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Abstract: Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause
of death among men worldwide. Despite extensive efforts in biomarker discovery during the last
years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa
early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required
to improve the clinical management of PCa patients. In this context, metabolomics has shown to
be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes
in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been
reported in different studies analyzing PCa patients’ biofluids. The review provides an up-to-date
summary of the main metabolic alterations that have been described in biofluid-based studies of
PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and
prognosis. Furthermore, a summary of the most significant findings reported in these studies and
the connections and interactions between the different metabolic changes described has also been
included, aiming to better describe the specific metabolic signature associated to PCa.

Keywords: metabolomics; metabolism; prostate cancer; biomarker; early diagnosis; prognosis

1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer and represents the
fifth leading cause of death in men [1]. In 2018, new cases of PCa were estimated to account
for over 1.3 million, and 359.000 PCa-associated deaths were expected worldwide [1]. PCa is a
hormone-dependent tumor characterized by an extremely variable clinical course, ranging from
an indolent condition to a rapid progression into an aggressive phenotype that disseminates and
metastasizes to the lymph nodes and bones. Moreover, there is a current lack of reliable and
reproducible assays to identify tumors destined to remain indolent. Thus, stratifying PCa patients into
different risk phenotypes at time of diagnosis is still a major clinical challenge.

Nowadays, PCa screening tests rely on the determination of prostate-specific antigen (PSA)
serum levels and digital rectal examination (DRE). Based on the results of these screening tests,
trans-rectal ultrasound (TRUS)-guided prostate biopsy is performed to confirm diagnosis when
necessary. However, these tests suffer from a number of limitations and do not provide enough
information to enable a precise discrimination between indolent and aggressive tumors. While PSA
provides high sensitivity and low specificity for PCa diagnosis, (TRUS)-guided prostate biopsy has been
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associated with high false negative rates due to the high degree of PCa inter- and intra-heterogeneity [2].
Moreover, even the recently updated histopathology-based estimation of the Gleason Score (GS),
the current clinical gold standard for assessing the risk of PCa metastasis and prognosis, exhibits
limitations [3]. During the last years, many research studies have focused on the identification
of molecular biomarkers that could help to improve early diagnosis and risk stratification of PCa
patients [4-7]. Among them, a potential biomarker, that has been evaluated in combination with
PSA levels, is the non-coding transcript PCA3 (overexpressed in >95% of PCa). The quantification
of PCA3 levels in urine has shown improvement, when combined with PSA, in PCa detection [8],
although no optimal cut-off for urinary PCA3 levels has been established for maximizing clinical
benefit while avoiding overdiagnosis [9]. Another potential biomarker is the TMPRSS2:ERG fusion
transcript [10], that is being evaluated as a potential diagnostic and therapeutic target associated with
PCainvasion [11]. Despite being 100% indicative of PCa [12], it is only detected in 50% of PCa cases [13].
In summary, although intense efforts have been devoted to the discovery and development of new
PCa biomarkers, there still exists an unmet clinical need to identify accurate PCa biomarkers for early
diagnosis, prognosis and monitoring of PCa patients, both in terms of sensitivity and specificity [14,15].
Moreover, additional clinically robust biomarkers able to differentiate between indolent and
aggressive PCa are urgently needed. In this context, several metabolomics studies have been carried out
to attempt the characterization of a specific PCa metabolic profile, with the ultimate goal of identifying
potential metabolic biomarkers that could improve the clinical management of PCa patients [16-19].

2. Cancer and Metabolic Reprogramming: Metabolomics Opportunities

The metabolic profile is closely associated with the pathophysiological condition of an individual.
In particular, the metabolic composition can be strongly influenced, both from a qualitative and
quantitative point of view, as a result of pathological processes or in the presence of specific drug
treatments [20]. These changes can provide useful clues for the characterization of biomarkers
associated with the onset and progression of diseases, as well as with the prediction of the response to
therapeutic interventions.

