, the utilization of texture features could significantly improve the classification
accuracy. Therefore, when only one UAV image should be used for crop classification due to a difficulty
in constructing a time-series UAV dataset, the information deficiency in spectral information can be
complemented by structural information from texture features. Furthermore, the impact of texture
information on classification accuracy was dependent on the kernel size of GLCM. Texture information
extracted from the GLCM with larger kernel size improved classification performance in the study
area. Therefore, proper kernel size selection is critical for the extraction of GLCM-based texture
features. This indicates that both spatial resolution of input UAV images and shape characteristics
of individual crops of interest should be considered in selection of optimal kernel size. However,
these findings may be specific to this study area with particular crop types and not applicable to
other areas. Therefore, more experiments on other areas with different combinations of crops should
be carried out to strengthen the potential benefit of texture information from UAV images for crop
classification. Experiments regarding determination of the minimum number of UAV images in crop
classification with texture features, and comparison with deep learning algorithms will also be carried
out in the future to extend key findings and recommendations presented herein.
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Abstract: This study aims to analyze and compare landslide susceptibility at Woomyeon Mountain,
South Korea, based on the random forest (RF) model and the boosted regression tree (BRT) model.
Through the construction of a landslide inventory map, 140 landslide locations were found. Among
these, 42 (30%) were reserved to validate the model after 98 (70%) had been selected at random
for model training. Fourteen landslide explanatory variables related to topography, hydrology,
and forestry factors were considered and selected, based on the results of information gain for the
modeling. The results were evaluated and compared using the receiver operating characteristic
curve and statistical indices. The analysis showed that the RF model was better than the BRT model.
The RF model yielded higher specificity, overall accuracy, and kappa index than the BRT model. In
addition, the RF model, with a prediction rate of 0.865, performed slightly better than the BRT model,
which had a prediction rate of 0.851. These results indicate that the landslide susceptibility maps
(LSMs) produced in this study had good performance for predicting the spatial landslide distribution
in the study area. These LSMs could be helpful for establishing mitigation strategies and for land
use planning.

Keywords: landslide susceptibility; random forest; boosted regression tree; information gain;
landslide susceptibility map

1. Introduction

A landslide is defined as a natural disaster that occurs when gravity causes a mass of debris, soil,
or rock to move on a downward slope [1]. The majority of landslides occur as a result of hydroclimatic
events, such as prolonged or intensive rain. Furthermore, mechanisms such as seismic triggers, wind,
and freeze–thaw cycles are known to initiate landslides [2].

Mountains with shallow layers of soil that have formed in place from weathered gneiss and
granite make up roughly 70% of the Korean peninsula [3]. Such terrain is vulnerable to weakening
during heavy rainfall. Most of the annual precipitation occurs during the summer, when heavy
rain and typhoons frequently occur. In particular, the heavy rain associated with typhoons has the
potential to cause landslides in South Korea [4]. The year 2011 was a particularly devastating year, with
43 landslide-related casualties in Chuncheon and at Woomyeon Mountain in the area surrounding
Seoul City. This is the largest number of landslide-related casualties since 2000.

South Korea has not been alone in experiencing an increase in such natural disasters. Other
regions around the world have also experienced more frequent landslides on a larger scale and
with more severe damage. In future decades, this trend will probably continue because of ongoing
deforestation, increased urbanization, and an increase in regional precipitation in landslide-prone
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areas due to climate change [5]. It is essential that both susceptible and stable areas be identified
to mitigate property damage, environmental degradation, and loss of life. Consequently, landslide
susceptibility assessments, i.e., assessments of the spatial probability of a landslide occurring, are
a huge step forward in the comprehensive hazard management of landslides [6,7]. The landslide
susceptibility map (LSM) produced by a landslide susceptibility assessment can be a useful tool for
authorities with decision-making capabilities.

Many methods and techniques have been proposed to evaluate landslide susceptibility. In the
past few decades, statistical approaches have become popular in the use of remote sensing
(RS) with a geographic information system (GIS). There are many statistical approaches used in
landslide susceptibility assessment, including a frequency ratio (FR) [8,9], certainty factor (CF) [10],
statistical index (SI) [11,12], as well as weight of evidence (WoE) [7,13,14] and logistic regression
(LR) [15,16] approaches.

Recently, machine learning techniques have become popular in various fields. Machine learning,
a branch of artificial intelligence, uses computer algorithms to analyze and predict information based
on learning from training data [17,18]. Due to its robustness and high generalization capability,
the use of machine learning has increased in landslide susceptibility analysis. Among the machine
learning methods, artificial neural network [19,20], fuzzy logic [21,22], neuro-fuzzy [23], support
vector machine [24,25], random forest [26,27], and naïve Bayes tree [17,28] methods have been
popularly applied.

More recently, ensemble machine learning techniques have been used to enhance the
prediction power and robustness of landslide susceptibility assessment. The ensemble methods,
formed by a combination of variously based classifiers, have typically demonstrated significant
improvement [17,24,29,30]. Ensemble techniques, which are relatively new approaches for producing
a landslide susceptibility map, have been rarely used in the field. Therefore, the main objective of
this research was to analyze and compare the performance of different ensemble models—namely,
the random forest (RF) and boosted regression tree (BRT) models—for landslide susceptibility analysis.
The RF and BRT models are very popular ensemble methods. Both are tree-based algorithms that
predict the results by combining individual trees. However, the RF and BRT models build trees in
different ways. Considering these characteristics, these models are appropriate for producing LSMs
and for comparing LSM results. The results of the models were compared using the receiver operating
characteristic (ROC) curve and statistical indices to determine the more robust model.

2. Study Area and Data Used

2.1. Study Area

The study area, Woomyeon Mountain, is located in the Seocho district of Seoul City, South Korea.
This area lies within 37◦27′00′′–37◦28′55′′ N and 126◦59′02′′–127◦01′41′′ E (Figure 1). The average
elevation is 293 m above sea level, and the slope is approximately 30◦–35◦. The bedrock is Precambrian
banded biotite gneiss, which is believed to be highly susceptible to landslides because of severe
weathering and abundant faults (Figure A1). In addition, granite gneiss with relatively poor
compositional differentiation is excavated en masse, and there is partial distribution of an embedded
dike. The gneiss outcrop is poor, as a result of severe weathering in the overall area, and its foliation
structure is irregular, due to several folding events [31].

This area experienced concentrated precipitation from 26–29 July 2011. The maximum precipitation,
which occurred during 2 h one morning, was 164 mm. This exceeded the 156-mm, 100-year return period.
This heavy precipitation led to a debris flow landslide in the area near Woomyeon Mountain, and 1–1.5 m
of stratum flowed over areas near the mountain. Seven locations in the study area, including two locations
in the valley area damaged primarily from flooding and five locations damaged by debris flow, were
affected by the landslide. The total area damaged by the debris was approximately 276,683 m2, and the
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maximum length of damage from the upper part of the steep-slope disaster area to diffuse areas was
approximately 764 m. The event caused 16 deaths and 10 building collapses [31].

 
(a) 

 
(b) 

Figure 1. Location of study area (a) and landslide inventory map with hill shading (b).

2.2. Landslide Inventory

Landslide locations were identified using 32 aerial photographs of the study area, taken after
the occurrence of the landslides. These aerial photographs were taken by a digital mapping camera
with a spatial resolution of 10 cm. The orthorectified photographs were produced using the Leica
Photogrammetry Suite (LPS) mounted on ERDAS Imagine 2011 (Erdas, Inc., Norcross, GA, United
States). Landslide locations were digitized by visual interpretation using ArcGIS 10.2 (ESRI, Inc.,
Redlands, CA, USA). Among the digitized landslide locations, landslide locations belonging to rupture
zones were converted to point data using a centroid technique. The point data representing the
landslide locations were converted to a pixel format, with resolution of 10 m. From the 140 identified
landslides, 42 (30%) were reserved to validate the model, after 98 (70%) had been chosen at random for
model training. Additionally, non-landslide pixels were selected randomly from the non-landslide
area: 98 non-landslide pixels were used for the training dataset, and 42 non-landslide pixels were
used to build the validation dataset. This generating and splitting process was performed repeatedly
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more than 10 times. Finally, the combination utilized was found through the area under the receiver
operating characteristic (ROC) curve (AUC) method.

2.3. Landslide Explanatory Variables

Landslides usually occur by complex interactions among various explanatory variables, and there
is no consensus about which landslide explanatory variables to use. In this study, 14 explanatory
variables were selected, based on a literature review and data availability. These factors were divided
into the following three categories: topography, hydrology, and forestry (Table 1, Figure A2). These
factors were produced in raster format with a cell size of 10 × 10 m, considering the scale of the input
data, using ArcGIS 10.2 and ERDAS Imagine 2011; the total number of cells in the study area was 67,005.
For the next process, the continuous variables among the explanatory variables were reclassified into
seven classes, using ArcGIS 10.2. ArcGIS 10.2 provides various classification schemes, such as equal
interval, standard deviation, natural break, quantile, etc. Natural break classification groups the classes
based on break points that are relatively large jumps in data values. This classification method can
be used to maximize the variance between classes. In addition, Cao et al. (2016) [32] indicated that
natural break classification is more appropriate for the classification of variables, because their results
showed that the LSM produced had higher accuracy compared to that using a different classification
method. Therefore, natural break classification was used in this study.

Table 1. Information and sources of data used for the landslide susceptibility assessment at
Woomyeon Mountain.

Category Factor Source
Scale

(Resolution)
GIS and

Data Type

- Landslide inventory Aerial photographs 1:5000 Raster

Topography Altitude Topographic maps 1:5000 Vector
Slope degree Digital elevation map 10 × 10 m Raster
Slope aspect

Profile curvature
Plan curvature

Hydrology Distance to streams Digital elevation map 10 × 10 m Raster
Topographic wetness index

Stream power index
Sediment transport index
Terrain roughness index

Forestry Timber type Forest map 1:5000 Vector
Timber diameter

Timber age
Timber density

2.3.1. Topography Factors

Topography factors include altitude, slope degree, slope aspect, profile curvature, and plan
curvature. Altitude is an influential factor among the various landslide explanatory variables, because
it is affected by several geomorphologic and geological processes. Slope, which can be described as the
form between any section of the surface and a horizontal datum, has considerable influence on slope
stability [33]. The degree of vulnerability to landslides may differ based on slope direction, because
the water content of the surface, vegetation type, and soil strength may be different. In addition, both
the profile and plan curvatures can be classified as flat, concave, or convex. During the rainy season,
concave slopes may contain more moisture than convex slopes or flat slopes, so the concave slopes
may be more vulnerable to landslides. All of these variables were extracted from the 10-m digital
elevation model (DEM), using the spatial analyst tool of ArcGIS. The DEM was produced from 1:5000
topographic maps provided by the Korean National Geographic Information Institute.
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2.3.2. Hydrology Factors

The hydrology factors were distance to streams, topographic wetness index (TWI), stream power
index (SPI), sediment transport index (STI), and terrain roughness index (TRI). The streams were
delineated by flow accumulation and converted to a vector format. The distance to streams was
calculated using the Euclidean distance function in ArcGIS. Beven and Kirby (1979) [34] developed a
TWI that reflects water’s tendency to accumulate anywhere within the catchment area, accumulations
that will then tend to move downslope as a result of gravity [35]. The water flow’s power to erode
is measured by the SPI, based on the assumption of proportionality of discharge to a catchment’s
specific area [36]. The STI is also often used to reflect the overland flow’s power to erode [37]. The TWI,
SPI, and STI were calculated with their base in specific catchment areas (As) and slope maps, using
the following:

TWI = ln
(

As

tanβ

)
(1)

SPI = As × tanβ (2)

STI =
(

As

22.13

)0.6( sinβ

0.0896

)1.3
(3)

where As represents the specific catchment area (m2/m), and β represents the local slope
gradient (degrees).

In addition, the TRI, which represents the concave and convex upward slopes [38], was
calculated as

TRI =
√
|x|(max2 − min2), (4)

where max and min represent the maximum and minimum values of altitude among the nine
rectangular neighbor pixels, respectively.

2.3.3. Forestry Factors

Vegetation prevents erosion on a slope by buffering the impact of rain falling on the slope, and
vegetation roots increase the shear strength of the slope by increasing the shear strength of the soil.
The forestry factors include timber type, timber diameter, timber age, and timber density. Here, timber
type and timber age mean the species and average age of planted trees, respectively. In addition,
timber diameter represents the size of the diameter at chest height. Timber density refers to the degree
of closure of the crown canopy. These values were obtained from a 1:5000 scale forest map produced
by the Korea Forest Research Institute.

3. Methodology

This study was performed using the following main steps: (1) collection and construction
of database of landslides and landslide explanatory variables, (2) preparation of the training and
test datasets through repeated random sampling, (3) feature selection using information gain (IG),
(4) landslide susceptibility mapping using RF and BRT models, and (5) validation and comparison
of performance among landslide susceptibility maps (LSMs) (Figure 2). The IG, RF, and BRT models
were implemented in R (Foundation for Statistical Computing, Vienna, Austria) using the “FSelector,”
“randomForest,” and “gbm” packages, respectively. These algorithms were performed employing a
10-fold cross-validation approach, to reduce the variability of the model results.
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Figure 2. Flow chart of the overall methodology.

3.1. Landslide Dataset Preparation

In this study, correlations between landslide and landslide explanatory variables were analyzed
using the FR (Table A1). The FR is the ratio of the area where landslides occurred to the total study
area. The FR was calculated by dividing the ratio of landslide occurrence, for the class or type of
each factor, into an area ratio, for the class or type of each factor to the total area. The calculated FRs
pertaining to each landslide explanatory variable were normalized from 0 to 1. The normalized FRs
were extracted for the landslide and non-landslide dataset. Subsequently, these data were used for
the training and validation datasets, to run the models and evaluate the prediction capabilities of the
models, respectively.

3.2. Information Gain

The landslide explanatory variables have a crucial role in producing LSM. Some landslide
explanatory variables might be associated with reductions in model performance, overfitting, model
training time, and predictive capability [39]. Therefore, it is necessary to recognize and choose proper
landslide explanatory variables.

Various methods such as IG [17], chi-square statistics [30], and Relief-F [29] have been proposed
for feature selection in landslide modeling. In this study, the IG, proposed by Quinlan (1993) [40], was
used to determine irrelevant and unimportant variables. The IG evaluates an attribute by determining
the overall information gain in terms of the class. Consequently, the result can determine the ranking
of importance, based on the normalized average merit contributed by each attribute [41,42].

The IG value of landslide explanatory variable Ci belonging to class L (landslide and
non-landslide) is calculated as [24,30]

IG(L, Ci) = IF(L)− IF(L|Ci) , (5)

where IF(L) is the entropy value of L, and IF(L|Ci) is the entropy of L after integrating the values of
landslide explanatory variable Ci. These values are calculated using Equation (6) and Equation (7),
respectively:

IF(L) = −∑
i

P(Li) log2(P(Li)), (6)

IF(L|Ci) = −∑
i

P(Li)∑
j

P(Li|Ci) ) log2(P(Li|Ci) ), (7)
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where P(Li) is the prior probability of the class L, and P(Li|Ci ) is the posterior probabilities of L given
the values of explanatory variable Ci. An explanatory variable with a higher IG value has higher rank,
meaning that it is more important to landslide models. By contrast, an explanatory variable with an IG
value of zero must be removed from the dataset, because that factor does not make a contribution.

3.3. Landslide Susceptibility Analysis

3.3.1. Random Forest

RF, developed by Breiman (2001) [43], is a popular ensemble learning method that has been used
widely for classification, regression, clustering, and interaction detection. A single decision tree is
a weak classification, because of its high variance and bias. However, RF tends to produce robust
models, because it can mitigate these problems by using ensemble trees [44].

RF generates thousands of random binary trees to form a forest. Each tree is grown based on a
bootstrap sample, using a classification and regression trees (CART) procedure with a random subset
of variables selected at each node [26,45]. For each tree grown on a bootstrap sample, the “out-of-bag”
(OOB) error rate is calculated using observations left out of the bootstrap sample. The final decisions
of class membership and model construction (output) are determined by the majority vote among all
trees [46].

Two types of error rate—the mean decrease in accuracy and the mean decrease in the Gini
coefficient—were calculated. These measures have been widely used to rank and select variables [26,47].
To run the RF model, the user should optimize two priori parameters, the number of trees in the forest
(ntree) and the number of variables tested at each node (mtry), to minimize the OOB error and obtain
good model performance [44,45].

3.3.2. Boosted Regression Tree Model

The BRT model is a combination of statistical and machine learning techniques. The BRT model
fits different techniques and combines them to improve the performance of a single model [48,49]. Two
different algorithms, namely boosting and regression, are used in the model, and the strengths of these
algorithms are combined to improve model accuracy and decrease model variance [45,50]. Boosting is
one of the most powerful learning methods for improving model accuracy, by iteratively fitting new
trees to the residual errors (RE) of the existing tree assemblage [45,51]. In addition to boosting, the
BRT model uses regression trees in the modeling process. Regression trees are categorized from the
classification and regression tree approaches from the decision tree group of models [52].

In the model, among the various parameters, the number of trees is automatically set through
internal cross-validation. In addition, the learning rate, the number of nodes in a single tree, and bag
fraction were determined through a trial-and-error approach [53]. The complexity of the model and
the contribution of each tree to the model are controlled by a shrinkage parameter and the learning
rate, respectively. The bag fraction and shrinkage parameter determine the number of trees required to
reach the optimal solution [54].

3.4. Model Performance Assessment and Comparison

3.4.1. Confusion Matrix

The confusion matrix includes true positive (TP), false positive (FP), true negative (TN), and false
negative (FN) categories. Using these values, various statistical indices, such as accuracy, sensitivity,
specificity, threat score, equitable threat score, Pierce’s skill score, odds ratio, and odds ratio skill score
can be calculated [55]. The value calculated from the confusion matrix provides useful information on
model performance and classification accuracy.

In this study, the sensitivity, specificity, overall accuracy, and kappa statistic were used to validate
the performance of the LSMs. The percentages of landslide and non-landslide pixels classified correctly
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into those two categories enable the calculation of sensitivity and specificity, and the overall percentage
classified correctly (in both categories together) indicates the accuracy of the LSMs [56]. In addition,
the kappa statistic is used to evaluate the reliability of the landslide models. Its value ranges from
−1 (non-reliable) to 1 (reliable) [57].

3.4.2. Receiver Operating Characteristic

The receiver operating characteristic (ROC) curve has been commonly used to validate the quality
of a probabilistic model. The ROC curve is plotted by statistical index value pairs, with the false
positive rate (sensitivity) on the x-axis and the “100−false negative rate” (100−specificity) on the y-axis.
The ROC curve can be classified as a success rate curve or prediction rate curve, depending on the
dataset used. The success rate curve, calculated using the training dataset, represents how well the
LSMs fit the data. The prediction rate curve, calculated using the validation dataset, represents how
well the model and landslide explanatory variables predict a landslide [11]. The ROC curve can be
verified quantitatively when the area under the ROC curve (AUC) is calculated. AUC values range
from 0.5 to 1.0. AUC values closer to 1 indicate a more accurate model.

4. Results

4.1. Selection of Landslide Explanatory Variables

The average information gain (AIG) value, and its standard deviation for each landslide
explanatory variable, were calculated and ranked (Table 2). All landslide explanatory variables
used in this study contributed to the landslide models, because the AIG values of these variables
were more than 0. According to the results, the TRI had the highest AIG value (0.086), which means
that this factor made the greatest contribution to the landslide models in this study area. By contrast,
timber diameter made the smallest contribution to the landslide models, as indicated by the lowest
AIG value (0.005).

Table 2. Information gain values for the landslide explanatory variables used in this study.

No. Landslide Explanatory Variable Average Merit Standard Deviation

1 Terrain roughness index 0.086 ±0.010
2 Slope aspect 0.071 ±0.012
3 Distance to streams 0.06 ±0.010
4 Altitude 0.049 ±0.008
5 Timber type 0.049 ±0.008
6 Stream power index 0.041 ±0.008
7 Slope degree 0.038 ±0.008
8 Sediment transport index 0.037 ±0.006
9 Topographic wetness index 0.033 ±0.011

10 Plan curvature 0.025 ±0.006
11 Profile curvature 0.013 ±0.005
12 Timber age 0.012 ±0.002
13 Timber density 0.008 ±0.002
14 Timber diameter 0.005 ±0.002

4.2. Training the Random Forest and Boosted Regression Tree Models

The training dataset was used to train the RF and BRT models for landslide susceptibility
assessment. During the training process, the optimum values of the parameters for the models
were applied to obtain high model predictive capability. The optimized values for the RF model
were 300 for ntree and 2 for mtry. In the case of the BRT model, the optimized values for n.trees,
interaction.depth, shrinkage, and n.minobsinnode were 500, 1, 0.01, and 10, respectively. Subsequently, the
RF and BRT models were constructed using the optimized parameters, based on the training dataset.
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After their construction, the RF and BRT models were applied throughout the whole study area to
produce LSMs.

4.3. Model Validation and Comparison

The performance of each model was analyzed using the training dataset. The RF model showed a
higher sensitivity value (98.00%) than did the BRT model (79.57%). This result showed that the RF
model classified more correctly than the BRT model in the landslide class. The specificity results also
indicated that the RF model had higher specificity (100.00%) in the non-landslide class, indicating that
the non-landslide pixels were more correctly classified. The specificity value of the BRT model was
76.70%. Because of the lower sensitivity and specificity values of the BRT model, the overall accuracy
and kappa index values were lower, with values of 78.16% and 0.561, respectively. In the case of the
RF model, the overall accuracy and kappa index were 98.98% and 0.980, respectively.

In addition, the success rate and the prediction rate were analyzed using the training dataset and
the validation dataset, respectively (Figure 3). In the case of success rate, the RF and BRT models had
values of 0.999 and 0.887, respectively. The prediction rate curve also showed that the RF model had a
higher AUC (0.865) than the BRT model (0.851). Overall, the AUC values of all models were greater
than 0.8. These results show that the LSMs constructed in this study have good accuracy in the spatial
prediction of landslide susceptibility.

 
(a) (b) 

Figure 3. Analysis of the receiver operating characteristic (ROC) curve for the two landslide
susceptibility maps: (a) success rate curve using the training dataset and (b) prediction rate curve using
the validation dataset.

4.4. Generating Landslide Susceptibility Maps

The RF and BRT models were used to develop LSMs in the study area. The LSMs were prepared by
generating landslide susceptibility indices (LSIs) and reclassifying the class. The LSIs were calculated
based on the trained RF and BRT models. Using the natural breaks method, the LSMs were reclassified
into five susceptibility classes: very high, high, moderate, low, and very low (Figure 4). Overall,
the distribution of LSI for each susceptibility class was similar between the LSM produced by RF (RF
LSM) and that produced by BRT (BRT LSM). The “high” and “very high” susceptibility classes covered
about 30% of the total area. The RF model had a value of 34.69%, and the BRT model had the lower
value of 31.11%.
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(a) (b) 

Figure 4. Landslide susceptibility maps produced by random forest (RF) (a) and boosted regression
tree (BRT) (b) models.

The LSMs produced from the two models were validated based on the landslide density (LD)
of each susceptibility class on the LSMs. The LD is the ratio of the percentage of landslide pixels to
the percentage of all pixels for each susceptibility class shown on the map [56]. LD was calculated by
overlaying the five LSMs and the landslide inventory map. Generally, for the study area, the value of
LD increased gradually, from very low to very high susceptibility (Table 3). At the “very high” class,
the RF and BRT models had LD values of 3.799 and 2.721, respectively. Overall, the models used in
this study are suitable for LSM.

Table 3. Landslide density on landslide susceptibility maps produced from the different models.

Random Forest Boosted Regression Tree

Pixels of
Class

Pixels of
Landslide

Landslide
Density

Pixels of
Class

Pixels of
Landslide

Landslide
Density

Very low 13,034 2 0.073 10,671 3 0.135
Low 16,871 4 0.113 18,629 16 0.411

Moderate 13,854 16 0.553 16,860 35 0.994
High 12,917 36 1.334 12,930 41 1.518

Very high 10,329 82 3.799 7915 45 2.721
Total 67,005 140 67,005 140

4.5. Discussion

The LSMs produced using the models were evaluated by statistical indices and ROC curves.
The RF model had better sensitivity, specificity, overall accuracy, and kappa values. The AUC values
of the LSMs used in this study were about 80%, indicating reasonable accuracy. The RF model had
higher AUC values for the success rate and prediction rate curves than the BRT model. Thus, these
models had very high predictive performance. Furthermore, the LSMs would be produced differently
depending on the methods used and the landslide explanatory variables selected. The landslide
explanatory variables may not make equal contributions, which can affect prediction ability. In this
study, the landslide explanatory variables used made different contributions to the models. Table 4
illustrates the importance of each explanatory variable, calculated and normalized in the RF and BRT
models. In general, TRI had the highest importance to the models, whereas timber diameter, timber
age, and timber density had lower predictive capability.
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Table 4. Relative importance of each landslide explanatory variable calculated in the random forest
and boosted regression tree model.

Random Forest Boosted Regression Tree

Importance Rank Importance Rank

Terrain roughness index 1.000 1 1.000 1
Distance to streams 0.857 2 0.556 3

Altitude 0.766 3 0.277 5
Sediment transport index 0.654 4 0.562 2

Timber type 0.484 5 0.158 7
Slope degree 0.469 6 0.000 -

Stream power index 0.449 7 0.084 9
Topographic wetness index 0.440 8 0.378 4

Slope aspect 0.408 9 0.242 6
Plan curvature 0.214 10 0.099 8

Profile curvature 0.118 11 0.016 10
Timber diameter 0.026 12 0.000 -

Timber age 0.009 13 0.000 -
Timber density 0.000 14 0.000 -

From the results, ensemble classification, such as that done by the model used in this study, can
improve the performance of single (weak) classifiers and the prediction accuracy of LSM [56]. However,
the models had overfitting problems, as indicated by the AUC values calculated using the training
and validation datasets. The AUC values of the success rate curve were very high, almost reaching
a value of 1, but the AUC values of the prediction rate curve were lower. Especially in the case of
the RF model, the AUC value of the prediction rate was decreased by about 20%. This result showed
that the RF model was trained excessively by the training data. This can be associated with poor
generalization from training data and increased error for real data. Overfitting is a common problem
affecting researchers performing machine learning and data mining. There can be many reasons
for overfitting. However, in this study, the landslide explanatory variables used still included noise,
despite the feature selection process. In addition, because the landslide area is very small compared to
the non-landslide area, the model could not learn and predict the non-landslide area.

5. Conclusions

This study compared and analyzed landslide susceptibility at Woomyeon Mountain using
different models. For this purpose, landslide-related spatial data consisting of a landslide inventory,
and landslide explanatory variables were collected and prepared. The landslide inventory map was
built using aerial photographs. The 14 landslide explanatory variables were constructed from spatial
data collected by government organizations. These factors included altitude, slope degree, slope
aspect, profile curvature, plan curvature, distance to streams, TWI, SPI, STI, TRI, timber type, timber
diameter, timber age, and timber density.

The contribution of each landslide explanatory variable was evaluated using the average IG
value with a 10-fold cross-validation approach. All of the landslide explanatory variables contributed
to the models, because the IG values of all factors were greater than zero. Therefore, the landslide
susceptibility analysis and mapping were performed with all landslide explanatory variables using the
RF and BRT models. The RF and BRT models were implemented in R. A popular open-source software,
R is helpful for statistical computing and data visualization [58]. The models were constructed using
optimized parameters, and LSI was predicted over the study area.

The LSMs produced in this study may prove useful for decision makers, planners, and engineers
in disaster planning to minimize economic losses and casualties. In a future study, the accuracy of the
LSMs of this study could be enhanced by selecting more optimal landslide explanatory variables and
solving the problem of overfitting.
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Appendix A

Figure A1. Geological features of the study area produced from 1:50,000 geological maps provided by
the Korea Institute of Geoscience and Mineral Resources.
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Figure A2. Cont.
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Figure A2. Cont.
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(m) (n) 

Figure A2. Landslide explanatory variables used to analyze landslide susceptibility: (a) altitude, (b)
slope degree, (c) slope aspect, (d) profile curvature, (e) plan curvature, (f) distance to streams, (g)
topographic wetness index, (h) stream power index, (i) sediment transport index, (j) terrain roughness
index, (k) timber type, (l) timber diameter, (m) timber age, and (n) timber density.

Table A1. Correlations between landslide and landslide explanatory variables using the frequency ratio.

Factor Class
No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Altitude (m)

[22.59, 66.57] 12,477 10 0.38 0.00
[66.57, 95.90] 17,042 20 0.56 0.11

[95.90, 126.35] 13,614 31 1.09 0.42
[126.35, 159.05] 10,060 33 1.57 0.71
[159.05, 196.27] 6766 17 1.20 0.49
[196.27, 236.88] 4409 19 2.06 1.00

[>236.88] 2637 10 1.81 0.85

Slope degree (◦)

[0.00, 8.83] 4704 3 0.31 0.00
[8.83, 13.98] 11,554 11 0.46 0.11

[13.98, 18.15] 15,716 33 1.00 0.52
[18.15, 22.07] 14,692 27 0.88 0.43
[22.07, 26.24] 11,362 36 1.52 0.91
[26.24, 31.39] 6708 23 1.64 1.00

[>31.39] 2269 7 1.48 0.88

Slope aspect

Flat 69 0 0.00 0.00
North 8483 12 0.68 0.50

Northeast 7928 9 0.54 0.40
East 9395 18 0.92 0.67

Southeast 8837 20 1.08 0.80
South 9522 26 1.31 0.96

Southwest 8970 19 1.01 0.75
West 6333 18 1.36 1.00

Northwest 7468 18 1.15 0.85

Profile
curvature

Concave 33,763 79 1.12 1.00
Flat 247 0 0.00 0.00

Convex 32,995 61 0.88 0.79

Plan curvature
Concave 31,592 82 1.24 1.00

Flat 772 0 0.00 0.00
Convex 34,641 58 0.80 0.65
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Table A1. Cont.

Factor Class
No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Distance to
streams (m)

[0.00, 167.16] 8947 3 0.61 0.28
[167.16, 281.13] 12,553 16 1.46 0.81
[281.13, 391.30] 13,430 41 0.77 0.38
[391.30, 501.48] 12,372 20 1.28 0.69
[504.48, 623.05] 9369 25 1.77 1.00
[623.05, 763.61] 6205 23 1.39 0.76

[>763.61] 4129 12 0.63 0.50

Topographic
wetness index

[−7.19, −5.25] 8350 11 0.63 0.50
[−5.25, −1.73] 3148 2 0.30 0.24
[−1.73, 1.70] 13,316 24 0.86 0.69
[1.70, 2.94] 21,415 56 1.25 1.00
[2.94, 4.43] 14,843 38 1.23 0.98
[4.43, 6.72] 4652 9 0.93 0.74

[>6.72] 1281 0 0.00 0.00

Stream power
index

[−13.82, −9.79] 487 0 0.00 0.00
[−9.79, −8.40] 3850 2 0.25 0.17
[−8.40, −4.54] 7251 11 0.73 0.48
[−4.54, −0.35] 13,013 16 0.59 0.39

Stream power
index

[−0.35, 0.88] 22,507 51 1.08 0.72
[0.88, 2.60] 16,613 52 1.50 1.00

[>2.60] 3284 8 1.17 0.78

Sediment
transport index

[0.00, 4.35] 15,486 17 0.53 0.20
[4.35, 10.88] 21,160 31 0.70 0.27

[10.88, 16.87] 16,659 44 1.26 0.48
[16.87, 24.49] 9054 29 1.53 0.58
[24.49, 37.01] 3267 18 2.64 1.00
[37.01, 58.23] 1065 0 0.00 0.00

[>58.23] 314 1 1.52 0.58

Terrain
roughness

index

[0.00, 25.24] 6302 0 0.00 0.00
[25.24, 33.92] 13,887 14 0.48 0.20
[33.92, 42.20] 14,614 23 0.75 0.31
[42.20, 51.30] 12,675 33 1.25 0.52
[51.30, 61.64] 9415 27 1.37 0.57
[61.64, 73.23] 6747 34 2.41 1.00

[>73.23] 3365 9 1.28 0.53

Timber type

Non-forest 1027 0 0.00 0.00
Pine 143 0 0.00 0.00

Nut pine 2319 3 0.62 0.24
Larch 1389 2 0.69 0.27

Pitch pine 431 0 0.00 0.00
Sawtooth oak 11,482 18 0.75 0.30

Mongolian oak 1183 2 0.81 0.32
Oriental oak 565 3 2.54 1.00

Other oak 25,845 63 1.17 0.46
Poplar 1419 6 2.02 0.80

False acasia 15,809 30 0.91 0.36
Other broadleaf

forest 3707 12 1.55 0.61

Mixed forest of soft
and hardwood 1686 1 0.28 0.11

Timber
diameter (cm)

Non-forest 1027 0 0.00 0.00
[6, 16] 2124 3 0.68 0.66
[16, 28] 63,854 137 1.03 1.00
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Table A1. Cont.

Factor Class
No. of Pixels
in Domains

No. of
Landslide

Pixels

Frequency
Ratio

Normalized
Frequency

Ratio

Timber age
(ages)

Non-forest 1027 0 0.00 0.00
[21, 30] 1508 1 0.32 0.16
[31, 40] 62,234 130 1.00 0.52
[41, 50] 2236 9 1.93 1.00

Timber density
(%)

Non-forest 1027 0 0.00 0.00
[51, 70] 2994 5 0.80 0.78
[>71] 62,984 135 1.03 1.00
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Abstract: 3D point cloud classification has wide applications in the field of scene understanding.
Point cloud classification based on points can more accurately segment the boundary region between
adjacent objects. In this paper, a point cloud classification algorithm based on a single point multilevel
features fusion and pyramid neighborhood optimization are proposed for a Airborne Laser Scanning
(ALS) point cloud. First, the proposed algorithm determines the neighborhood region of each point,
after which the features of each single point are extracted. For the characteristics of the ALS point
cloud, two new feature descriptors are proposed, i.e., a normal angle distribution histogram and
latitude sampling histogram. Following this, multilevel features of a single point are constructed by
multi-resolution of the point cloud and multi-neighborhood spaces. Next, the features are trained by
the Support Vector Machine based on a Gaussian kernel function, and the points are classified by the
trained model. Finally, a classification results optimization method based on a multi-scale pyramid
neighborhood constructed by a multi-resolution point cloud is used. In the experiment, the algorithm
is tested by a public dataset. The experimental results show that the proposed algorithm can effectively
classify large-scale ALS point clouds. Compared with the existing algorithms, the proposed algorithm
has a better classification performance.

Keywords: ALS point cloud; multi-scale; classification; large scene

1. Introduction

Airborne Laser Scanning (ALS) can capture large-scale point clouds of urban scenes. The point
cloud classification of outdoor scenes can provide high-precision semantic maps for autonomous
driving, improve the accuracy of vehicle positioning, and reconstruct a three-dimensional model of
the city, which plays an important role in urban planning and dynamic management. In addition, it
can improve the efficiency of resource utilization. Effectively labeling the correct class for all points in
the scene is an important basis for the widespread adoption of point clouds [1–4]. However, a laser
point cloud has a huge data number, high redundancy, and uneven scene distribution, which may lead
to huge challenges in the point cloud classification. Therefore, it is of great significance to classify the
three-dimensional point cloud in large outdoor scenes.

Currently, the number of point clouds with manual labeling in outdoor large scenes is not enough.
However, machine learning can learn and classify point clouds in the case of less sample training data,
and the speed is faster. At present, the point cloud classification methods can be mainly divided into
two strategies: the single point-based classification and object-based classification methods.
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The point-based point cloud classification is the classification of each individual point in a point
cloud; this strategy uses points as the basic unit to extract features, train models, and predict class
labels. There are three main steps: the neighborhood selection, feature extraction, and single point
classification based on the features and classifiers.

(1) Neighborhood selection. In the neighborhood selection process, the commonly used point
cloud neighborhood forms are: K nearest neighbors [5], radius neighborhoods [6], and column
neighborhoods [7]. The parameter of neighborhood estimation is highly dependent on prior knowledge,
and it is greatly affected by the change of the point cloud density [8,9]. For example, Hackel et al.
constructed a multi-level scale pyramid, and a total of 144-dimensional features such as eigenvalues of
the covariance matrix were extracted for each point in each pyramid. Subsequently, Random Forest
was used for training and finally classified outdoor road scenes [10], and a better classification effect
was obtained. Therefore, the selection based on multi-scale neighborhood is an important method for
extracting single point effective features.

(2) Features extraction. The local feature of a point cloud is an abstract depiction of the
environment around a given point. It is difficult to classify a point cloud by a single local feature.
The common practice is to fuse multiple point cloud local features for classification. Normal and
curvature are simple local features that clearly show some local information about the point cloud,
such as the fact that the normal direction can represent the partial tangent plane of the point cloud, and
the curvature can represent the smoothness of the point. For example, Fanxuan et al. [11] optimized
the matching accuracy of point pairs in point clouds based on the curvature information, and the
registration accuracy of point clouds was further improved. Geometric features are also common
local features, also known as shape descriptors. For example, in the spin image [12], the main
idea is to set up an image with the normal vector as the center; the image rotates around the axis.
The number of 3D points encountered by each pixel in the point cloud is taken as its gray value. Finally,
a two-dimensional array representing the local information of the three-dimensional space, that is, the
rotated image feature, is obtained. The 3D Shape Context (3DSC) feature [13] is based on the specified
point to construct a spherical region. In the support region, the grid is divided into three coordinate
directions: the radial direction, direction angle and elevation angle. Following this, a feature histogram
is constructed by entering the number of points in the grid. The 3DSC is simple in construction, strong
in discrimination and insensitive to noise, but it is time-consuming. The Unique Shape Context (USC)
descriptor [14] improves the 3DSC to avoid ambiguities in the classification. Point Feature Histograms
(PFH) [15] are local features, which construct a feature histogram with the angles and distances of the
normal vectors of any two points in the specified point neighborhood. The descriptor can accurately
describe the local features of the points, but the computation is large and the real-time performance
is poor. Fast Point Feature Histograms (FPFH) [16] are a simplification of PFH, which greatly reduce
the time consumption while retaining most of the description performance of PFH. FPFH have an
excellent performance, and are widely used in the field of point cloud classification, segmentation and
registration [17]. Although these features can express the local features of the point cloud, they do not
take into account the characteristics of the ALS point cloud, which has the characteristics of relative
sparse, rich elevation information, as well as a horizontal and vertical distribution.

(3) Single point classification based on features and classifiers. Currently, machine learning is
an important method for classification problems. The single-point classification based on machine
learning takes the feature vector of the point as the input and the class label of the single point as
the output. Common machine learning algorithms can accomplish this classification task, such as
AdaBoost [18], Random Forest [19] and Support Vector Machine (SVM) [20]. This kind of method
uses a classifier to learn the local features of each point, after which the parameters in the classifier
are determined based on the training dataset. Finally, the test set is classified by the classifier. This
classification strategy can more accurately segment the boundary regions between different adjacent
objects, and this method has a better performance in detail. However, due to the extremely large
number of points, the calculation amount is large. Thus, the model training is slow, and there are also
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some misclassifications of local regions. However, there are always some errors in the final classification
results. Therefore, the initial classification results are required to further optimize according to the
characteristics of the point cloud.

In order to solve the above-mentioned problems, an ALS point cloud classification algorithm
based on a single point multi-feature fusion is proposed. This kind of algorithm is based on the point
as the basic processing unit, and the classification process assigns labels to each point in the point
cloud to realize a point cloud classification. The proposed method extracts the local features of each
point by constructing a multi-scale neighborhood space, along with two new features: a normal angle
distribution histogram (NAD) and latitude sampling histogram (LSH) are proposed. Following this,
SVM is used for training and classification. However, since each point is classified, there is a problem
regarding some edge points being misclassified. In this regard, the initial classification results are
further optimized according to the neighborhood classification optimization of multi-scale pyramids.
Experiments prove that the classification algorithm has a higher accuracy.

The main contributions of this paper are as follows:
(1) Two local features are proposed, that is, the NAD histogram and the LSH histogram.

The differences of different objects in the normal distribution, and the difference of the neighborhood
points around different objects in the horizontal and vertical directions of the three-dimensional space,
can be fully utilized to more effectively represent the characteristics of different objects.

(2) A multilevel single-point features fusion method based on a multi-neighborhood space and
multi-resolution is proposed. The multi-scale space is constructed by changing the resolution of the
point cloud and the number of the neighborhood. The features of the multi-scale are extracted from
each single point, and the features are fused. Following this, the SVM classifier is used to classify the
features and the better classification results have also been achieved.

(3) A fast optimization method for classification results based on a multi-scale pyramid is proposed.
By changing the resolution of the point cloud, a multi-scale pyramid is constructed, and the neighbor
points are further re-selected. After this, the misclassifications are eliminated according to the initial
classification results of the neighbors for a post-processing optimization.

2. Method

As shown in Figure 1, the algorithm flow is given as follows. In the training part, for the point
cloud scene shown in Figure 1a, multiple features of each point are first extracted. Multi-scale and
multiple features are fused to a fusion feature. The SVM classifier model is then trained using the
fusion features of the training set. In the test part, for the point cloud scene shown in Figure 1b, the
fusion feature is first obtained. As shown in Figure 1c, the test points are initially classified using
the trained SVM classification model. Following this, the point clouds of different resolutions are
obtained by down-sampling the point cloud, in order to construct a multi-scale point cloud pyramid.
The corresponding classification labels of the different neighboring points in the different scales are
searched. Finally, the label which has the most number in the neighbors is taken as the class label of
the current point. The final point cloud classification result is obtained, as shown in Figure 1d.
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Figure 1. Flowchart of the proposed method. NAD: normal angle distribution histogram;LSH: latitude
sampling histogram; SVM: Support Vector Machine.

2.1. Point Feature Extraction

In the classification task of the 3D point cloud data, the feature extraction of the point cloud plays
a crucial role. It can seriously affect the final classification result. A well-behaved feature descriptor
should reflect obvious differences between different types of points in the point cloud. At the same
time, the descriptor should be robust and have a strong anti-interference ability. It is difficult for a
single feature descriptor to have the above characteristics, so that a plurality of feature descriptor
fusion methods are at present widely used. In the single point-based classification algorithm, this
paper uses a variety of feature fusion methods to improve the accuracy of the classification algorithm.
The specific features are as follows:

2.1.1. Feature Description

1. Elevation feature

The height is a very intuitive feature in a 3D point cloud. Generally speaking, points with large
height are buildings, trees or objects with larger elevation values in the real world. When the elevation
value is small, the probability is greater if the point is a vehicle point. Thus, the elevation feature is
set to:

Fz = [Zi,
1
Zi

] (1)

where Zi is the distance of the i-th point from the estimated ground to the elevation value.

2. Normal angle distribution histogram

In the large scale scene, the normal direction of different objects has obvious differences.
For artificial objects, such as buildings and vehicles, since the surface is relatively regular, almost all
points are in the same direction, pointing in the direction of the vertical plane. However, due to the
scattered distribution of the whole point cloud, the normal direction of the point cloud has a large
scattered nature, and the direction does not point to a fixed direction in a uniform way. Therefore,
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we calculate the histogram of each point and its own normal angle distribution value in the local
neighborhood point set to express the relationship between the normal of the point and the normal of
the points in the neighboring region. The angle between the two normal vectors in three-dimensional
space should be between [0, π]. But considering that the normal of the point on the plane can have
opposite directions when the angle is larger than π/2, the corresponding angle is set to π − π/2.
Following this, the angle of the normal vectors is defined as [0, π/2]. Considering efficiency and
resolving power, we divide this interval into equal Dn parts, that is, construct a Dn dimensional
histogram. After this, the number of points falling within each cell is taken as the value of the interval
in the histogram. Finally, the normalization process is performed to form a histogram of the normal
angle distribution, called NAD. This feature can distinguish different classes of points based on the
normal angular distributions. The specific calculation formulas are as follows:

Δ =
π/2 − 0

Dn
(2)

θj= a cos
(
v · vj

)
(3)

h(xi) =
n(i ∗ Δ ≤ θj ≤ (i + 1) ∗ Δ)

N
(i = 1, . . . , Dn) (4)

FNAD = [h(x1), h(x2), . . . , h(xDn)] (5)

where v and vj represent the normal vectors of the current point and the j-th neighbor point, respectively.
a cos(·) represents the inverse cosine function. N represents the number of neighbors for the current
point. n(i ∗ Δ ≤ θj ≤ (i + 1) ∗ Δ) denotes the number of points for the normal angle at the
range [i ∗ Δ, (i + 1) ∗ Δ]. FNAD denotes the final normal angle eigenvalue vector of the normal angle
distribution. The histogram of the normal angle distributions for the randomly selected building
points and tree points are shown in Figure 2.

 
(a) (b) 

Figure 2. Normal angle distribution histogram. (a) Normal angle distribution histogram of a building
point. (b) Normal angle distribution histogram of a tree point.

3. Latitudinal sampling histogram

In the outdoor large scene environment, as for almost all points belonging to different objects,
the surrounding neighborhood points have great differences in the latitudinal distribution in the
three-dimensional space. For example, a building surface, which is parallel to the ground, has its
neighborhood points mainly distributed near the “equator”. For the points belonging to the trees,
the distribution of the neighborhood points is more random and extensive, hardly concentrated in a
certain latitude interval. Therefore, the selected point is regarded as the center of the sphere, and the
distribution histogram of the neighborhood points in the latitudinal direction is counted. Following
this, the feature of the point can be expressed. The feature is called LSH. The LSH feature can be used
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to distinguish different classes of points according to the distribution of neighborhood points in the
latitude direction. The LSH has the advantages of anti-occlusion, without interference from the local
coordinate system, as well as high efficiency. In this paper, Dl spaces are equally divided along the
latitude direction. Following this, the number of points falling into each cell is counted to form a
feature vector of the Dl dimension. The specific calculation formulas are:

Δ =
π − 0

Dl
(6)

θj= a cos
(
z · (pj − p

))
(7)

f (xi) =
n
(
i ∗ Δ ≤ θj ≤ (i + 1) ∗ Δ

)
N

(i = 1, . . . , Dl) (8)

FLSH =
[

f (x1), f (x2), . . . , f
(

xDl

)]
(9)

where p and pj represent the three-dimensional coordinates of the current point and its j-th neighbor
point, respectively. z = (0, 0, 1) represents the unit vector of the positive direction of the z axis.
n(i ∗ Δ ≤ θj ≤ (i + 1) ∗ Δ) represents the number of points in [i ∗ Δ, (i + 1) ∗ Δ] of the neighborhood
points along the latitudinal direction. FLSH represents the final feature vector of LSH. The LSHs of the
randomly selected building points and tree points are compared, as shown in Figure 3.

(a) (b) 

Figure 3. Latitudinal sampling histogram. (a) Latitudinal sampling histogram of a building point. (b)
Latitudinal sampling histogram of a tree point.

4. Convariance feature

First, a covariance matrix for the selected point neighborhood is constructed. After this,
eigenvalues of the covariance matrix are calculated as: λ2 ≥ λ1 ≥ λ0 ≥ 0, and the corresponding
eigenvectors are calculated as: v2, v1, v0. Here, the covariance feature (CF) is obtained according to the
relationship among the eigenvalues, as follows:

Sum of eigenvalues:
Fsum = λ1 + λ2 + λ3 (10)

Full variance:
Fomn = (λ1 · λ2 · λ3)

1
3 (11)

Anisotropy:
Fani = (λ1 − λ3)/λ1 (12)

Planarity:
Fpla = (λ2 − λ3)/λ1 (13)
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Linearity:
Flin = (λ1 − λ2)/λ1 (14)

Sphericity:
Fsph = λ3/λ1 (15)

Following this, the final total covariance feature is: Fcov =
[

Fsum, Fomn, Fani, Fpla, Flin, Fsph

]
.

5. Plane point ratio

In outdoor large scale scenes, the classes of objects are complex and the surface shapes are also
different. However, a considerable part of the surface of artificial objects exhibits planar characteristics,
such as buildings, vehicles, etc. Meanwhile vegetation does not have planar characteristics, so the plane
point ratio of the local point cloud can be used as a local feature to classify point clouds. The covariance
feature can also reflect the planar characteristics to a certain extent, but it is greatly interfered by
noise. For this reason, the Random Sample Consensus (RANSAC) [21] is employed to fit the local
neighborhood of the selected point. After this, the ratio of the plane points, called PPR (Plane Point
Ratio), is calculated.

RANSAC is a method used to find the subset of data that is the best match for the model from the
data set with random samples that are noisy but sufficient. The points matched with the model are
called the inner points, and the points unmatched with the model are called the outer points. The plane
is fitted using RANSAC as follows.

(1) Select three points randomly from all the neighborhood points and calculate the current model
parameters. The model is as follows:

ax + by + cz + d = 0 (16)

(2) Determine whether each point is an inlier, and then determine the inlier rate ω of the
current model:

Ji =

{
1, di ≤ Td
0, di > Td

(17)

ω =
1
N

N

∑
i=1

Ji (18)

where di is the distance from the i-th point to the plane. Td is a fixed threshold. Ji indicates whether it
is an inlier or not. N is the number of neighborhood points.

(3) If the current inlier rate is larger than the previous optimal inlier rate, the optimal inlier rate
is updated.

(4) To find the optimal model, repeat steps (1) to (3) k times until the probability reaches P:

1 − P ≤
(

1 − ω3
)k

(19)

The termination condition is:

k ≥ log(1 − P)
log(1 − ω3)

(20)

When the RANSAC iteration is completed, the optimal inlier rate is the ratio of the plane points:
Fplane = [ω].

2.1.2. Single Point Multi-Scale Multi-Feature Fusion

Since the features of the single point are dependent on the selected neighborhood space, different
neighborhood spaces have different expression capabilities for different classes of point clouds.
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Additionally, the structure descriptions of point clouds with different resolutions also have certain
differences. The local feature description of the single scale for a point is relatively single, and there
are some noise points in the point cloud, which can make the simple feature of the single scale unable
to accurately describe the feature of the single point. Therefore, a multilevel features fusion method
based on the multi-neighborhood space and multi-resolution is proposed. As shown in Figure 1c,
the proposed method constructs the multi-scale space by changing the resolution and the number of
neighborhoods of the point cloud. Following this, multi-scale features for each single point in the point
cloud are extracted. Because the elevation feature is not affected by the scale changing, we select NAD,
LSH, CF and PPR features to construct the multi-scale features. We extract the features of a single point
in each scale by choosing μ neighborhoods with different resolutions and υ different neighborhood
sizes under the original resolution. The multi-scale features of each point are expressed respectively
as F′

NAD, F′
LSH, F′

cov, and F′
plane. Considering the validity of the features and the efficiency of the

calculation, this generally results in 2 ≤ μ +υ ≤ 5. In addition, the description of the single point
feature only represents one characteristic of the point cloud. Therefore, it is necessary to fuse multiple
features. After fusing the features, the multilevel features are expressed as follows:

F =
[

Fz, F′
NAD, F′

LSH , F′
cov, F′

plane

]
(21)

Because we aim at an ALS point cloud, the extracted elevation features are only two-dimensional
and play an important role in the point cloud classification. In addition, when the point cloud features
are extracted, the values of each feature have been normalized to [0, 1]. In order to reflect the role of
the non-zero feature value, the feature should be normalized again according to Formula (22) when the
extracted feature F is sparse. While the extracted feature F is not sparse, there is no need to normalize
the feature. Therefore, the constructed feature is X =

[
F∗

z , F∗
NAD, F∗

LSH , F∗
cov, F∗

plane

]
.

