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France

George A. Calin

The University of Texas MD Anderson

Cancer Center

USA
Sendurai A. Mani

The University of Texas MD Anderson

Cancer Center

USA

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal Cancers

(ISSN 2072-6694) from 2018 to 2019 (available at: https://www.mdpi.com/journal/cancers/special

issues/jmlc)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-451-8 (Pbk)

ISBN 978-3-03921-452-5 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Preface to “Towards New Promising Discoveries for Lung Cancer Patients: A Selection of

Papers from the First Joint Meeting on Lung Cancer of the FHU OncoAge (Nice, France) and

the MD Anderson Cancer Center (Houston, TX, USA)” . . . . . . . . . . . . . . . . . . . . . . . ix

Paul Hofman, Nicholas Ayache, Pascal Barbry, Michel Barlaud, Audrey

Bel, Philippe Blancou, Frédéric Checler, Sylvie Chevillard, Gael Cristofari,

Mathilde Demory, Vincent Esnault, Claire Falandry, Eric Gilson, Olivier Guérin,
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Multiplexed Immunohistochemistry for Molecular and Immune Profiling in Lung Cancer—Just
About Ready for Prime-Time
Reprinted from: Cancers 2019, 11, 283, doi:10.3390/cancers11030283 . . . . . . . . . . . . . . . . . 35

Anna Maria Rachiglio, Francesca Fenizia, Maria Carmela Piccirillo, Domenico
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Preface to “Towards New Promising Discoveries for

Lung Cancer Patients: A Selection of Papers from

the First Joint Meeting on Lung Cancer of the FHU

OncoAge (Nice, France) and the MD Anderson Cancer

Center (Houston, TX, USA)”

Among various cancers, lung cancer accounts for the highest number of deaths worldwide. The

number of new diagnosed cases has increased each year over the last two decades. Thus, despite

major public awareness campaigns concerning the tobacco risk, the incidence of this cancer does not

decrease. In particular, the risk increases in certain countries, notably in the female population. These

growing cases are linked, at least partially, to aging populations, and thus to the elevated number

of chronic obstructive pulmonary disease among these patients who are at high risk of developing

lung cancer. Other environmental factors (increased atmospheric pollution, professional exposures)

are also involved in this enhancement.

Despite therapeutic progress, the prognosis of this cancer is still dismal, due notably to diagnosis

occurring at advanced or metastatic stages. These observations highlight the importance of knowing

the perspectives on new screening programs for lung cancer. In particular, using better or combined

tools, knowing the different molecular and cellular mechanisms linked to cancer development

and progression, and development of new therapeutics and associated predictive blood and tissue

biomarkers. In this context, this Special Issue of Cancers focuses on certain topics of interest

associated with lung cancer. This follows up from the first joint meeting between different physicians

and researchers from both MD Anderson Cancer Center (Houston, Texas, USA) and the Hospital

University Federation (HUF) OncoAge (University Côte d’Azur, Nice, France) which took place in

Nice in September 2019. OncoAge (www.oncoage.org) is a consortium which brings together the

doctors and the researchers from universities in both Nice and Lyon in France. This group is working

together to overcome the different challenges facing the treatment of solid tumors, notably from the

lung cancers in elderly patients. The OncoAge initiatives covers three main fields, which include

training the next generation of doctors and scientists, conducting clinical and translational research,

and improving the quality of life for elderly patients living with solid tumors. The main objective of

the Special Issue is to discuss different topics linked to lung cancer among aged cancer population,

and to promote understanding of the development of lung cancer and its pathology.

Paul Hofman, George A. Calin, Sendurai A. Mani

Special Issue Editors
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Abstract: It is generally accepted that carcinogenesis and aging are two biological processes, which
are known to be associated. Notably, the frequency of certain cancers (including lung cancer),
increases significantly with the age of patients and there is now a wealth of data showing that
multiple mechanisms leading to malignant transformation and to aging are interconnected, defining
the so-called common biology of aging and cancer. OncoAge, a consortium launched in 2015, brings
together the multidisciplinary expertise of leading public hospital services and academic laboratories
to foster the transfer of scientific knowledge rapidly acquired in the fields of cancer biology and
aging into innovative medical practice and silver economy development. This is achieved through
the development of shared technical platforms (for research on genome stability, (epi)genetics,
biobanking, immunology, metabolism, and artificial intelligence), clinical research projects, clinical
trials, and education. OncoAge focuses mainly on two pilot pathologies, which benefit from the
expertise of several members, namely lung and head and neck cancers. This review outlines the
broad strategic directions and key advances of OncoAge and summarizes some of the issues faced by
this consortium, as well as the short- and long-term perspectives.

Keywords: aging; cancer; optimization; research; education; elderly; well-being

1. Introduction

Chronological age is the most important single risk factor for the development of a variety of
cancers and chronic diseases that account for the majority of societal morbidity, mortality, and public
health costs. Recent findings suggest that changes in certain basic biological processes are shared
in physiological aging, cancer, and degenerative pathologies [1,2]. Importantly, similar processes
can be altered in diseases as diverse as cancer, neurodegeneration, cardiovascular disorders, chronic
obstructive pulmonary disease (COPD), osteoarthritis, and diabetes, to name a few. For instance, at the
cellular level, the accumulation in tissues of senescent cells (permanent cell cycle arrest in response
to various types of stress or tissue remodeling) emerges as an important contributor to aging and
age-related pathologies, through both cell autonomous and non-autonomous mechanisms driving
inflammation, immunosenescence, and tissue degeneration [3,4]. Therefore, a key challenge now is
to rapidly improve our knowledge on the biological processes in common that lead to malignant
transformation and degenerative pathologies [1,5–7]. From a cellular standpoint, the mechanisms that
drive degenerative diseases and cancer are shared at an initial phase (e.g., during the accumulation of
senescent cells), before adopting a particular direction and specific genetic and epigenetic modifications
that orient cells toward distinct fates (e.g., escape of cellular checkpoints for cancer cells) [1,5–8].
Thus, schematically, degenerative aging and cancer can be considered as two sides of the same coin,
involving many common fundamental biological mechanisms (Figure 1).
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Figure 1. Common mechanisms that drive degenerative diseases and cancer. OncoAge is dedicated
to three major pathologies: thoracic diseases (tumoral or non-tumoral), head and neck and thyroid
pathologies, and neuromuscular degenerative disorders.

Hence, the progressive degeneration of tissues can lead to transformation into cancer after
activation of chronic inflammation and immunosenescence [9–12]. Finally, from an epidemiological
standpoint, the risk of emergence and incidence of most cancers increase with the age of the
population [13–15].

Although cancer and aging biology are closely related, they are often investigated separately.
Thus, whereas a number of fundamental and translational research centers or institutes worldwide
have oriented their research in the direction of aging, only a few of them have really focused their
studies on the links between aging and cancer. This is the case for the Institute for Research on Cancer
and Aging, Nice (IRCAN) in France, which bases its overarching strategy on combining the research
developed by scientists and physicians on cancer and aging mechanisms (https://www.ircan.org).
It is within this context that the OncoAge consortium was launched in Nice to facilitate the transfer
of this growing knowledge on cancer and aging to medical innovation and current medical practice.
This consortium was certified and recognized in 2015 as a Hospital-University Federation (HUF) by
AVIESAN (https://www.aviesan.fr; https://www.oncoage.org). The global aim of the HUF program
in France is to develop excellence within the university hospitals by targeting medical topics optimizing
care, research, and education in these subject areas (https://www.aviesan.fr). In short, OncoAge is
a HUF based on the expertise of medical and scientific teams oriented toward cancer pathologies
associated with aging. The key aim of OncoAge is to improve the care of elderly patients, in particular
those with cancer, to set up research projects, and develop training and educational programs in this
domain (https://www.oncoage.org). These efforts should not only deepen our understanding of the
mechanisms underlying cancer and aging, but also improve the daily well-being of the patients.

The aging of the world’s populations has progressively modified the profile of the most frequent
diseases [13]. While infectious and cardiovascular disorders have until recently been the most frequent,
and resulted in the highest number of deaths around the globe, considerable progression towards an
increase in the number of certain cancers and diseases linked to aging has been observed in recent
years. According to epidemiological predictions, these diseases will be among the most common
in 2030, in both industrialized and non-industrialized countries. Among them, lung cancer will be
the fifth cause of death in 2030, whereas according to the Global Burden of Disease (GBD), COPD is
already now the third leading cause of death worldwide, a progression WHO had not predicted to
occur until 2030 [16,17].

In this context, it is crucial to rapidly advance the molecular understanding of genetic and
epigenetic mechanisms, as well as immune and metabolic abnormalities leading to the development
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of cancers associated with age, and to improve the care and well-being of patients with cancers that
have become chronic and often invalidating. This has generated an urgent need to address many new
challenges in translational projects in this field [18].

Importantly, elderly patients with lung cancer and head and neck cancer (HNC) are rarely
enrolled in clinical trials, particularly in phase 1, and even less so in dedicated trials in curative or
palliative settings. As an example, no standards of treatment exist for these populations, and frail
elderly lung and HNC patients may be over-treated with a risk of increased toxicity while fit
patients may be proposed for suboptimal treatment. It is, therefore, crucial to develop and evaluate
appropriate treatments by enrolling elderly patients with cancer in a higher number of therapeutic trials.
Beyond research-related concerns, OncoAge faces epidemiologic and environmental issues such as the
procurement of well-controlled demographic data and the means of measuring air pollutants according
to geolocalization of the patients in the Alpes-Maritimes area. Moreover, questions concerning costs
(obtaining funding from public and private sources) and organization (steering multicenter efforts in
the same direction) must be anticipated and managed to assure the sustainability of the consortium in
the near years.

The genesis and objectives of the OncoAge consortium since its creation in 2015 at the Côte d’Azur
University (Nice, France), its first accomplishments, and its future perspectives are described below.

2. OncoAge: The Origin of the Project

OncoAge was established in France after acceptance and certification by AVIESAN, subsequent
to a national tender for HUF proposals (https://www.aviesan.fr). The application called for unique
and original projects covering an aspect of health for which a program optimizing the healthcare
of patients, research, and teaching in the specified domain could be addressed. The HUF OncoAge
project was submitted in 2015 and selected by AVIESAN after the representatives of the project were
examined by an international committee.

3. OncoAge at the Côte d’Azur University: Why?

The choice of setting up a HUF within the Nice Hospital of the University Côte d’Azur was
motivated by several aspects, in particular, based on epidemiological arguments (Figure 2).

Figure 2. (a) High population density within the Alpes-Maritimes area (purple arrow) (INSEE data).
(b) Age pyramid within the Alpes-Maritimes area in 2013 and pre-visions for 2050 (INSEE data).
(c) Air pollution levels (in red, very high air pollution) within the Alpes-Maritimes area (purple arrow;
www.prevair.org).

According to the data from the National Institute of Statistics and Economic studies (“INSEE”),
in contrast to other regions in France, the population of the Alpes-Maritimes region, where the HUF
is located, is populated by a high number of elderly people (>65 years old) (https://www.insee.fr).
This region has a population density above the average in France, and which is increasing yearly
(https://www.insee.fr). Indeed, the Nice University Hospital already treats many patients above
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65 years of age, and this number is expected to increase. In this context, due to the global aging of
the world population, it is estimated that the number of elderly patients admitted to this healthcare
center today is similar to that which will be observed in most hospitals in the world in 2030. The high
incidence of lung cancer and the above average level of atmospheric pollution in the Alpes-Maritimes
region, as compared to national levels, were among the other reasons that motivated the decision to
develop the OncoAge project (Figure 2). Moreover, no other HUF in France has focused on aging
and cancer. Therefore, we felt that this important issue should be developed within this geographical
area. Finally, the presence of IRCAN, a research center focusing on the mechanisms linking cancer
and aging, provides a unique opportunity to associate the most recent biological discoveries with the
health-oriented aims of OncoAge.

4. OncoAge at the Côte d’Azur University: How?

OncoAge efforts are based, for the greater part, on a limited number of “pilot” pathologies that
were selected within the Nice Hospital, taking into consideration the following parameters: (i) optimal
organization of the hospital sectors in the concerned domains and the potential recruitment of patients,
(ii) activities of the university (publications and teaching) of the hospital departments, (iii) the organized
clinical and/or biological databases, (iv) clinical and translational research performed in collaboration
with scientists of the teams studying fundamental research in the specified subjects. For this, three
major pathologies were initially chosen to set up the foundations of OncoAge: thoracic diseases
(tumoral or non-tumoral), head and neck and thyroid pathologies, and neuromuscular degenerative
disorders. Transversal studies were initiated to reinforce the fundamental knowledge on these medical
questions, combining various (epi)genomics, immunology, metabolism, and artificial intelligence (AI)
approaches since these topics are particularly important for aging and cancer [1,19–27]. Actions that
support common structures have been established, such as innovative programs and connection to the
silver economy (https://www.france-silvereco.fr/notre-observatoire/tableau-de-bord-de-la-filiere),
technological platforms (including geriatric screening tools to identify elderly cancer patients who
could benefit from comprehensive geriatric assessment), and new biorepository space, training and
education, dissemination of knowledge and information [28–33]. The participants working on these
different aspects (work package leaders) interact in concert with the unique aim of building a dynamic,
collaborative network.

In addition to several departments of the Nice University Hospital, the OncoAge consortium
brings together a number of institutes of the Côte d’Azur University (UCA), such as the Antoine
Lacassagne Comprehensive Cancer Center (CAL), the Etablissement de Santé Privé d’Intérêt
Collectif (ESPIC) Hôpitaux Pédiatriques de Nice Centre Hospitalier Universitaire Fondation Lenval,
and many teams of different research centers (Institut of Research and Aging, Nice (IRCAN),
Centre Méditerranéen de Médecine Moléculaire (C3M), Institut de Biologie Valrose (iBV), Institut de
Pharmacologie Cellulaire et Moléculaire (IPMC), Laboratoire de PhysioMédecine Moléculaire (LP2M),
and Institut National de Recherche en Informatique et en Automatique (Inria)). OncoAge is not only
composed of different stakeholders belonging to the Côte d’Azur University but also of teams of
the Lyon University (Lyon University Hospital; Hospices Civils de Lyon; HCL; and Leon Bérard
Comprehensive Cancer Center (CLB) and of the International Agency for Research on Cancer (IARC,
Lyon, France), the Centre d’Energie Atomique (CEA; Fontenay aux Roses, France), and the Gustave
Roussy Institute (IGR; Villejuif, France) (Figure 3).
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Figure 3. The OncoAge consortium members. CEA: Centre d’Energie Atomique; IGR: Gustave Roussy
Institute; CLB: Léon Bérard Comprehensive Cancer Center; IARC: International Agency for Resarch
on Cancer; HCL: Hospices Civils de Lyon; CAL: Antoine Lacassagne Comprehensive Cancer Center;
CHUN: Centre Hospitalier Universitaire de Nice; UCA: Université Côte d’Azur; IRCAN: Institut of
Research and Aging, Nice; IBV: Institut de Biologie Valrose; LP2M: Laboratoire de PhysioMédecine
Moléculaire; ESPIC: Etablissement de Santé Privé d’Intérêt Collectif Hôpitaux Pédiatriques de Nice
Centre Hospitalier Universitaire Fondation Lenval; IPMC: Institut de Pharmacologie Cellulaire et
Moléculaire; INRIA: Institut National de Recherche en Informatique et en Automatique.

The governance of OncoAge is provided by a strategic committee and a scientific council (https:
//www.oncoage.org). To ensure proper functioning and to benefit from expert advice, an international
scientific advisory board (SAB) composed of medical and scientific opinion leaders in the field of
cancer and aging has been set up (https://www.oncoage.org).

5. OncoAge: Main Objectives

The overarching objective of OncoAge is to create and foster a network of expertise, and to develop
collaborations and projects to improve the healthcare of elderly patients with cancer. To attain these
objectives, a number of initiatives have been undertaken: (i) definition of different indicators of tracking
(using publications), (ii) development of clinical and translational research projects funded by regional,
national, and international bodies, (iii) introduction into the university lectures of themes developed by
OncoAge, (iv) organization of workshops and conferences, and (v) communication of information to the
general public and the creation of a dedicated website. These different initiatives put forward by OncoAge
were first evaluated by the SAB of OncoAge in 2015, and found to be highly appropriate.

6. OncoAge: Main Results After Three Years of Existence (2015–2018)

Several key accomplishments both at the level of clinical and translational research projects
and at the level of the structuring and dissemination of information were achieved. The clinical
expertise in HNC within OncoAge is highlighted by the ELAN (ELderly Head and Neck cancer)
program. These clinical studies on curative or palliative personalized treatment of elderly head and
neck cancer patients after geriatric assessment (Elan Geriatric Evaluation, EGE) currently represent the
only multi-center therapeutic trials dedicated to this group of patients worldwide [34–36]. Studies were
completed in 2018 and results will be presented in 2019. Moreover, an early phase clinical trial unit
was set up in the Comprehensive Cancer Center Antoine Lacassagne to favor the emergence of
therapeutic innovations.

6



Cancers 2019, 11, 250

Since 2015, OncoAge has been associated with the publication of 86 scientific articles referenced
in NCBI PubMed (the “FHU OncoAge” was listed with the author’s affiliation). For example, some
publications are related to epidemiological, clinical, and translational research projects made in lung
cancer and COPD, such as lung cancer screening and assessment of biomarkers [37–46]. Recently, a new
project was accomplished by physicians from the Nice University Hospital and researchers belonging
to the “Institut National de Recherche en Informatique et en Automatique” (Inria) who aimed to
develop a lung cancer screening program based on the integration of three signatures: clinical data
(leading to better risk factor assessment), chest low dose CT scan (by using computer-aided diagnosis),
and biological blood signatures [47]. Since the HUF OncoAge was established, a strong partnership
between oncologists and geriatricians belonging to the consortium was set up in order to optimize
the care of the elderly cancer population. In this context, a large comprehensive geriatric assessment
program using a multidimensional interdisciplinary diagnostic process was rapidly developed [48].

Other specific studies concern the head and neck pilot pathology [49,50]. Several scientific
projects managed by leaders of OncoAge were financed by different organizations, including the
Institut National du Cancer (the French NCI), l’Agence Nationale de la Recherche, la Fondation de
l’Association de la Recherche contre le Cancer, le Cancéropôle Provence Alpes Côte d’Azur” (PACA),
and the Infrastructure en Biologie Santé et Agronomie” (IBiSA). A master’s program on “Biobanks
and Complex Data Management” was set up through the association of the Côte d’Azur University
and the Nice Hospital (https://MScbiobanks-complex-data) [51]. The Laboratory of Clinical and
Experimental Pathology within OncoAge has been selected by the European Society of Pathology
to serve as an advanced training center for molecular pathology with an emphasis on liquid biopsy.
Since 2015, the master’s program has enrolled students from all around the world and so far, three
classes of students have been trained.

This master’s is supported by the biobank of the Nice University Hospital (BB-0033-0025), which
has benefited since 2015 from new infrastructures and developments (http://univ-cotedazur.fr/en/
education/informations-utiles/les-informations-utiles/biobanks-complex-data/#.XGlsb7jjJ4E) [51].

This biobank has integrated the technological platform of OncoAge and the biological specimens
associated with the clinical data and is available to the teams of OncoAge after a material transfer
agreement has been signed. The visibility of OncoAge has been ensured through the creation of a
website and the organization of several symposiums, including the first joint meeting on lung cancer
associating the MD Anderson Cancer Center and the HUF OncoAge (https://www.oncoage.org/
news-and-events-2/3/). Moreover, recently, on behalf of the HUF OncoAge, different actors of the
consortium have had the opportunity to participate in the writing of a next Encyclopledia of Aging and
Population Aging, edited by Springer, which will be available at the end of 2019. The HUF OncoAge
will lead the “Cancer and Treatment” section of this encyclopedia.

The different actions accomplished by OncoAge were favorably evaluated by the SAB of OncoAge
at the end of 2018.

7. OncoAge: Current Developments and Perspectives

A number of perspectives have been envisioned for the short term (2020). First, broadening the
pathologies that OncoAge intends to investigate, in particular, skin cancers (including melanoma),
will be integrated in 2019. New clinical–biological collections will be built, either as a complement to
existing collections or from a new population of patients. Concerning the complementary collections
(from patients with lung cancer and chronic obstructive pulmonary disease), the samples will include
urine, total blood, and peripheral blood mononuclear cells (PBMCs). A new collection of blood (plasma,
PBMCs, and total blood) obtained from healthy individuals older than 80 years and residents of the
Alpes-Maritimes region will be assembled. Finally, a collection of bronchial and transthoracic biopsies
(tissues fixed and paraffin embedded) obtained from lung cancer patients will be set up for future
translational research projects.
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Several other objectives have been defined. Amongst these, an international master’s degree on
aging, dedicated to researching questions concerning aging and associated diseases, should be created.
Further, a national project implicating private–public partners targeting innovation in the domain of
aging should initiate several national and international collaborations (http://www.agence-nationale-
recherche.fr/). Finally, new clinical trials, all with translational studies (including mechanisms of
resistance to immunotherapy), have been launched or are in advanced phases of discussion with
academic institutional groups and pharmacological companies. Indeed, immunotherapy in elderly
patients has become a promising treatment alternative and put in the limelight [52–56]. In this context,
the development and assessment of biomarkers of senescence will be associated with clinical trials
thanks to the biobank (BB-0033-00025) and the OncoAge research teams [57,58]. These studies will
benefit from the acquisition by OncoAge of technical platforms of state-of-the-art equipment and
AI-based software (HALO AITM, Indica Labs, London, UK) for high-speed whole slide imaging and
quantitative multiplexing.

8. Conclusions

The most prominent feature of aging is a gradual deterioration/loss of cells that is associated
with organ dysfunction and the rise of age-related chronic pathologies. Amongst these, cancer stands
out as its occurrence significantly increases with age and has a devastating human and public health
cost. Deciphering the clinical features, the biological markers, and the lifestyle and environmental
factors that are shared between common chronic age-related pathologies and cancer should lead to the
development of new clinical approaches, including the validation of surrogate biomarkers of frailty and
predisposition. A deeper understanding of the common mechanisms involved both in aging and cancer
is expected to considerably improve our knowledge on how to prevent age-related pathologies and
how to optimize the care of elderly patients. In this context, OncoAge is a unique consortium composed
of more than 1000 participants and actors located in Nice, Lyon, and Paris with the exclusive ambition
of working together on clinical–biological and medical–scientific projects that aim to improve the
care of elderly patients with cancer. This consortium has actively developed translational and clinical
projects and has created innovation in the domain of geriatric oncology. The increase in the age of the
world’s populations has created new urgent demands on healthcare, as well as major strategic and
economic issues. Improving the autonomy of elderly patients with cancer, avoiding repeated and long
hospitalizations, performing early screening for certain cancers, and predicting, as well as preventing
complications, are all objectives set out by OncoAge. Moreover, understanding the relationships
between the aging phenomenon and cancer is a timely and multifaceted challenge where high-level
research efforts in medicine, genomics, and biology have to be combined with societal approaches
focused on individuals. In this context, OncoAge has designed and made operational an original
holistic approach combining genotype and phenotype analyses of the aging and cancer processes.

