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Abstract: Prostate cancer (PCa) is one of the most frequently diagnosed cancers and a leading cause
of death among men worldwide. Despite extensive efforts in biomarker discovery during the last
years, currently used clinical biomarkers are still lacking enough specificity and sensitivity for PCa
early detection, patient prognosis, and monitoring. Therefore, more precise biomarkers are required
to improve the clinical management of PCa patients. In this context, metabolomics has shown to
be a promising and powerful tool to identify novel PCa biomarkers in biofluids. Thus, changes
in polyamines, tricarboxylic acid (TCA) cycle, amino acids, and fatty acids metabolism have been
reported in different studies analyzing PCa patients’ biofluids. The review provides an up-to-date
summary of the main metabolic alterations that have been described in biofluid-based studies of
PCa patients, as well as a discussion regarding their potential to improve clinical PCa diagnosis and
prognosis. Furthermore, a summary of the most significant findings reported in these studies and
the connections and interactions between the different metabolic changes described has also been
included, aiming to better describe the specific metabolic signature associated to PCa.

Keywords: metabolomics; metabolism; prostate cancer; biomarker; early diagnosis; prognosis

1. Introduction

Prostate cancer (PCa) is the second most frequently diagnosed cancer and represents the
fifth leading cause of death in men [1]. In 2018, new cases of PCa were estimated to account
for over 1.3 million, and 359.000 PCa-associated deaths were expected worldwide [1]. PCa is a
hormone-dependent tumor characterized by an extremely variable clinical course, ranging from
an indolent condition to a rapid progression into an aggressive phenotype that disseminates and
metastasizes to the lymph nodes and bones. Moreover, there is a current lack of reliable and
reproducible assays to identify tumors destined to remain indolent. Thus, stratifying PCa patients into
different risk phenotypes at time of diagnosis is still a major clinical challenge.

Nowadays, PCa screening tests rely on the determination of prostate-specific antigen (PSA)
serum levels and digital rectal examination (DRE). Based on the results of these screening tests,
trans-rectal ultrasound (TRUS)-guided prostate biopsy is performed to confirm diagnosis when
necessary. However, these tests suffer from a number of limitations and do not provide enough
information to enable a precise discrimination between indolent and aggressive tumors. While PSA
provides high sensitivity and low specificity for PCa diagnosis, (TRUS)-guided prostate biopsy has been

Metabolites 2019, 9, 48; doi:10.3390/metabo9030048 www.mdpi.com/journal/metabolites1
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associated with high false negative rates due to the high degree of PCa inter- and intra-heterogeneity [2].
Moreover, even the recently updated histopathology-based estimation of the Gleason Score (GS),
the current clinical gold standard for assessing the risk of PCa metastasis and prognosis, exhibits
limitations [3]. During the last years, many research studies have focused on the identification
of molecular biomarkers that could help to improve early diagnosis and risk stratification of PCa
patients [4–7]. Among them, a potential biomarker, that has been evaluated in combination with
PSA levels, is the non-coding transcript PCA3 (overexpressed in >95% of PCa). The quantification
of PCA3 levels in urine has shown improvement, when combined with PSA, in PCa detection [8],
although no optimal cut-off for urinary PCA3 levels has been established for maximizing clinical
benefit while avoiding overdiagnosis [9]. Another potential biomarker is the TMPRSS2:ERG fusion
transcript [10], that is being evaluated as a potential diagnostic and therapeutic target associated with
PCa invasion [11]. Despite being 100% indicative of PCa [12], it is only detected in 50% of PCa cases [13].
In summary, although intense efforts have been devoted to the discovery and development of new
PCa biomarkers, there still exists an unmet clinical need to identify accurate PCa biomarkers for early
diagnosis, prognosis and monitoring of PCa patients, both in terms of sensitivity and specificity [14,15].

Moreover, additional clinically robust biomarkers able to differentiate between indolent and
aggressive PCa are urgently needed. In this context, several metabolomics studies have been carried out
to attempt the characterization of a specific PCa metabolic profile, with the ultimate goal of identifying
potential metabolic biomarkers that could improve the clinical management of PCa patients [16–19].

2. Cancer and Metabolic Reprogramming: Metabolomics Opportunities

The metabolic profile is closely associated with the pathophysiological condition of an individual.
In particular, the metabolic composition can be strongly influenced, both from a qualitative and
quantitative point of view, as a result of pathological processes or in the presence of specific drug
treatments [20]. These changes can provide useful clues for the characterization of biomarkers
associated with the onset and progression of diseases, as well as with the prediction of the response to
therapeutic interventions.

Different studies, linking significant metabolic alterations and cancer onset and progression,
have been extensively described since Warburg’s pioneering studies [21]. The metabolic rewiring
associated with the neoplastic processes is the result of mutations in specific oncogenes and tumor
suppressors, leading to the activation of different signaling pathways and transcriptional networks [22].
Furthermore, it is well known that neoplastic processes have a strong influence on gene expression,
cellular differentiation and tumor microenvironment [23,24]. Metabolites represent the end products of
biochemical pathways, and the concentrations of these compounds are extremely sensitive to different
alterations. At the molecular level, the progression of cancer involves multiple alterations in metabolic
pathways that are specifically required for cancer cells to survive [23]. Interestingly, cancer cells exhibit
different metabolic phenotypes [25,26]. Thus, some tumors preferentially use aerobic glycolysis to
proliferate [27], while others rely on glutaminolysis [28], or one-carbon metabolism [29]. There are also
tumors that benefit from the utilization of several of these metabolic routes at the same time [25,26,28].

In this context, metabolomics, that relies on the systematic analysis of low-molecular-weight
metabolites present in biological samples, provides an accurate and complementary approach
for getting a better understanding of the biochemical alterations responsible for the onset and
progression of neoplastic processes, thus offering new opportunities for biomarker discovery in
complex diseases [30]. Metabolomics studies offer a holistic view of the biochemical processes that
could contribute to getting a deeper insight into the molecular alterations underlying pathological
processes. This information could significantly improve the opportunities to identify clinically relevant
biomarkers for the diagnosis and prognosis of different pathological processes, including PCa.
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3. Metabolomics and PCa

The ultimate goal of metabolomics is to measure and identify as many metabolites as possible,
ideally obtaining a complete overview of the metabolome. Metabolomics can provide an accurate
description of the phenotype of an individual because it represents the final step of the omics cascade.
The analysis of metabolic changes associated with specific biochemical pathways offers unprecedented
opportunities for identifying the molecular mechanisms of complex diseases. Taken into consideration
the limitations of current diagnostic procedures, this information could result in the characterization
of specific and novel disease biomarkers [31].

At the analytical level, these studies are extremely challenging [32,33]. The complexity of the
matrix to be examined (e.g., osmolarity, the presence of proteins, and inorganic salt concentration),
the dynamic range of metabolites concentrations, and the vast chemical diversity of metabolite types
(e.g., acidic, neutral, basic, lyophilic, and hydrophilic) greatly complicate the choice of analytical
modality. However, a number of technical improvements have been introduced over the last few
years. This has led to the development of a wide variety of analytical platforms that are currently used
to characterize the metabolic content of biological samples [34–36]. The selection of the appropriate
approach usually depends on the experimental objectives and the biological matrix. The detection of
metabolites in cells, tissues or biofluids is usually carried out by either Nuclear Magnetic Resonance
(NMR) spectroscopy or mass spectrometry (MS). In general, NMR spectroscopy, mostly 1H-NMR, and
MS, particularly liquid chromatography (LC)-MS, are the two most important analytical platforms
used in metabolomics studies.

PCa is a disease of great interest from a metabolomics perspective. A number of studies,
focused on the characterization of the specific PCa metabolic phenotype using different experimental
approaches, have been reported recently [37–61]. These studies have shown that healthy prostate
cells are characterized by a decreased citrate oxidation and metabolism within the tricarboxylic acid
(TCA) cycle, resulting in citrate accumulation [62] and the reliance on glucose oxidation for energy
production [63]. Benign prostate cells accumulate zinc, resulting in the inhibition of the m-aconitase
(ACO), the enzyme that catalyzes the isomerization of citrate in the TCA cycle [62]. However, when
prostate cells undergo malignant transformation, their characteristic ability to accumulate zinc is lost,
leading to the TCA activation. Furthermore, it has been shown that early PCa does not exhibit the
Warburg effect [64], relying on lipids and other energetic molecules for energy production, but not on
aerobic respiration [65,66]. In this context, it should be noted that several metabolic alterations have
also been identified in PCa tissue compared with normal tissue, including an increase of choline [67]
and sarcosine [68], and a decrease of polyamine and citrate levels [69,70]. Nevertheless, the clinical
relevance of some of these changes remains controversial due to the contradictory results reported in
different studies (e.g., alterations in sarcosine levels–further discussed in the following section).

Overall, the possibility to directly evaluate the metabolic phenotype of PCa patients offers a great
potential from a clinical perspective. To this end, many metabolomics projects, based on the analysis of
different biological samples, have been conducted over the last few years with a focus on the discovery
of new biomarkers that could improve the clinical management of PCa patients (Table 1).

4. PCa Metabolic Biomarkers in Biofluids

Changes in the concentration of metabolites in biofluids are reflective of alterations in the
physiological status of an individual. The metabolome, that is, the set of all metabolites present
on a particular biological sample, represents the downstream end product of the omics cascade, and a
closer approach to the phenotype. Therefore, metabolite signatures obtained from biofluids can be a
useful approach for identifying non-invasive biomarkers and characterizing the molecular mechanisms
associated with pathological conditions. The most widely used biofluids in PCa studies have been
urine, serum and seminal fluid.
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4.1. Urine Biomarkers

Urine samples offer some advantages for carrying out metabolomics studies since they can
be collected non-invasively and have a less complex composition compared with other biofluids,
thus facilitating the discovery of novel biomarkers [71]. However, the analysis of this biofluid
has several limitations, including the presence of diluted urinary constituents and interferences
between molecules [37,71], that can result in failing to detect underrepresented metabolites or to
correctly identify the molecules. Despite these problems, different studies have discovered metabolic
alterations in urine samples from PCa patients and evaluated their clinical utility as biomarkers for
this neoplastic process.

Urine is anatomically close to the prostate, which explains why it has been extensively studied for
metabolic biomarker discovery in PCa [37]. As shown in Table 1, most of these studies have aimed
to identify metabolic dysregulations that could provide clinically relevant PCa biomarkers. Most of
these studies focused on the characterization of the metabolic differences between urine samples from
healthy individuals [38–43] or benign prostate hyperplasia (BPH) patients [37,44,45] and PCa patients.
In general, they were performed using mass spectrometry (MS)-based metabolomics as an analytical
platform (n = 8), and only one study was performed using NMR spectroscopy for the analysis of urine
samples [44].

The study conducted by Liang et al., including the analysis of 233 healthy individuals and 236 PCa
patients, highlighted the clinical utility of three metabolites: 5-hydroxy-L-tryptophan, hippurate, and
glycocholic acid, as potential metabolic biomarkers for the early diagnosis of PCa (area under the curve,
(AUC) > 0.95) [38]. A metabolite called 5-hydroxy-L-tryptophan is involved in tryptophan metabolism,
a pathway that has been associated with the ability of several tumors to evade the antitumor immune
response [72,73]. Another metabolite involved in this pathway, kynurenic acid, also exhibited a
moderate diagnostic value (AUC = 0.62) in a study conducted by Gkotsos et al. for the detection of
PCa using urine samples obtained after prostatic massage [39].

Another metabolite that has been extensively investigated as a potential biomarker of PCa is
sarcosine. Sarcosine is an intermediate product in the synthesis and degradation of glycine. In 2009,
Sreekumar et al. identified sarcosine as a promising PCa biomarker, being highly correlated with
PCa progression and more detectable in the urine of PCa patients when compared with healthy
individuals [68]. Similarly, Khan et al. reported in 2013 markedly elevated sarcosine levels in the
urine sediments of PCa patients compared with controls [74]. In serum, Kumar et al. [46,47] also
found increased sarcosine levels in PCa samples compared with healthy individuals. In these studies,
it was shown that sarcosine, in combination with other metabolites, could accurately differentiate
PCa patients from healthy individuals (accuracy = 90.2%) [47] and PCa from BPH patients (87.7%
sensitivity and 85.5% specificity) [46]. Furthermore, the authors showed that metabolomics provided
better predictions than serum PSA levels for the discrimination between PCa patients and healthy
individuals as well as between PCa and BPH patients. However, the role of sarcosine as a metabolic
biomarker for PCa diagnosis and prognosis remains controversial due to the contradictory results
reported in further studies. In a case-control study conducted by Ankerst et al., the use of sarcosine as a
biomarker for early PCa detection was investigated in serum samples of matched-age controls and PCa
patients [75]. These authors reported no differences in sarcosine levels when comparing both groups.
Furthermore, in another pilot study by Dereziński et al., where higher serum sarcosine levels were
found in PCa patients when compared with the control group, no statistically significant differences
were observed in urine samples [76]. Similarly, Pérez-Rambla et al. found elevated sarcosine levels
in PCa patients when compared with BPH patients, although these alterations were not found to be
statistically significant [44].

Beyond the alteration in sarcosine levels, Pérez-Rambla et al. also identified alterations in the
urine levels of six metabolites that facilitated the discrimination of the metabolomic profile of PCa and
BPH patients [44]. Among the characteristic changes, PCa patients showed decreased concentration
of glycine, a metabolite involved in one-carbon metabolism and associated with cell transformation
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and tumorigenesis [77]. Interestingly, Struck-Lewicka et al. reported lower levels of this metabolite in
urine samples from PCa patients when compared with a control group [40]. The overall results of this
study showed alterations in the urine levels of metabolites associated with TCA cycle, purine, glucose,
amino acid and urea metabolism in PCa patients. These findings are in agreement with those obtained
by Fernández-Peralbo et al., where variations in the levels of 28 metabolites involved in amino acid,
purine and pyrimidine, and tryptophan metabolism were also identified [41] when comparing PCa
patients and healthy individuals. The results of this study led to a predictive model of high quality for
the discrimination of these two groups (sensitivity = 88.4% sensitivity, specificity = 92.9%).

Metabolic changes have also been identified when comparing urine samples from low and high
risk PCa patients. Heger et al. performed a study focused on the characterization of differences in
protein expression levels between two different risk groups of PCa patients after radical prostatectomy
(RP) [48]. The two experimental cohorts were divided based on the presence of positive (n = 15) or
negative (n = 15) surgical margins. The analysis led to the identification of three proteins with different
expression levels. Among them, the glycolytic enzyme lactate dehydrogenase C (LDHC), that plays a
key role in metabolism, was detected at higher expression levels in PCa patients with positive surgical
margins [48]. Beyond PCa, increased LDHC expression has also been observed in melanoma, lung
and breast cancer [78]. Moreover, this enzyme has been shown to be involved in tumor invasion and
migration in breast cancer [79].

A complementary approach, that has also been the focus of recent studies in the context of urinary
alterations associated with PCa, is the analysis of extracellular vesicles (EV). The analysis of these
particles still requires the optimization of methods for isolation and storage of urinary EV, as well
as for the normalization of metabolite levels [80]. Nevertheless, in a preliminary study, Puhka et al.
analyzed urine EV samples from three controls and three PCa patients, obtained before and after
prostatectomy [42]. After normalization tests, decreased levels of glucuronate, D-ribose 5-phosphate
and isobutyryl-L-carnitine were observed in pre-prostatectomy samples when compared with the
healthy individuals and post-prostatectomy samples. In agreement with these results, Clos-García et al.
also reported variations in carnitine-related metabolites when comparing urine EV samples from PCa
(n = 31) and BPH (n = 14) patients [37]. In this study, changes in the expression levels of seven enzymes
related to fatty acid, steroid biosynthesis, creatine, and cAMP metabolism were also observed [37].
Increased levels of another enzyme involved in fatty acid metabolism (fatty acid binding protein 5,
FABP5) were also found in urinary EVs from PCa patients collected after prostatic massage [43]. In this
study, the AUC for the prediction of PCa with GS≥ 6 based on FABP5 was 0.757 (confidence interval
0.570–0.994, p-value = 0.027), whereas the AUC value for the prediction based on serum PSA was
0.593 (confidence interval 0.372–0.815, p-value = 0.42). FABP5 is an enzyme involved in the uptake
and transport of fatty acids, that has been previously found to be overexpressed in PCa tissues [81].
Increased levels of this enzyme have been described in serum and tissue samples from PCa patients
with lymph node metastasis [82].

Overall, these studies show that the urine metabolic phenotype of PCa patients is significantly
different from that of healthy individuals and BPH patients. Taken together, alterations in the levels
of metabolites involved in TCA cycle, tryptophan, amino acid, fatty acid, nucleotide, and carbon
metabolism have been reported. In general, a significant limitation of these studies has been the
sample size, except for the study carried out by Liang et al. where a total of 469 urine samples were
analyzed [38]. Therefore, further analyses and validation studies will be necessary to assess the clinical
utility of these findings.

4.2. Serum Biomarkers

Metabolic dysregulations in TCA cycle, fatty acid, amino acid, purine, histidine, creatine, glycine,
and serine, and threonine metabolism have been described when analyzing serum metabolic profile of
PCa patients. Particularly, a study conducted by Giskeødegård et al., comparing the serum metabolic
profile of 21 BPH and 29 PCa patients, revealed significant changes in fatty acid, choline and amino
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acid metabolism [49]. In this study, different metabolomics analytical platforms were used to perform
the analysis. The combination of the most relevant metabolites identified using the different platforms
provided the best classification results, enabling the discrimination of PCa patients and BPH controls
with a sensitivity and specificity of 81.5% and 75.2%, respectively. In a different study, Kumar
et al. reported a metabolic signature of three metabolites (pyruvate, glycine, and sarcosine) that
classified 90.2% of PCa samples (n = 70) with 84.8% sensitivity and 92.9% specificity compared with
healthy controls (n = 32) [47]. Furthermore, Kumar et al., using filtered serum samples (n = 210),
obtained a model based on five metabolites (alanine, sarcosine, creatinine, glycine, and citrate) that
enabled the discrimination of BPH and PCa patients with high accuracy (88.3%) [46]. Finally, Zhao
et al., analyzing the metabolic profile of plasma samples from 32 control cases and 32 PCa patients,
reported alterations in different metabolic pathways, including amino acid, propanoate, butanoate, and
nucleotide metabolism [50]. After evaluation of the predictive value of individual changes, a predictive
model combining sarcosine, acetylglycine, and coreximine was reported. However, although a discrete
increase in the diagnostic performance (AUC = 0.941; confidence interval 0.812–1) was found when
compared with PSA levels (AUC = 0.926; confidence interval 0.851–0.978), this model partially relied
on changes in the levels of coreximine, a compound belonging to a family of alkaloids and derivatives,
probably from exogenous origin.

Regarding PCa biomarkers associated with disease progression and outcome, different studies,
focused on the analysis of PCa serum samples, have been performed trying to identify metabolic
alterations that could be useful from this clinical perspective [47,51]. These studies revealed alterations
in TCA cycle, lipids, and amino acids metabolism. Lin et al. investigated the correlation between the
plasma lipidome and the outcome of 96 castration-resistant PCa (CRPC) patients [51]. A three-lipid
signature, comprising ceramide d18:1/24:1, sphingomyelin d18:2/16:0 and phosphatidylcholine
16:0/16:0, was found to be associated with poor prognosis in this study and further validated in
an independent cohort of 63 CRPC patients. The results also revealed an association between the lipid
signature in the serum of the patients and the overall survival time. Eleven out of the 63 patients
of the validation cohort exhibited the three-lipid signature, and their median overall survival time
was significantly shorter than those not displaying that signature (11.3 vs. 21.4 months). In another
study performed in serum samples, Kumar et al. described a model consisting of three metabolites
(alanine, pyruvate and glycine) that allowed the discrimination of low- (n = 40) from high-grade
(n = 30) PCa serum samples with 92.5% sensitivity and 93.3% specificity [47]. Alanine and glycine can
be metabolized to a common end product, pyruvate. Increased levels of these two metabolites have
also been observed in urine [83] and tissue [84] from PCa patients. Tissue levels of both metabolites
have also shown a statistically significant correlation with the GS [85]. Finally, in a study performed
by Mondul et al., 200 matched-controls and 200 PCa patients (100 aggressive) were analyzed [52].
The authors reported inverse associations between the risk of aggressive PCa and the levels of
glycerophospholipids and fatty acids, inositol-1-phosphate showing the strongest inverse association.
On the contrary, aggressive PCa risk was correlated with the levels of α-ketoglutarate, thyroxine,
TMAO, and erucoyl-sphingomyelin, while metabolites involved in the metabolism of nucleotides,
steroid hormones and tobacco were associated with non-aggressive PCa [52]. In this particular study,
although levels of two known nicotine-derived metabolites (cotinine and hydroxycotinine) were found
to be associated with non-aggressive PCa, the authors argued that it was unlikely that these changes
were related to tobacco smoking as all individuals included in the study were smokers at the time of
sample collection. Furthermore, results remained unchanged when adjusting for cigarettes smoked
per day, suggesting that cigarette smoking did not strongly influence the results.

Additionally, some of the most recent PCa metabolomics studies based on the analysis of serum
samples have aimed to identify metabolic alterations that could provide insights into the risk of
developing PCa. These studies were carried out with a significant number of samples in each
experimental cohort compared with those focused on the identification of biomarkers for PCa diagnosis
and/or prognosis. Thus, Kühn et al. evaluated the association between the levels of pre-diagnostic
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metabolites and the risk of developing different cancers, including PCa [53]. Serum samples of
310 PCa patients with a median follow-up of 6.83 years were included in the study. High levels of
lysophosphatidylcholines were found to be positively correlated to lower PCa risk, while high levels
of phosphatidylcholines were associated with increased risk of developing the disease [53]. Schmidt et
al. analyzed 1077 healthy and PCa serum samples to assess the risk of developing PCa [54]. In this
study, higher citrulline levels were associated with a 27% decreased risk of PCa in the first five years
of follow-up but not after longer periods of time [54]. The authors also reported inverse associations
between 12 glycerophospholipids and advanced stage disease. In another study, Huang et al. analyzed
serum samples from controls (n = 200) and PCa patients classified according to their tumor stage (T2:
n = 71, T3: n = 51, T4: n = 15), and identified metabolites associated with the risk of being diagnosed
with each stage [55]. Histidine and uridine-related metabolites were associated with risk of T2 stage.
Glycerophospholipids and primary bile acid lipids showed inverse correlations with T3 stage, while
sphingomyelins were positively associated with risk of T3. Secondary bile acid, sex steroids, histamine,
and BCAA were associated with T4 risk, while citrate and fumarate were inversely correlated. Finally,
a recent study carried out by Andras et al. used serum samples to identify variations in the metabolite
levels that could be useful for predicting PCa before biopsy [56]. These authors analyzed 90 samples
from patients with suspicion of PCa and derived a predictive score based on six metabolites, that was
validated using a subgroup of patients. A cut-off value of 0.528 for the derived score showed good
accuracy for PCa prediction before biopsy (AUC = 0.779; confidence interval 0.625–0.876), although
not statistically significantly higher than the predictive ability of PSA levels (AUC = 0.793; confidence
interval 0.665–0.889). In PCa patients with PSA levels < 10 ng/mL, this score had 80.95% sensitivity
and 64.52% specificity for PCa detection at biopsy.

4.3. Seminal Fluid Biomarkers

Seminal fluid has a number of advantages over blood and urine in terms of its potential as a source
of PCa specific biomarkers. Prostatic constituents are highly enriched in seminal fluid compared with
other biofluids. In the last few years, several metabolomics studies have been performed aiming to
analyze the metabolic profile of seminal fluid samples from either healthy individuals [57–59] or BPH
patients [60] and PCa patients to discover metabolic alterations that could be useful for discriminating
between both groups. In general, these studies were performed using NMR spectroscopy (n = 4)
and the sample size of the different cohorts was relatively small. Most of the metabolic alterations
identified included changes in the TCA cycle, amino acid, and lipid metabolism. In a preliminary
study, Averna et al. found decreased concentrations of citrate in PCa (n = 3) compared to BPH (n = 1)
samples [60]. Similarly, Kline et al. also observed lower citrate levels in PCa samples both when
analyzing seminal fluid samples and expressed prostatic secretions (EPS) from 33 healthy volunteers
and 28 PCa patients [57]. In this study, authors reported good values for predicting PCa in patients
(AUC = 0.81 in seminal fluid, confidence interval 0.60–0.92 and AUC = 0.73 in EPS, confidence interval
0.38–0.90), outperforming the predictive ability of PSA (AUC = 0.61, confidence interval 0.44–0.74)
in these samples. Furthermore, using an ELISA assay, Etheridge et al. identified alpha methylacyl A
coenzyme racemase (AMACR) as a promising biomarker for PCa diagnosis [58]. Higher levels of this
enzyme were detected in seminal fluid samples of PCa patients (n = 28) compared with age-matched
controls (n = 15). AMACR, a key regulator of lipid metabolism, is involved in the peroxisomal and
mitochondrial β-oxidation of branched-chain fatty acids. This enzyme had been previously described
as an immunohistological marker for PCa diagnosis [86,87], associated with poor prognosis in patients
with localized PCa [88] and found to be overexpressed in PCa tissues [89]. Interestingly, AMACR
has also been identified as a promising prognostic indicator in other cancer types, including gastric
cancer [90] and hepatocellular [91] and nasopharyngeal [92] carcinomas.

Besides seminal fluid, EPS is another biofluid enriched in prostatic material that has shown
potential utility for the identification of new PCa disease-specific biomarkers. EPS is obtained in the
first void following vigorous DRE or prostatic massage. Given the nature of this biofluid, metabolites
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present in EPS are usually found at lower concentrations than in seminal fluid, thus requiring the use
of highly sensitive detection methods. In 2008, Serkova et al. analyzed EPS samples from 26 healthy
volunteers and 52 PCa patients aiming to identify potential metabolites that could contribute to PCa
risk assessment [59]. This study revealed that concentrations of citrate, myo-inositol, and spermine
were inversely correlated with PCa risk (AUC values of 0.89, 0.87 and 0.79, respectively). However, in a
more recent study attempting to validate the role of these metabolites as biomarkers for assessing PCa
risk, Roberts et al. found that citrate, spermine, and myo-inositol had minimal predictive ability when
analyzing seminal fluid samples [61]. Therefore, further studies using larger cohorts will be required
to confirm the utility of seminal fluid and EPS derived biomarkers for PCa diagnosis and prognosis.
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5. Conclusions and Future Perspectives

The identification and characterization of the metabolic changes accompanying the transformation
of benign into malignant prostate cells has led to an increased interest, over the last few years,
in the application of metabolomics for identifying clinically relevant biomarkers in this field. Omics
approaches, including genomics, proteomics, transcriptomics, and metabolomics, are highly innovative
areas of research. One of the major advantages of the omics approaches is their ability to provide
information using unbiased large-scale approaches. Among them, metabolomics provides an
unprecedented opportunity for understanding the pathophysiological condition of an individual.
Metabolites represent the end products of biochemical pathways, and the concentrations of these
compounds are extremely sensitive to different alterations. Thus, these metabolic fingerprints can
provide useful clues for the characterization of biomarkers associated with the onset and progression
of diseases. Furthermore, as metabolomics studies can be performed using biological fluids that could
be easily accessible (e.g., serum, plasma, urine, and seminal fluid), it offers a high potential for clinical
translatability when compared with other omics approaches.

In this manuscript, we aimed to review the main findings described in recent PCa metabolomics
studies focused on the analysis of different biofluids (Table 1). Furthermore, a summary of the most
significant findings reported in these studies and the connections and interactions between the different
metabolic changes described has also been included, aiming to better describe the specific metabolic
signature associated to PCa (Figure 1).

Figure 1. Overview of main metabolic changes described in metabolic-related studies of human
biofluids applied to PCa biomarker discovery. BCAA: Branched-chain amino acids; CS: Citrate synthase;
FBP1: Fructose-bisphosphatase; GAA: Guanidinoacetate; GABA: Gamma-aminobutyric acid; GPI:
Glucose-6-phosphate isomerase; HK2: Hexokinase 2; LDH: Lactate dehydrogenase; PDH: Pyruvate
dehydrogenase; PEP: Phosphoenolpyruvate; PFK: Phosphofructokinase; PK: Pyruvate kinase; SAM:
S-Adenosyl methionine.
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Most of the studies included in this review were based on the analysis of blood or urine samples,
probably due to their easy accessibility and non-invasiveness. NMR and MS are the two most
commonly used analytical platforms in these studies, though other analytical techniques have also
been applied to the identification of PCa-related metabolic changes [58,93–95]. Although a significant
number of studies focused on the identification of biomarkers for PCa diagnosis, some of them also
explored the potential of metabolic biomarkers for patient prognosis and PCa risk evaluation.

Overall, these studies have revealed that alterations in TCA cycle, polyamines, glycolysis,
one-carbon metabolism, nucleotide synthesis, amino acid, fatty acid, and lipid metabolism are
associated with PCa onset and progression. Figure 1 illustrates the main alterations, in terms of
metabolic pathways and metabolites, associated with PCa based on current literature.

The results of the different studies provide compelling evidence of the potential of metabolomics
strategies for identifying new PCa biomarkers in biofluids that could be of interest from a clinical
perspective. The potential of this approach for routine clinical diagnostics is significant since only
minimal biological preparation is necessary. Despite the advances achieved in the field of PCa
biomarker discovery, intense efforts are still required before metabolite profiling can be implemented
in the clinic. So far, the variability in the metabolic alterations reported precludes consistent, universal
signatures to be established, showing that a long path is still to be thread toward the full validation and
clinical approval of putative new metabolic biomarkers. In this context, it is worth noting that although
most of the reviewed studies included the internal validation of the statistical models developed during
the study, either for PCa diagnosis or prognosis, a limited number of them included the assessment
of the clinical utility of these findings using an external validation cohort of patients. Thus, future
studies should include larger sample cohorts from adequately defined and matched groups of samples.
In addition, statistical validation of multivariate models would benefit from full external validation.
Finally, increased knowledge on the biological significance of potential PCa biomarkers should be
assessed through the integration of metabolomics with other biochemical/biological approaches.
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Abbreviations

The following abbreviations are used in this manuscript:

1H-NMR Proton nuclear magnetic resonance spectroscopy
2D-DIGE-MS Two dimensional–difference gel electrophoresis–mass spectrometry
AUC Area under the curve
BCAA Branched-chain amino acids
BPH Benign prostatic hyperplasia
CRPC Castration-resistant prostate cancer
CS Citrate synthase
DRE Digital rectal examination
ELISA Enzyme-linked immunosorbent assay
EPS Expressed prostatic secretions
EV Extracellular vesicles
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1H-NMR Proton nuclear magnetic resonance spectroscopy
FBP Fructose-bisphosphatase
FIA-MS/MS Flow injection analysis–tandem mass spectrometry
FPLC-MS Fast ultra-high-performance liquid chromatography–mass spectrometry
GAA Guanidinoacetate
GABA Gamma-aminobutyric acid
GPI Glucose-6-phosphate isomerase
GS Gleason Score
GC-MS Gas chromatography–mass spectrometry
GC-QqQ-MS Gas chromatography–triple quadrupole–mass spectrometry
HG High-grade (GS ≥ 8)
HK2 Hexokinase 2

HPLC-ESI-QTOF-MS
High performance liquid chromatography–electrospray
ionization–quadrupole time of flight–mass spectrometry

HPLC-TOF-MS
High performance liquid chromatography–time of flight–mass
spectrometry

HV Healthy Volunteers
iTRAQ Isobaric tag for relative and absolute quantification
LC-MS Liquid chromatography–mass spectrometry
LC-MS/MS Liquid chromatography–tandem mass spectrometry
LDH Lactate dehydrogenase
LG Low-grade (GS ≤ 7)

MALDI-TOF-MS
Matrix-assisted laser desorption ionization–time of flight–mass
spectrometry

MS Mass spectroscopy
NMR Nuclear magnetic resonance
QqQ-MS: Triple quadrupole–mass spectrometry
PCa Prostate cancer
PDH Pyruvate dehydrogenase
PEP Phosphoenolpyruvate
PFK Phosphofructokinase
PK Pyruvate kinase
PM Prostatic massage
PSA Prostate specific antigen
SAM S-Adenosyl methionine
T Stage
TCA Tricarboxylic acid
TMAO Trimethylamine N-oxide
TRUS Trans-rectal ultrasound
UHPLC-MS Ultra-high-performance liquid chromatography–mass spectrometry
UPLC-MS/MS Ultra performance liquid chromatography–tandem mass spectrometry
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Abstract: Acylcarnitines play an essential role in regulating the balance of intracellular sugar and lipid
metabolism. They serve as carriers to transport activated long-chain fatty acids into mitochondria
for β-oxidation as a major source of energy for cell activities. The liver is the most important organ
for endogenous carnitine synthesis and metabolism. Hepatocellular carcinoma (HCC), a primary
malignancy of the live with poor prognosis, may strongly influence the level of acylcarnitines.
In this paper, the function, detection and alteration of acylcarnitine metabolism in HCC were briefly
reviewed. An overview was provided to introduce the metabolic roles of acylcarnitines involved
in fatty acid β-oxidation. Then different analytical platforms and methodologies were also briefly
summarised. The relationship between HCC and acylcarnitine metabolism was described. Many of
the studies reported that short, medium and long-chain acylcarnitines were altered in HCC patients.
These findings presented current evidence in support of acylcarnitines as new candidate biomarkers
for studies on the pathogenesis and development of HCC. Finally we discussed the challenges and
perspectives of exploiting acylcarnitine metabolism and its related metabolic pathways as a target for
HCC diagnosis and prognosis.

Keywords: acylcarnitines; hepatocellular carcinoma; metabolite profiling; metabolomics

1. Introduction

Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer. This intra-
abdominal malignant tumours accounted for 90% of all cases of primary liver cancer [1]. HCC ranks
as the second leading cause of cancer-related mortality in the world [2]. It has a very poor prognosis
of malignant tumours, with prognosis less than 5% [3]. The main pathogenic factors of HCC are
viruses, bacteria, alcohol, therapeutic drugs, and harmful substances [4]. Its occurrence is long-term,
dynamic, and multi-stage with the complex regulation of multiple genes and factors [5]. Chronic
liver damage and inflammation caused by chronic hepatitis B virus or hepatitis C virus (HBV, HCV)
infections account for the majority of HCC cases [6]. The persistent inflammatory environment may
promote simple hepatic steatosis to fibrosis, cirrhosis (CIR) and, ultimately, HCC [2,7]. Additionally, in
the last 20 years, the rising rates of alcoholic liver disease, non-alcoholic fatty liver disease (NAFLD),
and non-alcoholic steatohepatitis (NASH) increased the risk of HCC development in patients with
viral hepatitis [8]. In fact, these liver metabolic disorders, including type II diabetes, obesity, and
metabolic syndrome, are becoming emerging risk factors for the rapidly increasing incidence of
HCC [9]. It has been reported that 4% to 27% of patients with NASH and CIR may have HCC [10].
However, the oncogenic mechanisms of these new metabolic risk factors that promote HCC are only
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beginning to be characterized [11]. In order to improve the early diagnosis of HCC and the prognosis of
patients, investigation of the pathogenesis of HCC and exploration of high-sensitivity, high-specificity
biomarkers are the hotspots for HCC research. The development of current research techniques
provides a great deal of convenience to investigate HCC-related biomarkers [12,13]. In particular,
the omics technologies, such as genomics, proteomics, and metabolomics, have greatly accelerated the
progress in HCC research with its high-throughput technology advantages [14,15]. The investigations
provide many sensitive and specific markers for early and accurate diagnosis of HCC [16].

Since the liver is an important organ of substance and energy metabolism, liver lesions, especially
carcinogenesis, can strongly affect its metabolic process [17]. Therefore, quantitative and qualitative
analysis of metabolic alteration in HCC samples can monitor the fluctuation of specified metabolic
pathways, thus obtaining some important information for the diagnosis and pathogenesis studies of
HCC [18,19]. These are the currently booming research scopes of metabolomics in recent years [20,21].
At present, targeted and non-targeted metabolomics studies on HCC have been widely reported [22–24].
However, due to the large variety of metabolites, there is currently no single prospecting technique
that can fully cover all metabolites [25]. Generally, only some of the metabolites of interest can be
detected by quantitative or qualitative methods or a mix of both. In this article, we do not attempt to
summarize the changes of all metabolites in HCC as well, but rather focus on the acylcarnitines, which
are a large class of substances closely related to HCC metabolism.

2. Function of Acylcarnitines in Cellular Metabolism

Acylcarnitines are esters of L-carnitine and fatty acids (Figure 1). They are a large class of
metabolites that are members of the non-protein amino acid family. According to the Human
Metabolome Database, there may be more than 1200 fatty acids in the human body [26,27]. Therefore,
it is inferred that the number of acylcarnitines that may be formed with these fatty acids is very
considerable. Similar to fatty acids, acylcarnitines are also differed by length of the acyl groups,
often categorized as short, medium and long-chain acylcarnitines (simply marked as SCACs, MCACs
and LCACs). Acylcarnitines are zwitterionic compounds, containing a carboxyl group and a quaternary
ammonium group in the molecule (Figure 1).

Figure 1. The structure of L-carnitine and acylcarnitines.

The large number and special structure make acylcarnitines play an important role in cell
physiological activities and become a key substance for cell metabolism [28]. The main function
of acylcarnitines is involved in long-chain fatty acids (LCFAs) β-oxidation (Figure 2). They serve as
carriers to transport activated LCFAs into mitochondria for subsequent β-oxidation to provide energy
for cell activities [29]. The enzymes that regulate these processes are mainly long-chain acyl-coenzyme
A synthetase (LACS), carnitine/acylcarnitine translocase (CACT), carnitine palmitoyl-transferase 1 and
2 (CPT1 and CPT2) [30]. The LCFAs are activated by linking to coenzyme A (CoA) via LACS, forming
long-chain acyl-CoAs. The intermediaries are converted into LCACs catalysed by CPT1 which is
located on the outer mitochondrial membrane [31]. Under catalysis of CACT, the LCACs are imported
through the mitochondrial membranes into the mitochondrial matrix [32]. Then they are converted
back to the corresponding long-chain acyl-CoAs in the presence of CPT2 for β-oxidation [33]. The end
products, acetyl-CoAs, are converted to acetylcarnitines by carnitine O-acetyltransferase (CrAT).
Finally, acetylcarnitines are exported from mitochondrion to cytoplasm by CACT [34]. The activities of
the involved enzymes can be evaluated by ratios of LCACs/SCACs. For example, the activity of CPT1
can be estimated by (carnitine C16 + carnitine C18)/carnitine. Similarly, the changes of CPT2 can be
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estimated by (carnitine C16 + carnitine C18:1)/carnitine C2, long-chain Acyl-CoA dehydrogenase by
carnitine C16/carnitine C8, and β-oxidation of even-carbon fatty acids by carnitine C2/carnitine [35].

Figure 2. Overview of acylcarnitine-related cellular metabolism. For simplicity, not all intermediates
and reversible processes are shown. Abbreviations: CPT1, carnitine-palmitoyl-transferase 1; CPT2,
carnitine-palmitoyl-transferase 2; CACT, carnitine-acylcarnitine-translocase; CoA, coenzyme A; LACS,
long-chain acyl-CoA synthetase; BCAA, branched-chain amino acid.

The metabolism of acylcarnitines is a key factor regulating the balance of intracellular sugar and
lipid metabolism [36]. Acylcarnitine metabolism is involved in the metabolism of branched-chain
amino acids [37]. They are also involved in maintaining the homeostasis of the mitochondrial
acyl-CoA/CoA ratio. When the glucagon/insulin ratio is lowered, they stimulate the activity of
pyruvate dehydrogenase to enhance the oxidation of pyruvate and enhance the aerobic oxidation of
glucose [38]. Acetylcarnitine can be converted into malonyl-CoA in the cytosol to inhibit the activity of
CPT1 and reduce the oxidation of fatty acids, which results in eliminating the adverse reactions caused
by the accumulation of acyl-CoA metabolic intermediates in the mitochondria [39]. Acylcarnitines
are also involved in other physiological processes such as peroxidation of fatty acids, and production
of ketone bodies [37]. Therefore, the metabolism of acylcarnitines is not only related to the transport
of fatty acids, but also plays a key role in regulating the balance of intracellular sugar and lipid
metabolism (Figure 2) [36].