Different studies, linking significant metabolic alterations and cancer onset and progression,
have been extensively described since Warburg’s pioneering studies [21]. The metabolic rewiring
associated with the neoplastic processes is the result of mutations in specific oncogenes and tumor
suppressors, leading to the activation of different signaling pathways and transcriptional networks [22].
Furthermore, it is well known that neoplastic processes have a strong influence on gene expression,
cellular differentiation and tumor microenvironment [23,24]. Metabolites represent the end products of
biochemical pathways, and the concentrations of these compounds are extremely sensitive to different
alterations. At the molecular level, the progression of cancer involves multiple alterations in metabolic
pathways that are specifically required for cancer cells to survive [23]. Interestingly, cancer cells exhibit
different metabolic phenotypes [25,26]. Thus, some tumors preferentially use aerobic glycolysis to
proliferate [27], while others rely on glutaminolysis [28], or one-carbon metabolism [29]. There are also
tumors that benefit from the utilization of several of these metabolic routes at the same time [25,26,28].

In this context, metabolomics, that relies on the systematic analysis of low-molecular-weight
metabolites present in biological samples, provides an accurate and complementary approach
for getting a better understanding of the biochemical alterations responsible for the onset and
progression of neoplastic processes, thus offering new opportunities for biomarker discovery in
complex diseases [30]. Metabolomics studies offer a holistic view of the biochemical processes that
could contribute to getting a deeper insight into the molecular alterations underlying pathological
processes. This information could significantly improve the opportunities to identify clinically relevant
biomarkers for the diagnosis and prognosis of different pathological processes, including PCa.
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3. Metabolomics and PCa

The ultimate goal of metabolomics is to measure and identify as many metabolites as possible,
ideally obtaining a complete overview of the metabolome. Metabolomics can provide an accurate
description of the phenotype of an individual because it represents the final step of the omics cascade.
The analysis of metabolic changes associated with specific biochemical pathways offers unprecedented
opportunities for identifying the molecular mechanisms of complex diseases. Taken into consideration
the limitations of current diagnostic procedures, this information could result in the characterization
of specific and novel disease biomarkers [31].

At the analytical level, these studies are extremely challenging [32,33]. The complexity of the
matrix to be examined (e.g., osmolarity, the presence of proteins, and inorganic salt concentration),
the dynamic range of metabolites concentrations, and the vast chemical diversity of metabolite types
(e.g., acidic, neutral, basic, lyophilic, and hydrophilic) greatly complicate the choice of analytical
modality. However, a number of technical improvements have been introduced over the last few
years. This has led to the development of a wide variety of analytical platforms that are currently used
to characterize the metabolic content of biological samples [34-36]. The selection of the appropriate
approach usually depends on the experimental objectives and the biological matrix. The detection of
metabolites in cells, tissues or biofluids is usually carried out by either Nuclear Magnetic Resonance
(NMR) spectroscopy or mass spectrometry (MS). In general, NMR spectroscopy, mostly "H-NMR, and
MS, particularly liquid chromatography (LC)-MS, are the two most important analytical platforms
used in metabolomics studies.

PCa is a disease of great interest from a metabolomics perspective. A number of studies,
focused on the characterization of the specific PCa metabolic phenotype using different experimental
approaches, have been reported recently [37-61]. These studies have shown that healthy prostate
cells are characterized by a decreased citrate oxidation and metabolism within the tricarboxylic acid
(TCA) cycle, resulting in citrate accumulation [62] and the reliance on glucose oxidation for energy
production [63]. Benign prostate cells accumulate zinc, resulting in the inhibition of the m-aconitase
(ACO), the enzyme that catalyzes the isomerization of citrate in the TCA cycle [62]. However, when
prostate cells undergo malignant transformation, their characteristic ability to accumulate zinc is lost,
leading to the TCA activation. Furthermore, it has been shown that early PCa does not exhibit the
Warburg effect [64], relying on lipids and other energetic molecules for energy production, but not on
aerobic respiration [65,66]. In this context, it should be noted that several metabolic alterations have
also been identified in PCa tissue compared with normal tissue, including an increase of choline [67]
and sarcosine [68], and a decrease of polyamine and citrate levels [69,70]. Nevertheless, the clinical
relevance of some of these changes remains controversial due to the contradictory results reported in
different studies (e.g., alterations in sarcosine levels—further discussed in the following section).

Overall, the possibility to directly evaluate the metabolic phenotype of PCa patients offers a great
potential from a clinical perspective. To this end, many metabolomics projects, based on the analysis of
different biological samples, have been conducted over the last few years with a focus on the discovery
of new biomarkers that could improve the clinical management of PCa patients (Table 1).