F∗
i,j =

Fi,j − min(Fj)

max(Fj)− min(Fj)
(22)

where F∗
i,j is the value of the i-th row and the j-th column in the normalized feature matrix F*. Fi,j is the

value of the i-th row and the j-th column in the feature matrix F. Fj is the vector of the j-th column (for
all the points) in the feature matrix F.

2.2. Point Cloud Classification Based on SVM

SVM [22] is achieved by maximizing the classification interval in the feature space. For non-linear
data, SVM maps them into a high-dimensional feature space by a kernel function, which make the data
into linear separable data in a high-dimensional feature space. Following this, it realizes a classification
by maximizing the interval. In view of the excellent generalization ability of SVM, we use SVM as a
classifier for the single point classification in point cloud data. As we know, the correlation between
the point cloud single point feature and neighbor points features, and the Gauss kernel function only
has one parameter σ and a low model complexity. Thus, in the absence of prior knowledge, the Gauss
kernel function is often better than other kernels. Therefore, we choose the Gauss kernel function as
the kernel function. Here, the Gauss kernel function of the SVM classifier is defined as follows:

The fused feature space is X. The selected n d-dimensional feature samples {x1, x2, . . . , xn}:

xi = (xi1, xi2, . . . , xid)
′εRd (23)

After the feature transformation, the feature space is Z. We map data in the X space to the Z space
zi = (zi1, zi2, . . . , zid)εR

d via the mapping function φ(x). The function K(x, z) satisfies the condition
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K(x, z) = φ(x) · φ(z), and the function K(x, z) is a kernel function, while φ(x) is a mapping function.
The Gauss kernel function is as follows:

K(X, z) =
n

∑
i

K(xi, z) =
n

∑
i

exp (−‖xi − z‖2

2σ
) (24)

The corresponding decision function is:

f (z, α∗, b∗) = sign(
n

∑
i

yiα
∗ exp

(
−‖xi − z‖2

2σ

)
+ b∗) (25)

The SVM classifier is trained by the features of the training set, and the test set is classified by
the trained classifier. The initial classification results for the point cloud in Figure 1b are shown in
Figure 1d.

2.3. Neighborhood Optimization Based on Multi-Scale Pyramid

After the initial classification, the point clouds are basically classified correctly. Due to noise
and other reasons, there are still some misclassifications in some details (such as edges). As shown
in Figure 1d, most of the points in the scene have been correctly classified, and only a small part of
them are misclassified. They mainly concentrate on edges and other places, and most of the points
around the misclassified points are correctly classified. Therefore, it is necessary to further optimize
the initial classification results to achieve a more accurate classification of the point clouds. Because
local information is used as a feature to classify point clouds, the feature extraction relies heavily on a
local region selection. In addition, the single point is taken as the basic unit of classification. Each point
has its own characteristics, but because the two neighboring points are very close to each other and
their neighborhoods are also very close, the extracted features will be very similar, which leads them
to be more likely to be classified into the same class. Therefore, the neighbors of the misclassified
points are also often misclassified. It is difficult to correct the misclassified points if only the points in
the smaller local regions are used for the optimization. Therefore, we propose a classification results
optimization method based on the multi-scale pyramid. The specific method is as follows:

First, voxel filters with different radius scales are used to down-sample the point cloud after an
initial classification, as shown in Formula (24). Each minimum voxel scale is twice as large as the last
down-sampling, and sparse point clouds are gradually obtained. Following this, the q-level pyramid
is constructed, and the initial classes of all the points in each level are retained. According to the
characteristics of the point cloud down-sampling reflecting the structure information of the shape, the
scale pyramid is constructed on three scales of q = 3 in this paper.

Following this, the corresponding k-d tree is constructed from the point cloud in each layer of the
pyramid. For each point in the original point cloud, a k-d tree is used to search for the radius of the
nearest neighbors in the point cloud after the down-sampling. The class labels of the m point clouds
searched within the radius of the l-th level are Ll =

{
Ll

1, . . . , Ll
m

}
, Ll

i ∈ {1, . . . , c}, i = 1, . . . , m, l = 1,..,
q; the radius parameters are different when each layer of the point cloud chooses its nearest neighbor.
The method of calculation is as follows:

r = k · Presolution (26)

In the formula, r represents the scale radius parameter. Presolution is the resolution used by the
current down-sampling point cloud. k is a fixed ratio threshold.

Finally, the initial labels of all the nearest neighbors in the q levels are counted. The discriminant
function 1

{
Ll

i = C
}

represents the fact that when Ll
i belongs to class C, its value is 1; otherwise, its

value is 0. This is used to count the number of the initial labels belonging to each class. As shown in
Formula (27), the mode label C∗ is selected as the new class label for the current point.
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C∗ = argmax ∑
q
l=1 ∑m

i 1
{

Ll
i = C

}
C = Ll

i ∈ {1, . . . , c}
(27)

Not only do the optimized point cloud classification results avoid a situation where the nearest
neighbor is also misclassified, but they also solve the problem of too many far points in a large scale,
thus achieving better results. The optimized point cloud classification results are shown in Figure 1e.

3. Experimental Results and Analysis

In order to verify the performance of the point cloud classification algorithm based on single point
multilevel features, we use two urban scenes’ ALS data for a qualitative and quantitative comparison
and analysis. This section begins by briefly introducing the experimental data, before the classification
performance of the proposed method is compared with the other methods on the datasets.

3.1. Experimental Dataset

In this paper, we use two sets of dataset published in Ref [23]. The data was collected in Tianjin,
China. The density of the test region point cloud is about 20 ∼ 30/m2. The data set contains both
large objects (buildings and trees) and small objects (cars). It contains different roof shapes, buildings
of different heights, and dense and overlapping cars and trees. Table 1 lists the number of each class
point for the two scenes. Figure 4a,b shows the training data of scene 1 and scene 2, respectively.

All the programs are run on a computer with an Intel Core i7-7700K CPU, 4.20 GHz with 24-GB
RAM. The algorithm is implemented on the C++ platform based on PCL 1.8.0. Each set of data training
and testing takes about 6.5 min. However, the feature extraction and optimization process can be
implemented in parallel. Therefore, the efficiency of the proposed method can be further improved,
and the speed of the point cloud processing will be greatly improved.

Table 1. The experimental dataset.

Scene
Training Points Test Points

Tree Building Car Tree Building Car

Scene 1 68,802 37,128 5380 213,990 200,549 7816
Scene 2 39,743 64,952 4584 73,207 156,186 7409

(a) (b) 

Figure 4. The training data of the ALS points. (a) scene 1, and (b) scene 2. (The figures are captured
from the ALS points shown in Cloudcompare (http://www.cloudcompare.org/). The red points are
cars, green points are buildings and blue points are trees.)

3.2. Experimental Comparison and Analysis

In order to verify the performance of the proposed algorithm, we compare it with the other
seven methods shown in Table 2. Method 1 is the proposed method, which uses the features without
NAD and LSH. Method 2 uses the Fz+FNAD+FLSH+Fcov+Fplane feature fusion in single-scale without
a post-processing optimization. Method 3 uses the single-scale feature and multi-scale pyramid
optimization. Method 4 is the algorithm proposed in [24]. In this method, each feature uses geometry,
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strength, and statistics information. Following this, the JointBoost method is used to select features
and classify points. Method 5 is the classification method based on the multi-scale Spin Image feature
and Fcov feature fusion used in Ref [23]. Method 6 [25] constructs a multilevel point set using a linear
transformation, and it uses Spin Image and Fcov features. Following this, K-means is used to construct
an LDA (Latent Dirichlet Allocation) model of a multilevel point set dictionary. Method 7 [23,26,27]
constructs a multilevel point set using an exponential transformation. The Spin Image and Fcov features
are used for dictionary learning, constructing an LDA model of point sets.

Table 2. Main features of the proposed method and other comparison methods. SVM: Support Vector
Machine; LDA: Latent Dirichlet Allocation; DD-SCLDA: Discriminative Dictionary based Sparse
Coding and LDA.

Method Scale Feature Expression
Post-Processing
Optimization

Classifier

Our
method Multi-scale Fz+FNAD+FLSH+Fcov+Fplane Multi-scale pyramid SVM

Method 1 Multi-scale Fz+Fcov+Fplane Multi-scale pyramid SVM
Method 2 Single scale Fz+FNAD+FLSH+Fcov+Fplane None SVM
Method 3 Single scale Fz+FNAD+FLSH+Fcov+Fplane Multi-scale pyramid SVM
Method 4 Multi-scale Geometry, strength, and statistical features Regional growth JointBoost
Method 5 Multi-scale Spin Image feature and Fcov None AdaBoost

Method 6 Multi-scale LDA Model of the Spin Image feature and Fcov
based on Multi-Level Point Sets None AdaBoost

Method 7 Multi-scale DD-SCLDA Model of the Spin Image feature
and Fcov based on Multi-Level Point Sets None AdaBoost

Accuracy, precision, and recall are often used to evaluate the effect of a point cloud
classification [27]. The precision rate is the proportion of true positive samples in a positively predicted
sample. The recall rate is the proportion of positive samples that are predicted to be successful in
the actual positive samples. The accuracy rate is the ratio of all the correctly predicted samples in
relation to the overall samples. In order to consider both Pa (precision rate) and R (recall rate), F1-score
values (such as Equation (28)) are generally used to represent the classification quality of the scene.
In order to better evaluate the effects of each algorithm, we use the above metrics to evaluate the
classification performance.

F1 − score =
2(R × Pa)

R + Pa
(28)

The classification results of our method and of other comparison methods on scene 1 and scene 2
are shown in Table 3. Table 3 lists the precision, recall, accuracy and F1-score statistics for the eight
methods in the two scenes. It can be seen from Table 3 that the comparison between the proposed
method and Method 1 shows that the accuracy of the proposed method has significantly improved.
It also shows that the proposed NAD and LSH features have certain effects. By comparing Method 2
and Method 3, the proposed multi-scale pyramid optimization algorithm can effectively improve the
classification accuracy. Comparing the proposed method with Method 3, the proposed multi-scale
strategy has a significant effect on the improvement of the classification results.

In addition, the proposed method is compared with the methods given in other references.
Method 4 and Method 5 classify the point cloud based on the single-point. Method 6 and Method 7
classify the point cloud based on the point set (object). It can be seen from the comparison of Table 3
that the proposed method has a high accuracy rate as a whole, and that it also maintains a high
recall rate.
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Table 3. Classification results of precision/recall, accuracy and F1-score.

Scene 1 Tree (%) Building (%) Car (%) Accuracy (%) F1-Score (%)

Our method 99.2/90.6 91.1/99.3 92.9/48.2 94.6 94.5/94.9/59.5
Method 1 99.2/84.9 86.8/99.3 99.9/42.7 91.9 91.5/92.7/59.8
Method 2 93.2/78.7 82.1/94.6 63.3/30.4 86.4 85.3/87.9/41.1
Method 3 96.9/81.7 84.1/97.7 98.8/23.2 89.3 88.7/90.4/37.6
Method 4 89.7/98.1 97.9/89.1 65.2/46.6 92.9 93.7/93.3/54.4
Method 5 85.7/92.9 92.0/83.8 56.9/54.7 87.9 89.2/87.7/55.8
Method 6 94.8/93.8 93.5/92.3 41.2/66.7 92.6 94.3/92.9/50.9
Method 7 93.1/96.0 95.2/92.6 73.3/62.2 93.7 94.5/93.9/67.3

Scene 2 Tree (%) Building (%) Car (%) Accuracy (%) F1-score (%)

Our method 92.4/94.3 98.5/97.9 73.0/68.4 95.8 93.4/98.2/70.6
Method 1 83.2/92.9 98.5/92.8 62.6/65.7 92.0 87.8/95.6/64.1
Method 2 77.3/94.3 98.3/88.9 71.7/60.0 89.6 85.0/93.4/65.3
Method 3 91.3/92.6 96.6/96.6 63.2/55.5 93.4 91.9/96.6/59.1
Method 4 86.8/91.2 96.8/95.5 44.1/34.8 92.2 88.9/96.1/38.9
Method 5 73.9/91.2 93.6/88.2 29.5/25.4 87.2 81.6/90.8/27.3
Method 6 90.3/93.9 97.6/96.5 49.4/42.0 94.1 92.1/97.0/45.4
Method 7 94.7/94.5 98.1/97.7 53.9/60.5 95.5 94.6/97.9/57.0

For scene 1, the accuracy of the proposed method is the highest, and the value of the
precision/recall is relatively high (the classification result of the proposed method is shown in
Figure 1e). From the classification results evaluation of the three kinds of objects by the F1-score,
one can see that the classification effect on cars for the proposed method is not as good as for Method 7.
Meanwhile, the tree and building classes can basically be classified correctly.

For scene 2, the precision/recall of trees of the proposed method are lower than for Method 7.
Meanwhile, the precision/recall of buildings and cars are the maximum compared with other methods.
According to the classification result of the F1-score value, the proposed method has a better effect
than the other methods, except that the tree classification performance is worse than for Method 7.
Considering the accuracy, precision/recall rate and the F1-score evaluation comprehensively, the
proposed method has a better classification performance than the other methods, and the proposed
method has the highest overall accuracy for both scenes. This proves that the proposed point cloud
classification method based on point multilevel features is effective, and that it can accurately classify
the ALS point cloud data in large scale scenes.

In order to more intuitively compare the classification performance of each method, Figure 5
shows the performance of the eight classification methods in scene 2. Figure 5 shows that the proposed
method can classify most points correctly. Compared with other comparison methods, the classification
accuracy of the proposed method is higher. From the comparison between Figures 5c–e and 5b, the
classification effect of the proposed method is obviously better than that of the other three algorithms,
especially in the buildings and trees. It can be seen from the comparison between Figure 5f,g and
Figure 5b that Method 4 and Method 5 have more misclassifications for cars and buildings, and
that the performance of the proposed method is significantly better than that of the other two
methods. In comparing Figure 5h,i with Figure 5b, one can see that Method 6 and Method 7 have
a similar classification performance to that of the proposed method. However, a certain number
of architectural edge points are classified incorrectly, and the top part of the trees is also classified
incorrectly. One can see from the comparison between Figures 5f–i and 5b that the compared methods
have some misclassifications for the edge points and for two objects that are overlapping regions.
However, the proposed method has fewer misclassifications in those regions than for the other methods.
This proves that the proposed feature descriptors and post-optimization strategies can improve the
classification results.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Figure 5. Scene 2 classification results. (a) ground truth, (b) proposed method, (c) method 1, (d) method
2, (e) method 3, (f) method 4, (g) method 5, (h) method 6, and (i) method 7. ((f–i) are taken from
Ref [23]. The red points are cars, green points are buildings and blue points are trees.)

3.3. Sensitivity of the Parameters

In this part, we focus on the Dm in NAD, Dl in LSH and the number of neighborhood scales
(μ +υ). Here, we select the parameters shown in Table 4; the data of scene 1 is used to compare the
influence of different parameters on the proposed method. In order to evaluate the classification effect
of the three kinds of objects as a whole, we average the F1–score values of the three object classification
results to obtain the mean value mF1, which is used as the overall classification effect evaluation metric.
As shown in Table 4, considering the results of mF1 and the accuracy in combination, in comparing
the parameters of the first three rows one can see that when Dm is 15, the classification effect is better;
however, the value of Dm is not sensitive to the classification effect. According to the results of rows
2, 4 and 5, the classification effect of Dl is obviously improved at 15. However, when the value of
Dl is too large, the classification effect is reduced. Therefore, the value of Dl is relatively sensitive
to the classification result. According to the results of rows 4, 6, 7 and 8–10, the classification effect
is improved when the value of the scale μ +υ is increased. However, when the scale exceeds 4, the
classification effect will be reduced to some extent. Therefore, the value of the scale is sensitive to the
results of the classification and needs to be within a reasonable range. One can see from Table 4 that
the tree and building classes are relatively less affected by the changes of the Dm and Dl , and that
the results are susceptible to the size of the scale. The increasing values of Dm and Dl would likely
cause a change in the car classification effect. Considering the overall effect of the classification and the
factors of accuracy and feature dimension, we select Dm = 15, Dl = 15 and (μ +υ) = 3 as the optimal
parameter values.
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Table 4. Parameters comparison based on mF1 and Accuracy.

Dm Dl μ+υ Tree (%) Building (%) Car (%) Accuracy (%) mF1 (%)

1 10 10 3 94.0 94.4 60.7 93.9 82.9
2 15 10 3 94.0 94.5 60.7 94.0 83.1
3 20 10 3 93.9 94.5 60.3 94.0 82.9
4 15 15 3 94.7 95.0 63.5 94.6 84.4
5 15 20 3 94.3 94.7 60.2 94.3 83.1
6 15 15 4 94.7 95.0 62.6 94.6 84.1
7 15 15 5 94.7 95.0 62.6 94.6 83.8
8 20 20 2 93.5 94.1 54.5 93.5 80.7
9 20 20 3 94.5 94.9 59.5 94.4 83.0
10 20 20 5 94.5 94.9 59.0 94.4 82.8

4. Conclusions

The classification of the ALS point cloud is an important technology for urban planning, digital
city and intelligent transportation. We propose a multilevel features fusion and pyramid neighborhood
optimization ALS point cloud classification method based on a single point. The proposed method
presents two local features, i.e., the NAD and LSH. They are fused with the covariance and elevation
features. Following this, the multilevel features are constructed by changing the point cloud resolution
and the neighborhood size. The fused features are used to train a classification model based on
the Gaussian kernel function SVM for an initial classification. Finally, the point cloud classification
is optimized based on the initial classification result using a multi-scale pyramid. The optimized
classification results have a higher accuracy. The experimental results prove the effectiveness of the
proposed method via the experiments on the two sets of public ALS datasets.
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Abstract: To protect the population from respiratory diseases and to prevent the damages due to air
pollution, the main cause of air pollution should be identified. This research assessed the relationship
between the airborne particulate concentrations (PM10) and the urban expansion in Daegu City in
South Korea from 2007 to 2017 using multi-temporal spatial datasets (Landsat images, measured
PM10 data) and the machine learning technique in the following steps. First, the expanded urban
areas were detected from the multiple Landsat images using support vector machine (SVM), a widely
used machine learning technique. Next, the annual PM10 concentrations were calculated using
the long-term measured PM10 data. Finally, the degrees of increase of the expanded urban areas
and of the PM10 concentrations in Daegu from 2007 to 2017 were calculated by counting the pixels
representing the expanded urban areas and computing variation of the annual PM10 concentrations,
respectively. The experiment results showed that there is a minimal or even no relationship at all
between the urban expansion and the PM10 concentrations because the urban areas expanded by
55.27 km2 but the annual PM10 concentrations decreased by 17.37 μg/m3 in Daegu from 2007 to 2017.

Keywords: coarse particle; particulate matter 10 (PM10); landsat image; machine learning; support
vector machine

1. Introduction

Urban expansion, also called “urban sprawl,” is defined as “the spreading of urban development
(e.g., houses, shopping centers) on undeveloped lands near a city” or “the rapid expansion of
the geographic extent of cities and towns, often characterized by low-density residential housing,
single-use zoning, and increased reliance on private automobiles for transportation” [1,2]. In general,
urban expansion has a close relationship with urban development, infrastructure improvement,
population growth, etc. [3].

Coarse particle, defined as particulate matter 10 (PM10), consists of particles with a diameter
of 10 μm or less [4,5]. PM10 is one of the main components of air pollution, and it also results in
various environmental impacts (e.g., atmospheric pollution) and human health impacts (e.g., chronic
respiratory diseases) [6,7]. In particular, exposure to a high PM10 concentration can cause a number of
significant health impacts, ranging from coughing to high blood pressure, heart attack, stroke, and lung
cancer [8].
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Previous studies found that urban expansion generally has a significant impact on air pollution
because more human activities that can cause air pollution (e.g., vehicular traffic) are expected in urban
areas [9]. Stone (2007) assessed the relationship between urban expansion and air quality [10]. Cho and
Choi (2014) investigated the effect of compact urban development on air quality [11]. Liu et al. (2018)
assessed the relationship between urban air pollution and urban form, seasonality, and city size [12].

To protect the population from respiratory diseases and to prevent public health disasters due to
PM10 concentration, the main causes of PM10 concentration in the city should be identified. Limited
research has been conducted, however, to identify the main causes of PM10 concentration in each city
in South Korea. In general, urban expansion is regarded as the main cause of urban air pollution owing
to the urban development activities accompanying it. This research aims to assess the relationship
between urban expansion and PM10 concentration by monitoring the 10 years (from 2007 to 2017) of
urban expansion and the annual PM10 concentrations using multi-temporal spatial datasets acquired
in Daegu, South Korea and the machine learning technique. First, the expanded urban areas were
detected from the multi-temporal Landsat satellite images using the machine learning technique.
Then the annual PM10 concentrations were calculated using the long-term measured PM10 data.
Finally, the relationship between urban expansion and PM10 concentration was assessed by counting
the pixels representing the expanded urban areas and computing variation of the annual PM10
concentrations, respectively.

2. Study Area and Datasets

Daegu Metropolitan City in South Korea was selected as the study area in this research for the
following reasons. First, the urban areas of Daegu have been significantly expanded of late [13]. Second,
there are long-term measured coarse particle (PM10) data acquired by the 11 air quality monitoring
stations (AQMSs) in Daegu, which can be used for the study [14]. Daegu has operated these AQMSs
since 1973 for sustainably monitoring the air quality condition of the city. Figure 1 shows the locations
of the 11 AQMSs in Daegu, South Korea.

The multi-temporal Landsat satellite images acquired on 13 May 2007 (“first Landsat image”)
and on April 29, 2017 (“second Landsat image”) were used in this study for the following reasons.
First, the urban areas in Daegu significantly expanded during such periods due to the city’s urban
development policy. Second, both Landsat images were less affected by the prevailing atmospheric
conditions then. Figure 2 shows one section each of the first and second Landsat images.

The first Landsat image was acquired by the Landsat-5 thematic mapper (TM) sensor, and it
consists of seven bands (blue: 450–520 nm; green: 520–600 nm; red: 630–690 nm; near-infrared:
770–900 nm; short-wave infrared 1: 1550–1750 nm; short-wave infrared 2: 2080–2350 nm; and thermal:
10,400–12,500 nm) [15]. The second Landsat image was acquired by the Landsat-8 operational land
imager (OLI) and the thermal infrared sensor (TIRS), and it consists of nine bands (coastal aerosol:
435–451 nm; blue: 452–512 nm; green: 533–590 nm; red: 636–673 nm; near-infrared: 851–879 nm;
short-wave infrared 1: 1566–1651 nm; short-wave infrared 2: 2107–2294 nm; thermal infrared 1:
10,600–11,190 nm; and thermal infrared 2: 11,500–12,510 nm) [15]. Both Landsat images were
georeferenced to the coordinate system universal transverse mercator (UTM), zone 52 N, based on the
1984 datum world geodetic system (WGS).

To measure the annual PM10 concentrations during the same period for the monitoring of the
urban expansion in Daegu using the Landsat 1 and 2 images, the measured PM10 data between 2007
and 2017 acquired through the Daegu atmospheric information system (https://air.daegu.go.kr/)
were also utilized.
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Figure 1. Locations of the 11 air quality monitoring stations (AQMSs) in Daegu, South Korea.

(a) (b) 

Figure 2. One section each of the multi-temporal Landsat images utilized in this research: (a) a section
of the first Landsat image (acquired on 13 May 2007); and (b) a section of the second Landsat image
(acquired on 29 April 2017).

3. Methodology

Figure 3 presents a flowchart of the procedure that was employed to assess the relationship
between urban expansion and PM10 concentration in Daegu from 2007 to 2017 using the given datasets.

As can be seen in Figure 3, in the first step of the proposed methodology, two urban maps were
generated, respectively, from the first and second Landsat images, using the support vector machine
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(SVM) technique, a widely used machine learning technique. Then the extent of urban expansion
was detected using the generated first and second urban maps. In the next step, the annual PM10

concentrations were calculated using the measured PM10 data acquired by each AQMS of Daegu.
Finally, the relationship between the urban expansion and the PM10 concentration rate in Daegu was
assessed using the two calculated statistics: the increase of the expanded urban areas and the increase
of the annual PM10 concentrations in Daegu from 2007 to 2017.

Figure 3. Flowchart showing the procedure that was employed to assess the relationship between
urban expansion and PM10 concentration in Daegu from 2007 to 2017 using the given datasets.

3.1. Generation of the Urban Maps by the SVM Technique

This section illustrates the procedure for generating urban maps through the SVM technique, a
widely used machine learning algorithm. Machine learning is defined as ““the ability of a machine to
improve its performance based on previous results” [16]. The machine learning technique has been
widely used of late in remote sensing applications for classifying land uses and detecting the significant
features from the remote sensing datasets, due to its advantages for high-value classification [17,18].
SVM, a widely used machine learning technique for finding the linear hyperplane that maximizes
the margins between the two clusters in n-dimensional spaces, has been widely used in remote
sensing applications due to its superior advantages over the other machine learning techniques for
classifying land uses, detecting significant features, and avoiding classification errors [19]. Hence,
in this research, the SVM technique was used to generate urban maps, which distinguish the urban
areas from the non-urban areas (water, soil, vegetation, etc.). Figure 4 shows the first and second
urban maps separately generated from the first and second Landsat images, respectively, through the
SVM technique.

3.2. Detection of the Expaned Urban Areas in Daegu from 2007 to 2017

In the next step of the proposed methodology, the expanded urban areas in Daegu were detected
using the two urban maps that had been generated. The expanded urban areas from 2007 to 2017
were detected by intersecting the pixels representing the non-urban areas in the first urban map and
the pixels representing the urban areas in the second urban map. Figure 5 shows the locations of the
AQMSs and expanded urban areas in Daegu from 2007 to 2017 detected using the two generated
urban maps.

As can be seen in Figure 5, all the AQMSs in Daegu were located near the expanded urban areas
detected using the two generated urban maps.
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(a) (b) 

Figure 4. First and second urban maps: (a) first urban map generated from the first Landsat image
through the SVM technique; and (b) second urban map generated from the second Landsat image
through the SVM technique.

 

Figure 5. Locations of the AQMSs and expanded urban areas in Daegu from 2007 to 2017 detected
using the two generated urban maps.

3.3. Calculation of the Statistics for the Annual PM10 Concentrations

In this section, the calculation of the statistics for the annual PM10 concentrations in each AQMS
in Daegu from 2007 to 2017 is described. Figure 6 presents time series graphs showing the annual
PM10 concentrations in each AQMS in Daegu from 2007 to 2017.
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

Figure 6. Cont.
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(k) 

Figure 6. Time series graphs showing the annual PM10 concentrations in each AQMS in Daegu from
2007 to 2017. AQMS 1(a) to AQMS 11(k).

4. Results and Discussions

4.1. Accuracies of the Generated Urban Maps

In this section, the degrees of accuracy of the first and second urban maps separately generated
from the first and second Landsat images, respectively, are assessed using the 100 checkpoints
generated through manual digitization. Figure 7 shows examples of the checkpoints generated
through manual digitization for measuring the degrees of accuracy of the first and second urban maps.

Figure 7. Examples of the checkpoints generated through manual digitization for measuring the
degrees of accuracy of the first and second urban maps.

Table 1 shows the statistical results showing the degrees of accuracy of the first and second urban
maps separately generated from the first and second Landsat images, respectively.

As can be seen in Table 1, the first and second urban maps separately generated from the first and
second Landsat images, respectively, through the SVM technique had high accuracy in identifying the
urban areas in the entire Daegu area. There were a few misclassification errors, however, in both urban
maps because some urban features (e.g., man-made features) were misclassified as non-urban features
(e.g., soil, water, vegetation), or vice versa. These misclassification errors were generally caused by the
similar reflectance characteristics of the different materials owing to the shades, etc. [18].
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Table 1. Statistical results showing the degrees of accuracy of the first and second urban maps separately
generated from the first and second Landsat images, respectively: (a) degree of accuracy of the first
urban map generated from the first Landsat image; and (b) degree of accuracy of the second urban
map generated from the second Landsat image.

(a)

Overall Accuracy 97%

Producer’s Accuracy
(Error of Omission)

User’s Accuracy
(Error of Commission)

Urban areas 94% Urban areas 100%

Non-urban areas 100% Non-urban areas 94%

(b)

Overall Accuracy 99%

Producer’s Accuracy
(Error of Omission)

User’s Accuracy
(Error of Commission)

Urban areas 100% Urban areas 98%

Non-urban areas 98% Non-urban areas 100%

4.2. Relationship between the Urban Expansions and the PM10 Concentrations in Daegu from 2007 to 2017

Discussed in this section is the relationship between the urban expansion and the annual PM10

concentration rate in Daegu from 2007 to 2017 determined by calculating the following statistics:
those showing the increase of the expanded urban areas in Daegu from 2007 to 2017 and those showing
the annual PM10 concentration changes in each AQMS, each year and each season in Daegu from 2007
to 2017 (see Table 2).

As can be seen in Figure 6, Table 2a,b, the urban areas expanded by 55.27 km2 in the entire Daegu
area from 2007 to 2017, but the annual PM10 concentrations in all the AQMSs in Daegu only slightly
increased by 0.45 μg/m3 in only one station or sharply decreased by 4.12~42.28 μg/m3 in the other
10 stations, within the same period. Table 2c shows that the annual PM10 concentrations had decreased
in Daegu City from 2007 to 2017 by 17.37 μg/m3.

Table 2b,c show that the annual PM10 concentrations were measured high in AQMSs 3, 4, and 6,
while they were measured low in AQMSs 5, 7, 9, 10 and 11. Table 2c also shows that the highest annual
PM10 concentrations was most frequently measured in AQMS 6 from 2007 to 2017 while the lowest
annual PM10 concentrations most frequently measured in AQMS 11 during the same period. Based on
Table 2b,c results, we assume that there are the number of other facilities (e.g., industrial factories)
that emit the PM10 particles near AQMSs 3, 4, and 6, while there are few facilities emitting the PM10

particles near AQMS 5, 7, 9, 10, and 11.
Table 2c,d show that the annual PM10 concentrations generally measured high in spring and

winter compared to summer and autumn. In addition, the annual PM10 concentrations decreased in
all the seasons by 31.11 μg/m3 for spring, by 8 μg/m3 for summer, by 8.78 μg/m3 for autumn, and by
18.77 μg/m3 for winter. Based on Table 2d, we assume that the climate factors (e.g., air temperature,
air pressure, rainfall, humidity, wind speed, and wind direction) can be significant for the annual
PM10 concentrations.

The above experiment results show that there is a minimal or no relationship at all between the
urban expansion and the PM10 concentrations rate in Daegu, which means that the urban expansion
that occurred in Daegu from 2007 to 2017 was not the main cause of the rise in the PM10 concentration
rate in Daegu, South Korea during the same period. We assume that, however, the types of facilities
and climate factors can influence on the annual PM10 concentrations.
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Table 2. Statistics showing the increase of the expanded urban areas in Daegu from 2007 to 2017 and the
annual PM10 concentration changes in each air quality monitoring stations (AQMS) in Daegu within
the same period: (a) statistics showing the total number of urbanized areas in Daegu from 2007 to
2017; (b) statistics showing the annual PM10 concentration changes in each AQMS in Daegu from 2007
to 2017; (c) statistics showing the range of variability of the annual PM10 concentrations in each year
from 2007 to 2017; and (d) statistics showing the annual PM10 concentrations in each season (spring:
March, April, and May; summer: June, July, and August; autumn: September, October, and November;
and winter: December, January, and February) from 2007 to 2017.

(a)

Total Areas of the Urban Areas
in the First Urban Map (km2)

Total Areas of the Urban Areas in the
Second Urban Map (km2)

Increase of the Expanded Urban Areas in Daegu
from 2007 to 2017 (km2)

148.08 203.35 + 55.27

(b)

AQMS
ID

Maximum
(μg/m3)

Minimum
(μg/m3)

Average
(μg/m3)

Standard Deviation
Variation of Annual
PM10 Concentration

(2017 vs 2007) (μg/m3)

AQMS 1 67.28 38.79 48.07 7.35 −4.12
AQMS 2 60.21 38.80 49.61 6.30 −21.41
AQMS 3 75.32 49.30 58.80 8.40 −26.02
AQMS 4 91.14 41.99 55.85 13.79 −42.28
AQMS 5 66.16 34.64 42.95 8.97 +0.45
AQMS 6 70.65 45.23 59.54 8.34 −19.29
AQMS 7 52.22 36.29 41.85 5.78 −7.88
AQMS 8 56.75 32.78 47.61 9.72 −22.75
AQMS 9 54.86 31.78 43.03 8.43 −15.59
AQMS

10 68.53 19.66 43.78 11.85 -12.81

AQMS
11 56.75 32.78 41.05 7.26 −19.35

(c)

Year
Maximum

(μg/m3)
AQMS ID for

Maximum
Minimum

(μg/m3)
AQMS ID for

Minimum
Average(μg/m3) Standard Deviation

2007 91.14 AQMS 4 44.17 AQMS 7 59.72 14.31
2008 71.04 AQMS 3 50.36 AQMS 8 61.58 7.83
2009 64.37 AQMS 6 41.21 AQMS 11 50.52 6.59
2010 70.65 AQMS 6 42.27 AQMS 11 50.51 8.66
2011 62.63 AQMS 6 37.21 AQMS 5 47.42 8.15
2012 59.51 AQMS 6 30.74 AQMS 8 43.61 9.44
2013 65.03 AQMS 3 34.63 AQMS 9 46.73 10.34
2014 57.22 AQMS 2 19.66 AQMS 10 41.63 11.02
2015 54.55 AQMS 6 31.78 AQMS 9 43.48 7.13
2016 54.98 AQMS 8 31.32 AQMS 11 43.6 5.71
2017 49.30 AQMS 3 32.78 AQMS 11 42.35 6.21

(d)

Year Spring (μg/m3) Summer (μg/m3) Autumn (μg/m3) Winter (μg/m3)

2007 81.58 41.55 48.47 64.32
2008 73.63 52.11 55.88 64.10
2009 51.74 42.37 45.51 62.87
2010 57.39 39.86 50.21 58.59
2011 59.77 37.59 42.20 50.59
2012 50.63 33.98 41.76 48.14
2013 52.92 38.99 39.90 55.02
2014 50.01 33.82 35.30 47.49
2015 50.51 34.59 31.14 57.61
2016 53.33 32.71 40.02 48.49
2017 50.47 33.55 39.69 45.55

5. Conclusions and Future Works

In this research, an experiment was performed to assess the relationship between the urban
expansion and the PM10 concentration rate in Daegu from 2007 to 2017 by calculating the expanded
urban areas and the annual PM10 concentration changes in each AQMS, each year and each season.
The experiment results showed that there is a minimal or no relationship at all between the urban
expansion that occurred in Daegu from 2007 to 2017 and the rise in the PM10 concentration rate in the
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same city during the same period because the urban areas significantly expanded but the annual PM10

concentrations sharply decreased.
This research proved that the urban expansion that occurred in Daegu from 2007 to 2017 was

not the main cause of the rise in the PM10 concentration rate in Daegu during the same period.
This research, however, also suggested that the other factors, such as types of facilities or climate
factors, can be significant for the annual PM10 concentrations. To protect the public health, it is
necessary to identify the main causes of PM10 concentrations, hence, further research, will be carried
out to identify the main causes (e.g., the climate factors and the type of facilities) of PM10 concentrations
in general. In addition, research will be conducted to identify the main cause of PM2.5 concentrations
that also causing serious air pollution problems.
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Abstract: With the rapid growth of high-resolution remote sensing image-based applications, one
of the fundamental problems in managing the increasing number of remote sensing images is
automatic object detection. In this paper, we present a fusion feature-based deep learning approach
to detect objects in high-resolution remote sensing images. It employs fine-tuning from ImageNet
as a pre-training model to address the challenge of it lacking a large amount of training datasets in
remote sensing. Besides, we improve the binarized normed gradients algorithm by multiple weak
feature scoring models for candidate window selection and design a deep fusion feature extraction
method with the context feature and object feature. Experiments are performed on different sizes of
high-resolution optical remote sensing images. The results show that our model is better than regular
models, and the average detection accuracy is 8.86% higher than objNet.

Keywords: high-resolution; optical remote sensing; object detection; deep learning; transfer learning

1. Introduction

Object detection for remote sensing images is an important research field. With the development
of remote sensing technology, information carried by remote sensing images is more abundant than
before. The applications of object detection in remote sensing images are more and more popular,
such as city planning and environmental exploration.

However, object detection for remote sensing images is a more difficult job since remote sensing
images are quite different from regular images. Objects in regular images have some properties:
many objects rarely appear in one image; the main objects are regularly located in the image center,
occupying the main parts and significantly different from the background.

However, one high-resolution optical remote sensing image contains more objects with more
shapes and texture information than a regular image, and the objects may be scattered in the whole
image. Besides, the object to be detected is relatively small and close to the background. If we zoom
out from a remote sensing image to a small size for a global view, we would lose many details, and the
objects may almost be invisible. Therefore, object detection for remote sensing images is harder work
than for regular images to some extent.

At present, object detection methods in remote sensing images are mainly based on traditional
image processing technology with machine learning, which requires rich experience and complete
prior knowledge. Furthermore, most of them are only effective in a specific environment, so they have
poor scalability. With the advent of deep learning technology, we introduce deep learning into the
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field of object detection for remote sensing images. Nevertheless, deep learning is still in its infancy for
remote sensing images. One of its biggest problems is the decency on labeled datasets.

However, with the fast improvement of deep learning-based object detection on regular images,
many labeled regular image datasets have appeared in recent years. Therefore, in this paper, we present
a novel transfer deep learning approach to detect objects in high-resolution remote sensing images.
It employs transfer learning to supply the gap that deep learning on remote sensing images lacks
labeled training datasets. Besides, we improved the candidate window selection process and designed
a deep feature extraction method with context scene feature fusion and detection. Finally, the proposed
approach is validated on different scales of high-resolution optical remote sensing images.

This paper is organized as follows: Section 2 introduces the related works. Section 3 describes
the framework of our algorithm. Our size-scalable region proposal algorithm is given in Section 4.
Our deep feature extraction method with context scene feature fusion and detection is proposed in
Section 5. Section 6 concludes the paper.

2. Related Works

The development of object detection in high-resolution remote sensing images has been in three
stages: template matching-based, knowledge testing-based, and machine learning-based.

Weber et al. [1] performed template matching by extending the hit-or-miss transformation in
a multivariate fashion to detect storage tanks and the shoreline. Sirmacek et al. [2] demonstrated
the detection of urban buildings by using the SIFT feature to represent a two-building template.
Knowledge testing-based object detection transforms detection into the hypothesis testing problem
by establishing a set of knowledge and rules. Yokoya et al. [3] used buildings and shadows to detect
buildings of arbitrary shape automatically. Machine learning-based methods have been the main
direction of object detection in the remote sensing field. For example, Tao et al. [4] described the
airplane objects by a set of key point SIFT feature and a graph model to detect them. Sun et al. [5]
constructed a bag-of-words model by clustering SIFT feature points to represent targets and classified
them by SVM. Gan et al. [6] performed ship detection on remote sensing images by extracting the HOG
feature of the sliding window and extracted the continuous window feature by rotating the sliding
window to achieve certain rotation invariance. Mostafa et al. [7] clustered the urban railroad point
clouds into three classes of rail track, contact cable, and catenary cable by a template matching approach.
Aytekin et al. [8] automatically selected a representative subset of texture features by the AdaBoost
algorithm and used them to identify airport runways and then detect the airport. Felzenszwalb et al. [9]
obtained good results in general object detection by combining the pyramid HOG feature with the
partial deformation model and training an SVM with hidden variables. Some scholars have applied
weak-supervised object detection algorithms to remote sensing images [10].

However, these methods mostly relied on a variety of well-designed prior knowledge or shallow
features, etc. [11,12]. That is, they require a wealth of experience and a tedious trial and error process,
and they have limitations.

In the field of object detection on regular images, Krizhevsky et al. [13] proposed an image
classification algorithm based on deep learning, which automatically extracts the higher level features
of the images by a convolutional neural network (CNN), which made the image classification task
more concise and the classification accuracy significantly better.

Thanks to the development of deep learning and the development of region proposal algorithms,
the object detection field has also made great breakthroughs. One of the main challenges of object
detection in remote sensing images is how to reduce the computational complexity. In view of the
large scale of remotely-sensed images, there will be a large number of candidates if the conventional
multi-scale scanning window exhaustive strategy is used to obtain the region of interest, which makes
the subsequent feature extraction and classification cost too much to achieve fast detection. Therefore,
how to reduce the search space in this field is a key problem. In recent years, many region proposal
algorithms have been proposed [14–17]. These algorithms can be divided into two categories:
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(1) segmentation and combination methods: divide the input image into fragments and then combine
these fragments by some bottom-up strategy to generate regions of interest; (2) the window scoring
method: define the scoring criteria of the probability of the candidate window containing the object,
scoring each possible window by the sliding window method, and selecting the candidate with
a high score. There are two more regularly-used region proposal algorithms: the selective search
algorithm [14] and the binarized normed gradients (BING) algorithm [15].

In 2014, Girshick et al. [18] proposed the R-CNN (region-based convolutional network) framework
for object detection, in which a region proposal algorithm was designed to obtain the candidate
window instead of the sliding window strategy to improve detection efficiency, and then, the CNN
was employed to extract high-level features before an SVM classification was used. The proposed
R-CNN framework greatly improved the detection accuracy and brought much inspiration to the
object detection field, and many object detection algorithms based on the deep learning have been
proposed [19–21]. There are more research works on object detection using deep learning. For example,
Kong et al. [22] proposed the HyperNet network structure, which combines the multi-level features of
the deep network and merges them to select the region and detect the object, which resulted in a more
accurate localization. Ouyang et al. [23] proposed to combine CNN with the deformation model, which
made the process of objection detection more sensitive through multiple models, multi-stage cascade,
and other integrated approached. Redmon et al. [24] considered the objection detection as a regression
prediction problem. They designed the YOLO network structure, of which the network input is the
whole map. This original map was divided into 7 × 7 grids. This structure greatly improves the
detection speed and real-time detection. However, their method is not effective with respect to objects
that are located close to one another, and the objects have an irregular aspect ratio. Meanwhile, the
deep learning method in the field of object detection in remote sensing images is still in a relatively
nascent stage.

3. The Overall Idea of Our Method

In object detection in remote sensing images, template matching-based methods are simple and
easy to implement, but the template design becomes more and more complicated when directions and
shapes of objects vary greatly. Knowledge-based object detection methods can gain better detection
performance through abundant a priori knowledge, but how to define the a priori knowledge and
rules is a hard problem, which usually requires much experience. While machine learning-based object
detection methods are based on shallow feature extraction methods, such as HOG, SIFT, and other
classic features presented in object detection on regular images, and have a better detection effect for
some specific scenes, when the remote sensing background is complex and the objects are diversified,
the scalability of these methods is poor. Deep learning has a great advantage in automatically learning
deep-level features, but it is still at a relatively early stage for object detection in remote sensing
images. Meanwhile deep learning requires a large amount of labeled data, which are less available
in remote sensing images. Aiming at these shortcomings, we propose to employ abundant labeled
regular image datasets to assist the object detection in the remote sensing images through the transfer
learning method and explore the validity of the transfer learning. As shown in Figure 1, from the
detection process, the framework of the proposed approach can be divided into three steps: rapid
candidate region proposal, deep feature extraction of the candidate window, context scene feature
fusion, classification, and post-processing. The training process is mainly to train the models used in
the steps of the detection stage: (a) train the candidate region proposal model; (b) combine transfer
learning to train the deep feature extraction network; (c) combine transfer learning to train the context
scene feature extraction network; (d) train the classification model.
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Figure 1. Proposed object detection framework.

In particular, we improve the stages of candidate region proposal and feature extraction:

1 For the stage of candidate region proposal, by analyzing the particularity of the remote sensing
image object detection task, we select the BING algorithm to improve it by integrating multiple
weak feature scoring to extend to large-scale images. The experiment shows that the improved
algorithm achieves a better detection rate and more accurate object coverage when obtaining the
same number of candidate windows.

2 For the stage of feature extraction, we employ CNN to extract deep features of the candidate
windows and the windows’ context scene, respectively, and then fuse the two kinds of features
for detection, which improves the detection performance. In addition, we solve the problem of
the insufficient annotations on remote sensing images by transfer learning, which reduces the risk
of over-fitting and improves the network’s ability of feature expression on remote sensing objects
and scenes.

In the stage of classification and post-processing, we employ the faster linear SVM with the hard
negative mining method to reduce the impact of overfull negative samples. Finally, we filter out
duplicates by the non-maximum suppression algorithm to further optimize the test results.
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In the following sections, we mainly discuss the two stages: candidate region proposal and feature
extraction, and analyze the results of the experiments respectively.

4. Size-Scalable Candidate Region Proposal Algorithm

In the field of object detection, the traditional methods mostly employ the multi-scale sliding
window method, which is an exhaustive search strategy. In order to guarantee the detection speed, only
the simple feature of the candidate window can be extracted to be classified, which may lead to higher
false detections. Therefore, a good region proposal algorithm plays an important role in the whole
object detection process. In addition, since the size of remote sensing images is usually large, the region
proposal algorithm needs to be scalable to the large image size. However, the segmentation-based
selective search algorithm used in the classical deep learning-based object detection framework R-CNN
needs to build a graph model: each pixel of the image acts as a node, and it includes a large number of
similarity calculations and adjacent regions. This means that the algorithm needs to maintain many
intermediate results, which has a heavy cost in time and in memory. Therefore, it becomes one of
the bottlenecks of the whole framework. Besides, when the image size is very large, the problem is
particularly critical, and memory is more likely to be insufficient in that case. The BING algorithm is
based on the sliding window scoring mechanism with an accelerating optimization, and it is considered
to be the fastest region proposal algorithm [25]. Furthermore, when increasing the image size, the
speed and the memory usage of the algorithm increase linearly at most, and this is acceptable. In
addition, because the candidate windows obtained by the BING algorithm contain probabilistic scores,
we can select the appropriate number of candidate windows when necessary.

4.1. BING Algorithm

The binarized normed gradients (BING) algorithm is a very simple, but highly efficient region
proposal algorithm, which is essentially a two-stage cascade classifier. The first stage uses a multi-scale
sliding window to scan the image, and each window is scaled to a uniform size of 8 × 8 , while a linear
scoring model is used:

sl = 〈w, gl〉 (1)

l = (i, x, y) (2)

where sl is the filter score, gl is the window feature, and l, i, (x, y) are the location size and top left
corner coordinates of the window, respectively.

The windows with a higher score for each size are selected as the possible candidate windows.
During this period, the number of true objects in each size is counted, and the sliding window score is
only applied to the size with the objects’ number exceeding a certain threshold. The first-stage linear
model w is trained by a linear SVM, and the NG features (norm of the gradients) of the real object
windows and random sampling background windows are taken as positive and negative samples,
respectively.

In the second stage, considering the different possibilities for different window sizes containing a
object, such as the square window of 64 × 64 is more likely to contain an object than the 5 × 128 one,
a score calibrator is trained for each size. We update the score for each candidate window:

ol = vi × sl + ti (3)

where vi, ti ∈ R are the calibration coefficients that are learned for different sizes. This step is necessary
only if you need to reorder the candidate windows obtained in one stage. The learning of the
parameters vi and ti is also performed by the linear SVM.
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The biggest contribution of the BING algorithm is the improvement of detection speed. In order
to speed up the feature extraction and scoring process, the algorithm uses the idea of model binary
approximation [26,27]. The linear model w is approximated by a set of binary basis vectors αj:

w ≈
Nw

∑
j=1

β jαj (4)

where Nw denotes the number of basis vectors, αj ∈ {−1, 1}64 denotes a base vector, and β j denotes
the corresponding coefficients.

Further, representing each αj by using a binary vector and its complement: αj = α+j − α+j ,

where α+j ∈ {0, 1}64. These transforms allow subsequent scoring calculations for a binarized feature
just using fast BITWISE andand bit countoperations, as shown in Equation (5):

w, b ≈
Nw

∑
j=1

β j

(
2a+j , b − |b|

)
(5)

However, the NG features are real numbers, and how to binarize the NG features to speed
up the calculation is one of the difficulties of the algorithm. This algorithm approximates the NG
feature values (each saved as a BYTEvalue) using the top Ng binary bits of the BYTE values. Thus, a
64-dimensional NG feature gl can be approximated by Ng binarized normed gradient (BING) features:

gl ≈
Ng

∑
k=1

28−kbk,l (6)

Therefore, the score for whether or not an image window contains an object can be
approximated as:

sl = w, gl ≈
Nw

∑
j=1

β j

Ng

∑
k=1

28−k
(

2a+j , b − ∣∣bk,l
∣∣) (7)

where 28−k
(

2a+j , b − ∣∣bk,l
∣∣) can be computed using fast CPU atomic operation: BITWISE and

POPCNTSSEoperators, which speeds up the calculation.

4.2. pBING Algorithm with Multiple Weak Feature Scoring

In practice, we found that the ambiguous objects were missed by the original BING algorithm.
The possible reason for this phenomenon is that only a simple NG feature is used in the algorithm, and
in order to speed up the calculation, the NG feature serves as the BING feature. Thus, some information
would be lost in the process, which further reduces the distinguishing degree of the feature. However,
in order to preserve the time and space complexity advantages of the BING algorithm, we are not
able to use too complex features such as SIFT and HOG features due to the parallel optimization
strategy of the algorithm. Thanks to the AdaBoost algorithm [28] that inspired us: integrating multiple
weak classifiers is used to obtain a strong classifier. Therefore, we improved the BING algorithm by
integrating multiple weak feature scoring models.

We improved the first stage of the candidate window scoring model, and the second stage of
score correction was same as the original algorithm. For convenience, we name the improved BING
algorithm as the pBING algorithm. Figure 2 shows the flowchart of the pBING algorithm, and the
shaded part is our improvement. For each training sample, we extract multiple weak feature channels
and train a scoring model for each weak feature channel; in the detection process, we integrate the
score of multiple weak feature scoring models as the final score of the candidate window, in which a
simple linear weighting method is adopted, and the weights are determined by the accuracy of each
model. Each scoring model still uses an efficient linear SVM algorithm. The score of each candidate
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window in each scoring model is: skl = 〈wk, gkl〉, where skl denotes the score of model k for window l,
wk denotes the parameter of model k, and gkl denotes the feature k of window l. The final window
score for the first stage is as follows:

Figure 2. pBING algorithm flowchart.

The NG feature map used in the BING algorithm captures the edge intensity information of the
original image by computing the gradient magnitude of each pixel, but this feature is simple and
susceptible to noise. In this paper, the NG feature map is replaced by the Sobel feature map with
better edge information capture. At the same time, the local binary pattern (LBP) feature map and the
difference of Gaussians (DoG) feature map are introduced.

