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Preface to ”Remote Sensing of Leaf Area Index (LAI)

and Other Vegetation Parameters”

The monitoring of vegetation structure and functioning is critical to the modeling of terrestrial

ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property

of vegetation used in many land surface vegetation, climate, and crop production models. Canopy

structure (LAI, fCover, plant height, and biomass) and biochemical parameters directly influence the

radiative transfer process of sunlight in vegetation, determining the amount of radiation measured

by passive sensors in the visible and infrared portions of the electromagnetic spectrum.

Optical remote sensing methods build relationships exploiting in situ measurements and/or as

outputs of physical canopy radiative transfer models. The increased availability of passive (radar

and LiDAR) remote sensing data has fostered their use in many applications for the analysis

of land surface properties and processes, thanks also to their insensitivity to weather conditions

and the capability to exploit rich structural and texture information. Data fusion and multi-sensor

integration techniques are pressing topics to fully exploit the information conveyed by both optical

and microwave bands.

This Special Issue reviews the state-of-the-art in the retrieval of LAI, biomass, and other

vegetation parameters using field, satellite, and airborne data, assimilation of remote sensing data

with vegetation models, and its usage in wide variety of forest applications. It is composed of the

following six sections:

- Field methods to measure LAI and other vegetation parameters

This section brings together innovative methods to measure LAI and other vegetation

parameters. The section is composed of four chapters. The first chapter presents a smartphone-based

method to measure conifer forest LAI. The second chapter presents a practical procedure to estimate

the over and understory vegetation cover in Mexican forests using digital photography. The third

chapter demonstrates the applicability of GPS and hemispheric photography-based methods to

determine a forest signal absorption coefficient index. The final chapter in this section deals with

the estimation of forest LAI and biomass patterns across Northeast China from digital aerial

photograph data.

Potential and Limits of Retrieving Conifer Leaf Area Index Using Smartphone-Based Methods

Estimation of Vegetation Cover Using Digital Photography in a Regional Survey of Central Mexico

Development of a GPS Forest Signal Absorption Coefficient Index

Estimation of Forest Aboveground Biomass and Leaf Area Index Based on Digital Aerial

Photograph Data in Northeast China

- Estimation of forest aboveground biomass (AGB)

The three chapters of this section are devoted to estimates of forest AGB using different data

and methods. The first chapter deals with the use RapidEye optical data at the national level over

Tanzania. The second chapter demonstrates the use of optical (Landsat, MODIS) and radar (ALOS-1

PALSAR, Sentinel-1) for mapping the AGB of a degraded Amazonian forest at the regional scale. The

third chapter presents an approach for the estimation of forest vertical profiles and AGB using SAR

(P-Band PolInSAR) images.

ix



The Potential of High Resolution (5 m) RapidEye Optical Data to Estimate Aboveground Biomass

at the National Level over Tanzania The Potential of Multisource Remote Sensing for Mapping

the Biomass of a Degraded Amazonian Forest Forest Aboveground Biomass Estimation Using

Single-Baseline Polarization Coherence Tomography with P-Band PolInSAR Data

- Unmanned aerial vehicle (UAV) sensors

This section is composed of three chapters. The first chapter evaluates UAV point cloud for

estimating forest biophysical properties in managed temperate coniferous forests. The second chapter

deals with individual tree detection from a UAV-derived canopy height model. The final chapter

in this section presents an approach for the estimation of tree parameters using spectral correlation

between UAV and Pléiades data.

Forest Structure Estimation from a UAV-Based Photogrammetric Point Cloud in Managed

Temperate Coniferous Forests Individual Tree Detection from Unmanned Aerial Vehicle

(UAV)-Derived Canopy Height Model in an Open Canopy Mixed Conifer Forest Estimation and

Extrapolation of Tree Parameters Using Spectral Correlation between UAV and Pléiades Data

- LiDAR remote sensing

This section addresses new insights in the development, application, and benefits of terrestrial

laser-scanning methods. The section is composed of three chapters. The first chapter addresses the

automatic mapping of mapping of tree positions and tree diameter based on LiDAR and HP. The

second chapter deals with the mapping of forest stands based on three-dimensional point clouds

derived from terrestrial laser-scanning. The third chapter deals with the estimation of forest LAI and

biomass patterns across Northeast China based on allometric scale relationship with large footprint

LiDAR waveform data.

Effects of Tree Trunks on Estimation of Clumping Index and LAI from HemiView and Terrestrial

LiDAR Automatic Mapping of Forest Stands Based on Three-Dimensional Point Clouds Derived

from Terrestrial Laser-Scanning Estimation of Forest Biomass Patterns across Northeast China

Based on Allometric Scale Relationship

- Validation of LAI products

This section addresses recent advances in the validation of LAI products. The first chapter

evaluates the uncertainty and spatiotemporal consistency of global LAI and FPAR Products from

VIIRS and MODIS Sensors. The second chapter calculates and validates LAI estimates generated

from the USDA model in the Southeastern USA.

Analysis of Global LAI/FPAR Products from VIIRS and MODIS Sensors for Spatiotemporal

Consistency and Uncertainty from 2012 to 2016 A Comparison of Simulated and Field-Derived

Leaf Area Index (LAI) and Canopy Height Values from Four Forest Complexes in the

Southeastern USA

- Forest applications
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The last section includes a variety of forest applications for mapping and monitoring of forest

disturbance, degradation, and regrowth using remotely sensed imagery. The first chapter assesses

the extent of the forest cover and deforestation rates in the tropical forests in Paraguay over 17

years. The second chapter addresses the use of phenological metrics from MODIS data to monitor

phenological phases and altitudinal variations in European beech-dominated stands. The last chapter

in this section assesses the response of the photosynthetic activity of Mediterranean evergreen oaks

using remote sensing physiological indices.

Assessing Forest Cover Dynamics and Forest Perception in the Atlantic Forest of Paraguay,

Combining Remote Sensing and Household-Level Data Validation and Application of European

Beech Phenological Metrics Derived from MODIS Data along an Altitudinal Gradient Assessment
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Abstract: Forest leaf area index (LAI) is a key characteristic affecting a field canopy microclimate.
In addition to traditional professional measuring instruments, smartphone-based methods have been
used to measure forest LAI. However, when smartphone methods were used to measure conifer
forest LAI, very different performances were obtained depending on whether the smartphone was
held at the zenith angle or at a 57.5◦ angle. To further validate the potential of smartphone sensors
for measuring conifer LAI and to find the limits of this method, this paper reports the results of a
comparison of two smartphone methods with an LAI-2000 instrument. It is shown that the method
with the smartphone oriented vertically upwards always produced better consistency in magnitude
with LAI-2000. The bias of the LAI between the smartphone method and the LAI-2000 instrument was
explained with regards to four aspects that can affect LAI: gap fraction; leaf projection ratio; sensor
field of view (FOV); and viewing zenith angle (VZA). It was concluded that large FOV and large VZA
cause the 57.5◦ method to overestimate the gap fraction and hence underestimate conifer LAI. For
the vertically upward method, the bias caused by the overestimated gap fraction is compensated for
by an underestimated leaf projection ratio.

Keywords: conifer forest; leaf area index; smartphone-based method; canopy gap fraction

1. Introduction

Leaf area index (LAI), defined as a single leaf area per unit ground area [1], is an essential
parameter for controlling mass and energy exchanges between the forest and the environment, and
thus LAI affects many ecosystem processes [2]. LAI is also required when quantifying or modelling
forest functioning, e.g., it is the primary factor related to the amount of light captured and the efficiency
of light use, and then it is used to model the growth rate of trees [3,4] and in estimating biomass of
forest in ground field experiment [5,6] or in remote sensing application [7].

The most reliable method for LAI measurement is destructive sampling, but this is
time-consuming and suited only to low-growing and broad leaf plants. While for taller and needle-like
leaf forests, such as conifer forests, it is difficulty to destroy forests to measure their leaf area. In this
context, it will be very significant to research the method to measure LAI, especially that of a conifer
forest, using indirect measurement. It is found that, compared with the manual destructive sampling
method, optical sensors based indirect measurement on conifers have proved to be a more efficient in
field scale [8–10] or in regional scale while remotely sensed data are considered [11,12].

The optical sensor-based indirect LAI measurement, which measures forest transmittance directly,
and forest LAI were estimated using a canopy light attenuation model. In this context, an imaging or
non-imaging sensor may be used depending on how forest transmittance is measured. For example,

Forests 2017, 8, 217; doi:10.3390/f8060217 www.mdpi.com/journal/forests1
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LAI-2000 (Li-Cor Biosciences, Lincoln, NE, USA), TRAC (3rd Wave Engineering, Nepean, ON, Canada),
AccuPar (Decagon Devices, Inc., Pullman, WA, USA) are representatives of the non-imaging method,
whereas Can_Eye [13] and HemiView (Delta-T Devices, Cambridge, UK), which are normally used
to process digital hemispherical photographs (DHPs) to calculate canopy transmittance, are popular
imaging sensor-based methods. Due to greater availability of cameras for capturing images, imaging
sensor-based methods are becoming increasingly popular. Among imaging sensor-based methods,
a new development that uses a smartphone camera sensor rather than a general-purpose digital
camera has emerged recently [14–19]. Building on the high performance-price ratio and multi-sensor
integration of the smartphone, this approach has attracted much attention to measuring LAI using
smartphone camera sensors.

Confalonieri et al. [15,16] have developed an android-based mobile application called PocketLAI
that can be used to classify forest and background pixels (e.g., sky) in an image acquired at a zenith
angle (VZA) of 57.5◦ and can then estimate LAI using the forest gap fraction at this zenith angle.
Qu et al. [19] implemented a smartphone-based LAI measurement instrument called LAISmart. Unlike
PocketLAI, which can capture images only at a VZA of 57.5◦, LAISmart has no constraint on the
observation angle. The operator determines the optimum viewing zenith angle depending on the
canopy structure. Therefore, LAISmart can measure not only tall vegetation using upward-facing
images, but also low vegetation using downward-facing images. To adapt to different vegetation
heights, LAISmart provides a scalable support system. De Bei et al. [18] developed an iOS-based
application called (APP)-VitiCanopy to extract LAI from vertically upward photography [20,21].
It produced a canopy clumping index besides the canopy LAI or effective LAI. At present, VitiCanopy
is mainly applied to grapevines.

This paper compares the performance of smartphone-based methods to measure conifer LAI.
Two of the three above mentioned methods were chosen to carry out the comparison: LAISmart and
PocketLAI. The reason the VitiCanopy method was omitted was mainly due to the fact that when
LAISmart is operated in upwards zenith mode, there will be no obvious difference from VitiCanopy
if the classification accuracy of the image is kept at a comparable level. Another reason is that the
effective LAI is the focus of this paper, and therefore there is no need to calculate clumping index
which functioned in transforming efficient LAI to true LAI [22,23], although it is the unique feature
of VitiCanopy.

Francone et al. [24] have achieved good verification results measuring maize and grassland
with PocketLAI. However, in conifer forest, Orlando et al. [25] found that it was hard to obtain a
satisfactory LAI using PocketLAI. In addition, Qu et al. [18] found that the LAI value obtained at 57.5◦

were much less than those from LAI-2000. Preliminary work carried out independently in different
countries on similar conifer forest canopies has given indications that there may be some limitations
of the smartphone-based method at a viewing zenith angle of 57.5◦ when a coniferous forest was
measured [19,25]. However, all the above preliminary results were reached based on a small observed
data set. For instance Orlando et al. [25] used twelve observed data on coniferous forests, whereas
Qu et al. [19] obtained data only on two dates, so it’s necessary to collect much more data to further
validate the above research results.

As a result, this line of research is now entering a new stage where, despite the advantages of
smartphone-based LAI measurement methods, it is time to perform more verifications and comparisons
to ensure that this method is suitable for measuring coniferous forest LAI. The goal of this paper
is to further verify the potential and limitations of different smartphone sensor-based methods for
measuring coniferous forest LAI, to reveal the main factors influencing observational accuracy, and to
provide a reference for quick, accurate acquisition of coniferous forest LAI data on a regional scale.

It should be noted on the term of LAI that, in general, not only leaves, but some other plant
organs, such as trunks and branches can be seen in the digital images. Though the term plant area
index (PAI) may be more appreciate than leaf area index in this context, to conform to the previous
studies, we still use the term LAI herein.
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2. Methodology and Data

2.1. Estimation of LAI Using a Smartphone Camera Sensor

As imaging methods, LAISmart [19] and PocketLAI [15] capture canopy photos using a
smartphone camera sensor, then an automatic classification algorithm is used to separate image
pixels into leaf and background to calculate canopy gap fraction. While calculating leaf area index from
gap fraction, both methods share a common canopy light attenuation theory that describes how light
transits from the top of the canopy to the sensors placed underneath. This theory can be formulated as
the Beer-Lambert law [26]:

p(θ) = e−G(θ)/ cos(θ)LAI. (1)

Then LAI can be obtained as:

LAI = − ln P(θ) cos(θ)/G(θ) (2)

where P(θ) is the canopy gap fraction at the sensor zenith θ and G(θ) is the projection of unit foliage
area on the plane perpendicular to the view zenith θ.

The basic difference between the two methods is that PocketLAI uses the gap fraction at a fixed
zenith of 57.5◦, whereas LAISmart provides a flexible zenith option with no constraint to a fixed angle.
However, previous work has suggested that LAISmart will produce fairly good results if it is operated
using the upward zenith mode for measuring conifer canopy LAI. This paper follows the indications
of previous work.

To calculate LAI using the gap fraction, the G-value should be determined for the canopy structure.
LAISmart uses a G-value of 0.5 on the assumption of a spherical distribution of leaf angle [27], whereas
PocketLAI uses the same value, but derived from the theory of inclined point quadrats [28].

Hence, LAISmart and PocketLAI can easily calculate LAI when the gap fraction is obtained from
images segmented into vegetation and sky pixels:

LAI0 = −2 ln p(0) (3)

LAI57 = −2 cos(57.5) ln p(57.5), (4)

where LAI0 and LAI57 are the estimated LAI from LAISmart and PocketLAI respectively.
Another instrument for measuring conifer LAI is LAI-2000, which uses a multi-angle gap fraction

on blue band (450 nm) to estimate LAI, unlike the smartphone-based methods that use only one zenith
angle. The LAI-2000 algorithm has been widely recognized in the literature, and interested users are
encouraged to find detailed information on LAI-2000 in the reference [29]. As LAI-2000 has been
validated on a wide range of vegetation types, this research has used the LAI value from the LAI-2000
instrument as references to compare the two smartphone methods.

2.2. Field Experiments

The experimental area was located around the National Field Observation and Research Station
of Inner Mongolia-Great Xing’an forest Ecosystem of China (50.906◦N, 121.502◦E) in Genhe City of the
Inner Mongolia Autonomous Region in northeastern China [8] (Figure 1a). The investigated forest
area belongs to the CForBio (Chinese Forest Biodiversity Network) [30] and is selected as one of
the priority areas for the conservation of perennial plants in China [31]. As the northernmost and
coldest area in Inner Mongolia, Genhe is located in the cold and humid temperate forest climate region.
Annual average temperature is approximately −5.3 ◦C, and precipitation is approximately 300 mm.
The research site has a hilly topography with slight gradients (80% less than 15 degrees) and a mean
altitude of approximately 950 m.
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Figure 1. The research area (yellow square) located in China (a); the ESU (yellow symbols) distributed
in the research area (b); and the sampling method of three instruments in an ESU (c).

Field experiments were carried out in a 1 km × 1 km area covered by conifer forest mainly
composed of larch (Larix gmelinii) (Figure 1b). Stand measurements were not available during the
experimental period of this research, but descriptive information about forests in the same region can
be found in the published literature (Table 1) [32]. The actual data may differ slightly from published
data, but will still be valid as a reference for this region since the Genhe region is covered by old-growth
primary forest that has never suffered major human disturbance.

Table 1. Description on the forest in the Genhe old growth primary forest region [32].

Forest Type
Dominant

Species

Forest Structure (Mean/std)

Density
(stems/ha)

Da (cm)
Dmax
(cm)

Ha (m) Hmax (m)

Larix gmelinii forest L. gmelinii (94%) 1135/515 15.1/4.6 41.3/11.6 13.5/3.4 26.9/4.0

Da, mean DBH (diameter at breast height); Dmax, maximum DBH; Ha, mean tree height; Hmax, maximum
tree height.

Twenty essential sample units (ESUs), 20 m × 20 m in size, were established in the experimental
area according the optimal sampling method [33]. For the measurement of the smartphone method,
a smartphone with the CPU of Quad-Core Processer of 2.5 GHz, the camera of 13 million pixels
and the aperture of F1.8 was configured. Both LAISmart and PocketLAI were installed in the same
configured smartphone to ensure the images have the same optimal parameters except for different
viewing angles. Different sampling methods were designed according to different instruments inside
the ESUs (Figure 1c). For example, for LAISmart, the operator kept the smartphone sensor vertically
upward and obtained eight observations at approximately regular intervals along an east-west route
and a north-south route, giving 16 observed values for one ESU. For PocketLAI, the operator stood
in the center of the ESU with the zenith angle of the smartphone at 57.5◦ and photographed along
eight azimuths at 45◦ intervals, obtaining eight observed values. To obtain the reference LAI using
LAI-2000, two LAI-2000 instruments were used. One was placed in the open space outside the forest
for vertically upward observation to measure the total downward sky radiance. The logging frequency
was configured as 1 min. The other instrument was held by an operator walking along the same line of
LAISmart, but obtaining four pieces of canopy transmittance data in each line, thus there were eight
LAI-2000 points in one ESU. A 180◦ lens cap was used while measuring under the conifer canopy. The
measurements of the two smart APPs and the LAI-2000 instrument were completed within 5–10 min
to ensure they were operated under the approximated sun illustration condition.
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The field measurements were conducted on 26 May, 25 July, and 22 September 2016, an observation
period that covered the growth, development, and withering of coniferous leaves. Note that in the first
set of observations (26 May), only 10 ESUs were measured due to limited duration of field observation
time, whereas 20 ESUs were measured on the other two dates. When the data were collected using
the three instruments described above, cloudy weather conditions were selected to ensure strong
scattered light and weak direct sunlight in the sky. The experimental observation dates, instruments,
and numbers of data points are listed in Table 2.

Table 2. The instruments and the data number on every experiment date.

Date
Instruments and Data Number

LAISmart PocketLAI LAI-2000

26 May 10 / 10
25 July 20 20 20

22 September 20 20 20

Both smartphone sensor methods first captured the canopy images, after which the gap fraction
was retrieved from each image. An automated segmentation method was used to classify all the
pixels in blue band into sky or vegetation pixels [15,34]. The gap fraction was calculated as the ratio
of the number of sky pixels to the total number of pixels. Then the LAI value was calculated using
Equations (3) and (4).

To compare the two smartphone sensor methods, a regression model was established as a linear
equation through the origin using estimated LAI with a reference LAI equal to LAI-2000. To evaluate
the performance of the linear model, the coefficient of determination (R2) was calculated in the software
of Golden Grapher [35]. Certain other metrics were also calculated to evaluate the two smartphone
sensor methods against LAI-2000 [36]. The performance of the models in reproducing observed data
was quantified using the mean absolute error [37] (MAE, from 0 to +∞, optimum 0), the relative root
mean square error [38] (RRMSE, from 0 to +∞, optimum 0), the coefficient of residual mass [39] (CRM,
from −∞ to +∞, optimum 0), and the modeling efficiency [40] (EF; from −∞ to 1, optimum 1).

3. Results

By taking LAI-2000 as a reference, the correlations between the measured values of the two
smartphone sensors and the reference value were calculated, and the bias of the results obtained
by the two smartphone methods was analyzed. As shown in the scatter diagram in Figure 2, the
observed values of LAISmart were approximately evenly distributed on both sides of the 1:1 line
(Figure 2a,b,d). This suggests that there is no obvious systematic deviation between the values
obtained by LAISmart and LAI-2000. However, the values obtained by PocketLAI were almost
all below the 1:1 line (Figure 2c,e), suggesting an obvious systematic deviation between the values
obtained by PocketLAI and LAI-2000. In other words, the observed LAI values using PocketLAI were
underestimated. This pattern can also be found in the statistical characteristics of the observed data
(Table 3).

As shown in Table 3, the regression lines for LAISmart and LAI-2000 passing through the origin
had slopes close to 1.0 (0.94, 0.97, and 0.93 respectively) and a mean value closer to LAI-2000 (biases
were 0.07, 0.01, and 0.02 respectively). However, the regression lines for PocketLAI and LAI-2000
had slopes of 0.57 and 0.73 respectively, the maximum deviation of the mean value was 1.32, and the
minimum was 1.0.

5



Forests 2017, 8, 217

0.4 0.8 1.2 1.6 2 2.4
LAI-2000 (m2/m2)

0.4

0.8

1.2

1.6

2

2.4

LA
IS

m
ar

t (
m

2 /
m

2 )

0.4 0.8 1.2 1.6 2 2.4
LAI-2000 (m2/m2)

0.4

0.8

1.2

1.6

2

2.4

P
oc

ke
tL

A
I(m

2 /
m

2 )

1.5 2 2.5 3 3.5 4

1.5

2

2.5

3

3.5

4

LA
IS

m
ar

t (
m

2 /
m

2 )

0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

0.8

1.2

1.6

2

2.4

2.8

3.2

3.6

4

P
oc

ke
tL

A
I(m

2 /
m

2 )

Legend
Measured point
Fitted line
1:1 Line

(b) (c)

(d) (e)

(a)

0.8 1.2 1.6 2 2.4 2.8

0.8

1.2

1.6

2

2.4

2.8

LA
IS

m
ar

t (
m

2 /
m

2 )

 

Figure 2. Scatter plot between LAI values of LAI-2000 and those of two smartphone methods (left
column for LAISmart and right column for PocketLAI) on three dates (subplot (a) for 26 May, (b) and
(c) for 25 July and (d,e) for 22 September).
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Table 3. Statistics parameters of the measured and reference LAI values.

Date Instruments S R2
Averaged LAI

AB
LAI-2000 Smartphone

26 May
LAISmart 0.94 0.97 1.95 1.88 0.07
PocketLAI - - -

25 July
LAISmart 0.97 0.96 2.39 2.40 0.01
PocketLAI 0.57 0.96 2.39 1.39 1.00

22 September
LAISmart 0.93 0.93 1.40 1.38 0.02
PocketLAI 0.73 0.96 1.40 1.08 0.32

S: Slope of a linear regression through the origin; R2: Coefficient of determination of regress model; AB: the absolute
bias of the measured LAI and the reference LAI

Table 3 also shows that all the regression models established between the results of both
smartphone methods and the reference value from LAI-2000 had high coefficients of determination,
suggesting that although the two methods had different performance with regards to magnitude, both
methods could be used to identify the dynamic tendency of coniferous forest LAI.

To judge whether the two smartphone methods can produce a statistically identical result to
a reference instrument (LAI-2000), a hypothesis test was carried out using Student’s t-test for the
above data. The basic principle of the test is that, for independent experiments on the same objects
(here, conifer LAI), the different observation methods should lead to the same statistically significant
result. In other words, the data obtained by the different sampling methods should come from the
same population.

The Student’s t-test results are listed in Table 4, where H = 0 indicates that the smartphone sensor
results come from the same population as the LAI-2000 values and H = 1 indicates the opposite test
result. The parameter p is the probability that H = 0 can be accepted, and the parameters CI_2.5,
CI_97.5 define the 95% confidence interval for the observation bias of LAI-2000 and smartphones.
The test results show that the observed results from LAISmart and LAI-2000 on the three days can
be considered as being from the same population (H = 0). The probability of being unable to reject
the hypothesis on the dates of 25 June and 22 September was greater than 85%. Moreover, the 95%
confidence interval for the deviation between LAI-2000 and LAISmart was located approximately
with zero as the center of a symmetric region, suggesting that there was little deviation between
the two measures, a result that can be approximately considered as a zero deviation. Although, the
results obtained on 26 May show a slightly lower probability of acceptance (0.6) and an asymmetrical
confidence interval, they still could pass the Student’s t-test (H = 0). However, for all the observed
results from PocketLAI, Student’s t-test indicated acceptance of H = 1, suggesting that these observed
values could not be considered as coming from the same population as the LAI-2000 data. This means
that there was an obvious difference in performance between PocketLAI and LAI-2000, which also
was manifested by the confidence interval. These results indicate that the LAI obtained from LAI-2000
was significantly higher than that obtained from PocketLAI, because the lower bound (CI_2.5) of the
95% confidence interval for their deviation was greater than zero. Recalling the results in Table 3, the
slopes of all the regression lines between PocketLAI and LAI-2000 were far less than 1.0, showing that
in most cases, forest LAI was underestimated by PocketLAI.

The next step was to compare the observed data obtained by the two kinds of smartphones on all
three dates with the values observed by LAI-2000. A scatter plot of these data is shown in Figure 3, and
the regressive statistical parameters are shown in Table 5. The results are similar to the comparison
made on separate dates, as shown in Table 3 and Figure 2. Both methods could measure the dynamic
tendency with almost the same coefficient of determination, but the linear regression equation of
PocketLAI had a lower slope.
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Table 4. Results of Student’s t-test results for the LAIs of smartphone sensors and those of LAI-2000.

Date Method H p CI_2.5 CI_97.5

26 May
LAISmart 0 0.60 −0.19 0.32
PocketLAI - - - -

25 July
LAISmart 0 0.88 −0.25 0.22
PocketLAI 1 0 0.78 1.21

22 September
LAISmart 0 0.85 −0.17 0.21
PocketLAI 1 0 0.17 0.48
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Figure 3. Scatter plot of the measurements of two smartphone sensors method with the data of
LAI-2000 using all the data collected during the experiment period.

Table 5. Regression parameters and the evaluation metrics of the two smartphone sensor methods
compared with references LAI.

S R2 RMSE RRMSE MAE EF CRM

LAISmart 0.96 0.96 0.43 0.22 0.34 0.55 0.00
PocketLAI 0.61 0.95 0.84 0.44 0.69 −0.49 −0.35

MAE: mean absolute error; RRMSE: relative root mean square error; EF: modelling efficiency; CRM: coefficient of
residual mass.

RMSE, RRMSE, and MAE, which indicate the accuracy of the two methods, show that LAISmart
has much higher accuracy. As for the statistical indices of model efficiency (EF and CRM), in general, the
Nash-Sutcliffe model efficiency coefficient (EF) confirmed the overall good performance of LAISmart,
with a value of 0.55, whereas PocketLAI had a negative EF (−0.49). The value of E < 0 indicates that
the reference mean is better than the mean of PocketLAI. The value of the LAISmart CRM equal to
zero indicates that there is no difference between LAISmart and the LAI-2000 instrument, whereas the
negative value of the PocketLAI CRM indicates that the LAI from the images at a zenith angle of 57.5◦

is lower than the reference value.
To visualize the difference in measurement results between these two kinds of smartphones and

LAI-2000, their Q-Q plot is shown in Figure 4. A Q-Q plot is a type of probability plot that compares
the probability distribution of two data sets by plotting their quantiles against each other. If the two
datasets being compared have similar distributions, the points will lie approximately on the line y = x.
If the distributions are linearly related, the points will lie on a line, but not necessarily the y = x line.

The Q-Q plot in Figure 4a basically coincides with the y = x line, although there was a slight
bias as the LAI value approached 3.0 m2/m2, suggesting that the measured values from LAISmart
and LAI-2000 can be considered as coming from the same sample population. However, because the
PocketLAI line in Figure 4b obviously deviated from the y = x line, it is hard to conclude that the data
from PocketLAI obey the same distribution as those from LAI-2000. This result again confirms the
result from the Student’s t-test, as shown in Table 4.
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Figure 4. The Q-Q plot of two smartphone sensor methods with the LAI-2000 instrument. The similar
quantile-quantile plot around y = x line of LAISmart and LAI-2000 (a) indicates that they share a same
distribution, while the PocketLAI measurement can’t be taken as a same distribution of LAI-2000 as
there is much bias to the y = x line (b).

4. Discussion

A comparison between the measurement results of the two smartphone sensor methods with
LAI-2000 indicates that although the measured values obtained by both methods can reflect dynamic
changes in coniferous forest LAI with a high determinate coefficient of regress model, in terms of
measurement magnitude accuracy, the LAISmart results were closer to those from LAI-2000.

As the research area is covered by old-growth coniferous stands, the LAI values are kept in a
stable level inter-annually without human activity. Li et al. [41] reported the measured LAI in 27
ground points of coniferous forest in the site near to the research area was 2.24 m2/m2. Wen et al. [42]
reported a higher LAI of 3.3 m2/m2 estimated from MISR data, unfortunately, they didn’t provide the
ground truth directly, but they found that the estimated LAI was higher than the ground measurement
with a bias of 0.285 m2/m2, as a result when considering the estimation error and the clumping index
of 0.76 they used, the ground LAI value can be deduced as 2.29 m2/m2. Both reported LAI values are
measured on the dates from July to August in different years, though it was not the identical growth
date as we have reported here, as the reference values, their measurement were very closer to the mean
value (2.40 m2/m2) of LAISmart at the end of July (Table 3).

Since the two smartphones had identical hardware configurations and almost identical sampling
methods in the experiment, the difference in their results could only have been caused by a classification
algorithm or a shooting zenith angle.

The classification algorithm mainly influenced the canopy gap fraction extracted from the digital
image. The algorithm used in both smartphone methods used the blue band as the feature to extract
forest and skylight pixels. Therefore, the classification algorithm did not greatly affect these two
methods, although even a difference in some specific detail of the programming implementation might
have caused a slight bias.

Given that there was not much difference between the classification algorithms, the main factor
that can influence gap fraction accuracy is the camera’s auto-exposure mode. Beckschäfer et al. [43]
found that auto-exposure might overestimate the canopy gap fraction, but for forests with low canopy
density, the gap fraction overestimation caused by auto-exposure would be less than 5%. In these
experiments, the maximum LAI as measured by LAI-2000 was 3.48 m2/m2, which can be considered
as a low-density canopy most of the time. Hence, it can be inferred that at the beginning or end of the
experiment, corresponding to leaf emergence and defoliation stages, the accuracy of LAI produced by
smartphone methods might be better.
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Another reason for gap fraction overestimation could have been the global optimum threshold
method for automatic image segmentation [44]. Due to gap fraction overestimation, the estimated
value of LAI was lower than the real LAI. As shown by the results presented in this paper, both methods
produced some underestimation. However, underestimation was more severe in PocketLAI than in
LAISmart, mostly because canopy gap fraction was overestimated. However, Qu et al. [19] found that
the underestimation of LAI caused by gap fraction overestimation was inversely proportional to the real
gap fraction. Hence, for sparse discrete forests with a large gap fraction, overestimation of the canopy
gap fraction caused by the classification method would not lead to an obvious loss of LAI estimat45ane
et al. [45] also reached a similar conclusion that “none of the more complicated classification methods
yielded results that greatly differed from a simple global binary threshold classification” after they
carefully investigated four complicated algorithms and a simple global optimum threshold method.

The shooting angle (camera zenith angle) affected LAI extraction accuracy in two main ways:
first, the degree of closeness between the G-value used in the model and the real G-value at a specific
shooting angle; and second, the proportion of leaf elements that might be influenced by shooting angle
under large FOV (field of view). These two aspects will be discussed separately in the following section.

Firstly, the zenith angle of the sensor affects the G-value used in the two smartphone methods.
Figure 5 shows the G functions (dashed-dotted lines) measured by LAI-2000 on the three days, as

well as the average G functions (grey line) on the three dates. Although, G is not related only to the
viewing zenith angle, but also to the leaf inclination angle, for a certain forest type (conifers here), the
influence of leaf inclination angle can be ignored. Hence, in this paper, it has been assumed that G is
related only to the viewing zenith angle.
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Figure 5. Foliage projection coefficient (G) derived from LAI-200 instrument at three dates. The mean
G values of the measured LAI G values on the three dates is plotted as grey line, and the ideal G =
0.5 also is plotted as solid black line. The averaged G for LAISmart and PocketLAI are plotted as a
solid triangle.

Because the FOV of the camera in a mobile phone is basically around 70◦ [19], the mean of the
G-value of the first three angles in LAI-2000 was taken to be the G-value corresponding to the LAISmart
viewing zenith angle, and the mean of the last two angles was taken to be the G-value corresponding
to the PocketLAI viewing zenith angle of 57.5◦. The calculated G-values of the two methods are shown
as the solid triangle in Figure 5.

As shown in Figure 5, when the image was taken at a small or moderate viewing angle
(corresponding to the observation angle in LAISmart), the G-value (0.59) of the coniferous forest was
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greater than the assumed value (G = 0.5). However, when the zenith angle was larger (corresponding
than the observation angle of 57.5◦ in PocketLAI), the real G-value (<0.49) was slightly less than the
assumed value. Note that the G-value corresponding to the viewing angle in PocketLAI should be
much lower than the calculated value because G decreased with increased zenith angle, as shown in
Figure 5. With the impact of the camera FOV, the real zenith angle in PocketLAI was greater than 68◦,
therefore the corresponding G-value should be less than 0.49.

According to Equation (2), the estimated value of LAI is inversely proportional to G-value,
therefore it can be easily inferred that when the canopy gap fraction is kept constant, the error in G
estimation might bring about a positive deviation in LAISmart and a negative deviation in PocketLAI.
Under the combined impact of the positive deviation caused by the G-value and the negative deviation
caused by gap fraction error, the value measured by LAISmart was close to that measured by LAI-2000.
On the other hand, the value estimated by PocketLAI was much lower than the real value because the
error sources in PocketLAI were additive for the two factors.

Secondly, the camera zenith angle and FOV jointly determined the proportion of leaf elements
entering the field. At an FOV of 70◦, the actual viewing angle in LAISmart should be less than 35◦,
whereas the maximum viewing angle in PocketLAI is approximately equal to 90◦. A large FOV might
lead to a dramatic decrease in gap fraction, and this is a major reason why the observed values in
PocketLAI were generally lower than those produced by LAISmart and LAI-2000. This phenomenon
is similar to the result of the 3D canopy simulation performed by Woodgate et al. [44]. They found
that as the viewing angle increased, the proportion of trunk (woody) components in the visual field
increased. Particularly when the viewing angle was greater than 75◦, the proportion of trunks sharply
increased, and the sharp increase in proportion of trunks greatly increased the ratio of gaps in pictures,
making the estimated LAI value lower than the real value. This could partially explain why the LAI
was always very much lower when Orlando et al. [25] observed coniferous trees with a height greater
than 2.0 m.

Therefore, when a digital image-based (e.g., DHP) method is segmented into multi-viewing-angle
sub-image, a small zenith bin size is often used [44] to ensure a good correspondence between the gap
fraction and the given sensor’s viewing angle. However, another question must then be answered:
why can a more accurate result be achieved in LAISmart when the same wide-FOV sensor is used?
The answer is provided by the fact that when the LAISmart sensor is operated with vertically upward
observation, the forest leaf component still occupies a dominant proportion of the camera FOV, and
hence the larger FOV has less effect on the canopy gap fraction than in PocketLAI, which is operated
at a large viewing zenith angle.

5. Conclusions

In this research, coniferous canopy LAI in northeastern China was measured using two
smartphone sensor-based methods, LAISmart and PocketLAI, and their performance was validated
using a sophisticated commercial instrument (LAI-2000). The greatest difference between the two
smartphone-based methods is the camera viewing zenith angle: the former is close to 0◦ and the latter
57.5◦. The conifer LAI data collected by the two smartphone applications were compared with those
obtained by the LAI-2000 instrument, and the factors that limit the accuracy of the retrieved LAI were
analyzed. The following conclusions can be drawn:

(1) Considering the performance of LAISmart and PocketLAI, when the coniferous forest is observed,
the vertically upward observation, such as the 0◦ zenith used in the LAISmart method, can help
in obtaining observed values that are closer to those of the LAI-2000 instrument.

(2) The two smartphone-based methods show different behaviors with regards to accuracy of the
estimated leaf area index when there is uncertainty in the canopy gap fraction and the leaf
projection coefficient (G). For LAISmart, the effects of an overestimated canopy gap fraction
may be compensated for by the underestimated G-value when estimating LAI; for PocketLAI,
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the effects of an overestimated canopy gap fraction and an underestimated G-value on LAI
are cumulative.

(3) The large field of view (FOV) of the smartphone camera sensors have different effects on these
two methods. For LAISmart, a large FOV did not obviously decrease the leaf component in
the field, whereas with PocketLAI, too many trunks and canopy gaps were included under the
combination of the sensor’s large zenith angle and large FOV. Thus, it is difficult for PocketLAI to
measure coniferous forest canopy LAI accurately.

Compared with a professional canopy analyzer or a digital single-lens reflex (SLR) camera, the
smartphone has some advantages such as light weight, low price, and high environmental adaptability.
According to current experimental data and analytical results, the LAISmart method can produce
acceptable coniferous forest LAI, and it may be a promising prospective for forest management to
reduce intensive field labor and to improve the working efficiency. Furthermore, by combining the
camera and gyro of the smartphone, besides LAI, more interested parameters e.g., canopy height, stand
basal area, and stand volume can be calculated through the method of photogrammetry [46]. When
connected to the internet cloud server as stated by the concept of smart forest [47], the smartphone
method may highly facilitate the data collecting in the forest survey application.
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Abstract: The methods for measuring vegetation cover in Mexican forest surveys are subjective and
imprecise. The objectives of this research were to compare the sampling designs used to measure
the vegetation cover and estimate the over and understory cover in different land uses, using digital
photography. The study was carried out in 754 circular sampling sites in central Mexico. Four spatial
sampling designs were evaluated in three spatial distribution patterns of the trees. The sampling
designs with photographic captures in diagonal form had lower values of mean absolute error (MAE
< 0.12) and less variation in random and grouped patterns. The Carbon and Biomass Sampling Plot
(CBSP) design was chosen due to its smaller error in the different spatial tree patterns. The image
processing was performed using threshold segmentation techniques and was automated through an
application developed in the Python language. The two proposed methods to estimate vegetation
cover through digital photographs were robust and replicable in all sampling plots with different
land uses and different illumination conditions. The automation of the process avoided human
estimation errors and ensured the reproducibility of the results. This method is working for regional
surveys and could be used in national surveys due to its functionality.

Keywords: automated classification; sampling design; adaptive threshold; over and understory cover

1. Introduction

Vegetation cover is used in studies of the aerosphere, pedosphere, hydrosphere, and biosphere,
as well as their interactions [1]. Remote sensing (RS) technology, particularly the development
of vegetation indices, has allowed researchers to estimate vegetation cover at a regional and
global scale [2].

Validation of high and medium resolution satellite products is a critical aspect of its usefulness
in operational approaches [3]. The feasibility and precision of RS must be verified before data can
be applied [4]. One way of validating and re-scaling RS products is the use of field measurements,
especially the application of digital photography [5,6].

The use of digital photography to estimate the understory cover (shrub and herbaceous—nadir
angle) and overstory cover (arboreal—zenith angle) has been advocated in recent years as one of
the most accurate methods to estimate these variables [7,8]. According to Liang et al. [1] and White
et al. [9], this technique is the most reliable and can be easily employed to extract vegetation cover
information in different physiographic conditions.

Forests 2017, 8, 392; doi:10.3390/f8100392 www.mdpi.com/journal/forests15
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In relation to shrub and herbaceous cover (understory), robust segmentation algorithms have been
developed to discriminate bare soil and vegetation regardless of the type of vegetation present [10,11]
and type of luminosity (presence of shadows) [12]. On the other hand, vegetation cover estimations
have also progressed in terms of the classification methods [13,14], automation [15], and classification
when there is a mixture of vegetation-sky pixels [16].

The advantage of using a non-destructive method such as digital photography to estimate the
vegetation cover is that it can be related to the biophysical variables of an ecosystem at a lower
cost and time [17,18]. However, few operational studies (local, regional, and national surveys)
contemplate measuring this variable for lack of knowledge on how to pursue it efficiently [19] or for
the inconsistency of associating forest attributes to a sampling site with an estimated vegetation cover
that may exceed the site surface [20].

A disadvantage of the mentioned methods is that sampling sites in which the experiments are
made are generally small and homogeneous (low slope and similar land use conditions and plant
architecture) [21]. Therefore, the application of these techniques in operational inventories must
be planned to efficiently provide the information for which they are developed, and this condition
includes considerations of the accuracy of estimates, costs of data collection and processing, and the
speed of the process from the planning stage to the presentation of results [22].

At present, there is no agreement among researchers on how to define the optimum sampling
design to derive the leaf area index and vegetation cover in field measurements [23]. In a sampling
plot, the vegetation cover and its spatial distribution may vary when considering the effects
of management [24].

A rapid, reliable, and economical way to compare vegetation cover sampling designs is by
predicting the crown diameter through allometric ratios [25] and by estimating the spatial patterns of
trees in the sample site. The advantage is that the crown diameter and spatial clustering of trees can be
projected into a geographic information system [26], avoiding the intensive work of conducting and
comparing them directly in a survey campaign [27].

Due to the lack of an accurate vegetation cover estimation method for forest surveys in México,
the objectives of the present study were: (1) to compare the sampling patterns used to measure the
vegetation cover; and (2) to estimate the overstory (trees) and understory (shrub and herbaceous)
cover in sampling sites of the State of Mexico, Mexico, using a practical procedure and easily
reproducible method.

2. Materials and Methods

The State of Mexico is located in the southern part of the southern plateau of Mexico, between
parallels 18◦22′ and 20◦17′ North and meridians 98◦36′ and 100◦37′ West, in an area of 22,333 km2.
In this region and particularly around the Valley of Mexico, there are specific environmental and
historical conditions that have resulted in great biological and cultural diversification along mountain
ranges, basins, rivers, and forests.

Ceballos et al. [28] consider that the vegetation of the State of Mexico is represented by three main
ecosystems with variations: temperate-cold (temperate forests), semi-warm and sub-humid warm
(low deciduous forests), and arid zones (arid and semi-arid vegetation).

The study was carried out from January to September 2015; 754 circular sampling sites of 1000 m2

were established and distributed in eight forest regions of the State of Mexico (Figure 1) [29].
In each region, we collected information on the type of vegetation cover and land use.

The classification of vegetation was established according to the land use and vegetation chart, Series
IV, scale 1:250,000 [30], and was verified in the field.
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Figure 1. Spatial location of the sampling sites, within the forest regions of the State of Mexico.

2.1. Spatial Projection to Evaluate Sampling Designs

The regional survey was planned as a complement to the National Forest and Soil Inventory
(NFSI) in a simplified way, where the height and crown diameters were not measured as done in the
NFSI. These variables were planned to be estimated from the state and national surveys.

Before the survey phase, a pre-survey of 30 sites was carried out in the Texcoco forest region to
evaluate the spatial pattern of trees in four sampling designs of vegetation cover. Comparisons were
made between VALERI [31] and SLAT [32] designs, along with two alternative samples: CBSP (carbon
and biomass sampling plots) and RM (regular mesh). The VALERI design is composed of 13 samples,
SLAT of 15 samples, CBSP of 21 samples, and RM of 37 samples (Figure 2a).

Figure 2. (a) Photographic captures by sampling design: (1) RM, (2) CBSP, (3) SLAT, (4) VALERI;
(b) Projected photo capture areas (pixels) in a CBSP sampling design.
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Due to the difficulties of knowing the real vegetation cover within a sampling site, the comparison
of sampling designs was performed within a geographic information system. Initially, we recorded
the central coordinates of each site (as planned in the regional survey), the distance of the trees to the
central point, and their azimuth. Then we calculated the location of trees using the central location of
the plot and the azimuth and distance to the central point of the respective tree.

Given that no sampling of the tree crowns diameter was recorded in the survey, an allometric
relationship was established between the crown diameter and diameter at breast height [25]. The data
of this function were obtained from the National Forest and Soil Inventory [33]. The function is the
following: DC = 0.1553 + 0.1859 (Dn) (R2 = 0.79, p < 0.001), where DC is the tree crown diameter and
Dn is the diameter at breast height. The linear model is generalized because it comprised all of the
timber species found in the survey. The estimated DC allowed us to construct the crown influence area
projection of the trees, assuming a circular shape.

The spatial patterns of the trees were evaluated using the Average Nearest Neighbor (ANN)
equation [34]. If the pattern of the tree distribution is completely random ANN = 1, if ANN < 1
the trees are grouped, and if ANN > 1 the tree mass is regular (dispersed). The ANN analysis was
performed within the ArcGIS (10.3, Esri, Redlands, CA, United States).

2.2. Projected Photographic Captures within the GIS

A single photographic capture area of 16.38 m2 was established to determine the projected cover
per site and type of sampling (the procedure for estimating the area is described below). In each area we
built a grid (10 × 10) with the purpose of simulating the pixels of a photographic camera (Figure 2b).

The total observed cover was calculated by dividing the area of overlapping crowns between the
sizes of the plot (1000 m2). On the other hand, the estimated cover resulted from the following equation:

n

∑
i=0

NPSi
NTP

(1)

where NPSi is the number of projected pixels (grid) intersecting with the tree crown area and NTP is
the total number of pixels per sampling design.

As a quantitative measure of the error, the mean absolute error (MAE) was estimated:

MAE = N−1
N

∑
I=1

|Oi − Ei| (2)

where O is the observed value of the total projected cover, E is the estimated value (Equation (1)), and
N is the number of captures per sampling design.

2.3. Field Sampling

Sampling sites were targeted to include vegetation succession and degradation among land uses in
Central Mexico [29]. Information was collected on sites with and without anthropogenic intervention.

2.4. Photo Features

The photographic images were taken at a resolution of 5184 × 3456 pixels in JPG format. We used
a Canon EOS Rebeld T5RM camera. The camera lens was adjusted to a range of 18 to 55 mm focal
length and an ISO 200 with aperture and exposure in automatic mode.

2.5. Taking Photos at the Sampling Sites

We applied the CBSP sampling design with 21 captures to nadir and zenith, according to
Figure 3a. The lines represent the transects within the sampling site (L1–L4) and each letter represents
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a photographic capture. Figure 3b shows the photograph taken at zenith, where the distance between
the camera and the ground is 1.5 m.

Figure 3c shows the process of shooting understory (shrub and herbaceous strata), where the
interference of the personnel in the photograph was avoided using a stick of five meters long; in this
case, the distance between the camera and the ground was 3 m. Two levels of bubble were used to
control the angle in which the photographs were taken, one near the operator and the other one stuck
to the side of the camera.

Figure 3. Photographic capture process at sampling sites. (a) CBSP design, the letters correspond
to the distance of capture from the center of the sampling site; (b) photographic capture to zenith;
(c) photographic capture to nadir.

The purpose of the CBSP sampling was to capture the largest possible physical area with the
fewest samples. To do so, the visual field angle of the lens (θ) was adjusted depending on the size of
the sensor (n) and its focal length (f ):

θ = 2 × tan−1
(

n
2 × f

)
(3)

The real area covered by a photograph depends on three variables: sensor size (nij), focal length
of the lens (f ), and distance of the lens to the object (h). In the case of nadir, h is the distance between
the camera lens and the ground. For zenith, h corresponds to the distance between the lens and the
tree crowns. Equation (4) defines the calculation of the real area of the photograph:

Gij =
nij × h

f
(4)

where G is the actual length of the object in the horizontal (i) and vertical (j), where the horizontal
distance of the ni sensor size of the camera used was 22.3 mm and the vertical distance nj was 14.9 mm.

The value of f for the nadir photographs was set at 18 mm because h was established at 3 m.
By solving Equation (4), we estimated a real area to nadir of 9.2 m2.

In the case of zenith photographs, a larger real area was required to be representative at the
sampling site. The minimum average height of the tree crowns in the forested areas of the region was
4 m. At this point, the value of θ must be adjusted to reach the largest surface, so the value of f was set
at 18 mm. Then, by solving Equation (4), the real area at zenith is 16.38 m2.

In heterogeneous forests, such as the study area, the height of the trees can vary in short distances,
so in order to maintain the area captured independently of the height of the tree, the value of f can
be adjusted by multiplying the average height of the trees at the point of capture by the constant 4.5
(f = 4.5 × h). If the height value was four meters, the camera was placed as close as possible to the
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ground; in the case of exceeding six meters in height, the camera was placed at a fixed distance of
1.5 m on the ground.

2.6. Estimation of over and Understory Cover

The processing of images to estimate the vegetation cover is different in nadir and zenith
projections; in the first case a robust classifier is needed to distinguish the shade of the vegetation,
whereas the second one requires a methodology that distinguishes the cover of the canopy in contrast
to the sky (atmosphere). Due to the large number of photographs that needed to be processed
(24,182 photographs), a code was written in the Python 2.7RM language (Python Software Foundation
(PSF): Wilmington, DE, USA) to optimize the process (the software can be requested from the authors).
The following sections describe the methodology used.

2.6.1. Estimation of Overstory Cover

The photographs were taken in the morning and in the afternoon, before the sun surpassed 130◦

of azimuth or after 230◦ to avoid confusion due to the brightness of the leaves in association with
the sky. We used the SunEarthTool tool (http://www.sunearthtools.com/dp/tools/pos_sun.php) to
identify the appropriate times to take the photographs.

The methodology of Fuentes et al. [15] was adjusted within the Python language for image
processing. The images were converted to vector format in order to separate the three color channels
(R, G, B). The blue channel (B) was used to filter the clouds from the image because it gives the best
contrast between the cover of the foliage and the sky with the presence of clouds. The adaptive
threshold method was used to classify the image [35].

The method consists of dividing the image into sub-images. The threshold (M) of the sub-image
is calculated using the mean or median Gaussian methods. In this case, the median was used
as a threshold to perform the separation. The size of the blocks used to divide the image was
200 × 200 pixels. The sum of the proportions of the number of pixels with vegetation in each block to
the total number of pixels of the photograph was the cover of the canopy per photograph. Figure 4
shows an outline of the threshold calculation using this method. The overstory cover includes branches
and the upper stems of trees.

Figure 4. Outline of thresholds in blocks by the adaptive threshold method; the left part of the
histogram corresponds to pixels with vegetation, the right side of the histogram corresponds to pixels
without vegetation. The M value is the threshold for each block.
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2.6.2. Estimation of Understory Cover

The classification of green vegetation and soil was achieved by calculating a threshold within a
two-dimensional space. The images were transformed in the color space L*a*b* [10]. The green-red
component a* was used to distinguish the vegetation from the bare soil, where the values skewed to
the left of the histogram indicated green pixels (vegetation) and those skewed to the right showed
pixels in red (bare soil). The assumption of the methodology is that the distribution of this component
tends to be a bimodal Gaussian distribution.

F(x) =
W1√
2πσ1

e
(
(x−μ1)

2

2σ2
1

)
+

W2√
2πσ2

e
(
−(x−μ2)

2

2σ2
2

)
(5)

where μ1 and μ2 are the green vegetation and soil average, respectively; and σ1 and σ2 are the standard
deviations of green vegetation and soil, respectively. The value W1 is a weighting of the pixels in green
and W2 is the respective weighting for soil. The image is scaled to values of 0–255.

Threshold Adjustment

Regardless of the land use, the value of the pixels is between 75 and 150 in all photographs; to
make an optimal adjustment, an initial threshold was set, which was obtained in the middle of the
range 75–150 (T0 = 112). The optimal value of the threshold (T1) occurred when the functions of
Equation (5) were equal (Figure 5). In this case, the error of omission of vegetation and soil classification,
represented by areas S1 and S2, is minimal. The following equation was used to solve T1:

AT12 + BT1 + C = 0 (6)

where:
A = σ2

1 − σ2
2

B = 2 × (
μ1σ2

2 − μ2σ2
1
)

C = σ2
1 μ2 − μ1σ2

2 + 2σ2
1 2σ2

2 ln(σ2W1/σ1W2)
(7)

Figure 5. Identification of the optimal T1 threshold in a bimodal distribution.
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In extreme situations where bimodality is not evident, that is, photographs where there is only
vegetation or bare soil, we applied the algorithm proposed by Liu et al. [10].

2.6.3. Calculation of Total Vegetation Cover

Total vegetation cover (TVC) was calculated as follows (Figure 6):

Figure 6. Flowchart for estimating the cover of vegetation vertical strata at sampling sites in the State
of Mexico.

TVC =
∑n

i=0 FCC
NPT

+

(
1 − ∑n

i=0 FCC
NPT

)
×

(
∑n

i=0 FCV
NPT

)
(8)

where FCC is the proportion of the number of pixels classified as aerial (overstory) cover, FCV is the
fraction of the vegetative cover of the understory (lower stratum), and NPT is the total number of
pixels contained in the image. The sum of TVC in all images of the CBSP design was considered the
total cover per plot. Figure 6 presents the flowchart of the process of classification.

2.6.4. Accuracy in Cover Classification

The accuracy of the cover estimates obtained using the proposed methodology was calculated
through a comparison of these values using a visual classification of the images within the ENVI 5.0RM

program. We considered two classes to distinguish the colors in the photographs. In understory, all
pixels in green were considered as leaves, and the rest were classified as bare soil. In overgrowth, all
pixels corresponding to leaves, stems, and branches were classified as cover, and the rest of the pixels
were classified as sky. As mentioned in [11], visual classification is considered as the real values of
cover in the image and those are compared with the automated threshold proposed in this research.

Images of 12 zenith plots (252 images) and 11 plots to nadir (231 images) were used. The plots
represented different land uses. The accuracy of the implemented classifier (AC) was evaluated using
the following formula [11].

AC = 100 × (1 −
∑n

i=1

∣∣∣ A−B
A

∣∣∣
N

) (9)
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where A represents the number of pixels with a real presence of vegetation in the reference image
(visual classification) and B represents the number of pixels classified as having vegetation in the
applied methods. An average accuracy was obtained in each plot evaluated, where 100% corresponds
to a classification without errors.

3. Results

3.1. Sampling Design

The observed (total area of projected crowns) and estimated (projected photographic captured
area) values of the projected cover (%) per type of sampling design and spatial pattern of the trees are
shown in Table 1. In the pattern analysis of the trees, 10 plots corresponded to a grouped (clustered)
pattern, 15 to a random pattern, and five plots belonged to a dispersed cluster. The calculation of the
estimated area is explained in Equation (1).

Table 1. Estimated and observed cover values (%) per type of sampling and spatial pattern of trees.

Design Spatial Pattern Observed (%) Estimated (%) MAE Coefficient of Variation

RM
Grouped 87.1 80.9 0.175 0.24
Random 64.0 58.1 0.173 0.34

Dispersed 34.9 29.0 0.171 0.06

CBSP
Grouped 87.1 85.3 0.091 0.09
Random 64.0 62.5 0.097 0.33

Dispersed 34.9 32.9 0.089 0.16

SLAT
Grouped 87.1 86.9 0.079 0.22
Random 64.0 62.2 0.119 0.38

Dispersed 34.9 33.7 0.117 0.20

VALERI
Grouped 87.1 34.2 0.153 0.23
Random 64.0 31.7 0.179 0.41

Dispersed 34.9 29.2 0.155 0.22

RM: regular mesh; CBSP: Biomass and carbon sampling plots; SLAT: tree and land use sampling; VALERI: Remote
sensing ground validation instrument.

The CBSP design showed the least error in two of the three types of spatial patterns. The second
design that showed minor error was SLAT, which indicates that the sampling design with photographic
captures in diagonal form exhibits better results. The RM and VALERI designs had the highest
and lowest number of samples, respectively. However, their errors were the highest (MAE > 0.15).
These results practically discard them from being considered in operational sampling.

The random spatial pattern showed a higher coefficient of variation (CV) in the four sampling
designs due to the design geometry. The dispersed pattern was the second one with the highest CV
in the CBSP, SLAT, and VALERI designs. Within the grouped pattern, the CBSP sample recorded the
lowest variation.

3.2. Segmentation of Images

The use of the Python program allowed us to make the segmentation threshold selection consistent.
The number of captured photos in the sampling makes it impractical to analyze the photographs in a
supervised way or in semi-automated processes (photo by photo). The developed program classifies a
sampling plot of 42 photographs at zenith and nadir in 30 s. The processor used has 2.6 GHz and 8 GB
of memory.

3.3. Classification of Overstory Images

Figure 7 shows the classification of zenith images in four cover conditions. Figure 7a and its
classification 7b represent the photograph with the highest cover in the whole 97% sampling (Oyamel
fir forest). Figure 7c, d represent 50% cover (Oyamel fir forest secondary vegetation). Figure 7g
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shows how the classifier correctly discriminates foliage from clouds (secondary vegetation of Pine
Forest). Finally, Figure 7i presents a correct classification with minimum cover (secondary vegetation
of Pine Forest).

Figure 7. Classification of zenith images, with different cover conditions. Images (a,c,f,h) correspond
to the original photograph. Images (b,d,g,i) correspond to the adaptive threshold classifier.

3.4. Classification of Undestory Images

Figure 8 presents a sample of four photographs in different land use and different illumination
and vegetation cover conditions, as well as their respective classification and histogram. Figure 8a,b
are presented within a plot of land with secondary vegetation of Oyamel fir forest; the threshold in
this capture was a* = 119 and the area under the curve with vegetation (V) was 43%. Figure 8c,d
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correspond to herbaceous vegetation within an Oyamel fir forest; in this particular vegetation the
illumination was reduced because of the high overstory cover, with an understory cover of 62%.

Figure 8f,g show the image within a Rainfed Agriculture area and we observed that the classifier
adequately discriminated between bare soil vegetation and shadows; the threshold in this image was
a* = 122 and the vegetation cover was 35%. Figure 8i,h are presented within a plot without vegetation;
the classifier was able to detect the minimal green cover found in the photograph. In this case, as the
distribution of the histogram was unimodal, the threshold was set at a* < 105 and the vegetation cover
was 0.8%.

Figure 8. Classification of images in different land uses to nadir. Images (a,c,f,h) correspond to the
original photograph. Images (b,d,g,i) correspond to the classified images. The third column shows the
distribution of the histogram according to the cover.

3.5. Accuracy of the Classification

Table 2 presents the comparison of the classified cover (%) by the supervised classification method
(visual classification) and the zenith method (Estimated). The accuracy was high in all land uses with
an average of 93%. In relation to the coefficient of variation CV (representing the variability of the
sampling design), we observed that this variability increased as the estimated cover of the different
land uses declined. In primary forests (BQP, BQ, BA, BPQ), the variation of the sampling design was
low; insofar as there was disturbance in the land use (VSa, VSA, VSh) the variation increased because
the static designs were sensitive to the opening of the canopy.
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Table 2. Accuracy evaluation of the visual interpretation of the images in 12 zenith sampling plots
(overstory cover).

Land Use Description Classified (%) Estimated (%) AC CV

BQP Oak-pine forest 84.0 83.0 99.0 0.06
BQ Oak forest 86.0 84.0 96.0 0.09
BA Oyamel fir forest 82.0 78.0 94.0 0.10

BPQ Pine-oak forest 74.0 75.0 96.0 0.12
VSa/BQ Secondary shrub vegetation of oak forest 52.0 48.0 90.0 0.13

VSA/BPQ Secondary arboreal vegetation of pine-oak forest 69.0 67.0 94.0 0.17
VSa/BQP Secondary shrub vegetation of oak-pine forest 71.0 69.0 96.0 0.21
VSa/BQP Secondary shrub vegetation of oak-pine forest 50.0 49.0 96.0 0.22
VSA/BA Secondary arboreal vegetation of oyamel fir forest 68.0 62.0 91.0 0.24
VSA/BP Secondary arboreal vegetation of pine forest 22.0 22.0 91.0 0.28
VSh/BP Secondary herbaceous vegetation of pine forest 16.0 15.0 92.0 0.66

VSh/BPQ Secondary herbaceous vegetation of pine-oak forest 31.0 35.0 87.0 0.68

Table 3 presents the evaluation of the vegetative cover to nadir. The average accuracy was 94%.
As in zenith, the estimated cover maintains a negative correlation with CV. For this classification, the
greatest cover is found in secondary herbaceous vegetation (VSh) where the variability of the sampling
is lower; as the vegetation transits to mature forest, the CV is high due to the fact that the understory
cover is random. In sites with non-vascular vegetation (bryophytes), the classifier overestimates the
percentage of vascular vegetation because it associates the green color with this type of cover.

Table 3. Accuracy evaluation of the visual interpretation of the images in 12 sampling plots at nadir
(understory cover).

Land Use Description Classified (%) Estimated (%) AC CV

VSh/BPQ Secondary herbaceous vegetation of pine-oak forest 82.10 85.00 89.0 0.06
VSh/BP Secondary herbaceous vegetation of pine forest 78.43 79.00 96.0 0.10

TA Rain-fed agriculture 27.37 28.00 90.0 0.16
VSh/BA Secondary herbaceous vegetation of oyamel fir forest 84.00 83.50 98.0 0.19
VSa/BQ Secondary shrub vegetation of oak forest 32.70 32.00 94.0 0.51

PC Cultivated grassland 47.23 49.33 97.0 0.84
BP Pine forest 29.30 27.67 95.0 0.86

VSA/BPQ Secondary arboreal vegetation of pine-oak forest 37.65 34.42 92.0 0.87
BQP Pine-oak forest 30.69 29.87 96.0 0.88
BQ Oak forest 6.58 6.00 94.0 0.94

VSa/BQP Secondary shrub vegetation of oak-pine forest 5.63 6.95 87.0 0.98

4. Application of CBSP Design to the Regional Survey

After validating that the CBSP design was robust and precise enough to be used in a regional
survey, it was implemented in the campaign through a replication of the procedure used in the
pre-survey evaluation in the 754 sampling plots.

It is identified that the application of the sampling design allowed us to capture photographs in
an easy and fast way in the majority of land uses.

Figure 9 shows the average total vegetation cover of the main land uses in the regions of the State
of Mexico. The cover data are presented from highest to lowest and from mature forest to agriculture.
Mature forests have a tendency of 50–90% cover in the eight regions, and there was higher average
coverage in the region of Toluca (70–90%) (Figure 9a); in wooded areas with secondary tree vegetation
(VSA) and secondary shrub and herbaceous vegetation (VSa and Vsh), the cover ranges from 20 to 90%.
This is because the limit of tree vegetation in these plots is a mixture of perennial and deciduous cover,
therefore presenting a seasonal change of vegetation cover because of the weather pattern. In this case,
the region with the highest coverage was Zumpango (Figure 9b) and that with the lowest coverage
was Coatepec (Figure 9f).

With regard to cover in agricultural areas (RA, TA), the development of cover over time follows a
spatial pattern associated with the time of planting and growth. Cover starts at <10% in all regions
and the percentage increases up to 100%, as in the Toluca and Texcoco regions (Figure 9a,c).
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Figure 9. Average total vegetation cover by land use in the eight regions of the State of Mexico:
(a) Toluca Region; (b) Zumpango Region; (c) Texcoco Region; (d) Tejupilco Region; (e) Atlacomulco
Region; (f) Coatepec Region; (g) Valle de Bravo Region; (i) Jilotepec Region. (1) Mature forest;
(2) disturbed forest; (3) grassland; (4) agricultural area.

5. Discussion

The use of digital photography for vegetation cover estimations is an easy, low-cost, and
potentially suitable approach for hard-to-reach places. These properties give this method an advantage
over direct (destructive) and indirect (fisheye cameras) methods [13]. In Mexico, operational surveys
such as the National Forest and Soils Survey [33] generate vegetation cover estimations that rely on
the technician criteria in the field. This research proposes an accurate survey design method which is
potentially suitable for the forest sector in the country.
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The advantage of using field data is its strength for the validation of satellite information, as a way
to use the cover values at greater scales [6]. On the other hand, a disadvantage of field photography
data is the requirement of several photographs in order to produce a reliable estimate. However, there
are software methods for the automation of these processes, such as the one proposed in this research.

5.1. Sampling Designs Comparison

One important consideration in field vegetation cover measurements is the need to determine an
appropriate sampling design [31]. The methodologies for measuring vegetation cover are ambiguous
in reference to which method should be used to ensure a correct estimation within a sampling plot.
The projection made in the GIS allowed us to observe differences in vegetation cover estimations with
a simple scheme. The results provide important information for choosing a sampling design and
reducing the costs of the collection and processing of field data [22], considering the large amount of
samples of this survey.

Martens et al. [36] show that the spatial patterns influence the height, cover, and distribution of
vegetation in their different strata. Our results showed that, independently of the spatial pattern of the
survey sites, sampling designs that captured diagonal photographs (CBSP and SLAT) exhibited the
least estimation error.

The advantages of these designs are the low number of photographs needed (42 phothographs)
and their easy field implementation. This ratifies the vegetation cover estimation operability using this
method and how it can be related to grouping indices to evaluate the effect of the forest management
of zones without disturbance on disturbed zones [24].

5.2. Sampling Survey

Forest surveys in several parts of the world, including Mexico, are carried out in circular plots
of 1000 m2 (17.85 m radius) [22]. In this research, we adopted this design to evaluate the biomass
and carbon storage in different land uses within the State of Mexico. The CBSP design proved to be
feasible for its implementation in different land uses and spatial patterns of the trees; this simple design
allowed the application in distant sampling points and rugged terrain, which makes it an operative
method to capture vegetation cover with digital photographs.

An example of the sampling operability is that bubble levels were used to stabilize the camera at
each sampling point, instead of using tripods to fix it. This technique helped to reduce the time to take
the photographs and presented no considerable error when compared to tripod shots [37].

The number of samples and their arrangement was another variable to be considered for the
sampling to be operative and related to other variables measured in the plot (i.e., biomass, carbon),
so captures were fixed at the ends of the sites [20]. The CBSP design obtained the best results when
estimating the vegetation cover. The efficiency of its application and smaller errors in the cover
estimation turns it into a practical design for this type of application, besides saving storage and time
when processing the images.

The spatial distribution of trees within the site is an important element for the dynamics of the
forest ecosystem [26]. In the case of overstory cover, we observed that the applied sampling design
showed a negative trend between the estimated cover and its coefficient of variation (CV). The primary
forests presented high and compact canopy covers (low CV); when reducing it, the canopy cover
tends to be dispersed (high CV). In the case of understory cover, the opposite occurs. In disturbed
areas (secondary vegetation), the cover is larger and compact; when this cover is reduced, the pattern
is dispersed.

The real area of a photograph is another important aspect that has been little explored in
vegetation cover sampling design. Researchers generally use a fixed lens viewing angle (35–40◦)
to estimate the canopy cover, so a greater opening angle would be measuring the closure of the canopy.
Jennings et al. [38] describe in detail the difference between these two concepts. In this study, we
observed that in real situations the height of the trees in a sampling site is heterogeneous. For this

28



Forests 2017, 8, 392

reason, we proposed to adjust the focal length of the camera at the point of capture by a constant as
this ensures that one is able to approximate and make repeatable the capture area independently of the
architecture of the trees.

5.3. Automated Classification of Images

The automation of vegetative cover classification is a process that avoids the error of the human
component and ensures the possibility of reproducing the results [11]. The efforts to automate
image classification have focused on programs such as MATLAB [12,15,39], WinScanopy [40], or
Photoshop [41], among others. But although the former meets the requirement of making the batch
processing of the images operative, it has the disadvantage of having an additional cost. The other
programs have the disadvantage of processing the images photo by photo, which discarded them
for the analysis of cover in this study. The PythonRM program was chosen for the versatility of
the specialized libraries available, and for being a free access program. The written code enabled
us to process in batch the images of the sampling in a time similar to that described in programs
like MATLAB.

5.3.1. Overstory Cover

In the classification of digital photographs, binary methods (global thresholds) are generally used
to estimate canopy cover [42]. The colors of the classified images have gray tonalities for vegetation
and white for the sky. According to Chityala and Pudipeddi [35], the accuracy in the classification for
the global threshold methods is low. The problem is trying to find the maximum variance between two
logical groups of segments within the whole image, which can cause confusion in the classification by
overexposure in the camera or image capture at inappropriate times. In this research, we propose the
use of the adaptive threshold in the blue space of the image [15]. The method is based on the same
principles of the global threshold, but the segmentation statistics are done at the block level within the
image, allowing greater accuracy in the overall classification.

The accuracy of the classification is high and related to the comparison of binary algorithms
performed by Ghatthorn and Beckschäfer [42]. The sampling was directed to avoid the effect of the
sun (the captures were made before noon and at near sunset); however, in the sampling, there were
circumstances that caused the photographs to exceed the proposed range, such as the VSh/BPQ land
use plot (Table 2), which showed the lowest precision (87%) [16]. Nonetheless, the development of
methodologies applied to this problem are beyond the scope of this research.

5.3.2. Understory Cover

There are many methods to extract the vegetation cover fraction [11,12,43] so the degree of
accuracy is an important factor in the efficiency of field measurements. For example, supervised
classification has a high accuracy but low efficiency, while unsupervised classification has a high
efficiency but low precision due to commission and omission errors [1].

The algorithm proposed by Liu et al. [10] has the property of being simple, easy to automate,
and has a high degree of precision. When comparing it with the supervised classification in
different sampling plots, the results in terms of precision were high (>87%); the main problem of the
misclassification was the confusion of the vascular vegetation with bryophytes, which in the color
space *a detects a green color that is difficult to discern. In conditions of low illumination due to the
effect of the canopy, the algorithm had no problems in correctly classifying vegetation and shade [12],
and with a single component predomination (bare soil) in the photograph, the classifier generated
good results (Figure 8i).

The two methods proposed to evaluate the over and understory vegetation cover were robust and
replicable in all sampling plots. The reason for estimating the foliar projective cover rather than the
leaf area index is that the former is a more adequate variable to characterize vegetation [44] since the
projective foliar cover captured with digital photographs contains information on individual plants
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and their spatial distribution. With this perspective and considering the validation of the proposed
sampling and plot area, we will contemplate the validation of biophysical variables calculated with
remote sensors in future work of the research group.

6. Conclusions

The over and understory vegetation cover was estimated with digital photographs in sampling
plots of the State of Mexico. The high efficiency and precision of the classification methods indicate
that they are robust for discerning vegetation in different land uses and illumination conditions.

The use of digital photography reduces the ambiguity of vegetation cover estimations in regional
and national surveys. The proposed method is easily reproducible in heterogeneous land and
vegetation conditions.

The automation of the process using a free programming language avoided human errors and
ensured the reproducibility of the results at a low cost.

The sampling methods using the capture of diagonal-angled photographs were the best way
to obtain less biased information when taking digital photographs at a circular sampling site.
The simulation showed that the CBSP design has a smaller error when considering the spatial
distribution of trees within the sampling site. Its easy field management, the number of photographs
per site, and its precision make it an operative design. One additional advantage of the proposed
field survey is that the real area covered by the photograph is independent of the height of trees.
This guarantees representability and avoids image superposition in the sampling site.

Mature forests have a high and compact overstory vegetation cover, which tends to be reduced in
secondary forests. The greater cover of the understory is found in secondary forests, where it is denser.
The cover of the undergrowth declines in mature forests.

The application of this method for regional and national surveys is recommended.
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Abstract: In this paper GPS (Global Positioning System)-based methods to measure L-band GPS
Signal-to-Noise ratios (SNRs) through different forest canopy conditions are presented. Hemispherical
sky-oriented photos (HSOPs) along with GPS receivers are used. Simultaneous GPS observations are
collected with one receiver in the open and three inside a forest. Comparing the GPS SNRs observed
in the forest to those observed in the open allows for a rapid determination of signal loss. This study
includes data from 15 forests and includes two forests with inter-seasonal data. The Signal-to-Noise
Ratio Atmospheric Model, Canopy Closure Predictive Model (CCPM), Signal-to-Noise Ratio Forest
Index Model (SFIM), and Simplified Signal-to-Noise Ratio Forest Index Model (SSFIM) are presented,
along with their corresponding adjusted R2 and Root Mean Square Error (RMSE). As predicted by the
CCPM, signals are influenced greatly by the angle of the GPS from the horizon and canopy closure.
The results support the use of the CCPM for individual forests but suggest that an initial calibration
is needed for a location and time of year due to different absorption characteristics. The results of the
SFIM and SSFIM provide an understanding of how different forests attenuate signals and insights
into the factors that influence signal absorption.

Keywords: canopy closure; global positioning system; hemispherical sky-oriented photo; signal
attenuation; geographic information system

1. Introduction

The Global Positioning System (GPS) constellation is primarily used for position, navigation,
and timing purposes. However, the scientific community has used the signals transmitted from
GPS satellite vehicles (SVs) for applications in many different research fields. Some GPS signal
studies include GPS performance, wireless communication reliability, and the combination of GPS
signal-to-noise ratios (SNRs) with light detection and ranging (LiDAR) data to measure signal loss
in forests [1–5]. The L1 frequency of the GPS system broadcasts at 1575.42 MHz and is attenuated
by vegetation. Developing a method to predict with confidence the degree to which GPS signals are
affected by forest structure provides useful information on L-band scattering and absorption. This
work is important to understanding GPS performance and to scientific studies that employ other
microwave signals, such as satellite communications, air-to-ground communications, cellular phones,
and synthetic aperture radar (SAR). It is also relevant to studies that explore forest growth modeling
and use light interception predictions [6–12].

Both in previous studies and in conventional SAR remote sensing applications, forest vegetation
is generally assumed to be uniformly-distributed stratified media [13]. This builds on Beer’s Law and
suggests that the zenith angle of the microwave source is a key factor governing the scattering of radio
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waves in a particular forest stand. However, ecologists have long recognized that forest structure is far
from uniform.

In the literature, there are many different techniques used to model signal loss through forest
structure. For the research presented here, the most relevant model is the Canopy Closure Predictive
Model (CCPM) described in [14]. The CCPM model consists of capturing two primary components:
one based on the atmospheric attenuation, and the second based on attenuation by the forest canopy
based on Beer’s Law. When considering Beer’s Law, if we consider the forest as a uniform slab of
vegetation, the absorption of a signal exhibits a linear dependence between the signal propagation
path length through the media, an absorption coefficient, and the concentration of medium yielding:

L = αdc (1)

where L is attenuation, d is the path length, c is the concentration of the media, and α is an absorption
coefficient [1]. The CCPM was developed for a managed pine forest and the Beer’s Law component
consists of the product of the sine of the zenith angle and the canopy closure value. The CCPM makes
the assumption that the concentration and absorption parameters of Beer’s Law can be combined into
just the canopy closure (CC) of the forest, where CC is the percent of pixels classified as canopy in a
window of interest inside a hemispherical sky-oriented photo (HSOP).

As such, there is a need to determine the concentration of the forest through the path of signal
propagation [5]. Our hypothesis is that while zenith angle may be the dominant factor in attenuation,
other independent parameters leading to variations in signal strength will be observable, and that
the inclusion of HSOP-derived CC data at 1-degree zenith angles can precisely measure the degree to
which GPS signals from individual SVs are affected by forest canopy.

The goal of this study is to estimate the values of L1-band GPS signals in multiple diverse forests
using observations from GPS and CC values derived from HSOPs. The objectives are to (1) develop an
atmospheric attenuation model for GPS SNR values, (2) develop an overall canopy closure predictive
model (CCPM) independent of study site, and (3) create an adjustment index for each study site
that can be applied to the CCPM in order to allow for refinement of predictions based on forest
absorption characteristics.

2. Materials and Methods

2.1. Study Site

The data used in this study were collected in 15 different forests throughout the United States.
Figure 1 depicts the location of each forest and Table 1 provides forest details, including the date of
each data collection, the average and standard deviation of both the diameter at breast height (DBH)
and tree height, and a brief description.

Table 1. Forest study sites and description.

ID City Vicinity Tree Type Date (ddmmyy) HT/STD (m) DBH/STD (m) Notes

1 West Point, NY Oak/Hickory 110515 23.4/3.4 0.30/0.18 Military
100% Deciduous 100815 Reservation

241015
170216

2 IMPAC 100% Pine Managed Forest
Gainesville, FL Control Plot 110215/250815 5.77/1.4 0.09/0.05 Fertilization
Gainesville, FL Weeded Plot 110215/250815 8.21/0.64 0.12/0.04 Research plots

Fertilized and Weeded 110215/250815 9.05/0.67 0.13/0.06
3 Hogtown Forest 80% Deciduous 050216 20.4/2.47 0.46/0.08 Uplands Natural Mixed Forest

Gainesville, FL 20% Coniferous Loblolly Woods Nature Park
4 Charleston, SC 90% Pine, 10% Deciduous 230516 24.0/3.1 0.36/0.05 Francis Marion National Forest
5 Alexandria, LA 90% Pine, 10% Deciduous 190616 23.2/4.1 0.56/0.11 Kisatchie National Forest
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Table 1. Cont.

ID City Vicinity Tree Type Date (ddmmyy) HT/STD (m) DBH/STD (m) Notes

6 Cold Spring, TX 80% Pine, 20% Deciduous 200616 19.5/4.7 0.52/0.13 Sam Houston National Forest

7 Georgetown, TX Ceder Elm and Live Oak with
Ash Juniper 220616 6.3/1.1 0.42/0.11 North Fork of San Gabriel River

8 Cloudcroft, NM Ponderosa Pine 230616 23.3/3.2 0.41/0.12 Lincoln National Forest
9 Flagstaff, AZ Ponderosa Pine 250616 19.2/6.8 0.41/0.07
10 Guadalupe, CA Eucalyptus 020716 28.2/3.3 0.42/0.14
11 San Luis Obispo Agrifolia 030716 6.9/1.5 0.22/0.09 Military Base

12 Davenport, CA 75% Redwood, 25% Douglas
Fir and Tanoak 050716 54.0/6.3 1.20/0.56 California Polytechnic Research Center

13 Davenport, CA 80% Tanoak, 25% Douglas Fir 050716 18.7/1.4 0.28/0.08 California Polytechnic Research Center

14 Tahoe NF Ponderosa Pine 070716 26.5/2.2 0.53/0.16 University of California, Berkley
Sagehen Experimental Forest

15 Nederland, CO Aspen 090716 8.4/2.6 0.20/0.06

Note: Where HT is Tree Height, DBH is Diameter at Breast Height and STD is Standard Deviation.

Figure 1. A map showing all the forest study sites used in this research.

The vast majority of data were collected during the summer of 2015 (Table 1). Due to personnel
availability constraints, weather conditions varied between each location. In each case, best efforts
were made to collect data in the morning or during times with mostly-cloudy conditions to avoid sun
glare on the images. During this data collection period, California had a lack of winter precipitation
and was in drought conditions. In contrast, the gulf coast region had higher precipitation than usual.

2.2. GPS Signal Observations

To obtain a measurement of signal loss, GPS L1-band SNR observations were collected both in
the open and inside each forest. Four Topcon Hiper Lite global navigation satellite system (GNSS)
receivers were used, with three receivers set up inside each forest and one receiver positioned in
an open area within 1 km of the others. Comparing SNR values observed from the GPS receiver in
the open to those in the forest provides the signal attenuation observed at a specific site at a specific
time. The three receivers that were set up inside each forest were positioned at random locations
and recorded at least 60 min. of observations. The observations included multiple National Marine
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Electronic Association (NMEA) messages at a rate of 1 Hz. The recorded messages included: time,
GPS SV SNR values, GPS SV zenith angle, and the azimuth of each SV with respect to the GPS receiver.
We collected data from an average of 10 GPS SVs, resulting in 36,000 observations per GPS receiver,
per data collection. As such, given 19 data collections, each with four GPS receivers, the data used in
this research includes over 2.5 million GPS SV observations. It is important to note that for each GPS
receiver setup, we calculated the mean SNR for each SV at 1-degree increments from the horizon and
used these values in the modeling process.

A control experiment was conducted in January 2015, where all four GPS receivers were set up
within 20 m of each other in the open. No statistical difference between each GPS receivers’ SNR
observations was observed [15].

2.3. Hemispherical Sky-Oriented Photos and Image Processing

A single HSOP image was taken at each GPS receiver setup location in each forest with the
camera directed straight up, and the top of the photo oriented north. The resulting photos are circular,
with zenith in the center of the image and the horizon on the outer edge. An example is shown in
Figure 2. The camera and lens combination used to collect these images consisted of an IPIX fisheye
lens mounted on a Coolpix P6000 Nikon camera (Nikon Ltd., Tokyo, Japan).

Figure 2. A hemispherical sky-oriented photo taken during the spring data collection at West Point,
New York, with the global positioning system (GPS) satellite vehicle positions (red circles) plotted
inside the image.

Figure 3 shows the frequency distribution of the number of GPS SV observations recorded during
the spring data collect at West Point, NY.
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Figure 3. The frequency distribution of GPS observations at different angles from the horizon during
the data collection in the spring at West Point, New York.