4. PCa Metabolic Biomarkers in Biofluids

Changes in the concentration of metabolites in biofluids are reflective of alterations in the
physiological status of an individual. The metabolome, that is, the set of all metabolites present
on a particular biological sample, represents the downstream end product of the omics cascade, and a
closer approach to the phenotype. Therefore, metabolite signatures obtained from biofluids can be a
useful approach for identifying non-invasive biomarkers and characterizing the molecular mechanisms
associated with pathological conditions. The most widely used biofluids in PCa studies have been
urine, serum and seminal fluid.
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4.1. Urine Biomarkers

Urine samples offer some advantages for carrying out metabolomics studies since they can
be collected non-invasively and have a less complex composition compared with other biofluids,
thus facilitating the discovery of novel biomarkers [71]. However, the analysis of this biofluid
has several limitations, including the presence of diluted urinary constituents and interferences
between molecules [37,71], that can result in failing to detect underrepresented metabolites or to
correctly identify the molecules. Despite these problems, different studies have discovered metabolic
alterations in urine samples from PCa patients and evaluated their clinical utility as biomarkers for
this neoplastic process.

Urine is anatomically close to the prostate, which explains why it has been extensively studied for
metabolic biomarker discovery in PCa [37]. As shown in Table 1, most of these studies have aimed
to identify metabolic dysregulations that could provide clinically relevant PCa biomarkers. Most of
these studies focused on the characterization of the metabolic differences between urine samples from
healthy individuals [38-43] or benign prostate hyperplasia (BPH) patients [37,44,45] and PCa patients.
In general, they were performed using mass spectrometry (MS)-based metabolomics as an analytical
platform (n = 8), and only one study was performed using NMR spectroscopy for the analysis of urine
samples [44].

The study conducted by Liang et al., including the analysis of 233 healthy individuals and 236 PCa
patients, highlighted the clinical utility of three metabolites: 5-hydroxy-L-tryptophan, hippurate, and
glycocholic acid, as potential metabolic biomarkers for the early diagnosis of PCa (area under the curve,
(AUC) > 0.95) [38]. A metabolite called 5-hydroxy-L-tryptophan is involved in tryptophan metabolism,
a pathway that has been associated with the ability of several tumors to evade the antitumor immune
response [72,73]. Another metabolite involved in this pathway, kynurenic acid, also exhibited a
moderate diagnostic value (AUC = 0.62) in a study conducted by Gkotsos et al. for the detection of
PCa using urine samples obtained after prostatic massage [39].

Another metabolite that has been extensively investigated as a potential biomarker of PCa is
sarcosine. Sarcosine is an intermediate product in the synthesis and degradation of glycine. In 2009,
Sreekumar et al. identified sarcosine as a promising PCa biomarker, being highly correlated with
PCa progression and more detectable in the urine of PCa patients when compared with healthy
individuals [68]. Similarly, Khan et al. reported in 2013 markedly elevated sarcosine levels in the
urine sediments of PCa patients compared with controls [74]. In serum, Kumar et al. [46,47] also
found increased sarcosine levels in PCa samples compared with healthy individuals. In these studies,
it was shown that sarcosine, in combination with other metabolites, could accurately differentiate
PCa patients from healthy individuals (accuracy = 90.2%) [47] and PCa from BPH patients (87.7%
sensitivity and 85.5% specificity) [46]. Furthermore, the authors showed that metabolomics provided
better predictions than serum PSA levels for the discrimination between PCa patients and healthy
individuals as well as between PCa and BPH patients. However, the role of sarcosine as a metabolic
biomarker for PCa diagnosis and prognosis remains controversial due to the contradictory results
reported in further studies. In a case-control study conducted by Ankerst et al., the use of sarcosine as a
biomarker for early PCa detection was investigated in serum samples of matched-age controls and PCa
patients [75]. These authors reported no differences in sarcosine levels when comparing both groups.
Furthermore, in another pilot study by Dereziriski et al., where higher serum sarcosine levels were
found in PCa patients when compared with the control group, no statistically significant differences
were observed in urine samples [76]. Similarly, Pérez-Rambla et al. found elevated sarcosine levels
in PCa patients when compared with BPH patients, although these alterations were not found to be
statistically significant [44].