To conclude, our expert multipronged approach is consolidated by the enthusiasm of the many
physicians and scientists of several leading hospitals and strong research centers and warrants the
future of OncoAge.
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Abstract: Multiplexed platforms for multiple epitope detection have emerged in the last years as
very powerful tools to study tumor tissues. These revolutionary technologies provide important
visual techniques for tumor examination in formalin-fixed paraffin-embedded specimens to improve
the understanding of the tumor microenvironment, promote new treatment discoveries, aid in cancer
prevention, as well as allowing translational studies to be carried out. The aim of this review is to
highlight the more recent methodologies that use multiplexed staining to study simultaneous protein
identification in formalin-fixed paraffin-embedded tumor tissues for immune profiling, clinical
research, and potential translational analysis. New multiplexed methodologies, which permit the
identification of several proteins at the same time in one single tissue section, have been developed
in recent years with the ability to study different cell populations, cells by cells, and their spatial
distribution in different tumor specimens including whole sections, core needle biopsies, and tissue
microarrays. Multiplexed technologies associated with image analysis software can be performed
with a high-quality throughput assay to study cancer specimens and are important tools for new
discoveries. The different multiplexed technologies described in this review have shown their utility
in the study of cancer tissues and their advantages for translational research studies and application
in cancer prevention and treatments.

Keywords: immune profiling; cancer tissues; multiplexed methodologies; image analysis;
spatial analysis

1. Introduction

Despite the recent advances in immunotherapy strategies in recent years in cancer treatment and
clinical responses, the study of immune cell phenotypes and their spatial distribution at the tumor
site has prompted the need for multiplexed analyses of tumor tissues. To address this necessity, in
recent years, multiplexed imaging platforms have arisen as important tools that can provide critical
information about the cancer microenvironment, prognosis, therapy, and relapse [1–5]. Different
components of the tumor microenvironment can be examined simultaneously using multiplexed
methodologies, providing an insight into the biological cross-talk present at the tumor–host interface,
and providing information from the subcellular level to the cell population level. Indeed, the most
important factor is the precision with these new techniques can evaluate the special localization of
multiple, simultaneously-detected biomarkers and their co-expressions or interactions between cells [5].
Attempts are presently being made to develop even more comprehensive multiplexed technologies
that allow simultaneous visualization of an even larger number of biomarkers from a single tissue
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section, as well as to streamline, automate, and reduce the time expended on tissue staining and
processing. Multiplexed methods can help to achieve these technological goals to ultimately enhance
disease diagnosis and better inform timely patient care [6].

Multiplexed technologies are being used to identify the presence of multiple biological markers
on a single tissue sample or an ensemble of different tissue samples [7]. The multiplexed imagining
techniques provide unique biological information that, in many cases, cannot be attained by other
non-imaging methods or by single immunohistochemistry (IHC) techniques. As mentioned, individual
cells can be accessed with extraordinary fidelity equal to that achievable in the bulk population, such
than even rare cell populations can be studied, showing their important role in translational research.
This knowledge can be applied in cancer prevention. In this review, we discuss the most recent
multiplexed methodologies that can be used to identify simultaneous biomarkers in formalin-fixed,
paraffin-embedded (FFPE) tumor tissue samples as well as imaging analysis platforms with potential
application for future cancer immunotherapy biomarker discoveries.

2. Non-Fluorescence-Based Platforms

2.1. Multiplexed Immunohistochemical Consecutive Staining on Single Slide

The multiplexed immunohistochemical consecutive staining on single slide (MICSSS) [8] method
is a series of sequential cycles of staining, image scanning, and destaining of chromogenic substrate
than can be performed on FFPE tissue samples. This multiplex staining approach uses conventional
chromogenic-immunohistochemistry staining, followed by a scanning process by the destained
chromogenic substrate in organic solvent [8] that can completely remove the staining. The MICSS
method can allow up to 10 different antibodies on one single tissue section using sequential cycles
without any damage to the tissue antigenicity or architecture. The relatively slow process of the
technique is the main limitation of the MICSSS, but as the authors mentioned, this limitation could be
easily resolved with the automation of the process. However, although this methodology was tested on
limited data, it showed the versatility and potential of the process to study and analyze the complexity
of the tumor microenvironment.

2.2. Sequential Immunoperoxidase Labeling and Erasing

Sequential immunoperoxidase labeling and erasing (SIMPLE) is a multiplex
immuno-histochemistry approach with a sequential labeling bleaching technique that enables
simultaneous marker visualization [9]. The SIMPLE approach can combine five to twelve markers
using the alcohol-soluble peroxidase substrate 3-amino-9-ethylcarbazole with a fast, non-destructive
method for antibody–antigen separation. Then, in each round of labeling, a given precipitate is gave
a pseudocolor, and all colors are overlapped at the end of the process to visualize all of the target
antigens used. This method has shown the ability to erase the results of a single stain while preserving
tissue antigenicity for repeated rounds of labeling [9]. Using the SIMPLE platform in a head and neck
squamous cell carcinoma cohort, differential immune complexity of lymphoid- and myeloid-inflamed
tumors has been demonstrated, correlating with clinical outcomes and tumor subclassification.
In addition, geometrical mapping analysis revealed that the immune complexity status is associated
with the therapeutic response to vaccination therapy in pancreatic ductal adenocarcinoma, where
myeloid-inflamed and T cell exhaustion status are correlated with a shorter overall survival time [10].

3. Fluorescence-Based Platforms

3.1. Bleaching Techniques without Signal Amplification System

Multiplexed staining bleaching techniques were created with different platforms to study tumor
tissue specimens. The basic concept of these techniques is to erase the staining marker when it is done
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to initiate the next biomarker in a consecutive cycle of desired biomarkers to identify multiple antigens
in a single sample.

3.2. Multi-Epitope-Ligand Cartography

Multi-epitope-ligand cartography (MELC) [11,12], is a bleaching or erasure technique that is
capable of co-localizing the locations of different proteins in one single tissue sample using consecutives
rounds of conjugate biomarkers with fluorescent detection [13]. A couple of antibodies are added
during each staining cycle, followed by image acquisition of the sample using a high-sensitivity
digital camera. Then, the sample is bleached with phosphate buffer saline to eliminate the excitation
wavelengths, and a new cycle of staining is started. One limitation of the MELC technique is that
the photobleaching step can only be applied to the microscope’s field of view, meaning that the
multiprobe image is limited to a single microscopic medium-to-high power field [9]. MELC can be
applied on FFPE and frozen tissue sections, and it has been coupled to RNA extraction to combine
RNA and protein expression analysis [14]. MELC has been used as a very efficient methodology
to study immune cell markers and intracellular signaling pathways in an infectious context [15,16]
and to perform systematic high-content proteomic analysis of colorectal cancer, and the T cell-related
protein expression patterns and their modification in the tissue of Barrett’s esophagus and esophageal
adenocarcinoma patients [17,18].

3.3. MultiOmyxTM Staining or Hyperplexed Immunofluorescence Assay

General Electric Healthcare (Niskayuna, NY, USA) has developed an erase methodology platform
called MultiOmyxTM, which is a multiplex direct immunofluorescence approach where up to
50 antibodies can be interrogated from a single FFPE section. It uses primary conjugated antibodies
with fluorochromes to stain different biomarkers of interest in batches of two or four at one time.
After deactivating the tissue autofluorescence and completing the first cycle of staining, the tissue
is imaged and deactivation of the fluorochromes via alkaline oxidation is done to start a new cycle
of staining. The MultiOmyxTM platform can stain multiplex rounds of biomarkers by repeating the
same procedure several times until all desired targets have been reached in a multiplexed iterative
manner [19,20]. The MultiOmyxTM platform has been used to evaluate the epithelial-to-mesenchymal
transition in medullary colorectal cancer tissue where coexpression of CK, CDH3, VIM, and Cyt-PLAC8
provided evidence that excess PLAC8 is involved in the epithelial-to-mesenchymal transition [21]. An
interesting field of application of this technology is in hematopathology where the routine diagnosis
of hematological neoplasms includes several IHC markers, for example, CD30, CD15, PAX-5, CD20,
CD79a, CD45, BOB.1, OCT-2, and CD3 antibodies in the diagnosis of classical Hodgkin lymphoma.
It was demonstrated that the use of MultiOmyxTM is equivalent to routine morphological and IHC
evaluation of cases in which classical Hodgkin lymphoma was included within the differential
diagnoses [12].

4. Tissue-Based Cyclic Immunofluorescence (t-CyCIF) Method

Recently described in the literature, the tissue-based cyclic immunofluorescence (t-CyCIF) [22]
method can create highly multiplexed images using an iterative process in which conventional
low-plex fluorescence images are repeatedly collected from the same sample and then assembled
into a high-dimensional representation. The t-CyCIF cycles involve antibody staining against protein
antigens, nuclear staining (same fluorophore per cycle), image scanning (low and high magnification)
and fluorophore bleaching steps. According to the authors, the cycles can be repeated more than
15 times without any problem with cell preservation or tissue morphology to complete all the desired
targets. However, each t-CyCIF cycle involves a relatively slow process (each cycle is 6–8 h); a
single operator can process 30 slides in parallel with relative flexibility. Recently, Bolognesi and
colleagues [23] described multiplex staining by sequential immunostaining involving 30 markers
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using beta-mercaptoethanol/sodium dodecyl sulfate for the stripping procedure during each cycle of
staining and scanning with very good results.

Co-Detection by Indexing or Fluorescent Immunohisto-PCR

CO-Detection by indEXing (CODEX) is a fluorescent-based imaging approach that uses oligo-DNA
conjugated antibodies. The oligonucleotide duplexes encodes uniquely designed sequences with
5’ overhangs [24]. Fresh frozen tissue and isolated cells were used to validate this methodology,
but its application on FFPE tissue is under development. Cells or fresh frozen tissue are stained
with a cocktail containing all conjugated antibodies (up to 50 antibodies) at the same time. This
methodology is based on secondary detection index cycles where tags are iteratively revealed
in situ by using indexing nucleotides (adenine and guanine) and rendering fluorophores-conjugated
nucleotides (uracil and cytidine) with the combination of a polymerization cycle and a fluorescent
channel, at which a given DNA tag incorporates one of two fluorescently labeled dNTP species.
Specifically, the antibody-matched overhangs (indexes) include a region to be filled by blank letters
and a dedicated position for a dye labeled nucleotide at the end. The antibodies to be revealed
first generally have shorter overhangs than the antibodies to be visualized later (Figure 1). Each
extension and bleaching (with TCEP) cycle takes 10 min. Imaging in each cycle takes min to hours
depending on sample dimensions, resolution, and the microscope used (a standard fluorescence
microscope). The platform can be performed on any three-color fluorescence microscope enabling
the conversion of a regular fluorescence microscope into a tool for multidimensional tissue rendering
and cell cytometry [24], giving a good advantage to users of this platform. CODEX is an innovate
platform that has achieved and reported deep immune profiling of the mouse splenic architecture by
comparing normal murine spleens to spleens from animals with systemic autoimmune disease [14].
Another barcoding platform is the DNA exchange imaging (DEI) technique [25] that overcomes speed
restrictions by allowing for single-round immunostaining with DNA-barcoded antibodies. The DEI is
the new generation of exchange-PAINT described by the same group [26]. According to the authors, it
is an easy multiplexed technique that can be adapted to diverse imaging platforms, including standard
resolution Exchange-Confocal and various super-resolution methods. There are no cancer-related study
publications using these methods, but they are promising techniques and highly efficient methodology
to study the tumor-associated immune contexture.
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5. Amplification of the Epitope Detection

5.1. Multiplex Modified Hapten-Based Technology

Modified-hapten based technology is a recent technique that allows simultaneous detection
of multiplex biomarkers using a standard two-step procedure. The technique is antibody species
independent and the signals of the markers can be stronger than those usually observed with direct
flour-labeled secondary antibody detection of multiplex. Created by the company Cell IDx (San Diego,
CA, USA), primary antibodies are combined in cocktails and then detected with a panel of anti-hapten
secondary antibodies, each labeled with a different fluorochrome. The procedure takes two hours [27],
which is a principal advantage of this multiplexed method.

5.2. Tyramide Signal Amplification and Fluorescent Multiplex Immunohistochemistry

Tyramide signal amplification (TSA) was described in the 1990s by Bobrow and colleagues [28,29].
It is an enzyme-linked signal amplification method that is using to detect and localize the low copy
number of proteins present in tissue by the conventional IHC protocol, using, most commonly, the
alkaline phosphatase or horseradish peroxidase (HRP) enzymatic reaction to catalyse the deposition of
tyramide labelled molecules at the site of the probe or epitope detection. Tyramides are conjugated to
biotin or fluorescent labels and revealed by the streptavidin–HRP system [6,30]. The HRP catalyzes
the formation of tyramide into highly reactive tyramide radicals that covalently bind to electron-rich
tyrosine moieties close to the epitope of interest on FFPE tissue. Tissue surfaces with anchored
biotinylated tyramide must be further treated with fluorescent or enzyme tagged proteins that have a
high affinity for biotin, such as streptavidin, before microscopic visualization [6,30]. The detection of
the proteins is more than 10-times greater than standard biotin-based staining methods [31].

Akoya/PerkinElmer (Waltham, MA, USA) developed the Opal™ workflow (Figure 1), which
allows simultaneous staining of multiple biomarkers within a single paraffin tissue section. Fluorescent
Multiplex Immunohistochemistry (fmIHC) allows researchers to use antibodies raised in the same
species, and different panels combining different targets can be created using this technology [4,30]. The
manual protocol approach involves detection with fluorescent TSA reagents, followed by microwave
treatment that removes the primary and secondary antibodies between cycles and any nonspecific
staining that reduces tissue autofluorescence for each antibody cycle. In the automated protocol
using Leica Bond RX or another autostainer, the time is reduced drastically as compared with manual
staining. The possibilities for fmIHC are expanding our knowledge of tumor immune contexture.
Mapping the tumor microenvironment and the predictive and/or prognostic value of immune
checkpoint expression on malignant cells and tumor infiltrating immune cells has been characterized
in patients with melanoma, lung cancer, breast cancer, gastric cancer, Hodgkin lymphoma, and others
by fmIHC [32–36].

5.3. Nanocrystal Quantum Dots

The method uses specially coated nanocrystals (around 1–10 nm in diameter) called quantum
dots instead of the chromogen [37,38]. Nanocrystal quantum dots have the property of being excited
by any type or wavelength of light to emit light in a very thin fluorescence spectrum. The use of these
fluorescent markers in combination with multispectral imaging technology has been a particular utility
for multiplexed detection when used as a fluorescent probe bound to different antibody markers [39,40].
Despite the favorable optical properties of nanocrystal quantum dots, as a fluorescence-based method,
they can avoid the endogenous autofluorescence associated with tissue sections [41], have high
photostability [42], and have a symmetric emission spectrum [43]. An important reported limitation
of using nanocrystal quantum dots is the limited number of nanocrystals that possess the proper
chemistry to attach themselves to their targeted molecules. Nanotechnology is a promising platform
in cancer nanodiagnostics and nanotherapy because of the unique optical and electronic features.
When conjugated with antibodies, QD-based probes can be used to target cancer molecules with high
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specificity and sensitivity [36]. In addition, the use of QD-based multifunctional probes has been
proposed for multiplexed molecular cancer diagnosis, and in vivo imaging [36,44].

6. Fundamentals of Multiplexed Techniques Based on Mass Spectrometry

6.1. Imaging Mass Spectrometry

Imaging mass spectrometry (IMS) is defined as the visual representation of the elemental or
molecular component of fixed cells or tissues by mass spectrometry (Figure 2) [27]. IMS is a technique
that uses a mass spectrometer (MS) to visualize the spatial distribution of compounds, biomarkers,
metabolites, proteins, peptides, or small molecules by their molecular masses [45]. The incorporation
of a computer data system to mass spectrometry started the path of IMS. In 1967, two computational
systems were applied to MS [28]. The Massachusetts Institute of Technology system was the first
computer-assisted digital data acquisition system for this purpose. The software identifies the mass
spectral peaks and assigns them mass values and intensities to transform the results in numerical and
graphical form [46]. The Stanford system was the second system created. It uses computer software
that controls the data acquisition from a quadrupole MS interfaced to a gas chromatograph that scans
each spectrum from peak to peak each spectrum to predetermine the total ion current [46].

Figure 2. Byproducts and fundamentals of the imaging mass spectrometer. The application of mass
spectrometry to biological research began in the last half century and it represents the conjunction of
biological and deep physical and technological knowledge in biomedicine. Imaging Mass Spectrometry
(IMS) came from the idea of building a 2D image with the elemental composition of a biological surface.
The way that the surface is evaporated allowed the generation of two methods: one based on an ion
beam and the second using a laser. The application of a tag-mass strategy to IMS is the most recent
efficient and highly multiplexed platform for the digital image analysis of biological samples.

IMS is applied to biological and non-biological samples such as cells, tissues, polymers, and
minerals [47–49]. In general, the methodology can be applied to all systems mentioned; it analyzes a
thin section of the sample placed on a target-plate. The sample is introduced into the source region
of the MS where the surface is subjected to bombarding ions, photons, and/or atomic or molecular
beams. Then, compounds present in the sample are ionized and mass analyzed. This process is then
repeated as necessary in a raster over a selected region of interest until the complete desired area has
been sampled. The intensity of any given ion may be plotted as a function of its x and y positions, thus
generating specific two-dimensional molecular/ion images of the sample [46].
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6.2. Secondary Ion Mass Spectrometry

Secondary Ion Mass Spectrometry (SIMS) achieves chemical or elemental analysis of surface
constituents, rather than being excited to emit some characteristic secondary signals, such as
fluorescence-based techniques. A light (static SIMS) or heavy (dynamic SIMS) energetic primary
ion causes a collision cascade. Those ionized particles from the surface are subsequently identified
with MS [46,50]. This is one of the most destructive methods of surface analysis, but the it is the most
sensitive as all elements are detectable, including hydrogen [50]. During the analysis, the sample
surface is gradually eroded away [50].

SIMS was developed for the elemental analysis of non-biological and biological surfaces, such
as the study of a lunar basalt from the Apolo 11 in the 1970s and the study of the insect abdomen
tissue morphology in 1975 [49,51]. The sources of the primary ion beam that have been used more
frequently are Ar+, O2

+, N+, O−, and Cs+; however, in principle, the primary ion may be a positive or
negative ion. Noble or reactive gas ions are usually extracted from discharged plasma. The secondary
ion beam detection includes stable and radio isotopes like 2D, 15N, 13C, 18O, 33S, 74Se 90Zr, 56Fe, 40Ca,
and 14C. Since 1960, there have been two ways to acquire the secondary ion content: an ion microscope
instrument mode (Cameca, Gennevilliers, Paris, France) and a scanner ion microprobe mass analyzer
(IMMA) mode (Applied Research Laboratories, Austin, TX, USA) [52]. In microscope mode, the MS
analyzes one ion per time, and its position is mirrored on the detector, and each ion image is generated
independently. In the microprobe mode, the primary ion beam rasters the sample to produce a mass
spectrum at small locations on the sample surface. An entire mass spectrum is obtained at each position
or pixel, and the images may be constructed by plotting the ion intensities across the sample in a
two-dimensional fashion [46].

SIMS has been compared with electron microscopy because of the resolution of its images;
however, an ideal instrument should have a lateral resolution of 100 A, a mass resolution for secondary
ions better than 10,000 A, a secondary ion transmission of close to 100%, and simultaneous detection
of all secondary ions [50].

Time-of-Flight (TOF) Secondary Ion Mass Spectrometry started to be applied to biological cells as
a chemometric methodology to study the cellular surface composition and the discriminations between
normal and neoplastic cells, an issue that can be challenging in cases where neoplastic morphological
features may not be evident, such as low grade prostate cancer and bladder cancer [53,54], or to
study the chemical composition that can differentiate subtypes of well-defined neoplasia, such as
estrogen-receptor-positive (ER+) and estrogen-receptor-negative (ER−) breast cancers [55].

6.3. Laser Desorption/Ionization

Laser desorption/ionization (LDI) is another IMS platform created in the 1960s that nebulizes
a solid surface in order to obtain free ions or ion clusters for imaging. It involves the use of lasers,
UV or IR, instead of an ion beam. The coupling of LDI to Time-Of-Flight (TOF) mass analyzer was
possible in the 1970s, and the first report of metal bioimaging by laser ablation inductively coupled
plasma mass spectrometry (LA-ICP) was reported in 2010 to have high sensitivity and quantitative
abilities. One of the first biological reports of these methodologies involved the quantitative imaging of
copper in the human hippocampus and substantia nigra [46]. One of the most interesting applications
of this platform is to test the efficacy of metal-based anticancer agents into tumor models, such as
the distribution of platinum-based anticancer compounds in a human colorectal cancer spheroid
model [56].

6.4. Matrix-Assisted Laser Desorption/Ionization

Matrix-Assisted Laser Desorption/Ionization (MALDI), a type of molecular imaging technology,
was evolving in the same way as SIMS and LDI, with improved resolution and sensitivity. MALDI
imaging initially applied TOF-MS, but other platforms were coupled to MALDI later on with the
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objective of localizing small pharmaceutical molecules directly on tissue sections [46,57]. MALDI
is a soft ionization technique that uses an organic compound matrix such as 2.5-dihydroxy benzoic
acid (DHB) that, when combined with pulsed UV or N2 laser irradiation, promotes the efficient
desorption and ionization of molecules from the vaporization of the matrix [57–59]. In general, this
technology is used in clinical and research applications to study bacterial and fungal identification
from a single colony [60], mutational identification, polymorphisms, insertion/deletion, splicing,
quantitative changes variation, gene expression, and allele expression, as well as DNA methylation,
and post-transcriptional modification of tRNAs and rRNAs [61,62].

One of the most exciting applications of MALDI is the analysis of the proteomic pattern
composition of tumor cells and the determination of unique profiles that can actually differentiate
normal cells from neoplastic cells, even between different subtypes of tumor cells and between
primary and metastatic tumors, an approach that has already been explored in non-small cell lung
cancer (NSCLC) [63]. SIMS, LDI, and MALDI are looking to minimize the analysis time of the
imaging experiment.