Acylcarnitines are closely related to many metabolic diseases [40]. Abnormal expression of
enzymes involved in the metabolism of acylcarnitines may result in accumulation of acyl-CoA
with a specific chain length [41]. These substances, if not removed by conversion to acylcarnitines,
may have toxic effects on cells [42,43]. Since the levels of plasma acylcarnitines reflect the composition
of the acylcarnitine pool within the cytoplasm, they are considered to be markers indicating the
balance between acyl-CoA and acylcarnitine species [44]. Studies have shown that in organic
acidemia, the content of acylcarnitines varies with the accumulation of organic acids. Therefore,
acylcarnitines are clinically important parameters for organic acidemia diagnosis [45]. Acylcarnitines
are also key indicators for screening genetic abnormalities in neonates [46]. In addition, changes of
blood acylcarnitines also have significant correlation with type I diabetes and type II diabetes [47].
Mitochondrial fatty acid oxidation (FAO) disorders caused by gene mutations can lead to hereditary
carnitine metabolism syndrome [48]. Secondary carnitine deficiency may be triggered by back of
nutrition, absorption of gastrointestinal function, carnitine loss from blood and peritoneal dialysis [48].
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Significant changes in acylcarnitine metabolism can also be observed in diseases such as coronary
artery disease [49], heart failure [50], and dementia [51]. In cancer cells, acylcarnitine metabolism has
been considered as a gridlock to finely trigger the metabolic flexibility of cancer cells on the basis of its
fundamental role in tuning the switch between the glucose and fatty acid metabolism [34]. Metabolic
reprogramming of cancer cells regulates the levels of acylcarnitines with varying chain lengths [52,53].
They intercalate acylcarnitines with other key metabolic pathways, factors and metabolites to create
a balance between the production and consumption of energy and the synthesis of metabolic
intermediates to meet rapid proliferation requirements [54,55]. For example, in prostate cancer cells
(PCCs), carnitine cycle was a primary regulator of adaptive metabolic reprogramming, which was
modulated by microRNAs (miRNAs) to deregulate mitochondrial fatty acid oxidation [56]. Results
from the urine of kidney cancer patients and mouse models showed that urinary acylcarnitines are
increased in a grade-dependent fashion. These compounds are likely emanating from the tumour tissue
itself and have both cytotoxicity and immune modulatory properties which could be beneficial to the
tumour in terms of growth and survival in situ [57]. Mass spectrometry images analysis found that in
a human breast tumour xenograft model, two acylcarnitines, palmitoylcarnitine, and stearoylcarnitine,
displayed the high percentage of overlap with hypoxic tumour regions, suggesting blockage of the
β-oxidation process of fatty acids inside mitochondria [58]. In view of the importance of acylcarnitines
in a variety of diseases, they are likely to be good biomarkers for clinical diagnosis. Therefore, studies
on the function of acylcarnitines may help to deepen understanding of the disease mechanism, and it
may also promote the development of disease diagnosis and treatment technology.

3. Detection of Acylcarnitines in Biological Samples

However, the difficulties encountered in the detection of acylcarnitines limit the study of
their functions. The challenge for acylcarnitines detection is mostly attributed to the complex
components of biological samples and the structural diversity of acylcarnitines caused by various
acyl groups [37,59,60]. (1) The composition of biological samples is very complex. Matrix components
will greatly interfere with the detection of acylcarnitines; (2) According to the different acyl groups
attached, the acylcarnitines have a very long polarity span, covering the polarity from the polar
SCACs to low-polar LCACs. SCACs have strong hydrophilicity due to the presence of quaternary
ammonium groups and are difficult to retain on reversed-phase columns; (3) Due to a wide variety
of species of fatty acids, the SCACs, MCACs and LCACs formed by the fatty acids constitute a large
congener family of members, and the properties of some isomers are very close, leading to difficulty in
chromatographic separation; (4) The limited number of commercial acylcarnitine standards affects
the accurate identification of the specific structural composition of acyl groups. Due to the existence
of these problems, the current detection methods can only focus on a few acylcarnitines that contain
commercial standards, and the information of other acylcarnitines is still missed.

Biological samples usually contain macromolecules, such as proteins and nucleic acids, as well
as small molecules such as phospholipids, amino acids, sugars, and inorganic salts. Therefore, the
matrix effect caused by these ingredients cannot be ignored in the detection of acylcarnitines. Although
there was a report that urinary acylcarnitines could be detected directly after the urine samples were
subjected to simple centrifugation [61], the strong matrix effect still affected the sensitivity. Therefore,
in order to efficiently detect acylcarnitines, appropriate sample preparation methods are necessary.
The easiest way to handle the biological samples is the liquid–liquid extraction (LLE) method. Due to its
convenient operation and low cost, it has been extensively used for sample preparation [62]. The usual
procedure includes protein precipitation, centrifugation, and nitrogen drying [63]. The organic solvents
used for deproteinization often are methanol (MeOH) or acetonitrile (ACN). Studies have shown that
the choice of organic solvents has a great impact on the recovery of the methods, because acetonitrile
itself is not a good solvent for all the acylcarnitine species [64]. Therefore, it is common to use MeOH
or a mixture of MeOH and ACN for LLE [65–67]. In addition, using ACN containing 0.3% formic
acid could also improve the extraction recovery, which was comparable to those approaches using
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MeOH as solvent [66]. The limitation of LLE method is that, it requires to use potentially toxic organic
solvents and high volume samples, and its sampling rate is low. In response to these problems,
some new methods have been developed for the extraction of acylcarnitines. For example, using
a continuous-flow microelectroextraction flow cell, acylcarnitines could be extracted from a large
volume urine sample into a micro volume of stagnant acceptor phase under the electric field enhanced
extraction [68]. The detection limit of the method was as low as 0.3–2 nM, which was appropriate for
the detection of low concentration metabolites.

Solid-phase extraction (SPE) is another widely used method for the extraction of acylcarnitines.
Its advantages are low cost, good selectivity, small solvent consumption, small sample amounts and
high recovery [69]. Additionally, its disadvantages are long sample preparation times and multistep
procedures. Despite these shortcomings, SPE is still extremely applied for the enrichment and isolation
of acylcarnitines. For example, after purifying human urine using polymeric and weak cationic
exchange cartridges, the matrix effect was significantly reduced as the urinary carnitine was analysed
by UPLC-MS/MS [70]. An online SPE with an Oasis mixed-mode cation exchange (MCX) trapping
column combined with LC-MS analysis was a rapid sample work-up method for the quantification of
acylcarnitines with different polarity. The method required low sample consumption [71]. The sample
preparation was more simplistic, and LLOQ was significantly lower than previously reported
methods [72,73] after treating samples with semi-automatic microextraction by packed C2 of M1 (C8 +
SCX) phase as a sorbent [74]. It was also reported that using a mixed-mode reversed-phase/strong
cation-exchange 96-well SPE plate could achieve selective and accurate quantitation of C5 acylcarnitine
in patients with isovaleric acidemia (IVA) by UHPLC–MS/MS [75]. With the same SPE plate isolation,
65 acylcarnitines were separated [76]. Although MCX SPE cartridges have been widely used in the
extraction of acylcarnitines, it must be noted that the sulfo group on the packing could catalyse the
carboxylic acid groups of about 40% dicarboxylic acylcarnitines reacting with MeOH in the elution
solvent to form methylation products [77,78]. Therefore, Li et al. suggested that using ACN (containing
5% NH4OH) instead of MeOH as elution may avoid the methylation problems [79].

The as prepared samples can be directly used for analysis [74,80], or analysed after derivatization.
The derivatization procedure may introduce a chromophoric group to the targeted analytes, then it
could be possibly detected by fluorescence or ultraviolet detector [81,82]. The derivatization procedure
was also used to label water-soluble acylcarnitines to improve their retention on reversed-phase
columns [83,84]. For example, the strategies have been used to detect L-carnitine and its chiral isomers
D-carnitine [60]. And just recently, an isotope-labelling strategy with 3-nitrophenylhydrazine as
derivatization reagents was employed for LC-MS-based quantitation of acylcarnitines in dried blood
spots with good linearity, high precision and high accuracy [85]. One important aspect to note is that
the application of derivatization methods requires systematically methodological evaluation of the
chemical stabilities of acylcarnitines under various reaction conditions before they are used in the
practical sample analysis. Since it has been confirmed that anhydrous n-butanol/HCl-based method,
which was based on the acid-catalysed esterification and the most popular derivatization approach for
acylcarnitines analysis at early stages [86], may cause part of the acylcarnitines hydrolysed and result
in inaccuracies measurement from the hydrolysis of acylcarnitines [87].

Due to the complex composition of biological samples, proper separation means are beneficial
for acylcarnitine analysis to obtain the maximum detection efficiency. As in the earlier study,
chromatography separation coupled with fluorescence or UV detectors were commonly used
methods [60,82]. There are also a small number of studies used GC-MS [88]. In recent years, LC-MS
has become the most popular techniques for acylcarnitine detection [89–93]. Reversed-phase liquid
chromatography (RPLC), hydrophilic interaction liquid chromatography (HILIC), ion chromatography,
and capillary electrophoresis are different options for acylcarnitine separation. Due to their excellent
separation ability and high sensitivity, dozens of acylcarnitines could be analysed simultaneously [94–97].
By using highly-selective scanning modes, such as selected reaction monitoring (SRM), multiple
reaction monitoring (MRM) and parallel reaction monitoring (PRM), up to hundreds of acylcarnitines
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could be identified in plasma, urine and tissue samples [37,59,79]. These results provide significant
reference value to annotation of acylcarnitines in biological samples. However, in these researches,
especially for qualitative analysis, the identification of acylcarnitines relied primarily on accurate
values of mass to charge ratio (m/z) and corresponding characteristic fragment ions obtained from
high resolution mass spectrometry. Nevertheless, the majority of detected acylcarnitine structures
cannot be actually verified because of not enough commercial standards for the diverse acylcarnitines.
In some cases, such as the discovery of potential acylcarnitine biomarkers for clinical application,
standards are still needed to be synthesized for their structures confirmation [79]. Although some of
acylcarnitines can be obtained by conjugating the corresponding carboxyl compounds with L-carnitine,
only a small fraction of currently known acylcarnitines can be synthesized. This is because the carboxyl
compounds are also diverse and lack of sufficient standards. The un-authenticated acylcarnitines in
biological samples limited the evaluation of these existing methods [59]. Therefore, the development
of new approaches to high efficient and accurately identify acylcarnitines is still in urgent need.

4. Alteration of Acylcarnitine Metabolism in HCC

The liver is the most active organ for endogenous carnitine synthesis and metabolism [91,98].
Therefore, suffering from diseases may cause the liver to have a strong effect on the levels of
acylcarnitines [99]. At different stages of liver disease, hepatocytes are stimulated by different risk factors,
and the demand for glucose and lipids is not the same [100,101]. As a result, the disorder of acylcarnitine
metabolism is also related to the stage of liver disease. The general rule is that as the condition worsens,
the metabolic disturbance of acylcarnitines becomes more pronounced. Some research suggested that
in non-alcoholic fatty liver disease (NAFLD) patients, the level of butyrylcarnitine was significantly
elevated. When the disease progressed to more severe NASH, there was a significant increase in free
carnitine, propionylcarnitine, butyrylcarnitine, and 2-methylbutyrylcarnitine [102]. In patients with
liver fibrosis and CIR, both C16:1-acylcarnitine and C18:1-acylcarnitine have an increasing tendency,
indicating reduced β-oxidation levels of these two fatty acids [103]. The changes of acylcarnitines
caused by different pathogenic factors are also different. For example, serum LCAC levels in patients
with CIR caused by viral hepatitis (HBV and HCV) showed an increasing trend, but in patients with
CIR caused by alcohol consumption, both LCACs and SCACs were upward trend [35,104].

There are also many reports on the changes of acylcarnitines in HCC. Compared with human
HCC clinical samples, cell and animal models are relatively easy to obtain and can perform knockout,
silencing, high expression and other operations on genes of interest and, thus, are often used to study
the disease mechanism of HCC. For example, Cheng et al. established SK-Hep1 cells underexpressing
G6PD (Sk-Gi) to study the effect of a pharmacological dose of dehydroepiandrosterone on cellular
metabolism. Compared with control cells (Sk-Sc), consumption of carnitine and its acyl derivatives
was observed, suggesting the decline in fatty acid catabolism and mitochondrial malfunction and
reduction in cellular ATP content [105]. Levels of acylcarnitines also enhanced the self-renewal
of HCC cells. It was reported that Dih10 cells with CPT2 knockdown led to their resistance to
lipotoxicity induced by the lipid-rich cellular environment via inhibiting the Src-mediated JNK
activation. Simultaneously, by stimulating STAT 3, oleoylcarnitine may promote sphere formation in
Dih10 cells [54]. In hepatitis B surface antigen (HBsAg) transgenic mouse model that mimics HBV
carriers with and without AFB1 treatment, acylcarnitine concentration increased with increase in
tumour growth in all HCC mouse models, indicating elevated metabolic activity and increased cell
turnover. The results were consistent with a pilot study using human serum from HCC patients [106].
In addition to endogenous acylcarnitines, externally added carnitine may also affect HCC progression.
It was reported that L-carnitine increased hepatic expression of genes related to long-chain fatty acid
transport, mitochondrial β-oxidation, and antioxidant enzymes following suppression of hepatic
oxidative stress markers and inflammatory cytokines in NASH, and mice treated with L-carnitine
developed fewer liver tumours [107]. By using a non-targeted metabolomics method, Xu et al. analysed
the diethylnitrosamine-induced rat HCC disease model. The level of palmityl-L-carnitine showed
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different trends at different ages. It decreased with age at the early stage. However, it increased
significantly after 8 weeks between the two groups. The results of a stepwise histopathological
progression indicated that the model was similar to human HCC, and it had potential practicality of
HCC diagnosis at early stages [108]. This is also a rare report on the use of animal models to study the
changes of acylcarnitines. The experimental results of cells and animals provide a good reference for
the mechanism of HCC regulation of acylcarnitine metabolism.

However, because the pathogenesis of HCC is very complicated, cell culture or animal models
cannot accurately simulate this process [109–111]. The results obtained from these two models still do
not accurately reflect the regulation mechanism of HCC on acylcarnitines [105,108]. Therefore, most
studies have focused on the analysis of clinical samples. Among them, blood and urine samples are
dominant. Few reports are related to tissue samples because of the difficulty in sample collection.
Since the development of HCC is closely related to CIR and hepatitis [112–114], there are also many
literatures that compare these liver diseases together. It is hoped to uncover the relationship between
hepatitis, CIR and HCC, and it is also hoped to discover some specific markers that can distinguish
these diseases. For example, Du et al. detected 14 characteristic metabolites with significant differences
in the homogenate of tissue samples obtained from HBV-related HCC patients. Five of these metabolites
(beta-sitosterol, quinaldic acid, tetradecanal, oleamide, and arachidyl carnitine) were first discovered
in HCC samples [115]. Differential acylcarnitines found between HCC and liver disease control groups
were listed in Table 1. Some detailed examples are discussed below.

Xu et al. used the LC-MS combined with the random forest–recursive feature elimination method
to compare the serum metabolic profiling of patients with chronic liver diseases (CLD) and HCC.
The results demonstrated the accumulation of LCACs and the decline of free carnitine, MCACs and
SCACs were associated with the severity of liver disease. A corresponding change was observed in the
related enzyme activities. And HCC had less effect on the general changing extent of acylcarnitines
than the non-malignant liver diseases. The authors speculated that this might be possible due to
the special energy-expenditure mechanism of HCC cells [116]. The alteration of carnitine C16:1
and carnitine C18:1 was found to be consistent in another report, which was proposed by a mutual
information-support vector machine-recursive feature elimination method to filter out noise and
non-informative variables during data processing. The accumulation of the two LCACs demonstrated
that compared with control, severe liver diseases (CIR and HCC) presented more notable implications
of metabolic changes related to fatty acid β-oxidation. Moreover, HCC could be discriminated from
CIR by SM (d18:0/22:2 (OH)), pimelylcarnitine and carnitine etc. [117]. The authors also used a
pseudotargeted approach for further confirmation the changes of acylcarnitines. Serum metabolomic
analysis of patients with HCC showed that the levels of MCACs (C8, C8:1, C10, and C10:1) reduced
and LCACs (C18:1 and C18:2) levels were raised [118]. The study from Ong et al. also confirmed the
similar difference between SCACs, MCACs and LCACs in HCC. In addition, they further verified that
serum acetylcarnitine was a highly accurate biomarker for HCC diagnosis and progression, especially
for AFP false-negative HCC patients [119]. However, the changes of LCACs appeared to be related to
the type of hepatitis virus. Since it was reported that the level of octadecadienyl carnitine was higher
in HBV-associated CIR group than in CHB and HBV-associated HCC groups [35].

Shariff et al. used a NMR system to analyse urine samples from hepatitis B surface antigen
(HBsAg)-positive patients with HCC, HBsAg positive patients with CIR, and HBsAg negative healthy
controls in Nigerian subjects. It was found that four metabolites, including creatinine, carnitine,
creatine, and acetone, were strongly contributed to the grouping of the samples. The carnitine levels
in the HCC group were meaningfully higher than in the healthy and CIR groups, reflecting that
carnitine was excessive produced to meet the requirement of mitochondrial activity and rapid growth
of cancer cells [120]. The method was then applied to detect HCV infected Egyptian patients with
HCC. The metabolic profile presented similarity to that of Nigerian patients. It was firstly reported
that metabolic alteration of HCC patients in two etiologically and ethnically distinct populations
was similar, proposed that metabolic disorder caused by tumourogenesis did not rely on the two
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factors [121]. However, compared with the results of LC-MS analysis, the two studies also showed
that except for carnitine, other acylcarnitines were difficult to be observed by NMR. The same results
were also demonstrated in other studies [122]. By contrast, a LC-MS-based targeted and non-targeted
study on the sera samples of 40 HCC and 49 CIR patients from Egypt detected more notably different
metabolites. The results confirmed that the bile acid metabolites, LCACs and small peptide showed
significant differences between the HCC and CIR control group. Of these remarkable metabolites,
LCACs, oleoyl carnitine, palmitoyl carnitine, and linoelaidyl carnitine were down-regulated in HCC
patients compared with CIR controls [123].

Combining multiple techniques to analyse disease samples can overcome the bias of a single
method, improving the coverage of metabolite detection to obtain more comprehensive results.
For example, Liu et al. reported on the use of NMR and LC-MS for global metabolomics analysis
of serum of HCC cases [124]. GC-MS and LC-MS analyses were employed to investigate serum
metabolic abnormalities in HBV-CIR and HCC patients [125,126]. Another report was used GC-MS
and UPLC-MS/MS platforms to analyse the global serum metabolomes of HCC, hepatitis C CIR
disease and healthy controls. The most significant altered metabolites included fatty acids, amino
acids and acylcarnitines. Of these, SCACs and MCACs were highly overexpressed in HCC patients
compared to disease controls, while LCACs trended downward [127]. To choose different stationary
phases for sample separation was also an effective method to increase the detection rate of metabolites.
For example, using both HILIC and RPLC to separate the urinary metabolites could found carnitine
C10:1, carnitine C8:1, butylcarnitine, acetyl carnitine and cartinine, carnitine C9:1, carnitine C10:3,
and carnitine C9:0 as potential biomarkers [128,129]. Zhang et al. sampled the HCC and CIR patients’
blood samples on filter paper and dried at room temperature, then extracted using organic solvent
and concentrated for mass spectrometry analysis. Using the detected amino acids, acylcarnitines and
some of their relevant ratios as the evaluation criteria, it was found that in this model, in view of their
individual odds ratios, C5-OH/C0, C3/Met, and Val/Phe seemed to be the most important risk factors
for HCC, while Thr, C3DC/C10, and C18:1 seemed to be the risk factors for CIR [130].

The value of the area under the curve of the receiver operating characteristic curve (ROC)
is commonly used as indicators for evaluating specificity and sensitivity of biomarker. A study
on the urine samples of HCC and CIR discovered that combination of butyrylcarnitine and
hydantoin-5-propionic acid could differentiate the two diseases. The area of the two metabolites
under ROC curve was 0.786 and 0.773, respectively [23]. By comparing principal metabolic alteration
obtained from 50 HCC tissue samples and 298 chronic hepatitis and CIR serum samples, it was found
that betaine plus propionylcarnitine was efficient for distinguishing HCC from the two types of liver
diseases with a 0.982 AUC value of the ROC curve, which was much better than that of a-fetoprotein
(AFP, 0.697). The combination was useful for the diagnosis of both AFP false-positive and false-negative
HCC patients [24]. Another study showed that undecanoyl- L-carnitine, whose level was lower in
HCC than in HBVs and NCs, in combination with α-fetoprotein could provide highly sensitive and
specific for HCC diagnosis. The values of the area under the curve of the ROC curve was 0.92 [131].
This finding demonstrated that the combination of differential biomarkers presented good diagnostic
potential to HCC.

Nielsen et al. established a genome-scale hepatocyte metabolic model and used system biology
to analyse the metabolic changing of different HCV progressions. The levels of acylcarnitines
were disturbed markedly in the dysplastic nodule and early HCC stages. This was related to the
up-regulated genes, including BCAT1, PLOD3 and six other methyltransferase genes, which influenced
carnitine biosynthesis and S-adenosylmethionine metabolism. Meanwhile, acyl-CoA consumption
was regulated by GNPAT and BCAP31 upregulated expression. These genes could be used as potential
targets for the therapy of liver disorders related to HCV [132].
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Although the acylcarnitines with significant differences were not exactly the same in different
reports due to the different samples, instruments and detection methods, the general rule of changes can
still be in conclusion. It is certain that HCC can significantly regulate the metabolism of acylcarnitines.
The levels of serum acylcarnitines in HCC patients showed specific patterns, mainly including
increased levels of free carnitine, decreased levels of SCACs and MCACs, and increased levels of
LCACs [116,118,133]. The main role of SCACs and MCACs is to remove organic acids from organelles
such as mitochondria and excrete them to the urine and bile. The declining levels in serum indicated an
increase in excretion rate of organelles or an obstacle of accumulation rate. Conversely, the promoted
formation of LCACs in cells demonstrated increasing β-oxidation and producing more energy duo to
the enhanced transport of LCFCs into the mitochondria [117]. However, it should be noted that there
are low correlations between LCACs and SCACs/MCACs according to the results of acylcarnitine
metabolic profiling from 80 pairs of HCC tissues and adjacent noncancerous tissues (ANTs) [135].
Among these significantly different acylcarnitines, some have been considered to have specificity of
distinguish HCC from chronic hepatitis and CIR. It demonstrates the great potential of acylcarnitines
as biomarkers for HCC diagnosis.

The mechanism of HCC-driven acylcarnitine changes has also been studied intensively. CPT1A
and CPT2 are rate-limiting enzymes of LCFAs for β-oxidation [36,136]. Therefore, their expression is
closely related to the changes of acylcarnitine levels. It was reported that in 66 post-operative liver
tumour tissue from patients with resected HCCs, decreased expression of CPT1A was observed.
And the expression changes appeared to correlate with risk factors for the prognosis of HCC
patients, such as tumour size, histological grade, intrahepatic metastasis, and tumour–node–metastasis
stage [137]. However, in another analysis based on the eighty pairs of HCC tissues and adjacent
noncancerous tissues (ANTs), CPT1A expression was not significantly changed. These inconsistent
findings suggest that the effect of CPT1A expression on the metabolism of acylcarnitines still requires
further confirmation. In the later study, it was also found that downregulation of CPT2 was significantly
associated with the presence of vascular invasion and poor tumour differentiation in HCC. And it
caused low efficiency of the carnitine shuttle system, inducing the suppression of fatty acid β-oxidation
in HCC. However, the downregulation of CPT2 could promote tumourigenesis, chemoresistance to
cisplatin and lipogenesis [136]. Another independent study also identified CPT2 downregulation
in HCC as a critical determinant in acylcarnitine accumulation. HCC cells presented resistance
to lipotoxicity by the Src-mediated JNK inhibition after CPT2 was knocked out. In particular,
oleoylcarnitine may act as an oncometabolite in hepatocarcinogenesis as it could promote HCC
cell sphere formation by activating STAT3. Simultaneously, downregulation of CPT2 may mediate
the metabolic reprogramming of HCC cells, which enables them to escape lipotoxicity and promotes
hepatocarcinogenesis. These finding indicated that acylcarnitine accumulation was a surrogate marker
of CPT2 downregulation [54]. These promising results offered mechanistic insights into acylcarnitine
accumulation in HCC. As acylcarnitine metabolism is especially important for energy production in
HCC, targeting this pathway is considered to be a potential strategy for cancer treatment.

5. Conclusions and Perspectives

Due to their special structure and function, the alteration of acylcarnitines in HCC has attracted
significant attention. Certain acylcarnitines have been reported to present regular changes in HCC.
These differential acylcarnitines have the potential to serve as biomarkers for HCC diagnosis. However,
limited by the sensitivity of current detection techniques and the number of commercially available
standards, only a small fraction of the known acylcarnitines could be accurately detected. The changes
and function of these undetected acylcarnitines remain unknown in HCC. Therefore, it is urgent
to develop new methods with high sensitivity and high selectivity to cover the detection of these
metabolites as much as possible. Application of highly-selective sample preparation methods to
enrich acylcarnitines and to reduce matrix interference may increase the probability of detection of
low abundance acylcarnitines. In addition, the strategy of isotope labelling may be used for the
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relative quantification to overcome the problem of lack of standards. However, accurate structural
identification and absolute quantification are still required in clinical detection. Therefore, obtaining
the standards of acylcarnitines as many as possible is still the best way of approaching the problems.

In addition, the levels of acylcarnitines in HCC are affected by a number of factors, such as diet,
renal dysfunction, biosynthesis rate, and other liver diseases. Therefore, in examining the regulation
of HCC on acylcarnitines, the effects of these factors must also be carefully considered. In addition,
acylcarnitine metabolism is an important node in the complex metabolic network of cells. Their levels
are also affected by upstream and downstream changes in the metabolic pathways. To investigate the
flux of acylcarnitines along the pathways may offer wonderful insight into the regulation mechanism
of HCC on the acylcarnitine metabolism. The goals could be reached by accurate quantification of these
metabolites using targeted metabolic profiling and metabolic flux analysis. With these comprehensive
detection methods, some significantly differential acylcarnitines or their related metabolites may be
discovered. They could be used as potential biomarkers for the subsequent study of HCC diagnosis
or targets for drug development, which may supply a valuable reference for the pathogenesis and
treatment investigation of HCC.
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Abstract: L-asparaginase (ASNase) is a metabolism-targeted anti-neoplastic agent used to treat acute
lymphoblastic leukemia (ALL). ASNase’s anticancer activity results from the enzymatic depletion of
asparagine (Asn) and glutamine (Gln), which are converted to aspartic acid (Asp) and glutamic acid
(Glu), respectively, in the blood. Unfortunately, accurate assessment of the in vivo pharmacodynamics
(PD) of ASNase is challenging because of the following reasons: (i) ASNase is resilient to deactivation;
(ii) ASNase catalytic efficiency is very high; and (iii) the PD markers Asn and Gln are depleted ex
vivo in blood samples containing ASNase. To address those issues and facilitate longitudinal studies
in individual mice for ASNase PD studies, we present here a new LC-MS/MS bioanalytical method
that incorporates rapid quenching of ASNase for measurement of Asn, Asp, Gln, and Glu in just
10 μL of whole blood, with limits of detection (s:n ≥ 10:1) estimated to be 2.3, 3.5, 0.8, and 0.5 μM,
respectively. We tested the suitability of the method in a 5-day, longitudinal PD study in mice and
found the method to be simple to perform with sufficient accuracy and precision for whole blood
measurements. Overall, the method increases the density of data that can be acquired from a single
animal and will facilitate optimization of novel ASNase treatment regimens and/or the development
of new ASNase variants with desired kinetic properties.

Keywords: Kidrolase; Erwinaze; asparaginase; glutaminase; pharmacodynamics; targeted metabolomics

1. Introduction

L-Asparaginase (ASNase; EC 3.5.1.1) is an amidohydrolase enzyme that catalytically deamidates
L-asparagine (Asn) to L-aspartic acid (Asp) and ammonia, and, to a lesser degree, L-glutamine (Gln)
to L-glutamic acid (Glu) and ammonia. After early reports of the anti-lymphoma activity possessed
by guinea pig serum [1,2], ASNase was determined to be responsible for the activity [3]. Currently,
only the variants from Escherichia coli (Medac® (Medac GmbH, Wedel, Germany), Kidrolase® (Jazz
Pharmaceuticals, Dublin, Ireland), and Spectrila® (Medac GmbH, Wedel, Germany), and the pegylated
enzyme, Oncaspar® (Takeda Pharmaceuticals, Osaka, Japan)) and Erwinia chrysanthemi (Erwinaze®

(Jazz Pharmaceuticals, Dublin, Ireland)) have been approved for the treatment of cancer. Other forms
have been tested but were found to be too toxic; for example, clinical trials with Wolinella succinogenes
ASNase were terminated due to toxicity. It is generally thought that ASNase-mediated depletion of
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Asn in the blood plasma is an effective therapy for cancer cells that express asparagine synthetase
(ASNS; EC 6.3.5.4) at low levels and, hence, depend on systemic Asn to support their growth and
proliferation. In fact, a causal association between ASNase anticancer activity and ASNS expression has
been demonstrated [4–8]. Asn-starved leukemia cells exhibit a global decrease in protein biosynthesis
that ultimately results in cell death [9–13].

Targeting metabolism is a prominent strategy in the treatment of cancer, and ASNase targets
a key set of metabolic pathways centered on its targets Asn and Gln, which affect a wide range of
downstream metabolites, as shown in Figure 1 and Table S1. Despite ongoing efforts to optimize
the enzyme’s ratio of asparaginase:glutaminase activity, numerous challenges persist with regard to
optimizing clinical outcomes with ASNase therapy. One significant issue is that therapeutic drug
monitoring of plasma ASNase activity must be conducted to ensure that Asn levels are effectively
depleted [14].

 

Figure 1. “Metaburst” of metabolic pathways modulated by ASNase, including biological reactions
associated with the metabolites asparagine (Asn), aspartic acid (Asp), glutamine (Gln), and glutamic
acid (Glu). All reactions are also listed in Table S1.

Unfortunately, technical challenges have hindered adoption of therapeutic drug monitoring
methods. One challenge stems from the resilience of the enzyme to quenching [15,16]. A second
challenge is its high catalytic efficiency (kcat/Km approximately 1 × 106 M−1s−1) [17]. Consequently,
even at the relatively low concentration of 0.1 IU/mL, ASNase fully depletes physiological
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concentrations of Asn within seconds [18]. Third, the pharmacodynamic (PD) markers Asn and Gln are
depleted ex vivo in blood samples from patients treated with ASNase, thereby introducing analytical
artifacts. A method that successfully quenches ASNase activity immediately upon blood collection
by the addition of sulfosalicylic acid (SSA) has been reported [16] but requires large blood volumes
(greater than 2 mL) and derivatization of the amino acids prior to chromatographic separation and
fluorescence detection. Herein, we describe a liquid chromatography-tandem mass spectrometry
(LC-MS/MS)-based bioanalytical method that rapidly quenches ASNase activity, demonstrates
acceptable precision and accuracy across the normal range (NR) of Asn, Asp, Gln, and Glu that
are typical in mouse whole blood, and has sufficient sensitivity to limit the sample volume to 10 μL,
facilitating longitudinal studies in individual mice that have been treated with ASNase.

2. Results

2.1. Optimization of Amino Acid Acquisition Parameters and ASNase Activity Quenching

We first optimized the acquisition parameters on an Agilent 6460 triple quadrupole mass
spectrometer using Agilent Optimizer Software (Version B.06.00) and post-column infusion;
molecule-specific acquisition parameters for the analytes and internal standards are described
in Table 1.

Table 1. Molecule-specific MS/MS parameters.

Compound SRMa (m/z) Fragmentor Voltage (V) Collision Energy (V)

[13C0]-Asn 133.1 → 74.1 45 17
[13C4,15N2]-Asn 133.1 → 74.1 45 17
[13C0]-Asp 134.0 → 74.1 45 13
[13C4,15N1]-Asp 139.1 → 77.1 45 13
[13C0]-Gln 147.1 → 84.1 45 5
[13C4,15N2]-Gln 154.1 → 89.1 45 5
[13C0]-Glu 148.1 → 84.1 45 17
[13C4,15N2]-Glu 154.1 → 89.1 45 17

a Selected reaction monitoring.

Since quenching of ASNase is a key prerequisite for the accurate measurement of Asn, Asp, Gln,
and Glu in the presence of ASNase, we first screened a range of organic solvents and organic acids
for the ability to neutralize ASNase enzyme activity. The results illustrated in Figure 2 clearly show
that methanol was found to be superior to acetonitrile in terms of ASNase quenching; Asn was almost
completely converted to Asp in 20:80 water:acetonitrile. Given that 80% acetonitrile is widely used for
the precipitation of protein from biological samples, our observations underscore the resilience of the
ASNase enzyme to quenching. Another unexpected result was our observation of a chromatography
issue for Asn by the presence of SSA in neat samples as shown in Supplementary Figure S1, which
was shown previously to be an effective quencher of ASNase for a published LC-fluorescence based
bioanalytical method [16]. Additional method development for an alternate extraction method (e.g.,
solid phase extraction) that removes SSA from the sample extract may eliminate the chromatography
issue, but since we found alternative, effective ASNase quenching conditions that are compatible
with our chromatographic system, we have not explored the use of SSA further. ASNase was
successfully quenched by: (i) water containing 10% formic acid (FA), (ii) methanol containing 1%
FA, and iii) acetonitrile containing 1% FA. Hence, we have chosen to incorporate those solvents into
the method as the quencher, the protein precipitation solvent, and a component of the reconstitution
solvent, respectively.
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Figure 2. Screen for ASNase Activity Quenchers. The following conditions were tested for the ability
to quench the conversion of Asn to Asp by ASNase: (1) 80:20 methanol (MeOH):water; (2) 80:20 MeOH
containing 1% formic acid (FA):water; (3) 80:20 acetonitrile (ACN):water; (4) 80:20 ACN containing
1% FA:water; (5) 80:20 water containing 1% FA:water; (6) 80:20 water containing 10% FA:water;
(7) 80:20 water containing 10% (w/v) sulfosalicylic acid (SSA):water; (8) 80:20 water containing 1%
(w/v) trichloroacetic acid (TCA):water; (9) 80:20 water containing 40 mM 5-diazo-4-oxo-L-norvaline
(DONV):water; (10) positive control sample containing ASNase in water; and (11) negative control
sample containing water without ASNase. Data are presented as normalized response of Asn and Asp.
The final activity of ASNase and solution concentration of Asn in each sample tested was approximately
20 IU/mL and 100 μM, respectively.

2.2. Accuracy, Precision, Recovery, Normalized Matrix Factor, and FTS Assessments

Analytical figures of merit were assessed through the preparation, extraction, and analysis of five
analytical batches, each containing six replicates at each quality control (QC) level (n = 30 replicates
overall for each level) over five non-sequential days. Inter-day precision and accuracy at each QC level
were defined as the coefficient of variation (%CV; standard deviation divided by the mean multiplied
by 100) and percent relative error (%RE = (([AA]mean/[AA]nominal)-1) * 100), respectively. The resulting
precision and accuracy data for the three QC levels studied are provided in Table 2. The accuracy of
the mean concentrations for Gln and Asn were within 15% for all QC levels studied. The accuracy of
the QC-Mid and QC-High levels for Glu and Asp were within 15%, but the accuracy of the QC-Low
level in both instances was equal to or greater than 20%, which indicates that the method for these
two analytes may lack the precision at the low end to discriminate between the dialyzed whole blood
(DWB) matrix background and the exogenous levels of Asp and Glu contained in the QC-Low sample.
Ultimately, because those two analytes are products of the ASNase reaction, the observed decrease in
accuracy (increase in %RE) at QC-Low should not pose significant problems for the assay, since the
in vivo whole blood concentration of Glu and Asp in the presence of ASNase are expected to increase
over their empirically determined NR (79–122 μM for Glu and 30–47 μM for Asp in mouse whole
blood). The background concentrations of Asn, Asp, Gln, and Glu remaining in the DWB matrix after
the dialysis procedure (described in the Materials and Methods Section) were (fold-change below
NR indicated in parentheses) 0.94 μM (46-fold), 1.49 μM (19-fold), 1.65 μM (348-fold), and 3.62 μM
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(24-fold), respectively. The limit of detection for Asn, Asp, Gln, and Glu in just 10 μL of whole blood
were estimated to be 2.3, 3.5, 0.8, and 0.5 μM, respectively.

Table 2. Inter-day mean concentration, accuracy, and precision for QC standards prepared in dialyzed
whole blood matrix.

[Asn]nominal (μM) [Asn]mean (μM) a Accuracy (%RE) b Precision (%CV) c

12.0 10.6 −11.8% 4.78%
200 182 −9.00% 2.31%
3200 3140 −1.89% 2.38%

[Asp]nominal (μM) [Asp]mean (μM) a Accuracy (%RE) b Precision (%CV) c

12.0 14.6 21.9% 7.05%
200 214 7.16% 3.75%
3200 3155 1.41% 2.57%

[Gln]nominal (μM) [Gln]mean (μM) a Accuracy (%RE) b Precision (%CV) c

12.0 11.1 −7.87% 5.77%
200 215 7.60% 2.32%
3200 3675 14.8% 2.50%

[Glu]nominal (μM) [Glu]mean (μM) a Accuracy (%RE) b Precision (%CV) c

12.0 14.4 20.0% 6.13%
200 209 4.36% 2.16%
3200 3122 −2.42% 1.56%

a The mean concentration was calculated from 1/x weighted linear least-squares regressions from the individual
calibration curves in each batch (n = 5 over five non-consecutive days) after correcting for the endogenous amino acid
content contained in the dialyzed whole blood matrix; b percent relative error: %RE = (([AA]mean/[AA]nominal)-1)
* 100; c coefficient of variation.

The normalized matrix factor (NMF) was calculated using Equation (1):

NMF =

⎛
⎜⎝

( Areaanalyte, post
AreaAnalyte, neat

)
( AreaIS, post

AreaIS, neat

)
⎞
⎟⎠ (1)

where Areaanalyte, post and AreaIS, post, and Areaanalyte, neat and AreaIS, neat are analyte and internal standard
(IS) peak areas from the post-extraction DWB sample matrix and neat samples (a water blank is
extracted and dried, and analyte and IS are added during the sample reconstitution step), respectively.
The results for NMF and recovery assessments for each analyte and IS are provided in Table 3. Gln and
Gln-IS exhibited the lowest mean recoveries at around 90% for the three levels studied, but all of
the other analytes and IS compounds had recoveries near 100%. The NMF was approximately 1.0
for all analyte and IS compounds at all concentration levels tested, indicating that the degree of ion
enhancement or suppression effects between each analyte/IS pair in the DWB matrix was equivalent.

Table 3. Mean recovery and mean normalized matrix factors (NMF) for three different quality
control levels.

[Analyte]/[IS] a Mean Recovery
Asn/Asn-IS b

Mean Recovery
Asp/Asp-IS c

Mean Recovery
Gln/Gln-IS d

Mean Recovery
Glu/Glu-IS e

8.00 μM/100 μM 94%/98% 97%/97% 87%/89% 96%/99%
1000 μM/100 μM 96%/96% 101%/99% 91%/92% 100%/100%
4000 μM/100 μM 98%/98% 100%/98% 92%/92% 99%/99%

[Analyte]/[IS] a Mean NMF
Asn/Asn-IS b

Mean NMF
Asp/Asp-IS c

Mean NMF
Gln/Gln-IS d

Mean NMF
Glu/Glu-IS e

8.00 μM/100 μM 0.971 0.966 0.956 0.967
1000 μM/100 μM 1.00 0.972 0.996 0.999
4000 μM/100 μM 0.998 1.01 1.00 0.993

a IS: internal standard; b Asn-IS: [13C4,15N2]-asparagine; c Asp-IS: [13C4,15N1]-aspartic acid; d Gln-IS:
[13C5,15N2]-glutamine; e Glu-IS: [13C5,15N1]-glutamic acid.
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2.3. Pharmacodynamics of ASNase in NOD.Cg-PRKDC(scid) IL2RG(tm1Wjl) (NSG) Mice

We conducted a pilot study in three treatment groups of NSG mice (control, low-dose ASNase,
and high-dose ASNase) to determine the suitability of the bioanalytical method for assessing ASNase
PD in the mouse model of leukemia. The NR was defined as the largest absolute concentration range
measured for each analyte, and the NR for each metabolite was: Asn: 40–50 μM; Asp: 30–47 μM; Gln:
528–623 μM; Glu: 79–122 μM as shown in Figure 3. Note: The connecting lines for each data series are
used to visually connect the data points within each individual mouse; analyte concentrations should
not be inferred from the lines between adjacent data points.

The ASNase field has historically used plasma as a biological matrix for ASNase PD. Our use of
whole blood offers the notable advantage of rapid quenching of ASNase, but a weakness is that red
blood cell (RBC) volume can be variable. However, since individual subjects are expected to have low
variability in RBC volume, our combined use of whole blood and longitudinal methodology minimizes
the variability associated with hematocrit. Although the pilot study was originally designed as a
simple test case to assess the method performance, several interesting biological observations were
made that warrant further studies. First, we found that Asn blood levels were detectable following
treatment with ASNase, whereas previously published methods invariably yielded post-ASNase Asn
levels “below the limit of detection/quantitation” [19–22]. The improved detection of Asn with our
new method is partially due to the fact that we used whole blood, which captures target analytes in
both the red blood cell (RBC) and plasma compartments, whereas other methods typically use serum
or plasma. From the perspective of ASNase neutralization/quenching, whole blood sampling may
yield more accurate results, since whole blood can be quickly quenched after collection to eliminate
artifactual ex vivo depletion of Asn, whereas plasma and serum require additional time (between
3 and 10 min of centrifugation time for whole blood to plasma processing) during which even low
levels of ASNase activity are able to deplete large quantities of Asn. Second, although previously
published methods [23–25] report lower Limit of Detection (LOD) and Limit of Quantitation (LOQ)
levels, those methods typically require blood volumes that range from 200 μL to 2 mL—volumes that
are not compatible with longitudinal studies in individual mice (total blood volume in an individual
mouse is ~1 mL). The precision and accuracy obtained from just 10 μL of whole blood now make
it possible to conduct longitudinal studies of individual mice. Third, the results suggest that the
method is suitable for measuring repletion of Asn after ASNase cessation as shown in Figure 3A;
mean Asn concentrations at 96 h (48 h after the final L-ASP dose) for the 1,000 IU/(kg·day) and the
5,000 IU/(kg·day) dosages were 6.66 μM (n = 2; blue lines with blue squares and circles) and 4.72 μM
(n = 2; red lines with red squares and circles), respectively. Overall, these biological observations
suggest that new investigations should be undertaken to interrogate features of the biological response
to ASNase treatment, including efforts to identify the true whole blood concentration of Asn that is
thought to trigger cancer cell death.
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Figure 3. Amino acid concentration (μM) versus time (h) in whole blood of mice treated with ASNase.
(A) asparagine (Asn), (B) aspartic acid (ASP), (C) glutamine (Gln), and (D) glutamic acid (Glu). Each
data series represents an individual mouse, and the mice were arranged into the following three
cohorts that were given intraperitoneal injections of either vehicle (1x PBS) or ASNase at 0, 24, and 48 h:
(1) Control mice (n = 2; blackline with black squares and circles); (2) mice treated with 1000 IU/(kg·day)
ASNase (n = 2; blue lines with blue squares and circles); (3) mice treated with 5000 IU/(kg·day) ASNase
(n = 2 red lines with red squares and circles). ASNase was administered at 0, 24, and 48 h, and whole
blood (10 μL) was collected from each mouse at 0, 48, and 96 h, and was processed as described. The gray
box represents the NR levels of Asn, Asp, Gln, and Glu defined by the 0 h (pre-treatment) samples.