The Sobel feature map uses 3 × 3 Sobel operators to convolute the original image to obtain
the horizontal and vertical direction of the approximate gradient, as shown in Formula (8). Then, it
computes the gradient amplitude through Formula (9).

Gx =

⎡⎢⎣−1 0 +1
−2 0 +2
−1 0 +1

⎤⎥⎦ ⊗ A

Gy =

⎡⎢⎣+1 +2 +1
0 0 0
−1 −2 −1

⎤⎥⎦ ⊗ A

(8)

G =
√

G2
x + G2

y (9)

where A represents the original image matrix, Gx and Gy represent the horizontal and vertical gradient
of the image, respectively, and G represents the gradient magnitude matrix, which is the obtained
feature map. ⊗ represents the convolution operation.

LBP can be used to describe the local texture features, often used for face classification, pedestrian
detection [29], and so on. We can get the LBP feature map by computing the LBP code for each pixel
point. In order to simplify the calculation, we use the simplest 3 × 3 LBP operator to calculate in the
gray image.

The DoG feature map is obtained by subtracting two different degrees of blurred images from the
original image. The blurred image is obtained by the Gaussian kernel convolution of different standard
deviation parameters on the gray image. Two Gaussian blurred image subtractions can increase the
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visibility of edges and other details, and the DoG algorithm does not enhance noise because Gaussian
blur suppresses high-frequency noise. The two-dimensional Gaussian kernel function is defined
as follows:

Gσ1 (x, y) =
1√

2πσ2
1

exp

(
− x2 + y2

2σ2
1

)
(10)

Then, the Gaussian filtering of the two blurred images is expressed as:

g1 (x, y) = Gσ1 (x, y) ∗ f (x, y)

g2 (x, y) = Gσ2 (x, y) ∗ f (x, y)
(11)

Therefore, the DoG feature map is obtained by subtracting the two images g1(x, y) and g2(x, y),
where σ1 and σ2 are two Gaussian kernel parameters, respectively. When the DoG is used for
different purposes, the ratio of the two Gaussian kernel parameters is different. When used for
image enhancement, usually σ2:σ1 is set to 4:1 or 5:1. In this paper, σ2 = 2.0 and σ1 = 0.5.

4.3. Experiments

4.3.1. Dataset and Evaluation

Two different scales of remote sensing image datasets are used in this paper:
(1) SMALL-FIELD-RSIs: Each image was cropped from the Google Earth software, and all airplane

objects were manual marked. As shown in Figure 3, for each airplane object, a minimum enclosing
rectangle was used. Each bounding box was represented by its top-left and bottom-right coordinates:
(x1, y1, x2, y2). The dataset contained 980 high-resolution optical remote sensing images, and the image
size was about 1300 × 800 pixels, with the spatial resolution of the image being about 0.6 m. A total of
7452 airplane objects were marked.

(2) LARGE-FIELD-RSIs: Each image was downloaded from the commercial professional remote
sensing software, and the map level was 19, the scale 1:2257, the data source being from QuickBird
satellite, and the spatial resolution 0.6 m. Compared to Google Earth software, the software can
download any size of high-resolution optical remote sensing images with no watermark or other
labels, and the images are relatively clearer. There were 110 images, and the average size of all images
was about 5000 × 5000 pixels. A total of 3380 airplane objects were manually marked. As shown
in Figure 4, the left is a high-resolution remote sensing image of an airport (International Airport,
Shenzhen, China), and the right is an enlarged view of the red area on the left. As can be seen, for
the entire image, the airplane object was very small. When zooming out to a relatively small size,
the airplane objects were almost invisible. Table 1 shows the statistical details of the two datasets.

Figure 3. The annotation method of the airplane object.
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Figure 4. The high-resolution remote sensing image of Baoan Airport.

Table 1. The experimental dataset.

Dataset Name Spatial Resolution Image Size (Pixels) Number of Images Number of Objects

SMALL-FIELD-RSIs 0.6 m 1300 × 800 980 7452
LARGE-FIELD-RSIs 0.6 m 5000 × 5000 109 3380

In the region proposal algorithm, we evaluated the improved algorithm by the DR-#WIN curve
and MABO-#WIN curve, where DR refers to the detection rate and MABO refers to mean average best
overlap, while #WIN refers to the number of candidate windows proposed.

4.3.2. Results and Analysis

The experiments in this section were divided into two parts: (1) we briefly analyzed the
applicability of the selective search algorithm for candidate region proposal in remote sensing images;
(2) we evaluated the result of the BING algorithm and pBING algorithm. In the experiment, each
dataset was divided into a training set and a test set, where the test set was 20%. The DR and MABO
below were the average of all the test image detection results. Table 2 shows the average number of
candidate windows and running times of the selective search algorithm on different sizes of remote
sensing images. This experiment was performed in fast mode using only two color spaces and two
similarity functions. As in the remote sensing image, when the spatial resolution of the image is
determined, the size range of the object in the image can be determined. Using this prior knowledge,
we filtered out the irrational size of the candidate windows, and the filtered results are shown in the
third row of Table 2. It can be found that the average number of candidate windows generated by the
algorithm increased significantly, and the running time of the algorithm increased sharply with the
increase of the image size. In addition, in the experimental process, we found that when the image size
increased to 2000 × 2000 pixels, the machine was out of memory, and the MATLAB compiler was in a
stuck situation. Therefore, this algorithm has a poor scalability for image size.

Table 2. The performance analysis for the selective search algorithm.

remote image scale (pixel) 500 ×500 800 ×800 1000 ×1000 1500 ×1500
average number of candidate windows without constraints 3161 7123 9060 13,810

average number of candidate windows after filtering 3039 6270 8469 12,782
average computing time (s) 2.7 7.6 14.3 29.8
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In summary, the selective search algorithm had higher complexity, and the number of candidate
windows was larger, which was not scalable for the image size. The following are the performances
of BING algorithm and pBING algorithm when extracting candidate regions in two high-resolution
remote sensing images.

As shown in Figure 5, when the number of candidate windows was 1000, the DR of the pBING
algorithm was 97.21% on the SMALL-FIELD-RSIs, which was higher than the original algorithm
(95.74%). The MABO score increased from 63.43–65.30%, which indicates that the improved algorithm
had a better quality of the candidate region proposal on the remote sensing images. In addition, it
shows that when the number of candidate windows was 2000, the detection rate of pBING algorithm in
this dataset was as high as 98.9%. Therefore, as the input of the second stage, the number of candidate
windows in this stage can be 2000, that is, for each image, we output the first 2000 candidate windows
of the pBING detection results to further classify.

Figure 5. Tradeoff between the number of windows (#WIN) and DR/MABO on the dataset
SMALL-FIELD-RSIs.

Figure 6 shows the performance of the two algorithms on dataset LARGE-FIELD-RSIs. Since the
image of the dataset is relatively large, we mark DR and MABO of the algorithm when the given
number of candidate windows is 8000. Figure 7 shows the details. It appears that DR and MABO
are increasing as the number of candidate regions increases. Obviously, that is because that a remote
sensing image with large size usually has more objects, and search space of objects’ possible locations
significantly increases, and then more candidate windows are needed in order to achieve a certain
detection rate. As shown in Figure 7, in order to ensure that the follow-up classification to achieve a
certain rate of recall, in this stage we select the first 9000 candidates as the input of the second stage.
However, since the image size is not fixed in this dataset: the average size of images varies from
2000 pixels to 9000 pixels. In order to further reduce the number of candidate windows, we select the
number of output candidate according to the image size.
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Figure 6. Tradeoff between #WIN and the detection rate (DR)/mean average best overlap (MABO) on
the dataset LARGE-FIELD-RSIs.

Figure 7. Tradeoff between #WIN and DR/MABO on the dataset LARGE-FIELD-RSIs when #WIN
varied from 1000–10,000.

Figure 8 shows the average running time of the BING and pBING algorithms on two datasets
to obtain the candidate region proposal. It shows that when the size of the remote sensing image
was large, the time required to obtain the candidate region was greatly increased, but the test time
was still less than 1 s, indicating that the time complexity of the algorithm did not increase sharply
with the image size expanding. In addition, it reveals that the pBING algorithm took more time to
acquire candidates, about three-times slower. However, the algorithm itself is very fast; even if the
time expansion of the original was three-times, it is still within the acceptable range.
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Figure 8. Average running time of the BING algorithm and the pBING algorithm on different datasets.

5. Deep Feature Extraction with Context Scene Feature Fusion and Detection

5.1. Feature Extraction Algorithm CNN

After obtaining the candidate windows that may contain objects, we needed to further determine
whether the windows actually contained objects, that is the detection task can be converted into the
classification task. To classify the candidate windows, the distinguishing features of each window need
to be extracted first. As a base problem of the computer vision field, many classic feature extraction
methods have been proposed, such as color histogram, gray level co-occurrence matrix, Haar-like
features, HOG features, and SIFT features. These features were designed by scholars according to
experience and related prior knowledge and have achieved good results in many fields. However,
at the ImageNet LSVRC-2010 competition, Hinton et al. [13] used deep learning to extract features
automatically, reducing the top-5 error rate of the image classification task by 15.3%, far beyond
the algorithms with traditional feature extraction methods. The reason is that the traditional feature
representation can only obtain the shallow features of the image, and it has certain limitations; however,
deep learning can automatically learn higher level feature representation from the original image,
which has better distinguishing ability and versatility.

Deep learning is developing rapidly, and the most regularly used in the field of object detection is
the convolutional neural network (CNN). Compared with traditional neural networks, CNN achieves
weight sharing by introducing the convolution layer, which makes the network structure sparser and
reduces the complexity of the model. The convolutional algorithm can obtain the feature map of
different aspects by difficult convolution kernel parameters. The convolution operation makes the
obtained feature map have translation invariance. The convolution layer is usually followed by a
pooling layer, which downsamples the obtained feature map layer, preserving useful information
while reducing the amount of data to be further processed. The pooling layer usually uses max-pooling
to get the maximum response of local features, so that the obtained features have better rotation and
light invariance. CNN can learn a higher level feature representation from low-level features through
a deep network structure by stacking multiple convolution layers. For different objects, the learned
low-level features by CNN differ slightly, which are usually some edge information, and through
multi-layer network learning, abstract features of different objects can be obtained finally.

After the multiple convolution layer, a fixed-length feature vector is obtained through the
full-connection layer and output to the classifier. Generally, the softmax classifier is employed in the
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CNN, and it outputs the probability that the image belongs to each class. CNN combines feature
learning with the classification task, which makes the extracted feature more task related.

Model of Neurons

CNN is a type of multi-layer sensor for which each layer is composed of a two-dimensional
plane, and each plane is composed of various independent neurons. In the network, some simple and
complex cell are marked as cell C and cell S, which is inspired by the vision concept from biology. In
the visual cortex, there are two kinds of related cells, simple ones (cell S) and complex ones (cell C).
Cell S responds to the stimulation for the modes like margins of images in its maximum receptive
field, while cell C has a bigger receptive field, which can locate the modes of stimulation in a spatial
way. The merging of C cells forms convolutional layers, denoted as UC, while the merging of S cells
forms the downsampling layers, which can be denoted as US. Any intermediate layer in the network
is composed of the S-layer and C-layer with series connection. Regularly, US is the layer to extract the
feature, while UC is the layer of feature mapping.

In CNN, only the input of cell S is variable, while other inputs are fixed. The first layer can be
denoted by Usl(kl , n), which means a cell s output on the kl S-plane, and a cell c output on the kl
C-plane can be denoted by Ucl(kl , n). n represent two-dimensional coordinates.

Usl (k, n) = rl (k)×

ϕ

⎡⎢⎢⎢⎢⎣
1 +

Kl−1

∑
kl−1

∑
v∈Al

al (v, kl−1, k)Ucl−1 (kl−1, n + v)

1 + rl(k)
rl(k)+1 b1 (k)Uvl (n)

− 1

⎤⎥⎥⎥⎥⎦
(12)

In the above neuron model formula, al(v, kl−1, k) and bl(k) represent the connection coefficients
of positive input and negative input, respectively; rl(k) is a constant that controls the option of feature
extraction; the bigger it is, the worse is at tolerating noise and feature distortion.

Process of convolution: Employ a trainable filter fX to process the convolution on input images
(the c1 layer is the input, and the inputs of subsequent layers are the outputs of the forward layer),
based on an activation function (usually sigmoid) with a offset bX , to get convolutional layer CX . Mj is
the value of the input feature map:

Xl
j = f ( ∑

i∈Mj

Xl−1
i ∗ kl

ij + bl
j) (13)

Down-sampling process: Each m adjacent pixels sum up to be one pixel (mcan be set), and use
j as the weight, add offset bj, then use the activation function sigmoid to generate feature mapping.
The mapping from one plane to another plane can be a convolutional operation, and the layer can be
a fuzzy filter functioning as double feature extraction. Spatial resolution decreases with the hidden
layer going forward, while the plane number increases for better feature extraction. For the sampling
layer, if there are N input features, then there would be N output features, but the size of each feature
changes. The details formula are as follows. down() denotes the down-sampling function.

Xl
j = f (βl

j × down(Xl−1
i ) + bl

j) (14)

5.2. Context Information

Considering that a specific kind of object can only appear in certain scenes, this a priori knowledge
is particularly obvious in remote sensing images; for example, ships can only appear in the port or the
sea, and an airplane can only appear on the parking apron or runway. In regular images, the context
of the same kind of object varies greatly as a result of different locations, angles, or distances when
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taking photos. As shown in Figure 9, the car’s context scene may be an avenue, the ground, a house,
or even water. However, in remote sensing images, the spatial relationship between the object and the
background is relatively fixed due to the fixed angle and height of satellites. In addition, as shown in
Figure 10, compared to regular images, the objects in high-resolution remote sensing images are usually
very small, the details having useful information are few, and objects may not be clear. Therefore,
in the remote sensing image, the context scene information of the candidate window may be helpful to
determine the objects.

Figure 9. Example of the context scene of a car in regular images.

Figure 10. Airplane objects in high-resolution remote sensing images.

5.3. Deep Feature Extraction and Context Scene Feature Fusion

As objects in remote sensing images have a strong background context, for example, the airplane
objects may appear on the runway, parking apron, but not in the forest, the port, etc., and the airplanes
may be side by side with another one, how to describe this a priori knowledge and apply them
to the detection algorithm comprise a difficult problem. In order to utilize contextual information,
conventional algorithms usually define structure and matching constraints, but this manual approach
is too subjective and not extensible to different problems.

In this paper, we extract the scene context feature of the candidate window and fuse this feature
with the candidate window feature to classify, while making the classifier automatically learn the
constraint between the object and the context scene.

In Section 2, it is indicated that the feature extraction based on CNN can avoid the unmanageability
and subjectivity of the manual design feature and can obtain a deeper feature representation of the
object. Therefore, the feature of the object window and the context scene are both extracted from CNN.
For the convenience of description, we named the two networks as objNetand sceNet. In the training
process, we trained objNet and sceNet respectively. In the testing process, as shown in Figure 11,
we extracted the feature of the candidate window, this being the context scene by the corresponding
network, and then fused the two kinds of features to classify. For the feature fusion, taking into account
the detection rate, we simply merged the two features and used the faster linear SVM classification.
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Figure 11. Window feature and context scene feature fusion.

For the scene context of the candidate region, as shown in Figure 12, we extended the candidate
region from the center point and obtained a 256 × 256 pixel region as its context scene. When the
object was at the edge of the image, we made the scene bounding box a minimum translation, so that
it did not exceed the image area.

Figure 12. The definition of the context scene for the candidate region.

For the sceNet network, we used the classic AlexNet network structure, and modified the final
output layer number. As shown in Figure 13, the network consisted of eight layers, of which the
first five layers were the convolution layer, which can be regarded as multi-stage feature extraction.
The latter three layers were fully-connected layers. The parameters of each layer are shown in Table 3.
In the detection process, the scene bounding box of the candidate region was input to the network
for feed forward calculation, and the output of the fifth layer was used as the scene feature of the
candidate region.

Figure 13. sceNet network structure.
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Table 3. The parameters of each layer in the sceNet network.

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer

convolution layer

window size 11 × 11 5 × 5 3 × 3 3 × 3 3 × 3
number of convolution kernels 96 256 384 384 256

stride 4 1 1 1 1
pad 0 2 1 1 1

pooling layer
window size 3 × 3 3 × 3 – – 3 ×3

stride 2 2 – – 2

For the feature extraction of the candidate window, the structure of the objNet network is shown in
Figure 14. Taking into account that the airplane object is very small and the sizes are more concentrated
in 64 × 64 pixels, so the network input layer using 64 × 64, other sizes of candidate windows need to
be scaled. Since the object to be detected in this paper is only an airplane, the output of the network is
two classes: airplane or background. Compared with the classification of the remote sensing scene
using AlexNet, the input size of the objNet network was smaller, and the outputs were fewer, so
the network can be considered to need relatively simple feature representation when performing
object discrimination. Therefore, when designing the objNet network, we modified the size of the
convolution and pool layer windows and reduced the number of convolution cores and neurons in
the fully-connected layer. The simplified network had fewer parameters and could reduce the risk
of over-fitting properly. However, this does not mean that the network was as simple as possible.
In practice, it is found that when the network is too simple, the network classification accuracy is
high in the training phase, but it is not good when using the network for detection. The possible
reason is that the oversimplified network is not strong enough to abstract the features, leading to poor
generalization ability. As shown in Figure 14, the final objNet network consisted of eight layers, and
the first five layers were the convolution layers, which can be seen as multi-stage feature extraction.
The latter three layers were the fully-connected layers, which can be seen as a classifier. The parameters
of each layer are shown in Table 4. In the detection process, the candidate region was input to the
network for feed forward calculation, taking the output of the fifth layer of the pool as the feature of
the candidate region.

Figure 14. objNet network structure.

Table 4. The parameters of each layer in objNet network.

1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer

convolution layer

window size 5 × 5 3 × 3 3 × 3 3 × 3 3 × 3
number of convolution kernels 48 128 192 192 28

stride 1 1 1 1 1
pad 0 0 1 1 0

pooling layer
window size 2 × 2 2 × 2 – – 2 ×2

stride 2 2 – – 2
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5.4. Training of CNN and Transfer Learning

5.4.1. The Training Process of CNN

The training process of the CNN is shown in Figure 15. It was mainly carried out by iterative
updating of the forward propagation and back propagation stages. Specifically, the first stage randomly
selected a sample (Xb, Yb) from the training set and input Xb to the network for feedforward calculation,
then obtained the predicted output Ob. At this stage, the data were transformed step-by-step from the
input layer through a series of hidden layer levels and finally transmitted to the output layer, which is
essentially the process of input multiplication with the weight matrix for each layer, as in Formula (15):

Ob = Fn

(
. . .
(

F2

(
F1

(
XbW1

)
W2

)
. . .
)

Wn
)

(15)

Figure 15. The training process of CNN.

In the second stage, namely backward propagation stages: first, we calculated the error between
predicted output Ob and real label Yb, and then, we continued to pass the error back to the front layer,
and each layer updated its weight matrix by minimizing the error of small methods according to the
current error situation. For the CNN, the weights usually are updated by the mini-batch gradient
descent method, which is an optimization algorithm between the batch gradient descent and the
stochastic gradient descent method. When the data volume is large, the mini-batch preserves the
advantages of speed in the stochastic gradient descent method, while avoiding the problem of severe
congestionin the stochastic gradient descent method. The mini-batch gradient descent method updates
the parameters iteratively by randomly selecting small batches of data, as shown in Formula (16),
where m represents the number of training samples per iteration in parallel, which is limited by the
memory size. For an objNet network, the size of the input sample is small and the network structure is
relatively simple, so the value was 1024, and for the sceNet network, it was 64 in the experimental
environment used in this section.

ωk → ω
′
k = ωk − η

m∑
j

∂CXj

∂ωk

bl → b
′
l = bl − η

m∑
j

∂CXj

∂bl

(16)
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where ωk and bl are weight parameters and bias parameters in the network, respectively; η is the
learning rate; CXj is the cost loss of the sample Xj.

Before training the network, appropriate training data should be found. For the scene feature
extraction network sceNet, we needed to use the remote sensing scene classification data to train.
For the remote sensing scene classification, there are two standard datasets: UCMerced-LandUse [29]
and WHU-RS [30]. To increase the training set, this paper combined the two datasets, and a detailed
description of this dataset can be seen in Section 5.4.1. For the object feature extraction network objNet,
we needed to use the sub-images containing the object as the positive sample and the sub-images
without the object as the negative sample. In order to make the training process and detection process
the same distribution, the network used the pBING algorithm’s output on the training set as the
training data, in which a candidate window having an ≥0.5 intersection-over-union (IoU) overlap
with a ground-truth box was labeled as the positive sample and the rest as the negative sample.

5.4.2. Transfer Learning

Although CNN can automatically extract deep features, the network has many parameters to
optimize and usually requires large-scale data (big data) in order to form a better network; if not,
it easily over-fits. While the reality is the deficiency of labeled training datasets of remote sensing
images, in order to fill the gap and make the model have stronger generalization ability, many methods
have been proposed, such as data augmentation technology, dropout [31], and so on. However,
these methods are still not enough for small remote sensing dataset. Considering the abundant regular
image datasets available, we employed transfer learning technology for deep learning, which can
break the“ deep learning with big data” limitation.

For deep learning, an appropriate applicable transfer learning method is model transfer: firstly,
pre-training network parameters through the source field data, then applying these parameters in the
object domain, and finally, fine-tuning the network parameters to get better performance. If transfer
learning is not employed, it demands initializing the network parameters and then starting to train the
entire network using training data. An inappropriate initialization will make the network convergence
slow and easily fall into the local minimum. In addition, because of the deepening of the network layer,
the problem of gradient disappearance easy occurs: when the hidden layer near the output layer has
been trained well, the parameter update near the input layer becomes slow or even stagnates. However,
this does not mean that the network is optimal, because the first few layers of the network may not
learn anything and may be just a random combination and numerical transformation of the input,
but not really a dissociation of features, resulting in the entire network being a linear transformation
of higher levels at work. Especially for high-dimensional data such as images, the network does not
have good feature dissociation due to the degradation of the lower layer, so that the network is only
performing local numerical learning on the input image and the model easily over-fits. Once the input
image has changed, such as the direction or color of the airplanes, the network may not identify the
object. This problem is mainly due to the fact that in the deep network, the learning rate of different
layers is not the same, and the closer to the output layer, the faster the learning rate. This is because
the gradient loss of the front layer is based on the product of the gradient loss, and when the number
of layers is larger, the gradient loss becomes smaller and smaller.

The problem of gradient disappearance in deep learning networks is an essential problem brought
by gradient descent, which is a big obstacle in deep learning. When the training data are large,
the parameters can be initialized by a Gaussian distribution or other optimization methods, and the
whole network can be fully trained by adjusting the learning rate and some regularization methods,
as well as training for a long enough time. However, when the training data are small, the gradient
disappearance and over-fitting problem will become more serious. In addition, since the problem in
the deep learning network is mainly that the first few layers may not be fully trained, if the first few
layers can be initialized by the parameters of other fully-trained networks, which puts the network in
a better initial state, this would contribute to the optimization of the network and could accelerate the
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training process of the network. From another point of view, the first few layers of the deep learning
network usually learn the edges of the image, the color, the texture, and other primitive features of
the images, which for many visual tasks are typical. Therefore, the network parameters of lower
layers can be shared among different image classification tasks. this is equivalent to transferring the
feature extraction knowledge carried by these parameters to the object domain, and then, we only
need to continue training the network through the training data of the object domain, that is to correct
parameter deviation between the object domain and the source domain.

The following details the transfer learning scheme used in the two CNNs used in this paper.
For pre-training of the remote sensing scene classification network sceNet, we can use the scene

recognition task in the regular image field as the source field. For the regular scene recognition task,
Zhou et al. [32] established a large-scale regular scene dataset, Places, and published the trained
network model. By practice and theory, this paper has demonstrated that the deep features learned
on the Place dataset are more effective compared with those learned on the ImageNet 2012 dataset.
However, for the remote sensing scene classification task, it is necessary to further validate whether the
transfer effect of this model is optimal. Figure 16 shows the flowchart of transfer learning on the sceNet
network. Firstly, we used the regular scene classification task to pre-train sceNet and then transferred
the learned parameters to the remote sensing scene classification. The last layer of parameters was not
transferred, just random initialization, and then, we used the remote sensing scene classification data
to continue to train the network; then, the network learned the parameters of the last layer through
back propagation and corrected the transferred parameters of the first few layers.

Figure 16. The transfer learning flowchart of the sceNet network.

5.4.3. Training the Classifier and Hard Negative Mining Method

For the classifier, we employed the simple linear SVM. For the training of the SVM classifier, we
chose the real object sub-images as the positive sample and the sub-images with ≥0.3 IoU overlap
with a ground-truth box as negatives. For each training sample, we extracted the object feature by the
objNet network and the corresponding context feature by sceNet network, and then, we merged the
two features as the input of the SVM classifier.

In general, when training a classifier, the more training samples, the better. However, there is a
regular problem in the field of object detection, which is the extreme imbalance of positive and negative
samples, that is the positive samples with objects are relatively small, while negative samples with
background are very numerous. For remote sensing images, especially large-sized images, the problem
is more obvious. Too many negative samples will lead to a very slow training process for classifying
algorithms, and will even be detrimental to the performance of the final classifier.

For example, for SVM, many negative samples far away from the separating plane are almost
useless for optimization. In addition, too many negative samples will make the algorithm’s memory
requirement too large. If a negative set with a similar number as the positive set is randomly selected,
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the algorithm cannot guarantee the best effect on the whole training set. If manually selecting the
negative set, the cost is too large, and the subjectivity is too strong. Therefore, it is very important to
search for a small representative negative set in the negative sample space. The usual strategy is to
initialize a small hard negative set Ct ∈ D randomly (D denotes the entire negative sample space),
train an initial model βt with all positive samples, and classify the negative sample set Ct. Remove
the easy negative sample while searching for hard negative samples from D to add to the Ct, until the
memory limit or a threshold L. The iterative updating model βt and hard negative sample set Ct,
until Ct no longer changes or the iteration number reaches a certain limit, stop training. In practice,
the hard negative mining method converges very quickly; usually, only a single pass over all images
is required.

5.5. Results and Analysis

5.5.1. Dataset

The two high-resolution remote sensing datasets used for object detection are described in
Section 4.3.1. This section introduces the remote sensing scene classification datasets used in
the training of sceNet networks and the two regular image datasets used for transfer learning.
For remote sensing scene classification, there are two public datasets: UCMerced-LandUse [33] and
Dataset-WHU-RS [33]. UCMerced-LandUse contains 21 different scene categories, each category
containing 100 high-resolution remote sensing images of 256 × 256 pixels. The Dataset-WHU-RS
dataset contains 19 scene categories, a total of 950 images of 600 × 600 pixels. In order to expand the
training samples, this paper will simply divide one remote sensing image with 600 × 600 pixels into
nine 256 × 256 pixel sub-images. In the end, the two remote sensing datasets are merged together,
and the data of the same category are merged. In addition, fine-grained similar scenes such as sparse
density residential, medium density residential area, and intensive residential area are merged. After
merging, there were 26 scene classes, averaging about 320 images per class. In addition, in order to
further increase the training data, simple horizontal, vertical flip operations were used.

Next, the regular image scene classification dataset Places used in the transfer learning of
sceNet network is introduced briefly. This dataset Places is a large-scale natural scene dataset,
containing 205 categories and a total of 2.5 million images.

The data used in the transfer learning of objNet network were mainly extracted from the ImageNet
2012 dataset, in which positive samples were all images in two categories of airplane and military
airplane and some airplane images crawled from the Internet, a total of 12,300 images; for negative
samples, we picked a category that may appear in the remote sensing images, such as ships, harbors,
mountains, etc., and removed the other 980 categories, such as sharks, hens, caps, etc., which might be
useless for object identification in remote sensing images. Figure 17 shows examples of the positive
and negative samples of the dataset. For the convenience of the following description, this dataset is
called NATURE-PLANE.

5.5.2. Environment and Evaluation

The experiment in this section was performed on Caffe. Caffe is widely used in the deep learning
domain because of its advantages of being clear, simple, fast, and fully open source. The platform
had two NVIDIA GeForce GTX 980 video cards, 16 GB memory, CPU i5-4460. For a detection result
with IoU overlap with a real object coincidence degree no less than a threshold (usually set to 0.5),
the detection result is considered correct; besides, if there are multiple detections, then only one is
considered right, while the rest are false detections. In this paper, we used the precision and recall
curve (PR curve) and the average precision (AP) to evaluate the detection performance synthetically.
The evaluation method and code used the PASCAL VOC2007 standard. Accuracy and recall are
defined as Formulas (17) and (18), respectively:
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P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

where TP is true positive, the number of true boxes, that is the number of objects correctly detected;
FP is false positive, the number of false positives, that is the number of false detection results; FN is
false negative, the number of false negative cases, that is the true number of objects that were missed.

Figure 17. Examples of the NATURE-PLANE dataset used in the transfer learning of the objNet network.

The average detection accuracy of AP can be measured by a single value, which is a representative
comprehensive evaluation of the index, called the area under the PR curve, as shown in Formula (19).

AP =
∫ 1

0
P (R) dR (19)

IoU =
DetectionResult ∩ GroundTruth
DetectionResult ∪ GroundTruth

(20)

5.5.3. Result Analysis

In order to prove the validity of the transfer learning, this section firstly gives the classification
accuracy of the object and scene feature extraction network in the training process and then gives
the influence of the feature extraction on the detection effect before and after the transfer learning.
Furthermore, the effectiveness of scene feature fusion is illustrated by contrasting the detection
performance before and after the context scene feature fusion. Finally, we compare the other algorithms
to prove the validity of the proposed remote sensing object detection algorithm based on deep learning
with scene feature fusion.

Because the sceNet network uses the classic AlexNet network structure, there are many trained
parameter models based on the network, which can be used for transfer learning. During the training
process, the parameter models of AlexNet, CaffeNet, Places205-AlexNet, and Hybrid-AlexNet were
used for transfer learning in this paper. AlexNet and CaffeNet were trained on the ImageNet2012
dataset, and CaffeNet has a very similar architecture to AlexNet, except for two small modifications:
training without data augmentation and exchanging the order of pooling and normalization layers.
Places205-AlexNet is a parameter model trained on the Places dataset. Hybrid-AlexNet was trained
on the dataset combining the Place dataset with the ImageNet2012 dataset for a total of 3.6 million
images in 1183 categories. Table 5 shows the classification accuracy of the remote sensing scene using
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different transfer learning models, where “AlexNet-RSI” indicates the learned network model without
transfer learning and “xx-TL” denotes the network transferred from different models.

Table 5. The classification accuracy of the network transferred from different models.

AlexNet-RSI AlexNet-TL CaffeNet-TL Places205 -AlexNet-TL Hybrid -AlexNet-TL

accuracy 89.76% 94.04% 93.87% 92.68% 94.81%

Table 5 reveals that the accuracy of the network trained with transfer learning was much higher
than that of a network trained directly using remote sensing scene data. After transfer learning,
the accuracy of the Hybrid-AlexNet network trained on the Place and ImageNet 2012 datasets was the
highest, so we used the Hybrid-AlexNet-TL model to extract the feature of the object context scene.
In addition, by visualizing the convolution kernel parameters of the first convolution layer, as shown
in Figure 18, this shows that the convolution kernel of the network with transfer learning learned more
edge features, and without transfer learning, the first layer of the network simply learned some simple
fuzzy color information.

Figure 18. Visualization of the first-level convolutions in different network models.

For the training of object classification network objNet, because the network structure was
designed in this paper, there was no trained model for transfer learning, so it was necessary to pre-train
the transferable model parameters. Therefore, we used the NATURE-PLANE dataset introduced
in Section 5.4.1 to pre-train objNet. However, in practice, it appears that if we pre-train the objNet
directly using ImageNet2012’s complete data and resume training using the NATURE-PLANE dataset,
a better classification result could be obtained. Table 6 lists the classification accuracy of different
pre-trained objNet networks, where objNet-RSI denotes the network model obtained without using
transfer learning.

Table 6. The accuracy of objNet based on different transfer learning methods.

Accuracy

SMALL-FIELD-RSIs LARGE-FIELD-RSIs

objNet-RSI 93.51% 94.24%
objNet-TL1 96.63% 95.52%
objNet-TL2 97.23% 96.86%

After the training of the objNet network and sceNet network was complete, we used the
two networks for feature extraction and classification detection. We first compared the detection
performance before and after using transfer learning in objNet when there was no scene feature fusion.
Then, to fuse the scene features, in the fusion, we also compared the effect of sceNet before and after
transfer. That is, there was in total four groups of experiments, and the four groups of experiments
had a progressive relationship, in which the fourth set of experiments was our proposed algorithm. In
order to simplify the following description, we named each experiment and the configuration of each
set of experiments as listed in Table 7.
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Table 7. List pf the configurations of each experiment.

Algorithm Scene Feature Fusion sceNet Transfer Learning objNet Transfer Learning

objNet × – ×
objNet-TL × –

√
objNet-TL-sceNet

√ × √
objNet-TL-sceNet-TL (ours)

√ √ √

Figures 19 and 20 show the comparison of the results of the four experiments on two different
dataset sizes. From the results of the experiments objNet and objNet-TL, it was revealed that the transfer
learning of object the feature extraction network could improve the whole detection performance
significantly. Before transfer learning, the accuracy of the curve decreased rapidly with the recall
increasing, and the curve decreased slowly after transfer learning, which shows that the extracted
feature of network after transfer learning made the classifier discriminate better, which means the
transfer learning was effective. It can be concluded from the experiment objNet-TL-sceNet-TL that
the detection efficiency on the two remote sensing datasets was better than that for the experiment
without context scene feature fusion, indicating the effectiveness of the scene feature fusion. However,
compared with objNet-TL-sceNet and objNet-TL, it is shown that when transfer learning was not
employed, the improvement was not obvious, the possible reason for which being that the sceNet
network has too many parameters for the limited remote sensing scene data, and if we directly trained
the network using limited data without transfer learning, it would easily to over-fit, so that the
extracted features would not be representative.

Figure 19. The performance comparison of four experiments on the SMALL-FIELD-RSIs dataset.

Finally, we compared the proposed algorithm objNet-TL-sceNet-TL with the other algorithms.
Firstly, in order to prove the effectiveness of the deep features, we used the HOG algorithm [34] to
extract the feature of the candidate region and used the SVM algorithm and the hard negative mining
method to train the detector; we called it HOG-SVM. In addition, this paper compared the R-CNN
algorithm [14]. This algorithm achieved a breakthrough in the PASCAL VOC2007 object detection task.
It first uses the selective search algorithm to generate about 2000 candidate regions for each image
and then uses the AlexNet network to extract features, and finally classifies each region using linear
SVM classification. From the analysis of Section 4.3.2, we can see that the selective search algorithm
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is not suitable for large-sized remote sensing images. Therefore, this paper replaced the candidate
region proposal with the pBING algorithm proposed in this paper. Furthermore, we compared the
detection performance of the two methods of R-CNN: directly obtaining classification results by the
AlexNet network and extracting features by AlexNet, then classifying by SVM. For convenience,
the two algorithms are called pBING-AlexNet and pBING-AlexNet-SVM, respectively. Figures 21
and 22 show the comparison of the detection performance of each algorithm on two different sizes of
remote sensing images.

Figure 20. The performance comparison of four experiments on the LARGE-FIELD-RSIs dataset.

Figure 21. The performance comparison of different algorithms on the SMALL-FIELD-RSIs dataset.
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Figure 22. The performance comparison of different algorithms on the LARGE-FIELD-RSIs dataset.

Table 8. The average detection accuracy (average precision (AP)).

Algorithm SMALL-FIELD-RSIs LARGE-FIELD-RSIs

objNet 83.38% 82.30%
objNet-TL 87.59% 85.19%

objNet-TL-sceNet 87.67% 86.86%
objNet-TL-sceNet-TL (ours) 90.77% 89.12%

HOG-SVM 77.52% 76.69%
pBING-AlexNet 85.63% 84.54%

pBING-AlexNet-SVM 88.93% 86.91%

Figures 23 and 24 show the results of the objNet-TL-sceNet-TL algorithm on the SMALL-FIELD-RSIs
and LARGE-FIELD-RSIs datasets, respectively. In each image, the red rectangles indicate the real objects
marked by the dataset and the blue rectangles the final detection result of our algorithm. It appears
that the vast majority of airplane objects can be correctly detected. It is noted that our algorithm can
detect one airplane, which was not marked (missed by a human) on the dataset, and it is shown by the
blue arrow in Figure 23. The comparison details of average precision (AP) can be checked in Table 8.

However, we found that if the airplane object was ambiguous and small, it may be missed.
One missed airplane is pointed out by the red arrow in Figure 24. The reason is that our candidate
region proposal algorithm was not strong enough for objects that are too small and ambiguous, and it
needs to be further improved in the future.

277



Appl. Sci. 2019, 9, 1130

Figure 23. Examples of detection results on the SMALL-FIELD-RSI dataset.

Figure 24. Examples of detection results on the LARGE-FIELD-RSIs dataset.
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6. Conclusions

In this paper, we present a deep fusion feature approach to detect objects in high-resolution
remote sensing images. Our method is composed of three main steps, which are the candidate region
generation, deep feature extraction with fine-tuning, and the SVM classification with deep features.
Hence, we re-structured the paper in terms of the three steps. For candidate region generation, we
improved the binarized normed gradients algorithm and developed the pBING method. For deep
feature extraction, the object feature and scene feature were both extracted for each candidate region,
by utilizing the AlexNet model. As the label data in remote sensing are very scarce, we utilized the
fine-tuning notion and pre-trained AlexNet on the ImageNet database, then fine-tuned the model with
labeled remote sensing data. Finally, the object feature and scene feature were utilized to train an SVM
for classification. After introducing the three main steps, we reported the experimental results, which
validated the effectiveness of the developed pBING method, the fine-tuning strategy, and the overall
detection model.
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Abstract: To effectively prevent land subsidence over abandoned coal mines, it is necessary to
quantitatively identify vulnerable areas. In this study, we evaluated the performance of predictive
Bayesian, functional, and meta-ensemble machine learning models in generating land subsidence
susceptibility (LSS) maps. All models were trained using half of a land subsidence inventory, and
validated using the other half of the dataset. The model performance was evaluated by comparing
the area under the receiver operating characteristic (ROC) curve of the resulting LSS map for each
model. Among all models tested, the logit boost, which is a meta-ensemble machine leaning model,
generated LSS maps with the highest accuracy (91.44%), i.e., higher than that of the other Bayesian
and functional machine learning models, including the Bayes net (86.42%), naïve Bayes (85.39%),
logistic (88.92%), and multilayer perceptron models (86.76%). The LSS maps produced in this study
can be used to mitigate subsidence risk for people and important facilities within the study area, and
as a foundation for further studies in other regions.

Keywords: land subsidence; Bayes net; naïve Bayes; logistic; multilayer perceptron; logit boost

1. Introduction

Coal mining was once the driving force of the national industry and economic development in
Korea, but this situation changed as demand for coal decreased. Gangwon Province was once Korea’s
largest coal mining area but most of its mines were closed in the early 1990s. Among the environmental
problems that follow mine closures, land subsidence events can threaten human life and damage
property and infrastructure, including buildings, houses, railroads, and roads [1–4]. Recovery of
surface structures following land subsidence is difficult and costly; therefore, it is necessary to predict
land subsidence susceptibility (LSS) zones before subsidence occurs, and to implement management
strategies in these zones [3].

Generally, prediction of subsidence susceptibility zones requires the input of several
environmental factors and the application of perdition models [5]. Several previous studies have
developed quantitative and qualitative models that have been successfully applied in various hazard
susceptibility zones worldwide [3–11]. These include logistic regression (LR) [3], frequency ratio
(FR) [3,6], weight of evidence (WOE) [3], evidential belief function (EBF) [4], artificial neural network
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(ANN) [3,5,7,8], support vector machine (SVM) [9], random forest (RF) [10], and fuzzy logic (FL) [8,11]
models. Single LSS mapping models can be combined to form ensemble models, which provide
more precise and meaningful results [9]. Ensemble models based on machine learning have recently
improved the prediction accuracy and performance of single classifiers [12]. The main advantages of
this approach are the ability to represent complex relationships between influential factors, and to
incorporate spatial data of various scales [13].

Based on existing studies, probability and statistical models using geographical information
systems (GIS) have been applied extensively to predict the susceptibly of geohazards, such as
landslides, floods, subsidence, and rockfalls [3,14–16]. Recently, data mining and machine learning
models for addressing nonlinear problems have been developed, which have been applied frequently
and had their performances compared in landslide susceptibility mapping [17–20]. In ground
subsidence hazard mapping, ground subsidence hazard maps around abandoned underground coal
mines (AUCMs) have been constructed by integrating the adaptive neuro-fuzzy inference system
and GIS [21]. In addition, a fuzzy operator, decision tree with the CHAID and QUEST algorithms,
and the frequency ratio have been applied to construct subsidence susceptibility maps at AUCMs
in Korea [2,11]. In this study, we investigated the performance of some models that have never
been applied to land subsidence prediction. Therefore, in this study, we generated LSS maps for a
South Korean district containing abandoned subsurface coal mines using machine learning methods,
including a logit boost meta-ensemble model, two Bayesian models (Bayes net and NB models) and
two functional models (logistic and multilayer perceptron models). The reliability and accuracy of
all models were assessed by comparing their area under the receiver operating characteristic (ROC)
curves. Data processing was performed using WEKA 3.9.2 and ArcGIS 10.5 software to produce five
machine learning algorithms.

2. Land Subsidence in the Study Area

The study area, Hwajeon, is located in the city of Taebaek, South Korea (Figure 1), at
37◦11′07”–37◦11′07” N, 128◦56′40”–128◦57′43” E. Underground coal mining activities were carried out
in Taebaek for nearly 20 years. The coal seams in this area were irregularly disturbed and inclined with
various widths by reverse and thrust faults [22]. Therefore, the slant-chute block caving method was
mainly used. About 10 million tons of coal were mined from the study area between 1953–1991 [22],
and coal was transported to other areas by railroad beginning in 1973 (Figure 1). Since 1990, most of the
coal mines have been closed due to reduced coal demand. However, the abandoned underground coal
mines are currently causing land subsidence in the study area [11,21–23]. Additionally, infrastructure
has been damaged by the land subsidence, as shown in photographs in a previous report [11].

Subsidence is caused by a variety of contributing factors, including geological discontinuities,
presence of water, mining depth, and weak overburden [24,25]. The two forms of subsidence caused by
underground coal mining are trough and sinkhole subsidence [25]. In the study area, a very irregular
sinkhole occurred due to many complex underground coal mine pits excavated via slant–chute block
caving in combination with the aforementioned factors [22]. After a mine cavity is excavated, roof
stability becomes unstable over time due to changes in the strength and stress of the roof strata. Under
such conditions, additional contributing factors can lead to the occurrence of sinkholes [25]. The
Coal Industry Promotion Board [11,26] has reported 24 land subsidence events within the study area.
Figure 1 shows a representative land subsidence from location S1 to location S6 of a subsidence event
reported in 1999. Table 1 provides a description of the land subsidence. Locations S1 to S5 of this land
subsidence mainly occurred along railways and at elevations above 800 m. Location S6 occurred in
residential areas and at a lower elevation than S1–S5. Also, the depth of subsidence of S6 is the deepest
(508 mm). Some photographs providing evidence of the land subsidence have been published [11,23].
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Figure 1. The study area in Taebaek, South Korea.

Table 1. Description of representative land subsidence in the study area [22].

Location Structure
Elevation

(m)
Mining

Depth (m)

Thickness (m)
and Slope of Coal

Seam

Subsidence
Depth (mm)

Other

S1 Railway 885 20–30 1–2
40–50◦ 90

-The coal seam is oblique to the railroad.
-Shallow depth of mine
-Sinkhole-type subsidence

S2 Railway 885 0 – 72 -Progression of cavity by mining
-Subsidence by limestone cavity

S3 Railway 885 30–50 1–2
20◦ 329 -Subsidence along railway

S4 Railway 885 40–65 2
20◦ 223 -Shallow depth of mine

-Coal bonanza

S5 Tunnel
Railway 810 30–260 105

50–70◦ 65
-The tunnel is located above the mine
cavity.
-Vertical cracks and leakage in tunnel

S6 Road 765 60–98 3
20◦ 508 -Residential area and elementary school

-Differential subsidence

3. Construction of Spatial Database

It is necessary to determine the factors affecting the land subsidence of a coal mine area. The
lithology of the overburden rocks, geological discontinuities, ground slope, scope of the mined cavity,
extent and depth of mining, mechanical characteristics of the rock mass rating (RMR), and flow of
groundwater are considered the main factor [11,25,27,28]. Spatial data for all of these factors may be
difficult to collect and may not be available. The available spatial databases used in this study were
constructed using ArcGIS 10.5.
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The surface geology with cross section lines was constructed using a digital geological map with
1:50,000 scale [29] published by the Korea Institute of Geoscience and Mineral Resources (KIGAM).
The geological formations include the Manhan, Jangseong, Hambaegsan, Dosagog, and Alluvium
horizons (Figure 2a, Figure 3). Most of the coal was mined from the Jangseong Formation with a
thickness of 80–15 m [22,30]. This formation includes four to five cyclothems consisting of dark-gray
sandstone, black shale, and coal seam (Table 2). The land use was constructed from a digital land
characteristics map with 1:5,000 scale [31] supplied by the National Geographic Information Institute
(NGII). Land use for the study area was classified into 10 categories: wood land, railroad, river, field,
plot, road, school, hybrid land, brook and unclassified area (Figure 2b). The rate of land subsidence
compared to the area of each category was higher in the railroad and school classes [21]. The surface
slope was calculated from a digital elevation model (DEM) constructed from a digital elevation contour
line with 1:5000 scale [32] published by NGII (Figure 2c). Surface slope was considered an affecting
factor because land subsidence can change surface slope, differential horizontal strain, and vertical
displacement [33]. Distance from drift was calculated from a digital drift map provided by the Mine
Reclamation Corporation (MIRECO) [26] (Figure 2d). The map is important because it identifies
the areas of mining activity in this region. Geological discontinuities are considered to be factors
affecting land subsidence, but no geological lineaments appear in the study area on the available
1:50,000 geological map. Therefore, geomorphological lineament was visually extracted from an
IKONOS satellite image by a field geologist (Figure 2e). If the location is near a lineament, the value of
distance from lineament is low.

The borehole data in the study area, provided by the Mine Reclamation Organization (MIRECO)
in 1996 [26], were collected from 29 boreholes (Figure 1 and Table 3). The depths of the boreholes
ranged from a minimum of 19.5 m to a maximum of 200 m. The data included hydrologic properties
and rock mass information [34]. The depth of groundwater, rock mass rating (RMR), and permeability
were obtained from 16, 19, and 6 boreholes, respectively (Table 3 and Figure 2f,g,h). The maximum
depth of groundwater was 42.5 m. On the railroad, the upper part of the railroad had a deeper
groundwater depth and lower elevation than the lower part of the railway. The RMR was classified
as classes 1–5, representing very good, good, fair, poor, and very poor, respectively. In this study,
the RMR ranged from 2–4.5. The lowest RMRs appeared in the northwest and southeast portions
of the railroad. Permeability was classified as classes 1–6, representing very highly (>1 cm/s),
highly (1–10−2 cm/s), moderately (10−2–10−3 cm/s), slightly (10−3–10−5 cm/s), and very slightly
(10−5–10−7 cm/s) permeable and practically impermeable (<10−7 cm/s), respectively. In this study,
the permeability grade ranged from 4–4.5 (slightly permeable). The groundwater data were collected
from a report published in May 1996 by the Coal Industry Promotion Board. Borehole point data
should be converted into raster data for spatial analysis, and the accuracy of a raster map depends on
the number of data points. However, the available borehole data were limited in this study. Therefore,
raster maps from the limited borehole data were constructed using an inverse distance weighting
(IDW) interpolation method, which is useful for predicting values at unmeasured locations where data
are insufficient [11].

Eight control factors influencing land subsidence were constructed with 2 m × 2 m grid data,
resulting in 775 columns and 860 rows, for a total of 666,500 cells within the study area. In total, 24 land
subsidence areas as 24 vector-type polygons were converted to 2 m × 2 m grid data for a total of
3863 cells with a value of 1. The 3863 cells of land subsidence were randomly classified into training
and validation sets, with a 50% (1931 cells) and 50% (1932 cells) distribution, respectively, to evaluate
model performance.
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Figure 2. Eight factors influencing coal mine subsidence were used as input data in this study:
(a) Geology, (b) land use, (c) slope, (d) distance from drift, (e) distance from lineament, (f) groundwater
depth, (g) rock mass rating (RMR), and (h) permeability.

Table 2. Description of geological stratigraphy in Taebaek [30].

Geological 
Age 

Formation Thickness 
(m) 

Description 

Quaternary Alluvium 
(Qa) 

~20 - Gravel, sand, and clay 

Permian 

 

250–350 

- Mainly milky white–light green coarse–very coarse 
sandstone with greenish-gray–gray shale interbeds. 
Intercalations of pinkish sandstone, purple shale, and 
grayish-green sandy shale in the upper part. The sandstone 
is less compact than that of the Hambaegsan Formation. 

Dosagog 
(Pd) 

Hambaegsan 
(Ph) 70–250 

- Mainly milky white–light gray coarse sandstone with 
some interbeds of black shale with thickness of 2–3 m. Some 
pebbly sandstones occur at the base. 

Jangseong 
(Pj) 

80–150 

- Four–five cyclothems consisting of dark-gray sandstone, 
black shale, and coal seam. Abundant plant fossils occur in 
the shale above the coal seam, the most valuable anthracite 
bed, of the 3rd–4th cyclothem from the bottom. 

 

Carboniferous 

Geumcheon 
(Cg) 50–100 

- Mainly dark-gray–black shale and dark-gray fine 
sandstone intercalated with dark-gray limestone lenses and 
two to three thin coal seams 

Manhang 
(Cm) 

250–300 

- Mainly purple, greenish-gray, or light-green shale and 
light-green–green or light-gray medium–very coarse 
sandstone intercalated with three–four limestone lenses. 
Conglomerates with a thickness of a few meters occur at the 
base in some places. 

 

Ordovician Makgol 
(Om) 

 - In the upper part, gray–dark gray limestone intercalated 
with dolomite 
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Figure 3. Geological cross sections in the study area.

Table 3. Borehole data in the study area.