6.5. Multiplexed Ion Beam Imaging and Imaging Mass Cytometry: The Antibody-Based Tag-Mass
IMS Strategy

The tag-mass strategy is an affinity-based strategy where a probe, such as an antibody or an
oligonucleotide, is directed against a specific target using a probe that can be imaged by any IMS
strategy (Figure 2). The tag-mass needs a reporter group or element where the reporter is used to
indirectly obtain the image from the probe attached to the target. The reporter must be designed
to be an atom or molecule of known molecular mass that is easily detectable by MS, taking care to
use a molecule that is not biologically active in the tissue to be analyzed. For SIMS or LA-ICP, metal
isotopes conjugated to antibodies directly contain a monoatomic element that is easily detectable in
biological studies. Where the element is not present naturally on the study surface, the former receives
the name Multiplexed Ion Beam Imaging (MIBI) and the latter is named Imaging Mass Cytometry
(IMC). The tag-mass IMS strategy is overwhelmingly expanding the possibilities of applications of
mass-spectrometry to biological systems and biological samples. It is leading a revolutionary new
wave of molecular and digital imaging, and it is the most powerful platform for multiplexing in the
era of theranostics.

6.6. Multiplexed Ion Beam Imaging

Multiplexed ion beam imaging (MIBI) applies the principles of multi-isotope imaging mass
spectrometry (MIMS) and the mass-tag strategy with metal-chelated isotopes conjugated to antibodies
that will be incubated on the tissue of analysis (Figure 2) [64]. It allows subcellular imaging resolution.
Instead of direct isotope labeling of the target cell or tissue, as described in the previous platforms,
MIBI uses specific antibodies to “deliver” a specific mass to the targeted antigen. MIBI combines SIMS
fundamentals, stable isotope reporters, specific antibodies, and intensive computation.

MIBI is based on SIMS. An ionic beam erodes the surface or atomic layer of the sample, resulting
in ionization of a small atomic fraction. In a SIMS instrument, a magnetic sector mass analyzer
must filter the collected secondary ion beam; secondary ions are separated by mass and then used to
derive a quantitative atomic mass image of the surface to be analyzed. Up to seven parallel masses
of different elements or isotopes can be simultaneously analyzed, but by moving six of the seven
detectors, the instrument can measure more data from multiple isotopes from the same region. The
data are reconstructed into a grey scale image in which the pixel intensity is derived from the total
number of counts of a given secondary ion within the area representing a given pixel (Figure 3). The
lateral resolution is dependent on factors including the beam size and the number of pixels per image
acquisition area [64].

Instead of fluorophores or enzyme-conjugated reagents, biological specimens for MIBI analysis
are incubated with primary antibodies coupled to stable lanthanides that are highly enriched for
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a single isotope. The prepared specimens are mounted in a sample receptacle and subjected to a
rasterized oxygen duoplasmatron primary ion beam. The coupling of MIBI to SIMS and TOF-MS
allows the study of more than 50 metal-isotope labeled antibodies at the same time with a speed of
20–200 fields-of-view per day collected automatically. Depending on the element of interest, MIBI can
achieve as low as parts-per-billion sensitivity with a dynamic range of 105 and a resolution comparable
to high-magnification light microscopy or close to 200 nm of resolution (Figure 1). MIBI is capable
of analyzing standard FFPE tissue sections, fresh frozen tissue, and adherent cell samples [65,66].
The platform has a number of advantages over conventional multiplexed techniques, as there is no
background because of the absence of autofluorescence and the very good definition of the signals
for the image [67]. MIBI has been applied to demonstrate that it is a useful surrogate for standard
IHC for diagnostics of molecular subtypes of breast cancer. In addition, through this platform, it
could be possible to quantify the protein expression of markers [5,65], and as shown by Keren and
colleagues [68] through the analysis of 36 proteins in 41 triple-negative breast cancer patients, the
methodology has the capacity to provide data for application in immune oncology.

Figure 3. Basic fundamentals and similarities between multiplexed ion beam imaging and imaging
mass cytometry. Characterization of multiplexed ion beam imaging and imaging mass cytometry.

6.7. Imaging Mass Cytometry

Imaging Mass Cytometry (IMC) is a tag-mass IMS strategy coupled to Mass Cytometry by TOF
(CyTOF). It uses LA-ICP and TOF MS fundamentals, in which antibodies are labeled with metal ion
isotopes tags rather than fluorochromes [69] (Figures 1–3). This allows the combination of many
more antibody specificities (up to 50) in a single tissue sample (fresh frozen or FFPE) or adherent cell
sample, without significant spillover between channels with a resolution from 1 μm up to 500 nm.
Traditional labeling techniques can be used in this technique with minimal change to current protocols,

21



Cancers 2019, 11, 247

allowing the panel design to be performed more easily and avoiding autofluorescence issues [70].
Although slower acquisition is observed (~1 h/mm2) and complete biological material is ablated,
the IMC-CyTOF represents a new way of quantifying several phenotypes of cells at the same time,
allowing the detection of up to 50 markers at the same time [71].

Currently, IMC has been used more often than MIBI in biological research. It is probably the most
powerful platform for multiplex digital image analysis and together with MIBI, it is still undergoing
development and improvement. IMC was developed on breast tumor tissue, and it is able to analyze
cell-type markers, signaling activity, and hypoxia on FFPE samples, opening the possibility of carrying
out deep analyses of tumor biology and heterogeneity [72]. Recently, the simultaneous multiplexed
imaging of mRNA and protein expressions with subcellular resolution has been developed in breast
cancer tissue samples by IMC, representing the first IMS platform that is able to study transcriptomic
and protein expression with a high quality resolution, which expands the possibilities for applications
to cancer research and overcomes the difficulties of the study of soluble proteins by conventional
IHC [73].

7. Image Acquisition and Data Analysis

The main reason for performing a multiplexed assay is to obtain a high volume of tumor
biological information through multidimensional data related to tissue architecture, spatial distribution
of multiple cell phenotypes, co-expression of markers, and rare cell-type detection. The different
advantages and disadvantages related to the study of multiple markers on a single slide are
summarized in the Table 1, showing the methodologies described above. The first component after the
staining is the image acquisition which must provide images with high enough quality to perform
the analysis on. Currently the image acquisition systems are software-driven, robotically–controlled
microscope systems that provide high quality monochrome cameras with high-resolution and
multi-band filter cubes set to have greater flexibility and to match with the samples. Image acquisition
systems alone or with their own analysis platform are used in the different methodologies described
above, such as the Olympus scanner, Nikon Eclipse Ci-E [8], the Hamamatsu Nanozoomer S60 scanner
with a Fluorescence Imaging Module [23], Zeiss/confocal laser scanning microscopy [22], Olympus
America/VS110, Akoya/PerkinElmer Vectra®-PolarisTM [30], Neo Genomics/MultiOmyx scanner [74],
Ventana/Roche/iScan, Leica Biosystems/Aperio FL, 3Dhistech/Pannoramic/250 FLASH III [75],
TissueGnostics/TissueFAXS [76], just to mention some. These have shown high versatility and quality
imaging as well as the images generated by mass spectrometry techniques (Supplementary Table S1).
Image acquisition systems for multiplexed immunofluorescence support multiple filters using
mechanical switching or using tunable LED excitation, similar to the confocal microscope, to capture
the fluorescence signals to assemble compose images [77] for analysis. The alignment of image acquired
systems during successive rounds of staining is required for some staining techniques, such as MICSSS,
SIMPLE, MELC, MultiOmyxTM, t-CyCIF, and CODEX, where it is essential to retain the information
from each image during registration to stitch together images from overlapping fields to allow a
precise representation of co-localization from different markers by the cells. Although the alignment
of images is not necessary in other multiplexed methodologies because the image is acquired at the
end of all staining process, it is still impossible to accelerate the process of scanning, which can take
min to several hours [78] depending the size of the area scanned (whole section or region-of-interest,
ROI), the number of ROIs scanned, and the methodology used [79,80]. In fluorescence methodologies,
image acquisition is performed using one filter at a time or by changing the filter at each capture to
obtain the co-localized [80] expression of the markers. The multidimensional tissue image generated
by mass spectrometry techniques from the metal-labeled antibodies, such as MALDI-TOF, MIBI
and CyTOF, that are used to perform highly multiplexed analyses are very comparable with the
bright field or fluorescent images generated by the systems described above [81] (Figure 1). Overall,
important considerations for cost estimation are the scan time, image resolution, hardware robustness,
slide holder capacity, image focusing and stitching algorithms, acquisition modes, the use of bright
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field versus fluorescence, the file compression method/format/size, and the application capacity for
these different techniques that need to be addressed, understood and discussed with the different
vendors of image acquisition systems. The next component after the image acquisition is the image
analysis and for that, several types of software have demonstrated their overall capability with
different detection modules, including tissue segmentation, cell segmentation, co-localization, and
spatial distribution of cell phenotyping, which is critically important to allow the combination
of image layers to delineate the structures of interest to study multiplex staining tissues. A wide
variety of image analysis software is applicable and is being developed to make high-dimensional
image-based data exploration feasible for researchers who lack computational skills and flexible
for computer scientists who want to develop and add advanced new methods for image-based
machine learning-based phenotype scoring (Table 2). The combination of image analysis systems
with automated scanning, such as Vectra®-PolarisTM/InForm Cell Analysis/Akoya/PerkinElmer [30],
MultiOmyx/analysis software [74], Aperio FL/digital image analysis tools [82], is increasingly being
employed to take advantage of multiplexed staining methodologies, all of which can scan slides
affixed to whole tissue or tissue microarray slices prior to image analysis. Stand-alone image analysis
software packages used to evaluate these virtual multiplex slides include Definiens TissueMap [83],
HistoRx AQUA [84], SlidePath [85], Indica labs/HALO™ Image Analysis Software [86], and
VISIOPHARM/Phenomap™ [87]. These are the most well-known software packages available
in the market that offer high quality interpretation for multiplexed histological specimens. Open
image analysis software, such as ImageJ/FIJI [88], QuPath [89], Icy [90] and Cell Profiler/Cell
Analyst [91–93] are also available as open sources for multiplex image analysis with a high level
of performance. In addition, it is important to mention that there are several companies that
can provide different solutions for high content and/or high throughput scanning service and
analytical algorithms, such as the TissueGnostics platform (https://www.news-medical.net/
suppliers/TissueGnostics.aspx), Oncotopix® (https://www.visiopharm.com/solutions/oncotopix),
3DHISTECH Ltd. (https://www.3dhistech.com/quantcenter) and others such as Akoya/PerkinElmer
(http://www.perkinelmer.com/corporate/what-we-do/markets/life-sciences/), Definiens
(https://www.definiens.com/), Neogenomics (https://neogenomics.com/pharma-services/lab-
services/multiomyx), and IONpath (https://www.ionpath.com/) include a multiplex staining
process with customized panels, scanning service and data analysis, and different strategies. High
resolution performance during the multiplexing analysis across the ROIs/whole section needs to be
combined with the signals of the immune markers to enable further different cell subpopulations
to be identified and localized using the image analysis software. However, there are several types
of image analysis software involving fluorescence and non-fluorescence multiplexed staining, as
mentioned above, and their basic characteristics, such as having an easy algorithm workflow creation,
and especially, having manual interactive or automated segmentation, with high flexibility cell
phenotyping are important criteria to consider when choosing the image analysis system [94]. The
power of different image analysis systems is reflected in the identification of cell phenotypes and in
the specific pattern of immune cell identification, based either on the spatial distribution (distance
between different subpopulations and cancer cells) or the relationships between different cells, such as
lymphocyte subclasses, with each other (e.g., cytotoxic/regulatory cells) that can be associated with
pathology, clinical patient information, and prognoses to give us important information about the
tumor behavior [95].

However, although multiplex techniques are a powerful and efficient tool that allows us to
identify several markers in a single slide, each methodology has a plethora of parameters that have
significant effects on the outcome of the results and these need to be carefully validated in the lab,
including antibody validation, tissue processing (cases and controls), signal acquisition calibration to
obtain reproducible, reliable, and high-quality staining, and analysis that will be applied to clinical
biopsies to provide a basic characterization of immune infiltrates to guide clinical decisions in the era
of immunotherapy.
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8. Clinical and Translational Use of Multiplexed Methodologies

Despite the evolution in previous years at different levels of cancer research concerning prevention,
diagnosis, therapeutic options, and follow up methods, cancer still remains a major public health
problem worldwide [100]. Immune contexture profiling is currently a powerful metric that can be
used for tumor subclassification and the prediction of clinical outcomes [101]. A great variety of cancer
research screening tools are applied to diagnose tumors, and these have been established for different
tumors. Simultaneous quantification of more than one biomarker at the same time has become more
and more interesting in cancer research using the technologies described previously [102]. Multiplexed
methodologies can allow different biomarkers, representing different important systemic processes,
such as inflammation, angiogenesis, or cell death, can be combined with established tumor markers in
one single panel to potentially improve the study of cancer to aid in prevention, diagnostic accuracy,
and treatment (Figure 4). Multiplex based immunoassays can offer important advantages, such as
a high-throughput performance, low material requirement, a wide range of applications and cost-
and time-effective multiplexing through the use of several parameters [23,96,103]. Several biomarkers
could be cancer-specific, since malignant cells of different histologic types can produce different
tumor-related patterns of proangiogenic factors, growth factors, and immune cells [68]. The study
of biomarker panels can be used for early diagnosis and assessment of therapy responses [102]. The
use of multiplexed methodologies to identify multiple biomarkers can be used to allow for the early
detection of pre-neoplastic lesions, trying to identify basic microenvironment patterns on those cases
to determine their progression to cancer [95] (Figure 5). Therefore, these new technology assays may
represent an ideal method for developing personalized therapies if efficient multiplexing panels are
created [4]. These technologies could help us to better understand the cancer microenvironment,
highlighting the benefit for exploring immune evasion mechanisms and finding potential biomarkers
that allow researchers to assess the mechanisms of action and predict and track responses [95].

 
Figure 4. Multiplex immunoflorescencce microphotography. Images representing the immunoprofiling
of different tumor types using the multiplexed tyramine signal amplification system: (A) esophageal
squamous cell carcinoma, (B) malignant melanoma, (C) lung squamous cell carcinoma,
(D) lung adenocarcinoma, (E) colorectal adenocarcinoma, (F) Hodgkin’s lymphoma. Scale bar:
200× magnification.
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Figure 5. Multiplex immunofluorescence microphotography. Images representing the immunoprofiling
of different stages of progression in lung, pancreas and breast cancer using the multiplexed tyramine
signal amplification system: (A) pre-neoplastic lung lesion, (B) lung adenocarcinoma, (C) pre-neoplastic
pancreatic lesion, (D) invasive pancreatic carcinoma, (E) non-invasive breast carcinoma, (F) invasive
breast carcinoma. Scale bar: 200× magnification.

9. Conclusions

Multiplexed methods can provide an important and efficient way to study disease diagnosis,
prevention, and to carry out translational research. These systems are showing more and more
different capabilities, from research labs towards the clinic, increasing the opportunity to better
understand tumor–immune interactions. Multiplexed methodologies and image analysis strategies
can allow important information about immune cell co-expression and their spatial-pattern distribution
in the tumor microenvironment. However, the development of these new methods requires
a multidisciplinary team including pathologists, oncologists, immunologists, engineers, and/or
computer scientists. In addition, for research pathologists to use highly-multiplexed methods, these
methodologies require automation to allow efficient and quick provision of information as well as
easy analysis.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/2/247/s1,
Table S1: Multiplex image acquisition products.
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Abstract: As targeted molecular therapies and immuno-oncology have become pivotal in
the management of patients with lung cancer, the essential requirement for high throughput
analyses and clinical validation of biomarkers has become even more intense, with response
rates maintained in the 20%–30% range. Moreover, the list of treatment alternatives, including
combination therapies, is rapidly evolving. The molecular profiling and specific tumor-associated
immune contexture may be predictive of response or resistance to these therapeutic strategies.
Multiplexed immunohistochemistry is an effective and proficient approach to simultaneously identify
specific proteins or molecular abnormalities, to determine the spatial distribution and activation state
of immune cells, as well as the presence of immunoactive molecular expression. This method is highly
advantageous for investigating immune evasion mechanisms and discovering potential biomarkers
to assess mechanisms of action and to predict response to a given treatment. This review provides
views on the current technological status and evidence for clinical applications of multiplexing and
how it could be applied to optimize clinical management of patients with lung cancer.

Keywords: multiplexed; brightfield; chromogenic; fluorescence; molecular; immune profiling;
immune-oncology; digital; lung cancer

1. Introduction

Lung cancer is the leading cause of cancer death among males, and the second most common
among females worldwide [1]. Approximately 80% of newly diagnosed patients with non-small cell
lung cancer (NSCLC) have unresectable locally advanced or metastatic disease [2]. In these patients,
current treatment strategies, across all lines of therapy, include chemotherapy regimens based on
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histology, targeted drugs for patients carrying specific genomic alterations and immunotherapy using
immune checkpoint inhibitors (ICIs), in particular monoclonal antibodies targeting programmed cell
death-1 (PD-1) and programmed cell death ligand-1 (PD-L1) [3–7]. The development of molecularly
targeted therapies, as well as ICIs, has improved outcomes in the metastatic setting for NSCLC patients
who harbor somatically activated oncogenes such as EGFR and BRAFV600, rearranged ALK or ROS1,
or PD-L1 expression ≥50% of tumor cells [3–5]. However, even with these molecular strategies, a large
proportion of patients do not attain prolonged disease control, and the 5-year survival rate does not
exceed 5% [8–10].

Patients with suspected stage IIIB/IV NSCLC require tissue or cytology sampling to confirm the
diagnosis (e.g., adenocarcinoma vs. squamous cell carcinoma vs. other lung histological subtypes),
as this determines eligibility for biomarker testing and further therapeutic strategies [11].
Several immunohistochemical (IHC) markers (e.g., TTF1, p40, INSM1) may be needed to confirm and
subtype lung carcinoma [12,13]. Additional tumor material is required for interrogating predictive
biomarkers, using IHC (e.g., ALK, ROS1, PD-L1), in situ hybridization (ISH; e.g., ALK, ROS1) or
sequencing techniques (e.g., EGFR, BRAF V600E, etc.). Moreover, in the context of precision oncology,
lung cancer patients may be enrolled in ongoing clinical trials (https://clinicaltrials.gov/) and tumor
samples may be used for basic and clinical research studies [14].

For these procedures, sufficient material of high quality is mandatory. In a large number of cases,
the tumor material on which all diagnostic and predictive test must be theoretically be performed
might be sparse, containing only a small number of tumor cells [15]. Small biopsy samples with few
tumor cells might often only allow diagnosis and classification of tumor subtype, and additional tests
may be compromised [11,15].

In the current boost to improve the tailored approach to the clinical management of patients with
NSCLC, pathologists and researchers deal continuously with an unresolved dilemma for exploring a
growing number of protein biomarkers on small-sized tumor samples. In this context, multiplexed
immunohistochemistry (mIHC) has recently emerged as a potent tool for the simultaneous detection
of multiple protein biomarkers on the same tissue section to expand the molecular and immune
profiling of NSCLC, while preserving tumor material. Over the last years, the role of IHC has been
constantly extended to improve diagnosis, and to guide prognosis and treatment of NSCLC patients,
while requiring assessment of an increasing number of protein targets. In addition, multiplying serial
tissue sections to stain for a single marker per slide, can waste small biopsy specimens, entangle the
correlation of section-to-section protein expression, and leave insufficient tumor material for additional
analyses [16]. Multiplexing can be carried out using chromogenic or fluorescent staining methods.
Complex fluorescent multiplexing systems are currently being developed (reviewed in this Special
Focus by Parra et al.) [17]. New approaches compatible with high levels of target multiplexing and
suitable for use on formalin-fixed paraffin-embedded (FFPE) samples have recently demonstrated the
potential to be transferred to the clinical setting [18–22]. For instance, direct simultaneous assessment
by mIHC of both immune and tumor-related pathways and their spatial relationships, in a single tissue
sample, may empower more accurate patient stratification for immunotherapy [23].

Finally, in recent years, mIHC technology has seen rapid advancements in image acquisition
throughput, image resolution and data accuracy, allowing improvements in pathologist performance
by automatically measuring parameters that are hard to achieve reliably by microscope, to extract
comprehensive information on biomarker expression levels, co-localization, and compartmentalization.
The present manuscript reports on mIHC approaches for molecular and immune profiling in
lung cancer.
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2. Principles of Multiplexing Staining Methods

2.1. Chromogenic Multiplexed IHC

Technical approaches of brightfield chromogenic mIHC include direct detection of antigens
by primary antibodies from the same or different species that are directly labeled with
different chromogens. Alternatively, an indirect mIHC detection method can be used with two
or more layers of antibodies, allowing for increased amplification of signal [24]. The direct detection
approach has several disadvantages, such as lower sensitivity for low abundance targets, the need
for sizeable quantities of conjugated antibodies, which are usually more expensive, and the risk that
antibody activity could be adversely affected by direct labeling [24]. The indirect approach can be
limited by the number of available host species and the use of same species antibodies, which would
thus require inactivation between successive cycles of immunolabeling [24].

The unwanted cross-reactivity between primary antibodies from different staining cycles is
regarded as the main technical challenge in mIHC. The most frequent solution used to avoid such
reactions is manual microwaving or heating of tissue slides to deactivate the preceding antibody [25,26].
Whereas microwaving is often used in research facilities when dealing with antibodies from the same
host-species, it may not be an optimal method to be adopted in a routine clinical setting. Variable and
heterogeneous results could be obtained by manual processing. Furthermore, microwaving can
increase the damage of the tumor tissue and may remove small biopsies from the slides, especially if
they have already been antigen retrieved by a previous heat-mediated procedure [27].

Another strategy for preventing cross-reactivity is the use of stripping buffers to elute the
primary/secondary antibody complex [27,28]. A number of buffers with different pH, osmolality,
detergent content and denaturing features were evaluated to strip the bound antibody complex from
previous IHC staining cycles, however this produced variable results across studies. Certain buffers
were found to be hazardous, to decolorize H&E stain and/or to reduce nuclear protein staining [27,28].

An alternative, more recent approach named “multiplexed immunohistochemical consecutive
staining on single slide” (MICSSS), was developed for use on FFPE samples by applying
repetitive cycles of immunoperoxidase labeling, image scanning, then chemical stripping of the
chromogenic substrate [20,21]. However, this process can result in a labor-intensive protocol and
a prolonged turnaround time to yield results that are not suitable for a routine clinical setting.
Moreover, multiplexing may be limited due to tissue degradation after successive serial mIHC
cycles [24,29].