Image processing of the collected HSOP images was conducted using ArcGIS software
(Environmental Systems Research Institute (ESRI), CA, USA). ArcGIS allows for the establishment of
spatial reference, the delineation of each photo into one-degree rings associated with each angle from
the horizon, and the ability to convert each image into a binary, black and white, image, where the sky
is white and forest structure black. Tools within ArcGIS allow for the isolation of the blue channel of
each HSOP for the creation of the binary image. This is beneficial because the blue channel is better
suited to distinguish clouds and sun glare [16–21] than the red and green channels. When creating
the binary image, the Natural Breaks function was used to determine appropriate threshold values.
Additionally, each histogram and binary image was visually inspected for accuracy. During this
process, each Red, Green and Blue (RGB)histogram and corresponding open-sky threshold values were
examined to ensure there were no abnormalities. The resulting binary images were then compared to
the original images to ensure proper classification. Figures 4 and 5 are the resulting binary HSOPs
from the Intensive Management Practice Assessment Center (IMPAC), a managed forest in Gainesville,
Florida, during needle minimum and needle maximum. The three plots in each of these forests
were unique in that the species and spacing of the trees were the same. The difference between the
plots resulted in different fertilization processes resulting in different DBH and tree heights between
the plots.

During image processing, the percentage of pixels classified as canopy at specific angles from
the horizon inside each specific forest was calculated. These CC values serve as the concentration of
forest media at specific angles inside the forest. Instrumental to our modeling process is the calculation
of CC fractions for each angle from zenith. This was conducted using the zonal statistics tool within
ArcGIS for each 1◦ ring, as shown in Figure 6. Using the zonal statistics tool, the corresponding CC
value for each SV location was extracted for use in statistical modeling.
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Figure 4. The resulting binary Hemispherical Sky-Oriented Photos (HSOPs) taken at the Intensive
Management Practice Assessment Center managed forest taken during the needle minimum period
with the GPS satellite vehicle positions (red circles) plotted inside the image.

Figure 5. The resulting binary images taken at the Intensive Management Practice Assessment Center
managed forest taken during the needle maximum period with the GPS satellite vehicle positions (red
circles) plotted inside the image.

Figure 6. The 1◦-ringed hemispherical sky-oriented photo with a gray scale range of values associated
with the canopy closure values. Dark colored rings indicate a high level of canopy closure and white
rings indicate less forest media.
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3. Results

The models presented below are the results of regression modeling. This process consisted of
initial data exploration of many different variables other than those presented. During the analysis,
we identified ways to linearize the relationships within each model. Four models are presented and
include an atmospheric model, a model optimized using HSOPs, and two models using dummy
variables for each forest to generate an absorption index associated with the different forests.

The first analysis conducted used all the open receiver GPS observations to create an overall
GPS SNR atmospheric model. In this work, we built on the previous work where the natural log of
the angle from the horizon (lnel) of the GPS SV was the key parameter in the modeling process [21].
The resulting overall GPS L-band SNR atmospheric model (SAM) has a Root Mean Square Error
(RMSE) of 2.01 dB and an adjusted R2 of 0.81. The SAM equation applies to all observations where no
vegetation is present over the GPS receiver. The SAM equation is:

SNRopen = 7.79 (lnel) + 18.85 (2)

When exploring how different forests influence GPS signal, we incorporated the use of the
CCPM. The CCPM approach to model SNR incorporates GPS observations from all forest study sites.
The CCPM uses two variables. The first variable is lnel, as in the SAM equation, which linearizes the
problem and is also vital in modeling the atmospheric component of the observed SNR. The other
variable in the CCPM is the Beer’s Law component, the product of CC and the sine of the zenith
angle. Table 2 shows the results of the CCPM for each individual forest, with the equations taking the
following form:

SNR = a + B1 (lnel) + B2 CC sin(ZA) (3)

where lnel is the natural log of the angle of the SV above the horizon, ZA is the zenith angle, and SNR
units are in decibels.

Table 2. Canopy Closure Predictive Model Results with coefficients a, B1, and B2 are in reference to
Equation (3) and the root Mean Square Error (RMSE).

ID City Vicinity a B1 B2 RMSE Adj R2

1 West Point, NY 18.85 7.79 −5.53 3.28 0.60
2 IMPAC 19.32 7.79 −5.49 2.78 0.71
3 Hogtown Forest, Gainesville, FL 25.05 5.26 −6.02 3.02 0.66
4 Charleston, SC 27.87 4.25 −7.00 3.10 0.64
5 Alexandria, LA 25.77 4.87 −5.24 3.03 0.60
6 Cold Spring, TX 26.89 5.61 −16.35 2.80 0.59
7 Georgetown, TX 23.94 6.25 −8.02 3.71 0.61
8 Cloudcroft, NM 25.71 5.99 −6.99 3.77 0.60
9 Flagstaff, AZ 21.70 6.70 −0.50 3.33 0.57

10 Guadalupe, CA 28.83 5.08 −8.81 2.66 0.66
11 San Luis Obispo 26.26 5.79 −29.39 3.75 0.60
12 Davenport, CA 27.50 5.46 −6.03 2.83 0.72
13 Davenport, CA 27.50 3.15 −14.49 3.02 0.70
14 Tahoe NF 30.03 4.56 −8.59 3.24 0.70
15 Nederland, CO 31.04 4.79 −12.99 2.83 0.74

The last model we developed incorporated all aspects of the CCPM and also included dummy
variables associated with each different forest site. The resulting dummy variables simply provide a
Y-intercept shift for the expected SNR value based on a particular forest. The resulting dummy variable
coefficients for each specific forest provide absorption indexes that help establish an understanding
of how each forest affects the reception of GPS signals. The resulting model is termed the SNR forest
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index model (SFIM). The SFIM had an RMSE of 3.24 dB and an adjusted R2 of 0.65, with the SFIM
equation is as follows:

SNR = 7.79 (lnel)− 0.26CC sin(ZA) + 18.85 + I (4)

where I is the index value.
Inspection of the SFIM equation shows that the Beer’s Law component has a very small influence

on the model. This result was unexpected initially. However, it agrees with the same points as
discussed with respect to the overall CCPM model applied to multiple forest sites. Based on the lack
of influence by the Beer’s Law component, it was removed from the model to generate the simplified
SFIM or SSFIM. The resulting SSFIM equation is:

SNR = 7.83 (lnel) + 18.73 + I (5)

The SSFIM resulted in the same RMSE and adjusted R2 as the SFIM. Table 3 shows the results of
the absorption index value (I) for each forest applied to the SFIM and the SSFIM.

Table 3. Absorption indexes of the forest study sites showing the results of the signal to noise forest
index model (SFIM) and simplified signal to noise forest index model (SSFIM).

ID City Vicinity Tree Type HT/STD (m) DBH/STD (m) SNR Index (dB) SFIM
SNR Index (dB)

SSFIM

1 West Point, NY Oak/Hickory 23.4/3.4 0.30/0.18 Fall –3.74 –3.75
100% Deciduous Spring –5.43 –5.44

Summer –5.54 –5.55
Winter –4.37 –4.38

2 IMPAC 100% Pine
Gainesville, FL Needle Minimum See Table 1 See Table 1 –3.31 –3.32
Gainesville, FL Needle Maximum See Table 1 See Table 1 –4.30 –4.31

3 Hogtown Forest 80% Deciduous 20.4/2.47 0.46/0.08 –5.87 –5.89
Gainesville, FL 20% Coniferous

4 Charleston, SC 90% Pine, 10% Deciduous 24.0/3.1 0.36/0.05 –7.68 –7.69
5 Alexandria, LA 90% Pine, 10% Deciduous 23.2/4.1 0.56/0.11 –6.48 –6.49
6 Cold Spring, TX 80% Pine, 20% Deciduous 19.5/4.7 0.52/0.13 –6.03 –6.06

7 Georgetown, TX Cedar Elm and Live Oak
with Ash Juniper 6.3/1.1 0.42/0.11 –5.15 –5.16

8 Cloudcroft, NM Ponderosa Pine 23.3/3.2 0.41/0.12 –3.12 –3.12
9 Flagstaff, AZ Ponderosa Pine 19.2/6.8 0.41/0.07 –2.83 –3.35
10 Guadalupe, CA Eucalyptus 28.2/3.3 0.42/0.14 –5.02 –5.02
11 San Luis Obispo Agrifolia 6.0/1.5 0.22/0.09 –3.10 –3.11

12 Davenport, CA 75% Redwood, 25%
Douglas Fir and Tanoak 54.0/6.3 1.20/0.56 –10.78 –10.80

13 Davenport, CA 80% Tanoak,
25% Douglas Fir 18.7/1.4 0.28/0.08 –8.05 –8.07

14 Tahoe NF Ponderosa Pine 26.5/2.2 0.53/0.16 –3.98 –3.98
15 Nederland, CO Aspen 8.4/2.6 0.20/0.06 –4.99 –5.00

Note: Where HT is Tree Height, DBH is Diameter at Breast Height and STD is Standard Deviation.

4. Discussion

In the first portion of this study, we presented the SAM. The SAM methodology is simplistic and,
as such, future work associated with atmospheric modeling has been considered. Factors such as
humidity, barometric pressure, clouds versus open sky, and fog could all be potential components
in atmospheric modeling. However, many of these factors change rapidly and would require a very
substantial series of photos and measurements of the different variables over short periods of time,
thus we used the approach outlined above to develop the SAM.

A primary objective of this research was to determine the parameters that influence signal
attenuation. As such, during the modeling process, many other variables were considered to include
the interaction of these variables. Parameters such as the leaf area index (LAI) (as calculated from gap
light analyzer software), the density of the trees, average diameter at breast height, and average tree
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height (to name a few) were considered. However, the parameters that make up the CCPM and SSFIM
proved the optimum method.

Many previous studies modeled forest structure. Larsen and Kershaw explained the evolution
of different canopy structure models as the assumption of uniformity of foliage was removed [22].
Building on this work, Oker-Blom modeled forests with individual cylinder or parabolic crowns as
trees with a uniformly distributed LAI density [23]. This work allowed for areas with no foliage and
areas with overlap. The overlapping areas would cause a clumping effect. Other statistical models
such as the Poisson, negative binomial, and Markov models predict the likelihood of a ray of light
passing completely through forest canopy [24]. A great advantage of the models presented in this
research is their simplicity. When comparing a single layer canopy to a triple layer canopy, for example,
we simply obtain different CC values. In a triple layer dense canopy, there will be higher CC values
compared to a single layer forest canopy.

The results shown in Table 2 suggest that for each individual forest, the CCPM performs well.
However, when applying all the observations from each forest as a whole, the Beer’s Law component
was not found to be statistically significant at 90% confidence. This goes against our initial hypothesis.
However, based on the results for dummy variable modeling for seasons at West Point, it is not
surprising. The West Point seasonal study found that applying dummy variables for the seasons
helped adjust the overall model [21]. This adjustment likely had to do with the health of the canopy.
For example, during the fall season the CC values derived from HSOPs included foliage that was
dry. However, these leaves were counted the same as leaves during the spring or summer that were
healthy. Applying the same logic for different forests, each study site has different conditions. Some
sites had received recent record rainfall while other sites were in drought-like conditions. Additionally,
when comparing many different species of forests there are numerous factors that could influence
the absorption component associated with Beer’s Law. Most importantly, Beer’s Law has both a
concentration and an absorption component and the CCPM attempts to capture both using just CC.
Therefore, it is justifiable that individual forests, sharing many of the same attributes, are successfully
modeled individually using the CCPM, but as a conglomerate, the model does not work as well.
As a result, the use of the CCPM is effective but would require a calibration prior to implementing
for a specific forest, meaning that when photos are taken in a forest to get the CC values, GPS SNR
observations should also be collected. If a GPS calibration is not feasible, a user of this work may
benefit from a different approach, such as the SSFIM.

When comparing the results of the SFIM to the SSFIM, we identified that the SSFIM provides
an equation that removes the need for photography. With both models having the same RMSE and
adjusted R2, ultimately, there is no need to go through the added complexity of taking photos. Rather,
a user can reference Tables 1 and 3 to identify a forest with similar attributes and gain an insight into
how signals may be attenuated in a particular forest site. The challenge with this concept is identifying
what the key similarities are between forests. Would species play the largest role, or would tree height
and DBH have a larger influence? In a similar vein, there is a seasonal influence on attenuation, as
shown in Table 3 at the West Point study site. As such, a larger index is needed with more forest types.
Further research is also needed to determine the variability of absorption within a single forest based
on rainfall, foliage conditions, and other factors to ensure a good prediction of signal attenuation.
All of these are just some of the questions that could be addressed in future work.

5. Conclusions

In this study, four different GPS SNR models were presented: one model predicts GPS SNR in
the open and three models provide methods to predict GPS SNR in forest conditions. Previous work
shows how applying predicted SNR values can easily be applied to determine estimated attenuation.
While we expected all models to perform well, we were initially surprised that the CCPM did not
perform well when modeling all forests together. However, when considering that the CCPM uses only
CC to describe the Beer’s Law component of signal loss, these results reflect that absorption variation
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is significant between different tree species and environmental conditions. The SSFIM accounts for this
variation nicely according to its associated results.

This work specifically investigates GPS signal attenuation in different forest conditions. However,
gaining a better understanding of techniques to model GPS signal attenuation will lead us to
understand how other signals belonging to other technologies may be influenced. Technologies
dependent on different cell phone frequencies, satellite communications, Bluetooth, and AM
or FM radio transmissions are just a few of the different signals that could benefit from the
presented predictive models. This work could also benefit forest growth research that uses light
interception predictions.

When this research began, it was our desire to build on the knowledge of how GPS signals are
attenuated in different forest environments. There was no desire or requirement to limit our modeling
efforts to any specific technologies, only the desire to try as many different techniques available to
us and identify the optimal modeling approach. The use of HSOPs in the modeling process proved
fruitful from the beginning of our work. The historic use of HSOPs to estimate LAI led us to using
HSOPs in our modeling process. We explored the use of LAI values derived from the HSOPs during
the modeling process. However, for each photo there is just one LAI value. In contrast, using the
HSOPs to calculate CC values at particular angles from zenith became an additional consideration and
proved effective. The results of the research suggest that the only needed measurements are HSOPs
and a calibration of the model using GPS observations from a specific forest. Another approach to
estimate signal loss in a forest is to reference a given forest to the SSFIM index. Finding forests within
the index that have similar attributes would guide the user towards selecting an appropriate model
absorption coefficient.
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Abstract: Forest aboveground biomass (AGB) and leaf area index (LAI) are two important parameters
for evaluating forest growth and health. It is of great significance to estimate AGB and LAI accurately
using remote sensing technology. Considering the temporal resolution and data acquisition costs,
digital aerial photographs (DAPs) from a digital camera mounted on an unmanned aerial vehicle or
light, small aircraft have been widely used in forest inventory. In this study, the aerial photograph
data was acquired on 5 and 9 June, 2017 by a Hasselblad60 digital camera of the CAF-LiCHy system
in a Y-5 aircraft in the Mengjiagang forest farm of Northeast China, and the digital orthophoto mosaic
(DOM) and photogrammetric point cloud (PPC) were generated from an aerial overlap photograph.
Forest red-green-blue (RGB) vegetation indices and textural factors were extracted from the DOM.
Forest vertical structure features and canopy cover were extracted from normalized PPC. Regression
analysis was carried out considering only DOM data, only PPC data, and a combination of both.
A recursive feature elimination (RFE) method using a random forest was used for variable selection.
Four different machine-learning (ML) algorithms (random forest, k-nearest neighbor, Cubist and
supporting vector machine) were used to build regression models. Experimental results showed that
PPC data alone could estimate AGB, and DOM data alone could estimate LAI with relatively high
accuracy. The combination of features from DOM and PPC data was the most effective, in all the
experiments considered, for the estimation of AGB and LAI. The results showed that the height and
coverage variables of PPC, texture mean value, and the visible differential vegetation index (VDVI)
of the DOM are significantly related to the estimated AGB (R2 = 0.73, RMSE = 20 t/ha). The results
also showed that the canopy cover of PPC and green red ratio index (GRRI) of DOM are the most
strongly related to the estimated LAI, and the height and coverage variables of PPC, the texture mean
value and visible atmospherically resistant index (VARI), and the VDVI of DOM followed (R2 = 0.79,
RMSE = 0.48).

Keywords: digital aerial photograph; aboveground biomass; leaf area index; photogrammetric point
cloud; recursive feature elimination; machine-learning

1. Introduction

Nowadays, global climate change is becoming a major challenge for current and future generations.
Forests play crucial roles in adjusting the global and regional carbon cycle and bioenergy consumption.

Forests 2018, 9, 275; doi:10.3390/f9050275 www.mdpi.com/journal/forests44
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Forest aboveground biomass (AGB) is a key biophysical parameter. It can provide important
vegetation information about growth, health, and productivity [1,2]. Also, it is often required by
the implementation of effective climate policies [3,4]. Additionally, the leaf area index (LAI), another
important biophysical parameter, could provide more detailed canopy structure information [5].
Therefore, the accurate estimation and prediction of these two forest parameters is of great importance.

Traditional forest investigation relies on manual ground measurements with intensive time and
high costs, such as destructive individual tree sampling and non-destructive field measurements.
The obvious advantage is that they can provide results with relatively high accuracy [6,7]. In an
attempt to obtain a more efficient estimation of forest parameters under different scales and in
various environments, remote sensing techniques have been commonly applied over the past
few decades. Data obtained from different sensors, such as optical cameras [8–10], radar [11,12],
and terrestrial [13–15] or airborne [16–18] light detection and ranging (LiDAR), are significantly more
efficient and have a lower cost than laborious ground-based estimation methods and have become
widely used to characterize forest structure [19].

It is known that AGB and LAI cannot be directly obtained using remote sensing techniques;
they are usually estimated by establishing a regression relationship between parameters derived
from remote sensing data. However, it is worth noting that one problem when using optical remote
sensing or radar data for estimation is saturation. Therefore, under high biomass or canopy density,
the estimation accuracy, especially for biomass, is often under estimation [12,20,21]. LiDAR can provide
quite accurate 3-D information and a reliable estimation, but the cost to obtain data is high; therefore,
it is not suitable for continuous monitoring over large areas.

In order to obtain accurate results, many researchers have tried to combine multispectral and
textural information from optical remote sensing data and vertical structure information from LiDAR
data to estimate forest parameters [22–26]. These findings have demonstrated that estimation accuracy
could be improved by making most use of the potential by combining these two types of data [27,28].

However, due to the influence of cloud and haze, it is sometimes difficult for satellites to
capture high-quality images in the short term. On the other hand, and as mentioned above, LiDAR
data acquisition and processing costs are too high to perform monitoring of large forest areas [29].
Both satellite remote sensing and LiDAR data have some limitations in high phase and extensive forest
inventory applications.

With the recent development of unmanned aerial vehicle (UAV) technology over the past few
years, aerial photographs from a digital camera mounted on an UAV or light, small aircraft have been
widely used in forest inventory [30–35], and they generally have good affordability and availability.
One thing should be mentioned here is that most of the relevant research used either digital orthophoto
mosaic (DOM) or photogrammetric point cloud (PPC). Dandois et al. [36] used “Structure from
Motion (SfM)” computer vision algorithms to extract canopy structure and spectral attributes based
on red-green-blue (RGB) aerial images. Understory digital terrain models (DTMs) and canopy
height models (CHMs) were generated from leaf-on and leaf-off point clouds using procedures
commonly applied to LiDAR point clouds. CHMs were strong predictors of field-measured tree
heights (R2 = 0.63–0.84). Mathews et al. [35] also used SfM computer vision algorithms to obtain
high-density point clouds. Points near samples were extracted and input into a stepwise regression
model to predict LAI. The final R2 value was approximately 0.57. Ota et al. [37] investigated the
capabilities of CHM derived from aerial photographs using the SfM approach to estimate AGB in a
tropical forest and yielded an accurate estimate (R2 = 0.79). These successful applications show the
potential of the SfM algorithm.

In addition, recent advances in commercial software based on computer vision algorithms such as
Pix4DMapper (https://pix4d.com/, Pix4D S.A. Lausanne, Switzerland) and Agisoft Photoscan (https:
//www.agisoft.com/, Agisoft LLC, St. Petersburg, Russia) have enabled the mass production of digital
surface models (DSMs) using the SfM algorithm with a much higher level of automation and much
greater ease of use [38]. Applying the SfM approach enables us to produce high spatial resolution
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photogrammetric point clouds with vertical structure features similar to those derived from airborne
LiDAR and DOM similar to satellite optical images with horizontal features.

In terms of the regression model used for building the relationship, many researchers have applied
machine-learning methods in forest inventory and have obtained better accuracy in the past few
years [39,40]. It is well known that the near-infrared (NIR) domain is a good indicator of vegetation health;
we imitated the structure of the NIR band to construct the vegetation indices based on only red-green-blue
three spectral bands in this study. To fully explore the advantages of digital aerial photographs (only RGB
bands, not including the NIR band) in forest inventory, we focus on the estimation of AGB and LAI based
on only DOM, only PPC, and DOM + PPC using a machine-learning method. This study will achieve
the following goals: (1) processing digital aerial photograph (DAP) data based on the SfM approach to
generate PPC and DOM and (2) estimating forest AGB and LAI based on only DOM, only PPC, and a
combination of both.

2. Materials and Methods

2.1. Study Area

The study area is located at the Mengjiagang forest farm (46◦26′ N, 130◦43′ E) of Jiamusi city,
in Heilongjiang Province of China (Figure 1), which is influenced by a temperate continental climate.
Annual precipitation occurs mainly in summer. The study area covers an approximate land area of
260 km2, which varies in elevation from about 180 m to 450 m above sea level. The land is relatively flat
without an extreme slope. The dominant tree species is Larch (Larix gmelinii (Rupr.) Rupr.), followed
by Korean pine (Pinus koraiensis Sieb. et Zucc.), Scots pine (Pinus sylvestris L.var. mongolica Litv.),
and Spruce (Picea asperata Mast).

Figure 1. Location of the study area and distribution of field measurements. Red “�, �, +, ” points
are the sites of center coordinates of the Scots pine, Korean pine, Larch and Spruce, respectively, for LAI
observations. Yellow locations are the sites of Larch plots in 2016. Dark blue locations are the sites of
Larch plots in 2017. Light blue locations are the sites of Scots pine plots. Purple locations are the sites
of Korean pine plots.
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2.2. Data

The research data include (1) digital aerial photograph (DAP) data (year 2017), (2) 0.25 m spatial
resolution DEM from LiDAR (year 2017), (3) LAI field data (year 2017), and (4) field measured data
(year 2017 and 2016).

2.2.1. DAP Data Collection

DAP and LiDAR data were acquired at the same time on 5 and 9 June 2017 by the Chinese
Academy of Forestry (CAF) using a Hasselblad60 digital camera and Riegl LMS-Q680i of CAF-LiCHy
system in a Y-5 aircraft. The average flight altitudes were 950 m and 1250 m above ground level (AGL),
and the mean ground sampling distance (GSD) of DAP images was 9 cm and 13 cm, respectively.
The average flight speed was 40 m/s, and the mean forward overlap (FO) and the mean overlap
between flight lines of DAP images were about 70% and 50%, respectively. In terms of aerial
photograph data, the camera focal length, image size, and pixel size inside the camera are 50 mm,
8964 × 6716 pixels, and 6.0 μm respectively. The details of the flight parameters are shown in Table 1.

Table 1. Details of digital aerial photograph and LiDAR data specifications.

Flight Conditions

Flight altitude (above-ground) 950 m, 1250 m
Flying speed 40 m/s

Acquisition time 5 and 9 June 2017

Digital Aerial Photograph: Hasselblad60

Focal length 50 mm
Spectral bands red, green, blue

Forward overlap (FO) 70%
Overlap between flight lines 50%

Scale 8964 × 6716 pixels
Pixel size 6 μm

Ground resolution 9 cm, 13 cm
Average density of point cloud 11–26 pts/m2

LiDAR: Riegl LMS-Q680i

Wavelength 1550 nm
Laser pulse length 3 ns

Waveform sampling interval 1 ns
Laser beam divergence 0.5 mrad

Vertical resolution 15 cm, 20 cm
Pulse repetition rate 300 kHZ, 200 kHZ

Scan angle ±30◦
Average density of point cloud 9.6 pts/m2, 6.3 pts/m2

2.2.2. Field Measurements

The standard plots were set based on comprehensive field exploration. The shape of the plot was
rectangular, and the area of the plot was determined according to factors such as tree age, the density
of the forest, and site quality. In this study, we chose three kinds of tree ages: mature forest, middle
forest, and young forest. We established three density plot types: dense young tree plots, dense middle
tree plots, and sparse mature large tree plots. There should be at least 50 trees in every plot in the
mature forest, at least 70 trees in the middle forest, and at least 90 trees in the young forest.

According to this principle, an original area of 400 m2 could be set in advance, and then the
numbers of individual trees in each plot should be counted to determine the area of the plot. There were
six different area sizes, which were 400 m2 (20 m × 20 m), 600 m2 (20 m × 30 m), 900 m2 (30 m ×
30 m), 1000 m2 (25 m × 40 m), 1200 m2 (30 m × 40 m), 1500 m2 (30 m × 50 m). The numbers of
plots of Korean pine, Scots pine, and Larch are 16, 5, and 35 respectively. The field data of 9 Larch
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plots were collected in July 2016. The field data of 26 Larch plots were collected under leaf-on canopy
conditions from 4 to 20 June 2017. The field data of all Korean pine and Scots pine plots were measured
from 20 to 30 August 2017. In addition to these three main tree species, there are Elm (Ulmus laciniata
(Trautv.) Mayr), Linden (Tilia mandshurica Rupr. et Maxim), Aspen (Populus tomentosa Carr), Oak
(Quercus mongolica Fisch. ex Ledeb.), Silver birch (Betula platyphylla Suk.), Maple birch (Betula costata
Trautv.), Black birch (Betula davurica Pall.), and Ashtree (Fraxinus mandschurica Rupr.) in the plots.
Fifteen Korean pine plots, three Scots pine plots, and nineteen Larch plots cover 600 m2. One Scots
pine plot covers 400 m2. Nine Larch plots and one Scots pine plot cover 900 m2. One Scots pine plot
and one Larch plot cover 1000 m2. Two Larch pine plots cover 1200 m2. Four Larch pine plots cover
1500 m2.

The quadrangle boundaries of field plots were firstly measured using GPS and tape. Based on
the ground base station data, the accurate locations of plots were obtained by a differential global
positioning system (DGPS). The differential total accuracy was between 0.5 m and 0.8 m.

Tree species, diameter at breast height (DBH), tree height, and the crown width of all living trees
with a DBH greater than 5 cm were measured in each plot using tape or meters. The lengths of the
east–west and south–north directions of the tree crown were measured with the tape, and the average
value of two lengths was taken as the crown width. Tree species and DBH of all dead trees were
measured. The statistical results of living trees are shown in Table 2.

Table 2. Summary of the field data (living trees).

Species Number
Tree Height (m) DBH (cm)

Range Mean Range Mean

Korean pine (Pinus koraiensis) 776 7.2–22.9 14.2 6.6–35.2 22.0
Scots pine (Pinus sylvestris) 215 12.9–30.6 20.3 15.3–43.6 25.0

Larch (Larix gmelinii) 3046 4.2–33.1 19.0 4.1–41.6 17.3
Elm (Ulmus laciniata) 9 8.7–15.4 11.2 7.1–11.0 8.8

Linden (Tilia mandshurica) 20 8.6–18.7 12.7 8.5–30.2 14.8
Aspen (Populus tomentosa) 6 14.3–17.3 15.9 15.0–27.0 17.9
Oak (Quercus mongolica) 63 7.2–19.8 11.2 6.4–24.4 9.2

Silver birch (Betula platyphylla) 154 9.6–21.5 14.2 6.2–26.6 11.0
Maple birch (Betula costata) 6 8.7–16.9 14.1 7.0–31.0 17.1
Black birch (Betula dahurica) 2 7.6–14.2 10.9 5.9–14.7 10.3

Ashtree (Fraxinus mandschurica) 10 7.5–15.5 13.8 10.0–16.3 12.1

We calculated the AGB of each measured living tree using these equations of different tree species
based on tree height and DBH in Table 3.

Table 3. Aboveground biomass equations (AGB) of different tree species.

Tree Species AGB Equation Reference

Korean pine WT = 0.027847(D2H)0.956544

[41]
Scots pine WT = 0.3364D2.0067 + 0.2983D1.144 + 0.2931D0.8486

Larch WT = 0.046238(D2H)0.905002

Birch WT = 0.0278601(D2H)0.993386

Soft broad-leaf trees WT = 0.0495502(D2H)0.952453

Silver birch WT = 0.1193(D2H)0.8372 + 0.002(D2H)1.12 + 0.000015(D2H)1.47

[42]

Maple birch WT = 0.07936(D2H)0.901 + 0.014167(D2H)0.764 + 0.01086(D2H)0.847

Black birch WT = 0.14114(D2H)0.723 + 0.00724(D2H)1.0225 + 0.0079(D2H)0.8085

Elm WT = 0.03146(D2H)1.032 + 0.007429D2.6745 + 0.002754D2.4965

Linden WT = 0.01275(D2H)1.009 + 0.00824(D2H)0.975 + 0.00024(D2H)0.991

Oak WT = 0.03141(D2H)0.733 + 0.002127D2.9504 + 0.00321D2.4735

Aspen WT = 0.2286(D2H)0.6938 + 0.0247(D2H)0.7378 + 0.0108(D2H)0.8181

Ashtree WT = 0.06013(D2H)0.891 + 0.00652(D2H)1.169 + 0.0044(D2H)0.9919
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We only used the AGB of living trees in this study and did not consider the AGB of dead trees.
The AGB of each plot was then calculated by summing up the AGB of each living tree.

We used two methods to calculate the AGB of living trees. One was on the basis of five tree
species: Korean pine, Scots pine, Larch, Birch (Sliver birch, Maple birch and Black birch), and Soft
broad-leaf trees (Aspen, Elm, Linden, Oak, and Ashtree). Another was on the basis of all 11 tree species.
The statistical results of all plots are shown in Table 4. As we can see from Table 4, the results of the
two methods are not very different. Thus, we used the AGB results of five tree species to build a model
and analyze retrieval results in this study.

Table 4. Summary of field AGB (living trees).

Main Tree
Species

Number of
Plots

Number of
Species 1

DOM PPC DOM + PPC AGB (t/ha)

T 2 V 3 T 2 V 3 T 2 V 3 Range Mean SD 4

Korean pine 16
5

11 5 11 5 13 3
83.64–180.90 107.89 21.86

11 82.79–180.90 107.71 22.07

Scots pine 5
5

4 1 4 1 4 1
94.06–182.30 147.69 34.59

11 94.06–182.30 147.69 34.59

Larch 35
5

24 11 24 11 23 12
81.25–261.84 142.84 39.34

11 78.14–261.84 143.62 38.61
1 The number of tree species used to calculate AGB. 2 Training, the number of plots used to train in study result of
the paper. 3 Validation, the number of plots used to validate in study result of the paper. 4 SD: standard deviation.

2.2.3. LAI Field Measurements

LAI field data were obtained from 5 to 20 June, 2017. There were 192 circular plots at a radius of
15 m. The LAI in each plot was measured using a LAI-2000 Plant Canopy Analyzer (https://www.licor.
com/, LI-COR Corporate, Lincoln NE, USA). In total, 12 points in four perpendicular directions were
measured in every plot, and the average value of 12 points was calculated as the field measured data.
The central positions of these plots were first measured using a GPS instrument. Then, based on the
ground base station data, the accurate locations of plots were obtained using DGPS. The differential
total accuracy was between 0.5 m and 0.8 m. There are four species in the plots: Spruce (Picea asperata
Mast), Korean pine (Pinus koraiensis Sieb. et Zucc.), Scots pine (Pinus sylvestris L. var. mongolica Litv.),
and Larch (Larix gmelinii (Rupr.) Rupr.). The statistical results of the LAI field data are shown in
Table 5.

Table 5. Summary of the leaf area index (LAI) field data.

Tree Species Plot Amount
DOM PPC DOM + PPC LAI Measured Value

T 1 V 2 T 1 V 2 T 1 V 2 Range Mean

Spruce 57 43 14 40 17 38 19 3.46–6.14 4.39
Korean pine 55 36 19 39 16 42 13 2.49–5.01 3.46

Larch 42 29 13 32 10 31 11 2.13–5.42 3.51
Scots pine 38 23 15 25 13 22 16 1.48–3.05 2.22

All 192 131 61 136 56 133 59 1.48–6.14 3.54
1 Training, the number of plots used to train in study result of the paper. 2 Validation, the number of plots used to
validate in study result of the paper.

2.3. Methods

The research method consists of four parts: data preprocessing, features extraction, selection of
the variables, and the model and validation (Figure 2).
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Figure 2. Technical flow chart of the process of retrieving AGB and LAI.

2.3.1. LiDAR Data Pre-Processing

LiDAR data pre-processing was carried out by the CAF. This included noise removal of the point
cloud and point cloud classification, which gives ground and non-ground echoes according to the
proprietary algorithm implemented in the TerraScan software (https://www.terrasolid.com, TerraSolid
Ltd., Helsinki, Finland). A digital terrain model (DTM) with a 1-m spatial resolution was derived
using a triangulated irregular network (TIN) interpolating method from the ground-classified points.

2.3.2. DAP Data Pre-Processing

First, we combined an onboard inertial measurement unit (IMU)/global positioning system (GPS)
with camera exposure position information and ground base station data of the closest official reference
points of the Heilongjing Bureau of Surveying and Mapping Geoinformation to generate the accurate
position and attitude information of every photo taken using DGPS. The overall accuracy was between
10 cm and 15 cm.

We used the SfM algorithm to generate a DSM dense point cloud and DOM from an overlapping
collection of digital aerial photographs in the proprietary software Pix4DMapper Professional Edition
2.1.0 (64 bit) (https://pix4d.com/, Pix4D S.A. Lausanne, Switzerland). The resolution of the DOM is
0.1 m, and the tolerance of data processing is 0.02 m. SfM is the process of estimating the 3D structure of
a scene from a set of 2D images. SfM requires point correspondences between images. Corresponding
points were identified either by matching features or tracking points from image 1 to image 2 [43].
The fundamental matrix describes the epipolar geometry of two images and is computed using the
corresponding points of two images. The orientation and location in the specified coordinate system
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are returned by relative and absolute orientation calculation. The 3D locations of matched points are
determined using triangulation.

We compared the DSM point cloud from the DAP data to the DSM point cloud from the LiDAR
data (Figure 3). The results showed that the average range deviation between the LiDAR point cloud
and the DAP point cloud results was less than 0.5 m.

Figure 3. Matching the figures of the digital aerial photograph (DAP) point cloud and the light detection
and ranging (LiDAR) point cloud. Red points are LiDAR point cloud and the green points are the DAP
point cloud.

The results of DOM, DTM, and DSM in the same area are shown in Figure 4. Then, the DTM
point cloud from LiDAR and the DSM point cloud from DAP were optimized in Terrascan software.
The absolute heights of the point cloud were normalized by subtracting the terrain heights from DTM
to obtain the relative heights.
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Figure 4. Data pre-processing results of digital aerial photographs and LiDAR.

2.3.3. Feature Extraction of DOM

Feature extraction of DOM can be divided into two different categories of features: (1) RGB
vegetation indices and (2) textural features.

RGB vegetation indices were constructed by imitating the structure of the NIR band from 0.1-m
resolution DOM data. We used the digital number (DN) value to take the place of reflectance in
this study (Table 6). Six kinds of vegetation indices were created using DN values of the red, green,
and blue bands.

Table 6. Six vegetation indices of red-green-blue (RGB) bands.

Vegetation Indices Name Equations 1 References

Visible differential vegetation index (VDVI) 2×DNG−DNR−DNB
2×DNG+DNR+DNB

[44]
Excess green index (EXG) 2 × DNG − DNR − DNB [44]

Visible atmospherically resistant index
(VARI)

DNG−DNR
DNG+DNR−DNB

[45]

Green red ratio index (GRRI) DNG
DNR

[46]
Green blue ratio index (GBRI) DNG

DNB
[47]

Red blue ratio index (RBRI) DNR
DNB

1 DNG: digital number (DN) value of the green band. DNR: digital number (DN) value of the red band. DNB:
digital number (DN) value of the blue band.
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Four textural features (mean, homogeneity, dissimilarity, and correlation) were extracted from
the first principal component of the 0.1-m DOM in this study (Table 7). Every feature includes four
different window sizes of 4.5 m, 6.5 m, 10.1 m and 25.1 m.

The mean values of vegetation indices and textural features were calculated using R packages
including caret [48], raster [49] and dplyr [50].

Table 7. Four textural features.

Feature Name Equations 1

Mean
N−1
∑

i,j=0
iPi,j

Homogeneity
N−1
∑

i,j=0
i Pij

1+(i−j)2

Dissimilarity
N−1
∑

i,j=0
iPi,j|i − j|

Correlation
N−1
∑

i,j=0
iPi,j

[
(i−mean)(j−mean)√

varianceivariancej

]
1 i is the line number of the gray level co-occurrence matrix. j is the column number of the gray level co-occurrence
matrix. Pij is normalized co-occurrence matrix. ME is the mean value of the gray level co-occurrence matrix. VA is
the variance value of the gray level co-occurrence matrix.

2.3.4. Feature Extraction of PPC

PPC is used to provide forest vertical structure parameters. Height statistics (standard deviation
(Stddev), variance, coefficient of variation (CV), skewness, kurtosis, maximum, mean, mode, average
absolute deviation (AAD), l-moments, canopy relief ratio, median of absolute deviation (MADMedian),
and mode of absolute deviation (MADMode)), height percentiles (IQ, P50, P75, P95, and P100),
coverage statistical features (percentage above mean, percentage above mode, percentage above 2 m,
10 to 20 proportion, and 5 to 10 proportion) (Table 8), and canopy cover (CC) were extracted based on
relative height values from normalized point clouds in a hierarchical way, using open source FUSION
software (http://forsys.cfr.washington.edu/fusion).

CC is the index that describes the degree of canopy connection of trees, and it is the ratio of
canopy projected area to woodland area. CC was generated from the normalized point cloud. We used
the height threshold to distinguish between ground points and tree points.
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Table 8. Forest vertical structure parameters from the normalized point cloud.

Variable Type Variable Name Variable Description References

Height statistics
of point cloud

Stddev Standard deviation of point cloud height
[51]Variance Variance of point cloud

CV Coefficient of variation of point cloud height

Skewness Skewness of point cloud height
[52]Kurtosis Kurtosis of point cloud height

Maximum Maximum of point cloud height

[51]
Mean Mean of point cloud height
Mode Mode of point cloud height
AAD Average absolute deviation

L-moments Linear moment, including L1,L2,L3,L4 [53]
Canopy relief ratio (mean−min)

(max−min)
[54]

MADMedian Median of absolute deviation of point cloud
above median

MADMode Mode of absolute deviation of point cloud
above median

Height
percentile of
point cloud

IQ Height 75th percentile minus 25th percentile

[51]
P99 Height 99th percentile
P95 Height 95th percentile
P75 Height 75th percentile
P50 Height 50th percentile

Coverage of
point cloud

Percentage above mean Percentage of point cloud above mean

[54]
Percentage above mode Percentage of point cloud above mode
Percentage above 2 m Percentage of point cloud above 2 m

10 to 20 proportion Proportion of point cloud from 10 and 20 m
5 to 10 proportion Proportion of point cloud from 5 and 10 m

2.3.5. Estimation of AGB and LAI

In the study, three types of data sources were used to estimate forest AGB and LAI. We merged
all features from DOM, all structural variables from PPC, and a combination of both. Because there
are four different texture window sizes, we need to separately merge all parameters. Because of high
correlations among variables, the correlation was statistically calculated using R packages including
caret [48] and corrplot [55]. We tested for multicollinearity between variables and removed variables
with Pearson’s r > 0.8 to reduce the redundancy of variables. In AGB retrieval, 10 variables for
DOM, 6 variables for PPC, and 16 variables for a combination of both were selected after removing
redundant variables. In LAI retrieval, 10 variables for DOM, 10 variables for PPC, and 20 variables for
a combination of both were selected after removing redundant variables (Table 9).

Table 9. Variables from DOM and PPC after reducing redundancy.

Variable Type
Variable Name

LAI AGB

PPC features

Height statistics

Stddev
Variance

CV
Skewness Mean
Kurtosis Canopy relief ratio

Height percentile IQ
P95

Coverage Percentage above mean
10 to 20 proportion

Canopy cover Mean(CC)
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Table 9. Cont.

Variable Type
Variable Name

LAI AGB

DOM features

Texture

Mean(mean)
Mean(dissimilarity)
Mean(homogeneity)

Mean(correlation)

Vegetation indices

Mean(VDVI)
Mean(EXG)
Mean(VARI)
Mean(GRRI)
Mean(GBRI)
Mean(RBRI)

Random forest (RF) is a natural multiclass algorithm with an internal measure of feature
importance. The random forest recursive feature elimination (RF-RFE) selection method is basically a
recursive process that ranks features according to some measure of their importance [56].

According to the importance of variables and referring to the model accuracy of cross validation,
the influence of each variable on the cross-validation accuracy of the model was considered iteratively
from the most important variable to the least important one. Following a machine-learning (ML)
regression analysis, the joint RF-RFE algorithm was carried out to estimate AGB and LAI based on
DOM variables, PPC variables, and a combination of both. For each of the three data sources, we used
four ML model algorithms: random forest (RF), supporting vector machine (SVM), k-nearest neighbor
(KNN) and Cubist to build the model. The tuning methods of the four models and RF-RFE operation
were achieved using R package, including caret [48], e1071 [57], cubist [58] and randomForest [59].
In the Cubist model, the value range of number parameter committees of model trees is from 1 to 50,
with a step of 1. The range of the nearest-neighbor sample neighbors is from 0 to 9, with a step of 1.
The tuneLength of mtry is 7 and ntree is 1000 in the RF model. The tuneLength of k in the KNN model
is 50. The values of kernel function gamma are 0.5, 1, and 2. The values of the punish coefficient cost
are 0.1, 1, 10, and 100.

For DOM and PPC alone, we chose the first half of all variables. For DOM + PPC, we chose the
first third of total variables based on RFE results to participate in THE ML model. Thus, five variables
of DOM, three variables of PPC and six variables of DOM + PPC were used in the estimation of AGB.
Five variables of DOM, five variables of PPC, and seven variables of DOM + PPC were chosen in the
estimation of LAI.

In total, 70% of samples (approximately 40 plots for AGB and approximately 135 plots for LAI)
were randomly selected for training, and 30% of samples (approximately 16 plots for AGB and
approximately 57 plots for LAI) were selected for validation in this study. For regression analysis,
we ensured the distribution of different densities and different tree species plots in training and
validation samples.

2.4. Model Accuracy Evaluation

After the regression model was established, the coefficient of determination, R-Square (R2),
and root mean square error (RMSE) were used to assess the goodness and accuracy of the established
models. The larger the R2 value, and the stronger correlation. The smaller the RMSE value, the higher
the predicted accuracy. R2 and RMSE were calculated using Equations (1) and (2).

R2 = 1 − ∑n
i=1

(
yi − y′i

)2

∑n
i=1(yi − yi)

2 (1)
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RMSE =

√
∑n

i=1
(
yi − y′i

)2

n
(2)

where n is the number of plots, yi is the ground field measurement reference value of AGB or LAI for
plot i; yi is the average value of yi; y′i is the model estimate value of AGB or LAI.

3. Results

About 70% of plot measurements were used to build the regression analysis model, and 30% were
retained to validate the model. By training and comparing AGB and LAI retrieval results based on
textural features of four window sizes using same method, we chose features of 6.5 m window size to
retrieve AGB and LAI. The tuning results of four machine-learning models for the estimation of AGB
and LAI from the three data sources are shown in Table 10.

Table 10. The best combination of parameters for the four models for the estimation of AGB and LAI.

Models
AGB LAI

DOM PPC DOM + PPC DOM PPC DOM + PPC

Cubist 1 c = 2, n = 2 c = 45, n = 9 c = 2, n = 2 c = 8, n = 2 c = 6, n = 9 c = 11, n = 2
KNN k = 5 k = 11 k = 5 k = 7 k = 11 k = 5

RF mtry = 4 mtry = 3 mtry = 2 mtry = 2 mtry = 3 mtry = 3
SVM 2 g = 2, c = 100 g = 0.5, c = 100 g = 0.5, c = 1 g = 1, c = 1 g = 1, c = 1 g = 0.5, c = 1

1 c: committees, n: neighbors. 2 g: gamma, c: cost.

The variables used for final modeling are shown in Table 11, ranked according to the importance.

Table 11. The variables used in modeling.

Importance
AGB

DOM PPC DOM + PPC

1 VDVI P95 P95
2 RBRI Mean P-Mean 1

3 EXG 10 to 20 proportion 10 to 20 proportion
4 Mean D-Mean 2

5 GBRI VDVI
6 CC

Importance
LAI

DOM PPC DOM + PPC

1 GRRI CC CC
2 Mean P95 GRRI
3 VARI 10 to 20 proportion P95
4 VDVI CV 10 to 20 proportion
5 EXG Skewness D-Mean 2

6 VARI
7 VDVI

1 P-Mean: mean of point cloud height. 2 D-Mean: the textural feature from DOM.

As we can see from Table 11, vegetation indices are the most significant variables for the estimation
of AGB in models obtained using DOM data. In addition, the texture mean variable is important.
In those models comprising only PPC variables, height percentile and statistic are the most significant
variables. Concerning DOM + PPC variables, height and coverage variables are the most significant
variables; texture and vegetation index variables followed.

For estimation of LAI, the green red ratio index (GRRI) is the most significant variable in DOM
models; the texture mean variable followed. In PPC models, coverage and height percentile are the
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most significant variables. In the combined DOM + PPC variables, the coverage variable is the most
significant, followed by the vegetation index variable.

As we can see from Figure 5, for field data versus estimated data in the estimation of AGB,
the optimal values of R2 and RMSE in DOM alone are 0.65 and 21 t/ha, respectively. In PPC alone,
the optimal values are 0.7 and 26 t/ha. In DOM + PPC, the values are 0.73 and 20 t/ha, respectively.
The results obtained using a combination of DOM and PPC provide increased R2 accuracy. DOM
results are particularly poor.

It is worth noting that the differences between PPC and DOM + PPC models are less marked.
In some cases, PPC variables alone provide better results. It is apparent that R2 is much smaller for
the model based only on DOM variables compared to the two others. PPC and DOM + PPC models
provide very similar results.

The field data versus the estimated data in the estimation of LAI are shown in Figure 6. The values
of R2 and RMSE in DOM alone are 0.73 and 0.49, respectively. In PPC alone, the values are 0.65 and
0.57, respectively. In DOM + PPC, the values are 0.79 and 0.48, respectively. The results obtained using
the combination of DOM and PPC provide increased R2 accuracy. PPC results are particularly poor.

The differences between DOM and DOM + PPC models are less marked. DOM variables alone
provide better results. It is apparent that R2 is much smaller for the model based only on PPC
variables compared to the two other models. In particular, DOM and DOM + PPC models provide
very similar results.

Figure 5. Cont.
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Figure 5. Cont.
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Figure 5. Prediction accuracy of the four models for AGB estimation based on the three sources of data.

Figure 6. Cont.
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Figure 6. Cont.
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Figure 6. Prediction accuracy of the four models for LAI retrieval based on the three data sources.

4. Discussion

As important ecological and biophysical parameters, AGB and LAI were estimated using three
data sources (DOM data alone, PPC data alone, and DOM + PPC data) from the DAP data in this study.
Our findings showed that combining DOM and PPC data could improve estimation accuracy for AGB
and LAI.

Better accuracy (R2 = 0.73 and RMSE = 20 t/ha) for the AGB estimation based on a Cubist
regression model was achieved from the combined model processing of vertical structure, vegetation
indices, and textural features from the combination of DOM and PPC data. The retrieval result of
AGB from height variables of PPC data was better than the textural feature and vegetation indices
from DOM data. Height and coverage variables derived from PPC data were the first three selections.
This shows that height is a key parameter in the estimation of AGB. Studies using airborne LiDAR
or a combination of LiDAR and aerial photographs have shown how height can be used to estimate
AGB [4,37,60]. Our study has confirmed that height is particularly important and a suitable index
to AGB estimation when we used photogrammetric point cloud from the results of SfM approach
processing. Ota et al. [37] obtained aboveground biomass using aerial photographs in a seasonal
tropical forest. Canopy height models from aerial photograph DSM and LiDAR DTM yielded higher
accuracy (R2 = 0.93). Hansen et al. [61] estimated forest biomass based on empirical relationships
between field-observed biomass and variables derived from LiDAR data, and a relatively lower
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accuracy was obtained (R2 = 0.71, RMSE = 158 Mg/ha). Our accuracy of AGB estimation from
combined DOM and PPC data is between Ota’s and Hansen’s results.

The R2 and RMSE values of LAI estimation based on the SVM regression model from the combined
DOM and PPC data were 0.79 and 0.48, respectively. Canopy cover (CC) from PPC data and the green
red ratio index (GRRI) from DOM data contributed better results. It is worth noting that the GRRI is
the second most important variable after CC. This indicates that GRRI has a strong contribution to LAI
estimation. Previous studies using LiDAR, satellite images, or a combination of both showed similar
results in estimating LAI. Ma et al. [62] estimated LAI based on full-waveform LiDAR data using a
radiative transfer model. The R2 and RMSE values of estimated LAI were 0.73 and 0.67, respectively.
Mathews et al. [35] used a stepwise regression model to predict LAI based on a high-density point
cloud using unmanned aerial vehicle (UAV) collection. The final result of the R2 value was 0.57.
Omer et al. [63] used spectral vegetation indices calculated from WorldView-2 data to predict LAI at
the tree species level using support vector machines and artificial neural networks machine learning
regression algorithms. They obtained better accuracy (R2 = 0.75, RMSE = 0.05). Ma et al. [23] used
the canopy height variable from LiDAR and the BRDF/Albedo variable from MODIS optical data
to estimate LAI. The highest R2 value was 0.73. Our accuracy is slightly higher than previous study
results, and our study has confirmed that canopy coverage and vegetation index are particularly
important and suitable indices to LAI estimation.

Compared with PPC data, DOM data had lower estimation accuracy (R2 = 0.65, RMSE = 21 t/ha)
of AGB, but the estimation accuracy (R2 = 0.73, RMSE = 0.49) of LAI was higher. Similar findings were
reported [9,63]. Summarizing these results above, we believe that the spectral and textural features
had a larger contribution to LAI retrieval than vertical height features, and the forest vertical height
features had greater effects on AGB retrieval. Our study is slightly different from previous studies.
The differences are mainly because of the different data sources, different types of vegetation, biomass
abundance, and canopy density.

As we can see in Figures 5 and 6, a combination of DOM and PPC data could improve the
estimation accuracy of AGB and LAI compared with either data source alone. The combined DOM
and PPC data yielded the highest estimation accuracy for AGB (R2 = 0.73, RMSE = 20 t/ha) and
LAI (R2 = 0.79, RMSE = 0.48). These estimations were made using machine-learning with the Cubist
regression model and SVM regression model, respectively. Our study has demonstrated the ability to
estimate AGB and LAI using the combination of DOM and PPC from DAP data with the SfM approach.

The results of our study using only DAP data are consistent with previous studies using LiDAR
and other optical remote sensing data. However, the acquisition and processing cost of DAP data
is much lower than that of LiDAR, while the spatial resolution is much higher than that of optical
remote sensing data. Using DAP data to estimate forest parameters is worthy of further exploration
and research. Our study could provide valuable guidance for accurate AGB and LAI estimation using
DOM+PPC data from DAP in boreal coniferous forests.

In this study, with the exception of DEM from LiDAR data, we used DAP data alone with only red,
green, and blue visible bands to estimate AGB and LAI. In previous studies, multispectral vegetation
indices were used [63]. The near-infrared band can provide much better information about vegetation
health [64]. We imitated the principle of multispectral vegetation indices to construct visible light
vegetation indices. The results may have been improved if we added the spectral information of the
near-infrared band. This work will be performed in a future study.

For a future practical application of the results from this study in other areas, we can consider all
variables (vertical features and horizontal features) in this paper as realistic approaches.

5. Conclusions

The objective of this study is to explore the ability of retrieving forest parameters only using
DOM, PPC, and DOM+PPC from RGB-only DAP data. In the paper, three analyses on DOM, PPC,
and combined DOM and PPC data for the estimation of AGB and LAI have been presented. The study
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indicates that a combination of DOM and PPC data is useful as it provides a slight increase in estimation
accuracy. Height and coverage variables of PPC, texture mean value, and visible differential vegetation
index (VDVI) of DOM are significantly related to the estimation of AGB (R2 = 0.73, RMSE = 20 t/ha).
The canopy cover of PPC and green red ratio index (GRRI) of DOM are the most strongly related to
the estimation of LAI, followed by the height and coverage variables of PPC, texture mean value,
the visible atmospherically resistant index (VARI), and the VDVI of DOM (R2 = 0.79, RMSE = 0.48).
The model derived from only DOM data provides lower accuracy than only PPC data for the estimation
of AGB at the Mengjiagang forest farm. In terms of LAI estimation, the result is different. Variables
from either DOM or PPC data alone can provide the majority of the explanatory contribution for
LAI estimation.

The current study focuses on boreal coniferous forest areas using RGB-only DAP data, with an R2
higher than 0.7. Nevertheless, more studies should be carried on a variety of forest types to determine
the validity of the defined parameters and the accuracy reported. Possible future developments of
this work are (1) to consider other target variables (such as tree height and individual tree segment),
(2) to use the same method in temperate broadleaved forest areas to determine the universality of the
method, and (3) to add NIR spectral information.
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Abstract: In this paper, we review the potential of high resolution optical satellite data to reduce the
significant investment in resources required for a national field survey for producing estimates of
above ground biomass (AGB). We use 5 m resolution RapidEye optical data to support a country wide
biomass inventory with the objective of bringing to the attention of the traditional forestry sector the
advantages of integrating remote sensing data in the planning and execution of field data acquisition.
We analysed the relationship between AGB estimates from a subset of the national survey field plot
data collected by the Tanzania Forest Service, with a set of remote sensing biophysical parameters
extracted from a sample of fine spatial (5 m) resolution RapidEye images using a regression estimator.
We processed RapidEye data using image segmentation for 76 sample sites each of 20 km by 20 km
(covering 2.3% of the land area of the country) to image objects of 1 ha. We extracted reflectance
and texture information from those objects which overlapped with the field plot data and tested
correlations between the two using four different models: Two models from inferential statistics and
two models from machine learning. The best results were found using the random forests algorithm
(R2 = 0.69). The most important explicative factor extracted from the remote sensing data was the
shadow index, measuring the absorption of light in the visible bands. The model was then applied
to all image objects on the RapidEye images to obtain AGB for each of the 76 sample sites, which
were then interpolated to estimate the AGB stock at the national scale. Using the relative efficiency
measure, we assessed the improvement that the introduction of remote sensing data brings to obtain
an AGB estimate at the national level, with the same precision as the full survey. The improvement
in the precision of the estimate (by reducing its variance) resulted in a relative efficiency of 3.2.
This demonstrates that the introduction of remote sensing data at this fine resolution can substantially
reduce the number of field plots required, in this case threefold.

Keywords: forests biomass; remote sensing; REDD+; random forest; Tanzania; RapidEye

1. Introduction

1.1. Background to the Study—The REDD+ Initiative

Deforestation and forest degradation account for up to 12% of the global carbon emissions [1].
Most of these emissions (>80%) [2] originate from the tropics, where over 90% of humid forests
are located. The United Nations Framework Convention on Climate Change (UNFCCC) aims to
reduce such emissions via its REDD+ mechanism (Reducing Emissions from Deforestation and forest
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Degradation), by financially rewarding developing countries for reducing greenhouse gas (GHG)
emissions from deforestation and degradation. Countries may claim financial incentives by submitting
reports on carbon stock changes based on the area changes in forest cover (activity data) and density
of forest carbon stock (emission factors) [2].

To estimate GHG emissions, countries should use the Intergovernmental Panel on Climate Change
(IPCC) guidance and guidelines as adopted (i.e., [3]) or encouraged [4]. According to such guidelines,
there are three approaches for assessing forest area changes (activity data) and three tiers for assessing
emissions factors, each with increasing accuracy and precision.

The activity data must be assessed with satellite data at a minimum mapping unit of up to a
maximum of 1.0 ha. Area changes of forest to non-forest (i.e., deforestation) consider that a forest has a
minimum tree-crown cover of 10–30%, with trees that have reached, or could reach, a minimum height
of 2–5 m at maturity in the same location. Changes within the same forest class are also accounted for
when there is a reduction of the carbon stock (i.e., degradation). Challenges remain for consistently
mapping activity data [5], notably forest degradation [6].

For emissions factors, three tiers are proposed: Tier 1 uses default above-ground biomass (AGB)
values per ecological zone and continent. Tier 2 and Tier 3 are more elaborate, based on country-specific
remote sensing or permanent sample-plot data. Although the Tier 1 approach has large uncertainties,
for the time being, many developing countries have to use this representative carbon stock as they lack
the financial and technical capacities to implement forest carbon stock inventories to derive Tier 2 and
Tier 3 emission factors [7].

While plot data are often regarded as ‘ground truth’, they also have many uncertainties—location,
measurements [8,9] size of plots [10], and extrapolation models (i.e., allometric equations) [11–14].

A key challenge, therefore, is to enable participating countries to obtain estimates of carbon stocks
(AGB) in a cost effective way.

It is in this context that we place the current work. We wish to demonstrate that by combining
optical RS data with a reduced number of field measurements, substantial savings can be made in
making AGB estimates, both in time and resources. The work is undertaken not as a test case, where
all data are available for a chosen test site, but as an ‘operational’ national study, where we work with
the data available—both remote sensing and field measurements. In addressing a country wide survey,
we also must deal with different ecosystems manifesting different vegetation types that exist across
Tanzania. In addition, the availability of satellite images and their utility varies across the country,
restricted by available cloud free imagery, and vegetation conditions due to phenology. This paper
attempts to address these problems.

1.2. Use of Remote Sensing Data to Map Above Ground Biomass

Mapping and monitoring of forest carbon stocks in the tropics has traditionally relied on field
surveys that are often limited to particular ecosystems and locations [15]. Given the restrictions of the
scope and of the costs of recurring surveys, many researchers have used available satellite and aerial
remote sensing instead [16–18].

Earth Observation offers the unique opportunity to assess the state and changes of vegetation
dynamics, providing data over large (e.g., continental scale) areas and long (e.g., a decade or more)
periods, at spatial and temporal sampling frequencies that are potentially suitable for detecting key
forest carbon stock distribution and changes [19,20].

Remote sensing-based datasets that are widely used are: (1) Light Detection and Ranging (LiDAR);
(2) optical data at various spatial resolutions; and (3) Synthetic Aperture Radar (SAR). LiDAR data are
able to map forest structure and height in the three dimensions [21–24]. However, acquisition costs,
processing, and difficulties in replicating in both space and time often render the use of LiDAR difficult.
Optical data have been extensively used for AGB modelling with very high (less than 10 m) or coarse
spatial resolution (circa 250m) data. Generally, AGB estimation from optical remotely sensed data
is carried out through regression models, based on relationships between AGB and reflectance [25].
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Direct biomass estimations based on optical satellite data have been successfully carried out with
very high resolution images (VHR) [26–30]. Despite good results, such approaches are only currently
applicable to small area sites, due to their costs and availability of VHR data.

At the regional level, coarse spatial resolution satellite imagery have been used in combination
with field plot measurements and space-borne LiDAR data to derive wall-to-wall pan-tropical biomass
maps at 1 km resolution for the year, 2000 [31], and 500 m resolution for 2007 [32]. Both studies use a
similar approach, correlating tree height from Geoscience Laser Altimeter System (GLAS) data points
to AGB values of (spatially overlapping) field inventory plots. These are then interpolated to deduce
the AGB values for all non-overlapping GLAS data points.

Langner [33] reviewed these two pantropical biomass maps and a combination of both (combined
dataset) in comparison with the IPCC Tier 1 values, which led to an overestimation of AGB as the values
often refer to intact forest sites [31]. The mean AGB show a good consistency between the two datasets
values per pan-tropical ecological zone with a correlation coefficient (R2) of 0.87. When restricting
the regression to intact forest areas (IFA [34]), R2 is even higher: 0.97. For non-IFA, R2 is lower: 0.80.
A comparison between these two pan-tropical maps generally shows higher AGB values from the
500 m map [32] than the 1 km map [31]. However, a detailed look at the data shows significant
differences (both in spatial distribution and magnitude of AGB) between the maps, notably for tropical
dry Africa. Nevertheless, Mitchard et al. [35] concluded that no single map was generally superior to
the other despite the substantial differences.

The main limitations of optical satellite data are: (i) Cloud cover can significantly affect AGB
estimates by limiting the number of satellite orbits acquired over a cloudy area; (ii) optical data become
saturated with dense canopy and high biomass.

SAR (Synthetic Aperture Radar) data are considered as reliable indicators of AGB [36–39].
Radar backscatter is highly sensitive to vegetation structural properties that are related to biomass [40],
with C, L, and P bands giving higher backscatters to leaves, branches, and trunks respectively [41–43].
The ability of SAR to penetrate cloud cover makes it particularly valuable in cloudy areas, such as the
tropics, however, limitations occur in areas of high topography. L-band is the most widely used for
forest AGB estimation. The physical properties of vegetation and woody components (comparable in
size to the wavelengths used) influences the AGB-backscatter relationship. However, the L-band is
only efficient up to around 100 t ha−1, above which sensitivity to AGB is lost [44].

To overcome this limitation, data fusion of SAR and optical images has been proposed [45–47].
The combination of ALOS PALSAR 2 (Phased Array type L-band Synthetic Aperture Radar) and
WorldView-2 data has been shown to be a promising approach to improve biomass estimation over a
larger area in China [48]. Scientific consensus on the accuracy of SAR and optical data fusion is still not
complete [49], and most of these tests are of limited area coverage, unlike this study where a country
wide estimate is reviewed.

1.3. The Current Study

We use field plot data collected by Tanzania’s NAFORMA project (National Forest Monitoring
and Assessment) in conjunction with RapidEye, 5 m resolution optical satellite data. The choice of
RapdiEye data was seen as the opportunity to have high spatial resolution data over a large area.
Previous studies on linking optical data at this (national) scale rely on low (circa 250 m) to medium
(circa 30 m) resolution data [50].

Nationwide field surveys for measuring biomass, such as that carried out by NAFORMA, are
expensive and time consuming and contain errors, in some cases up to 30% [9]. We assess the possibility
of combining a limited sample of the field survey data (circa 1000 field plots out of 32,000) to train and
validate estimates of AGB using remotely sensed images through a regression estimator. We use a
readily available fine spatial (5 m) resolution RapidEye optical data systematically distributed across
Tanzania in 76 sample sites, in conjunction with a corresponding subset of field plots extracted from
the national survey carried out by NAFORMA. Different parametric and non-parametric approaches
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were applied to develop linear and nonlinear regressions between input variables and AGB, using
random forest (RF) and support vector machine (SVM) regression methods.

If by combining these two data sets (through modelling and extrapolation), we can demonstrate
the potential for providing estimates of AGB at the national level with less field data, significant
financial savings could be achieved. This would allow more countries to rapidly provide data on AGB
for REDD+ reporting [51]. The measure of the improvement of the combined approach compared to
the field plots alone is provided by the relative efficiency [10,52], which gives the improvement in
precision (i.e., reduction in variance). A relative efficiency of two would mean that a ground survey of
X plots with remote sensing correction would give the same precision as a ground survey of 2X plots
without remote sensing data.

The novelties of this study are in the combination of: (i) The use of 5m optical data to support a
country wide biomass inventory across all ecosystems; (ii) the use of object segmentation at this scale
along with texture measures [26,27,53] and (iii) the provision of traditional forestry sector agencies
with guidelines for integrating remote sensing data in the planning of field data acquisition. If the
remote sensing parameters and field data results on AGB can be shown to be correlated, one can obtain
significant cost savings by reducing field data acquisition.

The work therefore addresses two related themes: (1) Specific results and quantification of
increased precision from use of RapidEye optical data, and (2) a variety of practical, operational
considerations and potential applications of RapidEye data.

2. Materials and Methods

The methodology was applied in the following steps: We determined the optimal minimum
mapping unit (MMU) to employ when processing the remote sensing data and applied it to the
RapidEye data after cloud and cloud shadow masking. Reflectance, texture, and indices were extracted
from those image objects which corresponded spatially to the field data (geometric location), and
ambiguous or erroneous field data were screened and removed. We then tested models so as to relate
field data on AGB with the spectral and textural parameters extracted from satellite data. The best
model was then applied to all the image objects in the full Remote Sensing data set, so as to obtain
AGB estimates for each of the remote sensing sample sites. These results were then interpolated by
direct expansion to the national level and compared to the results from the full field survey.

2.1. Study Area

The study area covers the full land surface of mainland Tanzania, which is located on the east
coast of Africa between parallels 1◦ S and 12◦ S and meridians 30◦ E and 40◦ E. Tanzania has an
area of 945,090 km2. Following the White classification scheme [54], the country is covered by
five ecosystems (percentage area of the country is given in brackets); the Zambezian ecoregion
(55.7%), the Zanzibar-Inhambane (8.5%) the Somali Masai (26.5%), and the Afromontane region
(4.8%). The Victoria region refers to the area around Lake Victoria (4.5%) The predominant vegetation
covers are respectively: Miombo woodland, heavily disturbed coastal forests, arid shrub-lands, and
dense forests (Figure 1) [55].

Almost all of the forests are naturally regenerated, with only 1% of the forest cover being
considered as ‘primary’. The national survey does not give AGB levels by ecological zone, however,
estimates are given by vegetation type (Table 1) from which we see that the country average will be
close to that of woodlands, which are pre-dominant.

70



Forests 2019, 10, 107

 

F
ig

u
re

1
.

Th
e

ec
ol

og
ic

al
zo

ne
m

ap
of

Ta
nz

an
ia

[5
4]

w
ith

th
e

lo
ca

tio
n

of
th

e
fie

ld
pl

ot
s

(n
ot

to
sc

al
e)

to
co

in
ci

de
w

ith
th

e
sa

te
lit

e
da

ta
.A

n
ex

ce
rt

of
th

e
po

in
ts

fo
r

on
e

cl
us

te
r

ov
er

la
id

on
a

R
ap

id
Ey

e
im

ag
e

is
sh

ow
n

to
th

e
ri

gh
t.

71



Forests 2019, 10, 107

Table 1. Above ground biomass (AGB) by vegetation type: National Forestry Resources monitoring
and Assessment (NAFORMA) Main Report [55].

Vegetation Area (ha) AGB (t/ha) Share of Carbon Stock (%)

Forest 3,364,457 59.5 11.5
Woodland 44,726,246 27.7 73.5
Bushland 6,445,471 11 4.4
Grassland 8,242,245 2.9 2.3

Cultivated land 22,248,092 5.9 8
Water 1,162,552 0.3

2.2. NAFORMA Field Data

The National Forestry Resources monitoring and Assessment (NAFORMA) project was set up
by the Ministry of Natural Resources of Tanzania (MNRT) and the United Nations Programme on
Reducing Emissions from Deforestation and Forest Degradation (UN-REDD), with the technical
support of FAO (the Food and Agriculture Organization) and Finland [56,57] for assessing and
monitoring forest carbon pools compatible with REDD+ requirements. The national field data set
collected by NAFORMA was designed to provide a national estimate of forest area, wood volume, and
growing stock [58], along with a set of social indicators and a soil database. The survey design was
stratified using potential biomass and accessibility to facilitate the field visits [59,60]. Some 32,000 plots
were visited over a period of 3 years, collecting the biophysical and social variables. The final results
were released in 2015 [55].

The sampling design produced clusters each of 10 plots, five plots running west-east and five
north-south, with a distance of 250 m between plots (see inset in Figure 1). The size of the plots
(15 m radius circle) was devised for efficiency in the field, however, this may not be optimum for
linking with remote sensing data [10]. The field work started in May 2010 and was completed in
June 2013. Data for over half the field plots were collected during the period of RapidEye satellite
acquisition. The remaining images were acquired up to a maximum of 14 months after the field data
(see Supplementary Materials). For each plot, data were collected on canopy cover, tree and shrub
height, trunk diameter (DBH), species, dead wood, and soil. The tree measurements (DBH ≥ 1 cm)
were conducted in concentric circular plots. Species, health, and diameter were measured for all
trees, and height, stump diameter, and bole height measured for tally trees (i.e., every 5th tree) [58,61].
We used the data from individual plots, rather than aggregating the data at the cluster scale, due to the
observed heterogeneity between adjacent plots.

The biophysical data on basal area and tree height were then used by NAFORMA to calculate
bole volume in a model and hence carbon biomass for each plot, from which national and regional
level estimates were made. Allometric equations were used to calculate tree volume using the DBF
and estimated height for each plot. Different models were used, three for commonly used plantation
tree species and two generic models for the remaining natural species. To obtain AGB, the tree volume
was multiplied by the wood specific density, which was given as 0.58 for forest species and 0.50 for
woodlands [58]. While we use these data as our reference, we also need to be aware that the models
used to calculate AGB from field data also suffer from bias [62].

Through a collaborative agreement with the Tanzania Forest Service, our institution, the European
Commission’s Joint Research Centre (JRC), was given access to a subset of the NAFORMA field
data. This subset consisted of those plots falling within 20 km by 20 km boxes centered on the
76 latitude-longitude confluence points (i.e., the crossing of the integral longitude and latitude)
in Tanzania, a total of around 1000 plots. These sites were chosen as they corresponded to the
satellite image sample sites used for the Global Forest Resources Assessment Remote Sensing Survey
2010 carried out by the JRC and United Nations Food and Agriculture Organization (FAO) [63].
Their geographical distribution means that the remote sensing data cover all types of different
ecosystems in the country.
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2.3. RapidEye Satellite Data

To support the FAO FRA remote sensing survey, the European Union’s GMES (Global Monitoring
for Environment and Security) provide a RapidEye dataset [64] over the 76 confluence points in
Tanzania. For providing continental estimates of forest change between 2000 and 2010, the FRA project,
in conjunction with the JRC, used this systematic sample of satellite images across the globe with
samples based on the latitude-longitude confluence points (i.e., the crossing for the integral longitude
and latitude) [65]. These data were the only freely available 5 m resolution data set which covered
Tanzania. Over 80% of the images were acquired in the second half of 2010, with the remaining images
coming from the first quarter of 2011. On average, the image acquisition precedes the field data
collection by 10 months (see Supplementary Materials Figure S1 for image acquisitions and differences
between field data collection).

RapidEye data come from a constellation of five radiometrically inter-calibrated satellites [66],
each with a swath width of approximately 500 km, acquiring data in 5 spectral bands (Table 2), from
blue to near infra-red (including a ‘red edge’ band). The data revisit period is a nominal of 1 day
on request, however, the effective acquisition is limited due to recording and receiving capacities,
relatively high cloud cover over the target area, and priority demands for commercial acquisitions.
The latter is especially true for Africa, where lower data availability can occur due to the demand for
images over the European agricultural zone. The ‘best’ (cloud and artefact free) images from RapidEye
satellites 3, 4, and 5 were selected and mosaicked using all bands to cover a 20 km by 20 km box around
each confluence point (Figure 2).

Table 2. RapidEye Spectral Channels.

Channel Spectral Band Name Spectral Range (nm)

1 Blue 440–510
2 Green 520–590
3 Red 630–685
4 Red Edge 690–730
5 Near infra-red 760–850

(a) 

Figure 2. Cont.
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(b) 

Figure 2. The RapidEye ABG map (a) for a sample centered on the 9◦ S 38◦ E confluence point and
(b) the satellite image false colour composite (Shortwave Infrared (SWIR), Near-Infrared (NIR), Red).
Cloud and cloud shadow are masked out in the first stages of the pre-processing, then image segments
are assigned AGB values using the model developed using random forest.

2.4. RapidEye Preprosessing—Radiometric Calibration

RapidEye level 3A data are provided as 5 band layer stacked Geo-Tiff files, with a nominal 5 m
pixel size stored as 16 bit data. The data were converted to at-sensor radiance (W m−2 sr−1 μm−1),
and then the top of atmosphere reflectance was calculated using the local solar zenith angle and sun
irradiance supplied for each band in the metadata and published calibration coefficients [64]. To obtain
at sensor radiance in watts per steradian per square meter (W m−2 sr−1 μm−1), a scale factor is applied
as follows:

Lλ = DNλ × ScaleFactor(λ) (1)

where ScaleFactor(λ) = 0.01.
The Top of Atmosphere reflectance is calculated by:

�λ = π × Lλ × d2/ESUNλ × cos θSZ (2)

where:

�λ = TOA reflectance for band λ

Lλ = Radiance for band λ

θSZ = Local solar zenith angle
d = (1 − 0.01672 × cos (0.01745 × (0.9856 × (Julian Day Image − 4)))

The mean exoatmospheric solar irradiance, ESUN λ, in W/m2/μm) for each channel is
respectively: ESUN λ1-5 = (B1 = 1997.8 B2 = 1863.5 B3 = 1560.4 B4 = 1395.0 B5 = 1124.4).

The reflectance values, ranging between 0 and 1, are rescaled to 16 bit Unsigned Integer (0–10,000)
with a linear multiplication factor of 10,000. The required formulas and parameters are taken from the
literature [64]. We performed an ‘evergreen forest normalization’ [67,68]), based on the theory of dark
object subtraction [69], which reduces the variance in reflectance between images acquired at different
dates and locations.

2.5. RapidEye Preprosessing—Image Segmentation to Obtain The MMU

The UNFCC, at its 7th Convention of the Parties (COP), proposed that countries should choose an
MMU no greater than 1 ha [70]. For its submission to the UNFCCC, Tanzania used a 0.5 ha MMU [71].

Image segmentation was chosen to map landscape units at a cartographic MMU corresponding
as closely as possible to that set by the national authority responsible for forests (the Tanzania Forest
Service) and international guidelines. Almost all national forest definitions are based on tree height
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and tree cover with a minimum mapping unit. Remote sensing data are imaged at the pixel level and
so segmentation allows us to cluster pixels of a similar reflectance and texture into objects (vector
polygons) that correspond to landscape units (e.g., ‘a forest’) [72]. The segmentation of the image into
the objects is achieved through the software package, eCognition [73].

To select the segmentation parameters which determine the aggregation of pixels to objects (or
polygons), we effectuated a series of tests changing the shape factor, the compactness, and reflectance
weights of the segmentation process executed in the eCognition software package. We found that a
high compact value (0.9) provided results that were more in line with traditional photo interpretation
results. Results with lower compactness gave us highly fragmented polygons.

The shape factor is the parameter (integer > 1) that controls the size of the objects [74]. The greater
the shape factor, the larger the objects. However, the results of the segmentation (i.e., object size) are
dependent not only on the shape factor, but on the image itself, i.e., the image contrast, variance and
landscape fragmentation. Therefore, a different value of the shape factor parameter may be required to
obtain objects of the same size on different images. In conjunction with the FAO, the JRC developed an
iterative routine applied to each image to create initial, small, landscape units, and then in a stepwise
process, increased these units until the mean object area of each of the image corresponded to the
MMU (Figure 3). Objects smaller than the MMU were then dissolved and added to the adjacent object
with the closest spectral signature [72]. As the mean object area must be calculated only on land
cover features, objects corresponding to clouds and cloud shadows had to be detected, masked out,
and omitted from the routine. An example of the increasing shape factor iteration is given in the
Supplementary Materials Figure S3 with the final result in Figure S4.

Figure 3. Processing scheme to obtain 1 ha MMUs.

The texture of the image’s reflectance can be an effective parameter for measuring AGB [26,27,75].
To have a consistent measure of texture, the scale of analysis (kernel) needs to be large enough to cover
the variation in the target landcover with respect to the resolution of the satellite data. At fine spatial
scales (e.g., 1 m), the texture of tree crowns shows high variance. This variation remains high until the
unit of observation, i.e., the kernel, is larger than a single tree. We carried out a series of tests extracting
texture measures from the RapidEye data using a set of incrementally increasing circular units in
homogeneous landscapes from 0.25 ha to 6.25 ha to find a MMU that gave stable (i.e., invariant) results
(Supplementary Materials Figure S2). Some texture measurements were highly sensitive to the size of
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the image object, but stabilized at 1 ha. This was then used as the MMU for our objects. One hectare is
larger than the final national specification (0.5 ha), but is in line with international guidelines.

2.6. Cloud and Cloud Shadow Masking

The RapidEye data exhibited two artefacts that needed to be addressed: (i) Cloud and cloud
shadow displayed a locational shift of several pixels between image bands, (ii) the sun azimuth angle,
which is used in classification software for detecting cloud shadow, was missing in the metadata.

The locational shift (i) between bands is as a result of the push-broom design of the RapidEye
sensor, which means that different spectral channels are acquired at slightly different times. This effect
is combined with a parallax effect, which depends on the height of the cloud in the individual
images [76]. We therefore used an incremental approach whereby an initial (high) reflectance threshold
of 50% was applied to detect core cloud areas in each band [77], creating ‘core cloud objects’. These
objects were then merged together and then a lower (10%) threshold was applied only to those areas
adjacent to the core areas (i.e., edge of cloud). This has the effect of expanding the area classified
as cloud.

To address (ii) that of the missing the sun azimuth angle, an interface was developed to visually
estimate the sun azimuth angle. An operator used the position of clouds and their respective shadows
to provide an angle for the missing value to replace the missing metadata.

2.7. Extraction of Remote Sensing Parameters for Developing Models for AGB

After cloud and cloud shadow masking, the segmentation iteration loop, as described in
Section 2.5, was run to obtain image objects at the MMU (1 ha) for all images. A set remote sensing
parameters were then extracted from the level 1 ha objects corresponding (spatially) to the field data
plots. These parameters were then used as the basis for generating a model for relating AGB to
remotely sensed data (Figure 4).

Figure 4. Data extraction scheme.
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The parameters fall into five categories: Simple reflectance means and standard deviations for the
objects; derived vegetation indices designed to highlight vegetation characteristics, advanced texture
measures based on Grey Level Co-occurrence Matrices (GLCM) [78], and a categorical class giving the
percentages of the polygon belonging either to bare soil, grasslands, or woody vegetation.

Spectral indices have been used for detecting vegetation and more specifically forest parameters
in a number of studies [79,80]. The shortwave infrared bands (1.6 and 2.7 μm) are found to be highly
correlated with forest parameters and canopy cover [52]. Unfortunately, these bands are absent from the
RapidEye sensor. Indices, such as the shadow index, have also been used for forest applications [81,82].
Improvements in assessing AGB have been achieved using temporal series to monitor phenological
changes [83], however, in our study, we were limited to single data imagery.

As satellite data of finer spatial resolution have become more readily available, the use of the
texture measures has become more common (e.g., [84]). The number of texture indices available is
extensive (200 are available in the image processing software, eCognition). Each measure (column 1 of
Table 2) can be assessed in 5 different directions for each individual band or for all bands combined.
Since these indices are computationally time consuming, we used pairwise correlation tests on the
parameters to identify those indices that were highly inter-correlated (see correlation matrix in the
Supplementary Materials Figure S5). As a result, we reduced the number of potential texture indices
to 25.

For the percentages of bare soil, woody vegetation, and photosynthetically active non-woody
vegetation, we used the Shadow Index (SI), the Bare Soil Index (BSI) [85], and the Modified Chlorophyll
Absorption Ratio Index (MCARI) [86]. To restrict our final models to ‘woody’ vegetation, we produced
a classification of each of the RapidEye images based on a decision tree approach [77], which assigns
each object to either forest, shrub, or non-forest. The data extraction processing chain (Figure 4) was
implemented in eCognition (the rule set is available both as text and an eCognition dcp file in the
Supplementary Materials). The list of reflectance and texture measures extracted from the RapidEye
objects is shown in Table 3.
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2.8. Reviewing the Field Plot Data with Respect to the Rapideye Data

To assess the compatibility between field data and image data, we developed an interface
displaying the image data, the plot location, and the plot information (see Supplementary Materials
Figure S6). A number of problems came into evidence during this review. These related to spatial
mismatches, temporal mismatches between image acquisition and field visits, and the impact of mixed
land cover within the sample sites.