ID
Depth of
Borehole

Depth of
Groundwater (m)

RMR
(grade)

Permeability
(grade)

Geology

B1 50.0 32.0 3.4 - Alluvium-Hambaegsan
B2 50.0 27.2 3.4 4.5 Alluvium-Hambaegsan
B3 30.0 - 3.4 - Alluvium-Hambaegsan
B4 60.2 - 3.4 4 Alluvium-Hambaegsan
B5 86.3 - 2.0 - Alluvium-Hambaegsan
B6 80.0 - 2.0 4 Alluvium-Hambaegsan
B7 33.0 27.5 - - Jangseong
B8 20.5 27.7 - - Jangseong
B9 40.0 26.1 - - Jangseong
B10 35.5 - 4.4 - Jangseong
B11 30.0 15.7 - 4 Jangseong
B12 40.5 21.6 - 4 Jangseong
B13 41.1 29.4 - - Jangseong
B14 22.0 - 3.2 - Jangseong
B15 35.7 20.0 - - Jangseong
B16 40.8 20.0 - - Jangseong
B17 50.5 14.7 - - Jangseong
B18 58.0 - 3.2 - Jangseong
B19 54.0 42.5 2.5 4 Hambaegsan-Jangseong
B20 60.0 - 3.0 - Hambaegsan-Jangseong
B21 115.0 - 3.0 - Hambaegsan-Jangseong
B22 80.0 - 3.0 - Hambaegsan-Jangseong
B23 80.0 - 4.5 - Hambaegsan-Jangseong
B24 84.0 - 4.3 - Jangseong
B25 80.4 18.0 - - Jangseong
B26 19.5 5.0 3.3 - Hambaegsan
B27 200.0 - 4.3 - Hambaegsan-Jangseong
B28 40.0 5.0 3.3 - Hambaegsan-Jangseong
B29 35.0 5.5 3.3 - Hambaegsan-Jangseong

4. Methods

As shown in Figure 4, the mapping process consisted of five steps: (a) Spatial database
construction, (b) random categorization of land subsidence locations into training and validation
datasets at a ratio of 1:1, (c) selection of land subsidence conditioning factors, (d) application of
machine learning methods to map LSS, and (d) validation and comparison of the five models.
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Figure 4. Flowchart for the generation of land subsidence susceptibility (LSS) maps using various
machine learning models including Bayes net, naïve Bayes (NB), logistic, multilayer perceptron, and
logit boost models.

4.1. Models

4.1.1. Bayes Net (BN)

The BN algorithm applies Bayes’ theorem to produce graphical representations of the probability
distribution [35]. BN is commonly used to model complex systems [36]. BN has not yet been used to
model land subsidence; however, Pham et al. (2016) [37] applied this algorithm to evaluate landslide
risk. The distinct universal probability of a subsidence event for a set of input factors can be estimated
as follows:

PB(X1, X2, . . . , Xn) = Πn
i=1 = PB

(
X1 |Π xi

)
= Πn

i=1θxi|Πxi
(1)

where X = (X1, X2, . . . , Xn) represents the subsidence input factors, PB

(
X1 |Π xi

)
= θxi |Πxi

is a
common probability distribution for input factors Xi, and n is the number of subsidence input
factors [37].

4.1.2. Naïve Bayes (NB)

The NB algorithm is a classification system that applies Bayes’ theorem under the assumption
of conditional independence for all attributes [10,38]. The NB classifier is easy to build, without any
need for complicated iterative parameter-estimation schemes [38]. The NB algorithm estimates the
probability P(yj/xi) for all possible output classes as shown in Equation (2). The class with the largest
posterior probability is predicted as follows:

y = argmax P
(

yj

) n

∏
i=1

P(xi/yj) (2)

{subsidence, no subsidence}
where xi is the input factor, yj is the output class, P(yj) is the prior probability, and P(yj/xi) is the

conditional probability.
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The conditional probability is calculated as

P

(
xi

yj

)
=

1√
2πσ

e−(xi−μ)2/2σ2
(3)

where μ is the mean and σ is the standard deviation of xi.

4.1.3. Logistic Regression (LR)

LR is a statistical technique that allows the predictor to analyze several types of variables [39–41].
LR does not require the normality assumption, which is an advantage over linear and log-linear
regression. The inclusion of multiple parameters offers the user the ability to select the best predictors
for use in the model [39]. The LR model is formulated as follows [42]:

f(x) = logit (P) = ln
[

P
1 − P

]
== c0 + c1x1 + · · ·+ cnxn (4)

P =
1

1 + e−f(x)
=

1
1 + e−(c0+ c1x1 +···+cnxn )

(5)

where x1, x2, . . . , xn are the input factors, c0 is the model intercept, and c1, . . . , cn are the regression
coefficients to be approximated. In this study, P is the probability of subsidence occurrence and 1 − P
is probability that subsidence will not occur. The function f(x) is represented as logit (P).

4.1.4. Multilayer Perceptron (MLP)

MLP is an artificial neural network classifier that is widely used in various fields [12,43]. MLP
neural nets consist of three structures: Input, hidden, and output layers. In this study, the input layers
represent factors that affect land subsidence, and the inputs are processed to become outputs within
the hidden layers. The classification results, dividing land subsidence and non-subsidence, are shown
in the output layers [12,44]. Two processes are required to train data from MLP neural nets: 1) Forward
propagation of the inputs through the hidden layers to obtain output and compare output values
to initial values, and 2) adjustment of the connection weights using differences between subsequent
values to generate the best results [44,45]. In this study, t = ti, i = 1, 2, . . . , 8 is a vector containing
eight land-subsidence conditioning factors, and φ = φj, j = 1, 2 represents the land subsidence and
non-subsidence classes. The MLP neural net function is then determined as follows:

φ = f(t) (6)

where f(t) is an unknown function that is improved during the training process by adjustable network
weights for a given network architecture.

An advantage of MLP is that the user is not required to decide the relative importance of the
various input measurements; most inputs can be selected during the training process, based on
weight adjustment [46]. Additionally, MLP does not require assumptions about the distribution of the
training dataset.

4.1.5. Logit Boost (LB)

LB is a famous machine-learning algorithm introduced by Friedman et al., 2000 [47] that effectively
reduces bias and variance; it is a slight modification of the most popular boosting method (AdaBoost)
for handling noisy data [48], which reduces training errors and improves classification accuracy [49].
LB has been widely applied in binary classification problems [50], medical science [51], and computer
science [52]; however, it has not yet been applied to land-subsidence problems [53].
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In the current study, we create a vector xi = x1, x2, . . . , xn, where n is the number of input factors;
y = [1, 0] represents two output classes (subsidence or non-subsidence). The LB algorithm is trained in
the following steps [47]:

1. Assign weights ωi =
1
n , i = 1, 2, . . . , n, f(x) = 0 and probability estimates pe(xi) = 1/2.

2. For m = 1, 2, ..., m, repeat the following steps:

a. Compute the working response and weights:

ri =

[
y∗

i − pe(xi)
]

[pe(xi)(1 − p(xi)]

ωi = pe(xi)(1 − p(xi)

b. Fit the function by weighted least-squares regression of ri to xi using weights ωi.
c. Update the function as:

f(x) ← f(x) +
1
2

fm(x)

p(x) ← ef(x)

ef(x) + e−f(x)

3. Output the classifier.

sign[f(x)] = sign

[
M

∑
m=1

fm(x)

]

=

{
1 (subsidence) if f(x) < 0

−1 (non subsidence)if f(x) ≥ 0

4.2. Model Evaluation and Comparison

During the modeling and validation phases, model efficiency should be evaluated and
compared [44]. We quantitatively evaluated and compared the efficiency of the models according
to the area under the ROC curve (%). This technique has been applied to assess risk models of
various hazards including subsidence [9], landslides [54], and sinkholes [55]; it is a standard method
to quantitatively evaluate the quality of probabilistic and statistical models [56]. The x and y axes of
the curve are sensitivity and specificity, respectively [56], and the area under the curve ranges from
0.5–1, with higher values indicating higher model accuracy and prediction capability.

5. Results

5.1. LSS Mapping

Figure 5 shows the LSS maps produced by the five algorithms: Bayes net (Figure 5a), NB
(Figure 5b), logistic (Figure 5c), multilayer perceptron (Figure 5d), and logit boost (Figure 5e). To
generate the LSS maps, we used the LSS index (LSSI) to classify susceptibility events into four
classes: Very high (5% of total area), high (5%), moderate (5%), and low (85%). The probability of
land subsidence was predicted for each class, and subsidence hazard was predicted for residential
areas. The susceptibility indexes from the five algorithms were similar. The region with very high
susceptibility appeared from the western part of the region to the eastern part as railroad area, which
is marked by the red color. In the Bayes net result, the very high susceptibility area did not appear
as often as in the other models. In the middle of the region, the Bayes net result has a low index,
whereas the rest of the models have a very high or high index. Some very high indexes also appear
in the northeastern part of the region, as elementary school area, but most of the region has a low
susceptibility index rank for subsidence.
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(a) (b) 

(c) (d) 

 

(e) 

Figure 5. LSS maps generated using the five algorithms: (a) Bayes net, (b) NB, (c) logistic, (d) multilayer
perceptron, and (e) logit boost.

However, there are some differences for the medium-susceptibility index rank, marked by the
green color. The area with medium susceptibility of land subsidence is spreading and has a different
pattern in each model result. For example, the NB and logit boost results show the northern part
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of the region is mostly covered by the medium susceptibility index. In contrast, the multilayer
perceptron shows the medium index in the southern part of the region. Meanwhile, in the Bayes net
and logistic models, the medium index is diffusely distributed from the northern to the middle part of
the study area.

5.2. Validation

The land subsidence susceptibility (LSS) analysis results were validated by comparison with
1932 land subsidence cells (i.e., 50% of the total subsidence data) that had not been used in the analysis.
A quantitative comparison among all models of the receiver operating characteristic (ROC) curves
for model performance is shown in Figure 6. The land subsidence susceptibility index (LSSI) values
of all cells were sorted in descending order, divided into 100 classes [57], and associated with the
cumulative number of subsidence events for each class (Figure 6). The model with the highest area
under the ROC curve was considered to be the model with the best predictive performance. The area
under the curve values for the Bayes net, naïve Bayes (NB), logistic, multilayer perceptron, and logit
boost models were 0.8640, 0.8539, 0.8892, 0.8676, and 0.9144, respectively; thus, the respective LSS
mapping accuracy rates were 86.42, 85.39, 88.92, 86.76, and 91.44%. Although all models had sufficient
performance, the different applied models had different prediction performances using same training
data. In particular, the logit boost model had a higher predictive accuracy (by about 2.52, 4.68, 5.02,
and 6.05%, respectively) than the logistic, multilayer perceptron, Bayes net, and NB. Therefore, model
reliability followed the order logit boost > logistic > multilayer perceptron > Bayes net > NB. The
percentage differences of the validation result are discussed in Section 6.

Figure 6. Susceptibility index rank (x-axis) and subsidence occurrence (y-axis) of the five algorithms.

6. Discussion

Recently, there has been great interest within the hazard prediction community toward improving
the performance of hazard susceptibility models. In various fields, machine learning techniques have
been shown to be effective in terms of performance [58–62]. In particular, ensemble learning has
improved machine learning results by combining several models [17,63,64]. The results of different
applied models under the same conditions (i.e., study area, input data, ratio of training, and validation
datasets) can be compared to the quantitative accuracy values of the area under the ROC to present
the predictive power of the model. Models with similar (different) accuracy values can be said to have
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similar (differing) performances. Therefore, the reliabilities of the models can be ordered according to
the accuracies of the models.

In this study, the logit boost model, based on ensemble machine learning, had a 91.44% accuracy
and a predictive accuracy that was higher (by 2.52–6.05%) than those of the logistic, multilayer
perceptron, Bayes net, and NB based on machine learning. Similarly, a previous study [2] found that a
decision tree model (the CHAID algorithm) produced LSS maps with higher accuracy (94.01%) than
the QUEST decision tree (90.37%) and frequency ratio (86.70%). The other algorithms examined in the
current study also exhibited high accuracy. Thus, the Bayes net, NB, logistic, and multilayer perceptron
models can also be used as alternative models for mapping land subsidence hazard risk. Even though
the logit boost model, as an ensemble model, had not been used to predict land subsidence in previous
research, the results of the current study indicate that it can achieve high accuracy.

However, some limitations of the models might be a consideration for future studies. For example,
the Bayes net model assumes no missing values, and this model also needs to be updated, especially
for estimating the conditional probabilities [65]. The benefits and drawbacks of the machine learning
models are influenced by several factors, such as the availability of datasets, characteristics of the
study area, and condition of the region [18]. The use of Bayesian algorithms, such as the Bayes
net and Naïve Bayes, has not been fully verified in natural hazard assessments [18]. According to
Mezaal [66], the multilayer perceptron algorithm also has limitations, such as overlearning and high
computational complexity.

It has been reported that the sinkhole subsidence attributable to underground mining is caused by
shallow depth, weak overburden, geological discontinuities, solution of rocks, rainfall, groundwater,
and earthquakes [25]. However, this study used a spatial database obtained from previous studies
due to the limitation of available data. No further surveys or new surveys on land subsidence have
been conducted in the study area for 14 years. If real-time monitoring data and additional data are
obtained in the study area, a 4D underground subsidence model [67] with 3D geological modeling
could be constructed to predict land subsidence hazard areas accurately. Thus, continuous monitoring
and detailed new surveying for causative factors are essential in the study area. The maps produced
in this study can be used as basic data for policymakers and further research. Future studies should
develop alternative models and methods to determine the relative influence of factors affecting LSS, so
that these methods can be applied in other regions.

7. Conclusions

Land subsidence is a hazardous effect of coal mine abandonment, including that in Korea. To
prevent damage and loss of life in the Taebaek region, it is necessary to predict areas with high
subsidence risk effectively. In this study, we used Bayesian (i.e., Bayes net and NB), functional
(i.e., logistic, multilayer perceptron), and meta-ensemble (i.e., logit boost) machine learning models
to perform LSS assessments. Although all models had sufficient performance, the logit boost
meta-ensemble machine learning model had the highest accuracy (91.44%) among the five models.
The logit boost model also had higher predictive accuracy (by 2.52%, 4.68%, 5.02%, and 6.05%,
respectively) than the logistic, multilayer perceptron, Bayes net, and NB models. According to previous
studies [11,57] in the same study area, the fuzzy operator with 84.40–88.98% accuracy, frequency ratio
with 86.70% accuracy, CHAID decision tree with 94.01% accuracy, and QUEST decision tree with
90.37% accuracy have been applied to the subsidence hazard assessment, but the five models used in
this study had been rarely applied. Based on these case studies, the land subsidence hazard rating can
be applied to future policy decisions using additional data.
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34. Öge, İ.F.; Çırak, M. Relating rock mass properties with Lugeon value using multiple regression and nonlinear
tools in an underground mine site. Bull. Eng. Geol. Environ. 2017. [CrossRef]

35. Marcot, B.; Steventon, J.; Sutherland, G.; McCann, R. Guidelines for Developing and Updating Bayesian
Belief Networks Applied to Ecological Modeling and Conservation. Can. J. Forest Res. 2006, 36, 3063–3074.
[CrossRef]

36. Song, Y.; Gong, J.; Gao, S.; Wang, D.; Cui, T.; Li, Y.; Wei, B. Susceptibility assessment of earthquake-induced
landslides using Bayesian network: A case study in Beichuan, China. Comput. Geosci. 2012, 42, 189–199.
[CrossRef]

37. Pham, B.T.; Pradhan, B.; Tien Bui, D.; Prakash, I.; Dholakia, M.B. A comparative study of different machine
learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ.
Model. Softw. 2016, 84, 240–250. [CrossRef]

38. Tien Bui, D.; Pradhan, B.; Lofman, O.; Revhaug, I. Landslide susceptibility assessment in vietnam using
support vector machines, decision tree, and nave bayes models. Math. Probl. Eng. 2012, 2012. [CrossRef]

39. Erener, A.; Mutlu, A.; Sebnem Düzgün, H. A comparative study for landslide susceptibility mapping using
GIS-based multi-criteria decision analysis (MCDA), logistic regression (LR) and association rule mining
(ARM). Eng. Geol. 2016, 203, 45–55. [CrossRef]

40. Ozdemir, A.; Altural, T. A comparative study of frequency ratio, weights of evidence and logistic regression
methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. J. Asian Earth Sci. 2013, 64,
180–197. [CrossRef]

296



Appl. Sci. 2019, 9, 1248

41. Mertler, C.A.; Reinhart, R.V. Advanced and Multivariate Statistical Methods: Practical Application and
Interpretation: Sixth Edition; Routledge: New York, NY, USA, 2016; pp. 1–374. [CrossRef]

42. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken,
NJ, USA, 2013; Volume 398.

43. Haykin, S.S. Neural Networks and Learning Machines/Simon Haykin; Prentice Hall: New York, NY, USA, 2009.
44. Pham, B.T.; Tien Bui, D.; Pourghasemi, H.R.; Indra, P.; Dholakia, M.B. Landslide susceptibility assesssment

in the Uttarakhand area (India) using GIS: A comparison study of prediction capability of naïve bayes,
multilayer perceptron neural networks, and functional trees methods. Theor. Appl. Climatol. 2017, 128,
255–273. [CrossRef]

45. Bui, D.T.; Pradhan, B.; Revhaug, I.; Nguyen, D.B.; Pham, H.V.; Bui, Q.N. A novel hybrid evidential belief
function-based fuzzy logic model in spatial prediction of rainfall-induced shallow landslides in the Lang
Son city area (Vietnam). Geomat. Nat. Hazards Risk 2015, 6, 243–271. [CrossRef]

46. Gardner, M.W.; Dorling, S.R. Artificial neural networks (the multilayer perceptron)—A review of applications
in the atmospheric sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]

47. Friedman, J.; Tibshirani, R.; Hastie, T. Additive Logistic Regression: A Statistical View of Boosting (With
Discussion and a Rejoinder by the Authors). Ann. Stat. 2000, 28, 337–407. [CrossRef]

48. Zhang, G.; Fang, B. LogitBoost classifier for discriminating thermophilic and mesophilic proteins. J. Biotechnol.
2007, 127, 417–424. [CrossRef] [PubMed]

49. Song, J.; Lu, X.; Liu, M.; Wu, X. Stratified Normalization LogitBoost for Two-Class Unbalanced Data
Classification. Commun. Stat. Simul. Comput. 2011, 40, 1587–1593. [CrossRef]

50. Fraz, M.M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A.R.; Owen, C.G.; Barman, S.A. An
ensemble classification-based approach applied to retinal blood vessel segmentation. IEEE Trans. Biomed.
Eng. 2012, 59, 2538–2548. [CrossRef]

51. Cai, Y.-D.; Feng, K.-Y.; Lu, W.-C.; Chou, K.-C. Using LogitBoost classifier to predict protein structural classes.
J. Theor. Biol. 2006, 238, 172–176. [CrossRef]

52. Lutz, R.W. Logitboost with trees applied to the wcci 2006 performance prediction challenge datasets.
In Proceedings of the 2006 IEEE International Joint Conference on Neural Network, Vancouver, BC, Canada,
16–21 July 2006; pp. 1657–1660.

53. Pham, B.T.; Tien Bui, D.; Dholakia, M.B.; Prakash, I.; Pham, H.V. A Comparative Study of Least Square
Support Vector Machines and Multiclass Alternating Decision Trees for Spatial Prediction of Rainfall-Induced
Landslides in a Tropical Cyclones Area. Geotech. Geol. Eng. 2016, 34, 1807–1824. [CrossRef]

54. Conforti, M.; Pascale, S.; Robustelli, G.; Sdao, F. Evaluation of prediction capability of the artificial neural
networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy).
CATENA 2014, 113, 236–250. [CrossRef]

55. Ozdemir, A. Sinkhole susceptibility mapping using logistic regression in Karapınar (Konya, Turkey). Bull.
Eng. Geol. Environ. 2016, 75, 681–707. [CrossRef]

56. Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in
clinical medicine. Clin. Chem. 1993, 39, 561–577.

57. Park, I.; Lee, S. Spatial prediction of landslide susceptibility using a decision tree approach: A case study of
the Pyeongchang area, Korea. Int. J. Remote Sens. 2014, 35, 6089–6112. [CrossRef]

58. Korup, O.; Stolle, A. Landslide Prediction from Machine Learning. Geol. Today 2014, 30, 26–33. [CrossRef]
59. McGaughey, W.J.; Laflèche, V.; Howlett, C.; Sydor, J.L.; Campos, D.; Purchase, J.; Huynh, S. Automated,

Real-Time Geohazard Assessment in Deep Underground Mines. In Proceedings of the Eighth International
Conference on Deep and High Stress Mining; Wesseloo, J., Ed.; Australian Centre for Geomechanics: Perth,
Australia, 2017; pp. 521–528.

60. Tayfur, G.; Singh, V.P.; Moramarco, T.; Barbetta, S. Flood Hydrograph Prediction Using Machine Learning
Methods. Water 2018, 10, 968. [CrossRef]

61. Karpatne, A.; Ebert-Uphoff, I.; Ravela, S.; Babaie, H.A.; Kumar, V. Machine Learning for the Geosciences:
Challenges and Opportunities. IEEE Trans. Knowl. Data Eng. 2018. [CrossRef]

62. Canli, E.; Mergili, M.; Thiebes, B.; Glade, T. Probabilistic Landslide Ensemble Prediction Systems: Lessons to
Be Learned from Hydrology. Nat. Hazards Earth Syst. Sci. 2018, 18, 2183–2202. [CrossRef]

297



Appl. Sci. 2019, 9, 1248

63. Mojaddadi, H.; Pradhan, B.; Nampak, H.; Ahmad, N.; Ghazali, A.H.B. Ensemble Machine-Learning-Based
Geospatial Approach for Flood Risk Assessment Using Multi-Sensor Remote-Sensing Data and Gis. Geomat.
Nat. Hazards Risk 2017, 8, 1080–1102. [CrossRef]

64. Chen, W.; Sun, Z.; Han, J. Landslide Susceptibility Modeling Using Integrated Ensemble Weights of Evidence
with Logistic Regression and Random Forest Models. Appl. Sci. 2019, 9, 171. [CrossRef]

65. Bouckaert, R.R. Bayesian Network Classifiers in Weka for Version 3-5-7; The University of Waikato: Waikato,
New Zealand, 2008; Volume 11, pp. 369–387.

66. Mezaal, M.; Pradhan, B.; Shafri, H.; Md Yusoff, Z.; Al-Zuhairi, M. Optimized Neural Architecture for
Automatic Landslide Detection from High-Resolution Airborne Laser Scanning Data. Appl. Sci. 2017, 7, 730.
[CrossRef]

67. Mira Geoscience. Geohazmap Workflow Earth Modelling Solutions for Mining. Montreal: Mira Geoscience; Mira
Geoscience: Montreal, QC, Canada, 2007.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

298



applied  
sciences

Article

Fusion Network for Change Detection of
High-Resolution Panchromatic Imagery

Wahyu Wiratama and Donggyu Sim *

Department of Computer Engineering, Kwangwoon University, Seoul 139701, Korea; wiratama@kw.ac.kr
* Correspondence: dgsim@kw.ac.kr; Tel.: +82-2941-6470

Received: 28 January 2019; Accepted: 2 April 2019; Published: 5 April 2019

Abstract: This paper proposes a fusion network for detecting changes between two high-resolution
panchromatic images. The proposed fusion network consists of front- and back-end neural network
architectures to generate dual outputs for change detection. Two networks for change detection were
applied to handle image- and high-level changes of information, respectively. The fusion network
employs single-path and dual-path networks to accomplish low-level and high-level differential
detection, respectively. Based on two dual outputs, a two-stage decision algorithm was proposed
to efficiently yield the final change detection results. The dual outputs were incorporated into
the two-stage decision by operating logical operations. The proposed algorithm was designed to
incorporate not only dual network outputs but also neighboring information. In this paper, a new
fused loss function was presented to estimate the errors and optimize the proposed network during
the learning stage. Based on our experimental evaluation, the proposed method yields a better
detection performance than conventional neural network algorithms, with an average area under the
curve of 0.9709, percentage correct classification of 99%, and Kappa of 75 for many test datasets.

Keywords: change detection; convolutional network; deep learning; panchromatic; remote sensing

1. Introduction

Change detection is a challenging task in remote sensing, used to identify areas of change between
two images acquired at different times for the same geographical area. Such detection has been
widely used in both civilian and military fields, including agricultural monitoring, urban planning,
environment monitoring, and reconnaissance. In general, change detection involves a preprocessing
step, feature extraction, and classification or clustering algorithm to distinguish changed and
unchanged pixels. To obtain a good performance, the selected classification or clustering algorithm
plays an important role in the field of change detection.

In prior studies, statistical approaches have been proposed to identify a change [1–3].
A corresponding maximal invariant statistic is obtained by analyzing a suitable group of
transformations leaving problem invariant [2]. Then, a general problem of testing equality among
M covariance metrices in the complex-valued Gaussian case is analyzed for synthetic aperture radar
(SAR) change detection. A sample coherence magnitude as a change metric has been proposed by [3].
A new maximum-likelihood temporal change estimation and complex reflectance change detection
is used for SAR coherent temporal change detection. Currently, a classification or clustering is
becoming one approach to be used for change detection in remote sensed images by employing
supervised or unsupervised learning, respectively. Feature selection and feature extraction are
important aspects in this approach. Several detection algorithms using two images have been
proposed with different features for different types of applications [3–19]. The methods used for
change detection have mostly been designed to extract changed features such as in a difference image
(DI) [3–9], a local change vector [10], or a texture vector [11–13]. A DI is a common feature used
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to represent a change in information through the subtraction of temporal images. Local change
vectors have also been used by applying neighbor pixels to avoid a direct subtraction based on the
log ratio. This method computes a mean value of the log ratio of temporal neighbor pixels. A texture
vector [11–13] is employed to extract statistical characteristics. These changed features are then fed into
a classification or clustering algorithm to determine changed/unchanged pixels. Some unsupervised
change detection methods have been proposed based on the fuzzy c-mean (FCM) algorithm [14,16].
Such approaches are useful when labels in the training stages are unavailable. The learning algorithms
in the aforementioned studies are based on observed data without any additional information,
therefore, their application leads to overfitting for invariant changes. Furthermore, they do not
yield a reasonably good performance in the change detection rates because they do not incorporate
accurate information without supervision. Therefore, supervised change detection methods, such as
a support vector machine (SVM) [11,16–18], have been proposed. The basic SVM can apply a binary
classification to changed or unchanged pixels with texture information or using a change vector
analysis. These algorithms are not perfect in terms of incorporating accurate and full statistical
characteristics for large multi-dimensional data. Furthermore, they do not yield the best detection
performance for new datasets.

Recently, a deep convolution neural network (DCNN) was developed to produce a hierarchy of
feature-maps such as learned filters. The aforementioned DCNN can automatically learn a complex
feature space from a huge amount of image data. A DCNN can achieve a superior performance
compared to conventional classification algorithms. A restricted Boltzmann machine (RBM) [19],
a convolutional neural network (CNN) [20–22], and deep belief networks (DBNs) [23] have been
proposed for use in change detection. Such change detection algorithms based on deep learning yield
a relatively good performance in terms of the detection accuracy. However, most can be categorized
into front-end differential change detection using low-level features such as a difference image as
a feature input of their networks, resulting in sensitivity to several deteriorated conditions caused by
geometric/radiometric distortions, different viewing angles, and so on. This front-end differential
change detection conducts an early feature extraction of two image inputs into a single-path network.
In contrast, back-end differential detection methods by employing dual-path networks have been
proposed for fusing higher-level features with a long short-term memory (LSTM) model [24] to avoid
the use of low-level difference features such as a difference image. In addition, a Siamese convolutional
network (SCN) [25–27] and dual-DCN (dDCN) [28] were also proposed to detect changed areas by
measuring the similarity with high-level network features. These algorithms achieve a relatively good
performance, although false negatives are still observed.

To reduce false positives and false negatives in change detection, a fusion network incorporating
low- and high-level feature spaces in neural networks was proposed in this paper. For low-level
differential features, the difference image is fed into the front-end differential DCN (FD-DCN).
For a high-level differential feature, a back-end differential dDCN (BD-dDCN) is employed. In addition,
a two-stage decision algorithm is incorporated for post-processing to enhance the detection rate during
the inference stage. The intersection and union operations are employed to validate the change map.
First, an intersection operation is used to avoid false positives. The second-stage decision operates
a union by considering the local information of the first decision. This stage is developed to validate
and repair the change map from the first decision. In addition, this study introduces a new loss
function that combines a contrastive loss and weighted binary cross entropy loss function to optimize
high- and low-level differential features, respectively. In our experiment, we found that the proposed
algorithm can yield a better performance than existing algorithms by achieving an average area under
the curve (AUC) of 0.9709, a percentage correct classification (PCC) of 99%, and a Kappa of 75 for
several test datasets.

This work contributes three main key features as follows. (1) Unlike the mentioned existing works
above, we propose a fusion network by combining a front- and back-end networks to perform the
low- and high-level differential detection in one structure. (2) A combining loss function between
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contrastive loss and binary cross entropy loss is proposed to accomplish fusion of the proposed
networks in training stage. (3) The two-stage decision as a post-processing is presented to validate and
ensure the changes prediction at the inference stage to obtain better the final change map.

This paper is organized into five sections. In Section 2, related studies are briefly described.
Section 3 presents the proposed algorithm in detail. Section 4 describes and analyzes the experiment
results. Finally, we provide some concluding remarks regarding this research.

2. Deep Convolutional Network and Related Studies on Change Detection

Deep neural architectures with hundreds of hidden layers have been developed to learn high-level
feature spaces. The recently developed convolutional neural network (CNN) is a deep learning
architecture that has been shown to be effective in image recognition and classification [29]. The CNN
architecture employs multiple convolutional layers, followed by an activation function, resulting in
the development of feature maps. The rectified linear unit (ReLU) is widely used as the activation
function in many CNN architectures. To progressively gather global spatial information, the feature
maps are sub-sampled by the pooling layer. The final feature maps are connected to a fully connected
layer to produce the class probability outputs (Pclass), as shown in Figure 1. During the training stage,
an objective loss such as cross-entropy is computed. All of the weighting parameters of the network
are updated to reduce the cost function using the back-propagation algorithm.

Figure 1. Convolutional neural network (CNN) architecture.

The related studies on change detection based on deep learning can be categorized into two
categories based on the type of network that is used: A front-end differential network (FDN) and
a back-end differential network (BDN). The front-end network uses low-level differential features
such as a DI or joint feature (JF) as the feature input of the network, as shown in Figure 2a. In this
case, a network with a single-path architecture receives the extracted DI as low-level differential
features of the temporal images to identify changed pixels. Several studies based on an FDN
have been proposed to improve the performance of the change detection rate. In addition, a deep
neural network (DNN) is applied to detect objects from synthetic aperture radar (SAR) data [30].
The differential feature of temporal data is employed instead of a DI. This feature is used to solve the
initial weight problem through pre-training using the restricted Boltzmann machine (RBM) algorithm.
These pre-trained weights are then fed into the initial weights of the DNN during the training
stage. In contrast, unsupervised change detection has been proposed by combining DBNs with
a feature change analysis [23]. The feature maps of temporal input images are obtained using the
DBN. The magnitude and direction of these feature maps are analyzed to distinguish the types of
feature changes using an unsupervised fuzzy C-means algorithm. Other unsupervised systems have
been proposed by combining a sparse autoencoder (SAE), unsupervised clustering, and a CNN to
overcome the change detection problem without supervision [20]. First, a DI is computed using
a log-ratio operator. The feature maps of the DI are extracted through the SAE and clustered into
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change classes as the labels for the training CNN. Next, some feature maps extracted by the SAE
are taken as the training data for the CNN. In addition, an autoencoder and multi-layer perceptron
(MLP) are combined to identify changed pixels [31]. Change detection using faster R-CNN has been
proposed for high-resolution images [32]. This work detects changed areas with bounding boxes.
The DI is extracted and then fed into faster R-CNN to detect changed locations. Each of these deep
learning algorithms tackles the change detection problem using a front-end differential network.
This network identifies changes by observing low-level feature such as the DI, which is sensitive to
various distortions, including geometric and radiometric distortions, and different viewing angles.
Another approach of FDN to detect the changes has been proposed by joining feature inputs (JF) [23].
Two temporal images are concatenated and they are fed into DBN to avoid a DI for change detection.
However, by joining the features in the early network causes both low-level differential inputs to
be dependently learned in the single network. It is for global change detection, resulting in more
false positives.

(a) 

 
(b) 

Figure 2. Front-end differential network (FDN) and back-end differential network (BDN) architectures:
(a) Difference image (DI)/Joint features (JF) + single CNN, and (b) Dual-CNN.

Alternative algorithms for change detection were introduced by employing a high-level
differential feature with a dual-path network, as shown in Figure 2b. Siamese CNN (SCNN) was
proposed to detect changed areas for multimodal remote sensing data [27]. This architecture was
employed to learn the different characteristics between multimodal remote sensing data. This approach
learns the feature map of temporal images in each path network. The Euclidean distance was employed
to measure the similarity at the back-end of the network. A similar method was developed based on
an SCNN for optical aerial images [25]. A deep CNN was proposed by producing a change detection
map directly from two images [33]. A change map was evaluated using the pixel-wise Euclidean
distance from high-dimensional feature maps. Another method was proposed that incorporates
a deep stacked denoising autoencoder (SDAE) and feature change analysis (FCA) for multi-spatial
resolution change detection [34]. In the aforementioned study, denoising autoencoders were stacked to
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learn local and high-level features for unsupervised learning. Then, the inner relationship between
the multi-resolution image pair was exploited by building a mapping neural network to identify
any change representations. A dual-dense convolutional network was presented by incorporating
information from neighbor pixels [28]. In the aforementioned study, a dense connection was used to
enhance the features of the changed map information. All of the above-mentioned BDN architectures
yield good performances by inspecting high-level differential features, which can reduce false positives.
However, a BDN can achieve higher sensitivity and specificity through high-level differential features.

Although a high-level differential network can improve the sensitivity and specificity, the false
negative rate is still too high for practical applications. The FDN architecture can achieve a relatively
higher true-positive rate regardless of the number of false positives. In addition, the BDN architecture
can reduce the false-positive rate by producing some false negatives caused by strict decision criteria in
high-level differential features. In this work, an FDN and a BDN were fused to employ the advantages
of both. A post-processing step was then employed during the inference stage to obtain the final
decision for change detection.

3. Proposed Fusion Network for Change Detection with Panchromatic Imagery

In general, a change detection system involves a pre-processing step to reduce geometric and
radiometric distortions for better results. A radiometric correction is applied to remove atmospheric
effects for a time-series image analysis. In this study, a radiometric correction was applied by converting
digital numbers (DNs) into a radiance value. Then, the top-of-atmosphere (TOA) reflectance values
were computed using the gain and offset values provided by a satellite provider. In addition, to ensure
that the pixels in the image were in their proper geometric position on the Earth’s surface, a geometric
correction was applied. The parameters (polynomial coefficients) of the polynomial functions were
estimated using least square fitting with ground control points (GCPs) identified in an unrectified image
and corresponding to their real coordinates. A digital elevation model (DEM), namely, shuttle radar
topography mission DEM (SRTM DEM), was then used to correct the optical distortion and terrain
effect. The corrected images were then incorporated into the proposed network to detect changes.

To achieve a change detection, the proposed network employs a fusion network by fusing
the FDN and BDN architectures. Dual outputs were generated to solve low-level differential and
high-level differential problems. For the training stage, a contrastive loss function and a weighted
binary loss function were combined to optimize the proposed fusion network parameters. In addition,
a pre-processing step was applied to validate and ensure false changes during the inference stage.
Intersection and union operations were then applied from the dual outputs of the proposed network.
According to the proposed change detection, the false-positive and false-negative rates could be
reduced, resulting in high sensitivity and specificity for a proper change detection. Symbols used in
the proposed method are tabulated in Table 1.
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Table 1. Symbols used in the proposed fusion network for change detection.

Symbol Description

I1 and I2 Cropped temporal input image in time 1 and 2, respectively
N1 and N2 Patch network 1 and 2 correspond to the back-end network
N3 Patch network 3 correspond to the front-end network

Fi
l,dr

Feature maps of the l-th layer at the r-th dense block and the i-th
network

P1 and P2 Outputs of N1 and N2, respectively
D Dissimilarity distance
O Change detection probability output of N3

Hi
l−1,dr

Incorporation process of a batch normalization (BN), a 3 × 3
convolution, and ReLU of the (l−1)-th layer at the r-th dense block
and the i-th network

[Fi
0,dr

, Fi
1,dr

, . . . , Fi
l−1,dr

]
A concatenation of the feature-maps of all of previous layers, layer 0,
. . . , and layer (l − 1)

L Proposed loss function
Ec Contrastive loss function
EB Weighted binary cross entropy loss function
Y Ground truth

Ls and LD
Partial loss function for a pair of similar and dissimilar pixels,
respectively

m Margin value
α Weighted loss
W Proposed weighted function
C and U Changed and unchanged numbers of pixels, respectively
N The number of full dataset

βc and βu
Penalization weights for false-negative and false-positive errors,
respectively

M1 Change map for first prediction
M2 Change map for second prediction
Nb Local information of M1
T Tested temporal images
m and n Size of T
s Size of I

3.1. Fusion Network for Change Detection

For a change detection, an FDN architecture is commonly used for identifying changed pixels.
Such an architecture uses low-level differential features that are relatively sensitive to noises. It is
caused by direct low-level features comparison, which misalignments of geometric error and a different
angle view are very influential. This FDN assigns a DI or JF to a single path network. They conduct
dependent learning of both low-level features together which lead to hard learning for invariant
changes and above-mentioned noisy conditions. Thus, this approach would produce a global change
detection, resulting in true positives and more false positives. In addition, BDN architectures are
designed to avoid low-level differential features, thereby reducing the false-positive detection rate.
These architectures apply strict identification for a high-level differential, which may cause some false
negatives. Therefore, an FDN is suitable in terms of the true-positive detection rate, and a BDN is
extremely reliable for overcoming false positives. To obtain a proper change detection, a fusion network
architecture is proposed by fusing an FD-DCN and a BD-dDCN with a dense-connectivity of the
convolution layers, as shown in Figure 3. There are three branch networks, N1, N2, and N3, receiving
two temporal images (I1 and I2) in which N1 and N2 correspond to the back-end network, and N3

refers to the front-end network by concatenating these two inputs (I1 and I2). A dense convolutional
connection was employed in the proposed fusion network to enhance the feature representation [35].
This dense architecture is very effective at covering invariant change representations by reusing all
preceding feature maps of the network. The proposed network was designed using dual outputs,
namely, the dissimilarity distance (D) and change probability (O) at the last layer, corresponding to the
back-end and front-end networks, respectively. Let us assume that the feature maps of the l-th layer at
the r-th dense block and the i-th network are computed as:

Fi
l,dr

= Hi
l−1,dr

([Fi
0,dr

Fi
1,dr

, . . . , Fi
l−1,dr

]), r = 0, 1; i = 1, 2, 3, (1)
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where [Fi
0,dr

, Fi
1,dr

, . . . , Fi
l−1,dr

] indicates a concatenation of the feature-maps of all of previous layers,
layer 0, . . . , and layer (l − 1). In addition, H(·) incorporates a batch normalization (BN), a 3 × 3
convolution, and ReLU. A pair of temporal images were cropped into two patches (40 × 40) (I1 and I2)
by sliding the window and fed into N1 and N2, respectively. The dissimilarity distance (D) was then
computed based on the Euclidean distance, which is defined as follows:

D = ‖P1 − P2‖2 (2)

where P1 and P2 are the outputs of N1 and N2 activated by sigmoid function, respectively.
The proposed method applies a pixel-wise change detection by inspecting the neighboring pixels.
The 40 × 40 patch images identify a change corresponding to the center pixel of the patch.
Thus, when the value of D is close to 1, the center of I is assigned to a changed pixel. In addition, I1

and I2 were concatenated to be fed into N3. The same dense convolution architecture was employed
in this branch network to generate the change detection probability (O). The dual outputs (D and O)
are a result of this fusion network. In addition, a post-processing step during the inference stage was
proposed based on these outputs (D and O) to achieve a proper prediction.

Figure 3. The proposed fusion network architecture for change detection.

3.2. Training of the Proposed Fusion Network for Change Detection

During the training stage, this paper introduced a loss function (L) by combining the contrastive
loss (Ec) [36] and weighted binary cross entropy loss (EB) as defined by:

L = αEc + (1 − α)EB (3)

where α is a weight loss. Given a training set consisting of 40 × 40 image pairs and a binary label of
the ground truth (Y), the proposed network was trained using backpropagation. Here, Ec was applied
to optimize the parameters of N1 and N2, and is as computed as follows [36]:

Ec = ∑
i
(1 − yi)LS(Di) + (yi)LD(Di) (4)
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where y = 1 is a changed pixel and y = 0 is an unchanged pixel. In addition, Ls is a partial loss function
for a pair of similar pixels, and LD is a partial loss function for a pair of dissimilar pixels, as defined
by [36]:

Ls =
1
2
(Di)

2 (5)

LD =
1
2
(max{0, m − Di})2 (6)

The value of m is set to 1 as the margin value. In addition, EB was used to optimize the parameters
of N3, as defined by:

EB = −∑
i

Wi(yi log(Oi) + (1 − yi) log(1 − Oi)) (7)

where W is the proposed weighted function used to penalize the false-positive and false-negative
errors. Thus, W is computed by:

Wi = yi

(
βc

(
1 − C

N

))
+ (1 − yi)

(
βu

(
1 − U

N

))
(8)

where βc and βu are penalization weights for false-negative and false-positive errors, respectively.
Moreover, C and U are the changed and unchanged numbers of pixels in the full dataset
(N), respectively.

The proposed network was trained using a stochastic gradient descent (SGD) with the training
parameters, including 0.001, 1 × 10−6, and 0.9 as the learning rate, decay, and momentum, respectively.
In addition, the epoch number was set to 30. The value of α was set to 0.7 to further penalize Ec.
It was to prevent false positives, which are possible in a back-end network. The goal of prediction
through the front-end was to obtain better true-positive rates regardless of the number of false
positives. Thus, the false negatives were penalized ten times more than false positives, namely, βc = 10
and βu = 1.

3.3. Dual-Prediction Post-Processing for Change Detection

During the inference stage, post-processing was introduced using dual-prediction for change
detection. In the counting rule, binary hypotheses can be passed to a fusion center, which then decides
which one of the two hypotheses is true [37]. The proposed algorithm employed a hard-logical rule
using an AND and OR operation with the same probability output thresholds to predict a changed
pixel. This aimed to validate and ensure the change detection based on the proposed fusion network
outputs (D and O). There were two steps to applying this post-processing. First, an intersection
operation was employed to obtain a strict prediction and avoid false positives. Assume that (m × n)
images (T) will be tested using the proposed fusion network, resulting in an (m × n) change map (M1).
This prediction was conducted by sliding in the raster scan order, as shown in Figure 4. The inputs
(I1 and I2) with the central pixel position, x and y, were assigned to the proposed fusion network to
generate the values of D and O. If D and O identified a changed pixel, then M1(x, y) was set to a value
of 1; otherwise, it was set 0. This was performed for the entire image T.
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Figure 4. First prediction flowchart.

Then, the second prediction was performed to ensure the first prediction, as shown in Figure 5.
Let us assume that (m × n) M2 was a change map for the second prediction. Initially, a prediction
noise was investigated by analyzing the local information from M1 by computing Nb, as defined by:

Nb(x, y) =
x+ q

2

∑
i=x− q

2

y+ q
2

∑
j=y− q

2

M1(i, j). (9)

where Nb(x, y) computes the local information M1(x, y) using a q × q window. If the value of Nb(x, y)
is greater than the input size s (40) divided by 4, then the second prediction is applied, otherwise,
M2(x, y) is assigned to 0. A union operation was operated from D and O for the second prediction.
When it returned the changed pixel, M2(x, y) was assigned a value of 1, otherwise, it was assigned
a value of 0. The final change map was obtained based on the result of M2.

Figure 5. Second prediction flowchart.
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4. Experimental Evaluation and Discussion

This study used a dataset of panchromatic imageries, which provided 0.7 GSD captured by the
KOMPSAT-3 sensor. For the training dataset, this study used a scene of overlapped images (1214 × 886)
over Seoul, South Korea, as shown in Figure 6. These images were cropped into a 40 × 40 sliding
patch, and the center pixels of the cropped patch pair were labeled based on the ground truth.

  
(a) (b) 

 
(c) 

Figure 6. Training dataset: (a) Image acquired in March 2014, (b) image acquired in December 2015,
and (c) the ground truth.

Figure 6 shows an area containing completed changes and changes under contraction. In addition,
these images have many tall buildings, roads, houses, and forests to be trained for solving the
misalignment and viewing angle problems. In our experiments, to assess the effectiveness of the
proposed change detection system, three areas of the panchromatic datasets were used, namely, Areas 1,
2, and 3, as shown in Figure 7.
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(a) (b) (c) 

   
(d) (e) (f) 

   
(g) (h) (i) 

Figure 7. Experiment dataset: (a) Input image for Area 1 (March 2014), (b), input image for Area 1
(October 2015), (c) ground truth for Area 1, (d) input image for Area 2 (March 2014), (e) input image for
Area 2 (October 2015), (f) ground truth for Area 2, (g) input image for Area 3, (March 2014), (h) image
input for Area 3 (October 2015), and (i) ground truth for Area 3.

The images in Figure 7 were acquired in March 2014 and October 2015 over different areas of Seoul,
South Korea. Each image pair had been radiometrically corrected and had a geometric misalignment
of approximately ±6 pixels. In addition, it also had a different angle view, which cannot be resolved
without precise 3D building models. Area 1 was located in a downtown part of Seoul, and contained
areas changed through building construction. Moreover, the urban area had tall buildings and roads.
These datasets included several factors of geometric distortion, misalignments, and different viewing
angle effects, which could lead to many false changes. In addition, Area 2 represented a downtown
area near a forest. These two images were acquired in different seasons. It was difficult to achieve
robustness to seasonal changes for practical applications. Area 3 had many tall buildings, making it
difficult to achieve an accurate detection rate owing to the different viewing angles.

In this study, the receiver operating characteristic (ROC) curve, AUC, PCC, and Kappa coefficient
were used to quantitatively evaluate the performance of the proposed method. Moreover, to evaluate
the effectiveness of the proposed method, it was compared with conventional algorithms having FDN
and BD-dDCN architectures [28]. A DI and JF were incorporated into a single-path CNN architecture
(DI + CNN and JF + CNN). These architectures included eight depth convolutional, two pooling,
and two fully connected layers, which were the same as the proposed depth layers. In addition,
Dual-DCN [28] was also compared to the proposed method.

Figure 8 shows an ROC curve, which indicates that the proposed method could achieve a better
AUC compared to the existing algorithms. For Area 1, the proposed method yielded an AUC of 0.9904,
which means that it could identify changes approximating the ground truth. It had a slightly higher
dual-DCN of 0.9878. The FDN architectures provided an AUC lower than the proposed algorithm
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which JF + CNN and DI + CNN gave an AUC of approximately 0.9509 and 0.7060, respectively.
Furthermore, the proposed method significantly outperformed the other algorithms with regard to
the AUC for Areas 2 and 3 because it could properly detect the change events with the incorporation
of low- and high-level differential features. Table 2 summarizes the PCC and Kappa values of
the different methods applied for the three areas. The proposed method showed a higher PCC
in Areas 1 and 3. The dual-DCN achieved a slightly higher PCC than the proposed method in Area 2.
However, in terms of the Kappa value, the proposed fusion network outperformed all other existing
algorithms. The proposed method achieved a Kappa value of 75.16 on average, which means that it
yielded a good agreement in terms of the results.

 
(a) (b) 

(c) 

Figure 8. Receiver operating characteristic (ROC) for (a) Area 1, (b) Area 2, and (c) Area 3.

Table 2. Quantitative assessment of the existing and proposed algorithms.

Algorithm
Area 1 Area 2 Area 3

AUC PCC Kappa AUC PCC Kappa AUC PCC Kappa

DI + CNN 0.7060 0.9458 36.8938 0.6764 0.9571 11.8939 0.7213 0.9855 33.2651
JF + CNN 0.9509 0.9775 79.7190 0.9536 0.9570 29.7251 0.7847 0.9732 47.6066
Dual-DCN 0.9878 0.9774 78.4277 0.9546 0.9922 60.0070 0.8515 0.9751 50.7542
Proposed 0.9904 0.9782 80.7942 0.9707 0.9902 65.9929 0.9517 0.9892 78.6898

Figure 9 shows the change map results when applying the existing and proposed algorithms.
Visually, the proposed method achieved a much better result than the existing algorithms. In Area
1, the proposed fusion network nearly approximated the ground truth. It could reduce the number
of false positives while preserving the true positives. The proposed network produced a cleaner
change map than the existing algorithms regarding false positives. Moreover, the proposed algorithm
yielded reasonably good results for Areas 2 and 3. The proposed method significantly reduced the
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number of false positives and enhanced the true positives. This is caused by the proposed fusion
network, which was designed and trained for low- and high-level differential problems. In addition,
a post-processing step was employed to validate and repair the change map.

    

    

    
(a) (b) (c) (d) 

Figure 9. Detection results for three areas when using the existing and proposed algorithms: (a) DI +
CNN, (b) JF + CNN, (c) dual-DCN, and (d) the proposed fusion network.

To evaluate the effectiveness of the proposed two-stage decision, the proposed algorithm also
was compared to each individual network output (D and O) and the other decision method between
two outputs of the proposed fusion network based on the mean operation. In addition, another single
output fusion network (SOFN) architecture was designed same as the proposed fusion network
architecture by fusing D and O outputs for more comparisons. This network was trained with the
binary cross entropy loss function by the same training parameters. The objective and subjective
evaluation are presented in Table 3 and Figure 10, respectively.

Table 3. Quantitative assessment of single output decision and proposed algorithms.

Network
Outputs

Area 1 Area 2 Area 3

AUC PCC Kappa AUC PCC Kappa AUC PCC Kappa

D 0.9206 0.9655 65.3497 0.8154 0.9854 33.8273 0.8410 0.9794 55.1115
O 0.9357 0.9607 61.9808 0.8948 0.9879 50.0476 0.8667 0.9436 31.3879

Mean 0.9886 0.9781 78.4481 0.9588 0.9875 52.7712 0.9165 0.9803 59.5712
SOFN 0.9685 0.9661 65.7595 0.8903 0.9897 52.6660 0.8658 0.9820 61.2094

Proposed 0.9904 0.9782 80.7942 0.9707 0.9902 65.9929 0.9517 0.9892 78.6898
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(a) (b) (c) (d) (e) 

Figure 10. Detection results for three areas when using an individual network output and the
proposed algorithms: (a) D, (b) O, (c) Mean, (d) SOFN, and (e) the proposed fusion network with
a two-stage decision.

According to Table 3, the proposed two-stage decision shows better performance compared
to individual outputs and mean operation. In term of AUC, PCC, and Kappa, the proposed gave
significantly better results than that by individual outputs (D and O). Figure 10 shows that the output
O produced more true positives regardless of the number of false positives. However, the output D can
reduce the false-positive rate. This condition makes the proposed two-stage decision working as the
goal that detection rates can be accelerated by the combining of two network outputs with a two-stage
decision. In addition, the proposed algorithm still outperformed the mean operation between two
network outputs for all areas. SOFN with the single output also gave worse results than the proposed
one caused by no validation decision of post-processing for change detection. The proposed fusion
network was employed with a two-stage decision to obtain a better prediction rate.