More recently, a fully automated mIHC technology using a thermochemical process (heat
deactivation; HD) to deactivate an antibody complex between staining cycles on an automated slide
stainer was first developed for fluorescent detection, and further applied to brightfield chromogenic
detection (Figure 1) [30,31].

Figure 1. Chromogenic multiplexed immunohistochemistry assay scheme. The assay is using the
sequential application of four unmodified primary antibodies with a specific heat deactivation (HD)
step between staining cycles.
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This technology allows the use of the first antibody from the same host species, detected by the
anti-species secondary antibody conjugated to horseradish peroxidase (HRP). In the presence of its
substrate, the active HRP, generates in-situ deposition of tyramide within the medium containing
the chromogens. The bound primary antibody/secondary antibody complex is then eluted with a
citrate/acetate buffer. Thus, the deposited chromogen-conjugated tyramide bounds covalently to
the tissue near the first detected antigen. The same procedure is repeated to detect the following
antigens [30,31]. Indeed, the sequential stripping may lead to wastage of the conjugated secondary
antibodies, whereas the chromogen-conjugated tyramine remains stable by binding covalently to
the electron-rich amino acids of detected proteins and by resisting to the elution with the stripping
buffer [30,31]. Importantly, the automation allows for standardization of all critical mIHC steps,
such as HD, reagent application, washing steps, control of temperatures, evaporation and humidity,
while maintaining the integrity of the tissue architecture and the subsequent epitopes [32,33].

To setup a brightfield mIHC assay using sequential detection with unmodified primary antibodies
and chromogenic detection, it is essential to optimize assay conditions on the tissue types of interest
before testing clinical samples [34]. Thus, an optimal mIHC assay needs to assure several staining
performances: (i) equivalent positive/negative signal to single “gold standard” IHC staining, (ii) robust
dynamic proportion of low and high protein quantity, (iii) expected cellular staining topology
(e.g., whole membrane, cytoplasmic, nuclear localization), and (iv) minimal overlap of chromogenic
spectra for co-localized targets [34]. Recent developments have enabled optimal configurations suitable
for testing on clinical samples. For instance, the order of chromogen deposition is determined by the
effect of HD on each epitope, that is, the most HD-affected epitope is incubated first, with the least
affected epitope incubated last.

To offer the best detection sensitivity, other assay parameters must be taken into account such as
the optimal epitope retrieval time to balance the signal/background ratio, and to protect the tissue
architecture by optimizing the incubation time for each primary antibody [30]. Moreover, the number
of antibodies for simultaneous immunolabeling on the same tissue slide has been extended up to
six with the availability of additional chromogens [24,33]. In addition, a major technical challenge
is the risk of insufficient deactivation of the primary antibody complexes, which could determine
cross-reactions and may give false-positive signals. Besides efforts to optimize HD steps during assay
validation, the imaging tools can help to anticipate or to detect potential cross-reactions [35].

2.2. Immunofluorescent Multiplexing

Many newly identified or discovered biomarkers, especially for cancer immunotherapy, are
linked to the tumor microenvironment and need to be analyzed with new methodological tools.
For years, it has become increasingly essential to develop staining and interpretation techniques for
the different cell populations infiltrating or composing a tissue. This is particularly true in oncology.
To date, as previously described, the use of immunohistochemistry can help the visualization of an
antibody-antigen conjugation. It has been showed in the last subsection, that an antibody is conjugated
to an enzyme, like a peroxidase, can catalyze a color-producing reaction. Alternatively, the antibody
can also be tagged with a fluorophore. Nowadays the use of immunofluorescence is far easier due
to technical improvement, like the use of stable fluorophores or the possibility to perform staining in
paraffin embedded slides. Since years, research teams proposed immunoscoring, using single staining
per slide, to identify prognostic factors [36]. However, the tumor microenvironment is too complex to
be summarized by the exploration of a single marker. Chromogenic mIHC is one of the alternatives,
and even if this technique is much easier to be used routinely, it is limited by the use of 4 antibodies
on the same slide. In addition, fluorescence reveals membrane co-localizations (in the membrane
or the nucleus), which is more difficult to obtain with the latter technique. Nevertheless, the use of
multiple antibodies (mixed or used step by step) was restricted to the specificity of the primary and
the risk of false positivity due to cross reactivity between them. Until recently, the single-parametric
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or even multiparametric (double or triple) staining, revealed by chromomeric or fluorescent staining,
were most often read and interpreted directly by the researchers [37], with a lot of technical constraints.

The microenvironment can now be studied using the multiplex fluorescence technique based on
tyramide coupled to a fluorophore (e.g., Opal®, PerkinElmer, Waltham, MA, USA). This allows the
simultaneous detection of several markers of interest on FFPE tissues. The concept of the technique is
very close the one described above, the chromogenic mIHC assay using sequential application of four
unmodified primary antibodies with a specific HD step between staining cycles. The main advantage
of this technique is the multiplicity of the staining. The technique is based on a conventional fixation
on the epitope of interest. The secondary antibody then binds to the primary antibody followed
by Opal® HRP polymer and one of the Opal®fluorophore adjunction. After deposition of Opal®

reagents, antibodies are stripped after use of a specific microwave to allow subsequent staining of
other antigens. These cycles can be repeated at least seven to nine times. This seven to nine color
multiplex staining technique makes it possible to more precisely characterize different cells and their
interactions with their environment, on the same paraffin slide [38,39]. However, the use of these new
techniques requires the acquisition of specific expertise for in situ multiple staining. Automation of
this different process is now efficient and several autostainers are able to execute most of the steps
previously described.

For the validation of the different panels of multiparametric IHC markers, in particular for the
exploration of the immune system, staining can be performed on tonsil tissue sections as this contains
lympho-epithelial structures (Figure 2). Before any application on a cohort, especially when it concerns
lung sections, the validation of staining on pulmonary tissue sections as a positive control is highly
recommended. In addition, the same positive tissue control could be run on the same slide tested with
mIHC, such as is currently performed for clinical diagnostic IHC.

Figure 2. Immunofluorescent multiplexing, image scanned with a spectral scanner (Polaris®;
PerkinElmer, Waltham, MA, USA) using 20× magnification. The tissue is a paraffin embedded
tonsil. The stains are as follows: pan-Cytokeratin (CK, teal), CD4 (green), CD68 (purple), PD-1 (red),
PD-L1 (yellow) and dapi (blue). The central picture compiles the entire staining (merge).

The principle of a multiplex analysis of the tumor microenvironment is the automatic acquisition
of a large surface, or the entire slide, quickly and sustainably. Having a fast acquisition time
(milliseconds for each illuminated spot) is fundamental for fluorescence techniques because it prevents
the "bleaching" which is the progressive extinction of the fluorescent signal after excitation.
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3. Clinical and Translational Research Applications: Brief Literature Review and Own Results

Despite the impressive recent achievements in therapeutic strategies for NSCLC treatment, clinical
responses have remained limited to subsets of patients, relapse has occurred in the vast majority of
patients, and only few effective predictive biomarkers have been defined [40]. The development
of more effective predictive biomarkers is needed to optimize patient benefits, minimize the risk of
toxicities, and guide combinatorial approaches. In particular, the emerging picture in immune-oncology
requires a comprehensive understanding of the tumor microenvironment that is the immune landscape
of NSCLC, which results from a complex dynamic cross-talk between the tumor and the immune
system [23,40]. Current efforts on novel biomarker candidates include research on identification
and quantification of different immune cell subsets, their spatial localization and relationships
within tumor areas, the expression of different immune checkpoint markers, tumor mutational
burden, and immune gene signatures [23,40]. Thus, the complete picture will be generated by the
integrative high-dimensional analysis of the tumor and immune profile based on multiple technological
approaches, including mIHC [23].

3.1. Chromogenic Multiplexed Immunohistochemistry

The MICSS technology has demonstrated that high-dimensional characterization of the immune
contexture before and after treatment with ICIs correlates with response to treatment in cancer
patients [20,21]. The immune contexture describes the density, localization, and organization of
the immune cells within solid tumors [41]. By analyzing the composition of complex immune cell
populations, the neutrophil/dendritic cell density score refined the prognostic value of tumors rich in
T-cells and was an independent marker of outcome in NSCLC patients [21].

Another MICSS mIHC platform with computational image processing workflows, including
image cytometry, enabled simultaneous evaluation of three 12-antibody biomarker panels in one
FFPE tissue section, highlighting the impact of in situ monitoring of immune complexity for patient
stratification to improve biomarker discovery and development [20]. The diverse immune complexity
within lymphoid- or myeloid-inflamed tumors as detected by this platform, correlates with clinical
outcomes and tumor sub-classification in head and neck squamous cell carcinoma. In addition,
myeloid-inflamed and T cell exhaustion status correlated with shorter overall survival and the
therapeutic response to vaccination therapy in patients with pancreatic ductal adenocarcinoma [20].

Recently, a chromogenic mIHC method revealed that a high density of tumor-associated
neutrophils (TANs), but not stromal TANs, may have a divergent prognostic effect in NSCLC, negative
in adenocarcinomas, while in squamous cell carcinoma it is a good prognostic factor [42]. Overall,
the in situ high-dimensional assessment of immune cells reveals the potential of mIHC to expand the
immunoscore in NSCLC patients in a clinically relevant manner [43–45].

Interestingly, a recent clinical trial has supported the role for neoadjuvant immunotherapy in
surgically resectable NSCLC, suggesting that the neoadjuvant regimen may lead to early induction of
an adaptive anti-tumor immunity, which could be responsible for preventing distant metastases [6].
While this treatment strategy is still in an early stage of clinical development, there are several pending
questions that are yet to be answered, including whether the major pathologic response could represent
a surrogate end-point for survival and determining the best way to identify upfront patients who
may benefit in this setting [46]. With regard to this, the assessment of candidate biomarkers by
mIHC on tumor biopsies prior to initiation of neoadjuvant treatment as well as on post-treatment
surgical resection samples may be helpful while preserving tumor architecture to assess complete
tumor response. Thus, the mIHC approach could be used to standardize the recently described
“Immune-Related Pathologic Response Criteria” in a clinical setting [47].

Moreover, another open question that remains to be solved is the use of immunotherapy in
special subpopulations, such as elderly patients [48]. Aging is characterized by rebuilding the
immune functions, involving both innate and adaptive immunity [49]. By using a brightfield mIHC
platform, we recently shown that elderly ≥75 years NSCLC patients have less effective anti-tumor
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immunoreactivity [33]. While further validation in a larger population is required, our findings
suggest that distinct immune pathways may lead to poor outcome in elderly patients with lung
adenocarcinoma [33]. Several previous studies demonstrated that the CD4+/CD8+ ratio may give
more prognostic information than either marker alone in solid tumors [50–52].

As outlined above, mIHC provides a unique sample-sparing analytical tool to characterize limited
clinical tissue samples by multiplexing targets of interest. This method also has the potential to
improve clinical diagnostic accuracy and facilitate histopathological interpretation.

We recently developed in our laboratory (Laboratory of Clinical and Experimental Pathology,
Nice, France) two automated brightfield 4-Plex mIHC assays to comprehensively characterize NSCLC
major histotypes by multiplexing three conventional IHC markers (e.g., TTF1, p40, AE1/AE3)
and three predictive biomarkers (ALK, ROS1, BRAFV600E) cleared by the US Food and Drug
Administration/European Conformity-In Vitro Diagnostic (FDA/CE-IVD) [22]. Some pathology
laboratories use chromogenic mIHC on FFPE samples but stain for no more than two markers per
tissue slide [45]. The two assays demonstrated no antigenicity loss, steric interference or increased
cross-reactivity, providing an analytical tool that can be integrated in a routine clinical workflow [22].
In addition, there are some concerns on the extent to which a multi-color background with color overlap
on whole-slide samples could influence the visual interpretation of critical biomarkers. In particular,
the PD-L1 expression can be heterogeneous and variably expressed in either tumor or immune
cells [53]. By excluding the PD-L1 expressing cells that are unstained with keratin and TTF1 as per
tumor-infiltrating immune cells expressing PD-L1, the chromogenic mIHC assay made the visual
interpretation straightforward and less ambiguous (Figure 3).

Figure 3. Interpretation of the programmed death-ligand 1 (PD-L1) staining in serial whole-tissue
formalin-fixed paraffin embedded samples from a lung adenocarcinoma case. (a) PD-L1 expression
revealed by conventional immunoperoxidase staining; (b) PD-L1 expression revealed by chromogenic
multiplexed immunohistochemistry, with the anti-TTF1 antibody colored in purple, anti-AE1/AE3 in
yellow and anti-PD-L1 SP263 in teal. Blue dotted line: tumor area; red dotted line, immune cells.

As the restricted tissue size is a major issue for the management of the vast majority of solid tumors,
and individual antibodies rarely demonstrate 100% specificity in the determination of malignancy
or cell lineage, a chromogenic mIHC approach with specific multiple protein markers can provide
valuable diagnostic information and has the potential to enhance the clinical significance of histological
subtyping by delivering substantial prognostic information with therapeutic consequences [54,55].

3.2. Immunofluorescent Multiplexing

3.2.1. Localization of Immune Cells and Their Relationships with Immunosuppressive Markers in the
Tumor Microenvironment

The multiplex immunofluorescence techniques better distinguish the stromal and the tumor
compartment and thus have allowed for a more detailed description of the topography of immune
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cells in cancer. Cruz et al. found that T lymphocytes were predominantly concentered in stromal
compartment instead of the epithelial compartment in NSCLC [56]. Based on a quantitative
immunofluorescence study, a comparative analysis of the expression of immunosuppressive molecules
(e.g., PD-L1, IDO-1, B7H4) with the infiltration of intratumoral cells in lung cancer showed that PD-L1
and IDO-1 were consistently associated with prominent B- and T-cell infiltrates, but B7-H4 was not [57].
This could be explained by the role of IFNγ produced by immune cells in regulating PD-L1 and IDO-1
in the tumor microenvironment [58].

3.2.2. Novel Prognostic Composite Biomarker based on Fluorescence in Situ Multiplexing

One of the first clinical studies based on fluorescent digital pathology was the work of
Schalper et al., who reported that the infiltration of intratumoral CD3+ and CD8+T cells was associated
with a better overall survival in lung cancer patients [59]. For the CD8+T cell infiltration, this prognostic
impact was independent from age, tumor size, histology and stage in multivariate analyses [59].
This technology also allows us to better define the prognostic value of immune cells depending on
their localization in the tumor microenvironment. For example, after neoadjuvant chemotherapy, high
levels of epithelial but not stromal CD4+CD3+T lymphocytes correlated with better survival in patients
with NSCLC [60].

A more complex cell phenotype could also be better characterized with this multiparametric analysis.
A novel subpopulation of CD8+T cells called resident memory T cells appear to play a major role in
immunosurveillance, as they localize in close contact with epithelial tumor cells [61]. They are defined by a
composite phenotype including various biomarkers such as CD103, CD49a, CD69 (Figure 4).

Figure 4. Infiltration of resident memory T cells (CD103+CD8+T cells) in human lung cancer.
Frozen tissue sections derived from lung adenocarcinoma patients were stained by immunofluorescence
with antibodies directed against human (a) CD8 (green), and (b) CD103 (red). (c) The co-localization
of CD8 and CD103 markers can be detected by merging the mono-stained pictures. The arrows
indicate double positive cells. Staining with isotype controls was included for each experiment (20×
magnification).

We previously demonstrated that high levels of intratumoral infiltration with a resident memory
CD8+T cells are associated with a better clinical outcome of NSCLC patients, both in univariate and
multivariate analyses [62]. These were a more powerful prognostic marker than the infiltration of total
CD8+T cells. These data were then confirmed by various clinical studies [63,64].

This technique also allows us to focus beyond just one cell type, and to integrate the relationships
that exist between immune cells in the various compartments of tumors and the relative impact of these
cellular relationships on the future of patients. For example, a high effector CD8+T cell/regulatory
T cell ratio in the tumor nest is correlated with a better overall survival than when each cell measured
independently [65].

3.2.3. Fluorescence Multiplexing Technique to Predict Clinical Response to Immunotherapy

Various parameters such as PD-L1, the expression of PD-1 and the intratumoral infiltration of
CD8+T cells are considered, especially when combined together, as potential predictive biomarkers of
clinical response to immunotherapy [66]. Parra et al., observed higher levels of PD-L1 expression on
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tumor cells and an increase in the infiltration of T cells and PD-1+T cells in the tumor microenvironment
of NSCLC after neoadjuvant chemotherapy [60]. These findings confirm studies in other cancers
reporting that neoadjuvant chemotherapy, whatever the regimen, makes the tumor microenvironment
more permissive to immunotherapy [67,68]. These results suggest that it would be worthwhile to
combine chemotherapy and immunotherapy before surgical resection of locally advanced lung cancer.

Using a quantitative multiplex immunofluorescence technique, we reported that EGFR-mutated
NSCLC weakly expressed PD-L1 and was not infiltrated by CD8+T cells suggesting that it would not
be prone to respond to immunotherapy [69]. This hypothesis was then clinically confirmed in various
clinical trials [70]. Interestingly, we found that a subpopulation of NSCLC displaying chromosomal
rearrangement of the ALK gene expressed significant levels of PD-L1 on their tumor cells and were
infiltrated by PD-1+CD8+T cells [69]. However, other studies showed that concurrent CD8+T cells and
high PD-L1 expression on tumor cells tend to be rare in ALK positive NSCLCs [71,72]. Clinical trials
did not confirm the sensitivity of this cancer subtype to the blockade of PD-1/PD-L1 axis [71].
This may suggest that other resistance mechanisms occur in this population such as the possible
co-expression of inhibitory receptors on T cells or the infiltration of immunosuppressive cells [73,74].
Finally, an increase of T cells with a quiescent phenotype defined by a low proliferation and activation
status (Ki67 and Granzyme negative) correlated with better overall survival in NSCLC patients
treated by anti-PD-1/PD-L1 [75]. Interestingly, in NSCLC patients not treated by immunotherapy, this
population of “dormant” T cells did not correlate with a better clinical outcome, supporting the fact
that these cells could represent a true predictive biomarker of response to immunotherapy and not a
prognostic marker [75].

4. Image Analysis of Multiplexed Staining

Until recently, pathologic analysis of the IHC signal remained a subjective and time-consuming
procedure, wherein the staining intensity, localization and amount had to be manually assessed.
Therefore, despite development of practical scoring systems, such as the H-score, the scoring decision
is still directly influenced by visual bias [76,77]. Nowadays, with the advent of precision digital
immune-oncology, pathologists face a technological transition phase. The convergence of tissue-based
mIHC along with automated computer-aided imaging technologies has the potential to make complex
information more accessible in routine clinical workflows, improving prognostic and predictive
patient stratification [78]. Image analysis and artificial intelligence tools and fields of application in
immune-oncology have been outlined in a recent review by Koelzer et al. [78].

The improvement in digital imaging processing systems has opened new doors towards an
unbiased, unsupervised, and automatic IHC image analysis by measurement of optical density,
which is proportional to the expression extent of specific antigens [77]. Furthermore, application of an
automated scoring method for mIHC signals might help pathologists in quantitative comparisons and
produce a more accurate characterization of the tumor microenvironment. The mIHC digital image
must have the correct stains unmixed into their constituent chromogens for each individual biomarker.
Moreover, in order to obtain accurate identification, segmentation and profiling of tumor and immune
cells, the mIHC image analysis has to assure the same quantity of chromogen in the color mixture [35].
Several technologies have been developed to decompose each pixel into a collection of constituent
signals and the fractions from each of them, in order to convert the whole image into analyte-specific
image channels [79]. However, the maximum number of stains that can be unmixed was limited
to three, as the linear system had insufficient equations for cases of more than three stains [35].
Alternatively, a novel multi-spectral image deconvolution algorithm has been developed to handle
more than three colors and to maintain the biological properties of the protein markers [35].

An increasing number of automated digital pathology systems are being used to analyze
information from mIHC technology, such as HALO (Indica Labs, London, UK) [80] for up
to five colors, Vectra/inForm (PerkinElmer, Waltham, MA, USA) for up to three colors [81],
the “Aperio Color Deconvolution Algorithm” or SlidePath (Leica Biosystems, Wetzlar, Germany) for
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up to three colors [82], BLISS workstation (Bacus Laboratories, Lombard, IL, USA) for up to four colors
but restricted to one region-of-interest (ROI), Tissue Studio® 4.0 (Definiens, Munich, Germany) for up
to two colors [83], the “Automated Cellular Imaging System” (ACIS III, Dako, Glostrup, Denmark),
and Mirax HistoQuant (3DHistech, Budapest, Hungary) [84].

In our own experience we have used HALO, which is an automated quantitative digital pathology
platform, compatible with all major microscope/slide scanners and non-proprietary tiff/jpeg formats
and allowing for whole-slide and field-of-view analyses. Modules used for mIHC analysis include
mIHC (brightfield mIHC), a tissue classifier module for tissue differentiation (e.g., tumor vs. stroma),
and a spatial analysis module for interrogating spatial distributions of cell populations within the
same, or serial tissue sections. Occasionally, it is critical to separate out the tumor and stroma into
two classes, in order to determine the percentage of tumor cells positive for x, versus the percentage of
stromal cells positive for x. Manually annotating these regions is extremely laborious and therefore
automatic detection of these two regions is required for high-throughput analysis. HALO uses two
different machine learning classifiers for automatic tissue detection: the random forest classifier and
HALO-AI. The random forest classifier uses the random forest algorithm to assign pixels to a certain
class based on color and texture. A random forest classifier is very quick to create and is effective in
applications such as differentiating between tumor and stroma as shown in Figure 5. The Serial Section
module also allows one to create a classifier on one stain (e.g., an H&E image), and then superimpose
the classification onto a registered serial section. Therefore, there is no need to have a tumor marker on
each serial section to achieve tumor/stroma separation.

The random forest classifier is quick and easy to set-up but will often suffer when presented
with multiple variable tissue staining; such is often true for large clinical cohorts. In such situations
HALO-AI, a deep learning classifier can be used. HALO-AI is a convolutional neural network for
pattern recognition within a tissue section. Whilst a pathologist’s input is increased relative to random
forest, the training results in a highly robust classifier that can be used across large cohorts. HALO-AI
can even be trained to recognize different tissue classes across different stains. The probability map
and conversion to annotation features can also be used in HALO-AI.