Specifically:

- The field data (15 m circle plots—circa 700 m2) cover 27 RapidEye pixels. However, the precision
of the plot geolocation taken in the field (Garmin C60) had limited accuracy (+/−7 m). There are
also known problems in changing between the Arc60 datum of topographic maps of East Africa
used in the field survey, and that of the satellite reference datum, UTM-WGS84 [92];

- there were a number of discrepancies in the geolocation of various RapidEye scenes, which
after the review, were addressed by shifting images to a reference data base of Landsat scenes.
Over 50 sample site images were shifted by up to 12 pixels, 30 in the X direction and 41 in the
Y direction;

- temporal differences; the field data collection took place over three years; satellite data were only
available for one of these years. On average, the difference between field data collection and
satellite image acquisition was 10 months (see Supplementary Materials Figure S1), with most of
the field data collected after the image acquisition;

- data collected in the field gave no systematic estimation of the respective cover of trees, shrubs, or
other land cover classes, despite being foreseen in the original protocol. On a number of occasions,
when given, the canopy cover did not correspond to that seen from the satellite image—perhaps
due to problems of geolocation between the data sets, or differences in the time between the field
visit and the image acquisition. Also, canopy density is known to be difficult to measure with
accuracy from the ground [8];

- the land cover classification given to the field teams was not adapted to providing adequate field
data for calibrating remote sensing data. The vast majority of plots were classified as ‘woodland’,
without further elaboration;

- even if the land cover has not changed throughout the year, its condition does, especially in
the tropics, predominantly due to seasonality. It may be in a lush green phase, drying out,
exceptionally dry, burnt, or flooded. All these present different spectral signatures for the same
land cover. We removed 33 plots that were burnt, 9 that were flooded, and 13 that had cloud or
cloud shadow; and

- finally, we found that the field plot was not always representative of the 1 ha image object on the
remote sensing data.

2.9. Models for Predicting Above Ground Biomass

We tested four predictive models to relate the remotely sensed parameters to AGB and evaluated
their accuracies. Two models using inferential statistics (i.e., a generalised linear model and a
generalised exponential model) and two machine learning models (i.e., a random forest model and a
support vector machine (SVM) model). The predictors of the models are image bands, their textures,
and spectral indices, while the response variable is the AGB. A scatterplot of each input variable
(predictors in the y axis) and biomass is shown in the Supplementary Materials Figure S7.

In the generalised linear model, the dependent variables are assumed to be a linear function
of several independent variables, where each of them has a weight (i.e., a regression coefficient).
Generalised linear models require a linear relation between predictors and response variables.

Allometric equations relating tree height and basal area to volume, hence calculating AGB, are
generally non-linear [11]. We therefore employed a logarithmic transformation to the dependent
variables, which is a generalised exponential regression.
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Random forest (RF) [93] is an ensemble method that builds several decision trees (weak learners)
and outputs the mean prediction of the individual decision tree models. The improved RF strategy
alleviates the often reported overfitting problem of simple trees. The decorrelation of the decision trees
is achieved through the random selection of the input explanatory variables [94] by bootstrap methods.
In this case, 63% of the data is used for training (in-bag data) and the remaining 37% (out-of-bag data)
for validation. The choice of random forest was mainly motivated by: (i) RF runs efficiently on large
databases (i.e., it is relatively fast to build and even faster to predict), (ii) RF is resistant to outliers and
over-training, (iii) RF does not require cross-validation for model selection, (iv) RF provides further
information about the most relevant variables inputted in the model, and (v) RF is computationally
parallelizable. In a decision tree, an input is entered at the top and as it moves down the decision
tree the data gets binned into smaller and smaller sets. The main principle behind ensemble methods
is that a group of “weak learners” can come together to form a “strong learner”, for details see [93].
Two parameters are important in the RF algorithm: (i) The number of decision trees used in the forest
(ntree) and (ii) the number of random variables used in each decision tree (mtry). In our RF model, we
have 500 decision trees (i.e., ntree = 500) and the default mtry value (i.e., mtry = 9). To find the correct
ntree number, we built RF models with different ntree values, recorded the error, and computed the
number of decision trees needed to reach the minimum error estimate. RF provides the percentage of
variance explained and the most relevant input variables in the model. For reproducibility, we used a
fixed random number parameter, which forces the generator to give the same random numbers in the
random forest function. Since random forest performances generally increase as the size of training
data increases, we trained the final model with the entire ground truth dataset.

Random forest is also able to provide information about the importance of the predictors.
Specifically, the mean decrease accuracy (“%IncMSE”) (Figure 5) has been used as a measure of
variable importance. The %IncMSE quantifies by how much the removal of each variable reduces the
accuracy of the model. The higher the %IncMSE is, the more important the variable. We ran random
forest 100 times to find a robust estimate of these predictors, with the average values and the quartile
distributions of the 20 most relevant predictors shown in Figure 5. The Shadow Index was found to be
the most important variable. R2SD2 (that is the ratio of band 2 reflectance to its standard deviation)
and MCARI are also able to influence AGB variability. Other predictors are ranked lower in their
relative variable importance. The main limitation of the random forest model is the lack of capacity to
predict beyond the range of the response values in the training data.

The support vector machines (SVM) are supervised learning methods used for regression tasks
that originated from statistical learning theory [95]. SVM methods perform a linear regression in a
high dimension using kernels. This allows it to capture nonlinear tendencies in the original input data.
SVM has some parameters that need to be selected (i.e., the kernel) and tuned (i.e., cost and gamma) to
obtain a better performance. Among all the kernels available in the literature, we chose the radial basis
function (RBF) kernel, due to theoretical and computational convenience. In order to optimise the
SVM, we have tested several different cost and gamma values, and returned the one which minimizes
the mean squared error for a 10-fold cross validation. Specifically, the optimal values were found as 10
and 0.5 for the cost and gamma parameters, respectively.

The ground truth dataset is the national field data set collected by NAFORMA that consists of
512 points where we have AGB information (circa 500 other points were excluded due to very low
or zero biomass, detected on the basis of the decision tree classifier—Section 2.7). The ground truth
dataset was split, 85% into a training dataset (435 points) and 15% into a validation dataset (77 points).
Random forest already separates partial data for an internal validation (i.e., 63% of the data is used
for training and 37% for validation as discussed in Section 2.9), but to compare results with other
models, it has been trained and validated with the same validation dataset as for the other models.
This scheme ensures: (i) That identical datasets are used for training and (ii) an independent validation
with a dataset not included in the training phase.
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Figure 5. Box-plot of the importance of variables for AGB in the final Random forest model, showing
the increase in mean standard error (MSE) when removing a variable (y-axis), and their importance on
the x-axis. For the sake of simplicity, only the first 12 variables are shown. RXSDX denotes the ratio of
the band X reflectance to its standard deviation.

Once we obtained the best model for AGB, we created the final model using all of the ground
truth dataset (for further details see next section). The final model was then applied to all the image
objects pre-classified as ‘woody’ in the full Remote Sensing data set, so as to obtain AGB estimates for
each of the remote sensing sample sites.

Four statistical indicators were used to evaluate the performances of the models: (i) Root
mean square error (RMSE); (ii) mean absolute error (MAE); (iii) relative root mean square error
(relRMSE); and (iv) the coefficient of determination (R2). Note that results of models refer only to the
validation dataset, however, the performance of the model with the training dataset is shown in the
Supplementary Materials Figure S8.

2.10. Interpolating the Results to the National Level

To obtain the country level estimates, we interpolate by direct expansion to using the Direct
Expansion Estimator. The application of the direct expansion method has been used in various
studies [52].

AGB = D × y (3)

where D is the total study area and y is the average AGB ha−1 of the sample areas.

2.11. The Relative Efficiency to Measure the Improvement in Precision Brought by the Remote Sensing Data

We calculated REff, the relative efficiency (i.e., the ratio of the variance of the estimates for the
AGB calculated from the RapdiEye data combined with field data (VARREFD) to the variance of the
AGB from the field plots alone (VARFD). This measures the improvement in precision (as opposed to
accuracy) that the introduction of the remote sensing data brings [96]. In theory, a relative efficiency of
X would mean that the improvement brought about by the introduction of the remotely sensed data
could be achieved by using X times as many field plots [10].

REff = VARREFD/VARFD (4)
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An estimate [52] can be made with:

REff =
1

1 − R2 (5)

where R2 is the square of the Pearson coefficient of correlation between the remote sensing data and
the field data.

3. Results

3.1. Model Results

Table 4 summarizes these main statistical indicators, with scatterplots of the difference between
the observed and modelled AGB shown in Figure 6. All performance measures (i.e., RMSE, MAE,
relRMSE, R2, and observed vs. modelled scatterplots) were assessed using only the validation dataset,
with random forest exhibiting the best correlation (R2 = 0.69).

Table 4. Statistical indicators of modelled data versus observed AGB.

Model RMSE MAE R2 relRMSE

Generalized Exponential Regression 44.55 36.44 0.32 21%
Generalized Linear Regression 41.81 35.07 0.39 20%

Random Forest 30.00 21.64 0.69 14%
SVM 39.08 29.76 0.42 19%

Figure 6. Scatterplot of predicted vs. modelled AGB in tha−1 for the four models using the independent
validation dataset. Both circle size and colour refer to the actual AGB. Model performance indicators
are also shown in Table 4. The blue line indicates the linear regression between the actual and modelled
data and the grey area is the 95% confidence level interval.
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The RMSE of the random forest model is ~30, with an MAE of ~20 and an relRMSE of 15%.
The performance of SVM is less satisfactory: RMSE is ~40, MAE is ~30, and relative RMSE is ~40%.
As expected, the four methods presented a gain in performance on the training dataset, showing the
RF with very high accuracies (i.e., RMSE~15, R2 = 0.93), while the exponential and linear regression
methods still presented poor (biased) estimates of AGB (see Supplementary Materials Figure S8).
However, all four methods produce biased results, overestimating low AGB and underestimating
AGB, as indicated by the slopes’ deviation from the 1:1 line.

3.2. Analysis at the National Level and by Ecoregion

For our sample sites, covering 2.3% of the country, we find an average of 22.1 tons per ha of
above ground biomass (AGB). This is only for those landscape units that are classed as being ‘woody
biomass’. Using the areas provided by NAFORMA for forests and woodlands (54,534,500 ha), this
results in a total of 602.4 MtC for the country and compared to the estimate from the field plots of
624.9 MtC, a difference of 4%. The standard deviation is high—25%, however, this is not unusual, as
land cover is not generally distributed in a regular manner, especially in Tanzania, which exhibits land
covers of highly different levels of biomass.

Using the location of the individual sample sites, we calculated the average AGB for the respective
ecoregions (Table 5). Due to the limited number of samples in the other ecoregions, the informative
results are for the Somalia-Masai and Zambezian regions.

Table 5. Estimates of average AGB (t ha−1) by White ecoregion. *, Refers to the number of RapidEye
sites in each ecoregion.

Afromontane
Zanzibar-

Inhambane
Somalia-

Masai
Zambezian Lake Victoria

Area (km2) 43,500 77,100 238,965 502,052 40,300
Count * 5 6 19 41 4

Minimum 17.3 15.1 9.8 11.6 17.8
Maximum 27.7 30.4 22.4 34.3 25.9

Mean 20.9 21.5 16.7 25.2 22.3
SD 4.9 5.6 4.1 4.6 3.3

3.3. Relative Efficiency

The relative efficiency (REff) is calculated using Equation (5), which gives a REff of 3.2.
The introduction of the remote sensing data can therefore reduce the field data collection by three,
obtaining the same precision.

This result helps in answering one of the main questions of the study: “How much RapidEye
can improve the precision of field-based inventory estimates of above-ground biomass in forests and
woodlands of Tanzania?”

4. Discussion

A key point that this paper wishes to address is how to improve the link between remote sensing
parameters and data collected in the field.

4.1. Practical and Operational Consderations to Imprvve AGB Estimates from RapidEye Data

In preparing data for testing models to relate remote sensing parameters to field data (AGB), we
found that a major effort was required in ‘cleaning’ the field data. By ‘cleaning’ we mean removing
those aspects of the field data that reduce their potential to calibrate remote sensing data for biomass
estimation. The country wide RS data acquired under the GMES initiative was restricted to 2010–2011,
whereas the field data were collected over a period of three years. Hence a temporal difference often
occurs between a specific image and the corresponding field measurement. However, few plots would
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have undergone a change during this time lapse. To avoid cloud contamination, most images come
from the dry season. At this time, the vegetation is senescent, with trees and shrubs losing their leaves.
In this situation, the differences in reflectance between grasslands, shrub and tree savannah, and open
woodlands is reduced.

4.1.1. Co-Location of the Data Sets

The site visits for field data plots were organized without using remote sensing imagery.
Field teams, using the national topographic maps (in Arc60 datum), navigated to the pre-selected
sites. Such field visits should be supported by cartographic and digital extracts of the field locations.
Both high cost (high precision GPS with inbuilt satellite and/or map visualisation) and low cost (smart
phone/pad and PDF maps) exist to facilitate both navigation and on site location. When local datum
are used, so as relate to the national mapping datum, dual GPS locations with WGD 1984 should
be employed.

4.1.2. Data Collected

The data collected for the national assessment were suited for the statistical assessment of biomass
and for other parameters. However, we found that they were not specific enough to easily correlate
them to the satellite data. Optical satellite data record reflectance values within the plot that can
be related to the vegetation canopy cover, distribution condition (dry/green/burnt/flooded), and
structure. The field data collected need to correspond to these vegetation parameters, which should
be recorded and mapped on site during the survey with the aid of an orthomap produced from the
remote sensing data to be used in calibration.

4.1.3. Data Cleaning

The inclusion of non-woody, low biomass sites was found to introduce high variance in the
spectral signatures for similar values of AGB. These sites have a high variation in land cover and
land cover condition. They include barren surfaces, agriculture exploitations, grasslands, and park
savannah, each of which manifested different states—burnt, flooded, green flush, senescence, bare soil.
We therefore removed them from the data set, reducing the available points from circa 1000 to circa 500.

4.1.4. Spectral Signatures

The reflectance of forest canopy depends on a number of factors, structure, or row orientation
(for young artificial forests), optical properties of the background (soil and understory), and canopy
geometry [97]. The Shadow Index was found to be the most relevant parameter related to AGB,
followed by texture measures. The value of the Shadow Index increases as the forest density increases,
hence it is appropriate for relating to woody biomass.

Mature, natural forest stands tend to have more heterogeneous surfaces than non-forest and
young regrowth, creating more shadows. The shortwave (1.6 μm and 2.7 μm) infrared bands (SWIR)
have been shown to be highly successful in mapping forests [97]. This is mainly because at these
wavelengths, there is very low diffuse light, hence shadows are more contrasted. In the absence
of SWIR bands on the RapidEye sensor, we used the shadow index as defined by Rikimaru et al.
(2002) [58], which uses the visible bands only. Similarly, texture measures, at finer spatial resolutions,
differentiate between heterogeneous and homogenous surfaces (Table 3).

4.1.5. Ancillary Data

The parameters entered into the model came exclusively from the single date RapidEye data.
While these (RapidEye) are superior in terms of resolution, they are limited for temporal analysis.
With the arrival of the Sentinel 2a & 2b sensors, 10 m resolution data are now available at a 5 day
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frequency. Simulation of this scenario with the SPOT4take5 program [98] has already shown that
differences in forest canopy cover (and as a result AGB) can be determined [99].

4.2. Reviewing the Results

4.2.1. Estimation by Ecozone

The Somalia-Masai shows a significantly lower biomass than the Zambezian region (Table 5) as
expected, the former is dominated by shrub formations, the latter by woodlands. The other zones are
too small to consider using this methodology due to the small number of RapidEye images available
in each zone. The Zanzibar-Inhambane, home of the Coastal forests, should have a high average AGB,
however, it is these forests that have been depleted most by the impact of exploitation by residents of
Dares Salaam and Morogoro [100].

4.2.2. Relative Efficiency

It is difficult to quantify the potential financial savings the inclusion of remote sensing data would
bring to the project without knowing the direct costs of the field survey. In the NAFORMA project,
the total spent on salaries for the field survey component alone was circa $5 million [63]. However,
this includes household surveys (n = 3500) and soil data collections (n = 4000). The costs of overheads,
vehicles, and fuel would need to be added. In any case, a relative efficiency of over three indicates that
when combined with remote sensing data, the field component could be more than halved to obtain
the same precision. The cost of RapidEye data at the time was around $1 per square kilometre, giving
a commercial cost of just over $30,000 for the satellite data used in this study. Full country coverage
by RapidEye would be around $1 million. Such a coverage would also provide a wall-to-wall map of
biomass, which could allow for the estimation of biomass in small ecozones described above.

4.2.3. Model Results

The final model has to cover the full variation in vegetation types and conditions across Tanzania.
Clearly, studies on small areas [45], single ecosystems [39], or a mono-species plantation [46] will
provide better results, however, these are not comparable to a country wide assessment.

It should be noted that two field plots may have the same AGB, but with totally different
characteristics, in terms of vegetation type, cover, and condition. We can imagine a plot with one tree
surrounded by grass having the same AGB as a plot fully covered by shrub. This is where the strength
of random forest lies, applying a decision tree to associate different input parameters (in this case RS
variables) to the same class.

Compared with the other methods available, random forest considerably reduces the dispersion
of residuals (e.g., RMSE) and increases the model fit (R2). Despite this improvement in accuracy and
precision, the AGB estimate presents a reduced range (40–150 t ha−1 in the case of random forest),
which is much lower than the response values in the training data (in the range of 10–200 t ha−1).
Specifically, the statistics by the biomass range show that RF tends to overestimate biomass in the
range of 0–40 t ha−1 and underestimates it at higher values (i.e., above 150 t ha−1).

Note that this behavior is present for all the four models and is minimized for RF. This behaviour
has been observed in many other AGB products [101]. A solution to this would be to compute AGB
error statistics for biomass ranges (i.e., 0–50 t ha−1, 50–100 t ha−1). It also has to be remembered that
the biomass estimates themselves are interpolated from field measures using allometric equations,
which in themselves may have bias for certain ranges of AGB [62].

The AGB overestimation at low biomass and underestimation at high biomass is still an open
issue, which has been widely reported in the literature using either optical or radar data (e.g., [102]).
Although the presence of a bias can be regarded as a main drawback of such maps, this caveat does not
mean that the model result is without merit, as all models are affected by various limitations, and their
identification allows a proper use of the outputs. For example, if the map accuracy is not sufficient
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for certain applications (e.g., local level management), other applications (e.g., stratification, regional
analysis) can benefit from knowing the spatial distribution of biomass in relative terms. In any case,
quantile analysis on the results of RF regression (Supplementary Materials Figure S9) shows that RF is
able to discriminate four main levels of AGB with a relatively good accuracy (e.g., 70% and almost 80%
for low and high values, respectively) and the bias in the extremes is not so important.

Underestimation of high biomass values may be due to the following reasons:

(i) The limited sensitivity of satellite sensors to variations in canopy height and tree diameter in
dense forests. Specifically, optical sensors’ radiometers (such as RapidEye) tend to saturate at
high biomass in dense forest where there is a weak reflectance-biomass relationship, e.g., [103].
For this reason, the combined use optical data in combination with SAR and LiDAR data would
improve results as shown in [104,105];

(ii) we were limited to the use of single date imagery with most of the images acquired in the dry
season when many seasonal forests have lost their leaves and are spectrally similar to low biomass
grasslands; and

(iii) RF is trained on a dataset where high biomass values represent the tail of the frequency
distribution and therefore its performance decreases as the biomass increases.

With regards to low biomass values, there could be two explanations: (i) Confusion between
understory vegetation and forest canopy where shrubs might be confused with the canopy thus
overestimating AGB; and (ii) tree savanna, isolated trees may tend to have a larger canopy, which is
relatively similar (as seen from satellite) to that of a denser forest.

The use of diverse data sources may overcome this problem: Combining space borne SAR (e.g.,
ALOS PALSAR 2, Envisat ASAR, Sentinel-1), optical (e.g., Landsat 7 & 8, Sentinel-2), LiDAR (ICESAT),
and auxiliary datasets with multiple estimation procedures as executed by Avitabile et al. [106].

Our work demonstrated that forest services face major hurdles when trying to integrate remote
sensing data into a national inventory. These hurdles include obtaining cloud free data for all reference
(field) measurements at dates as close to the data collection campaign as possible; ensuring a good
geolocation of the two data sets; and having an adequate representation of the distribution of the
biomass levels across the full country. We provide potential users with techniques to cope with these
problems and show that optical data of finer spatial resolution, in this case 5 m resolution, can be
used to obtain biomass estimates at a national level, albeit, with some bias. The arrival of the freely
available Sentinel-2 satellite data (although at 10 m resolution) provides an opportunity for more
frequent wall-to-wall national coverage. Since 2016, wide area coverage has been available from the
commercial 3 m spatial resolution PlanetScope set of satellites [107].

In our study, we were limited by the sampling scheme and the acquisition dates of the available
RapidEye data. The scheme, a regular systematic grid, was devised for a continental scale forest
change estimates. A more appropriate approach would be to use a stratified random scheme with more
(smaller) samples (e.g., [50]) so as to better capture the variance of the biomass across the different
ecosystems. While the sampling approach is an efficient method for obtaining biomass estimates, is
does not provide a wall-to-wall cartographic product, which would be a benefit for forest management
planning and provide orthomaps to support the field survey and stratified estimation [108].

5. Conclusions

We found that remote sensing parameters extracted from 5 m resolution satellite data combined
with modelling using the random forest algorithm were an effective method for improving the precision
of AGB estimates.

The Shadow Index was found to the most relevant parameter related to AGB, followed by
texture measures. The use of both vegetation indices and texture data confirms our hypothesis that
a combination of different information extracted from the RS data enhances the precision of AGB
estimation, but also can increase bias. This is because the relationship between reflectance and AGB
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over dense forests is affected by the saturation phenomenon. In contrast, textures and non-woody
vegetation cover information (i.e., shadow index) might be more sensitive to canopy architecture and
structure. As expected, the high performances of random forest are more evident when the response
variables are a result of non-linear and complex interactions between multiple predictors, as has been
demonstrated in numerous previous studies. The RF was shown to be quite robust for including a large
number of heterogeneous input variables. Also, many predictors of AGB are highly inter-correlated
and RF handles both these and redundant variables well.

In terms of supporting REDD+ initiatives, this work demonstrates that nationwide AGB
inventories can be carried out in a more rapid and cost effective way by combining 5 m resolution
optical satellite data with field plots.

The codes and data used for this study have been made permanently and publicly available in
the Supplementary Materials so that results are entirely reproducible.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/10/2/107/s1,
Figure S1: Acquisition dates of the RapidEye images (top) and the differences in months between field plots and
associated image (bottom). Figure S2: The impact on texture indices resulting from changing the mapping unit
(top) by analysing increasing circles over the RapidEye data (bottom) where the red circle shows the different
areas used. Figure S3: The application of successive shape factors to RapidEye data; From left to right SF = 20,
60, 100, 124; The resulting number of objects falls from 59198 to 8059 to 3190 to 2217 objects as the MMU of 1 ha
is approached through the iteration. Figure S4: In the final step all polygons less than 1 ha are dissolved and
we arrive at 1395 objects Figure S5: Cross correlation results carried out so as to reduce the number of texture
measures by removing ‘duplicate’ measures—i.e., those that are highly correlated—blue and red. Due to text sizes
the names of the indices are reduced. Figure S6: The interface developed to review the plot data. The plots are seen
on the middle panel overlaid on the RapidEye data. On the left panel high resolution images from GoogleEarth.
The plot characteristics as collected by NAFORMA are displayed on the right. Figure S7: Scatterplot of each input
variable versus Above Ground Biomass. Regression Line is in blue, while the 95% confidence interval is in grey.
Figure S8: Scatterplot of Predicted vs. Modelled AGB in tha−1 for the four models using the training dataset. Both
circle size and colour refer to the actual AGB. The blue line indicates the linear regression between actual and
modelled data and the grey area is the 95% confidence level interval. Figure S9: Random Forest model’s quality.
Figure shows the result of arranging all scores or predicted values in sorted quantiles, from worst to best, and how
the classification goes compared to the test set. Specifically we have used 4 AGB quantiles using the validation
subset. The x axis represents the 4 quantiles of AGB from NAFORMA plots. The y axis shows how much the
random forest derived AGB falls in each quantiles. File 1: Rule set used to segment the RapidEye images and
extract the spectral and textural information for correlation with the field data on AGB: RapidEye2018RuleSet.dcp.
File 2: A text version of the above: RapidEye2018RuleSetDocu.txt. File 3: The extracted remote sensing parameter
with the field data on AGB by plot: DataBiomassRS.csv. File 4: The R statistical package code used to set up and
test the four models: Code_AGB_RS.R.
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Abstract: In the agricultural frontiers of Brazil, the distinction between forested and deforested lands
traditionally used to map the state of the Amazon does not reflect the reality of the forest situation.
A whole gradient exists for these forests, spanning from well conserved to severely degraded.
For decision makers, there is an urgent need to better characterize the status of the forest resource
at the regional scale. Until now, few studies have been carried out on the potential of multisource,
freely accessible remote sensing for modelling and mapping degraded forest structural parameters
such as aboveground biomass (AGB). The aim of this article is to address that gap and to evaluate
the potential of optical (Landsat, MODIS) and radar (ALOS-1 PALSAR, Sentinel-1) remote sensing
sources in modelling and mapping forest AGB in the old pioneer front of Paragominas municipality
(Para state). We derived a wide range of vegetation and textural indices and combined them with in
situ collected AGB data into a random forest regression model to predict AGB at a resolution of 20 m.
The model explained 28% of the variance with a root mean square error of 97.1 Mg·ha−1 and captured
all spatial variability. We identified Landsat spectral unmixing and mid-infrared indicators to be
the most robust indicators with the highest explanatory power. AGB mapping reveals that 87% of
forest is degraded, with illegal logging activities, impacted forest edges and other spatial distribution
of AGB that are not captured with pantropical datasets. We validated this map with a field-based
forest degradation typology built on canopy height and structure observations. We conclude that the
modelling framework developed here combined with high-resolution vegetation status indicators
can help improve the management of degraded forests at the regional scale.

Keywords: forest degradation; multisource remote sensing; modelling aboveground biomass;
random forest; Brazilian Amazon
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1. Introduction

Deforestation and forest degradation are major sources of greenhouse gas emissions [1,2],
contributing to forest carbon losses [3], global climate change, affecting biodiversity [4] and the entire
forest ecosystem. While deforestation refers to the rapid conversion from forest to non-forest areas,
degradation implies changes in the forest structure with no change in land use [5,6]. In Amazonia,
over the last decades, deforestation and forest degradation have shaped the rural landscape, resulting
in a complex mosaic of fragmented forests associated with agricultural lands [7]. A total area of
766,448.5 km2 was cleared in 2015 [8], representing 20% of Amazonia [9,10].

Since 2005, deforestation in Brazil has drastically decreased thanks to coercive measures taken by
the Brazilian government associated with private initiatives (soy and beef moratoria), among other
factors [11]. However, these measures are not effective for reducing forest degradation [12,13]. Most
of the remaining forested lands are degraded due to the accumulation over time and space of severe
degradation processes mainly triggered by anthropogenic impacts through unsustainable logging
practices, fire, shifting cultivation and charcoal production [14,15].

Reducing forest degradation is a major challenge given the rapid need to reduce carbon emissions
to the atmosphere, conserve biodiversity, limit soil erosion and regulate the water cycle [16]. Forest
monitoring based on the forest/non-forest approach used to quantify deforestation is not relevant for
providing information on the forest status [17,18]. The biomass value of a forest is a relevant indicator
to quantify the intensity of degradation [19]. Forest biomass mapping is therefore a critical step to
reach the challenge [20].

At the pantropical scale, two maps of biomass density that present the spatial distribution of the
biomass of all forest types at a moderate resolution [21,22] have been used as baselines for the tropical
belt. More recently, a harmonized reference aboveground biomass (AGB) map has been released that
significantly improves the estimation and local distribution of AGB using the combination of in-situ
collected data, remote sensing and regional biomass maps [23].

At the local scale, most of the approaches integrate field-collected data with Light Detection and
Ranging (LIDAR) to scale up forest biomass natural distribution, which normally requires spatial
interpolation of in-situ biomass [24]. LIDAR can map the forest canopy in three dimensions and
can retrieve accurate forest biomass through forest canopy height and structure [25–29]. It is also
sensitive to the carbon density of the different types of degraded forests, from logging at a low
impact to forest stands burned multiple times [30]. Satellite LIDAR has been used in validating AGB
maps [31], calibrating local regressions between in situ AGB data and metrics derived from LIDAR
footprints and extrapolating using different remote sensing sources [28,32]. However, most airborne
and satellite LIDAR datasets are often difficult to access (acquisition cost) and to replicate in both time
and space [33].

At the meso-scale (regional), many studies demonstrated the potential of optical and radar remote
sensing-derived indicators to characterize degraded forests [34]. The study of degraded forests requires
the analysis of vertical and horizontal disturbances within the forest structure [5,33,35–37]. Optical
images can provide information on the photosynthetic activity and moisture of the forest canopy [38].
Spectral unmixing approaches are recognized to be the most effective method to assess the status
of degraded forests using the percentage of active vegetation, dead vegetation and bare soil at the
pixel scale [15,39,40]. Radar images are sensitive to the texture of the impacted forest canopy [41].
Canopy texture-derived indicators based on co-occurrence matrices use the variance of the signal in a
given window to spatially quantify the distribution of tree crowns structure [42–44]. Estimating the
biomass from the radar data generally concerns wavelengths up to the meter (band P or L) with signal
saturation thresholds around 200 Mg/ha of AGB [45–47].

This review of recent remote sensing methods illustrates the trade-off that needs to be made
between resolution, accuracy, area covered, cost and frequency to map forest biomass. It also highlights
the fact that there is remarkably little information at the regional scale on the potential of open access
optical and radar remote sensing to model and map the aboveground biomass of degraded forests.
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Most of the approaches tend to capture the local variation of AGB following environmental variables,
i.e., climate, topography and natural forest dynamic gradients, but do not particularly capture the
distribution along anthropogenic disturbance gradients [30].

In this sense, there is a need to better understand how remotely sensed indicators perform with
AGB modelling at the regional scale in order to provide relevant information to decision makers on
the state of the resource of remnants forest.

In order to answer this need, this paper aims (i) to assess the potential of multisource, multi-indicator
and open access remote sensing in modelling and mapping aboveground biomass of degraded forests;
(ii) to quantify the spatial distribution of degraded forest biomass in comparison with the pantropical
AGB map; and (iii) to evaluate the relevance of this regional forest AGB mapping at the stand scale.

This quantification is highly informative for forested land use planning and policy makers. Many
South American governments and global NGOs are seeking more accurate and definitive information
about the scale of degradation so they can propose policies and actions to ameliorate and reduce the
level of degradation [48].

2. Materials and Methods

2.1. Study Area

The study was carried out in the municipality of Paragominas, located in the northeastern part
of the State of Para, Brazil, and covering an area of 19,342 km2 with a population size of 108,547 [49].
The municipality was founded in 1965 along the BR-010 road connecting Brasilia to Belém (Figure 1).
The colonization process led to a large conversion of lands into pasture, with cattle ranching becoming
the dominant land use. The municipality went through a succession of different economical models
that have drastically shaped the landscape [50]. The boom in the logging industry started from the
1980s, where most of the timber was transformed in the 350 sawmills located along the main road.
Deforestation and forest degradation were accentuated with the grain agribusiness boom in the 2000s
(soybean and maize cultivation) and charcoal production. In 2007, the municipality was red-listed by
the federal government as one of the most deforested Amazonian municipalities. The consequences
were an immediate loss of access to credit and market for any commodities. Many charcoal plants
and illegal sawmills were shut down. In response to this governmental ban, Paragominas became
the first “green municipality” in the country in 2008 in order to end illegal deforestation, to tend to
zero net deforestation by 2014, and to promote alternative production systems and reforestation. Land
management was also improved through the Rural Environmental Registry [51].

Figure 1. Map of Paragominas municipality in the northeastern part of the State of Para with the
location of the biomass-collected plots, the degraded forest typology and the main zoning areas
(extracted from [9]).
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2.2. In Situ AGB Collection

Aboveground biomass data were collected during the dry seasons in 2009 and 2010 by teams from
the Sustainable Amazon Network (Rede Sustentavel Amazonia—RAS) [19,52,53]. In total, 18 study
sites were randomly selected in the municipality of Paragominas. For each site, plots of 250 m by 20 m
were designed, resulting in a total of 121 plots. Each plot represents a homogeneous type of forest,
classified into four types: undisturbed forest, logged forest, logged forest and burned and secondary
forest. Aboveground biomass was estimated using Chave’s allometric equations [54] and was based
on the measurements and identification of all live trees, palms and lianas (≥10 cm DBH). The results
of this study showed significant differences in biomass for each type of forest (Table 1). We chose a
threshold of 286 Mg·ha−1 to distinguish between degraded and sustainably managed or conserved
forests. Mazzei et al. [55] showed that undisturbed forests store on average 409.8 Mg·ha−1 in the Cikel
Fazenda, located in the western part of the municipality (Figure 1). The mean AGB total lost under
reduced-impact logging operations is 94.5 Mg·ha−1, which represents around 23% of biomass lost [55].
The threshold is thus the percentage of biomass lost applied to the undisturbed primary forest biomass
identified by RAS.

The aboveground vegetation that corresponds to the largest carbon storage compartment is very
sensitive to the type of disturbance, with about a 40% of difference in ABG between mature forests and
secondary forests. We used the RAS AGB dataset in shapefile format to calibrate the Random Forest
model presented in Section 2.4.

Table 1. AGB collection data in the municipality of Paragominas (see [19]).

Forest Type Mean AGB (Mg·ha−1) Standard Deviation (Mg·ha−1) No. of Plots

Undisturbed primary forest 371.8 96.9 13
Logged primary forest 229.5 79.2 44

Logged and burnt primary forest 145.8 73.4 44
Young secondary forest 1.1 0.5 2

Intermediate secondary forest 57.6 38.3 12
Old secondary forest 92.2 58.4 5

Abandoned plantation 54.1 / 1

2.3. Remote Sensing Multisource Data: Image Acquisition, Pre-Processing and Biophysical Indicators
Variables Extraction

We used 38 indicators derived from passive (MODIS, Landsat-8) and active (ALOS-1, Sentinel-1)
remote sensing sources. These indicators are correlated with different vegetation parameters such as
photosynthesis activity and vegetation structure. All the satellite images used in this study are freely
available and span the globe.

• MODIS

To quantify forest canopy health and temporal dynamics, we used the enhanced vegetation index
(EVI) from the MODIS sensor. EVI was extracted from the ‘16-Day L3 Global 250m product (MOD13Q1 c5)’
from January 2001 to December 2014. EVI is directly related to photosynthetic activity [56]. It does not
saturate quickly for high values of chlorophyll activity and provides improved sensitivity for high
biomass areas such as tropical forests [38]. The 16-day composite was built by choosing within the
16 daily acquisitions the two pixels with the highest value of NDVI (Normalized Difference Vegetation
Index). Of these two values, the pixel with the smallest viewing angle was chosen in order to minimize
the residual angle [56]. A quality filter was then applied to the composite to remove clouds and reduce
atmospheric contamination [38]. We extracted three indicators from this dataset: the mean and the
standard deviation calculated for the whole time series based on annual average EVI and the pooled
variance which is the weighted sum of annual variance based on the number of values available for
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each pixel for each year (giving more weight to the pixels that were not under cloud coverage during
the 16 days × 14-year period).

Pooled variance =
∑14

i=1 Variance(i)× available values(i)

∑14
i=1 available values(i)− 14

(1)

These three indicators provide global information on the stability of the forest canopy
photosynthetic activity.

• Landsat 8

We used three Landsat 8 images taken during the dry season of 2014, at 30 m resolution. We
acquired the surface reflectance data with the pre-processing already performed with the algorithm
developed by the NASA Goddard Space Flight Center (GSFC). We used 5 spectral bands (blue, green,
red, near-infrared and short-wave infrared) and we derived 13 indicators using the Orfeo toolbox [57].
We used the Carnegie Landsat Analysis System-lite (Claslite) to derive the Photosynthetic Vegetation
(PV), Non Photosynthetic Vegetation (NPV) and Bare Soil indexes [39].

• ALOS-1 PALSAR

We downloaded seven images ALOS-1 PALSAR (L-band) taken in 2010 from the JAXA (Japan
Aerospace Agency, http://www.eorc.jaxa.jp/ALOS/en/index.htm) platform. These images have 25-m
spatial resolution (“ALOS-1 mosaic 25 m” product) and are dual-polarized (HH and HV). The incidence
angle varies between 35◦ (near range) to 42◦ (far range). The images were correctly geo-referenced,
so we only processed the conversion from digital raw number (DN) to gamma and sigma following
these two equations [58,59]:

gamma [dB] = 10 × log10(DN2)− 83 (2)

sigma [dB] = 10 × log10(DN2)− 83 + 10 × log10(cosθ) (3)

We tested these two indicators, expecting a strong correlation between backscatter coefficients
and aboveground biomass [47].

• Sentinel-1

We acquired one image Sentinel-1 (C-band, dual polarization VV/VH, descending pass direction)
taken in May 2015, at 10-m resolution and in Interferometric Wide (IW) swath mode. We performed
the pre-processing using the free software Sentinel Toolbox, which allows the derivation of backscatter
coefficients and processing of the range Doppler terrain corrections using the 3 arc-seconds SRTM
Digital Elevation Model. We derived 9 indicators from the grey level co-occurrence matrix (GLCM)
that are based on the statistical relationship between the values of the pixels within a 9 × 9 pixels
window [60]. These indicators are relevant to quantify forest canopy texture [61].

The source, description of the remote sensing images and the derived indicators are detailed in
the Appendix A, Table A1.

2.4. Random Forest Regression Model

We used a random forest regression tree to explore the performance of the different remote
sensing data sources and derived indicators for AGB modelling and mapping. Regression trees are
particularly efficient for remotely sensed indicators that show unknown multivariate patterns and
nonlinear relationships [62].
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2.4.1. Data Preparation

We resampled the indicators at 20-m resolution using GRASS libraries and stacked them all
together to make sure they are georeferenced in the same system. This resolution matches with the size
of the plot measurements. For each indicator, we generated an automatic process to extract the mean
and standard deviation within the extent of each plot. We then compiled all the data in a file with the
identification of each plot (row 1 to 121) and the estimated AGB followed by the mean and standard
deviation of the 38 indicators (columns). Finally, this dataset is randomly mixed to avoid any biases
related to its original structure and is split into 10 folds (Figure 2). This number of folds (k) is often
suggested in order to balance bias limitation (lower value of k) and variability (higher value of k) [63].

Figure 2. Workflow of the evaluation of the indicators performance in AGB modelling and mapping.

2.4.2. Modelling AGB with Random Forest

For each independent indicator, regression trees recurrently split the data into more homogeneous
samples and identify the most significant indicator that gives best homogeneous sets of samples [64].
Random Forest grows multiple trees (500 trees in our study) by randomization of data subsampling
in order to improve the predictive power of regression and to limit overfitting which is the most
practical difficulty for decision tree models. Random forest provides for each independent indicator an
increase in mean-squared error (Percentage of IncMSE), which quantifies how much MSE increases
when that indicator is randomly permuted. This error measures the relative importance of each
indicator, where a low IncMSE implies that the indicator does not have much weight on the model
prediction and inversely [65]. Random Forest is used as a regression and mapping tool, but also as an
investigation tool to assess the importance of each indicator in the creation of the model and on its
global error. Random Forest is used more and more to estimate carbon reservoirs and perform biomass
regression [25,66,67].

Due to the limited number of AGB plots, we used the k-fold cross validation technique to estimate
regression performance [63,68]. This technique involves reserving a particular sample of the dataset
on which the Random Forest model will be tested, while the rest of the dataset is used for training.
For each of the 10 folds, the Random Forest model is trained on 9 folds (k − 1) and the 10th fold is used
to test the model and check its effectiveness. This process goes through each of the 10 folds until each
of the kfolds has served as a test set. After the end of each loop, we record the percentage of IncMSE
calculated for each of the 76 indicators and the predicted value of AGB. The average RMSE will serve
as the performance metric for the model.

We finally invert the model using the values of the remote sensed indicators across Paragominas
municipality to predict AGB.
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2.5. Geostatistical Analysis of Random Forest Model Residuals

Geostatistical analysis is used to explore the spatial autocorrelation of the model residuals and
evaluate whether model residuals data are independent (in the case of absence of autocorrelation) [69].
The presence of spatial autocorrelation or spatial structure of the model residuals would refer to any
patterns of gradients or cluster within the data that the AGB Random Forest model would not have
adequately been able to capture. To explore this spatial structure, we estimated an omnidirectional
variogram at short distances (6 km) on Random Forest residuals, and we used the usual permutation
test to compute a bi-lateral confidence band of pure spatial randomness [70,71].

2.6. Comparison with Avitabile et al. [23] AGB Dataset

The available Avitabile et al. [23] forest pantropical biomass map that displays aboveground
biomass density in units of Mg·ha−1 at a 920-m spatial resolution was used to compare the spatial
distribution of aboveground biomass of the degraded forest with the Random Forest predicted map.
In the Amazon basin, the Avitabile AGB map provides lower RMSE and bias compared to the Baccini
and Saatchi pantropical maps [21–23]. However, at the regional scale (e.g., Paragominas municipality),
the Avitabile map can present error patterns because the quality reference data of the highly degraded
forest were lacking and could not be used to calibrate the model [23].

2.7. Comparison with Degraded Forest Typology

To conduct a field validation of the predicted aboveground biomass values, we built a degraded
forest typology based on the observation of 140 forest sites in May 2015. Each observation is associated
with a GPS point (Garmin 60CSx, Garmin, Olathe, KS, USA), a description of the forest site and
illustrative photos. We extracted the values of the predicted AGB at the location of each forest site.
We finally used one-way ANOVA with post hoc Tukey tests to evaluate differences in predicted AGB
between the different forest classes of the typology.

This typology is a result of the combination of in-situ qualitative indicators of forest degradation
and semi-quantitative observations of the forest structure. First, we noted the presence or absence
of fire and logging marks (burned trees, strains, trunks, logging trails), of pioneer species (mainly
Cecropia species), which may indicate a recent opening of the canopy, and of trees with a diameter
at breast height (DBH) greater than 80 cm. Then, we measured canopy height and the number of
vegetative strata using a laser rangefinder and estimated the forest canopy texture (roughness) and the
percentage of gaps between emergent trees. These four forest structure indicators provide relevant
information on the vertical and horizontal process of forest degradation.

In order to make the typology representative of the diversity of degraded forest types (conserved,
legally logged, illegally logged and/or burned), we made sure that the sampling covered the different
forest landscapes and main zoning that can be found in Paragominas (see Figure 1).

2.8. Computational Aspects

Except for the statistics performed with the software ArcGIS (Esri, Redlands, CA, USA), all
developments were programmed under the R environment. We used the Raster, Random Forest,
shapefile, rgdal, geoR and gstat packages [62,71–75].

3. Results

3.1. Model and Indicator Performance

The mean variance explained by the random forest model is 28%, with a root mean squared
residual error (RMSE) of 97.1 Mg·ha−1. Depending on the AGB calibrated data and the associated
remotely sensed indictors, the random forest model performs differently with an explained variance
that ranges between 24% and 30% and an RMSE that ranges between 75.7 and 101.2 Mg·ha−1 (Table 2).
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Table 2. Random Forest model performance (mean squared residuals and percentage of variance
explained for each of the 10 k-fold random forest models).

Random Forest k-fold 1 1 2 3 4 5 6 7 8 9 10 Average

Mean of squared residuals (Mg·ha−1) 97.8 95.5 100.5 91.8 99.6 100.3 93.9 75.7 97.8 101.2 97.1
Percentage of variance explained 26 24 25 30 26 22 27 30 26 25 28

1 Number of Trees: 500, No. of Indicators Tried at Each Split: 25.

Six indicators (out of the 76) contribute the most to the 10 regression models, showing the highest
and most stable IncMSE scores (Figure 3). Three are derived from MODIS: mean of annual standard
deviation EVI, mean and standard deviation of annual mean EVI and three from Landsat: mean
infra-red (MIR), mean and standard deviation of bare soils.

Figure 3. Explained indicator performance (Percentage of IncMSE) of the Random Forest model.

3.2. Geostatistical Analysis of Random Forest Model Residuals

The main spatial variability in the AGB data was captured by the Random Forest model, and no
additive spatial variability can be explained through model residual interpolation. Figure 4 shows
a flat empirical variogram contained within the confidence band which validates the absence of
spatial structure within the Random Forest model residuals. We found similar results at smaller
(0 to 1500 m) and larger (0–200,000 m) spatial scales. The distribution of the residuals shows an overall
overestimation (high frequency of positive values, Figure 4B), which is important to consider when
predicting AGB for the Paragominas municipality.

3.3. Above Ground Biomass Map

The range of AGB predicted values was large, spanning from 57 to 454 Mg·ha−1. AGB was
unequally spatially distributed over the municipality (Figure 5). The forests in the 80-km-wide central
corridor have the lowest AGB values and are highly fragmented. The forests in the far-eastern and
western part of the municipality contain the highest AGB. The percentage of degraded forest (below
the threshold of 286 Mg·ha−1, see Section 2.2) reached 87%.
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Figure 4. (A) Spatial distribution of the model residuals (blue, green, yellow and red colors for the
respective four quartiles); (B) Histogram of the model residuals; (C) Variogram of biomass model
residuals (The grey shape shows the confidence band interval expected for each distance class).

Figure 5. Random Forest predicted values of Aboveground Biomass across Paragominas municipality.
In the western part of the municipality (stripped area), Sentinel-1 data was not available.

3.4. Comparison with Avitabile Pantropical Biomass Map

Figure 6 shows that our Random Forest model is more accurate than the Avitabile AGB map
(R2 higher and RMSE lower). The two models tend to overestimate for values of AGB lower than
200 Mg·ha−1 and underestimate for values higher than 300 Mg·ha−1. Despite the fact that the Random
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Forest has a higher explained variance and lower RMSE, the Avitabile dataset has a better potential to
capture the large variability of AGB, particularly for extreme values where the dispersion follows the
identity line. Random forest data are overall less scattered than Avitabile but display a much lower
deviation between estimated and observed AGB for values from 100 to 300 Mg·ha−1 (Random Forest
R2 = 0.28, Avitabile R2 = 0.14). This result is particularly interesting in the case of degraded forests
where biomass values are contained within this window (Table 1).

Figure 6. Observed (see Section 2.2) and estimated biomass from Avitabile [23] and the Random
Forest model.

The Avitabile map is less detailed than the Random Forest biomass map. It can be explained
by the difference of spatial resolution between the two datasets and also the contribution of local
remotely sensed indicators. After aggregating the Random Forest biomass map at the resolution of
Avitabile’s (Figure 7(3)), the difference between these two datasets shows similar AGB estimation in
non-degraded areas and an overestimation of AGB values in degraded (logged) forests for Avitabile’s
dataset (differences lower than −100 Mg·ha−1). The Random Forest map captures small-scale forest
disturbances such as roads, i.e., skids trails and log-landing areas and canopy gaps (pictures 1 and 2).
It also displays lower biomass values around the areas impacted by selective logging. These finely
detailed forest disturbances are not translated into the 920-m resolution Avitabile map. In this figure,
we can see that the forest-non forest transition is much better detailed with the Random Forest map
than with Avitabile maps. The transect (Figure 7(4)) and the map show that the north forest edge
is more degraded (probably burned with agriculture encroachment) than the south edge where the
transition between the two land uses is much clearer and sharper (Transect A–B, see Figure 1 for its
location). At this local scale, Avitabile data appear to stretch the values of AGB and thus smoothen the
distribution of AGB in transition areas.

103



Forests 2018, 9, 303

Figure 7. Comparison of AGB estimations, Random Forest, Avitabile [23] and the difference map
(1–3 respectively) in a selected zone representing the transition between non-forest to forest area (see
Figure 1 for precise location in Paragominas). The selective logging area and the logging road were
validated during the field trip.

3.5. Comparison with Degraded Forest Typology

The less degraded forest type (type F1) presents a closed canopy above 35 m, no signs of human
impact and 4 vegetative strata defined as follows: the shrub layer below 5 m, the under canopy layer
located around 15 m, the canopy layer at 25 m and the emergent layer that goes beyond 35 m. The most
valuable tree species harvested first are the emergent trees with a large diameter (higher than 80 cm).
This selective logging can cause small degradation vertically, with an impacted and lower canopy
and also horizontal damages generated by the extraction of the tree (type F2). When the selective
logging becomes more intense (type F3), all the trees taller than 35 m and larger than 80 cm diameter
are harvested, which causes a lowering of the canopy line at 25 m and big gaps inside the forest
structure with the presence of skid tracks, broken and unrooted trees, log landing and other logging
roads. Consequently, the degraded forest is much more sensitive to drought and fires, which can lead
to severe disturbance, lowering the canopy at 15 m with only two remaining vegetative strata. This
degraded forest type (F4) is often characterized by a high density of vegetative regrowth (pioneers
species). Trees with DBH less than 80 cm are also harvested which causes an opened and destructed
canopy. Finally, the intensification of fire leads to the most degraded type (F5) with only the shrub
layer remaining and a few trees from the under canopy layer (Figure 8).
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Figure 8. Five classes of degraded forest typology based on the observation of 140 forest sites in
May 2015.

The typology of the degraded forest allows us to evaluate the relevance of the regional forest
AGB mapping at the stand scale. The boxplots of Figure 9 show a relationship between the intensity of
degradation identified in the field and the Random Forest prediction. We can assume the homogeneity
of variances in the five degraded forest types (p-value = 0.09 > 0.05). Among the five types, only
type F1 is significantly different from the other types F2, F3, F4, F5 (ANOVA test with p-value < 0.05).
Degraded type F1 presented the highest values of AGB (average of 270 Mg·ha−1). Types F2, F3, F4, F5
had statistically similar values of AGB (200 Mg·ha−1), although we found a decreasing trend in the
mean predicted AGB.

Figure 9. Boxplots of predicted values of AGB calculated for the five-class typology of degraded forest
with the range (1st and 3rd quartile), the mean (line) and the median (cross).

4. Discussion and Conclusions

In this paper, we propose a novel approach to model and map AGB of degraded forests at the
regional scale, which provides more detailed and accurate information than the pantropical dataset.
We demonstrated that the model captures all spatial variability of the AGB data and identified the
most robust remotely sensed indicators. Besides the model bias in underestimating AGB values greater
than 300 Mg·ha−1, this AGB map constitutes key spatial information for the future management of
degraded forest.

4.1. Model Performance Analysis

• Extraction and selection of suitable indicators from remote sensing and future promising
development in AGB mapping
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There is a need to rank and prioritize the most suitable indicators to characterize degraded forests
from multisource remote sensing [33,34,76,77]. Our results show that Landsat spectral unmixing bare
soil, mid infrared and MODIS EVI standard deviation from the 2001 to 2014 time series were the
most suitable indicators to model AGB and are the less data input driven. These indicators thus
have the highest potential to map AGB. Unmixing approaches did perform well in our case, which
confirms reports of other authors [15,40] within the Amazon forest landscape. The bare soil Landsat
indicator best translates the proportion of bare soil within a 30 × 30 m Landsat pixels while mid
infrared is sensitive to humidity and therefore to forest structure and functioning [33]. These results are
coherent with the degradation process happening in the Paragominas forest. The emergent and most
valuable trees are targeted first through legal and illegal selective logging which triggers a vertical
and horizontal opening of the canopy [78]. This type of degradation directly affects the internal
forest structure, which leads to forest drying and a decrease in the local forest evapotranspiration and
photosynthetic activity. Another degradation type is located along forest edges, which are always
very degraded and impacted by local drying effect, fire or slow encroachment due to agriculture
expansion (i.e., swidden agriculture) [79]. The MODIS compiled standard deviation of EVI represents
the stability over time of the annual mean EVI and thus annual photosynthetic activity. A drop in
this activity in one particular year will lead to a high standard deviation value and information on
potential degradation activity [79].

The other indicators have a much lower performance score, which indicates a lower sensitivity to
the AGB range of values. The usual vegetation indices extracted from Landsat such as NDVI or SAVI
are not sensitive enough for AGB of degraded forests. This may be related to the over saturation of the
signal in the case of a tropical forest canopy and the measured photosynthesis activity, which do not
allow differentiation between two types of degraded forests [56].

For radar data, one single data and related derived indicators (intensity coefficients and texture)
are not sensitive enough to model AGB. To further develop this modelling approach, radar needs
to be used as time series data, which would provide better information on the forest canopy status.
Further investigation is also required on the preprocessing steps (e.g., filtering noise method) and on
the derived texture indicators. To the extent of our knowledge, degraded forest structure and status
remain understudied, with a lot of technical aspects (frequency of the time series, spatial resolution,
polarizations, incident angles and frequency bands) that need to be tackled [80–82].

The integration of Sentinel-1 and Sentinel-2 time series would be an interesting way to improve
the model performance combined with daily Planet images that can map at 3-m resolution the forest
canopy. Very high resolution remote sensing offers a unique opportunity to characterize degraded
forest structure using canopy texture mapping [60,83]. These analysis provide perspective for future
space-borne LIDAR and RADAR data satellites (US GEDI mission and ESA Biomass) which will
enable us to provide data sets on forest structure dynamics and forest biomass around the pantropical
belt [84].

• Identification of proper algorithms to develop biomass estimation models and their related
uncertainty analysis

Although the model is robust because it has been trained and tested 10 times on independent
and randomly selected datasets, we identified three potential error sources. First, the limitations can
be linked to the large diversity of degraded forest types that are modelled and the limited number of
ground truth data. More in-situ AGB data would help to train the model on large portion of the data
set and better capture its underlying trend [85]. Then, a certain time gap between the collection of AGB
and the remote sensing data needs to be noted and accounted. This gap is due to remote sensing data
quality and availability and can be up to 5 years in the case of Sentinel-1 images. In the case of MODIS
time series, there is also a temporal gap as we modelled single date forest status (i.e., AGB) with
temporal indicators that are sensitive to photosynthetic activity dynamics. These temporal mismatches
could introduce some uncertainty in the model. However, in light of the minimal increases in AGB
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within burned and illegally logged forests (representing 88 out of 121 field plots) over a five-year
period, we do not consider this uncertainty to be meaningful [86]. Finally, the resampling of the
remote sensing indicators to a higher resolution (20 m resolution) may introduce bias referring to the
“ecological fallacy” problems [87]. These problems are recurrent in the aggregation/disaggregation of
remote sensing data and could be minimized by adapting the field collection protocol to the remote
sensing data.

Despite these limitations and the low variance explained, we demonstrated that all spatial
variability of the AGB data has been captured by the model through its input indicators. This gives
interesting insights into how to improve local models to characterize degraded forests using biomass
and how to quantify the influence of input indicators on the final modelling result.

• Comparison with existing AGB maps

When comparing with pantropical datasets such as the Avitabile AGB map, we noted differences
in the statistical accuracy with local AGB datasets and in the levels of details which are particularly
important for degraded forest biomass mapping. Avitabile data do not capture all the details of local
AGB distribution in small-scale degraded and complex mosaic forest due mainly to their coarse spatial
resolution. Transition zones from forest/non-forest areas are better and more precisely described using
local trained models, where logging roads, degraded forest edges and other distribution are mapped.

4.2. AGB Spatial Distribution in the Municipality

In the map produced, the spatial distribution of AGB varies depending on land-uses and landscape
organization [88]. Degraded forests are dominant in the Paragominas forest landscape. The central
corridor is a mosaic of agricultural lands (agribusiness) dominated by large-scale soybean cultivation
and pasturelands and with fragmented patches of degraded forests. Forest biomass values range
between 100 to 150 Mg·ha−1 with the lowest values within the first 200 m of forest edge which is
consistent with previous studies [79]. Forest fragmentation is even more important in smallholder
areas (see Figure 1) where population density is high. These areas were major charcoal production
hotspots (prohibited since 2008), which caused severe impacts on the forest resource. The transition
between these areas and the indigenous protected reserve is sharp within the forest AGB values (with
AGB higher than 250 Mg·ha−1 in the reserve).

4.3. Characterization of Degraded Forests

From a field point of view, degraded forests are a gradient of forest types marked by a certain
canopy height and forest structure that vary depending on the intensity of past degradation trajectories.
The five-class typology does not represent all the complexity of degraded forests but remains relevant
in terms of modelled forest biomass. Besides the fact that only type F1 was significantly different
from the four others, we found an interesting trend in the modelled biomass that requires further
investigation. Type F3 presented the highest variability, which could be linked with an over-evaluation
of the level of degradation in the field and the disproportionate size sample of this class. Type 5,
the most degraded stage, presents the lowest predicted biomass (around 150 Mg·ha). These findings
accord with those identified by the RAS team during the collection of in-situ AGB data (Table 1). This
typology based on the observation of structural parameters (canopy height, number of vegetative
strata, canopy rugosity, presence of emergent trees) constitutes a first step in the characterization of
degraded forests which could help in the calibration and validation of other forest biomass and carbon
stock assessment or the monitoring of forest degradation [76,89]. It also summarizes a one-shot time
visualization of the status of degraded forests. From this, the next priority is to monitor the dynamics
of degraded forest status over time using time series remote sensing [90].
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4.4. How Can These Data Be Useful for Forest Management at the Regional Scale?

Besides the limitations of the proposed modelling approach and the evaluated bias, we showed the
importance of regional AGB mapping in Paragominas human-modified forest landscapes, in particular
with the capacity to identify patterns of different forest status values linked with degradation and
agricultural activities at the regional scale. This agricultural frontier is characterized by fragmented
forest impacted by the accumulation of small-scale human disturbances that cannot be captured by
pantropical databases, by forest field inventories or by high detailed/low extent coverage remote
sensing sources (LIDAR).

In the context of zero deforestation commitment, this forest AGB modelling and mapping is
particularly important in order to provide to decision makers with spatially detailed information on
the status of the 50% remnant forest [91,92]. The agricultural expansion over forest areas is now severely
restricted [50]. Hence, the sustainable management of degraded forests is becoming a priority in order
to enhance forest resources at different levels of disturbance [93] as much as the urgent obligation
to prevent further degradation. The quantification of the forest status and the understanding of the
drivers of degradation are necessary in order to improve the management of forest landscape.
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Abstract: Forest above ground biomass (AGB) extraction using Synthetic Aperture Radar (SAR)
images has been widely used in global carbon cycle research. Classical AGB inversion methods using
SAR images are mainly based on backscattering coefficients. The polarization coherence tomography
(PCT) technology which can generate vertical profiles of forest relative reflectivity, has the potential to
improve the accuracy of biomass inversion. The relationship between vertical profiles and forest AGB
is modeled by some parameters defined based on geometric characteristics of the relative reflectivity
distribution curve. But these parameters are defined without physical characteristics. Among these
parameters, tomographic height (TomoH) is considered as the most important one. However, TomoH
only corresponds to the highest volume relative reflectivity, which is lower than the actual forest
height, affecting the accuracy of forest height and AGB inversion. In this paper, we introduce a
new parameter, the canopy height (Hac), for AGB inversion by analyzing the vertical backscatter
power loss. Then, we construct an inversion model based on the combination of the new parameter
(Hac) and other parameters from the tomographic profile. The P-band polarimetric SAR datasets
of the European Space Agency (ESA) BioSAR 2008 campaign acquired over Krycklan Catchment
are selected for the verification experiment at two different flight directions. The results show that
Hac performs better in estimating forest height and AGB than TomoH does. The inversion root mean
square error (RMSE) of the proposed method is 18.325 t ha−1, and the result of using TomoH is
21.126 t ha−1.

Keywords: forest above ground biomass (AGB); polarization coherence tomography (PCT);
P-band PolInSAR; tomographic profiles

1. Introduction

Forest ecosystems cover around 30% of the land surface, accounting for 75% of terrestrial gross
primary production and about 80% of the global plant biomass [1,2]. So, they play an important role in
the global carbon balance and climate change [3]. An important parameter reflecting the forest carbon
cycle change is above-ground biomass (AGB). Many different techniques have been used to estimate
AGB and AGB changes [4–6]. Among them, remote sensing techniques perform better in large-scale
forest AGB mapping [7,8] than traditional forest inventory techniques.

Over the last two decades, airborne and spaceborne sensors have been used to estimate forest
AGB [9–11]. Optical remote sensing datasets (e.g., Moderate Resolution Imaging Spectroradiometer,
MODIS and Landsat Thematic Mapper, TM) have been successfully used for the estimation of forest
parameters and assessment of woody biomass with different quality results, mainly by revealing
the correlation between vegetation indices (e.g., normalized difference vegetation index, NDVI) or
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spectral responses and ground inventory data [12]. However, the retrieved AGB values using optical
remote sensing data are usually troubled with saturation effects, especially in the high carbon stock
forests [13,14]. Due to the limitation of the penetration in vegetated areas, the spectral responses
recorded in optical images are mainly related to the interaction between the solar radiance and
forest stand canopies [15], which mainly contains vegetation information in the horizontal direction.
The saturation points for optical remote sensing range from 15 t ha−1 to 70 t ha−1 [16].

Compared with optical remote sensing, the synthetic aperture radar (SAR) has the capability to
penetrate cloud and vegetation canopies. Therefore, SAR systems can observe the ground surface in
all weather conditions and with continuous temporal coverage. This technique has been widely used
in earthquake [17,18], landslide [19,20], glacier [21,22], agriculture [23], and forestry monitoring [9].
In particular, the long-wavelength SAR data are more sensitive to forest AGB [24–26] at HV [27] and
HH polarizations [28–30]. Generally, the most frequently used methods in forest parameter estimation
with SAR can be classified into several types. The 2D method based on backscattering coefficients
from Polarimetric SAR (PolSAR) data can provide an estimation of forest AGB [31]. Most studies
used the logarithm of biomass [32,33], square root [34] or cube root [35] of the biomass and the
backscattering coefficient (in dB) for biomass prediction. However, the 2D method also has a saturation
problem, which depends upon different wavelengths, polarizations, and incidence angles [36–38].
Interferometric SAR (InSAR) data or Polarimetric SAR interferometry (PolInSAR) data have proven to
be effective for forest AGB estimation, as the ground elevation and tree height can be obtained from
interferometric phase and coherence [39–42], and then, this tree height can be converted into forest
AGB by allometric equations and other models [43,44]. This approach involving interferometry has
the potential to overcome the saturation problem to some extent, and allows the estimation of forest
AGB over a wider range of values at least for homogeneous forests [45]. However, the forest biomass
is not only related to forest height, but also tree species, canopy density, and vertical structure. So, it is
imperfect to use only forest height to estimate AGB, especially in forests with high heterogeneity in
their three-dimensional structure [46].

Recently, some studies have indicated that the vertical profile of relative reflectivity, which is
a structure parameter describing the variation of backscatter signal along the vertical direction, is a
good indicator for estimating AGB. The tomography profile can be obtained using the multi-baseline
InSAR/PolInSAR [47–49], SAR tomography [50–52], or polarization coherence tomography (PCT) [53].
However, either the multi-baseline InSAR or SAR tomography requires multiple SAR data. As PCT
can overcome those limitations, it uses a priori information of volume height and topographic phase
to reconstruct vertical profiles. Single baseline PCT is one of the simplest ways to invert the vertical
distribution of relative reflectivity using single baseline PolInSAR data [54]. Cloude [53] pointed out
that the PCT technology had potential application value in forest biomass estimation. Luo et al. [55]
defined nine parameters (P1–P9) to characterize the average vertical profile of relative reflectivity with
the L-band SAR data. Li et al. [56] improved this approach and replaced the parameter P8 with the
tenth parameter P10 for AGB inversion. In addition, they defined the mean of the canopy profile’s
Gaussian fitting as the tomographic height (TomoH), which is more sensitive to the forest AGB than
forest heights. However, the TomoH only represents the height of the maximum relative reflectance
in the canopy, which is usually lower than the real forest height, especially for long-wavelength
(i.e., P-band) SAR data, due to the strong penetration. Meanwhile, these parameters are defined based
on geometric characteristics [56], without considering the backscattering signal attenuation in the
forest canopy.

In this study, the average tomographic profiles are produced using the PCT method with single
baseline P-band PolInSAR data. We introduce a new parameter, the canopy height (Hac), by analyzing
the variation of the backscattering power of forest for AGB inversion. Then, the performance of this
parameter is assessed by a comparative analysis with the TomoH. The paper is organized as follows.
Section 2 provides information on the study area and datasets. Section 3 describes the methods used
for vertical profile reconstruction, forest parameters retrieval, model construction, and validation.
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Results and discussion are presented in Sections 4 and 5, respectively. Finally, the major conclusions of
this work are given in Section 6.

2. Study Area and Data Sets

2.1. Study Area

The test site is located in the Krycklan river catchment (64◦16′ N, 19◦46′ E) in northern Sweden
(Figure 1), which is about 50 km northwest of Umea and covers approximately 9390 ha. It has become
the test site for field-based forest research at the Faculty of Forest Sciences, Swedish University of
Agricultural Sciences. The dominating forest type is mixed coniferous, including Norway spruce,
Scots pine, and Birch [57]. In addition, there are some other small deciduous trees such as Aspen and
Rowan. The dominating soil is moraine, with variations in thickness. This area is hilly, with elevation
variations from 100 to 400 m throughout the whole scene, and surface slopes of up to 20◦ [44].

Figure 1. The test site: P-band synthetic aperture radar (SAR) image in the Pauli basis. The red polygons
indicate the forest stands.

2.2. Field Data

The field survey data were collected and processed as a part of the BioSAR campaign in 2008 [58].
Twenty-seven forest stands with sizes ranging between 3.07 and 24.34 ha (boundaries are showed
in Figure 1) were selected for the validation experiment. Within each stand, eight to 13 circular
sample plots were laid out with a systematic spacing of 50 to 160 m, depending on the size of the
area. The spacing in each stand was confirmed with the aim of obtaining 10 plots, having a radius
of 10 m. The total number of plots was 310. In these plots, all trees with a diameter at breast height
(DBH) greater than 4 cm were calipered and recorded. On the basis of probability proportional to
their basal area, 1.5 sample trees were randomly selected from each plot to measure the height and
age. Other parameters were also collected, such as the vegetation type and soil type. The biomass of
different tree species, including the stem, bark, branches, and needles, but excluding the stump and
roots, was calculated based on Petersson’s biomass functions [59]. In addition, the biomass of each
tree species was divided into three components, namely trunks, branches, and leaves. Due to seasonal
reason, the leaf biomasses of the deciduous forests were not calculated. Table 1 describes the main
features of the 27 forest stands.
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Table 1. Main features of the in-situ data.

ID Mean DBH (cm) Mean Height (m) Mean Age (Year) Biomass (t ha−1)

1 17.6 13.07 77.45 72.39
2 20.8 14.08 61.22 69.22
3 17.11 13.12 57.05 58.56
4 23.76 16.94 107.46 103.68
5 23.1 17.69 11.28 134.51
6 28.35 21.41 12.24 182.54
7 26.54 18.06 131.92 119.13
8 16.95 15.41 57.38 106.24
9 28.31 19.59 143.72 139.76
10 28.84 20.15 140.52 167.11
11 26.37 17.36 157.15 116.46
12 21.41 15.39 63.09 74.28
13 22.67 17.13 127.8 86.03
14 25.64 18.81 114.4 158.23
15 17.34 12.31 52.99 35.08
16 18.28 13.23 83.72 85.6
17 21.32 15.77 124.83 89.31
18 21.36 15.73 124.87 108.99
19 18.76 14.26 90.67 119.8
20 19.17 13.87 86.88 84.45
21 12.02 9.56 34.85 42.71
22 21.01 16.58 76.19 95.75
23 27.53 17.37 144.12 111.96
24 20 13.93 117.7 110.78
25 23.6 15.99 93.27 73.8
26 8.65 7.51 30.62 27.46
27 22.01 15.77 101.06 112.82

DBH: diameter at breast height.

2.3. Polarimetric SAR Data

The P-band fully polarimetric SAR data over this study area were acquired in the framework
of the European Space Agency (ESA) BioSAR 2008 campaign in the repeat-pass mode. The SAR
system used in this campaign was the German Aerospace Center’s (DLR) E-SAR airborne system [58].
The platform height was about 4091 m above ground and the pixel spacing was 1.6 m and 2.12 m
in the azimuth direction and slant range, respectively. Four fully polarimetric SAR images were
selected for the interferometric process. There were two master images and two slave images with
two different flight tracks (314◦ and 134◦ from north). In this study area, there were 12 P-band
fully polarimetric SAR data in two different flight tracks. These data could constitute five pairs of
PolInSAR data in each direction and their baselines were 8 m, 8 m, 16 m, 24 m, and 32 m, respectively.
Kugler et al. evaluated the multifaceted effect of the effective spatial baseline by analyzing the vertical
wavenumber (Kz). He concluded that a good choice to get reliable forest height estimates with
sufficient accuracy for single baseline acquisitions is to select Kz ranging from 0.05 to 0.15 rad/m [60].
According to our statistics of five pairs of PolInSAR datasets in the two flight directions, we found
that the baselines of 32 m in both two flight directions can better fulfill the above condition of Kz.
Detailed information on these two baselines of PolInSAR datasets is listed in Table 2. The basic data
processing including terrain-correction and image-registration were done by the DLR. In addition,
an airborne LiDAR measurement was also conducted in the study area to serve as a reference for
the parameters estimation. The LiDAR measurement as a part of the BIOSAR 2008 campaign was
performed on August 2008 with the TopEye system S/N 425 mounted on a helicopter. Details of the
LiDAR data can be found in [58].
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Table 2. Parameters of the SAR data.

Sensor Band Polarization Flight Tracks Purpose Acquisition Time Temporal Baseline Kz

E-SAR P Full 314◦ Master 2008-10-14
11:44:14

70 min 0.05–0.24
E-SAR P Full 314◦ Slave 2008-10-14

12:55:21

E-SAR P Full 134◦ Master 2008-10-14
11:52:35

71 min 0.02–0.26
E-SAR P Full 134◦ Slave 2008-10-14

13:03:38

3. Methodology

In order to obtain a new parameter from the tomographic profile and achieve a more accurate
forest AGB estimation, we firstly acquire two scattering mechanisms by the Phase Diversity (PD)
coherence optimal algorithm and calculate the forest height and ground phase. Secondly, the vertical
profile of a single pixel is obtained based on the PCT technique with the volume scattering mechanism.
Then, we calculate the average vertical distribution of the relative reflectance, according to the
polygonal boundary of the forest stand. Thirdly, a new parameter for biomass estimation is proposed
by establishing the backscatter power loss area. Finally, the estimation model of the forest AGB is
constructed by combining the new parameter and other parameters from the tomographic profile
described in [56]. The flowchart is shown in Figure 2.

Figure 2. Flowchart of forest AGB estimation. AGB: above ground biomass; PCT: polarization
coherence tomography; PolInSAR: Polarimetric SAR interferometry; P1–P10: parameters.

3.1. Polarization Coherence Tomography

The vertical profile function in penetrable volume scattering is reconstructed by the single-baseline
PCT technique. The main observable in PCT is the volume scattering complex interferometric
coherence, which depends on vertical structure variations [53]. Therefore, this dependence relationship
can be used to build 3-D imaging and extract physical parameters. The complex coherence is shown as
follows [53]:

γ̃(w) = eikZZ0

∫ hv
0 f (Z)eikZZdZ∫ hv

0 f (Z)dZ
= eiφ0

hv
2 ei kZhv

2
∫ 1
−1 (1 + f (Z′))ei kZhv

2 Z′
dZ′

hv
2

∫ 1
−1 (1 + f (Z′))dZ′ (1)
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where
0 ≤ |γ̃ | ≤ 1; Z′ = 2Z

hv
− 1

The complex interferometric coherence γ̃ is related to the polarization state w. The vertical
wavenumber kZ is related to the interferometric baseline, Z0 is the position of the bottom of the
vegetation layer, hv is the vegetation height, and φ0 is the topographic phase. f (Z) is the vertical
structure function, which physically represents the vertical variations of the scattering signal at a point
in the SAR image [61]. It is bounded from the underlying surface to the top of the vegetation layer and
can be developed efficiently in a Fourier-Legendre series as shown in (2):

f
(
Z′) = ∑

n
anPn

(
Z′), an =

2n + 1
2

1∫
−1

f
(
Z′)Pn

(
Z′)dZ′ (2)

where an denotes the Legendre coefficient, and Pn(Z′) represents the Legendre polynomials with
vertical variable Z′. Then, the complex coherence for f (Z) can be rewritten as [59]:

γ̃(w)e−i(φ0 + kv) = γ̃k = f0 + a10 f1 + a20 f2 . . . + ai0 fi (3)

where fi(i = 1,2, . . . ,n) represents the Legendre polynomial parameter at order i, which is a function
of the single parameter kv = kZhv/2, and ai0 is the Legendre coefficient. Equation (3) shows that the
coherence can be seen as an algebraic sum of a series of structural functions.

Although multi-baseline PCT provides the potential to improve the resolution of the tomographic
profile [53], it increases the number of unknown parameters, thereby increasing the computational
complexity. However, single-baseline PCT only requires the second order of the Legendre series to
describe the variations of the vertical profile, which is the simplest way to be implemented. In this
case, obtaining the second order vertical structure function f (Z′) requires estimating two unknown
coefficients (a10, a20) in Equation (3). We use a matrix inversion of Equation (4) to achieve this purpose.⎡⎢⎣ 1 0 0

0 −i f1 0
0 0 f2

⎤⎥⎦
⎡⎢⎣ a00

a10(w)

a20(w)

⎤⎥⎦ =

⎡⎢⎣ 1
Im(γ̃k)

Re(γ̃k − f0)

⎤⎥⎦
⇒ [F]a(w) = b ⇒ â(w) = [F]−1b̂ (4)

f̂L2(w, z) =
1
ĥv

{
1 − â10(w) + â20(w) +

2z

ĥv
(â10(w) − 3â20(w) ) + â20(w)

6z2

ĥv2

}
(5)

where f̂L2(w, z) is the vertical structure function, which varies with the polarization state, L2 represents
the second order expansion of Fourier-Legendre polynomials, and z is the vertical position from (0, hv).

Before implementing the PCT algorithm, we need to estimate the priori information of vegetation
height hv and topographic phase φ0. We exploit the widely used random volume over ground
(RVOG) model and three-stage inversion method to obtain forest height and topographic phase [41,62].
In addition, we also note that the PCT algorithm involves two polarization modes: the dominant
volume scattering and the dominant ground surface scattering. Cloude [53] proposed two polarization
channels, which are HV and HH-VV, representing the volume and ground surface scattering,
respectively. However, the HV channel also has some ground surface scattering contributions,
which leads to pure volume coherence error to vertical profile reconstruction. Therefore, we use
the phase diversity (PD) coherence optimization algorithm to find the optimal polarization modes
(i.e., PDhigh and PDlow) in the polarized space, thereby separating the two-phase centers maximally.
The higher phase PDhigh corresponds to the “pure” volume scattering phase and the lower phase
PDlow corresponds to the “pure” ground surface scattering phase [63].
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3.2. The Retrieval Method of Canopy Height (Hac)

According to the PCT algorithm, the tomographic profile at the pixel scale can be obtained with a
0.2 m interval in vegetation heights [54,64]. The profile values represent relative reflectivity values.
However, the relative reflectivity of a single pixel is unrelated to forest biomass, because it is randomly
distributed and unable to represent the vertical structure [56]. Therefore, the average of the stand scale
is used to obtain change rules of the vertical structure. As shown in Figure 3, we use stands No. 6 and
No. 13 of the study area to analyze the vertical distribution of average relative reflectivity. In Figure 3,
the vertical distribution curve of the average relative reflectivity is divided into upper and lower parts
by h1, and the envelope between h1 and h3 is the distribution of the relative reflectivity values of
forest canopy. h1 is the height of the forest corresponding to the inflection point of the upper and
lower parts of the curve, and h3 represents the height of the upper half of the curve with the relative
reflectivity value closest to 0.001. These data between h1 and h3 constitute the first envelope. h2 is the
height position where the relative reflectivity value is the maximum in the first envelope, and the data
between 0 and h2 form the second envelope.

Figure 3. Tomographic profiles of (a) stand No. 6 and (b) stand No. 13.

After obtaining the vertical distribution of average relative reflectivity, the relationship between
the curve and the forest biomass needs to be established. The parameters (Table 3) were obtained
by parameterizing the average relative reflectivity [56]. P1 is the ratio of the peak value to the first
envelope span. P2 is the integral of the relative reflectivity multiplied by the height in the first envelope.
P3, P4 (TomoH), and P5 are the maximum probability, the mean, and the standard deviation of the
fitted Gaussian function of the first envelope, respectively. P6 and P7 are the reciprocal of the relative
reflectivity summation of the first and second envelopes, respectively. P8 represents the ratio of P6 to
P7. P9 is the relative reflectivity summation between h1 and h2 multiplied by the relative reflectivity
summation between h2 and h3. P10 represents the integral of the relative reflectivity multiplied by the
corresponding height from 0 to h3. These parameters were defined without physical characteristics [56].
Among these parameters, P4 (the tomographic height (TomoH)) is considered as the most important
parameter for forest AGB estimation. However, TomoH only corresponds to the highest volume relative
reflectivity, which is lower than the actual forest height.

In order to find a parameter closer to the true canopy height of the stand, we characterize the
average relative reflectivity as the backscattered power distribution, and then divide the average
relative reflectivity distribution of the forest canopy into three parts, taking the No. 13 stand as an
example (Figure 4). The first part (between h1 and h3) corresponds to the canopy phase zone, where
most of the backscatter is concentrated. Its maximum value corresponds to the stand canopy phase
center position, i.e., h2. The second part (between h2 and h3) is the backscatter power loss zone, where
the backscatter undergoes a loss along the vertical direction from h2 to h1. The third part (above h3) is
the noise zone, where the backscatter power is mostly contributed by noise, unlikely to be associated
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with physically relevant components. A parameter related to the average height of the stand can be
extracted by analyzing the power loss value in the first envelope [50–52], which is:

H(i) = arg min
{ ∣∣P(z, i) − P

(
HPC, i

) − K
∣∣} (6)

where HPC is the height of the average phase center of each stand, i is the stand serial number,
P
(

HPC, i
)

is the backscattering power at location HPC of stand i, and z is the value ranging from HPC
to h3. The power loss value K ranges from 0 to 1 with the step of 0.1. The optimal K is determined by
the forest height that is closest to the true value obtained by LiDAR [51]. We name the corresponding
forest height as the average canopy height Hac.

Figure 4. The schematic view of the stand vertical backscatter distribution.

Table 3. Parameters of parameterizing average relative reflectivity.

Parameter Description

P1 the ratio of the peak value to the first envelope span
P2 the integral of the relative reflectivity multiplied with the height in the first envelope
P3 the maximum probability of the fitted Gaussian function of the first envelope
P4 the mean of the fitted Gaussian function of the first envelope
P5 the standard deviation of the fitted Gaussian function of the first envelope
P6 the reciprocal of the relative reflectivity summation of the first envelopes
P7 the reciprocal of the relative reflectivity summation of the second envelopes
P8 the ratio of P6 to P7
P9 the relative reflectivity summation between h1 and h2 multiplied by the relative reflectivity summation between h2 and h3

P10 the integral of the relative reflectivity multiplied by the corresponding height from 0 to h3

3.3. Model Construction and Validation

Since the power function can be used to effectively express the relationship between SAR
parameters and biomass [56,65], we use a stepwise regression method to construct a multiple linear
biomass estimation model with the natural logarithm of the SAR parameters.

ln(B) = a0 + a1ln(X1) + a2ln(X2) + . . . + ailn(Xn) (7)

where B is the biomass (t ha−1), and ai is the coefficient corresponding to the extracted parameters Xn
from tomographic profiles.