Blood levels of Asp tended to increase above the NR for all animals (including the control
mice) by the 48 h timepoint as shown in Figure 3B. Since the disappearance of Asn was not
matched by a commensurate (stoichiometric) appearance of Asp within the ASNase-treated groups,
the results prompt the hypothesis that Asp is tightly regulated with excess amounts being shunted
to other metabolite pools/pathways. Candidate pathways include: (1) ASNS-mediated conversion
of Asp to Asn with a corresponding conversion of Gln to Glu; and (2) aspartate aminotransferase
(AST/GOT1/GOT2; EC 2.6.1.1)-mediated conversion of Asp to Glu with a corresponding conversion
of alpha-ketoglutaric acid to oxaloacetic acid as show in Figure 1. Further work to discern those
possibilities is warranted.

The blood level of Gln at the 48 h time point (24 h after the second dose of ASNase) appeared
to be near the NR defined by the 0 h time points, but at 96 h Gln levels exhibited dose-dependent
up-regulation, with the 1,000 IU/kg ASNase dose yielding a larger up-regulation of Gln than the
5,000 IU/kg ASNase dose as shown in Figure 3C. The corresponding levels of Glu, by contrast,
did not differ commensurately with Gln, and that was also the case for Asp, which was not
modulated commensurately with Asn. One potential explanation for those results is that glutamine
synthetase (GLUL; EC 6.3.1.2), which catalyzes the condensation of Glu and ammonia to produce Gln,
is up-regulated at the tissue-level. Indeed GLUL has been reported to be up-regulated by ASNase

47



Metabolites 2019, 9, 10

treatment [26]. A number of additional enzymes that may rapidly metabolize ASNase-generated Glu
to maintain steady-state levels are listed in Figure 1.

3. Discussion

Here we present a bioanalytical method that enables the direct measurement of the ASNase
PD markers Asn, Asp, Gln, and Glu by LC-MS/MS without sample derivatization, building upon
previously reported methods [27]. The method is sufficiently sensitive to measure the PD markers in as
little as 10 μL of whole blood, thus facilitating longitudinal studies in individual small animals such as
mice. Moreover, the method uses experimental conditions (e.g., water containing 10% FA for ASNase
quenching, methanol containing 1% FA for protein precipitation, and acetonitrile containing 1% FA as
a component of the reconstitution solution) that we have shown to be effective at quenching ASNase
activity, thereby eliminating ex vivo turnover of Asn and Gln in the processed sample extracts prior to
analysis. Application of the method to a small pilot study that included three cohorts of mice treated
with increasing doses of ASNase yielded interesting biological observations that warrant further study:
(i) ASNase treatment did not appear to modulate blood levels of Asp, contrary to our expectation of a
stoichiometric increase in Asp concentration commensurate with ASNase-mediated depletion of Asn;
(ii) unexpectedly large increases of Gln after cessation of ASNase treatment prompt the hypothesis
that glutamine synthetase (GLUL) is up-regulated at a systems-level (perhaps in specific organs) in
response to ASNase treatment. Overall, the method promises to improve our understanding of the
mechanisms that mediate sensitivity and resistance to ASNase.

4. Materials and Methods

4.1. Reagents and Chemicals

Optima™ LC-MS-grade acetonitrile, methanol, and water, and a 1M hydrochloric acid solution
were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Formic acid (98%), ammonium
formate, SSA, and trichloroacetic acid (TCA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Authentic reference materials and stable-isotope labeled internal standards including Asn,
[13C4,15N2]-Asn, Asp, [13C4,15N1]-Asp, Gln, [13C5,15N2]-Gln, Glu, and [13C5,15N1]-Glu were purchased
from Sigma-Aldrich. Kidrolase® (ASNase) was purchased from Jazz Pharmaceuticals. The L-Asn
analog and irreversible ASNase inhibitor, 5-diazo-4-oxo-L-norvaline (DONV), was synthesized by
Acme Bioscience (Palo Alto, CA, USA).

4.2. Equipment and Consumables

In this study, 1.4 mL polypropylene Matrix tubes and SepraSeal caps were purchased from Thermo
Fisher Scientific and were used for frozen storage of dialyzed whole blood (DWB) matrix, DWB-derived
quality control (QC) standards, and for the extraction of all study samples. Micrewtube® tubes (2.0 mL)
and caps were purchased from Simport (Montreal, QC, Canada) and were used for frozen storage of the
calibration (calibrator) standard spiking solutions. Slide-A-Lyzer Dialysis Cassette G2 (10,000 MWCO;
15 mL capacity) from Thermo Fisher Scientific was used to dialyze lysed whole blood matrix. A Kinetex
HILIC (100 × 2.1 mm, 1.7 μm particle size) analytical column from Phenomenex (Torrance, CA, USA)
was used for chromatographic separation of ASNase PD markers. Chromatographic data were acquired
using a 1290 Infinity Binary UHPLC system coupled to a 6460 tandem-mass spectrometer produced
by Agilent Technologies (Santa Clara, CA, USA). MassHunter LC/MS Data Acquisition Software
(Version B.06.00) was used for control and operation of the LC-MS/MS system, and MassHunter
Quantitative Analysis Software (Version B.06.00) was used for chromatographic peak integration.
Weighted (1/x) linear regression analysis for each calibration curve was performed using GraphPad
Prism (Version 6.05) from GraphPad Software (La Jolla, CA, USA).
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4.3. Optimization of Experimental Conditions for the Effective Quenching of ASNase Activity

Overall, nine different experimental conditions were tested for ASNase quenching efficacy in
freshly prepared neat solutions (i.e., fresh solvent mixtures, or solvents containing acids or inhibitors in
the absence of biological material). We tested the following solutions: (1) four organic solvent solutions
with and without formic acid (methanol, methanol with 1% formic acid, acetonitrile, and acetonitrile
with 1% formic acid); (2) two aqueous solutions that consisted of water with 1% formic acid, and water
with 10% formic acid; (3) two aqueous solutions of protein precipitation reagents that consisted of
water with 10% (w/v) SSA and water with 1% (w/v) TCA; and (4) one aqueous solution that consisted
of water with 40 mM DONV. A non-quenched positive control sample (+ASNase) and a negative
control sample lacking ASNase (-ASNase) were also prepared with a consistent Asn concentration for
normalization purposes. All of the solutions, samples, and controls were prepared fresh on the day of
the experiment and tested as a single replicate in a single batch.

The quenching study samples were prepared by adding 100 μL of an ASNase spiking solution
(100 IU/mL) prepared in water, and 400 μL of the appropriate quenching test solution to a labeled
sample tube, and all of the samples were briefly vortex-mixed. Next, 10 μL of an Asn spiking solution
(5000 μM) solution was added to each sample, and each sample was vortex-mixed briefly. The samples
were allowed to incubate at room temperature for 10 min, then they were centrifuged at 17,000× g for
5 min at 4 ◦C. The supernatant was transferred to polypropylene autosampler vials and analyzed on
the LC-MS/MS system. The final activity of ASNase and solution concentration of Asn in each sample
tested was approximately 20 IU/mL and 100 μM, respectively.

4.4. Dialysis of Mouse Whole Blood

A mixed sex, pooled lot of K2-EDTA CD-1 mouse whole blood was purchased from
BioreclamationIVT (New York, NY, USA). Upon receipt, the whole blood matrix was frozen at −20 ◦C
for a minimum of 24-h to ensure complete RBC lysis. Prior to dialysis, the whole blood matrix was
thawed, then centrifuged at 4500× g for 10 min to pellet the RBC debris, and finally the whole blood
supernatant was dialyzed (10,000 MWCO membrane) against 5 L of 1× PBS over five 24-h passages
at +4 ◦C. The DWB matrix was then transferred to polypropylene tubes and stored at −20 ◦C until
needed. The mouse DWB matrix was used in the preparation of calibrators and QCs. The endogenous
background levels of Asn, Asp, Gln, and Glu that remained in the DWB matrix after dialysis were
determined by triplicate analysis of blank samples in each analytical run.

4.5. Preparation of Amino Acid Stock, Combined Intermediate, and Calibrator Spiking Solutions

Individual Asn and Gln stock solutions were prepared in a solution of water that contained
1% formic acid. Individual Asp and Glu stock solutions were prepared in a solution of water that
contained 1 M hydrochloric acid to ensure solubility. The nominal concentration for each stock
solution was corrected to account for salt form, purity, and water content reported on the reference
material product literature. Individual stock solutions were used to prepare a combined intermediate
solution that contained each analyte component at a concentration of 10,000 μM each. The combined
intermediate solution was serially diluted further to prepare calibrator spiking solutions at the
following concentrations: 4.00, 8.00, 100, 400, 1000, 2000, 3600, and 4000 μM. All dilutions were
made using a solution of water that contained 1% formic acid as the diluent. The individual stock
solutions, combined intermediate, and the individual calibrator spiking solutions were stored in
polypropylene tubes and at −80 ◦C when not in use.

4.6. Preparation of Stable-Isotope Labeled Internal Standard Stock and Working Internal Standard Solutions

Individual [13C4,15N2]-Asn and [13C5,15N2]-Gln stock solutions were prepared in a solution of
water that contained 1% formic acid. Individual [13C4,15N1]-Asp and [13C5,15N1]-Glu stock solutions
were prepared in a solution of water that contained 1 M hydrochloric acid to ensure solubility.
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The nominal concentration for each internal standard stock solution was corrected to account for salt
form, purity, and water content reported on the reference material product literature. The individual
internal standard stock solutions were used to prepare a working internal standard (WIS) solution that
contained each internal standard component at a concentration of 1,000 μM each. All dilutions were
made using a solution of water that contained 1% formic acid as the diluent. The individual internal
standard stock and WIS solutions were stored in polypropylene tubes and at −80 ◦C when not in use.

4.7. Sample Extraction Procedure

The following sample extraction procedures were performed for all analytical batch preparations
described in this study. All samples immediately received a 30 μL aliquot of water that contained
20% formic acid, which was added to quench ASNase activity in the study samples. All samples were
capped and vortex-mixed for 30 s. All samples received a 240 μL aliquot of a solution of methanol
that contained 1% formic acid to precipitate protein. All samples were vortex-mixed for two min
and centrifuged for ten min at 17,000× g at ambient temperature. Supernatant was then transferred
to a new sample tube and evaporated to dryness in the Savant vacuum concentrator with sample
heating at 45 ◦C. The collection and extraction procedures used for the ASNase PD study samples is
described below.

4.8. Sample Reconstitution

Samples were reconstituted according to the following two-step process: (1) Each sample received
a 20 μL aliquot of a solution of water that contained 1% formic acid, was capped, and was vortex-mixed
for 30 s to solubilize glutamic acid and aspartic acid prior to the addition of organic solvent; (2) Each
sample then received a 180 μL aliquot of a solution of acetonitrile that contained 1% formic acid,
was capped, and was vortex-mixed for an additional 2 min. All samples were again centrifuged at
17,000× g for ten min, and the supernatant was transferred to polypropylene injection vials (Thermo
Fisher Scientific). The sample extracts were stored in a refrigerator until analysis, and a 5 μL sample
volume was injected onto the instrument for analysis.

4.9. Liquid Chromatography/Mass Spectrometry Conditions

Hydrophilic Interaction Chromatography (HILIC) mobile phase A (MPA; weak) and mobile phase
B (MPB; strong) solutions used for this study were acetonitrile/200 mM ammonium formate/formic
acid (950:50:20; v:v:v), and acetonitrile/water/200 mM ammonium formate/formic acid (500:450:50:20;
v:v:v:v), respectively. The chromatographic column was a Phenomenex Kinetex HILIC analytical
column (2.1 × 100 mm, 1.7 μm particle size). The chromatographic method included column heating
at 30 ◦C, autosampler tray chilling at +4 ◦C, a mobile phase flowrate of 0.200 mL/min, and a gradient
elution program specified as follows: 0–2.5 min, 5% MPB; 2.5–10.5 min, 5–90% MPB; 10.5–12 min,
90–5% MPB; 12–14 min, 5% MPB. The overall cycle-time for a single injection was approximately
14.5 min. Representative extracted-ion chromatograms for the analytes and internal standards can be
found in Supplementary Figure S2.

The Agilent Jet Stream-electrospray ionization (AJS-ESI) source was installed on the mass
spectrometer and operated in unit/unit resolution and positive ionization mode with the following
acquisition parameters: gas temperature: 325 ◦C; gas flow: 6 L/min; nebulizer: 40 psi; sheath gas
temperature: 350 ◦C; sheath gas flow: 9 L/min; capillary voltage: +1250 V; nozzle voltage: +500 V.
All reference and internal standard compounds were optimized using the Agilent Optimizer Software
(Version B.06.00) and post-column infusion; molecule-specific acquisition parameters for the analytes
and internal standards are described in Table 1.

4.10. Study Design

This study was performed in a pathogen-free vivarium at The University of Texas MD Anderson
Cancer Center under an approved Institutional Animal Care and Use Committee (IACUC) study
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protocol (ACUF #00001658-RN00). The study included five NOD.Cg-PRKDC(scid) IL2RG(tm1Wjl)
(NSG; stock #005557) mice purchased from The Jackson Laboratory (Bar Harbor, ME). The five
mice were arranged into three treatment groups: (1) control (n = 2; 100 μL PBS administered by
intraperitoneal (IP) injection every day for three days); (2) low-dose (n = 2; 100 μL PBS containing
1000 IU Kidrolase per kg body weight administered IP every day for three days); (3) high-dose (n = 2;
100 μL PBS containing 5000 IU Kidrolase per kg body weight administered IP every day for three
days). Each treatment was administered at 0, 24, and 48 h after study initiation. Whole blood (10 μL)
was collected from each mouse before study initiation (pre-dose) and again at 48 and 96 h (48 h
after cessation of treatment). When whole blood was collected on treatment days, it was collected
immediately before the administration of the treatment.

4.11. Preparation of Sample Extraction Tubes

Prior to blood collection, the following solutions were added to individual extraction tubes
corresponding to each sample: (1) 10 μL of WIS solution; (2) 10 μL of a solution of water that contained
1% formic acid to make up for the spiking solution volume in the preparation of the Calibrators;
and (3) 30 μL of a solution of water that contained 20% formic acid to quench the enzymatic activity
of ASNase present in the whole blood samples. Finally, all sample tubes were vortex-mixed for
approximately 30 s, centrifuged at 3,000× g for approximately 1 min, appropriately labeled for a
specific sample, and stored on ice for transport to the vivarium.

4.12. Collection, ASNase Activity Quenching, and Extraction of Mouse Whole Blood Study Samples

Using a sterile taiL-snip method, a 10 μL whole blood sample was collected from the tail of
each mouse and was immediately transferred to the appropriately labeled extraction tube containing
the stable isotope-labeled IS compounds. Each sample was briefly vortexed to thoroughly mix the
whole blood with the contents of the extraction tube. Complete RBC lysis and protein precipitation
was ensured by the addition of 240 μL of an ice-cold solution of methanol that contained 1% formic
acid. Samples were stored on ice, transported back to the laboratory, vortex-mixed for two min, and
centrifuged for ten min at 17,000× g at ambient temperature. Supernatant was then transferred to a
new sample tube and evaporated to dryness in a Savant vacuum concentrator with sample heating at
45 ◦C. Dried sample extracts were capped and stored at −80 ◦C until reconstitution.

4.13. Quantitative Analysis Workflow

A custom quantitative analysis workflow had been devised to correct for the detectable levels
of Asn, Asp, Gln, and Glu contained in the DWB matrix that was used to prepare the calibrator
samples. Chromatographic peak integrations were performed using the MassHunter Quantitative
Analysis software package. When peak integrations were completed for each individual analyte,
the results table was exported into a custom Excel spreadsheet that was designed to automate the
following computational tasks: (1) compute the mean area response for the analyte contained in the
blank whole blood matrix; (2) subtract the mean analyte response in the whole blood matrix from the
analyte response measured for each calibrator level; and (3) compute a corrected instrument response
(IR ≡ [Corrected Area]analyte/[Area]IS) factor for each calibrator level. Individual calibration curves
were generated in GraphPad Prism by performing a least-squares linear regression with 1/x weighting
on plots of IR factors versus nominal analyte concentration for each calibrator. Individual slope and
intercept outputs from the linear regression analysis for each calibration curve were input into the
spreadsheet in order to compute the analyte concentration of each sample present in that batch.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/1/10/s1,
Figure S1: Sulfosalicylic acid exhibits an effect on Asn chromatography; Figure S2: Extracted-ion chromatograms
(XIC) for the transitions monitored; Table S1: Compiled biological reactions involving asparagine, aspartic acid,
glutamine, and glutamic acid.
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Abstract: Breath analysis is a promising technique for lung cancer screening. Despite the rapid
development of breathomics in the last four decades, no consistent, robust, and validated volatile
organic compound (VOC) signature for lung cancer has been identified. This review summarizes the
identified VOC biomarkers from both exhaled breath analysis and in vitro cultured lung cell lines. Both
clinical and in vitro studies have produced inconsistent, and even contradictory, results. Methodological
issues that lead to these inconsistencies are reviewed and discussed in detail. Recommendations on
addressing specific issues for more accurate biomarker studies have also been made.

Keywords: volatile organic compound; lung cancer; breath analysis; in vitro study; biomarker

1. Introduction

Cancer is the second leading cause of death by disease worldwide, exceeded only by heart
disease [1]. Among all types of cancer, lung cancer accounts for 1.6 million deaths each year, exceeding
those of the next three most common cancers combined (prostate, breast, and colon cancer) [2]. Lung
cancer is typically silent in its early stages; symptoms such as coughing, chest pain, weight loss, etc.
are often ignored by patients as typical signs of the onset of old age. Histologically, lung cancer is
divided into non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), with the former
accounting for about 85% of cases and the latter, the remaining 15%. NSCLC can further be classified
into adenocarcinoma, squamous cell carcinoma, and large cell carcinoma [3]. Treatment options and
prognosis are critically dependent on the stage and histology of the disease. Using current diagnostic
techniques, such as computer tomography (CT), sputum cytology, and biopsy, 85% of lung cancer
cases are diagnosed at a stage when treatment is ineffective at curing the disease [4]. Overall, the 5-year
survival is about 10–15% due to late diagnosis. However, if the disease is diagnosed at stage 1,
the 5-year survival increases dramatically to 80% [5]. With lung cancer incidences rising around the
world, the need for an early detection tool is both critical and urgent. Breath volatile organic compound
(VOC) analysis is one such promising technique.

In the last few decades, extensive effort has been focused on searching for VOC biomarkers for
lung cancer, either from the headspace of lung cancer cells or from the exhaled breath of patients.
However, both clinical and in vitro studies have failed to produce a consistent and validated list.
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This review aims to summarize the volatile markers produced by these studies in the last 30 years and
discuss the methodological issues that have led to the inconsistencies between different studies.

The most commonly used techniques for VOC analysis include mass spectrometry and sensor
technologies. Mass spectrometry-based studies usually produce a list of molecules that could be
used as biomarkers, while studies using sensor arrays only produce a pattern without individual
compound identification. Though detecting lung cancer using various sensor technologies has
produced meaningful and promising results [6–14], it is beyond the scope of the current review.
Comprehensive reviews on lung cancer VOC studies using sensors could be found elsewhere [15,16].

In this review, we focus on mass spectrometry-based clinical, as well as in vitro, studies that provided
individual compound identification. We compare the results from these studies and discuss in detail the
methodological issues that have led to the inconsistencies across different studies. A short and concise
review on breath analysis of lung cancer can be found in [17]. Saalberg et al. and Hua et al. did systematic
reviews on breath analysis as a screening technique for lung cancer [18,19]. Zhou et al. discussed the
recent developments in the analytical techniques of breath analysis for lung cancer detection [20]. None of
these reviews discussed in vitro studies or evaluated the methodological issues of these studies.

2. VOC Biomarkers of Lung Cancer in Exhaled Breath

The pioneering study on VOC in exhaled breath from lung cancer patients was done by Gordon
et al. in 1985 using gas chromatography mass spectrometry (GC-MS) [21]. Since then, interest in
the clinical diagnostic potential of breath analysis in lung cancer detection has risen, evidenced by a
rapidly increasing number of publications in the last 30 years. In Table 1, we summarize 25 clinical
studies on the breath analysis of lung cancer patients who have identified biomarkers. A majority of
these studies adopted a case control approach. Lung cancer patients were recruited as a case group,
subjects not clinically diagnosed with lung cancer were recruited as a control group, and the breath
VOC profile was compared between them. An identified VOC is considered as a biomarker if its
concentration is statistically different between these two groups. Almost all studies used GC-MS as
the analytical platform, with the exception of two studies that used proton transfer reaction mass
spectrometry (PTR-MS) [22] and ion mobility mass spectrometry (IMS) [23]. Bajtarevic et al. reported
results from both PTR-MS and GC-MS [24].

The lung cancer biomarkers identified by these studies are largely inconsistent. To better illustrate
the biomarker results of Table 1, we filtered the biomarkers that have been identified by at least
four studies and ranked them based on the occurrence (Figure 1). The most frequently emerging
biomarkers of lung cancer include propanol, isoprene, acetone, pentane, hexanal, toluene, benzene,
and ethylbenzene. Michael Philips, one of the pioneers in the breath research field, conducted three
independent biomarker discovery studies for lung cancer using GC-MS [25–27]. In view of the different
lists produced from these studies, he commented that although the exact identities of markers derived
from these three studies are not the same, the major biomarkers were mainly alkane derivatives, which
are consistent in all three of his studies. The relative abundance of most of these VOCs was found to
have decreased in the participants with lung cancer, as compared to the healthy control; this difference
could be attributed to the increased catabolism of lipid peroxidation products due to the activated
CYP450 genotypes in lung cancer [26]. However, there are many other studies in which alkanes were
not found to be associated with lung cancer [28–30]. None of these studies evaluated the origin of the
detected VOCs. In fact, the mechanism of most VOCs in exhaled breath remains unknown. Hakim et al.
reviewed the possible biochemical pathways of lung cancer related VOCs [31].

Generally, it is accepted that until now there has been no consistent and validated list of VOC
biomarkers for lung cancer in the literature [31–33]. Reasons for these inconsistencies are manifold.
There is a large variation in different studies in terms of breath sampling procedures, study designs
(selection of control group, selection of patients, etc.), and data analysis protocols. Insightful accounts
on the advantages and drawbacks of various data analysis techniques can be found in [34,35].
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Figure 1. Volatile organic compounds (VOCs) identified as lung cancer biomarker in four or more studies.

2.1. Methodological Issues of Clinical Studies

In Table 2, we have summarized and listed the various methodological issues in breath sampling
and study design. In this section, we will discuss in detail the effect of various methodological issues,
what researchers have done in the included 25 studies to account for these issues, and, consequently,
what the current best practices are, based on these studies.

Table 2. Methodological Issues of Clinical Studies.

Breath Sampling Study Design

1. Environmental VOCs
2. Phase of breath (alveolar vs. whole breath)
3. Expiratory flow rate and Hyperventilation
4. Temperature and humidity of environment
5. Contaminations from collection system

6. Age/gender
7. Diet
8. Exercise
9. Smoking
10. Medication
11. Comorbidities
12. Disease Stage
13. Histology

2.2. Environmental VOCs

More than 1000 VOCs have been detected in human breath and the majority of these VOCs have
exogenous origins [52]. The effect of environmental VOCs on breath analysis was first recognized
by Philips, and he has proposed that this problem can be solved by determination of the “alveolar
gradient” of a VOC [42,43]. The alveolar gradient is defined as the concentration of the VOC in breath
minus the concentration in the room air. A positive alveolar gradient means more of the VOC was
exhaled than inhaled and vice versa. Philips measured the alveolar gradients of various VOCs and
concluded that VOCs with negative alveolar gradients are metabolized by the body and those with
positive alveolar gradients are manufactured in the body [53,54]. However, later studies proved this
to be an incorrect assertion. VOCs with positive alveolar gradients may result from VOCs absorbed
from food [55], drugs [56,57], or even bacteria in the GI tract, airways, or mouth cavity [58]. On the
other hand, VOCs with a negative alveolar gradient may, in fact, have metabolic origins. The journey
of environmental VOCs in the human body is a complex process of mixing, diffusion, distribution in
blood and fat tissues, and metabolism, as shown in the report by Philips et al. [59]. The rate and degree
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to which environmental VOCs are removed from the body depend on the concentration of the VOC,
the duration of exposure [60], the solubility in blood and lipid tissues [61], and individual physiology.

Early theoretical modelling experiments, aimed at evaluating the health effects of industrial VOC
exposure, have shown that the partition coefficient of a VOC in lungs, blood, and tissue is specific to
its physical and chemical properties, and varies immensely [62,63]. Schubert et al. measured inspired,
expired, and blood concentrations for four VOCs (pentane, acetone, isoprene, and isoflurane) and
found that only when the inspired concentration was less than 5% of the expired concentration did
the disappearance rate of VOC from the blood correlate significantly with the rate of exhalation [64].
Another study by Spanel et al. found that all seven studied VOCs (pentane, isoprene, acetone,
ammonia, methanol, formaldehyde, and deuterated water) are partially retained by the body, and
there are close linear relationships between the exhaled and inhaled concentrations [65]. They also
introduced a useful parameter called a retention coefficient, which is the ratio of the increase of the
exhaled concentration to the increase of the inhaled concentration. The retention coefficients measured
for these seven VOCs vary numerically from 0.06 for formaldehyde to 0.76 for pentane [65].

With these initial efforts, it is evident, unfortunately, that there is no general rule that can be applied
to all VOCs when accounting for the effects of environmental VOCs. Apart from using the concept of
alveolar gradient, researchers have addressed this issue either by using an inspiratory filter [12] or by
letting the patients stay in a ventilated room for a predetermined amount of time before collection [45].

For discovery-type studies, it seems that an inspiratory filter is the best solution, for now. However,
the time it takes to clear out environmental VOCs from the body is compound specific. Much more effort
is, therefore, needed to understand the origins and dynamics of various VOCs observed in human breath.

2.3. Phase of Breath Sample Collected

Each exhalation can be divided into three phases based on the CO2 pressure in the breath. Phase
1 and phase 2 are air from the dead space in oral cavity and upper airways. Phase 3 is alveolar air from
deep inside the lungs [66]. End-tidal breath refers to the portion of alveolar air nearer to the end of
one exhalation. For the purpose of disease diagnostics, the alveolar phase is desired because VOCs in
this portion are from the blood-gas exchange in the alveoli and thus more closely reflect metabolic
conditions. Concentrations of certain VOCs differ in whole breath versus end-tidal breath. For example,
VOCs such as carbonic acid, dimethyl ester, and methyl format were found to be significantly higher
in end-tidal breath, while methylene chloride and 3-ethyl pentane were lower in end-tidal breath than
in whole breath [67].

Most studies on lung cancer breath analysis either collected whole breath [26,38] or collected
alveolar or end-tidal breath based on a crude estimation. The end-tidal breath was collected either by
discarding the front portion of the breath [37,45] or by filling the dead space air into separate bags [39].
Kischkel et al. collected alveolar breath based on a fast responding CO2 sensor [41].

To selectively collect alveolar phase accurately, monitoring CO2 pressure is a good idea. CO2

level is a reliable indicator of the phase, and CO2 sensors are readily available. Birken et al. integrated
a capnography setup into the breath collection procedure to visually monitor the phase of breath
and manually draw alveolar air using a syringe [68]. Later, the same group developed an automatic
CO2 controlled sampling device and demonstrated the performance of the automatic sampler to be
comparable to manual sampling [69]. In 2016, Owlstone Medical developed a breath collection device
named RECIVA™ [70]. This is the first and only commercially available breath collection device that
allows an accurate selection of phase. Such controlled and standardized methods in selecting phase of
breath could significantly improve the consistency of breath biomarker research.

2.4. Expiratory Flow Rate, Breath-Holding, and Hyperventilation

Studies have shown that expiratory flow rate and hyperventilation affect the levels of various
VOCs. Contradictory results were reported on the effect of flow rates on common breath VOCs.
Doran et al. found that at a higher flow rate, lower levels of acetone and phenols were observed [67].
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However, in another study, acetone level was not affected by the expiratory flow rate [71], and in yet
another study, higher levels of acetone at a higher flow rate were reported [72]. Reports on trends of
isoprene at different expiratory flow rates are also contradictory [73,74].

When asked to provide a breath sample, some people tend to hold their breath before
exhalation. Therefore, the effect of breath-holding on breath VOC was investigated, and results
from different studies are in agreement. Pentane and isoprene levels increased significantly after 20 s
of breath-bolding [73]. A similar trend was observed in another study for isoprene after a 40 s breath
holding [74]. Other VOCs found to be increased after breath holding in this study include 2-propanol
and acetaldehyde [74]. In a third study, acetone, methanol, isoprene, and dimethyl sulphide increased
significantly after 30 s of breath holding [72]. The unanimous increase of various VOCs with breath
holding may be attributed to the prolonged time for them to diffuse from the alveoli to the airway.

Hyperventilation was found to have a negative effect on levels of methanol, dimethyl sulfide,
acetaldehyde, and ethanol [72], as well as isoprene [75]. On the other hand, acetone level was not
notably affected by hyperventilation [75]. This is attributed to the fact that acetone has much lower
solubility in blood than the rest of the VOCs, and, therefore, can be quickly released from blood
during hyperventilation.

The diameter of the mouthpiece used during sampling affects airway resistance and, subsequently,
affects levels of certain VOCs. It was found that a smaller mouthpiece diameter caused a 19% increase
in isoprene levels. Furan hydrogen sulfide also increased significantly [76]. A mouthpiece with a
diameter larger than 1 cm was recommended for future studies [76].

In all the studies included in Table 1, subjects were asked to breath “normally”, flow rate was not
measured, and no information on the diameter of mouthpiece was given.

The learning outcome from these studies is that sampling parameters, such as exhalation rate,
breath-holding, and airway resistance, must be controlled and recorded in a standardized manner
across different subjects for consistent and reliable results. Hyperventilation should be avoided.

2.5. Temperature and Humidity of Environmental Air

This is a seldom noticed, but important, confounder for longitudinal studies, in which breath
collection spans over a long period of time, during which temperature and humidity change drastically
(e.g., winter to summer) [44]. This factor is also critical for multi-center clinical studies, when collection
is done in different regions of the world with significantly different climates [26]. Thekedar et al. [74]
assessed the changes in exhaled VOC concentrations sampled after a 5 min stay under 3 ◦C, 47%
relative humidity and 27 ◦C, 19% relative humidity using PTR-MS. Acetonitrile, ethanol, methanol,
and propanol showed higher concentrations in the samples collected under the warm air compared to
those collected in the cold air. On the other hand, VOCs with a proton transfer reaction product of
ion m/z s of 85, 86, 99 and 169 showed higher concentrations in samples collected under cold air. The
fact that studies on lung cancer biomarkers were conducted under vastly different temperature and
humidity conditions is another significant reason for the inconsistent results.

2.6. Contamination from Collection Systems

Unfortunately, most commercially available breath collection apparatuses involve materials that
could, themselves, be sources of contamination. For example, the widely accepted Tedlar bags for breath
collection are made of polyvinyl fluoride and are known to emit many VOCs from the bag material,
which, therefore, poses a threat of contamination [77,78]. Several studies used tedlar bags for lung cancer
biomarker discovery [38,39,42,47]. Inert materials such as Teflon, stainless steel, or glass should be used
for breath collection systems and other types of materials should be avoided as much as possible.

2.7. Age/Gender

Isoprene, alkanes and methylated alkanes were found to be related to age [79–81]. With an
increase in oxidative stress level with advancing age, levels of these VOCs in breath increase gradually.
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Spanel et al. also found that breath ammonia increases with increasing age, but acetone and hydrogen
cyanide do not vary greatly with age [82]. Gender also influences the breath VOC profile. isoprene
and several other VOCs were found to be gender specific [41,80,83].

In case control studies, results could be biased due to unmatched age and gender. In the reviewed
studies, lung cancer patients are often significantly older than control subjects [23,24,38,41,43–45,47],
and usually there are more male subjects in the case group than in the control group [24,26,41,43].

2.8. Diet

The effect of diet on breath VOCs is also a complex one. Certain types of food, such as yoghurt [84]
and seafood [85] contains a number of VOCs that rapidly and directly appear after ingestion. Food also
affects breath VOC by changing metabolism, inflammation, or redox status, or by interacting with gut
flora. Some studies required subjects to fast for 12 h, or overnight, before breath collection [25,42,45,47],
while other studies had no restrictions; It is not understood how long it takes for the VOCs from diet
to be eliminated from breath. Whether overnight fasting helps in eliminating these effects needs to
be studied further. On the other hand, dietary style may have a prolonged effect that could not be
eliminated by fasting.

2.9. Smoking

Smoking was identified as one of the key risk factors for lung cancer, and smoke contain many
VOCs. It was found smokers have higher levels of benzene and acetonitrile in their breath. Although
the level of benzene in a smoker rapidly decreases to a similar level as a non-smoker within an hour,
the level of acetonitrile, since the last smoking, takes about a week to become that of a non-smoker [86].
Alcohol consumption leads to increased levels of acetaldehyde in the breath, and it was found long-term
smoking elevates the production of acetaldehyde from alcohol [56]. This finding was confirmed by
another study [87]. These results show that smoking can affect other metabolic pathways that are
not directly related to VOCs from cigarettes. Smoking cigarettes is also known to increase oxidative
stress. As a result, levels of isoprene and pentane were found to be increased after smoking [88].
Other smoking-related VOCs include 2,5-dimethyl furan and 1,3-butadiene. Smoking related VOCs
need to be clearly distinguished from endogenous compounds that are related to disease conditions.

All studies reported the smoking history of recruited subjects but adopted vastly different
strategies for data analysis. Some studies did not discuss the possible effects of smoking on their
results, even though the case and control group had highly uneven smoking histories [40,47]. Coraddi
et al. found the value “pack-year” alone had a fair diagnostic power [49]. Combining this value with
VOC markers could help in developing a more robust biomarker panel for lung cancer detection.
Wang et al. identified smoking related VOCs using ROC and excluded these molecules from the lung
cancer biomarker list [45].

Currently, there are two ways to minimize the influence of smoking. One is to design the study
carefully, so that case and control groups have matched smoking histories. In two studies where the
smoking histories of the case and control groups were closely matched, no effect of tobacco smoke
was found on the diagnostic power of the identified biomarker panel [26,27]. The other strategy is to
exclude smoking-related VOCs from the biomarkers for lung cancer detection. However, it is not fully
known yet what other metabolic pathways may be affected by smoking.

2.10. Comorbidity

Many target subjects for disease diagnostic studies often have more than one medical condition.
These diseases will also change the VOC profile and confound the biomarker discovery for the targeting
disease. Most studies recruited healthy subjects as a control group [29,41,50], while a few studies
recruited subjects with similar comorbidity as a control group [44]. The variances in the choice of
control groups contribute to the inconsistencies across the different studies.
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2.11. Disease Staging

One key advantage of breath analysis is its potential for early detection. It is of keen interest to
know if stage influences VOC profile. Philips et al. identified 22 breath VOCs that could differentiate
control and lung cancer subjects, regardless of stages. For stage 1 patients, the 22 VOCs had 100%
sensitivity and 81.3% specificity [25]. Other studies also showed no discrimination between early
stage and advanced stage [26,38,40,45,47]. However, Corradi et al. showed that although lung cancer
patients have higher levels of ethylbenzene in their breath, the difference is less pronounced between
early stage lung cancer and control subjects [49]. Peled et al. analyzed breath samples using a
combination of GC-MS and chemical nanoarray, GC-MS analysis did not show any discrimination
between early stage and late stage, and also for sub-histological types of lung cancer; however,
chemical nanoarray-based techniques could discriminate between early and late stage, and between
adenocarcinoma and squamous cell carcinoma, with an accuracy of 88% [44]. Due to the limitations of
the chemical sensor array, the identity of the VOCs that contribute to these discriminations is unknown.

2.12. Histology

Lung cancer is a complex disease with different histologies. Very few studies compared the VOC
profile between different histological types. Song et al. found that patients with adenocarcinoma
showed higher concentrations of 1-butanol and 3-hydroxy-2-butanone [40]. In the study by Corradi
et al., adenocarcinoma showed higher levels of hexane and ethyl benzene compared to squamous cell
carcinoma [49]. Other studies showed that histology has no significant impact on breath VOCs [26,27,47].

Most of the methodological issues discussed above are not limited to lung cancer. Rather, they
are shared by breath VOC studies with various objectives. Establishing a standardized practice for
these methodological issues is a challenging task and requires a collective effort from all researchers in
the field. Jens et al. suggested a framework for standardizing breath analysis at different technical
levels [89]. In 2017, the European Respiratory Society published a technical standard on exhaled
biomarkers in lung disease [90] and highlighted a few key areas for future research. These are
important first steps towards standardized protocols in breath analysis. For highly complex and
heterogenous diseases, such as lung cancer, implementing standardized practice is especially critical
in developing biomarkers with a clinical value. Though much more needs to be done to establish a
standardized methodological procedure, this area of study is well worth pursuing due to the huge
potential of breath analysis for non-invasive and early disease detection.

3. In Vitro Studies

In vitro cell culture provides a convenient alternative for studying volatile signatures of lung
cancer while bypassing many confounding factors associated with breath sampling. Many studies
have identified the VOC biomarker of cultured lung cells, and the results show that different types
of lung cell lines can generate different panels of VOCs (Table 3). Studies from the same cell line
using different techniques produced inconsistent results. For example, a study of the NSCLC cell line
Calu-1 using selected ion flow tube-mass spectrometry (SIFT-MS) [91–93] consistently showed higher
levels of acetaldehyde, while a study by GC-MS [94] showed that acetaldehyde was decreased in this
cell line. Sporning et al. also found decreased level of acetaldehyde in another type of lung cancer
cell line [95]. Most studies used only one or two cell lines. Two studies included more than six cell
lines [96,97]. These studies brought in vitro studies one step further to investigating whether VOCs
from cells in vitro could discriminate between different histologies. Barash et al. showed that VOCs
could discriminate between (1) lung cancer and normal lung epithelial cells; (2) NSCLC and SCLC
cells; and (3) two subtype of NSCLC: adenocarcinoma and squamous cell carcinoma [97]. Jia et al.
demonstrated that although NSCLC and SCLC showed distinct VOC profiles, adenocarcinoma and
squamous cell carcinomas could not be differentiated among NSCLCs. On the other hand, large cell
carcinomas show different VOC profile with the rest of the NSCLCs [97].
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Limitations of In Vitro Studies

Though analyzing VOCs from cultured cells faces fewer problems compared to analyzing human
breath samples, there are many methodological issues in the current literature.

The first issue is that almost all studies have used standard cell culture flasks made of polystyrene.
Polymer materials like polystyrene emit VOCs themselves. The background from the vessel should be
measured and corrected in cell experiments. Alternatively, if cells can survive, glass vessels should be
used instead, as adopted by some studies [91,102]. Schallschmidt et al. measured the background from
plastic culture vessels and identified several alkanes and aromatics [103]. These molecules are often
also found in cultures with living cells. As a result, the background from plastic cell culture vessels
may easily lead to misinterpretations.

The second issue is that different cell growth media other than those recommended by the
supplier were used to get a uniform VOC background. A culture medium contains nutrients, such
as glucose, amino acids, and vitamins, that are essential to cell growth. Certain cell lines require
special formulations for optimum growth. The most commonly used basic medium is called DMEM
(Dulbecco’s modified Eagle’s medium). A culture medium has a considerable VOC background and
differs from one type to another. In some studies, a cell line with a special medium requirement
was cultured in a basic medium, in order to get the same VOC background across different cell
lines. Filipiak el al. studied three cell lines: lung cancer cell line A549, primary human bronchial
epithelial cells (HBEpC), and human fibroblasts (hFB) [104]. Although the authors cultivated HBEpC
in an airway epithelial cell growth medium with special supplements, as recommended by the ATCC
(American Type Culture Collection) for initial propagation, for the VOC experiment they cultured
all three types of cells in DMEM for 21 h. It is questionable whether the HBEpC cells remained in a
healthy condition in DMEM, as no cell viability data or pictures of the cells were shown. It is beyond
doubt that different VOC backgrounds from different types of cell growth media should be taken
into consideration. Instead of compromising on the growth condition of cells, we believe the method
adopted by Barash et al. is more acceptable [96], where each cell line was grown in its recommended
medium and the VOC effect of the medium was corrected during data analysis before comparing
across different cell lines.