Beyond the alteration in sarcosine levels, Pérez-Rambla et al. also identified alterations in the
urine levels of six metabolites that facilitated the discrimination of the metabolomic profile of PCa and
BPH patients [44]. Among the characteristic changes, PCa patients showed decreased concentration
of glycine, a metabolite involved in one-carbon metabolism and associated with cell transformation
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and tumorigenesis [77]. Interestingly, Struck-Lewicka et al. reported lower levels of this metabolite in
urine samples from PCa patients when compared with a control group [40]. The overall results of this
study showed alterations in the urine levels of metabolites associated with TCA cycle, purine, glucose,
amino acid and urea metabolism in PCa patients. These findings are in agreement with those obtained
by Fernandez-Peralbo et al., where variations in the levels of 28 metabolites involved in amino acid,
purine and pyrimidine, and tryptophan metabolism were also identified [41] when comparing PCa
patients and healthy individuals. The results of this study led to a predictive model of high quality for
the discrimination of these two groups (sensitivity = 88.4% sensitivity, specificity = 92.9%).

Metabolic changes have also been identified when comparing urine samples from low and high
risk PCa patients. Heger et al. performed a study focused on the characterization of differences in
protein expression levels between two different risk groups of PCa patients after radical prostatectomy
(RP) [48]. The two experimental cohorts were divided based on the presence of positive (1 = 15) or
negative (1 = 15) surgical margins. The analysis led to the identification of three proteins with different
expression levels. Among them, the glycolytic enzyme lactate dehydrogenase C (LDHC), that plays a
key role in metabolism, was detected at higher expression levels in PCa patients with positive surgical
margins [48]. Beyond PCa, increased LDHC expression has also been observed in melanoma, lung
and breast cancer [78]. Moreover, this enzyme has been shown to be involved in tumor invasion and
migration in breast cancer [79].

A complementary approach, that has also been the focus of recent studies in the context of urinary
alterations associated with PCa, is the analysis of extracellular vesicles (EV). The analysis of these
particles still requires the optimization of methods for isolation and storage of urinary EV, as well
as for the normalization of metabolite levels [80]. Nevertheless, in a preliminary study, Puhka et al.
analyzed urine EV samples from three controls and three PCa patients, obtained before and after
prostatectomy [42]. After normalization tests, decreased levels of glucuronate, D-ribose 5-phosphate
and isobutyryl-L-carnitine were observed in pre-prostatectomy samples when compared with the
healthy individuals and post-prostatectomy samples. In agreement with these results, Clos-Garcia et al.
also reported variations in carnitine-related metabolites when comparing urine EV samples from PCa
(n =31) and BPH (n = 14) patients [37]. In this study, changes in the expression levels of seven enzymes
related to fatty acid, steroid biosynthesis, creatine, and cAMP metabolism were also observed [37].
Increased levels of another enzyme involved in fatty acid metabolism (fatty acid binding protein 5,
FABP5) were also found in urinary EVs from PCa patients collected after prostatic massage [43]. In this
study, the AUC for the prediction of PCa with GS > 6 based on FABP5 was 0.757 (confidence interval
0.570-0.994, p-value = 0.027), whereas the AUC value for the prediction based on serum PSA was
0.593 (confidence interval 0.372-0.815, p-value = 0.42). FABP5 is an enzyme involved in the uptake
and transport of fatty acids, that has been previously found to be overexpressed in PCa tissues [81].
Increased levels of this enzyme have been described in serum and tissue samples from PCa patients
with lymph node metastasis [82].

Overall, these studies show that the urine metabolic phenotype of PCa patients is significantly
different from that of healthy individuals and BPH patients. Taken together, alterations in the levels
of metabolites involved in TCA cycle, tryptophan, amino acid, fatty acid, nucleotide, and carbon
metabolism have been reported. In general, a significant limitation of these studies has been the
sample size, except for the study carried out by Liang et al. where a total of 469 urine samples were
analyzed [38]. Therefore, further analyses and validation studies will be necessary to assess the clinical
utility of these findings.