The stepwise regression method is employed to find the best combination of independent variables
to predict the dependent variable. The method introduces the independent variables to the regression
model one by one (from small to large), and only those satisfying the test value F remain in the model.
Usually, the remaining variables are significant and have large contributions to dependent variable
estimation. When no more variables are eligible for inclusion or removal, the process is terminated.
After obtaining the estimation model, we must also consider the problem of collinearity between
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variables. Generally, this problem can be indicated by the values of tolerance and variance inflation
factor (VIF) [66].

In this paper, the three independent variables Hac, P6, and P7 are considered more sensitive
to forest biomass than other parameters. The canopy height Hac is a new parameter proposed by
analyzing the variation of the backscattering power of forest, and P6 and P7 are the reciprocal of the
relative reflectivity summation of the first (h1–h3) and second (0–h1) envelopes, respectively. In this
study, we use the m-fold (13-fold) cross-validation experiments to test the accuracy of the multiple
linear biomass estimation models. We divide the forest stands into 10 groups equally, one of which is
used for validation and the others are applied to regression models.

4. Experimental Results and Analysis

4.1. Tomographic Profiles

The vertical structure functions are reconstructed at PDhigh, PDlow, HV, and HH-VV polarimetric
channels. The tomographic profiles in the 2500th line (yellow line in Figure 1) along the range direction
are demonstrated in Figure 5, where the horizontal axis is the pixel position, the vertical axis is the
forest height, and the different colors represent the intensity of relative reflectivity.

Figure 5. Tomographic profiles for different polarimetric channels along the range direction in the line
2500, see the yellow dashed line in Figure 1. (a) HH-VV channel; (b) HV channel; (c) PDlow channel;
(d) PDhigh channel. The green lines denote the LiDAR height. PD: phase diversity.

From Figure 5, it can be observed that the effect of different polarimetric channels on the
tomographic profile reconstruction is significant. In the HH-VV polarimetric channel, where the
surface scattering is dominant, the relative reflectivity values are mainly distributed in the ground
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surface layer. In the HV polarimetric channel, volume scattering is the dominant scattering mechanism
and its scattering center of the interferometric phase is closer to the vegetation canopy top than
that of the HH-VV channel. However, the HV channel still retains an amount of ground surface
scattering contributions, which leads to pure volume coherence error affecting tomographic profile
reconstruction. It means the relative reflectivity values still have a high distribution in the ground
surface. From the visual perspective of Figure 5a,b, the difference of relative reflectivity vertical
distribution is relatively small.

The relative reflectivity distributions are obviously different in PDlow (Figure 5c) and PDhigh
(Figure 5d) channels. We note that the ground surface has high reflectivity values distribution in the
PDhigh channel, which may be caused by an underlying shrub layer there. In addition, compared with
the other three channels, the PDhigh channel contains more abundant vegetation information, which is
conducive to extract vegetation parameters. Hence, in this paper, we use the tomographic profile of
the PDhigh channel for analysis.

4.2. Parameter Retrieval

According to the method described in Section 3.2, we retrieve the new parameter of average
canopy height Hac from the average tomographic profile of each stand (Figure 4). Using the
top-of-canopy height LiDAR model [51], we can get the parameter’s location corresponding to a
power loss value in each stand, with respect to the stand canopy phase center, ranging from −10 dB
to 0 dB. Figures 6 and 7 present the average bias of the stand height and the root mean square error
(RMSE) with respect to the LiDAR measurements in different flight tracks, respectively. In the power
loss interval of the 314 deg. flight direction, the average bias of 27 forest stands reaches the maximum
at the stand canopy phase center, which is 3.162 m. The minimum value is −6.409 m, and the overall
trend increases with the power loss from the phase center, which is close to 0 m at −1.549 dB. The RMSE
also reaches the maximum at the stand canopy phase center, which is 8.255 m, while the minimum
RMSE is found at −1.549 dB. In the power loss interval of the 134 deg. flight direction, the average bias
also reaches the maximum at the stand canopy phase center, which is 7.126 m. The minimum value is
−2.765 m, and the overall trend is the same as the 314 deg. flight direction increasing with the power
loss from the phase center, which is close to 0 m at −6.0206 dB (Figure 7a). The RMSE also reaches the
maximum at the stand canopy phase center, which is 7.862 m, while the minimum RMSE is 2.954 at
−6.0206 dB (Figure 7b). These results show that −1.549 dB and −6.0206 dB are the optimal power loss
values for retrieving the new parameter Hac in the two different flight directions, respectively.

The forest heights corresponding to the power loss values of −1.549 dB and −6.0206 dB are
extracted for each forest stand in different flight directions, respectively. We use TomoH [56] to evaluate
the performance of parameter Hac in the estimation of AGB. In order to assess the sensitivity of the
parameters Hac and TomoH to the forest biomass, respectively, the simple linear model is used to
estimate the biomass of 27 forest stands. The estimated biomasses are tested with in situ AGB for each
forest stand. As shown in Figures 8 and 9, in the 314 deg. flight direction, the value of the correlation
coefficient R2 using the parameter Hac is 0.630, which is much higher than that of TomoH (0.548). Also,
the RMSEs obtained by Hac and TomoH are 28.063 t ha−1 and 33.317 t ha−1, respectively. In the 134 deg.
flight direction, the RMSEs obtained by Hac and TomoH are 27.061 t ha−1 and 31.311 t ha−1, respectively.
Obviously, the sensitivity and the accuracy of Hac inversion are higher than the values of the TomoH
inversion in the two different flight directions, respectively, which means that Hac is more helpful for
the estimation of forest biomass with P-band ESAR data in the test site.
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Figure 6. Average bias and root mean square error (RMSE) in 314 deg. flight direction (a) Stand
height average bias and (b) RMSE versus power loss with respect to stand average canopy phase
center elevation.

Figure 7. Average bias and RMSE in 134 deg. flight direction (a) Stand height average bias and
(b) RMSE versus power loss with respect to stand average canopy phase center elevation.

Figure 8. Forest AGB estimation results using (a) Hac and (b) TomoH in 314 deg. flight direction.

Figure 9. Forest AGB estimation results using (a) Hac and (b) TomoH in 134 deg. flight direction.
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4.3. Forest AGB Estimation

In this section, we construct a reasonable forest AGB estimation model in the test site using
parameter Hac and the nine parameters (P1–P3 and P5–P10) described in [56]. Table 4 shows the results
of estimation models obtained through the multiple linear stepwise regression method with the F test.
Hac1 to Hac10 are the ten stepwise regression models with parameter Hac and the nine parameters
(P1–P3 and P5–P10) in the 314 deg. flight direction. Based on different parameters, these models can be
divided into two categories: one category includes parameters Hac and P6 (Hac1, Hac3, Hac5, Hac7, Hac9,
Hac11, Hac13); and the other includes Hac, P6, and P7 (Hac2, Hac4, Hac6, Hac8, Hac10, Hac12, Hac14), which
indicates that Hac, P6, and P7 are more sensitive to forest biomass than other parameters. According to
these models, we can choose one of the best models for biomass estimation in the two categories,
respectively. When using the same method to obtain estimation models with Li’s ten parameters
(P1–P10), including TomoH, ten models are also obtained in the 314 deg. flight direction. However,
based on the same rules, we only choose the best two models for comparison, namely TomoH1 and
TomoH2. In addition, we also list the best models using different parameters in the 134 deg. flight
direction, named Hac15, Hac16, TomoH3, and TomoH4 (Table 4).

According to Table 4, from models Hac1 to Hac14, considering only collinearity between variables
cannot select the best models, because these parameters do not appear to have serious collinearity
problems according to the tolerance and variance inflation factor. However, when we consider the
correlation coefficient in this table, Hac3 and Hac8 will perform relatively better than other models,
whose R2 values are 0.734 and 0.798, respectively. When considering the validated error, tolerance,
and variance inflation factor together, we still find that Hac3 and Hac8 are more suitable for forest AGB
estimation than other models in the two categories. Then, we choose these four models for analysis in
the two different flight directions, respectively. Hac3, Hac8, TomoH1, and TomoH2 belong to the 314 deg.
flight direction, whereas Hac15, Hac16, TomoH3, and TomoH4 belong to the 134 deg. flight direction.

The comparison results with field data are showed in Figures 10 and 11. In the 314 deg. flight direction
(Figure 10), the correlation coefficient value between field data and AGB derived by Hac8 is 0.761, which
is higher than the values obtained by Hac3, TomoH1, and TomoH2 (0.728, 0.573, and 0.687, respectively).
Additionally, the RMSEs of Hac3 and Hac8 are 19.941 t ha−1 and 18.824 t ha−1, respectively, which are
lower than those of TomoH1 (24.834 t ha−1) and TomoH2 (21.219 t ha−1). Obviously, the performance of
Hac8-based inversion is better than that of other models. In the 134 deg. Flight direction (Figure 11),
the performance of Hac16-based inversion is better than that of other models, whose correlation
coefficient value is 0.776 and RMSE is 18.325 t ha−1.

Figure 10. Comparison between in-situ AGB and estimated forest AGB derived from model in 314 deg.
flight direction (a) Hac3, (b) Hac8, (c) TomoH1, and (d) TomoH2.
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Figure 11. Comparison between in-situ AGB and estimated forest AGB derived from model in 134 deg.
flight direction (a) Hac15, (b) Hac16, (c) TomoH3, and (d) TomoH4.

5. Discussion

Traditional studies on the PCT technology usually focus on forest vertical profile generation [59,61],
with rare consideration of the relationship between the vertical profile and the forest parameters. In this
study, all the parameters for AGB inversion were extracted by analyzing the geometric characteristics
of the average vertical profiles within the forest stand [55,56]. These parameters are mathematically
defined without considering physical scattering mechanisms of forest. In references [55,56], TomoH
(i.e., P4) is the most important parameter for the estimation of forest AGB. Nevertheless, TomoH only
corresponds to the highest volume relative reflectivity, which is lower than the actual forest height,
especially for long wavelengths (such as P-band) SAR data [55]. In this study, we use the PCT technique
and P-band airborne PolInSAR data to generate the average vertical profile. A new parameter (i.e., Hac)
for estimating forest AGB is retrieved through analyzing the variation of the vertical backscatter
power, which considers the physical scattering attenuation when radar echo penetrates into the forest.
The experiment results (Figures 8 and 9) show that better accuracies are achieved for AGB inversion,
which demonstrates that Hac performs relatively better than TomoH. Additionally, we combine Hac

with Li’s nine parameters to construct the forest AGB estimation model by a multiple linear stepwise
regression method. The results in Table 4, as well as Figures 10 and 11, show that the combination has
a better performance than only using Li’s ten parameters, which also indirectly verify the validity and
reliability of the new parameter in estimating forest AGB.

Forest biomass estimation is a timely topic, and many scholars have used different data and
methods to estimate biomass in different regions. In the test site of this paper (krycklan area),
Ulander et al. [67] used a multiple linear regression model based on P-band multi-polarization
backscatter to estimate biomass, and the RMSE varied in the range 29–42 t ha−1. Neumann et al. [44]
used parametric (linear regression) and non-parametric (random forest, support vector machine)
methods to assess biomass estimation performance with polarimetric interferometric synthetic aperture
radar (PolInSAR) data at L- and P-band in this test area, and the cross-validated biomass RMSE was
reduced to 23 t ha−1 in the best case at P-band. Compared with these methods, PCT technology
can extract forest vertical structures from the vertical distribution of relative reflectivity and has
the potential to improve biomass estimation. In addition, the potential of P-band TomoSAR to
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characterize forest structure was assessed in a number of studies relating forest vertical structure to
forest biomass [50–52]. Compared with TomoSAR technology, the single baseline PCT reduces the
amount of data, but it has the problem of inverting the instability of the vertical profile of relative
reflectivity in some places (Figure 5) and multi-baseline PCT technology may improve the phenomenon.
Moreover, we note that the optimal power loss value for forest parameter extraction in this test site is
different at two different flight tracks, and the value also should be different for other test sites, since
power loss is always related to the vertical resolution, forest types, density, etc. [58].

6. Conclusions

In this paper, we propose a method based on the polarimetric coherence tomography for forest
AGB inversion. A new parameter of average canopy height (Hac) considering scattering attenuation is
introduced for AGB inversion. Two pairs of P-band E-SAR full polarimetric SAR data covering the
Krycklan river catchment in northern Sweden are selected for experiments. The results show that
the tomographic profiles are greatly influenced by the polarimetric channels, and the PD algorithm
can provide two more suitable polarimetric channels for the PCT technology. Referenced to the
LiDAR forest height, in the 314 deg. flight direction, the power loss of −1.549 dB relative to the
canopy phase center’s power is confirmed to be the optimal value and is used to retrieve the new
parameter of average canopy height Hac with average bias and RMSE. In contrast with the tomographic
height (TomoH), the new parameter Hac is shown to be closer to the top of the stands, and has more
advantages for forest AGB inversion. Following this, a high performance and precision inversion
model is constructed by combining parameter Hac with other parameters (Li’s parameters). The RMSE
is 18.824 t ha−1 in the test area. The same conclusion is reached with the data we use in the other
flight direction. The RMSE is 18.325 t ha−1. In this study, we try to introduce a parameter considering
scattering characteristics, rather than just from geometric characteristics, for improving the accuracy of
forest AGB inversion.
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Abstract: Here, we investigated the capabilities of a lightweight unmanned aerial vehicle (UAV)
photogrammetric point cloud for estimating forest biophysical properties in managed temperate
coniferous forests in Japan, and the importance of spectral information for the estimation.
We estimated four biophysical properties: stand volume (V), Lorey’s mean height (HL), mean height
(HA), and max height (HM). We developed three independent variable sets, which included a height
variable, a spectral variable, and a combined height and spectral variable. The addition of a dominant
tree type to the above data sets was also tested. The model including a height variable and dominant
tree type was the best for all biophysical property estimations. The root-mean-square errors (RMSEs)
for the best model for V, HL, HA, and HM, were 118.30, 1.13, 1.24, and 1.24, respectively. The model
including a height variable alone yielded the second highest accuracy. The respective RMSEs were
131.74, 1.21, 1.31, and 1.32. The model including a spectral variable alone yielded much lower
estimation accuracy than that including a height variable. Thus, a lightweight UAV photogrammetric
point cloud could accurately estimate forest biophysical properties, and a spectral variable was not
necessarily required for the estimation. The dominant tree type improved estimation accuracy.

Keywords: managed temperate coniferous forests; point cloud; spectral information; structure from
motion (SfM); unmanned aerial vehicle (UAV)

1. Introduction

Up-to-date and spatially detailed information on forest biophysical properties is fundamental to
allowing managers to ensure sustainable forest management [1]. Thus, a methodology that captures
the spatial and periodic information of forest biophysical properties is required. Remote sensing is
an important option for capturing the spatio-temporal information of forest biophysical properties.
Measuring three-dimensional (3D) forest structure as a point cloud is an established way to capture
the information.

Airborne light detection and ranging (Lidar) is an active remote sensing system that directly
measures 3D structures by emitting laser pulses from an aircraft-borne sensor. Because the emitted
laser pulses can reach the ground by penetrating a dense forest canopy, airborne Lidar can provide
terrain height, as well as a point cloud. The relative height between the point cloud and the local
terrain height is well suited for measuring stand-level forest biophysical properties, including stand
volume [2,3], and tree height [2,4]. Currently, airborne Lidar is the most accurate remote sensing
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system for obtaining specific stand-level forest biophysical properties [1,5]. However, because of
cost limitations, repeat surveys using airborne Lidar data are often difficult [6]. Therefore, we need
alternative approaches to obtain forest biophysical properties.

Digital aerial photographs are an alternative option to generate a point cloud. Recent advances in
computer science make it possible to generate a point cloud semi-automatically using the Structure
from Motion (SfM) approach [7,8]. Unlike airborne Lidar, digital aerial photographs cannot provide
terrain height information, but they can provide the point cloud of the upper canopy surface [9],
especially under dense forest canopy conditions. However, the relative height between the point
cloud derived from digital aerial photographs and the terrain height provided by another data source,
such as airborne Lidar, can be used to estimate forest biophysical properties [10–13]. Thus, periodic
acquisitions of digital aerial photographs may be a practical option in areas where accurate terrain
height information is available (e.g., a digital terrain model (DTM) derived from an existing Airborne
Lidar dataset).

Lightweight unmanned aerial vehicles (UAVs) may be a suitable platform for acquiring digital
aerial photographs for small areas at low cost [14,15]. Because the material and operational cost of
lightweight UAVs is low [16], they can acquire digital photographs at a lower cost than a manned aerial
vehicle with increased spatial and temporal resolution. If we can estimate forest biophysical properties
from the lightweight UAV photogrammetric point cloud as accurately as a point cloud derived from
digital aerial photographs acquired by a manned aerial vehicle, the former may become an alternative
option to measure forest biophysical properties. At present, the digital images derived from lightweight
UAVs may differ from those derived from manned airborne vehicles. In particular, lightweight UAVs
are sometimes equipped with consumer-grade digital cameras and inexpensive global navigation
satellite system (GNSS), which may lead to distortions or positioning errors, respectively [17,18].

Several studies have assessed the value of UAV photogrammetric point clouds in predicting
biophysical properties [19–24]. However, these focused mainly on dominant tree heights (e.g., [25]) or
individual tree height (e.g., [19–21]). Relatively few studies have evaluated the accuracy of predicting
other stand-level forest biophysical properties, such as stand volume. In a limited study, Puliti et al. [17]
demonstrated that the use of a UAV can provide accurate forest characteristics in boreal coniferous
forests. Thus, more experiments should be conducted in a variety of forest types to determine the
validity of the defined parameters and the accuracy of the reported data [17].

Compared with airborne Lidar, digital aerial photography has the advantage that multispectral
information is automatically captured, but digital aerial photographs have a disadvantage that terrain
height cannot be acquired under dense forest canopy conditions. The spectral information data
provide detailed information on the 3D structural change of the forest canopy [22], and previous
studies using airborne Lidar suggested that adding multispectral or hyperspectral data improved the
estimation of biophysical properties [26–28]. Thus, spectral information can improve the accuracy
of biophysical property estimations when both point cloud and spectral information derived from a
UAV are used. However, Puliti et al. [17] showed that adding spectral information into a biophysical
property estimation using a UAV photogrammetric point cloud resulted in a limited improvement.
One reason for this limited improvement was that the UAV photographs in the study were acquired in
late fall, which may result in a low spectral response from vegetation [17]. Thus, further research is
needed to evaluate the importance of spectral information when using a lightweight UAV equipped
with a consumer-grade digital camera.

In this study, we investigated the capabilities of the lightweight UAV photogrammetric point cloud
using the SfM approach to estimate forest biophysical properties in managed temperate coniferous
forests. We estimated four biophysical properties—stand volume (V), Lorey’s mean height (HL),
mean height (HA), and max height (HM)—using variables derived from a UAV photogrammetric
point cloud. For the estimation, six independent variable sets, which included height variables
alone, spectral variables alone, and a combination of height and spectral variables, were compared.
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Finally, we investigated the capability of the UAV photogrammetric point cloud and the importance
of spectral information for estimating biophysical properties.

2. Materials and Methods

2.1. Study Area

The study was conducted in a temperate forest area (131◦32′3′′ E, 33◦6′51′′ N) in Oita prefecture
located in southwestern Japan (Figure 1). The area is dominated by plantations of evergreen conifers
trees, including Sugi (Cryptomeria japonica) and Hinoki (Chamaecyparis obtusa). The stand age of the
coniferous forests ranges from eight to 62 years. The elevation ranges from 520 to 775 m above sea level.

Figure 1. Location of the study area. The municipal boundaries provided by ESRI Japan were used
as the country border. The forest cover map was created by visual interpretation based on aerial
photographs acquired by a lightweight unmanned aerial vehicle (UAV).

2.2. Field Measurements

Field measurements in Sugi-dominated stands and Hinoki-dominated stands were conducted
at previously established permanent plots as a part of different ongoing field studies. Since we used
already established plots, there were two sizes of rectangular permanent plots: 400 m2 (20 m × 20 m)
and 225 m2 (15 m × 15 m). The two Hinoki plots were 225 m2, and others were 400 m2. There were 9
and 11 plots in the Sugi and Hinoki stands, respectively. Field data were collected between September
2016 and October 2016. Within each plot, diameter at breast height (DBH) and tree height for all trees
with DBH >5 cm were measured. In total, 1197 trees were measured. The plot locations were recorded
with a GNSS (MobileMapper 120, Spectra Precision, Westminster, CO, USA). It should be noted that we
could not measure the heights of 12 trees because they were inclined from the perpendicular. For trees
without a height measurement, we estimated their heights using the Näslund equation [29].

For the UAV photograph survey, 11 SfM ground-control points (GCPs) were distributed across
the survey area prior to the acquisition of UAV photographs (Figure 1). Each GCP was approximately
55 × 65 cm with a red cross marked on a white sheet. The GCP locations were also acquired by
MobileMapper 120, which is a differential GNSS providing sub-meter accuracy after post-processing.
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We calculated the stem volume for each measured tree using tree volume equations developed
by the Forest Agency, Japan [30]. Then, V for each plot was calculated by summing the volume of
each tree and dividing by the plot size. We also derived HL, HA, and HM for each plot from field data
(Table 1).

The plot and GCP location data were post-processed using the nearest GNSS-based control
stations constructed by the Geospatial Information Authority of Japan (GSI) with MobileMapper Office
4.6 (Spectra Precision, Westminster, CO, USA).

Table 1. Summary of the biophysical properties, which were stand volume (V), Lorey’s mean height
(HL), mean height (HA), and max height (HM), calculated from field measurements (SD indicates the
standard deviation).

Dominant
Tree Type

The Number
of Plots

V (m3/ha) HL (m) HA (m) HM (m)

Mean SD Mean SD Mean SD Mean SD

Sugi 9 712.37 142.20 18.67 2.06 18.17 2.07 21.91 1.98
Hinoki 11 491.75 249.36 15.67 5.25 15.21 5.13 18.50 5.92

2.3. Remote Sensing Data

UAV photographs were acquired under leaf-on canopy conditions between September and
October 2016, which corresponded to late summer and early fall. A Phantom 4 UAV was used to
acquire the photographs. The UAV has an integrated camera, with a 1/2.3 CMOS sensor that can
capture red–green–blue (RGB) spectral information. The UAV was operated manually with visual
confirmation in accordance with Japanese laws. The flying altitude was between 70 and 110 m
above ground level, and the flying speed was approximately 2.5 m/s. The average ground sampling
distance was 4.3 cm. The aerial photographs were captured at 5-s intervals to achieve an overlap
of more than 80%. It should be noted that an additional UAV photograph acquisition flight was
conducted in January 2017, which corresponded to winter conditions, to add the rightmost GCP in
Figure 1. Since there were overlaps between the first and additional acquisition, we concurrently
created a photogrammetric point cloud. While the acquisition was conducted during the winter season,
the acquired photographs did not include any plots. Thus, the photographs were not used for the
biophysical parameters estimation but used just for adding a GCP.

2.4. Remote Sensing Data

2.4.1. Processing of the UAV Photographs

The UAV photographs were processed using PhotoScan Professional version 1.2.6 ([31];
Petersburg, Russia) to generate a photogrammetric point cloud that includes both height and spectral
information (i.e., red, green, and blue). PhotoScan Professional is a commercial software that uses the
SfM approach to generate a 3D reconstruction from a collection of overlapping photographs, which can
provide a dense and accurate 3D point cloud [17]. Briefly, the workflow composed of the “Align photos”
stage and the “Build a dense point cloud” stage. “Align photos” is the stage at which camera location
and orientation, and internal parameters are determined [32]. We selected “High accuracy” and
“Reference” as settings for “Accuracy” and “Pair preselection”, respectively. Eleven GCPs were used
to improve the accuracy of the “Align photos” stage. We imported the post-processed GCP location
data into PhotoScan Professional and manually identified each GCP within the UAV photographs.
The overall RMSE of GCP matching process was 2.94 m (Table 2). The “Build a dense point cloud”
stage generates dense 3D, point cloud data based on the camera location and orientation, and internal
parameters determined by the “Align photos” stage. We selected “Medium quality” and “Mild” as
settings for “Quality” and “Depth filtering”, respectively, following previous studies [17].
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We constructed a 1-m resolution grid of a digital surface model (DSM) and for the spectral data
from the generated 3D point cloud data. The DSM was created by assigning the highest value of the 3D
point cloud for each grid cell. The 1-m resolution grid of the spectral data of each band (i.e., red, green,
and blue) was created by assigning the average value of the 3D point cloud. Then, the three band
values of each grid were normalized radiometrically by dividing each band value in the grid by the
sum of the values of all bands in the corresponding grid, as described in previous studies [17,33,34].

Table 2. The errors of ground-control points.

Ground-Control Points X Error (m) Y Error (m) Z Error (m) Total Error (m)

1 1.15 5.19 −1.42 5.50
2 0.48 0.26 −0.07 0.55
3 −3.26 −1.08 −3.87 5.17
4 0.92 −0.15 0.44 1.03
5 2.19 −0.54 −0.26 2.27
6 −1.01 −0.81 0.15 1.30
7 0.81 −1.89 −0.85 2.23
8 −0.48 −0.63 0.90 1.20
9 1.16 −0.30 −0.01 1.20

10 −1.53 1.68 1.87 2.94
11 −0.49 −1.77 3.14 3.64

RMSE 1.47 1.89 1.71 2.94

2.4.2. Calculation of a Canopy Height Model (CHM) and Variable Extractions

A CHM was calculated as the relative height by subtracting the terrain height from each grid
value of the DSM. We used a digital terrain model (DTM) developed by the Geospatial Information
Authority of Japan as the terrain height. The DTM consists of 5-m spatial resolution data derived from
airborne Lidar. The vertical accuracy is expressed as the standard deviation within 2 m (GSI, 2014).
Because the spatial resolution of the DTM was 5 m, we interpolated the 5-m resolution data into 1-m
data using the inverse distance weighted interpolation method.

Then, 13 variables derived from the CHM were calculated within each field plot, including mean
canopy height (hmean, the average value of the relative height), deciles of the height percentiles (h10, h20,
. . . , h100), and standard deviation (hsd). In addition to the height variables, we calculated the means
(RGBR, mean, RGBG, mean, and RGBR, mean) and standard deviations (RGBR, sd, RGBG, sd, and RGBR, sd)
of the spectral values.

2.4.3. Statistical Analysis

A regression model approach was applied to develop the biophysical properties estimation model
following previous studies [10,35]:

F = β0hβ1 RGBβ2 ebz (1)

where F is the biophysical property calculated from the field data; β0, β1, and β2 are the regression
coefficients; h is the height variable (i.e., Hmean, h10, . . . , h100, hsd); RGB is the spectral variable; b is
the regression coefficient of a dummy variable; and z is the dummy variable. The dummy variable
was used to assess the influence of dominant tree type (dtype) on the regression. The dummy variable
(i.e., z) has a value of 1 for Hinoki-dominated stands. For the Sugi-dominated stands, the dummy
variable has a value of 0. To avoid problems of collinearity, we did not include more than one variable
for each height and spectral variable, while we calculated 13 variables (i.e., Hmean, h10, . . . , h100, hsd)
and six variables (i.e., RGBR, mean, RGBB, mean, . . . , RGBR, sd) for the height and spectral properties,
respectively. Equation (1) was log transformed to solve the equation as a linear regression using
Equation (2):

log F = logβ0 + β1 log(h) + β2 log(RGB) + bz (2)
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To evaluate the importance of each height and spectral variable for estimating forest biophysical
properties, we initially regressed the biophysical properties against a height variable alone and a
spectral variable alone. Then, we regressed the biophysical properties against a combination of a
height variable and a spectral variable. Finally, we evaluated the importance of dominant tree type by
adding dominant tree type as an independent variable, resulting in a combination of a height variable
and dominant tree type, a spectral variable and dominant tree type, and a height variable, a spectral
variable, and dominant tree type.

The accuracies of the estimates of the best model were validated using a coefficient of
determination (R2), the root-mean-square error (RMSE), a Bayesian information criterion (BIC), and the
relative RMSE expressed as a percentage. The relative RMSE was defined as the RMSE divided by the
mean value of the field data. Because the number of field plots was limited (i.e., 20), R2 and RMSE
were calculated using a leave-one-out cross-validation. R2 was calculated using linear regression of
the observed versus estimated values. The number of independent variables was the same within
each dataset. Thus, for each independent variable dataset, we selected the best model using R2.
For comparisons between different independent variable datasets, we used the BIC. The statistical
analysis was conducted using R ver. 3.12 [36].

3. Results

For each biophysical property, the variables derived from the UAV photogrammetric point cloud
were regressed using six independent variable sets, and the selected models were summarized (Table 3).
When the biophysical properties were regressed against a height variable alone, h90 was selected for
the models. The R2 values of the selected models for V, HL, HA, and HM were 0.71, 0.93, 0.91 and
0.93, respectively. The respective RMSEs were 131.74, 1.21, 1.31, and 1.32, respectively. The model
that included a spectral variable alone yielded lower estimation accuracy than the one including
a height variable, and the R2 of the selected models for V, HL, HA, and HM, were 0.26, 0.23, 0.21,
and 0.26, respectively. The selected model including both a height variable and a spectral variable
yielded almost the same R2 as the model including a height variable. When the biophysical properties
were regressed with the addition of the dominant tree type information, in terms of R2, adjR2, RMSE,
and relative RMSE, the accuracies of the estimation were comparable to those obtained using the
respective independent variable sets without the dominant tree type information.

In terms of the BIC, the model that included a height variable with the addition of dominant
tree type information was the best model for all the biophysical property estimations within the six
independent variable sets. The selected models used h90 and dominant tree type for all the biophysical
property estimations. The RMSEs for V, HL, HA, and HM were 118.30, 1.13, 1.24, and 1.24, respectively.
The relative RMSEs of the selected models for HL, HA, and HM were between 6.17 and 7.50. The relative
RMSE of V, which was 20.02%, was larger than that of the other biophysical properties. Figure 2 shows
a scatterplot of the observed versus predicted values for each biophysical property using the best
models. The regression lines for HL, HA, and HM were almost in line with the 1:1 line.

Table 3. Summary of the selected estimation models for four forest biophysical properties: stand
volume (V), Lorey’s mean height (HL), mean height (HA), and max height (HM) (bold indicates the best
model for each biophysical property).

Dependent
Variables

Independent
Variable

Selected Variables R2 AdjR2 RMSE
Relative
RMSE

BIC

V

h h90 0.71 0.70 131.74 22.29 7.14
RGB RGBG, sd 0.26 0.21 291.80 49.37 58.99

h + RGB h90, RGBB, sd 0.68 0.64 143.15 24.22 9.95
h + dtype h90, dtype 0.78 0.75 118.30 20.02 2.99

RGB + dtype RGBB, sd, dtype 0.20 0.11 303.16 51.29 53.01
h + RGB + dtype h90, RGBR, sd, dtype 0.80 0.76 112.97 19.11 3.83
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Table 3. Cont.

Dependent
Variables

Independent
Variable

Selected Variables R2 AdjR2 RMSE
Relative
RMSE

BIC

HL

h h90 0.93 0.92 1.21 7.08 −41.14
RGB RGBB, sd 0.23 0.19 4.31 25.29 19.73

h + RGB h90, RGBB, mean 0.94 0.92 1.19 7.00 −39.41
h + dtype h90, dtype 0.92 0.93 1.13 6.65 −42.56

RGB + dtype RGBB, sd, dtype 0.90 0.10 4.69 27.57 22.73
h + RGB + dtype h90, RGBG, mean, dtype 0.93 0.92 1.15 6.7 −39.71

HA

h h90 0.91 0.91 1.31 7.92 −35.96
RGB RGBB, sd 0.21 0.16 4.30 25.97 21.12

h + RGB h90, RGBB, mean 0.92 0.91 1.25 7.53 −35.26
h + dtype h70, dtype 0.90 0.91 1.24 7.50 −34.12

RGB + dtype RGBB, sd, dtype 0.89 0.08 4.62 27.96 24.11
h + RGB + dtype h90, RGBB, mean, dtype 0.92 0.91 1.24 7.51 −34.29

HM

h h90 0.93 0.92 1.32 6.61 −42.74
RGB RGBB, sd 0.26 0.22 4.62 23.05 14.92

h + RGB h90, RGBR, mean 0.94 0.92 1.32 6.57 −40.37
h + dtype h90, dtype 0.92 0.93 1.24 6.17 −44.89

RGB + dtype RGBB, sd, dtype 0.90 0.13 5.04 25.17 17.91
h + RGB + dtype h90, RGBR, mean, dtype 0.93 0.94 1.13 5.63 −44.30

Figure 2. Observed biophysical properties versus predicted biophysical properties from the best
model of each of the canopy height models. A diagonal dotted line and a solid line indicate the
1:1 line and regression line between the predicted biophysical properties and observed biophysical
properties, respectively.
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4. Discussion

In this study, we assessed the accuracy of forest biophysical property estimation using a
lightweight UAV photogrammetric point cloud in managed temperate coniferous forests. Previous
studies assessed the accuracy of the estimation in temperate broadleaved forests and conifer-dominated
boreal forests. These studies focused especially on tree heights such as dominant tree height and
Lorey’s mean height (e.g., [17,25]). They showed relative RMSEs of 8.4% in temperate broadleaved
forests [25] and 13.3% in conifer-dominated boreal forests [17]. Studies focusing on stand volume
or aboveground biomass estimation are rare. Puliti et al. [17] fitted variables derived from a UAV
photogrammetric point cloud for V and HL in conifer-dominated boreal forests in Norway. The study
showed a relative RMSE of 15.0%. Kachamba et al. [37] similarly evaluated the aboveground biomass
estimation accuracy using a UAV photogrammetric point cloud. They showed a relative RMSE of 46.7%.
In the present study, R2 values were between 0.72 and 0.93, and the relative RMSEs were between
6.92% and 22.84% in managed temperate coniferous forests. Thus, we conclude that the estimation
results in managed temperate coniferous forests are comparable to those of conifer-dominated boreal
forests and superior to those of dry tropical forests. One reason why our results are superior to those
of dry tropical forests is that Kachamba et al. [37] did not use the terrain height data derived from
airborne Lidar, but data generated by filtering a UAV photogrammetric point cloud.

The models including a spectral variable alone yielded a lower model accuracy than the models
including a height variable alone for all the biophysical properties. The accuracy of the models
including both a height variable and a spectral variable also yielded lower accuracy than that of
the model including a height variable alone. Thus, we conclude that the spectral information did
not improve the forest biophysical property estimations. Spectral information is often used for tree
species recognition in forest inventory applications using 3D point clouds, since height information
alone typically does not identify different tree species [38]. However, previous studies, which used
a point cloud derived from airborne Lidar or digital aerial photographs, suggested that spectral
information helped to refine the biophysical property estimation [17,26–28]. In contrast, the present
study showed that adding spectral information did not improve forest biophysical property estimations
using a lightweight UAV photogrammetric point cloud. One possible reason is that we used the
consumer-grade digital cameras and, therefore, spectral variables from only the visible range were
used. It is important to note that, in our study, a spectral variable can estimate forest biophysical
properties, but the R2 was approximately 0.2. One advantage of using a spectral variable is that
terrain height information is not required for forest biophysical property estimations. Because we need
accurate terrain height information to use height variables for forest biophysical property estimations,
using a height variable may be difficult in areas, such as tropical forests, where accurate terrain height
information cannot be obtained [37]. Thus, spectral information may become an important estimator.
Further research is required to explore the importance of spectral information in these regions.

The model that includes a height variable and dominant tree type yielded the lowest BIC for all
the biophysical property estimations. Thus, we conclude that adding dominant tree type improved the
accuracy of forest biophysical property estimations. However, it should be noted that the improvement
was limited in terms of R2 and RMSE, compared with the model that included a height variable
alone. Thus, we also conclude that the dominant tree type is not necessarily required because of
the limited improvement, although this information did improve model accuracy. The importance
of adding forest or dominant tree type information has been examined previously, especially for
estimating aboveground biomass using airborne Lidar. These studies showed that adding forest or
dominant tree type information has a limited effect on improving the estimation accuracy in boreal
coniferous [39] and tropical forests [35]. While studies that examined the importance of adding forest
or dominant tree type information using a photogrammetric point cloud are limited, Ota et al. [10]
also obtained similar results using a manned aircraft-derived, photogrammetric point cloud in tropical
forests. We confirmed that the UAV photogrammetric point cloud can also estimate forest biophysical
properties independently of dominant tree type in managed coniferous forests. This becomes a strong

140



Forests 2017, 8, 343

advantage when using point cloud-based forest biophysical property estimations in areas where
several forest types occur in mixed communities because of the simplified calibration process and
forest inventory [10].

5. Conclusions

The main conclusion of this study is that a UAV photogrammetric point cloud can accurately
estimate forest biophysical properties, including V, HL, HA, and HM, in managed temperate coniferous
forests. For the estimations, a height variable alone is required, while a spectral variable is not
necessarily required. The dominant tree type, if it is available, improves the estimation accuracy.
While a spectral variable yielded lower estimation accuracy, it may be informative in areas where
accurate terrain height is not available. Thus, further study is required to explore the importance of
spectral information in these areas.
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Abstract: Advances in Unmanned Aerial Vehicle (UAV) technology and data processing capabilities
have made it feasible to obtain high-resolution imagery and three dimensional (3D) data which can
be used for forest monitoring and assessing tree attributes. This study evaluates the applicability
of low consumer grade cameras attached to UAVs and structure-from-motion (SfM) algorithm for
automatic individual tree detection (ITD) using a local-maxima based algorithm on UAV-derived
Canopy Height Models (CHMs). This study was conducted in a private forest at Cache Creek located
east of Jackson city, Wyoming. Based on the UAV-imagery, we allocated 30 field plots of 20 m × 20 m.
For each plot, the number of trees was counted manually using the UAV-derived orthomosaic for
reference. A total of 367 reference trees were counted as part of this study and the algorithm detected
312 trees resulting in an accuracy higher than 85% (F-score of 0.86). Overall, the algorithm missed
55 trees (omission errors), and falsely detected 46 trees (commission errors) resulting in a total count
of 358 trees. We further determined the impact of fixed tree window sizes (FWS) and fixed smoothing
window sizes (SWS) on the ITD accuracy, and detected an inverse relationship between tree density
and FWS. From our results, it can be concluded that ITD can be performed with an acceptable
accuracy (F > 0.80) from UAV-derived CHMs in an open canopy forest, and has the potential to
supplement future research directed towards estimation of above ground biomass and stem volume
from UAV-imagery.

Keywords: structure from motion (SfM); 3D point cloud; remote sensing; local maxima; fixed tree
window size

1. Introduction

Sustainable forest management requires an understanding of how macroscopic patterns of
forests emerge, in a timely and accurate manner, in order to make informed decisions [1,2]. Detailed

Forests 2017, 8, 340; doi:10.3390/f8090340 www.mdpi.com/journal/forests144



Forests 2017, 8, 340

information on tree-level attributes, such as tree counts, tree heights, crown base heights and diameter
at breast height (DBH) are essential for monitoring forest regeneration, quantitative analysis of forest
structure and dynamics, and evaluating forest damage [3–6]. However, as several forest study areas
are vast and not easily accessible, with a plethora of tree species with varying shapes and sizes,
a cost-effective and accurate method to acquire forest attributes such as tree density (tree/ha), and tree
characteristics such as height (Ht), basal area (BA), and stem volume (V) are essential to management
and conservation activities [7]. Although traditional field surveys can be used to gather detailed
information regarding these forest characteristics, they can become uneconomical, time consuming
and exhausting, and hence are not ideal for studies dealing with periodic data collection [8,9].

Over the years, remote sensing techniques have been increasingly used for assessing forest
resources, both directly and indirectly [10–13]. Aerial photography, light detection and ranging
(LiDAR) and airborne multispectral, and hyperspectral images had been perceived as potential tools
for observing forest areas and for performing broad-scale analysis of forest systems. These methods
have the ability to quantify the composition and structure of the forest at different temporal and
geographical scales with the support of various statistical methods, and therefore can supplement
forest inventory related expeditions [14–21].

Advances in the fields of the Unmanned Aerial Vehicle (UAV) technology and data processing
have broadened the horizons of remote sensing of forestry, and made the acquisition of high-resolution
imagery and 3D data more easily available and affordable [22–28]. In fact, UAVs can be obtained
at reasonable costs and can be perceived as a forester’s eye in the sky, capable of performing forest
inventory and analysis on a periodic basis [22,29]. These light-weight machines can be remotely
operated from the ground and can fly below cloud cover. With the availability of a wide range
of sensors, these UAVs allow the end users to define the spatial resolutions, thereby opening new
opportunities to forest managers [30]. In the past decade, studies have focused on exploring the usage
of UAV-derived Canopy Height Models (CHMs), suggesting its potential in detection of tree tops,
delineation of tree crowns, and subsequently estimation of parameters of crown morphology such as
height, diameter, and surface curvature [9,22,23,25,30–32].

Previously, individual trees from UAV imagery were detected using mainly image segmentation
using textural features, but photogrammetric 3D point clouds supplanted them with the progression
of dense image matching methods and computing power [4,33–39]. For processing large amounts of
imaging data, researchers today use so-called structure-from-motion (SfM) and multi-view stereopsis
(MVS) techniques, which do not require the information on the 3D position of the camera or the
3D location of multiple control points, unlike traditional digital photogrammetric methods [40–44].
Here, 3D point clouds are generated through the matching of features in multiple images and ground
control points (GCPs) are used for geo-referencing and scaling of these point clouds [45]. Nonetheless,
very few studies have investigated possibilities of detecting individual tree counts from the CHMs
that can be derived from these point clouds [41,46–48].

In the past two decades, LiDAR has become the dominant remote sensing technology for ITD,
mainly because it can quickly provide highly accurate and spatially detailed information about forest
attributes across an entire forested landscape [7]. There are a variety of approaches used to detect and
delineate individual trees from LiDAR-derived CHMs: local maxima detection, valley following (VF),
template matching (TM), scale-space (SS) theory, Markov random fields (MRFs), and marked point
processes (MPP) [7,35,49–54]. These algorithms, when applied on CHMs derived from aforementioned
methodologies, promise efficient ITD performance. For instance, the application of LM algorithm
on LiDAR-derived CHMs is a well-known established framework, which has been incorporated
in several recent studies and the researchers reported adequate ITD accuracy [7,55]. Nevertheless,
these methods were primarily designed for measuring large spaces or objects, and require expensive
sensors, well-trained personnel, and precise computational technology to obtain accurate results.
Therefore, how to collect high resolution data for individual tree attributes estimation in the case of
smaller study areas over time, considering the cost associated with it, is a key challenge [22,23].
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As UAV remote sensing techniques are undergoing rapid improvement—along with the
availability of high spatial resolution remotely sensed imagery—there is potential for conducting and
automating high accuracy forest inventory and analysis in a cost-effective manner [56]. We hypothesize
that it is possible to automatically detect individual trees from the UAV-derived CHM with satisfactory
accuracy using the LM algorithm, primarily designed for ITD from LiDAR data. In this paper, we aim
to address two criteria: (i) Evaluate the applicability of UAV-derived Canopy Height Models for ITD;
(ii) Determine the impacts of fixed treetop window size (FWS) and fixed smoothing window size (SWS)
on the performance of the local maxima algorithm for ITD.

2. Methods

2.1. Study Area Description

The study area (Figure 1) was comprised of 32 ha of private forest at Cache Creek located east
of Jackson city, in the state of Wyoming, with an elevation ranging from 1950 m to 2100 m. The open
canopy forest covered about 80% of the total study site and was comprised of a variety of four tree
species which included Lodgepole pine (Pinus contorta Douglas), Engelmann spruce (Picea engelmannii
Parry), Subalpine fir (Abies lasiocarpa Nuttall) and Douglas fir (Pseudotsuga menziesii Franco). The climate
of the region was characterized as humid continental climate, with warm to hot summers and cold
winters. Annual average precipitation was 33 mm; average temperature ranged from a minimum
of—15 ◦C in the coolest month (January) to a 27.7 ◦C in the hottest month (July).

 
Figure 1. Study Area at Cache Creek, Wyoming, United States of America.

2.2. Data Acquisition and Processing

For this study, the aerial survey was conducted on 13 July 2015 using a DJI phantom 3 quadcopter.
It had a compact RGB digital camera—PowerShot S100 (Canon, Tokyo, Japan; zoom lens 5.2 mm;
12.1 Megapixel CMOS sensor; 4000 × 3000 resolution)—attached to it; the physical dimension of the
sensor (7.5 mm × 5.6 mm, 1.87 μm pixel size) was 71.5 × 56.6 degrees. The RGB camera automatically
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triggered (1 image/s) during the flight, capturing approximately an area of 14.42 × 10.77 m2 with
a pixel resolution of 3.5 mm flying at 10 m over the target and was installed on a stabilized gimbal
(Photohigher AV200, CARVEC Systems, Hull, UK) along with the spectrometer to reduce the impact
of the mechanical vibrations on the scientific instruments.

A total of 383 images from the flights conducted over the study area were used to generate
point clouds and CHMs using the Agisoft Photoscan Professional v1.0.0 (www.agisoft.com) software
(Agisoft LLC, St. Petersburg, Russia) [57]. Such software implements modern SfM algorithms on RGB
photographs and thereby produces 3D reconstruction models based on the location of images with
respect to each other as well as to the objects viewed within them [58–61]. In this study, the images
had an overlap of 80% which made the stitching process more efficient. The processing steps included
automatic aerial triangulation (AAT), bundle block adjustment (BBA), noise filtering, Digital Elevation
Model (DEM) and ortho-mosaic creation. All the processes were performed under the default settings
and in a fully automated way. The imagery was synchronized using the GPS position, and the
ortho-mosaic was generated using absolute GPS coordinates; four random Ground Control Points
(GCP) were used for enhancing accuracy. Some specific information of the camera locations and image
overlaps related to UAV-image processing conducted in PhotoScan is presented in Table 1.

Table 1. Summary of UAV-image processing using PhotoScan.

Attribute Value

Number of images 383
Flying altitude 115.29 m

Ground resolution 0.03 m·pix−1

Coverage area 0.42 km−2

Camera stations 351
Tie-points 87,635

Error 0.76 pix

The UAV-derived point cloud was used to compute a digital terrain model (DTM) and a CHM.
First, ground points were classified using a Progressive Triangulated Irregular Network (TIN)
densification algorithm implemented in lasground (settings: step is 10 m, bulge is 0.5 m, spike is 1 m,
offset is 0.05 m), LAStools [62], and a 1 m DTM was created using the GridSurfaceCreate functions in
FUSION/LDV 3.42 [63]. Afterwards, the UAV-derived point cloud was normalized to height above
ground by subtraction of the DTM elevation from the Z coordinate of each point projected on the
ground using the ClipData tool. CanopyModel function, also in FUSION/LDV, was used to compute
the CHM with 0.5 m of spatial resolution for the study site.

2.3. Individual Tree Identification (ITD)

In this study, we used the local maximum (LM) algorithm [56,64,65], implemented in the rLiDAR
package in R [56,64] for ITD on the UAV-derived CHM. FindTreesCHM function was used for automatic
detection of tree tops. This function is based on the LM algorithm and it offers an option to search for
tree tops in the CHM via a moving window with a fixed tree window size (FWS). To achieve optimal
tree detection, we tested four FWS (3 × 3, 5 × 5, 7 × 7 and 9 × 9 pixels) first on an unsmoothed CHM,
and then on smoothed CHM by a mean smooth filter with fixed smoothing window sizes (SWS) of
3 × 3, 5 × 5 and 7 × 7 pixels.

For validation of the ITD, we selected 30 random plots of 400 m2 (20 m × 20 m) area each and
performed a comparison between UAV based automatic ITD and an ITD done via independent visual
assessment of on the UAV-derived orthomosaic, 3d point cloud and CHM. As the number of plots
was considerably small, we randomly allocated the sample plots to enhance the robustness of the
workflow. Further, we chose the parameters of FWS and SWS which had the best results in ITD with
respect to the reference data and performed accuracy assessment for gaining a better understanding of
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the statistical factors and for identifying possible drawbacks. In particular, we evaluated the accuracy
in terms of true positive (TP, correct detection), false negative (FN, omission error) and false positive
(FP, commission error), as well as with respect to recall (r), precision (p) and F-score (F) as explained in
Li et al. [66], using the following equations [67,68]:

r = TP/TP + FN (1)

p = TP/TP + FP (2)

F = 2 × r × p/r + p (3)

Here, recall can be viewed as a measure of trees-detected, as it is inversely related to omission
error; precision represents a measure of trees that were correctly detected, as it is inversely related to
commission error, and F-score represents the harmonic mean of recall and precision, and hence higher
p and r values result in higher F-scores. Figure 2 provides an overview of the study methodology.

Figure 2. Workflow of the UAV data processing and individual tree detection. (A) UAV-derived point
cloud; (B) Classified ground points; (C) Digital Terrain Model (DTM); (D) UAV-point cloud height
normalization; (E) Canopy Height Model (CHM).

3. Results

The UAV-derived orthomosaic and CHM are presented in Figure 3. The UAV-derived CHM
and LM algorithm proved to be very effective for detecting individual trees in the considered open
canopy forest (Table 2; Figures 4 and 5). Importantly, FWS and SWS combinations were found to be
a determining factor for the accuracy of ITD (Table 2). FWS of 3 × 3 and 5 × 5 are more accurate
compared to 7 × 7 and 9 × 9. Lower SWS was found favorable towards ITD success rate as well.
Larger SWS resulted in over estimation of tree tops. Finally, we did accuracy assessment on the best
combination, which was 3 × 3 SWS and 3 × 3 FWS (Table 3).
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Figure 3. UAV-derived Orthomosaic (A) and Canopy Height Model (B).

For this study, the recall (r) had an overall value of 0.85 with a range of 0.68 to 1.00; overall value
of precision (p) was 0.87 with a range of 0.69 to 1.00; and overall value of F-score was 0.86 and it varied
from 0.73 to 0.95 (Table 3). Among the 367 reference trees used for this study, 358 (97.55%) trees were
detected. In total, the algorithm missed 55 trees, and falsely detected 46 trees, indicating that under
detection was higher than over detection.

Table 3. Accuracy assessment results of UAV-based individual tree detection based on False Positive
(FP), False Negative (FN), True Positive (TP), recall (r), precision (p) and F-score (F) statistics parameters;
where, Ref. (N) is the reference number of trees per test plot.

Number of Trees

Ref. (FID) Ref. (N) UAV FP FN TP r p F

1 16 12 0 4 12 0.75 1.00 0.86
2 18 17 1 2 16 0.89 0.94 0.91
3 17 22 6 1 16 0.94 0.73 0.82
4 10 12 2 0 10 1.00 0.83 0.91
5 10 11 2 1 9 0.90 0.82 0.86
6 6 6 1 1 5 0.83 0.83 0.83
7 19 13 0 6 13 0.68 1.00 0.81
8 10 13 4 1 9 0.90 0.69 0.78
9 7 6 1 2 5 0.71 0.83 0.77

10 12 12 3 3 9 0.75 0.75 0.75
11 15 12 1 4 11 0.73 0.92 0.81
12 19 19 2 2 17 0.89 0.89 0.89
13 12 10 0 2 10 0.83 1.00 0.91
14 9 9 1 1 8 0.89 0.89 0.89
15 20 19 2 3 17 0.85 0.89 0.87
16 13 13 1 1 12 0.92 0.92 0.92
17 10 10 2 2 8 0.80 0.80 0.80
18 11 11 3 3 8 0.73 0.73 0.73
19 13 13 1 1 12 0.92 0.92 0.92
20 7 7 1 1 6 0.86 0.86 0.86
21 22 17 0 5 17 0.77 1.00 0.87
22 10 11 1 0 10 1.00 0.91 0.95
23 7 7 1 1 6 0.86 0.86 0.86
24 13 15 2 0 13 1.00 0.87 0.93
25 6 5 0 1 5 0.83 1.00 0.91
26 8 9 1 0 8 1.00 0.89 0.94
27 10 11 3 2 8 0.80 0.73 0.76
28 14 14 2 2 12 0.86 0.86 0.86
29 13 12 1 2 11 0.85 0.92 0.88
30 10 10 2 2 8 0.80 0.80 0.80

Total 367 358 47 56 311 0.85 0.87 0.86
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The observed and computed tree density in the study area from the UAV-derived CHM were
305 and 300 trees per hectare (TPH; trees·ha−1), respectively. The most accurate results in the ITD were
obtained primarily in test subplots with TPH ranging from 150 to 325 trees·ha−1 (Plot FID: 4, 13, 16, 19,
22, 24, 25, 26). On average, 93.2% of trees were detected correctly, with commission and omission errors
limited to 8.7% and 6.8%, respectively, with a F-score of 0.92. In contrast, the algorithm detected only
81.4% of trees in subplots with TPH > 325 trees·ha−1 with a F-score of 0.83. The associated commission
and omission errors were 14.4% and 18.6%, respectively.

Figure 4. Individual tree detection from UAV-derived Canopy Height Model (CHM). Red dots represent
the tree tops detected in the study area at stand level (A), and plot level (Plot 19) (B). Blue and yellow
dots represent the commission (FP) and omission (FN) errors while the green dots represent the true
positive trees (TP) at the plot 19 and (C).
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Figure 5. Illustration of individual tree detection at landscape (A1–C1) and plot (A2–C2) scales.
(A1,A2) UAV-point cloud; (B1,B2) UAV-derived CHM; (C1,C2) Virtual forest in 3D.

4. Discussion

In the past decade, several studies have highlighted the potential for remote sensing in forestry.
In particular, UAV equipped with consumer-grade onboard system camera and different sensors have
been used to estimate tree counts, tree heights and crowns measurements due to its low cost and faster
performance compared to traditional methods [22,23,69–74]. In this paper, we present a simplified
framework for automated ITD from UAV-SfM derived CHM based on algorithms designed for LiDAR
data processing. From the perspective of UAV-SfM remote sensing applications, this study can be
recognized as a pioneering study for automatic ITD in open canopy mixed conifer forest, which have
a comparative efficiency to LiDAR. The presented methodology has the potential to serve as a highly
effective, affordable, and easy-to-use approach for ITD and therefore to support forest monitoring and
inventory management. Because of the open canopy, we were able to collect sufficient ground points
and perform operations similar to LiDAR; the derived data was found to be very detailed and of good
quality. Herein, based on our results, it can be stated that UAV-SfM derived CHM coupled with LM
algorithm is very capable of deriving tree counts with an acceptable accuracy (F > 0.80) in open canopy
mixed conifer forests.

The accuracy of ITD in this study was found to be sensitive towards FWS and SWS combinations,
and we noticed an inverse relationship between FWS and ITD, as reported by previous studies based
on LiDAR data [7]. The most accurate results (i.e., results closest to the observed tree count) for
SWS were found at 3 × 3 irrespective of FWS. Similar results were reported by Silva et al. (2016),
where the 3 × 3 filter eliminated spurious local maxima caused due to irregularity of tree crowns
and tree branches. In brief, a consistent FWS parameter can be seen as being more advantageous
while performing ITD across a large area. Hence, we chose the best combination, which was 3 × 3
FWS and 3 × 3 SWS, for performing accuracy assessment. Even so, it should be borne in mind that
the combinations of filter sizes and CHM filter conditions can be affected by forest types and tree
size (which is correlated with Tree age) as well [75]. Depending on the intended usage, the users
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should always make a trade-off between commission and omission errors, and the overall efficiency of
a particular window size can be viewed as a function of the object-resolution relationship which can
serve as a first step towards the development of site specific tree identification models. [65]. However,
more research pertaining to algorithmic development is needed to develop automated site specific
adaptable window size estimations.

Even though we obtained the most accurate results for 3 × 3 FWS, we observed high commission
error in all the cases and on average the algorithm missed around eight trees·ha−1. As the tree detection
is based on FWS, having a small FWS results in selection of non-existent trees or multiple trees for
an individual tree crown [65]. This further implies that detection of larger trees would be easier as
their crown consists of a higher number of pixels compared to the smaller trees. Hence, it is beneficial
to have a rough estimate of the threshold tree size beforehand. This inverse relationship between
canopy closure and suitable window sizes that we observed in this study was similar to previously
reported studies [7,76]. Considering that, the higher success rate of 3 × 3 can be attributed to denser
canopy over the study sites. This would also depend on the diameter and height of the tree species
under consideration. In addition, proximity to neighboring trees, trees located under other trees,
trees found in shadows or trees having low spectral contrast with respect to understory vegetation are
also considered detrimental to tree detection [65]. The overall transferability of our framework can be
expected to rely on multiple factors with openness of canopy as one of the most dominant. Hence,
the algorithm needs to be continuously improved to adapt to different case scenarios.

In the past decade, several studies have highlighted the potential for using UAV for vegetation
mapping on small and large scales [77–80]. However, research in this area is still in its infancy,
especially for ITD [70]. Lim et al. [23] identified 11 of 13 trees, with one false positive, utilizing
stacked RGB ortho-image and CHM segmentation. Trees not identified possessed small canopies
which were not clearly defined from neighboring trees. Sperlich et al. [81] developed point clouds from
UAV-based aerial photographs and achieved ITD accuracy of 87.68% within a search radius of 1 m
using a pouring algorithm [25]. Kattenborn et al. [25] upgraded Sperlich’s algorithm by geometrically
classifying UAV-derived point clouds and detected individual palm trees with an overall mapping
accuracy of 86.1% for a 9.4 ha study area and 98.2% for dense palm stands. Irrespective of tree detection
techniques, heterogeneous stands with mixed and unmanaged trees offer more difficulty in selecting
globally optimal segmentation parameters compared to homogenous stands [82]. Changing the crown
overlapping threshold could be a viable strategy for determining emergent trees, as crown overlap is
a major source for omission errors [83].

Similarly, airborne and terrestrial airborne LiDAR have also been explored for ITD, and have
found to provide accurate results depending on forest conditions [84–89]. For instance, Silva et al.
(2016), using airborne LiDAR data, found a similar accuracy (F-score > 80) for ITD in longleaf pine
forest in Georgia, USA. Maas et al. [86] conducted numerous pilot studies using terrestrial LiDAR
and reported that more than 97% of the trees could be detected correctly. Ritter et al. [87] proposed
a two-stage density clustering approach for the automatic mapping of tree positions based on terrestrial
lidar point cloud data sampled under limited sighting conditions. In their study, the authors detected
tree positions in a mixed and vertically structured stand with an overall accuracy of 91.6%, and with
omission- and commission error of only 5.7% and 2.7% respectively. Eysn et al. [89] used eight
different ITD detection algorithms on airborne LiDAR data of different forest types of Alpine Space
and automatically matched the ITD results to forest inventory data. While LiDAR is considered to
be a well-suited technology for ITD, the acquisition cost of LiDAR data is still high, which makes the
technology impractical for ITD in small areas and over time.

UAV imaging and terrestrial laser scanning systems are appropriate to survey small areas,
while airborne laser scanning and hyperspectral systems are mostly used to survey large areas.
The area sampled per time unit for these sensors depend of many factors, such as overlap percentage,
flight speed, altitude, weather conditions and aim of the study [22,90,91]. UAV-imagery as well as
photographs captured by manned aircrafts works differently from LiDAR technologies—whether it be
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the process of data extraction or be generation of metrics for assessing forest structure [92–96]. Even so,
herein we are showing that the algorithm designed for LiDAR data processing can be also used for
the purpose of processing UAV-SfM data ITD. Imaging technology has been found to be more reliable
in capturing spectral information of the upper canopy while LiDAR—due to its ability to penetrate
into the canopy—is more efficient for vertical stratification of vegetation layers and terrain associated
with dense canopies [58,96]. Hence, in the case of close canopy forests, for accurate estimation of
tree location and canopy attributes from UAV-SfM, external sources might need to be relied on for
supplying DTMs [58,80,95].

While assessing the tree detection capability of our framework, tree location error was not
estimated due to data limitations. Nevertheless, we anticipate a possible increase of errors with
increasing density of stands, as reported in previous studies [31]. GPS errors associated with tree
location estimation is another common source of uncertainty that needs further investigation [95].
Another weakness of this methodology can be attributed to the fact that irregular shapes of tree crowns
can be a big problem in high density areas. As shadowing within and between crowns influences
canopy reflectance, texture complexity, tree species variety, vertical stand structure and image quality
can affect the delineation capacity of the algorithm [82,96–99]. The flight time of small UAVs is also
shorter compared to LiDAR, which results in a relatively small sensed area. Even though flying
at a higher altitude can be viewed as a remedy, it is detrimental towards the overall accuracy with
respect to the resolution (ground sample distance) and it is restricted due to shorter signal range;
it might create legal conflicts and privacy issues as well [40,100]. If high density point clouds are
to be obtained, the process can become very time consuming. Also, environmental factors such as
wind speed, lower visibility due to fog, shadows and temperature variations that can interfere in the
efficacy of UAV operations should also be taken into consideration and addressed when working with
forest remote sensing, especially for ITD [22,101,102]. Thus, the success rate of the method can be
influenced by environmental conditions, existence of different forest types, particularly mixed species,
and multilayered forests.

Modern forestry mostly requires forest information in digital format for maintaining a continuous
workflow, and UAV based remote sensing offers a promising future in that regard [103,104]. In addition
to that, ease of data collection, flexible control of spatial and temporal resolution, low operational
costs, and safer work environment underpins the possibility of having a “UAV as a service”
data collection market in the foreseeable future. The underlying technological advancement in
multi-scale visual mapping, 3D digital modeling and time series analysis using SfM algorithms
also empowers research in sectors outside forestry such as construction management [105], water
contamination [106], archaeology [107], energy systems [108], computational biology [109] and
habitat conservation [110]. Nevertheless, there are a lot of challenges associated with regulated,
safe, and comprehensive applications of UAV remote sensing [9]. As multidisciplinary collaborations
to promote the standardization of UAV remote sensing development are very limited, upcoming
research expeditions should compare themselves with previous studies for systematically determining
the optimal UAV remote sensing strategy for given forest lands [9,111]. Formulating methods to
increase point density and developing strategies that optimize tree detection algorithms based on the
characteristics of the point cloud can surely open new windows in UAV data analytics. Based on the
findings presented in this study, future research directions should include species identification and
evaluating the accuracy of estimating other tree-level characteristics such as DBH and crown area,
which are important factors required for estimating biomass and stem volume.

5. Conclusions

In this study, we investigated the use of consumer grade cameras attached to UAVs and
structure-from-motion algorithm for automatic ITD using a local-maxima based algorithm on
UAV-derived Canopy Height Models (CHMs). Overall, this research study suggests that LM algorithm
combined with proper fixed tree window sizes (FWS) and fixed smoothing window sizes (SWS) is
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capable of deriving tree counts with acceptable accuracy (F > 0.80) using UAV-derived CHM in open
canopy forests. The proposed framework exposes the future potential of UAV-based photogrammetric
point clouds for ITD and forest monitoring, and emphasizes that future research should focus on
the estimation of individual tree attributes such as tree height, crown size and diameter, and thereby
develop predictive models for estimating aboveground biomass and stem volume from UAV-imagery.
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Abstract: The latest technological advances in space-borne imagery have significantly enhanced
the acquisition of high-quality data. With the availability of very high-resolution satellites, such
as Pléiades, it is now possible to estimate tree parameters at the individual level with high fidelity.
Despite innovative advantages on high-precision satellites, data acquisition is not yet available to
the public at a reasonable cost. Unmanned aerial vehicles (UAVs) have the practical advantage of
data acquisition at a higher spatial resolution than that of satellites. This study is divided into two
main parts: (1) we describe the estimation of basic tree attributes, such as tree height, crown diameter,
diameter at breast height (DBH), and stem volume derived from UAV data based on structure from
motion (SfM) algorithms; and (2) we consider the extrapolation of the UAV data to a larger area, using
correlation between satellite and UAV observations as an economically viable approach. Results have
shown that UAVs can be used to predict tree characteristics with high accuracy (i.e., crown projection,
stem volume, cross-sectional area (CSA), and height). We observed a significant relation between
extracted data from UAV and ground data with R2 = 0.71 for stem volume, R2 = 0.87 for height, and
R2 = 0.60 for CSA. In addition, our results showed a high linear relation between spectral data from
the UAV and the satellite (R2 = 0.94). Overall, the accuracy of the results between UAV and Pléiades
was reasonable and showed that the used methods are feasible for extrapolation of extracted data
from UAV to larger areas.

Keywords: downscaling; Pléiades imagery; unmanned aerial vehicle; stem volume estimation;
remote sensing

1. Introduction

Technological advances in unmanned aerial vehicles (UAVs) have made it feasible to obtain
high-resolution imagery and three-dimensional (3D) data for assessing tree attributes and forest
monitoring. Methods of data acquisition with remotely-sensed aerial or satellite data at high
spatial resolution have partially replaced conventional methods of field measurement for forest
inventory purposes [1–4]. Repeated observation from modern satellites, as well as improvements in
UAV technology, have contributed significantly to our understanding of the dynamics of complex
ecosystems, particularly forests. Accurate quantification of tree basic parameters, such as height,
crown diameter, and diameter at breast height (DBH), is essential for decision-making and planning.
Modern techniques of remote sensing can provide accurate estimations of tree height and crown area
characteristics at the individual level using a series of algorithms [5]. The individual tree identification
(IDS) algorithm allows for the estimation of crown diameter [6], and the smoothing of the canopy height
model (CHM) using local maxima techniques [7] can provide estimates of individual tree heights.
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Volume and above ground biomass (AGB) of small spatial extent areas can be derived with the
help of forest inventory data. However, field measurements are typically unbiased, time-consuming,
and expensive. For spatially larger areas, modelling of volume and biomass requires the use of
remote sensing information for practical purposes. Additionally, remote sensing techniques are able to
improve the value of inventoried data with detailed coverage at affordable costs [8,9]. The strength
of remote sensing approaches based on very high resolution (VHR) images using aerial imagery or
downscaling methods (i.e., calibration of satellite images based on UAVs) is that they allow for the
construction of high-quality 3D digital surface models (DSMs) that can be used to estimate several
forest tree attributes, such as height, DBH, and crown diameter [3].

Landsat satellites have been used to predict volume and AGB, mainly because of their long-term
data record and the favorable compromise between aerial coverage, spectral sensitivity, and spatial
resolution [10]. Newer satellites (e.g., GeoEye-1, IKONOS, WorldView-2, and Pléiades) have
significantly increased the potential for data acquisition at higher spatial resolutions (i.e., 2 m
multispectral). However, satellites are still unable to provide the desired spatial resolution needed for
forestry applications; UAVs, on the other hand, can provide higher resolution data and are frequently
used to capture aerial images for planning purposes [11].

Only a limited number of studies have used optical VHR sensors for image matching and
estimating forest parameters. In previous studies, the IKONOS, Cartosat-1, and Worldview-2 satellites
were used for estimation of structural (e.g., height, DBH, stem volume) and textural (i.e., composition,
AGB) metrics with acceptable accuracy [12–15].

However, a review of past studies found that few researchers have used the Pléiades satellite
for forestry purposes [16] and no studies used it for AGB estimation. While previous studies using
Pléiades emphasized combining spectral derivatives and textural metrics to image matched height
metrics, these studies utilized combinations of either height and textural metrics or height metrics and
spectral derivatives to improve the remote sensing estimation of forest parameters.

The main objectives of this study were to: (i) evaluate UAV performance to estimate key individual
tree parameters, including height, crown diameter, cross-sectional area (CSA), and stem volume; and
(ii) to extrapolate the extracted UAV data to larger areas, based on spectral correlation between UAV
and satellite, as a practical method for detailed information collection across a large area that would
not be economically feasible with ground-based assessments.

2. Materials and Methods

2.1. Study Area

The Doksy territory lies on the shores of Lake Mácha in Northern Bohemia in the Czech Republic
(Figure 1). The lake is largely surrounded by dense forests covering an area of 300 km2. Geologically,
the area is characterized by sandstone pseudokarst in the late stages of development, and the soils
are either sandy or peaty, with shallow, peaty basins over rocky sandstone hummocks and sporadic
volcanic hills. We selected three evenly-aged (managed stands) 40 × 40 m experimental plots and
sampled all trees in each plot to estimate the tree heights, DBH, crown diameters, and stem volume.
All plots were located northeast of the city of Doksy (−718000, −991250 NW to −717000, −991950 SE
in the local coordinate system S-JTSK/Krovak East North, Figure 1). The research was carried out in a
140-year-old Pinus sylvestris L. (Scots pine) monoculture natural stand established on sandy soils (68%).
The vegetative period tends to be rather warm and dry. The mean annual air temperature is 7.3 ◦C and
the average annual maximum temperature is 31.5 ◦C. The mean annual precipitation is 635 mm, with
only 354 mm during the growing season.
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Figure 1. Location of the study area in the northern part of the Czech Republic in the local coordinate
system S-JTSK/Krovak East North. Source: Google Earth (elaborated work in ArcGis for higher
map detail).

2.2. Field Survey

For the acquisition of field measurements, we used field-map technology. Field-map is a software
and hardware product which combines flexible real-time geographic information system (GIS) software
field-map with electronic equipment of high accuracy for mapping and dendrometric measurement.
For this study, the dendrometric device which we used was the TruPulse 360/B laser range finder by
lnc. Centennial, Colorado, USA. For the purpose of this study, we used the TruPulse 360/B to measure
(i) the positions of individual trees by distance based on the field triangulation approach, (ii) tree
heights based on the functionality of the digital relascope, and (iii) the mean of the horizontal widths
of the tree crown radius in four orientations (east, west, north, and south). The coordinate system was
set to S-JTSK/Krovak East North (a local coordinate system that is mainly used in the vicinity of the
Czech Republic). The whole data collection process is rather ergonomic since mapped data can be seen
simultaneously in the monitor of the computer in the form of layers (either point, lines, or polygons).
Each layer can have a number of attributes (i.e., tree positions, heights, etc.) which are stored in a fully
relational database.

In addition, the DBH of trees (1.3 m above ground) was measured by a Häglof digital caliper
(Häglof Sweden AB, Långsele, Sweden) in two perpendicular directions. Diameters were then
transferred via bluetooth to the field-map computer and stored in the relative database. We considered
the mean of measured diameters at breast height for computing the CSA. Finally, all the data was
extracted by connecting the field-mapper with a universal serial bus (USB) to the personal computer
(PC) for further processing. All field measurements were taken in November, 2015. In total, we
sampled 223 live trees from all three plots.

2.3. Aerial and Satellite Imagery

The UAV data were acquired in March 2016. The platform model used was an octocopter
SteadiDrone EI8HT, ready to fly (RTF) embedded with an RGB (red, green, blue) high-resolution
camera. The camera was a Sony Alpha 6000 with an adjusted focal length of 25 mm. The octocopter
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needed approximately 7 min to complete a flight for each plot based on the predefined parameters
(e.g., the number of waypoints) and the flight mode was set to semi-automatic. The flight path lines
covered the entire study area and produced a set of images of the area. The octocopter was guided
by a DJI (Dà-Jiāng Innovations Science and Technology Company, Shen Zhen, China) ground station,
which is a global positioning system (GPS) flight planning and waypoint-based autopilot software.
We performed three flights in total, one flight per plot, at a height of approximately 70 m above the
ground with 80% frontal overlap and 70% side overlap.

In order to improve the accuracy of the 3D model, we also set up four ground control points
(GCPs) randomly distributed within each plot; these points were measured using the Leica real-time
kinematic (RTK) system, model RX1250XC with centimeter accuracy. Due to the low image quality, four
of the 596 original images were excluded from the alignment process. During the alignment process,
we set the accuracy to high for optimization of the final 3D model. We used Agisoft Photoscan©
software (V 1.2.6, St. Petersburg, Russia) to construct the digital terrain model (DTM) and DSM from
the 3D model with a cell size of 0.01 × 0.01 m. The reconstructed mesh of the 3D model was based
on automatic classification on certain point classes through the triangulated irregular network (TIN)
method. Due to the relatively open canopy in large parts of the study area, small bushes were often
abundant in the understory, and, therefore, we classified them as ground points. For setting the
parameters for the automatic classification, due to the presence of small bushes near the trees, we
decreased the maximum angle from 15 (default value) to 11, the maximum distance from 4 to 1.5 m,
while the cell size remained the same. All of the processing was conducted by one computer operator
using an Intel® Core™ i7-6700K with a base clock of 4 GHz and 32 GB random access memory (RAM)
running with the Windows 10 Professional Edition 64-bit operating system.

We used the Pléiades 1A satellite (launched 16 December 2012) to acquire the space-borne image.
The image was taken 27 March 2016, and it had 20 bits/pixel dynamic range of acquisition. For
this study, we used one frame with a total area of 25 km2 (5 × 5 km). The image consisted of four
multispectral bands: RGB, infrared (IR), and one panchromatic (PAN), as can be seen in Table 1. We
used six GCPs for georeferencing the satellite image. For point acquisition, we used GPS RTK Leica
model RX1250XC with a maximum error of two centimeters. The RTK correction was carried out by
using a base/rover set, which sends and receives fast-rate over-the-air RTK data corrections, using the
PDLGFU15 radio module.

Table 1. Pleiades-1A satellite sensor characteristics [17].

Imagery Products
Panchromatic: 50-cm resolution, black and white

2-m multispectral (RGB—red, green, blue)
Bundle: 50-cm black and white and 2-m multispectral

Spectral Bands

Panchromatic: 480–830 nm
Blue: 430–550 nm

Green: 490–610 nm
Red: 600–720 nm

Near Infrared: 750–950 nm

Image Location Accuracy
With ground control points: 1 m

Without ground control points: 3 m (CE90)

Also, dark object correction was used to derive atmospheric optical information for radiometric
normalization using the minimum digital number (DN) value of satellite images = water.

Normalized values of each band (RGB) from the UAV and satellite were then used to compare the
spectral data (DN) between the UAV and Pléiades bands (separately) at the individual tree level using
Equation (1):

Zi =
xi − xmin

xmax − xmin
(1)
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where Zi describes the normalized data between 0 and 1, xi describes the spectral data (for both
the UAV and satellite), and xmax and xmin are the maximum and minimum value for each band,
respectively. In addition, using the nearest neighbor method, we resampled all three multi-spectral
bands from the satellite from 2 m to 1 cm to assign more weight to pixels that cover more crown area
(Figure 2). For extracting the spectral data (UAV and satellite), we used zonal statistics in ArcGIS
desktop V.10.4.1 (ESRI Inc., Redlands, CA, USA), with the crown area for each individual tree as
the zonal layer. We considered the same weight for averaging the DN values of pixels within the
zonal layer.

To evaluate the greenness of the detected trees from the UAV and eliminate the dry trees and gap
areas, the normalized difference vegetation index (NDVI) was used as a detector index (Equation (2)).
This index is usually used to determine the visible spectral response by defining the ratio of greenness
per individual tree applied to satellite data [18]:

NDVI =
NIR − R
NIR + R

(2)

where NIR stands for near-infrared and R refers to the red band.

Figure 2. Example of resampled pixels, from 2 m to 1 cm.

2.4. Estimation of Height

To extract the height from the UAV, we computed the CHM, which was derived from the
subtraction of the DSM from the DTM. The local maxima algorithm was then used to estimate
the height; this algorithm enhances the maximum value within a specified kernel size. As a first step,
we used the focal statistics tool in ArcGIS to identify the highest pixel value using the CHM as the
input data layer. We performed a low-pass filter to reduce the noise effect and regulate the values of
the smoothing window [19]. Among the several processing types we tested in different variances of
radius using circular-shaped areas, the best results were at a kernel size with a radius of 1 m based on
the average crown diameter derived from the ground measurements (Figure 3). For matching the pixel
values, we used the conditional if/else statement on each of the input cells of CHM and focal statistics
results, by entering the following command “Con (“CHM” = “focal statistics result”, 1)” using the
ArcGIS V. 10.4.1 (ESRI, Redlands, CA, United States) raster calculator.

This conditional tool performs an if/else statement on each input cell and it returns a binary layer
with a value of zero assigned as no data and a value of one for data. Finally, the return value was the
value when the CHM value equaled the focal statistics output.
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Figure 3. The applied method of local maxima seeds for the derivation of tree heights (red crosses
show the detected treetops by the local maxima approach).

2.5. Estimation of Crown Projection

For the extraction of the crown area, we used the method of inverse watershed segmentation
(IWS), as proposed by Panagiotidis et al. [20]. To implement the IWS, we multiplied the CHM model
by −1 so that treetops would appear as ponds and crowns as watersheds. Then, we created a flow
direction layer for creating hydrological drainage basins [21]. We applied the ArcGIS reclassify tool on
the CHM to create a Boolean layer comprised of two categories; we used a threshold value of 15 m as
the classification delimiter. Essentially, that means that pixels with values above 15 m were assigned
with a value of 1, and those that were lower than 15 m were assigned a value of 0. Afterwards, the CHM
was converted to polygons; the center of each polygon was identified, the polygons were converted to
lines, and the lines to points. This allowed us to assign points to the periphery of each polygon. Finally,
we used the ArcGIS “zonal geometry as table” tool to define individual tree crown diameters.

2.6. Estimation of Cross-Sectional Area and Stem Volume

To estimate the CSA and volume of individual trees, the coefficient of determination (R2) between
the crown diameter and DBH was calculated. The formula of this coefficient was then used to measure
the CSA, by replacing the measured crown size (ground) with the crown size extracted from the UAV.
Once we had defined the height and CSA, we were able to estimate the stem volume from the UAV.
Additionally, for modelling the stem volume, we considered the shape of tree stems as cylinders.

2.7. Extrapolation of Tree Attributes

We were able to calculate calibrated equations that can be used to determine tree attributes such
as CSA and stem volume directly using the spectral information from Pléiades for each tree based
on the following equations: linear relation between the UAV spectral data and tree parameters such
as CSA and volume (Equation (3)) and linear relation between the UAV and Pléiades spectral data
(Equation (4)). In details:

CSA = AX1 + B (3)

X1 = CX2 + D (4)

where CSA is cross-section area, X1 is UAV spectral data, and X2 is satellite spectral data.
By replacing X1 in Equation (3) with the Equation number (4), we will be able to measure the CSA

directly by satellite spectral data using the below equation:

CSA = A(CX2 + D) + B (5)
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2.8. Statistical Evaluation and Validation of Data

All statistical analyses were conducted in IBM SPSS V.24 (64-bit 2016) and Excel (Microsoft® Office).
The linear regression was used to study correlation between the ground data and tree parameters
predicted by the UAV.

Pearson correlation coefficient was computed to analyze the relationships between the spectral
values of the UAV RGB bands and tree parameters derived from ground inventory and UAV in two
different probability values (p < 0.05 and p < 0.01). In this study, due to the lack of an IR band in the
UAV approach, we computed the vegetation index (VI) [22], green-red vegetation index (GRVI) [22],
and visible atmospherically-resistant index, green (VARI g) [23] using the following equations:

VI =
Green
Red

(6)

GRVI =
(Green − Red)
(Green + Red)

(7)

VARI g =
(Green − red)

Green + Red − Blue
(8)

3. Results

For the sake of simplicity, we divided the results into three parts. In the first part, we presented
an overview of tree characteristics in our study area. In the second part, we mainly focused on the
potential of the UAV platform deployed with an RGB camera to act as an accurate, alternative field
measurement technique. In the third part, we tried to extrapolate the extracted data from the UAV to a
larger forested area based on spectral correlation between Pléiades and the UAV.

3.1. General Evaluation of the Study Area

The evaluation of tree attributes showed similarities between the sample plots. However, there
was a difference between the variability of sample plots, whereas plot 1 had a lower amount of
variability compared with the other two plots (Table 2).

Table 2. Descriptive statistics of the three plots based on ground survey.

Sample Index
Crown

Projection (m2)
DBH (m) CSA (m2)

Height
(m)

Volume
(m3)

Plot 1
N = 74

Mean 15.24 0.28 0.06 21.23 1.30
Variability 30.61 0.15 0.06 7.00 1.30

Std. 5.20 0.03 0.01 1.33 0.30

Plot 2
N = 72

Mean 14.71 0.28 0.06 23.03 1.43
Variability 41.54 0.17 0.08 13.80 2.10

Std. 7.75 0.04 0.02 2.24 0.46

Plot 3
N = 77

Mean 14.94 0.28 0.06 24.49 1.56
Variability 28.67 0.17 0.08 8.20 2.13

Std. 6.45 0.03 0.02 2.00 0.45

Total
N = 223

Mean 14.97 0.28 0.06 22.96 1.43
Variability 41.54 0.18 0.08 13.80 2.21

Std. 6.51 0.03 0.01 2.32 0.42

Std. = standard deviation; DBH = diameter at breast height; CSA = cross-sectional area.