Regarding time complexity, the proposed fusion network consumed more computational
complexity than the existing algorithm by a factor of approximately two over the dual-path network
and three with the single-path network. It was due to the proposed architecture designed with
more network paths. In addition, the proposed two-stage decision required an additional prediction
process in the inference stage. Let us see that the general total time complexity of dense convolutional
network [35] was O

(
K2) run-time complexity for a depth K network [38]. Dual-DCN [28] employed

dual-path dense convolutional network with the depth of 6 that produced a run-time complexity of
O
(
2·62). The proposed fusion network included three-path dense convolutional networks with the

same depth by fusing back- and front-end differential network architectures, resulting in a run-time
complexity of O

(
3·62). In the inference stage, a two-steps decision for the proposed made the run-time

be O
(
2·(3·62)) that gave it an expensive computational complexity while producing a better result.

5. Conclusions

This paper presented a robust fusion network for detecting changed/unchanged areas
in high-resolution panchromatic images. The proposed method learns and identifies the
changed/unchanged areas by combining front- and back-end neural network architectures.
The dual outputs are efficiently incorporated for low- and high-level differential features with
a modified loss function that combines the contrastive and weighted binary cross entropy losses.
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In addition, a post-processing step was applied to enhance the sensitivity and specificity from false
changes/unchanged detections based on the neighboring information. We found through qualitative
and quantitative evaluations that the proposed algorithm can yield a higher sensitivity and specificity
compared to the existing algorithms, even under noisy conditions such as geometric distortions and
different viewing angles

For further work, the proposed algorithm can be extended for other modalities such as
multi-spectrum images, Pan-sharpening, and SAR data. In addition, the proposed algorithm requires
expensive time complexity caused by pixel-wise detection with a two-stage decision. To accelerate
run-time complexity, block-wise prediction design would also be a focus of future work.
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Abstract: Leaf area index (LAI) is a crucial crop biophysical parameter that has been widely used in
a variety of fields. Five state-of-the-art machine learning regression algorithms (MLRAs), namely,
artificial neural network (ANN), support vector regression (SVR), Gaussian process regression (GPR),
random forest (RF) and gradient boosting regression tree (GBRT), have been used in the retrieval of
cotton LAI with Sentinel-2 spectral bands. The performances of the five machine learning models are
compared for better applications of MLRAs in remote sensing, since challenging problems remain in
the selection of MLRAs for crop LAI retrieval, as well as the decision as to the optimal number for
the training sample size and spectral bands to different MLRAs. A comprehensive evaluation was
employed with respect to model accuracy, computational efficiency, sensitivity to training sample
size and sensitivity to spectral bands. We conducted the comparison of five MLRAs in an agricultural
area of Northwest China over three cotton seasons with the corresponding field campaigns for
modeling and validation. Results show that the GBRT model outperforms the other models with
respect to model accuracy in average (R2 = 0.854, RMSE = 0.674 and MAE = 0.456). SVR achieves
the best performance in computational efficiency, which means it is fast to train, and to validate that
it has great potentials to deliver near-real-time operational products for crop management. As for
sensitivity to training sample size, GBRT behaves as the most robust model, and provides the best
model accuracy on the average among the variations of training sample size, compared with other
models (R2 = 0.884, RMSE = 0.615 and MAE = 0.452). Spectral bands sensitivity analysis with dCor
(distance correlation), combined with the backward elimination approach, indicates that SVR, GPR
and RF provide relatively robust performance to the spectral bands, while ANN outperforms the
other models in terms of model accuracy on the average among the reduction of spectral bands (R2

= 0.881, RMSE = 0.625 and MAE = 0.480). A comprehensive evaluation indicates that GBRT is an
appealing alternative for cotton LAI retrieval, except for its computational efficiency. Despite the
different performance of the ML models, all models exhibited considerable potential for cotton LAI
retrieval, which could offer accurate crop parameters information timely and accurately for crop
fields management and agricultural production decisions.

Keywords: leaf area index (LAI); machine learning; Sentinel-2; sensitivity analysis; training sample
size; spectral bands

1. Introduction

Leaf area index (LAI), which characterizes the structure and functioning of vegetation, is usually
defined as half of the total green leaf area per unit horizontal ground surface area [1,2]. LAI is one
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of the most important vegetation biophysical parameters, and a key variable for climate modeling,
evapotranspiration modeling and crop modeling, and it is recognized as an Essential Climate Variable
(ECV) by the Global Climate Observing System [3–8]. LAI has a wide range of applications regarding
agricultural fields, and it has been demonstrated to be an essential indicator for crop growth monitoring
and key variables for crop yield forecasting [9–11]. Therefore, it is of special relevance to retrieve LAI
in a timely and accurate manner.

Remote sensing techniques provide promising alternatives to obtaining crop biophysical
parameters by high temporally and spatially continuous means over large areas. To date, there
are mainly three categories of methods developed to retrieve LAI based on optical remote sensing
data, which are statistical methods, physically based methods, and hybrid methods [12–14]. Statistical
methods can be further divided into parametric and non-parametric regression methods. Parametric
regression methods usually consist of an explicit relationship between biophysical parameters
and vegetation indices, while non-parametric regression methods define regression models learnt
from the training dataset [15]. Non-parametric algorithms can be split into linear and non-linear
regression methods; the latter is also commonly referred to as machine learning regression algorithms
(MLRAs). While physically-based methods are applications of physical laws establishing cause-effect
relationships, a hybrid method combines elements of non-parametric statistics and physically-based
methods [13], whereas these two methods are both sophisticated models that demand a large number
of parameters, which are usually difficult to obtain in practice. Empirical parametric models typically
make use of a limited number of spectral bands [13,16]. However, nonparametric models can make
full use of spectral information, and directly learn the input-output relationships from a given training
dataset, which makes these models attractive alternatives for crop LAI retrieval.

With the development of remote sensing, more and more optical remote sensing satellites have
been launched (e.g., Landsat 8, Sentinel-2, and Chinese GF-1, GF-2 and newly launched GF-6), which
ensures the availability of high spatial, high temporal resolution satellite remote sensing data, and
correspondingly, high dimensional (spatial, temporal and spectral) of remote sensing data amounts to
large data volume, which also poses great challenges for more efficient, robust and accurate algorithms
in a wide variety of applications with remote sensing.

Recently, machine learning (ML), a broad subfield of artificial intelligence, has attracted
considerable attention in remote sensing applications for classification and regression problems, and
encouraging results have been obtained [17–23]. With advances in computer technology and associated
techniques, ML has drawn tremendous interest in a variety of fields to address complex problems.
ML can be broadly defined as computational methods using experience to improve performance or to
make accurate predictions [24]. ML has been extensively applied to biophysical parameter retrievals
due to the ability to accurately approximate robust relationships between input-output data, which
provides tremendous opportunities for remote sensing-based applications. Considering ML regression
algorithms, a more efficient, robust, and accurate model for crop LAI retrieval should be established.
Despite the considerable advances in ML for remote sensing applications, challenging problems remain
in the selection of MLRAs for crop LAI retrieval among the variety of ML algorithms available, as well
as the optimal number of training sample size and spectral bands to different MLRAs.

As for the versatile ML algorithms, artificial neural network (ANN), support vector regression
(SVR), Gaussian process regression (GPR) and random forest (RF) are reportedly effective for crop LAI
retrieval [25–28]. However, gradient boosting regression tree (GBRT), a highly robust ML algorithm
for a wide range of applications, is capable of achieving high levels of accuracy for regression
problems [29–31] and to our knowledge, has not been investigated for LAI retrieval. Further studies
should be conducted to assess the performance of the GBRT model in crop LAI retrievals.

Many studies have been dedicated to crop LAI retrieval using MLRAs. However, there are a
limited number of academic studies involving comparisons of different MLRAs for crop LAI retrievals
using remote sensing. Apparently, none of these studies have focused on multispectral remote sensing

317



Appl. Sci. 2019, 9, 1459

data, and none of these studies have evaluated the different impact factor together, to conduct a
comprehensive comparison.

In addition, the validation of global LAI products are important procedures to ensure the
application of the products in a wide range of fields [32]. Regional high-resolution LAI maps can be
used as a reference LAI map to validate the global LAI products, which calls for efficient, robust and
accurate algorithms for LAI retrieval.

The objective of this study is to compare the performance of five advanced MLRAs (ANN, SVR,
GPR, RF and GBRT) for cotton LAI retrieval in a relatively comprehensive manner. We conducted
the study over the entire growth period of cotton using Sentinel-2 spectral bands and corresponding
ground data. Specifically, the following research questions are addressed:

(1) Which of the five MLRAs perform best with regard to model accuracy?
(2) Which is the fastest model during the training and validation processes?
(3) How does the number of training sample size influence the performance of the five MLRAs?
(4) How does the number of spectral bands influence the performance of the five MLRAs?
(5) Which is the best model in consideration of model accuracy, computational efficiency,

sensitivity to training sample size, and sensitivity to spectral bands together?
(6) How accurate are the global LAI products in Northwest China?

2. Materials

2.1. Study Area and Field Campaigns

China is one of the largest cotton producers and importers in the world, and Xinjiang is the
primary cotton-growing region in China [33,34]. The chosen study area was on a large agriculture
region (6118.08 km2 or 1, 511, 810 acres) in Shihezi (44◦37′ N, 85◦42′ E), Xinjiang Province, China. The
region is located in a temperate continental climate zone. The average field size in the study area
is 73139.7 m2 (18.07 acres), and the majority of fields have a flat topography, which is preferable for
decametric remote sensing applications (e.g., Sentinel-2). The annual mean temperature of the study
area is 7.39 ◦C, the annual total precipitation is 206 mm, and the average altitude is 450.8 m.

The field campaigns were conducted in early June 2018, mid-July 2018, and mid-August 2018
(Table 1), with 117 total quadrats obtained. Each quadrat was assigned one leaf area index (LAI) value,
obtained as the average leaf area index (LAI) of the three sample points that matches the corresponding
Sentinel-2 pixel (Table 2). Each sample point datum was collected using an LAI-2200C Plant Canopy
Analyzer (Li-Cor, Inc., Lincoln, NE, USA). The main planted crops in the study area are cotton, grape,
spring maize and winter wheat, and cotton holds the largest planting proportion, which is 71.7%. The
cotton season is from mid-April to early October. The spring maize season is from mid-April to late
September. The winter wheat season is from late September of the previous year to late June. Notably,
the study area has completely achieved mechanization for agricultural production and management.
Figure 1 shows the location of the study area and field observation sites with Sentinel-2A imagery (20
August 2018). A descriptive statistic of the measured cotton LAI at three observation dates is shown in
Figure 2.

Table 1. Sentinel-2 imagery and the corresponding field campaign data.

Satellite Date (dd/mm/yy) Field Campaign Date Quadrats

Sentinel-2B 6 June 2018 1–3 June 2018 23
Sentinel-2A 11 July 2018 8–11 July 2018 58
Sentinel-2A 20 August 2018 18–21 August 2018 36
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Table 2. Sentinel-2 satellite imagery spectral band characteristics [35].

Band
Central

Wavelength (nm)
Bandwidth (nm) Spatial Resolution (m) Purpose

B1 443 20 60 Atmospheric correction (aerosol scattering).

B2 1 490 65 10
Sensitive to vegetation senescing, carotenoid,
browning and soil background; atmospheric

correction (aerosol scattering).

B3 560 35 10 Green peak, sensitive to total chlorophyll in
vegetation.

B4 665 30 10 Maximum chlorophyll absorption.

B5 705 15 20
Position of red edge; consolidation of
atmospheric corrections/fluorescence

baseline.

B6 740 15 20 Position of red edge; atmospheric correction,
retrieval of aerosol load.

B7 783 20 20 Leaf Area Index (LAI), edge of the Near
Infrared plateau.

B8 842 115 10 LAI.

B8A 865 20 20

NIR plateau, sensitive to total chlorophyll,
biomass, LAI and protein; water vapor

absorption reference; retrieval of aerosol load
and type.

B9 945 20 60 Water vapor absorption, atmospheric
correction.

B10 1380 30 60 Detection of thin cirrus for atmospheric
correction.

B11 1610 90 20 Sensitive to lignin, starch and forest above
ground biomass; snow/ice/cloud separation.

B12 2190 180 20

Assessment of Mediterranean vegetation
conditions; distinction of clay soils for the

monitoring of soil erosion; distinction
between live biomass, dead biomass and soil,

e.g., for burn scars mapping.
1 The spectral bands in bold are ones used in this study.

 

Figure 1. Location of study area and in-situ leaf area index (LAI) quadrats from three field campaigns.
The background was the Sentinel-2A image acquired on August 20, 2018 and was shown in a false
color band composition of R (8) G (4) B (3), with standard deviation stretch (right). The red color in the
Sentinel image represents the vegetation (mainly crops and a few trees), the grey color represents the
desert and bare land (right). The green dots represent the quadrats (including three sample points),
and the blue polygons represent agricultural field boundaries (lower left).
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Figure 2. Field campaign cotton LAI descriptive statistics on three observation dates, shown with
boxplots. The box extends from the lower to upper quantile values of the field observation data, with a
line at the median, the whiskers extend from the box to show the range of the data. Flier points are
those past the end of the whiskers, named as outliers (red dots).

2.2. Sentinel-2 Data and Preprocessing

The remote sensing data used in this study were Sentinel-2 imagery. Sentinel-2 is a constellation
of satellites, Sentinel-2A and Sentinel-2B, which were launched by the European Space Agency (ESA)
on June 2015 and March 2017, respectively. Each satellite carries a MultiSpectral Instrument (MSI)
that provides a variety of spectral bands covering the visible, near infrared and shortwave infrared
bands. The MSI contains four bands at 10 m, six bands at 20 m and three bands at 60 m [36]. It is
of great importance that the MSI incorporates three bands in the red-edge region, centered at 705,
740 and 783 nm, and two Shortwave Infrared (SWIR) bands centered at 1610 and 2190 nm at 20 m
(S2-20 m). Many studies have revealed that the red-edge bands and SWIR bands have the potential to
improve the accuracy of LAI retrievals [37–39], which open great opportunities for crop LAI retrievals
considering Sentinel-2’s high revisit frequency. The Sentinel-2 spectral band characteristics are shown
by Table 2.

The acquired Sentinel-2 imagery products are Level-1C products, which are top of atmosphere
(TOA) reflectances [40]. Atmospheric correction was conducted using the Sen2Cor (2.5.5, ESA, Frascati,
Italy, 2018) and Sentinel Application Platform (SNAP) toolbox (6.0.1, ESA, Frascati, Italy, 2018) provided
by the ESA to produce Level-2A bottom of atmosphere (BOA) products [41,42]. A flowchart of
Sentinel-2 preprocessing is presented in Figure 3.

Figure 3. Flowchart of the preprocessing of Sentinel-2 imagery.

In this study, aiming at making full use of the spectral bands of Sentinel-2 (especially the red-edge
and SWIR bands), we focus on S2-20 m (the same size as our quadrats) with 10 spectral bands
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considering the red-edge and SWIR spectral bands of Sentinel-2 imagery. A resampling process was
performed using the Nearest Neighbor method with 4 spectral bands (B2, B3, B4 and B8) from 10 m
to 20 m in the SNAP toolbox. Three of the atmospheric spectral bands at 60 m were not used in
this study because these bands contributed to atmospheric applications, such as aerosol correction
(B1), water vapor correction (B9) and cirrus detection (B10) [42]. The reflectance data collected on
the Sentinel-2 images were using Extract by Points on the ArcToolbox of ArcGIS Desktop software
(10.5, Environmental Systems Research Institute, Redlands, CA, USA, 2016), the points used to extract
data on the Sentinel-2 images are the center GPS coordinate of the three sample points that represent
one quadrat.

2.3. Global LAI Products

Many global LAI products with different spatial resolution and temporal characteristics has been
produced, in which MODIS LAI products retrieved from Terra and Aqua platforms are one of the most
famous global LAI products [2,43]. All MODIS products are available at [44]. In addition, GEOV1
LAI products have also been widely used for variety of applications. The GEOV LAI product was
downloaded from the Copernicus Global Land Service [45]. More recently, new versions of these
two products have been delivered with great improvement in spatial and temporal resolution [46–48].
Table 3 presents the main characteristics of the latest version of these two global LAI products.

Table 3. Main characteristics of two global LAI products under study.

Products Version
Spatial

Resolution
Temporal

Resolution
Algorithms

Temporal
Coverage

References

MODIS MCD15 C6 500 m 4-day RTM 3D 1 (LUT) 2002-present Myneni, et al.
2015 [46]

GEOV3 V1.0.1 1/3 km 10-day Neural network
(red, NIR) 2014-present Baret, et al. 2013,

2016 [47,48]
1 RTM and LUT stands for “Radiative Transfer Model” and “Look Up Table”, respectively.

3. Methods

ML algorithms can automatically learn the relationships in any given data between input
(reflectances) and output (LAI). To identify the performance of five popular ML algorithms for
cotton LAI retrieval, regression models were established based on artificial neural network (ANN),
SVR, Gaussian process regression (GPR), random forest (RF) and gradient boosting regression tree
(GBRT), at S2-20 m for the whole growth period of cotton (using all 117 quadrats data over the three
observation dates).

All the ML models were implemented using the Scikit-learn package [49], which is an open-source
Python [50] module project that integrates a wide range of prevalent ML algorithms [51]. All
hyperparameter tuning of the models is based on GridSearchCV in the Scikit-learn package, which
can evaluate all possible combinations of hyperparameter values using five-fold cross-validation to
determine the best combination of hyperparameter values (the hyperparameter combination that
has the best accuracy of the model in terms of root-mean-square error (RMSE)). Cross-validation are
model validation techniques to obtain reliable and stable models. This study implemented a five-fold
cross-validation, basically, the training datasets are split into five smaller sets, and a model is trained
using four of the folds as training data, then the resulting model is validated on the remaining part of
the data, the processes continues to circulate five times, and finally, the performance measure estimated
by five-fold cross-validation is the average of the values computed in the loop. Training and testing
sampling distribution has a great impact on machine learning regression algorithms (MLRAs), and
some previous studies demonstrated that 70%/30% split option is appropriate for model training and
validation [52–54], nonetheless, other studies argue that the 80%/20% split option is preferable [27,55].
In our study, to validate the performance of the ML models, all the datasets were randomly split into
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75% (n = 87) for model training, and 25% (n = 30) for model validation. Regression models that achieve
satisfactory performance in training datasets may fail to predict unseen datasets, and therefore, a
model that performs well at both training and unseen testing datasets is referred to as having excellent
generalization ability. This type of model could be used for crop LAI retrieval applications.

3.1. Artificial Neural Network (ANN)

The ANN has been one of the most widely used ML algorithms for wide range of remote sensing
applications. ANN is a computational model that is inspired by the human brain. ANN is formed by
a collection of interconnected units (neurons) that learn from experience by modifying connections
(weights) [56,57]. ANN usually consists of an input layer, hidden layer, and output layer. The
backpropagation (BP) ANN used in this study implements a multilayer perceptron (MLP) algorithm
that trains with a BP algorithm, while an MLP refers to a feedforward network that generalizes the
standard perceptron by having a hidden layer that resides between the input and output layers. It
has been demonstrated that MLP can approximate any continuous function to an arbitrary degree of
accuracy, given a sufficiently large but finite number of hidden neurons [56,58]. In this study, the input
layer and output layer are referred to as the Sentinel-2 spectral bands (reflectances) and the cotton
LAI, respectively.

The major tuning hyperparameters for ANN are the number of hidden layers and the number of
neurons in the hidden layer. Here, we used the one-hidden-layer network because it was demonstrated
to be powerful enough to approximate any measurable function to any desired degree of accuracy [59].
Many studies have been dedicated to the investigation of the optimal number of neurons in the hidden
layer, and several empirical equations have been proposed [60–62]. In this study, the number of
neurons in the hidden layer is determined by the following equation [62]:

Nh =
√
(m + 2)N + 2

√
N

m+2 (1)

where Nh is the number of neurons in the hidden layer, m specifies the number of layers, and N
denotes the number of input neurons. The number of neurons in the hidden layer was set to ten in
this study according to Equation (1). In the input layer, the input variables include 10 spectral bands.
Other important hyperparameters were optimized using GridSearch and 5-fold cross-validation. The
remainder of hyperparameters for the ANN model remain defaults. The structure of the neural
network used in this study is presented in Figure 4. The hyperparameter values adopted in this study
are listed in Table 4.

Figure 4. The architecture of backpropagation (BP) neural networks used in this study for cotton
LAI retrieval.
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Table 4. Parameter settings to determine the optimal hyperparameters for the artificial neural network
(ANN) model.

Parameters Description GridSearch Values Searching Results

activation Activation function for the hidden
layer.

‘identity’, ‘logistic’,
‘tanh’, ‘relu’ ‘logistic’

solver The solver for weight
optimization. ‘lbfgs’, ‘sgd’, ‘adam’ ‘lbfgs’

alpha L2 penalty (regularization term)
parameter. 1e-4, 1e-2, 0.1, 1 0.1

learning_rate Learning rate schedule for weight
updaters.

‘constant’, ‘invscaling’,
‘adaptive’ ‘constant’

3.2. Support Vector Regression (SVR)

SVR is a significant application form of support vector machine (SVM), which was first introduced
by Corinna Cortes (b. 1961 in Denmark) and Vapnik [63,64]. SVM is based on the idea of mapping the
input space into a new feature space with higher dimensions using the kernel function, after which
a hyperplane, known as the decision boundary, is constructed with the maximum margin [65,66].
SVM extension to SVR is realized by introducing an ε-insensitive region around the function, which is
referred to as the ε-tube that best approximates the regression function [67]. Given training vectors
xi ∈ R

p, I = 1, · · · , n, and a vector y ∈ R
n, ε-SVR solves the following original problem:

min
w, b, ξ, ξ∗

1
2
‖w‖2 + C

n

∑
i=1

(ξi + ξ∗i ) (2)

subject to

⎧⎪⎨⎪⎩
yi − 〈w, xi〉 − b ≤ ε + ξi
〈w, xi〉+ b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, · · · , n

(3)

where C > 0 is a regularization parameter that gives more weight to minimizing the flatness or error.
The principal hyperparameter of SVR is the kernel, as it defines the kernel functions of the model.

The radial basis function (RBF) was selected as the kernel function because it has been found to be
efficient and accurate for regression problems [68,69]. The RBF kernel is described as follows:

k
(
xi, xj

)
= exp

(
−‖xi − xj‖2

2σ2

)
(4)

The SVR model is easy to establish because only two hyperparameters must be tuned: Penalty
parameter C and the kernel coefficient gamma. The optimal values of the two hyperparameters that
were optimized using GridSearch and 5-fold cross-validation are presented in Table 5. The remainder
of hyperparameters for the SVR model remain defaults.

Table 5. Parameter settings to determine the optimal hyperparameters for the support vector regression
(SVR) model.

Parameters Description GridSearch Values Searching Results

C Penalty parameter C of the term. 0.1, 0.5, 1, 5, 10, 15, 20, 50,
100, 500 50

gamma Kernel coefficient for ‘rbf’, ‘poly’
and ‘sigmoid’.

0.01, 0.1, 0.2, 0.4, 0.8, 1,
1.5, 2, 5, 10 0.2
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3.3. Gaussian Processes Regression (GPR)

A Gaussian process is a stochastic process that is formed by a collection of random variables and
has a Gaussian probability distribution [70]. The major factor in the Gaussian process is the covariance
function known as the kernel function. The learning problem in the Gaussian process amounts to
adjusting the covariance hyperparameters. The mean function m(x) and covariance function k(x, x′)
characterize the Gaussian process f (x), which can be described as follows:

m(x) = E[ f (x)] (5)

k
(
x, x′

)
= E

[
( f (x)− m(x))

(
f
(
x′
)− m

(
x′
))]

(6)

f (x) ∼ GP
(
m(x), k

(
x, x′

))
(7)

For simplicity, we usually consider the mean function to be zero.
Similar to SVR, GPR has been advanced to solve complex nonlinear problems through projection

of inputs into high dimensional space by applying highly flexible kernels, where such a technique
is referred to as kernel trick. Additionally, GPR models have a great ability to provide the most
informative feature (spectral band) from the input dataset. In this study, we used the sum of an RBF
and a noise component function kernel:

k
(
xi, xj

)
= θ0

2exp

(
−
(
xi − xj

)2

2σ2

)
+ θ1

2δij (8)

where θ0 is the scaling factor, σ is the length-scale, and θ1 corresponds to the independent
noise component.

Beyond the kernel functions, alpha and n_restarts_optimizer, are significant for the GPR model.
The results of hyperparameter tuning using GridSearch and 5-fold cross-validation are shown in
Table 6 as follows. The remainder of hyperparameters for the GPR model are set as defaults.

Table 6. Parameter settings to determine the optimal hyperparameters for the Gaussian process
regression (GPR) model.

Parameters Description GridSearch Values Searching Results

alpha

Value added to the diagonal of the kernel matrix
during fitting; larger values correspond to increased
noise level in the observations; this can also prevent

a potential numerical issue during fitting, by
ensuring that the calculated values form a positive

definite matrix.

1e-2, 1e-1, 1 1

n_restarts_optimizer

The number of restarts of the optimizer for finding
the kernel’s parameters which maximize the

log-marginal likelihood; the first run of the optimizer
is performed from the kernel’s initial parameters, the

remaining ones (if any) from thetas sampled
log-uniform randomly from the space of allowed

thetas-values.

0, 1, 2, 4, 8, 10, 12,
16, 20, 32, 64 16

3.4. Random Forest (RF)

RF has been a prevalent ML algorithm for a wide range of fields for classification, regression
and other complicated problems. As one of the ensemble learning methods, RF grows a multitude
of decision trees as base learners, and combines these trees together to obtain a better performance
by averaging the predictions [71,72]. Each tree grows independently with training samples obtained
using bootstrap sampling from the original data. Then, m variables out of M input variables are
chosen, after which the best of m is used for splitting the node (note that m � M). The final prediction
comes from the averaging predictions of each independent tree. This kind of technique is referred to
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as bagging. RF models can provide feature importance estimates, which enables insight into feature
selection processes.

Key hyperparameters include n_estimators, max_depth, min_samples_split and
min_samples_leaf. Hyperparameter tuning results using GridSearch and 5-fold cross-validation are
displayed in Table 7. The remainder of the RF model hyperparameters are set as defaults.

Table 7. Parameter settings to determine the optimal hyperparameters for the random forest
(RF) model.

Parameters Description GridSearch Values Searching Results

n_estimators The number of trees in the forest. 1, 5, 10, 20, 40, 60, 80, 120 40

max_depth The maximum depth of the tree. 2, 5, 8, 15, 25, 30, 50,
None 15

min_samples_split The minimum number of samples
required to split an internal node. 2, 5, 10, 15, 100 2

min_samples_leaf

The minimum number of samples
required to be at a leaf node; a split

point at any depth will only be
considered if it leaves at least

min_samples_leaf training samples in
each of the left and right branches;

this may have the effect of smoothing
the model, especially in regression.

1, 2, 5, 10, 50 1

3.5. Gradient Boosting Regression Tree (GBRT)

GBRT, also known as gradient boosting decision tree (GBDT) or multiple additive regression
tree (MART), is one of the most widely used ML algorithms for the model’s great generalization
ability and highly robust performance in practical applications, and this GBRT was introduced by
Friedman [73,74]. As one of the ensemble learning methods that combines different weak learners
to generate strong learners, GBRT uses boosting techniques that aim to reduce bias, rather than
bagging (e.g., RF algorithm), which aims to reduce variance. To evaluate the accuracy of the model, a
variety of loss functions can be used during boosting, including least squares, least absolute deviation,
Huber and quantile for regression, binomial deviance, multinomial deviance, and exponential loss for
classification. GBRT considers additive models of the following form:

F(x) =
M

∑
m=1

γmhm(x) (9)

where hm(x) represents the basis learners in boosting. Then, GBRT builds the additive model in a
forward stagewise fashion:

Fm(x) = Fm−1(x) + γmhm(x) (10)

At each stage, the decision tree hm(x) is chosen to minimize the loss function L, given the current
model Fm−1 and its fitting of Fm−1(xi):

Fm(x) = Fm−1(x) + arg min
h

n

∑
i=1

L(yi, Fm−1(xi) + h(x)) (11)

The initial model F0 is problem specific. Gradient boosting attempts to solve this minimization
problem numerically via the steepest descent. The steepest descent direction is the negative gradient
of the loss function evaluated at the current model Fm−1, which can be calculated for any differentiable
loss function as follows:

Fm(x) = Fm−1(x)− γm

n

∑
i=1

∇FL(yi, Fm−1(xi)) (12)
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where the step length γm is chosen using a line search:

γm = arg min
γ

n

∑
i=1

L
(

yi, Fm−1(xi)− γ
∂L(yi, Fm−1(xi))

∂Fm−1(xi)

)
(13)

The GBRT algorithm can provide feature relevance information and partial dependence, where
this partial dependence shows the dependence among the target response and the most important
features (not shown in this study). However, despite the GBRT’s demonstrated satisfactory accuracy
for versatile domains of regression problems [29,75,76], to our knowledge, this algorithm has not been
previously applied to crop LAI retrievals with remote sensing. GBRT should be studied as it might be
a promising alternative in crop LAI retrieval with remote sensing.

With regard to GBRT model hyperparameters, loss, n_estimators, max_depth, min_samples_split
and min_samples_leaf are selected for hyperparameter tuning using GridSearch and 5-fold
cross-validation, the results are exhibited in Table 8. The remainder of the GBRT model
hyperparameters are set as defaults.

Table 8. Parameter settings to determine the optimal hyperparameters for the gradient boosting
regression tree (GBRT) model.

Parameters Description GridSearch Values Searching Results

loss Loss function to be optimized. ‘ls’, ‘lad’, ‘huber’,
‘quantile’ ‘lad’

n_estimators

The number of boosting stages to perform;
gradient boosting is fairly robust to

over-fitting so a large number usually
results in a better performance.

1, 5, 10, 20, 40, 60, 80, 120,
300 300

max_depth

Maximum depth of the individual
regression estimators; the maximum depth
limits the number of nodes in the tree; tune

this parameter for best performance; the
best value depends on the interaction of the

input variables.

2, 3, 5, 8, 15, 25, 30, None 25

min_samples_split The minimum number of samples required
to split an internal node. 2, 5, 10, 15 10

min_samples_leaf

The minimum number of samples required
to be at a leaf node; a split point at any

depth will only be considered if it leaves at
least min_samples_leaf training samples in
each of the left and right branches; this may

have the effect of smoothing the model,
especially in regression.

1, 2, 5, 10, 50 1

3.6. Performance Evaluation

To evaluate the performance of the ML regression models, the root mean square error (RMSE),
mean absolute error (MAE) and coefficient of determination (R2) between the measured and predicted
values were used to assess the performance of the models. The RMSE, MAE and R2 are calculated
as follows:

RMSE(y, ŷ) =

√√√√ 1
nsamples

nsamples−1

∑
i=0

(yi − ŷi)
2 (14)

MAE(y, ŷ) =
1

nsamples

nsamples−1

∑
i=0

|yi − ŷi| (15)

R2(y, ŷ) = 1 − ∑
nsamples−1
i=0 (yi − ŷi)

2

∑
nsamples−1
i=0 (yi − y)2

(16)
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where y = 1
nsamples

∑
nsamples−1
i=0 yi, ŷi is the estimated cotton LAI value, yi is the measured cotton LAI

value and nsamples is the number of validation datasets. The higher the R2, the smaller the RMSE and
MAE, and thus the higher the model precision and accuracy.

4. Results

4.1. Performance Evaluation

To avoid skew results caused by the random sampling of training and testing datasets, we performed
20 random repetitions of the five ML regression models (87 samples for training and 30 for testing). The
performance of five ML models with respect to R2, RMSE and MAE is displayed in Figure 5. GBRT
surpasses the other models on the average (R2 = 0.854, RMSE = 0.674 and MAE = 0.456), however, GBRT
acts less robust to the training/testing random split according to the distribution of R2, RMSE and MAE.
RF delivers the worst accuracy on the average (R2 = 0.807, RMSE = 0.781 and MAE = 0.545), and it also
acts less robust to the training/testing random split. Nonetheless, SVR achieves a desirable result while it
also acts reasonably robust to the training/testing random split (R2 = 0.835, RMSE = 0.730 and MAE =
0.550), which indicates that SVR is highly stable to the random sampling processes. Overall, all models
achieved satisfactory performances, which indicates that ML algorithms are appealing methods for cotton
LAI estimation.

(a) (b) (c) 

Figure 5. The R2, RMSE and MAE distribution of 20 repetitions between the predicted LAI values and
corresponding measured LAI. (a) R2; (b) RMSE; (c) MAE.

4.2. Computational Efficiency

Beyond the model accuracy of the five models for the training and testing random split, it is of
particular relevance to compare the computational efficiency (time required to the model during
training and validation processes) of the models, as it is an important criterion for operational
algorithms. All models were implemented in a Python environment on an Intel(R) Xeon(R) CPU
E5-2620 v2 @ 2.10 GHz processor and installed memory (RAM) of 32.0 GB. The computational efficiency
is recorded from the 20 repetitions in Section 4.1. The averaged results of 20 repetitions are illustrated
in Figure 6. Large differences among the five ML models are clearly found. SVR performs incredibly
fast (less than 1 s). However, GBRT is frustrating, owing to the large amounts of its hyperparameter
tuning processes. In general, SVR is able to deliver near real time operational products with a highly
efficient processing speed, whereas the GBRT model is not recommended for this kind of application,
because the GBRT model is computationally more demanding. RF, GPR and ANN showed moderate
performances in terms of computational efficiency.
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Figure 6. The average processing speed for five ML models.

4.3. Sensitivity to Training Sample Size

We use R2, RMSE and MAE between the predicted LAI values and measured LAI values to assess
the sensitivity of five ML methods to the training sample size. Eight datasets with different sample
sizes (17-87) were generated by randomly sampling from the total training datasets (87 samples) at
intervals of 10. Table 9 shows the number of training and testing samples of the eight datasets, while
the testing datasets keep as the same datasets with 30 samples.

Table 9. Number of training and testing samples of the eight datasets.

Sample Name Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8

Training Datasets 17 27 37 47 57 67 77 87
Testing Datasets 30

To evaluate the robustness of five ML models for the training samples, we conducted 10 random
repetitions of each model and provided the corresponding standard error. The standard error is given
as follows:

σx =
σ√
n

(17)

where σ denotes the standard deviation, n represents the number of repetitions.
Figure 7 shows the changes in R2, RMSE and MAE as the training sample sizes varied, the

standard error is given at each training sample size (filling area of each model), lower values of the
filling area corresponds to smaller standard error, and consequently, more robust model performance.
According to Figure 7, different sensitivity performances of the sample size variation are found among
the ML models. GPR and GBRT show robust performances for the training samples according to
the standard error of different models. GBRT produces a remarkable performance for the training
samples that is more robust than the other models, GPR behaves suboptimally. ANN and SVR are very
sensitive to the training samples. Moreover, all models behave more robust with the growth of training
sample size according to the variation of standard error. In summary, the model accuracy improves
overall with an increasing training sample size, while GBRT provides the most robust performance
for the training samples, and the best model accuracy among the variations in training sample size
on average (R2 = 0.884, RMSE = 0.615 and MAE = 0.452, calculated by all the 8 groups of training
sample size).

328



Appl. Sci. 2019, 9, 1459

(a) (b) (c) 

Figure 7. Sensitivity of the ML models to the training sample size (with intervals of 10) in terms of R2,
RMSE and MAE with standard error. (a) R2; (b) RMSE; (c) MAE.

4.4. Sensitivity to Spectral Bands

Variable and feature selection have been one of the most significant processes in ML, with the aim
of improving model accuracy and accelerating model processing. With 10 spectral bands of Sentinel-2
available (B2, B3, B4, B5, B6, B7, B8, B8A, B11, B12), it may not be practical to evaluate the performance
of all the possible band combinations. This process could be challenging, as the characteristics of
different ML models are distinct, and thus it is challenging to conduct a comparison among the
different models under a unified standard. For example, GPR, RF and GBRT could provide feature
relevance (spectral bands relevance) information that enables insight into feature selection processes,
however, the feature relevance results are subject to the model itself, in other words, we could obtain
different feature selection schemes, and such information is practical with single ML model based
applications. In addition, ANN and SVR are not able to deliver feature relevance information.

Székely, Rizzo, and Bakirov [77] proposed the distance correlation (dCor) to measure the
dependence of random vectors. dCor ranges between 0 and 1, and dCor (X, Y) = 0 only if X and Y

are independent, which is effective in the feature selection processes [78–80]. To identify the optimal
number of Sentinel-2 spectral bands required for cotton LAI retrieval using MLRAs, we used the
distance correlation combined with the backward elimination method [81,82]. We also performed 10
random repetitions of each model to assess the model’s robustness with the spectral bands. Notably,
the distance correlation is subject to the training dataset adopted in this study. Figure 8 displays the
distance correlation among the 10 spectral bands and LAI. The ranking of the dCor values between the
10 spectral bands and LAI are identified as B12 > B3 > B4 > B2 > B5 > B11 > B8A > B7 > B8 > B6 (B12:
0.88631, B3: 0.88630, B4: 0.88016, B2: 0.87721, B5: 0.87400, B11: 0.87338, B8A: 0.80219, B7: 0.76812, B8:
0.76585, B6: 0.68998). The visible and SWIR bands occupied the top rankings, while differences among
the red-edge bands were distinct. The sensitivity results of different ML models to spectral bands
using dCor and the backward elimination method (iteratively removing the spectral band with the
lowest dCor value until only one spectral band is left) are shown in Figure 9, similarly, the standard
error is given at each spectral bands combination (filling area of each model), lower values of the
filling area corresponds to smaller standard error, and consequently, more robust model performance.
Differences exist among the sensitivity of the models with the reduction in spectral bands. A turning
point occurred at 6 for ANN, the accuracy begins to increase with the reduction in spectral bands
before 6, though with some fluctuations, and then, the accuracy begins to decrease dramatically until
reaching approximately 3. Similar trends are found among all the models except for GPR, as there
is a relatively strong fluctuation at 7. GPR has a stable performance after 4. SVR, GPR and RF are
robust for the spectral bands according to the standard error. Overall, model accuracy decreases as the
spectral bands decrease, although there are some fluctuations in the models, whereas ANN provides
the best model accuracy among the spectral band reductions on average (R2 = 0.881, RMSE = 0.625
and MAE = 0.480, calculated by all the 10 groups of spectral bands).
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Figure 8. Distance correlation among the Sentinel-2 spectral bands and corresponding cotton LAI.

(a) (b) (c) 

Figure 9. Sensitivity of the ML models to the spectral bands with respect to R2, RMSE and MAE using
the dCor and backward elimination method (the standard error is displayed). The horizontal axis
(Remaining Bands) represents the number for the rest of spectral bands after each iterative removing
process. (a) R2; (b) RMSE; (c) MAE.

The minimum number of bands required for cotton LAI retrieval are recognized as 6 for ANN and
SVR, 5 for RF and GBRT, and 8 for GPR, in other words, increasing of the spectral bands of Sentinel-2
does not significantly improves the model accuracy. Given the recognized number of spectral bands of
each of the ML models, this is vital for associated applications with great amounts of samples, as it
may reduce model processing time and desirable model accuracy could be acquired in the meantime.

4.5. Comprehensive Evaluation

In this study, we conducted a comparison of five universal MLRAs for cotton LAI retrieval with
regard to model accuracy, computational efficiency, sensitivity to training sample size and sensitivity
to spectral bands. In this section, we provide a comprehensive evaluation of five ML algorithms
according to the obtained results, which were discussed earlier in this paper. To combine all the
metrics, we performed a standardization process on the results. The mean values of the results in the
sensitivity analysis (training sample size and spectral bands) were used, and we make RMSE, MAE and
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processing speed negative for the sake of comprehensive comparison. An alternative standardization
is interval scaling, which is as follows:

x′ = x − Min
Max − Min

(18)

where Max denotes the maximum value of the data, and Min represents the minimum value of the data.
The results are displayed in Figure 10, and the metrics used in the radar chart and its corresponding
implications are displayed in Table 10. Clearly, GBRT shows an outstanding performance from
a comprehensive viewpoint, however, GPR shows the worst performance. ANN and SVR show
moderate performances.

Figure 10. Comprehensive comparison of five machine learning regression algorithms (MLRAs), with
different metrics using a radar chart.

Table 10. Metrics used in a radar chart and the corresponding descriptions.

Metrics in the Radar Chart Corresponding Description

M1 Fitness (R2)
M2 Accuracy (RMSE)
M3 Accuracy (MAE)
M4 Computational efficiency
M5 Sensitivity to training sample size (R2)
M6 Sensitivity to training sample size (RMSE)
M7 Sensitivity to training sample size (MAE)
M8 Sensitivity to spectral bands (R2)
M9 Sensitivity to spectral bands (RMSE)

M10 Sensitivity to spectral bands (MAE)

4.6. Final LAI Maps

The best performing ML regression model has been applied to map cotton LAI with Sentinel-2
imagery, as analyzed in previous sections, we use the GBRT model to map cotton LAI in the study area.
The fields in the study area are regular, we conducted a manual vectorization based on Google Earth
image data to obtain accurate agricultural fields boundaries, and Landsat 8 image data were collected
to update the fields, as Google Earth image data has poor temporal information. Totally, 40,211 fields
were collected by this way in the study area. Figure 11 displayed the agricultural fields boundaries.
A per-field crop classification was performed to extract cotton fields. The final cotton LAI map was
obtained by masking the results using the extracted cotton fields. Figure 12 presents the final cotton
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LAI map. From Figure 12, it is clear to find that there is an increasing trend of cotton LAI growth, as
revealed by Figure 2.

 
Figure 11. Agricultural fields boundaries collected by manual vectorization.

 
(a) (b) (c) 

Figure 12. Final cotton LAI map obtained using GBRT model and masked by the extracted cotton
fields. (a) Early June 2018; (b) Mid July 2018;(c) Mid August 2018.

In the early June cotton LAI map, some areas have LAI values much larger than the whole map
(green color), as well as LAI values much smaller found in mid-July and mid-August (orange color),
these fields are some other crops rather than cotton, and it can be ascribed to the misclassification.

4.7. Comparison with Global LAI Products

The validation of moderate-resolution products are key steps to assess the quality of the global
LAI products. In this study, we performed a comparison among GEOV3, MODIS LAI products and
upscaled Sentinel-2 LAI to assess the quality of these two products in Northwest China. To conduct
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the comparison of the cotton LAI results obtained using the GBRT model with global LAI products, we
choose the closest dates of the products at a spatial resolution of the products to minimize the spatial
and temporal differences [2].

All Sentinel-2 LAI maps were resampled to the same spatial resolution of MODIS and GEOV3 LAI
products, and then GEOV3 LAI product were also resampled to the same spatial resolution of MODIS
LAI product to make a straight comparison of these two products. Figure 13 shows the scatter plots
among the comparison of GEOV3, MODIS and Sentinel-2 cotton LAI over three observation dates.
Regarding the comparison of the MODIS LAI product and Sentinel-2 LAI maps, it was found that both
the MODIS LAI product and the Sentinel-2 LAI suffered from the influence of the background, and
are kind of overestimated in some areas in early June 2018. MODIS LAI product underestimated a
little bit in mid-August 2018. In terms of GEOV3 LAI product and Sentinel-2 LAI maps, the GEOV3
LAI product overestimated at some areas both in early June and mid-July 2018, and underestimated in
mid-August 2018. Finally, with respect to the comparison of the two global LAI products, relatively,
large differences are found in early June and mid-July 2018, whereas a good relationship appeared in
mid-August 2018.

Figure 13. Scatter plots among GEOV3, MODIS LAI products and upscaled Sentinel-2 LAI in the 2018
cotton season.
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5. Discussion

Over the last decade, there has been a considerable increase in the introduction of ML algorithms
to remote sensing for a wide range of fields. Crop biophysical parameters (e.g., LAI) are key variables
for a wide range of applications. With the progress of remote sensing techniques, we are able to acquire
high dimensional (spatial, temporal, and spectral) remote sensing data, which demands more efficient,
accurate and robust algorithms in a wide variety of applications with remote sensing. In this context,
there is great potential for ML algorithms to be used in a wide range of remote sensing applications.

The diversity of available ML algorithms poses great challenges for the selection of MLRAs, as
well as the decision of optimal number of training sample size and spectral bands to different MLRAs.
Besides, another significant problem that may arise involves hyperparameter tuning in the application
of ML algorithms. In general, experience is required to obtain satisfactory results for ML algorithms,
and experiments with a large number of datasets may be needed, which are generally not available.
Accordingly, it is necessary to perform a comparison of different fashionable ML models to support
better remote sensing applications. In this study, we focus on the comparison of five well-known
ML algorithms for cotton LAI retrievals with Sentinel-2 imagery, because these algorithms have a
wide range of applications in remote sensing. Additionally, the hyperparameter tuning results of five
prominent ML models are provided. Our study could provide support for associated remote sensing
studies based on ML algorithms.

Furthermore, a comparatively great fluctuation is observed at 7 among all the models except
for GPR in Figure 9, the previous removing spectral band is the red-edge band (B7), which indicates
that having low dCor values do not necessarily correspond to being less important for LAI retrieval.
Notably, ensemble methods (RF and GBRT) and GPR models have a great benefit of delivering
feature importance information (not shown in our study), which provides insight into the greatest
contributing features of the model. Such information could be used for better model interpretation,
and this information is also useful for feature selection processes when applied to models that contain
a great number of features.

In related studies, Verrelst, et al. [55] compared four ML algorithms (NN, SVR, KRR and GPR)
using simulated Sentinel-2 and 3 data to assess three biophysical parameters (Chlorophyll content, LAI
and FVC). GPR outperformed the other regression methods for the majority of Sentinel configurations,
whereas in our study, GPR performed worse than the other regression methods. Results that differ from
our study may be for the following reasons. First, we used real Sentinel-2 data rather than simulation
data, and it may be difficult to represent the performance of real Sentinel-2 data with simulation data.
Second, we focus on cotton crops over the entire growth period rather than on various crop types. In
addition, there may be different hyperparameter settings between models. Finally, there are differences
between the Sentinel-2 bands, and we used 10 spectral bands (SWIR included). Yuan, et al. [83]
compared the RF, ANN and SVM regression models for soybean LAI retrieval using unmanned aerial
vehicle (UAV) hyperspectral data with different sampling methods. The results showed that RF is
suitable for the whole growth period of soybean LAI estimation, while ANN is appropriate for a
single growth period. Siegmann and Jarmer [84] compared SVR and RFR for wheat LAI estimation
using hyperspectral data, and the results showed that SVR provided the best performance of the entire
dataset. Different from previous studies, we considered the GBRT model due to its highly robust
performance over a wide range of applications. We further explored the sensitivity of different ML
algorithms to training sample size and Sentinel-2 spectral bands. The results show that GBRT achieves
the best performance, and GBRT was more robust for the training samples than the other models.

Despite the promising results revealed by five ML regression methods, there are some limitations
of our study, and further studies are needed to assess the generalization ability of the five ML regression
methods. Firstly, we focus on only one crop type, and the performance of ML regression methods for
other crop types has not been validated. It is necessary to evaluate ML algorithms with various crop
types, provided there are enough field measurement LAI data of different crop types available.
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Secondly, some other crop biophysical parameters (e.g., Chlorophyll content and FVC) demand
evaluation as well as ML regression methods, as different results may appear with different ML
algorithms and different crop biophysical parameters. Thirdly, there are limitations with Sentinel-2
spectral bands sensitivity analysis, since some spectral bands are highly correlated, and redundancies
remain among the spectral bands, so this process would be worth further investigations to explore
a better spectral bands sensitivity analysis. Additionally, there are limitations to our quadrats in the
field campaigns, as we chose only three sample points to represent a quadrat (20 m × 20 m). Finally,
the performance of five MLRAs has not yet been evaluated for large amounts of data (e.g., tens of
thousands of data) due to the limited number of samples in our study, however, it remains to be seen
whether a favorable performance can be obtained. In consideration of the ability of ML techniques, it is
expected to obtain a better accuracy of the regression models provided there are enough samples, and
a turning point should be obtained, as has been demonstrated in previous studies [19]. While before
the turning point, the model accuracy increased rapidly with the increase in the training sample size,
whereas, after the turning ponits, the model behaves more stable, in other words, the model accuracy
remmained unchanged with the increasing of training sample szie. Future studies are required to
investigate this problem.

With the advance in ML technology, deep learning, a new subfield of ML, has been applied
successfully to many remote sensing domains, especially with a large quantity of data [85]. It is not
necessary to construct complex ML models (deep learning-based models) in our study, as traditional
ML algorithms have the capability of establishing efficient, accurate and robust estimation models for
cotton LAI retrieval. However, as there are greater amounts of data available, deep learning techniques
may be promising alternatives for handling such large volume datasets and complex relationships
among the input datasets, which deserve further study.

6. Conclusions

With the challenges of selecting ML algorithms for crop LAI estimation, the results of this
study have great implications for the selection of appropriate ML models from the diversity of
available ML algorithms, and at the same time, these same results provide the optimal number of
training sample size and spectral bands of Sentinel-2 for each model required for cotton LAI retrieval.
Regarding the comparison of different ML models for cotton LAI retrieval employed in our study, the
GBRT model outperforms the other ML models according to our results. Our findings increase the
potential for cotton LAI retrieval with Sentinel-2 imagery, and may be transferrable to other associated
problems related to agricultural remote sensing applications. On the other hand, the GBRT model is
computationally demanding, which may be a significant problem with a large scale of data. However,
GBRT can challenge the model accuracy and computational efficiency selection problems. Considering
the computational efficiency, SVR exhibits considerable computational superiority over the other
ML models.

Regarding the sample size sensitivity of ML models, model accuracy increases with the growth of
the training sample size, and the GBRT produces the most robust performance for the training samples
with respect to the standard error and the best model accuracy on average.

In terms of spectral band sensitivity analysis, the distance correlation results showed that the
SWIR and visible bands have great potential to improve the accuracy of cotton LAI retrievals. By
using dCor combined with the backward elimination method, the model accuracy decreases with
the reduction in spectral bands. SVR, GPR and RF perform robustly with the spectral bands, and
ANN provides the best accuracy on average. The minimum number of bands required for cotton LAI
retrieval are recognized as 6 (ANN), 6 (SVR), 5 (RF), 5 (GBRT) and 8 for GPR.

A comprehensive evaluation has been employed to identify the performance of five ML models,
considering a combination of model accuracy, computational efficiency, sensitivity to training sample
size and sensitivity to spectral bands. The comprehensive performance of the models is identified as
GBRT > ANN > SVR > RF > GPR.
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Despite the different performances of the five ML regression models, MLRAs are promising
ways to retrieve cotton LAI with Sentinel-2 imagery because the MLRAs all achieved encouraging
accuracies. With profound applications for a diversity of ML algorithms in remote sensing, MLRAs
may provide positive effects for remote sensing applications in terms of classification, regression, and
other associated problems.
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Abstract: Reconstructing fine-grained spatial densities from coarse-grained measurements, namely
the aggregate observations recorded for each subregion in the spatial field of interest, is a critical
problem in many real world applications. In this paper, we propose a novel Constrained Spatial
Smoothing (CSS) approach for the problem of spatial data reconstruction. We observe that local
continuity exists in many types of spatial data. Based on this observation, our approach performs
sparse recovery via a finite element method, while in the meantime enforcing the aggregated
observation constraints through an innovative use of the Alternating Direction Method of Multipliers
(ADMM) algorithm framework. Furthermore, our approach is able to incorporate external information
as a regression add-on to further enhance recovery performance. To evaluate our approach, we study
the problem of reconstructing the spatial distribution of cellphone traffic volumes based on aggregate
volumes recorded at sparsely scattered base stations. We perform extensive experiments based
on a large dataset of Call Detail Records and a geographical and demographical attribute dataset
from the city of Milan, and compare our approach with other methods such as Spatial Spline
Regression. The evaluation results show that our approach significantly outperforms various baseline
approaches. This proves that jointly modeling the underlying spatial continuity and the local
features that characterize the heterogeneity of different locations can help improve the performance
of spatial recovery.