4.2. Serum Biomarkers

Metabolic dysregulations in TCA cycle, fatty acid, amino acid, purine, histidine, creatine, glycine,
and serine, and threonine metabolism have been described when analyzing serum metabolic profile of
PCa patients. Particularly, a study conducted by Giskeodegard et al., comparing the serum metabolic
profile of 21 BPH and 29 PCa patients, revealed significant changes in fatty acid, choline and amino
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acid metabolism [49]. In this study, different metabolomics analytical platforms were used to perform
the analysis. The combination of the most relevant metabolites identified using the different platforms
provided the best classification results, enabling the discrimination of PCa patients and BPH controls
with a sensitivity and specificity of 81.5% and 75.2%, respectively. In a different study, Kumar
et al. reported a metabolic signature of three metabolites (pyruvate, glycine, and sarcosine) that
classified 90.2% of PCa samples (1 = 70) with 84.8% sensitivity and 92.9% specificity compared with
healthy controls (n = 32) [47]. Furthermore, Kumar et al., using filtered serum samples (n = 210),
obtained a model based on five metabolites (alanine, sarcosine, creatinine, glycine, and citrate) that
enabled the discrimination of BPH and PCa patients with high accuracy (88.3%) [46]. Finally, Zhao
et al., analyzing the metabolic profile of plasma samples from 32 control cases and 32 PCa patients,
reported alterations in different metabolic pathways, including amino acid, propanoate, butanoate, and
nucleotide metabolism [50]. After evaluation of the predictive value of individual changes, a predictive
model combining sarcosine, acetylglycine, and coreximine was reported. However, although a discrete
increase in the diagnostic performance (AUC = 0.941; confidence interval 0.812-1) was found when
compared with PSA levels (AUC = 0.926; confidence interval 0.851-0.978), this model partially relied
on changes in the levels of coreximine, a compound belonging to a family of alkaloids and derivatives,
probably from exogenous origin.

Regarding PCa biomarkers associated with disease progression and outcome, different studies,
focused on the analysis of PCa serum samples, have been performed trying to identify metabolic
alterations that could be useful from this clinical perspective [47,51]. These studies revealed alterations
in TCA cycle, lipids, and amino acids metabolism. Lin et al. investigated the correlation between the
plasma lipidome and the outcome of 96 castration-resistant PCa (CRPC) patients [51]. A three-lipid
signature, comprising ceramide d18:1/24:1, sphingomyelin d18:2/16:0 and phosphatidylcholine
16:0/16:0, was found to be associated with poor prognosis in this study and further validated in
an independent cohort of 63 CRPC patients. The results also revealed an association between the lipid
signature in the serum of the patients and the overall survival time. Eleven out of the 63 patients
of the validation cohort exhibited the three-lipid signature, and their median overall survival time
was significantly shorter than those not displaying that signature (11.3 vs. 21.4 months). In another
study performed in serum samples, Kumar et al. described a model consisting of three metabolites
(alanine, pyruvate and glycine) that allowed the discrimination of low- (n = 40) from high-grade
(n = 30) PCa serum samples with 92.5% sensitivity and 93.3% specificity [47]. Alanine and glycine can
be metabolized to a common end product, pyruvate. Increased levels of these two metabolites have
also been observed in urine [83] and tissue [84] from PCa patients. Tissue levels of both metabolites
have also shown a statistically significant correlation with the GS [85]. Finally, in a study performed
by Mondul et al., 200 matched-controls and 200 PCa patients (100 aggressive) were analyzed [52].
The authors reported inverse associations between the risk of aggressive PCa and the levels of
glycerophospholipids and fatty acids, inositol-1-phosphate showing the strongest inverse association.
On the contrary, aggressive PCa risk was correlated with the levels of a-ketoglutarate, thyroxine,
TMAO, and erucoyl-sphingomyelin, while metabolites involved in the metabolism of nucleotides,
steroid hormones and tobacco were associated with non-aggressive PCa [52]. In this particular study,
although levels of two known nicotine-derived metabolites (cotinine and hydroxycotinine) were found
to be associated with non-aggressive PCa, the authors argued that it was unlikely that these changes
were related to tobacco smoking as all individuals included in the study were smokers at the time of
sample collection. Furthermore, results remained unchanged when adjusting for cigarettes smoked
per day, suggesting that cigarette smoking did not strongly influence the results.