In addition, the NDVI showed that the mean greenness of trees ranged from 0.3 to 0.55 (Figure 4);
this range is associated with shrubs-grasslands and temperate forest land-cover classes [24].
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Figure 4. (a) The NDVI (normalized difference vegetation index) calculated for the study area and
(b) the histogram of NDVI derived from Pléiades 1A satellite imagery.

3.2. UAV Performance

Linear regression (Figure 5) exhibited a strong relationship in the significant level of α = 0.05
(R2 = 0.78) between the cross-section area and crown projection derived from ground data with a
root mean square error percent (RMSE%) = 11.35 (Table 3; ID = 1). For the crown projections, a
strong relationship (R2 = 0.78; Figure 6a) between the ground and UAV data was observed with an
RMSE% = 20.96 (Table 3; ID = 2). Based on these results, we were able to estimate cross-sectional
areas from the UAV using adjusted R and RMSE% with an R2 = 0.60 (Figure 6b) and RMSE% = 15.24
(Table 3; ID = 3). Additionally, the results of the height estimation showed strong correlation between
the ground and extracted data from the UAV with an R2 = 0.87 (Figure 6c) and RMSE% = 3.73 (Table 3;
ID = 4). Finally, we calculated the stem volume based on data from the UAV and the ground. The
comparison of the stem volume between the ground and UAV data showed significant correlation
with R2 = 0.71 (Figure 6d) and RMSE% = 15.88 (Table 3; ID = 5).

Figure 5. The correlation between crown projection and cross-sectional areas.
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Table 3. Statistical summary table, where ID represents the simplicity of identification of each tested
regression; N: number of observations; RMSE: root mean square error; and df: degrees of freedom. ID
represents the simplicity of identification of each tested regression.

ID N RMSE RMSE% Bias Bias % df p-Value

1 223 0.0069 11.35 0.0018 2.96 222 0.00
2 223 3.14 20.96 - - 222 0.00
3 223 0.01 15.24 - - 222 0.00
4 223 0.86 3.73 - - 222 0.00
5 223 0.23 15.88 - - 222 0.00

ID 1 indicates the relation between the ground CSA versus ground crown projection; ID 2 indicates the relation
between the crown projection derived from UAV and ground data; ID 3 indicates the relation between the CSA
derived from the UAV and ground data; ID 4 indicates the relation between the estimated height from the UAV and
ground data; and ID 5 indicates the relation between the stem volume derived from the UAV and ground data.

Figure 6. The correlation of (a) crown projection between the ground and UAV (unmanned aerial
vehicle) data in m2; (b) cross-sectional areas (CSA) between the ground and UAV data in m2; (c) height
between the ground and UAV data in m; and (d) stem volume between the ground and UAV data
in m3.

Moreover, the results of the correlation coefficient indicated that the most important descriptive
statistic index for all models was the sum of the spectral data as can be seen in Table 4. Finally, our
results showed that vegetation indicators that were computed using RGB bands had a significant
correlation at the level of α = 0.01 with the individual tree stem volume, as can be seen in Table 5.

Table 4. Pearson correlation between the UAV spectral descriptive data and tree attributes at the level
of individual trees.

Tree Parameter Min Max Mean Std. Sum Median

CSA (Ground) −0.208 ** 0.133 * 0.224 ** 0.160 * 0.864 ** 0.229 **
Stem volume (Ground) −0.200 ** 0.131 0.239 ** 0.180 ** 0.795 ** 0.255 **

CSA (UAV) −0.140 * 0.0641 0.055 0.012 0.821 ** 0.049
Stem volume (UAV) −0.158 * 0.072 0.107 0.05 0.795 ** 0.115

** Correlation is significant at the 0.01 level (two-tailed). * Correlation is significant at the 0.05 level (two-tailed).
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Table 5. The Pearson correlation coefficient between the different vegetation indicators derived from
UAV and tree attributes at the level of individual trees. VI: vegetation index; GRVI: green-red vegetation
index; and VARI g: vegetation atmospherically resilient index, green.

Vegetation
Index

CSA
(Ground)

Stem Volume
(Ground)

CSA
(UAV)

Stem Volume
(UAV)

VI 0.103 0.208 ** 0.110 0.218 **
GRVI −0.106 −0.210 ** −0.113 −0.221 **

VARI g −0.106 −0.211 ** −0.112 −0.221 **

** Correlation is significant at the 0.01 level (two-tailed).

The selection process for the best independent variable for further analysis was based on the
largest positive or negative correlations with the dependent variables. Based on our results, we chose
the sum of pixel values as an independent variable to calculate the regression between the spectral
data and tree attributes (Figure 7). Our results showed there was high correlation between the UAV
main bands and tree attributes based on R2 (Figure 7).

Figure 7. The relationship between spectral data of the UAV bands (×109) and tree characteristics:
(a) UAV cross-section area in m2; (b) ground cross-section area in m2; (c) UAV stem volume in m3; and
(d) ground stem volume in m3.

3.3. UAV-Pléiades Extrapolation

Overall, our findings indicated that there is a strong relationship between the UAV and Pléiades
spectral data with an R2 = 0.94 (Figure 8). Based on the regression model equations (Figures 7 and 8),
we were able to calculate calibrated formulas that could determine tree attributes, such as CSA and
stem volume (Table 6), directly by using the spectral information from Pléiades for each tree. Formulas
presented in Table 6 were used to extrapolate the extracted data from the UAV to a larger area based
on satellite spectral information.
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Figure 8. The relationship between spectral data between the UAV and Pléiades bands (×109).

Table 6. Basic errors of CSA and volume based on extrapolated data.

Index CSA Volume

RMSE 0.018 0.21
RMSE% 30.56 31.01

Bias −0.015 −0.39

Our results showed that the computed formulas (9 and 10) could be used for the extrapolation
of CSA and volume at the individual tree level with significant accuracy, as can be seen in Table 6.
In addition, Figure 9 indicates that there were no significant differences between the mean of CSA
and volume derived from UAV and ground data. Also, the same figure and Table 6 show that the
extrapolation method has estimated the tree parameters with reasonable accuracy.

CSA = 1 × 10−9 (0.4525x − 19208) + 0.0392 (9)

Volume = 4 × 10−8 (0.4525x − 19208) + 0.7398 (10)

where the x is the spectral information derived from satellite imagery.

Figure 9. Box-and-whisker plots for comparison of the differences between the means of tree
parameters: (a) CSA (m2) (b) Volume (m3) derived from different approaches. The medians of
the measured values are marked by vertical lines inside the boxes. The ends of the boxes are the
interquartile range (upper: Q3 and lower: Q1). The whiskers show the highest and lowest observations.

4. Discussion

Many studies have provided good examples of 3D model reconstructions of VHR DSMs from
UAV-based imagery to systematically observe forest attributes, such as tree crown, tree height, and
DBH [25,26]. Structural forest attributes are commonly extracted from the CHM using regression
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models to predict tree characteristics for forest inventory purposes [27]. Detailed CHMs from remote
sensing data have recently gained more attention because they can be used to efficiently predict
key forest parameters, such as tree height, crown projection, and stem volume. In this study, it was
demonstrated that a consumer-grade camera deployed on a UAV platform generated a 3D scene
of the entire study area, which was used to quantify single-tree parameters based on automatic
and semi-automatic methods that can be used to support detailed construction or update existing
forest inventories. Of course, this is just one of the basic reasons why UAVs are gradually replacing
conventional field measurements. However, some applications require more accurate results in terms
of absolute means, and this low-cost aerial approach would, therefore, require the collection of ground
truth data to ensure this.

Based on the linear regression and RMSE results, we concluded that there is generally a high
correlation between estimated (UAV) and observed data (ground) (Table 3; Figures 5 and 6). In this
particular study, the methodological approach and the algorithms that were used to determine tree
heights and crown diameters were influenced by the relative homogeneity of the study area; all trees
were of similar age and had similar morphological characteristics (Table 2). Aslo, as it can be seen in
Figure 9, the amount of CSA and volume for 50% of the trees distributed around the median, but the
remaining 50% were distributed in a wider range.

In general, estimation of forest parameters in homogeneous forests is preferable for the application
of algorithms, such as local maxima and IWS, because homogeneous forests allow for higher precision
using a single kernel size method for smoothing the CHM [20,28,29]. It is evident that the UAV can be
used to efficiently estimate heights and crown diameters (Figure 6a–c, and Table 3).

Since there was a high correlation between the crown and DBH from the ground measurements
(Figure 5), and due to the fact that UAVs can be used to estimate both heights and crown diameters,
there is a possibility for indirect measurement of stem diameters (Figure 6b and Table 3; ID 3) and
volume (Figure 6d and Table 3; ID 5) [30].

Additionally, we evaluated the relationship between the tree parameters (CSA and stem volume
of individual trees) and the spectral information that was extracted from the UAV imagery. Our results
showed that there is a significant correlation between the CSA and stem volume and spectral/textural
values derived from the UAV. These results are similar to the results of several studies that have
emphasized the possibility of the estimation of tree/stand parameters, such as basal area (BA) and
volume, using spectral (main bands) and textural (vegetation indicators) values of aerial/satellite
images [31–33]. For the vegetation index (VI), a low value for this attribute implies lower density and
stem volume, while higher values indicate dense canopy and higher stem volumes. This explains the
positive correlation that we found between the VI, CSA, and stem volume in our study. This result is
in accordance with the results of Wallner et al. [31].

The inverse relation between the stem volume and VARI g and GRVI indicators (Table 5) can be
explained as follows: due to the fact that vegetation absorbs more red light and reflects more green
light, a high value in the red band indicates less vegetation occurrence, which can be explained by the
negative correlation between (i) VARI g and GRVI, and (ii) CSA and stem volume.

Finally, our results showed that spectral reflection of individual trees from both Pléiades and the
UAV had a high correlation of more than 90% (Figure 8). Based on this finding, high-resolution satellite
imagery can be used to extrapolate areas that cannot be reached with a UAV. However, the described
methodology can be applied only in the case where the areas present similar structural characteristics.
Although the extrapolation process in our study caused underestimation of tree parameters compared
to that of ground data and UAV (Figure 9), the suggested methodology can be used for practical
forestry and can open up new scientific areas of extrapolation methods to inspire other researchers
in the forest community. In future work, we plan to use auxiliary data such as environmental data
(edaphic, climatic, and topographic) in order to be able to enhance the methodology for homogeneous
areas and to calibrate and assess the methodology in the case of diverse forested areas. For areas with
higher variability, one suggestion is to divide the whole area into more homogenous areas, through the
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construction of homogenous groups or classes. We also assume that the use of hyperspectral sensors
can lead to a better result with higher accuracy.

5. Conclusions

In this study, we proposed a method to test the performance of UAV image-based point clouds to
accurately estimate tree attributes. For this purpose, detection algorithms based on high-quality CHM
were used. To potentially improve the results of the 3D image reconstruction model and ensure the
integrity of the results based on CHM, we used four GCPs, measured with RTK GPS. Many studies
have previously treated estimates of tree parameters, such as tree crown delineation and treetop
detection, as two separate procedures [28]. We extrapolated the estimated data from the UAV to a
larger area based on a significant correlation (R-squared values and Pearson correlation percentages
were greater than 0.90) between the spectral data from UAV and Pléiades. This study demonstrated
that it is possible to use calibrated (linear regression) formulas (Table 6) to extrapolate data into larger
forested areas (downscaling). Precision forestry is focusing on the use of high-resolution data to
support site-specific tactical and operational decision-making (e.g., area productivity) over large forest
areas. Therefore, the application of this study, as well as other similar studies, should be explored in
the content of the European Common Policy to assess the full potential of these methods for covering
larger forested areas.

Regarding the performance of remote sensing versus field measurements, based on our empirical
data, we can conclude that the positive comparisons between reference ground measurements and
remote sensing estimation of tree attributes confirmed the potential of the workflow process that can
be applied as a quick and effective alternative technique to characterize forest tree parameters.
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Abstract: Estimating clumping indices is important for determining the leaf area index (LAI) of forest
canopies. The spatial distribution of the clumping index is vital for LAI estimation. However, the
neglect of woody tissue can result in biased clumping index estimates when indirectly deriving them
from the gap probability and LAI observations. It is difficult to effectively and automatically extract
woody tissue from digital hemispherical photos. In this study, a method for the automatic detection of
trunks from Terrestrial Laser Scanning (TLS) data was used. Between-crown and within-crown gaps
from TLS data were separated to calculate the clumping index. Subsequently, we analyzed the gap
probability, clumping index, and LAI estimates based on TLS and HemiView data in consideration
of woody tissue (trunks). Although the clumping index estimated from TLS had better agreement
(R2 = 0.761) than that from HemiView, the change of angular distribution of the clumping index
affected by the trunks from TLS data was more obvious than with the HemiView data. Finally,
the exclusion of the trunks led to a reduction in the average LAI by ~19.6% and 8.9%, respectively, for
the two methods. These results also showed that the detection of woody tissue was more helpful for
the estimation of clumping index distribution. Moreover, the angular distribution of the clumping
index is more important for the LAI estimate than the average clumping index value. We concluded
that woody tissue should be detected for the clumping index estimate from TLS data, and 3D
information could be used for estimating the angular distribution of the clumping index, which is
essential for highly accurate LAI field measurements.

Keywords: clumping index; leaf area index; trunk; terrestrial LiDAR; HemiView

1. Introduction

Leaf area index (LAI) is an important factor in describing ecosystem structure and function. It not
only relates to photosynthetic and respiration activities, but also plays a dominant role in the reflectance
characteristics of vegetated land surfaces [1]. In many studies, passive optical remote sensing images
from satellites and airborne platforms have been used to retrieve LAI [2–4]. Light Detection and
Ranging (LiDAR) is an active optical sensing technique and offers an alternative to estimate forest
structure in 3D. It has therefore been widely used to estimate forest structure parameters [5–9],
especially the LAI parameters [10–15].

However, the calibration of satellite-based and airborne-based LAI maps requires adequate
ground truth points. The fast and accurate extraction of canopy structure parameters in the field
is very important for ground-based LAI estimates, which are important to evaluate the accuracy of
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airborne LAI estimates. However, in some studies, the LAI has often been replaced with the retrieved
plant area index (PAI), which includes the leaf area index, wood area index, and other component
area indices. This does not benefit the validation of retrieval results from satellite images. Currently,
ground-based LAI measurements can be performed through two major techniques: direct and indirect
measurements [16,17]. Direct (Destructive) LAI determination is not compatible with long-term
monitoring of the spatial and temporal dynamics of leaf area development [18]. Optical indirect
techniques are the methods most commonly used in validation studies due to the speed and ease
of LAI measurements over large areas. Optical techniques are based on the measurements of light
transmittance through canopies [17,19] and have been implemented using multiple commercial optical
instruments including the LAI-2000 plant canopy analyzer (LI-COR, Lincoln, NE, USA), AccuPAR
(Decagon Devices, Inc., Pullman, WA, USA), Tracing radiation and Architecture of Canopies system
(TRAC, 3rd Wave, Nepean, Ontario, Canada), and digital hemispherical photographs [17]. The accuracy
of these indirect LAI measurements is often limited by leaf clumping, woody-to-total area ratio,
and illumination conditions.

The clumping effect is an important factor complicating indirect LAI measurements. This index
at different scales quantifies the spatial pattern of leaf distribution and is a transforming factor for
calculating the true LAI from the effective LAI. However, the estimation of the clumping index
can be affected by woody material. There are typically two types of clumping index retrieval
methods: the finite length averaging method (hereafter LX) [20], and the gap size distribution method
(hereafter CC) [21]. Due to the limitations of the two methods [22,23], a new method was developed by
combining the gap size distribution and logarithmic methods for LAI estimation (hereafter CLX) [23].
However, the clumping index results from the three methods notably differ. The CC method does
not show radical changes of the clumping index value outside zenith angles ranging from 30◦ to 60◦,
which is in contrast to the other two methods. Based on hemispherical photography, the clumping
index increases with the view zenith angle in both boreal and temperate forests [23–25]. Although
the angular dependence of clumping is an important characteristic in determining the clumping
index, a limited number of clumping indices have been estimated within a narrow and moderate
range of zenith angles including 30–80◦, 54–63◦ and 57.5◦ [24,26,27]. Given the different ranges of
the view zenith angle, different clumping index values were retrieved from three instruments in an
open savanna ecosystem using the same methods as CLX or CC [28]. This indicates that estimating
the angular distribution of the clumping index from hemispherical photography within a stand level
remains challenging [23,28]. Meanwhile, several clumping index values covering a wide range of
view zenith angles are required to calculate hemispherical average clumping index values, where
the clumping index changes depending on the view zenith angle [28]. To quantify and interpret the
clumping index of the forest canopy, several questions need to be addressed including the range of
the view zenith angle and how the clumping index changes with the view zenith angle. Additionally,
during LAI retrieval, gap probability and clumping index estimates are affected by the quantity of
woody tissue. For deciduous forests, the wood area index is generally estimated during leafless periods
and subtracted from the total PAI [29]. However, this method is not suitable for coniferous forests.
Although the contribution of woody tissue to gap probability and LAI estimation is obvious, it remains
undetermined in the case of indirect measurements in coniferous forests [30]. This problem is even
bigger in Mediterranean forests or other semi-arid forests where trees and shrubs usually have small
leaves and the importance of trunks should be proportionally more important. A few studies have
aimed to quantify the effect of woody tissue on the gap probability and clumping index estimation by
developing an image analysis approach [31,32], which can still be affected by imaging conditions and
image processing techniques.

Terrestrial Laser Scanning (TLS) has been used as an active optical sensing tool to estimate forest
structure parameters from field measurements [9,33]. 3D space information from TLS is useful for
the estimation of gap distribution and tree structure. Recent studies have proven that TLS offers
high performance estimates of gap probability and LAI [22,34,35]; however, very few studies have
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addressed the impact of the clumping index in these LAI estimates. Moorthy et al. (2011) calculated the
clumping index using TLS data based on the CC method and an obvious improvement in LAI estimates
was achieved in comparison to field estimates from LAI-2000 [36]. The clumping index was estimated
by using the gap size information derived from images of gap probabilities yielded by the Echidna
Validation Instrument (EVI), which is a TLS method with dual wavelengths [24]. The TLS scanner can
produce a ‘pseudo’ Normalized Difference Vegetation Index (NDVI) image, which is beneficial for
the detection of woody material. In their study [24], woody structures were considered in clumping
index estimates and identified using a threshold of the ratio of total power to reflected pulse width.
García et al. evaluated the potential of TLS to estimate the clumping index in different vegetation types
based on the spatial distribution of the returns, the gap distribution and the gap size distribution, and
proved that TLS data could be used to estimate the clumping index [37]. Given the importance of the
spatial distribution of the clumping index, the angular distribution of woody tissue and its effect on
the spatial distribution of the clumping index needs to be estimated. Meanwhile, most of the woody
tissue is trunk, which has a greater effect on the clumping index than other components. To solve this
problem, we introduced a method that could be used to exclude the trunk from terrestrial LiDAR data
and we analyzed the influence of the trunk on the gap probability, clumping index, and LAI at all view
zenith angles.

In this study, we first extracted the tree trunk point clouds from terrestrial LiDAR data.
Within-crown and between-crown gap probabilities were calculated to estimate the clumping index
and LAI. The angular dependence of the gap probability, clumping index, and LAI were analyzed
before and after the exclusion of tree trunks. At the same time, we compared the performance of TLS
with that of digital hemispherical photos with respect to the angular distribution of the clumping index
and LAI and the analysis of trunk effects. We addressed the following research questions: (1) How
does the clumping index change within the whole range of view zenith angles? (2) How strong is
the influence of tree trunks on the canopy gap probability, clumping index, and LAI at different view
zenith angles? (3) How different are the canopy gap probability, clumping index, and LAI estimates
derived from TLS data and HemiView photos?

2. Materials

2.1. Study Area Description

The study area is located in the Qilian Mountains within the Gansu Province in Western China
(38◦19′–38◦29′ N, 100◦12′–100◦20′ E), as shown in Figure 1. The elevation varies from 2500 to 3800 m
above sea level. This area is cold and dry with low precipitation and presents the typical features of a
temperate continental mountainous climate. The atmospheric circulation in this area is controlled by
the Mongolia anticyclone in winter. Influenced by climate and terrain, the prevalent vegetation types
in the study area are mountainous pastures and forests. The dominant vegetation types include two
tree species, the Qinghai Spruce (Picea crassifolia Kom.) and Qilian Juniper (Sabina przewalskii Kom.),
as well as grassland. The vegetation density varies depending on the terrain, soil, water, and climate
factors. In this study, the coniferous tree species Qinghai spruce was selected as the study object.

2.2. Sampling Design and Field Measurements

A 100 × 100 m sample plot was selected in the study area. The plot was selected as the major area
for field measurements (Figure 1). The ground in the plot was relatively flat with a slope of about five
degrees. The plot was dominated by the same tree species, the Qinghai spruce. This plot was divided
into 16 subplots, with each subplot having a size of 25 × 25 m. Measurement points were located in
the center of each subplot (Figure 2) and TLS and HemiView (Delta-T devices Ltd., Cambridge, UK)
were used to acquire data at the 13 subplots (red solid circles in Figure 1).
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Figure 1. Study area and distribution of measurement points (base map is an aerial photo), located
within the Qilian Mountains in Gansu Province, Western China. The sixteen white solid crosses
represent the locations of the centers of the subplots and the thirteen red solid circles represent the
locations at which data were measured.

 
(a)

 
(b)

Figure 2. Intensity of vertical and tilt scanning of the terrestrial laser scanner. (a) Vertical mount; and (b)
Tilt mount. The black areas indicate where no points were recorded.

The terrestrial laser scanner RIEGL LMS-Z360i (RIEGL, Horn, Austria) was used in this study.
The configuration of RIEGL LMS-Z360i used in the field is shown in Table 1. The scanner is based on
the principle of time-of-flight measurement with short infrared laser pulses (900 nm). The first and last
returns could be recorded, and the first returns of points were used in our study. When the laser scanner
was vertically mounted on a tripod located at the center of the subplot, the vertical range of scanning (line
scanning angle) was −50◦~40◦ and the horizontal range of scanning (frame scanning angle) was 360◦

(Table 1) The vertical angle of 40◦~90◦ needed to be obtained by tilt scanning of TLS at the same position
to cover the upper hemisphere view. The TLS data from the vertical and tilt scan at the same position
were used for the detection of trunks and the estimation of gap probability in the study. Figure 2 shows
the intensities obtained using the vertical and tilt mounts of the terrestrial laser scanner.
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Table 1. Configuration of the LMS-360i laser scanner.

Parameters Characteristics/Value

Scanning mechanism Rotating/oscillating
Measurement principle Single-shot time-of-flight measurement
Target detection modes First, last, or alternating target

Laser wavelength 900 nm
Measurement range 1~200 m

Laser pulse repetition rate 24,000 Hz
Laser beam divergence ≤2 mrad (focused to infinity)

Measurement resolution 5 mm
Line scan angle range −50◦~+40◦

Frame scan angle range 0◦~360◦
Line angle step width 0.008◦

Frame angle step width 0.01◦

In addition, orientation information can be acquired using a compass and spirit level. Three angles
of the vertical and tilt scans were obtained using this method including the roll, pitch, and yaw angle.
A compass was employed to orient the vertical and tilt scans of the laser scanner and to measure the
yaw angle around the scanner’s Z-axis. The roll angle of the X-axis of the scanner and the pitch angle
of the Y-axis of the scanner were determined with an electronic spirit level. As the intersection angle
between the vertical and tilt mount was 90◦, we obtained a tilt mount calibration matrix from the three
angles based on the method in [38]. The data acquired at the tilt mount can be transformed into its
corresponding vertical mount coordinates using the tilt mount calibration matrix.

We took hemispherical photographs as field samples using HemiView (Delta-T Device,
Cambridge, UK) including a self-levelling mount and a Nikon Coolpix 8400 with FC-E9 adapter
lens (Nikon, Tokyo, Japan). The camera and lens were mounted and levelled with a bubble level before
use. The measurements were performed under overcast conditions or conditions of diffuse skylight.
A hemispherical photograph provides a permanent record and is a valuable source of information
for canopy gaps. The photographs were processed with digital hemispherical photography (DHP)
software to derive the effective LAI. Hemispherical photographs were acquired at a height of 0.8 m for
each station in this plot. An example is shown in Figure 3. Similar to the case of the terrestrial LiDAR,
the measurement locations in the plot are shown in Figure 1.

 

Figure 3. Example of a hemispherical photograph.
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3. Methods

3.1. Gap Probability Theory

Beer’s Law, which relates the absorption of light to the properties of particles [39], was used to
relate the LAI to the gap probability of the canopy. The original formulation of Beer’s Law assumes
the random distribution of light-intercepting elements in the pathway of penetrating beams. However,
leaves in natural forest canopies are clumped within crowns instead of being randomly distributed.
Therefore, Nilson introduced the clumping index Ω(θ) to the relationship between the LAI and gap
probability [40]:

P(θ) = exp
(−LeG(θ)

cos(θ)

)
= exp

(−LΩ(θ)G(θ)

cos(θ)

)
, (1)

where θ is the view zenith angle; G(θ) is the leaf projection function, namely the G-function,
which quantifies the projection coefficient of unit foliage area on a plane perpendicular to the view
direction [41]; and Ω(θ) is the clumping index, which quantifies the degree of the deviation of foliage
spatial distribution from the random case, and it is a value between 0 and 1 (the higher value denotes
less clumping degree). Le and L are the effective LAI and true LAI, respectively. Random distribution
of the elements (no clumping) was assumed for the retrieval of Le while L could be calculated after
the clumping index was taken into account. In fact, L refers to the plant area index, which includes
the LAI and wood area index if it has not been corrected for the influence of woody tissue on P(θ).
Although several instruments have been used to perform clumping index retrievals such as the Tracing
Radiation and Architecture of Canopies (TRAC) instrument, hemispherical photography, and Echidna
Validation Instrument [24], the effect of woody tissue on the clumping index and LAI needs to be
accounted for. In this study, we compared the results from the HemiView data with those from the
TLS data with and without woody tissue.

3.2. HemiView

An important step in measuring the clumping index of forests is the separation of between-crown
gaps from within-crown gaps. To derive the gap fraction from hemispherical images, each image must
be separated into areas of gaps and plant tissue using an image classification algorithm. The mean
gap probability can be obtained by dividing the average number of pixels of all gaps (gt) by the total
number of pixels A of each image at each view zenith angle. Thus, the effective LAI is calculated by:

Le = −
ln
(

gt
A

)
cos(θ)

G(θ)
, (2)

A method was proposed for calculating the clumping index from digital cover photography
(DCP), which offers the advantage of separately determining different gaps in the canopy including
between-crown and within-crown gaps [32]. The between-crown gap probability can be derived from
the average number of pixels of the between-crown gap gl and the total number of pixels A. at each
view zenith angle. Therefore, the LAI can be calculated when the clumping effect can be considered
explicitly [32,42]:

L = −(1 − gl
A
)

ln (
gt−gl
A−gl

) cos (θ)

G(θ)
, (3)

where (1 − gl
A ) is the crown cover; and gl is the average number of pixels of the larger gap of the

image, which is generally the gap between adjacent crowns. The calculation of the clumping index is
as follows:

Ω(θ) =
Le

L
=

ln
(

gt
A

)
ln
(

gt−gl
A−gl

) ( 1

1 − gl
A

), (4)
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Based on the above-mentioned methods, we should successively retrieve the gap probability,
clumping index, and LAI. However, before retrieving the gap probability, it is essential to extract the
tree trunks and between-crown gaps from the images. The separation was performed using Adobe
Photoshop and digital hemispherical photography (DHP) software. The shape features of objects can
be used to identify the trunk tissue in an image. The separation of the trunk area from other elements
of trees in this study was conducted with object-based image analysis using the eCognition software
(Trimble, Munich, Germany) [32]. The advantage of this method is that it allows for the use of object
mean values for the image instead of separately applying a threshold to each pixel. The threshold
values for trunk tissue detection depend on the object size classes. Objects were only classified as trunk
tissue when they were not obscured by leaves.

The gaps were classified using thresholds of the object’s average brightness and blue
difference [32]. Hemispherical photos were analyzed using Adobe Photoshop 10 (Adobe, San Jose, CA,
USA) to separate the between-crown and within-crown gaps as follows: large gaps between the tree
crowns in each photo were selected using the ‘Magic wand’ tool with the SHIFT key held down and
the total number of pixels of large gaps was recorded using the histogram. Then, the hemispherical
sphere was divided into segments along the zenithal and horizontal directions separately using DHP
software. The mean gap probability P(θ) and between-crown gap probability Pb(θ) of ten view zenith
angles (θ = 4.5◦, 13.5◦, 22.5◦, . . . , 85.5◦) were then calculated based on the DHP software. Subsequently,
the clumping index and LAI were derived based on Equations (3) and (4).

In addition to the analysis of the influence of the trunks on the gap fraction, clumping index, and
LAI, the relative bias was used as the evaluation index. The relative biases of the effect on the gap
fraction, clumping index, and LAI were defined as:

εP(θ) =
Pin(θ)− Pex(θ)

Pin(θ)
,

εCI(θ) =
CIin(θ)− CIex(θ)

CIin(θ)
,

εL(θ) =
Lin(θ) − Lex(θ)

Lin(θ)
.

(5)

where Pin(θ), CIin(θ) and Lin(θ) are the gap probability, clumping index, and LAI including trunks,
respectively. Here, Pex(θ), CIex(θ) and Lex(θ) are the gap probability, clumping index, and LAI excluding
trunks, respectively.

3.3. Terrestrial Laser Scanner

3.3.1. Gap Probability Calculation

The directional canopy gap fraction was obtained from the data of a terrestrial laser scanner [33].
The gap fraction was derived from the terrestrial laser scanner data based on the ratio of the number
of laser beams passing through the canopy to the total number of beams emitted into the canopy.
A laser scanner model was developed to determine the number and direction of all shots in a scan [43].
The interception of laser beams and objects can be expressed as polar coordinates (r, θ, φ), which can
be determined by the range, zenith angle θ, and azimuth angle φ. We subdivided the view zenith and
azimuth angles based on the minimum resolution angle of the laser scanner. The view zenith angle θ

(from 0◦ to 90◦) was divided into m. subangles and the azimuth angle φ (from 0◦ to 360◦) was divided
into n subangles. If a laser beam did not intercept an object, the gap fraction of the angle voxel was ‘1’;
if the laser beam intercepted an object, the gap fraction of the angle voxel was ‘0’.
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In addition, the forest canopy structure was reconstructed using a 3D arrangement of voxels
created from all LiDAR shots and the gap fraction was calculated from the voxels [44]. The gap fraction
of each 5◦ zenith angle was calculated as:

P(θk) =
18 × ∑5k

i=5k−5 ∑360
j=1 P

(
θi, ϕj

)
90 × 360

=
1
5 ∑5k

i=5k−5 (
∑360

j=1 P
(
θi, ϕj

)
360

), (6)

where k is the number of divisions from 1 to 18; and P(θk) is the mean gap fraction of each 5◦ zenith
angle. The azimuth angle was divided into 360 1◦ steps and the view zenith angle from 0◦ to 90◦ was
divided into 18 5◦ steps.

3.3.2. Between-Crown Gap Separation

To estimate the clumping index and LAI, between-crown gaps were separated from within-crown
gaps. As the TLS records the gap fraction and distance of objects in each direction, LiDAR data at
different distances were processed for calculating the gap fraction, and it was possible to distinguish
within-crown and between-crown gaps based on the change in size and distance of connected gap
segments. Between-crown gaps consist of many large connected gaps, which form relatively large and
open spaces. In contrast, within-crown gaps are broken gaps that are distributed among canopy leaves
and disconnected. The change of large connected gaps was analyzed from the farthest to the nearest
distance. If the size of the connected gap remained unchanged at all distances, the path lengths of the
laser beams did not intercept any leaves. With reference to Zhao et al.’s method [24], a threshold value
was chosen to identify between-crown gaps and how they changed with distance:

Sth = π(l × n × dθ

2
)

2
, (7)

where l is the distance at which a single laser beam arrives; dθ is the beam divergence for a single laser
beam; and n is an integer number.

If the area of the gap fraction was larger than the threshold value, the gap was classified as
a between-crown gap. If it was smaller than the threshold value, the gap was considered to be a
within-crown gap. Once the between-crown gaps were distinguished from the within-crown gaps,
the corresponding total gap fractions and between-crown gap fractions for each zenith angle could
be calculated.

3.3.3. Clumping Index Calculation

The effective LAI can be described using Equation (1). If only the total gap probability within
gaps is known, the assumption must be tailored to randomly distributed leaf elements. The effective
LAI can be derived from:

Le = − ln (P(θ)) cos(θ)
G(θ)

, (8)

where P(θ) is the canopy mean gap probability, which can be estimated from terrestrial LiDAR point
cloud data [33].

After separating the between-crown gap probability using the method described in Section 3.3.2,
the LAI can be calculated using a method similar to that used in [32,39]:

L = −(1 − Pb(θ))
ln (P(θ)−Pb(θ)

1−Pb(θ)
) cos(θ)

G(θ)
, (9)

where Pb(θ) is the between-crown gap probability.
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Hence, the clumping index can be directly calculated by dividing the effective LAI by the true LAI:

Ω(θ) = −
(

1

1 − Pb(θ)

)
ln
(

Pb(θ)
)

ln
(

P(θ)−Pb(θ)

1−Pb(θ)

) , (10)

3.3.4. Trunk Detection

To estimate the impact of woody tissue (trunk) on the LAI, the point cloud returned from tree
trunks should first be identified. The central idea is that there are many points on the trunk surface
towards the TLS and that no point is on the opposite side due to the shading effect of trunks [45].
When the laser scans the trunk of a tree, the laser shots are occluded by the trunk with no points
in the longer range. The detailed algorithm for the identification of tree trunks can be described as
follows. First, we identified the ‘trunk angle’ along the azimuth direction based on these characteristics
(as shown in Figure 4). We defined the trunk angle as a range of angles within which the trunk point
cloud between ground and a height of 1.3 m occurs when they are projected in the x-y plane. In a plot
with 25 m × 25 m size, we searched for points from far away to near the azimuth angle and saved this
angle if there were no points beyond a certain distance. Second, after identifying the ‘trunk angle’,
we extracted the points in this range of the ‘trunk angle’ from all points based on the azimuth angles.
Finally, we confirmed the positions of the trunks based on the point density in vertical direction by
setting a threshold to remove other non-trunk points. The threshold value could be established based
on the points’ distance and configuration of the laser scanner. This way, we could extract the point
cloud of the tree trunks based on the ‘trunk angle’ characteristics. However, leaves obscured by the
trunk should be considered in the calculation of LAI. We assumed that the distribution of the obscured
leaves was the same as the distribution of the other leaves. We then calculated the mean gap fraction
for each view zenith angle after removing the point cloud of the trunks. The clumping index and LAI
were also retrieved from the TLS data.

To analyze the effect of trunks on the gap fraction, clumping index, and LAI based on TLS data
and compare them with results from the HemiView data, the relative biases were calculated using
Equation (5) and interpolated with several angles from HemiView.

Figure 4. Sketch of Terrestrial Laser Scanning (TLS) scanning in forests. The center of the circle denotes
the position of the laser scan; the green curve denotes the cross section of the trunk surface; and the
black zone denotes no point cloud; top view.
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4. Results and Discussion

4.1. Canopy Gap Fraction Distribution

The terrestrial laser scanner data of our sample plots were selected to evaluate their potential
for the estimation of gap fractions. For a comparison with the results from the HemiView, twenty of
the directional gap fractions within each 5◦ from the TLS were averaged as the single gap fraction
value for the corresponding angle from 0◦ to 90◦. As shown in Figure 5, the gap fractions derived
from the hemispherical photography and terrestrial laser scanner showed good consistency, but the
latter was lower than the former in the zenith angle range from 10◦ to 70◦. We found that the gap
probabilities from TLS and HemiView were affected by the trunks and increased after excluding them.
The detailed results of the effect will be analyzed in Section 4.4. Based on Figure 5b, the trunks had a
greater effect at some view zenith angles (from 15◦ to 55◦) than at other zenith angles for HemiView,
while the trunks at most view zenith angles had a similar effect on the gap probabilities for TLS. Due to
the active TLS detection technique, we could automatically identify trunks from point cloud data and
remove them. However, we could not determine if other trees were located behind the identified
trunks from the LiDAR data. Therefore, the gap probabilities at most view zenith angles changed after
removing the trunks from the point cloud. For HemiView, Photoshop and DHP software were used to
process photos, then the trunk pixels could be manually selected based on the background of sky light
(Figure 3). At small view zenith angles, the trunks are too thin to be identified from bright background.
Furthermore, it is also difficult to determine if there is another tree located behind the identified trunks
at larger view zenith angles due to the dense forest background. Therefore, the trunk surface area at
these angles, to a large part, could not be removed.

(a) (b)

Figure 5. Angular distribution of the gap fraction distribution. (a) TLS; and (b) HemiView.

4.2. Clumping Index

In general, the estimated clumping indices increased with increasing view zenith angle (Figure 6).
The clumping index significantly changed at larger view zenith angles after removing the trunk points
from the point cloud. This indicated that the influence of the trunks on the clumping index was smaller
at smaller view zenith angles than at larger angles. For HemiView, the effect of trunks on the clumping
index between 30◦ and 70◦ was about 10–30% more than at other angles (Figure 6b), which was similar
to the influence on the gap probability. However, the clumping index decreased with the removal
of trunks, which differed from the TLS results. In addition, the clumping index of both TLS and
HemiView showed a similar behavior, which was observed in several other studies [23,30]. Rye et al.
asserted that heterogeneous ecosystem-scale tree distribution patterns caused different tree clustering
at different zenith angles [28]. From the viewpoint of 3D space, the trunk distribution was clumped,
not uniform. While projected to 2D images, trunks at larger view zenith angles showed uniformity.
Thus, the clumping index from HemiView at larger view zenith angles was higher than at lower view
zenith angles and monotonically increased with increasing view zenith angle.
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In addition, we also estimated the hemispherical average clumping index from two types of data
after removing the trunks (Figure 7). The results obtained using TLS and HemiView were highly
correlated (R2 = 0.761). The results also showed that the clumping index results from TLS were higher
than those from HemiView in the case of more clumping, while the opposite result was obtained in
the case of less clumping. Although good agreement has been achieved between EVI images and
hemispherical photos using the 2D image processing method [24], we could be confident that the
dimension of data from HemiView and TLS and their processing method also affects the estimation of
the clumping index, especially the effect of removing trunks.

(a) (b)

Figure 6. Angular distribution of the clumping index: (a) TLS; and (b) HemiView.

Figure 7. Comparison of the hemispherical clumping index between TLS and HemiView.

4.3. Leaf Area Index

Based on the methods proposed in Section 2, the effective LAI and LAI in the study area were
estimated from the TLS data and HemiView images. The angular distributions of LAI from TLS and
HemiView have a similar shape (Figure 8); however, the trunks have a 3–25% effect on the LAI, and the
effect varies with the view zenith angle. The exclusion of trunks yielded an ~19.6% lower LAI based
on the TLS data, while the exclusion of trunks from the HemiView data yielded an ~8.9% lower LAI on
average. Due to the exclusion of trunks from the TLS data, both the decrease of the gap probability and
increase of the clumping index reduced the estimated LAI value. In contrast, the exclusion of trunks
from the HemiView data and the associated decrease of the gap probability reduced the retrieved
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LAI value and the decrease of the clumping index resulted in a LAI increase. Therefore, the exclusion
of trunks had less effect on the LAI from HemiView than on that from TLS. The magnitude of the
influence of trunks on the LAI is therefore not only affected by the proportion of tree distribution,
but by its patterns and measuring methods. In addition, we compared the effective LAI and LAI of
13 measurement sites derived from TLS with that obtained from HemiView (Figure 9a,b) and found
that they had good correlation, though the correlation coefficient of HemiView and TLS decreased
from 0.724 to 0.613 after introducing the clumping index. Meanwhile, we found that the results from
the TLS data were generally higher than those derived from the HemiView images and we assumed
it was due to the higher gap fractions over a 30◦–70◦ view zenith angle determined based on the
HemiView data (Figure 5), which was stated in [29].

(a) (b)

Figure 8. Angular distribution of Leaf Area Index (LAI). (a) TLS; and (b) HemiView.

(a) (b)

R R

Figure 9. Comparison of the effective LAI (a), and LAI (b) between TLS and HemiView.

4.4. Tree Trunk Effects

The influence of tree trunks on the gap probability, clumping index, and LAI was analyzed.
The effect of the trunks on the gap probability increased with the increasing view zenith angle
(Figure 10a). The trunk surface area in the sensor view field increased with the increasing view
zenith angle. In this case, εP was <20% when the view zenith angle was <60◦. When the angle was
>60◦, the relative bias of the gap probability increased rapidly. The results indicated that trunks had
less effect on larger gap probabilities but affected smaller gap probabilities more. The trunks had a
stronger effect on εCI based on TLS when compared with HemiView, especially between 50◦ and 90◦

(Figure 10b,c). We analyzed the effect of the trunks on the clumping index by comparing Figure 6a,b
and Figure 10b, and found that the clumping index was more affected by trunks when the proportion
of the trunk surface area at a certain view zenith angle was close to the gap fraction segment at the
corresponding angle such as for the view zenith angles of 60–90◦ in Figure 6a and 30–60◦ in Figure 6b.
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Thus, εCI was relatively larger at the corresponding angle (Figure 10b). However, relative to εP, εL was
small in that it was not only proportional to the logarithm of (1 − εP) but was inversely proportional
to the logarithm of the gap probability including trunks. These results showed that the gap probability,
clumping index, and LAI were indeed affected by trunks, especially the zenith angular distribution of
the trunk surface area.

(a) (b)

(c)

Figure 10. Comparison of the relative bias (εP, εCI, εL) between TLS and HemiView. (a) Gap probability
(P); (b) Clumping index (CI); and (c) LAI (L).

5. Conclusions

In this study, we employed angularly distributed gap probability observations to derive the
angularly distributed clumping index and angular distribution of LAI from TLS and HemiView data.
In addition, we analyzed the effect of trunks on the gap probability, clumping index, and LAI estimates.

We concluded the following. (1) Compared with the results of the clumping index and LAI from
HemiView, the results from TLS proved that it had the potential to estimate the clumping index, either
the angular distribution or hemispherical average value; (2) Based on the comparison of the results
from TLS with those from HemiView, trunks had different effects on the gap probability, clumping
index, and LAI. Although the LAI from HemiView was lower than the TLS derived LAI, the effect of
trunks on LAI from HemiView was also less than the corresponding effect for TLS due to the different
effects of trunks on the gap probability and clumping index. Additionally, the bias of clumping index
had more effect on LAI estimates than the bias of gap probability; (3) The spatial distribution (angular
distribution) of the clumping index was more important for accurate LAI estimates than the average
clumping index value, especially for the clumping index at a larger view zenith angle [46]. Although
the average clumping index values from HemiView and TLS were close, different LAI estimates
originated from the angular distribution of the clumping index, which is seriously affected by the 3D
distribution of trunks; (4) Trunk detection is important to estimate other forest structure parameters.
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From a comparison to the TLS data process, we could easily detect the trunks from the 2D hemi
image and calculate their area, but the position distribution of trunks could not be detected from
2D images. The clumping index is a structure parameter that is relative to depth information, so it
could be affected by the 3D distribution of trunks. Furthermore, 3D information from TLS could be
helpful for detecting the spatial distribution of trunks and the clumping index, which may improve
the retrieved LAI accuracy. Therefore, different tree densities and distributions detected from TLS data
and their effects on the clumping index estimate should be the focus of further studies.

We considered the trunk’s effect on the gap probability, clumping index, and LAI but did not
remove the trunk’s effect on the G-function in the gap probability model. We hypothesized that the
separate treatment of leaf and wood projection functions could be a key point for the improvement of
the accuracy of indirect LAI retrievals via the application of the gap probability model [42]. At the
same time, further validation with respect to different types and densities of forests is required.

Acknowledgments: This work was funded by the National Science Foundation of China (Grant Nos. 41401410,
41611530544 and 41401411). The authors thank Feilong Lin and Zhuo Fu for providing HemiView data. We are
also grateful for Kim Calder and Sruthi Moorthy who gave useful suggestions.

Author Contributions: Yunfei Bao and Wenjian Ni conceived, designed, and performed the experiments;
Yunfei Bao analyzed the TLS data, and Dianzhong Wang analyzed the HemiView data; Chunyu Yue and
Hongyan He contributed analysis tools; Yunfei Bao wrote the paper; and Hans Verbeeck reviewed and revised
the paper.

Conflicts of Interest: The authors declare no conflict of interest. The funding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Chen, J.M.; Leblanc, S.G. A four-scale bidirectional reflectance model based on canopy architecture.
IEEE Trans. Geosci. Remote Sens. 1997, 35, 1316–1337. [CrossRef]

2. Weiss, M.; Baret, F. Evaluation of canopy biophysical variable retrieval performances from the accumulation
of large swath satellite data. Remote Sens. Environ. 1999, 70, 293–306. [CrossRef]

3. Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Turner, D.P. An improved strategy for regression of biophysical
variables and Landsat ETM+ data. Remote Sens. Environ. 2003, 84, 561–571. [CrossRef]

4. Kötz, B.; Schaepman, M.; Morsdorf, F.; Bowyer, P.; Itten, K.; Allgöwer, B. Radiative transfer modeling within
a heterogeneous canopy for estimation of forest fire fuel properties. Remote Sens. Environ. 2004, 92, 332–344.
[CrossRef]

5. Bao, Y.F.; Cao, C.X.; Zhang, H.; Chen, E.X.; He, Q.S.; Huang, H.B.; Li, Z.Y.; Li, X.W.; Gong, P. Synchronous
estimation of DTM and fractional vegetation cover in forested area from airborne LIDAR height and intensity
data. Sci. China Ser. 2008, E51, 176–187. [CrossRef]

6. Oukoulas, S.; Blackburn, G.A. Mapping individual tree location, height and species in broadleaved deciduous
forest using airborne LIDAR and multi-spectral remotely sensed data. Int. J. Remote Sens. 2005, 26, 431–455.
[CrossRef]

7. Solberg, S.; Næsset, E.; Hanssen, K.H.; Christiansen, E. Mapping defoliation during a severe insect attack on
Scots pine using airborne laser scanning. Remote Sens. Environ. 2006, 102, 364–376. [CrossRef]

8. Wagner, W.; Hollaus, M.; Briese, C.; Ducic, V. 3D vegetation mapping using small-footprint full-waveform
airborne laser scanners. Int. J. Remote Sens. 2008, 29, 1433–1452. [CrossRef]

9. Watt, P.; Donoghue, D. Measuring forest structure with terrestrial laser scanning. Int. J. Remote Sens. 2005, 26,
1437–1446. [CrossRef]

10. Cao, C.X.; Bao, Y.F.; Chen, W.; Tian, R.; Dang, Y.F.; Li, L.; Li, G.H. Extraction of forest structural parameters
based on the intensity information of high-density airborne light detection and ranging. J. Appl. Rem. Sens.
2012, 6, 063533.

11. Fu, Z.; Wang, J.D.; Song, J.L.; Zhou, H.M.; Pang, Y.; Chen, B.S. Estimation of forest canopy leaf area index
using MODIS, MISR, and LiDAR observations. J. Appl. Rem. Sens. 2011, 5, 053530. [CrossRef]

12. Jensen, J.L.R.; Humes, K.S.; Vierling, L.A.; Hudak, A.T. Discrete return Lidar-based prediction of leaf area
index in two conifer forests. Remote Sens. Environ. 2008, 112, 3947–3957. [CrossRef]

189



Forests 2018, 9, 144

13. Morsdorf, F.; Kötz, B.; Meier, E.; Itten, K.I.; Allgöwer, B. Estimation of LAI and fractional cover from
small footprint airborne laser scanning data based on gap fraction. Remote Sen. Environ. 2006, 104, 50–61.
[CrossRef]
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Abstract: Mapping of exact tree positions can be regarded as a crucial task of field work associated
with forest monitoring, especially on intensive research plots. We propose a two-stage density
clustering approach for the automatic mapping of tree positions, and an algorithm for automatic tree
diameter estimates based on terrestrial laser-scanning (TLS) point cloud data sampled under limited
sighting conditions. We show that our novel approach is able to detect tree positions in a mixed and
vertically structured stand with an overall accuracy of 91.6%, and with omission- and commission
error of only 5.7% and 2.7% respectively. Moreover, we were able to reproduce the stand’s diameter
in breast height (DBH) distribution, and to estimate single trees DBH with a mean average deviation
of ±2.90 cm compared with tape measurements as reference.

Keywords: terrestrial laser scanning; forest inventory; density-based clustering

1. Introduction

Catalogues of key attributes surveyed in forest inventories have broadened [1] in the context
of redefined goals of sustainable forest management [2,3]. Whereas traditional sampling protocols
were mainly designed to provide precise information on the timber growing stock, modern survey
networks have been developed towards multi-purpose forest inventories which also consider aspects
of biodiversity and carbon sequestration [4,5]. In order to fulfil increased information needs and to
compensate for extra expenses associated with additional field work, remote sensing techniques have
been successfully adopted in forest inventory practice [6,7].

Compared to large scale forest inventories, information needs are much higher in intensive
long-term forest monitoring plots, originally established to study the effects of atmospheric pollution [8]
and now providing valuable data for climate change impact analyses [9]. However, evaluation of
long-term forest growth trends related to changing climate requires in-depth understanding of the
mechanisms behind inter-tree competition and species mingling. Competition among neighboring
trees mainly depends on the inter-tree distances formed by the overall spatial tree pattern in a forest
stand. Thus, mapping of exact tree positions can be regarded as crucial task of the field work associated
with forest monitoring.

Traditionally, a full census of long-term observation plots is performed using easy-to-handle
devices that combine a compass and a laser range finder, like the computer-aided field data collection
system FieldMap (IFER - Monitoring and Mapping Solutions Ltd., Jilove u Prahy, Czech Republic) [10].
Nevertheless, the mapping of all tree positions in a complete forest stand is time consuming and
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cost-intensive. In addition, recorded tree locations, especially in rough terrain, often have high
measurement errors because position- distance- and angular-errors propagate in consequence of
multiple traverses subsequently aligned over longer distances [11].

Alternative methods for the collection of precise position data exist using new sensor techniques,
such as airborne digital imagery [12–14], terrestrial laser scanning (TLS) [15,16] and airborne laser
scanning (ALS) [15,17]. Whereas airborne digital imagery and ALS have been successfully used
for data collection on large areas and single layer forest stands, they are limited in providing data
for single trees, like diameter and height estimates, especially in diverse, multi-layer stands and
in stands with dense understory and tree regeneration [18–21], unless they are combined with
terrestrial measurements [7,22–24]. However, a rapid and automated measurement of objects in the
three-dimensional space and the creation of 3D-point clouds with millions to billions of points in
millimeter-resolution, is possible using TLS [16]. Thus, tree parameters such as tree positions, stem
numbers, diameters and heights can principally be derived from TLS data [25,26].

However, obtaining tree parameters from 3D-point clouds is challenging, and requires
development of new methods that can automatically process point cloud data, and aggregate them to
comprehensible statistics. Another important task is to assess the accuracy of these methods. Especially
the accuracy of tree positions extracted from 3D-point cloud data is a crucial point in this task, as it
provides the foundation for further calculations of tree parameters.

In this paper, we propose (i) an approach for the detection of tree positions based on two-stage
density-based clustering applied to TLS point clouds, and (ii) an algorithm for tree diameter
measurement under limited sighting conditions of sample trees. Data for this study were collected
in a 4.08 ha forest stand located in the Austrian pre-Alps. A full census measured with the FieldMap
system serves as reference. Dense 3D-point cloud data were collected via multi-scan TLS. Our method
for detecting tree positions is evaluated against the full census reference data and by means of manifold
statistics. Our approach for tree diameter measurement is evaluated against tape measurements. We
hypothesize that our methods outperform existing approaches and can be easily adopted in forest
monitoring practice in conjunction with TLS.

2. Data and Methods

2.1. Experimental Stand

The survey was conducted in a 4.08 ha stand located in the training forest of the University
of Natural Resources and Life Sciences, Vienna (BOKU) near Forchtenstein in the Lower-Austrian
pre-Alps. The test site has sub montane altitude ranging from 608 m to 632 m a.s.l. (above sea
level), average slope of 15% and a northern exposition. Climate is continental with average annual
temperature of 6.5 ◦C and mean annual precipitation of 796 mm (unpublished data from the Heuberg
weather station [27]). Geological bedrock is mainly silicate dominated by gneiss, mica schist and
quartzite and soil type is a brown earth of varying depth [28]. The test stand is characterized by a high
vertical structural diversity with respect to tree heights, including spatially irregularly distributed
understory and regeneration. It also has a high species diversity comprising different conifers and
deciduous tree species. Overstory trees are approx. 110 year old and are composed of 38% spruce
(Picea abies), 38% beech (Fagus sylvatica), 15% fir (Abies alba), 5% pine (Pinus sylvestris), 4% larch
(Larix decidua) and less than 1% of other broadleaf species. Natural regeneration occurs in irregularly
arranged clusters consisting of approx. 90% beech and 10% fir.

2.2. Data Collection

In summer 2015, a full census of live trees was performed using the FieldMap system. All live
trees with a diameter at breast height (DBH) greater than or equal to 10 cm (measured with diameter
tape) were recorded. In total, 1789 trees (684 spruce, 259 fir, 65 larch, 91 pine, 678 beech and 12 other
broadleaf species) were surveyed, this represents a stem density of 438 trees ha−1. DBH ranged from
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10.0 cm to 67.3 cm, with mean 35.0 cm and median 36.3 cm. Tree heights were measured using a Vertex
IV ultrasonic hypsometer [29] and had a range from 5.4 m to 40.9 m, with mean of 27.8 m and median
of 29.7 m.

Positions for all 1789 trees were recorded as x-coordinate and y-coordinate in a local FieldMap
coordinate reference system. For a transformation to a global coordinate reference system,
48 permanently marked reference points were recorded in the local FieldMap coordinate reference
system and simultaneously georeferenced via differential GPS in WGS84. FieldMap coordinates
were used as reference for the evaluation of our new tree position detection algorithm and diameter
measured with girth tapes served as reference for our automatic tree diameter measurement routine.

In winter 2015/16, a FARO (FARO Technologies Inc., Lake Mary, Florida, USA) Focus3D X330
device [30] was used for a full terrestrial laser scan of the test stand. Scanning was performed in a
multi-scan mode with in total 117 scans obtained from different positions. Scanning positions were
approximately regularly spaced with a mean distance of approx. 20 m between two neighboring
positions. Exact scanning positions were defined in the field, guided by a visual assessment of the local
sighting conditions. The device’s scan quality parameter was set to 4x, producing a moderate noise
reduction, and the resolution was set to r = 6.136 mm/10 m, i.e., 1

4 of the maximum possible resolution
(rmax = 1.534 mm/10 m). These settings resulted in a scanning time of approx. 11 min for every single
scan. Nearby each scanning position, six Styrofoam balls with a diameter of 15 cm were placed on
top of monopods in approx. 1 m height, so that three Styrofoam balls were visible from every two
neighboring scan positions. Single scan raw data were aligned by means of the Styrofoam balls, using
the software FARO Scene 6.0 [31]. The aligned scans were then further processed to obtain a 3D-point
cloud of the whole forest stand in a local x-, y- and z-coordinate reference system. The cut-off distance
for each scan in FARO Scene was set to 45 m. The resulting point cloud had a size of 2.84 × 109 points.
The local x-, y- and z-coordinates of 20 out of the total of 48 artificial reference points were manually
extracted from the TLS point cloud.

2.3. Coordinate Transformation

Based on the reference points, both, the TLS point cloud coordinates as well as the tree coordinates
recorded with the FieldMap system were transformed into WGS84 using a linear model with intercept
β0, regression coefficient β1 and rotation angle ϕ (Equations (1) and (2)), the corresponding estimates
of the model parameters are given in Table 1.

xglobal − xlocal = β0 + β1 ×
(

x × cos
( ϕ

360
2π

)
+ y × sin

( ϕ

360
2π

))
, (1)

yglobal − ylocal = β0 + β1 ×
(
−x × sin

( ϕ

360
2π

)
+ y × cos

( ϕ

360
2π

))
, (2)

Table 1. Parameter estimates for the coordinate transformation of the local coordinates from the
FieldMap survey and from the terrestrial laser scanning (TLS) to WGS84.

fi0 (m) fi1 ’ (◦)

FieldMap x-coordinate −3612.23 1.003 3.24
TLS x-coordinate −3329.37 1.000 8.25

FieldMap y-coordinate 282,336.70 1.004 3.24
TLS y-coordinate 282,345.70 1.000 8.25

FieldMap coordinates were rotated by 3.24◦, due to magnetic declination. TLS coordinates were
rotated by 8.25◦, as the orientation of the first scanner position is assumed to represent an Azimuth
of 0◦ in FARO Scene. The stretching of the FieldMap coordinates (β1 > 1) indicates the measuring
inaccuracy of the device.
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The resulting root mean squared deviation (RMSD) between the differential GPS data and the
transformed coordinates was 1.02 m for the FieldMap data (based on 48 reference points) and 1.84 m
for the TLS data (based on 20 reference points) respectively. The resulting RMSD between the TLS and
the FieldMap data was 2.18 m (based on 20 reference points).

2.4. Point Cloud Processing

Please note that a step-by-step overview of our workflow and the applied software functions and
parameters can be found in the appendix (Table A1).

For processing of the point cloud we used the LAStools (rapidlasso GmbH, Gilching, Germany)
software [32]. To achieve a higher performance with LAStools during data processing, every second
point was removed from the point cloud, finally resulting in a thinned cloud of 1.42 × 109 points. The
thinned point cloud was rotated and shifted according to procedure explained above. The complete
transformed point cloud was then split into 1087 quadratic tiles of 10 m edge length and with an
additional buffer of 2 m width on each side. Each tile was then processed with the LAStools noise filter.
Subsequently, all points were classified into ground and non-ground points using the “lasground”
function. The non-ground points were normalized relative to the DEM derived from ground points;
the ground points were discarded from the data. After the above described filtering and classification,
the tiles were re-merged to form a complete point cloud for the entire test stand. Before the application
of our new algorithms for stem position detection and diameter measurement, the complete point
cloud was split into 155 tiles of 25 m × 25 m edge length and with an additional 5 m buffer on each
side. These tiles were exported in .xyz format, so that further data analysis could be easily processed
by the statistical software R (R Foundation for Statistical Computing, Vienna, Austria) [33].

2.5. Two-Step Clustering for the Detection of Tree Positions

A novel two-step clustering approach was developed for the detection of tree positions. In the
first step the 3D-point cloud of each tile was stratified into different vertical strata by means of the
normalized z-coordinates, and cluster centroids were detected within each layer. In step two, cluster
centroids obtained from step one were projected onto a plane by simply discarding their z-coordinates,
and a further clustering was applied to the projected xy-coordinates of cluster centroids from step one.
The rationale behind our approach is that stage-one clustering does not only detect the centers of tree
stems but also finds local point density maxima at locations where thicker branches and understory
vegetation exist. As a tree trunk has generally a vertical orientation, stage-one clustering therefore
results in multiple cluster centroids in different horizontal layers nearby the position of the stem
center. Second-stage clustering of first-stage centroids works then as noise filter and discards first-stage
centroids with lower local point density at positions of branches and small understory trees.

In both steps, we used a density-based clustering algorithm presented by Rodriguez and Laio [34]
and implemented in the R-package densityClust [35]. The clustering algorithm is solely based on
the distance between data points. Cluster centers are defined as local maxima in the density of data
points. The algorithm is based on the assumptions that (i) cluster centers are surrounded by areas of
lower local density, and that (ii) cluster centers are located at relatively large distance from points with
larger local density [34]. For each data point i the local density ρi and the distance δi from points of
higher density is calculated depending on the distances dij between data points. The local density ρi
equals the number of data points that are closer to point i than the cut off distance dc. The distance
δi is calculated as the minimum distance between point i and any other point with higher density,
δi = min

j:ρj>ρi

(
dij

)
. δi exceeds the typical nearest neighbor distance for points that are local or global

maxima in the density, so cluster centers are recognized as points, having anomalously large values
of δi [34].

An appropriate cut off distance value dc for a given distance matrix can be estimated using
the R package densityClust [35] and requires values for the parameters neighbourRateLow and
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neighbourRateHigh. Thereby, the average number of points having a maximum distance dc to a cluster
centroid lies between neighbourRateLow and neighbourRateHigh.

The local density ρi and the distance values δi, are calculated, from a distance matrix using a
Gaussian kernel for smoothed density estimation. For estimating the local values of ρi and δi, either
the cut off distance dc estimated from the distance matrix, or a pre-defined value is used.

Finally, local estimates for ρi and δi are used to detect the local density maxima in the point data
and assigns the remaining points to one of these maxima, upper and lower thresholds for ρ and δ have
to be provided [35].

2.5.1. Stage-One Clustering

The point cloud of each tile (25 m × 25 m with an additional 5 m buffer) was stratified into
horizontal layers, each of which having a vertical extent of 21 cm, and with an overlap of 7 cm between
two neighboring layers. The bottom of the lowest layer was placed at 0.04 meters above normalized
zero height and the top of the highest layer at 16 meter height. This procedure resulted in 228 horizontal
layers. In each of these layers 5000 points were randomly sampled, and if a stratum contained less than
5000 points the complete set of points was selected. Layers with less than 100 points were excluded
from the cluster analysis.

In each layer the sample points were clustered around centroids, which represented local point
density maxima dc was estimated for each layer, depending on the corresponding distance matrix.
Cut-off distances obtained from the previous sub-step were then used to calculate the local density and
distance values ρi and δi. Finally, cluster centroids in each subsample from each layer were searched.

2.5.2. Stage-Two Clustering

In the second step of our two-step clustering approach cluster centroids from step one were
clustered once again. For each tile, the cluster centroids from all layers were merged and projected
onto one single horizontal plane. In the second-stage clustering, the cut off distance was manually set
to dc = 0.04 m and a prior estimation to derive dc was therefore not necessary. Parameter estimates
for the local density and distance parameters ρi and δi were then used in the final cluster search.
The xy-coordinates of the centroids from stage-two clustering were finally used as estimates for tree
positions. Neighboring position estimates having a distance of less than or equal to 50 cm were treated
as a single tree position and merged with the R-package spatstat [36].

Trials have shown that further subsampling from stage-one clusters prior to stage-two clustering
achieved enhanced results. We thus tested manifold subsamples from stage-one clusters defined by a
restricted range of z-coordinates. Hereby, a lower threshold of z-coordinates from the sequence with
minimum 0 m, maximum 10 m and step width 0.5 m was tested, and the upper threshold was chosen
from the sequence with minimum 4 m, maximum 16 m and step width 0.5 m. Subsamples were only
considered which had minimum vertical distance of 3.5 m between the lower and the upper threshold.
Thus, in total 125 variants of vertical subsampling from stage-one clusters were tested, each of which
having a different lower and upper limit of stage-one cluster z-coordinates.

2.6. Assignment of Tree Locations

As explained in section coordinate transformation, measurement error propagated along traverses
when FieldMap system was used for the manual mapping of tree positions. Thus, in order to assess
performance of our clustering approach, coordinates from the FieldMap system were matched with
TLS data. The matching of tree coordinates from the two different measurement systems (FieldMap
vs. TLS) was carried out using a sub-pattern assignment algorithm implemented in the R-package
spatstat [36]. Automatically detected tree positions, which could not be assigned to an existing tree
measured in the FieldMap campaign, were manually double checked in the TLS point cloud. In some
cases extra IDs were given to positions where the cluster algorithm proposed a tree location, which
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was not recorded with FieldMap but visible in the point cloud. This exclusively happened for standing
deadwood that was not measured with FieldMap.

As the point cloud was not exactly truncated to the stand borders, trees were also detected in
neighboring stands. To exclude those trees outside the area of interest from further analysis, a boundary
around the border trees of the FieldMap survey was constructed, using an α-convex hull [37], i.e.,
a generalization of the convex hull, that was created around the tree coordinates with an α-value
of 30, using the alphahull package [38] implemented in R. An edge of the hull is drawn between two
tree positions if a closed disk of radius 1/α exists that has the property that the tree positions lie on
its boundary. Additionally, a small buffer was added to the α-convex hull with a dilation radius of
1 m to consider the tree radii. All trees detected outside the resulting hull were neglected. The final
assignment of predicted tree positions to corresponding approved coordinates of existing trees was
done using the function pppdist() from R-package spatstat. The function allows to assign two point
matrices with x- and y-coordinates by minimizing the average Euclidean distance between the matched
points by a sub-pattern assignment [36].

The quality of the tree detection was determined by the overall accuracy

acctotal[%] = 100% − (o[%] + c[%]), (3)

Thereby, o is the omission error, i.e., the percentage of trees which were not found by the two-step
clustering algorithm (false negative). c is the commission error, i.e., the percentage of predicted trees,
to which an existing tree could not be assigned (false positive). The detection rate dr is given by
dr[%] = 100% − o[%] and the assignment rate ar is ar [%] = 100% − c[%].

To investigate whether and to which extend edge effects occurred at the border of the stand, the
above described performance measures were calculated for inner sub-windows of the entire test stand,
from which three buffer-zones of width 1, 5 and 10 m have been subtracted (erosion 1 m, 5 m and 10 m
respectively).

2.7. Measurement of DBH

For the measurement of DBH, a circular window of 0.8 m radius was constructed around
every identified tree position, and a layer of 30 cm vertical extent (from 1.15 m to 1.45 m above
the ground-level) was subset from that window. 3D-points were then projected onto the horizontal
plane, resulting in a two-dimensional point cloud with xy-coordinates. In a first step, a circle was
fitted to the 2D-point cloud, using the circular cluster method of Müller and Garlipp [39], which is
based on edge identification by redescending M-estimators (these are non-decreasing near the origin,
but decreasing toward 0 far from the origin). The method is implemented in the R-package edci [40].
We used a dense grid of 25 × 25 starting points (i.e., possible circle centers) with a distance of 3.2 cm
between two neighboring starting points, and 5 starting radii per starting point providing in total
3125 starting values (i.e., combinations of radius and centerpoint) for the optimization algorithm.
The initial diameter estimate (obtained from the Müller and Garlipp algorithm [39]) is henceforward
referred to as DBH1. In a second step, all data points with distance of greater than or equal to 5 cm to
the circular arc associated with DBH1 were removed. Another circle was then fitted to the remaining
point cloud using the least-squares-based algorithm of Chernov [41], implemented in the R-package
“conicfit” [42]. The diameter measurement resulting from step two is referred to as DBH2. In a third
step, all points having a distance greater than or equal to 2.5 cm to the circular arc associated with
DBH2 were removed, and another circle with diameter DBH3 was fitted to the remaining point cloud,
using the same method as for DBH2.

In a fourth step, an ellipse was fitted to the same points as DBH3, using the method of
Fitzgibbon et al. [43], which is extremely robust and efficient, as it incorporates the ellipticity constraint
into the normalization factor, and as it can be solved naturally by a generalized eigensystem. The
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method is implemented in the R-package conicfit [42]. We computed the sum of the ellipse’s two radii
and refer to it as DBH4; as well as twice the quadratic mean of these radii, which we refer to as DBH5.

Due to dense understory vegetation, the visibility of the stem in 1.3 m height was sometimes
limited and the DBH-measurement failed. Therefore, a second layer of 30 cm vertical extent was
selected from 2 m above the DBH (i.e., from 3.15 m to 3.45 m above the ground-level), and five
diameters (UD1, . . . , UD5) were measured analogously to the DBH-measurement . We then estimated
a taper form correction constant of tc = 2.62 cm (=̂ 1.31 cm m−1) from the median of the differences
between the DBH-fits and the corresponding UD-fits, which can be applied to predict DBH from the
upper diameter.

Our procedure generally achieved up to ten diameter measurements per tree (DBH1, . . . , DBH5

and UD1, . . . , UD5), from which one measure was selected as final DBH estimate using the following
decision rules:

1. Remove all DBH estimates larger than 80 cm (DBHx > 80 cm
∨

UDx + tc > 80 cm). Rationale:
according to a priori knowledge, trees with larger DBH do not exist in the test stand.

2. Remove UD estimates larger than the corresponding DBH-estimate (UDx > DBHx). Rationale:
Diameter increasing with increasing height is illogical.

3. Remove all DBHx, having values larger than the corresponding UDx value plus twice the taper
form correction constant (DBHx > UDx + 2 tc). Rationale: A taper of more than 2.62 cm m−1 is
highly unlikely.

4. Given that three or more DBH-estimates, and three or more UD-estimates remain for a specific
tree after steps 1–3: Remove all DBH-estimates for that tree if their standard deviation is larger
than the standard deviation of the corresponding UD-estimates. Rationale: According to a visual
inspection of the fitted circles and ellipses, a high variation between the fits indicates much noise
near the stem, resulting in poor fits.

5. Neglect DBH4 and DBH5 as well as UD4 and UD5 (diameters measured by ellipse fitting) if
the semi-minor axis is smaller than 80% of the semi-major axis. Rationale: According to visual
inspection of the fitted ellipses, strong flattening indicates much noise near the stem, resulting in
poor fits.

6. Select the first available measure from the sequence DBH4, DBH5, DBH1, DBH2, DBH3, UD4,
UD5, UD1, UD2, UD3 after application of steps 1 until 5. Rationale: Diameter measurement in
1.3 m height is favored over measurement in 3.3 m height, as no assumptions regarding tc must be
made, and diameter estimation via ellipse-fits is favored over estimates from circle-fits, as ellipses
may fit circular and elliptical stem cross-sections as well.

7. Apply the taper form correction constant of 2.62 cm m−1 if an UD estimate is finally selected.

If the procedure outlined above does not provide a DBH estimate (either due to convergence
failure of the optimization algorithms, or because all measures were removed as consequence of the
seven decision rules), the tree location proposed by the two-stage clustering algorithm is treated as
false detection, and the erroneous tree location is therefore removed from further analysis.

3. Results

3.1. Two-Step Clustering for the Detection of Tree Positions

Analyses showed that omission error of the two-step clustering approach strongly depends on the
position of the lower limit of the subset layer, which is used for subsampling from stage-one clusters
prior to stage-two clustering. In contrast, position of the upper limit had no relevance (Figure 1A).
If a lower limit of less than or equal to 1.5 m was used, omission error was higher than 50%; but if a
lower limit of 2 m height was applied, omission error decreased to less than 5%. With a lower limit
increasing from 2 m to 10 m, omission error slightly increased up to approx. 10%.
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In contrast, the commission error of clustering-based tree detection strongly depends on both
the upper and lower limit of the layer (Figure 1B). Commission error increased continuously with
increasing upper limit. Commission error decreased by approx. 5 percentage points with lower
limit increasing from 0 m to 1.5 m. With lower limit increasing from 1.5 m to 2 m, commission error
increased by approx. 2.5 percentage points, and with any further increase of the lower limit beyond
2 m, commission error decreased.

The overall accuracy is less than 40% for a lower limit of less than 2 m and became greater
than 70% for higher positions of the upper limit (Figure 1C). A further increase of the layer’s lower
limit of more than 4 m has no significant effect anymore. Overall accuracy is highest for an upper
border of 7.5 m and decreases by approx. one percentage point per each 0.5 m increase of the upper
limit’s position.

Figure 1. Accuracy of two-step clustering. (A): Omission error, (B): Commission error, (C): Overall accuracy.

In summary, subsampling from stage-one cluster centroids with a horizontal layer having lower
limit at 4 m height and upper limit at 7.5 m height showed best performance and was therefore used
for our further analysis.
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3.2. Assignment of Tree Locations and DBH Estimation

DBH estimation was applied to the subset point clouds around 1778 locations proposed as tree
positions from two-stage clustering. Estimation performed successfully in 1762 cases, which were
only regarded as proposed tree locations; the other 16 positions were removed from the stem list.
In total 1686 positions were assigned to FieldMap tree positions meaning that 76 out of 1762 proposed
trees had no correspondence in the FieldMap data achieved by the traditional survey. 27 out of the
76 unassigned tree positions were identified as standing deadwood through the visual inspection in the
point cloud, and 49 unassigned locations were hence regarded as false positive detections. In summary,
1713 out of 1816 trees (1789 “FieldMap trees” plus 27 standing dead trees) were correctly detected,
103 existing trees were missed, and 49 locations were falsely classified as tree position (Table 2). This
represents an overall accuracy of 91.6%, an omission error of 5.7% and a commission error of 2.7%.

Table 2. Number of trees sampled through the FieldMap survey and number of trees detected and
missed by means of terrestrial laser scanning (TLS).

Spruce Fir Larch Pine Beech Other Broad Leaf NA Total

FieldMap sampled 684 259 65 91 678 12 1789
FieldMap corrected 684 259 65 91 678 12 27 1816
correct detections 664 239 62 87 624 10 27 1713

false positive detections 49 49
missed tree positions 20 20 3 4 54 2 103

The mean absolute deviation between the TLS-based automatic DBH estimates and the girth tape
measurements is 2.90 cm, the corresponding RMSD is 4.95 cm, and the corresponding bias is 0.37 cm.
While the correlation coefficient between the measurements and estimates is high (r = 0.90), some
extreme outliers exist, especially for trees having a small manually measured DBH (Figure 2).

0
10

20
30

40
50

60
70

0 10 20 30 40 50 60 70

D
B

H
 e

st
im

at
ed

 fr
om

 T
LS

 d
at

a 
[c

m
]

B

DBH measured with girth tape [cm]

Figure 2. Comparison of DBH values measured manually with girth tape, and those estimated
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The empirical cumulative distribution functions (ECDF) and density functions of DBH values
obtained from the TLS measurements, and those measured with girth tape in the field, are
presented in Figure 3, corresponding descriptive statistics are presented in Table 3. According to
a Kolmogorov-Smirnov-test, the two distributions do not differ significantly (p ≈ 0.13), i.e., despite
the relatively high RMSD, the new algorithms yielded a stand diameter distribution that is statistically
equal to the one derived from the field map survey.
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Figure 3. Distribution of measured and fitted DBH-values. (A): ECDF = empirical cumulative
distribution function (B): density = Epanechnikov kernel density estimation.

Table 3. Descriptive statistics of TLS based DBH estimates and girth tape measurements.

Min. (cm) 1st Quartile (cm) Median (cm) 3rd Quartile (cm) Max. (cm) Mean (cm) SD (cm)

Girth tape measurements 10.0 28.0 36.3 43.5 67.3 35.0 11.4
TLS based estimates 10.0 27.2 35.6 43.0 67.2 34.9 11.3

The basal area of the experimental stand was calculated as 45.7 m2 ha−1 and 46.9 m2 ha−1 based
on TLS and FieldMap survey data respectively, this corresponds to a deviation of 1.2 m2 ha−1 or 2.6%.

3.3. Stand Mapping and Erosion

The map of tree positions (Figure 4) suggests that an edge effect exists and trees were more likely
missed nearby the stand border. Moreover, the assumption that the detection rate might be higher for
bigger trees seems intuitively reasonable.
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Figure 5 presents overall accuracy, commission error and omission error for an inner sub-window
after removal of an outer buffer of varying size (different line types in Figure 5) and if only trees were
considered having a DBH larger than a specific threshold (along the x-axis in Figure 5). Omission error
and commission error decrease with increasing buffer size, and hence, overall accuracy increases with
increasing buffer size. Omission error and commission error almost continuously decrease, and overall
accuracy increases, with a DBH threshold increasing from 10 cm to 20 cm. Performance results do
not change for any thresholds larger than 22 cm. When compared to the entire stand, application of a
buffer of 10 m width increases overall accuracy by approx. 2 percentage points. Overall accuracy had
its maximum of 97.2%, if a 10 m buffer was applied and if only trees were considered having a DBH
larger than or equal to 21 cm.
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4. Discussion

4.1. Subset from Point Clouds with Lower and Upper Limit

We made trials to find possible optima for a lower as well as an upper limit of a horizontal layer
defining a subset from the entire point cloud on which the two-stage clustering algorithm for tree
detection is applied. Because prior knowledge of existing tree locations was used in the optimization,
general application of this procedure is not feasible when tree positions are predicted only from TLS
data. However, results from our trial showed that the optimal layer for finding trees in point clouds
is the space above the natural regeneration or ground vegetation and below the crowns. Thus, the
lower limit should be set to a value high enough, so that most of the noise introduced by ground
vegetation and natural regeneration is omitted. That is the case for a lower border of approx. 3 m in
our study; further upwards shifts of the lower border had only small effects on the overall accuracy
(Figure 1C). The upper border should be set to a value high enough, so that enough sublayers exist,
and low enough, so that noise from tree crowns is minimized. The upper limit of the subset layer was
set to 7.5 m, which corresponds to the 12.3%-quantile of the overstory crown base heights.

We would thus recommend that the field crews should sample some heights from understory
vegetation and natural regeneration as well as from crown base heights of the overstory. As field crews
have a break of approx. 11 min during every single scan (i.e., the time the devices needs to complete
the scan), these additional measurements would consume no extra working time.

Trees with forked trunks might result in double detections if the bifurcation is below the upper
limit of the horizontal layer. We therefore recommend that a bifurcation is treated as the crown base
height during the sampling.

4.2. Transferability to Other Stands

Our novel methodology was so far only tested by means of a single but large and complex
experimental stand. Transferability of the methods and results to other situations will be therefore
examined in our future work. Our method (and TLS in general) is restricted in so far as stems as well as
the reference markers must be visible from the scanner position. This might become problematic, e.g.,
in very dense pole stands or in tropical forests. However, feasibility of our approach was demonstrated
in a complex scenario, with different tree species in a highly vertically structured stand and with
presence of dense natural regeneration. It can be thus expected that the presented methodology should
successfully work also in most forest landscapes in the temperate and boreal zones.

4.3. Estimation of DBH and Basal Area

The algorithm for automatic DBH estimation relies on prior knowledge of the maximum DBH in
the stand, thus it is not feasible if only TLS data is available. However, field crews can use the 11 min
scanning time to measure the DBH of the largest tree in sight. Based on these measurements and an
additional safety margin of, e.g., 20%, the necessary information of the maximum DBH in the stand
can be obtained without extra working time.

Despite the relatively high RMSD between the TLS-based automatic DBH estimates and the girth
tape measurements, stand diameter distributions derived from the two approaches are statistically
equal (Figure 3). The deviation between the basal area calculated from TLS and FieldMap survey data
respectively, was only as 1.2 m2 ha−1 (i.e., 2.5%).

4.4. Verification of Automatically Detected Tree Positions

Due to the relatively long traverses required by the field work, tree coordinates from both
the manual registration with FieldMap and the automatic TLS-based approach were affected by
measurement error. Moreover, the TLS based approach derived the positions in a height of more than
4 m, so that for slanting trees there is a deviation to the position of the trunk base. Thus, a software
algorithm had to be applied to map the point pattern derived from one measurement system to the
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pattern from the other system. As we had no prior experience with the applied automatic tree pattern
algorithm, we have visually checked the mapping results in the 3D point cloud for all existing as well
as proposed tree locations.

4.5. Edge Effects

As overall accuracy increased when results were evaluated on an inner sub-window, edge effects
must have existed. One explanation is that the scanner could not be placed optimally nearby the stand
borders, because restrictions were given by the steep terrain on embankments alongside the forest
roads, which surround the experimental stand. Another possible explanation is the higher density of
understory vegetation at the edges of the stand, due to the higher availability of light near the ground
in this area. Moreover, TLS data collection had been aborted due to sudden rain falls. Therefore, the
two final scans could not be completed. Consequently, there is a region with low TLS point density in
the very northern part of the experimental stand, where the detection rate was very low.

4.6. Comparison with Other Studies

4.6.1. Tree Detection

In existing literature on automatic tree detection and mapping the overall accuracy and the
detection rate are commonly used as performance measure. Our method achieved an overall accuracy
between 91.6% for all trees having a DBH greater than or equal to 10 cm and 97.2% for trees with DBH
greater than or equal to 21 cm standing on an inner sub-window after removal of an 10 m wide buffer
zone; these coincide with detection rates of 94.3% and 98.2%, respectively.