Another limitation is that cells in an in vitro culture live in a drastically different environment
than tumor cells in the human body. As a result, none of the identified biomarkers achieved clinical
relevance [105,106]. Kalluri et al. showed that hypoxia influences the VOCs that the cancer cells
produce and suggested future in vitro studies to culture cells in hypoxic conditions [106]. Lung cancer
cell grown in a 3D environment was found to emit higher levels of VOCs than in 2D cultures [93].
These studies indicate that cell culture experiments could be more relevant when the conditions better
mimic the real situation.

Despite these limitations, in vitro cell culture provides a convenient way to directly assess the
effect of certain stimuli on the VOC profile produced by cancer cells. Lawal et al. used cultured lung
cells to study the effect of a bacterial infection on the VOC profile [107]. They co-cultured lung epithelial
cells with Pseudomonas aeruginosa, a bacterium commonly found in pneumonia, and measured the
VOC profile with and without the bacteria. Acetone, ethanol, 3-methyl-1butanol, and three other
VOCs were found to be elevated in bacteria infected cells, indicating the bacterial origin of these VOCs.
They also simulated the effect of oxidative stress induced by bacterial infection by adding hydrogen
peroxide to the cell culture and identified several alkanes as potential markers for oxidative stress.
Feinberg et al. blocked glycolysis in cultured lung cancer cells and identified unique signatures in
all cells studied [108]. A recent study identified the unique VOC profiles of lung cancer cells with a
different p53 mutation status at a single cell level [102]. These studies demonstrated the usefulness of
in vitro cell cultures in identifying the possible biochemical origins of VOCs.
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4. Conclusions

Breath analysis for lung cancer screening is a rapidly developing field. Accelerating the pace
of the development of a robust panel of markers that can be translated for clinical use will require
progress in three key areas: (1) development of standardized and flexible breath sampling protocols,
(2) longitudinal multi-centre clinical trials with careful study design and external validation, and (3)
understanding of the biochemical pathways involved in lung cancer development and progression.
Measuring VOCs in vitro, after blocking specific pathways or knocking out specific genes, provides
direct evidence of the biochemical origins of the VOCs. We believe that these discoveries will ultimately
contribute to the development of breath analysis as a technique for the early detection of lung
cancer, allowing breath analysis to realize its long-held potential and to become a critical tool in
personalized medicine.
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Abstract: The growth and development of non-small cell lung cancer (NSCLC) primarily depends on
glutamine. Both glutamine and essential amino acids (EAAs) have been reported to upregulate mTOR
in NSCLC, which is a bioenergetics sensor involved in the regulation of cell growth, cell survival,
and protein synthesis. Seen as novel concepts in cancer development, ASCT2 and LAT transporters
allow glutamine and EAAs to enter proliferating tumors as well as send a regulatory signal to
mTOR. Blocking or downregulating these glutamine transporters in order to inhibit glutamine uptake
would be an excellent therapeutic target for treatment of NSCLC. This study aimed to validate
the metabolic dysregulation of glutamine and its derivatives in NSCLC using cellular 1H-NMR
metabolomic approach while exploring the mechanism of delta-tocotrienol (δT) on glutamine
transporters, and mTOR pathway. Cellular metabolomics analysis showed significant inhibition in
the uptake of glutamine, its derivatives glutamate and glutathione, and some EAAs in both cell lines
with δT treatment. Inhibition of glutamine transporters (ASCT2 and LAT1) and mTOR pathway
proteins (P-mTOR and p-4EBP1) was evident in Western blot analysis in a dose-dependent manner.
Our findings suggest that δT inhibits glutamine transporters, thus inhibiting glutamine uptake into
proliferating cells, which results in the inhibition of cell proliferation and induction of apoptosis via
downregulation of the mTOR pathway.

Keywords: cancer; mTOR; vitamin E; SLC1A5; tocotrienols; apoptosis; cell growth; cell transporters;
essential amino acids; ASCT2; glutaminolysis; alanine; glutathione; glutamate; lung;
bio actives; nutraceuticals

1. Introduction

Non-small cell lung cancer (NSCLC) presents itself as aggressive tumors arise from the airway
epithelial cells (majority) and interior parts of the lungs [1]. It remains one of the leading causes
of disease-related mortalities in the world. The current therapeutic options for NSCLC, which
include surgery, radiotherapy, and chemotherapy [1], have slightly improved NSCLC survival rate at
some developmental stages in both men and women. However, there has been a plateauing of the
overall five-year survival rate, hovering ~12–18% between the years 1975 and 2011 [2]. Also, several
studies report that there is a high probability of reoccurrence and development of resistance to drug
therapies in NSCLC after treatment with chemotherapeutic agents, surgical resection, and radiation
therapy [3]. This warrants efforts to identify novel therapeutic agents and targets for preventing and
treating NSCLC.

Research in nutrition-based modulation against diseases has opened up new horizons in cancer
prevention, contributing to drug discovery and development processes for numerous chronic diseases,
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including cancer [4,5]. Most bioactive agents extracted from plants show minimum cell cytotoxicity
while simultaneously targeting multiple signaling pathways involved in cell growth, apoptosis,
invasion, angiogenesis, and metastasis in cancer cells [6,7]. Tocotrienols (α, β, γ, and δ), isomers
of vitamin E, are found in vegetable oils, including rice bran oil and palm oil, wheat germ, barley,
annatto, and certain other types of seeds, nuts, and grains [8]. They exert biological effects including
antiangiogenesis, antioxidant activities, and anticancer activities [9,10]. Our previous studies clearly
demonstrated that delta-tocotrienol (δT) inhibits the proliferation and metastatic/invasion potential
while concurrently inducing apoptosis in NSCLC cells, in a dose-dependent manner [11]. We also
identified some of the probable molecular targets of δT treatments on NSCLC [11–13]. Therefore, δT is
multitargeted and can be considered a valuable potential approach to further investigate for treatment
of NSCLC.

Metabolomics, a novel, versatile, and comprehensive approach, can provide unbiased information
about metabolite concentrations, altered signaling pathways, and their interactions. Most current
cancer metabolomics studies focus on finding diagnostic biomarkers and understanding fundamental
mechanisms in cancer [14]. Nonetheless, this approach could also be used effectively for identifying
the efficacy of treatments [15]. The NSCLC metabolome is a potentially informative reflection of
the impact of the disease and its dynamics which could lead to promising developments in cancer
research, strongly geared toward the discovery of new biomarkers of disease onset, progression,
and effects of treatment regimens. Given that cancer cells, including NSCLC, show aberrant energy
metabolism [16,17], it is of interest to investigate the changes in energy metabolism in NSCLC cells
upon δT treatment, utilizing the global advantage of the metabolomic approach [18].

Glutamine plays a role as an indirect energy source in NSCLC, which produces ATP through
glutamine-driven oxidative phosphorylation [19]. Extra consumption of glutamine in tumors is used
for generating metabolic precursors for uncontrolled cell proliferation. These precursors include
elevated levels of nucleic acids, lipids, and proteins for cell proliferation [20], as well as increased GSH
production for cell death resistance [21]. Current literature provides further evidence that glutamine
in cancer facilitates exchange of EAAs (essential amino acids) with glutamine into proliferating cells
via glutamine transporters, which induces mTOR (mammalian target of rapamycin) activation in
NSCLC and other types of cancer [22,23]. Activated mTOR then promotes protein translation and
cell growth via activation of its downstream genes such as S6k1 and 4EBP1 [24]. Alanine, serine,
cysteine-preferring transporter 2 (ASCT2), also known as (SLC1A5), and bidirectional L-type amino
acid transporter 1 (LAT1) are the two primary transporters for glutamine uptake [25,26]. LAT1 enables
transport of the EAAs to improve cancer cell growth via mTOR-induced translations, and ASCT2
sustains the cytoplasmic amino acid pool to drive LAT1 function [27]. This collaboration of ASCT2
and LAT1 reduce apoptosis and enhance the energy production and cell growth via net delivery of
glutamine inside the cell [27].

A recent study reported that A549 and H1229 lung cancer cells show glutamine dependency,
and that deprivation of glutamine inhibits cell growth [28]. Decreases in glutamine uptake, cell cycle
progression, and mTORC1 pathway after inhibition of ASCT2 functionality by chemicals or shRNA
in vitro was observed in prostate and pancreatic cancer cell lines [29]. Also, inhibition of LAT1 using
BCH (2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid) in H1395 lung cancer cell line reduced the
cellular leucine uptake and consequently inhibited mTOR pathway activity, which finally reduced cell
proliferation and viability [30]. Induction of apoptosis was also reported in hepatoma, hybridoma,
leukemia, myeloma, and fibroblast cells after glutamine deprivation [31,32]. Our preliminary
metabolomics studies showed that δT treatments inhibited glutamine levels in A549 and H1299
cells. Also, in our previous studies, induction of apoptosis and inhibition of cell growth was observed
in A549 and H1299 cells in a dose-dependent manner after δT treatments [11,33–36]. Therefore, the aim
of this study was to verify the metabolic dysregulation of glutamine and its derivatives upon δT
treatment while investigating the effect of δT on the expression of glutamine transporters (ASCT2 and
LAT1) and the mTOR pathway.
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2. Results

2.1. δT Changes Metabolite Profiles in A549 and H1299 Cells

To investigate the changes in metabolism and metabolites with δT intervention, supervised
OPLS-DA analysis was performed using NMR spectral data acquired from intracellular cell lysate.
The OPLS-DA score plot of cellular NMR metabolic profile resulting from 30 μM δT treated and control
cells lines are shown in Figure 1A. The OPLS-DA score plot exhibited clear separation between control
and treatment groups in A549 cells and H1299 cells with δT treatment; the high Q2 and R2 values
indicate a considerable difference in the cellular metabolic profile of treated cells compared to control
cells while validating the model that we used for OPLS-DA analysis.

To identify the metabolites represented in the NMR spectral regions (bins) that varied significantly
between control and treatment groups, the corresponding loading S-Line plot from the OPLS-DA
model was generated. Figure 1B shows a representative S-Line plot corresponding to the score plot
of Figure 1. These bin numbers were further analyzed to identify the significant metabolites (using
Chenomx) that contributed to the separation of the control and treatment groups seen in the OPLS-DA
model. Based on the analysis of S-Line plot bin numbers, the key bin numbers responsible for the
differences could be attributed to glutamine, glutamate and glutathione, and some amino acids in both
cell lines.

 
(A) 

Figure 1. Cont.
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Figure 1. OPLS-DA analysis of metabolome of lung cancer cell lines after treating with/without δT for
72 h. (A) OPLS-DA Scores plot based on the cellular metabolic profiling of lung cancer cell lines, namely
A549 (Top) and H1299 (Bottom); the 30 μM treatment (Yellow) and control (green) were generated
using SIMCA+ software; the results indicated that cellular metabolic profiling of lung cancer cell lines
was significantly changed after δT treatment for 72 h. (B) The S-Line plots of OPLS-DA analysis of A549
(top) and H1299 (Bottom) from treatment (30 μM) and control (0 μM) cells. The key metabolites that
changed significantly are marked on the S-Line plot and include (1) leucine, (2) glutamine, (3) glutamate,
(4) glutathione, (5) lactate, (6) taurine, and (7) formate.

2.2. Quantification of Metabolites Reveals That δT Alters Glutamine Metabolism

Chenomx 7.6 Suite NMR software was used to probe the metabolome profiles in the treatment
and control groups. 1H-NMR spectra provided information on over 45 metabolites (both cell
lines), including amino acids, intermediates of the tricarboxylic acid cycle (TCA), energy molecules,
and nucleic acid associated molecules (Table 1).

The table shows the detailed results including p-values, mean and standard deviation from the
t-test for the groups (with or without 30 μM of δT treatment) tested. Among the metabolites that
were significantly different in concentration in the δT treated vs. control cells, we identified several
metabolites from the glutamine metabolism and related pathways that were significantly decreased
(p < 0.05) in the treatment group as compared to controls. In addition, we found that metabolites
such as leucine and some essential amino acids had significantly lower concentrations in both cell
lines after δT treatment. These essential amino acids include isoleucine, leucine, lysine, methionine,
and tryptophan. Moreover, the metabolites related to cell proliferation such as 2-oxoglutarate, citrate,
succinate, malate, aspartame, ATP, ADP, NADPH, and uracil significantly decreased (p < 0.05) in the
treatment group as compared to controls (Table 1).
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Table 1. List of metabolite concentrations determined using NMR in A549 (A) H1299 (B) cells. p-values
less than 0.05 were considered statistically significant for univariate analysis. Treatment column
indicates the samples with the 30 μM treatment of δT. All the concentrations are reported in μM.
(A)

Metabolite Name
Mean ± SD

(Control)
Mean ± SD
(Treatment)

p-Value
Fold Changes

Control/Trt

Amino Acids

Aspartate 102.3 ± 11.9 55.9 ± 4.7 0.0016 1.8

Glutamate 80.8 ± 7.9 48.7 ± 4.7 0.0019 1.7

Leucine 33.7 ± 4.1 17 ± 3.7 0.0030 2.0

Glycine 33.1 ± 1.2 20.4 ± 4.2 0.0035 1.6

Alanine 31 ± 1.4 19.8 ± 3.9 0.0045 1.6

Glutamine 99.9 ± 6.7 64.7 ± 13.3 0.0073 1.5

Histidine 54 ± 8.4 85.9 ± 31.3 0.0815 0.6

Asparagine 116.9 ± 16.2 54.5 ± 13.1 0.0033 2.1

Taurine 90.3 ± 19.9 78.2 ± 26.8 0.2822 1.2

Valine 23.8 ± 1.4 21.6 ± 6.3 0.2878 1.1

Tryptophan 81.3 ± 15 72.7 ± 28.7 0.3340 1.1

Proline 51.9 ± 49.3 63.7 ± 25.7 0.3659 0.8

Lysine 41.6 ± 22.8 37.2 ± 6.1 0.4075 1.1

Isoleucine 31.5 ± 9.9 30.6 ± 7 0.4499 1.0

Methionine 5.8 ± 5.3 5.5 ± 3.4 0.4653 1.1

Arginine nd nd

Intermediate of TCA Cycle and Energy Metabolism

Lactate 138.5 ± 5.6 99.9 ± 3.6 0.0003 1.4

2-Oxoglutarate 43.6 ± 3.3 29.3 ± 4.7 0.0061 1.5

AMP 32.1 ± 5 45 ± 1.7 0.0063 0.7

Glutaric acid monomethyl ester 17.8 ± 6.4 34 ± 2.8 0.0077 0.5

Malate 90.2 ± 10.7 48.7 ± 10.3 0.0111 1.9

Succinate 9.3 ± 2.6 5.2 ± 2.8 0.0645 1.8

Glucose 119.1 ± 53.4 187.3 ± 63.7 0.1139 0.6

ADP 47.8 ± 8.3 40.8 ± 4.8 0.1370 1.2

Citrate 42.4 ± 3.8 35.6 ± 11.6 0.1959 1.2

NADH 38.4 ± 3.5 43.4 ± 16 0.3040 0.9

NADPH 47 ± 6.3 51.3 ± 12.5 0.3118 0.9

ATP 42.2 ± 5.4 42.9 ± 11.3 0.4653 1.0

Nucleic acid Associataed Metabolites

Uracil 98 ± 14.1 60.1 ± 24 0.0387 1.6

UDP-N-Acetylglucosamine 6.9 ± 2.1 3.9 ± 3.4 0.1266 1.8

Other

Glutathione 69.6 ± 2.1 41.7 ± 6.7 0.0011 1.7

Citrulline 81.9 ± 5.1 63.9 ± 13 0.0438 1.3

Cystine 81.4 ± 6.3 58.4 ± 19 0.0582 1.4

N-Acetylglucosamine 21.9 ± 9.3 12.8 ± 5.2 0.1065 1.7

Formate 294.3 ± 68.5 312.8 ± 8.9 0.3334 0.9

Fumarate 25 ± 3.2 27.7 ± 5 0.2363 0.9
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Table 1. Cont.
(B)

Metabolite Name
Mean ± SD

(Control)
Mean ± SD
(Treatment)

p-Value
Fold Changes

Control/Trt

Amino Acids

Aspartate 105.5 ± 3.5 77.4 ± 4.3 0.0010 1.4

Glutamate 80.1 ± 5.7 49.3 ± 6.2 0.0033 1.6

Leucine 31.8 ± 1.3 18.3 ± 0.8 <0.0001 1.7

Glycine 28.2 ± 4.7 18.1 ± 3.2 0.0561 1.6

Alanine 28.8 ± 2.2 18.2 ± 2.3 0.0044 1.6

Glutamine 75.3 ± 5.1 53.7 ± 8.4 0.0177 1.4

Histidine ND ND

Asparagine 105 ± 21 84 ± 23.3 0.1986 1.3

Taurine ND ND

Valine 28.8 ± 4.9 21.7 ± 5.6 0.1706 1.3

Tryptophan 36.8 ± 2 17.8 ± 11.4 0.0401 2.1

Proline 90.2 ± 39.3 74.3 ± 34.9 0.3453 1.2

Lysine 38.8 ± 11.3 19.4 ± 7.1 0.0547 2

Isoleucine 37.2 ± 4.9 23.8 ± 2.7 0.0138 1.6

Methionine 8.7 ± 0.8 6.7 ± 1.9 0.1247 1.3

Arginine 43.8 ± 2.7 28.4 ± 6.6 0.0189 1.5

Intermediate of TCA Cycle and Energy Metabolism

Lactate 125.8 ± 7.3 122 ± 15.4 0.3857 1

2-Oxoglutarate 32.5 ± 7.9 17.2 ± 1.5 0.0272 1.9

AMP 27.5 ± 0.2 13.7 ± 2 0.0003 2

Glutaric acid monomethyl ester 27.4 ± 0 20.6 ± 7.4 1.3

Malate 130.9 ± 7.8 84.7 ± 9 0.0027 1.5

Succinate 13.9 ± 1.7 5.3 ± 3.8 0.0215 2.6

Glucose 196.4 ± 50.1 147.1 ± 19.4 0.1324 1.3

ADP 33.6 ± 5.1 14.9 ± 7.7 0.0227 2.3

Citrate 35.2 ± 0.8 25.6 ± 4.3 0.0183 1.4

NADH 65.3 ± 11.7 43.7 ± 30.7 0.2024 1.5

NADPH 48.6 ± 11.1 38.1 ± 23.5 0.2996 1.3

ATP 43.5 ± 7.8 22.2 ± 5.5 0.0171 2

Nucleic acid Associated Metabolites

Uracil 88.5 ± 11.9 40.2 ± 16.3 0.0139 2.2

UDP-N-Acetylglucosamine ND

Other

Glutathione 42.3 ± 4.5 28 ± 6.5 0.0319 1.5

Citrulline 65.4 ± 20.6 53.4 ± 25.4 0.3156 1.2

Cystine 61 ± 7.2 26.3 ± 14.1 0.0338 2.3

N-Acetylglucosamine

Fumarate

Formate 354.5 ± 90.9 346.7 ± 41 0.4585 1

Tyrosine 12.9 ± 0.6 67.8 ± 9.1 0.0134 0.2
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Heatmap analysis from MetaboAnalyst 3.0 revealed that A549 and H1299 cell lysates had similar
changing trends in metabolites of δT treated groups versus control (Figure 2A), which suggests that
the supplement of δT impacts both cell lines in a similar manner. At the same time, our heatmap
results also revealed that control and treatment groups supplemented with δT were clustered into two
major groups (Green and Red groups at the top of the Heatmap) which suggest clear separation in two
groups with their metabolites and also validates the separation in OPLS-DA analysis. The random
forest importance plot identified 15 metabolites key in classifying the data with aspartame, alanine,
leucine, glutamate glutathione, and glutamine having the most influence on classification (Figure 2B).

To further comprehend the biological relevance of the identified metabolites from Chenomx
analysis, we performed pathway analysis using MetaboAnalyst 3.0 software [25]. Some of the key
altered pathways identified from pathway analysis include lysine biosynthesis, purine metabolism,
alanine, aspartate and glutamate metabolism, glutamine and glutamate metabolism, citrate cycle (TCA
cycle), and pyruvate metabolism for both cell lines (Figure 3A).

Figure 2. Cont.
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(A) 

Figure 2. Cont.
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(B) 

Figure 2. Hierarchical clustering analysis of δT-altered metabolites (Heatmap) and contribution of
metabolites in A549 and H1299. The metabolites, quantified with Chenomx software analysis of NMR
spectra of A549 and H1299 cells after incubating with or without δT for 72 h, were used to generate
the heat map (A) using Metaboanalyst software. Each column represents a sample, and each row
represents the expression profile of metabolites. Blue color represents a decrease, and red color an
increase. The very top row with green color indicates the control samples and red color row indicates
the samples with the 30 μM treatment of δT. Random Forest (B) showed in bottom graphs identifies
the significant features. The features are ranked by the mean decrease in classification accuracy when
they are permuted.
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(A) 

 
(B) 

Figure 3. The most predominant altered metabolic pathways (A) and top 25 metabolites correlated
with glutamine (B). Summary of the altered metabolism pathways (A) after treating with/without δT
for 72 h, as analyzed using MetaboAnalyst 3.0. The size and color of each circle was based on pathway
impact value and p-value, respectively. Circles, larger and higher along the Y axis, show higher impact
of pathway on the organism. The top 25 metabolites, correlating with glutamine level (B) after treating
with/without δT for 72 h. X-axis shows maximum correlation; pink color shows positive correlation
whereas blue shows negative correlation.

As random forest importance plot and pathway analysis indicate that glutamine-based metabolites
play a significant contribution to glutamine metabolism and related pathways, correlation between
other metabolites were assessed using Pearson correlation analysis to validate the relationship between
glutamine and metabolites in other pathways. Interestingly, nearly 20 metabolites showed more than
(>0.7) correlation with glutamine and metabolites belonging to the key impaired pathways identified
from pathway analysis using MetaboAnalyst 3.0 software. The metabolites in glutamine and glutamate
metabolism include glutathione, glutamate, 2-oxoglutarate which show a 0.9, 0.7, and 0.6 correlation
in A549 and 0.8, 0.8, and 0.8 correlation in H1299 (Figure 3B).
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2.3. δT Inhibits Glutamine Transporters (LAT-1 and ASCT2) and the mTOR Pathway in A549 and
H1299 Cells

Metabolomic analysis and subsequent quantification of metabolites using Chenomx NMR suite
(Edmonton, AB, Canada) revealed the potent effect of δT on glutamine metabolism, downstream
metabolites of glutamine and essential amino acids (Figures 1 and 2, Table 1). Current literature
provides evidence that glutamine uptake and some essential amino acids, including leucine,
are associated with the activation of the mTOR pathway [37]. Thus, Western blot analysis was
performed to investigate the effect of δT on the mTOR pathway and glutamine transporters. Upon
intervention with δT (30 μM), the glutamine transporters (LAT-1 and ASCT2) and key mTOR
pathway proteins (P-mTOR and p-4EBP-1) were found to be inhibited, relative to the untreated
controls (Figure 4).

(A) 

Figure 4. Cont.
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(B) 

Figure 4. δT inhibits glutamine transporters (LAT-1 and ASCT2) and the mTOR pathway in A549 and
H1299 cells. (A) The expressions of LAT-1, ASCT2, p-mTOR, mTOR, p-4EBP-1, 4EBP1, and β-actin
proteins were detected by Western blot analysis in A549 and H1299 after treating with 0 μM and 30 μM
concentrations of δT for 72 h. (B) The fate of glutamine uptake in A549 and H1299 involving metabolites
(purple), associated key proteins (pink), and functions (orange). Glutamine in cancer facilitates
exchanging of EAAs (essential amino acids) into proliferating cells via glutamine transporters (LAT1
and ASCT2), which induces mTOR activation in A549 and H1299. Activated mTOR then promotes
protein translation and cell growth via activation of its downstream genes 4EBP1. The black arrows
indicate pathway direction, while the red downward arrows indicate inhibition.

3. Discussion

In this study, we used multivariate analysis of NMR spectra and NMR quantification data to
observe differences in the intracellular metabolomes. We discovered clear differences in the intracellular
metabolomes, and subsequently the contributing metabolites, of the control and δT treated cells using
OPLS-DA and Heat map analysis (Figures 1 and 2A). Also, we observed a minor difference in the
results obtained through multivariate analysis of NMR spectra and NMR quantification variation in
this analysis which is common in metabolomic data sets. This type of variation is well documented in
several publications in the current literature [6]. Most variations arise from the metabolites present
in very low concentrations. In addition, metabolites whose resonances yield a very high number of
overlapping peaks also suffer from variations in quantitation [6]. The two different methods were
therefore used in conjunction to verify the data.

Previously, using histone ELISA and ANNEXIN V stain-based flow cytometry analysis,
we reported that the 10 to 30 μM range of δT was not necrotic to A549 and H1299 cells, and that
it induced apoptosis in a dose-dependent manner [11,12]. Also, using MTS and clonogenic assays
in the previous studies, we demonstrated that 30 μM of δT inhibited cell growth significantly in the
A549 and H1299 cells lines [12]. Other metabolomics investigations have also reported changes in
metabolism after inducing apoptosis in different cancer types, namely leukemia cell lines [38]. Our data
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suggests that metabolite changes in the control vs. δT treated lung cancer cell populations are a result
of induction of apoptosis after δT treatment.

The role of natural dietary components in cancer growth and progression has become a very
popular subject with minimum effect or no effect on normal cells. Several cell culture studies showed
that δT was not causing apparent impairment towards the noncancerous cell lines, although it
significantly effects different cancer cell types, including lung cancer. For instance, Human Fetal
Lung Fibroblast Cells treated with 100 μm or higher of δT did not show any toxic effect including
induction of apoptosis and DNA damage [18]. In another study, 10 μM DT3, a lower dose than our
treatment, was determined to be nontoxic, and enhanced cell viability and proliferative potential in
the human lung fibroblast cell lines MRC-5 and HFL1, as shown by WST-1 and clonogenic assays [39].
In addition, Immortal human pancreatic duct epithelial cell lines did not show any significant inhibitory
effect on cell proliferation and cell cycle progression when they were incubated with δT [40]. Similarly,
normal human melanocytes treated with δT (5–20 μg/mL) for 24 h or 48 h did not affect cell growth at
both time intervals [41]. Preclinical and clinical evidence also supports the use of δT to reduce tumor
growth with no effects on healthy humans or animals, making δT attractive compounds. No adverse
effects were observed upon administration of 300 mg/kg dose of δT, in any tissues or organs of
mice [42]. In humans, δT can be safely administered at doses up to 1600 mg twice daily [43]. In another
study with osteopenic women, supplementation for 12 weeks did not affect body composition, physical
activity, quality of life, or intake of macro- and micronutrients [44]. All of the aforementioned studies
used δT concentrations above 30 μM that we used for this study, and it is obvious that δT does not
affect healthy cells including human fetal lung fibroblast cells. Therefore, a control arm of normal lung
cells with expressed or unexpressed LAT1 and/or ASCT2 were not included in our study design.

Further, LAT1 or ASCT2 transporters with cancer is nowadays well-assessed [9]. Overexpression
of LAT1 is well described in many human cancers and it certainly relates to metabolic changes occurring
in cancer development and progression [45]. LAT-1 is expressed in cancers of most human tissues
according to GENT database [46], which suggests an important role of LAT-1 expression on cancer
development. In contrast, it is poorly expressed or, in some cases, absent in most of the corresponding
noncancer human tissues [46]. In the immunohistochemistry analysis of the normal lung, LAT1 protein
was identified only on granular regions in the cytoplasm of chondrocytes of the bronchial cartilage,
serous cells of the bronchial glands, and alveolar macrophages within the normal lung, whereas
the expression was zero for nonciliated bronchiolar epithelial cells (Clara cells), goblet cells of the
bronchus, mucinous cells of the bronchial glands, and alveolar type I or type II cells [47]. In the same
study, expression of LAT1 protein appeared in the cytoplasm of bronchial surface epithelial cells as
a single nodular spot, which was considered to represent an intracellularly localized nonfunctional
protein [47]. ASCT2 transporters also are poorly expressed or, in some cases, absent in most of the
corresponding noncancer human tissues according to GENT database [46]. Hassanein et al. identified
ASCT2 transporters expressed in stage I NSCLC when compared to matched controls using shotgun
proteomic analysis [48]. In addition, ASCT2 deficient mice showed regular functions such as normal
B-cell development, proliferation, and antibody production [49]. Therefore, control arms of normal
lung cells that are expressed or unexpressed (LAT1 and ASCT2) was also not included in our study
design as there was a minimum expression and/or functionality observed for LAT1 and ASCT2 in
other tissues and noncancerous tissues.

A significant reduction of glutamine, glutamate, GSH and 2-oxoglutarate after treating with 30 μM
of δT on NSCLC cell lines was observed (Table 1). The key aberrant pathways identified using the
pathway analysis tool include glutamate and glutamine, alanine, aspartate, glutathione metabolism,
and the TCA cycle (Figure 3). In addition, the metabolites identified from these pathways show a
strong correlation with glutamine levels (Figure 3B). Further, glutamine and its related metabolites
were identified in the S-plot of OPLS-DA analysis and the Random Forest importance plot as the key
players causing the separation, reflecting the differences in their metabolomic profiles (Figures 1 and
2B). Glutamine deprivation has been shown to induce apoptosis in hepatoma, hybridoma, leukemia,
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myeloma, and fibroblast cells [50]. In contrast, increased levels of glutamine were detected in lung
cancer tissue especially in NSCLC when compared to other types of cancer, such as colon or stomach
cancer [47]. Glutamine dependency has been reported in H1299 and A549 cells [28]. Our findings
strongly suggest the beneficial impact of δT on glutamine and related pathways in non-small cell lung
cancer cells.

Considering metabolism of glutamine (Figure 5), one of its major roles in cancer cell proliferation
is to replenish the TCA cycle intermediates removed by the process called glutaminolysis,
and GSH synthesis [30,31]. In the process of glutaminolysis, the glutaminase enzyme (GLS1/2)
catalyzes the conversion of glutamine to glutamic acid and the subsequent conversion of
glutamate to α-ketoglutarate (2-oxoglutarate), catalyzed by glutamate dehydrogenase (GLUD) [32].
Aminotransferase also catalyzes the reaction from glutamate and oxaloacetate to aspartate or alanine
and α-ketoglutarate. In this study, a significant reduction of glutamine, glutamate, and TCA cycle
intermediates after treating with 30 μM of δT was observed, which is an indicator of reduced energy
metabolism (Figure 5). In cancer cells, the enhanced production of 2-oxoglutarate and glutamate from
glutamine metabolism can be observed, as it helps to maintain the citric acid cycle intermediate for
energy production [32]. Glucose and glutamine provide substrates for macromolecular synthesis
supplying both ATP and carbon skeletons in cancer cells [29]. This supports uncontrolled cell
proliferation in cancer cells and requires a large number of macromolecules to create new biomass,
including DNA, proteins, and lipids [28]. Our data suggests that by decreasing the availability of
glutamine, δT retards this process, thereby leading to inhibition of uncontrolled cell proliferation in
A549 and H1299 as reported in our previous studies [11,12,35].

 

Figure 5. Glutamine metabolism and the effect of δT on glutamine metabolism in A549 and H1299
cells. Glutamine mainly replenishes the TCA cycle intermediates and GSH synthesis in cancer cell
proliferation. In the process, glutaminase enzymes (GLS1/2) catalyzes the conversion of glutamine
to glutamic acid and the subsequent conversion of glutamate to α-ketoglutarate (α-kG), catalyzed by
glutamate dehydrogenase (GLUD) and amino transferase. This process supports for uncontrolled cell
proliferation in cancer cells and requires a large number of macromolecules to create new biomass,
including DNA, proteins, and lipids. The black arrows indicate the pathway’s direction, while the red
downward arrows indicate the inhibition of metabolites as an effect of δT treatment.
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Considering possible causes for the significant decrease in glutamine and its downstream
metabolites, we hypothesized that it may be due to inhibition of glutamine transporters. We thus
measured the protein levels of glutamine transporters, namely LAT1 and ASCT2, known to play a
fundamental role in glutamine uptake process in normal cell physiology. LAT-1 facilitates glutamine
efflux in exchange for the influx of leucine and other essential amino acids (EAA) across the cell
membrane; similarly, ASCT2 mediates uptake of neutral amino acids including glutamine [51].
Our observations from western blot analysis established that δT treatments inhibit the expression of
LAT-1 and ASCT2 (Figure 4). We also quantified detectable EAA including leucine in cell lysates,
the concentration of which were decreased significantly after treating NSCLC cells with δT by NMR
analysis. Inhibition of EAA in A549 and H1299 cells upon δT treatment reflects function of LAT-1
which facilitate glutamine efflux in exchange for the influx of leucine and other essential amino acids
(EAA). This supports the beneficial effects of δT on LAT1 transporters inside A549 and H1299 cells.
In addition to facilitating the transport of EAAs for protein synthesis, LAT1 and ASCT2 stimulate
the growth of cancer cells via mTOR [27,52,53]. In head and neck squamous cell carcinoma cell lines,
inhibition of the LAT-1 transporter using an inhibitor lowered the levels of phosphorylation of mTOR
and its downstream signaling molecules [54]. Thus, if the inhibition of glutamine transporters and
EAA uptake with δT treatment is valid, it is logical to expect inhibition or lower activation of mTOR
pathway after treating with δT in NSCLC. Indeed, we observed lower activation of mTOR along with
LAT-1 and ASCT2 after treating with δT, using Western blot analysis, which illustrates that inhibition
of glutamine transporters affect the mTOR signaling pathway (Figure 4).

mTOR functions are mediated by two downstream proteins, the eukaryotic initiation factor 4E
(eIF4E)-binding protein 1 (4E-BP1) and p70 ribosomal S6 kinase 1 (p70S6K1, S6K1) (Figure 4) [55].
For further confirmation, we tested the expression levels of downstream genes of mTOR namely
P-4E-BP1. We observed the similar inhibitory effect on mTOR downstream proteins 4E-BP1suggesting
an inhibitory effect of glutamine transporters passing through mTOR to downstream pathway
(Figure 4). mTOR downstream proteins 4E-BP1 and S6K1 regulate F-actin reorganization,
focal adhesion formation, and tissue remodeling through the proteolytic digestion of extracellular
matrix via upregulation of matrix metalloproteinase 9 (MMP-9) [56]. Interestingly, in our previous
study, we observed that δT reduced cell migration, invasion and adhesion in a dose- and
time-dependent manner, and inhibited MMP-9 expressions in NSCLC cells [13,34], which is an
additional supporting inhibitory function of δT.

Further, in the previous study, we demonstrated that δT induces apoptosis in a dose-dependent
manner in NSCLC from Annexin based flow cytometry analysis and histone ELISA [12]. The current
literature also provides evidence to support the relationship between GSH and apoptosis. For instance,
GSH depletion in cancer cells induces apoptosis in vitro and in vivo [57]. Dalton TP et al. showed
GSH-depleted knockout mouse of γ-GCS died from massive apoptotic cell death [58]. Elevated levels
of GSH are also associated with apoptotic resistant phenotypes in several models of apoptosis in
previously reported studies [59,60], and GSH depletion by itself has been observed to either induce or
stimulate apoptosis [59,61]. GSH quantification, after treating with δT in A549 and H1299 cells, shows
a clear decline in intercellular GSH levels in both cell lines (Table 1). The results reveal there may also
be a possible association between GSH levels and induction of apoptosis in NSCLC cells after treating
with δT.

4. Materials and Methods

4.1. Cell Culture and Treatment with δ-T

NSCLC cell lines A549 and H1299 were cultured in RPMI medium (Mediatech, Manassas, VA,
USA) supplemented with 10% fetal bovine serum and 1% penicillin and streptomycin in 5% CO2 at
37 ◦C. The culture medium was renewed every 2 to 3 days. Adherent cells were detached by incubation
with trypsin-EDTA and centrifuged at 80× g. The treatment media was prepared by mixing δT (<0.01%
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DMSO as a vector) in the RPMI medium, whereas the control was treated only with RPMI media.
Three δT solutions at concentrations of 10 μM, 20 μM, and 30 μM containing <0.01% DMSO were
chosen as the treatment concentration based on our previous studies. δT was a gift from the American
River Nutrition for this study.

4.2. Intracellular Metabolite Extraction and Determination

We used a modified method which is explained in Saadat et al., 2018 [62]. In brief A549 and
H1299 lines were seeded at a density of 2 × 106 per 100-mm dish for 24 h, followed by replacement
of media absent or supplemented with different δT concentrations (10 μM, 20 μM, and 30 μM) at
37 ◦C. Cells were then incubated for another 72 h before extracting metabolites. Before extracting
intracellular metabolites, existing culture media was removed on ice followed by washing twice with
ice-cold PBS. Two milliliters of ice-cold methanol was added while scraping with cell scrapers on ice.
The Petri dish was shaken for 5 min at 4 ◦C and ice-cold methanol was transferred into Eppendorf tubes.
The cell debris was removed by centrifugation and all the extraction solvents were readily removed
before NMR analysis by a Speed Vac at room temperature. Subsequently, the intracellular metabolites
powder was prepared by evaporating with methanol, and redissolving in 450 μL D2O containing
0.5 μM 2,2-Dimethyl-2-silapentane-5-sulfonic acid (DSS) as aspectral calibration standard and 10 μM
imidazole as a pH indicator. An additional Petri dish was prepared for each treatment/control with
the same conditions and cells collected from the additional petri dish were used for analyzing total
protein. The total protein quantifications include control-A549 (1.283 mg), 30 μM-A549 (1.099 mg),
control-H1299 (1.325 mg), and 30 μM-H1299 (1.276 mg). The intracellular metabolite powder was
redissolved in D2O and normalized based on the total protein contained in additional petri with
corresponding treatment before performing NMR. We made sure to maintain the final concentration of
internal standards at aforementioned levels.

4.3. 1H-NMR Spectroscopy

High-resolution 1H-NMR spectra of intracellular metabolites were obtained on a Varian 600
spectrometer operating at 600 MHz after normalizing the samples by total protein concentrations using
BCA Protein Assays (Thermos Fisher Scientific, Rockford, IL, USA). 1H-NMR spectra of intracellular
extracts were acquired using a 6-kHz spectral width and 64 K data points. The acquisition time was
5.44 s and the relaxation delay was 14.56 s with 64 scans.

4.4. 1H-NMR Spectroscopy Processing

After NMR analysis, Free Induction Decay (FID) files were obtained and processed using
NMR processing software ACD (Advanced Chemistry Development, Inc. Toronto, ON, Canada).
NMR spectra of all the samples were stacked and processed simultaneously. First, FID files were
Fourier-transformed to visualize spectra followed by phasing, baseline correction and binning with
the auto option of the software. After completing these steps, the full spectra, as a batch, were divided
into 1000 bins using the intelligent bucketing algorithm in ACD software, giving a numerical value for
corresponding peaks, and converted into a data table. Intelligent bucketing in ACD is an algorithm
that was designed to make decisions as to where a bucket division should be. Intelligent bucketing
chooses integral divisions based on local minima and therefore avoids the reduction of data resolution,
while aligning the spectra as a batch.

4.5. Quality Control

Relative standard deviation (RSD) values were calculated for each treatment group separately and
Technical variation within metabolomics datasets, recorded using one dimensional NMR maintained
less than <8% (reported as the median spectral RSD)
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4.6. Multivariate Data Analysis: OPLS-DA

The processed, digitized NMR spectral data table from ACD software (version 10) was imported
into the SIMCA (version 15) software (Sartorius Stadium Biotech, Germany for Multivariate data
analysis (MVDA). The data table was transposed and labeled accordingly. The integrals corresponding
to the spectral region from 4.5 to 6 ppm were excluded as this region contains water peaks and
exchangeable protons. Spectral regions displaying no peaks, DMSO, and spectral regions of methanol
to all the samples were also excluded from the dataset. PCA, OPLS-DA models were created by
generating optimum number of principal components needed to fit the data, using the autofit option
in the software. Each model’s characteristics are described by how well it fits the data and its ability to
predict new data accurately. Thus the value for R2 describes how well the data fits the model while the
value of Q2 relates to the models ability to predict unknown data correctly. These are calculated by the
for the purpose of evaluating and validating the models generated. The following cutoff criteria are
used for validating the models that were generated. For NMR metabolomic data, it is recommended
that the model generated has a Q2 > 0.5, a value of R2 higher than Q2 with the difference between
them being no greater than 0.3. These criteria were adhered to for all the models utilized for the
investigation. Samples were identified and distinguished by their respective labels and colored for
visual convenience. The data was subjected to Pareto-scaling prior to analysis. The Hotelling T2 test
(based on the 95% confidence interval) and DMOD-X test (based on the distance from the model plane)
was used to remove any statistically extreme outliers while maintaining a minimum of 4 replicates
in each group. Initially, unsupervised Principal Component Analysis (PCA) was performed to view
the clustering effects in the samples (Supplemental Materials). Subsequently, OPLS-DA, a supervised
pattern recognition method, was performed to maximize the identification of variation between
groups tested.

4.7. Metabolite Identification and Quantification from Chenomx NMR Suite

The metabolites were identified using Chenomx NMR suite (Chenomx Inc., Edmonton, AB,
Canada). The fid files from the 1D 1H-NMR spectra were imported into the Chenomx software.
This software has its own processing interface where spectra were Fourier-transformed and baseline
corrected. Phasing was done using DSS reference peak at 0.0 ppm, and the water peak was also deleted.
The processed spectra were analyzed in the profiler module of the software. The 600 MHz library
with the corresponding pH was selected. Identification and concentrations of different metabolites
were calculated by fitting the set of peaks for those compounds in the sample spectrum. If the area
was crowded with many peaks, then multiple metabolites were adjusted at one time to match the
reference spectrum closest to the sample spectrum. The identified and quantified compounds were
then exported into an excel sheet.