Once the selected classifier has been created and saved, it can then be used in the mIHC analysis
in HALO. In brightfield, the mIHC module allows the pathologist to detect up to 5 stains, including an
exclusion stain, in any cell compartment (nucleus, cytoplasm, membrane). The exclusion stain option can
be used to exclude tar within lung tissue. An example of a mIHC analysis in HALO is shown in Figure 6.

Prior to running the mIHC analysis, pathologists can define specific phenotypes such as active T
cells (e.g., dual-positive cells for brown and purple stains will be identified as dual positive for CD8
and Ki67; Figure 6).
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Figure 5. Tissue classification using the random forest classifier in non-small cell lung cancer tissue
(20× magnification). (a) The multiplexed immunohistochemistry (mIHC) image was scanned with a
Nanozoomer 2.0-HT Scanner (Hamamatsu photonics, Hamamatsu, Japan). The stains are as follows:
Pan-cytokeratin (yellow), CD8 (brown), Ki67 (purple), PD-L1 (teal) and hematoxylin (dark purple).
(b) The random forest classifier in HALO was used to separate the image into three classes: tumor,
stroma and microscope glass slide. The classifier mask is shown overlaying the mIHC image where
classified tumor regions are shown in yellow, stroma regions in purple, and the microscope glass slide
in pale pink. (c) The probability threshold used by the random forest to detect tumor regions was
increased to 70%. A heatmap is displayed where the red regions represent areas most likely to be tumor
regions, and the green regions that are less likely. No mask will appear in areas where pixels have
below 70% probability of being in the tumor class. (d) The classifier to annotations option was used
whereby regions can automatically be annotated from the classification mask; only the tumor has been
annotated (shown in yellow).

Figure 6. Automated digital analysis of multiplexed immunohistochemistry (mIHC) using the HALO
software in non-small cell lung cancer tissue. (a) The mIHC image was scanned with a Nanozoomer
2.0-HT Scanner (Hamamatsu photonics, Hamamatsu, Japan) using 20x magnification. The stains
are as follows: Pan-cytokeratin (yellow), CD8 (brown), Ki67 (purple), PD-L1 (teal) and hematoxylin
(dark purple). (b) The HALO mark-up image shows colors similar to the original stain color and in
the same cell compartment (nucleus/cytoplasm/membrane as the stain is found. The user can select
different colors to be used in the mark-up image if they wish.
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When this is run in conjunction with the pre-made classifier, information about the number of cells
with a specific phenotype in both the tumor and the stroma can be obtained. Additionally, HALO’s
interactive cell-by-cell data table allows easy localization of the phenotyped cells on the image. In the
example analysis in Figure 7, outputs will include those for the entire image, those specific to the tumor
and those specific to the stroma. Other outputs include the number of cells positive for each stain in
each compartment, number of cells with different stain co-localizations, the average optical density
values for each stain in each compartment, cell/nucleus/cytoplasm/membrane area, and tissue areas
in square microns.

Figure 7. Results of a multiplexed immunohistochemistry (mIHC) analysis in HALO. The top left table
provides the summary results from the analysis; important outputs in this analysis are the density
of cells co-expressing both CD8 and Ki67 in the tumor and stroma, and so the data relating to this
has been highlighted. The bottom left table is HALO’s interactive cell-by-cell data table, which can
be mined to find specific cell types. Here, only cells that are positive for CD8 and Ki67 and are in
the stroma have been selected. HALO will find the cells selected in the image viewer (right, 20×
magnification) by putting a black box around each cell.

After running a mIHC analysis in HALO, the pathologist then has the option to generate
spatial information using the spatial analysis module. As outlined above, spatial information is
becoming increasingly important in cancer research, prominently in the immune-oncology field [36,85].
Three different types of spatial analysis can be performed in HALO: nearest neighbor, proximity
analysis and invasive margin analysis. Nearest neighbor outputs will calculate the average distance of
two cell populations based on their nearest neighbors. Proximity analysis allows you to calculate the
number of cells of one phenotype (e.g., CD8+ cytotoxic T lymphocytes) within a defined distance of
another cell type. Lastly, the invasive margin analysis allows you to count the number of cells within a
user defined distance of the invasive margin.

Similarly, the HALO image analysis software was recently used to demonstrate the divergent
state of exhaustion of the PD-1 receptor in T cells with impaired effector cytokine production,
while producing CXCL13, which mediates immune cell recruitment to tertiary lymphoid structures [80].
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Importantly, the presence of PD-1high cells was strongly predictive for both response and survival in a
cohort of NSCLC patients treated with a PD-1 blocking agent [80].

In the immunofluorescence multiplexing field, the use of scanners (fluorescent or spectral)
represents a major technological advance by enabling the utilization of multiple and sometimes unstable
fluorochromes (e.g., phycoerythrins) and thus more than 7 different antibodies on the same slide.
For example, Vectra® systems or Polaris®(PerkinElmer) allow the capture of information by spectral
resolution in the visible and in the near infrared band (bandwidth between 420 and 900 nm). Vectra®

or Polaris® allows extremely precise quantitative (cell-by-cell) management of the markings of different
tissue samples, in brightfield or fluorescence detection. Detection and phenotypic characterization of
cells in tissues, combined with bioinformatic image analysis is possible thanks to the InForm® software
(PerkinElmer). This software allows automatic analysis of parameters that cannot be accurately discerned
by the human eye (cell forms, multiple molecule networks, vascular network).

Franchising of autofluorescence by the "Autofluorescence Reduction Technology” (ART™,
PerkinElmer) technique is possible with the Inform® software (PerkinElmer). Of course,
the technologies developed for a specific type of cancer are subsequently transposable to the majority
of other tumor proliferations or inflammatory diseases. Finally, virtual slides can be analyzed
automatically (cell counting, surface measurements, etc.) using dedicated image analysis software
(Figure 8). In particular, some software enables the quantification of weakly expressing and overlapping
biomarkers within cells and cellular compartments.

Figure 8. Automated digital analysis of fluorescent multiplexing using Inform software in tonsil tissue
(20× magnification). (a) Multiparametric fluorescent staining Pan-Cytokeratin (turquoise), CD4 (green),
CD68 (purple), PD-1 (red), PD-L1 (yellow) and dapi (blue). (b) Tissue segmentation: identification and
recognition of tumor areas (red) or stroma (green). (c) Individual cells identification and segmentation,
with nuclear, membranous and cytoplasmic segmentation. (d) Phenotyping: identification of the cells
on the slide, with their phenotypes, among all the cells present in the image, or among the cells stained.
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These new approaches allow us to explore cellular interactions to find biomarkers in a
non-supervised manner. The education of the software remains long and tedious, with a phase
of learning or "teaching". However, an approach without a priori knowledge can also be developed
in parallel. Several companies developed such software (e.g., Definiens AG, Munich, Germany;
TRIBVN Healthcare, Châtillon, France; Owkin, Paris, France; Imstar, Paris, France; Indica Labs;
PerkinElmer). These software systems are becoming more and more efficient, and they can differentiate
anatomical structures, such as glands [86], but the recognition of cell units is more delicate. The results
obtained in the context of cross-sectional research studies are, however, very impressive and we must
expect a change in diagnostic habits with the implementation of deep learning [87].

Finally, an important issue for mIHC digital analysis and relevant data extraction is the calibration
of the signal acquisition technology and the control of variations caused by the different staining
techniques when several batches are required to analyze large clinical series (e.g., for biomarker validation).
These controls are also necessary for the valid comparison of different series or studies and ultimately for
clinical application [88].

5. Advantages and Current Limitations of Multiplexed Immunohistochemistry

Recently developed multiplexing platforms exhibit compelling advantages. The major advantage
of mIHC, which may also warrant its implementation in the routine clinical workflow, is related
to maximal data harvesting per tissue section, improvement in the quality and detail of pathology
analysis and efficient tissue utilization, which is crucial when the availability of sample is limited [89].
Approaches like mIHC enable pathologists to gather a wealth of data from a limited amount of tissue.
This is especially promising for NSCLC patients whose tumors are in a difficult-to-access location,
where only a small needle or cytology sample can be obtained. It also enables more research to be
conducted with less material than is often required [89]. Unlike other multiplex approaches, such
as next generation sequencing or mass spectrometry, mIHC gives an edge to analyze co-expression
and to quantify single-cell expression with the spatial relationships of many targets while preserving
tissue integrity. Several studies have shown that the proximity of certain immune cells within a tumor
microenvironment correlates with patient outcome [41,85,90].

Recently developed strategies in the field of brightfield chromogenic mIHC have enabled
automation of mIHC assays through the use of commercially available primary antibodies with
their respective anti-species secondary antibody to ensure staining reliability and reproducibility,
toward the clinical application [22]. Moreover, conventional brightfield microscopes and scanners can
accommodate image acquisition of the stained slides [78].

However, multiple pre-analytical and analytical challenges arise when using chromogens for
high-level mIHC analysis. The limited number of available chromogens, compared to highly
multiplexed fluorescent assays, limits the degree of flexibility for biomarker research. As chromogenic
mIHC is technically similar, in some ways, to conventional IHC it is subjected to the same critical
hurdles [91]. The lack of standardization due to pre-analytic variables, including fixation time, type
of fixative, dehydration, clearing, paraffin impregnation, and drying and storage of the slides, still
represents a major potential challenge [92]. Similarly, poorly characterized or cross-reactive antibodies
will give non-reproducible results [93]. For instance, despite numerous efforts to standardize the IHC
markers used in breast cancer (ER/PR/HER2), they still demonstrate significant inter-laboratory and
intra-laboratory variability [94]. If such issues cannot be overreached for these “conventional” IHC
biomarkers, the multiplexing of several markers will need sufficient robustness prior to a clinical use.
As for the clinical single IHC assays, a positive tissue control previously validated and characterized
should be run on each same slide tested with mIHC. This would allow “real-time” validation of the
multiplexed staining along with the quality control of data generated by the mIHC assay.

As tumors frequently harbor significant cellular and spatial heterogeneity (e.g., stroma,
tumor-stroma interface, intratumoral), in particular for immune markers such as PD-L1 or CD8
infiltrates [95], it is essential to perform high-resolution multiplexed analysis across whole tumor
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sections. It has been demonstrate that the analysis of small ROIs generates significant variation and
errors in the assessment of tumor and immune markers in cancer [96,97]. Hence, there is a need
for integrated mIHC systems enabling high-degree of multiplexing coupled with digital analysis for
high-resolution analyses on whole tumor slides [98].

Moreover, mIHC is the only technology enabling quantitative information on multiple
distinct subtypes of tumor-infiltrating immune cells within a preserved tissue architecture, hence
allowing the analysis of the topology and proximity between specific cell populations [99].
Ultimately, the quantitative spatial profiling of key tumor-immune pathways could improve the
stratification of cancer patients for immunotherapy [100]. In addition, the explosion of potentially
important or actionable biomarkers poses both cost and selection challenges. The increase in
the number of developed chromogens could make this challenge somewhat easier to handle [16].
However, the current cost of the primary antibodies or different chromogens and the instrumentation
requirements are still high. More than four antibodies can be sequentially incubated on autostainers,
reducing the difficulty, delay and therefore cost to perform the mIHC analysis in a clinical setting,
although, as noted above, pre-analytical variability and antigen retrieval methods will first need to be
critically evaluated. Moreover, evaluation of multiple targets per tissue slide will require digital image
viewing with analysis tools for computer-assisted interpretation that are yet to be readily integrated in
the clinical workflow [78]. For a wide clinical implementation and pathologists’ acceptance, regulatory
and reimbursement rules should be planned in the near future. Nevertheless, the extraordinary value
of such a technological approach to improve pathology interpretation and to yield new insights into
understanding cancer phenotypes with direct clinical impacts warrants further effort.

The different considerations presented above could be declined for the fluorescent mIHC.
The specificity of the staining has been improved with the use of tyramide techniques allowing
simultaneous staining with 7 to 9 colors in a same slide. The different technical implementations
described in this article have to reinforce the efforts made to increase the knowledge about
microenvironment. Fluorescent staining keeps an advantage in research for the observation of very
rare events, rare cells, co-localization and still allows a better study of the different cell compartments.
Nevertheless, this technique is still difficult to be used in routine; the signal reproducibility is difficult
to be obtained, even with an automation of the staining.

Several alternative multiplexed technologies for a use on FFPE samples have recently been
developed (e.g. multiplexed ion beam imaging-MIBI, IONpath, Inc., Menlo Park, CA, USA; imaging
mass cytometry, Fluidigm, South San Francisco, CA, USA; digital spatial profiling technology,
NanoString Technologies, Inc., Seattle, WA, USA; InSituPlex, Ultivue, Cambridge MA, USA)
demonstrating a high degree of multiplexing, and could be complementary to mIHC approaches
described herein [89,101–103].

6. Conclusions

Technological advances in mIHC and the introduction of automated slide scanners has allowed
for huge amounts of data to be generated in a single experiment. Combining this with automated
digital analysis means the data can be analyzed in a quantitative and efficient manner, producing a
high-throughput workflow for molecular and immune profiling with the promise of discovering novel
biomarkers and improving clinical management of patients with NSCLC.
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Abstract: Recent findings suggest that a fraction of EGFR-mutant non-small-cell lung cancers
(NSCLC) carry additional driver mutations that could potentially affect the activity of EGFR tyrosine
kinase inhibitors (TKIs). We investigated the role of concomitant KRAS, NRAS, BRAF, PIK3CA, MET
and ERBB2 mutations (other mutations) on the outcome of 133 EGFR mutant patients, who received
first-line therapy with EGFR TKIs between June 2008 and December 2014. Analysis of genomic DNA
by Next Generation Sequencing (NGS) revealed the presence of hotspot mutations in genes other
than the EGFR, including KRAS, NRAS, BRAF, ERBB2, PIK3CA, or MET, in 29/133 cases (21.8%). A
p.T790M mutation was found in 9/133 tumour samples (6.8%). The progression free survival (PFS)
of patients without other mutations was 11.3 months vs. 7 months in patients with other mutations
(log-rank test univariate: p = 0.047). In a multivariate Cox regression model including the presence of
other mutations, age, performance status, smoking status, and the presence of p.T790M mutations,
the presence of other mutations was the only factor significantly associated with PFS (Hazard Ratio
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1.63, 95% CI 1.04–2.58; p = 0.035). In contrast, no correlation was found between TP53 mutations and
patients’ outcome. These data suggest that a subgroup of EGFR mutant tumours have concomitant
driver mutations that might affect the activity of first-line EGFR TKIs.

Keywords: lung cancer; EGFR mutations; EGFR TKIs

1. Introduction

Non-small-cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations
has long been regarded as a single entity. However, the response rate of EGFR-mutant patients to
first-line EGFR tyrosine kinase inhibitors (TKIs) ranged between 56% and 84% in clinical trials [1].
Accordingly, the duration of the response varies significantly among patients, thus suggesting that
EGFR-mutant NSCLC is a heterogeneous group of tumours. In this respect, the mechanisms involved
in the acquired resistance to EGFR TKIs have much better been identified as compared with factors
affecting the intrinsic sensitivity to EGFR inhibition [2].

Evidence suggests that EGFR mutations are an early event in non-smoke related carcinogenesis
of the lung [3]. A number of studies have also shown that EGFR mutations are usually mutually
exclusive with other driver mutations. In particular, EGFR and KRAS mutations have been rarely
found in the same tumours in early studies of genetic alterations in lung cancer and KRAS mutations
are regarded as a biomarker of resistance to EGFR TKIs [4]. Nevertheless, recent reports that used
more sensitive techniques of analysis have demonstrated that some EGFR-mutant tumours might
also carry mutations in genes that have been up to now classified as mutually exclusive with EGFR
and that are potentially involved in either primary or acquired resistance to EGFR TKIs. In particular,
co-existence of EGFR mutations with KRAS, NRAS, BRAF, MET, and/or PIK3CA variants has been
demonstrated in different studies [5–10].

Case reports showed that patients carrying both EGFR and either KRAS or PIK3CA mutations
might benefit from treatment with EGFR TKIs [8,11,12]. In contrast, other studies have suggested
that the presence of additional coexisting mutations is associated with a reduced response to EGFR
TKIs and with a shorter progression free survival (PFS) [7,13]. A significantly higher frequency of
additional mutations in different genes including TP53, KRAS, PIK3CA, BRAF, ERBB2, MET, NRAS,
and PTEN, was reported in EGFR mutant patients that did not respond to EGFR TKIs as compared with
responders [9]. In addition, patients carrying somatic mutations in the PI3K/AKT/mTOR pathway
had a shorter PFS and overall survival (OS) when compared to patients without mutations. Finally,
different studies have suggested that mutations in TP53 are associated with shorter PFS in EGFR
mutant NSCLC patients receiving treatment with EGFR TKIs [7,13–17].

In this study we analysed by next-generation sequencing (NGS), using a targeted sequencing
panel, a cohort of 133 EGFR mutant NSCLC patients, who received first-line therapy with EGFR
TKIs. In particular, we assessed whether the presence of concomitant somatic mutations in KRAS,
NRAS, BRAF, PIK3CA, MET, and ERBB2 might affect the activity of EGFR TKIs in EGFR mutant
NSCLC. We focused on these genetic alterations because they can activate signalling pathways that
have been demonstrated in previous studies to be involved in the de novo and/or acquired resistance
to EGFR TKIs.

2. Results

2.1. Patients’ Characteristics

One hundred and thirty-three consecutive patients with advanced or metastatic EGFR mutant
NSCLC treated in seven Italian centres between June 2008 and December 2014 were included in the
study. Patients’ characteristics are shown in Table 1. Median age was 71 years (range 41–92). As
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expected in a cohort of EGFR mutant NSCLC, the majority of the patients were women (92/133;
69.2%) and never smokers (81/132; 61.4%). According to EGFR mutation analyses carried with routine
diagnostic methods including Real Time PCR and pyrosequencing, an EGFR exon 19 deletion was
carried by 83/133 patients (62.4%); 39/133 (29.3%) had an EGFR p.L858R point mutation and 11/133
(8.3%) had different EGFR mutations. Most of the patients included in the study received the EGFR
TKI gefitinib as first-line treatment (114/133; 85.7%). Eleven out 133 (8.3%) patients received erlotinib
and 8/133 (6.0%) afatinib (Table 1). No statistical differences were observed between the two groups
(patients with or without other mutations) with respect to the different clinical and pathological
variables, including the type of first-line TKI (Table 1).

Table 1. Patients’ characteristics.

Characteristics 
All 

(N = 133) 
Pts without Other 

Mutations (N = 104) 
Pts with Other 

Mutations (N = 29) 
p-Value 

Age, median 
(range) 

71 
(41–92) 

71 
(41–92) 

69 
(42–84) 

0.31 * 

Gender, n (%) 
Male 

Female 

 
41 (31) 
92 (69) 

 
32 (31) 
72 (69) 

 
9 (31) 
20 (69) 

0.98 § 

Smoking habits, n (%) 
Never smoker 
Ever smoker 

Unknown 

 
81 (61) 
51 (38) 

1 (1) 

 
63 (61) 
40 (39) 
1 (<1) 

 
18 (62) 
11 (38) 

- 

0.93 § 

EGFR mutation type, n (%) 
Exon 19 del 

p.L858R 
Other 

 
83 (62) 
39 (29) 
11 (8) 

 
66 (63) 
28 (27) 
10 (10) 

 
17 (59) 
11 (38) 

1 (3) 

0.36 § 

1st line EGFR TKI 
Gefitinib 
Erlotinib 
Afatinib 

 
114 (86) 
11 (8) 
8 (6) 

 
91 (87) 

8 (8) 
5 (5) 

 
23 (79) 
3 (10) 
3 (10) 

0.47 § 

* Kruskal-Wallis test. § Chi square test. Abbreviations: Pts: patients.

2.2. Mutational Landscape of EGFR Mutant Tumours

All 133 samples were successfully analysed by targeted sequencing. In 11/133 of cases, this
analysis did not detect the EGFR mutation identified in diagnostic routine analysis, probably because
of the lower sensitivity of the NGS panel. However, we confirmed the presence of the same EGFR
variant found by routine diagnostic methods in all cases using a more sensitive technique such as the
droplet digital PCR (ddPCR). All EGFR variants not identified by NGS were at allelic frequencies close
to or below 2%, which is the limit of detection of the NGS panel.

Hotspot mutations in either KRAS, NRAS, BRAF, ERBB2, PIK3CA or MET genes were detected in
29/133 cases (21.8%) (Figure 1). A total of 36 mutations were identified, with 5 cases showing more
than one variant additional to the EGFR mutation. Very surprisingly, 14/133 cases had an alteration in
KRAS gene, which accounted for a consistent part of the total number of mutations detected (14/36
mutations) in genes different from EGFR. Nine PIK3CA mutations were also identified, whereas the
other gene mutations showed a much lower frequency. In most cases, the allelic frequency of the other
mutations was different as compared with the EGFR variant, suggesting intra-tumour heterogeneity.
In particular, in 19 cases the allelic frequency of the EGFR variant was higher, whereas in 10 cases the
frequency of the mutation in other genes was higher.

KRAS mutations were identified at an allelic frequency between 2% and 38%. In 13/14 cases with
available tumour or plasma samples the presence of the KRAS mutation was confirmed using ddPCR
(Table 2). In eight cases the allelic frequency of the KRAS variant was lower than the EGFR alteration;
in the remaining six cases, the allelic frequency of EGFR mutations was lower than KRAS. Indeed, the
EGFR ddPCR test confirmed that the EGFR alterations not detected by targeted sequencing were at an
allelic frequency close to the limit of detection of this latter method (Table 2).
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Figure 1. “Other mutations” identified in EGFR-mutant NSCLC cases.

Table 2. KRAS-mutant cases.