The highest detection rate so far provided in existing literature is 100% reported by Maas et al. [44];
the corresponding overall accuracy is 92.8%. However, those results are based on one single 0.07 ha
sample plot, containing only 14 trees (all of them 140 year old beeches), representing a very low
tree density of only 200 trees ha−1. Other studies reported overall accuracies (the metric is called
“completeness” in that reference) between 86.9% and 89.0% for dense but homogeneous bamboo
stands [45] and detection rates of 90.4% in boreal coniferous forests [26] (the metric is called “recall” in
that reference). Comparison of our multi-scan TLS based overall accuracies with measures obtained
by single-scan TLS or airborne laser scanning (ALS) may be criticized as unfair, because the latter
data are associated with lower measurement intensity. Nevertheless, the comparison is useful, as
it demonstrates future capability of high resolution Lidar technology applied in forest monitoring
practice in general.

Single-scan TLS is a time and cost efficient approach, however, it is limited to small sample plots,
as the detection accuracy drastically decreases with increasing scanner to tree distance [46–48]. While
distance sampling based approaches are able to correct for the non-detection, regarding estimates
of the number of trees and the corresponding volume per ha [46,47], the observed tree pattern is
thinned and remains incomplete. Thus, single-scan TLS cannot be applied for the mapping of entire
forest stands.

Liang et al. [16] provide a comprehensive overview of detection rates reported in former studies.
Hereby, single scan TLS generally yielded low detection rates between 22.0% and 72.3% [48–55].
However, one reference [44] reported extraordinary high detection rates between 86.7% and 100% (with
corresponding overall accuracy of 73.3–96.5%) on three circular 0.07 ha plots in low-density forests.

ALS is even more time efficient than single scan TLS, as very large areas can be sampled in a very
short time. However, the possible accuracy of ALS based tree detection is still insufficient for mapping
experimental stands. As an example, Eysn et al. [56] reported omission errors between 42% and 65%
and commission errors between 22% and 104%, while Dalponte et al. [57] reported overall accuracies
(the metric is called accuracy index in that reference) between 30% and 44%.
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4.6.2. DBH Measurement

Existing studies on DBH measurement from TLS have reported RMSD between measured and
fitted DBH values ranging from 0.7 cm to 7.0 cm, and a corresponding bias between −1.6 cm and
1.6 cm [44,48,51,55]. This is on par with the results we could achieve with our new approach (RMSD =
4.95 cm, and bias = 0.38 cm). Our results did not outperform those from other existing applications,
but our proposed approach has a relevant extra feature, as DBH can be estimated even under limited
sighting conditions, when it cannot be measured directly.

5. Conclusions

We showed that TLS in multi-scan mode can be successfully applied for the automatic mapping of
forest stands. The overall accuracy of up to 97.2% justifies operational use of TLS in forest monitoring.

Due to the fact that the highest overall accuracy was achieved for trees with DBH greater than or
equal to 21 cm, we are confident that TLS can be applied in forest mensuration practice in the near
future, because these larger trees represent the majority of growing stock volume.

Stem maps derived from TLS-based tree detection can be further used to collect additional
information (e.g., tree species, health status, etc.) or to correct erroneous tree detections and DBH
fits during traditional field surveys. Thus, TLS may not completely substitute traditional fieldwork,
but will contribute to drastically enhance labor efficiency: TLS related field work took approx. one
person-week, whereas the FieldMap survey took 24 person-weeks. Despite the need for additional
working time for co-registration of the scans, TLS offers a great cost saving potential.

The complete workflow is based on established software products, there was no need for novel
developments of programs or interfaces. Raw scanner data are manually co-registered in FARO
Scene and the resulting point cloud is exported in standard xyz-format. Thus, data obtained with
other instruments or co-registered within other software products, can also be used for further
processing. All scripts for further processing are written in R, and the LASTools are directly invoked by
system commands from within these R-scripts. We successfully tested our workflow under Windows
(Microsoft Corporation, Redmond, Washington, USA) and GNU/Linux (Free Software Foundation,
Boston, Massachusetts, USA) operating systems.

Long-term storage of the TLS point-cloud datasets should carefully be planned, as the required
amount of storage capacity increases by six orders of magnitude compared to traditional measurements
(the point-cloud of our experimental stand needs approx. 114 GB of storage capacity, whereas the
FieldMap survey data just need 163 KB). To ensure long term data availability, we strongly recommend
the use of standard and open data formats (like xyz-format), even though the necessary storage capacity
is higher than for proprietary formats.

Another possible application of the new methods is change detection on already mapped stands.
Using the automated tree detection and point assignment algorithms, it should be possible to detect
the drop out of trees caused by harvesting or natural hazards, this would be a great tool for permanent
monitoring of experimental stands.
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Table A1. Step-by-step workflow and applied software functions and parameters.

Step No. Step/Sub-Step Software Package/Function Parameters

1 Co-registration of scans
FARO Scene

2 Export in .xyz format

3 Import data

LAStools

txt2las

4 Coordinate transformation las2las - rotate_xy −8.25 0 0
- reoffset −3329.372 282345.7 0

5 Thinning the point cloud lasthin - keep_every_nth 2

6 Splitting point cloud into 1087 tiles lastile - tile_size 10
- buffer 2

7 Filtering lasnoise - step 0.35
- isolation 850

8
Differentiate between ground points

and non-ground points.
Normalize relative to the DEM

lasground

- step 1
- spike 0.4
- bulge 0.5
- offset 0.1
- replace z

9 Re-merge the tiles and remove the
ground points lastile - drop_classification 2

10 Splitting point cloud into 155 tiles lastile - tile_size 25
- buffer 5

11 Export in txt format las2txt

12 Import data

R

data.table fread()

13a

Stage one
clustering

Estimate cut off
distance

densityClust

estimateDc() NeighbourhoodRateLow = 0.005
NeighbourhoodRateHigh = 0.01

13b Calculate local
density densityClust() Dc = [estimated dc from

estimateDc()]

13c Find cluster
centroids findClusters() rho = 2

delta = 0.5

14a

Stage two
clustering

Calculate local
density

densityClust
densityClust() Dc = 0.04

14b Find cluster
centroids findClusters() rho = 2

delta = 0.5

14c

Join clusters
with a distance
of less than 50

cm

spatstat connected.ppp() R = 0.5

15a Assignment of
tree locations

Construct
α-convex hull alphahull ahull() Alpha = 30

15b Point
assignment spatstat pppdist() Cutoff = 1.5

16a

Diameter
estimation

DBH
edci circMclust()

Nx = 25
ny = 25
nr = 5

conicfit
LMcircleFit

EllipseDirectFit

16b Upper Diameter
edci circMclust()

Nx = 25
ny = 25
nr = 5

conicfit
LMcircleFit

EllipseDirectFit
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Abstract: This study develops a modeling framework for utilizing the large footprint LiDAR
waveform data from the Geoscience Laser Altimeter System (GLAS) onboard NASA’s Ice, Cloud,
and Land Elevation Satellite (ICESat), Moderate Resolution Imaging Spectro-Radiometer (MODIS)
imagery, meteorological data, and forest measurements for monitoring stocks of total biomass
(including aboveground biomass and root biomass). The forest tree height models were separately
used according to the artificial neural network (ANN) and the allometric scaling and resource
limitation (ASRL) tree height models which can both combine the climate data and satellite data to
predict forest tree heights. Based on the allometric approach, the forest aboveground biomass model
was developed from the field measured aboveground biomass data and the tree heights derived
from two tree height models. Then, the root biomass should scale with the aboveground biomass.
To investigate whether this approach is efficient for estimating forest total biomass, we used Northeast
China as the object of study. Our results generally proved that the method proposed in this study
could be meaningful for forest total biomass estimation (R2 = 0.699, RMSE = 55.86).

Keywords: forest aboveground biomass; root biomass; tree heights; GLAS; artificial neural network;
allometric scaling and resource limitation

1. Introduction

As the principal part of terrestrial ecosystems, forest ecosystems hold approximately 80% of
the terrestrial aboveground and below-ground biomass, and play very important roles in the global
carbon cycle and climate change [1–3]. Since the temperate and boreal forests play a crucial role as
atmospheric CO2 sinks, more attention has been paid to climatic warming in mid-and high-latitudes
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than in low-latitudes [4–6]. Many studies have shown that the lack of accurate forest biomass maps
has generated a large uncertainty in forest carbon stocks of temperate and boreal forest regions [7–9].
The accurate estimation of forest biomass is not only necessary for improving the estimation of carbon
pools, but also very important for forest management and understanding the response to climate
change [10–13]. At the same time, the estimation of root biomass is suggested to be helpful for
improving the estimation of terrestrial carbon stocks [14–16]. A large number of biomass estimation
methods that involve extrapolation of biomass measurements in sufficient number of field sample
plots can achieve very good estimation results for small forest areas [17,18]. However, there are
some problems related to obtaining reliable forest biomass estimation results in large scale studies,
because of the lack of field data, inconsistency of data collection methods, and less consideration of
root biomass [19]. The forest biomass estimation based on satellite remote sensing is considered as a
fairly advantageous approach in large scale studies because of wide and synoptic data [4,20,21]. As
there is no remote sensing instrument developed to have the capacity of measuring biomass directly,
the ground inventory data is required for building relationships between remote sensing parameters
and biomass. Although passive optical satellite data can be used for biomass estimation across a
variety of spatial and temporal scales due to its inexpensive technology, the low saturation level of
vegetation spectral bands has had a serious effect on biomass estimation [22–24]. LiDAR is often more
accurate in predicting forest structural parameters because its signal does not saturate in high-biomass
forests [25,26]. Especially, airborne LiDAR can obtain the forest biomass estimation results with
high precision. However, the high acquisition costs of large observation data bring limitations of its
application at large scale region [27,28]. The Geoscience Laser Altimeter System (GLAS), onboard the
Ice, Cloud, and land Elevation Satellite (ICESat), is a spaceborne LiDAR system which can provide
the global recording of full waveforms over large footprints [29,30]. The GLAS data can be used for
estimating forest tree heights and biomass by associating field plot data, because it has the capability
of obtaining the vertical structural information. However, relatively sparse GLAS footprints could not
provide the continuous forest biomass distribution image without the help of other remote sensing
datasets [30–32]. Therefore, it is necessary that multi-sensor datasets synergy is considered to estimate
forest biomass at the regional scale.

The northeast part of China (NE China) is the most important forest region in China. NE China
possesses the largest contiguous forest land area in China, accounting for 40% of total country forest
biomass [33,34]. The forest of NE China was exploited much later than eastern and southern parts of
the country. It has experienced drastic climatic warming since the 1980s, which brought a significant
growth rate in forest biomass and productivity [35,36]. These changes also suggested that it is necessary
to obtain the accurate forest biomass estimation.

In this study, we explored the capabilities of satellite remote sensing for mapping forest biomass in
NE China region. The forest tree heights were estimated using artificial neural network (ANN) method
and the allometric scaling and resource limitation (ASRL) approach by combining the climate data
and satellite data, including ICESat/GLAS data, MODIS land surface products, and some ancillary
datasets [37,38]. The potential information on root-shoot biomass allocation was studied using the
field biomass measurements, and the best forest biomass estimation model was established.

2. Materials and Methods

2.1. StudyArea

The research area of this study is NE China, which is defined here to extend longitudinally from
115◦37′ E to 135◦05′ E and latitudinally from 38◦43′ N to 53◦34′ N, with a total area of 1.66 × 106 km2

(Figure 1). NE China in this study mainly includes Liaoning (LN), Jilin (JL), and Heilongjiang (HLJ)
provinces and four leagues (an administrative division) in Eastern Inner Mongolia Autonomous region
(IMA) [16].
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The study area encompasses all the major forest types in Northeast Asia. The major forest
types mainly include cold temperate coniferous forest, temperate coniferous and broad-leaved forests.
The forested land area in NE China is about of 50.5 million ha, accounting for the largest area of
natural forests in the country. The elevation in most part of NE China is below 400 m (Figure 1).
The DaXing’anling Mountain, Xing’anling Mountain and Changbai Mountain have relatively high
elevation. The precipitation in NE China generally ranges from 300 mm to1000 mm because of the
monsoon climate of medium latitudes. The annual mean temperature ranged from −4 to 11.5 ◦C.

Three forest zones are covered from south to north in NE China, including warm temperate
deciduous broadleaf forest zone, temperate coniferous and broadleaf mixed forest zone, and boreal
forest zone [16,39].

Figure 1. The study area and the biomass data collected in this study. These data are distributed well
across the forest regions of the study area.

2.2. Datasets

2.2.1. Climate Data

The climatic variables used as the inputs of the two tree heights models in this study
include precipitation, temperature, relative humidity, wind speed, and incoming solar radiation.
The precipitation and temperature were the inputs of ANN tree heights model. These five climatic
variables which determine the available and evaporative flow rate of trees were inputs of ASRL model.
All these climate data were obtained from the China Meteorological Data Sharing Service System
(CMDSSS) which provides the annual meteorological records [40,41].

In this study area, the observations spanning over recent 30 years (1978–2007) from total 118
meteorological stations were collected, comprised of annual total precipitation, average temperature,
relative humidity, wind speed, and solar radiation time. We further interpolated these climatic
variables to generate the continuous gridded maps of annual average climatic variables at 1km spatial
resolution by using ordinary kriging [42].Then, we averaged the continuous gridded maps of annual
average precipitation and temperature from 2004 to 2006 in order to obtain mean precipitation and
temperature maps during 2004–2006 as inputs of ANN tree heights model, respectively. Similarly, the
mean values of five annual average climatic variables during 1978–2007 were obtained to be the inputs
of ASRL model.
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2.2.2. Land Surface Reflectance

The MODIS nadir bidirectional reflectance distribution function adjusted reflectance (NBAR)
product which is named as MCD43B4 provides the land surface reflectance data at a spatial resolution
of 1 km [43]. The NBAR product represents the best characterization of surface reflectance over a
16-day period. In this study, we selected the seven spectral bands of MCD43B4 data in growing season
from 2004 to 2006 as the inputs of ANN tree heights model. The seven bands of MCD43B4 data used in
this study include three visible bands (460, 555, and 659 nm) and four near-infrared bands (865, 1240,
1640, and 2130 nm). The MCD43B4 product can cover the study region by selecting the images with
the scene orbiter h25v03, h25v04, h26v03, h26v04, h27v04, and h27v05.

2.2.3. Ancillary Data

In this study, there are two types of ancillary data. The first set of ancillary data was used as
the inputs of ASRL-based tree height model, and consisted of the Advanced Space borne Thermal
Emission and Reflection Radiometer (ASTER) Global DEM (GDEM V2, spatial resolution of 30 m),
and the eight-day composites of the post-processed Moderate Resolution Imaging Spectro radiometer
(MODIS) leaf area index (LAI) products (1 km spatial resolution) [43]. We further calculated the mean
value of LAI in summer (June to August, the approximate growing season) for the time period from
2003 to 2006.The mean value of LAI was calculated by using the Equation (1):

LAIavg =
∑n

i = 1 ∑m
j = 1 LAI8 − day,i,j

m × n
(1)

Here, LAIavg is the average LAI (June to August months from 2003 to 2006) and LAI8−day,i,j is the
eight-day LAI product for jth week (m = 12) of ith year (n = 4).

In addition, the second set of ancillary data was used to identify forested lands, and consisted
of land cover (LC) and vegetation continuous field (VCF) [44]. We selected the International
Geosphere-Biosphere Programme (IGBP) of LC product (MCD12Q1, 500 m grid) and tree cover
percent of VCF product (MOD44B, 250 m grid) of NE China for the year 2005 [45]. The land cover
belonging to one of the five forest classes per the IGBP, and consisting of more than 50% tree cover per
the VCF product were defined as forest land.

2.2.4. Tree Height and Biomass Measurements

GLAS-Derived Tree Heights

GLAS-Derived Tree Heights were used as the standard forest tree heights for training the ANN
model and optimizing the parameters of ASRL based tree height model in this study.

The ICESat/GLAS is designed to obtain characteristics of the earth surface structures in three
dimensions with high accuracy [26,38].

The Release-33 of GLAS laser altimetry data available from the National Snow and Ice Data
Center [46] was used in this study. GLAS waveform data provide information on land elevation and
vegetation cover within its ellipsoidal footprints about 72 diameters at about 170 m interval along the
sub-satellite track [47,48]. National Snow and Ice Data Center released 15 GLAS products.

Amongst various altimetry products of the Release-33, we selected GLA14 product (GLAS Level-2
Land Surface Altimetry product, National Snow and Ice Data Center (NSIDC), Boulder, CO, USA) for
the maximum tree height retrieval from May to October (2003–2006).

The GLAS waveform data are generally affected by the following factors: atmospheric forward
scattering, signal saturation, background noise (low cloud), and the topographic slope gradient effects.
In order to obtain the best GLAS data waveform for deriving accurate tree heights, the GLAS footprints
screening is needed. At the same time, GLAS footprints over non-forest should be filtered. The GLAS
footprints processing steps for selecting valid GLAS waveforms can be depicted as follows [37,38,47,48].
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Firstly, the GLAS data of the approximate growing season from 2003 to 2006 were considered. Then,
the GLAS data were further screened by applying the atmospheric forward scattering filters, signal
saturation filters, background noise level correction filters, land cover mask conditions filters, and
topographic slope gradient filter. Based on the procedure of GLAS footprints filtering, the best GLAS
data waveform was selected.

In order to obtain the most accurate GLAS tree heights, the topographic correction approach of
GLAS-derived tree heights was used according to the Equation (2) [37,38,41,47–50]:

HGLAS =
(

DSigBegO f f − DgpCntRngO f f

)
− dGLAS × tanθ

2
(2)

where HGLAS is the GLAS-derived tree heights, DSigBegO f f represents the location the GLAS
full-waveformbeginning signal, and DgpCntRngO f f represents the location of the ground peak, dGLAS is
the GLAS footprint size, and θ is the topographic slope [40,48–52].

Field-Measured Tree Biomass

In this study, 515 field measured tree biomass measurement plots were compiled from NE China
region. All these plots were compiled from literature by Wang [16]. For each plot, the total tree biomass,
shoot (stem, branch and leaf) biomass and root biomass were calculated.

In these plots, 85 plots were sampled by Wang [16]. The shoot and root biomass for the plots
were estimated with DBH (and tree height) using allometric relation-ships developed by Zhu [53].
In addition, there were 161 plots obtained from the data base of Luo [54], and the rest of other plots
were collected from 59 sources [16]. Since there are different numbers of effective records on the total
biomass, shoot biomass and root biomass in Wang’s database, the plots which include all the useful
records on the total biomass, shoot biomass, and root biomass were considered. Finally, 432 effective
plots with valuable information of total biomass, shoot biomass and root biomass, were selected from
the 515 plots to build and validate the biomass model. The detailed statistics information of these
records is shown in Table 1.

Table 1. The statistical information of the field-measured biomass.

Statistics Shoot Biomass(t/ha) Root Biomass(t/ha) Total Biomass (t/ha)

Maximum Value 369.1 106 432.4
Minimum Value 8.8 1.9 10.7

Mean Value 113.1044715 26.62682927 139.7052846
Variance 6088.720266 389.2960119 9226.870054

2.3. Methodology

We developed the approach of estimating forest biomass by combining multisource satellite data,
meteorological data and field measured forest plot data.

Our analysis consisted of two main parts, (a) predicting the tree heights by using two tree heights
models; (b) developing the biomass model for estimating forest biomass in study region (Figure 2).
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Figure 2. The approach total flowchart of this study.

This section describes tree height estimation methods used in this study and forest
biomass modeling.

2.3.1. Tree Height Estimation Methods

Artificial Neural Network (ANN) Tree Heights Model Approach

The artificial neural network (ANN) tree heights model was proposed by Ni [38] for mapping the
forest tree heights over China continent. We employed the ANN tree height model to obtain the tree
heights in NE China. The inputs of ANN tree heights model consisted of 11 parameters, including
climate variables (temperature, precipitation), ancillary data (land cover class, vegetation cover
fraction), and seven multispectral bands of MODIS NBAR data. With the help of back-propagation
(BP) process algorithm, the ANN tree height models was trained by using the GLAS-derived tree
heights. The training and validation data pairs for each pixel of study region were selected according
to the most similar climatic condition factor discipline according to described by Ni [38]. For each
target pixel, one ANN-based tree heights model was trained by using 15 pairs of training data, while
five pairs of validation data were used to prevent the over-fitting of the model. When the ANN-based
tree heights model was trained well, it was used for estimating the forest canopy height over the
target pixel.

Allometric Scaling and Resource Limitations (ASRL) Model Approach

We employed the ASRL model approach developed by Sungho et al. [41] to obtain the tree heights
in NE China. The ASRL is a mechanism model based on a combination of the allometric scaling
laws and local resource availability [41]. It can predict the potential maximum tree heights. A key
hypothesis of the ASRL model is that a tree maintains its evaporative flow by collecting sufficient
resources (water and light) while satisfying its basal metabolic needs, in turn, limiting maximum
growth. The mechanism has a quantitative expression by the simple inequality (Q_p ≥ Q_e ≥ Q_0).
Here, the Q_p means the available flow rate, Q_e refers to the actual flow rate of a tree, and Q_0
represents the basic or required metabolic flow rate of a tree. Shi et al. [55] and Sungho et al. [41]
proposed the parametric optimization methods of the ASRL model in order to obtain the actual tree
heights. Shi et al. [55] recommend a parametric optimization, which can iteratively adjust three ASRL
parameters to minimize disparities between the reference and modeled heights, and help improving
the overall prediction accuracy. In this study, we applied the same processes to optimize ASRL model
and obtain the actual tree heights in NE China.
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2.3.2. Forest Biomass Modeling

Zianis and Mencuccini [56] developed an allometric approach to estimate aboveground forest
biomass (M) by regarding M and corresponding tree diameter at breast height (DBH). The method can
be described from the following allometric equation [34] (Equation (3)):

M = a × DBHb (3)

where a is the allometric intercept and b is the allometric exponent. Based on the scale relationship
between tree height (H) and DBH, the aboveground treebiomass estimation equation can be rewritten
as Equation (4):

M = a × Hb + c (4)

where c is a constant, a is the allometric intercept and b is the allometric exponent.
In this study, we have used the field measured biomass data and forest tree heights which were

calculated by averaging the ANN-derived tree heights and ASRL tree heights to build the least-square
regression model to obtain the coefficients of Equation (4).

In order to obtain the forest root biomass and the total biomass, we developed the allometric
relationship equation based on the field-measured tree aboveground biomass and root biomass.
Figure 3 shows the fitted allometric relationship equations described in Equations (3) and (4).

(a) (b) 

Figure 3. The allometric relationships of forest tree heights, aboveground biomass and root biomass.
(a) The allometric relationship between field aboveground biomass and height; and (b) the allometric
relationship between the field aboveground biomass and root biomass.

3. Results

3.1. Canopy Heights Mapping in NE China by Two Tree Height Methods

Following the artificial neural network (ANN) tree height model, a contiguous map of canopy
heights with a spatial resolution of 1 km in NE China region was generated. Figure 4a shows the tree
height map derived from the ANN model in NE China.

Similarly, a contiguous map of the tree heights over NE China was generated from the optimized
ASRL mode by using the gridded climate and ancillary data mentioned in Section 2.2. This map
(Figure 4b) closely represents the spatial distribution of tree heights(mean = 24.37, SD = 9.35) in NE
China regionwith the spatial resolution of 1 km, showing a high correspondence to the spatial pattern
of ANN tree heights (mean = 26.66 m, SD = 10.13).In order to investigate the accuracy of the two tree
heights maps, we tested the tree heights by comparing with the GLAS-derived tree heights according
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to the validation methods from Ni [37] and Ni [38], respectively. The validation results (R2 = 0.811,
RMSE = 4.79; R2 = 0.664, RMSE = 5.24) demonstrate the effectiveness of the ANN- and ASRL-based
tree heights models.

From the estimation result of the ANN and ASRL tree heights in NE China, we can see that
relatively tall trees were growing in the eastern research areas. The trees distributed in Northwestern
China show obviously lower heights than those in eastern regions.

(a) (b) 

(c) (d) 

Figure 4. The forest tree heights based on ANN and ASRL methods respectively. (a) ANN tree heights;
(b) ASRL tree heights; (c) ANN based tree heights validation; (d) ASRL based tree heights validation.

3.2. Forest Biomass Estimation

We firstly estimated the forest aboveground biomass by using the allometric approach described
in Section 2.3.2. Based on the forest aboveground biomass model described in Figure 3a, a contiguous
map of forest aboveground biomass at a spatial resolution of 1 km was generated (Figure 5a).

In addition, the forest root biomass was estimated according to the relationship equation described
as Figure 3b. The total biomass was calculated by summing the forest aboveground biomass and root
biomass. The root biomass and total biomass map can be seen from the Figure 5c,e.

The estimation result shows that the forest aboveground biomass, root biomass, and total biomass
have the same density distribution trend in the research region. The forests in the eastern research
region have relatively large forest biomass density. The low biomass density was distributed in
northwestern research region. The parts of the southeastern NE China (Eastern Liaoning Province)
show the largest biomass density in the research area.
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(a) (b) 

 
(c) (d) 

(e) (f) 

Figure 5. The estimation and validation results of forest aboveground biomass, root biomass, and total
biomass in NE China region.(a) Forest aboveground biomass; (b) estimation validation of aboveground
biomass; (c )forest root biomass; (d) estimation validation of root biomass; (e) forest total biomass; and
(f) estimation validation of total biomass.

4. Discussion

A method to assess the forest biomass in NE China forests region was developed by combining
satellite LiDAR data, optical remote sensing data, and field measurements. Due to the great difficulties
in measuring root biomass for forest total biomass estimation, it is the primary method for estimating
root biomass by building the allomeric relationship with aboveground biomass [54].
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Based on the field measured forest aboveground biomass and root biomass, we obtained a
relatively good allometric model for predicting root biomass (R2 = 0.761) in the study area. However,
there are some factors that influence the precision of root biomass prediction from forest aboveground
biomass, including climate factors, and forest types. Especially at large scale, varying climate factors
and forest types might cause the different allometric relationships between aboveground biomass and
root biomass. Similarly, allometric models of aboveground biomass estimation from tree heights are
also influenced by the climate factors and forest types.

In this case, different allometric models are necessary in the ecological zones which differ
according to the climate factors and forest types. Generally, these allometric models would be
optimized in these ecological zones. Due to the lack enough fields measured forest biomass and
low resolution forest types data, in this study, we just used the united model which ignored the climate
factors and forest types.

As shown in Figure 5, most of predicted and field biomass has good linear relationship, while there
is a small quantity of points scattered out across the isoline. Although the validation result of forest
biomass shows that our allometric metrics are efficient, some uncertainties occurred in the validation
(Figure 5). The scattered points might be caused from the combination of several influenced factors,
such as forest biomes, different measurement rules of field biomass data from various studies, and the
propagation of errors from tree heights and biomass estimation models. The following points could be
improved for higher precision of the forest biomass estimation in the future. Firstly, more effective
geostatistics interpolation methods should be used for obtaining finer climate factor raster data,
especially in the mountain areas which lack enough meteorological stations. Secondly, it is necessary
to collect more field measured forest plots data, including the tree heights, aboveground biomass, root
biomass, and total biomass. Finally, the allometric models for estimating aboveground biomass from
tree heights and predicting root biomass from aboveground biomass should be respectively developed
in the ecological zones which are divided based on the climate data and the forest type data.

5. Conclusions

We used two tree height models to obtain the forest tree heights map of NE China by combining
GLAS data, meteorological data and optical remote sensing data. Based on the collected field measured
forest plots data, we developed the allometric models for predicting the aboveground biomass and
root biomass. Then, the forest total biomass map was generated by summing the aboveground biomass
and root biomass.

The assessment of the three forest biomass map using field measured forest plots data was
performed separately. At the forest sites level, high correlation appeared in the estimation results of
aboveground biomass and total biomass (R2 = 0.695, RMSE = 50.94; R2 = 0.699, RMSE = 55.86).
The estimation results of root biomass showed, relatively, a slightly lower correlation with the
field measured data (R2 = 0.695, RMSE = 12.22). In summary, this study demonstrated that forest
aboveground biomass and root biomass can be estimated with relatively high precision by combining
satellite LiDar data, MODIS data, and climate data in regional scale.

This study highlights the potential to estimate forest total biomass in conjunction with novel and
efficient methods, such as ANN tree heights metrics, ASRL-based tree height models and allometric
scaling relationships among tree heights, forest aboveground biomass, and root biomass. Combinations
of these techniques were able to quantify the forest structure parameters and biomass. Application of
the approach proposed in this study at the national scale would provide an opportunity to understand
carbon sinks of all forest land in China. These relatively fine-scaled, spatially-explicit forest biomass
maps can provide critical information for forest carbon cycle studies and forest resource management.
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Abstract: The operational Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index
(LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) algorithm
has been successfully implemented for Visible Infrared Imager Radiometer Suite (VIIRS) observations
by optimizing a small set of configurable parameters in Look-Up-Tables (LUTs). Our preliminary
evaluation showed reasonable agreement between VIIRS and MODIS LAI/FPAR retrievals. However,
there is a need for a more comprehensive investigation to assure continuity of multi-sensor global
LAI/FPAR time series, as the preliminary evaluation was spatiotemporally limited. In this study, we
use a multi-year (2012–2016) global LAI/FPAR product generated from VIIRS and MODIS to evaluate
for spatiotemporal consistency. We also quantify uncertainty of the product by utilizing available
ground measurements. For both consistency and uncertainty evaluation, we account for variations in
biome type and temporal resolution. Our results indicate that the LAI/FPAR retrievals from VIIRS
and MODIS are consistent at different spatial (i.e., global and site) and temporal (i.e., 8-day, seasonal
and annual) scales. The estimate of mean discrepancy (−0.006 ± 0.013 for LAI and −0.002 ± 0.002 for
FPAR) meets the stability requirement for long-term LAI/FPAR Earth System Data Records (ESDRs)
from multi-sensors as suggested by the Global Climate Observing System (GCOS). It is noteworthy
that the rate of retrievals from the radiative transfer-based main algorithm is also comparable between
two sensors. However, a relatively larger discrepancy over tropical forests was observed due to
reflectance saturation and an unexpected interannual variation of main algorithm success was noticed
due to instability in input surface reflectances. The uncertainties/relative uncertainties of VIIRS and
MODIS LAI (FPAR) products assessed through comparisons to ground measurements are estimated
to be 0.60/42.2% (0.10/24.4%) and 0.55/39.3% (0.11/26%), respectively. Note that the validated LAI
were only distributed in low domains (~2.5), resulting in large relative uncertainty. Therefore, more
ground measurements are needed to achieve a more comprehensive evaluation result of product
uncertainty. The results presented here generally imbue confidence in the consistency between VIIRS
and MODIS LAI/FPAR products and the feasibility of generating long-term multi-sensor LAI/FPAR
ESDRs time series.
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1. Introduction

Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation absorbed by vegetation
(FPAR) are well-known as two essential variables to describe the exchange of fluxes of energy, mass
(e.g., water, nutrients, and carbon dioxide) and momentum between the surface and atmosphere [1].
LAI, which is generally defined as one-sided green leaf area per unit ground area in broadleaf canopies
and as the projected needle leaf area in coniferous canopies [2], is extensively used to characterize
the structure and function of vegetation [3]. FPAR measures the fraction of radiation that leaves
absorb in the 0.4–0.7 μm spectrum and it thus evaluates the energy absorption capacity of a canopy [4].
For effective use in most global models of climate, biogeochemistry and ecology, the long-term
LAI/FPAR products have been generated from satellite remote sensing [2,5].

In particular, the ground-breaking Earth Observing System (EOS) Moderate Resolution Imaging
Spectroradiometer (MODIS) sensors onboard Terra and Aqua satellites have provided an opportunity
for opening a new horizon of global LAI/FPAR products [2]. The latest version (Collection 6, C6)
of global LAI/FPAR products from MODIS (since February 2000) is freely available through the
Land Processes Distributed Active Archive Center (LP DAAC), and is widely used by the scientific,
public, and private user communities [5–7]. However, both Terra and Aqua MODIS have far exceeded
their design life, and they will be likely terminated in the early 2020s [8]. In the context of MODIS
termination, the Visible/Infrared Imager Radiometer Suite (VIIRS) instrument onboard the Suomi
National Polar-orbiting Partnership (S-NPP) and Joint Polar Satellite System (JPSS) has inherited
the scientific roles of MODIS to provide the long-term Earth System Data Records (ESDRs) [9].
Thus, developing consistent LAI/FPAR dataset from these new sensors to continue the MODIS
ESDR is a high priority.

Due to sensor-specific spatial resolution and spectral band composition, it is unreliable to directly
apply the MODIS algorithm to VIIRS observations [10,11]. With theoretical basis of “canopy spectral
invariants” that permits an accurate decoupling of the structural and radiometric components of
modeled and measured spectral Bi-directional Reflectance Factors (BRFs) [12–14], the MODIS algorithm
has been successfully implemented with VIIRS by optimizing a small set of configurable parameters in
Look-Up-Tables (LUTs) [11,15]. The preliminary evaluation shows reasonable agreement (global mean
difference is 0.024 and 0.029 in January and July of 2015, respectively) between LAI/FPAR retrievals
from VIIRS and MODIS [11]. Nevertheless, a comprehensive assessment of the VIIRS product using
multi-year and global retrievals is still needed to assure the continuity with the MODIS time series.

Here, we have generated VIIRS LAI/FPAR products that cover the first five-years (2012–2016)
of the S-NPP mission era, and we used them to achieve the following objectives: (1) to evaluate
the spatiotemporal consistency between the latest version of VIIRS (Version 1, V1) and MODIS (C6)
products; (2) to quantify the uncertainty of the VIIRS and MODIS products using available ground
measurements; and (3) to understand the observed inconsistency between LAI/FPAR retrievals
from two sensors. This paper is organized as follows. Section 2 describes the LAI/FPAR retrieval
algorithm and its optimization for VIIRS sensor. Section 3 introduces the data and methods used in
this study. Section 4 presents the evaluation results of VIIRS products. Section 5 discusses the reasons
for the inconsistency between MODIS and VIIRS products and future developments of VIIRS product
evaluation. Finally, Section 6 provides the concluding remarks on this study.
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2. LAI/FPAR Retrieval Algorithm

2.1. Algorithm Description

The heritage algorithm, developed for MODIS, includes BRFs in the red and Near Infra-Red (NIR)
bands, their uncertainties, sun-sensor geometry and a biome classification map. The biome map is
required here as a priori-knowledge to reduce the number of unknown parameters of the “ill-posed”
inversion problem [2]. The operational LAI/FPAR algorithm includes a main algorithm that is based on
a three-dimensional (3D) Radiative Transfer (RT) equation. By describing the photon transfer process,
this algorithm links surface spectral BRFs to both structural and spectral parameters of the vegetation
canopy and soil [16,17]. Given atmosphere-corrected surface spectral BRFs and their uncertainties,
the algorithm finds all candidates of LAI and FPAR by comparing observed and modeled BRFs within
biome-specified thresholds of uncertainties that are stored in LUTs. Then, the mean and standard
deviation of all LAI/FPAR candidates are reported as the retrieval and its dispersion, respectively.
The main algorithm may fail to localize a solution if uncertainties of input BRFs are larger than specified
threshold values or due to cloud effects or too low sun/view zenith angles. In this case of a failed
solution, the back-up algorithm based on the LAI/FPAR-NDVI relationships for each biome is used to
retrieve LAI/FPAR with relatively poor quality [2,13]. Finally, the LAI/FPAR product is generated over
the composition period (8-day/4-day) using the daily products. In detail, the compositing algorithm
includes two steps: (1) the main algorithm retrievals are first selected (if none available, back-up
retrievals are selected); (2) the maximum FPAR and the corresponding LAI are selected as the final
product value.

2.2. Generation of VIIRS-Specific LUTs

Although VIIRS was designed to be quite similar to MODIS, the differences between these two
sensors cannot be ignored [18,19]. For example, the relative spectral responses (RSRs) of MODIS
and VIIRS sensors are similar at NIR bands but quite different at red bands (VIIRS has a broader
bandwidth than MODIS) [11]. Moreover, VIIRS has a wider swath of 3000 km with a view angle
between ±56.28◦ than MODIS’s swath of 2330 km with a view angle between ±55◦ [20], resulting
in near-constant resolution of VIIRS from the nadir to the edge of the scan [21]. Additionally, the
native instantaneous field of view (IFOV) of VIIRS and MODIS red/NIR bands are 375 m and 250 m,
respectively. All discrepancies between VIIRS and MODIS have potential errors for their measured
BRFs. Therefore, the generation of consistent LAI/FPAR products from MODIS and VIIRS requires
parameterizations that account for sensor-specific features.

The theory of “canopy spectral invariants” provides the necessary parameterizations using a small
set of measurable variables that describe the spectral response of vegetation to incident radiation at a
range of spatial scales, including: (1) spectrally invariant canopy interceptances, recollision probability,
directional escape probability, and their respective hemispherically averaged values; (2) spectrally
varying ground reflectance and (3) the single-scattering albedo [12–14]. This theory is applied to adapt
the LAI/FPAR algorithm to the spatial scale of VIIRS surface reflectance measurements. The spectrally
invariant parameters for the different vegetation types in the VIIRS-LUTs were derived using the
procedure described in [22]. The spectrally varying ground reflectance was taken from the soil
reflectance model developed by [23,24], including 29 typical patterns of effective soil reflectance
ranging from bright to dark [15]. Note that the uncertainty of soil reflectance was also considered
in generation of VIIRS LUTs to well represent the global conditions [13]. The scale and spectral
dependence of the single scattering albedo were exploited to account for VIIRS spatial resolution,
spectral bandwidths and radiometric response [25–27]. This theory is the fundamental principle of the
LAI/FPAR retrieval algorithm because knowing the invariants of the canopy and the single scattering
albedo (SSA) of an average phytoelement (e.g., leaf, steam) at any wavelength makes it possible to
reconstruct the radiation field of the canopy at any wavelength. The spectral invariant parameters
permit decoupling of the structural and radiometric components of any optical sensor signal, which is
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the theoretical foundation of optimizing configurable parameters to achieve inter-sensor consistency
in multi-sensor LAI/FPAR retrievals. Therefore, based on the theory of “canopy spectral invariants”,
VIIRS-specific LUTs have been developed and incorporated. The theoretical and technical details are
described in [11,15].

3. Data and Method

3.1. VIIRS and MODIS LAI/FPAR

Testing and integrating the operational VIIRS LAI/FPAR product are currently under way and its
completion is expected in the spring of 2018. The VIIRS LAI/FPAR product will be generated at 500-m
spatial resolution and an 8-day time step over a sinusoidal grid. The access to the VIIRS LAI/FPAR
product can be obtained from the product’s user guide (https://viirsland.gsfc.nasa.gov/PDF/VIIRS_
LAI_FPAR_UserGuide_V1.1.pdf). Here, we used the individual Science Computing Facility (SCF)
(Boston University, Boston, MA, USA) to generate a multi-year VIIRS LAI/FPAR product spanning
from 2012 to 2016. The operational production system, which is identical to S-NPP Land Science
Investigator-led Processing Systems (LandSIPS), was embedded in the SCF, and the optimized LUTs
for VIIRS sensor described in Section 2.2 were read for production. The VIIRS Level 2G (L2G) surface
reflectance product, called VNP09GA, is composed of all available surface reflectance observations
for a given day over a set of tiles with global coverage [28]. By calculating observation scores based
on quality assurance (QA) and geometry information (i.e., the basis of high observation coverage,
low sensor angle, the absence of cloud, cloud shadow, and aerosol loading), the algorithm produces
the intermediate surface reflectance product that contains the best quality observation (i.e., VNP15IP).
Then, it accounts for both the best quality observations and the biome map (MCDLCHKM, Figure S1) to
produce daily LAI/FPAR retrievals (VNP15A1). With the compositing strategy described in Section 2.1,
LAI/FPAR products in the 8-day interval (VNP15A2H) can be obtained. Note that all processes for
producing 5-year global VIIRS LAI/FPAR from our SCF are completely identical to the operational
production system in S-NPP LandSIPS.

The latest version (C6) of the MODIS LAI/FPAR product was generated and released to the
public in 2015. The standard MODIS C6 LAI/FPAR product suite is at 500-m spatial resolution and
includes LAI/FPAR retrievals from Terra MODIS, Aqua MODIS, and Terra MODIS + Aqua MODIS
Combined [7]. The product suite has two types of temporal compositing periods (i.e., 8 and 4 days) and
provides approximately 18- and 16-year records of global land surface from Terra (2000–present) and
Aqua (2002–present) MODIS, respectively. The operational production workflow of MODIS is similar to
that of the VIIRS product. All the MODIS product suites (MOD15A2H, MYD15A2H, MCD15A2H and
MCD15A3H) adopt the same LAI/FPAR retrieval algorithm but different sensors (MOD for Terra and
MYD for Aqua) and compositing methods (8-day for A2H and 4-day for A3H). Therefore, LAI/FPAR
retrievals for all the MODIS products should be very similar as long as they have comparable observing
conditions [29]. To verify this assumption, we compared VIIRS product with different MODIS products
and found the results were very similar, that is, different MODIS product suites show similar LAI/FPAR
retrievals. As Suomi-NPP is an afternoon-overpassing satellite (13:30 local time), which is identical
to MODIS onboard Aqua, we used Aqua MODIS retrieval (MYD15A2H) as a fair counterpart of
VIIRS product. Also, the same compositing strategy based on 8-day interval is another reason to use
MYD15A2H to compare with the VIIRS LAI/FPAR product. All MODIS LAI/FPAR product suites are
available via LP DAAC (https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table)
and the details of MYD15A2H can be found in [30].

Both VIIRS and MODIS LAI/FPAR products provide 6 scientific data sets (SDS): (1) Fpar; (2) Lai;
(3) FparLai_QC; (4) FparExtra_QC; (5) FparStdDev; and (6) LaiStdDev. The first two SDSs are retrievals
of respective FPAR and LAI, and the last two layers are the standard deviation of all candidates from
solving the “ill-posed” inversion problem. In addition to LAI/FPAR values, the products contain the
corresponding Quality Control (QC) data in the third and fourth layers, and the users are advised to
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consult the quality flags when using these products [31]. The key indicator of the quality of retrievals
is the algorithm path, which distinguishes the following five categories: (1) main algorithm without
saturation; (2) main algorithm with saturation; (3) back-up algorithm due to bad geometry (Backup-G);
(4) back-up algorithm due to other problems (Backup-O), such as the cloud contamination, snow
coverage, etc.; and (5) not produced due to invalid BRFs. In addition to the algorithm path, the QC
layers, including the “FparLai_QC” and “FparExtra_QC” data sets, provide information about the
presence of clouds, aerosols, and snow, inherited from input reflectance products. Overall, VIIRS and
MODIS LAI/FPAR products have very similar characteristics, including the similar input BRFs at
red and NIR bands, the similar process chains which consider the good quality of observations by
calculating the observation score based on the quality flag (clouds, snow, cloud shadow, etc.) from
reflectance products, the same input land cover maps (MCDLCHKM) and the same spatiotemporal
resolution (500-m/8-day).

3.2. Evaluation of Continuity between VIIRS and MODIS

The evaluation of continuity between VIIRS and MODIS retrievals is prioritized in this study to
build a long time series of LAI/FPAR ESDR that is independent of sensor observation. We evaluated
the spatiotemporal continuity between VIIRS and MODIS products at two different scales: global and
site scale. Continuity is defined as satisfying the following condition, |V−M| < E, where V is the
VIIRS estimate of LAI/FPAR, M is the MODIS estimate of LAI/FPAR, and E is an accuracy specification
in absolute LAI/FPAR units. In this study, the accuracy specifications for LAI and FPAR are less
than 0.25 LAI and 0.02 FPAR, respectively. This specification also meets the long-term ESDR stability
requirement suggested by the Global Climate Observing System (GCOS) [32]. However, several
issues have to be addressed to achieve a reasonable comparison between VIIRS and MODIS products.
First, product geometrical characteristics, including geolocation uncertainties, point spread function
(PSF), and projection system, should be considered because the comparison needs to be performed
over the same support area [33]. Many studies proposed that the comparison of products over a much
larger area than their native spatial resolution is an effective way to reduce potential geolocation errors
and PSF impacts [3,34,35]. A good practice suggested by the Committee on Earth Observation Satellites
(CEOS) Land Product Validation (LPV) subgroup shows that the product can be evaluated over the
area ranged from 3 km × 3 km to 10 km × 10 km [3,36–38]. To understand the product performance
over different spatial scales, the VIIRS LAI/FPAR product was evaluated over 10 km × 10 km at
global scale and 3 km × 3 km at site scale, respectively. Second, the quality control was performed for
VIIRS and MODIS products to exclude pixels contaminated by clouds, shadow, cirrus, and snow [31].
The detailed selection of valid pixels from both VIIRS and MODIS products based on “FparLai_QC”
and “FparExtra_QC” layers is shown in Figure S2. Note that only retrievals from the main algorithm
were used in our study due to the low accuracy of back-up algorithm retrievals (Section 2.1). For both
10 km × 10 km and 3 km × 3 km areas, the mean LAI/FPAR was calculated only if more than 60% of
pixels fell within this area. Additionally, the global land cover map (see Figure S1) was used to identify
the vegetated pixel and the specific vegetation type in the analysis of the products.

At the global scale, the aggregated LAI/FPAR retrievals were compared at different temporal
scales (8-day, seasonal and annual). We introduced the Benchmark Land Multisite Analysis and
Intercomparison of Products (BELMANIP) network, designed to represent the global surface types
and conditions, to reduce the geolocation uncertainty and sampling bias [39] at the site scale. The latest
version (2.1) of the network contains 445 sites that are located on relatively flat and homogeneous
areas within a 10 km × 10 km domain (see Figure S3). Thus, this version is widely used in the product
intercomparison practice [31,36]. Similarly, we selected the valid LAI/FPAR retrievals for both VIIRS
and MODIS in a 3 km × 3 km area to compare their spatiotemporal consistency using a series of
statistical metrics (Bias, Root Mean Square Error (RMSE), relative RMSE (rRMSE) and coefficient of
determination (R2)). Additionally, the temporal continuity and consistency of the products were also
evaluated by biome type.
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As a key indicator of the quality of retrievals, the algorithm path of each pixel is stored in the
LAI/FPAR product. By comparing the retrieval rate of different algorithm paths at the global scale,
we can evaluate the overall quality of the product from VIIRS and MODIS. The main algorithm outputs
retrievals at high precision in the case of low LAI and at moderate precision when LAI is high and
surface reflectance has low sensitivity to LAI. Low-precision retrievals are obtained from the empirical
back-up algorithm when the main algorithm fails. An indicator called “Retrieval Index (RI)” that
characterizes the proportion of the good quality and high precision retrievals was adopted in our study.
The rate of main algorithm retrievals (including retrievals of the main algorithm without saturation,
and the main algorithm with saturation) in the 10 km × 10 km area was calculated at the global scale
as Equation (1). We investigated RI to show global spatial coverage of the main algorithm retrievals
changing with observation dates for the VIIRS product, and also to evaluate whether the proportions
of good quality retrievals between VIIRS and MODIS are comparable.

RI =
number o f retrieved pixels via main algorithm

number o f total vegetated pixels
× 100% (1)

3.3. Uncertainty Quantification

The uncertainty is defined as the RMSE between products and ground measurements or
ground-measurements-derived reference maps. For this purpose, as most ground measurements
were collected during the early EOS era (mostly from 2000 to 2008), here we first synthesized all
available in-situ LAI/FPAR measurements over the globe during the VIIRS era (2012–present). Three
different field campaign projects were active across 28 sites during the VIIRS era, and those include
ImagineS [40], Heihe Watershed Allied Telemetry Experimental (HiWater) [41,42], and Huailai [43].
In particular, the ImagineS project, which is designed to support European Copernicus Global Land
Service, has conducted a series of single date or multi-temporal field campaigns over 23 sites around
the world during 2013–2016 (http://fp7-imagines.eu). Because of the spatial scale mismatch between
ground measurements (tens of meters) and products (500-m), the “bottom-up” approach proposed by
the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup is
adopted in this practice [37,44]. The strategy is designed to correlate the scale of in situ biophysical
measurements (i.e., LAI and FPAR) to that of the remote sensing product using finer-resolution
images to bridge their scale gaps [45]. It is based on a two-stage sampling strategy that (1) uses
multiple elementary sampling units (ESUs) to capture the variability across the extent (~3 km × 3 km)
of a site and (2) repeats measurements within each ESU to capture the variability within the pixel
(~30 m) of high-resolution imagery. Then, an empirical transfer function was established between the
ground measurements and the spectral values from the high-resolution imagery to produce LAI/FPAR
reference maps. The generated LAI/FPAR maps can be aggregated to match the product pixel grid
and are used as the benchmark to validate products [46]. The standard deviation of LAI/FPAR from
reference map was also calculated over the 3 km × 3 km region. We also matched the observation
date between ground measurements and product at native temporal resolution (8-day). To reduce the
geolocation uncertainties caused by different projection systems and point spread functions (PSF), the
LAI/FPAR reference maps were averaged over the 3 km ×3 km area for product assessment [33,36].
We collected 68 LAI reference maps and 57 FPAR reference maps from all available ground sites (see
Figure S3). However, to reduce unexpected error sources from land surface heterogeneity, we adopted
the criterion named information entropy proposed by [31]. The information entropy (E) defined as
Equation (2) is to keep only sites with a homogeneous land surface condition.

E = −
11

∑
i=1

Pi × log2Pi (2)

where ith denotes the specific land cover type from MODIS land cover product, Pi indicates the
proportion of the area covered by the ith land cover type. The reference map was selected if the E of
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this site is greater than 1 [31]. Note that the percentage of valid pixels in 3 km × 3 km area should
also be greater than 60% as defined in Section 3.2. The detailed information of each reference map
is shown in Table S1. Finally, a total of 26 LAI and 24 FPAR reference maps were used in this study.
Additionally, the GCOS identified target requirement uncertainties/relative uncertainties of max (0.5,
20%) for LAI and max (0.05, 10%) for FPAR [32], which will also be utilized as the criterion to evaluate
the uncertainty of VIIRS and MODIS products.

4. Results

4.1. Spatiotemporal Consistency between VIIRS and MODIS

4.1.1. Global Scale

Figure 1 depicts the 8-day global LAI/FPAR time series of VIIRS and MODIS from 2012 to 2016.
Both VIIRS and MODIS tightly well capture the LAI and FPAR seasonality, with two distinct peaks every
year caused by the hemispherically different seasons. The LAI and FPAR in boreal summer (i.e., July) are
much greater (about 2.0 LAI and 0.51 FPAR) than those (about 1.5 LAI and 0.42 FPAR) in boreal winter
(i.e., January) because of larger proportion of global vegetation in northern hemisphere. In particular, both
retrievals from VIIRS and MODIS agree very well with long-term time series, with a mean difference
of −0.006 ± 0.013 for LAI and −0.002 ± 0.002 for FPAR. The LAI/FPAR difference between VIIRS and
MODIS meets the stability requirement of multi-sensor product time-series suggested by GCOS [32].
The standard deviation (std.) of the difference illustrates a slight stochastic difference between VIIRS
and MODIS products. The seasonal change of std. of difference is also observed with higher values
(0.46 for LAI and 0.060 for FPAR) in January and lower values (0.36 for LAI and 0.045 for FPAR) in July.
This is because in January, the LAI/FPAR differences are lower in most regions but larger in tropical areas,
resulting in larger std. of difference, as shown in Figure 2.

Figure 1. The global mean (a) LAI and (b) FPAR of VIIRS and MODIS at 8-day interval during
2012–2016. The top panels of (a,b) show the seasonal variation of VIIRS and MODIS LAI/FPAR
retrievals, while the bottom two panels show the mean and standard deviation (std.) of difference
(the difference was first calculated in each 10 km × 10 km grid, and then the mean and std. were
calculated for all grids) between the two products (VIIRS-MODIS). The mean difference indicates
whether VIIRS and MODIS products have systematic errors, while the std. of difference shows the
dispersion of errors between VIIRS and MODIS products. Also see Figure S4 for the evaluation between
VIIRS and MODIS LAI/FPAR products at the native spatial resolution (500-m) for each biome.

Details of the comparison at the seasonal scale can be found in Table 1. The mean and standard
deviation (std.) of product difference were calculated at a 3-month interval (March–May (MAM),
June–August (JJA), September–November (SON) and December–February (DJF)). Both LAI and FPAR
show the largest differences in JJA, which are primarily due to the largest LAI and FPAR values in this
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period (Figure 1). Nevertheless, the std. presents the lowest magnitude in JJA, showing the similar
differences at the global scale. Although the differences between VIIRS and MODIS change in different
seasons, the differences present low mean and std. values. Results show that the LAI/FPAR difference
between products can also satisfy the stability requirement of a long-term dataset for different seasons.
Additionally, the mean and std. of LAI/FPAR difference also depend on the biome type (see Table S2).
From biome-specific investigations, we do not find obvious systematic over- or under-estimation across
biomes. Forest biomes (B5–B8) present relatively larger LAI/FPAR differences than non-forest biomes
(B1–B4) in each season. Among all biomes, the needleleaf forest (B7–B8) shows the largest absolute
mean difference between products, while the evergreen broadleaf forest (B5) presents the largest std.
of LAI/FPAR difference. As shown in Table 1, most biomes show the largest mean difference in JJA
among four seasons except for the needleleaf forest (B7–B8), which shows the largest differences in
DJF. This is likely due to the snow coverage and the large solar zenith angle in the high latitude areas
in DJF, introducing larger uncertainty in surface reflectances. The possible reasons for LAI/FPAR
inconsistencies between VIIRS and MODIS products will be further discussed in Section 5.1.

Table 1. The mean and standard deviation (std.) of LAI/FPAR difference between VIIRS and MODIS
products (VIIRS-MODIS) at the seasonal scale during 2012–2016.

Product Statistical Indicator Overall MAM JJA SON DJF

LAI
Mean −0.008 −0.007 −0.014 −0.003 −0.006
Std. 0.313 0.300 0.284 0.327 0.348

FPAR
Mean −0.003 −0.004 −0.004 −0.001 −0.002
Std. 0.036 0.035 0.033 0.038 0.039

The “MAM”, “JJA”, “SON” and “DJF” stand for “March–May”, “June–August”, ”September–November” and
“December–February”, respectively.

In detail, the global spatial patterns of mean LAI and FPAR difference maps between VIIRS and
MODIS products at two typical observation dates (17–24 January and 12–19 July) for the five-year
period (2012–2016) are presented in Figure 2. The detailed spatial distribution of LAI/FPAR differences
shows no observed systematic bias between VIIRS and MODIS products. The overall differences
of LAI and FPAR are within ±0.25 (percentage: 83%) and ±0.02 (percentage: 70%), respectively,
with larger differences over the dense forests. The invalid LAI/FPAR values at high latitudes in the
northern hemisphere in January are mainly due to the snow coverage, polar night, and large solar
zenith angle [11]. For LAI retrievals (Figure 2a,b), most regions in the northern hemisphere have a
slightly larger difference in July than in January. However, the LAI difference in the equatorial region,
e.g., Amazonia and central Africa, shows an opposite pattern due to the growing season of vegetation
in January. From the spatial pattern comparison of LAI differences in January and July at the global
scale, LAI differences depend on the LAI magnitudes, with larger LAI differences in high LAI domains.
The possible reasons will be discussed in Section 5.1. We also observed similar spatial distribution of
FPAR differences from Figure 2c,d.

Figure 2. Cont.
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Figure 2. The global spatial pattern of mean (a,b) LAI difference and (c,d) FPAR difference
(VIIRS-MODIS) in each 10 km × 10 km grid from 2012 to 2016 at two observation dates (17–24
January and 12–19 July). The white color indicates invalid LAI/FPAR values calculated from QC layers
as mentioned in Section 3.2. An equal-area sinusoidal projection is used here.

As VIIRS will continue the role of MODIS to provide LAI/FPAR records, it is necessary to
evaluate whether VIIRS can inherit MODIS for the long-term analysis of vegetation dynamics
(i.e., LAI trend over several years [47,48]) at global scale. Here, we additionally investigate how
well VIIRS captures the interannual variability of MODIS retrievals by splitting three large regions: the
Northern Hemisphere (25◦ N–90◦ N), the equatorial region (25◦ N–25◦ S) and the Southern Hemisphere
(25◦ S–90◦ S). The LAI anomaly, defined as a certain year of mean LAI value minus mean LAI value
over 2012–2016, is used to quantify the interannual variability of products. A large LAI anomaly
indicates that LAI changes considerably compared with the mean LAI over different years. As shown in
Figure 3, VIIRS shows quite similar interannual variation for each region to those of MODIS. However,
the magnitude of LAI anomalies is slightly different, especially in the equatorial region (Figure 3b).
The variation (~0.03) of MODIS LAI anomaly in the equatorial region is much larger than that for VIIRS
(~0.01) from 2013 to 2014, resulting in the opposite variation of 2014 at global scale (Figure 3d). This is
likely because VIIRS reflectance is easier to be saturated due to the sensor’s intrinsic limitation (VIIRS
reflectance is generally larger in the NIR band and lower in the red band [11]). The saturated reflectance
over dense canopy in tropical forests can only provide limited information for LAI retrievals [49],
that is, the real vegetation change cannot be shown if the reflectance is saturated, resulting in the small
variation of VIIRS LAI retrievals over different years.

 

Figure 3. Cont.
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Figure 3. Time-series of annual LAI anomalies over 2012–2016 for VIIRS (red line) and MODIS
(blue line). The values in figure (a–d) stand for the LAI anomaly in the Northern Hemisphere
(25◦ N–90◦ N), equatorial region (25◦ N–25◦ S), Southern Hemisphere (25◦ S–90◦ S) and global
vegetated area, respectively.

4.1.2. Site Scale

The VIIRS and MODIS products are further compared at the site scale for each biome over
all BELMANIP-2.1 sampling sites. Figures 4 and 5 show the density scatter plots between VIIRS
and MODIS for all 8-day LAI and FPAR retrievals from 2012 to 2016, respectively. The statistical
results (R2, Bias and RMSE) of all pixels indicate good consistency between VIIRS and MODIS
in both LAI/FPAR retrievals. For LAI retrievals (Figure 4), non-forest biomes (i.e., B1–B4) have
better agreement between products than forest biomes, which can also be found for FPAR retrievals
(Figure 5). The best agreement is achieved over shrubs (Bias = 0.009, RMSE = 0.060) and broadleaf
crops (Bias = −0.001, RMSE = 0.029) for LAI and FPAR retrievals, respectively. VIIRS retrievals from
most biomes, except evergreen broadleaf forest (B5), capture more than 85% of the variations (R2 > 0.85)
observed in MODIS retrievals. The case of dense evergreen broadleaf forest shows less agreement in
both LAI (R2 = 0.62, RMSE = 0.69) and FPAR (R2 = 0.47, RMSE = 0.048), which is not surprising because
of sub-optimal quality of retrievals due to reflectance saturation for dense forest. In detail, small
variations in reflectances can result in large variation in LAI under the condition of saturation [49].
Additionally, another possible reason of the inconsistency between VIIRS and MODIS retrievals for
evergreen broadleaf forest will be discussed in Section 5.1.

 

 

Figure 4. Cont.
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Figure 4. The biome-specific comparison between VIIRS and MODIS LAI retrievals at the site scale
from 2012 to 2016. Multiple validation sites adopted from Benchmark Land Multi-site Analysis and
Intercomparison of Products 2.1 (BELMANIP-2.1) are used for this comparison. The solid black line is
the linear fit for all pixels and the colorbar shows the density of pixels falling at each grid. The (a–h)
stands for biome 1–8, respectively. The eight biomes are (B1) grasses and cereal crops, (B2) shrubs,
(B3) broadleaf crops, (B4) savannas, (B5) evergreen broadleaf forest, (B6) deciduous broadleaf forest,
(B7) evergreen needleleaf forest, (B8) deciduous needleleaf forest.

 

 

 

Figure 5. Cont.
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Figure 5. The (a–h) stands for biome 1–8, respectively. The eight biomes are (B1) grasses and cereal
crops, (B2) shrubs, (B3) broadleaf crops, (B4) savannas, (B5) evergreen broadleaf forest, (B6) deciduous
broadleaf forest, (B7) evergreen needleleaf forest, (B8) deciduous needleleaf forest.

Figure 6 shows the seasonal trajectory of VIIRS and MODIS LAI/FPAR over four example sites
(grasses/cereal crops (B1), shrubs (B2), deciduous broadleaf forest (B6) and deciduous needleleaf forest
(B8)) for the period from 2012 to 2016. All available ground measurements are additionally plotted as
a reference. Both products shown in Figure 6 achieve a good temporal consistency across all biomes
and comparable spatial coverage (i.e., missing data rate). Each site shows distinct characteristics of
seasonal variations. For example, non-forest biomes (Figure 6a,b) exhibit smaller seasonal amplitude,
less than 2 for LAI and 0.4 for FPAR, while forest biomes (Figure 6c,d) reveal a higher LAI (about 4 LAI
unit) and FPAR (about 0.5 FPAR unit) seasonality. In addition, the algorithm implemented for both
sensors agrees quite well with the ground measurements, indicating VIIRS and MODIS can capture
the temporal trajectory of true LAI/FPAR values.

 

 

Figure 6. Temporal comparison of VIIRS and MODIS LAI/FPAR over four selected example sites.
Monthly LAI and FPAR for the time period 2012–2016 are shown here. Red and blue lines indicate VIIRS
and MODIS, respectively. The upper panel shows the missing data rate in each year and the following
two panels show the seasonal variation of LAI/FPAR products with collected ground measurements.
The error bar of the ground measurement was derived from the standard deviation of LAI/FPAR over
the specified 3 km × 3 km region. Panel (a–d) are for grasses/cereal crops (B1), shrubs (B2), deciduous
broadleaf forest (B6) and deciduous needleleaf forest (B8) cases, respectively.
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4.2. Spatial Coverage

The VIIRS RI and the Difference of RI (DRI) between VIIRS and MODIS were calculated at the
global scale from 2012 to 2016 to ensure their consistency of spatial coverage. For the sake of brevity,
here we only present the results from two 8-day compositional dates (i.e., 17–24 January and 12–19 July)
representing the respective boreal winter and summer season. Figure 7 shows seasonally different
biome-specific retrieval success (i.e., RI) and RI difference (DRI) between VIIRS and MODIS. The global
RIs of VIIRS in January and July are 58.8% and 85.1%, respectively. In general, the RI of forest biomes
(B5–B8) is lower than that of non-forest biomes (B1–B4) for both two seasons. Both sensors give a
lower RI in January for most biomes (see Figure S5), especially for needleleaf forest (B7–B8, <20%).
The lower RI is partly because most needleleaf forests are situated in the high latitude or altitude
regions (see Figure S1) where they are often covered by snow in January. In addition, a larger solar
zenith angle at high latitudes in January is the most important reason for low needleleaf forest RI
(See Figure S5c,d). The evergreen broadleaf forests (B5) in the equatorial region have comparable RIs
in January and July, and relatively lower RIs than other biomes due to the impact of cloudy condition
throughout the year.

From the comparison with calculated MODIS RIs, we find that VIIRS completely resembles their
seasonal variations of each algorithm pathway including main and backup (Backup-G and Backup-O)
retrievals (see details in Figure S5). As shown in Figure 7, the proportion of DRI ranging from −5%
to 5% at global scale is 84.7% in January and 77.2% in July. For individual biome types, both VIIRS
and MODIS RIs agree well in January for each biome type showing a low mean DRI (~1%). However,
we also observed a relatively large mean DRI (~5%) from the comparison in July, especially for forest
biomes. The reason for this inconsistency of RIs will be discussed in Section 5.1. The standard deviation
(std.) of DRI shows that VIIRS has a stable DRI (~4%) with MODIS for shrubs (B2), while also presents
a relatively unstable DRI (~9%) for evergreen broadleaf forest (B5) over five years.

 

Figure 7. The retrieval index (RI) of VIIRS main algorithm (red line), the mean Difference of RI (DRI)
(blue line) and the standard deviation (blue shadow) of DRI (the difference of RI was first calculated in
each 10 km × 10 km grid, and then the mean and std. were calculated for all grids) between VIIRS
and MODIS products (VIIRS-MODIS) for different biome types on (a) 17–24 January and (b) 12–19
July from 2012 to 2016. The inset figure in each panel shows the histogram of DRI between VIIRS and
MODIS products.

4.3. Uncertainty Assessment

The uncertainty of both VIIRS and MODIS LAI/FPAR products was evaluated using the
synthesized ground measurements, as shown in Figure 8. In general, our comparison reveals
that VIIRS and MODIS show comparable uncertainties of LAI (VIIRS = 0.60, MODIS = 0.55) and
FPAR (VIIRS = 0.10, MODIS = 0.11) retrievals. As the result of MODIS resembles that of VIIRS,
here, we use VIIRS as a case to explain the general pattern of the results. For LAI, both ground
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measurements corrected (hereafter, true LAI) or uncorrected (hereafter, effective LAI) for clumping
effect are introduced in this study but separately analyzed. Since the clumping effect was taken into
account in the LAI retrieval algorithm, VIIRS displays better agreement with true LAI (Bias = 0.17,
RMSE = 0.60, rRMSE = 42.2%) than with effective LAI (bias = 0.47, RMSE = 0.79, rRMSE = 66.0%) as
expected. Specifically, VIIRS shows an important overestimation tendency for the effective LAI case
(Bias = 0.47) because the ground-measured effective LAI is generally lower than true LAI [50]. As LAI
was only distributed on relatively lower domains (<2.5), the RMSE is better than the rRMSE to show
LAI product accuracy based on the accuracy requirement (max(0.5, 20%)) from GCOS. For FPAR, most
scatters are distributed within 0–0.2 difference, indicating an overestimation tendency of VIIRS FPAR
(Bias = 0.08). Nevertheless, VIIRS FPAR retrieval displays good agreement with ground measured
FPAR in terms of R2 (=0.83), RMSE (=0.10) and rRMSE (=24.4%), indicating that VIIRS can well capture
the FPAR variation (the dispersion of VIIRS FPAR is low). In addition, we can see that both VIIRS
and MODIS products cannot totally meet the target accuracy requirements suggested by GCOS, with
66.7% LAI and 37.5% FPAR pixels less than the LAI (max (0.5, 20%)) and FPAR (max (0.05, 10%))
specific criteria, respectively. However, it should be noted that the uncertainty of LAI/FPAR retrievals
comes from both VIIRS products and other sources including uncertainties of reference maps and a
mismatch in the spatial and temporal domains, despite that efforts were made to reduce such sources
of uncertainty. Additionally, we should also note that the distribution of measurements is not sufficient
enough because only small number of measurements and no forest biomes are included. Adding more
ground measurements, especially from forest biomes, may achieve a more robust evaluation result of
VIIRS LAI/FPAR product. Further discussions will be followed in Section 5.2.

 

 

Figure 8. Comparison between ground measurements and products. (a,b) for VIIRS and MODIS LAI
and (c,d) for FPAR. The 3 km × 3 km sites dominated by different biome types are depicted by different
colors. Circles (squares) in panel (a,b) represent ground LAI measurements corrected (not corrected)
for the clumping effect. The blue and black solid lines represent the overall fit and 1:1 line, respectively.
The red dashed lines show the GCOS specifications boundaries (max (0.5, 20%) for LAI and max (0.05,
10%) for FPAR). Note that LAI was only distributed in relatively lower domains (~2.5), the RMSE is
better than the rRMSE to show LAI product accuracy based on the accuracy requirement (max (0.5,
20%)) from GCOS.
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5. Discussion

5.1. Understanding Inconsistency between VIIRS and MODIS

From our comprehensive evaluation presented in Section 4, we can conclude that the implemented
LAI/FPAR algorithm on the VIIRS can generate highly consistent LAI/FPAR retrievals with those
of MODIS at multi-spatiotemporal scales. However, as we observed some minor discrepancies
between VIIRS and MODIS products; here, we investigate the possible reasons to better understand
observed inconsistencies. The saturation frequency and dispersion of the retrieved LAI distribution
(DLAI) are two elements by which the quality of the retrieval can be assessed. The accuracy of the
retrieval decreases under conditions of saturation, that is, the reflectance data do not contain accurate
information about the surface [13,49]. DLAI is defined as the standard deviation of all LAI candidates
in LUTs enabling to reproduce input surface reflectances under various canopy and soil combinations
(recall that the algorithm is solving the ill-posed inverse problem) [13,15]. Thus, in theory, the lower
the DLAI value, the higher the accuracy of the algorithm as DLAI represents the degree of difficulty to
localize a single solution.

In this manner, Figure 9 shows important relationships between observed difference and reliability
of retrievals (i.e., saturation rate and DLAI). Note that all quantities in Figure 9 are based on 8-day
global products from 2012 to 2016. First, Figure 9a shows how the saturation rate behaves as a function
of LAI. Unsurprisingly, the saturation rate increases with increasing LAI and thus we can infer the
accuracy of the retrievals is decreasing. In the same vein, DLAI increases with increasing LAI but
DLAI tend to decrease at certain LAI (about 5 for non-forest and 4.5 for forest). This is because DLAI is
not only related to LAI (higher LAI yields higher DLAI), but also depends on the number of available
solutions in LUTs (Section 2.1), i.e., the nature of the standard deviation. Under the relationship
of saturation rate and DLAI to LAI retrieval, we found that observed discrepancy between VIIRS
and MODIS tends to increase with an increasing saturation rate and DLAI. We highlight that the
discrepancy is abruptly increased when the saturation rate shows a sharp rise in higher LAI, namely,
the reliability of retrieval determines the degree of consistency between two sensors. Additionally, we
should also note the LAI difference (Bias = 0.02, RMSE = 0.69) for evergreen broadleaf forest (EBF) is
not negligible (see Figure 4e); thus, a special caution is needed for this biome. Observing land surface
over tropical regions where EBF mostly situated is a classical challenge in optical remote sensing field
due to cloudy or high aerosol atmospheric conditions [51,52]. Therefore, this difference we observed
here can be likely explained by different observing conditions in two sensors. For instance, although
both Suomi-NPP and Aqua are afternoon-overpassing satellites, different orbital path and selection of
daily best input observation may result in a dissimilar input surface reflectance. The impact of such
discrepancy is expected to increase in highly varying atmospheric conditions over densely vegetated
tropical forests. Another possible reason is QA which is slightly different between VIIRS and MODIS.
For instance, Platnick et al. (2016) reported that cloud detection and flagging its mask in VIIRS is
limited by absence of CO2 and H2O absorption channels [53], in turn such discrepancy results in unlike
LAI/FPAR retrievals.

In addition, we also observed the relatively large RI difference in July (see Figure 7), which is
likely explained by the reported instability of input surface reflectance for VIIRS [8]. The results
from [8] show larger deviations of spectral adjustment coefficients to make MODIS-like VIIRS surface
reflectances are observed for the initial years of VIIRS operation, while relatively better stability is
observed for later years. As VIIRS LUTs have been developed using BRFs in 2015 based on the
time-invariant basis, unstable input surface reflectances over different years may induce unexpected
interannual variability of RIs. Therefore, the DRI between VIIRS and MODIS is less than 1% in 2015,
whereas it shows relatively larger difference during 2012–2014 (see Figure S6). Here, we should note
that RI differences of January and non-forest are smaller than July and forest biomes (Figure S6).
The lower RI values are caused by the algorithm path, which is also sensitive to the high LAI values.
More specifically, the domain of the main algorithm retrievals is more limited in dense vegetation with
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higher NIR reflectance and lower red reflectance (see Figure 10a in [7]), which introduces lower RI due
to the interannual variability of surface reflectance.

There are additional minor factors that influence the inter-consistency of the LAI/FPAR product:
compositing and off-nadir view zenith angle (VZA), which are from the intrinsic limitation of VIIRS
and MODIS sensors. For both VIIRS and MODIS, the algorithm first accounts for 8 daily surface
reflectances and produces daily LAI/FPAR. Based on the maximum FPAR compositing strategy, a daily
retrieval is selected as 8-day product value. When selected VIIRS daily retrieval is separate from
MODIS daily retrieval, the degree of inconsistency between VIIRS and MODIS may increase as [36]
shows similar pattern in surface reflectance. For the off-nadir VZA case, MODIS pixels increase by a
factor of six from nadir to edge of scan, whereas VIIRS restricts the pixel to an approximate twofold
increase using an onboard aggregation scheme [11]. Therefore, a reduced effective spatial resolution of
MODIS with the increase of VZA may introduce additional source of inconsistency between VIIRS
and MODIS products [54].

Figure 9. (a) The variation of saturation rate with VIIRS LAI retrievals; (b) The relationship among
VIIRS LAI (x-axis), DLAI (y-axis) and the difference (colorbar) between VIIRS and MODIS LAI retrievals
using all composition periods from 2012 to 2016. “DBF” and “ENF” represent “deciduous broadleaf
forest” and “evergreen needleleaf forest”, respectively.

5.2. Limitation and Future Direction

This study investigates the spatiotemporal consistency between S-NPP VIIRS and EOS MODIS
LAI/FPAR products. Additionally, the uncertainty of VIIRS products was evaluated using available
ground measurements. However, it should be noted that the quantified uncertainty is limited by an
availability of the ground measurements (i.e., spatiotemporal and biome-specific coverage). As shown
in Figure 8, we can know that the evaluation of VIIRS product uncertainty only achieved stage 1
(“Product accuracy is assessed from a small set of locations and time periods by comparison with
in-situ or other suitable reference data.” https://viirsland.gsfc.nasa.gov/Val_overview.html) based on
CEOS validation stage hierarchy. Thus, adding more ground measurements from spatiotemporally and
biome-specific well-distributed field campaigns are required. To achieve a robust evaluation result, we
plan to synthesize in-situ reference data from globally distributed research networks (i.e., FLUXNET,
Chinese Ecosystem Research Network (CERN), Terrestrial Ecosystem Research Network (TERN), et al.)
by deploying a robust upscaling strategy developed by [55] to improve the spatiotemporal coverage of
validation. These networks are not originally intended for validation purposes, but they have been
continuously collecting in-situ LAI or FPAR data. These ground data have not been frequently utilized
for assessing moderate resolution remote sensing products due to lack of spatial representativeness
arising from the scale-mismatch problem. However, a new approach called Grading and Upscaling
of Ground Measurements (GUGM) is able to resolve this scale mismatch issue and maximize the use
of time-series of ground measurements from these networks. As the approach enables to provide
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frequent time-series of ground measurements, it would also provide a unique opportunity to evaluate
the temporal performance of the LAI/FPAR products [56], allowing better understanding of the
structure of the uncertainties and their evolution along different seasonal or annual contexts [33,57].
Therefore, more ground measurements covering the VIIRS product time-period (2012–present), will be
collected from the global network of sites and used to better quantify the uncertainties, particularly
the performance of time-series attached to the VIIRS product in a future study. This direction will help
us to achieve a higher validation stage for VIIRS LAI/FPAR product.

In this study, we focused on evaluating continuity and consistency between retrievals from VIIRS
and MODIS, and on quantifying uncertainty via direct validation approach. In general, “indirect
validation” comparing VIIRS LAI/FPAR products with products from other moderate resolution
sensors can afford one to identify the respective strengths and weaknesses of the products, thus leading
to improvements in the next version of products, and to improve the confidence in research-quality of
VIIRS products. Moreover, the intercomparison with other similar products is also necessary to achieve
stage 2 and stage 3 defined from CEOS validation stage hierarchy (“Spatial and temporal consistency
of the product and consistency with similar products has been evaluated over globally representative
locations and time periods”) [37]. Therefore, we will further analyze VIIRS products using the
intercomparison with other global moderate resolution LAI/FPAR products such as GEOV1 [5],
GLASS [6] and so on. A series of metrics and qualitative checks proposed by [36] will be adopted to
assess the continuity, consistency and precision between VIIRS and other products.

In addition to the provisional results reported in [11,15], our multi-year evaluation clearly
corroborates that the implemented heritage MODIS LAI/FPAR algorithm and a physically proven
algorithm for achieving inter-sensor consistency allow the generation of multi-sensor LAI/FPAR
ESDRs. Our results also satisfy the requirement of stability implying the potential of generating
MODIS-like VIIRS LAI/FPAR ESDRs. In light of our S-NPP VIIRS LAI/FPAR experience and
knowledge on developing a multi-sensor product, we are confident that we will be able to generate
seamless and continuous VIIRS products from JPSS programs with minimal effort. This future plan will
build a foundation of continuing sequential JPSS satellite programs, which include already budgeted
JPSS-1 to JPSS-4 extending a more than 30+ years of long-term ESDRs.

6. Conclusions

It is critical that LAI/FPAR products are generated with high accuracy and precision, but more
importantly, they must be produced with consistent algorithms across different sensor platforms in
order to maintain a continuous and well-characterized data record. This is especially important for the
VIIRS LAI/FPAR product on SNPP, which bridges the gap between NASA’s EOS satellites and the
next generation JPSS platforms. Thus, to evaluate the spatiotemporal consistency between VIIRS and
MODIS LAI/FPAR products, multi-year time series of VIIRS and MODIS LAI/FPAR retrievals have
been retrieved and their consistency is evaluated in this study. For the spatiotemporal consistency, the
global mean differences between VIIRS and MODIS products at a native temporal composite (i.e., 8-day)
or seasonally integrated are less than −0.006 for LAI and −0.002 for FPAR, respectively, indicating
a reasonably high consistency between two sensors. These estimates meet the stability requirement
for long-term LAI/FPAR ESDRs from multi-sensors suggested by GCOS. Generally the performance
of the LAI/FPAR consistency for non-forest biomes is better than forest biomes. Additionally, the
evaluation also showed a similar interannual variation and a comparable main algorithm retrieval rate
from VIIRS with respect to those from MODIS during the study period (2012–2016), although several
sources for inconsistency (e.g., stability of input surface reflectance) were discussed. Twenty-one true
LAI, 26 effective LAI and 24 FPAR ground measurements with high reliability were used to validate
both VIIRS and MODIS LAI/FPAR products. The results indicated that LAI retrievals from both
sensors are closer to true LAI than effective LAI because of the clumping correction in the algorithm.
We found a comparable LAI uncertainty/relative uncertainty of VIIRS (RMSE = 0.60/42.2%) with
respect to that of MODIS (RMSE = 0.55/39.3%) and both VIIRS (RMSE = 0.10/24.4%) and MODIS
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(RMSE = 0.11/26.0%) showed an overestimation of FPAR. This validation practice also supports the
feasibility of producing consistent retrievals from VIIRS and MODIS. However, it also should be noted
that more accurate ground measurements and better representation of different vegetation types in
different LAI/FPAR ranges are required to refine the uncertainty evaluation of VIIRS LAI/FPAR
product. Overall, this study imbues the confidence that S-NPP VIIRS and EOS MODIS can generate a
continuous and well-characterized LAI/FPAR ESDRs. This important achievement plays an important
role to bridge the gap between NASA’s EOS satellites and the next generation of JPSS platforms.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/9/2/73/s1,
Figure S1: Global land cover map used in this study, Figure S2: The quality control based on “FparLai_QC” and
“FparExtra_QC” layers for VIIRS and MODIS products under study, Table S1: Characteristics of the available
ground sites and aggregated LAI_effective/LAI_true/FPAR values over 3 km × 3 km area, Figure S3: Spatial
distribution of the BELMANIP-2.1 network and ground measurements for VIIRS LAI/FPAR product assessment,
Table S2: The mean and standard deviation of LAI/FPAR difference between VIIRS and MODIS products
(VIIRS-MODIS) at seasonal scale for each biome type from 2012 to 2016, Figure S4: The examples for the
comparison between VIIRS and MODIS products at the native spatiotemporal (500-m/8-day) resolution, Figure
S5: The annual variation of global retrieval rate of different algorithm paths for eight biome types (B1–B8 are
same as in Figure S1), Figure S6: The annual variation of mean difference of retrieval index (DRI, calculated from
VIIRS-MODIS) for non-forest and forest biomes in January and July from 2012 to 2016.
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Abstract: Vegetative leaf area is a critical input to models that simulate human and ecosystem
exposure to atmospheric pollutants. Leaf area index (LAI) can be measured in the field or numerically
simulated, but all contain some inherent uncertainty that is passed to the exposure assessments that
use them. LAI estimates for minimally managed or natural forest stands can be particularly difficult
to develop as a result of interspecies competition, age and spatial distribution. Satellite-based LAI
estimates hold promise for retrospective analyses, but we must continue to rely on numerical models
for alternative management analysis. Our objective for this study is to calculate and validate LAI
estimates generated from the USDA Environmental Policy Impact Climate (EPIC) model (a widely
used, field-scale, biogeochemical model) on four forest complexes spanning three physiographic
provinces in Virginia and North Carolina. Measurements of forest composition (species and number),
LAI, tree diameter, basal area, and canopy height were recorded at each site during the 2002
field season. Calibrated EPIC results show stand-level temporally resolved LAI estimates with
R2 values ranging from 0.69 to 0.96, and stand maximum height estimates within 20% of observation.
This relatively high level of performance is attributable to EPIC’s approach to the characterization
of forest stand biogeochemical budgets, stand history, interspecies competition and species-specific
response to local weather conditions. We close by illustrating the extension of this site-level approach
to scales that could support regional air quality model simulations.