4.8. Additional Multivariate Data Analysis and Metabolic Pathway Identification Using MetaboAnalyst
3.0 Software

MetaboAnalyst 3.0 software, a web-based metabolomics data processing tool [63], was used
to statistically analyze the metabolites identified using Chenomx NMR suite. Quantified data from
Chenomx NMR suite were scaled using range scaling algorithm. Clustering differences, heat maps,
and a Random Forest analysis plot were generated. Further, the top 25 metabolites correlating with
glutamine were identified using Pearson correlation analysis and the significant features were identified
by Random Forest analysis. Additionally, quantified data from Chenomx NMR suite was transferred
into an excel table which allowed us to perform a Student’s t-test and calculate fold changes. A p-value
of less than 0.05 was considered to be statistically significant for univariate analysis.

Metabolic pathway identification was performed with the pathway analysis option of
Metaboanalyst 3.0 software. Briefly, the Homo Sapiens Pathway Library was selected as a reference,
and the pathway analysis was performed to generate pathway analysis output on all matched
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pathways, based on the p-values from pathway enrichment analysis and pathway impact values
from pathway topology analysis.

Further, metabolites that were changing most significantly between the control and 30 μM
treatment were traced back to their origin, and the pathways were interpreted for metabolism changes
using current biochemistry.

4.9. Western Blot for Protein Expression Analysis

One million cells of each of A549 and H1299 were seeded in 100-mm dishes and incubated for 24 h;
then, the original media was replaced by media with/without δT and incubated for another 72 h. After
72 h incubation, cells were washed with ice-cold PBS and lysed in the cold 1X cell lysis buffer (Cell
Signaling Technology, Danvers, MA, USA) for 30 min on ice with 1X protease inhibitor (Cell Signaling
Technology, Danvers, MA, USA). The cell lysate was kept at −80 ◦C overnight before quantifying.

Protein concentrations were estimated using Pierce BCA Protein Assay kit (Bio-Rad Laboratories,
Hercules, CA, USA). Total cell lysates (40 μg) were mixed with equal amounts of 6x laemmli buffer
(Bio-Rad Laboratories, Hercules, CA, USA), followed by boiling at 100 ◦C for 5 min. Samples were
loaded on 10% SDS-polyacrylamide gel electrophoresis, and then the gel was electrophoretically
transferred to a nitrocellulose membrane (Whatman, Clifton, NJ, USA) in transfer buffer (25 mM
Tris, 190 mM glycine, 20% methanol) using a Bio-Rad Trans-Blot® Turbo™ Transfer System (Hercules,
CA, USA). The membranes were incubated for 1 h at room temperature with 5% BSA in 1x TBS
buffer containing 0.1% Tween. After incubation, the membranes were incubated overnight at
4 ◦C with primary antibodies (1:1000). The following antibodies ASCT2, LAT-1, p-mTOR, mTOR,
p-4EBP-1,4-EBP1, and B-actin (Cell Signaling Technology, Danvers, MA, USA) were used in the
analysis. The membranes were washed three times with TBS-T and subsequently incubated with the
secondary antibodies (1:5000) containing 2% BSA for 2 h at room temperature. The signal intensity was
then measured by chemiluminescent imaging with ChemiDoc XRS (Bio-Rad Laboratories, Hercules,
CA, USA).

5. Conclusions

In this work, the anticancer effects of δT on NSCLC cell lines A549 and H1229 were investigated
and confirmed by 1H-NMR metabolomics analysis. A closer look into the intracellular metabolome of
NSCLC cells revealed significant and potentially beneficial alterations in glutamine concentrations
and related metabolism upon treatment with δT. The data purports that δT exerts its action by
inhibiting glutamine uptake into proliferating cells by inhibition of glutamine transporters, thereby
resulting in inhibition of cell proliferation and induction of apoptosis via downregulation of the mTOR
pathway (Figures 4B and 5). Through this work, NMR-based cellular metabolomics helps provide
possible opportunities for evaluating the therapeutic effect of phytochemicals and systemic changes in
cancer metabolism.
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Table S1: List of metabolite concentrations determined using Chenomx NMR Suite in A549 cells. Table S2: List of
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(A) and H1299 (B) on the metabolome of lung cancer cell lines.
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Abstract: Cancer is a major health issue worldwide for many years and has been increasing
significantly. Among the different types of cancer, breast cancer (BC) remains the leading cause of
cancer-related deaths in women being a disease caused by a combination of genetic and environmental
factors. Nowadays, the available diagnostic tools have aided in the early detection of BC leading to the
improvement of survival rates. However, better detection tools for diagnosis and disease monitoring
are still required. In this sense, metabolomic NMR, LC-MS and GC-MS-based approaches have
gained attention in this field constituting powerful tools for the identification of potential biomarkers
in a variety of clinical fields. In this review we will present the current analytical platforms and their
applications to identify metabolites with potential for BC biomarkers based on the main advantages
and advances in metabolomics research. Additionally, chemometric methods used in metabolomics
will be highlighted.

Keywords: breast cancer; omics; analytical platforms; chemometric methods

1. Introduction

Cancer is a public health problem and causes a tremendous burden on patients, families and
society creating a significant problem on global economy. Although has been extensively investigated,
cancer still remains one of the leading causes of death in the world after coronary diseases [1].
Globally, breast cancer (BC) remains at the top of women’s cancers worldwide followed by colorectal,
lung, cervix, and stomach cancers according to GLOBOCAN series of the International Agency for
Research on Cancer (IARC), contributing with more than 11.6% of all cancer types (Figure 1).

Figure 1. Estimated cancer incidence rates (a) and (b) estimated number of deaths worldwide for 2018.
Adapted from GLOBOCAN [2].

Metabolites 2019, 9, 102; doi:10.3390/metabo9050102 www.mdpi.com/journal/metabolites92



Metabolites 2019, 9, 102

In addition, around 2.1 million BC new cases were diagnosed in 2018 and occurred 630 thousand
deaths (6.6% of all cancers) (Figure 1b).

The incidence rates are highest in North America, Australia and Europe and lowest in Asia.
These differences might be related to societal changes, as result of industrialization, such as, unhealthy
lifestyle, expressed by overweight and other symptoms, alcohol consumption, tobacco smoking,
physical inactivity, early menarche, among others [2,3]. Although the incidence is high in some
developed countries, mortality is higher in low and middle income countries [4]. The incidence of
breast cancer increases with age and is usually diagnosed in the 50–60 age group. Moreover, the most
aggressive type of the disease predominates in the younger age group (below 35 years) whereas in the
older age group (above 75 years), the treatment cannot be so aggressive and has to be adjusted [5].
Concerning the incidence rates and mortality for breast cancer in Europe, it was observed that in 2012,
the incidence of breast cancer was around 361,608 cases with 91,585 deaths. For 2020, around 400
thousand new cases will be diagnosed resulting in 100 thousand deaths according to International
Agency for Research on Cancer (IARC). For Portugal and USA the expected number of breast cancer
cases in 2020 will be nearly 6000 and 270 thousand resulting in around 1700 and 51,000 deaths,
respectively as shown in Figure 2.

Figure 2. BC incidence and mortality rates in Portugal, Europe and USA from 2012, 2015 and expected
rates for 2020. Data available at IARC. Legend: INC: incidence; MORT: mortality.

This trend might be as consequence by the availability of better screening procedures resulting in
an early detection and also in the development of new treatments [3,6,7], which lead to an improved
survival. Several risk factors associated with BC have been already recognized, namely epidemiological
factors (e.g., age, reproductive factors, socioeconomic status, ethnicity), often using standard analysis
approaches (e.g., logistic regression) with adjustment for multiple comparisons. Other factors as
lifestyle (e.g., alcohol, tobacco, obesity, physical activity), and exposure to radiation [8] are also
associated. The risk of developing BC increases with age being rare in women younger than 25 years,
but tending to be more aggressive in younger people. The most common BC that occurs is the invasive
type independently of age [9]. The highest risk of family history is associated with increasing number
of first-degree relatives diagnosed with BC (age under 50 years). The risk is further increased when the
affected relative is diagnosed in both breasts [10]. Particularly, the mutations in genes BRCA1, BRCA2
and TP53 are strongly associated with the development of BC [9], even if these mutations are low,
accounting for a small portion of the total BC incidence [2]. Consistent physical activity has many
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benefits and greater activity has been related to lower BC risk by decreasing the circulating estrogen
levels in postmenopausal women [11,12]. Extensive literature has linked alcohol consumption to BC risk
and reveal the role of ethanol in carcinogenesis altering estrogen levels through acetaldehyde. Briefly
ethanol is converted to acetaldehyde (AA) through alcohol dehydrogenase (ADH), that then binds to
DNA interfering with the DNA synthesis and repair [13]. Obesity is another BC risk factor to take into
account as it is involved in insulin resistance and hyperinsulinemia [14]. Insulin has anabolic effects on
cellular metabolism and an overexpression of insulin receptor has been demonstrated in human cancer
cells [9,15]. The involvement of insulin-like growth factor (IGFs) in carcinogenesis is attributed to their
role in linking high energy intake, increased cell proliferation, and suppression of apoptosis to cancer
risks [15,16]. With regard to obesity and BC risk, some studies indicate that is strongly associated
with increased invasive BC risk in postmenopausal women particularly for estrogen receptor–positive
cancers (ER+) [17–19]. In clinical practice, there are nowadays several biomarkers routinely used for
prognosis and identification of tumors, including the estrogen receptor (ER), progesterone receptor
(PR) and the human epidermal growth factor receptor-2 (HER2) [20,21]. Another promising prognostic
and predictive biomarker of BC is Ki-67 (present in dividing cells) as indicator of cell proliferation
and also as an endpoint for neoadjuvant systemic therapy [20]. However there are other proposed
markers of proliferation measured by immunohistochemistry (IHC), such as, cyclin D, cyclin E, p27,
p21, among others that are used to determine the predictive and prognostic levels [22].

In the last years, metabolomics emerged as a powerful approach in the advanced disease biomarker
discovery which includes the comprehensive study of metabolites that are present in biological
samples [23]. The study of metabolome to search biomarkers for any disease involves the identification
of endogenous metabolites that have the potential to discriminate between samples obtained from
healthy subjects and diseased patients. Plasma, serum, urine, tissue and cerebrospinal fluid (CSF),
are the most commonly used biological samples in metabolomic studies. These biological samples
contain hundreds of metabolites that vary in chemical and physical properties and concentration levels.
Metabolomic studies includes two main approaches – targeted and untargeted. The targeted analysis
is focused in specific groups of chemical characterized and annotated metabolites and their related
pathways, whereas in the untargeted analysis the study includes a comprehensive measurement of all
metabolites present in samples [24,25].

The type of approach chosen will determine the experimental design, sample preparation,
and which analytical techniques can be used to obtain the results. Both targeted and untargeted follow
the similar pipeline. Briefly, the study design includes the population that will be part in the study and
also the determination of the conditions that are relevant for the hypothesis in investigation, namely the
sample size, randomization (as a study design consideration), storage (as a sample handling issue),
freeze/thaw cycles and timing during sample preparation are the most common factors that should
be taken into account to guarantee reproducible and successful experiments minimizing variability.
There are three main analytical platforms frequently used in metabolomic studies, which include mass
spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy [26]. Moreover, after data
acquisition, the obtained dataset, normally is subjected to statistical analysis (univariate and multivariate
methods) to find significant variations that allow the discrimination of patients with a specific disease
(in this case, BC) from a control group [27]. The most common approaches for the identification of
important metabolites comprise the application of unsupervised methods, such as, principal component
analysis (PCA), hierarchical cluster analysis (HCA), as well as supervised methods, like partial least
squares discriminant analysis (PLS-DA), random forest (RF) and support vector machines (SVM) [26,28].
A training set is used to construct the multivariate analysis models (e.g., PCA or PLS-DA), followed
by an external validation set to predict the new cohort of samples using the model constructed with
the training model. Finally, the putative biomarkers can be placed in metabolic networks to allow the
biological interpretation or which pathways are up- or down-regulated.
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2. OMICS Science

The OMICs is a neologism broadly adopted in biomedical research, that comprises the dataset of
genomics (DNA), transcriptomics (RNA), proteomics (proteins) and metabolomics (metabolites) based
on the central dogma of molecular biology [29]. The purpose of OMICs science in cancer research
is to discover cancer-specific biomarkers (diagnostic, prognostic and/or putative). The Food and
Drug Administration (FDA) defined biomarkers as a “characteristic that is objectively measured and
evaluated as an indicator of normal biological processes, pathogenic processes, or biological responses
to a therapeutic intervention” [30]. Biomarkers are powerful tools, when used for the early cancer
detection and selection of therapeutic strategy, thus improving the outcome of cancer treatment and
reduce cancer-related mortalities.

One of the newest promising OMICs sciences is metabolomics being a suitable tool that provides
state of the art of analytical instrumentation tandem with pattern recognition procedures and
chemometric tools to discover new disease- biomarkers providing novel insights into disease etiology,
and more robust assessment of etiological pathways [30,31]. Metabolomics studies the complex
interaction in biological systems providing a comprehensive and detailed information of the phenotype
and molecular physiology as result of environmental factors, genetic as well as exogenous and
endogenous factors (e.g., age, gender, race, diet, drugs, exercise, gut microbiota) [31]. In addition,
metabolomics can be used in early detection and diagnosis of cancer, in the assessment of therapies and
medical interventions, since cancer is a disease that promotes changes in cellular metabolism [32–35].
This OMICs tool has been extensively applied in clinical health practice due to its ability to quickly
analyze biological samples (e.g., blood, tissue, saliva and urine) with relatively simple sample
preparation (10–30 min), cost-effective and high-throughput [30,36,37]. Nevertheless, metabolomics
present several drawbacks resulting from biological and experimental features, such as sampling
variability, inter- and intra-individual differences and a lack of validated protocols for biological
samples handling which have a significant impact on the OMICs data approach [38,39].

The current review is focused in the metabolic profile of several biological samples, including
lipidomics (lipids), labeled substrates (e.g., 13C labeled glucose), volatomic (volatile organic metabolites),
and metabolites resulting from Krebs cycle [30,39] with the purpose of an early diagnosis, metabolic
reprogramming, cancer typing, staging and therapeutic intervention response [29,37]. Regarding the
Krebs/TCA cycle, there is evidence that the role of TCA for energy production and macromolecule
synthesis by cancer cells, especially those with dysregulated oncogene and tumor suppressor
expression [40–42]. Over the last years, there has been a rapidly growing number of metabolomic
studies intended to discover new biomarkers or make disease diagnosis using different biological
matrices, such as cell lines [43–46], blood [47], exhaled breath [48], plasma [33,49,50], saliva [51–54],
tissues [55–57], serum [58] and urine [59]. In Table 1 are resumed the most common analytical
approaches used in metabolomic studies grouped by type of biological sample and objective of the
study. Interestingly, the main studies involve a diagnostic purpose using BC cell lines with the aim of
search biomarkers, inspect the metabolome (endo- and exo-). Moreover, lipids as building blocks of cell
membranes have their levels changed during the malignant transformation. Lipid metabolism plays a
vital role in oxidative stress and is correlated with other parameters linked to BC risk (e.g., hormonal
balance, body mass index, breast density, drug metabolism and growth of insulin levels) [43,60].
In addition, a summary of the total identified metabolites by analytical platform as well as the number
of samples used for each biological specimen type is shown as Supplementary Materials (Figure S1).
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In literature, the reports performed involving human cell lines focus mainly in diagnostic purpose.
As for example in the volatile composition (VOMs) as described by Silva et al. [44] where the volatomic
signature of BC cell lines was established, and based on the results, 2-pentanone, 2-heptanone,
3-methyl-3-buten-1-ol, ethyl acetate, ethyl propanoate and 2-methyl butanoate were detected only in
cultured BC cell lines. These VOMs are formed endogenously or obtained from exogenous sources
(e.g., environmental, lifestyle, biological agents) [51], and can be recognised as a useful tool to BC
non-invasive diagnosis [44,51]. Other study by Willmann et al. [46] observed the changes of the exo-
and endometabolite profiles in BC cell lines by LC-MS/MS and observed a clear discrimination of
the breast epithelial from the BC cell lines through statistical tools. Moreover, a decrease on ratio of
glutathione (GSH) and glutathione disulfide (GSSG) was observed in BC cell lines as a result of oxidative
stress. The lipidomic profile of several BC cell lines was compared with normal cells obtained from
non-cancerous tissues by LC-MS/MS and GC-MS that changes observed in breast tumor tissues were
caused mainly by difference in lipidomic profiles of tumor cells and these alterations can be correlated
with the lipidomic composition of the nine breast cancer cell lines. Furthermore, Martineau et al. [61],
determined the absolute concentration of several metabolites (e.g., alanine, lactate, threonine, taurine,
glutathione, glutamate, glutamine, choline, valine, isoleucine, myo inositol, serine, proline, aspartate
and histidine), revealing the usefulness for the establishment of potential biomarkers. Also, BC cell
lines with BRCA1 pathogenic mutations were investigated by LC-MS/MS in order to obtain their
metabolic signature as possible diagnostic approach.

Regarding plasma, serum or blood, many studies have been conducted as observed in Table 1,
with multiple aims as Cala et al. [49] that developed a pilot control case-study, where a metabolomic and
lipidomic approach was performed in order to establish a plasma metabolic fingerprint of Colombian
Hispanic women with BC. According to these authors, the plasma metabolites could contribute to
an enhanced knowledge of the underlying metabolic shifts driven by BC in women of Colombian
Hispanic origin. Moreover, despite racial differences, the mapped metabolic signatures in BC were
comparable but not identical to those described for non-Hispanic women. Wang et al. [47] used
a dried blood spot approach for rapid BC detection. In the first study, the target analytes were
23 amino acids and 26 acylcarnitines, and based on the results piperamide, asparagine, proline,
tetradecenoylcarnitine/palmitoylcarnitine, phenylalanine/tyrosine, and glycine/alanine could be used
as potential biomarkers to diagnose BC. Lyon et al. [70] established a serum metabolome analysis from
the tryptophan pathway of 19 women with early-stage BC. The targeted analysis indicated higher
kynurenine levels and kynurenine/tryptophan ratios post-chemotherapy. Also, the symptoms of pain
and fatigue had association with several targeted metabolites. An improved metabolic profile of
human serum samples was obtained using complementary thecniques, namely MS and NMR and this
approach may be useful to achieve more accurate disease detection and gain more insights regarding
disease mechanisms and biology [67].

Another study conducted by Lécuyer et al. [31] combined metabolomic and epidemiological
approaches by NMR to investigate whether plasma untargeted metabolomic profiles could contribute
to the identification of BC at-risk women, whereas Playdon et al. [72] focused on the evaluation of the
associations of diet-related metabolites with the risk of breast cancer. It was possible to verify that the
prediagnostic serum concentrations of metabolites related to alcohol, vitamin E, and animal fats were
associated with ER+ breast cancer risk.

Urine became a very interesting biological sample to investigate as diagnostic tool or as result
of a treatment, as it is easy to collect, and also as ending point of all reactions that occur in the
body. Furthermore, Porto-Figueira [59] established the urinary volatomic biosignature from breast
(BC), and colon (CC) cancer patients as well as healthy individuals. This last work observed that
several pathways are over activated in cancer patients, being phenylalanine pathway in BC and
limonene and pinene degradation pathway in CC the most relevant. Yu et al. [84] explored the
relationship between urinary metabolites and clinical chemotherapy response in BC. As results,
chemotherapy-sensitive patients exhibited 30% of change in metabolite levels when compared to
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healthy individuals, while chemotherapy-insensitive patients showed only 9% of change in metabolite
levels when compared to healthy people that presented recurrence.

Another explored biological fluid is saliva as described by Zhong et al. [53] that screened
the putative salivary biomarkers for BC diagnosis, staging, and biomarker discovery. As a result,
18 biomarkers were identified, but only three up-regulated metabolites, displayed the area under the
curve (AUC) values higher than 0.920, indicating the high accuracy to predict BC. Also, Cavaco et al. [51]
screened salivary volatiles for a putative BC discrimination, and from metabolites identified,
only 3-methyl-pentanoic acid, 4-methyl-pentanoic acid, phenol, p-tert-butyl-phenol, acetic, propanoic,
benzoic acids, 1,2-decanediol, 2-decanone, and decanal were statistically relevant for the discrimination
of BC patients in the populations analyzed. Another type of molecules, the polyamines were associated
with tumor growth due to their biosynthesis and accumulation [54]. In this context, Tsutsui et al. [52]
and Takayama et al. [54] determined polyamines including N-acetylated forms in saliva to diagnose
BC. According to Tsutsui et al. [52], the level of polyamines increased in BC patients, and the levels of
N1-acetyl-spermine, N1N8-diacetyl-spermidine and N,N-diacetyl-spermine were significantly higher
only in the relapsed patients. Takayama et al. [54] demonstrated that eight polyamines are strongly
correlated with the BC patients. Furthermore, the ratio of N8-acetyl-spermidine/ (N1-acetylspermidine
+ N8-acetyl-spermidine) may be adopted as an index of the health status after the surgical treatment.

In-vitro analysis of BC tissues can be a valuable tool to inspect the metabolic differences between
tissue classes, either using the hydrophilic or the lipophilic part. As a result, one might use the
metabolomic profile as a novel tool for cancer characterization. Breast tissue is also an interesting
biological sample used for diagnostic purposes and /or response to a treatment as demonstrated
by Euceda et al. [79] that explored the effect of the antiangiogenic drug bevacizumab on metabolic
profile from BC tissue. On the other hand, Budczies et al. [77] studied the glutamate enrichment as
a new diagnostic opportunity in BC, and a positive correlation between glutamate and glutamine
in normal breast tissues switched to negative correlation between glutamate and glutamine in BC
tissues. Euceda et al. [79] observed a metabolic alteration indicating a decline in glucose consumption
as an effect of chemotherapy. In addition, a lower glucose and higher lactate level was observed
in patients (≥90% of tumor reduction) when compared to those with no response (≤10% of tumor
reduction). In turn, Choi et al. [81] determined the metabolic profiling of core needle biopsy samples in
order to predict pathologic response to neoadjuvant chemotherapy in patients with locally advanced
BC. These authors observed that there was a trend of lower levels of phosphocholine/creatine ratio
and choline-containing metabolite concentrations in the pathologic complete response group when
compared to the non-pathologic complete response group. Most of the BC patients undergo a cycle
or more of chemo being the general treatment that uses cancer-killing drugs before (neoadjuvant
or preoperative therapy) and after (adjuvant therapy) surgery [31,36], Then, the therapeutic chemo
effect may shift significantly between patients, as a result of BC phenotypes [37] of and intra- and
inter- individual differences. For this reason, it is necessary to punctually and accurately evaluate the
therapeutic effects of chemotherapy, which could help to adjust the chemotherapy regimen [71,84].
whereas the advances in treatment increased significantly the survival rates for women with BC,
as women often report psychoneurologic symptoms (e.g., pain, fatigue, depression) during and after
chemotherapy cycles.

Regarding exhaled breath a less explored biological sample in terms of BC diagnostic purpose.
In a study performed by Martinez-Lozano Sinues et al. [48] who developed a pilot study to identify
cancer–related volatile profile in exhaled breath of BC patients. Concerning exhaled breath and the
possible mechanisms involved in the production of endogenous VOMs, in Figure 3 is represented
a schematic illustration about the possible pathways.
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Figure 3. Schematic illustration of possible origin of some VOMs.

The principle behind this is based on the fact that the cancer growth is promoted by the progressive
accumulation of genetic and epigenetic changes leading to cellular oxidative stress, which in turn
increases the liver’s production of cytochrome P-450 (CYP450) oxidase enzymes to take into account
with stress. Both processes affect the abundance of VOMs in breath once oxidative stress causes
lipid peroxidation of polyunsaturated fatty acids (PUFA) in membranes, producing alkanes and
methylalkanes which are catabolized by CYP450 [85].

3. Analytical Approaches

Metabolomics encompasses targeted and non-targeted analysis of endogenous and exogenous
metabolites (<1500 Da), such as lipids, amino acids, hormonal steroids, peptides, nucleic acids,
organic acids, vitamins, thiols and carbohydrates, which represent a promising tool for biomarker
discovery [86,87]. The complexity of the metabolome, the metabolites properties and their concentration
levels in biological samples complicates the separation and detection on a single analytical platform.
For this fact, the integration of high resolution analytical frameworks, mass spectrometry (MS) and
nuclear magnetic resonance (NMR), appear as an outcome in metabolomics studies, providing sensitive,
reliable detection and quantification of thousands of metabolites in a biological sample and related
metabolic pathways within a few minutes [27,86,87] as shown in Figure 4.

This review will provide an update of the most commonly used analytical methods in metabolomics,
namely MS- and NMR- based metabolomics [27].
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Figure 4. General flowchart in targeted/untargeted metabolomic approaches.

3.1. MS–Based Metabolomics

MS is an analytical tool extensively used in metabolomics applications, ranging from
understanding the structural characterization of important metabolites to biomarker discovery [86].
Metabolic fingerprinting is general obtained by MS direct-injection, but this approach presents
several drawbacks namely co-suppression and low ionization efficiency. Thus, generally MS based
metabolomics includes a separation step, based on gas chromatography (GC–MS) [43,44,51,59,65,66,77,82],
liquid chromatography (LC–MS) [33,43,46,50,52–55,70] or capillary electrophoresis (CE-MS) [83,84],
to solve the co-suppression and to decrease the complexity of the biological sample. The integration of
MS with a chromatographic technique (GC, LC) and capillary electrophoresis showed high sensitivity,
speed, selectivity and improves the accuracy of compound identification, detection and quantification.
In addition, GC-, LC- and CE-MS are destructive methods, requires sample preparation and are
expensive, being these facts the main drawbacks of these hyphenated frameworks [86,88,89].

3.1.1. Gas Chromatography-mass Spectrometry (GC-MS) - Based Metabolomics

In the last decades, MS and chromatography have been broadly developed, and GC-MS becomes
a core and reliable separation, detection and identification analytical framework on metabolomic
analysis [43,44,51,59,65,66,77,82]. After sample collection and metabolite extraction, a small volume of
sample is commonly injected in splitless mode, once the metabolites are in trace levels, to improve the
sensitivity and the carrier gas propels the sample through the high-resolution capillary column (30 or
60 m columns with 5–50% phenyl stationary phases). The separation in GC occurs in an oven at high
temperatures, and the metabolites need to be thermally stable and volatile (e.g., aldehydes, ketones,
alkanes, organic acids) or non-volatile metabolites requiring derivatization (e.g., amino acids, sugars,
phosphorylated metabolites, amines, lipids) [86,88,89]. The samples are ionized by electron-impact
(EI) or chemical ionization (CI) for MS detection, being EI the most used since it provides molecular
ion fragmentation to obtain a mass spectrum revealing of the metabolite’s structure [88]. The MS
employed influences the sensitivity of detection, being the quadrupole (q), time-of-flight (TOF) and
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ion trap the most usually applied in metabolomics. GC-qMS was used to screen salivary volatiles
for putative BC as an exploratory study involving geographically distant populations [51], also to
establish the metabolomic signature of human BC cell lines [44] and to discriminate different types of
cancer based on urinary volatomic biosignature [59], among other examples reported in Table 1. In the
first study, up to 120 volatiles from distinct chemical classes, with significant variations among the
groups, were identified [51], whereas Silva et al. [44] and Porto-Figueira et al. [59] identified 60 and
130 volatiles in BC cell lines and urine, respectively. On the other hand, Budczies et al. [77,82] used
GC-TOFMS framework to evaluate the glutamate enrichment as new diagnostic opportunity in BC and
to accomplish a comparative metabolomics of estrogen receptor positive (ER+) and estrogen receptor
negative (ER−) in BC. Budczies et al. [82] identified 19 metabolites BC tissues revealed significantly
differences in central metabolism in ER− when compared to the ER+ type. The affected metabolic
pathways included the metabolism of glutamine with a decrease in concentration of glutamine and an
increase glutamate and 2-hydroxyglutaric acid [82]. In turn, Dougan et al. [66] used GC-MS to evaluate
the detectability, reliability, and distribution of metabolites measured in pre-diagnostic plasma samples
in a pilot study of women listed in the Northern California site of the BC Family Registry. In this study.
661 metabolites were detected, 338 (51%) of them were found in all samples, and 490 (74%) in more
than 80% of samples.

The main advantages of GC-MS-based metabolomics are sensitivity, specificity, high-throughput
technology to handle a large volume of samples and reproducible. Nevertheless, this hyphenated
technique has limited in mass range (m/z 30–550), the molecular ion is often not detected owing
to fragmentation, which makes more difficult the identification of unknown metabolites and the
metabolites need be volatile and thermally stable [89,90].

3.1.2. Liquid Chromatography-Mass Spectrometry (LC-MS) - Based Metabolomics

Currently, liquid chromatography (LC) in particular high-performance liquid chromatography-mass
spectrometry (HPLC-MS, LC-MS) represents an easy-going tool on separation and characterization of
a metabolites pool, namely salts, acids, bases, hydrophilic and hydrophobic metabolites. The versatility of
LC-MS is due to the several separation procedures and wide-ranging mass analyzers [90]. Contrarily to
GC-MS, HPLC-MS is not limited to volatile and thermo stable metabolites and it is a promising tool for
global metabolomics and the establishment of disease biomarkers.

Basically, the metabolites are eluted through a column based on their selective partition between
a stationary phase (column material) and a mobile liquid phase. The metabolites according to the type
of stationary phase can be eluted based on their charge, size, hydrophobicity and molecular weight [91].
Nowadays, the evolution of the HPLC is focused in miniaturization, smaller columns and low solvent
volumes to attain a faster separation of metabolites. Ultra-high performance chromatography (UHPLC)
appears as solution, since compared to HPLC promotes the resolution within a low analysis time and
requires low volumes of solvent [92,93]. UHPLC columns are packed with 2 μm particles and the
system operates at higher pressures (1000 bar) and tandem with MS, results in higher peak capacity,
resolution, specificity and high-throughput abilities (reduced run time per sample) compared with
HPLC [86,90,92–94].

Furthermore, Willmann et al. [46] analyzed the endo- and exometabolite of the BC cell lines
MDA-MB-231, -453 and BT-474 as well as the breast epithelial cell line MCF-10A through two different
analytical platforms: UHPLC-ESI-QTOF and HPLC-ESI-QqQ, which resulted in the identification of 92
annotated exometabolites and 58 endometabolites. In turn, Jové [33] used LC-ESI-QTOFMS/MS to
establish the metabolomic profile of BC, whereas HPCL-ESI-MS was used to determine the determine
the lipidomic differences between human BC and the surrounding normal tissues [55]. UHPLC tandem
with MS was applied to explore novel blood plasma biomarkers associated to the BRCA1-mutated
phenotype of BC [50], to determine polyamines including N-acetylated forms in saliva [52,54], and to
screen the potential salivary biomarkers for BC diagnosis, staging, and biomarker discovery [53].
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3.2. NMR–Based Metabolomics

NMR spectroscopy has been announced as a promising tool of metabolomics, providing
a comprehensive view of metabolite fingerprinting, profiling and metabolic flux analysis under
specific conditions, despite its inherent lower sensitivity compared to MS, limiting its skill with
trace level metabolites. The main advantages of NMR are automation, requires low or no sample
preparation, high reproducibility, non-destructive, non-selectivity in metabolite detection and the
ability to simultaneously quantify multiple classes of metabolites [29,87].

The principle of NMR spectroscopy is based on the fact that the nucleic of many isotopes (e.g., 1H,
13C, 14N, 15N, 17O), when placed in a magnetic field, absorb radiation at a specific frequency [90].
The result is a NMR spectrum which corresponds to a unique metabolite pattern and provides structural
information that can simplify the identification of unknown metabolites [86,89]. A fast identification
of metabolite results from a combination of chemical shifts, spin–spin coupling, and relaxation or
diffusion information [86,89]. Jobard et al. [68] reported a 1H NMR-based metabolic phenotyping
study aiming the identification of metabolic serum changes associated with advanced metastatic BC
(MBC) in comparison to the localized early disease (EBC). Histidine, acetoacetate, glycerol, pyruvate,
glycoproteins (N-acetyl), mannose, glutamate and phenylalanine were the metabolites that allowed
the discrimination between MBC and EBC groups. NMR was also used by Tenori et al. [58] to explore
whether serum metabolomic spectra could distinguish between early and metastatic BC patients and
predict disease relapse, whereas Singh et al. [63] used NMR to detect alterations in metabolites and
their linkage to metabolic processes in a number of pathological conditions including BC. In the last
study, the authors observed an increase in lipoprotein, lactate, lysine and alanine level and a decrease
in the levels of pyruvate and glucose in serum of inositol 1, 4, 5-trisphosphate (IP3R) receptor group
patients when compared to control. In addition, NMR offers the possibility to study tissue through
high-resolution magic angle spinning (HR-MAS) to reduce line widths in NMR spectra of tissue
samples [74,75,79–81]. Tayyari et al. [74] performed the metabolomic analysis of triple-negative
and luminal A BC subtypes in African-American using HR-MAS-NMR. A total of 27 metabolites
were assigned and the metabolic profiles of these subtypes were also distinct from those revealed in
Caucasian women. In turn, the feasibility of HR-MAS-NMR of small tissue biopsies to distinguish
between tumor and non-involved adjacent tissue was investigated by Bathen et al. [75]. The results
showed that the levels of glucose were higher in samples with low tumor content, whereas samples
with high tumor content presented higher levels of ascorbate, lactate, creatine, glycine, taurine and
the choline-containing metabolites. Euceda et al. [79] evaluate the metabolomic changes during
neoadjuvant chemotherapy combined with bevacizumab in BC using HR-MAS-NMR. According to
these authors, despite metabolic profiles not being able to predict the pathological complete response
(pCR) prior to treatment, a significant metabolic difference in pCR+ patients compared to pCR− was
detected after neoadjuvant chemotherapy.

3.3. Comprehensive Analytical Frameworks on Metabolomics Approach

Comprehensive analytical frameworks have gained popularity on metabolomics field [86],
being hundreds of metabolites detected simultaneously through analytical frameworks such as
GC×GC-MS, HPLC-CE-MS, LC×LC-MS, LC-MS-NMR, MALDI-FT-ICR-MS, LC-FT-ICR-MS, among
others. In the last decade, two dimension (2D) liquid-liquid chromatography (LC×LC) as well as
gas-gas chromatography (GC×GC) have been gained increasing attention since overcome overlapping
of metabolites by diverting each peak from a GC or LC column to a second GC or LC column,
improve sensitivity and complementary selectivity being a promising tool in metabolomics field [95].
Nevertheless, other comprehensive analytical framework has been purposed in metabolomic field, in
this context LC-MS-NMR platform is used in the identification of unknown metabolites in biological
samples at trace levels, providing sample efficiency higher than the conventional flow injection
methods [86]. In this sense, Reichenbach and co-workers [96] developed a suitable approach based
on GC×GC-HRMS to analyse a cohort of 18 samples from BC tumors. This approach avoided the
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intractable problem of comprehensive peak matching, through a few reliable peaks for alignment
and peak-based retention-plane windows to define comprehensive features that can be consistently
matched for cross-sample analysis. In addition, a clear discrimination was achieved between sample
of different grades and establish potential BC biomarkers. On the other hand, Yu et al. [97] optimized
GC×GC-MS for robust BC cells, tissue, serum and urine metabolite profiling. GC×GC-MS analysis
revealed detection around 600 molecular features from which 165 were characterized representing
different chemical groups, such as amino acids, fatty acids, lipids, carbohydrates, nucleosides and small
polar components of glycolysis and the Krebs cycle using EI spectrum matching. NanoLC-FT-ICR MS
was used to analyse protein digests of ~3000 laser capture microdissection (LCM)-derived tumor cells
from breast carcinoma tissue, corresponding to ~300 ng of total protein [98].

4. Data Analysis

Data analysis is crucial in metabolomics, being indispensable in every step of research, namely
in sampling and experiment designs, data pre-processing and metabolite identification, as well
in variables selection, classification modeling and validation procedures. The great challenge
of data analysis in metabolomics is the high dimensionality and complexity of datasets under
analysis. Several chemometric tools and statistical softwares are used in order to attribute value
for high-dimensional metabolomic information obtained previously by the analytical tools [99,100].
Normally, a complete data analysis procedure in metabolomics is based on the following steps: dataset
pre-treatment (centering, scaling, normalization), pre-processing (exploratory projection, variables
selection), processing (predictive models), validation (model verification) and post-processing (pathway
analysis) [101]. However, data analysis is dependent on the objective of the study and may be a simple
exploratory research or complex discovery of biomarkers and metabolic pathways, for this reason not
all steps are always present or are not followed in the same order. The data analysis procedures of
recent metabolomics studies in BC are described in Table 2.
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4.1. Dataset Pre-Treatment

Dataset pre-treatment is the initial step in data analysis, being extensively used in metabolomics
to resolve the heteroscedasticity of high-dimensional datasets. Commonly, pre-treatment in BC
metabolomics is done through normalization of dataset based on the centering, scaling, transformation
and/or experimental corrections of variables values [103–105]. Centering is performed when the data
analysis is focused on the differences between variables, where all measurements (e.g., concentrations,
areas) are converted to values around zero based on variation measures. Mean [46,67,68,79] is the
measure normally used in centering. Scaling is used to adjust the variables measurements based
on a scaling factor, converting the measurements of all variables into values relative to the scaling
factor. The scaling factor selected can be a dispersive measure (e.g., standard deviation) or size
measure (e.g., mean). The main scaling approaches based on dispersive measures are autoscaling
(standard deviation) [46,51,59] and pareto scaling (square root of the standard deviation) [43,53,55].
On the other hand, the most of size measure approaches uses scaling factors based on the mean [80],
median [51,57,59,66,75,78,83] or total intensity value [53,58,67,68,71,73,74,81]. Transformations are
mathematical approaches used to decrease the heteroscedasticity of dataset, which the variability
between variables is dramatically reduce. Log [43,57,66,69,70,72,76,79] is the main transformation
in BC metabolomics. However, cubic root [51,59] and quantile [48] transformations are also used.
Other normalization approaches based on experimental corrections are also used in metabolomics,
such as internal standards [102,106] and sample weight [61]. Internal standards normalization assumes
that the heteroscedasticity of all variables is systematic and can be corrected by variance of internal
standards. Sample weight normalization is the direct correction of variables values by experimental
sample measures (e.g., volume and weight).

4.2. Pre-Processing

Pre-processing methods are performed to obtain an exploratory projection of dataset or an
overview of variables importance prior to prediction models processing. Primarily, normality tests
are used to determine if the data distribution is normal (parametric) or not normal (non-parametric).
The most commonly used are Kolmogorov-Smirnov test (KS-test) [50,73], Shapiro-Wilk test
(SW-test) [73] and Lilliefors test (L-test) [73]. Two types of approaches are normally used in
exploratory projections/variables importance ranking of BC metabolomics datasets: univariate and
multivariate analysis. Univariate statistical methods are used to analyzed only one variable at a time,
being useful to easily discover significant differences or measure correlations between samples groups.
The differentiation is based on variance between groups by rejection of the null hypothesis or acceptation
the alternate hypothesis [101,107,108]. The most common methods used when the data is parametric
are T-tests [31,47,48,50,53,57,59,62,68,70,71,73,74,76–79,84] and ANOVA [33,44,46,63,64,66,68,69,72,83]
T-tests, such as Student and Welch’s tests, are recommended to analyze differences between two
groups, and ANOVA-based methods, such as one-way ANOVA, two-way ANOVA, factorial ANOVA
and MANOVA are used to evaluate more than two groups. Alternative univariate methods are
implemented when the assumption of the normal distribution is non-parametric, such as Mann-Whitney
test (MW-test) [51,81,102] and Wilcoxon test (W-test) [58]. In addition, univariate methods are also
widely used to measure the correlations between continuous variables and response. The Pearson
correlation [46,70,72,76,77,79] is the preferred option for linear relationships in populations with normal
distribution. On the other hand, the Spearman correlation [31,80,82] is usually used in non-parametric
datasets. More complex correlation methods are also used in data analysis, such as Correlation Feature
Selection (CFS) [65], where the appropriate correlation measure and a heuristic search strategy are
performed by experiments on artificial and natural datasets based on algorithms.

Similarly, the multivariate methods are also widely used for exploratory studies to obtain
dataset patterns based on relationships between groups, being divided into two sub-groups,
unsupervised and supervised methods. Unsupervised methods are the preferential option for
exploratory studies, where the modeling process is based only on the explanatory variables,
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without external intervention of user (Yi et al., 2016). The most commons are principal component
analysis (PCA) [56,57,60,62,70,75,76,80,92,93] and hierarchical cluster analysis (HCA) [33,43,51,56,59,76]
PCA provides the projection of dataset into low dimensional based on orthogonal transformation,
converting the variables variability from a set of observations into score vectors and loadings, called
principal components [100,109]. HCA methods are used to form subsets of samples at ordered levels
based on variables similarities/dissimilarities (such as distances or correlations) and can be performed
in agglomerative mode (samples are aggregate into clusters) or divisive mode (complete dataset
is divided into clusters). In both modes, the linkage criterion need to be selected, being that the
most commonly used are single-linkage clustering (the minimum of distances) and complete linkage
clustering (the maximum of distances) [110,111].