Keywords: spatial sparse recovery; constrained spatial smoothing; spatial spline regression;
alternating direction method of multipliers

1. Introduction

The problem of reconstructing fine-grained spatial data from its coarse-grained aggregate
observations of each subregions lies in the core of many real world applications. For example,
the reconstruction of fine-grained spatial distribution of cell phone activities is of particular interest
to telecommunication and information technology companies, where the recovered data can be
used for device installation, capacity planning, the study of urban ecology [1–3], population density
estimation [4–6], and human mobility prediction [7–11]. However, the companies may only have access
to the aggregate mobile traffic volumes on each base station, as either privacy issues or additional
technical overhead is involved to get fine-grained spatial data of users. Similarly, it is also highly
valuable if we can infer the spatial distribution of population (e.g., the population vote for a certain
party) densities based on the total population recorded at polling stations that sparsely scattered
at different subregions. Internet media providers or retailers, such as Google, Tencent, Amazon,
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Facebook, etc., may want to recover a fine-grained geographical distribution of their users based on
the aggregated user counts observed at different points of presence (PoPs) or data centers. Note that,
in all the above-mentioned cases, it is impossible or not allowed to track the position of each individual
due to either privacy concerns or technical overhead. Therefore, reconstructing the spatial data from
coarse aggregation will be highly useful in such cases.

In this paper, we study such spatial sparse recovery problem, that is, to infer the fine-grained
distribution of certain spatial data in a region given the aggregate observations recorded for each
of its subregions. However, it is an extremely challenging problem and has seldom been studied.
A straightforward idea is assuming the density is uniformly distributed within each subregion.
Based on the based on the obtained aggregate observation, we can calculate a patched piece-wise
constant estimation for each subregion. However, the densities estimated by this method will jump
between neighboring subregions and disregard the local continuity or similarity of the studied spatial
distribution across subregion boundaries. In addition, the piece-wise constant spatial field given by this
approach provides little value for applications such as hot spot discovery. Many spatial data presents
local continuity, e.g., Internet activity or cell phone activity. This is because the data often highly
depend on underlying factors which are usually smoothly changing, like area functionality, urban
geographical features, population density and so on. To exploit the smoothness, we may utilize spatial
smoothing techniques such as Thin Plate Splines [12], Soap film smoothing [13], Spline smoothing [14],
Bivariate Spline Regression [15], or Spatial Spline Regression [16] developed in statistics to smoothen
the patched estimation. However, nearly all existing spatial smoothing techniques [12–16] are designed
to recover a spatial field of densities according to sampled observations, e.g., reconstruct a spatial field
of temperatures based on the temperature records at some sample points. In contrast, our problem
needs to recovery a spatial field based on coarse-grained aggregate observations. Therefore, existing
spatial smoothing techniques are not directly applicable to our new problem. Without modification,
these smoothing techniques will violate the necessary constraint that the estimated spatial data in
each subregion must sum up to its corresponding aggregate observation in the first place, leading to
systematic errors.

To overcome the difficulties mentioned above, in this paper, we propose a new technique named
Constrained Spatial Smoothing (CSS) for the problem of spatial data reconstruction. Specifically,
given a region, we aim to reconstruct a spatial field of densities over that region based on observed
aggregate values in patched subregions. Our approach penalizes the “roughness” of the reconstructed
spatial field subject to the constraint that the aggregation of discretized values of the spatial field in
each patched subregion equals the aggregate observation made in that subregion. It is distinct from
previous spatial smoothing techniques due to the additional constraint in our problem. We propose
an Alternating Direction Method of Multipliers (ADMM) [17,18] algorithm to decouple the problem
into the alternated minimizations of a quadratic program (QP) [19] subproblem and a spatial smoothing
subproblem, where we use the QP to iteratively enforce the observation constraints, while solving the
spatial smoothing subproblem with a recently proposed finite element technique called Spatial Spline
Regression (SSR) [16]. In addition, our approach not only leverages the intrinsic smoothness from local
continuity to reconstruct a spatial field, but is also able to incorporate additional external information,
such as the number of schools, number of bus stops, population, etc., in the underlying geographical
region as a regression add-on component to further enhance recovery performance. Last but not least,
our algorithm can be applied to a variety of sparse recovery problem where intrinsic smoothness exists.

Another important contribution of the paper is that we conduct extensive evaluation to compare
our proposed algorithms with a variety of baseline methods. In our evaluation, we are trying to
reconstruct the mobile phone activity distributions in Milan, Italy from base station observations.
The Telecom Italia Big Data Challenge dataset is a multi-source dataset that contains a variety of
informations, including aggregation of telecommunication activities, news, social networks, weather,
and electricity data from the city of Milan. With the important information about human activities
contained in the dataset, especially the cellphone activity records, researchers utilized the data to
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study different problems, such as modeling human mobility patterns [20–22], population density
estimation [4,5], models the spread of diseases [23,24], modeling city structure [3] and city ecology [2],
etc. Specifically, our evaluation is based on the Milan Call Detail Records (CDR) dataset, a part of the
Telecom Italia Big Data Challenge dataset [25] which contains the phone call and Short Message Service
(SMS) activity records of two months in each grid square of 235 m × 235 m in the city of Milan, Italy.

Given the Milan Call Detail Records (CDR) dataset, we consider a region that consists of 2726 grid
squares in an irregularly bounded region in the city of Milan. To stress-test the algorithm performance,
we assume we only know the aggregate phone activities observed on 100 or 200 base stations and
aim to recover the entire spatial field of phone activities. We also use another geographical attribute
dataset available from the Municipality of Milan’s Open Data website [1] as the additional external
attribute data to improve performance. Extensive evaluation shows that our proposed approach
achieves significant improvement, compared to various state-of-the-art baseline methods, including
the spatial spline regression (SSR) [16] approach. Our technique can recover the fine-grained cell
phone activity distribution of 2726 data points only from 200 data points of base stations, with a mean
absolute percentage error of 0.309, representing a 26.3% improvement from the SSR baseline scheme.

The remainder of this paper is organized as follows. In Section 2, we formulate the problem of
spatial field reconstruction from coarse aggregate observations. In Section 3, we describe existing
solutions, including a state-of-the-art Spatial Spline Regression (SSR) technique for spatial smoothing.
In Section 4, we propose our Constrained Spatial Smoothing method which respects both the local
continuity in the spatial field and the aggregation constraints at the same time. In Section 5, we conduct
extensive evaluation in comparison with various other methods through a solid and extensive case
study of cell phone activity density estimation in the city of Milan. We discuss related literature in
Section 6 and conclude the paper in Section 7.

2. Problem Formulation

In this section, we formally introduce the problem of spatial field reconstruction from coarse
aggregations observed at sparse scattered points in that field. Our problem can be formulated as a new
type of sparse recovery problems. To ease the presentation, we may use cell phone activity recovery as
an example.

Let Ω ⊂ R
2 denote an irregularly bounded domain, which is the entire region of interest in our

problem. Usually, it excludes the uninhabited areas such as hills, ocean coasts, rivers, and so on.
Suppose f (p) is a real-valued function that represents certain spatial densities field (e.g., cell phone
activities), where p = (x, y) ∈ Ω denotes different geographical positions in Ω. Let B = {B1, . . . , Bm}
denote m observation points (e.g., base stations) that scattered in Ω. Each point Bi is located in
a position pBi ∈ Ω and in charge of a subregion ΩBi . In our problem, we are given the aggregated
volume zi in ΩBi that Bi is in charge of. Our goal is to reconstruct the spatial field f (p) based on the
observed aggregated volumes zi.

To give an instance, consider the problem of recover cell phone activity distribution. In this case,
each user will connect to a base station (cell tower) that is closest to his/her cell phone. Therefore,
we can observe the aggregated volume for each base station

zi =
∫

ΩBi

f (p)dp, i = 1, . . . , m,

where ΩBi denotes the subregion that Bi is in charge of, and is given by

ΩBi = {p ∈ Ω : ‖p − pBi‖ < ‖p − pBi′ ‖, ∀Bi′ ∈ B, i′ �= i}.

Given the aggregated activity volumes z1, . . . , zm recorded on m base stations, our goal is to
reconstruct the entire cell phone activity densities distribution f , which is a spatial field in the domain
Ω. We may call z1, . . . , zm base station volumes in this case. However, reconstructing a continuous
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spatial field is almost computationally infeasible as a personal computer can not handle the continuous
nature of ΩBi .

In reality, we only need to recover f to a certain granularity required by the operator
(e.g., 235 m × 235 m squares in the dataset provided by Telecom Italia Mobile). To fix notations,
suppose Ω is discretized into n small grid squares p1, . . . , pn, where pj = (xj, yj) ∈ Ω, j = 1, . . . , n are
the center positions of each square j in Ω. We can assume the area of each square is Δ = 1 without loss
of generality. In addition, the number of aggregate observations is much smaller than the total number
of squares to be reconstructed, therefore we have m � n.

After domain discretization, we can get the aggregate volume on each base station Bi by

zi = ∑
pj∈ΩBi

f (pj) · Δ, i = 1, . . . , m, (1)

where the subregion that Bi represents is given by

ΩBi = {pj : 1 ≤ j ≤ n, ‖pj − pBi‖ < ‖pj − pBi′ ‖, ∀i′ �= i}. (2)

Therefore, our goal is to reconstruct the underlying spatial field f , and especially the
activity densities

f := ( f (p1), . . . , f (pn))
T

in all n grid squares if the desired granularity is on a per-square level, with only access to the aggregated
observations zi in Label (1).

The problem defined above is broadly applicable to characterize a variety of applications other
than the recovery of cell phone activity density distribution, e.g., inferring a fine-grained geographical
user distribution for a certain app or website based on aggregated user counts collected at sparsely
distributed Presence of Points (PoPs) or data centers, and recovering the voter distribution for a certain
party based on aggregate voting statistics at different polling stations. The nonessential difference
is that the definition of subregion ΩBi , from which volume zi is aggregated, is different for each
specific application.

Constrained Spatial Smoothing Problem

Denote z = (z1, . . . , zm)T. Since all ΩBi are predetermined, e.g., from Label (2) for the problem of
cell phone activity distribution recovery, and zi are known, reconstructing spatial field f from (1) is
essentially solving a linear system of equations for f, i.e.,

z = Af,

where the matrix A ∈ R
m×n is given by

Aij =

{
1, if pj ∈ ΩBi ,
0, otherwise.

(3)

Since m � n, i.e., the number of equations is far smaller than the number of the unknowns,
reconstructing f (p1), . . . , f (pn) from z1, . . . , zm is essentially a sparse recovery problem.

Directly solving the linear system of Equation (1) is infeasible, as it is an underdetermined system
which has an infinite number of solutions. However, the spatial property of f can be utilized as
constraints to make the sparse recovery problem feasible and has a unique solution. We observe
that spatial data usually exhibit local continuity or correlation within domain Ω. For example, in the
problem of cell phone activity density recovery, the activity density of a certain location highly depends
on the population and activity at that place, e.g., the downtown has more population and cell phone
activity than suburban residential areas. In addition, the underlying area functionality and the spatial
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distributions of human activity density are often slowly changing over the domain Ω rather than
suddenly jumping between different subregions.

Therefore, we can formulate our constrained spatial sparse recovery problem as the following:

minimize
f

∫
Ω
(∇2 f )2 dp,

subject to z = Af,

f ≥ 0,

(4)

by taking into account the non-negative property and the local spatial continuity (smoothness) of

f . ∇2 f = ∂2 f
∂x2 + ∂2 f

∂y2 is the Laplacian of f , and is utilized to encourage local similarity and penalize
the roughness of the spatial field f . It is worth noting that once f is reconstructed, we have not only
recovered the densities f at the square centers p1, . . . , pn, but can also recover the density f (p) of any
point p ∈ Ω, e.g., between the centers of two neighboring grid squares, although such a fine-grained
recovery may not be needed in every application.

To further improve the recovery performance, we can utilize additional external demographic or
social features at each location. In the problem of cell phone activity density reconstruction, cell phone
activities are often correlated with the underlying population density and social functionalities
(e.g., the percentage of green area, the number of schools, the number of businesses/restaurants,
the number of sport facilities, and the number of bus stops, etc.) of the considered regions.

Specifically, suppose wj = (wj1, . . . , wjq)
T represents the feature vector consisting of q external

feature values of square j. When wj is available as additional input, we can estimate the spatial density
data in square j by

f (pj) = f ′(pj) + wT
j β, (5)

where f ′(p) is an underlying spatial field functional that preserves local spatial continuity, while wT
j β

is a linear regression part based on the attributes of square pj that allows position-specific variation
or jumps.

In the presence of attributes, we can formulate the constrained spatial sparse recovery problem as

minimize
f ′ ,β

∫
Ω
(∇2 f ′)2 dp,

subject to f (pj) = f ′(pj) + wT
j β, j = 1, . . . , n,

z = Af,

f ≥ 0.

(6)

Once we get the spatial field f ′ and β, we can reconstruct f (pj) for all the squares using
(5). For example, we can calculate the cell phone activity at a specific place by the summation
of an underlying smooth spatial field f ′(pj) and a linear regression of location attributes, where the
add-on regression helps to model the jump between two subregions if the two regions are quite
different and have distinct functionalities or attributes.

3. Patched Estimation and Spatial Spline Regression

In this section, we present some tentative solutions and then show their limitations in solving our
constrained spatial sparse recovery problem.

3.1. Patched Piece-Wise Constant Estimation

In our problem, we only have access to the aggregated volumes zi at locations pBi . To infer the
fine-grained spatial distribution of zi over subregion ΩBi that covers the point Bi, a first intuitive
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heuristic is estimating f (pj) as the volume zi divided by its area by assuming the density is
distributed uniformly:

f̄ (pj) =
zi

|ΩBi |
, for each pj ∈ ΩBi , (7)

where |ΩBi | is the area of ΩBi . This method gives us a patched piece-wise constant estimation. Note
that we use patch to refer to ΩBi in this paper, which is the subregion covered Bi.

However, the patched estimation gives an oversimplified solution. The reconstructed spatial field
f̄ (pj) may have jumps on the borders of neighboring patches, which is far from smooth. In reality,
the spatial field f (pj) should change smoothly over the domain, as the underlying characteristics also
change smoothly across different regions. Hence, f (pj) should not be constant within each patch ΩBi .

3.2. Spatial Spline Regression

Given the above observation, we can naturally come up with a second idea, which is learning
a smooth estimation of f̄ (pj) by spatial smoothing techniques. In the following, we introduce the
powerful smoothing technique named Spatial Spline Regression (SSR) proposed in Sangalli et al. [16].
We will show how it can be applied to our particular spatial data reconstruction problem, as well as
point out its limitations in solving the problem.

Given l data points in Ω, which contains the following information: (1) their positions {pj}l
j=1;

(2) the values of these l points: {hj}l
j=1; and (3) their feature vectors {wj}l

j=1, SSR is able to fit a smooth
spatial field f by minimizing the following equation [14,16], i.e.,

minimize
β, f

l

∑
j=1

(
hj − wT

j β − f (pj)
)2

+ λ
∫

Ω
(∇2 f )2 dp, (8)

where f is assumed to be twice-differentiable over Ω, and ∇2 f = ∂2 f
∂x2 +

∂2 f
∂y2 denotes the Laplacian of

f to penalize the roughness of f . The hyper parameter λ is used to trade the smoothness of f off for
a better approximation to data value hj.

However, the challenge to solving problem (8) is that it involves searching for a functional f
over a possibly non-convex domain Ω that may have strong concavities, complicated boundaries,
and even interior holes. Although kernel-based methods [26] are also a commonly used smoothing
technique, their major drawback is that, by using uniformly damping weights in distance-based
kernels, they tend to link data points across unrelated or weakly related subregions in an irregularly
shaped non-convex domain.

We now briefly describe how spatial spline regression [16] can solve problem (8) via finite
element analysis for any irregularly shaped domain Ω. SSR splits a domain Ω by transforming it into
a triangular mesh with triangulation methods (e.g., Delaunay triangulation [27]). After triangulation,
it defines a polynomial function on each triangle, such that the summation of these polynomial
functions defined on different pieces closely approximates the desired spatial field f .

Specifically, let ζ1, . . . , ζK denote the vertices of all the small triangles, which are called control
points and can be adaptively selected by available data points. Define a piecewise linear or quadratic
basis function ψk(x, y) called Lagrangian finite element with (x, y) ∈ Ω, associated with each control
point ζk such that ψk evaluates to 1 at ζk and is equal to 0 at all other control points. Therefore,
according to the Lagrangian property of the basis, we can approximate f (x, y) for any (x, y) ∈ Ω
only using the values of f on the K control points, i.e., fK := ( f (ζ1), . . . , f (ζK))

T. That is, if we let
ψ(x, y) := (ψ1(x, y), . . . , ψK(x, y))T denote the K predefined basis functions, each corresponding to
a control point, then we have

f (x, y) = ∑K
k=1 f (ζk)ψk(x, y) = fTK ψ(x, y). (9)
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Since ψ1(x, y), . . . , ψK(x, y) are predefined and known a priori, the variational estimation of f in
problem (8) boils down to the estimation of only K scalar values, i.e., fK = ( f (ζ1), . . . , f (ζK))

T.
In fact, it is shown in Sangalli et al. [16] that with the piece-wise approximation given by (9),

solving (8) is simply solving a set of linear equations for f̂ (ζ1), . . . , f̂ (ζK). The estimator f̂ (x, y) for f
can then be derived from (9) as

f̂ (x, y) = f̂TK ψ(x, y).

It is worth noting that commodity triangulation software for finite element analysis is readily
available in many free and commercial finite element packages. For example, Delaunay triangulations
of a set of data location points (e.g., [27]) V are such that no point in V is inside the circumcircle of any
triangle; they maximize the minimum angle of all the triangle angles, avoiding stretched triangles.

Now, we can see that if l = n and we plug hj = f̄ (pj), j = 1, . . . , n into problem (8), we will get
a new density surface f̂ as a solution to the SSR problem (8) that is a smoothened approximation of the
patched estimates f̄ (pj).

However, SSR given by (8) can not accommodate any constraints, which is the major limitation in
solving our problem. Specially, in our case, SSR does not enforce the aggregated volume constraint (1)
(or z = Af in (4)). Therefore, SSR gives no guarantee that the estimated densities in each patch ΩBi will
sum up to the observed volume zi on the point Bi. In this way, SSR would likely cause large estimation
errors as it violates the constraint.

4. An ADMM Algorithm for Constrained Spatial Smoothing

Our spatial sparse recovery problem (4) is different from (8) from two aspects: the additional
constraints and the loss function. As a consequence, we can not directly apply the previous SSR
method to solve it. A new approach is needed to handle our new loss function with constraints.

In this section, we propose to utilize the Alternating Direction Method of Multipliers (ADMM) [28],
to decompose our constrained optimization problem into two sub-problems that can be solved
effectively by SSR and Quadratic Programming (QP), respectively. Algorithm 1 presents the proposed
ADMM algorithm to learn our model parameters.

Algorithm 1: Constrained Spatial Smoothing by ADMM

Input: The m observed volume of base stations z = (z1, ..., zm)T, smoothing parameter λ,
penalty parameter β, initialize α = α0, f = f 0.

Output: Spatial field and parameters f̂ , β̂. Estimation values on n locations
f̂ =

(
f̂ (p1), . . . , f̂ (pn)

)
.

1: for iter = 1, . . . , maxIter do

2: Update f by solving (18) using Quadratic Programming.
3: Update g by solving (19) using Spatial Spline Regression.
4: Update α according to (17).
5: end for

First, we introduce the following indicator function 1f,

1f =

{
0, if f ≥ 0 and z = Af,
∞, otherwise.

(10)

With the indicator function, the original problem (4) is equivalent to

minimize
f

λ
∫

Ω
(∇2 f )2 dp + 1f, (11)

where λ is a hyper parameter that controls the smoothness of f .
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Second, we introduce an auxiliary variable g that is defined as

g := (g(p1), . . . , g(pn))
T. (12)

This variable is utilized to split the convex optimization problem into two sub-convex problems.
With g, we can formulate the problem as the standard ADMM format,

minimize
f

λ
∫

Ω
(∇2 f )2 dp + 1g,

subject to f = g.
(13)

The augmented Lagrangian for (13) is

minimize Lρ(f, g, α) =λ
∫

Ω
(∇2 f )2 dp + 1g

+ αT(g − f) +
ρ

2
‖g − f‖2

2,
(14)

where α = (α1, ..., αn)T is the dual variable, and ρ > 0 is the penalty parameter in ADMM. Then,
the ADMM consists of the following iterations:

gk+1 := argmin
g

Lρ(f
k, g, αk), (15)

fk+1 := argmin
f

Lρ(f, gk+1, αk), (16)

αk+1 := αk + ρ(f − g). (17)

For the g-update step in each iteration, Label (16) is equivalent to

minimize
g

ρ

2
‖g‖2

2 + (αT − ρfT)g,

subject to g ≥ 0,

z = Ag.

(18)

We can solve this convex problem efficiently by Quadratic Programming (QP).
For the f-update step in each iteration, Equation (15) is equivalent to

minimize
f

∥∥ (αT + ρgT
)

/2 − f
∥∥2

2 + λ
∫

Ω
(∇2 f )2 dp, (19)

which is exactly the form of (8) with hj =
(
αj + ρg(pj)

)
/2 and wj = 0, thus can be solved efficiently

by SSR. It should be noted that λ is the penalty parameter which controls the smoothness of f . If it is
small, we put little emphasis on the smoothness, and the estimated surface f will be over fitted. If it is
too big, the surface will be too smooth, which can cause underfitting.

For the case with attributes, the algorithm does not require major changes. We just need
to replace f by f + Wβ in (19), where W := (w1, ..., wn)T represents the attributes and β is the
corresponding contributions.

Our proposed ADMM training algorithm is able to efficiently reconstruct the spatial field and fit
the covariates for our constrained spatial sparse recovery problem. In g-update step, it enforces the
constraints by solving a constrained QP with no need to worry about smoothing; in a f-update step,
it approximates the obtained g with a smooth f using the SSR-based smoothing technique. In this way,
we decouple the handling of smoothing and constraints which was not possible in pure SSR previously.
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5. Performance Evaluation

In this section, we perform an extensive case study of the approach we described above in order
to demonstrate its applicability. We picked the cell phone data as an example of how the model can
solve empirical problem and compare the model’s performance to other approaches.

5.1. Dataset Description

The model in (13) is general and not attached to any particular empirical problem, and it does
not contain many implicit assumptions. However, in order to measure its performance, we evaluate
the model using real-world data. Due to generality of the proposed learning algorithm, the range of
possible data sets is potentially big. For our empirical case study, we chose cell phone data, where
there exists a problem of recovering a spatial field from coarse aggregations observed at sparse cell
phone towers. We do not overestimate the problem, but rather see this particular data set suitable for
an extensive case study.

The Milan Call Description Records (CDR) dataset is a part of the Telecom Italia Big Data Challenge
dataset provided by Telecom Italia Mobile. It contains the telecommunications activity records from
1 November 2013 to 31 December 2013 in the city of Milan [25]. The dataset divides Milan into
a 100 × 100 square grid, where each square is size of about 235 m × 235 m. In the dataset, each record
consists of six entries: square ID, incoming call activity, outgoing call activity, incoming SMS activity,
outgoing SMS activity, and time-stamp of 10-minute time slot. The values of the four types of activities
are normalized to the same scale.

Another dataset we utilized is the Milan geographical attribute dataset available from the
Municipality of Milan’s Open Data website [1]. This dataset consist of features of central 2726
squares among the whole 10,000 squares. The features of each square include: population, green
area percentage, number of sport centers, number of universities, number of businesses, and number
of bus stops. Figure 1 shows the area covered by these grid squares. The 2726 squares covers the
central part of the Milan city and contains the majority of telecommunication activities in the dataset.
We refer to [2] for more detailed description about this dataset. In our experiments, we compare the
performance of different approaches on these squares.

The general problem of recovering a spatial field from coarse aggregations observed at sparse
points in the field in this particular case study is reformulated into the problem of recovering the
distribution of cell phone activities over the whole 2726 square regions given that only aggregated
activity observations in base stations are known. We need to further process the Milan CDR dataset to
study this problem.

First, we sum up the four types of activities during 1 November 2013 to 28 November 2013 and 1
December 2013 to 28 December 2013, respectively, to come up with the activity volume of each squares
during November or December. These two datasets are served as the ground-truth datasets of Milan
cell phone activity distributions. Figure 1a,b show the heat maps of activity volumes in each square
during November and December.

Second, after we aggregated the two months’ activities for each square, we need to set the
locations of base stations (BSs). According to [29], there are roughly 200 base stations in Milan.
However, the exact locations are not available. Thus, we assume the 200 BSs are randomly distributed
according to the following probability distribution

Pr(Set square i as BS) = f (pi)/
N

∑
j=1

f (pj), (20)

where f (pi) is the cell phone activity volume in square i, i = {1, . . . , N}, N = 2726 is the number of
squares we are focusing on. Notice that, when we have 200 base station’s aggregated observations, they
only cover 7.34% of the whole 2726 squares region. This is extremely sparse and makes our problem
highly challenging. In addition, we also assume nBS = 100 and choose 100 squares as BSs according
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to the same probability distribution to stress-test our algorithm’s capability under even sparser
observations. Figure 2a,b show the base station distributions for nBS = 200 and nBS = 100, respectively.

After sampling the location of base stations, for each square, we assign the activity of it to its
closest base station. When multiple base stations are equidistant from a square, the activity of the
square will be evenly distributed among these base stations. We then assume we only know the
aggregated activities in base station squares, which is usually the true case in reality. Figure 2c shows
the regions split by 100 base stations, where each colour patch is a region charged by one base station.
To save space, we don’t present the figure for 200 base stations.

(a) Activity Distribution in November (b) Activity Distribution in December

Figure 1. The cell phone activity distributions of Milan. It shows the metropolitan area of Milan,
Italy, and the area covered by the 2726 grid squares. (a,b) show the heat map of cell phone activities
(Call + SMS) during November and December respectively.

(a) nBS = 200 (b) nBS = 100 (c) Areas Charged by Each BS, nBS = 100

Figure 2. The location distributions of sampled base stations and the areas in charged by them.
(a,b) shows the sampled base station distributions for nBS = 200 and nBS = 100; (c) shows the areas in
charged by different base stations for nBS = 100.

5.2. Experimental Setup

Algorithms Evaluated

We test our proposed approach and compare it with three baseline methods. In particular,
we evaluate and compare the following models using the aggregated November and December
datasets, with number of base stations nBS = 200 or nBS = 100 for stress testing.

• Patched Estimation: estimate the cell phone activity distribution by patched piece-wise constant
estimation, that is, assume cell phone activity density is distributed uniformly within each
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sub-region ΩBi , i.e., the area covered by base station Bi, and estimate each square’s activity
volume by (7).

• Patched Estimation + SSR 1: first estimate only base station activity volumes by (7). Use these
sparse points to fit a smooth surface by running Spatial Spline Regression to obtain the estimated
cell phone activity in all squares.

• Patched Estimation + SSR 2: as opposed to the previous model, get the initial estimation of the
activity volume of all squares by Patched Estimation. Then, use all these points to fit a smooth
surface by running Spatial Spline Regression to obtain the final estimated cell phone activity in
all squares.

• Constrained Spatial Smoothing: first get the initial estimation of the activity volume of all
squares by Patched Estimation, then run Constrained Spatial Smoothing algorithm to get the final
activity volumes estimation of all squares.

• Constrained Spatial Smoothing + Features: in this case, we incorporate the geographical features
into Constrained Spatial Smoothing algorithm.

We set the penalty parameter λ = 1 when nBS = 200 and λ = 10 when nBS = 100, for all methods
that utilizes SSR. The geographical features of Milan are only incorporated in the last algorithm
described above. In addition, for the implementation of Spatial Spline Regression, we use the fdaPDE
R Package [30].

To compare different approaches, we evaluate the performance by the Mean Relative Error (MRE)
of the produced activity estimates for the true activity values. The relative error of an estimation f̂ (pj)

compared to the true value f (pj) is defined as | f̂ (pj)− f (pj)|/ f (pj).

5.3. Performance Evaluation

5.3.1. Comparison of Different Algorithms

We show the cumulative distribution function (CDF) of Relative Errors given by different
approaches in Figures 3 and 4. In addition, we compare the estimation’s Mean Relative Error of
different approaches in Figure 5. It is quite clear that our proposed algorithms outperform other three
baseline approaches significantly in all cases (nBS = 200 and nBS = 100, data aggregated in November
and in December).

(a) November (b) December

Figure 3. Comparison of the CDFs of estimation relative errors given by different methods when
nBS = 200. The legends follow the same order as the curves at relative error = 0.5. (a) compares the
CDFs based on the data aggregated in November; (b) compares the CDFs based on the data aggregated
in December.
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(a) November (b) December

Figure 4. Comparison of the CDFs of estimation relative errors given by different methods when
nBS = 100 for stress-testing. The legends follow the same order as the curves at relative error = 0.5.
(a) compares the CDFs based on the data aggregated in November; (b) compares the CDFs based on
the data aggregated in December.

(a) November, nBS = 200 (b) December, nBS = 200

(c) November, nBS = 100 (d) December, nBS = 100

Figure 5. Comparison of the estimation’s Mean Relative Error of different methods when nBS = 200
or nBS = 100 for stress-testing. In each figure, the bars from left to right stands for Patched
Estimation, Patched Estimation + SSR 1, Patched Estimation + SSR 2, Constrained Spatial Smoothing,
and Constrained Spatial Smoothing + Features respectively. (a) we use the data aggregated in
November, and set number of base stations to be 200, similarly for (b–d).

By comparing Patched Estimation + SSR 1 with Patched Estimation approach, we can see that
using spatial smoothing based on only base station squares’ observations leads to worse performance
than patched estimation. This can be explained by the smoothing property of SSR and how we set the
values of base station squares. As we described, we set the activity value of base stations by averaging
the total activity amount of each base station on all squares it covers. Thus, given the activity zi

|ΩBi
| ,

(|ΩBi | denotes the number of squares within region ΩBi ) of a base station Bi, the true activities of itself
and its surrounding squares within region Bi are distributed with a mean of zi

|ΩBi
| . Given two base

stations B1 and B2 that are close to each other, with aggregated activities of z1 and z2 respectively,
the Spatial Smoothing approach will fit a smooth surface between the two base stations. Suppose
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z1 > z2, in this case, overall, the activities of B1’s neighbour squares will be underestimated, and that
of B2 will be overestimated. Therefore, Patched Estimation + SSR 1’s performance is not as good as
Patched Estimation.

By comparing Patched Estimation + SSR 2 with Patched Estimation and Patched Estimation +
SSR 1, we can observe that applying spatial smoothing on the results of patched estimation improves
the performance. This proves the rationality and effectiveness of introducing smoothness into the
estimated cell phone activity distribution surface.

Our proposed approach achieves much better performance compared with the three baseline
methods. By using Constrained Spatial Smoothing instead of applying Spatial Spline Regression
directly, we are able to fit a smooth activity distribution while forcing it to match the observations of
base station squares (the aggregated activity volumes) at the same time. By comparing Constrained
Spatial Smoothing that incorporates additional features of each square with the version without
features, we can see that the performance is further improved. The reason is that the heterogeneity
of different locations will influence the telecommunication activity distribution, therefore making
the distribution not smooth everywhere. Incorporating additional features into our model can help
to explain the residuals between estimated smooth distribution and the true activity distribution,
therefore further increasing estimation accuracy. By comparing Figure 3 and Figure 4, we also can see
that incorporating additional features into Constrained Spatial Smoothing becomes more important
when the base stations are more sparse.

The performance of different methods on the December dataset is worse than on the November
dataset. This is because there are multiple holidays in December. The cell phone activities will become
more irregular than usual during holidays, as discussed in Cici et al. [2] and Ratti et al. [29].

Figure 6a–c show the distribution surfaces of true cell phone activity volumes, estimated volumes
by Patched Estimation, and estimated volumes by Constrained Spatial Smoothing with features when
nBS = 200 using the November dataset. We can see that the Patched Estimation approach fits a stepped
surface, while our approach gives a much smoother surface.

(a) Real cell phone activity distribution.

Figure 6. Cont.
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(b) Estimated cell phone activity distribution by Patched Estimation.

(c) Estimated cell phone activity distribution by Constrained Spatial Smoothing +
Features.

Figure 6. Comparison of the activity distributions. (a) real cell phone activity distribution; (b) estimated
distribution by Patched Estimation method; (c) estimated distribution by our method.

For time efficiency, experiments based on the Milan Call Description Records (CDR) dataset show
that the average time for our approach to converge is less than five minutes on a MacBook Pro with
a 2 GHz Intel Core i7 processor, and 8 GB memory. This proves that our system is highly efficient
and practical.

5.3.2. Impact of Smooth Penalty Parameter λ

Figure 7 shows how the the estimation’s Mean Relative Error varies when λ increases from 10−4

to 103. We make two interesting observations. First, λ around 1∼10 usually gives the best performance.
Too big or too small λ will decrease the estimation accuracy. This is reasonable, as when λ is too
small, we put little emphasis on the smoothness of estimated surface, thus the performance will suffer.
If λ is too big, it enforces a smooth surface, which also doesn’t match the reality. Second, when we
have less base stations, λ that gives the best performance will increase (from 1 to 10). In addition,
we can see that the performance of the model with λ between 1∼100 does not significantly change
when nBS = 100. That indicates the following: when the base station distribution is more sparse,
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the estimation performance is less sensitive to λ when it is around the best value (1 for nBS = 200 and
10 for nBS = 100).

Figure 7. Influence of λ to estimation’s Mean Relative Error when nBS = 200 and nBS = 100 for
stress-testing. The figure is based on the November dataset. Results on the December dataset are similar.

6. Related Work

The Telecom Italia Big Data Challenge dataset is widely used to study different
problems [2–5,20–24]. However, little research work has been done to estimate the spatial distribution
of cellphone activity itself, despite the great value of this problem.

There are various tasks where the key problem is estimating a spatial field over a region based on
observations of sampled points, such as house price estimation and population density estimation.
Chopra et al. [26] model the underlying surface of land desirability using kernel-based interpolation.
However, it is hard to choose the form of kernel functions and tune a large number of hyper-parameters.
Spatial Spline Regression technique is applied to the problem of population density estimation in
Sangalli et al. [16]. However, in our problem, we only get the accumulated activity density in base
stations, rather than real densities in each base station location. In addition, BS locations distribution is
highly sparse in our case.

Although a range of kernel-based methods [26,31,32] can be applied to fit a spatial field,
the common drawback of these approaches is that, by using uniformly damping weights in
distance-based kernels, they tend to link weakly related data points across areas in a non-convex
domain. Spatial spline regression [16] on the other hand uses finite-element analysis approach to jointly
solve for f and β from the model described by Equation (8) over any irregularly shaped domain Ω.

As it was discussed earlier, the fine-grained data for the distribution of the volume of calls and
SMS are not usually available. A common type of data is the data collected by cell phone base stations.
Sometimes, cell phone providers interpolate the data collected by the base stations as is discussed
in Manfredini et al. [33]. Some researchers interpolate the data to obtain fine grained distributions
as in Ratti et al. [29]. However, in Ratti et al. [29], authors do not evaluate the performance of the
interpolated distribution. To the best of our knowledge, there is no extensive work done in trying to
obtain optimal reconstructions of fine grained cell phone data distribution. We are the first to apply the
latest spatial functional analysis techniques to cellphone activity distribution modeling, assuming the
activity densities consist of a regression part based on social or demographical statistic features and
a spatial field that captures the underlying smoothness property of cellphone activities. In particular,
we leverage the idea of spatial spline regression to handle any irregularly shaped geographic regions.
We have developed a novel Constrained Spatial Smoothing approach and corresponding training
algorithm to recover spatial distribution of cellphone activities from highly sparse observations.
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7. Conclusions

In this paper, we study the problem of inferring the fine-grained spatial distribution of certain
density data in a region based on the aggregate observations recorded for each of its subregions, which
is extremely challenging and seldom visited before, and analyze the challenges of it. We propose the
Constrained Spatial Smoothing (CSS) approach that exploits both the intrinsic smooth property of
underlying factors and the additional features from external social or domestic statics. We further
propose a training algorithm which combines the Spatial Spline Regression (SSR) technique and
ADMM technique to learn our model parameters efficiently.

To evaluate our algorithm and compare it with various other approaches, we run extensive
evaluations based on the Milan Call Detail Records dataset provided by Telecom Italia Mobile.
The simulation results on the dataset show that our algorithm significantly outperforms other baseline
approaches by a great percentage. (Note that cross validation and statistical testing are techniques
that are usually applied in experiments. However, both techniques require sampling effectively
from the sparse spatial data while keeping the intrinsic spatial structure, which is difficult in our
problem.) This shows that jointly modeling the underlying spatial continuity and the local features
that characterize the heterogeneity of different locations can effectively improve the performance of
spatial recovery.

Although we use the data on cell phone activities to illustrate our methodology, our algorithm
is not limited to solving the problem of inferring the distribution of cell phone activities, but is also
applicable to a variety of problems where estimating an implicit or explicit smooth surface is required,
such as inferring the spatial distribution of population densities based on the aggregate population
observed at sparsely scattered polling stations, reconstructing a fine-grained geographical distribution
of users for an Internet media provider or retailer only from aggregated user counts observed at certain
datacenters or points of presence (PoPs), and so on.
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The following abbreviations are used in this manuscript:

CSS Constrained Spatial Smoothing
SSR Spatial Spline Regression
SMS Short Message Service
ADMM Alternating Direction Method of Multipliers
QP Quadratic Programming
CDR Call Detail Records
PoPs Presence of Points
CDF Cumulative Distribution Function
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Abstract: Landslides could cause huge damages to properties and severe loss of lives. Landslides
can be detected by analyzing the environmental data collected by wireless sensor networks (WSNs).
However, environmental data are usually complex and undergo rapid changes. Thus, if landslides
can be predicted, people can leave the hazardous areas earlier. A good prediction mechanism is, thus,
critical. Currently, a widely-used method is Artificial Neural Networks (ANNs), which give accurate
predictions and exhibit high learning ability. Through training, the ANN weight coefficients can be
made precise enough such that the network works in analogy to a human brain. However, when there
is an imbalanced distribution of data, an ANN will not be able to learn the pattern of the minority
class; that is, the class having very few data samples. As a result, the predictions could be inaccurate.
To overcome this shortcoming of ANNs, this work proposes a model switching strategy that can
choose between different predictors, according to environmental states. In addition, ANN-based error
models have also been designed to predict future errors from prediction models and to compensate
for these errors in the prediction phase. As a result, our proposed method can improve prediction
performance, and the landslide prediction system can give warnings, on average, 44.2 min prior to
the occurrence of a landslide.

Keywords: landslide prediction; machine learning; neural networks; model switching

1. Introduction

Landslides are natural disasters which can cause huge damage to properties and severe loss
of lives. Many studies have focused on how to detect and monitor landslides. Though landslide
detections could be performed in real-time, there might not be enough time to react, so as to save
human lives and properties. In order to minimize the losses caused by landslides, an early prediction
mechanism, with pre-warnings, is necessary. Once the system can give an alarm in advance, people
would have more response time to evacuate before the landslide occurs.

There are several problems in landslide prediction. First, just as in most safety-critical applications,
landslide prediction also exhibits the same data imbalance problem, where the class of stable data
has much more data than the class of unstable data. Stable data, here, refers to the normal conditions
(where there is no landslide), while unstable data represents landslide-related information. Second,
a low true-positive rate (TPR) problem is often found in safety-critical applications, because of the
interference in learning between two or more classes in the datasets. For example, learning from
the normal stable conditions often affects the learning from the unstable (landslide) conditions, thus
resulting in a low TPR. Third, predictive applications are often faced with the problem of determining
an appropriate prediction horizon; that is, the size of the time window of past history to be used for
predictions. Finally, real-time applications face the problem of determining when to re-train the models.
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To address the above-mentioned four problems existing in landslide prediction, this work provides
a total solution in the form of an early warning system, called the Model Switch-based Landslide
Prediction System (MoSLaPS). To address the data imbalance problem, we adapt the popular Adaptive
Synthetic Sampling (ADASYN) method [1] to landslide prediction. To address the low TPR problem,
we propose a novel event-class model switch predictor design that significantly improves TPR. To
address the problem of customizing the prediction horizon, we also propose a novel dynamic tuning
method for the prediction horizon, in order to achieve the goal of early warning. To address the
problem of determining model re-training time, we propose a novel learning-based re-training method,
based on an error model which considers both the long-term and short-term accumulated errors.
Errors are also predicted, so re-training can be done earlier in preparation for future data changes; as a
result of which, our proposed system can achieve the goal of early warning.

Section 2 introduces some related work. Section 3 presents the proposed model switching method.
Section 5 presents and analyzes the experimental results. In Section 6, the conclusions and future work
are described.

2. Related Work

Landslide prediction methods can be classified into three types: Image analysis, machine learning,
and mathematical evaluation models. Table 1 shows a comparison among these types of methods.
First, image analysis uses Geographic Information Systems (GIS), which can collect, store, manage,
and analyze geographical data. By analyzing disaster data, such as history of landslides and data
on land development for agriculture, the risk of landslides can be predicted. The probability of
landslides is variable, as it is based on the number of layers of data used for analysis. Second, machine
learning techniques, such as Bayesian networks [2], neural networks [3], or genetic algorithm [4],
use computational intelligence to calculate the probability of landslides. These methods incorporate
different factors that might cause landslides to evaluate the probability of landslide occurrence. They
are not real-time, because they require huge computational times for prediction. Finally, mathematical
evaluation models use a single evaluate equation, such as Factor of Safety (FS) [5]. A hazard model is
combined with the physical concepts of mechanics and hydrographic data for the stability of slopes.
It is easy for simulation and fits a wide range of environments, but it is difficult to obtain the whole
hydrographic data as groundwater elevation is difficult to measure.

Table 1. Comparison of Landslide Detection/Prediction Methods.

Types Methods Advantages Accuracies

Image Analysis Geographical Suitable for Accuracy based
Information System [4] Large Area on number of layers

Machine Learning Bayesian Network [2] Simple Network 75%
Neural Network [3] Simple Network 67%

Genetic Algorithm [4] Optimal Solution 90%
Mathematical Evaluation SHALSTAB * [6] High Accuracy >90%

* Shallow Landsliding Stability Model.

Landslides occur when the down-slope shear stress is large. As shown in Equation (1) [5], the
Factor of Safety (FS) refers to the stability of the soils. It takes physical properties, including rainfall,
slope, and soil properties, into consideration. It can easily predict landslides with the trend of each
parameter. Therefore, to predict landslides, a FS equation is matched with these attributes. Three
regions of the FS value, based on the SHALSTAB model [6], are defined to distinguish between the
dangerous levels of a slope, as shown in Table 2. The Stable Region is classified as the stable class and
the Marginally Stable and Actively Unstable Regions are classified as the unstable class. Based on the
classes, different training samples are used to train multiple neural network predictors.
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FS =
C + (1 − R

T
α

sinθ
ρw
ρs
)ρsgZcos2θtanφ

ρsgZcosθsinθ
, (1)

with

• C: The effective coefficient (kPa);
• R: The rainfall intensity (mm/hr);
• T: The soil transmissivity (mm/hr);
• Z: The soil depth (m);
• ρw: The density of water (kg/m2);
• ρs: The density of soil (kg/m2);
• φ: The internal friction angle of the slope material (degree);
• θ: The slope gradient (degree); and
• α: The specific contributing area [5].

Table 2. Classification of Factor of Safety (FS) Levels.

Stable Region FS ≥ 1.3

Marginally Stable Region 1.3 > FS ≥ 1

Actively Unstable Region FS<1

Of particular mention is the work done by Lian et al. [7,8] on landslide displacement prediction
using Prediction Intervals (PIs) and an ANN switched prediction method. The authors employed
K-means clustering for dividing the landslide data into two classes; namely, a majority class (stationary
points) and a minority class (mutational points). Then, a weighted Extreme Learning Machine (ELM)
classifier was used to construct the switch rules. Finally, bootstrap and kernel-based ELMs were
applied to construct the PIs. This work was concerned with how the displacements are predicted
accurately and early. In contrast, our work is focused on how landslides can be actually predicted
accurately and early. Not only is the goal different, the methods or techniques used or proposed are
also quite different. We employ a very popular mathematical estimation model for landslide prediction,
as defined above (namely, the SHALSTAB model and the factor of safety). We use ANN models for the
model switching, as well as for the predictions. We adapt ADASYN for resolving the data imbalance
problem. We also propose novel methods for model retraining and prediction horizon tuning. Details
are given in the next section.

3. Model Switched Landslide Prediction System

A total solution for landslide prediction with early warnings is proposed in this work. The design
of the proposed Model Switched Landslide Prediction System (MoSLaPS) is shown in Figure 1.
It consists of two parts; namely, Physical Entities and Computation Elements. In the Physical
Entities, environmental data, such as rainfall, soil moisture, and slope, are collected by sensor nodes.
Coordinator nodes integrate the sensed data and transmit them to the Computation Elements through
Zigbee transmitters. The Computation Elements consists of a SHALSTAB Model, a Switch-based
Prediction Model, and an Accurate Early Warning System, as described in the following.
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Figure 1. Model switched landslide prediction system architecture.

• SHALSTAB Model
The SHALSTAB model takes the sensed environmental data, including rainfall, soil moisture, and
slope, from the Physical Entities and evaluates the Factor of Safety, using Equation (1). Over time,
the FS values are recorded as FSactual = {FS0, FS1, ..., FSt}, which is the input to the Accurate
Early Warning System to predict the occurrence of landslides.

• Switch-based Prediction Model
From historical environmental data, the proposed system consists of two prediction models to
learn two different data patterns; namely, the stable pattern and the unstable pattern. To switch
between the different prediction models, a neural network classifier is designed to predict the
future class. The Switch-based Prediction Model can improve the prediction accuracy when the
neural network classifier switches the prediction models accurately. The detailed technique is
described in Section 3.3.

• Accurate Early Warning System
The accurate early warning system consists of a data analysis server and alert services.
The data analysis server uses the above-described switch-based prediction model to predict
landslides. The input data, FSactual , is used to predict future FS values, denoted as FSpredict =

{FSt+1, FSt+2, ..., FSt+n}. For each predicted FS value, there is a difference between the predicted
FS and the actual FS calculated using Equation (1). This difference is called prediction error. The
data analysis server will assess the applicability of the prediction model, according to the trend of
prediction errors. If the error exceeds a pre-defined threshold, it means the prediction model is
not suitable for the environment at that time and the predicted results have large prediction errors.
Thus, based on the error measurement and a given error tolerance threshold, the prediction model
is re-trained. The entire process will be described in Section 4. If a predicted FS value, FSt+k, is
smaller than 1, then it is estimated that a landslide will occur after k time slots [9]. Thus, alert
services can send an alert in advance.

The details of the prediction models, model switching, and early warning system will be
introduced in the rest of this section.
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3.1. Prediction Model Design

To predict the future FS, a feed-forward Back-Propagation Neural Network (BPNN) is employed
as the prediction model. A BPNN is a powerful computation system, created by generalizing the
Widrow-Hoff learning rules [10] into a multi-layer with a non-linear differential transfer function
network. The complex network connections imply that the high learning and reasoning ability of
BPNN can be applied to deal with problems with high complexity. Figure 2 shows the framework of a
BPNN-based prediction model.

Figure 2. Back-Propagation Neural Network (BPNN) prediction model framework design.

Training Method for Time-Series Based BPNN

The basic computational procedure of a BPNN is explained to provide a basic description of the
type of ANN that is implemented here. Figure 3 shows the basic structure of a time-series based BPNN.
There are three types of layers: input, hidden, and output layers. In the input layer, time-series input
for time slots t − n to t, corresponding to a specific feature, such as factor of safety, rainfall, and soil
moisture, is taken as input data. Each pair of nodes in the adjacent layers are linked by a weight. The
values in all nodes in a previous layer and the weights are multiplied and accumulated as the input for
a node of the next layer. The inputs are, then, given to an activation function to calculate the output
value of the node. Repeating the above operations, layer by layer, from input layer to output layer, the
final output can be derived.
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Figure 3. A fully connected feed-forward Back-Propagation Neural Network with time-series.

Algorithm 1 has a complete description as a prediction model; the following equations explain
the functions that are used in this algorithm. At first, the previous FS is used to predict the future FS
by a BPNN model. To dynamically determine suitable weights for different FS, a back-propagation
method is applied to train and update the weights before prediction, in order to completely illustrate
the details of back propagation method. Given the training sample, Tdata = (xi, pi), i = 1, ..., N, where
xi = [xi1, xi2, ...xin] ∈ Rn is the impact factor and pi = [pi1, pi2, ...pik] ∈ Rk is the training target, the
general mathematical model of a standard single hidden layer feed-forward network with Ñ hidden
neurons is shown in Equation (2).

oj =
Ñ

∑
i=1

g(wi · xi), j = 1, ..., N, (2)

where oj = [oj1, oj2, ...ojk] is the jth output of the BPNN, wi is the weight of the connection from the
input neurons to the ith hidden neuron, and g(x) is an activation function that represents how much
adjustment the output should be from the neuron, based on the sum of the input. The activation
function used in our BPNN model is depicted in Equation (3); namely, the sigmoid function. The
sigmoid function, also called the logistic function, is a commonly-used activation function which has
an output range from 0 to 1.

g(x) =
1

1 + e−x . (3)

The difference between the prediction result and the actual result is called the prediction error. In
order to reduce prediction error, the weights need to be updated. The Levenberg-Marquardt (LMA) [11]
method has the fastest convergence and the lowest mean square error. Therefore, LMA is selected as a
training function to calculate the output network error δ and adjustment weight W. It is depicted in
Equation (4):

Wk+1 = Wk − [JT J + uI]−1 JTδ, (4)

where Wk represents the weight matrix in the kth iteration, J is the Jacobian matrix [12] that contains
the network error for weight and the first-order differential of weight, I is the unit matrix, δ is the
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network output error, and u is a constant. LMA can dynamically adjust the constant u to reduce the
network output error δ.