PatientID
EGFR KRAS

PFS BR
NGS (VAF) ddPCR (VAF) NGS (VAF) ddPCR (VAF)

1512# p.E746_A750del (40%) - p.Gly12Cys (3%) Codon 12/13 mutation
(1.93%) 13.19 PR

1616# p.E746_A750del (58.9%) - p.Gly13Asp (11.8%) Codon 12/13 mutation
(10%) 12.3 PR

3426# mutation not detected Ex19 del (2.5%) p.Gly12Asp (38%) Codon 12/13 mutation
(33%) 4.83 SD

3981# mutation not detected Ex19 del (1.2%) p.Gly12Cys (15%) Codon 12/13 mutation
(12%) 2.7 PD

4733# p.E746_A750 > DP (2.6%) - p.Gly12Ala (10.7%) Codon 12/13 mutation
(9.3%) 0.43 PD

4840# mutation not detected Ex19 del (0,5%) 1 p.Gly13Cys (10.1%) Codon 12/13 mutation
(0.4%) 1 2.14 PD

4990# mutation not detected Ex19 del (0.7%) p.Gly13Cys (28%) Codon 12/13 mutation
(24%) 1.18 PD

5074# p.E746_A750del (12.8%);
p.L858R (16.9%) - p.Gly12Cys (3.3%) Codon 12/13 mutation

(0.13%) 3.26 PD

5374# mutation not detected Ex19 del (1.8%) p.Gly12Cys (13.4%) Codon 12/13 mutation
(11%) 4.64 PR

6541# p.E746_A750del (47.2%) - p.Gly13Asp (12.7%) Codon 12/13 mutation
(11.3%) 0.06 NE

6545# p.L858R (75%) - p.Ala59Thr (6.2%) Tissue and plasma not
available 9.87 SD

6548# p.L858R (55.9%) - p.Gln61His (3.3%) p.Gln61His (0.43%) 6.48 PD

7567# p.L858R (35.4%); p.T790M (0.9%) - p.Gly12Cys (9.2%) Codon 12/13 mutation
(8.7%) 12.43 PR

7964# p.E746_A750del (56.4%) - p.Ala146Thr (2%) p.Ala146Thr (0.4%) 51.58 CR
1 test performed on plasma sample. Abbreviations: NGS: next-generation sequencing; VAF: variant allelic frequency;
ddPCR: droplet digital PCR, PFS: progression-free survival, in months; BR: best response; PD: progressive disease;
SD: stable disease; PR: partial response; CR: complete response; NE: not evaluable.

NGS analysis also revealed the presence of a p.T790M mutation of the EGFR in 9/133 tumour
samples (6.8%). In most cases, the frequency of the p.T790M variant was significantly lower as
compared with the sensitizing EGFR mutation. The sensitizing and resistance mutations had a similar
allelic frequency only in two cases. The p.T790M mutation was detected in 6/9 cases in the initial EGFR
analysis performed with diagnostic methods. In the other three cases this variant was not detected
because not screened (two cases) or below of the limit of detection (one case). Nevertheless, all patients
received treatment with first- or second-generation EGFR TKIs because third-generation EGFR TKIs
with activity against the T790M variant was not available at the time of the treatment.

No significant correlation was found between the presence of other mutations and either sex
(male vs. female, p = 0.98), smoking habit (never-smokers vs. ever-smokers, p = 0.93), p.T790M status
(p.T790M present vs. absent, p = 0.39), or type of EGFR mutation (exon 19 deletions vs. p.L858R vs.
other mutations, p = 0.36).

Since we used for NGS analysis, a panel that targets 22 genes potentially involved in lung
carcinoma, 52 additional variants in genes not included in the primary analysis of this study were
also identified (Table S1). In particular, 23 EGFR mutant cases were found to carry mutations in
TP53 (17.3%).
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2.3. Correlation with Patients’ Outcome

At a median follow-up of 36.1 months, 114 PFS events (101 progressions and 13 deaths without
documented progression) were recorded. With respect to the mutational status, 88 PFS events were
registered among patients without other mutations and 26 in the cohort of patients carrying other
mutations. The median PFS of patients without other mutations was 11.3 months vs. seven months
in patients with other mutations (Log-rank test univariate: p = 0.047) (Figure 2A). Overall, 80 deaths
were reported. Median OS was 23.7 months in the group of patients without other mutations and
15.5 months in those with other mutations (Log-rank test univariate: p = 0.216) (Figure 2B).

 
Figure 2. PFS (A) and OS (B) of EGFR-mutant patients with and without “other mutations”; PFS (C)
and OS (D) of EGFR mutant patients with and without TP53 mutations.

The presence of other mutations did not preclude the possibility of response to EGFR TKIs
(Table 3). The median PFS of the different subgroups of patients with specific mutations was generally
lower as compared with patients without other mutations (Table 3). However, the small number of
patients in these subgroups prevents the possibility of any conclusion.

Table 3. Outcome of patients with and without other mutations.

No Other
Mutation
(n = 104)

Any Other
Mutation
(n = 29)

KRAS
MUT

(n = 14)

NRAS
MUT

(n = 2)

BRAF
MUT

(n = 3)

PIK3CA
MUT

(n = 9)

ERBB2
MUT

(n = 4)

MET MUT
(n = 4)

Objective Response
Responder,

N (%)
71

(68.3%)
17

(58.6%)
6

(42.9%)
2

(100%) 0 7
(77.8%)

1
(25.0%)

4
(100.0%)

Non responder, n (%) 33
(31.7%)

12
(41.4%)

8
(57.1%) 0 3

(100.0%)
2

(22.2%)
3

(75.0%) 0

PFS, months (95% CI) 11.3
(9.4–15.9)

7.0
(4.8–9.9)

4.6
(1.2–12.3) NA * 3.3

(0.4–NR)
8.7

(5.5–NR)
3.3

(1.2–NR)
6.4

(6.2–NR)

OS, months (95% CI) 23.7
(19.4–28. 1)

15.5
(7.0–32.4)

5.1
(1.2–20.8) NA * 3.3

(0.8–NR)
36.8

(9.1–NR)
3.3

(2.2–NR)
32.4

(10.3–NR)

NA *: not assessed due to the low number.
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Among the KRAS mutant cases, the PFS was significantly shorter in patients with VAF of KRAS
mutations higher than EGFR mutations (2.42 months vs. 11.09 months; p = 0.0081) as well as the
response rate was inferior (16.7% vs. 57.1%). The five patients with more than one variant additional
to the EGFR mutation showed a 40% response rate, a median PFS of 5.0 months (95%CI 0.4-NR)
and a median OS of 7.0 months (95%CI 0.8–NR), thus confirming the negative predictive value of
additional mutations.

In a multivariate Cox regression model including the presence of other mutations, age, performance
status, smoking status and the presence of T790M mutations, the presence of other mutations was the
only factor significantly associated with PFS (Hazard Ratio -HR 1.63, 95% CI 1.04–2.58; p = 0.035) (Table 4).
At the same multivariate analysis, the correlation between the presence of other mutations and OS was
not statistically significant (HR 1.64, 95% CI 0.96–2.80; p = 0.072) (data not shown).

Table 4. Multivariate Cox regression model for PFS.

Variable HR 95% CI P

Other mutations 1.63 1.04–2.58 0.03
Sex 0.98 0.6–1.63 0.97
Age 1 0.98–1.02 0.70

Ever smoker 1.22 0.76–1.95 0.41
T790M 1.06 0.53–2.13 0.86

Abbreviations: HR: Hazard ratio.

Since different studies have hypothesized that TP53 mutations might affect the activity of EGFR
TKIs, we evaluated the correlation between TP53 variants and survival in our cohort of patients. The
median PFS of patients without TP53 mutations was 9.9 months vs. 12.3 months in patients with TP53
mutations (Figure 2C). This difference was not statistically significant at both univariate (HR = 1.25,
95% CI 0.78–1.99; p = 0.36) and multivariate (HR = 1.29, 95% CI 0.80–2.08; p = 0.29) analysis. Similarly,
no significant difference in median OS was observed between patients without (23 months) or with
TP53 mutations (18.9 months) (unadjusted HR = 1.45, 95% CI 0.83–2.51, p = 0.19; adjusted HR = 1.46
(95% CI 0.83–2.57); p = 0.19) (Figure 2D).

3. Discussion

Our results confirm that EGFR-mutant NSCLC is a heterogeneous group of tumours and, in
particular, that a fraction of EGFR-mutant tumours carry additional driver mutations. These findings
are not surprising because additional driver alterations can be accumulated during tumour progression
thus giving rise to tumour heterogeneity [18]. Indeed, driver mutations are almost always clonal,
although sub-clonal driver alterations can occur in different tumour types including lung cancer [19,20].
In this respect, it has been recently demonstrated that lung adenocarcinoma contains, on average,
4–7 different clones, with tumours showing >15 clones [21]. We expect that the number of clones and
therefore the extent of tumour heterogeneity is higher in tumours with a higher tumour mutation
burden. EGFR mutant NSCLC was reported to carry a mean of 4.5 mutations/megabase (Mb) as
compared with 9.1 in NSCLC adenocarcinoma [22]. However, the nuclear genome is 3200 Mb and,
therefore, EGFR mutant NSCLC do carry a number of somatic variants. A recent study elegantly
depicted the intra-tumour heterogeneity of NSCLC [3]. Unfortunately, this study included only 13
EGFR mutant lung carcinoma, thus, providing limited information on the heterogeneity of this subtype
of NSCLC. Nevertheless, EGFR mutant tumours with concomitant genetic alterations in PIK3CA,
ERBB2, and TP53 were described. In this respect, it must be emphasized that NGS analysis cannot
rule out whether the same tumour cell is carrying EGFR mutations and other variants or rather these
mutations are present in different sub-clones.

The relative frequency of KRAS mutation in our cohort of EGFR mutant NSCLC was surprisingly
high. This might be due to different factors. In contrast with most of European centres, the majority
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of Italian laboratories do not run the KRAS test before EGFR testing in NSCLC. Therefore, in other
countries but not in Italy the EGFR mutation positive population is deprived of KRAS mutations.
In addition, the use of targeted sequencing allows to detect mutations at low allelic frequency that
are not identified by standard sequencing methods or by whole genome or whole exome sequencing
that have a relatively low sensitivity. In this regard, we might expect that the use of high sensitive
techniques will reveal an ever increasing level of clonal complexity of human tumours. Importantly,
all the KRAS mutations identified with NGS were confirmed by additional analysis thus excluding
sequencing artifacts. Interestingly, Hong et al. found KRAS mutations in 6.9% of EGFR mutant lung
cancer patients using a liquid biopsy approach [23].

Given that some level of heterogeneity will be present in almost every tumour, the question that
needs to be addressed is at what extent this phenomenon might affect the response to target-based
agents. Our study confirmed recent reports suggesting that EGFR-mutant tumours carrying additional
driver alterations have a reduced sensitivity to EGFR TKIs [23,24]. However, this study is the first to
focus on driver alterations that might interfere with EGFR blockade by activating alternative pathways
or downstream signalling proteins. Nevertheless, we acknowledge that our study has several limits.
First, this was a retrospective collection of cases that might suffer of selection biases. More importantly,
we grouped together mutations in different genes that might play a different role in de novo and
acquired resistance to EGFR TKIs. For example, KRAS mutations have been reported in different
studies as a mechanism of de novo resistance to EGFR TKIs in NSCLC [4]. In contrast, KRAS and NRAS
mutations have not been detected in tumour biopsy from patients that progressed following treatment
with first-generation TKIs [25]. However, recent reports showed that the levels of KRAS and/or NRAS
mutations increase in the liquid biopsy from patients that progressed following treatment with first-,
second-, or third-generation EGFR TKIs, thus suggesting that these variants might also play a role in
the acquired resistance to these agents [26,27]. While the choice to group different mutations was due
to the low frequency of the single variant that would prevent from an analysis with a feasible number
of cases, we do recognize that prospective studies in each specific subgroup of mutant patients are
necessary to confirm our findings.

Our data confirm that patients with clonal KRAS mutation and sub-clonal EGFR mutation do
not benefit from treatment with EGFR TKIs. However, the 8/14 patients with apparent clonal EGFR
mutation and sub-clonal KRAS mutation had a median PFS of 11.09 months and a response rate of
57.1%. Therefore, our data suggest that quantitative assessment of both EGFR and KRAS mutations
might better identify patients benefiting from EGFR TKI treatment.

We found an EGFR p.T790M mutation in 6.8% of the cases. The p.T790M mutation has been
previously reported in approximately 2% of TKI-naive EGFR-mutant tumours when routine diagnostic
methods are used for testing [28]. The relatively higher sensitivity of the NGS panel that we employed
as compared with routine testing techniques might account for such difference. Previous studies that
used highly sensitive methods (sensitivity ~0.1%) found the p.T790M variant in 25%–65% of untreated
EGFR mutant NSCLC [29–31]. In these studies, the presence of the p.T790M was correlated with a
shorter PFS in patients treated with EGFR TKIs. In our cohort of patients, the p.T790M variant was
not an independent factor of shorter PFS. This difference might be due to the relative low number of
p.T790M-positive cases. In addition, in 7/9 cases the allelic frequency of the p.T790M was lower as
compared with the sensitizing mutations. In this respect, responses to first generation EGFR TKIs have
been observed in patients carrying both an EGFR sensitizing and the p.T790M mutation when the
resistance mutation is expressed in a minor clone of tumour cells [32].

We could not confirm the correlation between TP53 mutation and shorter PFS that has been reported
by different preliminary studies [10,16–19,33]. The frequency of TP53 mutations was only 17.3% in our
cohort whereas it ranged between 30.1% and 62% in the above mentioned reports. TP53 mutations have
been previously described to occur in 10% to 26% of never smokers with NSCLC [34–36]. Whereas the
above highlighted differences in TP53 mutation frequency might be due to either selection of the cases or
significant differences in the sensitivity of the testing methods, a population of EGFR mutant NSCLC that
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is enriched of never-smokers is not expected to carry TP53 mutations at a high frequency. In addition, the
correlation of TP53 mutations with PFS was found in the above studies at univariate analysis but it was
not confirmed at multivariate analysis. These findings suggest that the predictive role of TP53 mutations
should be addressed in much larger cohorts of patients.

4. Materials and Methods

4.1. Study Design

This is a retrospective, observational clinical study that was approved by the Ethic Committee of
the Istituto Nazionale Tumouri “Fondazione G. Pascale” (16/14 OSS). The primary objective of the
study was to assess whether a correlation exists between detection of mutations in genes potentially
associated with resistance to EGFR targeting agents (KRAS, NRAS, BRAF, ERBB2, PIK3CA, and MET,
“other mutations”) and PFS in EGFR-mutant, advanced or metastatic NSCLC patients that received
EGFR TKI treatment as first-line therapy. The study was conducted by using archival material residual
from the diagnostic activity and available at the bio-bank of the INT-Fondazione Pascale. The tissue
specimens were obtained from 133 patients with advanced or metastatic EGFR mutant NSCLC prior
to EGFR TKI treatment. The inclusion criteria were: diagnosis of NSCLC, any histology; EGFR
mutation detected with routine diagnostic methods; stage IIIB or IV; no previous systemic treatment
for advanced disease; first-line treatment with EGFR TKIs as monotherapy; availability of data on
response and PFS; availability of tumour tissue or DNA for NGS analysis. For sample size calculation,
we estimated that, with a presumed prevalence of other mutations in 20% of the cases, the registration
of 103 events for PFS (i.e., either disease progressions or deaths without progression) could allow an
80% statistical power to identify a HR of progression equal to 0.50 between the two groups (cases
without “other mutations” vs. cases with “other mutations”), with alpha level of 0.05.

4.2. Mutational Analysis

The same specimen was used for the initial EGFR mutational analysis and for NGS for all cases
included in this study. Tumour samples were analysed with the Ion AmpliSeq Colon and Lung Cancer
Panel (Thermofisher, Monza, Italy) using the Ion Torrent semiconductor sequencing. The panel allows
to analyse hotspot and targeted regions of the following cancer related genes: EGFR, ALK, ERBB2,
ERBB4, FGFR1, FGFR2, FGFR3, MET, DDR2, KRAS, PIK3CA, BRAF, AKT1, PTEN, NRAS, MAP2K1,
STK11, NOTCH1, CTNNB1, SMAD4, FBXW7, TP53. Libraries were prepared starting from 10 ng of
genomic DNA and analysed on the Agilent® 2100 Bioanalyzer (Agilent Technologies, Milan, Italy). One
hundred picomoles of each library were multiplexed and clonally amplified on Ion sphere particles
(ISPs) by emulsion PCR performed on the Ion One Touch 2 instrument (Thermo Fisher Scientific,
Waltham, MA, USA) with the Ion PGM template OT2 200 kit (Thermo Fisher Scientific, Waltham, MA,
USA). The ISPs were enriched, loaded on an Ion 316 chip and sequenced on a PGM sequencer with
the Ion PGM™ sequencing 200 kit v2 (Thermo Fisher Scientific, Waltham, MA, USA). The raw data
were analyzed using Torrent Suite software v4.6(Thermo Fisher Scientific, Waltham, MA, USA) and
variants were detected using Ion Reporter Software v4.6 (Thermo Fisher Scientific, Waltham, MA,
USA). Each mutation was verified in the Integrative genome viewer (IGV) from the Broad Institute
(http://www.broadinstitute.org/igv/).

We have previously demonstrated that this panel can detect hotspot mutations at allelic frequency
≥2% [33]. 13 KRAS variants were confirmed by droplet digital PCR (ddPCR) using the QX200 Droplet
Digital PCR System (Bio-Rad, Milan, Italy) and either the KRAS Screening Multiplex Kit (Bio-Rad,
Milan, Italy), a primer-probe mix able to detect seven mutations (G12A, G12C, G12D, G12R, G12S,
G12V, G13D) in codon 12 and 13 of the KRAS gene, or specific assays for KRAS mutations in codons 61
and 146, and by the Oncomine Lung cfDNA Assay (Thermo Fisher Scientific, Waltham, MA, USA) for
the analysis of plasma-derived circulating cell-free DNA. Similarly, EGFR mutations were analysed by
ddPCR by using specific assays for the mutations reported by routine diagnostic assays.
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4.3. Study Treatment and Assessments

Patients received gefitinib, erlotinib, or afatinib as first-line therapy in clinical practice, according
to availability of drugs and investigator’s choice. Drugs were administered orally at standard doses
(250 mg for gefitinib; 150 mg for erlotinib; 40 mg for afatinib) once daily until disease progression
according to RECIST criteria, intolerable toxicity, or patient refusal. The medical history, concomitant
medications, and smoking status of patients included in the study were recorded. The objective tumour
response was assessed every eight weeks as for standard clinical practice. Additional assessment could
be performed at any time if symptoms or signs appeared that might suggest disease progression.

4.4. Statistical Analyses

PFS was the primary endpoint. It was defined as the time from EGFR TKI treatment start to
progression or death, whichever occurred first, or last follow-up date for patients alive and free from
progression at the time of the analysis. OS was a secondary endpoint and was defined as the time from
EGFR TKI treatment start to death or last follow-up date for alive patients. Median follow-up (mFU)
was calculated according to the reverse Kaplan-Meier technique. PFS and OS curves were estimated
by Kaplan-Meier product limit method and compared between the two groups (cases without “other
mutations” vs. cases with “other mutations”) by log-rank test. Hazard ratios were estimated by a Cox
proportional hazard model adjusted by gender, age (as a continuous variable), smoking habits (current
or previous smoker vs. never smoker), and presence of the T790M mutation. Explorative analyses
were done to assess the prognostic value of TP53 mutation in this cohort of patients. Statistical analyses
were performed using STATA MP 14.1 (StataCorp LP, College Station, TX, USA).

5. Conclusions

In conclusion, our study suggests that the presence of concurrent mutations in signalling pathways
potentially leading to resistance to EGFR blockade might be associated with shorter PFS in patients
treated with EGFR TKIs. While these data need confirmation in prospective clinical trials, they suggest
that EGFR-mutant NSCLC is a heterogeneous disease and that molecular profiling with NGS panels
might help to further select patients who will better benefit treatment with anti-EGFR agents.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/3/341/s1,
Table S1. Distribution of additional variants in genes not included in the primary analysis.
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Abstract: The understanding of the natural history and biology of lung cancer has been enhanced
by studies into circulating tumor cells (CTCs). Fundamental and translational research, as well
as clinical trials in the characterization and behavior of these cells, have constantly contributed to
improving understanding within the domain of thoracic oncology. However, the use of these CTCs
as prognostic and predictive biomarkers has not been adopted to the same extent as circulating free
DNA (cf-DNA) in plasma, in the daily practice of thoracic oncologists. However, recent technological
advances have firmly put the detection and characterization of CTCs in thoracic oncology back on
the agenda, and have opened up perspectives for their routine clinical use. This review discusses the
major advances of using CTCs in the domain of thoracic oncology, as well as the envisaged short-
and long-term prospects.

Keywords: circulating tumor cells; liquid biopsy; lung cancer; personal medicine; techniques;
xenograft

1. Introduction

Liquid biopsy (LB) plays a major role in thoracic oncology [1,2]. A number of recent publications
and developments within this domain testify to the increasing importance of LB. These studies
concern not only fundamental translational and clinical research, but also technological advances [3–7].
They have provided a better understanding of the molecular and cellular mechanisms, the progression
of lung cancer, and the treatment of patients. Among these studies, research into mutations in EGFR
using plasma circulating free DNA (cf-DNA) have led to the use of LB in the clinical routine for patients
with advanced stage or metastatic non-small cell lung carcinoma (NSCLC) [2,8–10]. This approach is
now used in a large number of hospitals.

The number of detectable biological targets in an LB that are potentially accessible to treatment
has increased, and future application of different biomarkers can be envisaged in the short-term [11].
The complexity of molecules for detection in the blood of patients with lung cancer has increased
with advances in our understanding of the biology of the different components circulating in the
blood. These components include free or complexed nucleic acids, microparticles including exosomes,

Cancers 2019, 11, 262; doi:10.3390/cancers11020262 www.mdpi.com/journal/cancers69
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circulating “non-hematological” cells including circulating tumor cells (CTCs), and proteins of serum
and plasma [12–16]. The addition to these analyses of different circulating hematological normal
cells (neutrophils, lymphocytes, monocytes, platelets), constituting a “liquid microenvironment”,
has progressively been envisaged [17,18].

While taking into account the increasing complexity, a number of biomarkers have been developed
for use, particularly in the clinic, for the interests of patients with advanced or metastatic lung cancer.
Thus, the possibility of detecting activating or resistance mutations induced by molecular therapeutics
in plasma cf-DNA has been associated with an explosion in the number of exploratory methods and
applications in thoracic oncology [2,19–22]. One of the consequences of these rapid developments
concerns the progressive decrease in the interest shown in the analysis of CTCs in thoracic oncology,
at least for routine daily practice [23]. However, cf-DNA and CTCs are complementary, and can serve
to answer different questions [24]. While genetic assessment might be suitable with both cf-DNA and
CTCs, only CTCs might be able to give insights into the seeding of metastases and interactions of CTCs
with other circulating blood cells, endothelial cells and, subsequently, different parenchyma [25,26].
cf-DNA and CTCs can be successfully simultaneously assessed in the same patient for a broader
insight of tumor burden [27–29]. The absence of robust approaches for the detection of CTCs in clinical
routine practice, in the context of the healthcare of these patients, probably explains the decline in
interest. This is also due to the facts that CTCs are rarely found in blood, for capture, and that the
capturing techniques, which are both very sensitive and specific, still require validation to provide
optimal results for use in daily practice [30,31]. A selection of key studies on CTC isolation techniques
have been summarized in Table 1. In this regard, the fact that different methods of CTC isolation
give conflicting results for the same series of patients has certainly slowed the interest shown in
this domain by many investigators [32,33]. Fewer groups around the world study CTC detection
compared to groups working on detection of cf-DNA in the area of thoracic oncology. A number
of review articles have discussed the advantages and limits of using CTCs or plasma cf-DNA in
oncology [34–37]. The majority underline the difficulty of using CTCs as prognostic and predictive
biomarkers in daily practice. Where, then, lies the interest in—and the role of—projects aimed at
detecting and characterizing CTCs in thoracic oncology? Is it possible to envisage, in the future,
the routine use of this type of analysis in the clinic?