Additionally, some of the most recent PCa metabolomics studies based on the analysis of serum
samples have aimed to identify metabolic alterations that could provide insights into the risk of
developing PCa. These studies were carried out with a significant number of samples in each
experimental cohort compared with those focused on the identification of biomarkers for PCa diagnosis
and/or prognosis. Thus, Kiithn et al. evaluated the association between the levels of pre-diagnostic
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metabolites and the risk of developing different cancers, including PCa [53]. Serum samples of
310 PCa patients with a median follow-up of 6.83 years were included in the study. High levels of
lysophosphatidylcholines were found to be positively correlated to lower PCa risk, while high levels
of phosphatidylcholines were associated with increased risk of developing the disease [53]. Schmidt et
al. analyzed 1077 healthy and PCa serum samples to assess the risk of developing PCa [54]. In this
study, higher citrulline levels were associated with a 27% decreased risk of PCa in the first five years
of follow-up but not after longer periods of time [54]. The authors also reported inverse associations
between 12 glycerophospholipids and advanced stage disease. In another study, Huang et al. analyzed
serum samples from controls (1 = 200) and PCa patients classified according to their tumor stage (T2:
n =71, T3: n=>51, T4: n = 15), and identified metabolites associated with the risk of being diagnosed
with each stage [55]. Histidine and uridine-related metabolites were associated with risk of T2 stage.
Glycerophospholipids and primary bile acid lipids showed inverse correlations with T3 stage, while
sphingomyelins were positively associated with risk of T3. Secondary bile acid, sex steroids, histamine,
and BCAA were associated with T4 risk, while citrate and fumarate were inversely correlated. Finally,
a recent study carried out by Andras et al. used serum samples to identify variations in the metabolite
levels that could be useful for predicting PCa before biopsy [56]. These authors analyzed 90 samples
from patients with suspicion of PCa and derived a predictive score based on six metabolites, that was
validated using a subgroup of patients. A cut-off value of 0.528 for the derived score showed good
accuracy for PCa prediction before biopsy (AUC = 0.779; confidence interval 0.625-0.876), although
not statistically significantly higher than the predictive ability of PSA levels (AUC = 0.793; confidence
interval 0.665-0.889). In PCa patients with PSA levels < 10 ng/mL, this score had 80.95% sensitivity
and 64.52% specificity for PCa detection at biopsy.

4.3. Seminal Fluid Biomarkers

Seminal fluid has a number of advantages over blood and urine in terms of its potential as a source
of PCa specific biomarkers. Prostatic constituents are highly enriched in seminal fluid compared with
other biofluids. In the last few years, several metabolomics studies have been performed aiming to
analyze the metabolic profile of seminal fluid samples from either healthy individuals [57-59] or BPH
patients [60] and PCa patients to discover metabolic alterations that could be useful for discriminating
between both groups. In general, these studies were performed using NMR spectroscopy (1 = 4)
and the sample size of the different cohorts was relatively small. Most of the metabolic alterations
identified included changes in the TCA cycle, amino acid, and lipid metabolism. In a preliminary
study, Averna et al. found decreased concentrations of citrate in PCa (1 = 3) compared to BPH (n = 1)
samples [60]. Similarly, Kline et al. also observed lower citrate levels in PCa samples both when
analyzing seminal fluid samples and expressed prostatic secretions (EPS) from 33 healthy volunteers
and 28 PCa patients [57]. In this study, authors reported good values for predicting PCa in patients
(AUC = 0.81 in seminal fluid, confidence interval 0.60-0.92 and AUC = 0.73 in EPS, confidence interval
0.38-0.90), outperforming the predictive ability of PSA (AUC = 0.61, confidence interval 0.44-0.74)
in these samples. Furthermore, using an ELISA assay, Etheridge et al. identified alpha methylacyl A
coenzyme racemase (AMACR) as a promising biomarker for PCa diagnosis [58]. Higher levels of this
enzyme were detected in seminal fluid samples of PCa patients (1 = 28) compared with age-matched
controls (1 = 15). AMACR, a key regulator of lipid metabolism, is involved in the peroxisomal and
mitochondrial -oxidation of branched-chain fatty acids. This enzyme had been previously described
as an immunohistological marker for PCa diagnosis [86,87], associated with poor prognosis in patients
with localized PCa [88] and found to be overexpressed in PCa tissues [89]. Interestingly, AMACR
has also been identified as a promising prognostic indicator in other cancer types, including gastric
cancer [90] and hepatocellular [91] and nasopharyngeal [92] carcinomas.