Keywords: LAI; leaf area index; EPIC; simulation; satellite; MODIS; biomass; evaluation;
southern U.S. forests

1. Introduction

The status and dynamics of vegetation leaf area, often reported in terms of leaf area index
(LAI), can be a critical determinant of regional air and water quality [1]. LAI is commonly used as a
surrogate of photosynthetically active area when photosynthesis is the principle process controlling
chemical exchange between the atmosphere and underlying land surfaces. Leaf area influences
the sequestration of carbon from carbon emissions [2], the removal of pollutant species through
deposition [3], the biogenic emission of volatile organic compounds (BVOC) that contribute to
tropospheric ozone formation [4], and the emission of greenhouse gases [5]. Temporally resolved leaf
area and canopy heights for natural forest stands are critical inputs for process-based meteorological
models. Leaf area estimates contribute to the calculation of surface evapotranspiration and albedo,
and canopy height largely determines surface roughness, which contributes to mechanical mixing of
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the atmosphere [6]. Calculation of gaseous air pollutant deposition velocity (Vd) frequently requires
values for leaf area and surface roughness [7–9]. The Clean Air Status and Trends Network (CASTNET),
for instance, measures atmospheric concentrations and then estimates water vapor, ozone (O3), sulfur
dioxide (SO2), and nitric acid (HNO3) fluxes using the Multilayer Model (MLM) [8,10,11]. The MLM
inputs a generalized annual LAI time-series developed from measured values of maximum LAI for
each plant species and typical phenology. Estimates of deposition velocity calculated by MLM were
seen to be highly sensitive to LAI time-series parameters [12] with differences in Vd of about 25% for
sulfur dioxide and nitric acid and greater than 60% for ozone. On a regional scale, the United States
Environmental Protection Agency’s (US EPA) Community Multiscale Air Quality Model (CMAQ) [8]
relies on output from the Weather Research Model (WRF) [13] and the Pleim-Xiu (PX) land surface
scheme [14]. PX LAI estimates are based on deep soil temperature, an LAI response function based on
soil temperature and a specified minimum and maximum LAI for each land use classification which
results in known biases [15].

LAI inputs into air quality applications that rely on model estimates of chemical flux include
periodic in situ point sampled and Light Detection and Ranging (LIDAR) LAI measurements, static
look-up values, and satellite-derived LAI values. A number of studies have reported that simulating
both accurate leaf- and canopy-scale fluxes is not possible when leaf-scale fluxes are scaled using
an inaccurate LAI [16–19]. While more temporally and spatially detailed LAI inputs are likely to
improve model estimates of meteorological conditions, biogenic emissions, and O3 precursor estimates,
interspecies competition, age and spatial distribution make temporally resolved LAI estimates for
minimally managed or natural forest stands particularly difficult to develop. Satellite-based LAI
estimates hold promise for retrospective analyses, e.g., [20,21], but we are still learning how best
to make use of these data, and they will never be available for future meteorological alternative
management applications. Therefore, we must continue to supplement temporally resolved, remotely
sensed vegetative leaf area estimates with numerical model estimates.

The objective of this study is to evaluate the capacity of a biogeochemical agroecosystems model to
generate more biologically (process) representative, accurate and temporally resolved forest stand-level
LAI estimates than existing numerical methods. We calibrate the USDA Environmental Policy Integrate
Climate (EPIC) model from LAI estimates evaluated at four mixed forest stands in the southeastern U.S.
We then demonstrate the practical areal application of this approach to represent mixed-age, mixed
forest stands that could support nitrogen flux estimates for air quality assessment and supplement
remotely sensed observations.

2. Materials and Methods

2.1. Site Descriptions

The near-lab study site for the US EPA Office of Research and Development is the
Albemarle-Pamlico Basin (APB), located in central-to-northern North Carolina and southern Virginia.
The APB has a drainage area of 738,735 km2 and includes three physiographic provinces: mountain,
piedmont and coastal plain, ranging in elevation from 1280 m to sea level. The APB sub-basins include
the Albemarle-Chowan, Roanoke, Pamlico, and Neuse River basins; all draining into the second
largest estuarine system within the continental United States. Four 1 km2 LAI calibration/validation
sites were chosen within the APB representing all three physiographic provinces: 1. Appomattox
(Upper Piedmont), 2. Hertford (Coastal Plain), 3. Fairystone (Upper Piedmont-Mountain), 4. Umstead
(Lower Piedmont) (Figure 1). General descriptions of these sites are provided below.

2.1.1. Appomattox

The Appomattox field site is located in Campbell County, Virginia (37.219◦ N, −78.879◦ W)
approximately 15.5 km south-southwest of Appomattox, Virginia (Figure 1 and Table 1). This Upper
Piedmont region has a range in elevation from 165 m to 215 m above mean sea level. The area is

246



Forests 2018, 9, 26

a mixture of rural agricultural fields and managed (Loblolly pine—Pinus taeda) and unmanaged
(oak-hickory) forest stands. The MeadWestvaco Corporation, a supporter of the Sustainable Forestry
Initiative, permitted sampling access to the US EPA for LAI research on 505 hectares in 2002. Land cover
(LC) percentages within the 1 km2 area include: (1) coniferous (Total—67.6% (unthinned—30.6%,
thinned —37.0%)); (2) deciduous (21.7%); and (3) other vegetation (harvested—10.6%). The modeled
and in situ LAI comparison uses the 30.6 hectare unthinned pine stand; a 100% planted loblolly pine
dominant-codominant crown class (15.9 m canopy height) underlain with a variety of understory
deciduous species (Supplementary Materials Figures S1 and S2 and Table S1). The dominant soil types
consist of very deep, well-drained, moderately permeable soils (Georgville and Tatum loams) on 2% to
15% slopes.

Figure 1. Four LAI field site locations in Virginia and North Carolina, USA.

2.1.2. Hertford

The Hertford site is located in Hertford County, North Carolina (36.383◦ N,−77.001◦ W), approximately
5.8 km west-southwest of Winton, North Carolina (Figure 1). This coastal plain site is 8–10 m above mean
sea level (0% slope) with a moderately well drained thermic Aquic Hapludult soil type (Craven fine sandy
loam). This site is dominated by 19 year-old planted loblolly pine, and was managed by International
Paper, Inc. LC percentages within the 1 km2 area include: (1) coniferous (72.3%); (2) deciduous (17.8%);
and (3) other vegetation (agriculture—9.9%). The modeled and in situ LAI comparison was done only
within the 19 year-old managed pine stand (Supplementary Materials Figures S3 and S4 and Table S1).

2.1.3. Fairystone

The Fairystone site is located in both Henry and Patrick Counties in Virginia (36.771◦ N, −80.092◦ W),
approximately 20.7 km west-northwest of Martinsville, Virginia (Figure 1). This Blue Ridge eastern
foothills site is 409 m above mean sea level and is defined by well drained mesic Typic Hapludult soil
types (Fairystone and Littlejoe Series). The Virginia Department of Inland Game and Fisheries manage
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this upland hardwood site (100.0% deciduous) maintaining habitat suitable for turkeys, deer and a variety
of small game and nongame wildlife (Supplementary Materials Figures S5 and S6 and Table S1).

2.1.4. Umstead

The North Carolina Parks and Recreation Department manages the Umstead site, which is located
12.5 km northwest of Raleigh, NC (William B. Umstead State Park) (Figure 1). This 2258-hectare park
is a mixture of mature deciduous and coniferous tree species, with an average age approximately
75–85 years old (Supplementary Materials Figures S7 and S8 and Table S1). This Piedmont site ranges in
elevation between 75.3 m and 120.5 m above mean sea level (x = 94.0 m), with slopes ranging between
0.1% and 25.0% (x = 6.2%) and is defined by 13 variant sandy loam soil types. Land-cover percentages
within the 1 km2 area include: (1) deciduous (77.8%) and (2) coniferous (22.2%) forest types.

2.2. In Situ Measurements

Forest stand characteristics were collected for all four validation sites over the 2002 growing
season including (1) species type, and (2) structural (crown closure, height, diameter, LAI) and
(3) stocking attributes (basal area and trees per hectare). On each site, the sampling design includes the
establishment of the primary sampling unit, the quadrat (Figure 2B). Each quadrat is a 100 m × 100 m
grid delineated by five parallel 100 m east-to-west (E–W) oriented transects labeled L1–L5—each
transect line is separated 20 m apart in a north south (N–S) direction, with L1 representing the
northern-most transect. Interspersed between these transects are 25 ‘point sampling’ locations in a N–S
and E–W grid network, separated 20 m apart, with the northwestern most point established between
L1 and L2 transects at a 10-m inset from the origin of L1 and L2. The secondary sampling unit was
three intersecting 50 m or 100 m transects at 90◦, 135◦, and 225◦ (Figure 2B). These sub-plots were
located to augment data collected on the primary sampling unit(s), the quadrat (Figure 2C). Only one
quadrat (Q1) was laid-out on three of the four research sites (Appomattox, Hertford, and Umstead),
with four quadrats (Q1–Q4) established on the Fairystone site. Quadrat replicates were applied only
at Fairystone to account for terrain and aspect differences prevalent in this upper piedmont region.
Sub-plots were applied to account for multiple forest types within 1-km area (i.e., Appomattox).

Figure 2. Plot design for (A) 50-m or 100-m sub-plot and (B) 100 m × 100 m quadrat. Distribution of
quadrat and sub-plots on Appomattox research site (C) is illustrated by Q1 and S1–4. Note: DHP—Digital
Hemispherical Photography; TRAC—Tracing Radiation and Architecture of Canopies analyzer.
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Measurements of the forest structural attributes height (m) and diameter (cm) were made at
all sites within the 100 m × 100 m quadrat areas using a point sampling method using a basal area
10-factor prism for trees larger than 5 cm in diameter at breast height (DBH), with breast height 1.37 m
above the base of the tree. Stocking values, expressed as trees per hectare (TPH) and basal area per
hectare (BA/H) were calculated from the point sampling data. BA is the cross-sectional area of a tree
at 1.37 m above the tree base per unit area [22]. Three plots within each quadrat were sampled for
understory components (stems less than 5 cm DBH) using a 4.57 m radius fixed area sampling method.
Canopy closure, defined as the percent obstruction of the sky by canopy elements, was estimated
using a Geographic Resources Solutions (GRS) Densitometer (http://www.BenMeadows.com/) along
transects 1, 3, and 5 in each quadrat, taking obstruction/no obstruction readings by canopy height
class (i.e., understory, intermediate, dominate) every two meters.

We define LAI here as one-half the total green leaf area per unit ground surface [23]. LAI estimates
are based on the indirect in situ optical LAI estimation technique combining measurements from
the Tracing Radiation and Architecture of Canopies analyzer (TRAC) optical sensor and digital
hemispherical photography (DHP) in deciduous and coniferous forest stands. Parameters assessed
within the TRAC-DHP method included the element clumping index (ΩE) derived from the TRAC
instrument, the effective leaf area index (Le) measured with DHP, and the needle-to-shoot area index
(λE) and the woody-to-total index (α) measured in the field and in the laboratory. LAI calculations use
these characteristics as inputs into the modified Beer-Lambert light extinction function [24] (1):

LAI = (1 − α) × [Le(λE/ΩE)] (1)

The TRAC instrument records downwelling solar photosynthetic photon flux density (PPFD)
through the canopy during direct light conditions in order to measure foliage clumping at scales
larger than the shoot. TRAC is sampled along all five line transects within each quadrat and along
one of three sub-plot line transects, dependent on the line transect closest to solar perpendicularity
—measurements are made at a solar angle between 30◦ and 60◦ [24]. DHP measurements were
derived from a Nikon CoolPix 995 digital camera with a Nikon FC-E8 fish-eye converter in diffuse
light conditions in order to extract the effective LAI or also known as plant area index (PAI).
DHP measurements were made at the 10-, 50-, and 90-m marks along lines A, C, and E within
each quadrat and were made during diffuse light conditions (at dawn or dusk). TRAC and DHP
measurements were recorded across all four sites for the following dates: Fairystone (1 May 2002,
25 June 2002, 8 July 2002, 4 September 2002), Appomattox (6 March 2002, 23 May 2002, 30 July 2002),
Umstead (13 April 2002, 23 April 2002, 21 October 2002), and Hertford (5 March 2002, 9 April 2002,
18 June 2002). Processing of TRAC data using TRACWin 3.7.3 software [24,25] and DHP measurements
make use of Gap Light Analyzer (GLA) software [26].

2.3. Soil and Meteorology

Biogeochemical models usually require detailed multilayer soil profiles as simulation inputs.
This information was not available for the field study sites, and so we used a representative soil
profile at all locations (Supplementary Materials Table S2). Historical weather data from the nearest
National Oceanographic Atmospheric Administration’s (NOAA) National Centers for Environmental
Information (NCEI) Cooperative Observing Station (Coop) to the forest observation site (Stand Site)
were selected (Table 1). Figure 3 shows daily time series of maximum temperature, minimum
temperature and precipitation at these locations during 2002.
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Table 1. Locations of historical weather data sites assigned to each forest site and the distance between
the forest and weather data locations.

Stand Site Lat/Long Elev. (m) Coop Site Lat/Long Elev. (m) Dist. (km)

Appomattox 37.22, −78.88 200 Appomattox, VA/51011 37.36, −78.83 277.4 15.8
Hertford 36.38, −77.00 10 Jackson, NC/374456 36.40, −77.42 39.6 37.9

Fairystone 36.77, −80.09 470 Martinsville, VA/515300 36.71, −79.87 231 21
Umstead 35.86, −78.74 94 Raleigh, NC/377079 35.79, −78.70 121.9 8.2

 

Figure 3. Daily weather at the four NCEI Coop locations representing the year 2002 forest plot
sites (A) maximum temperature (◦C), (B) minimum temperature (◦C), and (C) precipitation (mm).
The dashed lines in Figure 3B define two points on the frost damage function curve (see discussion in
Section 2.4 and Supplementary Materials Data Part 3).
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2.4. The EPIC Model

The simulation of forests in EPIC is adapted from methods pioneered in the Agricultural
Land Management Alternatives with the Numerical Assessment Criteria (ALMANAC) model [27].
Changes within this general plant model were developed to better address forest species [28].
Forest regrowth in Canadian Boreal forest ecosystems following disturbances such as forest fires, clear
cuts and insect infestations is detailed in a boreal forest version of ALMANAC (ALMANACBF) [29].
Much of this research was performed to improve agro-forest representation in the Soil Water
Assessment Tool (SWAT) [30] that characterizes the forest stand as a distinct land unit of a single or
consistent combination of tree species of similar age and productivity [31,32]. The EPIC implementation
of this research lacks some, and simplifies other ALMANAC processes so that EPIC and ALMANAC
simulation results for the same forest ecosystem may be similar, but they will not necessarily
be identical.

EPIC is a hybrid, process-based, semi-empirical biogeochemical model characterizing field-sized
areas up to about 100 ha [33]. Previous EPIC applications deal primarily with managed agricultural
crops, but a few studies consider natural and managed shrubland and forests. EPIC was used to
evaluate light interception as a predictor of water use in hedge intercrop, monocrop, and hedge
monoculture (Senna spectabilis cv. Embu) systems in a semi-arid environment in Kenya [34]. A spatially
extended version of EPIC, The Agricultural Policy/Environmental Extender (APEX) was examined to
see if it could replicate the effects of silvicultural practices on streamflow and loading of sediments and
nutrients in nine small Texas watersheds [35] (http://blackland.tamu.edu/models/apex). In another
EPIC application, researchers returned to the same East Texas watersheds to explore N, P and herbicide
losses across three undisturbed control watersheds, three conventional clearcut watersheds and
three intensive clearcut watersheds [36]. None of these studies fully explores EPIC model performance
for forest stand LAI and canopy height. We hypothesize here that the EPIC implementation may be
sufficient for the regional-scale air quality applications suggested in the introduction.

The most critical aspects of EPIC for the present study include the calculation of LAI,
the characterization of multiple, competing species, and canopy height. For a particular species,
potential values of leaf expansion, final LAI, and leaf duration, determined by plant species parameters
and temperature, are reduced by unfavorable air temperatures, radiation, soil water, nutrient,
aluminum and aeration conditions [33]. A series of s-curve functions provide daily values of
(1) maximum potential LAI as a function of plant population, (2) leaf area expansion up to the maximum
value for the growing season, and (3) loss of leaf area late in the season (Supplementary Materials
Tables S3–S5). While perennials mature within a single growing season, multiple growing seasons
are required for trees to reach maturity. In these cases, maximum daily potential LAI adjusts to
include plant response to stress, and is scaled on an annual basis to reflect the time to tree species
maturity (years). Other EPIC LAI adjustments reflect growth initiation in the spring and leaf freeze
damage. Day length triggers leaf initialization. Once triggered, leaf expansion is driven by heat units,
calculated using a species-specific base temperature. LAI reductions (i.e., leaf damage) occurs when
daily minimum temperatures drop below −1 ◦C. A simple exponential function of species age and
height at maturity provides annual tree height.

The plant competition component of EPIC adapts expressions developed for the ALMANAC
model. Up to 10 plant species can compete for light, water and nutrients. EPIC simulates light
interception by leaf canopies using Beer’s law [37] and the leaf area index (LAI) of the total canopy.
No regular row spacing is assumed in a natural forest stand, and so EPIC assigns the light extinction
coefficient (k) a value of 0.685 for all forest stand species. Light competition is then simulated as a
function of both LAI and canopy height. This is in contrast to the ALMANAC approach that uses
different values of k for different species and for different row spacings [28].

EPIC multi-species simulation of tree growth and decline also responds to water and nutrient
stress. The water balance consists of separate transpiration calculations for each species, with each
using the water it needs if sufficient water is present in the common/shared rooting zone. The nutrient
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balance (N and P) allows each species to acquire sufficient nutrients to meet its demands if adequate
quantities are available in the common/shared rooting zone. If nutrients or water is limited,
the provisioning order rotates each day so that no single species receives a competitive advantage.
Table 2 provides an example of water, nitrogen and temperature stress calculations for tree species
simulated by EPIC at the Appomattox field site during 2002. In contrast, ALMANAC simulates
species-specific competitive advantage for water and nutrients based on physical characteristics such
as age, rooting depth and extent.

Table 2. Annual summary of the number of water, nitrogen and temperature stress days for tree species
simulated at the experimental plot during 2002 at the Appomattox field site. Multiple stress conditions
may exist for each species on a single day. These counts represent the number of days on which the
stress factor was dominate. Temperature stress includes both high and low temperature stresses.

Tree Species Water (Days) Nitrogen (Days) Temperature (Days)

Loblolly pine 39 1 125
Sweetgum 39 1 190
White oak 37 0 208
Red maple 41 0 125

3. Results

3.1. Model Calibration

EPIC LAI calibration involves modification of distributed plant parameter values. Some of these
parameter values reflect process-level understanding, field data and published literature, while others
reflect species similarity. Plant parameter values for tree species added to or modified from the
distributed EPIC for this study derive from information contained in the USDA Silvics manual [38]
which describes each species geographic distribution, shade tolerance, maximum canopy height and
seasonal growth pattern and temperature sensitivity. These initial values were then refined (calibrated)
using field observations of stand-level LAI and maximum canopy height while maintaining plausible
physical and process driven relationships. Table 3 provides the observation set used to calibrate the
model. Section 2.3 describes soil and observed daily temperature and precipitation inputs to EPIC
at the four forest sampling locations. We then let EPIC simulate values of daily average wind speed,
relative humidity and radiation using statistical moments of climatological data, e.g., a statistical
weather generator [33]. Long-term average nitrogen concentrations in precipitation are estimated
using NADP data (http://nadp.sws.uiuc.edu). Calibration is complete when there is no further
improvement in stand-level LAI correlation with observed LAI, LAI bias and canopy height with
further parameter modification.

Table 3. Observed LAI mean and standard deviation used in EPIC calibration and evaluation.
Q indicates the field site quadrat from which the sample is taken (Note: * LAI collection dates after
mechanic removal of understory, data not used).

Site Quad Date LAI (Mean) LAI (Std Dev)

Fairystone Q1 1-May 2.14 0.24
Q2 1-May 1.75 0.35
Q1 25-June 2.62 0.32
Q2 25-June 2.67 0.38
Q3 8-July 2.33 0.41
Q4 8-July 2.54 0.35
Q4 1-September 2.51 0.4

Umstead Q1 5-April 0.71 0.09
Q1 13-April 1.34 0.67
Q1 23-April 2.61 0.49
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Table 3. Cont.

Site Quad Date LAI (Mean) LAI (Std Dev)

Q1 21-October 2.8 0.58
Appomattox Q1 6-March 1.49 0.13

Q1 23-May 1.88 0.18
Q1 30-July 2.5 0.25
Q1 6-August * 2.17 0.08

Hertford Q1 5-March 1.73 0.14
Q1 9-April 1.67 0.17
Q1 18-June 2.4 0.32
Q1 25-July 2.33 0.27
Q1 5-August * 2.11 0.24

3.2. Calibrated Model Results

Table 4 summarizes site species characteristics for the simulation. Species age at biological
maturity is a calibrated result, but is constrained to reflect ranges reported in USDA (1990). The letter
“C” indicates a species calibration site. The letter “V” indicates a species verification site. Note that
data were insufficient to verify the calibration of some species. Original (uncalibrated) and final
(calibrated) EPIC tree species parameter values are provided in Supplementary Materials Tables S3–S5.
Figure 4 compares calibrated and uncalibrated EPIC simulation results to observed LAI values across
all four sites. Calibration improves overall simulated R2 from 0.005 to 0.83 and reduces mean bias
from −0.19 to 0.008. Uncalibrated model behavior at hardwood (Umstead and Fairystone) and Pine
dominated (Appomattox and Hertford) sites are distinctly different. This difference relates to an
unrealistically large uncalibrated value of maximum LAI, 5.0 for Loblolly Pine. When these metrics
are re-calculated just for the hardwood stands, the uncalibrated correlation increases to 0.74 but the
uncalibrated mean bias increases to −0.218, indicating the need for additional calibration even for
hardwood-dominated stands.

Overall calibrated model performance is important, but we have also identified the importance of
accurate, temporally resolved LAI. Figure 4 and the sections that follow examine the calibrated results
at each site within the 2002 the growing season. Although no species specific LAI observations are
available, simulated seasonal LAI values are provided for each species modeled within the stand to
confirm that species seasonality and LAI dynamics are physically plausible for that species as well as
relative to other modeled stand species.

Table 4. EPIC species and management information for each simulation location. C = calibration,
V = verification, Ch.Oak = Chestnut Oak, Am. Holly = American Holly, Bl Oak = Black Oak,
N Red Oak = Northern Red Oak.
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Appomattox C C C C
Bio Maturity (years) 55 175 100 60

Normalized
1246 1655 1805 150Density (stems)

Species % 25.7 34.1 37.2 3
Stand Age 19 19 19 19
Hertford V V V C

Bio Maturity (years) 55 100 60 100
Normalized

1482 2862 668 1626Density (stems)
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Table 4. Cont.
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Species % 22.3 43.1 10.1 24.5
Stand Age 20 20 20 20

Fairystone V C C
Bio Maturity (years) 100 150 100

Normalized
Density (stems) 120 307 39

Species % 25.7 65.9 8.4
Stand Age 80 80 80
Umstead V C * C

Bio Maturity (years) 175 100 100
Normalized

184 1 86Density (stems)
Species % 30.5 0.1 14.3
Stand Age 80 80 80

* This species was included to capture available species-specific canopy height observations for this site.

3.2.1. Appomattox

Appomattox serves as the calibration site for Loblolly Pine, White Oak (Quercus alba), Red Maple
(Acer rubrum) and Sweetgum (Liquidamber styraciflua). Normalizing the observed species densities for
the four EPIC species subset upward to the observed total stand density approximates within-stand
competition for resources at each experimental location. Although the plot description indicates
that Loblolly Pine reaches economic maturity i.e., the point when value increase no longer meets or
exceeds net return, in 20 years, biological maturity i.e., maximum merchantable volume, occurs later.
Literature suggests an average maturity age of about 40 years [38]. Calibration at this site suggests a
slightly longer time to maturity (i.e., 55 years) (Table 4).

Figure 5A summarizes the simulation results for Appomattox. Black squares indicate the mean
observed stand-level LAI across samples within the quadrat (Table 3). The whiskers represent one
standard deviation (±1 STD) across samples. Loblolly Pine dominates overall LAI. Comparison of
observed and simulated LAI indicates a small negative bias (−0.019), and an R2 value of 0.91.
Simulated canopy height is biased 3% high.

A cold temperature damage function reduces EPIC LAI when the minimum daily temperature lies
below −1 ◦C. White Oak early season LAI losses reflect damage from low temperature events following
a period of mean temperatures exceeding the White Oak growth threshold (2 ◦C). EPIC parameters
define two points on a frost damage curve. The calibrated white oak damage function predicts that
10% of LAI is lost for each day the minimum temperature is −5 ◦C, and 50% LAI loss for each day
the minimum temperature is −15 ◦C. Loss estimates change linearly between these two limits, and
are more likely to understate frost damage than to overstate it [33]. In contrast, calibrated Loblolly
Pine parameters suggest only a 1% per day LAI loss at −5 ◦C and a 3% per day LAI loss at −15 ◦C.
There are several freeze damage events during the month of February, and an isolated single day
damaging freeze event on March 23 (Figure 3).
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Figure 4. Comparison of (A) uncalibrated and (B) calibrated EPIC simulated LAI and observation.

3.2.2. Hertford

Hertford (Figure 5B) serves as the calibration site for American Holly (Ilex opaca), and a verification
site for Loblolly Pine, Red Maple and Sweetgum. Although Hertford appears to experience some of the
coldest spring temperatures of the four sites (Figure 3), Loblolly Pine is relatively cold tolerant. The stand
level EPIC LAI estimates lie within ±1 STD of the field observations, are biased slightly low (−0.17) and
have an R2 value of 0.96. Dominant species (Pine) canopy height is biased 5% high.
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Figure 5. EPIC simulation results at (A) Appomattox stand year 19, (B) Hertford stand year 20,
(C) Fairystone stand year 80, and (D) Umstead stand year 80. Error bars represent ±1 standard
deviations across experimental plot data. R2 is the simulated and observed data correlation and MB is
the mean bias. (Note: ‘OBS’—observed)

3.2.3. Fairystone

Fairystone serves as a verification site for Red Maple and a calibration site for Chestnut Oak
(Quercus prinus) and Pignut Hickory (Carya glabra). Calibrated results are shown in Figure 5C.
Chestnut Oak completely dominates the stand LAI. Early LAI variability indicate a series of freeze
events during February and March. Chestnut Oak is relatively sensitive to low temperatures and,
with its extreme dominance as regards stand LAI, there is significant variability in the early stand-level
LAI. Model correlation is the poorest here as compared to the other sites, with simulated LAI R2 of
0.69, but mean bias is quite good at 0.09 and canopy height of 16.33 m falling well within the reported
range for this site (14.6–22.1 m). Examination of plot Figure 5C illustrates one shortcoming of this
simulated approach which is an inability to capture unusual events beyond heat, cold and excessive or
insufficient moisture. In this case, there is an observed anomalous LAI drop between the 25 June and
8 July observations. Further investigation indicates several 2 to 4 cm precipitation events during this
period suggesting the potential for localized leaf loss associated with high wind or hail. Our simulation
model is unable to account for these kinds of episodic losses.

3.2.4. Umstead

Umstead serves as a verification site for White Oak and a calibration site for Yellow Poplar
(Liriodendron tulipifera), Black Oak (Quercus velutina) and Northern Red Oak (Quercus rubra). Calibrated results
are shown in Figure 5D. The oak species are the primary contributors to stand level LAI. Like the Appomattox
and Fairystone sites, there are indications of late winter, early spring stress that temporarily reduces leaf area.
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Stand level EPIC estimates fall within ±1 STD of the observations with the exception of 23 April, produce a
mean bias of 0.09 and an R2 value of 0.95. Canopy height is biased 9% high.

4. Discussion

While the results presented in Section 3 suggest EPIC has an ability to simulate mixed forest stand
LAI at the experimental plot scale, and previous EPIC applications have been performed for small
watersheds, regional air quality models require simulations for much larger areas for which detailed
information regarding stand characteristics needed by the EPIC model is often lacking. In addition,
both experimental sites and SWAT land units often reflect relatively even-aged stands, i.e., the site
is cleared at the start of an experiment. This will not be the case on a larger, regional basis and
unmanaged or minimally managed stands. The discussion that follows illustrates one means of
addressing these challenges.

The EPIC model requires information regarding species, species density and species age.
It then uses this information to model a single, homogeneous mixture of competing forest species.
Neither characterization is likely to precisely represent any “real world” natural stand, but can
serve to bound the range of possible stand-level LAI estimates. Both areal coverage and species
density are rarely available for the same experimental site, but the US Forest Service Forest Inventory
and Analysis (FIA) plot calculator (http://apps.fs.fed.us/Evalidator/evalidator.jsp) can provide a
consistent, reproducible estimate of species area and density information for a ~50 mi2 (~130 km2) area
(4 mi or 6.4 km radius circle) surrounding the Appomattox field site (Table 5). Approximately 57% of
the area within this radius is reported as being forested.

Table 5. FIA plot calculator results for the area surrounding the Appomattox plot site, 2008–2013.
TPH = Trees per hectare (percent of stand total).

Timberland (Ha) TPH

Age Class Age Class Age Class

1–20 year 21–40 year 41–60 year
% % %

Loblolly pine 14,755 931 (52) 100
Virginia Pine 3726 418 (24) 100
Mixed Oak 12,007 90 (5) 100

Mixed upland hardwoods 14,717 339 (19) 100
Total Forested 18,294

Total Area 32,170

The FIA summary data are aggregated into three species groupings: (1) Loblolly Pine and Virginia
Pine (Pinus virginiana) represented by Loblolly Pine; (2) mixed oak species comprised of Chestnut,
Black and Red Oaks, represented by Black Oak; and (3) mixed upland hardwoods, represented by Red
Maple. Stem densities for the groupings and stem fraction in trees per hectare (TPH) are 1349 (76%),
90 (5%) and 339 (19%). This compares to the Appomattox experimental plot represented by Loblolly
Pine (26%), White Oak (34%), Red Maple (37%) and Sweetgum (3%). Stand densities are 1778 TPH for
the FIA area stand compared to 4856 TPH for the Appomattox experimental plot. The FIA species age
distribution suggests a 60-year simulation period with Black Oaks “planted” in year 1 (1942) of the
simulation, Red Maples “planted” in year 20 (1961) of the simulation and Loblolly Pine “planted” in
year 40 (1981) of the 60-year simulation. The FIA summary suggests relatively even ages within each
species. If this were not the case, a range of ages within a species could be simulated by introducing
(“planting”) new saplings each year within a desired establishment window. With some simplification,
this use of FIA data is similar to that described for boreal forests [29]. For instance, this research
introduces a temporally dynamic function to simulate population dynamics that is missing from
our example [29] and other research suggests the use of temporally variable growth parameters to
represent rapidly developing or “short-rotation” species [39].
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Figure 6A shows simulated LAI for the FIA area surrounding the Appomattox field site. For 2002
conditions, the substantial number of Pine provides a relatively constant base LAI of 1.5 throughout the
winter months. Black Oak LAI provides the bulk of the stand seasonal signature, with green-up well
under-way by April 1 and rapid brown-down (senescence) in late October. Figure 6B compares our
plot stand LAI in 2002 to our FIA representation. The seasonal peak LAI value is similar across stands,
with the FIA stand’s greater maturity compensating for its lower overall stem density. The simulated
Pine LAI is similar across the two simulations (plot value of ~1.2 and FIA value of ~1.4). This is, perhaps
a bit surprising since pine are introduced into an existing hardwood stand for the FIA simulation but
all species are “planted” simultaneously in the plot simulation. This result, however, appears to be
supported by [40] who report that hardwoods may facilitate longleaf pine seedling establishment,
as opposed to suppressing it, at hardwood densities as high as 1400 stems·ha−1. This simulated species
interaction is explored further in Figure 6C, which follows the FIA stand development from 1985
through 2005 (post pine introduction). Changes in stand level LAI magnitude and overall seasonal
shape over time reflect simulated stand evolution and weather-driven variability. For instance, mean
March minimum temperatures increase slightly between 1985 (~1◦C) and 2005 (2.4◦C). The simulated
LAI seasonal pattern is guided by the accumulation of heat units above a species-specific “base” until
a fixed annual total is reached. More rapid heat unit accumulation in the spring means that the annual
total may be reached earlier in the year, effectively shifting brown-down initiation earlier as well.
Changes such as these could be important for regional simulation of air quality since, as mentioned
previously, LAI influences pollutant removal through gas phase deposition, and the magnitude and
timing of pollutant precursor emissions can influence subsequent pollutant production and destruction.

An emerging research area to which improved areal LAI estimates could make a significant
contribution is episodic land use change associated with wildland fires and prescribed burns used
as part of land and resource management (https://www.fs.fed.us/fire/). Figure 7 illustrates the
magnitude of the wildfire issue in terms of number of fires and total area burned. Air quality modeling
research scientists are responding by explicitly including particulate emissions generated by these
fires in their simulations (e.g., [41]). The majority of these fire events are small, but 59 wildfire events,
each of which were responsible for burning more than 100,000 acres (247,105 ha) were reported from
January 2010 through December 2015. As our ability to simulate these events improves, it becomes
important to include associated landscape changes such as surface exposure and forest stand re-growth
in our estimates of subsequent pollutant deposition and precursor emission.

EPIC is an attractive option for capturing large-scale interactions between forest land covers and
air quality because it is relatively easy to implement and has already been successfully coupled with
a regional air quality model [42]. There are, however, other forest ecosystem options that could be
considered such as the LANDIS and LANDIS-II models [43,44]. It is always challenging to balance the
desire for ecological and biogeochemical realism against the additional resources required for their
inclusion. Additional research is needed to determine the level of process detail needed to adequately
characterize these complex air and land surface interactions for regional air quality applications.

Finally, modeled LAI has the potential to augment satellite-derived estimates of this same parameter.
In a perfect world, satellite estimates would provide reliable LAI in magnitude and without data drops,
however this is almost never the case across all forested types and biomes. As an example, the Bigfoot
MODIS Validation Project found agreement between validation data and MODIS LAI at low levels of LAI
but was problematic at higher biomass levels [45]. Also, they found significant differences dependent on
the algorithm pathway chosen, which was a product of atmospheric interference (i.e., cloud contamination)
and the number of quality scenes acquired in an 8-day chronosequence. EPIC or any other validated
biomass model may work in combination with the satellite feed by constraining or inflating LAI values
to reasonable figures based on biases observed in these validation studies [46]. Thus, the modeled LAI
could provide bias corrections where the satellite-derived LAI could provide the timing of green-up and
senescence and relative seasonal changes in LAI.
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Figure 6. EPIC simulation results for (A) FIA stand characterization for the area surrounding the
Appomattox, VA experimental plot, (B) a comparison of FIA area and plot-level stands and (C) FIA
stand characterization for the area surrounding Appomattox, VA 1985 through 2006.
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Figure 7. U.S. wildfire history, 1960–2014. Source (https://www.nifc.gov/fireInfo/fireInfo_statistics.html).

5. Conclusions

This study has explored the calibration of a semi-empirical, process-based biogeochemical model
(EPIC) to estimate stand-level LAI and canopy height in four unfertilized mixed forest sites located in
North Carolina and Virginia. Measurements of forest composition (species and number), LAI, diameter
(DBH), height and basal area were recorded at each site during the 2002 field season. Calibration and
verification results are good at these sites, with modeled to observed LAI correlations ranging from
0.61 to 0.96, correct identification of dominant species evolution, and dominant species (canopy) height
estimate within 10% of observation (Table 6). Across all sites and observations, calibration produces an
R2 value of 0.83 and mean bias of +0.008. These results suggest that EPIC offers an LAI estimate that
agrees with observations while, at the same time better representing ecosystem processes and dynamic
temporal patterns that respond to current and future meteorological conditions. All model calibrations
reported here assume a uniform mixture of tree species. This appears to be a reasonable assumption
for these stands, but more heavily managed mono-species stands are also easily simulated.

Table 6. Observed and simulated LAI correlation, mean bias and canopy height.

Stand Site Obs. LAI R2 LAI
(Mean Bias)

Obs. Dominant
Height (m)

EPIC Dominant Species
Height (m)

Appomattox 3 0.91 −0.02 15.9 14.9, Loblolly Pine
Hertford 5 0.96 −0.17 14.3 17.1, Loblolly Pine

Fairystone 7 0.69 0.09 14.6–22.1 18.0, Chestnut Oak
Umstead 4 0.95 0.09 12.8 12.3, White Oak

EPIC LAI estimates in regional air quality models such as CMAQ, but additional work is needed
to operationalize this approach. For instance, we were able to calibrate and validate only a limited
subset of species for a single geographic region. Calibration of additional species and validation across
more geographically diverse settings and forest landscapes is needed, e.g., [27]. While application of
the EPIC LAI model across the continental U.S., a common CMAQ modeling domain, could require
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significant resources, this preliminary analysis suggests that it is technically feasible to define general
eco-system-level stand composition profiles appropriate for larger geographic or ecological areas.
Validation and evaluation of such areal estimates will be needed, but even satellite estimates of areal
LAI are prone to error, so that a combination of remotely sensed data and measured atmospheric
chemical fluxes may be appropriate. More temporally and spatially detailed characterization of
vegetation cover should lead to more realistic atmospheric flux (precursor emission and chemical
deposition) and ecosystem exposure estimation. Additional model evaluation is needed in order
to better address long-term air quality trends and inter-annual variability that include emerging
landscape drivers such as wildland and managed fires.

Supplementary Materials: The following are available online at www.mdpi.com/1999-4907/9/1/26/s1,
Figure S1: Appomattox, VA site location. Image on left is a color infrared Ikonos image with plot location
(Q1) depicted within the loblolly pine stand (dark red tone). Leaf-off and leaf-on images are shown on the right
title, Figure S2: Deciduous forest composition for the Appomattox LAI validation site, dominant-codominant,
intermediate, and suppressed canopy, Figure S3: Hertford, NC site location. Image on left is a color infrared
Ikonos image with plot location (Q1) depicted within the loblolly pine stand (dark red tone). Leaf-off and leaf-on
images are shown on the right, Figure S4: Deciduous forest composition for the Hertford LAI validation site,
dominant-codominant, intermediate, and suppressed canopy, Figure S5: Fairystone, VA site location. Image on
left is a natural color digital ortho-quarter quadrangle image with plot locations (Q1–Q4) depicted within the
oak-hickory hardwood stand. Leaf-off and leaf-on images are shown on the right, Figure S6: Deciduous forest
composition for the Fairystone LAI validation site, dominant-codominant, intermediate, and suppressed canopy,
Figure S7: Umstead, NC site location. Image on left is a natural color digital ortho-quarter quadrangle image with
plot location Q1 depicted within the oak-hickory hardwood stand. Leaf-off and leaf-on images are shown on
the right, Figure S8: Deciduous forest composition for the Fairystone LAI validation site, dominant-codominant,
intermediate, and suppressed canopy, Table S1: Forest stand structural attributes for 4 sites, Table S2: Initial
Cecil (1292NC0018VAC) soil profile used as input to the EPIC model at all forest calibration and verification sites,
Table S3: Selected initial EPIC crop parameter values for tree species simulated at the four forest field sample
sites. An entry of N/A indicates no initial parameter values were available, Table S4: Selected calibrated EPIC
crop parameter values for tree species simulated at the four forest field sample sites, Table S5: EPIC variable Key
(https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs143_012924.pdf)
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Abstract: The Upper Parana Atlantic Forest (BAAPA) in Paraguay is one of the most threatened
tropical forests in the world. The rapid growth of deforestation has resulted in the loss of 91%
of its original cover. Numerous efforts have been made to halt deforestation activities, however
farmers’ perception towards the forest and its benefits has not been considered either in studies
conducted so far or by policy makers. This research provides the first multi-temporal analysis of
the dynamics of the forest within the BAAPA region on the one hand, and assesses the way farmers
perceive the forest and how this influences forest conservation at the farm level on the other. Remote
sensing data acquired from Landsat images from 1999 to 2016 were used to measure the extent of
the forest cover and deforestation rates over 17 years. Farmers’ influence on the dynamics of the
forest was evaluated by combining earth observation data and household survey results conducted
in the BAAPA region in 2016. Outcomes obtained in this study demonstrate a total loss in forest
cover of 7500 km2. Deforestation rates in protected areas were determined by management regimes.
The combination of household level and remote sensing data demonstrated that forest dynamics
at the farm level is influenced by farm type, the level of dependency/use of forest benefits and the
level of education of forest owners. An understanding of the social value awarded to the forest is a
relevant contribution towards preserving natural resources.

Keywords: BAAPA; remote sensing; household survey; forest; farm types

1. Introduction

Deforestation in the tropics today continues inexorably with severe implications for biodiversity
conservation, climate regulation and ecosystem services such as carbon storage. The rapid expansion
of the agricultural frontier, cattle ranching and illegal logging has converted the world’s last remnants
of tropical forest into isolated patches endangering their continuity [1]. Between 1999 and 2005,
69 million ha of forest have been lost in Latin America accounting for almost 7% of the forest
cover of the continent [2]. Despite the fact that its speed has declined in comparison to previous
years [3], deforestation still remains a concern. The latest studies conducted on a global level
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Forests 2017, 8, 389

identified Paraguay as one of the countries in Latin America with the highest deforestation rates [4,5].
The continuous anthropological pressure on natural resources has led to the loss of 90% of the forest
cover in the eastern region of the country, where the Atlantic Forest is located [6]. The Atlantic
Forest encompasses 15 ecoregions and a total area of 471,204 km2 [7]. The ecoregion is considered to
be a biodiversity hotspot, due to the presence of numerous endemic species that are unique in the
world [8–11]. Even though the portion of the Atlantic Forest (also known as the Upper Parana Forest
(BAAPA)) within Paraguay only represents a small share of the complete geographic extension of the
ecoregion, it has been recognized as a highly diverse ecosystem [12]. According to Huang et al. [13],
the BAAPA forest cover decreased around 50% of its original cover between 1973 and 2000, in less
than 30 years [1]. Latest studies [6,14] estimated that only 10% of its original cover remains. One of the
major drivers of deforestation in the region is the expansion of mechanized agriculture and a lack of
economic opportunities for forest owners [15,16]. Economic alternatives to service wood production
(e.g., construction wood, fire woods and charcoal) are limited for the local population. As a result,
it is tempting for small-scale farmers to lease their lands to large companies that produce exclusively
monocultural crops such as soy beans and maize [17]. A common perception among farmers in the
region is that one ha of soy crops simply holds a higher economic value than one ha of native forest.
In addition, the low economic compensation that can be obtained for forest products cannot compete
with the high levels of income generated by agricultural exports [18].

Over the past decades, several governmental institutions, e.g., Forest National Institute (INFONA)
and international organizations (e.g., Food and Agriculture Organization of the United Nations (FAO),
the World Wildlife Fund (WWF) and the United States Agency for International Development (USAID)),
have used remote sensing data to assess deforestation in the BAAPA. Nevertheless, despite the existence
of numerous deforestation reports, major parts of the spatial analysis are kept in clusters and some even
considered sensitive information [19]. According to Da Ponte et al. [19], only few scientific studies have
provided a systematic analysis of forest cover change in the BAAPA region [13,20,21]. These studies
estimated the dynamics of the forest cover and forest structure by implementing solely bi-temporal
analysis based on Landsat images spanning the years 1970 to 2001 and 2003 to 2013, respectively. Even
though the discussed studies successfully identified deforestation processes and patterns with remote
sensing techniques, no attempts were made to understand the underlying drivers of change or the
effectiveness of conservation policies. No ground information that could capture local circumstances
(e.g., uses of natural resources, farm types and cultural characteristics) between forest owners has
been included in past analysis. For instance, recent studies conducted in the BAAPA [18,22] have
demonstrated that farmers’ perceptions of the importance of the forest vary according to farm types.
Farmers with less economic resources depend more heavily on the forest, whereas larger farmers
consider the forest’s main value to be recreational/cultural. Hence, it is to be expected for small-scale
farmers to present a higher percentage of farms exhibiting a decrease in their forest cover.

In order to address these shortcomings, in this study, a dense set of Landsat imagery is applied
on the one hand to provide the first multi temporal analysis of forest cover change in the BAAPA
region (to the knowledge of the authors) between the years 1999 and 2016. On the other, remote
sensing and household level data are combined to understand how farmers’ perceptions of the forest
affects conservation practices at the farm level. The goal of this study is to measure the influence
of farmer’s educational background on the dynamics of the forest, how changes in deforestation
frequency differ according to farm type (small, medium, and large), how farmers’ dependency on
natural forest resources influences changes in the forest cover, and the impact farmers’ participation
in conservation programs has on preservation. The outcomes obtained in this study provide useful
information when contemplating the importance of social involvement in land-use planning.
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2. Data and Methods

2.1. Study Area

This study was conducted in the Upper Parana Atlantic Forest of Paraguay (BAAPA), located in
the eastern region of the country. The ecoregion comprises portions of ten departments, resulting in a
total area of 86,000 km2 (see Figure 1) [23]. Almost 50% (over 3 million inhabitants) of the country’s
population is located within the boundaries of the BAAPA [23]. The areas of highest population density
in the ecoregion are located in the east (Ciudad del Este) and south (Encarnación), whereas in the north
the population decreases [23]. The climate in the Atlantic Forest is characterized by frequent rainfalls
that fluctuate between 1300 to 1800 mm per year. The temperature in the region varies greatly between
seasons. During summer months (December–March), the temperature can increase up to 42 ◦C, while
over winter (May–August), it can decrease down to 0 ◦C. Most of the diverse biological richness of the
BAAPA is distributed in the ecoregions of the Montane Forest in the North (Amambay), the central
forest in the south and the Upper Parana forest in the southeast [12]. Although forest cover represents a
significant portion of the natural vegetation in the ecoregion, the severe pressure from anthropological
activities has degraded the forest with only a few remaining fragmented patches [13,20].

Prior to 1940, the BAAPA forest covered over 55% of the eastern region of the country (accounting
for almost 9,000,000 ha). Nevertheless, uninterrupted deforestation practices resulted in the loss of 90%
of its original cover [6]. Currently, 90% of the country’s soy bean production on 3 million ha is located
within the boundaries of the BAAPA region [24]. According to studies such as Huang et al. [13,20],
causes of deforestation were related to the long-established perception of the forest as unproductive
lands, the rapid expansion of the agricultural frontier and the unsustainable use of natural resources.
By the year 2000, almost two-thirds of the Paraguayan Atlantic Forest was lost, with an annual average
deforestation rate of 2000 km2. The government introduced reforestation programs in the late 1990s
(incentives to forestation and reforestation law 536/96) to diminish the damage done in the BAAPA,
yet unfortunately, these did not obtain remarkable results. The lack of clear regulations and financial
support discouraged land owners from introducing further lands into the program [25]. By 2003 at the
latest, Paraguay had become the country with the second highest deforestation rate in the world [3].
In response, the Paraguayan government approved in 2004 the “Zero Deforestation Law (2524/04)”
for a period of two years, which prohibited the conversion of any parts of the Atlantic forest in eastern
Paraguay [14,16]. According to reports from the World Wildlife Fund [3], deforestation rates decreased
drastically as a result, slowing by over 90% from 2002 (110,000 ha of forest loss per year) to 2009
(8000 ha of forest loss per year).
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Figure 1. (a) Overview of the study area (Base layer provided by Natural Earth Community and
Conservation international [26,27]); (b) Paraguay and the Upper Parana Atlantic Forest (BAAPA)
location (source: adapted from Natural Earth [26]); (c) Household distribution within selected
study areas.
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2.2. Landsat Image Acquisition and Pre-Processing

For this study, Landsat 5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper Plus
(ETM+) and Landsat 8 Operational Land Imager (OLI) data were acquired between the reference years
of 1999 and 2016. Taking into consideration the high temporal and spatial resolution of the Landsat
images, the sensor was considered the most suitable for this research. As presented in Table 1, a total
of 2775 terrain corrected (L1T) images with less than 30% cloud cover were obtained from the United
States Geological Survey (USGS) archives. In order to decrease any possible noise and data gaps
resulting from clouds and further atmospheric distortions, the number of satellite images to be used
per classification was increased by considering data of two years for each map. This permitted to obtain
a denser temporal coverage from the study region. Similar to Wohlfart et al. [28], Knauer et al. [29]
and Gebhardt et al. [30], the FMASK (Function of mask) algorithm was applied over the Landsat
images to identify and mask pixels classified as clouds shadows or no data (see Figure 2). The FMASK
algorithm was developed to automatically detect and mask clouds, cloud shadows and snow from
Landsat images by taking the spectral and textural features into consideration based on probabilistic
scores [31].

Table 1. Landsat data and number of processed scenes used in this study.

Sensor Path/Row Acquisition Dates Number of Scenes Total

Landsat 5 TM

224/77 07/1999–11/2011 116

930

224/78 04/1999–11/2011 108
224/79 01/1999–11/2011 106
225/76 01/1999–11/2011 112
225/77 01/1999–11/2011 118
225/78 01/1999–11/2011 121
225/79 01/1999–9/2011 127
226/76 02/1999–10/2011 122

Landsat 7 ETM+

224/77 08/1999–07/2016 190

1514

224/78 08/1999–08/2016 177
224/79 09/1999–08/2016 188
225/76 07/1999–07/2016 198
225/77 07/1999–08/2016 197
225/78 07/1999–08/2016 194
225/79 10/1999–08/2016 179
226/76 08/1999–08/2016 191

Landsat 8 OLI

224/77 05/2013–08/2016 43

331

224/78 05/2013–08/2016 40
224/79 07/2013–08/2016 42
225/76 04/2013–07/2016 44
225/77 04/2013–07/2016 41
225/78 04/2013–07/2016 45
225/79 04/2013–07/2016 43
226/76 04/2013–08/2016 33

Atmospheric corrections were performed with ATCOR-3 [32] for each Landsat scene to obtain
physically comparable surface reflectance information, while also integrating topographic corrections
by incorporating slope and elevation information from the Shuttle Radar Topography Mission.
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Figure 2. Workflow of remote sensing data processing and classification procedures (source: adapted
from Mack et al. [33].

2.3. Spectral-Temporal Landsat Time-Series Metrics

The use of continuous spectral-temporal metrics not only has proven to solve problems
related to data gaps (a consequence of clouds), but also has been applied extensively as a reliable
approach for separating land cover/use classes [34–37]. A variety of different spectral-temporal
metrics were estimated based on bi-annual Landsat stacks, characterizing different land cover
classes for the most prominent phenological information. The procedure follows the approach as
described in Mack et al. [33] and Wohlfart et al. [28]. The lack of temporal regularity of Landsat
acquisitions constrains the direct quantification of phenological metrics. Therefore, several bi-annual
spectral-temporal metrics were computed from the Landsat scenes in order to obtain proxies for
seasonal information. For this study, several statistical image metrics were derived (percentiles of
10, 25, 50, 75, 90%) from Landsat (TM, ETM+, and OLI) observations based on the reflectances of
the five bands (blue, green, red, near infrared and short-wave infrared). For each band and index,
multi-year percentile differences (90% minus 10% and 75% minus 25%) were calculated. As described
in Mack et al. [33] interannual minimum and maximum were neglected in order to decrease noise and
further outliers. In addition, Normalized Vegetation Index (NDVI) percentiles were computed. Hence,
a total of 35 multi-temporal spectral features were considered as input variables in the classifications.

2.4. Estimation of Forest Cover between Years 1999–2016

Forest/non-forest maps were produced for every year between 1999 and 2016, employing
a random forest (RF) [38] classifier to generate inter-annual thematic change maps based on
spectral-temporal metrics (see Figure 2). For each reference year, training samples were randomly
collected over the BAAPA area, resulting in a set of at least 100 homogeneous training polygons
(as suggested by Congalton and Green [39]) for each of the five land cover/use classes “forest,
croplands, grasslands, urban areas, and water”. Training and validation samples were well distributed
over the study area to obtain the most representative coverage of land cover/uses in the region.
Following the procedures of Wohlfart et al. [40], visual interpretation of very-high-resolution images
(acquired from the historical imagery function of Google Earth between 1999 and 2016 [41]) was
performed to define the classes of the training and validation samples. The interpretation was based
not only on the image interpretation but also on local expert knowledge of the area.

The RF algorithm has been increasingly applied to conduct land cover mapping due to its
performance, user friendliness and computer proficiency [42–44]. RF is a decision tree algorithm
which selects random subsets of learning samples and of variables to build multiple (default value of
500) independent decision trees. Models were built and adjusted using the software R (version 3.3.1,
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R Foundation for Statistical Computing, Vienna, Austria) using its random forest package [45,46]. The
pixel-wise classification applies the majority vote rule from aggregated decision trees to determine
the final category. In this study, RF models with 500 independent trees were built for each two-year
composite, resulting in a total of eight individual models. Default values for the mrty parameters were
used, which traditionally is

√
p, where the number of predictors in the dataset is represented by p.

In order to train the RF classifier, 60% of the reference dataset served as the training input, and the
remaining 40% of the samples as the verification set. The quality of each classified image was described
through overall accuracies, producers’ and users’ accuracies, and Kappa coefficients derived from the
error matrix [47]. Finally, a non-forest mask was generated by grouping all non-classes. Forest patches
with an area smaller than 0.5 ha were excluded from the analysis, considering the forest definition
established by FAO [48].

In order to analyze the long-term differences of forest dynamics between protected areas (of
different ownership) and among farm types (small, medium and large) a long-term (bi-temporal)
analysis of change was conducted by comparing forest classifications results for the reference years of
1999–2000 and 2015–2016.

2.5. Household Survey Data

For this study, a household socio-economic survey (277 households) was conducted in the BAAPA
region (see Figure 1c) in January 2016 over a period of one month. Due to the large size of the BAAPA
region, three sample areas were chosen to conduct the survey; the ITAIPU watershed dam (10,000 km2)
located in the north, the Ñacunday watershed (2500 km2), and the Tavapy district (436 km2) situated
in the South (see Figure 2c).

Respondents were stratified according to the size of their farm, following the categorization
applied by the Ministry of Agricultural of Paraguay in its rural censuses [49]. Farmers with land
size <20 ha represent the small-scale farmers group; farmers with land size of 20–50 ha represent
the medium-scale farmers group; and farmers with land size >50 ha represent large-scale farmers.
In general, the survey focuses more on aspects of the rural population (e.g., job, income, education level
and land size) and their relationship with the forest (e.g., how they define “a forest” their knowledge
of its functions, and its importance for their livelihood), their use of forest resources and services
(e.g., firewood, construction and forest farming) and conservation programs (e.g., understanding and
participation in such programs). For further detailed information on the household surveys methods
and results, the interested reader is referred to Da Ponte et al. [18].

2.6. Combining Household and Remote Sensing Data

Using cadastral information, long-term forest cover change results for the reference years
1999–2000 and 2015–2016 were correlated to responses acquired from the field survey. For 106 of the
interviewed farmers, cadastral data was obtained from the Paraguayan National Cadastral Service
(SNC). Further, information was acquired on site during the field campaigns by measuring the limits of
39 farms while it was feasible to do so; for small-scale farms in particular, the topographic and weather
conditions needed to be appropriate for doing so. This resulted in a number of 145 farms where both
household survey and cadastral information was available for our comparative study. This sample
size can be considered representative of the study region, since according to Yamane´s equation [50],
100 samples are required to achieve a sampling accuracy of approximately 90%. See Equation (1):

n =
N

1 + N(e)2 (1)

where n represents the samples needed; N refers to the sample population; and e the sampling
error (0.10).
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Changes in forest cover at the farm level were assessed by applying bi-temporal change detection
analysis stratifying the changes into three categories: “forest loss”, “forest gain” and “no significant
changes”. A farm was considered to fall into the category “no significant changes” if variations in
forest cover occurred between 1 and 4 pixels (0–36 ha).

3. Results

3.1. Forest Classification Accuracy

In general, classification accuracies obtained from Landsat images between the years 1999 and
2016 fluctuated from 85% to 93%, with Kappa coefficients ranging from 0.82 to 0.91 (see Table 2).
The Landsat data set from 2001–2002 exhibited the highest accuracy, of which 94% of the pixels were
classified correctly as forest. On the other hand, the lowest accuracy values were seen in the 2015–2016
Landsat data sets, obtaining 88% and 87%, respectively. The lower classification values could be
attributed to high spectral similarities between forest areas and dense crop fields (e.g., soybean and
maize plantations).

Table 2. Classification accuracies for each time step from 1999 to 2016.

Time Period Overall KAPPA
Producers
Accuracy

Forest

Users
Accuracy

Forest

Producers
Accuracy

Non-Forest

Users
Accuracy

Non-Forest

1990/2000 89.04% 0.85 90.15% 89.12% 89.87% 88.10%
2001/2002 93.06% 0.91 94.13% 92.28% 92.86% 93.18%
2003/2004 85.71% 0.82 86.74% 85.95% 84.67% 85.13%
2005/2006 92.86% 0.90 93.75% 92.67% 92.88% 91.43%
2007/2008 91.69% 0.89 93.09% 90.43% 91.15% 92.24%
2009/2010 91.03% 0.87 91.15% 91.08% 89.87% 91.02%
2011/2012 92.35% 0.89 94.88% 93.45% 90.72% 91.23%
2013/2014 92.13% 0.89 92.78% 92.52% 91.36% 91.75%
2015/2016 87.36% 0.83 88.40% 87.78% 87.04% 86.26%

3.2. Forest Loss Rates

In 1999/2000, over 31% (27,000 km2) of the BAAPA area was covered by forest. As presented
in Table 3 and Figure 3, the largest forest areas in the region were located in the departments of
Canindeyú and San Pedro, accounting for more than 48% (over 10,000 km2) of the total forest area in
the BAAPA. The lowest levels of forest coverage were found in the departments of Paraguarí, Guairá
and Concepción, together accounting for only 9% of the forest cover (around 2500 km2). In the years
2001/2002, the forest cover in the BAAPA decreased to 29%, equivalent to 630 km2. The departments
of Canindeyú, San Pedro and Alto Parana exhibited the highest relative forest loss of 79%, with more
than 500 km2. In 2003/2004, deforestation rates increased drastically. Almost 9% (2300 km2) of the
forest was being depleted, nearly four times as much as in previous years. Similar to the trends above,
the highest rates of deforestation were concentrated in the departments of Canindeyú, San Pedro, and
Alto Parana, together totaling over 56% (around 1300 km2) of the area loss.

Following the year 2004, rates of deforestation gradually decreased from 4.9% (1200 km2) from
2005/2006 down to 2.5% (549 km2) between 2011 and 2012, before increasing again slightly in
2015/2016 (2.9%). Overall, by the year 2016, more than 27% (7500 km2) of forest cover was lost
since 1999, at an annual deforestation rate of 1.5% (442 km2) over the entire BAAPA area. The lowest
deforestation rates were shown in the departments of Guairá (12.1%) and Paraguarí (2.4%) accounting
for 1.5% (120 km2) of the total area deforested. In contrast, the departments of San Pedro and Canindeyú
consistently evidenced the highest losses, with a total forest cover loss of 41% and 33%, respectively.
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Figure 3. Deforestation results in the BAAPA region between 1999 and 2016.
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Table 3. Forest cover and forest cover loss in the BAAPA region from 1999 to 2017.

Department

Forest
Cover

(1999–2000
km2)

%

Forest
Cover

(2001–2002
km2)

%

Forest
Cover

(2003–2004
km2)

%

Forest
Cover

(2005–2006
km2)

%

Forest
Cover

(2007–2008
km2)

%

Alto Paraná 3336 12.3 3210 11.8 2856 10.5 2747 10.1 2709 10.0
Amambay 2414 8.9 2371 8.7 2353 8.7 2144 7.9 1998 7.3
Caaguazú 3113 11.5 3069 11.3 2801 10.3 2658 9.8 2649 9.7
Caazapá 2172 8.0 2169 8.0 1901 7.0 1801 6.6 1787 6.6

Canindeyú 5812 21.4 5602 20.6 5036 18.5 4889 18.0 4692 17.3
Concepción 1246 4.6 1236 4.5 1084 4.0 1027 3.8 940 3.5

Guairá 916 3.4 891 3.3 862 3.2 860 3.2 856 3.1
Itapúa 3086 11.4 3084 11.3 2833 10.4 2802 10.3 2730 10.0

Paraguarí 357 1.3 324 1.2 347 1.3 335 1.2 327 1.2
San Pedro 4735 17.4 4570 16.8 4124 15.2 3728 13.7 3383 12.4

Total 27,187 100 26,526 24,197 22,991 22,071

Department

Forest
Cover

(2009–2010
km2)

%

Forest
Cover

(2011–2012
km2)

%

Forest
Cover

(2013–2014
km2)

%

Forest
Cover

(2015–2016
km2)

%
Total Forest
Loss (km2)

%

Alto Paraná 2664 9.8 2609 9.6 2598 9.6 2528 9.3 808 24.2
Amambay 1946 7.2 1911 7.0 1827 6.7 1808 6.7 606 25.1
Caaguazú 2548 9.4 2487 9.1 2434 9.0 2322 8.5 791 25.4
Caazapá 1768 6.5 1768 6.5 1732 6.4 1639 6.0 533 24.5

Canindeyú 4427 16.3 4278 15.7 4091 15.0 3904 14 1908 32.8
Concepción 916 3.4 901 3.3 890 3.3 876 3.2 370 29.7

Guairá 834 3.1 816 3.0 806 3.0 805 3.0 111 12.1
Itapúa 2705 9.9 2700 9.9 2678 9.9 2634 9.7 452 14.6

Paraguarí 328 1.2 358 1.3 360 1.3 348 1.3 9 2.4
San Pedro 3204 11.8 2963 10.9 2804 10.3 2754 10 1981 41.8

Total 21,340 20,791 20,220 19,618 7569 27.8

Figure 4 reveals a clear pattern concerning the effectiveness of the protecting reserves based on
their style of governance (ownership). For instance, each protected area owned by a governmental
entity (Gov) showed a decrease in total forest cover. The highest deforestation rates were found
in the National Parks of Cerro Corá (4.5%), Ybytyryzú (3%) and San Rafael (2.9%), totaling almost
30 km2. In contrast, each natural reserve under ITAIPU-IT (binational hydroelectric dam (partially
owned by the government)) management exhibited increments on their forest cover, with natural
restoration rates (natural reforestation) varying between 1% (in the Yvytyrokai) and 69% (Biological
Reserve Mbaracayú). As for protected areas privately owned (Prv) (e.g., Mbaracayú and Morombí),
no clear trend was found. While the Mbaracayú reserve exhibited a small increase in forest cover,
(0.8%), the Morombí reserve, by contrast, presented the highest deforestation rates (4.7%) among all
the protected areas in the BAAPA region.
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Figure 4. Comparison of forest dynamics between protected areas based on the type of ownership:
Prv. (Private ownership), Gov. (Governmental ownership) and IT (Owned by the ITAIPU
hydroelectric dam).

3.3. Forest Cover Change and Household Survey

3.3.1. Demography and Influence on Forest Dynamics

All interviews were conducted with the designated head (by the families) of each household.
The vast majority of respondents were males (around 85%) with an age between 30 and 62 years.
Ownership was mixed between Paraguayans and Colons (Brazilians), with the Paraguayans tending to
own the smaller farms (82% Paraguayans), and Colons larger ones (83% Colons). The principal
occupation of 91% interviewees was farmer, while a small share (9%) occupied positions in
governmental institutions in addition to farming activities. Respondents’ main agricultural activities
were soy bean production (mainly large-scale farmers), cattle ranching (mostly medium-scale and
small-scale farmers) and subsistence agriculture (small-scale farmers in particular). When analyzing
the dynamics of the forest at the farm level, Figure 5 shows that forest loss/gain are closely related to
farm size. For instance, the majority of forest loss (62%) occurred on small-scale farmers’ properties.
The percentage of farmers experiencing deforestation gradually decreases with an increased farm size,
declining from 50% for medium-scale to 38% for large-scale farmers groups. Forest gain, on the other
hand, is more common among large-scale farmers, accounting for 48% of the interviewees. On the
contrary, small scale farmers exhibited the lowest percentage (23%) of respondents with an increment
in their forest cover. Hence, when farm sizes increase, the percentage of farms showing forest cover
gain increases as well.
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Figure 5. Dynamics of the forest stratified by farm type.

Figure 6 presents the distribution of the education level between farm types. Basically, education
level increases slightly as farm sizes increases. The majority of farmers with higher education
(a university degree) is found among the large-scale farmers group (32%). Small-scale farmers more
frequently reveal lower levels of education, with 22% of the respondents having no school degree.
Notwithstanding, a primary school education remains the most common level of education among all
farm types with 65% (small-scale farmers), 61% (medium-scale farmers) and 40% (large-scale farmers)
of respondents, respectively. Figure 7 presents strong tendency between a farmers’ education level and
the dynamics of the forest on their parameters. The highest percentage of farmers exhibiting forest loss
is found in the group with no school degree.

Figure 6. Education level according to farm size of the respondents.
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Figure 7. Dynamics of the forest based on the education level of the respondents.

This tendency gradually decreases as education level increases, down from 65% in the group
with no formal education to 12% in the group with a college education. Furthermore, farmers with
higher education (University degree) most commonly saw gains of forest cover on their property.
This tendency decreases with decreasing education level, dropping from 68% (higher education) to
20% (no education).

3.3.2. Uses of Forest Benefits and Influence on the Forest Cover

To capture the level of dependency on forest benefits by different farm types, interviewees were
asked which products they obtained from the forest and how important they were to them. A total of
68% of the farmers remarked that they frequently benefited from the forest, and 92% stated that forests
are very important for their livelihood. A deeper analysis of the results revealed a higher dependency
of forest products among small (97%) and medium-scale (78%) farmers, whereas large-scale farmers
(44%) stated that they made use of the forest but not as intensively. The high reliance on forest products
and services, in particular among the small-scale farmers group, can be attributed to a lack of other
sufficient financial resources. Figure 8 presents the different uses of the forest according to farm type.
Over 88% of the small-scale farmers group admit to collecting firewood from the forest. A total of
94% of this group stated that their main use was for subsistence, in particular cooking. On the other
hand, only 40% of medium and 18% large-scale farmers claimed a certain level of dependency, in clear
contrast to the above. Small (73%) and medium-scale (44%) farmers were more reliant on forest wood
for construction (e.g., households, barns and fences construction) than large-scale farmers (16%).

In rural areas, the vast majority of small households (in particular within the group of small-scale
farmers) own houses that are built with wood from the forest, while medium- and large-scale farms
often present permanent homes. When asked about the cultural value of the forest, around 55% of
large-scale farmers considered the forest’s main value to be recreational. However, this inclination is
less frequent among medium- and small-scale farmers, of which only 22% and 4%, respectively, held
the same opinion.

Figure 9 presents how the forest cover of each farm group is affected by the use of forest benefits
and products. For this analysis, we considered the percentage of farmers that acknowledged the
use of the forest for any purpose (e.g., construction, firewood, agroforestry and recreation) and the
spatial information from the forest cover of each farm. When analyzing the small-scale farmers group,
60% of the respondents presented forest loss, whereas only 26% and 14% showed forest gain or
non-significant changes. Similar trends were observed among medium-scale farmers, among whom
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a high percentage of respondents (58%) presented a decrease in their forest cover, in comparison to
the ones showing increments (35%) or no changes (7%). In contrast, a much higher proportion of the
large-scale farmer’s group (53%) revealed forest gain. Overall trends disclose a correlation between
the uses of forest by different farm groups and their influence on the forest cover. Whereas small-
and medium-scale farms evidenced high rates of deforestation, large-scale farmers demonstrated
more sustainable use of the natural resources. However, it is important to mention that main uses
of forest benefits differed among farm groups, which could have an impact on the forest cover itself.
As described previously, small- and medium-scale farmers exhibited a higher tendency to use the
forest as a source of firewood and construction-wood, whereas large-scale farmers were more inclined
to use the forest for recreational proposes.

Figure 8. Main uses of forest related products based on farm type.

Figure 9. Dynamics of the forest cover based on the level of dependency.

3.3.3. Conservation Programs and Forest Cover Change

To comprehend landowner’s perception about the willingness to conserve forests, farmers were
asked if natural areas should be protected. In general, positive responses were obtained, with 99% of
farmers expressing their support for protecting forests. Additionally, 88% of the farmers remarked
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on the importance of the forest and the negative effects of a disappearing forest, in particular on the
prevailing natural resources, flora and fauna and water reservoirs. Overall, the interviewed farmers
exhibited high degrees of environmental awareness. Furthermore, 54% of respondents reported
participating in environmental programs such as the Payment for Ecosystem Service (PES) program,
reforestation programs and water courses protection programs. Particularly large-scale farmers (65%)
participated in such programs followed by medium (47%) and small-scale (45%) farmers’ groups.

To understand the influence of conservation programs on forest dynamics, respondents’
participation in environmental programs/workshops was reflected by the variations of the forest
cover in each farm. Overall, results also highlighted that sustainable use of the forest was related with
program participation. Of the group that reported not participating in any environmental workshops
or conservation programs, 73% evidenced forest loss and only 9% an increase in forest cover. On the
contrary, the fraction of properties experiencing forest loss decreased to 48% among participants
in environmental programs, and the fraction of farmers with forest gains increased to 41%. When
analyzing the results at a farm type level, small-scale farmers presented similar tendencies to the ones
described above (see Figure 10). The percentage of famers exhibiting forest loss decreased from 73% to
48% for respondents involved in conservation/workshops programs.

Figure 10. Relationship between conservation programs and forest cover change per-farm type.

Additionally, forest cover increase was found among farmers with environmental education,
accounting for 41% of the respondents in this group. Large-scale farmers revealed different patterns
from the ones described previously. The group of respondents which attended workshops was higher
among farmers with increases in their forest cover (59%) in comparison to the ones exhibiting forest
loss (32%) in the same group. Trends among the non-participant group resemble the ones shown for
small- and medium-scale farmers, where farmers exhibiting forest loss (50%) dominated. Overall,
results revealed a clear pattern where environmental education has an influence on the dynamics of
the forest. Farmers with environmental knowledge tend to experience less forest loss.

4. Discussion

4.1. Forest Cover Change Analysis

The dynamics of the BAAPA forest and the perception of its benefits is a topic of great importance
which has not been adequately studied so far. When analyzing changes of the forest cover, most studies
were based solely on remote sensing [4,5,20] or field survey data [18]. To the knowledge of the authors,
no research has combined both information types in the region. If the objective is to preserve natural
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resources, it is important to understand not only the historical distribution of the forest, but also the
landowners’ perceptions of it [51,52]. In a first part, the present study focuses on how the forest cover
has been changing over the last 17 years, using a multi-temporal analysis approach. For this purpose,
changes in the forest cover were assessed by applying a RF classifier using spectral temporal metrics
derived from a dense set of Landsat Imagery (TM, ETM+ and OLI/TIRS). In a second part, this study
examines how different farmer groups perceive the forest and how their perceptions influence its
dynamics, integrating remote sensing and household level data.

Overall, change detection results revealed a total forest cover loss of 7500 km2 (almost 28% of
its original cover) between 1999 and 2016. However, in comparison with studies conducted for the
previous years, a decreasing trend in deforestation rates is observed. Huang et al. [13,20] demonstrated
that between 1989 and 2000, the BAAPA forest lost almost 40% (over 13,500 km2) of its original cover,
a figure nearly two times higher than deforestation figures found in this research. Inconsistencies with
other studies regarding deforestation rates were found. For example, Da Ponte et al. [21] analyzed
changes in the BAAPA forest between the years 2003 and 2013 based on Landsat images (OLI and
ETM+). The study reported a total forest cover loss of 37% (around 33,039 km2) by the year 2003
and 30% (over 26,966 km2) in 2013. The present research, however, revealed lower forest coverage
for the same period, of 28% (24,197 km2) and 23% (20,221 km2), respectively. Differences between
findings could be related to sensors applied, input data (e.g., percentiles, vegetation indexes) and
definition of forest. Similar trends were observed when comparing classification results with the ones
obtained by the National University of Asuncion—UNA. For the year 2011, the UNA found natural
forest coverage of 20% in the BAAPA, or almost 17,500 km2 [53]. Results from this study presented
higher forest coverage values (around 23% (20,000 km2)) for the same period. It is worth noting that
both studies assessed changes in the forest cover by applying bi-temporal-approaches considering
only single scenes. Further spectral features such as percentiles derivation, vegetation indices, and
a dense set of Landsat imagery were excluded from the analysis. The described data was already
proven to be essential to achieving higher accuracy in land cover predictions and change detection
assessment [28,37].

A detailed analysis of the time series indicates that deforestation rates seem to increase abruptly
between the years 2002–2004 (almost four times higher than previous years) and gradually decrease
again until the years 2015–2016, where slight increase is once again observed. This trend can be
attributed to the Zero Deforestation Law (No. 2524/04) established in the year 2004, which banned
the conversion of forest lands for other purposes [14]. According to farmers interviewed during the
field survey, the Zero Deforestation Law was anticipated by rural communities and large landowners,
who increased their deforestation activities before the deforestation law took effect.

A clear difference in the effectiveness of conservation programs under different forest management
regimes is observed. For instance, every natural reserve owned by the Government-Gov presented a
certain degree of forest loss within their boundaries. Reserves managed by the ITAIPU-IT hydroelectric,
on the other hand, showed increases in forest cover, in some cases up to 71% of its total area
(e.g., Mbaracayu reserve). ITAIPU is a binational hydroelectric company owned by the Paraguayan
and Brazilian government. They invest economic resources to protect natural areas, but solely in
areas located directly in their watersheds (as a part of their environmental mitigation program).
Subsidies given directly by the government, in contrast, are rather scarce. According to several national
environmental institutions (e.g., Guyra Paraguay, WWF, Fundacion Moises Bertoni), further support
to protecting natural forest areas is needed. Until today, there still remains a strong weakness in the
enforcement of environmental laws, policies and proper criteria to include stakeholder’s needs and
concerns when implementing conservation programs [25].

4.2. Household Survey and Remote Sensing Data

The analysis of forest cover change at the farm level in combination with results derived from field
surveys permits comparing variations in forest surfaces along with the influence of change by different
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farm groups. Overall, results revealed a clear difference in the dynamics of the forest cover between
farm types. In general, a higher proportion of small-scale farms presented forest loss compared with
medium- and large-scale farmers. Similar tendencies were found in several reports from Peruvian
environmental agencies (e.g., Ministry of Environment and Ministry of Agriculture and Irrigation) that
tag small-scale farmers as the principal responsible group for over 90% of the deforestation activities
that occurred in the Peruvian Amazon [54]. However, it is important to clarify that the total area of
forest loss between farm types was not considered in this study. Therefore, even though small-scale
farmers were shown to be the farm group most responsible for deforestation activities, the total forest
area loss might not be as high compared to medium- and large-scale farmers. This study also analyzed
the influence of education level on deforestation tendencies in the BAAPA. The percentage of farmers
exhibiting forest loss decreases as education levels increase. Comparable trends were found among
the Amerindian farmers in Honduras, where forest clearings tended to decline as education levels
increased [55]. Additionally, according to Turner II et al. [56], a higher level of education could imply
a better management of natural resources and a decrease in pressure on the forest.

A clear correlation was observed between the various farm types and differing ways of using the
forest. In general, results show a higher percentage of small- and medium-scale farmers demonstrating
forest loss. The present trend is consistent with the results obtained in the 2016 field survey, which
revealed a high dependency on forest benefits (in particular construction wood and fire-wood) by the
same farm types. The extraction of forest goods without considering any concept of sustainability or
management plans could greatly influence its continuity [14]. Similar to the trends discussed above,
a correlation between the tendencies found among large-scale farmers and results obtained in the 2016
survey was observed. The majority of large-scale farmers stated that their main use of the forest was
recreational; correspondingly, their properties did not show evidence of intense harvesting. Results in
our study demonstrated not only that large-scale farms presented the lowest percentage of respondents
exhibiting forest loss, but also that the same group showed the highest percentage of respondents with
increases in their forest cover. However, it is important to remark that the level of use of forest goods
is highly associated with the level of income and daily subsidence needs (housing and cooking in
particular), from each farm group. According to the main results obtained in the survey, the level of
reliance on forest products varies with farm size; dependency on the forest tends to increase as farm
size decreases. Whereas medium- and large-scale farmers are inclined to see the forest as an additional
source of income, small-scale farmers, on the contrary, rely directly on forest products for subsistence.

Lastly, this study related the influence of environmental education on the variation in
forest cover between farm types. The properties of farmers that participated in environmental
programs/workshops were less likely to exhibit forest loss. However, at least for small- and
medium-scale farmers, the percentage of farms showing forest loss was overwhelming. Large-scale
farmers presented different trends, the majority of farms demonstrating increases in forest cover, which
can be related to their increased participation in environmental programs.

Finally, it is important to take notice of certain biases on the input data that might have influenced
the outcomes of this study. Firstly, the responses of the survey could have been influenced by the
background of the interviewer, problems with environmental authorities and personal thoughts over
the nature of the research itself. The present study combined remote sensing data with the available
cadastral information for the area as far as possible. However, since most of the cadastral data was
not accessible (in particular for small-scale farmers), field measurements relied on the knowledge
of the farmer regarding the boundaries from their farm. Lastly, the distribution of the samples was
dependent on the cadastral information; therefore, the representation for the study area could have
been biased.

5. Conclusions

The results of this study provided a description of deforestation trends over the BAAPA region
between 1999 and 2016. The correlation of household and remote sensing data permitted the obtainment
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of relevant information with regards to farmers’ influence on the dynamics of the forest at the farm
level. Based on the major findings and discussions in this study, the main conclusions are described
as follows:

• Results of the forest change detection analysis based on Landsat imagery revealed a total forest
cover loss of almost 7500 km2 between the years 1999 and 2016, which represents almost 27% of
its cover.

• The outcomes of the time series analysis presented a drastic increase in deforestation rates
between the years 2001–2002 and 2003–2004, almost four times the deforestation rates observed
for previous years (2300 km2). According to local farmers, the present trend could be attributed to
the upcoming Zero Deforestation Law in the country, which influenced the rapid deforestation
before the law was applied.

• Forest cover change analysis in protected areas demonstrated a clear difference between their
effectiveness. Whereas protected areas under the ITAIPU hydroelectric management regime
presented increases in forest cover, protected areas managed by the Government, on the contrary,
showed a decrease in their forest cover in each of the reserves.

• According to the 145 households interviewed, forest dynamics at the farm level is related to farm
types. While the frequency of farmers presenting forest loss increases as farm sizes decreases,
forest gains, on the contrary, increase as farm sizes increases as well.

• Education level has been shown to have an influence on the dynamics of the forest at the
farm level. Overall, results demonstrated that, as education level increases, the percentage
of famers exhibiting forest loss decreases. When considering forest gain, on the other hand, a
higher percentage of farms with increases in forest cover can be found among the group with
higher education.

• The level of dependency on forest products by different farm groups affects the status of their
forest. Higher levels of dependency resulted in a higher percentage of farmers presenting forest
cover loss.

• Environmental programs provide a certain degree of influence on changes in the forest cover
at the farm level. Among the groups participating in environmental programs and workshops,
a lower percentage of respondents showed forest loss on their properties than for comparable
groups that did not attend the workshops.