Algorithm 1: Prediction Model Algorithm.
Input:

Tdata: Data of FS values used for training BPNN;
Pinput: Inputs of FS values for prediction;
Ethreshold: Training error threshold;
Output:

Poutput: Prediction output of FS values;
Variable:

W: Weights of BPNN;
E: Training error between training outputs and target;
δ: Error value for adjusting weights;
csat: 1: Training cycle is complete, 0: Training cycle is incomplete;

1 Set hidden layer number of cells N̂ ; // Equation (6)

2 Set the maximum iteration number for training Epochs;
3 Randomly initialize weight W;
// Training model

4 i = 0;
5 while (E > Ethreshold)&&(i <= Epochs) do

6 csat = 0;
7 while csat = 0 do

8 CalculateBPNN(Tdata, W) ; // Equations (2) and (3)

9 Calculate output network error δ ; // Equation (4)

10 Calculate adjustment weight W ; // Equation (4)

11 if all samples are trained then

12 csat = 1;

13 Calculate training error E ; // Equation (5)

14 i ++;

// Do prediction

15 Poutput = CalculateBPNN(Pinput, W);
16 return Poutput;

After the training phase, the training error E is calculated by Equation (5), to determine whether
the training step has reached convergence. If it is not less than the training error threshold, Ethreshold,
the training phase is restarted.

E =
1
N

N

∑
i=1

(Ti − Oi)
2, (5)

where:

• Ti: Target FS value of training sample i;
• Oi: BPNN output FS value of training sample i; and
• N: Number of training samples.

Considering the training time in our proposed re-training process, the number of outputs,
Numoutput, is set to 1 to avoid a long training time. This means that only one prediction result
per iteration will be obtained, by taking the past FS value as input.

The number of neurons in the hidden layer, denoted as Numneuron, is determined based on the
following experience rule [13]:
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• The number of neurons in the first hidden layer is calculated using (6):

Numneuron =
√

Numinput ∗ Numoutput. (6)

3.2. Imbalanced-Class Prediction Design

Class balance enhancements are needed to handle training samples with an unbalanced class
distribution [14]. The Adaptive Synthetic Sampling (ADASYN) method [1] is used here for balancing
the imbalanced data (i.e., data is pre-processed using ADASYN), and then the processed dataset are
used to train the event-class predictor, which is also a BPNN model. In the following, the ADASYN
algorithm is described as follows.

Data Pre-Processing Using ADASYN Algorithm

The ADASYN algorithm can improve the data imbalance problem by synthetically creating new
samples from the unstable class by linear interpolation between existing unstable class samples. This
approach, by itself, is known as the Synthetic Minority Over-sampling Technique (SMOTE) method [15].
ADASYN is an extension of SMOTE, creating more samples in the vicinity of the boundary between
the two classes than in the interior of the unstable class.

To create more synthetic data for the unstable class, FS, rainfall, and soil moisture are used as the
training data and the corresponding class label, yi, is constructed according the classification region.
Given the training samples (Xi, yi), i = 1, ..., N, where Xi =< xi, f s, xi,r, xi,sm, xi,slope >∈ Rn, xi, f s is the
FS value, xi,r is the rainfall, xi,sm is the soil moisture, xi,slope is the slope gradient, and yi is the class
label. The training samples, Xi, are classified by Equation (7). For xi, f s ≥ 1.3, xi classifies as stable class.
On the other hand, if xi, f s < 1.3, then xi classifies as unstable class. After Xi is classified, the class label,
yi, is set by Equation (8). If Xi ∈ StableClass, yi is set as 0. If Xi ∈ UnstableClass, yi is set as 1.{

if xi, f s ≥ 1.3, Xi ∈ Stable Class

if xi, f s < 1.3, Xi ∈ Unstable Class
, (7)

yi =

{
0 if Xi ∈ Stable Class

1 if Xi ∈ Unstable Class
. (8)

To adjust class balance, the degree of class imbalance is needed to be calculated by Equation (9):

d = Nm/Ns, (9)

where

• Nm: The size of unstable class examples; and
• Ns: The size of stable class examples.

Furthermore, the default level, dde f ault, which is the threshold for the level of maximum class
imbalance tolerated, also needs to be determined beforehand. If the current d is smaller than the
threshold degree, dde f ault, then the number of synthetic data samples that need to be generated for the
unstable class is calculated using Equation (10):

R = (Ns − Nm)× β, (10)

where β ∈ [0, 1] is a parameter used to specify the desired balance level after generation of the synthetic
data: β = 1 means a fully balanced data set is created after the generalization process.

For each Xi ∈ Unstable Class, K nearest neighbours can be found by using the Euclidean distance.
The ratio ri, defined in Equation (11), which represents the number of stable-classified in the K nearest
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neighbours, and its normal form, r̂i, defined in Equation (12), are calculated, where r̂i is called a density
distribution of ri, (∑

i
r̂i = 1).

ri = hi/K, i = 1, ..., Nm, (11)

r̂i = ri/
Nm

∑
i=1

ri, (12)

where hi is the number of samples in the K nearest neighbours of xi that belong to the stable class;
therefore, ri ∈ [0, 1].

Thus, the number of synthetic data samples that need to be generated for each unstable class
sample, Xunstable, can be calculated by Equation (13).

gi = r̂i × R, (13)

where R is the total number of synthetic data samples that need to be generated for the unstable class,
as defined in Equation (10).

By random, the program chooses one unstable data sample, Xzi, from the K nearest neighbours
for Xunstable to generate new synthetic samples, sdnew, by Equation (14). This procedure is repeated gi
times to produce new synthetic samples.

sdnew = Xunstable + (Xzi − Xunstable)× λ, (14)

where

• (Xzi − Xunstable): The difference vector; and
• λ: A random number λ ∈ [0, 1].

3.3. Switch-Based Prediction Model Design

To address the issue of imbalanced data between the unstable and stable classes, a switch-based
neural network prediction algorithm is proposed, as detailed in Algorithm 2.

The environmental factors, including rainfall, soil moisture, and slope gradient, are used to
calculate the FS values, xi, f s, using the SHALSTAB model. Given the environmental samples
Dlandslide = {xi}, where xi =< xi,r, xi,sm, xi,slope >, xi,r is the rainfall, xi,sm is the soil moisture, and
xi,slope is the slope gradient, the FS values, xi, f s, are calculated given the set of all training samples,
Tsample, where Tsample = {Xi|Xi =< xi, f s, xi,r, xi,sm, xi,slope >}. Then, the corresponding class labels yi,
Tclass = {Xi, yi}, can be constructed and classified by Equations (7) and (8). To construct the BPNN
models for different data patterns, the calculated FS need to be classified in two subsets, as follows:

Tclass1 = {xi, f s|xi, f s ∈ Xi, xi, f s ∈ Stable Class}, (15)

Tclass2 = {xi, f s|xi, f s ∈ Xi, xi, f s ∈ Unstable Class}, (16)

where Tclass1 is the set of FS values for xi, f s, in Xi ∈ StableClass, and Tclass2 is the set of FS values for
xi, f s, in Xi ∈ UnstableClass; so that Tclass1

⋂
Tclass2 = φ and Tclass1

⋃
Tclass2 = xi, f s.
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Algorithm 2: Switch-based Neural Networks Prediction Algorithm.
Input:
Dlandslide: {xi|xi =< xi,r, xi,sm, xi,slope >};
Ptest: {xt|xt =< xt, f s, xt,r, xt,sm, xt,slope, yt >} for prediction;
Output:
Poutput: {FSpredict};
Variable:
Tsample: {Xi|Xi =< xi, f s, xi,r, xi,sm, xi,slope >};
Tclass: {< yi, xi, f s, xi,r, xi,sm, xi,slope >};
Tclass1: {xi, f s|yi = 0};
Tclass2: {xi, f s|yi = 1};
TADASYN : {< xnew, f s, xnew,r, xnew,sm, xnew,slope, yi = 1 >};
Pclass: {ypredict};

// SHALSTAB model

1 Tsample = calculateSHALSTAB(Dlandslide); // Equation (1)

// Classification

2 [Tclass, Tclass1, Tclass2] = calculateClass(Tsample) ; // Equations (7) and (8)

// Data pre-processing

3 TADASYN = calculateADASYN(Tclass) ; // Equation (14)

// Construct each prediction model

4 Feed − Forward BPNNStable ← PredictionModel(Tclass1);
5 Feed − Forward BPNNUnstable ← PredictionModel(Tclass2);
6 Event − class predictor ← PredictionModel(Tclass + TADASYN);
// Model switch

7 Pclass = Event − class predictor(Ptest);
8 if Pclass == Stable then

// Prediction class is stable

9 Poutput = Feed − Forward BPNNStable(Ptest)

10 else
// Prediction class is unstable

11 Poutput = Feed − Forward BPNNUnstable(Ptest)

12 return Poutput;

Here, the ADASYN algorithm is used to produce new synthetic samples for the unstable class,
in order to balance the sizes of the two classes. The processed dataset, TADASYN , is used to predict
the future class using a BPNN model. The event-class predictor can switch between the different
models, according to the predicted class. As shown in Figure 4, the steps of the event-class predictor
are as follows.

First, Tclass is selected to construct the synthetic dataset TADASYN = {< sdnew, ynew >} for
balancing class distribution by the ADASYN algorithm, where sdnew are the new synthetic samples,
sdnew =< xnew, f s, xnew,r, xnew,sm, xnew,slope >, and ynew = 1 represents that the synthetic class label is
unstable class. The synthetic sdnew include xnew, f s, the new synthetic FS value; xnew,r, the new synthetic
rainfall; xnew,sm, the new synthetic soil moisture; and xnew,slope, the new synthetic slope gradient.
Both of the classes Tclass and TADASYN are integrated into the training set of the event-class predictor.
Second, the event-class predictor is constructed using the BPNN model. Finally, the event-class
predictor is used to predict the future class label, Pclass ∈ {0, 1}, for the testing phase, where Pclass = 0
represents that the prediction class label is stable and Pclass = 1 represents that the prediction class
label is unstable.
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Figure 4. Flow of constructing the event-class predictor.

The aim of our proposed method is to construct different pattern predictors, as shown in Figure 5.
The steps of different pattern predictors are as follows. First, Tclass1 is used as training data to
train a BPNN model. After training, the BPNN model is the stable pattern of xi, f s (i.e., Feed −
Forward BPNNStable). On the other side, Tclass2 is applied as training data to train another BPNN model.
After training, the BPNN model is the unstable pattern of xi, f s (i.e., Feed − Forward BPNNUnstable).
Thus, two BPNNs are built to deal with different patterns. As shown in Figure 6, this procedure
can switch different pattern predictors, according to the predicted class, Pclass, that is obtained by
the event-class predictor. When Pclass = 0, the testing data, Ptest = {xt}, is applied to predict the
future FS using Feed − Forward BPNNStable, where xt =< xt, f s, xt,r, xt,sm, xt,slope, yt >, xt, f s is the
testing data of the FS value, xt,r is the testing data of the rainfall, xt,sm is the testing data of the soil
moisture, xt,slope is the testing data of the slope gradient, and yt is the testing data of the corresponding
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class label. On the other side, when Pclass = 1, Ptest is employed to predict the future FS using
Feed − Forward BPNNUnstable. Finally, the predicted FS, Poutput = {FSpredict}, can be obtained by
using the proposed Switch-based Prediction Model.

Figure 5. Flow of constructing different pattern predictors.

The main contribution of this work is that the proposed method can make highly accurate
predictions, even in the case of highly imbalanced data. Two techniques were employed, ADASYN
and an event-class predictor.
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Figure 6. Flow of the switching strategy.

4. Accurate Early Warning System Design

To ensure the switch-based neural networks prediction model can be precise in a changing
environment, an accurate early warning system is designed, as shown in Figure 7. It is divided into
two parts: A learning-based re-training flow, as described in Section 4.1, and a Prediction Horizon
tuning flow, as shown in Section 4.2.

4.1. Learning-Based Re-Training Flow

Figure 8 shows the flow of learning-based re-training. The determination of ret-raining is based on
the error estimation. The error estimation process calculates the average error of all (FSactual , FSpredict)
pairs in an error-estimation window (EEW). For each period of the EEW, this procedure compares the
average error, AVGE, of two error estimation windows, EEWnow and EEWprev, and the accumulated
error, ACCE, to check the two conditions for re-training. Equations (17) and (18) give the two conditions
under which the prediction model needs to be re-trained, where CIE is the coefficient of interval error
used to specify the short-term tolerable error range, which is equal to the size of the prediction horizon
in our work. If the difference of AVGE between two continuous EEW is too large, the prediction model
will be re-trained, due to the high variability of the input pattern that the original prediction model
could not predict. Here, CAE is the coefficient of accumulated error used to specify the long-term
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tolerable error range (here, long-term means since epoch). If the ACCE, compared to average error
of the prediction model, AVGEModel , is too large, the prediction model will also be re-trained, as the
prediction results are becoming inaccurate. This further implies that the environment is changing
with time, and that adaptation is needed. AVGEnow and ACCEnow are calculated using Equations (19)
and (20), respectively.

AVGEnow > CIE × AVGEprev, (17)

ACCEnow > CAE × AVGEModel , (18)

AVGEnow =
∑ |FSactual − FSpredict|

SIZEEEW
, (19)

ACCEnow = ACCEprev + ΔAVGE

= ACCEprev +
(

AVGEnow − AVGEprev
). (20)

Figure 7. Overall Flowchart of Prediction Model Analysis.
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Figure 8. Learning-based re-training flow.

4.2. Prediction Horizon Tuning

In the re-training flow, the error estimation results are utilized further to tune the prediction
horizon. The advantages of a variable-length prediction horizon (PH) are as follows:

• The occurrence of landslides can be predicted earlier; and
• The number of false predictions can be reduced.

The prediction horizon tuning flow is shown in Figure 9. Prediction errors are non-linear, and
the prediction model is applied (as described in Section 3.1) in order to learn the inherent pattern for
predicting future errors, ERRpredcit. In this way, the size of the PH is set to predict the occurrence of
landslides earlier. Then, the future target ranges, Pf uture, can be determined by Equation (21). If the
range of Pf uture < 1, this system can send alerts in advance.

FSpredict − |ERRpredict| ≤ Pf uture ≤ FSpredict + |ERRpredict|. (21)

To decide whether the size of the PH is tuned, error boundary estimation is needed. As the
program already has the predicted error, ERRpredict, and the predicted FS, FSpredict, then the predicted
lower bound, Boundlow, can be estimated by Equation (22). According to the estimated results, the
tuning is performed based on the following rules:

• If there is no Boundlow lower than the lower bound of Stable Class (i.e., 1.3), for every time point
in the prediction horizon, the size of the prediction horizon is increased by 1; and

• If there exists one Boundlow lower than the lower bound of Stable Class (i.e., 1.3), for every time
point in the prediction horizon, the size of prediction horizon is reset to the default value.

Boundlow = FSpredcit − |ERRpredict|. (22)

Based on the above rules, we make our method a little more flexible for the landslide prediction
scenario with variable-length prediction horizon.
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Figure 9. Prediction horizon tuning.

5. Experiments

In this section, evaluations of the proposed method for landslide prediction are presented. First,
the experimental datasets used for the experiments are introduced. Then, the experimental results
are illustrated. All experiments were carried out using the MATLAB R© programming language on

a PC with an Intel R© Core
TM

i7-3770 CPU @ 3.40GHz and 16 GB RAM, running the Windows R© 10
(64-bit) OS.

5.1. Experimental Datasets

Historical environmental monitoring datasets from the Shen-Mu station [16] were selected as a
case study. Landslides are mainly influenced by rainfall and soil moisture. Using the FS, the occurrence
of a landslide is estimated. The monitoring dataset of the Shen-Mu station is shown in Figures 10
and 11. Figures 10 and 11 show the relationships between rainfall and FS, and between soil moisture
and FS, respectively. When rainfall and/or soil moisture increase, the FS decreases and the slope
becomes unstable.

Figure 10. Monitoring curves of Factor of Safety and rainfall at Shen-Mu station.
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Figure 11. Monitoring curves of Factor of Safety and soil moisture at Shen-Mu station.

In the Shen-Mu datasets [16], data was recorded once per 10 min, and was collected in 2016. The
program randomly selected 10 sets of samples, where each set had 1300 samples. Each dataset was
further divided into two parts, the training set (75%) and the test set (25%). Note that the original data
were used as input; that is, they were not normalized, because we needed to calculate the FS according
to the SHALTAB model, as given in Equation (1).

Firstly, an evaluation of imbalanced-class prediction is described. Then, it is shown how the
prediction accuracy is increased due to the proposed MoSLaPS.

5.2. Evaluation of Event-Class Prediction

ADASYN [1] was applied for data pre-processing in this program. It synthetically created new
samples from the unstable class to balance the distribution of the data, if required. In the ADASYN
algorithm, the desired level of balance, β, could be adjusted to control the number of new synthetic
samples, which were needed when 0 ≤ β ≤ 1.

Our event-class predictor used ADASYN [1] for imbalanced data processing. After data
pre-processing, the processed dataset was used to train the event-class predictor (i.e., a BPNN model).
To evaluate the event-class predictor, several performance indicators were applied and defined,
as follows:

• True Positive Rate (TPR) is defined as in Equation (23);
• False Positive Rate (FPR) is defined as in Equation (24); and
• Accuracy (ACC) is defined as in Equation (25).

If the prediction class was unstable and the actual class was also unstable, then the result was
said to be a True Positive (TP). If the prediction class was stable and the actual class Was also stable,
then the result was said to be a True Negative (TN). If the prediction class was unstable and the actual
class was stable, then the result was said to be a False Positive (FP). If the prediction class was stable
and the actual class was unstable, then the result was said to be a False Negative (FN). Table 3 shows
the classification of the above four different categories.

TPR =
TP

TP + FN
× 100%, (23)

FPR =
FP

FP + TN
× 100%, (24)

ACC =
TP + TN

TP + FN + FP + TN
× 100%. (25)
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Table 3. Confusion matrix.

Actual Class

Unstable Stable

Prediction Class
Unstable True Positive False Positive

Stable False Negative True Negative

In our experiment, Figure 12 shows the evaluation results of the ADASYN algorithm for different
β levels. When β was greater than 0.45, the TPR was more than 0.98. Therefore, the balance coefficient
β = 0.45 was selected. Table 4 shows the number of new synthetic samples. Majority represents the
size of the stable class and Minority represents the size of the unstable class.

Figure 12. The evaluation result of the ADASYN algorithm for different values of the coefficient β.

Table 4. Number of synthetic new samples generated by the ADASYN algorithm (β = 0.45).

All Dataset Majority Minority ADASYN

1300 1280 20 449
1300 1199 101 389
1300 1222 78 424
1300 1181 119 374
1300 1199 101 420
1300 1291 9 464
1300 1227 73 414
1300 1224 76 408
1300 1056 244 299
1300 1140 160 341

The evaluation results of the event-class predictor are shown in Table 5. There were 10 sets of
testing samples. The average ACC was 97.94%, the average TPR was 98.40%, and the average FPR was
2.01%. Due to the high accuracy of event-class predictor, it can be used to choose a decision to switch
between the models of different data patterns.
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Table 5. The evaluation results of the event-class predictor.

No. ACC TPR FPR TP FP TN FN

1 96.43% 100.00% 3.60% 2 9 241 0
2 97.62% 94.44% 2.14% 17 5 229 1
3 98.41% 95.45% 1.30% 21 3 227 1
4 98.41% 100.00% 1.64% 8 4 240 0
5 96.03% 100.00% 3.98% 1 10 241 0
6 100.00% 100.00% 0.00% 16 0 236 0
7 96.03% 100.00% 4.03% 4 10 238 0
8 99.21% 100.00% 0.83% 12 2 238 0
9 98.41% 100.00% 1.68% 14 4 234 0
10 98.81% 94.12% 0.85% 16 2 233 1

Average 97.94% 98.40% 2.01%

Table 6 shows comparisons of the event-class predictor with other common classifiers, such as
BPNN, Support Vector Machine (SVM), and Adaboost. The ACC of all classifiers were greater than 90%.
A good classifier needs to have high TPR and low FPR. Although the FPR of our classifier, compared
with BPNN and Adaboost, was a little higher, the TPR of our proposed classifier was much higher
than that of the others. This means that our classifier exhibited a higher ratio of correct classification.

Table 6. Comparison of event-class predictor with other common classifiers.

Method ACC TPR FPR

Event-Class 97.94% 98.40% 2.01%
BPNN 97.16% 57% 0.42%
SVM 90.42% 78.06% 9.02%

Adaboost 98.27% 75.1% 0.96%

5.3. Evaluation of Model Switched Landslide Prediction System

In the following experiments, the same datasets as used in Section 5.1 were employed to evaluate
our landslide prediction model. To evaluate the proposed MoSLaPS model, several performance
indicators were used and defined as follows:

• Mean Absolute Percent Error (MAPE) is defined as in Equation (26), where n is the number of
predicted data, At is the actual value, and Pt is the predicted value.

MAPE =
1
n

n

∑
t=1

|At − Pt|
Pt

. (26)

• Root Mean Squared Error (RMSE) is defined as in Equation (27), where n is the number of
predicted data samples, yi is the actual FS value, and ŷi is the predicted FS value.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2. (27)

• Normalized Root Mean Squared Error (NRMSE) is defined as in Equation (28), where ȳ is the
mean of the actual values.

NRMSE =
RMSE

ȳ
. (28)

Figure 13 shows the actual FS and predicted FS for every 10 min. A BPNN prediction model is
not able to learn the pattern of unstable class, as the size of the unstable class is much smaller than
that of the stable class. If the original past data were used, the BPNN was not able to predict landslide
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occurrences. However, after processing the training data using the ADASYN algorithm to re-balance
the distribution of classes, a single BPNN prediction model was still not able to learn the pattern of
unstable class perfectly. This is because the data of the stable and unstable classes affected each other.
As a solution, two BPNN prediction models Were proposed, one to learn the pattern of the stable
class and another to learn the pattern of the unstable class. To switch between two BPNN models, an
event-class predictor was constructed that can deal with imbalanced data distribution to predict the
future class as a decision. Therefore, our proposed MoSLaPS method could learn the patterns of both
the stable and unstable classes.

Figure 13. Comparison of the proposed method with other BPNN methods.

We compared our proposed MoSLaPS method with the above-mentioned methods, including
a single BPNN and ADASYN+BPNN. A single BPNN was described, in detail, in Section 3.1; and
ADASYN+BPNN use the ADASYN algorithm to re-balance the training data. After re-balancing, the
processed training data were applied to train the BPNN.
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The error metrics were evaluated for MoSLaPS, ADASYN+BPNN, and BPNN. Compared with
BPNN and ADASYN + BPNN, our method resulted in much smaller MAPE and RMSE. This means
that the prediction accuracy of our method was higher. The NRMSE of our method was also larger
than that of the others, which means that our prediction results were closer to the real situation.

Although MoSLaPS was more accurate than the other methods, it requires a little more
computation time and resources. As shown in Table 7, the simulation results of the different methods
shows that the speed of MoSLaPS was a little slower than that of BPNN and ADASYN+BPNN,
and its CPU and memory usages were higher than the others. This is because MoSLaPS took extra
computational time and resources to deal with the imbalanced data classification and switching
between the different predictors. In our experiment, the time interval was 10 mins; so there was ample
time to deal with the process.

Table 7. Comparisons of time consumption and resource usage.

Method Time (s) CPU Usage Memory

MoSLaPS 1.205 23.90% 972 kb
ADASYN+BPNN 0.739 20.30% 192 kb

BPNN 0.639 19.90% 148 kb

5.4. Evaluation of Landslide Pre-Alarm

The same datasets as in Section 5.1 were applied to evaluate our landslide pre-alarm method.
Table 8 shows the prediction time (PT) for ten different experiments. For each experiment, the minimum
PT, maximum PT, and average PT were recorded. From Table 8, the program was able to observe that
the prediction time for dataset �5 was the longest (52.2 min); while that for dataset �10 was the shortest
(38.4 min). As a shorter prediction time indicates that the change of FS is intense and quick, dataset �10
represented a higher probability of landslide occurrence. Taking the average of all timings, it can be
seen that the proposed MoSLaPS method could warn of the occurrence of a landslide an average of
44.2 min in advance.

Table 8. Prediction time in advance for different datasets.

No. Min. PT (min) Max. PT (min) Avg. PT (min)

1 10 80 40
2 10 70 33.3
3 10 50 35.7
4 20 80 47.6
5 10 80 52.2
6 10 80 51.8
7 10 80 42.6
8 10 70 45.7
9 10 80 43.3

10 10 80 38.4

Avg. 10.7 76.4 44.2

Further, we take a best-case example, to demonstrate how the proposed method can warn of
landslide occurrence far in advance. At time point 255, the 8th prediction result is FS < 1; that is, a
landslide will occur after eight time units, as shown in Figure 14. In our experiments, the interval
between two time points is 10 min. Hence, the landslide occurrence could be predicted and warned
about 80 min in advance.
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Figure 14. Landslide early warning time point.

6. Conclusions

To address the problems of imbalanced data, low true positive rate for learning, determining
the prediction horizon, and the time for model re-training, MoSLaPS has been proposed as a novel
method for landslide prediction. MoSLaPS employs the ADASYN method to balance the stable class
(no landslide) with the unstable class (landslide), where the classification is based on the factor of safety
calculated using the SHALSTAB model. To solve the problem of low true positive rate, a BPNN-based
event-class predictor was proposed and two BPNN predictors were designed to learn the stable class
pattern and the unstable class pattern. A novel prediction horizon tuning method was proposed, along
with a learning-based model re-training technique. All of these optimizations contribute towards the
goal of the proposed MoSLaPS; that is, accurate early warning of landslides.

Compared with BPNN and Adaboost, though our event-class predictor has a higher FPR, it also
has a much higher TPR of 98.40%. This means our classifier has a higher ratio of correct classification.
According to the predicted class, our system can switch between different predictors to adapt to the
environmental state. In addition, BPNN is employed to construct the error model to predict the future
errors of our proposed MoSLaPS and compensate for these errors in the prediction phase. As a result,
MoSLaPS has much lower MAPE and RMSE than BPNN and ADASYN+BPNN, which means that
MoSLaPS is more accurate. In addition, the NRMSE of our method is larger than the NRMSE of
the other methods, which means that our method is closer to the actual conditions. Statistically, our
landslide prediction system could send warnings an average of 44.2 min prior to the actual occurrence
of a landslide.

In the future, we will further consider other advanced imbalanced learning algorithms to improve
the performance of BPNN-based event-class predictors. For different applications, a larger number
of categories (cases) can be considered for model switching. The maximum range of errors allowed
in the re-training phase can also be limited, so that prediction models are more stable. As a result,
the model switching strategy will be more accurate. Moreover, well-known time-series deep learning
technologies, such as Recurrent Neural Networks (RNNs) or Long-Short Term Memory (LSTM) blocks,
will be used to combine all three BPNN models into one.

Author Contributions: Conceptualization, P.-A.H.; methodology, D.U.; software, S.-F.C.; validation, S.-F.C. and
D.U.; resources, P.-A.H.; data curation, S.-F.C.; writing—original draft preparation, S.-F.C.; writing—review and
editing, D.U.; supervision, P.-A.H.; project administration, P.-A.H.; funding acquisition, P.-A.H.

380



Appl. Sci. 2019, 9, 1839

Funding: This research was funded by Ministry of Science and Technology, Taiwan, grant number MOST
140-2221-E-194-064.

Acknowledgments: This research was supported partially by the project grant MOST-107-2221-E-194-001-MY3
from the Ministry of Science and Technology, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ANN Artificial Neural Network
WSN Wireless Sensor Network
FS Factor of Safety
MoSLaPS Model Switched Landslide Prediction System
LMA Levenberg–Marquardt algorithm
ADASYN Adaptive Synthetic Sampling
SMOTE Synthetic Minority Oversampling Technique
EEW Error Estimation Window
PH Prediction Horizon
TPR True Positive Rate
FPR False Positive Rate
ACC Accuracy
TP True Positive
TN True Negative
FP False Positive
FN False Negative
MAPE Mean Absolute Percentage Error
RMSE Root Mean Squared Error
NRMSE Normalized Root Mean Squared Error
PT Prediction Time
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Abstract: Spatial predictive methods are increasingly being used to generate predictions across
various disciplines in environmental sciences. Accuracy of the predictions is critical as they form
the basis for environmental management and conservation. Therefore, improving the accuracy
by selecting an appropriate method and then developing the most accurate predictive model(s) is
essential. However, it is challenging to select an appropriate method and find the most accurate
predictive model for a given dataset due to many aspects and multiple factors involved in the modeling
process. Many previous studies considered only a portion of these aspects and factors, often leading
to sub-optimal or even misleading predictive models. This study evaluates a spatial predictive
modeling process, and identifies nine major components for spatial predictive modeling. Each of these
nine components is then reviewed, and guidelines for selecting and applying relevant components
and developing accurate predictive models are provided. Finally, reproducible examples using spm,
an R package, are provided to demonstrate how to select and develop predictive models using
machine learning, geostatistics, and their hybrid methods according to predictive accuracy for spatial
predictive modeling; reproducible examples are also provided to generate and visualize spatial
predictions in environmental sciences.

Keywords: spatial predictive models; predictive accuracy; model assessment; variable selection;
feature selection; model validation; spatial predictions; reproducible research

1. Introduction

Spatial predictions of environmental variables are increasingly required in environmental sciences
and management. Accurate spatially continuous data are required for environmental modeling, and for
evidence-based environmental management and conservation. Such data are, however, usually not
readily available and they are difficult and expensive to acquire, especially in areas that are difficult to
access (e.g., mountainous or marine regions). In many cases, the spatial data of environmental variables
are collected from point locations. Thus, spatial predictive methods are essential for generating spatially
continuous predictions of environmental variables from the point samples. Moreover, predictive methods
are increasingly being used to generate spatial predictions across various disciplines in environmental
sciences [1–6] in parallel to recent advances in (1) computing technology and modeling techniques [7–9],
and (2) data acquisition and data processing using remote-sensing techniques and geographic information
systems. These advancements resulted in increasingly more environmental variables available for spatial
predictive modeling. Consequently, more sophisticated spatial predictive modeling approaches are
needed to deal with a large number of predictive variables.

Accuracy of spatial predictive model(s) is critical as it determines the quality of their predictions that
form the scientific evidence to inform decision- and policy-making. Therefore, improving the accuracy
by choosing an appropriate method and then identifying and developing the most accurate predictive
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model(s) is essential. It is often difficult to select an appropriate method for any given dataset
because spatial predictive methods may be data- or even variable-specific and many factors need to be
considered [10,11]. Although the development of hybrid methods of machine learning and geostatistics,
and their application considerably improved predictive accuracy, these methods may also be data- or
variable-specific [12–14]. For spatial predictive modeling, “no free lunch theorems” [15] are also applicable.

Furthermore, even with the right predictive method, it is a challenging task to identify and develop
the most accurate predictive model(s). This is because the spatial predictive modeling process involves
many factors or components [10,16,17]. In fact, only a portion of such factors were considered in
many previous studies, which often led to sub-optimal or even misleading predictive models [11,18].
This not only presents an opportunity for scientists to develop and improve their predictive models,
but also highlights the challenge of selecting relevant predictive variables from a large number of
available predictive variables to form the most accurate predictive model. Heavy computations are
often involved in identifying and selecting accuracy-improved predictive models for given datasets
when the number of predictive variables is large, although high-performance computing facilities may
be able to significantly alleviate this challenge.

This study aims to assist spatial modelers and scientists by critically reviewing the spatial predictive
modeling process, developing guidelines for selecting the most appropriate spatial predictive methods
and identifying and developing the most accurate predictive model to generate spatial predictions.
In this study, I focus on spatial predictive models or spatial predictive modeling for generating
spatially continuous predictions rather than on other models (e.g., inferential model) as discussed
previously [19]. Consequently, the term accuracy in this study refers to the accuracy of predictive
model(s) based on validation, and the term uncertainty refers to prediction uncertainty generated by
predictive model(s). In this study, the term accuracy is used interchangeably with predictive accuracy.
Furthermore, in this study, I mainly focus on the predictive methods for numerical data that are
usually encountered in environmental sciences, with a brief discussion on categorical data. In this
study, the following nine major components of spatial predictive modeling are identified and reviewed:
(1) sampling design, sample quality control, and spatial reference systems; (2) selection of spatial
predictive methods; (3) pre-selection of predictive variables; (4) exploratory analysis for variable
selection; (5) parameter selection for relevant methods; (6) variable selection; (7) accuracy and error
measures for predictive models (numerical vs. categorical); (8) model validation; and (9) spatial
predictions, prediction uncertainty, and their visualization. In addition, reproducible examples using
spm [20], an R package for machine learning, geostatistics, and their hybrid methods, are employed to
demonstrate how to select and develop predictive models based on predictive accuracy for spatial
predictive modeling; reproducible examples are also provided to generate and visualize spatial
predictions in environmental sciences.

2. Sampling Design, Sample Quality Control, and Spatial Reference Systems

2.1. Sampling Design

Although samples are usually collected, stored, and ready to use for spatial predictive modeling,
sometimes samples are not available and need to be collected. In the latter situation, a sampling design
needs to be produced. In this study, I focus on sampling designs over space. To collect samples from
a survey area for a certain survey purpose, a sampling design is an important step and must be created.
A good sampling design ensures that data collected from a survey are capable of answering relevant
research questions. Better designs, such as spatially stratified sampling designs, will also be as precise
and efficient as possible [21,22]. Many methods were developed to generate sampling designs [23–26].
They typically fall into four main categories: (1) non-random sampling design; (2) unstratified random
sampling design; (3) stratified random sampling design; and (4) stratified random sampling design
with prior information.
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The non-random sampling design can be ad hoc sampling based on expert knowledge, purely
opportunistic when a certain type of environmental condition becomes available, or systematic
sampling. This type of sampling design was applied to many surveys [27–29]. For spatial predictive
modeling, this method is not recommended for future studies. However, an interesting comparison of
non-random sampling designs was reported for spatial predictive modeling [26]; it may provide some
useful clues for sampling designs (e.g., lattice plus close pairs) for spatial predictive modeling.

The unstratified random sampling design is that sampling locations are randomly selected.
This can be (1) an unstratified equal probability design, or (2) an unstratified unequal probability
design [30,31]. This type of sampling design is not recommended for spatial predictive modeling
studies because (1) spatial information is available for sampling design and thus spatially stratified
sampling design should be used as discussed below, and (2) it may even be over-performed by
the non-random design (i.e., lattice design) [26].

The stratified random sampling design is often used when additional information is available.
Such information can be spatial (or location) information, elevation, bathymetry, or geomorphological
information. For spatial predictions, such information is important and should be considered when
designing a survey for a region. A few recently developed randomized spatial sampling procedures
were reviewed and compared using simple random sampling without replacement as a benchmark
for comparison [22]. This study provided some empirical evidence for the improvement of sampling
efficiency from using these designs and provided some guidance for choosing an appropriate
spatial sampling design [22]. Furthermore, some R packages, such as spsurvey [31], GSIF [32],
spcosa [33], clhs [34], and BalancedSampling [35], were developed for this type of sampling design.
The stratified random sampling designs with spatial information (i.e., spatially stratified sampling
design) are increasingly being used in practice [28,36,37].

The stratified random sampling design with prior information is a new development for sampling
over a space. It incorporates the locations of legacy sites into new spatially balanced survey designs to
ensure spatial balance among all sample locations [21]. It can be seen as a stratified unequal probability
design. An R package, MBHdesign, was developed for this method [38].

2.2. Sample Quality Control

Sample quality is vitally important because samples provide the fundamental information
for spatial predictive modeling. Many factors may affect sample quality and they are usually
dataset-specific [39,40]. Consequently, relevant factors need to be identified for each dataset and then
relevant data quality control (QC) criteria need to be developed to QC the dataset [39,40] prior to
undertaking spatial predictive modeling. For example, in Geoscience Australia’s Marine Samples
Database (MARS; http://dbforms.ga.gov.au/pls/www/npm.mars.search), seabed sediment samples were
initially quality controlled prior to and after entering the database according to various criteria [12,41].
However, the quality of the samples was still affected by many factors, including data credibility
(e.g., non-dredge), data accuracy (e.g., non-positive bathymetry), completeness (e.g., no missing values),
etc.; hence, data quality control approaches were developed to QC the samples of seabed mud content
and sand content [12,41]. These approaches may provide examples about how to identify relevant
factors and develop possible data QC criteria for a given dataset. In some instances, data noise may
result from repeated measurements, and certain rules may need to be developed to clean such samples
based on professional knowledge [42]. Moreover, exploratory analysis can be used to further detect
abnormal samples, as detailed in Section 5.

2.3. Spatial Reference Systems

To generate spatial predictions (i.e., spatially continuous data) for a region using spatial predictive
models, two types of georeferenced data are required: (1) point samples of response and predictive
variables; and (2) grid data of predictive variables. Such georeferenced data are often stored according to
various spatial reference systems [43]. The spatial reference system used to project or store the spatial
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information is often assumed to have certain effects on the performance of predictive models; thus, in
practice, various spatial reference systems were used to minimize such effects [43]. When a study area is
small and within one particular UTM zone, spatial data are often projected using either the UTM zone or
an appropriate projection system; when the study area is spanning multiple UTM zones, the existing
geographic coordinate system (i.e., WGS84) or another appropriate projection system can be used.

Although the spatial reference system by which the spatial information is stored is often considered
as a potential source of error for spatial predictive modeling, a series of studies demonstrated that
the effects of spatial reference systems on the performance of spatial predictive methods (i.e., inverse
distance weighting and ordinary kriging) are negligible for areas at various latitudinal locations (up to
70 dd) and spatial scales (i.e., regional and continental) [43–45]. Therefore, it was recommended that
spatial reference system selection and re-projection can be removed for spatial predictive modeling for
areas with latitude less than 70 dd, and spatial data can be modeled in WGS84 or the spatial projection
system already used for the data. Although new spatial reference systems (e.g., DGGS [46]) may be
developed to remedy various limitations of existing ones, the above recommendation may still be
applicable as discussed previously on why the effects of spatial reference systems on the predictive
accuracy are negligible [43–45].

3. Selection of Spatial Predictive Methods

3.1. Spatial Predictive Methods

For spatial predictive modeling, there are many methods available [3]. Previously, over 20 spatial
predictive methods were grouped into (1) non-geostatistical methods (e.g., inverse distance weighting
(IDW)), (2) geostatistical methods (e.g., ordinary kriging (OK)), and (3) combined or hybrid methods [10].
Collectively, these methods are largely non-machine learning methods and a small portion of these
methods, like regression tree (RT) and linear regression models (LM), use secondary information.

When sufficient secondary information is available, a number of other methods could be used.
These methods include traditional statistical methods, machine learning methods, the hybrid methods
of traditional statistical methods and geostatistical methods, and the hybrid methods of machine
learning and geostatistical methods (Table 1). These methods were applied or compared in various
spatial predictive modeling studies [12,41,47–55]. Of these methods, random forest (RF), hybrid method
of RF and OK (RFOK), and hybrid method of RF and IDW (RFIDW) were among the most accurate
methods in these applications. Generalized boosted regression modeling (GBM), hybrid method of
GBM and OK (GBMOK), and hybrid method of GBM and IDW (GBMIDW) showed great potential
based on our unpublished study. In the current study, these methods are presented in three main
groups: (1) non-machine learning methods; (2) machine learning methods; and (3) the hybrid methods.
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3.2. Selecting Spatial Predictive Methods

Selection of appropriate spatial predictive methods for a response variable (or dependent variable,
or primary variable in geostatistics) is critical. For data without predictive variables, geostatistical
methods are the only methods that can be used. Method selection was discussed and guidelines were
developed for using geostatistical methods in various studies [16,56–61]. A decision tree was developed
for selecting the most appropriate method from a pool of 25 spatial predictive methods according to
the availability and nature of data and the expected predictions, together with the features of each
method [10]. However, it was argued that there was no simple answer regarding the choice of appropriate
geostatistical methods, because the hallmark of a good geostatistical modeling work is customization
of the approach to the dataset at hand [56]. This suggests that “no free lunch theorems” [15] are also
applicable for spatial predictive modeling using geostatistical methods. Joint application of two spatial
predictive methods might produce additional benefits such as the combined procedures in previous
studies [10,62–64].

For data with predictive variables, there are many options available. It is often difficult to select
an appropriate method because the performance of spatial predictive methods depends on many
factors, including the assumptions and properties of each method, the nature and spatial structure of
data for the response variable, sample size and distribution, the availability of predictive variables,
availability of software, computational demands, and many other factors [10,11]. All of these factors
need to be considered when making an appropriate selection.

Moreover, if more than one method can be applied, model comparison techniques such
as cross-validation in combination with the measures of predictive error or accuracy can be used
to select a method. This selection technique not only selects the most appropriate method but also
the most accurate predictive model that can maximize the predictive accuracy [12,65,66]. This selection
technique can be applied to methods irrespective of whether they use predictive variables.

4. Pre-Selection of Predictive Variables

Predictive variables are termed predictor variables, independent variables, predictors, and features.
They are also called secondary variables/information in geostatistics. They are essential for spatial
predictive methods that use predictive variables.

4.1. Principles for Pre-Selection of Predictive Variables and Limitations

Principles for pre-selecting predictive variables may change with disciplines. For environmental
sciences, the main principle is that predictive variables need to be closely related to the variable to
be predicted (i.e., the response variable) [67,68]; ideally, they should be causal variables, or variables
directly caused by the response variable (e.g., optical reflectance of vegetation types, backscatter of
seabed substrates). They are usually identified based on expert or professional knowledge. However, in
many cases, it is hard to know what the causal variable(s) is (are) for a response variable. Proxy (or surrogate)
variables are often used instead of causal variable for spatial predictive modeling. Again, they are usually
identified based on expert or professional knowledge [69]. Certainly, predictive models can use causal
variables, proxy variables, or both if causal variables are not all available.

When the accuracy of a resultant predictive model is unexpectedly poor, then we may need to
consider that we may have missed some important predictive variables, for which we may have no
knowledge or even awareness (e.g., hidden variables [70]). Further actions are required to expand
the professional knowledge pool in order to identify such possible predictive variables.

For spatial predictive modeling, the selection of potential predictive variables is even more
challenging. This is because the selection could be constrained by certain factors. For example,
predictive variables need to be continuously available for a target region. Spatial resolution is also
a critical issue as the resolutions of various predictive variables need to meet the desired resolution for
the final predictions, although they can be rescaled. Sometimes, even though we know the possible
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causal predictive variables based on expert or professional knowledge, they may not meet these
requirements and cannot be used for spatial predictive modeling. This is particularly true in marine
environmental sciences.

4.2. Predictive Variables for Environmental Sciences

For terrestrial environmental modeling, many predictive variables are available. Many previous
applications provided examples of variables used for terrestrial environmental modeling [13,42,49–51,
53,67,71,72].

In contrast, the information of predictive variables is often scarce for marine environmental
modeling. In many cases, proxy variables are usually used for predictive modeling [69,73]. For example,
to predict the spatial distribution of seabed sediments for Australian Exclusive Economic Zone (AEEZ)
at a resolution of 0.01 or 0.0025 degrees, only a few predictive variables were available for the whole
AEEZ [12,41,74] (Table 2). For spatial predictions over smaller areas, quite often more predictive
variables became available at desired resolution such as for seabed sediment [4,75–77], seabed
hardness [78–80], and sponge species richness [6,81] (Table 2). Bathymetry and backscatter were also
used to predict seabed sediment at local scale [82]. Some derived information may be used as predictive
variables. For example, in Table 2, predictive variables 5–13 were derived from bathymetry (bathy),
while predictive variables 15–19 were derived from backscatter (bs). Some other variables were used
for seabed grain size at small scale [48]. In addition, many variables were reviewed [69,83] and could
be used for marine environmental modeling. Fuzzy geomorphic features were also used for spatial
predictive modeling at local scales [77,84].
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5. Exploratory Analysis for Variable Pre-Selection

5.1. Non-Machine Learning Methods

Exploratory analysis is often used to detect the relationships between the response variable
and predictive variables for non-machine learning methods, such as LM, generalized linear models (GLM),
and kriging with an external drift (KED). By applying such analysis, people intend to find data nature
and structure [85]. Key issues may include the identification of (1) outliers, (2) homogeneity in variance
of response variable, (3) data distribution of response variables including normality, (4) collinearity
(i.e., the correlation among predictive variables), (5) relationships or response curves of response variable
to predictive variables, (6) how strong the relationships are between response variable and predictive
variables, (7) possible interactions among predictive variables, (8) independence of a response variable,
whether temporally, spatially, or both, and (9) source of random errors, which may lead to a mixed-effect
model or additional predictive variable(s) [71]. On the basis of the above analyses, certain actions can be
taken to deal with relevant samples or variables. For instance, some predictive variables can be removed
if their correlations with the response variable are low. However, it would be wise to let the variable
selection process determine which variables should be removed because some variables may be important
predictive variables even with low correlations. Highly correlated predictive variables, usually determined
based on correlation coefficient (r) or variance inflation factor (VIF), can also be eliminated to reduce
the collinearity, although caution should be taken for this exercise [9,86]. Relevant issues about collinearity
were also discussed [87]. Some predictive variables may need to be specified to their second or third
orders if a non-linear relationship is detected. Moreover, some interactions may need to be considered
and tested.

5.2. Machine Learning Methods and Hybrid Methods

For machine learning methods, exploratory analysis is useful for understanding data and interpreting
modeling results [78]. However, some roles of exploratory analysis for non-machine learning methods
are no longer needed for machine learning methods. This is because machine learning methods, like RF,
are free of assumptions on the data distribution and can handle non-linear relationships and interactive
effects [88,89]. They can also handle highly correlated predictive variables [6,47]. Furthermore, the use of
highly correlated predictive variables is encouraged for RF because they may be able to make a meaningful
contribution to improving predictive accuracy [6].

5.3. Hybrid Methods

For the hybrid methods, exploratory analysis is as useful as for the aforementioned methods.
The residuals of a detrending method (e.g., GLM, RF) are assumed to be normal if kriging methods are
applied. Thus, the residuals need to be analyzed to check this assumption [12,41].

6. Parameter Selection

6.1. Parameter Selection for Non-Machine Learning Methods

For non-machine learning methods, I mainly focus on two commonly used methods [11], IDW
and kriging (e.g., OK). For IDW, it is really dependent on the selection of appropriate values for a power
parameter and the number of nearest observations, which can be selected based on their resultant
predictive accuracy [41,90]. The smoothness of the estimated surface increases as the value of power
parameter increases [91]; however, manipulating the power parameter to smooth the predictions
and to produce visually pleasant maps does not warrant the quality of the resultant predictions and is
not recommended.

For kriging methods, a number of parameters, including window size, and isotropy and anisotropy
of data, need to be considered, as well as the variogram model and its parameters. Data transformation
needs to be considered when the data are skewed and anisotropic. Three methods of data transformation
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(i.e., logarithms, standardized rank order, and normal scores) can be employed to reduce the skewness [74,
92]. Some other methods, such as Box–Cox transformation [82], arcsine [88], square-root transformation [47],
and double square root or square root and log [12], can be used to normalize the data. The selection
of these transformation and normalization methods is largely data-dependent and careful examination
should be taken. The selection can also be determined according to their effects on the predictive accuracy.

In addition, for anisotropy, non-stationary methods like KED should be used in cases with
a general anisotropy or trend (i.e., drift) [75]. If different types of non-stationarity exist, application of
different spatial predictive methods to each type may improve predictive accuracy [93].

The parameter selection for these methods can be determined according to the predictive accuracy
of resultant predictive models. This is demonstrated in Section 11.

6.2. Parameter Selection for Machine Learning Methods

For machine learning methods, RF and GBM are considered. For RF, relevant parameters are
mtry, ntree, and so on [94], while, for GBM, these include n.trees, learning.rate, interaction.depth,
bag.fraction, and so on [95]. Some commonly used default parameter values can be used as they are
quite often optimal [94,96], except the distribution parameter for GBM. The distribution parameter for
GBM should be based on data type of the response variable; for example, Poisson should be used for
count data. Relevant parameters can also be selected based on cross-validation [41,48,96].

6.3. Parameter Selection for Hybrid Methods

The parameter selections for the above non-machine learning methods and machine learning
methods are equally applicable to relevant hybrid methods.

7. Variable Selection

For machine learning methods, variable selection is termed feature selection, while, for non-machine
learning methods, it is often called model selection. However, model selection often leads to the most
parsimonious fitted model rather than the most accurate predictive model [6]. In this study, we use
the term “variable selection” for both non-machine learning and machine learning methods to identify
and develop the most accurate spatial predictive model(s).

Variable selection is important for many predictive methods, although it is not required for all
methods. For instance, classification and regression trees [97] and LIVES [98] are exempt from variable
selection. However, as per all other methods, they assume that the predictive variables used are
informative and not misleading because they treat each predictive variable as equally important.
Thus, misleading predictive variables may considerably reduce predictive accuracy as discussed
previously [98]. The variable selection procedure for machine learning methods and their hybrid
methods is fundamentally different from the procedure for non-machine learning methods [47,79,99].
For geostatistical methods like IDW and OK, no variable selection is required, and it is really about
the selection of appropriate values for relevant parameters, as discussed in Section 6. In this section,
I focus on the following three methods: (1) GLM; (2) RF; and (3) GBM. This is because of their wide
applications, robustness, or the recent developments in variable selection techniques for these methods.

For GLM, there are many methods available in R for variable selection [100–103]. These methods may
include (1) stepAIC or step; (2) dropterm, drop1, or add1; (3) anova; (4) regsubsets; and (5) bestglm [100,102,103].
The application of these methods for spatial predictive modeling can be seen in recent studies [6,104].
Variables selected based on these methods may form the most parsimonious model, but the model may
have low predictive accuracy or even be misleading [6,104], with the exception that bestglm is promising if
cross-validation, instead of Akaike’s information criterion (AIC) or Bayesian information criterion (BIC),
is used for information criteria [104]. Alternatively, the variable selection for GLM can also be based
on variables selected by other method such as RF [71]. It was found that traditional variable selection
methods are unsuitable for identifying GLM predictive models, and joint application of RF and AIC can
select accuracy-improved predictive models [6]. This highlights the importance of differentiating variable
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selection for predictive modeling [6] from variable selection for hypothesis testing [99] or inferential
modeling [19]. The common mistakes associated with incorrectly distinguishing data analytic types were
briefly summarized and discussed previously [19].

For RF, variable selection methods may include (1) variable importance (VI) [78], (2) averaged
variable importance (AVI) [79], (3) Boruta [105], (4) knowledge informed AVI (KIAVI) [6,79], (5) recursive
feature selection (RFE) [106], and (6) variable selection using RF (VSURF) [107]. Of these methods,
KIAVI is recommended because it outperforms all other variable selection methods [6,79,104,108].

For GBM, variables can be selected in terms of the relative influence [95,108]. The recursive feature
selection [106] can also be used for variable selection.

Two concepts were proposed for variable selection: important and unimportant predictive
variables based on the predictive accuracy [6,79]. They were defined as follows:

1. Important variable based on the predictive accuracy (IVPA). This refers to the variable for
which exclusion during the variable selection process would reduce the accuracy of a predictive
model based on cross-validation. It may be more appropriate to call it predictive accuracy
boosting variable (PABV).

2. Unimportant variable based on the predictive accuracy (UVPA). This refers to variables for
which exclusion during the variable selection process would increase the accuracy of a predictive
model based on cross-validation [6,79]. It may be more precise to call it predictive accuracy
reducing variable (PARV).