Besides seminal fluid, EPS is another biofluid enriched in prostatic material that has shown
potential utility for the identification of new PCa disease-specific biomarkers. EPS is obtained in the
first void following vigorous DRE or prostatic massage. Given the nature of this biofluid, metabolites
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present in EPS are usually found at lower concentrations than in seminal fluid, thus requiring the use
of highly sensitive detection methods. In 2008, Serkova et al. analyzed EPS samples from 26 healthy
volunteers and 52 PCa patients aiming to identify potential metabolites that could contribute to PCa
risk assessment [59]. This study revealed that concentrations of citrate, myo-inositol, and spermine
were inversely correlated with PCa risk (AUC values of 0.89, 0.87 and 0.79, respectively). However, in a
more recent study attempting to validate the role of these metabolites as biomarkers for assessing PCa
risk, Roberts et al. found that citrate, spermine, and myo-inositol had minimal predictive ability when
analyzing seminal fluid samples [61]. Therefore, further studies using larger cohorts will be required
to confirm the utility of seminal fluid and EPS derived biomarkers for PCa diagnosis and prognosis.
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5. Conclusions and Future Perspectives

The identification and characterization of the metabolic changes accompanying the transformation
of benign into malignant prostate cells has led to an increased interest, over the last few years,
in the application of metabolomics for identifying clinically relevant biomarkers in this field. Omics
approaches, including genomics, proteomics, transcriptomics, and metabolomics, are highly innovative
areas of research. One of the major advantages of the omics approaches is their ability to provide
information using unbiased large-scale approaches. Among them, metabolomics provides an
unprecedented opportunity for understanding the pathophysiological condition of an individual.
Metabolites represent the end products of biochemical pathways, and the concentrations of these
compounds are extremely sensitive to different alterations. Thus, these metabolic fingerprints can
provide useful clues for the characterization of biomarkers associated with the onset and progression
of diseases. Furthermore, as metabolomics studies can be performed using biological fluids that could
be easily accessible (e.g., serum, plasma, urine, and seminal fluid), it offers a high potential for clinical
translatability when compared with other omics approaches.

In this manuscript, we aimed to review the main findings described in recent PCa metabolomics
studies focused on the analysis of different biofluids (Table 1). Furthermore, a summary of the most
significant findings reported in these studies and the connections and interactions between the different
metabolic changes described has also been included, aiming to better describe the specific metabolic
signature associated to PCa (Figure 1).
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Figure 1. Overview of main metabolic changes described in metabolic-related studies of human
biofluids applied to PCa biomarker discovery. BCAA: Branched-chain amino acids; CS: Citrate synthase;
FBP1: Fructose-bisphosphatase; GAA: Guanidinoacetate; GABA: Gamma-aminobutyric acid; GPI:
Glucose-6-phosphate isomerase; HK2: Hexokinase 2; LDH: Lactate dehydrogenase; PDH: Pyruvate
dehydrogenase; PEP: Phosphoenolpyruvate; PFK: Phosphofructokinase; PK: Pyruvate kinase; SAM:
S-Adenosyl methionine.
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Most of the studies included in this review were based on the analysis of blood or urine samples,
probably due to their easy accessibility and non-invasiveness. NMR and MS are the two most
commonly used analytical platforms in these studies, though other analytical techniques have also
been applied to the identification of PCa-related metabolic changes [58,93-95]. Although a significant
number of studies focused on the identification of biomarkers for PCa diagnosis, some of them also
explored the potential of metabolic biomarkers for patient prognosis and PCa risk evaluation.

Overall, these studies have revealed that alterations in TCA cycle, polyamines, glycolysis,
one-carbon metabolism, nucleotide synthesis, amino acid, fatty acid, and lipid metabolism are
associated with PCa onset and progression. Figure 1 illustrates the main alterations, in terms of
metabolic pathways and metabolites, associated with PCa based on current literature.