4.3. Processing Methods

After the explorative studies and variable selection, the next step is the processing of dataset in
order to create a predictive response model to classification of new samples (ex. diagnostic tools),
identification of valuable variables (ex. biomarkers) or exploring the mechanisms of metabolomic
studies (ex. metabolic pathways). In this stage, the supervised methods are the preferential choice,
where the response models are mainly based on two types, continuous (regression) and discrete
(classification) [100,103]. The main methods for continuous response are based on multiple linear
regression (MLR), sometimes called ordinary least squares (OLS). MLR is performed to predict the values
of a dependent variable (response) based on a set of continuous explanatory variables, assuming a linear
combination of the explanatory variables [109]. The most applied MLR-based method in metabolomics
is partial least squares (PLS) [44,55,68,71]. Unlike PCA, which uses only the variables variation, PLS is a
predictive and supervised method that use an informative response to maximize the covariance between
the explanatory variables and the response, producing score vectors and loading vectors. The prediction
model is based on interaction between the variables and response, ignoring the variables with irrelevant
importance. The importance of each variable is defined according the PLS-based criteria, such as
loading weights, variable importance on projection scores, regression coefficient, target projection and
selectivity ratio [100,101,109]. However, when categorical variables are introduced, the discrete models
should be used. Discrete models provide a predictive classification of response based on continuous
and categorical variables, being classified into linear or non-linear. In linear methods, the classification
is performed by highest probability based on linear relationships between explanatory variables,
where exist a grouping variable (categorical). Linear discriminant analysis (LDA) [44,54] is the
preferential method to classification models of discrete responses. LDA perform linear transformations
of explanatory variables to create discriminant functions that will maximize the separation between
multiple classes of samples (groups) based on the information of the categorical variables [109].
Among the various LDA-based methods, PLS-DA [33,46,47,51,53,59,63,64,67,69,71,74,75,77,79,84,102]
is most widely used in metabolomics studies. PLS-DA is a successful combination of PLS and LDA
that provides a visual low-dimensional pattern of samples discrimination based on the analysis of
relationships between continuous and categorical variables [101,109]. Recently, some extensions of
PLS-DA were used in BC metabolomics, namely the OPLS-DA [43,51,67,73,81]. OPLS-DA separates
out response orthogonal variations in rotations of the original component [109].

On the other hand, non-linear methods are used when metabolomics dataset follow a non-linear
response. The most applied non-linear methods are support vector machines (SVM) [48,59,65,102],
random forests (RF) [33,48,58,59,65,80] and logistic regression analysis (LRA) [31,47,65,69,72,102].
SVM is a kernel-based model used for regression and classification of non-linear datasets, transforming
the non-linear data into more general spaces (linear) by algorithm based on kernels functions.
SVM perform the mapping of dataset into a high-dimensional space through kernels functions
for the separation of two groups of samples into distinctive regions. The separation is based on
support vectors, which are points (samples) on the boundary or on the incorrect side of the margin
supporting the separation. SVM is a versatile method that transforms non-linear complex datasets into
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a high-dimensional space where classes are linearly separable [100,101,109]. RF is a non-linear method
for regression and classification of high-dimensional datasets, where a large number of classification
and regression trees are created by bootstrapping (replacement) based on random selection of a training
samples from the original dataset. Afterwards, bootstrapping is performed systematically to build
a large group of simple trees that are used to estimate classification accuracy of the model [100,101].
Another non-linear predictive method widely used is LRA, which is similar to linear regression,
but with a binomial response variable. LRA is used to explain the relationship between one dependent
binary variable and one or more nominal, ordinal, interval or ratio-level independent variables [112].

4.4. Model Validation

The validation of predictive models is a key step in data analysis of metabolomics studies.
Validation process analyzes the performance/ability of model to predict correctly the hypothesized
relationships between variables and responses [101]. Several validation methods have been used in BC
metabolomics. The coefficient of determination (R2) is the simplest method to evaluate the ability of
predictive model, being used for continuous responses. The R2 is expressed as the ratio between 0
and 1, where a value of 1 indicates the perfect prediction. However, this validation is recommended
for small datasets, due to fact that the R2 value tends to be increased when a predictor variable is
added to the model [113]. However, in validation of predictive models used to high-dimensional
and complex datasets, as the case of metabolomics studies, the cross validation (CV) methods are
the preferential option. CV provides qualitative and quantitative analysis of the model ability to
model’s ability to predict new independent samples without collecting additional data. During the
CV, the available data are split into two sets, where one set is used to create a predictive model using
the values of continuous and predictor variables (training set). The second set is used to test the
performance of predictive model (validation set) [100]. The most applied CV procedure is k-fold
(K-CV) [33,44,54,55,63–65,67–69,73,77,79,80,84,102]. K-CV processing is based on random partition of
original dataset into equal sized subsamples (k). A single k subsample is used as the validation set for
testing the model, and the remaining k -1 subsamples are used as a training set. This process is then
repeated k times (folds), with each of the k subsamples being used exactly one time as the validation
set [106]. One special type of K-CV is the leave-one-out cross validation (LOOCV) (Bathen et al.,
2013; Choi et al., 2013; Cífková et al., 2017; Martinez-Lozano Sinues et al., 2015; Tayyari et al., 2018;
R. Vettukattil et al., 2013; Willmann et al., 2016), where the number of folds equals the number of k
subsamples. LOOCV is considered an exhaustive CV, being recommend for small datasets [106,113].
Another type of CV is the Monte Carlo cross validation (MCCV) [51,59]. Although less used in
metabolomics than LOOCV, MCCV is asymptotically consistent and showed better prediction ability.
In MCCV proceeding, significant part of dataset is leaved out at a time during model validation,
repeating systematically this procedure several times [114,115]. The Q2 value, which is the equivalent
R2 value, is the preferential coefficient of determination for CV procedures.

A visual and easy model validation method is the receiver operating characteristic (ROC)
curve [31,33,43,47,48,53,54,58,59,63,65,67–69,71,73,74,77,102] which the prediction ability of a model is
validated considering the specificity (ratio of the correctly predicted negatives) and sensitivity (ratio of
correctly predicted positives). The ROC curve is given by plotting the sensitivity versus (1 - specificity)
across a series of cutoff points. The area under curve (AUC) is a quantitative measure (between 0 and
1) of the ability of predictive model, where a AUC value close to 1 indicates a nearly perfect prediction
response [100,113].

Random resampling-based methods are a robust alternative for model validation. The most used in
BC metabolomics are bootstrapping [48,58,68,80] and permutation tests [47,51,53,79,80]. Bootstrapping
is a model validation based on replacement of samples, which can be considered non-parametric
when the replacement is from the original dataset, or parametric when random noise is added from
a recognized distribution to the dataset to estimate underlying sampling distribution or establish robust
confidence intervals. Normally, in metabolomics studies the common approach is non-parametric
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bootstrapping [113,116]. Permutation tests provide the exact control of false positives from a predictive
model (linear or non-linear), under minimal assumptions, based on differences between the randomly
permuted response variables model and the original model. Permutation tests are based on a repeatedly
permuting (repetitive reordering) of the N entries in the response variable. Permuted vectors containing
integers between 1 and N are produced in a random number generator, creating new scrambled
response variables only by switching their internal positions. The scrambled vectors are modelled
one by one, where for every test, the R2 and Q2 values are calculated and saved. After, these values
are compared with the values calculated from the original data. The results of permutation tests are
displayed as a percentage overlap between the real and permuted R2 and Q2 values, where a 0% of
overlap is the optimal result [109,117].

4.5. Post-Processing

The post-processing step consists in the interpretation of metabolomic responses from original
dataset. Normally, pathway analysis is the most used strategy to provide an overview of
association/relationship between identified metabolites and metabolic pathways and other general
biological networks. Pathifier [65] and metaboanalyst [33,59,63,73,74] are the most used software for
this propose in metabolomics.

5. Future Directions

The advances in analytical techniques and chemometric methods in metabolomics have
been growing rapidly becoming possible the identification of potential biomarkers. Furthermore,
the integration of analytical platforms increases the comprehensive analysis of metabolites in biological
samples. In this context, metabolites became valuable identifications, regardless their hierarchical
source, enabling the phenotypic properties in a biological system. Additionally, the identification of
key metabolic pathways from which significant metabolites are linked, it is possible to reveal potential
targets for cancer therapy.

Also, standard procedures for sample collection, data analysis and shared in repositories have
potential to be adopted by both researchers and medical communities.

Since the metabolome instantly responds to environmental stimuli including therapeutic or
surgical intervention, could be also used to monitor the metabolic status of the individual and indicate
any possible toxic effects. Moreover, metabolomics may help in the detection of potential cancer
biomarkers, being useful for example in the development of different devices, including biosensors, that
can significantly improve the cancer diagnosis. These devices include a biorecognition element within
a biosensor system. The biorecognition molecules interact with the target, which is then converted into
a measurable signal by a transducer. Basically, these molecules, usually enzymes or antibodies, can be
immobilized on the transducer surface and interact with the target (biomarker) to produce a signal is
interpreted, providing information about the disease and their possible recurrence after therapy.

Supplementary Materials: The following is available online at http://www.mdpi.com/2218-1989/9/5/102/s1,
Figure S1: (a) Total identified metabolites by analytical technique and (b) number of samples used by each type of
biological specimen.
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Abstract: High resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR)
spectroscopy is increasingly used for profiling of breast cancer tissue, delivering quantitative
information for approximately 40 metabolites. One unique advantage of the method is that it can be
used to analyse intact tissue, thereby requiring only minimal sample preparation. Importantly, since
the method is non-destructive, it allows further investigations of the same specimen using for instance
transcriptomics. Here, we discuss technical aspects critical for a successful analysis—including
sample handling, measurement conditions, pulse sequences for one- and two dimensional
analysis, and quantification methods—and summarize available studies, with a focus on significant
associations of metabolite levels with clinically relevant parameters.

Keywords: NMR; HR MAS; breast cancer; metabolomics

1. Introduction

The improved understanding of breast cancer has been supported by the development of
omics-based technologies. Transcriptomics has made key contributions, for instance by delineating
clinically relevant subtypes based on gene expression patterns [1–3]. Moreover, gene expression-based
assays are now used for the assessment of recurrence risk in the clinical setting [4–6]. As a relative
newcomer to the omics field, metabolomics offers the potential to further reveal alterations that
underlie breast cancer development and progression, as well as the discovery of novel therapeutic
targets and biomarkers for improved diagnostics and prediction of prognosis as well as response
to therapy.

Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most
widely used methods for quantitative metabolomic analysis of tumour tissue. Their respective advantages
and disadvantages have been extensively reviewed elsewhere, for example, by Wishart et al. [7] and
Nagana Gowda & Raftery [8]. Importantly, the higher sensitivity of MS allows the quantification of a
much larger number of metabolites compared to NMR. However, despite this disadvantage of NMR
spectroscopy, certain characteristics make this method indispensable in metabolomics. Properties
of NMR spectroscopy, such as the capacity to provide information about the number of chemically
identical atoms, the chemical shift of individual atomic groups and the spin-spin coupling with the
resulting signal splitting pattern contribute to the high selectivity of this method [9]. Consequently,
one-dimensional NMR spectroscopy can often be sufficient, without a need of using two dimensional
(2D) NMR, to perform the reliable identification and also reproducible quantification of small molecules.
Moreover, NMR does not require chemical separation of analytes prior to analysis, which is one of the
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reasons for its excellent technical reproducibility [8]. A particular advantage of NMR spectroscopy
is the possibility to directly analyse intact tissue in a non-destructive manner, while MS requires an
extraction step, thus destroying tissue integrity. Most studies use the 1H nucleus for sensitivity reasons.
For the same reason, techniques employing the 13C nucleus have not found wide applications in tissue
analysis and metabolomics studies that use 13C usually require labelled samples. 31P HR-MAS NMR,
however, is a valuable technique for the analysis of tissue specimens, as the sensitivity is just one order
of magnitude lower than that of 1H NMR and potential applications to both phospholipid and energy
metabolism studies are evident.

Magnetic resonance spectroscopy (MRS) provides spatially resolved information about the
chemical composition of tissue in vivo [10]. If combined with ex vivo NMR studies, in vivo MRS
can be used to non-invasively detect biomarkers that were identified in previous ex vivo NMR studies.
A disadvantage of in vivo MRS, however, is its poor spectral resolution. The ex vivo analysis of intact
tissue specimens also suffers from poor resolution compared to conventional liquid NMR techniques.
In liquid samples, the dipole-dipole couplings, that is, the through-space interactions between protons,
as well as the anisotropy, that is, the orientational dependence of the chemical shift, are completely
averaged out due to the high molecular mobility. Under these conditions, only the isotropic chemical
shift and the coupling through bonds remain, giving rise to well-resolved signals with small (1–2 Hz)
linewidths. For 1H-NMR investigations of tissue, the anisotropy of the chemical shift can be neglected
but the dipole-dipole coupling, albeit small (20–50 Hz) is non-negligible [11]. Since the limited mobility
of molecules in tissue impedes a full averaging of the dipolar couplings, the resulting spectra are
poorly resolved. This makes quantification difficult, as the superposition of numerous broad signals
from a mixture of metabolites can no longer be easily disentangled. Moreover, the semisolid character
of tissue gives rise to local magnetic field gradients, caused by spatial variations of the magnetic bulk
susceptibility, which also leads to spectral broadening [12,13]. Both the anisotropic part of the latter
interaction [11,13] and the dipole-dipole coupling follow a [3cos2(Θ)-1] dependence on the angle Θ
between the B0 field and the distance vector between interacting nuclei [11]. If the sample is rotated at
the so-called "magic angle" of Θ = 54.7◦, the [3cos2(Θ) - 1] term becomes zero and a high-resolution
NMR spectrum is obtained [14,15] (Figure 1).

Figure 1. Representation of an HR-MAS NMR probe head with an orientation of the stator at an angle
(θ) of 54.7◦ between axis of rotation and B0. The rotation speed (vrot) of the sample reaches up to
15 kHz. A gradient coil is arranged around the rotor.

One of the earliest applications of high-resolution magic angle spinning (HR-MAS) NMR
spectroscopy was the study of polymer beads, which are synthetic organic materials used in the
preparation of combinatorial chemistry libraries [16]. Towards the end of the 1990s, the examination of
intact tissue became possible [17–20], enabled by the development of high-field magnets, improved
probe heads with ultra-low-inductance decoupling coils and symmetric spinner drive designs that led
to a reduction of spinning-, decoupling- and variable temperature-induced thermal gradients [21,22].
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The alignment of the z-axis gradient along the magic angle gave access to a wide variety of experimental
NMR techniques, such as gradient enhanced solvent suppression and to the full range of 1D and 2D
homo- and hetero-nuclear experiments. In this way, HR-MAS NMR spectra, with a typical linewidth
of 1–2 Hz, became comparable in quality to spectra from liquid samples [23,24]. As already mentioned,
HR-MAS NMR allows metabolite quantification directly from intact tissue specimens, which abolishes
the need for an extraction step and thereby avoids one potential source of poor reproducibility.
In addition, the risk of partial extraction of certain metabolites, as for instance reported for choline [19],
is minimized. Also, the non-destructive nature of the method allows the analysis of metabolite levels
in tissue to be combined with other analytical techniques based on the same tissue specimen, which
may be important when tissue availability is limited.

HR-MAS NMR has been used to study metabolites in breast cancer tissue and to correlate
metabolite concentrations with clinically relevant parameters. Here, we summarize the HR-MAS
NMR-based studies of breast cancer tissue available until December 2018, focusing on analytical
aspects, including measurement conditions, pulse sequences used for 1D and 2D NMR, quantification
methods and the numbers and identities of the reported metabolites. Moreover, we summarize findings
based on quantitative HR-MAS NMR with regard to significant associations with clinically relevant
factors in breast cancer.

2. Preanalytical Factors and Measurement Conditions

Reliable and reproducible analysis of tissue samples using HR-MAS NMR requires a robust
and standardized protocol that considers factors both before and during the measurement. In order
to standardize the analytical conditions, various time windows should be considered, including
sampling, storage, sample preparation and measurement (Figure 2). A brief overview of potential
issues related with the analysis of tissue specimens using HR-MAS NMR was recently published by
Esteve and colleagues [25]. However, as of yet, only few studies directly examined the impact of time
and temperature during the different steps of the analytical pipeline in the analysis of breast tumour
tissue [26,27].

Figure 2. Different steps and time windows between the tissue sampling and the final HR-MAS
NMR data.
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Any omics analysis represents a snapshot of the tissue at one point in time. The time delay after
the tissue has been removed from the circulation during surgery until freezing should therefore be kept
as short as possible or ongoing biochemical processes in the tissue may alter the metabolite content.
Haukaas et al. studied the influence of the length of the time interval before the tissue was snap-frozen
in liquid nitrogen (0, 15, 30, 60, 90 and 120 min) on the metabolic profile of breast cancer xenografts [27].
A significant difference between metabolite levels in samples frozen directly after surgical removal and
frozen after 60 min was shown for ascorbate (−25%), choline (+56%) and creatine (−28%) and after
90 min for glutathione (−35%). The freezing delay did not have a statistically significant influence on
the eleven additionally studied metabolites but ranged from –15% to +11% and −20% to +31% after
30 and 60 min, respectively. Notably, for all time points, increased metabolite levels were observed
for certain metabolites, while the levels of other metabolites decreased. Moreover, the pattern across
the increasing time delays varied for the individual metabolites, including consistently increasing
or decreasing metabolite levels, as well as more difficult to interpret mixed patterns. Nevertheless,
no significant alterations in metabolite levels are expected at freezing delay times less than 30 min.
The impact of the duration of the ischemic period before freezing was also studied in other tissue
types. For instance, in rat brain, statistically significant changes were observed for glucose (down)
as well as alanine, γ-aminobutyric acid (GABA) and lactate (up) after 30 min and additionally for
glutamine, myo-inositol, GPC and total choline (down) and acetate, creatine and glycine (up) after
three hours [28]. We are unaware of any study that directly compares the effect of ischemia/freezing
delay time between different tissue types, but the occurrence of tissue-specific differences can probably
not be excluded.

In the above-mentioned study by Haukaas et al., the authors also compared metabolite levels
between samples that were immediately snap-frozen and thereafter analysed (n = 6) and samples
that were analysed directly, without being frozen (n = 6) [27]. Importantly, significantly higher mean
metabolite levels were observed for 12 of 16 metabolites in the snap-frozen tissues (20–60% increase
after freezing compared to fresh tissue). Noticeable differences could also be observed between the
metabolites with regard to the level of variability between the replicates (20–100%). This study is in
agreement with the results of an early study of rat kidney from 1998, where considerably increased
signal intensities were observed after freezing for several metabolites, including alanine (> 100%),
glutamine (> 40%) and glycine (> 100%) [29]. Middleton et al. assigned these changes to the release
of metabolites that were bound to macromolecules and therefore are invisible for HR-MAS NMR.
This can happen due to freezing-induced cellular disruption and/or the precipitation of non-freezing
resistant proteins, in both cases leading to fewer available non-specific binding sites for small molecules.
Increased levels of several metabolites in rat kidney after snap-freezing were also observed by Waters
et al., including leucine, isoleucine, valine, alanine and glycine, when compared to fresh tissue that
was kept on ice for up to five hours before analysis [30]. In addition, decreased signals of choline,
glycerophosphocholine, glucose, myo-inositol, trimethylamine N-oxide (TMAO) and taurine were
found after snap-freezing. However, the statistical significance and magnitude of these changes were
not reported. Interestingly, much fewer changes were observed in liver compared to kidney, indicating
tissue-specific differences [30]. All in all, despite the observed freezing-induced changes, freezing the
tissue is likely to remain a standard approach for practical reasons, such as the distance between the
surgical unit and the laboratory, as well as programs for prospective tissue collection and biobanking
for later analysis.

After snap-freezing, the storage of biological material at −80 ◦C until analysis is standard [31].
Only one published study thus far investigated the impact of storage time at −80 ◦C on the metabolic
profile of human breast cancer tissue [26]. In this study, samples were snap-frozen after being kept
for approximately 30 min on ice and analysed using HR-MAS NMR after 1, 6 and 12 months. It was
reported that the levels of choline in healthy breast tissue increased (p < 0.000001) with longer storage
time, while phosphocholine decreased (p < 0.000001), which could be due to the breakdown of
phosphocholine to choline. Lower phosphocholine levels were also observed in breast tumour tissue
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(p < 0.0002), together with increased levels of lactate (p < 0.05). The concentrations of nine other
metabolites showed no significant changes during the one year storage period. Further studies would
be required to assess the impact of storage at −80 ◦C for even longer time periods, which usually is the
case when studying, for instance, the association of metabolite concentrations with cancer survival in
retrospective frozen tissue collections. Findings by Jordan et al. of no significant storage time-associated
effect on metabolite levels, evaluating human prostate cancer tissue after three years of storage at
−80 ◦C [32], support the conclusion that the influence of the storage time in a low-temperature freezer
is most likely minor.

Before HR-MAS NMR, preparation of the sample for analysis includes punching or cutting
the tissue to fit into an insert, placing it in the rotor, weighing, and adding the internal standard.
These preparatory steps are commonly performed at room temperature, with the specimen kept on ice
to avoid extensive thawing. The usage of a cooled workstation has also been reported [33,34]. Another
option is to prepare the sample at −10 ◦C in a closed glovebox under nitrogen atmosphere [35,36].
This would, in addition, mitigate the possible influence of condensation of ambient water from the air,
which may distort the sample weight and in turn affect the quantification. However, the impact
of factors during the sample preparation step on final metabolite concentrations has not been
systematically studied until now.

Finally, different conditions during the measurement, with regard to temperature, analysis
time and rotation frequency, were used in the thus far published HR-MAS NMR studies of breast
cancer tissue. To avoid line broadening and to achieve a high resolution MAS NMR spectrum,
the sample must be thawed and the measurement performed at a temperature above 0 ◦C. To minimize
the risk of temperature-induced changes during the measurement, the temperature after methanol
calibration is usually adjusted to approximately 5 ◦C. In brain tissue, it was shown that the rate of
degradation of N-acetyl aspartate (NAA) to acetate was four times higher at 20 ◦C than at 2 ◦C [19].
Most measurements of breast cancer tissue reported in the literature were performed at 4 ◦C [37–41],
while others were performed at 5 ◦C [27,42–45], 6 ◦C [41,46], 19 ◦C [47,48], 20 ◦C [49] or 26 ◦C [50],
with an approximate mean measurement time of 19 min (range: 3 min 7 sec [27] to 1 h 5 min [51]).
Haukaas et al. reported that a prolonged HR-MAS NMR measurement time of 1.5 h at 5 ◦C influenced
the concentration of certain metabolites, including a significant increase of glucose, glycine and choline
and a decrease of glycerophosphocholine (GPC) [27]. Similar observations were made in brain tissue,
with decreasing levels of N-acetyl aspartate (NAA) and increasing levels of acetate in spectra collected
at 20 ◦C during the course of 24 h [19]. Similarly as for the freezing delay time, different tolerance
to thawing, as well as multiple freeze-thaw cycles, can probably be expected in various tissue types,
so it is difficult to assess to what extent findings in one tissue type can be extrapolated to other.
In studies such as those above, it is also difficult to separate the effect of the extended time at a
temperature above 0 ◦C from that of prolonged rotation at a high frequency. Indeed, the rotation of
tissue at a high frequency during HR-MAS NMR has been reported to impact the morphology of
the specimen [38,41,52] as well as the metabolite content [28]. A high speed of rotation can destroy
cell and tissue structures. For instance, analysing cells, two hours of rotation at 2.5 kHz destroyed
approximately 20% of adipocytes [53] and cell lysis was observed in erythrocytes at 4 kHz MAS
rotation [54]. In human prostate tissue, distortion of ductal structures occurred after one hour spinning
at 3 kHz; whereas, no obvious morphological alterations were observed after 45 min spinning at 600 Hz
followed by 15 min at 700 Hz [52], indicating that preservation of tissue integrity could be achieved
by slower rotation. However, the centrifugal forces are only reduced by two orders of magnitude
when the spin rate is reduced by a factor of ten [55]. The results of one study of rat brain tissue
suggest that mechanical stress due to prolonged spinning at 4 ◦C may have a larger impact on the
metabolic profile than the delay in the freezing of the sampled tissue sample in liquid nitrogen, for
instance leading to increased creatine levels, possibly because of the tissue-damage associated release
from initially undetectable creatine stores [28]. In the published studies of breast cancer tissue using
HR-MAS NMR, a rotation frequency of 5 kHz was applied, except in some publications spinning the
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sample at 2 kHz [47,48,50,51,56], 2.5 kHz [49] and 6 kHz [24]. As of yet, no study directly compared
the impact of rotation frequency on tissue morphology and metabolite concentrations in breast cancer
tissue. Renault et al. compared HR-MAS measurements of liver tissue at different rotations frequencies
(150 Hz, 500 Hz, 4000 Hz) and found that the presence and intensity of sidebands is strongly dependent
on the sample preparation (position and shape of the sample, presence of air bubbles) [57]. The authors
claim that sideband free spectra can be obtained at rotation frequencies as low as 500 Hz by minimizing
the volume of the sample chamber and by positioning the sample chamber at the coil centre with an
insert located at the top of the rotor.

In summary, further studies are warranted to better understand the impact of conditions during
sample procurement, storage and analysis of breast cancer tissue on metabolite levels analysed by
HR-MAS NMR. Only one study of breast cancer tissue comprehensively examined the impact of
the freezing delay time after surgery on metabolite concentrations. Given the practical difficulties of
tissue collection immediately after surgery, further validation that no significant changes in metabolite
concentrations occur during the first 30–60 min would be important to provide additional confidence
in current protocols for tissue procurement. The impact of the rotation frequency and measurement
time on metabolite concentrations have not yet been systematically examined in breast cancer tissue
and should be addressed in future studies.

3. NMR Techniques Employed in Tissue Analysis

Several common NMR techniques can be employed in the analysis of intact tissue specimens
to provide specific information about the metabolite and lipid content. A successful analysis also
depends on techniques to suppress unwanted signals that originate from, for instance, tissue water
and the macromolecular background of lipids and proteins that would otherwise impede the analysis.
Below, the presaturation approach to suppress solvent signals, as well as common pulse sequences
used for one and two dimensional NMR experiments, are described.

3.1. Water Suppression

Water is a dominating component of biological samples, as a solute or as a solvent. Because of the
high concentration of water protons, the 1H-NMR signal of water exceeds the metabolite signals by
several orders of magnitude. If not suppressed, the water signal will saturate the analogue to digital
converter (ADC), that is, it uses the full dynamic range of the ADC, leaving just a few bits for the
metabolite signals, which impedes a correct quantification of the latter. Moreover, the strong water
signal distorts the baseline of the spectrum. The 1H-NMR spectrum of a sample with high water
content is displayed in Figure 3A.

Presaturation is the most simple and most widely used technique to suppress solvent signals [58]
and can be easily combined with most pulse sequences used in NMR. It uses an extended period of a
weak continuous wave irradiation at the frequency of the water signal at 4.7 ppm (Figure 3B). This
irradiation results in an equal population of the two energy levels of the water hydrogen spins. Hence,
if spin-lattice relaxation is neglected, there is no longitudinal magnetization of the water protons and
the subsequent excitation pulse exclusively excites the signals of the metabolites. The power level
employed for the presaturation must be chosen to only saturate the water signal and no metabolite
signal in its vicinity. The determination of the presaturation power level is performed once for every
sample in a series of experiments, where the power level is incremented in small steps and the outcome
of the presaturation is evaluated by the operator. This evaluation has to take into account the intensities
of the water signal and of the metabolite signals in its vicinity, with and without presaturation, as well
as recommendations of the manufacturer concerning the maximum power level. Another important
factor for the successful presaturation is the homogeneity of the B0 field, because signal broadening
caused by inhomogeneity cannot always be suppressed by presaturation [58]. Figure 3C shows the
spectrum of the same sample as in Figure 3A but here the water signal is suppressed using the
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described presaturation technique. The intensity of the residual water signal now is at the same level
as the metabolite signal intensities and does not impede the quantification of the metabolite signals.

Figure 3. (A) 1H NMR spectrum of a tumour sample without water suppression. The strong water
signal (0 ppm) saturates the analogue to digital converter and leaves just a few bits for the metabolite
signals, which impedes the quantification of the latter. (B) Schematic representation of the presaturation
pulse sequence [58], which consists of a selective presaturation at the water frequency, the excitation of
the sample and data acquisition. (C) 1H NMR spectrum of a breast cancer specimen with an almost
completely suppressed water signal at 5 ppm. As a result, the metabolite signals of the sample can
be quantified.
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3.2. Pulse Sequences for 1D-NMR

The 1D Nuclear Overhauser-Effect Spectrometry (1D NOESY) technique is employed when
the goal is to observe both the signals of low-molecular weight compounds (metabolites) and
macromolecules (lipids, proteins) in a 1H-NMR spectrum [23]. This experiment is helpful in breast
cancer studies to estimate the amount of lipids in relation to the metabolite content. The 1D NOESY
pulse sequence [RD-90◦-t1-90◦-tm-90◦-ACQ] (Figure 4A) [23] starts with a presaturation irradiation
of the water signal during the relaxation delay time (English "relaxation delay"—RD). The first 90◦

pulse hence produces transverse magnetization only for the metabolites, since the signal of water
has previously been saturated. This is followed by a short interval t1 of approximately 3 μs, which
serves as a switching time for the phases of the pulses. The subsequent second 90◦ pulse rotates
the magnetization of the metabolites to the z-direction. During the time tm (duration approximately
10 ms) after the second 90◦ pulse, presaturation is switched on again to once more saturate the water
magnetization that has relaxed during the course of the experiment. The metabolite magnetization is
not affected by this saturation because it is longitudinal at this time. Finally, the third 90◦ pulse rotates
the magnetization of the metabolites back to the transverse plane. During the acquisition time (here
denoted ACQ) the transverse magnetization is sampled. The magnetization of the water is saturated
at this time and therefore provides no signal after the third 90◦ pulse.

If the aim is to observe the metabolite signals only, while the macromolecular background of
lipids and proteins is suppressed, the Carr-Purcell Meiboom-Gill (CPMG) sequence is employed.
This sequence, like the 1D NOESY sequence, has an integrated one-dimensional water presaturation
interval. It uses the pulse train [RD-90 ◦-(τ1-180◦-τ1)n-ACQ] (Figure 4B) [23], where (τ1-180◦-τ1)n acts
as a T2 filter to suppress signals from macromolecules and other substances with short T2 times. As
a result, the 1H-NMR spectrum of tissue samples obtained with this pulse sequence only consists of
small molecule signals from metabolites, which have relatively long T2 times. After presaturation,
the excitation starts with a 90◦ pulse, which generates transverse magnetization. The subsequent
precession of the magnetization during the delay time D2 (typically 1 ms for CPMG) is refocused by
a 180◦ pulse followed by another delay D2. This spin-echo sandwich is repeated n times, followed
by the acquisition after the n-th echo [23]. If the lipid content of the tissue is high, the echo time n*τ
can be prolonged to suppress the lipid signals by spin-spin relaxation. Depending on the type of
tissue, the total echo time can be between 30 ms [59] and 720 ms [60]. For some tissues, such as brain
tumours, which have lower lipid content, the echo times are short and only vary between 30 and 150
ms [59,61]. Tissue with higher lipid content requires longer echo times to suppress the lipids. In breast
cancer samples echo times as long as 580 ms have been used [24,60]. The CPMG pulse sequence is an
indispensable tool in NMR studies of breast cancer tissue, as lipid signal suppression is essential.

Finally, it should be noted that the above-mentioned pulse techniques were originally designed
for liquid state NMR measurements. When applied to HR-MAS NMR, the timing of the pulse sequence
must be synchronized with the rotation period, so that the interpulse spacings are equal to multiples
of the rotor cycle time [52].
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Figure 4. (A) The 1D NOESY pulse sequence consists of a presaturation interval (D1), an excitation
pulse, which after a short time t1 (phase switching time) is followed by another 90◦ pulse. After another
time tm, the spin system is excited with another 90◦ pulse. During the time tm, the water saturation
is switched on again to ensure complete water suppression. D1 denotes the relaxation delay time.
(B) Representation of the CPMG pulse sequence: After a presaturation interval (D1), the spin system
is excited with a 90◦ pulse. This is followed by a train of n 180◦ pulses, each pulse bracketed by two
delay times D2, in which the spins refocus. Subsequently, the signal is recorded as an FID. The total
delay time n*τ after n spin echo periods τ = (D2-180◦-D2) is chosen so as to suppress the signals of
fast relaxing molecules like lipids. (C) JRES pulse sequence to separate 1H chemical shifts and 1H,1H
couplings into separate dimensions of a 2D display. The chemical shifts are displayed in the horizontal
dimension, while the multiplet patterns show up in the vertical dimension. If strong coupling artefacts
can be neglected, the horizontal dimension corresponds to a “broadband” decoupled proton spectrum.
(D) HSQC pulse sequence to correlate proton and carbon chemical shift information. The sequence
starts with an INEPT block, which transfers proton magnetization to 13C. The carbon magnetization is
then labelled with 13C chemical shift information via a spin echo sequence, the duration of which is
incremented in subsequent experiments. A reverse INEPT transfer brings back 13C magnetization to
the proton channel, where it is recorded under 13C broadband decoupling. (E) TOCSY pulse sequence
to correlate 1H chemical shifts that are part of a spin-spin coupling network. The sequence starts
with proton magnetization, which is labelled with its precession frequency during t1. In a subsequent
isotropic mixing step, a net magnetization transfer to coupled protons is performed. The extent of this
magnetization transfer can be steered by adjustment of the length of the mixing delay. Values of 80 ms
typically give spectra where magnetization has been transferred to all coupling partners of the excited
spin, so that the whole spin system can be traced out. The signals of the coupling partners appear on
horizontal lines in the spectrum, which eases analysis of metabolite spin systems.

3.3. Pulse Sequences for 2D-NMR

In the presence of strong peak overlaps, which are typical for complex mixtures such as
those encountered in metabolomics, special measurement techniques are required to untangle the
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overlapping peaks and to assist in peak assignment. Peaks that overlap in the 1D NMR spectra can
often be resolved in two dimensional (2D) NMR spectra.

Two dimensional J-resolved (2D JRES) NMR spectroscopy (Figure 4C) [62] is helpful for the
analysis of metabolite mixtures, as it allows the recording of a second spectral dimension with
relatively little overlap of signals. In the 2D JRES NMR experiment, the 1H spectrum is presented in
the horizontal dimension and the coupling pattern of each signal is displayed in the vertical dimension.
The number of identifiable metabolites is, however, strongly limited by the 2D JRES spectral resolution
as well as by strong coupling effects, which hamper the applicability of this method especially at low
field strengths.

The use of 2D 1H-13C heteronuclear NMR (Figure 4D) in metabolomics may be advisable to
identify metabolites if the 1H-NMR spectrum is heavily congested. Among the 2D NMR methods,
the 2D Heteronuclear Single Quantum Coherence (HSQC) technique [63] offers a very high resolution
by incorporation of 13C chemical shift information. The HSQC pulse sequence correlates proton and
carbon chemical shifts. The sequence starts with an Insensitive Nuclei Enhanced by Polarization
Transfer (INEPT) block [64], which performs a polarization transfer of proton magnetization to the 13C
channel. In a subsequent spin echo sequence, the carbon magnetization is labelled with 13C chemical
shift information. The duration of the spin echo sequence is incremented in subsequent experiments.
Finally, a reverse INEPT transfer brings back 13C magnetization to the proton channel. During the
acquisition, 13C broadband decoupling is switched on to collapse the 13C, 1H-couplings. In many cases,
however, HSQC is generally not sensitive enough for metabolomics studies but the acquisition of an
HSQC spectrum is of particular importance if new metabolites have to be identified or if additional
evidence is sought for signal assignments obtained from 1H-NMR measurements, as exemplified for
breast cancer tissue in Reference [35].

A disadvantage of both HSQC- and of 2D-JRES spectra is the missing spin system information,
as the cross-peaks are all independent of each other. This shortcoming is avoided by the 2D 1H-1H
Total Coherence Spectroscopy (TOCSY) experiment [65], which permits the identification of individual
1H spin systems that can be assigned to the various mixture components. The TOCSY pulse sequence
(Figure 4E) correlates distinct 1H-NMR signals, which are part of a network of spin-spin couplings
(usually denoted as a “spin system”). An excitation pulse creates proton magnetization that is labelled
with its precession frequency during the delay time t1, which is incremented in subsequent experiments.
During an isotropic mixing step, a net magnetization transfer to coupled protons occurs, the extent
of which is controlled by adjustment of the length of the mixing delay. Values of 80 ms typically
give spectra where magnetization has been transferred to all coupling partners of the excited spin,
so that the whole spin system can be traced out. The signals of the coupling partners appear on
horizontal lines in the spectrum. TOCSY is particularly well suited for computational analysis, since
each cross-section of signals represents the 1D spectrum of the whole spin system, that is, the signals
of a metabolite. Notably, for HR-MAS NMR, adiabatic mixing sequences [66] are recommended to
perform the isotropic mixing. The composite pulse mixing sequences commonly employed in liquid
state NMR introduce modulations of the effective field in the presence of both radiofrequency field
and B0 inhomogeneities, when applied to rotating samples [66]. These modulations compromise the
performance of composite pulse mixing sequences and introduce a sensitivity of the signal intensities
to the sample spinning speed. Adiabatic mixing sequences are less susceptible to such modulations
and perform better [66].

As a final point, 2D NMR techniques that use pulse sequences adopted from liquid state NMR
require a rotor synchronization [67], that is, all delays used in the pulse sequence must be integer
multiples of the rotor period. Rotor synchronization helps to eliminate both residual anisotropic
interactions and the effect of radial inhomogeneities of the radiofrequency field. Rotor synchronization
is of particular importance for TOCSY experiments, where the lengths of every basic cycle of the
isotropic mixing sequence as well as the trim pulses have to be integer multiples of the rotor period [67].
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4. Metabolites Identified with HR-MAS NMR in Breast Tumour Tissue

Two complementary strategies are used in metabolomics: the targeted and the non-targeted
approach. With a targeted approach, a preselected subset of metabolites is measured, usually based
on an a priori hypothesis. Contrarily, with a non-targeted approach, the number of metabolites to be
measured is not predetermined; rather the aim is to capture as much information as possible. To date,
27 publications using HR-MAS NMR spectroscopy report a total of 46 metabolites to be detectable in
breast cancer tissue (tumour tissue from patients and/or xenografts) (Table 1). Cheng et al. published
the first report using HR-MAS NMR to analyse breast cancer tissue already in 1998 [49], followed by
the milestone work of Sitter et al., who identified more than 30 metabolites, in 2002 [24]; however,
no quantification was performed in these early studies. Table 1 gives an overview of metabolites
detected in breast cancer tissue analysed by HR-MAS 1H-NMR spectroscopy and in addition indicates
if metabolite concentrations were determined, for example, in μmol/g tissue, using an internal- (TSP)
or external standard (ERETIC, PULCON) (twelve publications) or if relative quantification based on
integrated peak areas was performed (eight publications).

The most comprehensive quantitative investigations of breast cancer tissue using HR-MAS NMR
were those by Park et al. and Yoon et al., where 34 metabolites were reported in each study [50,68].
The exact inclusion criterion for HR-MAS NMR-based identification of metabolites in breast cancer
tissue is, however, rarely stated in the literature. In the work of Sitter et al., reporting concentrations
for nine metabolites, a signal-to-noise ratio (SNR) >10 for the creatine singlet was applied [41]. In a
recent publication, we quantified all metabolites that had a baseline-separated signal with a SNR >3
for at least one peak used for quantification, thus reporting concentrations for 32 metabolites [35].

As indicated in Table 1, the quantification of approximately 40 metabolites is what can be
maximally achieved by this method in breast cancer tissue with a non-targeted approach. A substantial
further increase of the number of metabolites to be quantified would require higher B0 field strengths
at the expense, however, of proportionally increasing rotation speeds to shift the spinning sidebands
out of the spectral window. The concomitant increase in centrifugal forces acting on the fragile samples
would compromise the non-destructive nature of NMR. Currently, HR-MAS spectra are acquired
at a maximum 1H frequency of 600 MHz (14.1 T), which gives sideband-free spectra at a rotation
speed of 5 kHz. There are, however, approaches to use slow-spinning HR-MAS techniques [55] that
employ a sideband suppression like PASS [69], PHORMAT [70] or PROJECT [71], which suggest
that high quality HR-MAS spectra could be obtained at higher field strengths than 14.1 T. However,
the application of PASS and PHORMAT to tissue analysis is hampered, not only by sensitivity and
resolution problems but especially by the fact that the extent of the side band pattern affects the
intensity of the isotropic peak. This feature impedes quantification, as the extent of the sideband
pattern may vary from sample to sample [55]. A suitable approach to slow MAS in metabolomics
seems to be the PROJECT pulse sequence but so far spectra devoid of spinning sidebands were only
observed at 400 Hz rotation speed in case of favourable conditions, such as a spherical sample (for
instance fish eggs), minimal B1 inhomogeneities, small-volume rotors and a sample composition close
to that of an isotropic liquid [55].