Application of relevant variable selection methods and concepts can further improve the accuracy
of predictive models [6,79]; this is demonstrated in Section 11. Although these concepts were developed
based on RF and its hybridization with geostatistical methods, they can be equally applied to any other
predictive methods.

8. Accuracy and Error Measures for Predictive Models

8.1. Relationship between Observed, Predicted, and True Values

Predictive accuracy is about the differences between observed and predicted values that are
derived based on validation methods [18]. However, it is often questioned what the differences between
the predicted values and true values are. Since the true values are mostly unknown, the observed
values are used to validate predictive models. For an observed value, it may be again different from
its corresponding true value. The difference between the true value and observed value is the error
associated with the observed value. Let us refer to this error as an observational error that is the sum of
random error associated with observed variable, sampling error, and measuring error. The sampling
and measuring errors are the sum of errors resulting from various factors that may affect the accuracy
of observation (i.e., measurement) and change with the variable observed. Let us take seabed sediment
as an example; the factors may include sampling design, the position accuracy of survey vessel,
equipment used for sample collection, field operation, sample storage, sample processing procedure
and analysis in laboratory, data entry, etc. However, how much error can be attributed to each of these
factors is unknown in most cases. Hence, we have to use observed and predicted values to assess
the predictive accuracy in practice.

8.2. Error and Accuracy Measures of Predictive Models

Many error and accuracy measures were developed to assess the accuracy of predictive models
for numerical data [65,109,110]. Some of these error and accuracy measures were assessed and their
limitations were previously discussed [3,18]. Of these error and accuracy measures, VEcv (i.e., variance
explained by a predictive model based on cross-validation) measures how accurate the predictive
model is and was proven to be independent of unit, scale, data mean, and variance [18,111], while root
mean squared error (RMSE) measures how wrong the predictive model and the resultant predictions
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can be. Therefore, VEcv and RMSE are recommended for numerical predictions. Legates and McCabe’s
E1 (E1) was recommended for numerical data as well [111]. The commonly used measure, r or r2,
is not recommended because it is an incorrect measure of predictive accuracy [111].

For categorical data, correct classification rate (CCR), kappa (kappa), sensitivity (sens), specificity
(spec), and true skill statistic (TSS) are often recommended [112,113]. RMSE is also used for presence
and absence data [114]. One commonly used measure, area under the curve (AUC) (or receiver
operating characteristics (ROC)), is not recommended for reasons previously highlighted [112,115].

9. Model Validation

9.1. Model Validation Methods

The accuracy of predictive models is critical as it determines the quality of the resultant predictions.
The accuracy is often assessed based on model validation methods that may include the following:

1. Hold-out validation;
2. K-fold cross-validation;
3. Leave-one-out cross-validation;
4. Leave-q-out cross-validation;
5. Bootstrapping cross-validation;
6. Using any new samples that are not used for model training.

In environmental sciences, the most commonly used validation methods are hold-out
and leave-one-out [18]. However, of these validation methods, five- or 10-fold cross-validation was
recommended [7,116].

9.2. Randomness Associated with Cross-Validation Methods

Although a five- or 10-fold cross-validation was recommended to evaluate the performance of
spatial predictive models [116], the datasets are randomly generated for each fold of the cross-validation
change when the process is repeated. Thus, the randomness associated with the cross-validation would
produce predictive accuracy or error measures that change with each iteration of the cross-validation [47].
To reduce the influence of the randomness on predictive accuracy (i.e., to stabilize the resultant
performance measures), the cross-validation needs to be repeated (e.g., 100 times) [47,74,78]. The choice
of this iteration number is data-dependent and can be determined based on the method used in
previous studies [47,78].

10. Spatial Predictions, Prediction Uncertainty, and Their Visualization

10.1. Spatial Predictions

In spatial predictive modeling, the goal is not only to develop the most accurate predictive model,
but more importantly to generate spatial predictions. The spatial predictions are usually produced
using the most accurate predictive model developed according to the above procedures. To make
predictions, in addition to the spatial predictive model, we need relevant information of each model
predictive variable to be available at each grid cell at a desired resolution. When all this information
is prepared, the spatial predictions can then be generated. The predictions contain three columns,
i.e., longitude, latitude, and predictions. Sometimes, uncertainty of the predictions can be produced.

10.2. Prediction Uncertainty

Prediction uncertainty in environmental modeling may refer to various aspects of the modeling
process and is used to encompass many concepts [117–120]. It can result from various sources or factors
as previously discussed [17,120,121]. In this study, the uncertainty which is produced by a predictive
model is about spatial predictions. Prediction uncertainty is increasingly required for decision-making
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and many methods are used to produce such uncertainty. In this study, I focus on the uncertainty
produced by some commonly used methods: OK, LM, and RF.

For OK, prediction variances can be produced [58]. However, it was shown that the variances
produced are independent of the actual predicted values [122]. Thus, the resulting variances should not
be used to measure uncertainty, although many studies used them for such purpose. Since they reflect
the variations in spatial departures among samples, they can be used as good indicators where samples
are sparse and, thus, may provide useful information for selecting future sampling locations.

For LM, prediction uncertainty (i.e., prediction intervals) produced are much wider than confidence
intervals of a model fitted [101]. Such uncertainty, however, has little to do with the predictive accuracy
of the model. For instance, it was found that the models developed according to goodness of fit could
be misleading when they were used as predictive models [6]; hence, its prediction uncertainty could
also be misleading, and further studies are recommended.

For RF, many types of uncertainty could be produced, which actually reflect the difference in
sampling strategies [123–126]. For example, prediction uncertainty produced for RF in a previous study
based on Monte Carlo resampling [127] was, in fact, measuring the variation in predictions among
individual trees rather than by RF. A further example for RF is that an ensemble of equally probable
realizations was generated and the differences amongst the realizations were used as a measure of
uncertainty [128]. This type of uncertainty only measures the differences among the results of various
runs of RF, that is, measuring the difference resulted from the randomness associated with each run.
Hence, these values do not relate to predictive accuracy and do not measure prediction uncertainty.

In addition, for any of the spatial predictive methods above, predictive errors based on validation
can be produced for a predictive model developed. However, this leads to only one error value, and all
predictions would have the same uncertainty value if it is used as an uncertainty measurement [129].

It is apparent that the uncertainty values produced above are either not measuring prediction
uncertainty, or they depend on various factors as discussed above. This consequently results in the need
to question the uncertainty of uncertainty. In short, how to assess prediction uncertainty needs further
study. Any uncertainty measures that can incorporate the information of predictive accuracy are worth
further investigation and recommended for future studies.

10.3. Visualization

Spatial predictions can be visualized using various tools, most commonly ArcGIS and QGIS.
The function, spplot, in R is often used to plot the distribution of spatially continuous predictions [59].
The R package, raster, can also be used for such purpose [130]. Joint application of R and Google Earth
can be used to visualize the predictions. In this study, I demonstrate how to use the latter approach
along with spplot to visualize the predictions as below.

11. Reproducible Examples for Spatial Predictive Modeling

In this section, reproducible examples using spm, an R package, are provided to demonstrate how
to select and develop a predictive model according to the guidelines and recommendations provided
in the previous sections for spatial predictive modeling in environmental sciences. The predictive
model to be used was developed using RFOK [74], where data preparation, including pre-selection of
predictive variables, relevant parameter selection, variable selection, and model validation, was detailed.
Seabed gravel content samples in the Petrel sub-basin, northern Australia marine margin are used to
demonstrate how to select relevant parameters, test the predictive accuracy, and generate and visualize
spatial predictions. These examples for RFOK can be easily extended to other predictive methods
including IDW, OK, RF, GBM, RFIDW, GBMOK, GBMIDW, RFOKRFIDW, and GBMOKGBMIDW
by replacing rfokcv and its associated parameters with relevant functions and parameters for these
methods in spm.
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11.1. Accuracy of a Predictive Model for Seabed Gravel Content

In a previous predictive model [74], a spherical variogram model and a searching window size of
12 were used. The accuracy of this predictive model [74] can be shown using the rfokcv function in spm
as shown below. To stabilize the accuracy derived, I repeat the cross-validation 100 times, which can
be determined using the methods discussed in Section 9.2.

> library(spm)
> data(petrel)
> names(petrel)
[1] “long” “lat” “mud” “sand” “gravel” “bathy” “dist” “relief” “slope”
> set.seed(1234)
> n <- 100
> rfokvecv1 <- NULL
> for (i in 1:n) {
+ rfokcv1 <- rfokcv(petrel[, c(1,2)], petrel[, c(1,2, 6:9)], petrel[, 5], predacc = “VEcv”)
+ rfokvecv1 [i] <- rfokcv1
+ }
>mean(rfokvecv1)
[1] 37.44799

It suggests that the predictive accuracy is 37.4% in terms of VEcv.

11.2. Parameter Selection

The rfokcv function in spm is used to demonstrate how to select the best parameters for a predictive
model (by using above predictive model as an example), and to check if the parameters used are optimal.

> library(spm)
> data(petrel)
> nmax <- c(5:12); vgm.args <- c(“Sph”, “Mat”, “Ste”, “Log”)
> rfokopt3 <- array(0, dim = c(length(nmax), length(vgm.args)))
> set.seed(1234)
> for (i in 1:length(nmax)) {
+ for (j in 1:length(vgm.args)) {
+ rfokcv1.1 <- NULL
+ for (k in 1:100) {
+ rfokcv1.1[k] <- rfokcv(petrel[, c(1, 2)], petrel[, c(1, 2, 6:9)], petrel[, 5], nmax = nmax[i],
+ vgm.args = vgm.args[j], predacc = "VEcv") }
+ rfokopt3[i, j] <- mean(rfokcv1.1) } }
>which (rfokopt3 ==max(rfokopt3, na.rm = T), arr.ind = T)

[1,] 6 4
> vgm.args[4]; nmax[6]

[1] “Log”
[1] 10

The results suggest that the model would achieve the best predictive accuracy if “Log” is used for
variogram modeling, and the 10 nearest samples are used for nmax. Of course, a different range may
be used to choose the best nmax, and other variogram models can also be tested if needed.

We can use rfokcv in spm to assess the accuracy of RFOK by using the parameters identified above.
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> library(spm)
> data(petrel)
> set.seed(1234)
> n <- 100
> rfokvecv1 <- NULL
> for (i in 1:n) {
+ rfokcv1 <- rfokcv(petrel[, c(1, 2)], petrel[, c(1, 2, 6:9)], petrel[, 5], vgm.args = “Log”,
+ nmax = 10,
+ predacc = “VEcv”)
+ rfokvecv1 [i] <- rfokcv1
+ }
>mean(rfokvecv1)
[1] 38.30175

This finding suggests that the overall averaged accuracy of the RFOK predictive model for seabed
gravel content in terms of VEcv is 38.3%, higher than that of the previous model. This demonstrates
that the parameters used previously are not optimal and that parameter selection improved
predictive accuracy.

11.3. Predictive Variable Selection

In this study, we use the predictive variables previously identified [74], where the predictive
variables were selected based on VI. Since then, more advanced variable selection methods for RF,
RFOK, and RFIDW, such as AVI, KIAVI, PABV, and PARV [6,79], were developed. Application of these
model selection methods and concepts may further improve the predictive accuracy of the model
above. It is apparent that latitude (lat) is a PARV, as shown in the previous study [74]; thus, the removal
of lat is expected to improve the predictive accuracy. This can be demonstrated below.

> library(spm)
> set.seed(1234)
> rfokvecv1.1 <- NULL
> for (i in 1:n) {
> rfokcv1 <- rfokcv(petrel[, c(1, 2)], petrel[, c(1, 6:9)], petrel[, 5], vgm.args = “Log”,
+ nmax = 10,
+ predacc = “Vecv”)
+ rfokvecv1.1 [i] <- rfokcv1
+ }
>mean(rfokvecv1.1, na.rm=T)
[1] 39.00298

A further improvement in predictive accuracy is achieved after applying PARV. This further
demonstrates the role of variable selection, especially the importance of newly developed variable
selection methods.

11.4. Generation of Spatial Predictions

The predictive model developed above can be used to generate spatial predictions. The function
rfokpred in spm is used to produce the predictions.

> set.seed(1234)
> library(spm)
> data(petrel); data(petrel.grid)

397



Appl. Sci. 2019, 9, 2048

> rfokpred1 <- rfokpred(petrel[, c(1, 2)], petrel[, c(1, 6:9)], petrel[, 5], petrel.grid[, c(1,
2)], + petrel.grid, ntree = 500, nmax = 10, vgm.args = (“Log”))
> names(rfokpred1)
[1] “LON” “LAT” “Predictions” “Variances”

The output dataset has four columns named longitude, latitude, predictions, and variances. Please note
that the uncertainty information (i.e., variances) is produced for readers interested; however, be aware of
the various limitations as discussed in Section 10 when using such information.

11.5. Visualisation of Spatial Predictions

Joint application of R and Google Earth can be used to visualize the predictions generated above.

> library(sp); library(plotKML)
> rfok1 <- rfokpred1
> gridded(rfok1) <- ~ longitude + latitude
> proj4string(rfok1) <- CRS(“+proj=longlat +datum=WGS84”)
> plotKML(rfok1, colour_scale = SAGA_pal[[1]], grid2poly = TRUE)

The resultant map is shown in Figure 1a. One of the advantages of using R and Google Earth is that
it can place the prediction map into the context map by Google Earth, which provides additional
information to final users. However, the labels of longitude and latitude are hard to place in Figure 1a.
If these labels are required, spplot can be applied to the above gridded data as shown below (Figure 1b).

> par(font.axis=2, font.lab=2)
> spplot(s1, c(“Predictions”), key.space=list(x=0.1,y=.95, corner=c(-1.2,2.8)),
+ col.regions = SAGA_pal[[1]], # this requires plotKML
+ scales=list(draw=T), colorkey = list(at = c(seq(0,80,5)), space=“right”,
+ labels = c("0%“,” “,“”,“”,“20%”,“”,“”,“”,“40%”,“”,“”,“”,“60%”,“”,“”,“”,“80%”)),
+ at=c(seq(0,80, 5)))

With regard to the prediction map, it is obvious that there are artefacts (e.g., sharp vertical changes
associated with longitude) in the predictions. These artefacts may disappear or be alleviated if more
variables could be used; in other words, different predictive variables should be tested according to
the recently development in variable selection [6,79], as discussed in Section 7.

 
(a) (b) 

Figure 1. Predictions of seabed gravel in the Petrel sub-basin, northern Australian marine margin using
a hybrid method of random forest and ordinary kriging (RFOK): (a) plotKML (left) and (b) spplot (right).
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12. Summary

This study reviewed the modeling process for spatial predictive modeling in environmental
sciences. The modeling process covers the following nine components:

1. Sampling design and data preparation;
2. Selection of predictive methods;
3. Pre-selection of predictive variables;
4. Exploratory analysis;
5. Parameter selection;
6. Variable selection;
7. Accuracy assessment;
8. Model validation;
9. Spatial predictions, prediction uncertainty, and their visualization.

Each of these components plays a significant role in model development. Incorrect or inappropriate
implementation of any components may lead to less accurate or even misleading predictive
model(s). To select the most accurate predictive model, all components and relevant requirements
and factors for each component need to be considered and carefully implemented by following
the guidelines, suggestions, and recommendations provided under relevant components in this study.
Reproducible examples were provided to demonstrate how to select and identify the most accurate
spatial predictive model using spm, and to generate and visualize spatial predictions in environmental
sciences. For a predictive model, predictive accuracy is a key criterion for model selection and is critical
for subsequent spatial predictions. This modeling process is not only important for spatial predictive
modeling, but also provides valuable reference to other predictive modeling fields. Although this
study attempts to cover relevant components, which may contribute to the improvement of predictive
accuracy, as completely as possible, the spatial predictive modeling field is too broad to allow that to
be done comprehensively in this study. This is because different disciplines have their own specific
features and requirements. Therefore, further studies are needed to identify factors in relevant
components or additional components that can further improve the accuracy of predictive models
in various disciplines. This study would be expected to not only boost applications of appropriate
spatial predictive modeling processes, but also provide spatial predictive modeling tools for various
modeling components to improve the quality of spatial predictions.
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Abstract: Focusing on water resources assessment in ungauged or sparse gauged areas, a comparative
evaluation of areal precipitation was conducted by remote sensing data, limited gauged data,
and a fusion of gauged data and remote sensing data based on machine learning. The artificial
neural network (ANN) model was used to fuse the remote sensing precipitation and ground
gauge precipitation. The correlation coefficient, root mean square deviation, relative deviation
and consistency principle were used to evaluate the reliability of the remote sensing precipitation.
The case study in the Qaidam Basin, northwest of China, shows that the precision of the original
remote sensing precipitation product of Tropical Precipitation Measurement Satellite (TRMM)-3B42RT
and TRMM-3B43 was 0.61, 72.25 mm, 36.51%, 27% and 0.70, 64.24 mm, 31.63%, 32%, respectively,
comparing with gauged precipitation. The precision of corrected TRMM-3B42RT and TRMM-3B43
improved to 0.89, 37.51 mm, –0.08%, 41% and 0.91, 34.22 mm, 0.11%, 42%, respectively, which indicates
that the data mining considering elevation, longitude and latitude as the main influencing factors
of precipitation is efficient and effective. The evaluation of areal precipitation in the Qaidam Basin
shows that the mean annual precipitation is 104.34 mm, 186.01 mm and 174.76 mm based on the
gauge data, corrected TRMM-3B42RT and corrected TRMM-3B43. The results show many differences
in the areal precipitation based on sparse gauge precipitation data and fusion remote sensing data.

Keywords: Qaidam Basin; remote sensing; TRMM; artificial neural network

1. Introduction

Precipitation is one of the essential links in the water cycle process and varies significantly whether
it is spatial or temporal [1,2]. Traditionally, the measurement of precipitation is based on a ground
gauge station such as a hydrometric station or meteorological station. The gauge precipitation is
identified in terms of both effectiveness and accuracy due to its direct measurement. The spatial
distribution of precipitation is mostly interpolated from the gauged data. However, the accuracy of
interpolation in the sparse and uneven gauged area is generally not reliable [3]. Therefore, the fusion
of remote sensing data and gauged data for evaluation has become a challenging topic [4–8].

There are many high-resolution rainfall products at both the global and regional scales which
have been released successively [9,10], such as the Global Precipitation Climate Program (GPCP),
Global Satellite Mapping Precipitation Program (GSMaP), Tropical Precipitation Measurement Satellite
(TRMM) and Global Precipitation Measurement (GPM) [11–13]. Many remote sensing precipitation
products [14–17] are widely used to compensate for the shortage of gauged data areas [18–21].

However, the remote sensing precipitation production is not highly reliable due to its
indirect observation which needs adjusting and evaluation [22–25]. There are many achievements
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published about the evaluation of remote sensing precipitation products. [26–30]. The precision
evaluation index of remote sensing precipitation products mainly includes a correlation coefficient,
determination coefficient, scatter slope, fuzzy comprehensive score, etc. [31–34]. For those remote
sensing precipitation products with low precision, it is necessary to be corrected. The most used
method is machine learning, such as the classification and regression tree (CART), random forest (RF),
multi-factor data mining set correction, etc. [18,35]. An artificial neural network (ANN) is a powerful
machine learning algorithm with a complex network structure formed by the interconnection of a
large number of processing units (neurons) [36]. It is an information processing system based on
imitating the structure and function of the brain neural network [37]. The theory of an ANN has
made significant progress in pattern recognition [38,39], automatic control, signal processing [40],
assistant decision-making, artificial intelligence [41], networking and healthcare [42–45]. It has been
successfully introduced into the field of hydrology and water resources [46,47].

There are many publications on TRMM remote sensing precipitation products for applicability in
specific areas [48–50]. Dominque et al. [51] found that the accuracy of both the total and the monthly
precipitation of TRMM in the Amazon basin are high enough. Ji et al. [52] validated the accuracy of
TRMM precipitation products and found it has a high accuracy in Sichuan and Chongqing in China
on seasonal and monthly scales. Wang et al. [53] analyzed TRMM precipitation products with the
observation data of meteorological stations in the Tianshan Mountains and its surrounding areas,
and the results showed that the TRMM products had good applicability. A large number of research
results showed that the accuracy of TRMM precipitation products was higher on monthly and annual
scales [54,55], which could be used for analyzing the dynamic variability of a long-time precipitation
sequence [56].

However, Qu et al. [57] evaluated the daily precipitation products of TRMM in the Irrawaddy
River basin and found that the remote sensing precipitation and the measured values had a high
correlation but a large deviation. Xu et al. [58] evaluated the TRMM precipitation in the southern part
of the Qinghai–Tibet Plateau by gauged data from high-density rainfall stations and found that TRMM
overestimated the amount of light rains. The altitude, slope, direction, latitude, longitude and other
factors impact the accuracy of TRMM precipitation [18]. Therefore, TRMM precipitation products
should be corrected before being applied in some areas, especially high mountain areas. Based on the
evaluation of TRMM 3B42RT and 3B43 in the Qaidam Basin, northwest of China, this paper fused the
gauged data and remote sensing data of precipitation by machine learning and assessed the rainfall
resources in the Qaidam Basin. The methodology can be used in other sparse gauged areas.

2. Data and Methods

2.1. Study Area and Data Sources

2.1.1. Study Area

The Qaidam Basin is located in the northeastern edge of the Tibetan Plateau. The geographical
coordinates are 34◦41′–39◦20′ N and 87◦48′–99◦18′ E, spanning the Gansu Province, Qinghai Province
and Xinjiang Uygur Autonomous Region. The vast majority of the Qaidam Basin is in the Qinghai
Province with an area of 234.14 thousand km2. The area in Xinjiang Uygur Autonomous Region is
17.42 thousand km2 and that in the Gansu Province is 17.89 thousand km2. The northwest, northeast and
south of the Qaidam Basin are surrounded by the Altun Mountains, Qilian Mountains and Kunlun
Mountains, respectively, as shown in Figure 1. The Qaidam Basin is the only large plateau inland basin
in the world and its elevation ranges from 2653 m to 6748 m. The basin is deep in the mainland and
surrounded by mountains. It is hard for the warm and humid airflow from the southwest to reach
the basin, forming the typical cold-dry continental climate. Affected by the topography and latitude,
the temperature of the basin is high in the central portion, but low all around. The lowest temperature
occurs in January with −9.8–−16.1 ◦C in the basin area and −14.7–−17.2 ◦C in the mountainous area.
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The highest temperature is in July with 13.5–19.2 ◦C in the basin area and 5.6–10.4 ◦C in the mountainous
area. The annual sunshine duration is generally above 3100 h.

 
Figure 1. The research area of the Qaidam Basin.

2.1.2. Data Sources

The data used in this study include Digital Elevation Model (DEM), representing ground elevation,
TRMM 3B42RT and 3B43, representing remote sensing precipitation, and gauged precipitation data
by surface ground meteorological and hydrometric stations. The DEM data is from the Geographical
Information Monitoring Cloud Platform (GIM Cloud) [59], and the spatial resolution is 1 km × 1 km.
The TRMM 3B42RT and 3B43 are from the NASA website [60] with a spatial resolution of 0.25◦ × 0.25◦
and a time resolution of 3 h. The TRMM products were processed by ArcGIS to fit the Qaidam
Basin and the data is from 2001 to 2016. In order to consider the effect of elevation, the 1 km × 1 km
spatial resolution matched with DEM data was used when resampling the TRMM data. The gauged
precipitation data, including 9 meteorological stations and 11 hydrometric stations from 2001 to 2016,
was from China Meteorological Science Data Sharing Service Network [61] and Hydrological Red Book
of the People’s Republic of China [62], respectively.

2.2. Methodology

2.2.1. Evaluation of Remote Sensing Precipitation Precision

(1) The TRMM products’ precision in gauged grids:
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The correlation coefficient (R2), relative deviation (Bias) and root mean square deviation (RMSD)
were calculated in the grids where a gauge station was located. The data series is from 2001 to 2016
and the temporal resolution is all on an annual scale. The formulas are as follows:

R2 =

[
n∑

i=1

(
Psi − Ps

)(
Pti − Pt

)]2
n∑

i=1

(
Psi − Ps

)2· n∑
i=1

(
Pti − Pt

)2 , (1)

Bias =

n∑
i=1

(Pti − Psi)

n∑
i=1

Psi

× 100%, (2)

RMSD =

√√
1
n

n∑
i=1

(Pti − Psi)
2, (3)

where, Ps is the gauged precipitation by the ground gauge stations (mm); Pt is the remote sensing
precipitation retrieved from TRMM products (mm); Ps and Pt are the average value of Ps and Pt,
respectively; n is the number of years (2001–2016). The R reflects the correlation between the gauged
precipitation and the TRMM precipitation. The relative deviation (Bias) and root mean square deviation
(RMSD) reflect the deviation degree between the gauged precipitation data and the TRMM precipitation.

(2) The TRMM products’ precision in ungauged grids:
There are only 20 gauges in the study area which means the gauged grids are equal or less than

20. All the other grids are ungauged. According to Xia’s achievements [9], the accuracy of the remote
sensing precipitation on the grids without a gauge station can be evaluated by the criteria of the
consistency rate (CR). The formulas are as follows:

Counti =

{
1,
0,

if Pti ∈ D
if Pti � D

i = 1, 2, · · · , N, (4)

S =
N∑

i=1

Counti, (5)

CR =
S
N
× 100%, (6)

where, D is the precipitation-elevation mask (PEM) derived from the relationship of gauged precipitation
and the elevation of the gauge stations; N is the total number of grids without gauge stations; S is the
total number of grids in which remote sensing precipitation falls into the PEM. If the remote sensing
precipitation value falls into the mask, then the remote sensing precipitation is considered consistent
with the gauged precipitation at the same elevation region, that is, the remote sensing precipitation is
reliable and vice versa.

2.2.2. Correction of Remote Sensing Precipitation by ANN Model

A three-layer ANN model was set up for remote sensing precipitation correction. The model has
five input variables (i.e., gauged precipitation (Ps), elevation (DEM), longitude (X) and latitude (Y)
of the gauge stations, and TRMM precipitation). Specifically, the Ps is the target value of the model,
and the four others are the variables of the model input layer. The output variable is only the corrected
precipitation in the model output layer. The hidden layer nodes are set to 20 by the preferred selection.
The structure of the ANN model in this paper is shown in Figure 2.
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Figure 2. The artificial neural network (ANN) structure diagram.

The model training function is ’trainlm’ which updates weight and bias values according to
Levenberg–Marquardt optimization. At the same time, we chose the ‘tansig’ as the model neural transfer
function to calculate a layer’s output from its net input. The divide function is accessed automatically
whenever the network is trained, which is used to divide the data into training, validation and
testing subsets. In this study, the net divide function is set to ‘dividerand’, and the ratios for training,
validation and testing are 0.7, 0.0 and 0.3 according to the needs of the training function of ‘trainlm’.
The prepared sequence data is randomly divided into the training subset (70%) and testing subset
(30%) using the division parameters by the divide function. The fusion models for 3B42RT and 3B43
correction completed 103 and 127 times of training, and the convergence error (mean square error) was
0.0036 and 0.0041, respectively.

The process of data fusion mainly includes four steps: (1) the Pt is extracted by combining ArcGIS
technology according to the spatial locations of the gauge stations. Moreover, the data of Ps, DEM, X,
Y and Pt are stored in a one-to-one correspondence; (2) training and testing the model after setting each
function of the artificial neural network. When the parameters such as the R2 reach certain conditions,
the construction of the model is completed; (3) correction remote sensing precipitation based on the
fusion model which is established in the previous step; (4) the fused precipitation data are inversed to
the research area on a spatial–temporal scale according to the spatial information of the grids.

2.2.3. Assessment of Rainwater Resources

The areal rainwater resources (i.e., precipitation) is evaluated by the mean value. The variation
trend of the areal precipitation is predicted by the improved Mann–Kendall method [63–65].

Corresponding to the time series X with n sample sizes, the order column is constructed as follows:

Sk =
k∑

i=1

ri ri =

⎧⎪⎪⎨⎪⎪⎩1 xi > xj

0 xi ≤ xj
j = 1, 2, · · · , i. (7)

It can be seen that the order sequence S is the cumulative number of values at the ith moment
greater than that at the jth moment. Under the assumption that the time series is randomly independent,
the statistics are defined as follows:

UFk =
Sk − E(Sk)√

Var(Sk)
k = 1, 2, · · · , n, (8)
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where UFk = 0, E(Sk) and Var(Sk) are the mean and variance of the cumulative number Sk, respectively.
When x1, x2, . . . , xn are independent of each other and have the same continuous distribution, they can
be calculated by the following formula:

E(Sk) =
n(n + 1)

4
Var(Sk) =

n(n− 1)(2n + 5)
72

, (9)

where UFi is the standard normal distribution, which is the statistical sequence calculated according to
the time series X (x1, x2, . . . , xn). The significance level α is determined and the normal distribution
table is checked. If |UFi| > Uα, it indicates that there is a significant trend change in the sequence.

Repeating the above process according to the time series X in inverse order xn, xn−1, . . . , x1,
while letting UBk = −UFk, k = n, n − 1, . . . , 1, UB1 = 0. If the calculated value of UBk or UFk is greater
than 0, it indicates that the sequence has an upward trend; if lower than 0, it indicates a downward
trend. When they exceed the critical line, it suggests that the upward or downward trend is significant.

3. Results and Discussion

3.1. Precision of Original TRMM Products

3.1.1. Grids with the Gauge Station

According to the methods above, the precision criteria of original TRMM products on
the 20 grids with the gauge station are shown in Table 1. The names of the gauge
stations are LengHu (LH), XiaoZaoHuo (XZH), GeErMu (GEM), HeXi (HX), MangYa (MY),
NuoMuHong (NMH), GeErMu4 (GEM4), DaChaDan (DCD), HuaiTouTaiLa (HTTL), GaHai (GH),
NaChiTai (NCT), WuLan (WL), DeLingHa (DLH), DuLan (DL), ChaHanWuSu (CHWS), XiaRiHa (XRH),
XiangRiDe (XRD), KeEr (KE), ShangGaBa (SGB), ChaHanHe (CHH), respectively.

Table 1. The precision of original Tropical Precipitation Measurement Satellite (TRMM) products
(2001–2016). LH: LengHu; XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi; MY: MangYa;
NMH: NuoMuHong; GEM4: GeErMu4; DCD: DaChaDan; HTTL: HuaiTouTaiLa; GH: GaHai;
NCT: NaChiTai; WL: WuLan; DLH: DeLingHa; DL: DuLan; CHWS: ChaHanWuSu; XRH: XiaRiHa;
XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa; CHH: ChaHanHe; MAP: Mean Annual Precipitation.

Gauges Original 3B42RT Original 3B43

No. Name X (◦) Y (◦) DEM
(m)

MAP
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

1 LH 93.33 38.75 2777 19.88 41.10 106.79 23.17 36.19 82.07 18.42
2 XZH 93.68 36.80 2772 30.34 81.60 168.97 57.76 77.49 155.44 52.74
3 GEM 94.90 36.42 2812 47.32 126.01 166.30 81.28 113.31 139.46 68.68
4 HX 94.60 36.38 2822 47.34 121.63 156.91 77.60 111.21 134.89 68.22
5 MY 90.85 38.25 2942 50.16 68.37 34.55 26.85 60.59 19.79 20.07
6 NMH 96.42 36.43 2796 55.54 118.66 113.65 67.30 117.21 111.05 65.48
7 GEM4 94.78 36.30 2957 61.76 126.01 104.05 67.61 113.31 83.48 55.44
8 DCD 95.37 37.85 3190 104.00 122.89 18.17 38.35 119.28 14.69 28.18
9 HTTL 96.73 37.35 2867 107.94 160.30 48.51 65.39 162.39 50.45 63.29

10 GH 97.43 37.23 2877 161.24 157.18 −2.52 32.02 168.12 4.27 26.18
11 NCT 94.57 35.87 3966 182.31 230.40 26.38 70.91 222.21 21.89 65.31
12 WL 98.48 36.92 2959 222.26 157.31 −29.22 83.38 174.37 −21.55 66.26
13 DLH 97.37 37.37 2988 228.68 201.19 −12.02 41.53 203.84 −10.86 35.93
14 DL 98.10 36.30 3190 240.73 183.92 −23.60 73.11 195.62 −18.74 58.43
15 CHWS 98.12 36.23 3273 244.97 211.97 −13.47 54.70 218.89 −10.65 45.53
16 XRH 98.15 36.42 3143 252.91 183.92 −27.28 95.16 195.62 −22.65 81.60
17 XRD 97.87 35.97 3100 285.18 264.48 −7.26 57.26 265.41 −6.93 55.43
18 KE 97.70 35.95 3269 307.43 278.26 −9.49 70.71 277.94 −9.59 70.63
19 SGB 98.58 37.00 3168 332.05 170.04 −48.79 171.22 187.25 −43.61 151.87
20 CHH 98.57 37.05 3351 432.30 257.26 –40.49 189.76 258.21 –40.20 187.08

– Average – – – 170.72 163.12 36.51 72.25 163.92 31.63 64.24
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It is clear in Table 1 that the average mean annual precipitation (MAP) of 3B42RT and 3B43 on
the 20 grids are 163.12 mm and 163.92 mm, respectively, which look quite close to that of the gauged
precipitation (170.72 mm). However, it can be found that the TRMM precipitation is higher in the low
gauged precipitation areas (LGPA), including the stations of LH, XZH, GEM, HX, MY, NMH, GEM4,
DCD and HTTL. On the contrary, the TRMM precipitation is lower in the high gauged precipitation
area (HGPA), including the stations of WL, DLH, DL, CHWS, XRH, XRD, KE, SGB and CHH. As a
result, the average MAP of TRMM is approximately equal to that of the gauged precipitation, but the
underestimated HGPA and overestimated LGPA will lead to systematic bias. The systematic error
is considered the result of planarization of the original TRMM when calibration was done with too
limited gauged data.

The average RMSD of the original 3B42RT and 3B43 in the Qaidam Basin is 72.25 mm and
64.24 mm, respectively. Considering with the bias together, the minimum RMSD (23.17 mm of 3B43RT
and 18.42mm of 3B43) relates to the overestimation (bias of 106.79%, 82.07% and value of 21.26 mm,
16.31 mm) of 3B42RT and 3B43 in the LGPA (LH station), while the maximum RMSD (189.76 mm of
3B43RT and 187.08 mm of 3B43) relates to the underestimation (bias of –40.49%, –40.20% and value of
–175.04 mm, –174.09 mm) in the HGPA (CHH station). It is obvious that the bias of underestimation is
smaller than that of overestimation, but the absolute amount of underestimation is far greater than that
of overestimation, as shown in Figure 3. Therfore, it is supposed that the average TRMM precipitation
in the Qaidam Basin would be an underestimation overall.

Figure 3. The Original TRMM Precipitation Products Errors.

3.1.2. Grids without a Gauge Station

Most of the grids have no ground gauge so that we could not evaluate the precision by precipitation
itself. Some other validation principle is introduced. Here, it is the consistency principle (CR), which is
a relationship rule of rainfall and elevation retrieved from the gauged data. The situation of 3B42RT
and 3B43 precipitation falling into the PEM is shown in Figure 4.

 
(a) (b) 

Figure 4. The gauged precipitation – elevation mask (PEM) and original TRMM precipitation filter
from 2001 to 2016. (a) Grids with gauge station. (b) Grids without gauge station.
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It can be found that the CR value of original 3B42RT and 3B43 precipitation on the grids with
gauge is 60% and 68%, while on the grids without gauge it is only 27% and 32%, respectively. It means
the TRMM precipitation on the gauged grids is more reliable than that on the ungauged grids.

3.2. Correction of TRMM Products

3.2.1. Calibration and Validation

The regression machine learning by the ANN model mentioned above was carried out. In the
process, we have a total of 20 gauges with 16 years of data sets, of which 224 sets of data are used for
the model training, and the remaining 96 sets are used for model testing. The result of a comparison of
output and target is shown in Figure 5.

Figure 5. The calibration and validation of TRMM precipitation by artificial neural networks (ANN).
(a) Training and testing for 3B42RT; (b) correction for 3B42RT; (c) training and testing for 3B43;
(d) correction for 3B43.

It can be seen from Figure 5a,c that the training and testing are very good with the determinant
coefficients 0.90, 0.91 and 0.88, 0.90, respectively. There was also improvement with the determinant
coefficients 0.89, 0.91 of corrected TRMM precipitation compared with the original TRMM determinant
coefficients of 0.61, 0.70. It also can be seen that the values of original 3B42RT and 3B43 are all mostly
above the 1:1 line when gauged precipitation was less than 100 mm, while a lot of the values of
original TRMM precipitation are under the 1:1 line when gauged precipitation was more than 200 mm.
This indicates that the original TRMM precipitation in the LGPA was overestimated and the TRMM
precipitation in the HGPA was underestimated. On the whole, the dispersion of TRMM precipitation
points on both sides of the 1:1 line is large and uneven, the R2 is only 0.61 and 0.70, respectively.
Fortunately, the 3B42RT and 3B43 precipitation improved significantly both in the LGPA and HGPA.
They closely dispersed on the both sides of the 1:1 line after the correction by the ANN model. The R2
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increased to 0.89 and 0.91, respectively. It was proven that the fusion model based on an ANN is
effective for the correction of TRMM products.

3.2.2. The Precision of Corrected TRMM Products

After the correction, the precision of TRMM precipitation in the Qaidam Basin on the grids with
the gauge station is shown in Table 2. It can be found that the average bias is significantly reduced,
from 36.51% to –0.08% (3B42RT) and 31.63% to 0.11% (3B43), respectively. It also can be seen from the
RMSD that the fusion model has a significant correction effect on TRMM products. The average RMSD
value decreased from 72.25 mm and 64.24mm to 37.51 mm and 34.22 mm after correction.

Table 2. The precision evaluation of corrected 3B42RT and 3B43 (2001–2016). - LH: LengHu;
XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi; MY: MangYa; NMH: NuoMuHong; GEM4: GeErMu4;
DCD: DaChaDan; HTTL: HuaiTouTaiLa; GH: GaHai; NCT: NaChiTai; WL: WuLan; DLH: DeLingHa;
DL: DuLan; CHWS: ChaHanWuSu; XRH: XiaRiHa; XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa;
CHH: ChaHanHe; MAP: Mean Annual Precipitation.

Gauges Corrected 3B42RT Corrected 3B43

Name X (◦) Y (◦) DEM
(m)

MAP
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

MAP
(mm)

Bias
(%)

RMSD
(mm)

LH 93.33 38.75 2777 19.88 19.03 −12.15 8.21 17.80 −10.44 7.21
XZH 93.68 36.80 2772 30.34 31.60 4.15 11.71 32.25 6.32 12.21
GEM 94.90 36.42 2812 47.32 45.53 −3.78 11.06 44.48 −6.00 10.49
HX 94.60 36.38 2822 47.34 45.53 −3.82 14.92 45.09 −4.77 15.71
MY 90.85 38.25 2942 50.16 48.87 −2.46 22.2 52.54 4.52 22.01

NMH 96.42 36.43 2796 55.54 54.30 −2.23 17.24 53.51 −3.66 17.53
GEM4 94.78 36.30 2957 61.76 55.26 −10.52 13.57 56.97 −7.74 12.57
DCD 95.37 37.85 3190 104.00 98.31 −5.47 29.43 105.38 1.33 23.10
HTTL 96.73 37.35 2867 107.94 123.67 14.57 38.85 123.21 14.15 35.36

GH 97.43 37.23 2877 161.24 160.28 −0.60 31.44 158.83 −1.50 26.12
NCT 94.57 35.87 3966 182.31 182.35 0.02 35.08 185.47 1.74 34.19
WL 98.48 36.92 2959 222.26 243.09 9.38 56.33 231.36 4.10 48.45

DLH 97.37 37.37 2988 228.68 226.20 −1.08 31.62 223.36 −2.32 24.75
DL 98.11 36.30 3190 240.73 246.18 2.26 48.60 247.77 2.93 40.58

CHWS 98.12 36.23 3273 244.97 290.87 18.74 63.93 289.24 18.07 58.15
XRH 98.15 36.42 3143 252.91 247.61 −2.11 66.42 247.41 −2.17 59.82
XRD 97.87 35.97 3100 285.18 271.46 −4.81 54.38 275.56 −3.37 52.80
KE 97.7 35.95 3269 307.43 304.7 −0.89 62.78 308.31 0.29 63.06

SGB 98.58 37 3168 332.05 316.19 −4.78 57.49 305.51 −7.99 51.4
CHH 98.57 37.05 3351 432.3 449.37 3.95 74.96 426.29 –1.27 68.8

Average – – – 170.72 173.02 –0.08 37.51 171.52 0.11 34.22

(a) (b) 

Figure 6. The consistency rate (CR) elevation for corrected TRMM from 2001 to 2016 in the Qaidam
Basin. (a) Gauged grids. (b) Ungauged grids.

For those grids without gauges, the CR values were also evaluated. The CR of 3B42RT and 3B43 on
the grids with and without the gauge station improved up to 75%, 73% and 41%, 42% after correction
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(Figure 6). This means the precision of TRMM precipitation on grids with and without gauge station
are also improved.

3.3. Assessment of Rainwater Resources of the Qaidam Basin

3.3.1. The Average Amount of Precipitation

The spatial distribution of the mean annual precipitation from 2001 to 2016 before and after the
correction of 3B42RT and 3B43 in the Qaidam Basin is shown in Figure 7. It can be seen that the
precipitation on the eastern, southern and southeastern edges of the Qaidam Basin is high, while in the
center and northwest it is small. The original distribution of precipitation in the east and west of the
Kunlun Mountains is not even, but the trend of decreasing from east to west is enhanced significantly
after the correction. The main reason for this is the increase of precipitation in the eastern Kunlun
Mountains after the TRMM products corrected. The precipitation in the Qilian Mountains and the
southeastern edges of the Qaidam Basin was also relatively high and increased after correction. At the
same time, there was a higher consistency between precipitation and elevation in those regions, that is,
precipitation increased with elevation.

  

(a) (b) 

  

(c) (d) 

Figure 7. Comparison of spatial distribution of TRMM precipitation before and after correction.
(a) Original 3B42RT precipitation; (b) Corrected 3B42RT precipitation; (c) Original 3B43 precipitation;
(d) Corrected 3B43 precipitation.

For the 12 subregions of the basin, including MA, LE, DCD, DLH, WL, DL, GEM, QML, MD, ZD,
XJR and GSR as shown in Figure 1, the areal precipitation in each region is shown in Table 3.

We can see from Table 3 that the average annual precipitation of the Qaidam Basin based on the
original 3B42RT and 3B43 are 148.45 mm and 146.26 mm, respectively, while the new assessment value
is 186.01 mm and 174.76 mm based on corrected TRMM 3B42 and 3B43. It is obvious that the annual
precipitation (104.34 mm) based on the interpolated precipitation by gauges is significantly less than
that of original and corrected TRMM products.
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The previous studies on precipitation in the Qaidam Basin were mostly based on the gauged
precipitation data to get the areal precipitation of the Qaidam Basin according to the traditional
interpolation method. The pity is that the gauge distribution is too sparse and uneven, causing an
unreliable interpolation result. It is obvious that the precipitation in the area was underestimated in
the past. The fusion remote sensing precipitation with local ground information in high mountainous
areas is helpful.

Table 3. Assessment of annual precipitation in each region of the Qaidam Basin.

Region Name
Area

(103 km2)
Interpolated

Precipitation by Gauges
Original
3B42RT

Corrected
3B42RT

Original
3B43

Corrected
3B43

LE 19.3 29.65 43.79 22.42 39.43 25.3
MY 31.3 42.43 67.72 55.27 62.22 62.48

GEM 69.4 65.64 162.73 118.69 157.5 114.27
DCD 21.3 69.55 100.92 128.46 97.61 126.22

XJ 17.4 74.31 114.1 131.95 108.28 133.53
ZD 4.8 83.98 239.7 171.39 238.79 141.03
GS 17.9 86.57 112.33 221.02 107.09 208.24

QML 6.5 157.57 275.74 363.65 273.22 321.82
DLH 22.7 168.45 190.01 369.43 192.47 343.08
DL 43.8 183.01 203.43 302.37 205.56 273.62
WL 10.4 259.57 171.17 299.41 185.38 288.63
MD 4.7 292.9 354.29 602.71 358.21 523.32

The entire basin 269.4 104.34 148.45 186.01 146.26 174.76

3.3.2. The Precipitation Variation Trend

The annual precipitation time series and its variation trend of the gauged precipitation, original and
corrected 3B42RT and 3B43 products at the 20 gauge stations are shown in Figure 8 and Table 4.
From Figure 8 we can know that the original 3B42RT and 3B43 precipitation at the GEM, LH, NMH,
XZH. HX, NCT and GEM4 stations, where the precipitation is low, is obviously higher than the gauged
precipitation. On the contrary, the original 3B42RT and 3B43 precipitation at the CHH and SGB stations,
where the precipitation is high, is obviously less than the gauged precipitation. This again indicates
that the original 3B42RT and 3B43 are significantly overestimated in the LGPA and underestimated in
the HGPA. What is nice is that the 3B42RT and 3B43 decreases or increases significantly and tends to
the gauged precipitation values after the fusion model was corrected.

 
(a) (b) 

 
(c) (d) 

Figure 8. Cont.

416



Appl. Sci. 2019, 9, 2294

 
(e) (f) 

 
(g) (h) 

 
(i) (j) 

 
(k) (l) 

 
(m) (n) 

 
(o) (p) 

Figure 8. Cont.
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(q) (r) 

 
(s) (t) 

Figure 8. The annual precipitation time series of the gauged precipitation, original and corrected
of 3B42RT and 3B43 products at the 20 gauge stations. (a) DCD: DaChaDan; (b) DLH: DeLingHa;
(c) DL: DuLan; (d) GEM: GeErMu; (e) LH: LengHu; (f) MY: MangYa; (g) NMH: NuoMuHong;
(h) WL: WuLan; (i) XZH: XiaoZaoHuo; (j) CHH: ChaHanHe (k) CHWS: ChaHanWuSu (l) KE: KeEr;
(m) HX: HeXi; (n) HTTL: HuaiTouTaiLa; (o) GH: GaHai; (p) SGB: ShangGaBa; (q) XRH: XiaRiHa;
(r) XRD: XiangRiDe; (s) NCT: NaChiTai; (t) GEM(4): GeErMu4.

Table 4. Comparison of the annual precipitation variation trend (2001–2016) between gauged and TRMM
products on the grids with the gauge station. LH: LengHu; XZH: XiaoZaoHuo; GEM: GeErMu; HX: HeXi;
MY: MangYa; NMH: NuoMuHong; GEM4: GeErMu4; DCD: DaChaDan; HTTL: HuaiTouTaiLa;
GH: GaHai; NCT: NaChiTai; WL: WuLan; DLH: DeLingHa; DL: DuLan; CHWS: ChaHanWuSu;
XRH: XiaRiHa; XRD: XiangRiDe; KE: KeEr; SGB: ShangGaBa; CHH: ChaHanHe; MAP: Mean
Annual Precipitation.

Station Name Gauged Original 3B42RT Corrected 3B42RT Original 3B43 Corrected 3B43

GH −2.21 −0.23 −0.18 −0.27 −0.85
XRD −1.32 0.01 −0.02 −0.06 −0.07
DCD −0.63 −1.55 −0.75 −1.07 −0.77
KE −0.62 −0.37 −0.40 −0.47 −0.59

DLH −0.32 −0.94 −0.91 −0.27 −0.33
HTTL −0.15 −1.05 −0.63 0.13 −0.10
CHWS 0.09 2.78 2.87 0.58 0.67

LH 0.13 0.91 0.05 1.10 0.26
XZH 0.14 1.44 0.39 1.94 0.57
DL 0.23 0.01 0.02 0.94 1.05

GEM4 0.58 1.87 0.88 1.29 0.58
NMH 0.63 1.91 0.95 2.33 1.29

HX 0.89 2.08 0.69 2.23 0.85
GEM 0.93 1.87 0.84 1.29 0.54
NCT 1.31 0.63 0.32 0.86 0.35
MY 1.45 0.17 0.06 0.41 0.13
SGB 2.43 4.25 3.95 3.22 3.03
WL 4.71 3.14 2.77 2.28 2.69

XRH 3.21 2.21 2.29 2.94 3.06
CHH 10.45 0.19 0.18 1.16 1.78

Average 1.10 0.97 0.67 1.03 0.71
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From the average change trends of precipitation at the 20 gauge stations in the three data sources,
the annual precipitation of the Qaidam Basin shows an increasing trend. The gauged precipitation
at GH, XRD DCD, KE, DLH and HTTL stations showed a decreasing trend, and the others showed
an increasing trend in different degrees at the other 14 gauge stations. The change trend direction is
basically the same. Therefore, the spatial distribution and temporal variation trend of TRMM products
after correction can characterize the spatial–temporal variation characteristics of precipitation in the
Qaidam Basin.

According to the corrected 3B42RT and 3B43 precipitation in the Qaidam Basin from 2001 to 2016,
the change trend and significance on the grid scale in the study area were calculated, as shown in
Figure 9.

  
(a)  (b)  

  
(c)  (d)  

Figure 9. The variation trend and significance of precipitation in the Qaidam Basin. (a) Corrected
3B42RT change trend; (b) corrected 3B42RT change significance; (c) corrected 3B43 change trend;
(d) corrected 3B43 change significance.

It can be seen from the Figure 9a,b that the precipitation in the northeast of the Qaidam Basin
(Qilian Mountain area) showed a decreasing trend, while in the southeastern edge of the basin (east of
the Kunlun Mountains) showed an increasing trend based on corrected 3B42RT and 3B43 products.
It is obvious the precipitation slightly increased at the center and northwest of the basin. Figure 9b,d
showed the significant test results of the precipitation change trend. We know that most areas of the
Qaidam Basin were non-significantly increased or decreased, and only a small part of the areas passed
the significant change test (Z ≥ 2.58).

4. Conclusions

(1) The Qaidam Basin is located in an arid and semi-arid region with a dry climate and fragile
natural ecological environment. The precipitation process in the Qaidam Basin is significantly different
spatially and temporally. Due to the sparse gauge stations and maldistribution, the rainwater resources
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are hard to assess. A fusion of remote sensing precipitation of TRMM products and gauged precipitation
is helpful.

(2) The average mean annual precipitation is only 104.34 mm by ground gauges interpolation,
and 148.45 mm and 146.26 mm by original 3B42RT and 3B43. However, the precision evaluation
of TRMM precipitation shows it was overestimated in the LGPA and underestimated in the HGPA.
The original TRMM products need a correction.

(3) The correction result shows the average mean annual precipitation is 186.01 mm by 3B42RT
and 174.74 mm by 3B43. The average bias of 3B42RT and 3B43 at gauge stations are significantly
reduced to −0.08% and 0.11% after being corrected, and the average RMSD is significantly reduced to
37.51 mm and 34.22 mm, respectively. All of those indicated that the precipitation products fusion
model based on ANN could effectively work on TRMM products.

(4) The final result shows there are many differences in areal precipitation based on sparse gauge
precipitation data, original TRMM data and fusion remote sensing data. The rainwater resources in
the study basin have been underestimated in the past year, and both were derived from ground gauge
stations and from original TRMM products.

In the future, research needs to test the ANN effectivity on mining the normalized difference
vegetation index and rainwater resources in this area.
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