This review aims to outline how the study of CTCs in an LB can provide unique and indispensable
information in thoracic oncology, and to present the future long- and short-term developments in
this domain.
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2. Opportunities Offered by Studying CTCs in Thoracic Oncology

A couple of opportunities can be specifically associated with CTC detection programs only
(Table 2).

Table 2. Methodological approaches in CTC research and main issues.

Approaches Interests Issues Ref

CTCs cultured ex vivo
• Drug testing
• Genomic/transcriptomic profiling
• Assessment of metastatic cells

• Depends on the number of
viable isolated cells

• Lack of microenvironment
[47–50]

CDX
• Drug testing
• Genomic/transcriptomic profiling

• Lack of human immune cells
in microenvironment

• Long duration to
obtain xenograft

[40,51–53]

CTC-derived explant
• Expanding tumor-derived cells
• Large potential for drug screening

• Lack of microenvironment
• Long duration to establish [54]

Single-cell analyses
• Genomic/transcriptomic profiling
• Tumor heterogeneity studies
• Functional studies (secretion)

• Difficult to get isolated
viable CTCs

• Technologically challenging
[55–58]

Microemboli tumor cells
• Impact on prognosis
• Cell–cell contact interaction studies
• Heterogeneity studies

• Difficulty to separate the
different CTCs from a cluster [59]

CTCs & circulating
immune cells interaction

• Mechanisms of crosstalk
between cells

• Different populations of
immune cells

• Lack of ex vivo models
[17]

Cytomorphological
assessment

• Identification and characterization
of specific populations of interest

• In situ protein and RNA assessment
linking to the cell morphology

• Highly dependent on the
isolation technique [42,60–68]

CTCs quantification at
baseline and monitoring

• Real time monitoring of systemic
anticancer therapies

• No FDA approved test for
lung cancer [69–71]

CDX = CTC-derived xenograft.

2.1. Developing Xenografts from Circulating Tumor Cells and Cells Cultured In Vitro

Different enrichment techniques allow for the isolation of “viable” CTCs from patients with
lung cancer (ClearCell® FX System, VTX-1 Liquid Biopsy System, Parsortix™ Cell Separation
System) [72–74] (Figure 1). These techniques represent a crucial development in the use of LB
in thoracic oncology. By injecting CTCs into mice, CTC-derived xenograft (CDX) models can be
obtained, and the biology of these cells can be studied in vivo. This approach allows for analysis of
the proliferation and level of “aggressiveness” of CTCs, their behavior once extravasated from blood
and, thus, their metastatic potential. CDX can be developed to examine the response of tumors to
different therapeutic molecules and protocols. In theory, these studies can anticipate the response of
tumors to certain treatments, depending on the patient, and thus allow the most effective treatment
to be proposed. Additionally, CDX can also be used to study primary and secondary mechanisms
of resistance to therapeutic molecules. However, the setup of the methodology of CDX is difficult,
and the systems of cell enrichment for the isolation of CTCs show variable sensitivity (ClearCell® FX
System, VTX-1 Liquid Biopsy System, Parsortix™ Cell Separation System) [72–74]. Finally, the rate of
successful development of CDX depends on the number of cells isolated and their ability to proliferate.

At present, the development of CDX in thoracic oncology concerns predominantly small
cell lung carcinomas (SCLCs), as shown by several publications in this domain on this type of
histology [51–53,75]. One reason for this is the high number of CTCs in the blood of patients with
SCLC when at a metastatic phase (mean ± SD = 1589 ± 5565 in 7.5 mL of blood), and another is due
to the capacity of these CTCs to proliferate [59]. Using these model systems, it is possible to envisage
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treating patients according to the response of the xenografts to different tested molecules [54,76–78].
Complementary analyses can be performed using cells cultured after dissociation of the CDX
tumor [54]. This method allows several million tumor cells to be cultured and tested with different
therapeutic molecules [54]. By contrast, few studies concern CDX obtained from NSCLC. Fewer cells
are isolated in NSCLC, and their ability to proliferate is lower in comparison to SCLC. Methods have
been developed to culture, in vitro, the CTCs, and to thus to analyze their potential to proliferate,
their biology, and their sensitivity to different molecules [79]. These approaches are not as advanced as
CDX for clinical application.

Figure 1. Overview of the different isolation techniques and possibilities in CTC research. Different
devices have been developed with Parsortix (Angle PLC, Guildford, UK), ClearCell FX1 (Biolidics,
Singapore), and Vortex VTX-1 (Vortex Biosciences, Pleasanton, CA, USA) being the most prominent.
However, other CTC isolation systems, like GILUPI (Potsdam, Germany), can also be used for the
isolation of viable CTCs. Isolation of viable CTCs then allows for the processing and analysis of cells
using numerous approaches.

2.2. Single-Cell Analysis and Functional Studies

In contrast to studies on circulating nucleic acids, exosomes, or other blood biomarkers,
the analysis of CTCs can define their molecular genetics, epigenetics, transcriptomics, and protein
profile [55,56,58]. Thus, a very precise tumor profile and characterization of the phenotype of cells with
invasive potential can be studied and can contribute to analyses concerning tumor heterogeneity [30].
Single-cell comparative analyses can be performed with primitive tumors, CTCs, and metastatic tumors
from the same patient and thereby provide complementary information concerning the biological
mechanisms associated with the progression and dissemination of lung cancers. Using isolated or
cultured live cells, these functional studies identify the proteins secreted by CTCs [55]. The EPISPOT
technology applied to these live isolated cells is particularly sensitive for the study of the expression
and secretion of proteins by CTCs [55]. It has also been demonstrated that CTCs might be directly
cultured on microfilters that are used for CTC isolation. This might facilitate CTC culture as it avoids
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the complicated transfer of CTCs onto cell culture plates, and might strongly increase the time from
CTC isolation to plating in a culture medium for growth [80].

Additionally, the development of new technologies, such as the DEPArrayTM (Menarini Silicon
Biosystems, Bologna, Italy), allows the separation of single cells from a pool of isolated CTCs to
get further insight into single-cell dynamics [81,82]. This has been used to determine copy number
variations (CNVs) in SCLC patients upon single-cell DNA sequencing [39]. Additionally, NanoArrays
have been developed for the single-cell analysis of NSCLC [83].

Finally, single-cell RNAseq approaches from CTCs have been successfully implemented for
different solid tumors, like breast and prostatic carcinoma [84,85], and should probably be in use also
for lung cancer in the near future [86].

2.3. Correlation between Cytopathological and Molecular Phenotypic Analyses

Some methods of detection of CTCs can visualize and identify the classical cytological criteria
of cancer cells that are routinely used in the laboratory for different cytological samples [60,61,87].
The identification of different diagnostic biomarkers (TTF1, p40) or of the predictive response to
a therapeutic (ALK, ROS1, PD-L1) can be correlated to these cytomorphological criteria, which
considerably increase the specificity and reliability of these methodological approaches [42,62–67,87].
Several studies have reported the extensive morphological heterogeneity of NSCLC CTCs. All the
cytological criteria of malignant cells, as well as other criteria and circulating “non-hematological”
cells without cytonuclear anomalies were identified. While considering the latter cells, the following
questions can be raised: Are they tumor cells? Are they cells with an invasive potential? Or are they
normal epithelial cells associated, or not, with CTCs [58,60,87]?

It has been therefore proposed to further categorize CTC in different classes, like disseminated
tumor cells (DTC), CTCs undergoing epithelial-to-mesenchymal transition (EMT) (EMTCTCs),
and cancer-associated macrophage-like cells (CAMLs), which will further challenge the precise
detection and characterization of CTCs [43,88–91].

While the heterogeneity is challenging for the successful identification of CTCs, it also has strong
implications on the prognosis, as especially CTCs with a mesenchymal phenotype might have a more
severe impact on spreading disease than CTCs with an epithelial phenotype [92–94].

3. What Are the Prospects?

One of the main hurdles facing the analysis of CTCs concerns the large number of methods that
have been developed to isolate and characterize CTCs. The number of techniques makes it difficult for
an operator to understand and choose a technique, particularly for routine clinical use. The selection
by an investigator of a technique is guided by several parameters: (i) the sensitivity and specificity,
(ii) the ease of use, (iii) a rapid turnaround time for getting results, (iv) the reproducibility, and (v)
the cost. To date, no method answers all these parameters to analyze CTCs in daily practice in the
domain of thoracic oncology. Hence, some one concern is improving the methods of detection and
characterization of CTCs to make them as competitive as the detection and characterization of cf-DNA,
which has been widely adopted in routine clinical practice. Since CTCs in blood are rare occurrences
(particularly in NSCLC patients), the optimization of CTC enrichment is essential. Progress in this
area will be achieved through a better understanding of the biology of CTCs and the discovery of
new specific biomarkers of CTCs, in particular, if they identify “viable” CTCs with aggressive and
metastatic potential.

A new avenue of biological investigation has recently emerged with the study of active interactions
between circulating hematological cells and CTCs [68,95]. These studies should lead to the discovery
of new mechanisms of resistance to cell death by CTCs and, thus, to novel therapeutic targets that
induce cell death [68,95].

As for the analyses performed with cf-DNA in plasma (analysis of mutations or of methylation),
or other blood biomarkers (plasma microRNA, auto-antibodies, fragments of complement, and plasma
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proteins), some recent studies suggest that CTCs may be early markers of lung cancer, which may
even be detected several months before radiographic emergence of the cancer [69–71,96]. However,
these approaches require (i) optimization of the cellular enrichment methods and characterization,
(ii) several independent studies, and (iii) inclusion of a large number of patients for validation.

Single-cell genetic and transcriptomic analyses must provide new information on very specific
molecular targets for novel therapeutics to be used in the context of personal medicine. Recently
developed technological approaches that are being evaluated may contribute to better characterization
of CTCs at the single-cell level [58,97]. These complex methodological developments should allow for
better understanding of the heterogeneity of CTCs among patients and for the same patient, as well as
for identification of CTCs from either primary or metastatic tumors. The molecular characterization
of CTCs may compete with or, more likely, provide important complementary information to that
obtained from circulating free nucleic acids. One of the obstacles lies in the heterogeneity of CTCs and
the variable expression of molecular markers depending on the cell (or cells) isolated [30,39].

Several studies indicate that comparison of the quantity of patient CTCs—at baseline and after
treatment—may be a good indicator of prognosis in SCLC [51,98]. Thus, for this pathology, aside from
the quantification of cf-DNA in plasma or, as reported more recently, of the tumor mutation load,
CTCs may be used, in routine practice as an indicator of the response of tumors to treatment.
The possibility of establishing CDX or cells in culture originating from CTCs, and thus of testing
therapeutic molecules ex vivo, may benefit the clinical follow-up and care of patients [54,77,78,98]. In a
similar manner, cell cultures of millions of cells obtained from CDX should facilitate their molecular
analysis [54]. One of the limitations of this approach is the time required to obtain CDX, which is not
compatible with care of the majority of patients from whom the CTCs were obtained.

Despite the number of promising studies on NSCLC, the use of CTCs in routine practice remains
hypothetical, in particular, for use as a prognostic biomarker. In fact, the quantification of CTCs in this
pathology strongly varies according to the techniques used for the same patient, which makes this
approach ineffective [33,38,45,99–102]. Moreover, the establishment of CDX is rather challenging for
NSCLC [102].

New techniques for detection and characterization of CTCs need to be continually evaluated and
examined, which may be difficult for an individual cohort of patients. The standardization of protocols
for the isolation, preparation, enrichment, and characterization of CTCs is a prerequisite to presenting
international ISO (International Organization for Standardization) norms before their routine clinical
use by thoracic oncologists.

4. Conclusions

In thoracic oncology, the use of CTCs is often associated with issues concerning translational
research that does not involve immediate use in routine practice. Thus, projects developed with CTCs
contrast with applications using plasma cf-DNA that have been employed for a number of years for
the care of patients, in particular, in the detection of activating mutations or mutations conferring
resistance in EGFR [2,8–10]. Until now, a number of technological hurdles prevented the transfer of
applications using CTCs into daily practice in thoracic oncology. Transfer to routine practice in real
life can only be achieved if solid benefit to the patients is demonstrated, such as choice of therapy
according to the number and type of CTCs as well as the expression of certain biomarkers of interest
and, more importantly, real benefit in terms of overall survival of patients.

Technological progress on the analysis of CTCs should lead not only to the discovery of novel
molecular targets for early diagnosis, but also to new prognostic and predictive biomarkers of the
response or resistance to therapeutics. One promising direction concerns the development of CDX,
allowing the expansion of tumor cells and their analysis in vivo, as well as the possibility of testing
new therapeutic strategies. However, the success of CDX depends on the number of isolated CTCs,
which is very low for certain histological types of lung cancer.
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The combined and simultaneous study of several elements of LB (CTCs, free circulating nucleic
acids, exosomes, proteins, etc.) may permit better assessment of the different phenotypes found using
LB, and the associated individual approaches to define reliable diagnostic, prognostic, and predictive
parameters [103,104]. Technological progress will permit the combination of different biomarkers
at the single-cell level, and will increase our knowledge of CTCs [105,106]. A continual increase in
different biomarkers for studying individual patients will evolve from more and more complex studies.
In addition, as recently emerging in other areas of medicine, artificial intelligence should rapidly
emerge and could integrate the different elements of LB, including CTCs [107,108]. Consequently,
CTCs certainly play a key role in this context but, operationally, require further development before
coming into daily routine use in thoracic oncology.
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Abstract: Non-small cell lung cancer (NSCLC) in non-, and especially in never-smoking patients is
considered a biologically unique type of lung cancer, since risk factors and tumorigenic conditions,
other than tobacco smoke, come into play. In this review article, we comprehensively searched
and summarized the current literature with the aim to outline what exactly triggers lung cancer in
non-smokers. Changes in the tumor microenvironment, distinct driver genes and genetic pathway
alterations that are specific for non-smoking patients, as well as lifestyle-related risk factors apart
from tobacco smoke are critically discussed. The data we have reviewed highlights once again the
importance of personalized cancer therapy, i.e., careful molecular and genetic assessment of the
tumor to provide tailored treatment options with optimum chances of good response—especially for
the subgroups of never-smokers.

Keywords: non-small cell lung cancer; non-smoker; tumor microenvironment; targeted treatment

1. Introduction

Lung cancer is the second most common incident cancer diagnosis in men, and the fourth most
common cancer diagnosis in women, accounting for most cancer-related deaths in both men and
women, with 1.7 million global deaths a year [1–3]. More than 85% of lung cancer cases are related
to a positive history of smoking (i.e., smoking-related or smoking-associated lung cancer). Smoking
leads to an accumulation of genetic alterations in oncogenes and tumor suppressor genes ultimately
causing cancer [4]. Previous reports and literature reviews have addressed the topic of lung cancer
in non- and never-smokers [5–12], and here we aim at providing a more updated review by going
into detail also with molecular, immunological and genetic aspects. In Asian countries the proportion
of never-smoking lung cancer patients is generally higher (up to 15%) [8]. Epidemiologic studies
show that never-smoking lung cancer patients are more often female, show an adenocarcinoma
(AC) histologic subtype and are often of East Asian ethnicity. Within the last decade, genome-wide
studies clearly indicated that the underlying tumor biology in lung cancers of non-smokers (meaning
never-smokers and patients with a negligible history of smoking and small likelihood that the tumor
was smoking-related) differs dramatically from smoking-related lung cancer, featuring a different
pattern of molecular alterations [10,13–17]. Another interesting finding in non-smoker lung cancer is
the fact that patients are significantly younger, have a better prognosis and respond to treatment better
than smokers with lung cancer [5,7,9,18]. The main reason for the favorable outcome in non-smokers
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is the occurrence of certain molecular subtypes (oncogene-addicted lung cancer), enabling the specific
treatment with Previous epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) or
other agents [19,20]. Such genetic alterations and patterns of mutation that are specific for lung cancer
have primarily been outlined for AC, whereas no genetic mutations have been linked to squamous cell
carcinoma (SCC) specifically, especially not for non-smokers [4].

Generally spoken, environmental tobacco smoke at home or at the workplace [21], radon [22],
cooking oil vapor [23], indoor coal burning, hormonal replacement therapy [20], exposure to
asbestos/heavy metals [6], infectious factors and air pollution have been linked to lung carcinogenesis
in non-smokers [24,25].

It has also been proposed that lung cancer in smokers versus non-smokers is characterized by a
distinct tumor microenvironment [26]. Tobacco smoke causes DNA damage in cells of the bronchial
epithelium which causes dysfunction in the immune system of the lung. Immune cells that infiltrate
the tumor are likely to influence survival, and possibly response to treatment. However, the role of
the tumor microenvironment with a special emphasis on immune cells has not been widely studied
yet [26]. In the next sections, we will highlight and discuss the knowledge of distinct molecular
and epidemiological differences between lung cancer in never-smokers with a special emphasis and
separation between different lung cancer histology.

2. Squamous Cell Carcinoma in Non- or Never-Smokers

In 2017, Park and colleagues performed a study to identify potential genetic alterations specific for
squamous cell carcinoma (SCC) in non-smokers [4]. For that purpose, an Array comparative genomic
hybridization (ArrayCGH) analysis was conducted in 19 patients suffering from SCC. Previous CGH
analyses have shown that amplification of chromosome 3q25-qter frequently occurs in SCC [27].
Among the 19 SCC patients that were studied by Park et al., there were eight non-smokers compared
to 11 smokers. Sixteen gene regions were significantly altered, according to ArrayCGH. Three gain
(5p15.33, 8q24.21, and 11q13.3) and four loss regions (4q35.2, 9p21.3, 10q23.31, and 15q11.2) were found,
that also overlapped with data from The Cancer Genome Atlas (TCGA) which contains data on copy
number variations in SCC [28]. The investigators identified 15 genes within the significantly altered
regions, that have also been reported in the Cancer Gene Census (ATM, CCND1, CDKN2A, DUX4L1,
EZH2, FOXP1, LRIG3, MEN1, MITF, NRG1, NUMA1, PTEN, TERT, WHSC1L1, and WRN) [29]. The
proto-oncogene GAB2 (11q14.1) was found to be frequently amplified in non-smoking patients [4]. To
secure this finding, protein expression of GAB2 was investigated by means of immunohistochemistry,
and the protein was also found to be upregulated in tissues of non-smokers as compared to smokers
(37.5% vs. 9.0%, p = 0.007) [4]. Thus, GAB2 amplification is likely to contribute to SCC development in
the subgroup of non-smokers, and may also serve as a biomarker in the near future.

An interesting case report of a non-smoker female patient with SCC of the lung favors a
genomics-, proteomics- and metabolomics-based approach to treatment, highlighting the importance
of personalized medicine especially in non-smoking individuals [30]. The Caucasian female patient
developed SCC in the absence of smoking, and with no history of asbestos exposure. The patient’s
father, who was a smoker, died from lung cancer at age 63; apart from that, no family history of cancer
was known. The tumor was surgically removed shortly after diagnosis, and at pathologic examination
the SCC featured a unique, mainly perialveolar and perivascular growth pattern. There was positive
immunostaining for p63 and cytokeratin (CK) 5/6, whereas CK7, thyroid transcription factor 1,
synaptophysin and chromogranin were all negative. Ki67 proliferation marker immunostaining
showed 20 percent positive cells [30]. Interestingly, this patient had undergone surgical resection of a
SCC of the head and neck region two years prior to diagnosis of the lung SCC. According to in-depth
pathological assessment it was stated that these two tumors were two distinct entities of SCC, and
that the lung tumor was not recurrent disease of the head and neck SCC. The patient is still alive
two years after the lung tumor resection, and four years after the resection of the SCC at the neck. In
this special case, analysis of certain somatic driver mutations was carried out. A predominance of
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C>T transitions in tumoral lung tissue was found, not corresponding to the specific cancer signature
usually correlating with tobacco smoking (characterized by an abundance of C>A transversions).
Pathway analysis showed that mutations in the SCC tissue predominantly affected genes involved in
extracellular matrix organization (p = 0.005), transmembrane transport of small molecules (p = 0.010)
and collagen formation (p = 0.034). Mutations in these pathways have previously been reported in a
study on whole exome sequencing in lung cancer [31]. Interestingly, in this case no mutations in the
most frequent lung cancer driver genes, namely EGFR, KRAS, AKT and ROS1 were present in the tumor
sample, and neither was the EML4-ALK fusion gene [30]. The authors then used a combination of next
generations sequencing (NGS) techniques to test the hypothesis that in this case of a never-smoking
female, the lung carcinoma was of oligogenic origin. Among the 11 germline-mutated cancer-related
genes, two (ACACA and DEPTOR) are known to be associated with common driver genes: ACACA
is associated with BRCA1, and DEPTOR with EGFR. One particular missense variant in the ACACA
gene (c.C1948T, p.Arg650Trp (NM_198837.1, exon 16)) has been predicted as deleterious, leading to a
loss of function of Acetyl-CoA carboxylase alpha which is a crucial enzyme for long-chain fatty acid
synthesis [32]. The authors of this case report conclude that both primary SCC tumors which the patient
developed were triggered by a special oligogenic germline signature consisting of at least 11 mutations,
two of them leading to the activation of mTOR and BRCA1 [30]. A proteomic/genomic/metabolomic
sequencing approach is thus particularly useful to find personalized treatment strategies and accurate
estimations of prognosis, especially in patients that lack common risk factors for a certain cancer
species, e.g. tobacco smoking for lung cancer. However, it must be pointed out that this report has a
clear limitation, because tissue from only one individual was analyzed. In the future, more sequencing
data of tissue samples from never-smoker lung cancer patients would be of use to find out more about
genetic patterns in this special subgroup of patients.