Finally, the quantification of metabolites from 1D 1H-NMR can be difficult due to the complexity
of the spectrum. For instance, in 1D HR-MAS 1H-NMR spectra, choline- and ethanolamine-containing
metabolite signals are superimposed and the weak signals from phosphoethanolamine and
glycerophosphoethanolamine are difficult to detect. HR-MAS 31P-NMR spectra have higher chemical
shift dispersion than their 1H-NMR counterparts, which helps to separate the signals of choline- and
ethanolamine-containing metabolites. The quantification of the signals in the HR-MAS 31P-NMR
spectra is fairly straightforward, as the signal of phosphocholine shows up in both types of spectra (1H
and 31P) and can be used for cross-calibration. Glycerophosphoethanolamine and glycerol-3-phosphate
were only reported in breast cancer tissue in the one study that used HR-MAS 31P-NMR [72].
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5. Metabolite Quantification with HR-MAS NMR

There are several options for quantitative analysis with HR-MAS NMR spectroscopy, which
have certain advantages and disadvantages. As already mentioned above, the method for absolute
quantification used in twelve publications to determine metabolite concentrations in breast cancer
tissue is indicated in Table 1.

One approach is the quantification with an internal standard, which is at the same time used
for calibrating the spectrum [39]. Tetramethylsilane (TMS) is widely used as internal standard
in organic chemistry. However, it is insoluble in water and therefore its water-soluble forms,
trimethylsilylpropionate (TSP) [73] and sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) are
used in HR-MAS NMR [74]. As the weaker acid compared to DSS, TSP is more affected by sample pH.
Both TSP and DSS are reported to bind to hydrophobic parts of proteins [75], which partly distorts
the quantification. In prostate tissue, it was observed that more than 70% of the added TSP became
“NMR-invisible,” because the TSP was bound to macromolecules in the tissue [76]. If the TSP signal is
subsequently used for quantification, the observed error in the TSP peak area gives rise to a significant
over-estimation of the metabolite concentrations, as was also mentioned elsewhere [73]. In their
tutorial about NMR metabolomics analysis [77], the authors state that large deviations of the TSP peak
area and shape in a series of samples are often due to an insufficient suppression of macromolecules
like proteins, as they are partners for non-specific bonding to TSP and DSS. Nowick et al. suggested
DSA (4,4-dimethyl-4-silapentane-1-ammonium trifluoroacetate) as a new internal standard that does
not suffer from interactions with cationic peptides like DSS [78]. Alum et al. compared DSA to TSP
and found that the integral of the DSA signal correlated linearly with its concentration under all pH,
whereas no such linear correlation could be found with TSP. The authors suggest DSA to be used both
as a universal chemical shift reference and a concentration standard [79]. In Figure 5, examples of
free and breast cancer tissue-bound TSP are shown. It is also possible to use the water content of the
tissue as an internal standard [19,60], as demonstrated on brain tissue samples [80]. However, it is
questionable whether quantification based on water content is well suited in heterogeneous tissue
types, such as breast cancer, where fat and therefore also water content varies greatly.

Figure 5. Influence of TSP interaction with tissue on the quantification with 1H HR-MAS
NMR spectroscopy.

External standards are also used for metabolite quantification with HR-MAS NMR. A widely
used method to quantify metabolites in tissue is ERETIC (Electronic REference To access In vivo
Concentrations), an artificially generated radio frequency signal, which is pre-calibrated to a reference
sample, such as sucrose, in an independent measurement [81,82]. The advantage of ERETIC is that
no standard has to be added to the sample and thus no distortion due to the interaction between
the standard and the sample matrix can occur. This was shown for instance by Martinez-Bisbal et al.,
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who compared metabolite concentrations obtained with ERETIC and the internal standard DSS in
tissue biopsies from glioblastoma multiforme, observing consistently higher concentrations with
DSS [74]. Sitter et al. found a larger relative standard deviation (RSD) with ERETIC (> 6.7%) than
with TSP (> 4.4%) for the quantification of serial dilutions of creatine in phosphate buffered saline
(1, 5 and 10 mM) [39], which they attributed to radiofrequency inhomogeneity influencing ERETIC
more than TSP. Nevertheless, the authors still recommended ERETIC as the better alternative, since
this method avoids matrix effects, is stable, accurate and precise and has a reproducible signal area,
as reported by Albers et al. [76]. To assess the robustness of ERETIC- and TSP based quantification,
Albers et al. studied the stability of their peak areas in solution over time, reporting a long-term
RSD of 4.10% for ERETIC and 2.60% for TSP. An external standard other than ERETIC has been
used by Taylor et al. [52]. Here, the authors applied a silicone rubber sample to function as an
external standard for both frequency reference (0.06 ppm from TMS) and quantification. The rubber
sample (approximately 100 μg) was permanently mounted inside a Kel-F spacer in the MAS rotor
in such a way that it is not in contact with the sample but is located inside the detection coil. Pulse
length-based concentration determination (PULCON) can also be used to measure the concentrations in
1D NMR spectra [83], especially when several (unknown) signals are superimposed. This methodology
was originally developed for the analysis of proteins. The sequence consists of first determining
the 360◦ pulse after tuning and matching. After the integration of known signals, the protein
concentration can be determined [83]. This is particularly helpful if one or more superimposed
signals are unknown. PULCON is rarely used in HR-MAS NMR-based metabolomics and its use in
breast cancer metabolomics is reported only once [42]. In view of the high technical reproducibility
and the fact that ERETIC is free from matrix effects [76], ERETIC is today generally considered the
preferred method for metabolite quantification in tissue by means of HR-MAS NMR spectroscopy.
Nevertheless, since the performance of different methods for quantitative determination of metabolites
in tissue by means of HR-MAS NMR has not yet been directly compared, a comprehensive study of
the above-mentioned methods would be of great advantage.

One potential problem with metabolite quantification in breast cancer tissue with HR-MAS NMR
is related to the presence of strong lipid signals that cannot be sufficiently suppressed by the CPMG
pulse sequence. This has been reported to particularly affect the quantification of lactate, since the lactate
methyl resonance at 1.32 ppm may be masked by a broad lipid signal in lipid-rich environments [38,84].
Even though the quantification of lactate was possible in several other studies [39,50,68,85], the detection
of lactate in tissue may require a selective excitation technique, such as the Sel-MQC sequence of He et al.,
which is a spectral editing sequence that uses multiple-quantum filtration [86]. However, experimental
problems, such as B1 inhomogeneity, are a challenge for the reliable quantification of low lactate
concentrations [87] and, in addition, severe signal losses can lead to inefficient suppression of unwanted
lipid signals. Therefore, an improved spectral editing scheme that is robust to inhomogeneous
fields was recently reported and shown to achieve selective excitation of lactate with minimal signal
loss [87,88]. In addition, a variant of this pulse sequence [88] provides in-phase magnetization, which
can be more accurately quantified than the antiphase magnetization of the pulse sequence [86] and
allows the selection of experimental parameters that meet optimal lipid suppression requirements [88].
Lactate editing was originally developed for MRS [88] but it has been demonstrated that it can
also be used in HR-MAS 1H-NMR to quantify lactate in intact lipid-rich tissue [36]. This approach
can, in theory, be extended to other metabolites, that can be edited employing multiple-quantum
filtration techniques. This holds especially for alanine and threonine [87]. In summary, sophisticated
spectral editing techniques that are based on Optimal Control (OC) theory [89] have become available,
that allow for the design of tailored pulses that excite only the signal of a given metabolite. However,
these have so far merely been applied to the quantification of lactate and alanine [87].

The problem with superimposed signals is not restricted to that of strong lipid signals. The “add
to subtract” approach, described by Ye et al. [90], is one approach to handle superimposed signals.
Here, the signals of metabolites which are usually strong like lactate or glucose, are subtracted from
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the spectrum prior to analysis and small, low-concentration molecules, which may be of biological
significance, appear and can be quantified [8]. Another approach to deconvolute superimposed
signals, which has so far only been used in in vivo NMR, is the Linear Combination of Model
(LCModel) method [91,92]. This method analyses an NMR spectrum as a linear combination of
model spectra obtained from individual metabolite solutions, using a constrained regularization
method which takes the baseline and the line shape of the spectra into account without employing a
restrictive parameterization on the data [91,92]. Using LCModel analysis, a set of in vitro metabolite
spectra combined with simulated lipid and protein spectra assists in the analysis of HR-MAS spectra.
Application of this LCModel setup to brain tumour biopsy HR-MAS data revealed interactions between
metabolites and the macromolecular background via the analysis of small peak shifts [28]. Moreover
Opstad et al showed, that LCModel provides a user-independent protocol of analysis of brain tumour
HR-MAS spectra [28]. So far, however, no applications of LCModel analysis to breast cancer tissue
HR-MAS spectra have been reported.

Finally, a factor which is independent of the quantification method but that may affect the
quantitative analysis when metabolite concentrations are determined per gram tissue, as is commonly
done with HR-MAS NMR, is related to the cellular composition of the tumour tissue specimen,
which might vary within a tumour as well as between tumours. Tumour tissue does not only consist
of tumour cells but also of, for example, cancer-associated fibroblasts, endothelial and lymphatic
cells and cells of the immune system. Moreover, adipocytes may be present in breast carcinomas
(Figure 6) and breast tumour tissues also differ with regard to the amount of tumour cells in relation
to the amount of necrosis and extra-cellular matrix-rich stroma. Consequently, tissue samples from
two different tumours or samples from two different areas within the same tumour, with the same
weight may have different cellular content, which may translate into differences in metabolite content.
Several studies assessed the tumour cell content in haematoxylin-eosin stained tissues sections, either
prepared after HR-MAS NMR or from an adjacent tumour area, with notable differences between
the tumours [84,93]. Some authors reported study inclusion criteria based on the tissue composition;
for instance, >30 tumour cells [38] or >5% tumour area [85] were used as an inclusion criterion, while
others excluded samples with a high lipid content [43]. The influence of the tissue composition on
the observed metabolite levels should be taken into account, since correlations between metabolite
concentrations and tissue composition have been reported, including higher levels of glycine, GPC and
phosphocholine with higher tumour cell fraction [39], as well as poor SNR in spectra with a high level
of connective tissue [93].

Figure 6. Haematoxylin-eosin staining showing the tumour tissue microenvironment of a breast
carcinoma and different types of cells, including tumour cells, immune cells and adipocytes—as well
as stroma and blood vessel. Scale bar: 100 μm.
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Intra-tumour variability of metabolite concentrations may, in addition to differences in the
tissue composition, be related to the coexistence of different subpopulations of cancer cells, which
differ in their genetic and phenotypic characteristics [94,95]. Therefore, despite the high technical
reproducibility of NMR [8], recognizing the potential impact of intra-tumour heterogeneity on
metabolite concentrations determined by quantitative HR-MAS NMR is essential. Understanding
intra-tumour heterogeneity is also a prerequisite to decide whether analysis of a small number of
samples or even a single biopsy, is sufficient to obtain information representative for the entire
tumour. Thus far, three studies addressed intra-tumour differences in metabolite concentrations in
breast tumour tissue [35,50,96]. Based on the correlation between paired samples from the same
tumour compared to random sample pairs, Cao et al. stated that the metabolic profile varied more
between the different tumours than within the tumours [96]. This conclusion is supported by a
second investigation, where intra-tumour concentration differences were assessed for 32 metabolites,
as well as lipid content indicated by the signals at 1.3 ppm and 0.9 ppm, by sampling 8-10 tissue cores
(diameter: 2 mm) from resected breast tumour tissue and duplicate cores from additionally 15 breast
tumours [35]. A high degree of intra-specimen variability was observed in the tumour tissue (mean
RSD: 0.48-0.74) compared to normal liver tissue (mean RSD: 0.16-0.20), which is morphologically more
homogeneous. Nevertheless, it was shown that inter-tumour differences were, on average, larger
than those observed within a tumour, suggesting that the analysis of one or a few, replicates per
tumour might be sufficient. Park et al. used a slightly different approach and considered also the
intra-tumoural localization by sampling tissue cores from both the tumour centre and periphery from
surgically removed tumour tissue, concluding that the intra-tumoral localization had a limited impact
on the observed concentrations of the 34 reported metabolites [50].

6. Significant Associations with Clinical Factors

Breast cancer is a heterogeneous disease, with diverse biological features as well as clinical
behaviour. To assess the clinical course of the disease and to make decisions about treatment, factors
such as tumour stage, tumour grade, oestrogen receptor (ER) and progesterone receptor (PR) status
and expression of the human epidermal growth factor receptor (HER2) are considered. Chemotherapy
is indicated for tumours that are negative for ER, PR and HER2 (triple-negative) and also represents
the only available therapy for this subtype, in addition to surgery [97]. For the HER2 positive subtype,
anti-HER2 therapy and chemotherapy are recommended, irrespective of ER status; whereas, hormonal
therapy is recommended for ER positive tumours, with chemotherapy additionally administered in
case of a high risk of recurrence, as indicated by tumour grade, proliferation or a prognostic gene
expression assay [97]. Several studies thus far used quantitative HR-MAS NMR to correlate metabolite
levels in intact breast cancer tissue with clinicopathological factors [39–41,47,96], survival [37,38] or
treatment response [38,48]. The main findings of these studies are summarized below, focusing on
significant differences of metabolite levels between clinically relevant patient subgroups (Figure 7).

Significantly higher choline concentrations in ER- and PR- tumours, as well as higher
concentrations of creatine and taurine in PR- tumours, were reported by Choi et al. [47]. An elevated
level of choline in the ER- subtype was also reported by Cao et al., together with higher levels of
glycine, lactate and glutamate and lower levels of glutamine [96]. In relation to HER2 positivity,
significant associations with higher levels of taurine, scyllo-inositol and myo-inositol [47], as well
as higher levels of glycine, glutamine, succinate, creatine and lower levels of alanine [96], were
described. Triple-negative status was found to be associated with higher choline levels in three
separate publications [40,47,96] and with lower creatine levels in two publications [40,96]. Moreover,
triple-negativity was associated with higher choline to creatine and total choline to creatine ratios [47],
higher levels of glutamate and lower levels of glutamine [96]. Comparing basal-like and luminal-like
xenografts, glycerophosphocholine and glycine were higher in the basal-like and phosphocholine was
higher in the luminal-like [40].
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Figure 7. Significant associations of metabolite levels determined by HR-MAS NMR with
clinicopathological factors in human breast cancer. 1 Choi et al. 2012 [47]; 2 Cao et al. 2014 [96];
3 Moestue et al. 2010 [40]; 4 Cheng et al. 1998 [49]; 5 Giskeödegård et al. 2012 [85]; 6 Cao et al.
2012b [38]; 7 Cao et al. 2012a [37].

Few studies thus far looked at metabolite concentrations in relation to tumour grade.
A significantly increased phosphocholine to creatine ratio in grade III compared to grade I-II tumours
was reported by Choi et al. and higher concentrations of phosphocholine and total choline were
reported by the same authors in highly proliferative tumours, as assessed by Ki-67 [47]. The association
between phosphocholine and tumour grade is supported by findings from the first study of metabolites in
breast cancer tissue using HR-MAS NMR, where Cheng et al. showed a higher phosphocholine to choline
ratio in high-grade tumours already in 1998, although this difference was not statistically significant [49].
A significantly higher lactate to choline ratio in high-grade tumours was also reported [49].

Sitter et al. observed higher concentrations of choline and glycine in tumours larger than
2 cm [41]. Taking several clinicopathological factors into account and comparing tumours from
patients with good prognosis (defined as node-negative, < 2 cm and ER+ and PR+) and poor prognosis
(node-positive, > 2 cm or ER- or PR-), significantly higher concentrations of scyllo-inositol and
glycine were characteristic for the tumours from patients with poor prognosis [47]. Another study
identified no significant differences between prognostic groups, defined similarly, for individual
metabolites; however, a trend towards higher concentrations of glycine in tumours from patients
with a poor prognosis was observed [39]. Using survival time shorter or longer than five years as the
endpoint, higher lactate levels were found in ER+ non-survivors, while higher levels of glycine almost
reached statistical significance [85]. The association of lactate and glycine with survival is supported
by a second study, although here the reported association were not statistically significant [38].
Whereas we here focused primarily on studies that used quantitative HR-MAS NMR to correlate
metabolite concentrations with clinicopathological factors, the use of multivariate modelling for
prediction of factors, such as tumour grade, oestrogen receptor status and lymph-node status, has also
been pursued [46,98]. Future studies of larger patient cohorts, with accompanying information on
metastasis-free and overall survival, are warranted to clarify if metabolic signatures can be used
to predict clinically relevant prognostic endpoints, such as identifying patients with a low risk of
disease recurrence.

The response to neoadjuvant therapy also provides information on prognosis, since a pathological
complete response (pCR) is indicative of a lower risk of recurrent disease [99]. Comparing patients
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with a complete pathological response (pCR) after neoadjuvant anthracycline and/or taxane-based
chemotherapy to patients who did not achieve a pCR, no significant differences in metabolite
concentrations were found; only, a trend towards a lower phosphocholine to creatine ratio in patients
with pCR was observed [48]. In a recent study by Euceda et al., including 122 breast cancer patients with
biopsies taken before, during and after neoadjuvant 5-fluorouracil, epirubicin and cyclophosphamide,
followed by taxane-based therapy – where the patients were additionally randomized to receive
bevacizumab or not – principal component analysis (PCA) indicated overall changes in the metabolic
profile with chemotherapy over time [43]. However, no metabolic differences were found between
pre-treatment biopsies from pathological complete responders and non-responders. Moreover,
no significant differences in metabolite levels were found between patients treated with chemotherapy
only and patients treated with chemotherapy plus bevacizumab, either before, during or after
completion of therapy [43]. In a study of triple-negative patient-derived xenografts, the response to
everolimus, an inhibitor of mammalian target of rapamycin (mTOR), could not be predicted based on
the metabolic profile [44]. The prediction of chemotherapy response prior to treatment thus appears
to be difficult based on the metabolic evaluation of pre-treatment biopsies. The observed differences
between the metabolic profile before and after treatment can be further explored to reveal mechanisms
behind therapy response and resistance but may also reflect differences between tumour and normal
breast tissue. Analysis of changes in metabolite levels between 33 paired pre- and post-treatment
specimens showed lower glycerophosphocholine and choline levels post-treatment compared to
pre-treatment in survivors (≥ 5 years), while no significant differences pre- versus post-treatment
were found in non-survivors (< 5 years) [38]. In another study of the same authors, where tumour
tissue specimens from 89 breast cancer patients who received neoadjuvant chemotherapy were
analysed, survivors showed a significant decrease in the levels of glycine, choline, phosphocholine and
glycerophosphocholine and an increase in glucose, post-treatment compared to pre-treatment; whereas,
non-survivors displayed an increased level of lactate after treatment [37]. A different metabolic
response to PI3K/mTOR inhibition between basal-like and luminal-like patient-derived xenografts
was also reported, with lower level of phosphoethanolamine and higher levels of phosphocholine
and glycerophosphocholine compared to untreated controls in basal-like but not in luminal-like,
xenografts [72]. This study also highlights the potential of using 31P HR-MAS NMR in biomarker
studies to analyse phosphorus-containing metabolites, such as phosphoethanolamine, for which the
weak signal may be difficult to detect using 1H HR-MAS NMR.

7. Summary

This review provides an overview of analytical aspects related to the use of quantitative HR-MAS
NMR for metabolic profiling of intact breast tumour tissue, including an overview of the most widely
used NMR techniques and briefly summarizes significant findings with regard to metabolite levels
and clinically relevant factors.

A robust and standardized protocol is required for reproducible analysis of metabolite
concentrations in tumour tissue samples from large patient cohorts. This means that factors such
as the time and the temperature of each step — from sample collection during surgery to the actual
measurement — must be taken into account. Although tissue freezing can alter the metabolic profile,
there is often no better alternative since the logistics needed for the direct analysis of fresh tissue after
surgery is missing, making snap-freezing of the tissue, followed by storage at −80 ◦C, indispensable.
A simple rule of thumb is to minimize the time period before freezing, followed by storage in a
low-temperature freezer. During the measurement, a low temperature, for example, 4 ◦C, for a time
as short as possible, might be preferable but the effect of these factors on the observed metabolite
concentrations has not been directly studied in breast cancer tissue thus far. Clearly, a frozen sample
would be inappropriate for HR-MAS NMR because of the associated line broadening. A too strong
reduction of the measurement time would make the identification of certain metabolites impossible.
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Finally, no direct comparison has been made to study the impact of rotation frequency on metabolite
concentrations in breast cancer tissue.

After the generation of the HR-MAS NMR spectrum, the correct identification and quantification
of metabolites is crucial. The limited resolution and sensitivity of the method is reflected in the number
of specific metabolites and in the analytical accuracy, which can be obtained. Typically, approximately
40 metabolites in tissue can be determined by HR-MAS NMR. Problems of spectral overlap can be
alleviated by using higher magnetic field strengths, which improves both sensitivity and resolution.
Another approach to improve accuracy is to cope with the overlap problem by decoupling 1H-1H-
scalar interactions via pure shift methods [100] which give peaks free of splittings. These techniques
suffer, however, from sensitivity losses and are merely suitable for the profiling of high concentration
metabolites. Another boost of accuracy can be obtained from hybrid techniques like the combination of
MS/MS and NMR [100]. In the presence of strong peak overlaps and especially if previously unknown
metabolites have to be identified, signal assignment may require assistance by 2D NMR techniques.
Here, TOCSY is particularly valuable since it shows which peaks belong to a shared spin system and
thus to a metabolite. In addition, HSQC provides information about the 1J correlation of 1H NMR
signals with 13C nuclei. By combining these two methods, it is possible to assign a particular spin
system from the 1H NMR spectrum to a metabolite and unambiguously identify it by means of its 13C
NMR shifts. Still, since tissue concentrations of many metabolites are very low, identification may
be problematic. This may be compensated by increasing the measurement time in 2D-NMR studies.
However, increasing the measurement time will at some point be insufficient, since the slope of the
SNR can only be improved by exponentially increasing the number of scans, eventually making further
improvements infeasible.

Following metabolite identification, the choice of the quantification method is also important.
Nowadays, ERETIC has become established as the method of choice, since it avoids the protein
binding observed with internal standards such as TSP. However, for absolute quantification further
aspects must be taken into account. In most publications that used HR-MAS NMR for quantification
of metabolites in breast cancer tissue, the sum of the acquisition time and the relaxation delay was
greater than 5 × T1max, where T1max denotes the spin-lattice relaxation time of the slowest-relaxing
metabolite. Therefore, a correction of the effects of T1 relaxation is not necessary for quantification.
On the other hand, to achieve absolute concentrations, a T2 correction has to be applied to compensate
for the signal loss during the extended echo train. Most of the publications listed in Table 1 used
spin-echo sequences with approximate total durations of 285 ms but did not report a T2 correction,
that is, T2 relaxation losses were deliberately accepted. Since the determination of T2 times is not trivial
due to the low intensity of some metabolites and the high fat content in some breast cancer specimens,
T2 time determination in HR-MAS NMR based metabolomics is a matter of further investigations.
However, for many purposes, such as the comparison of metabolite levels between clinically relevant
subgroups, relative concentrations are sufficient.

An important question is why one should use HR-MAS NMR for metabolic profiling of tissue
when MS-based methods provide information about a considerably larger number of metabolites.
The availability of human tissue for scientific research is limited and its collection is associated with
great organizational and time effort. Therefore, in explorative tissue profiling studies, it is natural to
opt for an approach that obtains as much information as possible from a limited amount of tissue.
The detection and quantification of up to 46 metabolites in breast cancer tissue using HR-MAS NMR
has been shown to be feasible by a number of groups (Table 1). Moreover, the non-destructive nature
of HR-MAS NMR sets it aside from MS-based methods, since it allows the analysis of metabolites to
be combined with other analytical techniques on the same tissue specimen. This may be important
when small amounts of tissue are available, such as when working with pre-treatment core needle
biopsies or resection specimens from early stage tumours, where most of the tissue is fixed in formalin
and used to establish the pathological diagnosis. Histological examination after HR-MAS NMR
has for instance been pursued [38,85], providing information about the tissue composition, such as
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the percentage of tumour cells. It has also been shown that high-quality RNA, with RNA integrity
(RIN) values in the range 7–10, can be isolated from tissue after HR-MAS NMR [36,84]. Therefore,
a combinatory approach with transcriptomics is feasible. Such a combination has for instance been
used to identify subtypes of luminal-A breast cancers [84]; however, these subtypes are yet to be proven
to have clinical relevance. A combination of HR-MAS NMR-based metabolomics, transcriptomics
and proteomics—although using tissue from different areas of the tumour sample—has also been
pursued. A recent study used hierarchical clustering based on metabolite data from a large breast
cancer cohort generated by HR-MAS NMR to identify three metabolic clusters, with differences in
glycerophospholipid metabolism and glycolysis [45]. Interestingly, these clusters neither overlap with
classification based on grading, nodal status, tumour size or hormone receptor status, nor with the
gene expression-based PAM50 subtypes. One cluster contained an overrepresentation of tumours with
lobular histology as well as all ductal carcinomas in situ and significant differences between clusters
were also found for the reactive I and II subtypes (Cancer Genome Atlas Network 2012) defined based
on reverse phase protein array analysis (RPPA), as well as for genes related with extracellular matrix,
basement membrane and cell adhesion. Whether these clusters are also linked to prognosis remains to
be clarified. Generally, it remains to be determined whether metabolic biomarkers quantified in breasts
cancer tissue ex vivo by HR-MAS NMR are useful in a clinical setting. Today, clinicopathological
parameters are used in the clinic, together with commercially available gene expression-based assays,
to predict the risk of recurrence. Several studies used quantitative HR-MAS NMR to study associations
between metabolite concentrations in intact human breast cancer tissue with clinicopathologic factors
and clinically relevant endpoints, such as survival or therapy response but relatively few statistically
significant findings were reported that were additionally validated in independent studies. Small
sample sizes and large intra-group variability in some cases likely contribute to the lack of statistical
significance. Consistently, higher levels of choline-containing metabolites have been reported to be
associated with poor prognostic features, including tumour grade, proliferation and ER negativity [47],
triple-negativity [96] and a tumour size larger than 2 cm [41], as well as higher levels of glycine with
larger tumour size [41] and survival time shorter than 5 years [85], although the latter did only reach
borderline significance. Higher lactate levels in non-survivors were also reported in two separate
studies [38,85], although statistical significance was only reached in one study [85].

In conclusion, additional studies with larger numbers of patients are required to establish reliable
associations between metabolites and prognosis of breast cancer. Moreover, studies are required to
analyse whether metabolites contribute information independent from transcriptomics. Nonetheless,
a unique advantage of HR-MAS NMR is that tissue can be analysed in a non-destructive manner which
allows combination of this technique with either transcriptomics or with other omics techniques.
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Abstract: Cellular senescence displays a heterogeneous set of phenotypes linked to tumor suppression;
however, after drug treatment, senescence may also be involved in stable or recurrent cancer. Metabolic
changes during senescence can provide detailed information on cellular status and may also have
implications for the development of effective treatment strategies. The metabolic response to
Adriamycin (ADR) treatment, which causes senescence as well as cell death, was obtained with
the aid of metabolic profiling and isotope tracing in two human breast cancer cell lines, MCF7 and
MDA-MB-231. After 5 days of ADR treatment, more than 60% of remaining, intact cells entered into a
senescent state, characterized by enlarged and flattened morphology and positive blue staining using
SA-β-gal. Metabolic trajectory analysis showed that the two cell lines’ responses were significantly
different and were divided into two distinct stages. The metabolic shift from the first stage to
the second was reflected by a partial recovery of the TCA cycle, as well as amino acid and lipid
metabolisms. Isotope tracing analysis indicated that the higher level of glutamine metabolism helped
maintain senescence. The results suggest that the dynamic changes during senescence indicate a
multi-step process involving important metabolic pathways which might allow breast cancer cells
to adapt to persistent ADR treatment, while the higher level of anapleurosis may be important for
maintaining the senescent state. Ultimately, a better understanding of metabolic changes during
senescence might provide targets for cancer therapy and tumor eradication.

Keywords: senescence MCF7; MDA-MB-231; metabolomics; isotope tracing analysis; gas
chromatography–mass spectrometry (GC–MS)

1. Introduction

Cellular senescence was initially identified as cell cycle arrest from the limited replicative capacity
in normal human diploid fibroblasts (HDFs); it was termed “replicative senescence” and associated with
telomere shortening or dysfunction [1]. More recently, it has been recognized that a number of different
stressors including oncogenic mutations, chemotherapeutic drugs and oxidative stress can cause
telomere-independent cellular senescence, which is termed premature senescence [2]. Senescent cells
display heterogeneous phenotypes including enlarged cell size, flattened cell morphology, an inability
to synthesize DNA, formation of senescence-associated heterochromatin foci (SAHF) and expression
of an endogenous senescence-associated β-galactosidase activity (SA-β-gal) [3]. Premature senescence
in cancer therapy serves as an effective tumor-suppressor by preventing cancer cell proliferation or
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blocking the acquisition of tumor transformation [4]. However, the senescence-associated secretory
phenotype during cancer therapy may influence tissue microenvironments, and even stimulate
tumorgenesis and metastasis in vitro and in vivo [5,6]. Moreover, premature senescent cancer cells
have the capability to escape growth arrest and re-enter the cell cycle, leading to tumor relapse [7,8].
Thus, the process of tumor cells undergoing cell senescence after drug treatment results in stable
disease rather than regression of the tumor, which represents a non-optimal outcome and significant
health risk in cancer therapy.

Cellular survival and growth require specific metabolic reprogramming to adapt to genetic or
environmental stresses because of the need for metabolic pathways to continue to produce energy,
precursors and substrates for macromolecular synthesis and/or cell signaling. One of the hallmarks in
cancer biology is the higher levels of glucose uptake and glycolysis during tumor growth, commonly
known as the Warburg effect, as well as the importance of glutamine as an anapleurotic substrate for
the TCA cycle [9]. It has been noted that metabolic reprogramming might be exploited therapeutically
for cancer therapy. With the aim of providing further insights into cancer biology and new targets
for cancer therapy, metabolic phenotypes associated with cell senescence have been studied over
the last few years. Higher utilization of glucose and higher ATP production were observed in
therapy induced senescent (TIS)-competent lymphomas [10]. Consequently, TIS lymphomas were
sensitive to blocking glucose utilization, which led to their selective eradication. The mitochondrial
gatekeeper pyruvate dehydrogenase (PDH) was found to be a crucial mediator of oncogene-induced
senescence (OIS) by BRAFV600E, which was accompanied by increased pyruvate oxidation and
mitochondrial oxidative phosphorylation [11]. A lower level of deoxyribonucleotide triphosphate was
also found in oncogene-induced senescence, caused by oncogene-induced repression of ribonucleotide
reductase subunit M2 [12]. These studies revealed that senescent cells display metabolically active
and context-dependent phenotypes. It was also suggested that understanding the metabolic changes
during cell senescence may have implications for the development of new and effective strategies to
treat cancer.

Although significant progress towards understanding the senescence-associated phenotype
and its underlying molecular mechanisms have been made recently, a global metabolic view at
the systems level is still lacking. Metabolomics provides a comprehensive characterization of
the metabolic changes in biological systems that occur in response to different stimuli, and their
interpretation in terms of metabolic pathway changes allows an understanding of the physiological
variation [13,14]. Metabolomics has found widespread applications in cellular metabolism for
elucidating perturbed cellular homeostasis, cell transformation and stem cell differentiation [15–17]
and providing an understanding of the metabolic control of cell fate. In addition, stable isotope tracing
has become an important and complementary tool in metabolomics, allowing one to track individual
atoms and determine the fate of individual metabolites, through which metabolic network and flux
changes can be obtained to facilitate the identification of altered pathways [18,19]. Here, we use gas
chromatography–mass spectrometry (GC–MS) based global metabolomics and isotope tracer analysis
to identify the metabolic changes during the progression of senescence in two breast cancer cell lines
induced by Adriamycin (ADR) treatment to better understand how senescent cells can maintain their
metabolic activity.

2. Results

Morphological characteristics of ADR-induced cell senescence. ADR treatment enabled the
preparation of stable and repeatable senescent cell samples in MCF7 and MDA-MB-231 breast cancer
cell lines. ADR treated cells became flattened and enlarged (Figure 1), and the effects of ADR treatment
on the breast cancer cells were dose and time dependent (data not shown). When the cells were treated
with 0.04 μg/mL ADR for 5 days more than 60% of the remaining, adherent cells became senescent,
according to SA-β-gal analysis, indicating that ADR treatment caused very significant cell senescence
in MCF-7 and MDA 231 cells. Higher dosages of ADR in preliminary experiments results in significant
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cell death and thus were not useful to study senescence. By comparison, less than 4% of cells were
senescent after 7 days of culture without ADR treatment.

50 m 50 m

Figure 1. Comparison of (a) normal and (b) Adriamycin (ADR)-treated MCF7 cells stained for SA-β-gal
activity. ADR-treated cells were larger and had a flatter morphology than untreated cells. Cell counting
(250 cells per condition) showed that the number of SA-β-gal-positive (blue) cells versus the number of
total cells was approximately 4% in the untreated cells and ~60% in the treated cells.

GC–MS based metabolomics characterization of cellular metabolic changes during ADR-induced
senescence. Multivariate analysis of the global metabolic changes at 0, 1, 3, and 5 days of ADR treatment
was performed using principal component analysis (PCA) (Figure 2) and showed large changes over
the treatment time. The metabolic trajectories during ADR-induced cell senescence indicated that
responses of these two cell lines to ADR-induced senescence were different. The two types of cell
line samples were clustered together in the absence of ADR treatment. Distinct responses of MCF7
and MDA-MB-231 cells became evident after 3 days of ADR treatment (see Figure 2b), with the
sample trajectory of MCF7 moving away from the initial pre-treatment cluster along PC2 while that of
MDA-MB-231 moved away along PC1. However, after 5 days of ADR treatment, at a time when the
two cell lines showed more than 60% cell senescence based on the SA-β-gal analysis, both cell lines
moved partly back towards the initial clusters.

Individual metabolites perturbed by ADR treatment were identified using the Student’s t-test.
Since the 3-day ADR treatment caused the most obvious responses for both MCF7 and MDA-MB-231
as indicated by PCA, a direct comparison of each metabolite for the 3-day ADR treatment time point
was performed with those samples prior to ADR treatment. A further comparison was carried out
between the 3- and 5-day treatment periods to better understand the recovery trend. Metabolites with
significantly altered levels are listed in Table 1 for MCF7 and Table 2 for MDA-MB-231.

For MCF7, 2-keto-3-methylvaleric acid, an intermediate metabolite of branched-chain amino acid
(BCAA) metabolism was elevated after ADR treatment. TCA cycle metabolites including fumaric acid,
malic acid and citric acid decreased after 3 days of ADR treatment. However, these metabolites were
significantly increased when MCF7 cells entered into senescence after 5 days of treatment. Meanwhile,
amino acids associated with the TCA cycle, aspartic acid and glutamic acid, which are transformed
from oxaloacetate and α-ketoglutarate, respectively, were also tracked with the TCA intermediates.
The level of serine, which is transformed from intermediates in the glycolysis pathway was decreased
after 3 days but recovered when cells entered into more than 60% senescence. Moreover, fatty acids in
MCF7 including heptadecanoic acid, linoleic acid, oleic acid and stearic acid also initially decreased,
followed by recovery from ADR-induced DNA damage after 5 days of ADR treatment. In all, the
characteristics of these significantly changed amino acids, fatty acids and the intermediates of TCA
cycles showed that ADR treatment caused obvious effects on MCF7 cell metabolism, most of which
showed their lowest levels after 3 days of ADR treatment but which then later recovered after 5 days.
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Figure 2. The overall metabolic response to ADR damage visualized using (a) principal component
analysis (PCA) of all cell samples (R2 = 0.547 and Q2 = 0.367). MDA-MB-231 cells with ADR treatment
for: � 0 days; � 1 day; � 3 days; 5 days. MCF7 cells with ADR treatment for: � 0 days; � 1 day;
� 3 days; � 5 days. (b) The centroided metabolic trajectories for the two cell lines during ADR treatment:
�MDA-MB-231; �MCF7. PC1 loading: 36.3%; PC2 loading: 18.4%.

Table 1. Metabolites showing significantly altered levels during cell senescence in the MCF7 cell line
and their related metabolic pathways.

MCF7 Cells

Metabolite
3 Day versus 0 Day 5 Day versus 3 Day

Involved Pathway
Fold Change p-Value Fold Change p-Value

Malic acid 0.42 0.0016 1.85 0.0039 TCA cycle
Fumaric acid 0.58 0.0071 1.69 0.021

Citric acid 0.21 0.00024 3.69 0.05

Valine 0.57 0.0019 1.76 0.048 Amino acid metabolism
Leucine 0.56 0.0036 1.73 0.028

Isoleucine 0.59 0.012 1.66 0.043
Proline 2.51 0.012 1.39 0.029
Serine 0.19 0.0061 1.79 0.017

Aspartic acid 0.34 0.00081 1.81 0.0015
Glutamine 0.3 0.0084 1.82 0.092

Lauric acid 0.25 0.0039 2.6 0.0022 Fatty acid metabolism
Palmitic acid 0.28 0.00084 2.57 0.0014
Linoleic acid 0.37 0.00098 2.02 0.0021

Heptadecanoic acid 0.067 0.0019 2.73 0.013
Oleic acid 0.35 0.0042 2.07 0.0086

Stearic acid 0.5 0.0042 2.63 0.019
2-Hydrloxyethyl palmitate 0.26 0.0017 2.62 0.0061

2-Ketobutyric acid, enol 2.12 0.035 1.55 0.093 Branched-chain amino
acid (BCAA) metabolism

2-Keto-3-methylvaleric acid 2.94 0.037 2.87 0.061

Creatinine 0.045 0.016 1.58 0.0028 Nucleic acid metabolism
Glycerol-3-phosphate 0.074 0.0056 1.55 0.03

Cytindine-5′-monophosphate 0.26 0.049 2.41 0.0096
Uridine-5-monophosphate 0.0066 0.019 1.45 0.31

Pantothenic acid 0.34 0.026 1.28 0.069 Others
Cholest-8(14)-en-3-ol 0.031 0.0031 4.79 0.018
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Table 2. Metabolites showing significantly altered levels during cell senescence in the MDA-MB-231
cell line and their related metabolic pathways.

MDA-MB-231 Cells

Metabolite
3 Day versus 0 Day 5 Day versus 3 Day

Involved Pathway
Fold Change p-Value Fold Change p-Value

Malic acid 0.33 0.00045 0.91 0.61 TCA cycle
Fumaric acid 0.44 0.0019 0.88 0.48

Citric acid 0.2 0.019 2.68 0.1

Alanine 17.62 0.019 0.47 0.042 Amino acid metabolism
Leucine 2.21 0.00073 0.66 0.0038

Isoleucine 2.6 0.002 0.59 0.00035
Proline 3.42 0.01 0.43 0.01
Glycine 2.2 0.0029 0.47 0.02

Threonine 2.69 0.0053 0.47 0.0036
Glutamic acid 1.97 0.0056 0.43 0.00249
Phenylalanine 4.34 0.014 0.46 0.026

2-Aminoadipic acid 1.83 0.012 0.42 0.0045
Tyrosine 2.96 0.0028 0.85 0.021

L-Tryptophan 5.61 0.029 0.48 0.05

Heptadecanoic acid 20.42 0.00043 1.55 0.17 Fatty acid metabolism
Oleic acid 1.27 0.04 0.9 0.2

Stearic acid 0.58 0.0029 1.48 0.19

2-Keto-3-methylvaleric acid 2.98 0.03 1.12 0.57 BCAA metabolism
Isobutyric acid 4.86 0.023 1.13 0.43

Glycerol-3-phosphate 21.28 0.0065 1.046 0.81 Nucleic acid metabolism
Creatinine 10.81 0.026 0.75 0.23

5-Methylthioadenosine 3.7 0.0085 0.65 0.045

Phosphorylethanolamine 63.71 0.035 0.78 0.52 Others
Pantothenic acid 2.45 0.0075 0.94 0.73

Scyllo-inositol 0.69 0.023 1.54 0.26
D-Myo-inositol 1.57 0.0037 0.68 0.13

Cellobiose 3.7 0.0085 0.65 0.045
Cholest-8(14)-en-3-ol 19.94 0.00052 0.61 0.044

For MDA-MB-231, changes in 2-keto-3-methylvaleric acid showed the same trend as for MCF7,
which was elevated after ADR treatment. ADR treatment also caused obvious effects on the TCA
cycle, lipid metabolism and amino acid metabolism (Table 2). The same downregulation of TCA
intermediates, including fumaric acid, malic acid and citric acid occurred after 3 days of ADR treatment.
However, a few amino acid and fatty acid changes in MDA-MB-231 cells were opposite to those
observed in MCF7 cells. Specifically, alanine, glutamic and other amino acids were upregulated after
3 days to their highest levels, and then were reduced after 5 days of ADR treatment. These results
suggest very different responses to ADR treatment based on cell type, even though both cell types
showed the same morphological and SA-β-gal detected changes.

GC–MS based isotope tracing analysis. Stable isotope tracing analysis using [U-13C]-labeled
glucose was also employed to compare the cellular metabolism of ADR treated and non-treated MDF7
and MDA-231 cancer cells to help identify how senescent cells maintain an active metabolic phenotype
after 5 days of ADR treatment. From the results of tracing experiments, we observed that the levels of
m + 3 isotopologues of lactate and pyruvate derived from labeled glucose in these two cell lines did
not change in an obvious manner based on an analysis of the isotopologue distribution of metabolites
(Figure 3a). However, the level of the m + 3 isotopologue of alanine in MCF7 was lower than that for
non-senescent cells (Figure 3b), indicating that in senescent cells a lower flux of pyruvate to alanine
occurred. Meanwhile, the m + 0 level of the essential amino acid threonine was lower in senescent
MCF7 (Figure 3c), which might be related with higher threonine degradation (to α-ketoglutaric acid)
in senescent MCF7 cells.