Further studies could make use of higher resolution imagery to increase the accuracy of the results,
in particular when considering an assessment of forest cover change at the farm level. In addition,
absolute values of deforestation between farm types should be addressed in future studies to assess
what the actual impact of different farm types on the forest cover is. Moreover, it would be interesting
to consider additional dynamic information on the state of the forest (such as yearly forest degradation
and regeneration rates) which would add more information with regards to the pressure exerted by
different farm types on forest resources. The use of multi-temporal information, along with ground
data, are key components to designing and supporting conservation strategies and policies. It is crucial
to consider not only the outlook of rural population but their influence on the behavior of natural
resources over time, as well.
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Abstract: Monitoring plant phenology is one of the means of detecting the response of vegetation to
changing environmental conditions. One approach for the study of vegetation phenology from local to
global scales is to apply satellite-based indices. We investigated the potential of phenological metrics
from moderate resolution remotely sensed data to monitor the altitudinal variations in phenological
phases of European beech (Fagus sylvatica L.). Phenological metrics were derived from the NDVI
annual trajectories fitted with double sigmoid logistic function. Validation of the satellite-derived
phenological metrics was necessary, thus the multiple-year ground observations of phenological
phases from twelve beech stands along the altitudinal gradient were employed. In five stands, the
validation process was supported with annual (in 2011) phenological observations of the undergrowth
and understory vegetation, measurements of the leaf area index (LAI), and with laboratory spectral
analyses of forest components reflecting the red and near-infrared radiation. Non-significant
differences between the satellite-derived phenological metrics and the in situ observed phenological
phases of the beginning of leaf onset (LO_10); end of leaf onset (LO_100); and 80% leaf coloring (LC_80)
were detected. Next, the altitude dependent variations of the phenological metrics were investigated
in all beech-dominated pixels over the area between latitudes 47◦44′ N and 49◦37′ N, and longitudes
16◦50′ E and 22◦34′ E (Slovakia, Central Europe). In all cases, this large-scale regression revealed
non-linear relationships. Since spring phenological metrics showed strong dependence on altitude,
only a weak relationship was detected between autumn phenological metric and altitude. The effect
of altitude was evaluated through differences in local climatic conditions, especially temperature
and precipitation. We used normal values from the last 30 years to evaluate the altitude-conditioned
differences in the growing season length in 12 study stands. The approach presented in this paper
contributes to a more explicit understanding of satellite data-based beech phenology along the
altitudinal gradient, and will be useful for determining the optimal distribution range of European
beech under changing climate conditions.

Keywords: validation; phenology; NDVI; LAI; spectral analyses; European beech; altitude

1. Introduction

Recently, the Intergovernmental Panel on Climate Change has placed high importance on the
gathering and interpretation of phenology observations to improve understanding of the ecological
impacts of climate change [1]. Trends in the timing of plant development can have major impacts
on plant productivity, competition between plant species, and interactions with heterotrophic
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organisms [2]. These have prompted further species-specific studies for inclusion in biodiversity
and ecosystem adaptation assessments [3]. Forest ecosystems where the phenology variability can
be observed along the broad temperature gradient associated with the large altitudinal gradient
are particularly vulnerable to global warming. The consequences can already be observed on the
altitudinal range of species [4].

This study focused on the phenology of European beech (Fagus sylvatica L.), whose spatial
distribution covers most of the continent of Europe. With regard to the ecological amplitude of
European beech, we can assume that forests growing at low altitudes will suffer from drought [5].
Although beech is resistant to fairly low winter temperatures, it is sensitive to late frosts, which limit its
occurrence at lower altitudes where the cold air can accumulate [6]. Beech can either adapt to extreme
conditions via their phenotype plasticity through shifts in the timing of phenological phases or migrate
to altitudes with milder climate forcing.

Understanding the links between shifts in phenological phases and climatic variability and
changes from a local to global scale requires more detailed in situ observations that underpin the
remote sensing data. Remote sensing and optical technologies, as well as spectral analyses, bring new
dimensions to phenological monitoring, while validation still plays a key role in the successful
implementation of satellite data-based phenological metrics. Previously, considerable effort has
been spent on satellite data processing [4,7,8], finding the best indicator of the changing green leaf
area [4,9–11], and the best fitting procedures [8,12,13]. Timing of the phenological phases of forest
ecosystems from remote sensing data is commonly based on the seasonal trajectories of the vegetation
indices of single pixels. The limits of matching the in situ observed phenological phases to the
phenological derived from different fitting procedures and data sources were revealed [9,14,15].
The effect of the background of forests was less investigated. In the vertical structure of forest
ecosystems, there are several components which, similar to the canopy leaves, reflect a considerable
amount of radiation in the spectra usually used in the calculations of vegetation indices. The effect
of these components is significant, especially in the period before and during canopy greening,
the same as during and after leaf fall [16,17]. The mixture of species in deciduous forests differing
in phenological behavior makes it difficult to understand the link between satellite information and
ground phenology, and it is not easy to clearly extract the phenological response of a single species [2].
Therefore, the utilization of more detailed phenological scales could bring better consistence between
the satellite based phenological metrics and ground phenological observations [18,19]. Coupling the
field measurements and reflectance data on the species-specific level studys, along with one dominant
species, is suitable for analysis in moderate to small spatial resolution of satellite data.

The aim of the current study was to investigate the potential of phenological metrics from
moderate resolution remotely sensed data to monitor the phenological phases of beech-dominated
stands and to estimate the impact of the altitude on the timing of the phenological phases. This study
was based on the 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) data time series
acquired over the area of the Western Carpathians during the years 2000–2012. Under laboratory
conditions, we quantified the spectral reflectance of forest components that could participate in the
overall beech-stand reflectance, and calculated their normalized difference vegetation index (NDVI)
(NDVILAB). This was helpful in the reconstruction of satellite-derived NDVI (NDVIMOD) seasonal
trajectories and in choosing suitable phenological metrics for pairing with in situ observed phenological
phases. A good match between the remote sensing and ground phenological data was the supposition
to large-scale analyses of the impact of the altitude-associated environmental conditions on the
beech phenology.
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2. Materials and Methods

2.1. Study Stands and In Situ Phenological Observations

The study area was located at latitudes between 47◦44′ N and 49◦37′ N and at longitudes between
16◦50′ E and 22◦34′ E in Slovakia (Central Europe). For this region, a beech mask was created in
three steps:

1. The representation of beech in a 250 × 250 m pixel (corresponding to MO09GQ resolution) was
derived from the classification of the tree species composition in Slovakia [20] from Landsat
satellite images in 30 m spatial resolution using the ArcGIS Aggregate function. The pixels with
presence of beech 60% and higher were included in the mask.

2. In order to eliminate a possible tree classification error from Landsat, the Forestry Information
System database was used. Here, the actual data of tree species composition are available for
each forest compartment (generally, compartment area varies from 1 to 15 ha). The presence of
beech from the database was assigned to the pixels selected in the first step. Pixels with beech
60% and higher remained in the beech mask.

3. Due to the possible contamination of DN values with non-forest land cover classes (meadows,
fields, water areas, etc.), pixels at the edges of the forest were removed from the derived
beech mask.

The created beech mask of Slovakia was composed of 16,025 beech-dominated pixels (Figure 1),
where the presence of European beech trees was 60% and higher. These beech-dominated pixels were
located at altitudes from 156 to 1331 m above sea level (a.s.l.), with the dominant incidence in the
altitudinal range between 400–600 m a.s.l. where 66% of all beech pixels were located.

 

Figure 1. Map of the beech stands with the presence of European beech at 60% and higher (grey color).
The locations of the study stands with in situ phenological observations are marked with red crosses.

To assess the ability of phenological metrics to capture interannual variability in spring and
autumn phenology, we used a 12 beech stands from the beech mask where the phenological
observations had been realized. The stands covered three main climatic areas—warm, moderate,
and cold—in an altitudinal range from 304 to 1051 m a.s.l. This allowed us to track phenology in
different altitude-dependent climate conditions (Table 1).
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Table 1. The basic characteristics of beech study stands.

Stand
Number

Identifier Altitude Aspect
Presence of
Beech (%)

Climatic
Region

Climate Normal (1981–2010)

T 7 (◦C) P 8 (mm)

1 ZS 304 NW 60 W7 1 10.1 675
2 MY 457 W 65 M3 2 9 729
3 U1 490 W 85 M6 3 8.6 691
4 U5 512 N 70 M3 8.3 700
5 U2 522 W 65 M6 8.3 700
6 ZV 566 SW 65 M6 8 745
7 KC 570 SW 90 M3 8.1 644
8 MU 579 N 100 M7 4 7.9 689
9 U4 607 E 100 M6 7.8 760
10 U3 615 W 65 M6 7.8 760
11 CS 1003 N 90 C1 5 5.2 857
12 PO 1051 SE 80 C2 6 5.7 863

1 Warm, moderate moist with mild winters, 2 Moderate warm, moderate moist, upland to highland, 3 Moderate
warm, moist, highland, 4 Moderate warm, very moist, highland, 5 Moderate cold, 6 Cold mountain, 7 Temperature,
8 Precipitation.

The phenological data of 7 beech-dominated stands were adopted from the phenological
network of Slovak Hydrometeorological Institute (SHMI). We focused on the period 2000–2012, which
corresponds to the availability of MODIS data (from the year 2000). The ground measurements
we used here consist of visual observations of phenological phases performed always by the same
observer, on 10 selected trees from the main canopy. The group of observed beech trees was situated
in the 6.25 ha beech-dominated pixel. The main phenological phases observed in all of the study
stands are presented in Table 2 and are also marked by the international BBCH codes [21]. BBCH
codes are commonly used for observations in the International Phenological Gardens (IPG) [22]; in
the monitoring of plant species reactions to climate changes [23] and environmental changes in urban
areas [24]; and in creation of phenological calendars [25], etc.

Table 2. Definition of the phenological phases observed in all study stands.

Phenological Phase BBCH Codes Definition

Beginning of Bud Bursting (BB_10) BBCH07 When bud scales opened and green top of leaf was sticking out
Beginning of Leaf Onset (LO_10) BBCH11 When 10% of leaves have final shape, but not final size and color
General Leaf Onset (LO_50) BBCH13 When 50% of leaves have final shape, but not final size and color
Beginning of Leaf Coloring (LC_10) - When 10% of leaves changed their color from green to yellow, red or brown
General Leaf Coloring (LC_50) BBCH94 When 50% of leaves changed their color from green to yellow, red or brown
Beginning of Leaf Fall (LF_10) BBCH93 When 10% of leaves fell down from trees to the ground
End of Leaf Fall (LF_100) BBCH97 When 100% of leaves fell down from trees to the ground

In the five stands, U1–U5, located within the area of the University Forest Enterprise of the
Technical University in Zvolen, the phenological observations were performed in two years—2011 and
2012. Here, we employed intensive field observations specifically designed to monitor the vegetation
phenology from the ground, through the undergrowth, to the canopy, and record the changes in the
canopy structure on hemispherical photographs in 2011. Photographs were taken seven times in each
stand: 3–4 May (day of the year–DOY 123), 12–13 May (DOY 133), 19 Jun (DOY 170), 10–11 August
(DOY 222), 28–29 September (DOY 272), 17–18 October (DOY 290), and 15–21 November (DOY 319),
and the leaf area index (LAI) was calculated as a structural characteristic of the beech canopies. The LAI
values over the season were used to investigate the responsiveness of NDVI to the structural changes
in the canopies. The details of the LAI calculations were published in our previous study that aimed
at comparing different methods of leaf area index calculation [26]. Cover of ground vegetation was
observed visually as a percentage on five square sample plots in each beech stand U1–U5. The distance
between the sample plots was 50 m and the area of a single plot was 100 m2. The estimated percentage
cover was rounded to 5%.
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In the U1–U5 stands, the same phenological scale as in the seven SHMI stands was used,
but extra was noted every 10% of the developmental stage of each phenological phase. We also
captured the phenological phase final leaf onset, when all leaves had their final shape, size, and color.
The phenological phases of the under-growing beech trees in these stands were evaluated by the same
methodology as on the canopy trees.

2.2. Validation Supporting Laboratory Spectral Analyses

When analyzing beech-dominated stands from the 250 m MODIS pixel, several forest components
participated with their reflectance on the single pixel NDVIMOD. Therefore, simultaneously with
the in situ observations in stands U1–U5, individual samples of fresh and fallen beech leaves, fresh
green undergrowth and understory vegetation (spring heliophytes), and beech bark were collected
in 2011. At first, the samples of fallen beech leaves were collected at the time before the beginning of
the phenological activity (DOY97). On DOY110, samples of two spring heliophytes dominating in the
stands were collected: coral-root (Cardamine bulbifera L.) and dog’s mercury (Mercurialis perennis L.).
The samples of fresh beech leaves were gathered twice during the season. The leaf collection time was
subjected to a specific phenological phase of beech: the end of leaf onset (DOY127), and final leaf onset
(DOY159). The samples of beech bark were cut from two parts of the currently harvested trees: from
the stems and branches (DOY159).

All samples collected in the field were placed in closed plastic bags and transported to the
laboratory for measurements not later than two hours to minimize the wilting. Under laboratory
conditions, the spectral reflectance was measured with a Li-1800 spectroradiometer with an integrating
sphere 1800-12 equipped with a light source (LI-COR, Lincoln, NE, USA). The measured wavelength
range covered the red and near-infrared band. The measurements of each sample were repeated three
times and the values were averaged. The NDVILAB was calculated from the reflectance in the red
(RED: 620–670 nm) and the infrared spectra (IRED: 841–876 nm):

NDVI =
IRED − RED
IRED + RED

(1)

The cover and visibility of forest components through the canopies were considered when
evaluating their participation on the satellite-derived NDVI.

2.3. Deriving MODIS NDVI Phenological Metrics

In this study, the satellite data from a MODIS spectroradiometer, MOD09 and MYD09 products
(Collection 5) were used. The images of the MOD09/MYD09 products represent the spectral reflectance
of the Earth in a spatial resolution of 250 m (MOD09GQ and MYD09GQ product) and 500 m
(MOD09GA, MYD09GA) with radiometric and atmospheric corrections at a daily time step [27].
This product contains the spectral channels needed for NDVI calculations at a 250 m resolution,
the red channel (RED: 620–670 nm), and the infrared channel (IRED: 841–876 nm). We used the
MOD/MYD09GQ products because of the spatial resolution and the necessity to capture vegetation
dynamics on a daily level, despite the potentially adverse effect of anisotropic reflectance of the
vegetation [28]. Our choice was supported by the findings of Franch et al. [29] that the effect of surface
anisotropy in the red and infrared band of MODIS data barely influenced NDVI estimation, obtaining
an RMS of around 1%. The value of the spectral reflectance of each pixel is partly influenced by the
spectral properties of adjacent pixels [30]. Therefore, pixels on the boundary between the forest stands
and other land cover classes were excluded from the analyses.

Furthermore, we focused on the elimination of the images and pixels affected by clouds and
cloud shadows, as well as the impact of image distortions. All MODIS images covering the territory
of Slovakia were reviewed at the NASA archive from 2000 to 2012, and their quality was visually
assessed. Only cloudless or partly cloudy imagery were utilized for the analyses. Another criterion
for the selection of appropriate images was the satellite position in relation to Slovakia during data
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collection. Since the MODIS tracks are stable with 16-day repetitions, we could identify that there
were six images in the in-nadir position related to Slovakia; four images in close-to-nadir position, and
six images in the off-nadir position. Off-nadir images were completely excluded from the download.
Thus, we reduced the potential effect of anisotropic reflectance and achieved a spatial resolution close
to 250 m. In addition to the visual inspection of image quality, we analyzed the 1 km Reflectance Data
State QA layer present in the MOD09GA/MYD09GA products. The dataset enabled us to check the
quality of the recorded reflectance at the pixel level. The data qualities of the individual pixels are
encoded as the values of individual bits in a 16-bit integer. Based on the data from the quality dataset,
we selected pixels with the following bit values: 8, 72, 76, 136, 140, 200, and 8200. Other pixel values
were replaced by 0.

Reflectance values (DN values) of the selected pixels underwent a final quality analysis.
The arithmetic mean of the DN values and standard deviation (SD) were calculated for each day
of an image selected from the database. A pixel was included in the analysis if its value ranged within
x ± 2 SD. The pixels outside this range were assigned a bit value of 0.

The MODIS data from the DOY 1 to 80 were excluded from the analyses. At that time,
no phenological activity of any vegetation in the beech stands was recorded and there was a high
probability of signal contamination by snow cover. Over the examined 13-year period, after applying
the rules for image and pixel selection, we collected a folder of 433 images from Terra and Aqua
satellites. A detailed description of the procedure of selecting MODIS data for fitting the model is
described in [31].

The time series of the NDVI derived from the satellite data reflect the seasonal changes in the
amount of the green leaf biomass. European beech is a species with one annual growing season. To fit
the seasonal phenological model from the NDVI time series for the single beech-dominated pixels,
we applied the sigmoid logistic function [9]. This model estimated the phenological phases as a function
of day of year (DOY). To determine the transition dates of the phenological phases–phenological
metrics, inflection points of the first derivative and local minima and maxima of the second derivative
of the function were calculated. Six key phenological metrics were derived, three in the spring (S1, S2,
S3) and autumn periods (A1, A2, A3), respectively (Figure 2). Phenological metrics were characterized
as follow:

• S1—the acceleration of leafing in forest stand.
• S2—the leafing in forest stand reaches the half-maximum.
• S3—the deceleration of leafing in forest stand.
• A1—the acceleration of leaf coloring in forest stand.
• A2—the leaf coloring in forest stand reaches the half-maximum.
• A3—the deceleration of leaf coloring in forest stand.

First, the phenological metrics for the study stands were derived to validate their applicability
in phenological monitoring. The phenological metrics obtained from NDVIMOD fits were compared
against in situ observed phenological phases. The statistics used here were from the paired sample t-test.
With the t-test, the significance of differences between the in situ observed phenological phases and
satellite data-based phenological metrics was tested. The t-statistic was compared to the critical value
Tα(n − 1). The RMSE was used to evaluate the average prediction uncertainty relative to the in situ
observations. The Pearson’s correlation coefficient was calculated to quantify the relationship between
the onset days derived by the two above-mentioned methods. The strength of the correlation values
was described according to the guide suggested for the absolute value of r [32]: very weak—0.00–0.19;
weak—0.20–0.39; moderate—0.40–0.59; strong—0.60–0.79; very strong—0.80–1.0.

Second, after the successful validation process, the sigmoid logistic function was fitted for all
beech-dominated pixels from the beech mask of Slovakia, and the phenological metrics were derived.
Phenological metrics from all of these pixels were used in the large-scale altitudinal study.
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Figure 2. Graphical illustration of NDVIMOD seasonal profile fitted by a sigmoid logistic function with
the inflection points of the first derivative (phenological metrics S2 and A2), and the local minima and
maxima of the second derivative (phenological metrics S1, S3 and A1, A3 for the spring and autumn
period, respectively). NDVI, normalized difference vegetation index. DOY, day of year.

2.4. Altitudinal Study

As previous studies have indicated, the timing of the onset of phenological phases depends on
temperature [33–36], light [37,38], rainfall and humidity [5], stand characteristics, and on the internal
plant periodicity [39]. Other factors include the stand location [40], altitude [4,41–43] latitude [44], and
oceanic or continental climate [9]. In the mild climate, temperature is the most significant limiting
factor affecting a variety of physiological and biochemical processes in plants [39]. The air temperature
decreases with increasing altitude; in the troposphere it decreases by about 0.65 ◦C per 100 m of
altitude increase (average lapse rate) [45]. The next significant meteorological element is atmospheric
rainfall. Under the conditions of Central Europe, it can generally increase by 50–60 mm per 100 m of
altitude increase and depends on the geographical location, altitude, and exposure to wind bringing
moist air masses and frontal systems [46]. The Climate Normals (1981–2010)—normal temperature
and normal precipitation corresponding to the study stands—are included in Table 1.

The altitudinal study was performed at two scales: the stand scale and a large scale. Validated
phenological markers S2, S3, A2, and the growing season length (GSL) (GSLi = A2i − S2i) were
analyzed as multi-year averages. First, the regression analyses were used to test the onset days’
variations of phenological metrics and GSL in relation to altitude (days 100 m−1), normal temperature
(days ◦C−1), and normal precipitation at the level of the twelve study stands. Second, the impact of
altitude on the onset of phenological metrics and GSL derived for all beech-dominated stands from the
above-mentioned beech mask in the large-scale altitudinal study was investigated.

3. Results

3.1. What Is Hidden behind the NDVI Value of Beech-Dominated Stands?

In the laboratory, we analyzed the spectral reflectance of beech leaves fallen in the previous
growing season which covered the ground in beech stands before the beginning of the growing
season. The NDVILAB of the fallen leaves was lower than the satellite data-based NDVIMOD (Table 3).
This suggested the presence of other forest components enhancing NDVIMOD at this time. Analyses
revealed that a bark from beech trees reflected the considerable amount of the red and near infrared
radiation (Figure 3a). It was interesting to find the differences between the NDVILAB sampled from
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the bark of the branches and NDVILAB of the bark from the stems (Table 3). These parts of trees
are visible for satellites through the canopies up to the end of leaf onset (LO_100). The spectral
analyses of the collected samples of green leaves revealed that the NDVILAB of the leaves from the
under-growing beech trees was lower than the NDVILAB of the beech leaves from the canopy (Table 3).
The spectral reflectance of these leaves differ in the red spectra (Figure 3a). Next, at the time of LO_100,
the NDVILAB of the canopy beech leaves was lower than the NDVILAB at the time of final leaf onset
(Table 3). This stemmed from the differences in spectral reflectance which at LO_100 was higher in
the red spectrum (RED) and lower in the near-infrared spectrum (IRED) than at FLO (Figure 3b).
The beech leaves collected when these two phenological phases started differed in their color, size,
and structure (Figure 4).

Table 3. NDVILAB of the samples collected on the particular DOY and the satellite-based NDVIMOD

derived tor the same DOY: mean ± standard deviation, and the number of samples and values
respectively, in the brackets.

Time of Sampling–DOY 97 110 127 159

Date 7.4 20.4 7.5 8.6

Canopy beech leaves - - 0.71 ± 0.023 (10) 0.79 ± 0.015 (8)
Under-growing beech

leaves - - 0.66 ± 0.011 (15) -

Fallen leaves 0.34 ± 0.067 (8) - -
Bark of branches - - - 0.63 ± 0.028 (5)

Bark of stems - - - 0.46 ± 0.042 (14)
Coral-root - 0.71 ± 0.012 (4) - -

Dogs mercury - 0.70 ± 0.003 (3) - -
NDVIMOD 0.48 ± 0.062 (7) 0.58 ± 0.017 (10) 0.87 ± 0.010 (10) 0.91 ± 0.008 (5)

Figure 3. Spectral reflectance of all beech forest components measured with a Li 1800 integration
sphere (a) and beech leaves from the phenological phases LO_100 (end of leaf onset) and final leaf
onset (FLO) (b). The grey columns marked RED and IRED highlight the wavelengths used in the
NDVILAB calculations.

Figure 4. Difference in the beech leaves between the phenological phases of full leaf onset LO_100 (a)
and final leaf onset (FLO) (b).
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Based on data from the laboratory spectral analyses and in situ observations, it was concluded
that the low values of NDVIMOD from the time with no green vegetation in the beech-dominated stands
was caused together by presence of fallen leaves and the above-ground parts of the trees. This state
lasted until DOY 93, when the NDVIMOD was 0.45 on average.

The slight increase of the NDVIMOD after DOY 98 caused flushing of the spring
heliophytes—coral-root and dog’s mercury. NDVILAB of them reached 0.71 and 0.70 for coral-root and
dog’s mercury, respectively, and they covered from 5% (stands U1, U2, U4, U5) to 14% (stand U3) of
the forest floor (Table S1). Subsequently, following the spring heliophytes, the under-growing beeches
started their phenological phases. The NDVIMOD was around 0.58 (Table 3) when the canopy green
leaves finished only the bud bursting (BB_100). The beech trees from the understory ended the leaf
onset around DOY 110, when the cover of the ground vegetation in study stands was from 7 to 20%
(Table S1). The most rapid increase of NDVIMOD was recorded from 0.58 (DOY 110) to 0.87 (DOY 124)
from the end of canopy beech bud bursting to the end of leaf onset (from BB_100 to LO_100). After
LO_100, both the NDVIMOD and NDVILAB showed the continuing development of the canopy beech
leaves. This development was also captured by the hemispherical photography, when the LAI values
increased after LO_100 (Figure 5).

Figure 5. Seasonal changes in the NDVIMOD and LAI averaged over the test stands of U1–U5 in
2011. The year was divided into sections according to the phenological phases of canopy beech trees.
NDVI_MOD, normalized difference vegetation index from MODIS data, LAI, leaf area index. DOY,
day of year. BB_100, end of bud bursting. LO_100, end of leaf onset. LC_10, beginning of leaf coloring.
LC_50, general leaf coloring. LC_100, end of leaf coloring.

The maximum values of NDVIMOD equal to 0.93 were achieved on DOY 146. At this time,
the period of spring phenological phases of the canopy beech trees finished. The foliage was fully
developed and this was the time of the final leaf onset. The maximum LAI values of the growing
season were observed on DOY 170, but could appear earlier between the measurements on DOY
133 and 170. After reaching the final leaf onset, NDVIMOD started to slowly decrease. This gradual
decrease from the average NDVIMOD of 0.93 to 0.86 lasted until DOY260.

The beginning of leaf coloring (LC_10) was observed on DOY 270. From this time, the NDVIMOD

started to decrease faster, and this reduction was also recorded by the hemispherical images (Figure 5).
After the leaf fall started on average on DOY 290, the decreasing LAI captured this loss of leaves in the
canopy. The NDVIMOD continued decreasing and when the general leaf coloring (LC_50) was reached
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around DOY 290, the average NDVIMOD value was 0.76. Over the next two weeks, the NDVIMOD

dropped to 0.54. The last NDVIMOD value recorded on DOY 319 was 0.52. At that time, all leaves
were discolored and the NDVIMOD represented the reflectance of the forest components without green
leaves and vegetation–litter, above-ground parts of trees, and brown leaves lasting on branches.

3.2. Assigning the Phenological Metrics to the In Situ Observed Phenological Phases

The phenological metrics were assigned to the in situ observed phenological phases according to
the closest onset day and the differences were tested. In the first step of validation, the phenological data
from the twelve study stands and the single years were compared against the corresponding data from
phenological metrics. If the validations could not be realized due to the missing phenological phases
that were not observed in the phenological network of the Slovak Hydrometeorological Institute, we
validated only the phenological data from the detailed phenological observations from stands U1–U5.

3.2.1. Spring Phenological Phases

• In situ observed phenological phases such as bud swelling and bud bursting were not possible to
observe in the satellite data because the increasing NDVIMOD at the time of their occurrence was
caused by other forest components, and not by the canopy beech leaves. Therefore, phenological
metric S1 was not paired with any in situ observed phenological phases.

• Phenological metric S2 was assigned to the beginning of leaf onset (LO_10). The paired sample
t-test revealed non-significant differences between S2 and LO_10 (t = 0.03 < T0.01(90) = 1.96).
The correlation coefficient indicated very strong correlation between LO_10 and S2 (Figure 6).
The average NDVIMOD of the S2 was 0.67.

Figure 6. Correlation between the in situ observed spring phenological phases and assigned spring
phenological metrics: S2 and beginning of leaf onset LO_10 (a), S3 and general leaf onset LO_50 (b),
S3 and end of leaf onset LO_100 (c). The high values of the correlation coefficient indicated very strong
correlation between the phenological phases and phenological metrics. DOY, day of year.

• Phenological metric S3 was assigned to the phenological phase LO_50, and although the r = 0.84
(Figure 6) suggested a very strong correlation between S3 and LO_50, the t-test revealed significant
differences with a RMSE of 6.24. The phenological metric S3 was overestimated. The phenological
data from the SHMI, which were the base data for the validation, did not contain information
on the phenological phase LO_100, which, according to our detailed phenological monitoring,
occurred on average four days after LO_50. No significant differences were revealed between S3
and LO_100 (t = 0.10 < T0.01(9) = 3.25) in our U1–U5 stands, although the correlation coefficient was
smaller than the one between S3 and LO_50 (Figure 6). A control test by adding four days (average
difference between LO_50 and LO_100) to the days of LO_50 from the SHMI observations was
performed. The differences between the estimated LO_100 and S3 were non-significant (t = 0.54 <
T0.01(90) = 1.96) with the RMSE of 4.57. The average NDVIMOD of S3 was 0.81.
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3.2.2. Autumn Phenological Phases

• Phenological metric A1 occurred between the two autumn phenological phases: beginning of
leaf coloring (LC_10) and general leaf coloring (LC_50), on average eight days after LC_10. Thus,
we paired A1 with LC_10 and LC_50 from all twelve study stands and single years, but the
differences in both cases were significant. Then, using data from detailed phenological monitoring
on the U1–U5 stands, the pairs of A1 with LC_20, LC_30, and LC_40 were tested, but the
differences in all of the tested pairs were significant.

• The paired test of the onset days of A2 and LC_50 revealed an average time lag of 13 days for the
A2 phenological metric. Based on that, the pairs of A2 with LC_60, LC_70, LC_80, LC_90, and
LC_100 recorded in the U1–U5 stands were tested. Only the paired t-test with LC_80 revealed
non-significant differences (t = 1.51 < T0.01(9) = 3.25) between the in situ LC_80 and satellite
data-based A2.

• A3 occurred after the end of leaf coloring (LC_100) when only the understory vegetation was
green, but the beech trees had no green leaves. Therefore, this phenological metric was not paired
with any autumn in situ observed phenological phase.

• The correlation between the onset days of the autumn phenological phases and phenological
metrics was weak, with the correlation coefficient not exceeding 0.30 (Figure 7).

Figure 7. Correlation between the in situ observed autumn phenological phases and assigned autumn
phenological metrics: A1 and beginning of leaf coloring LC_10 (a), A2 and general leaf coloring LC_50
(b), A2 and 80% leaf coloring LC_80 (c). The correlation was weak in all cases. DOY, day of year.

3.3. Phenological Metrics along the Altitudinal Gradient

Phenological metrics validated in the previous sections were used in the large-scale analyses
of the effect of altitude on the onset days of phenological phases. We evaluated the phenological
metrics S2, S3, A2, and GSL corresponding to the phenological phases beginning of leaf onset, end of
leaf onset, 80% leaf coloring, and the growing season length, respectively. The representative onset
dates of a particular phenological phase expressed by the phenological metrics were calculated for
each beech-dominated pixel from the beech mask and averaged over a temporal series of 13 years
(2000–2012). In all cases, the large-scale regression analyses revealed non-linear dependences of the
phenological metrics on altitude. The second order polynomial function was used to fit the datasets
(Figure 8a–d). The altitudinal gradients derived from regression functions are shown in Table 4.
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Figure 8. Satellite-based phenological metrics S2 (a), S3 (b), A2 (c), and growing season length,
GSL (d) as a function of altitude at a stand-level and large-scale level. The individual phenological
metrics of 12 study stands are indicated by red triangles and the altitudinal trend is the linear red line.
The phenological metrics derived from all beech-dominated stands (60% of beech and higher) in the
area of Slovakia are indicated by black crosses and the altitude trend is the polynomial blue line. DOY,
day of year.

Table 4. The altitudinal gradient of the phenological metrics S2, S3, A2, and GSL calculated from
regression functions for each 100 m of the vertical distribution range of beech-dominated pixels (from
156 to 1331 m a.s.l.). Values in the table were rounded to the whole day.

Altitude
Altitudinal Gradient of Large-Scale Phenology Difference on Altitudinal Gradient

S2 S3 A2 GSL S2 1 S3 1 A2 2 GSL 3

156 109 118 296 186 0 - −3 −2
200 108 118 296 187 0 0 −2 −1
300 108 119 298 188 - 1 −1 -
400 109 120 299 187 0 2 0 0
500 110 122 299 186 1 3 - −2
600 111 124 298 183 3 5 0 −4
700 113 126 297 179 5 8 −1 −8
800 116 129 296 174 8 10 −3 −13
900 120 132 293 168 11 13 −5 −20

1000 124 135 291 161 15 17 −8 −27
1100 128 139 287 152 20 21 −12 −36
1200 133 143 283 142 25 25 −16 −45
1300 139 148 279 131 31 30 −20 −57
1331 141 150 277 127 33 31 −22 −60

1 Differences from the earliest onset of S2 and S3, respectively, 2 Differences from the latest onset of A2, 3 Differences
from the longest growing season.

The average beginning of leaf onset expressed by the S2 metric increased with altitude. At low
altitudes (200–300 m a.s.l.), the beginning of leaf onset occurred earliest on DOY 108 and delayed with
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the increasing altitude up to DOY 141 (Figure 8a). Strong dependence was revealed between S2 and
altitude, since 68% of the total variation in the onset days of S2 was caused by their dependence on
the altitude. The difference between the earliest and the latest S2 days estimated from the regression
function was 33 days.

The polynomial function, which characterized the altitudinal gradient of average end of leaf onset
expressed by the S3 (Figure 8b), had a very similar course to the one for S2 with a 31-day difference
between the earliest onset at lowest altitudes (DOY 118) and the latest onset of S3 at the highest
altitudes (DOY 150). Dependence of S3 on the altitude was strong, as 72% of the total variation in the
onset days of S3 could be explained by the applied second order polynomial function.

The altitudinal gradient of the average onset days of 80% leaf coloring, expressed by the
phenological metric A2, differed from those of the spring phenological phases. The latest onset
of A2 was generally revealed in the altitudinal range of 400–600 m a.s.l. Only a weak relationship was
found between A2 and altitude as the polynomial function could explain only 6% of the A2 variation.
According to our datasets, the variability in the onset of this autumn phenological phase was greater in
the comparison with leaf onset. In particular, in the altitudinal range 300–700 m a.s.l., an unexpected
very early onset of A2 from DOY 270 in more pixels was recorded (Figure 8c).

The length of the growing season was quite varying from 127 days at the highest altitudes
to 188 days at the lowest altitudes. Using the second order polynomial function, 27% of the total
variation in the growing season length of beech pixels by its dependence on altitude could be explained.
Used regression function indicated that the differences in growing season length in the altitudinal
range from 156 to 500 m a.s.l. varied within two days and was shortened with increasing altitude.

When considering only the phenological metrics from our 12 study stands, the regression analyses
revealed that a linear function fit the data better. The changes at a stand scale estimated by the linear
regression along the altitudinal gradient were smaller than those revealed at a large-scale. The S2 of
stands delayed by two days at 100 m−1 and S3 delayed by 2.8 days at 100 m−1. The onset of S3 along
the altitudinal gradient changed a little bit more gradually than that of S2. The onset of A2 derived
from the regression model advanced only 0.8 days at 100 m−1 and GSL was shortened by about 2.5
days at 100 m−1.

The average GSL of the 12 study stands was considered from the climatic aspect using the normal
temperatures and precipitation. The longest growing season (188–193 days) with the early onset of
LO_10 (S2) and the latest LC_80 (A2) was at the lowest altitudes <500 m a.s.l. (Table S2). The stands
situated from 500 to 700 m a.s.l. had the GSL between 181–185 days. The shortest growing seasons
(170–174 days) with the latest LO_10 (S2) were found in the stands located at the highest altitudes
>1000 m a.s.l. (Table S2). The normal temperature of stands increased linearly with altitude by 0.61
◦C for every 100 m increase in altitude. The R2 = 0.97 indicated a very strong correlation between
altitude and normal temperature (Figure S1). The absolute difference of normal temperature between
the beech stands at the lowest and the highest altitude was 4.9 ◦C. The length of the growing season
extended along the temperature gradient by 4.5 days for every 1 ◦C of normal temperature increase
and a very strong relationship between these two variables was found (Figure 9a). The rate of change
in the normal precipitation with increasing altitude was 28 mm with 100 m of the lift. Study stands are
situated in moderate moist to moist climatic areas and the absolute difference in precipitation between
the beech stands at the lowest and the highest altitude was only 188 mm. The relationship between
altitude and precipitation was strong with R2 = 0.77 (Figure S1). GSL shortened by −6.9 days with
every 100 mm of precipitation increase. The relationship between GSL and normal of precipitation
expressed by R2 was 0.55 (Figure 9b).
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Figure 9. Growing season length in the twelve study stands in relation with normal temperature (a)
and precipitation (b).

4. Discussion

The results presented in this study were based on the daily MODIS products called MOD09 and
MYD09, which had good capability of detecting gradual changes in green leaves at the time of leaf
onset and to date it accurately. Derived single-pixel NDVIMOD values represented the reflectance of all
forest components. The effect of different forest components on the satellite data-based vegetation
indices had already been outlined in previous studies. Reed et al. [16] pointed out that the reflectance
at every pixel was the conglomeration of a variety of vegetation and background features, which may
obscure observations of initial bud burst. During spring, the understory generally starts earlier than
the main tree species. Testa et al. [17] found out that when the understory in beech stands reached
the 90% level of leaf onset, the main species had only reached its 10% level. These tendencies were
also revealed in our beech study stands and raised questions about what is hidden behind the NDVI
value of the beech forests, especially at the time before the canopy closing. The laboratory spectral
analyses revealed that not only did the leaves of the understory and canopy participate in the pixel
reflectance, but other parts of trees also reflected the red and near-infrared radiation important for the
NDVI calculation. The chlorophyll content in the bark of beech stems and branches [47] absorbed a
considerable amount of radiation in the red spectra. This resulted in NDVILAB values similar to that of
the fallen leaves (Figure 3). The presence of fallen leaves, stems, and branches in the beech pixels kept
the NDVIMOD on a relatively stable level (around 0.42) when there was no snow cover on the forest
floor. NDVIMOD started to increase from that level after the incidence of the first spring heliophytes
and the undergrowth flushing, but the canopy beech trees were only in the phenological phase of
10% bud bursting, and therefore had no green leaves. The reflectance signal of bud burst was not
sufficient to alter the reflectance signal from a larger mixed pixel, while field observers may be able
to note bud swelling and bursting [13,14]. With regard to previous studies [8,17,48–50], it is probable
that the incidence of spring heliophytes and the undergrowth strategy of phenological escape is a
common occurrence in forests. Therefore, the first phenological metric occurring simultaneously with
the beginning of the bud bursting of the canopy (BB_10), usually situated at the beginning of NDVI
increase on the sigmoid function (in this study phenological metric S1), characterized the leafing of the
understory and thus was not suitable to track phenological phases of the canopy trees. Liang et al. [14],
who assigned the first point on the NDVI sigmoid function (S1) to the end of bud bursting (BB_100) of
the canopy trees, revealed an underestimation of S1 of more than two weeks. In most cases, this point
on the NDVI profile could be interpreted as a start of the vegetation period in forests in general [12],
but not as a tree specific phenological phase. Different results may be obtained when the enhanced
vegetation index (EVI) is used to track the phenological phases because of its insensitivity to the forest
background. Significant agreement was found between the first point on the EVI piecewise sigmoid
function and BB_10 [14]. According to these results, we concluded that the pairing of phenological
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metrics from EVI and NDVI fitted with the in situ observed phenological phases needed two different
approaches. However, MODIS spectral bands needed for EVI calculations were available from the
spatial resolution 500 m, we preferred to analyze NDVI time series calculated from the bands available
from the resolution 250 m.

The variables derived from the in situ observations provided information that could be used for
the interpretation of the variables derived from the satellite data. The leaf area index is one of the main
variables affecting the vegetation reflectance and is also an indicator of changing phenological phases.
The LAI measurements were used to analyze the phenological changes, especially after the leaf onset
and during the autumn leaf coloring and leaf fall. The analyses of NDVIMOD seasonal profiles revealed
a continuous increase after the in situ observed end of leaf onset (DOY124), similar to the findings
with EVI [13]. Our findings were supported by the measurements of the LAI and NDVILAB of the
beech leaf samples. NDVILAB increased from 0.71 on DOY 127 to 0.79 on DOY 159. This increase was
caused by the increased reflectance in the near-infrared spectrum and decreased reflectance in the red
spectrum related to the increasing chlorophyll content between LO_100 and final leaf onset (FLO) [51].
In FLO, the leaves achieved their final shape, size, and structure, which were also recognized by the
LAI measurements based on hemispherical photography. At that time, the foliage was fully developed.
FLO is visually hardly observable because of the minimal structural changes of canopy leaves that
are barely visible to the human eye, but is recordable by optical and spectral measurement based
indices. Subsequently, after reaching the maximum leaf area, the LAI and NDVIMOD started to slightly
decrease. Similar results have been revealed in beech and oak stands in France, where the NDVI,
measured by an in situ downward looking spectroradiometer, recorded a slight monotonic decrease
during the spring period [52,53]. In the summer months, there is no biosynthesis of the chlorophyll in
beech leaves, thus the photo-degraded chlorophyll is not replaced by the new [54]. This phenomenon
of NDVI decrease measured at the leaf-level was marked as “summer greendown”, to which NDVI is
sensitive [51]. The reduction of LAI during the summer period can be explained by a drop of turgor in
the leaf cells due to the lack of moisture. In autumn, the indices reacted to the different phenological
phases. While the decreasing LAI was caused by the ongoing leaf fall, the NDVI reflected the changes
in leaf color and structure.

The next step in the validation process was to assign the satellite data-based phenological
metrics to the ground observed phenological phases. The key problem in pairing these two data
sources presented by previous authors was the insufficient frequency of the ground phenological
observations, resulting in greater differences between the paired values [9]. In this study, very detailed
phenological monitoring was performed to exclude this deficiency, and significant matches were found.
According to our results, the first spring vegetative phenological phase that could be reliably deduced
from the NDVIMOD phenology metrics used in this study was the LO_10 of canopy beech trees,
which corresponded to S2 (inflection point) with a bias of 0 days and an average NDVIMOD of 0.67.
The phenological phase LO_10 was observed, on average, three days after full bud bursting, which
is usually paired with the inflection point of the NDVI sigmoid function (S2) [48,55]. Nevertheless,
Fisher and Mustard [9] also revealed that the inflection point of the sigmoid function occurred between
the observed BB_50 and LO_50, closer to LO_50. In this study, the next spring phenological phase
LO_100 was linked to S3, with an average NDVIMOD equal to 0.81. The NDVIMOD values of S2 and
S3 corresponded to those measured in the field spectral experiment published by Nagai et al. [50],
who concluded that NDVI of 0.6 indicated the start of leaf expansion, a NDVI of 0.7 indicated that
about 50% of the canopy leaves had expanded, and a NDVI of 0.8 meant that all of the canopy leaves
had expanded.

Determination of the autumn phenological phases from the metrics used in this study was more
complicated when compared to the spring phenological phases. The main reason for this is the
development of the European beech phenological phases, especially the order of beech leaves coloring.
The phenological phase of the autumn senescence of beech leaves start from the upper and edge
parts of the canopy [56]. These leaves are directly exposed to sunlight and photodegrade first. The
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satellite data scan forests from above and thus are able to record these first changes of leaf senescence,
while the in situ observers, looking from the ground concurrently, do not recognize any progress.
Hence, there is a question of which beginning of leaf coloring is more reliable as they do not appear to
be comparable. In this study, A1 was paired with different stages of observed leaf coloring and no
matches were found, although this phenological metric appeared between the observed LC_10 and
LC_50. For further validation of the first autumn phenological metric, we proposed the use of cameras
placed above the canopy [57] or drones [58], which could identify the phenological phases from the
same direction as the satellites. The next phenological metric, A2, which is commonly used in other
studies to identify leaf senescence, was the inflection point of the sigmoid function. Some other authors
have marked this point as the beginning of yellowing [58] or paired it with the leaf fall phase [15,50,59].
This phenological metric (A2) appeared after LC_50 was observed in all of the study stands. Using
the data from the detailed monitoring in U1–U5, it was compared to all phenological stages of leaf
coloring observed after LC_50. Significant agreement was found with LC_80. The last point on the
sigmoid function, A3, occurred after LC_100 and therefore was not interpreted in relation to the beech
phenological phases. In a coarser context, it could be interpreted as the beginning of dormancy in
these stands. Liu et al. [60] marked the last point as the full leaf coloring with differences of 0–12 days,
but also concluded that the MODIS VI data consistently estimated later dormancy onset relative to the
ground observed full leaf coloration. In this study, the leaf fall phenological phase was not evaluated
using NDVIMOD based phenological metrics because it is related to the position of leaves, and not
their reflectance.

Altitude is the most significant factor when considering the effect of topography on the onset
of phenological phases, and it is linked with the reduction of air temperature and increase of
precipitation [61]. Averaging the phenological metrics from 13 years into a single representative
value made it possible to investigate the altitude variations in seasonal remote sensing responses over
a large range of altitudes (from 156 to 1331 m a.s.l.). Regression analyses were utilized to discover
the dependence of the onset of European beech phenological phases on the altitude and climatic
conditions. The analyses were performed at two levels: at the stand scale and at a large-scale, which
demonstrated different results. While the stand scale regressions revealed linear relationships with
correlations (R2) of 0.92, 0.88, 0.26, and 0.88 for S2, S3, A2, and GSL, respectively, the large-scale
analyses found non-linear regressions between the phenology and altitude. In previous studies, linear
regression trends have been demonstrated in stand scale analyses, which were similar to our results.
The studies discovered a lag of 1.1 days 100 m−1 with R2 = 0.63 (10 stands, France) [43], and a lag of
1 day 100 m−1 with R2 = 0.51 (22 stands, France) [4] in the oceanic climate of Western Europe; a lag
of 2.6 days 100 m−1 with R2 = 0.73 in the south of Central Europe (47 stands, Slovenia) [42]; and a
lag of 1.7–3.9 days 100 m−1 with R2 = 0.22–0.81 to the west of Central Europe (97 stands divided into
six regions, Germany) [41]. In the above-mentioned studies, regression analyses of the onset of the
autumn coloring of European beech revealed only a weak dependence on altitude with a R2 less than
0.20 [41,42].

Missing the ground observed data in the highest altitude could lead into the linear dependence
of the spring phenological phases on altitude. The study stands observed in situ are located in the
ecological optimum or suboptimum of the distributional range of European beech, where the effect
of the temperature could be dominant. In the highest altitudes, where the ecological pessimum for
growing occurs, the phenology onset reflects the interaction of extreme ecological conditions such
as lower temperature; longer snow cover; stronger winds, etc. The trees in such conditions react by
the much later onset of leafing, bringing the non-linearity in the shape of regression. When a large
amount of data along the whole altitudinal gradient is available, the regression curve may acquire a
variety of shapes. Hwang et al. [61] applied a non-linear model fitting procedure to derive the local
patterns of topography-mediated vegetation phenology from MODIS vegetation indices. Except for
midday of the green-up period, all variables showed quadratic associations with altitude, reflecting an
interaction between the topoclimatic patterns of temperature and water availability. Gyon et al. [4]
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used linear regression for the leaf onset days along the altitudinal gradient, but the results revealed
that for low altitudes (<500 m a.s.l.), the delay of leaf onset was less than the expected one: 1.5 days
100 m−1 compared to 2.3 days 100 m−1 when applied to the whole altitudinal range. The second order
polynomial function best fitted our phenological data in relation to altitude. When comparing the
spring and autumn phases, the onset days of the S2 and S3 metrics were less variable, with the data
concentrated around the approximated value.

The onset of LC_80 had already started in some beech forests at the end of the summer. This early
onset may result from a variety of causes. One source of discrepancies could be the lack of NDVIMOD

data, hence, the distorted fitting procedure. This may appear during the autumn months, when the
incidence of fog and low clouds is more probable in the mountainous landscape. The next cause
of a decline in NDVIMOD could be due to some kind of leaf damage. During the growing season,
beech trees and leaves are threatened by several biotic (insects) and abiotic (hot temperatures, drought
stress, incidence of spring and summer frost, etc.) factors, and trees could also be harvested in the
managed forests. Regardless of these anomalies, the onsets of the autumn phenological phases were
very variable and only partially depended on the altitude.

The capability of detecting altitude-mediated phenology offers the potential to detect vegetation
responses to local-climate conditions. In this study, we used the normal values of temperature and
precipitation from the last 30 years to assess the altitude-conditioned differences in growing season
length at the study stand scale. The rate of temperature change along the altitudinal gradient (0.61 ◦C
100 m−1) corresponded with the generally valid moist adiabatic lapse rate. The temperature conditions
with a sufficient amount of precipitation ensured the longest growing season (188–193 days) at the
lowest altitudes (<500 m a.s.l.). This is related to both the early beginning of leaf onset LO_10 and
the late onset of 80% leaf coloring (LC_80). However, the temperature and precipitation conditions
seemed to be the most suitable for European beech growth; the beech trees at these altitudes could
be most endangered by the late frost damage [62,63]. Fresh new leaves are especially vulnerable.
The average length of the growing season in the stands situated from 500 to 700 m a.s.l. varied between
181–185 days. Here, the normal precipitation differed only slightly between the study stands, while
the temperature decrease resulted in shorter growing seasons with both later onset of LO_10 and
the earlier onset of LC_80 in comparison to stands at the lowest altitudes. The shortest growing
seasons (170–174 days) were found in the stands located at the highest altitudes (>1000 m a.s.l.).
The lowest temperature in the moist environment lead to the late onset of LO_10, but the end of
the growing season in these climate conditions appeared on similar days as at the lower altitudes.
From the point of beech production, this is an important finding since canopy duration affects the
carbon assimilation rates and the energy budget of forest ecosystems from the stand-level to the global
scale [64]. It has been proven that the length of the growing season correlates with tree height and
diameter growth while this effect is associated with the timing of growth cessation rather than with
leaf onset [65]. It follows that beech stands at higher altitudes are similarly productive as those situated
lower, while the probability of late frost damage is much smaller. When the sensitivity of leaf onset
days to temperature from our study were compared with the data from Western Europe, there was
a much lower sensitivity of European beech to temperature decrease (−2.1 days ◦C−1) in Western
Europe [43]. The differences in the sensitivity of leaf onset days to temperature between the data
from Western (France) and Central Europe (Slovakia) may result from the genetically conditioned
internal periodicity of different populations of European beech. Furthermore, the data from the west
of Central Europe (Germany) showed differences in the sensitivity of the beech growing season length
on altitude-conditioned climatic factors and population locations [41]. The onset of phenological
phases and growing season length could vary around the presented averaged data with regard to
other climatic or topographic factors, which were not considered in this study.
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5. Conclusions

The remote sensing-based approaches for monitoring phenology have been the focus of research
over the past decades. The validation of the phenological metrics against the in situ observation data
is still crucial. Here, the data retrieved from the in situ phenological observations, detailed monitoring
of the forest stands, laboratory spectral analyses, and LAI measurements were used to detect what
the satellite data represent. Next, we described and tested a method to detect the timing of spring
and autumn phenological phases for beech-dominated stands. Our results show that phenological
metrics applied here correspond closely to phenological observations collected on the ground in 12
beech-dominated stands. Significant compliance was found especially in the spring period. The onset
of autumn phenological phases needs to be further explored due to the observation discrepancy
between downward looking satellites and upward looking observers. In the future, the utilization of
phenological cameras or drones could fill the gaps in the data validation.

The phenological metrics we described in this paper have the potential to improve the knowledge
of phenological responses to a variety of factors. The large-scale altitudinal study presented here
showed the advantage of validated satellite data-based phenological metrics. However, the moderate
spatial resolution data source MODIS was used, so the results suggest that it should be possible to
generate multi-year observations of phenological phases at 250 m spatial resolution over large areas.
The large-scale analysis can provide new opportunities to study tree-species phenology in the context
of climate change.
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Figure S1: The relationship between altitude and normal temperature and precipitation on the study stands, Table
S1: Average cover of ground vegetation in stands U1–U5, Table S2: Average transition days of the phenological
metrics S2 and A2, and the growing season length, with the temperature and precipitation normal.
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Abstract: The photochemical reflectance index (PRI) and red-edge region of the spectrum are known
to be sensitive to plant physiological processes, and through measurement of these optical signals it is
possible to use non-invasive remote sensing to monitor the plant photosynthetic status in response to
environmental stresses such as drought. We conducted a greenhouse experiment using Quercus ilex,
a Mediterranean evergreen oak species, to investigate the links between leaf-level PRI and the
red-edge based reflectance ratio (R690/R630) with CO2 assimilation rates (A), and photochemical
efficiency (FV/FM and Yield) in response to a gradient of mild to extreme drought treatments
(nine progressively enhanced drought levels) and corresponding recovery. PRI and R690/R630
both decreased under enhanced drought stress, and had significant correlations with A, FV/FM

and Yield. The differential values between recovery and drought treatments of PRI (ΔPRIrecovery)
and R690/R630 (ΔR690/R630recovery) increased with the enhanced drought levels, and significantly
correlated with the increases of ΔArecovery, ΔFV/FMrecovery and ΔYieldrecovery. We concluded that both
PRI and R690/R630 were not only sensitive to enhanced drought stresses, but also highly sensitive to
photosynthetic recovery. Our study makes important progress for remotely monitoring the effect of
drought and recovery on photosynthetic regulation using the simple physiological indices of PRI and
R690/R630.

Keywords: chlorophyll fluorescence (ChlF); drought; Mediterranean; photochemical reflectance
index (PRI); photosynthesis; R690/R630; recovery

1. Introduction

The increasing occurrence of drought in the Mediterranean region is widely reported [1–3] and
during the last 20 years observations show that it has affected ecosystem functioning and structure [4,5],
decreased plant growth [6] and primary production [7,8], and triggered vegetation mortality [9].
The increase of drought has also enhanced water scarcity [10], and elicited ecological damage [11] and
crop failures [12]. Faced with these negative impacts, monitoring the timing of drought onset and the
extent of the effects on vegetation ecosystems is being increasingly warranted.

Summer drought, one of the key constraints of Mediterranean ecosystems [4], elicits a water
deficit in the leaf tissue that can down-regulate photosynthesis [13]. This reduction in photosynthesis
for Mediterranean species such as Quercus ilex L. is generally caused by stomatal closure in response to
drought stress [14–16]. Quercus ilex is a broadleaved evergreen tree or shrub that is widely distributed
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from semi-arid to humid areas of the Mediterranean region [17]. The sclerophyllous characteristics
of Q. ilex make it possible to reduce its transpiration and to withstand the effect of long summer
drought events. Quercus ilex also has the ability to reactivate its photosynthetic machinery and increase
photosynthesis rates when the soil water content (SWC) is high enough to again support water
transport through the plant [18].

When plants suffer water stress, the reducing power from photosynthesis becomes excessive,
but then the increases in zeaxanthin pigments from xanthophyll de-epoxidation can safely dissipate
excessive energy and prevent the photosystems from potential damage by accumulating excitation
energy [19,20]. The photochemical reflectance index (PRI) was originally defined based on changes
in zeaxanthin at the wavelength of 531 nm to assess the efficiency of absorbed photosynthetic active
radiation (APAR) for photosynthesis (light use efficiency; LUE) [21,22]. A great number of studies
have found that PRI is able to track LUE changes at diurnal and seasonal scales from leaf to canopy
to ecosystem levels [23–25], because apart from xanthophyll pigments, PRI was also associated with
changes of carotenoid/chlorophyll ratios [26–29], which play a key role in long-term dynamics of
photosynthesis [20,30]. Increasing attention has been focused on using PRI to detect the effect of
environmental stress (e.g., intense irradiance, water shortage, nutrition deficit, and high and low
temperature stresses) on photosynthetic changes [8,14,31–36].

The changes in photosynthesis are synchronously accompanied by the emission of chlorophyll
a fluorescence (ChlF), which is regulated by the photochemical conversion and heat dissipation of
excitation energy [37]. The contribution of the ChlF emission is only a small part of the total radiation
reflected from vegetation, however, ChlF is highly sensitive to the variability of plant physiological
processes in response to various environmental conditions, and can provide a direct approach to
detect the functional status of photosynthetic machinery [38,39]. The range of the ChlF emission
spectrum is from the red to near-infrared regions, with two peaks at around 690 and 740 nm [38].
The active ChlF, mainly obtained from a pulse-amplitude modulated (PAM) fluorometer, has been
extensively used for monitoring foliar photosynthetic apparatus [40]. Recently, the passive ChlF
(solar-induced fluorescence, SIF), derived from such methods as the Fraunhofer Line Depth technique
or laser induction, has scaled up the measurements and the applications for detecting photosynthesis
from leaf level to canopy, ecosystem and regional scales [31,41–44].

Some studies have illustrated that reflectance ratios such as R690/R600, R690/R630, R690/R655,
and R740/R800 were sensitive to the changes of ChlF, because the ChlF signal is superimposed on the
red-edge of leaf reflectance [38,45,46]. These reflectance ratios have been shown to track the changes
in fluorescence, photochemical efficiency and carbon assimilation rates for healthy and stressed
plants due to high co-variation of red-edge reflectance/absorption, pigment concentration, and leaf
physiology [31,47–53].

Numerous studies had shown PRI is sensitive to water stress [33,49,54–56], but no studies have
illustrated that PRI was sensitive enough to track recovery after drought stress, at least to the best
of our knowledge. Few studies so far have either exploited the applicability of the reflectance ratios
based on the red-edge region of the spectrum for detecting the photosynthetic response to water
stress [31,48,49]. Only the study by Dobrowski et al. [31] monitored photosynthetic response to water
stress and recovery with only a four-day-long experiment.

Along with the increasing occurrence of drought, it is important to find an easy, non-destructive
and efficient method to monitor both the effect of drought on plant physiological and functional
variability and the subsequent recovery of the photosynthetic machinery. This is particularly important
for regions confronted with progressively more extreme summer droughts such as the Mediterranean
basin. Based on the previous studies, PRI and reflectance ratio based on the red-edge region of the
spectrum (R690/R630) are thus promising methods to test such photosynthetic responses. In this study,
we conducted a two-month long greenhouse experiment using the typical Mediterranean species
Q. ilex by exposing the plants to nine different progressive drought treatments through controlling the
SWC, and then re-watering for five weeks to explore the levels of plant recovery. We simultaneously
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measured foliar reflectance to obtain PRI and R690/R630, PAM ChlF to get maximum (FV/FM) and
actual (Yield) photochemical efficiency of photosystem II (ΦPSII), and CO2 assimilation rates (A).
We hypothesized that both PRI and R690/R630 would be sensitive to the progressively increasing
drought, and could therefore be used to monitor photosynthetic dynamics. We also hypothesized that
both PRI and R690/R630 would detect the photosynthetic recovery after experiencing different levels
of drought stresses.

2. Material and Methods

2.1. Experimental Design

Three-year-old Quercus ilex saplings of approximately 60 cm height were obtained in May 2015
(Forestal Catalana, Barcelona, Spain) and were re-potted in 3.5 litre pots, with a substrate consisting of
45% sand, 45% autoclaved peat, and 10% natural soil inoculum. The soil was collected from a natural
holm oak forest on a south-facing slope (25% slope) in the Prades Mountains in Northeastern Spain
(41◦13′ N, 0◦55′ E). There were 162 saplings in total, divided into six blocks, and plants were grown in
the greenhouse of the Autonomous University of Barcelona (Barcelona, Spain) with a six-week period
of adequate watering, to allow them to acclimate to greenhouse conditions. During the experiment,
in the greenhouse the mean air temperature was 26.7 ◦C (measured with EL-USB-2 data logger, Lascar
Electronics, Wiltshire, UK), and the soil temperature monitored at a fine scale in five pots across the
different soil types was 27.0 ◦C on average (measured with Decagon Em50 data logger with 5TM
soil probes, Decagon Devices, Pullman, WA, USA). The saplings were then exposed to water stress
by withholding water for nine different drought treatments with 18 plants each. The length of time
without water ranged from 0 to 21 days, which means the first drought level, with 0-day withholding
water, was effectively the control treatment. At the end of each treatment, the foliar photochemical
efficiency of photosystem II (ΦPSII) and the reflectance were synchronously measured on half of the
pots (nine per drought level) inside the greenhouse under clear skies within one hour of solar noon
(12:00 to 14:00). The remaining pots then had six weeks of recovery, which involved re-watering at
optimal levels, and then identical leaf measurements were collected for these plants.

The water content of the substrate was determined in each pot at the start of the study and at
the end of its drought period, and recovery period, if relevant (using ML3 Theta Probe connected
to a HH2 Moisture Meter from Delta-T Devices, Cambridge, UK). Mean soil moisture at the start
of the experiment was 22.6% and it decreased exponentially to 0.3% at the end of the most extreme
drought treatment. Soil moisture recovered quickly to ca. 20% within one week of re-watering and
was 24.7% on average during the recovery phase. The differential SWC (ΔSWCrecovery) was calculated
by subtracting the nine different drought treatments values from corresponding recovery treatments.

2.2. Leaf Photosynthesis Measurements

In the greenhouse, the CO2 assimilation rates (A) of leaves were measured using an ADC pro
(LCpro1Portable Photosynthesis System; ADC BioScientific Ltd., Hoddesdon, Herts, UK) gas exchange
system. The measurements were conducted under a quantum flux density of 1000 μmol m−2 s−1 and
ambient CO2 concentration of 395 μmol mol−1. Five measurements were recorded after the values
were stabilized and had reached a steady state for each plant. After each measurement, the leaf area
that was enclosed in the cuvette was marked on the leaves; leaves were later photographed and the
leaf areas for which A was measured were estimated using ImageJ 1.46r (NIH, Bethesda, MD, USA) to
standardize all A measurements. The differential A (ΔArecovery) was calculated by subtracting the nine
different drought treatments values from corresponding recovery treatments.

2.3. Chlorophyll Fluorescence Measurements

Chlorophyll fluorescence measurements were performed by a pulse-amplitude-modulated
photosynthesis yield analyzer (PAM-2000; Walz, Effeltrich, Germany). The measurements were
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conducted on three healthy and mature leaves at the top of each plant. A saturating light pulse (SP)
was applied to dark-adapted (at least 20 min) leaves for the determination of minimum (Fo) and
maximum (FM) fluorescence. The maximum photochemical efficiency of photosystem II (PSII) (FV/FM)
was then calculated according to Genty et al. [57]:

FV/FM = (FM − Fo)/FM (1)

In parallel with FV/FM, the actual photochemical efficiency of PSII (Yield) was also calculated
based on the rapid measurements of steady-state (FS) and the maximal (FM’) fluorescence yield during
the full closing of the PSII center in light-adapted leaves under ambient light and full sun conditions
around noon:

Yield = (FM’ − FS)/FM’ (2)

The differential FV/FM (ΔFV/FMrecovery) and Yield (ΔYieldrecovery) between the nine different
drought treatments values and recovery treatments were also calculated.

2.4. Reflectance Measurements

Leaf spectral reflectance measurements were collected using a broad range mini spectroradiometer
(LR1; ASEQ, Vancouver, BC, Canada) with a fiber-optic of 25◦ field of view. The instrument measures
spectral reflectance between 300 and 1000 nm with a sampling interval of less than 1 nm. To reduce
atmospheric condition changes, the spectroradiometer was calibrated using a white Spectralon
reference panel (Labsphere, North Sutton, NH, USA), which can be regarded as a Lambertian reflector.
Incident solar irradiance was immediately determined using the same white reference panel prior
to the radiance measurements. All spectral measurements were carried out at a nadir view angle
ca. 1 cm above the leaf. The ground-projected instantaneous field of view (GIFOV) was thus about
4.4 mm. In each plant, we measured three different leaves at the top of the canopy as replicates.
The photochemical reflectance index (PRI, [21,22]) was calculated from the reflectance data (Rx implies
reflectance at x nm) as:

PRI = (R531 − R570)/(R531 + R570) (3)

Additionally, we also retrieved the reflectance ratio R690/R630 based on the red-edge region of
the spectrum. Because changes in the reflectance at 690 nm (R690) can be attributed to the absorptions
of pigments, plant physiological variations and also ChlF which are associated with photosynthetic
activity, and R630 is relatively less sensitive to photosynthesis and fluorescence emission [49].

The differential PRI (ΔPRIrecovery) and R690/R630 (ΔR690/R630recovery) were obtained through
nine different drought treatments values subtracted from corresponding recovery treatments.

2.5. Statistical Analysis

Differences of soil water content, CO2 assimilation rate, photochemical efficiency of photosystem
II (ΦPSII) and reflectance indices between the nine drought levels and corresponding plant recovery
were analyzed using repeated-measures analyses of variance (ANOVAs). The differences were
considered statistically significant at p < 0.05. The applicability of PRI and R690/R630 for assessing
CO2 assimilation, ΦPSII responses to drought stress and recovery were analyzed using standardized
major-axis regression to identify correlations between the variables. All analyses were conducted with
R version 3.3.2 (R Core Development Team, Vienna, Austria, 2016).

3. Results

3.1. Responses to Enhanced Drought Stress

In our experiment, the Q. ilex seedlings were treated by withholding watering from 0 to 21 days
in nine different drought levels treatments. Along with the increasing days of drought and decreasing
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soil water content (i.e., enhanced drought stress), CO2 assimilation rates (A) and maximum (FV/FM)
and actual (Yield) photosystem II efficiency (ΦPSII) decreased from highest values at the beginning of
the experiment to lowest values in severe drought conditions (Figure 1). The physiological indices of
the photochemical reflectance index (PRI) (Figure 1a) and reflectance ratio (R690/R630) (Figure 1b) also
decreased gradually. Both changes in PRI and R690/R630 were highly consistent with the decreases
in soil water content (SWC), A, FV/FM and Yield. However, in the last three extreme drought level
treatments, PRI did not change significantly.

 

Figure 1. Changes in CO2 assimilation rates (A), maximum (FV/FM) and actual (Yield) photochemical
efficiency of photosystem II (ΦPSII), and soil water content (SWC) with the photochemical reflectance
index (PRI) (a) and with reflectance ratio R690/R630 based on the red-edge region of the spectrum (b)
in response to nine different drought levels treatment for Quercus ilex. Error bars denote the standard
errors of the mean (n = 9).

3.2. Relationships of PRI and R690/R630 with A, FV/FM, and Yield under Enhanced Drought Stress

PRI and R690/R630 were used to assess the photosynthetic response to drought stress. Both PRI
(Figure 2a) and R690/R630 (Figure 2b) were significantly correlated with A and explained 82% and
86% of variance of A, respectively. PRI had strong relationships with FV/FM and Yield (R2 ≥ 0.85 and
p < 0.001 for both, Figure 2c). Similar significant correlations were found between R690/R630 and
FV/FM and Yield (R2 = 0.89 and p < 0.001 for both, Figure 2d). In contrast, the normalized difference
vegetation index (NDVI, calculated by (R900 − R680)/(R900 + R680)) showed no significant correlation
with A under enhanced drought conditions (R2 = 0.08 and p = 0.58).
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Figure 2. Relationships of A with PRI (a) and R690/R630 (b), and photochemical efficiency of PSII
(ΦPSII) (FV/FM and Yield) with PRI (c) and R690/R630 (d) for Quercus ilex. All the values are from
Figure 1.

3.3. Responses to Recovery

The SWC (Figure 3a) clearly recovered to the pre-drought (0-day drought level, namely, control
treatment) condition in all drought treatments after five weeks of re-watering. They all reached
identically high values, significantly higher than in the drought treatments from the 4-day drought
level treatment onwards (p < 0.001). A (Figure 3b) was higher and remained similar in the recovery
treatment, particularly in the last three severe drought treatments. The mean of FV/FM (Figure 3c) in
the recovery treatment was significantly increased from the 7-day drought level treatment (p < 0.001).
Yield (Figure 3d) presented analogous changes with SWC, A, and FV/FM and increased from the
9-day drought level treatment (p < 0.001). Both PRI (Figure 3e) and R690/R630 (Figure 3f) had no
significant difference in the first four drought treatments with corresponding recovery treatments,
but significantly increased from the recovery treatment of the 9-day drought level.

The differential values of variables were calculated by subtracting nine drought levels treatments
from corresponding recovery treatments to assess the changes of photosynthesis after one month of
re-watering the plants of the drought treatment, and to evaluate the applicability of PRI and R690/R630
in detecting the recovery. The values of ΔArecovery, ΔFV/FMrecovery, and ΔYieldrecovery increased in
conjunction with increasing ΔSWC and increasing drought levels (Figure 4). Both ΔFV/FMrecovery and
ΔYieldrecovery increased slowly in the last three drought levels. Changes in ΔPRIrecovery (Figure 4a)
were consistent with ΔArecovery, ΔFV/FMrecovery, and ΔYieldrecovery. ΔR690/R630recovery (Figure 4b)
also showed a gradual increase as with the other variables, with a high value in the 9-day drought
level treatment.
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Figure 3. Changes in SWC (a), A (b), FV/FM (c), Yield (d), PRI (e) and R690/R630 (f) in response to
nine different drought levels and corresponding recovery treatments for Quercus ilex. The significances
were denoted as + p < 0.1, * p < 0.05, ** p < 0.01 and *** p < 0.001.

 

Figure 4. Changes in differential A (ΔA), ΔFV/FM, ΔYield, and ΔSWC with ΔPRI (a) and with
ΔR690/R630 (b) in response to nine different drought levels for Quercus ilex. The differential values
of variables calculated by subtracting the mean of nine drought levels treatment from corresponding
mean of recovery treatments in Figure 3.

313



Forests 2017, 8, 386

3.4. Relationships of ΔPRIrecovery and ΔR690/R630recovery with ΔArecovery, ΔFV/FMrecovery, and ΔYieldrecovery

Both ΔPRIrecovery and ΔR690/R630recovery accounted for large proportions of the variability of
ΔArecovery (R2 ≥ 0.70 and p < 0.05 for both, Figure 5a,b). ΔPRIrecovery was highly significantly correlated
with ΔFV/FMrecovery and ΔYieldrecovery (R2 ≥ 0.85 and p < 0.001 for both, Figure 5c). The relationships
of ΔR690/R630recovery with ΔFV/FMrecovery and ΔYieldrecovery were also significant, but they were not
as good as those of ΔPRIrecovery with ΔFV/FMrecovery and ΔYieldrecovery (Figure 5d).

Figure 5. Relationships of differential A (Δ Arecovery) with ΔPRIrecovery (a) and ΔR690/R630recovery

(b), and photochemical efficiency of PSII (ΔΦPSII) (FV/FM and Yield) with ΔPRIrecovery (c) and
ΔR690/R630recovery (d) for Quercus ilex. All the differential values are from Figure 4.

4. Discussion

4.1. PRI and R690/R630 Tracked the Photosynthetic Changes under Enhanced Drought Levels

The enhanced levels of drought caused reductions in CO2 assimilation rates (A) and photochemical
efficiency of photosystem II (ΦPSII) (FV/FM and Yield) in Mediterranean evergreen leaves (Figure 1).
Similar trends were also recorded for the photochemical reflectance index (PRI, Figure 1a) and
reflectance ratio based on the red-edge region of the spectrum (R690/R630, Figure 1b), indicating the
sensitivity of PRI and R690/R630 to gradually increased drought stress. The close correspondence
of PRI and R690/R630 with photosynthetic activity (Figure 3a) and ΦPSII (Figure 3b) demonstrated
the promise of pigment- or red-edge reflectance-based approaches to remote monitoring of evergreen
photosynthetic activity under gradually enhanced drought.

PRI is used to reveal the facultative xanthophyll cycle activity at short-term scale (hours to few
days) [21,22,28], but also to estimate the changes in the constitutive pigment pool size at long-term
scale (weeks to months) [27,29,58,59]. In our study, PRI showed promise as an index of photosynthetic
down-regulation and illustrated the activation of photo-protective carotenoid pigments under
photosynthetic down-regulation in response to gradually enhanced drought stress. During the summer
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drying period, leaves in evergreen vegetation of semi-arid Mediterranean region experience decreases
in pigment contents and increases in carotenoids/chlorophyll (Car/Chl) ratio [60]. This change in
Car/Chl ratios plays a key role in photosynthetic down-regulation, and is associated with variability
in PRI [27,58]. Decreases in PRI and photosynthesis presented in this study thus indirectly suggested
that changes in Car/Chl had a significant effect on photosynthetic down-regulation. Therefore,
PRI detected the effect of the progressive drought on photosynthesis, consistent with many previous
studies that have demonstrated that PRI is correlated with photosynthesis and Yield under water stress
conditions [14,34].

Additionally, PRI was quite stable in the last three extreme drought level treatments (plants
without water for 16–21 days), unlike the slight decrease of A, FV/FM, Yield, and R690/R630, reflecting
the insensitivity of PRI to severe drought, at intensities where there is observable leaf fall. Previous
leaf-level studies have reported that PRI was unable to assess the negative light use efficiency (LUE) of
severely damaged plants [34]. Under severe stress conditions, evergreen leaves could retain zeaxanthin
pigments to protect the photosystem from damage, which might contribute to such stability in PRI [61].
At canopy level, changes in structure, heterogeneity in irradiance, and differences in sun angles within
the crown have hindered PRI interpretation and assessment of LUE [24]. At larger spatial scales,
satellite-based (Moderate Resolution Imaging Spectroradiometer, MODIS) PRI has tracked ecosystem
LUE, even during severe water limitation of summer for Q. ilex [62]. The normalized PRI by absorbed
light detected the drought effect on gross primary production (GPP) in a deciduous forest and an
evergreen broadleaf forest in France, but did not capture the reduction of GPP in a semi-arid grassland
in Hungary [8]. Guarini et al. [36] demonstrated that MODIS-based PRI should be used with care
under severe water stress, because the disturbances from canopy structure, illumination and viewing
angles, and so forth, could increase the uncertainty of PRI in tracking LUE. These studies presented
the complications of the applicability of PRI under severe drought conditions at different spatial scales,
and other factors, such as soil backgrounds, vegetation functional types, atmospheric interference
and instrument characteristics, can also complicate the applications of PRI in assessing LUE [24].
However, the strong correlations between PRI and A and ΦPSII (FV/FM and Yield) under enhanced
drought levels demonstrate that PRI can be applied to detect the effect of continuously increased
drought on photosynthesis for Mediterranean evergreen sclerophylls, which generally experience
summer drought.

Interestingly, the reflectance ratio based on the red-edge region of the spectrum R690/R630
presented significant correlations with A, FV/FM, and Yield, and efficiently tracked the photosynthetic
changes to enhanced drought levels (Figure 2b,d). Previous studies have shown reflectance ratios
such as R685/R630 and R690/R630 are sensitive to changes in foliar FV/FM. Dobrowski et al. [31]
used similar reflectance ratios to quantify the chlorophyll fluorescence (ChlF) emissions because of
their superimposition at the red reflectance region, with a maximum emission in the near red-edge
region of 690 and 740 nm. The reference band (e.g., R630 or R655) was chosen due to its insensitivity
to ChlF emission and sensitivity to chlorophyll pigments [47]. These simple reflectance ratios have
tracked the foliar ChlF under both diurnal natural, stress and recovery conditions [31,47,49]. The links
between R690/R630 and ChlF emissions probably contribute to interpreting the relationships between
R690/R630 and photosynthesis in this study. In addition, ChlF can increase under severely low
quantum yields [63], however, continuous decreases in R690/R630 during extreme drought periods
suggested that, apart from ChlF emission at 690 nm, other plant physiological functions also control the
changes in R690/R630. The reabsorption of red ChlF (particularly at ChlF emission peak near 690 nm)
by chlorophyll pigments can also affect the variability of R690/R630 [45]. Further, the low reflectance
in the red-edge of the spectrum generally resulted from the high absorption of chlorophyll pigments.
Zarco-Tejada et al. [49] showed the large effect of chlorophyll content on similar reflectance ratios
such as R685/R630 and R680/R630. However, NDVI, which could indirectly indicate the chlorophyll
pigment changes, was quite stable and did not track the photosynthetic activity during the study
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period. The chlorophyll content thus probably had low effects on R690/R630 and its correlation with
photosynthesis for this Mediterranean evergreen species.

Additionally, the down-regulation of maximum photochemical efficiency of PSII (FV/FM) is
associated with changes of non-photochemical quenching (NPQ) under environmental stress [61,64,65].
The significant correlation of R690/R630 with FV/FM in this and previous diurnal studies [47,48]
indicated that NPQ probably plays a key role in linking R690/R630 with changes in photosynthetic
activity. Although PRI was also highly correlated with FV/FM, the rather constant PRI in the extreme
drought conditions (the last three drought treatments) was decoupled with the strong depression of
FV/FM. Such decoupling of PRI with LUE and NPQ was also found in early spring when Scots pine
needles demonstrated large down-regulation due to the effect of severe stress [27]. In contrast, in our
study, R690/R630 presented consistent changes with FV/FM, Yield and A even under extreme water
stress conditions.

4.2. PRI and R690/R630 Tracked the Photosynthetic Recovery from Progressively Enhanced Drought Stresses

The CO2 assimilation rates and ΦPSII of Q. ilex rapidly recovered to normal values that were
similar with control (0-day drought level treatment) after five weeks of re-watering (Figure 3).
The values of PRI and R690/R630 were increased to similar values after re-watering, indicating that
both PRI and R690/R630 were also sensitive to the recovery of the plant. The significant correlations
of differential PRI (ΔPRIrecovery) and R690/R630 (ΔR690/R630recovery) with ΔArecovery, ΔFV/FMrecovery

and ΔYieldrecovery (Figure 5) illustrated their potential to monitor photosynthetic recovery response to
drought stress.

PRI was originally defined to detect the variability of zeaxanthin changes at 531 nm [21,22].
However, it should be noted that 531 nm was the band associated with carotenoid pigment changes,
including zeaxanthin, and also other carotenoid pigments such as lutein and neoxanthin [66].
These carotenoids both play key roles in energy dissipation of photosynthetic down- and
up-regulation [67,68]. However, studies have demonstrated that constitutive long-term changes
of PRI were greatly attributable to carotenoid pigment pool sizes [27,29,58,59]. Thus, the mechanism
of PRI detecting photosynthetic recovery was probably due to the carotenoid pigments acting on the
photochemical process. Also, during water stress and recovery, PRI was significantly correlated with
carotenoid pigments in olive saplings [32].

In contrast with PRI, changes in R690/R630 were probably related with ChlF emissions but not
with chlorophyll pigments for evergreen broadleaves in this study. ChlF is the energy of absorbed
photosynthetically active radiation (APAR) that is lost during the first steps of photosynthesis which
involves the emission of red to far-red light (ca. 660 to 800 nm) [39]. ChlF is therefore associated with
the fraction of APAR and also with light use efficiency (LUE), giving the possibility of using R690/R630
to monitor photosynthetic recovery after experiencing different drought stresses. Additionally, ChlF is
mainly emitted from PSII, so the recovery of photochemistry could increase the ChlF emission,
particularly in red wavelengths at 690 nm, which is close to the absorption peak of the pigments
of PSII [39,45]. Consequently, R690/R630 is a good indicator of photosynthetic recovery in response to
progressive drought stress for evergreen leaves.

5. Conclusions and Final Remarks

This study makes progress in assessing mild to extreme drought stresses in Mediterranean
evergreen species with the PRI and reflectance ratio R690/R630. Both PRI and R690/R630 were
not only sensitive to progressive drought, but also to plant recovery, significantly tracking the
photosynthetic response to enhanced drought levels, and also detecting the photosynthetic recovery
after re-watering. Carotenoid/chlorophyll pigment ratios probably control the correlation between PRI
and photosynthesis, and ChlF at 690 nm probably plays a role in the relationship of R690/R630 with
photosynthesis. Both PRI and R690/R630 can be used for remotely monitoring the effect of drought on
the carbon uptake and productivity of Mediterranean species.
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Our work also promotes the possibility of parameterizing LUE models based on the PRI and the
ratio R690/R630 for evergreen species. This is because of links between PRI is linked with short-term
changes in xanthophyll pigments proportions and long-term shifts in pigment pools, and R690/R630
with chlorophyll content and fluorescence [69]. For other non-evergreen vegetation such as annual or
deciduous plants, the potential uses of PRI and R690/R630 in detecting the progressive drought and
recovery effects on photosynthetic activity should be further tested given their different physiological
traits, but these results open a promising window for them too. The increasing use of hyperspectral
spectroradiometers carried on unmanned aerial vehicles (UAVs) [70] and satellites (such as Metop and
Sentinel series) provides the possibility of testing the LUE model using PRI and red-edge reflectance
indices for multiple vegetation types and at different spatiotemporal scales.
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