The results of the different studies provide compelling evidence of the potential of metabolomics
strategies for identifying new PCa biomarkers in biofluids that could be of interest from a clinical
perspective. The potential of this approach for routine clinical diagnostics is significant since only
minimal biological preparation is necessary. Despite the advances achieved in the field of PCa
biomarker discovery, intense efforts are still required before metabolite profiling can be implemented
in the clinic. So far, the variability in the metabolic alterations reported precludes consistent, universal
signatures to be established, showing that a long path is still to be thread toward the full validation and
clinical approval of putative new metabolic biomarkers. In this context, it is worth noting that although
most of the reviewed studies included the internal validation of the statistical models developed during
the study, either for PCa diagnosis or prognosis, a limited number of them included the assessment
of the clinical utility of these findings using an external validation cohort of patients. Thus, future
studies should include larger sample cohorts from adequately defined and matched groups of samples.
In addition, statistical validation of multivariate models would benefit from full external validation.
Finally, increased knowledge on the biological significance of potential PCa biomarkers should be
assessed through the integration of metabolomics with other biochemical/biological approaches.
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Abbreviations

The following abbreviations are used in this manuscript:

TH-NMR Proton nuclear magnetic resonance spectroscopy
2D-DIGE-MS Two dimensional-difference gel electrophoresis—mass spectrometry
AUC Area under the curve

BCAA Branched-chain amino acids

BPH Benign prostatic hyperplasia

CRPC Castration-resistant prostate cancer

(@3} Citrate synthase

DRE Digital rectal examination

ELISA Enzyme-linked immunosorbent assay

EPS Expressed prostatic secretions

EV Extracellular vesicles
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TH-NMR Proton nuclear magnetic resonance spectroscopy

FBP Fructose-bisphosphatase

FIA-MS/MS Flow injection analysis-tandem mass spectrometry
FPLC-MS Fast ultra-high-performance liquid chromatography-mass spectrometry
GAA Guanidinoacetate

GABA Gamma-aminobutyric acid

GPI Glucose-6-phosphate isomerase

GS Gleason Score

GC-MS Gas chromatography—mass spectrometry

GC-QqQ-MS Gas chromatography-triple quadrupole—mass spectrometry
HG High-grade (GS > 8)

HK2 Hexokinase 2

HPLC-ESI-QTOF-MS

HPLC-TOF-MS

High performance liquid chromatography—electrospray
ionization-quadrupole time of flight-mass spectrometry
High performance liquid chromatography-time of flight-mass

spectrometry
HV Healthy Volunteers
iTRAQ Isobaric tag for relative and absolute quantification
LC-MS Liquid chromatography—mass spectrometry
LC-MS/MS Liquid chromatography-tandem mass spectrometry
LDH Lactate dehydrogenase
LG Low-grade (GS < 7)

MALDI-TOF-MS

Matrix-assisted laser desorption ionization-time of flight-mass
spectrometry

MS Mass spectroscopy

NMR Nuclear magnetic resonance

QqQ-MS: Triple quadrupole-mass spectrometry

PCa Prostate cancer

PDH Pyruvate dehydrogenase

PEP Phosphoenolpyruvate

PFK Phosphofructokinase

PK Pyruvate kinase

PM Prostatic massage

PSA Prostate specific antigen

SAM S-Adenosyl methionine

T Stage

TCA Tricarboxylic acid

TMAO Trimethylamine N-oxide

TRUS Trans-rectal ultrasound

UHPLC-MS Ultra-high-performance liquid chromatography—mass spectrometry
UPLC-MS/MS Ultra performance liquid chromatography-tandem mass spectrometry
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Abstract: Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid
metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria
for 3-oxidation as a major source of energy for cell activities. The liver is the most important organ
for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary
malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines.
In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly
reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved
in fatty acid B-oxidation. Then different analytical platforms and methodologies were also briefly
summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of
the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients.
These findings presented current evidence in support of acylcarnitines as new candidate biomarkers
for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and
perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for
HCC diagnosis and prognosis.

Keywords: acylcarnitines; hepatocellular carcinoma; metabolite profiling; metabolomics

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. This intra-
abdominal malignant tumours accounted for 90% of all cases of primary liver cancer [1]. HCC ranks
as the second leading cause of cancer-related mortality in the world [2]. It has a very poor prognosis
of malignant tumours, with prognosis less than 5% [3]. The main pathogenic factors of HCC are
viruses, bacteria, alcohol, therapeutic drugs, and harmful substances [4]. Its occurrence is long-term,
dynamic, and multi-stage with the complex regulation of multiple genes and factors [5]. Chronic
liver damage and inflammation