The results also showed that the mean enrichments of TCA cycle intermediates derived from
labeled glucose for senescent MCF7 and MDA131 were lower than those for the non-senescent cells;
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less glucose entered into the TCA cycle in senescent cells (Figure 4a,b). The doubly 13C-labeled
isotopologues (m + 2) of citric, α-ketoglutaric, succinic, fumaric and malic acids in the TCA cycle
significantly increased in the senescent cells (Figure 5a,b). However, lower levels of (m + 4), (m + 6)
isotopologues of citric and malic acids appeared in senescent MCF7 (Figure 5c), which was also related
to lower glucose entering the TCA cycle. It is also notable that a large fraction of these TCA metabolites
(m + 0) were higher than those of the untreated cells (Figure 6a,b).

Figure 3. Comparison of cell metabolism between the ADR-treated senescent and non-treated cancer
cells measured by isotope tracing analysis: (a) levels of the m + 3 isotopologue of lactate in MCF7 and
MDA-MB-231; (b) levels of the m + 3 isotopologue of alanine in MCF7. (c) Measure of threonine levels
in MCF7. * signifies p < 0.05 and ** signifies p < 0.005.

Figure 4. Mean enrichment of TCA cycle intermediates for non-treated cells and ADR-treated cells by
isotope tracing analysis: (a) MCF7, (b) MDA-MB-231. * signifies p < 0.05; ** signifies p < 0.005 and
*** signifies p < 0.0001.

Figure 5. Distribution of the isotopologues of TCA cycle intermediates for non-treated cells and
ADR-treated cells (a) (m + 2) levels of intermediates in MCF7 cells; (b) (m + 2) levels intermediates in
MDA-MB-231 cells; (c) (m + 4) and (m + 6) isotopologues of citrate and malate. * signifies p < 0.05 and
** signifies p < 0.005.

155



Metabolites 2018, 8, 95

Figure 6. Levels of the (m + 0) isotopologue of TCA cycle intermediates for non-treated cells and
ADR-treated cells: (a) MCF7; (b) MDA-MB-231. (c) A schematic characterization of TCA metabolites
and how they might maintain cell senescence based on the isotopologue (m + 0) levels of TCA
intermediates. * signifies p < 0.05; ** signifies p < 0.005 and *** signifies p < 0.0001.

3. Discussion

DNA-damaging agents can induce premature senescence in cancer cells and, therefore, could
provide an effective method to limit tumor progression by preventing cancer cell proliferation [20].
However, increasing evidence shows that prematurely senescent cells maintain their metabolic activity
and have the ability to escape growth arrest to re-enter into the cell cycle [12,21]. Thus, tumor cells
undergoing cell senescence after drug treatment results in stable disease rather than regression of the
tumor and, therefore, represents a potential lurking hazard in cancer therapy that might lead to tumor
relapse. In fact, the physiological consequences of senescent cancer cells still remain elusive. Only
a few studies that address the potentially altered metabolism occurring under cell senescence have
been performed [22,23]. In the recent work by Wu et al., senescence and apoptosis were contrasted
using a combination of metabolomics and proteomics. The study revealed that senescent MCF7
cells underwent metabolic reprogramming to survive by facilitating reactive oxygen species (ROS)
elimination and DNA damage repair, while the metabolism of apoptotic MCF7 cells was downregulated
when faced with irreparable DNA damage. Nevertheless, the metabolic changes associated with the
duration of stress-induced senescence are not sufficiently clear, nor how senescent cells maintain their
metabolic activity. Understanding the metabolic processes important in cell senescence might have
profound implications for the development of effective strategies to treat cancer and for finding related
biomarkers to measure cellular responses.

The main focus in our study was to identify underlying metabolic alterations in ADR-induced
breast cancer cell senescence and describe the metabolic reprogramming that occurs. With the aid of
GC–MS based metabolomics and isotope tracing methods, we obtained detailed metabolic information
associated with breast cancer cell senescence. Two cell human breast cell lines: MCF7 (p53 wild-type,
estrogen receptor, ER+) and MDA-MB-231 (p53 mutant, estrogen receptor, ER−) were treated by
moderate dosage of the anticancer drug ADR for 5 days to induce senescence, by which time more
than 60% of the remaining, adherent breast cancer cells entered into cell senescence. Morphological
characterization and staining analysis suggested that ADR-induced senescent cells represented
reliable models for studying the metabolic events associated with response to chemotherapy-induced
senescence. Dramatic metabolic changes in response to ADR-induced cell senescence were observed
clearly using GC–MS based metabolomics.

Metabolic responses were dependent on treatment time, indicating that these two cell lines might
be very sensitive to the duration of ADR stress. Thus, the metabolic changes across multiple time points
were needed to reflect changes during the progression of cell senescence. PCA analysis indicated that
the two cell lines underwent different metabolic trajectories after ADR treatment. This result might be
due in part to their different genetic backgrounds, which could contribute to the different metabolic
phenotypes. In fact, cell senescence is not characterized by a stable and homogeneous status but rather
a heterogeneous phenotype depending on cell types and diverse stimuli [24]. Moreover, one of the most
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striking features observed in our study was that the metabolic responses of MCF7 and MDA-MB-231 to
ADR treatment were divided into different stages. For both cell lines, the metabolic profiles after 3 days
of treatment were very different compared to their initial profiles. Unexpectedly, after 5 days of ADR
treatment both cell lines exhibited some recovery as they entered into cell senescence. The dynamic
nature and the two-stage development of the metabolic profiles might be correlated with a DNA
damage response and metabolic adaption, respectively. Genotoxic stresses initiate related signaling
pathways to repair DNA damage through the DNA damage response (DDR) machinery [25]. However,
damaged cells can also be induced to undergo senescence with persistent DNA damage [26]. Ultimately,
there may be a molecular switch that regulates cellular metabolic responses to genotoxic stresses.

In MCF7 cells, the downregulation of TCA cycle metabolism was observed after the first stage.
It has been reported that mitochondria are the primary target involved in ADR treatment [27], so the
observed lowered metabolism may represent mitochondrial dysfunction and energy imbalance during
the first stage. In addition, amino acid and fatty acid metabolism in MCF7 cells was also reduced
during the first stage. The TCA cycle coordinates energy production and biosynthesis as well as
the exit of intermediates such as malic, alpha-ketoglutaric and citric acids from the cycle to supply
various biosynthetic pathways including amino acid and fatty acid synthesis. Thus, ADR treatment
can induce decreases in TCA cycle metabolism concomitant with decreases in amino acid and fatty
acid metabolism.

An interesting finding in our study was the modulation of the concentrations of heptadecanoic
acid in MCF7 cells. While heptadecanoic acid and other odd-chain fatty acids are normally
considered of exogenous origin or produced from propionate, a recent study found that the
cytidine-5-monophosphate/heptadecanoic acid metabolic ratio can be used as a powerful biomarker
of breast cancer, implying that fatty acid synthesis is potentially regulated in breast cancer [28].
The regulation of heptadecanoic acid here might be related to fatty acid synthesis and membrane
lipid metabolism changes. Even larger initial changes in heptadecaonic acid were observed for
MDA-MB-231 cells.

The metabolic recovery during the second stage (day 3–5) was substantiated by the synchronous
upregulation of TCA cycle, amino acid and fatty acid metabolisms as the MCF7 cells entered into
senescence. We can conclude that in MCF7, TCA cycle metabolism is strongly coupled to ADR-induced
mitochondrial changes during cell senescence. Previously, it was shown that iron accumulation
in mitochondria occurs as a result of ADR and causes cardiotoxicity [29]. However, the metabolic
response to DNA damage in MDA-MB-231 was more complicated and sometimes in contrast to changes
observed in MCF7. Changes in the TCA cycle showed an unanticipated inverse relationship with amino
acid and fatty acid metabolisms in the first stage of treatment. During the second stage, the recovery of
citric acid levels, concomitant with the decrease in amino acid and fatty acid metabolisms also showed
metabolic recovery in MDA-MB-231 after ADR treatment. However, the synchronization between
TCA cycle metabolism and amino and fatty acids did not occur in MDA-MB-231 after ADR treatment.
Instead, TCA cycle metabolism appears to be inversely correlated with amino acid and fatty acids
metabolism. Our data suggest that MCF7 cells appear to have a higher level of basal respiration and
an improved ability to sustain TCA cycle metabolite levels with loss of glucose oxidation after ADR
treatment, while MDA-MB-231 cells were required to continue using amino acids as fuel, leading to
their depletion and less anapleurotic recovery.

Overall, the metabolic alteration of both MCF7 and MDA-MB-231 cells undergoing ADR-induced
senescence passed through two different stages. The metabolic shift observed from the first stage
to the second was likely caused by the partial adaptation of the cells to persistent ADR stress such
that they could enter into senescence [30]. A number of signaling pathways would likely become
activated in response to the metabolic imbalance during the periods of ADR treatment, including
mTORC1, AMPK, and NFKB [31]. Therefore, such metabolic shifts might be explored as therapeutic
targets to treat cancers to avoid senescence and possible relapse. In addition, we note that the level
of 2-keto-3-methylvaleric acid, an intermediate of the BCAA catabolism pathway, increased for both
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MCF7 and MDA-MB-231. The observed change might be related to DNA protective effects, as higher
levels of BCAAs have been suggested to elevate glutathione-S-transferase (GST) activities against DNA
damage [32]. In addition, BCAAs can feed into the TCA cycle through the formation of acetyl-CoA or
succinyl-CoA, and thus the elevation of 2-keto-3-methylvaleric acid might indicate the activation of a
metabolic restorative mechanism. Considering ADR treatment caused obvious effects on TCA cycle
metabolism, the higher level of BCAA metabolism also suggested a metabolic shift toward oxidative
metabolism using non-glucose substrates (2-keto-3-methylvaleric acid) due to the inactivation of the
TCA cycle.

Based on isotope-tracing analysis, both MCF7 and MDA-MB-231 exhibited almost the same
metabolic characteristics after 5 days of ADR treatment. We observed that the glycolysis pathway
in both ADR-induced senescent cell lines functioned similarly under senescence. There were no
obvious distinctions in the levels of m + 3 isotopologues of lactate and pyruvate derived from labeled
glucose between these two cell lines. This result suggests that the energy demands in senescent
cells may not represent a prerequisite for maintaining the senescent status. Furthermore, the lower
mean enrichment of TCA cycle metabolites in senescent MCF7 and MDA-MB-231 cells showed that
the glucose flux into the TCA cycle was lower compared to pretreated cells, which might be related
to mitochondrial damage and the activation of the tumor suppressor p53 upon ADR-induced cell
senescence; p53 can down-regulate the expression of glucose transporters GLUT1 and GLUT4 [33].
Nevertheless, the isotopologue m + 2 levels of fumaric, malic, citric and alpha-ketoglutaric acids
were increased, suggesting that flux through the first turn of the TCA cycle was higher in senescent
cells. Since senescent cells appeared to develop a highly active secretory phenotype characterized
by robust production of various inflammatory cytokines, the TCA cycle intermediates might need to
exit the cycle to supply substrate for various biosynthetic pathways. If true, higher levels of m + 2
isotopologues might be related with the senescence associated secretory phenotype (SASP). The higher
levels of m + 0 isotopologues of TCA cycle intermediates were observed in both senescent cell types,
most of which could be supplied by glutamine anapleurosis or threonine in MCF7. Senescent cells
may need a higher level of glutamine anapleurosis to survive DNA damage and maintain senescence.
A number of studies have reported on glutamine’s ability to support the TCA cycle to produce energy
and provide precursors for macromolecular synthesis for cell survival [34].

4. Materials and Methods

Chemicals. MSTFA+1%TMCS (N,O-Bis(trimethylsilyl)trifluoroacetamide with 1% (vol/vol)
Trimethylchlorosilane) (Thermo Fisher Scientific, Waltham, MA, USA), MTBSTFA (N-(tert-
butyldimethylsilyl)-N-methyltrifluoroacetamide with 1% (v/v) (Sigma-Aldrich, St. Louis, MO, USA),
and TBDMCS (tert-butyldimethylsilyl chloride) (Sigma-Aldrich) were purchased for metabolite
derivatization. The FAME (fatty acid methyl-ester) library of compounds with different carbon chain
lengths for retention index (RI) calculations was purchased from Agilent (Santa Clara, CA, USA).
Methoxyamine hydrochloride (MeOX), chloroform, and pyridine were purchased from Sigma-Aldrich.
Methanol (high-performance liquid chromatography (HPLC) grade) was purchased from Thermo Fisher
Scientific. [U-13C] labeled glucose was purchased from Cambridge Isotope Laboratory (Tewksbury,
MA, USA). DMEM medium was purchased from Gibco cell culture (Los Angeles, CA, USA).

Cell culture and ADR treatment. Human breast cancer cell lines MCF7 and MDA-MB-231 were
supplied by ATCC (Manassas, VA, USA) and cultured in a medium containing DMEM, 10% fetal calf
serum, 2 mM glutamine, 1% penicillin-streptomycin (Gibco, Los Angeles, CA, USA) at 37 ◦C with
5% CO2. Cell viability was assessed using the Vybrant MTT Cell Proliferation Assay (ThermoFisher,
Waltham, MA, USA). Senescence-associated over expression and accumulation of β-galactosidase
(SA-β-gal) was analyzed using kits obtained from Cell Biolabs (Atlanta, GA, USA). Protein content
was determined using the Pierce bicinchoninic acid (BCA) assay obtained from ThermoFisher. For
GC–MS based metabolomic profiling experiments, both cell lines were seeded using approximately
500,000 cells onto 10 cm petri dishes in triplicate. Cells were cultured in Dulbecco modified Eagle’s
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medium (DMEM) containing 0.04 μg/mL ADR for 0, 1, 3, and 5 days, with the media replaced every
other day during which time any non-adherent dead cells removed. The cells were then washed twice
with ice cold PBS (pH 7.4) for 3 s, and then again with ice cold de-ionized (DI) water for 1 s. Cold
extraction solvent (methanol:chloroform, 9:1) was added to quench the cellular metabolism. The cells
were detached using a cell scraper and cell suspensions were then transferred into Eppendorf tubes and
centrifuged. Supernatants were collected and dried under vacuum using an Eppendorf Concentrator
plus (Eppendorf, Hamburg, Germany).

For isotope tracing experiments, the cells were prepared as described above in 10 cm petri dishes
and were grown to approximately 90% confluence. Both cell lines were then cultured in medium
containing 0.04 μg/mL ADR for 5 days. At the end of ADR treatment, the media were replaced with
new medium containing 2 mM [U-13C]-glucose for 24 h. Cell metabolite extraction was carried out as
described above.

Sample preparation. After drying, cell sample extracts were again dissolved in 200 μL
methanol:choloroform (9:1) and centrifuged for 10 min. A 150 μL aliquot of the supernatant was
transferred to an Eppendorf tube containing a glass insert and centrifuged under vacuum using an
Eppendorf Concentrator plus. Dried extracts were stored at −20 ◦C until derivatization was performed
for GC–MS analysis.

The dried extracts were treated first with 25 μL MeOX (20 mg/mL) reagent at 37 ◦C for 90 min,
followed by derivatization using 75 μL MSTFA with 1% TCMS for 30 min at 37 ◦C. Finally, 2 μL FAME
solution was added to the mixture and vortexed in preparation for GC–MS analysis.

For isotope tracing analysis, the dried extracts were treated first with 30 μL MeOX (20 mg/mL)
reagent at 37 ◦C for 90 min, followed by derivatization with 70 μL MTBSTFA with 1% TBDMCS
for 30 min at 70 ◦C. Finally, 2 μL FAME solution was added to the mixture and vortexed prior to
GC–MS analysis.

Protein content. Protein concentrations were determined using a BCA assay according to the
manufacturer’s instructions.

GC–MS analysis. All samples were analyzed using an Agilent 7890 GC instrument equipped
with a 5975 mass selective detector (MSD), employing an HP-5 ms GC column (30 m length, 0.25 mm
i.d., 0.20 μm film thickness). The sample injection (1 μL) was performed in splitless mode at an injection
temperature of 250 ◦C. Helium carrier gas flow was 1.0 mL/min. The ion source temperature was
250 ◦C. The temperature gradient for GC separation was initially 60 ◦C for 1 min, then increased from
60 ◦C to 325 ◦C at 10 ◦C/min, where it remained for 10 min.

Data preprocessing. Retention indices (RIs) were calculated for each sample using AMDIS
software (National Institute of Standards and Technology (NIST), Gaithersburg, MD). RI information
was subsequently applied to the chromatographic analysis of each sample. The NIST-08 mass spectral
and the Agilent Fiehn Metabolomics Retention Time Lock (RTL) Libraries were used to match both
mass spectra and RIs to identify metabolites (ΔRI < 2%). For isotope tracing analysis, metabolites
were identified based on their RI and mass fragmentation patterns by comparison with metabolite
standard compounds.

Collected GC–MS data were converted from the Agilent ChemStation to MassHunter formats
using the Agilent GC/MSD translator. Processing of converted data was performed using Agilent Mass
Hunter Quantitative Analysis. First, a batch library was created containing the names of identified
compounds, retention times, m/z values, and their tolerances. Based on the existing library, peak
integration and deconvolution were then performed with Mass Hunter using the batch method.
A minimum absolute abundance of 1000 counts was used to filter the data. The extracted data were
exported from Mass Hunter in “tsv” format, which can be viewed using Microsoft Excel software.

Data analysis. The extracted data for each cell sample were normalized to protein content and
introduced into SIMCA-P software v11.5 (Umetrics, Malmö, Sweden) for PCA to identify outliers and
to visualize general data clustering and trends among the observations [35]. The overall metabolic
trajectory plots of two cell lines were prepared with Origin 8.5 (OriginLab, Northampton, MA, USA)
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using the centroids determined from PCA analysis. p values comparing metabolites that contribute to
discrimination were calculated in Excel using a two-tailed Student’s t-test. For isotope tracing analysis,
the mean isotope enrichment and isotopotologue distribution of labeled metabolites in the TCA cycle
and glycolysis pathway were calculated using IsoCor (http://metasys.insa-toulouse.fr/software/IsoCor/)
analysis [36].

5. Conclusions

In sum, relatively little is known about the metabolic changes that accompany and maintain cell
senescence. Here, we performed metabolomic analyses of ADR-induced senescence in two well-known
breast cancer cell lines. Our metabolomics results indicate large and dynamic metabolic changes during
ADR-induced cell senescence. Based on metabolic trajectory and univariate analysis, we conclude that
the metabolic changes of MCF7 and MDA-MB-231 cells subjected to ADR treatment were characterized
by a two-stage process. Moreover, most of the significantly regulated metabolites in the first stage
exhibited partial metabolic recovery during the second stage.

Our work demonstrated that ADR treatment induced a number of important metabolic responses
in MCF7 and MDA-MB-231 cells, which are illustrated in Figure 7. The metabolic changes observed at
earlier treatment times caused by a moderate dosage of ADR included energy, amino acid and lipid
metabolisms as well as others. Persistent genotoxic stresses activated cell metabolic recovery as cells
went into senescence, a process that might be related to maintaining senescence. Isotope incorporation
analysis results suggested a lower glucose flux into the TCA cycle, and glutamine anapleurosis might
be a key component to maintain cell senescence in MCF7 (Figure 6c). This pathway potentially can be
explored as a therapeutic target to treat senescent cells, with the goal of increasing the vulnerability of
cells after mild and repairable genotoxic stress [37].

Figure 7. Overview of the dynamic metabolic changes during ADR-induced cell senescence.
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Abstract: Previous studies have shown that metabolomics can be a useful tool to better understand
the mechanisms of carcinogenesis; however, alterations in biochemical pathways that lead to
bladder cancer (BC) development have hitherto not been fully investigated. In this study,
gas chromatography-mass spectrometry (GC-MS)-based metabolomics was applied to unveil the
metabolic alterations between low-grade and high-grade BC cultured cell lines. Multivariable analysis
revealed a panel of metabolites responsible for the separation between the two tumorigenic cell lines.
Significantly lower levels of fatty acids, including myristic, palmitic, and palmitoleic acids, were
found in high-grade versus low-grade BC cells. Furthermore, significantly altered levels of some
amino acids were observed between low- and high-grade BC, namely glycine, leucine, methionine,
valine, and aspartic acid. This study successfully demonstrated the potential of metabolomic analysis
to discriminate BC cells according to tumor aggressiveness. Moreover, these findings suggest that
bladder tumorigenic cell lines of different grades disclose distinct metabolic profiles, mainly affecting
fatty acid biosynthesis and amino acid metabolism to compensate for higher energetic needs.

Keywords: bladder cancer; cancer progression; in vitro; metabolomic signatures; endometabolome;
GC-MS; metabolic pathways

1. Introduction

Bladder cancer (BC) is the second most common genitourinary malignancy and one of the
deadliest cancers worldwide [1]. BC can be classified as low-grade (LG) or high-grade (HG) according
to histopathological characteristics [2,3], with low-grade meaning that the differentiation of the tumor
is more similar to normal than high-grade. Importantly, HG BC is more aggressive and prone to
invasion than LG [2]. Although significant progresses in unveiling new diagnostic strategies based on
molecular markers have been made [4,5], their high cost and flaw in detecting early BC do not offer
advantage over classical ones [6], thus hindering their clinical application [5]. Therefore, there is an
urgent need for discovering early, specific, cost-effective, and non-invasive diagnosis methods, so that
therapeutics can be more effective.
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Metabolomics has proven to be a promising and alternative tool for early cancer detection, through
the comprehensive analysis of alterations in metabolite levels that can be translated into biomarkers.
These metabolite signatures reflect the biological activity of each cancer cell type, which brings the
possibility of distinguishing unique dysregulations in metabolic pathways characteristic of different
cancer subtypes [7]. This approach has been already applied to several cancers including those of
breast [8], ovary [9], kidney [10], colorectum [11], and hepatocellular carcinomas [12], through the
screening and detection of metabolite levels in human urine, feces, or biofluids, which represents
an advantage over classical invasive diagnosis methods [13]. Nevertheless, discrepancies among
studies that aimed to investigate cancer biomarkers for early detection through metabolomic analysis
are compelling, hampering the development of a diagnostic tool based on such molecules. This
particularly applies to the case of BC, for which studies based on metabolomic diagnosis biomarkers
are controversial and limited [3]. For these reasons, translatability to clinical settings has been hindered.
Therefore, more studies focusing on early detection and the progression of BC are urgently needed.

Recently, studies on metabolomics have also focused on in vitro approaches to obtain further
information about metabolic pathways that lead to BC progression [3]. In vitro cell culture systems
represent the least complex disease model and have a number of advantages over tissue or
biofluid analysis, including simpler and controllable experimental settings, less variability among
samples, reduction in animal testing, and the provision of better insight into metabolic changes [14].
Nevertheless, this study model has only comprised immortalized cell lines and primary cell cultures
so far, which leads to some limitations mainly related to extrapolation to in vivo systems [15], the
inability to mimic the environment and communication between surrounding cells [16], the need of
routine evaluation, and a careful interpretation of results, since metabolic perturbations can be caused
by changes in the culture cell medium rather than to the disease itself [14].

The application of metabolomic approaches, using different disease models, has led to the
discovery of several metabolites whose levels are altered in BC cells (see review by Rodrigues et al. [3])
which are involved in important biochemical pathways that produce energy, including glycolysis,
tricarboxylic acid (TCA) cycle, fatty acid β-oxidation, and amino acid metabolism. Nevertheless, there
is a clear gap in the search for metabolites that can be used to distinguish different grades of BC,
particularly in in vitro studies, since past research has mostly focused on distinguishing normal and
benign cancer samples. There are very few studies conducted using a metabolomics approach to
distinguish LG from HG BC, all of which applied to either human plasma/serum or urine [17–19].
However, to the best of our knowledge, no study has yet investigated the endometabolome signatures
of BC cultured cell lines with different tumor grades, making our in vitro study a pivotal one in
searching for metabolic differences between LG and HG transitional cell carcinoma (TCC) of the bladder.
In this study, we applied gas chromatography-mass spectrometry (GC-MS)-based metabolomics to
determine the endometabolome signatures of two BC cell lines of different tumor grades. This approach
not only allowed for a demonstration of the potential of metabolomics analysis to discriminate BC
cells according to tumor aggressiveness but also extended the knowledge on the metabolic alterations
between LG and HG bladder TCC, an evaluation which is lacking among published in vitro studies.

2. Material and Methods

2.1. Chemicals

Eagle’s minimum essential medium (MEM) supplemented with L-glutamine, N-trimethylsilyl-N-
methyl trifluoroacetamide (MSTFA, ≥98.5%), desmosterol, and L-norvaline was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Penicillin, streptomycin, trypsin, and fetal bovine serum
(FBS) were purchased from Invitrogen (Karlsruhe, Germany). Phosphate buffer solution (PBS) was
purchased from Biochrom (Merck, Berlin, Germany); methanol (99.9%) and dichloromethane (99%)
were purchased from VWR (Leuven, Belgium). All chemicals were of analytical grade and were
dissolved in ultrapure water unless otherwise indicated.
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2.2. Cell Lines and Culture Conditions

The BC cell lines 5637 and J82 were obtained from American Type Culture Collection (ATCC;
Manassas, VA, USA). Both cell lines were derived from transitional cell carcinoma of the human
urinary bladder, with 5637 being classified as grade II and J82 as grade III (stage pT3) [20]. BC cell lines
were cultured in MEM to ensure optimal cell growth and maintenance of epithelial cell characteristics.
The culture medium was prepared as indicated by the manufacturer and supplemented with 10%
FBS and 100 units·mL−1 penicillin/100 μg·mL−1 streptomycin. All cell lines were routinely tested for
Mycoplasma spp. contamination (PCR Mycoplasma Detection Set, Clontech Laboratories).

2.3. Sample Collection

The experiments were carried out during five passages, with triplicates for each passage, after an
adaptation stage of at least three passages for both cell lines. Cells were grown for 48 h in T75 culture
flasks to near confluence. The culture medium was discarded and cells were gently washed with 2 mL
PBS to remove all medium. Cold methanol (3 mL) was then added to each flask to effectively quench
the metabolism of cells. Subsequently, cells were scraped off the flasks on ice, transferred to a falcon
tube and centrifuged for 10 min at 3000 g at 4 ◦C. The supernatant was collected and stored at −80 ◦C
until analysis.

2.4. Sample Preparation for GC-MS Analysis

Each sample (1 mL) was transferred into a glass vial, followed by the addition of 10 μL desmosterol
(1 mg/mL) and norvaline (1 mg/mL) as internal standards. These compounds, which were added
in equal amounts to all samples, were used to monitor the performance of the of GC-MS acquisition
(injection issues and retention time deviation). Subsequently, the mixture was vortex-mixed at high
speed for 1 minute and carefully evaporated to dryness at room temperature under a gentle stream
of nitrogen gas. The derivatization process was adapted from a previous work performed in our
laboratory [21,22], which was carried out by adding 50 μL MSTFA and 50 μL dichloromethane to
the dried extract, followed by vortex-mixing at high speed for 1 minute and incubation for 30 min at
80 ◦C. Then, the derivatized solution was cooled and transferred into screw-top autosampler vials for
subsequent GC-MS analysis. In addition, quality control samples (QCs) were prepared as a pool of all
samples in the study and divided into aliquots to avoid the repeated freeze–thaw cycles. QCs were
derivatized using the same protocol applied for samples.

2.5. GC-MS Analysis: Equipment and Conditions

The endometabolome profiles of J82 and 5637 cells were obtained using an EVOQ 436 GC
system (Bruker Daltonics, Fremont, CA) coupled to a SCION TQ mass detector, a Bruker Daltonics
MS workstation software (version 8.2), and a Combi-PAL autosampler (Varian Pal Autosampler,
Switzerland), as described previously [22]. Briefly, random injection of all samples was performed and
a QC sample was also injected in every four samples, under the same conditions, for a total of seven
QCs. Chromatographic separation was obtained by using a GC fused silica capillary column BR-5ms
(5% phenyl, 95% dimethyl polysiloxane, 30 m × 0.25 mm × 0.25 μm) (Bruker Daltonics, Freemont,
CA, USA). The injector temperature was 250 ◦C and samples (1 μL) were introduced in split mode
with a 1:5 ratio. Helium C-60 (Gasin, Portugal) was the carrier gas with a flow rate of 1.0 mL/min.
The program set for the column temperature was as follows: initial temperature at 70 ◦C held for 2 min,
then ramped at 15 ◦C/min to 250 ◦C, held for 2 min, and finally increased at 10 ◦C/min to 300 ◦C,
then held for 8 min, having a total duration of 29 min per run. The MS detector was functioning in
Electron Impact (EI) mode. The transfer line temperature was 230 ◦C, the manifold temperature was
40 ◦C, and the ion source temperature was 250 ◦C. The mass range selected was 50–600 m/z, with a
scan rate of 6 scans per second. The resolution and intensity of the chromatographic peaks among all
samples were monitored using norvaline and desmosterol as internal standards.
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2.6. GC-MS Data Pre-Processing

All raw data files obtained from GC-TQ-MS were exported as Computable Document Format
(CDF) files and pre-processed to convert instrumental data sets into a manageable format for data
analysis and remove any biases such as background, noise, and retention time (RT) fluctuations
over a set of samples. Data pre-processing was performed using the software MZmine 2.21 [23].
The parameters used in these steps were set as follows: RT range 2.8–29.0 min; m/z range 50–600; MS
data noise level 2.5 × 104; m/z tolerance 0.5; chromatogram baseline level 2.0 × 104; peak duration
range 0.05–0.50 min. Chromatographic peaks regarded as trash or irrelevant were manually removed
from the data matrix, as well as all peaks with a relative standard deviation (RSD) ≥30% across all QCs.
Normalization of the data was performed by determining the mean of the chromatogram’s area of
each set of triplicates, which was subsequently divided by the total area. Ultimately, statistical analysis
was performed with the resulting normalized peak areas.

2.7. Metabolite Identification

The identification of metabolites in GC-TQ-MS chromatograms was performed by comparing
the retention indices (RI) and mass spectra fragmentation patterns of each compound with the RI and
mass spectra present in the National Institute of Standards and Technology (NIST) spectral library
version 14 (Gaithersburg, MA, USA). The reverse match obtained by NIST 14 was also considered and
the identification was obtained when a value of 700 or above was achieved. Compounds for which
no satisfactory match was found were listed as “unknown i” (i = 1,2,3 . . . ) according to their RT in
ascending order. When possible, the compound identification was confirmed through comparison
of their RTs and mass spectra with that obtained from pure standards. Pathway and metabolite
information were extracted from the Human Metabolome Database (HMDB) [24] and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) [25].

2.8. Metabolic Pathway Analysis

To explore which metabolic pathways were altered and contributed the most to the separation
between HG J82 and LG 5637 cell lines, Metabolite Set Enrichment Analysis (MSEA) [26], specifically
the pathway over-representation analysis, was performed using the freely available online software
Metaboanalyst 4.0 [27], where biologically meaningful patterns were investigated using the set of
significantly different metabolites (compound names).

2.9. Statistical Analysis

Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA)
were applied to the final matrix scaled to pareto (Par) [28], using SIMCA-P 13.0.3 (Umetrics, Umea,
Sweden). The R2X (variance explained by the X matrix), R2Y (variance explained by the Y matrix), and
Q2 (goodness of prediction or prediction power) parameters, obtained by 7-fold cross validation, were
used to evaluate the model robustness (SIMCA-P 13.0.3). The PLS-DA loadings plot and the variable
importance to the projection (VIP > 1) of each variable were used to assess the variables (m/z-RT pairs)
responsible for group separation. For subsequent analyses, the peak area of all detected derivatives
from the same metabolite were summed, as recommended in the literature [29].

The statistical significance of relevant compounds identified in the PLS-DA loadings plots was
assessed using the unpaired Mann–Whitney test (non-normally distributed data), in GraphPad Prism
version 6 (GraphPad Software, San Diego, CA, USA). This software was also used to determine the
area under the curve (AUC) for each metabolite. For each model, the discriminative compounds were
considered statistically significant when p < 0.05 (confidence level 95%). Effect size [30] was computed
for compounds with p < 0.05 and corrected for small sample sizes.
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3. Results and Discussion

In this study, the endometabolome profiles of the LG BC cell line 5637 and the HG BC cell
line J82 were analyzed to search for metabolites with the potential to assess tumor aggressiveness.
Representative GC-MS chromatograms of the in vitro tumorigenic cells are shown in Supplementary
Figure S1. A total of 37 metabolites were identified across all samples, except for one metabolite which
remained unknown (Supplementary Table S1). Most of the identified metabolites belong to the classes
of amino acids, fatty acids, and organic acids or derivatives. Less represented classes included amino
alcohols, monosaccharides, sterols, and sugar alcohols. The general characteristics of the metabolites
detected in the endometabolome of BC cell lines, such as RT, RI, characteristic ions (m/z), metabolite
identification method, HMDB identification, and the main pathways in which they are involved, are
summarized in Supplementary Table S1. Whenever available, BC studies in which those metabolites
have been previously found are also described.

PCA was first performed to explore the metabolic differences between LG BC and HG BC cell
endometabolomes, showing a tendency to separate both (R2X = 0.690, Supplementary Figure S2).
PLS-DA confirmed a clear separation between LG BC and HG BC (Figure 1a) with a good prediction
power (Q2 = 0.870). Eight metabolites were identified as important for discriminating between LG
BC and HG BC cell lines, as represented in the Volcano plot (Table 1, Figure 1b). Glycine, myristic,
palmitic, and palmitoleic acids were found to be significantly decreased in HG J82 cells, whereas
leucine, methionine, valine, and aspartic acid were found to be significantly increased in the HG
compared to the LG cell line.

 

5637 vs J82

 
(a) (b) 

Figure 1. (a) Partial least squares discriminant analysis (PLS-DA) scores scatter plot obtained for
the cancer cell lines 5637 (n = 5, low-grade, (•) and J82 (n = 5, high-grade, (•). The ellipses indicate
the 95% confidence limit of the model; (b) Volcano plot showing the metabolites contributing to the
discrimination between high-grade (HG) J82 and low-grade (LG) 5637 cells. Horizontal dashed line
indicates the significance level (p < 0.05). Three-letter codes are used for amino acids. C14:0, myristic
acid; C16:0, palmitic acid; C16:1, palmitoleic acid; Chol, cholesterol; ETA, ethanolamine; Lac, lactic acid;
PCA, pyroglutamic acid; Sarc, sarcosine; Un2, unknown 2.

Boxplots of two of the most significantly altered metabolites between the two cancer cell lines are
represented in Figure 2a (aspartic acid) and Figure 2b (myristic acid). Figure 3 shows the metabolic
pathways that are significantly disturbed between the two BC cell lines, which will be discussed in
detail below.
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Table 1. List of metabolites selected as important for the discrimination between HG (J82) and LG
(5637) bladder cancer cells. Values for ES, ESSE, p, and AUC are indicated for each metabolite.

Metabolite
HG J82 vs LG 5637

ES (±ESSE) a p-Value b AUC

Amino acids and derivatives

Glycine ↓ −1.51 (±1.30) 1.59 × 10−2 0.960
Aspartic acid ↑ 2.13 (±1.46) 1.59 × 10−2 0.960

Leucine ↑ 1.48 (±1.29) 3.97 × 10−2 0.880
Methionine ↑ 1.46 (±1.29) 3.17 × 10−2 0.920

Valine ↑ 1.63 (±1.33) 3.17 × 10−2 0.920

Fatty Acids

Myristic acid ↓ −4.50 (±2.27) 7.90 × 10−3 1.000
Palmitic acid ↓ −3.28 (±1.82) 7.90 × 10−3 1.000

Palmitoleic acid ↓ −4.46 (±2.25) 7.90 × 10−3 1.000

AUC, area under the curve; ES, effect size; ↑, metabolites increased; ↓, metabolites decreased in the endometabolome
of HG vs. LG cancer cells. a ES determined as described in Reference [30]; b 95% significance level (p < 0.05).

 
(a) Aspartic acid (b) Myristic acid 

Figure 2. Boxplots of (a) aspartic acid and (b) myristic acid, two metabolites found to be significantly
altered between the LG bladder cancer cell line 5637 (n = 5) and the HG bladder cancer cell line J82
(n = 5). * p < 0.05; ** p < 0.01.

The levels of myristic, palmitic, and palmitoleic acids were significantly decreased in the higher
tumor grade cell line, which is concordant with the well-known fact that cancer cells, as they grow
into more advanced stages, change their energetic requirements to keep on growing and proliferating.
This is because several important biological processes, such as the synthesis of DNA and proteins or
the production of new cellular components, need to be maintained and enhanced as the tumor becomes
more aggressive [31,32]. Fatty acids (FAs), when metabolized by cells, yield great amounts of energy
that serve as fuel for several cellular processes such as the TCA cycle and β-oxidation [33]. Moreover,
FAs are also involved in other cellular processes, particularly cell signaling and cell membrane integrity.
To the best of our knowledge, no previous studies have reported alterations in the levels of these three
FAs according to BC grading. Therefore, our results offer an important insight into the metabolic
differences between tumor grades and clearly demonstrate that LG and HG BC cells generate a different
in vitro signature that reflects the distinct metabolic needs of those cancer cells, with advanced grades
requiring more FA consumption for survival and continuous growth and proliferation [3].
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Figure 3. Summary plot for metabolite set enrichment analysis (MSEA) performed for the HG bladder
cancer (BC) cell line (J82) versus the LG BC cell line (5637), where metabolite sets are ranked according
to the Holm p-value. The horizontal bar graph summarizes metabolic pathways that were different
between HG and LG bladder cancer cells. Significantly different pathways include ammonia recycling,
fatty acid biosynthesis, and methionine and glutamate metabolisms.

Referring to amino acids, glycine was found to be decreased in HG BC cells (J82) compared to LG
BC cells (5637). Corroborating our findings, previous studies by Dettmer et al. [34] and Cao et al. [35]
observed lower levels of glycine in the serum of patients with advanced BC compared to patients with
LG BC. Glycine may play a critical role in tumor progression to higher grades [36], being involved
not only in amino acid metabolism but also in purine and glutathione metabolism [3]. This suggests
that these two pathways might be augmented in HG cancer cells and glycine may be highly used in
order to either produce more DNA/RNA components, proteins, or antioxidant metabolites. Glycine is
also involved in ammonia recycling (Figure 3), being used to give rise to ammonia through the action
of the glycine cleavage system [37]. Upregulation of this ammonia recycling-related pathway might
explain the decrease in glycine levels as BC progresses, but further studies are required to confirm
this hypothesis.

Apart from glycine, four other amino acids were significantly altered between the two BC
cell lines, namely aspartic acid, leucine, valine, and methionine, which may indicate alterations in
amino acid metabolism (Figure 3) and consequently in the pathways in which these amino acids
are involved, namely protein biosynthesis and the TCA cycle. The potential increase in protein
biosynthesis combined with the downregulation of the TCA cycle, which also corresponds with the
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upregulation of FA biosynthesis, is crucial for cancer cells to maintain their proliferative demands
as proteins and FA components are necessary during cell division [38]. Furthermore, TCA cycle
downregulation may show that cancer cells, as they develop to more advanced stages, increasingly rely
on glycolytic pathways over oxidative phosphorylation [3]. These alterations in amino acid levels and
their respective pathways were previously found in other BC metabolomic studies in which different
tumor grades were compared in vitro and in human biofluids, namely urine and blood [34,35,39–47].

Noticeably, methionine has not been previously reported as a differentially altered amino acid
between BC grades. In this study, we observed that methionine metabolism was found to be one of the
most important discriminatory pathways comparing HG and LG BC cells (Figure 3). This demonstrates
that this pathway is altered towards the production of methionine, which is an essential amino acid
that functions as an intermediate for protein synthesis, in transmethylation reactions as a methyl donor
to S-adenosyl methionine (SAM) and in detoxifying processes, as well as an important compound
for angiogenesis [48]. Moreover, the increase in methionine levels in HG cancer cells may also be
associated with the downregulation of the TCA cycle. This is a novel finding that should be considered
in future validation and translational studies with human samples.

4. Conclusions

In this study, we used an in vitro metabolomics approach to evaluate alterations in the endometabolome
signatures of bladder cancer cells with distinct tumor grades. The bottom-up approach was selected
due to its easily controllable setup and lower complexity compared to other disease models, therefore
providing better insight into the metabolic changes between the two types of BC cells. The results
obtained in this study regarding the endometabolome analysis of HG and LG cancer cells allow us to
propose some metabolic alterations occurring during tumor progression in the bladder. Major changes
were found in energy-related metabolic pathways, namely FA biosynthesis, amino acid metabolism,
and ammonia recycling. Differences in FA levels between HG and LG cancer cell lines may reflect the
distinct reliability in β-oxidation to generate energy. The same applies to amino acid metabolism along
with ammonia recycling reflecting alterations in protein biosynthesis and the TCA cycle towards the
support of tumor cell growth and proliferation. Furthermore, methionine stands out as an amino acid
that, to our best knowledge, has never been reported before in in vitro studies comparing HG and LG
bladder cancer, making this metabolite a novel finding to be validated. Overall, the results from our
study may contribute to the discovery of promising biomarkers applicable to the categorization of
the LG and HG forms of BC and the development of new therapeutic approaches, pending further
investigation and validation.
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TCC). The ellipses indicate the 95% confidence limit of the model., Table S1: List of all metabolites identified in the
endometabolomes of the cancer cell lines 5637 (LG) and J82 (HG). The identification of the metabolites is based
on the NIST (2014) and standards. RT, characteristic ions (m/z), identification method with reverse % of match
from NIST/standards when used, CAS registry number and HMDB code (when available) are indicated for each
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