In another interesting study, the effect of the programmed death 1 (PD-1)-receptor targeting
checkpoint inhibitor nivolumab in never-smokers with advanced squamous non-small cell lung cancer
was investigated [33]. Data on the general response to immunotherapy in non-smokers is controversial:
some studies have shown better response rates, whilst other analyses showed that never-smokers
seem to benefit less from immunotherapy than smokers. In this study, the authors aimed to analyze a
cohort of never-smokers with advanced SCC in-depth with respect to their response to nivolumab.
Nivolumab was administered in 371 patients at a dosage of 3 mg/kg every 2 weeks for a maximum
of 24 months, and safety was monitored [33]. Among the cohort there were 31 never-smokers (8%).
The objective response rate, disease-control rate, and the median overall survival were 23%, 45%,
and 12.1 months (95% confidence interval: 3.7–20.4), respectively, in never-smokers, and 18%, 47%,
and 7.9 months (95% confidence interval: 6.2–9.6), respectively, in the whole population analyzed.
Any-grade and grade 3–4 treatment-related adverse events (AE) were reported in 12 (39%) and 3 (10%)
never-smokers, respectively, and in 109 (29%) and 21 (6%) patients of the total group, respectively.
Treatment had to be discontinued due to side effects in 4 non-smokers, and in 26 patients overall [33].
Summing up this report, in the pre-treated never-smokers suffering from advanced SCC, safety and
efficacy of nivolumab treatment were similar and consistent to the overall study population as well as
to previous reports on nivolumab. According to this analysis, there is no evidence that never-smokers
might benefit less from nivolumab as compared to smokers.

3. Adenocarcinoma in Non- or Never-Smokers: Patient Characteristics

Starting again with a case report, we discuss an article about a never-smoker female lung cancer
patient with multifocal lung AC, where morphological and genetic heterogeneity was assessed [34].
The patient presented with three lung nodules occurring at different time points, which were surgically
removed. Unfortunately, the patient relapsed, and was subsequently treated with an EGFR-directed
tyrosine kinase inhibitor (TKI), since EGFR exon 21 mutation had been detected. Progression free
survival upon treatment with the TKI lasted for three months and was continued for six months,
until clinical progression [34]. Tumor samples were then analyzed by means of a 30-gene NGS-gene
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panel, allowing for the evaluation of intra- and inter-tumor heterogeneity. Interestingly, the three lung
tumors were confirmed independently according to NGS. The synchronous tumor samples featured
different molecular profiles. Identical EGFR, PIK3CA and TP53 mutations were found in one of the
three primary tumors and in the metastasis that occurred later [34]. The patient in this case report may
have a certain genetic cancer predisposition, which may explain the independent lung ACs, limited
response to treatment and the fact that she was a never-smoker. In a review article by Okazaki et al.,
it was stated that genes commonly associated with the metabolic syndrome overlapped with genes
frequently mutated in AC in never smokers [35]. Moreover, the incidence of AC is obviously increasing
worldwide, and generally AC is more prevalent in never-smokers than any other histologic lung cancer
type. All these findings lead to further questions, e.g. whether lung AC is a different disease than
non-AC lung cancers, why there is an obvious female predisposition and what prevention strategies
exist [35].

Recently, Li and colleagues conducted an integrative analysis where they included 11 lung cancer
gene-expression datasets that provide data from 1111 lung AC and 200 samples of adjacent normal
tissue [26]. According to this study, distinct pathways were altered in ever-smokers, and different
pathways in never-smokers. Never-smokers had a better outcome as well. In the course of this
study, compositional patterns of 21 types of immune cells in lung AC were characterized, revealing
complex and multilayered associations between the composition of immune cell subtypes and clinical
outcome [26]. Two subsets of immune cells, namely mast cells and CD4+ memory T cells were
found to have completely opposite associations with outcome in resting, as compared to activated
status. Resting mast cells (defined by not having undergone degranulation), which were found to be
decreased in numbers in tumor samples, compared with adjacent normal tissue, were predictors of a
favorable outcome, but macrophages, activated mast cells (mast cells after degranulation) and activated
CD4+ memory T cells that were enriched in the carcinoma samples predicted a poor prognosis [26].
Differences in the composition of immune cell types were found in never- and ever-smokers: there
were more resting mast cells in never-smokers, and more resting CD4+ memory T cells as well,
these being associated with a better outcome. In ever-smokers, there were more activated mast
cells and CD4+ cells, which correlated with a generally worse prognosis. What’s more, a variety
of chemokines and associated chemokine receptors (e.g., the CKCL11-CXCR1 axis) were selectively
mutated in smoking-associated lung cancers, and these alterations also correlated with the status
switch of immune cells from resting to the activated form. Taken together, these findings indicate
unique changes in the lung cancer microenvironment that are caused by tobacco smoke, altering the
intrinsic immune system of the bronchi. It is thus very likely that certain patterns of immune cell
dysfunction lead to a worse prognosis especially in lung cancer patients who continue smoking [26].

The role of metabolic syndrome in lung AC, especially in non-smoking patients, is currently
under intensive exploration: Yang and colleagues did a survey on body mass index (BMI) and
waist circumference in a prospectively studied population of women aged 55–69 years, who were
followed up for 13 years. It was significant (p < 0.15) that patients with lung cancer had higher
waist circumferences [36]. According to another investigation where the pattern of adiponectin
quantitative trait loci (QTLs) in association with gene expression correlation was analyzed, genes
related to metabolic syndrome were found also to contribute to cancer formation [37]. EGFR, VTL1A,
TNFRSF10C, C3ORF21 and hyper-methylation of TNFSF10C, BHLHB5, and BOLL are involved in both
lung AC formation and pathways related to metabolic syndrome, according to genome wide association
studies (GWAS) [5,35]. The link between the metabolic syndrome and lung AC in non-smokers is
also supported by Mazieres and colleagues who examined 140 female AC patients, amongst them 63
never-smokers and 77 former or current smokers [38]. In never-smokers, histology showed lipidic
features (lipid droplets inside cancer cells; not to be confounded with a lepidic growth pattern of
NSCLC) significantly more often (60.3% vs. 37.7%, p = 0.008) as compared to smokers. It is common
knowledge that obesity, a predominantly sedentary lifestyle, too much alcohol consumption and
a diet high in—especially saturated fatty acids - lead to metabolic syndrome but is also associated
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with a higher incidence of malignant disease in general [39,40]. A frequent complication of metabolic
syndrome is type-2 diabetes, which increases the risk of lung cancer, most of all for females (relative
risk for women with diabetes = 1.14) [41].

4. Physical Inactivity

Cannioto et al. investigated the association of physical inactivity with lung cancer [42]. Since it has
been proven for many types of malignant disease that lifetime inactivity goes along with an increased
cancer risk, the authors wanted to show whether this holds true also for lung cancer, independently
of other risk factors such as smoking. In this hospital-based, case-control study, data from 660 lung
cancer patients and 1335 matched controls, who did not suffer from any malignant disease, were
analyzed [42]. Multivariate logistic regression analysis was used to assess the association between a
primarily sedentary lifestyle and the risk of lung cancer. Furthermore, Cox proportional hazard models
were utilized for a calculation on how closely lifetime physical inactivity and mortality among lung
cancer patients is related. Not surprisingly, a significant positive correlation of physical inactivity and
lung cancer risk was observed [Odds ratio (OR) = 2.23, 95% confidence interval (CI): 1.77–2.81]. Among
never-smokers (OR = 3.00, 95% CI: 1.33–6.78) and former smokers (OR = 3.00, 95% CI: 1.33–6.78)
the association was significant as well. The authors also described a significant positive correlation
between lifetime physical inactivity and the mortality from lung cancer [Hazard ratio (HR) = 1.40,
95% CI: 1.14–1.71]; here the association remained significant also for the non-smoking patients [42].
A different study published in 2017 also evaluated the impact of physical activity on lung cancer
risk. It has already been shown in numerous studies that regular physical activity decreases lung
cancer risk; the risk reduction has been reported to range from 20 to 50% when the most active study
participants were compared to the least active individuals [43]. Being either underweight or obese
also increases lung cancer risk, following a nonlinear inverted U-shaped relation [43]. It has to be kept
in mind though, that an active lifestyle and regular exercise often means less likelihood to engage
in smoking. Thus, Patel and colleagues especially stratified for smoking status when investigating
physical activity and lung cancer; also because smokers tend to be not only less active, but on average
also have a lower body-mass-index as compared to non-smokers. Data of 162679 men and women from
the American Cancer Society Cancer Prevention Study-II Nutrition Cohort were analyzed, who were
all free of cancer at enrollment in this study (1992–1993) [44]. Baseline physical activity (MET-hours
per week; none, 0.1 to < 8.75; 8.75–17.4; >17.5 MET-hours/week), baseline body mass index and
waist circumference were assessed in relation to lung cancer risk [43]. Risk stratification for smoking
history, years since quitting among former smokers and adjustment for other possible confounders
was carried out. During the follow-up time of 2,384,546-person years, 4669 men and women were
diagnosed with lung cancer (453 never smokers, 1452 current smokers and 2764 ex-smokers) [43].
Interestingly, physical activity was not associated with lung cancer risk in this large analysis within
any of the smoking strata, except in former smokers who quit less than 10 years ago (RR = 0.77; 95%
CI 0.67–0.90 for >17.5 MET hours/week). BMI was inversely associated with lung cancer risk in a
similar way, also in the former-smoking group who quit <10 years (RR = 0.68; 95% CI 0.55–0.84 for
>30 kg/m2). The authors clearly conclude that—although evidently protective against a variety of
cancer subtypes—physical activity may not lower the risk for lung cancer [43].

5. Asbestos and Radon

Although uncommon causes of lung cancer per se, occupational carcinogens and radon can
sometimes contribute to lung carcinogenesis. In the literature, no data on this topic addressing
specifically the non-smoking population, can be found—most probably due to the fact that most cases
of lung cancer where occupational carcinogens also play a role, do occur in individuals who smoked
as well. A study has been done on the occurrence of radioactive radon gas, generated from uranium
and thorium in underlying rocks and seeps, in Norwegian buildings [45]. Radon gas and its decay
products emit radiation that promotes lung carcinogenesis, and in people exposed to radon, this is
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considered the second most important risk factor for lung cancer, directly after tobacco smoke. In
Norway, average radon concentrations in buildings are higher than in most industrialized countries.
Hassfjell et al. have estimated the radon-related risk of lung cancer in Norway, using data from the
largest pooled European analysis of case-control studies, combined with the largest set of data on
radon concentration measurements in Norwegian homes. According to this data, it was calculated that
radon gas contributes to about 12% of all cases of lung cancer annually in Norway; meaning that in the
year 2015 for instance, in 373 cases of lung cancer radon was a contributory factor [45]. However, the
authors clearly state that in most lung cancer cases, former or current tobacco smoking was still the
main risk factor.

Asbestos is an occupational carcinogen that also endorses lung cancer formation, though
asbestos is usually known for causing pleural mesothelioma. Accumulating evidence has highlighted
the role of epigenetic deregulation caused by asbestos exposure, and thus in 2017 Kettunen et
al. did a genome-wide DNA-methylation analysis, investigating the impact of asbestos on DNA
methylation [46]. The researchers used "Illumina HumanMethylation450K BeadChip" for methylation
analysis in 28 samples of lung cancer tissue. Also, in this study, the majority of patients investigated
were smokers [46]. Differentially methylated regions (DMR), as well as differentially methylated CpGs
(DVMC) were identified, with individual CpGs being evaluated in-depth by pyrosequencing in an
independent series of 91 NSCLC samples and corresponding normal lung tissue. BEND4, ZSCAN31
and GPR135 were found to be significantly hypermethylated in asbestos-associated NSCLS. DMRs in
the genes RARB, GPR135, and DVMCs in the genes NPTN, NRG2 and GLTs5D2 (amongst others) were
significantly associated with asbestos exposure (comparing exposed vs. not-exposed tumors). The
authors of this study also compared DVMCs related to asbestos or positive smoking history, and found
that 96% of the elements were unique to either of the exposures, suggesting that the methylation pattern
is strongly influenced by the specific risk factor. This data suggests, that epigenetic changes may be
influenced by environmental risk factors very strongly, and that asbestos causes different changes than
tobacco smoke alone [46]. Another interesting analysis aimed at outlining altered micro RNA (miRNA)
expression in NSCLC upon exposure to asbestos [47]. Generally, it is known that altered miRNA
expression is an early step in carcinogenesis when occupational and environmental carcinogens come
into play. The authors sought to identify an asbestos-related profile of miRNA changes, able to discern
asbestos-induced NSCLC from cancer with a different etiology. Four groups of patients were included
in this study: those with asbestos-related NSCLC, asbestos-unrelated NSCLC, subjects with malignant
pleural mesothelioma, and healthy individuals. Four serum miRNAs (miR-126, miR-205, miR-222 and
miR-520g) were significantly associated with asbestos-related NSCLC, or mesothelioma [47]. Increased
expression of miR-126 and miR-222 are both involved in major cancer-promoting pathways. The
authors suggest that epigenetic changes caused by asbestos, as well as cross-talk between cancer- and
stroma-cells could lead to the repression of miR-126 which promotes tumor growth, angiogenesis
and invasion. It is concluded that miRNAs are potentially involved in asbestos-related malignant
disease, influencing specific mechanisms whereby asbestos promotes cancer formation—and these
mechanisms may also differ from the conventional tobacco-smoke related ones.

6. Immunological Changes: Tumor Microenvironment in Never-Smokers

In never-smokers, the immunologic homeostasis within the tumor microenvironment seems to be
less compromised when compared to ever-smokers [26]. Notably, not all immune cells impact lung
carcinogenesis in a similar way: inflammatory cells are recruited into the lung as a result of tobacco
smoking. On the one hand these cells are helpful because they are trying to minimize the damage which
is done by the carcinogenic substances, on the other hand, however, the immune cells may weaken the
bronchial epithelial cells and cause harmful pro-inflammatory and immune reactions [48]. When a
tumor arises, the immune cells are also part of the harmful tumor microenvironment and can even
contribute to tumor growth, invasion and metastatic spread [49]. This is proven by certain biologicals
that have recently been established as targeted treatment options for lung cancer, targeting for instance
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cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) (ipilimumab), or PD-1-receptor and PD-1 ligand
(PD-L1) which are targeted by nivolumab and atezolizumab [49]. It has been reported according to a
study published in 2018, that 17 out of 20 investigated pathways of carcinogenesis, related to immune
response, were altered in a different way in AC of never-smokers as compared to ever-smokers [26].
Compositional differences of 14 kinds of immune subsets between tumors and normal samples were
reported, and the composition of leukocyte subtypes correlated strongly not only with smoking history,
but also with outcome [26]. M0 macrophages and total macrophage count strongly correlated with a
poor prognosis. Furthermore, the immune score of CD8+ T cells was associated with a more favorable
prognosis. Although it has been shown in ovarian- and breast cancer that CD8+ T cells usually
mean a better outcome [50], in lung AC the results were controversial: in stage IV NSCLC patients
undergoing chemotherapy, CD8+ T cells also correlated with a better prognosis [51], but some other
studies suggested no influence of CD8+ T cells on NSCLC survival whatsoever [52,53]. Numerous
studies have already shown how strongly immune reactions are associated with carcinogenesis. Either
the immune system is capable to protect against cancer progression, or it can enhance tumor growth,
invasion and metastasis by negatively influencing the tumor microenvironment and weakening the
surrounding healthy cells. Thus, it is very likely that smoking, which obviously alters the immune
system in the bronchi long before carcinogenic effects are observed, allows for specific changes in the
cancers of smokers, featuring ultimately a different microenvironment as compared to lung cancers
of never-smokers.

7. Anaplastic Lymphoma Tyrosine Kinase -Rearrangement in Lung Adenocarcinoma in Non- and
Never-Smokers

Targeted therapy has become a well-established therapeutic tool for the treatment of lung cancer.
In tumors featuring anaplastic lymphoma tyrosine kinase (ALK)-rearrangement, agents like crizotinib,
ceritinib, alectinib, brigatinib and lorlatinib are valid treatment options, hence a correct molecular
profiling of newly diagnosed tumors is of great importance [54,55]. Frequently, ALK rearrangements
result from inversions on chromosome 2p [inv(2)(p21;p23)] which leads to a fusion of ALK with the
echinoderm microtubule-associated protein-like 4 (EML4) gene [56]. The gold standard to evaluate
ALK-rearrangement is by fluorescence in situ hybridization (FISH). In a study by Williams and
colleagues, the aim was to assess the prevalence of ALK-rearrangements in lung AC samples of lifetime
non-smokers, as well as long-term ex-smokers (quit > 10 years prior to diagnosis) [57]. According to
the literature, ALK gene rearrangement is found in 2–5% of all non-small cell lung cancers, being more
common in lifetime non-smokers with adenocarcinoma as compared to smokers with adenocarcinoma,
or squamous cell carcinoma. However, accurate assessment of ALK-rearrangement in long-term
ex-smokers has not been done before the year 2016 [57]. The authors enrolled 251 cases of resected
lung AC samples, including 79 non-smokers and 172 ex-smokers who had quit smoking for over 10
years [57]. ALK-rearrangement was evaluated via FISH, and immunohistochemistry (IHC) as well.
Four out of 251 cases featured ALK-rearrangement. All of these four were non-smokers. In samples
of long-term ex-smokers, no ALK-rearrangements were observed [57]. The analysis revealed strong
evidence of an increased prevalence of ALK gene rearrangement in the non-smoking population, as
compared to the general population of lung adenocarcinoma patients. Interestingly, there was no
significant difference in ALK-rearrangement between the ex-smokers and the general population of
patients with resected lung AC. This study confirmed that ALK-rearrangement is more common in
non-smoking patients suffering from lung adenocarcinoma. However, the incidence reported in this
analysis is uncommonly low (5.1% in non-smokers; 1.6% overall) when compared to previous reports.
This is presumably due to the circumstance that most samples were early-stage, resected lung cancers;
since it has been shown that ALK-rearrangements tend to occur more often in advanced, mainly stage
IV, cancers [58].

89



Cancers 2019, 11, 204

Overall, the occurrence of the ALK-translocation in lung AC of never-smokers clearly indicated
that the patho-mechanism is based on a single genetic driver rather than on an accumulation of genetic
lesions in a variety of cancer genes, as it is the case in smoking-related AC.

8. Conclusions

The data which we have summarized above indicates that NSCLC in non-, especially in
never-smokers, is a distinct tumor entity featuring a different tumor biology and microenvironment as
compared to tobacco associated lung carcinomas. We have summarized key findings of the studies
mentioned in the table below (Table 1).

From the epidemiological perspective, other risk factors such as metabolic disorders may play a
role, as well as germline mutations that lead to cancer formation in certain individuals independent
from lifestyle and exposure to carcinogens. The take-home message of this short literature review is
the paramount importance of personalized medicine, in-depth molecular assessment and targeted
treatment options especially in never-smoking patients suffering from lung cancer, since their tumors
differ distinctly in molecular pathology, prognosis and response to treatment in comparison to
"conventional" smoking-associated tumors.
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Abstract: Early-stage treatment improves prognosis of lung cancer and two large randomized
controlled trials have shown that early detection with low-dose computed tomography (LDCT)
reduces mortality. Despite this, lung cancer screening (LCS) remains challenging. In the context of a
global shortage of radiologists, the high rate of false-positive LDCT results in overloading of existing
lung cancer clinics and multidisciplinary teams. Thus, to provide patients with earlier access to
life-saving surgical interventions, there is an urgent need to improve LDCT-based LCS and especially
to reduce the false-positive rate that plagues the current detection technology. In this context, LCS
can be improved in three ways: (1) by refining selection criteria (risk factor assessment), (2) by using
Computer Aided Diagnosis (CAD) to make it easier to interpret chest CTs, and (3) by using biological
blood signatures for early cancer detection, to both spot the optimal target population and help
classify lung nodules. These three main ways of improving LCS are discussed in this review.

Keywords: lung cancer; artificial intelligence; screening

1. Introduction

Lung cancer (LC) is the leading cause of death from cancer, but early-stage treatment improves LC
prognosis. The National Lung Screening Trial (NLST) demonstrated that annual LC screening (LCS)
with low-dose computed tomography (LDCT) reduced mortality by 20% compared to controls [1]
(Table 1). More recently, the Dutch–Belgian NELSON lung cancer screening trial presented in
September 2018 at the International Association for the Study of Lung Cancer (IASLC) 19th World
Conference on Lung Cancer (WCLC) in Toronto, Canada, showed reduced mortality by more than 25%
in the LDCT arm compared to the control arm [2] (Table 1). Based on the NLST results, the United
States Preventive Services Task Force (UPSTF) issued recommendations for LCS of people meeting the
NLST criteria. The Centers for Medicare & Medicaid Services (CMS) decided to provide coverage for
LCS in smokers aged 55 to 77 years with more than a 30-pack-years smoking history and who had not
quit within the last 15 years [3,4]. Low-dose computed tomography is now the cornerstone of LCS in
North America and Australia. Given the confirmatory results of the NELSON screening trial [2], it can
be assumed that LDCT screening will be approved in Europe and that health authorities will very soon
provide coverage for LDCT-based LCS [5,6], as for breast cancer (mammography) and colon cancer
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(colonoscopy). However, despite Medicare and Medicaid coverage, the take-up of LCS in the US
remains very low (i.e., below 4%) [7–9]. The reasons for such a low take-up of LCS include: (1) patients
not wanting screening (fatalism mentality in the elderly, stigma associated with LC, poor lifestyle
choice); (2) patients’ awareness (i.e., less than breast cancer screening); (3) physicians not referring
(difficult recall of smoking history, controversies among primary care societies, controversies among
health agencies); and (4) a high false-positive rate requiring cumbersome follow-up [8–10]. Among
these reasons, some are related to the practicality of LCS. In this respect, the need for repeated imaging
and downstream diagnostic evaluations related to a high false-positive rate of LDCT (ranging from 26
to 58%) [1,7] is responsible for needless anxiety of patients and their family. In the Veterans Health
Affairs (VHA) study, up to 52% of the screened patients who did not have LC required downstream
diagnostic procedures [7].

Table 1. Summary of the National Lung Screening Trial (NLST) and the NELSON trials.

NLST NELSON

Country USA BE/NL

Enrollment 2002–2004 2003–NR

Number of Centers 33 4

Number of screens 3
Screening planned at years 1, 2 and 3 1, 2 and 4

Comparison LDCT vs. Xray LDCT vs. usual care

Population
Age 55–74 50–69 (50–75)
Smoking (pack-years) ≥30 >15 *
Sex both (male 59%) men º (male 84%)
Years since quit ≤15 ≤10
Patients Screened, n 26,722 vs. 26,732 7907 vs. 7915
Planned follow-up, y >7 10

Nodule Size warranting
Follow-up 2011

2009

 
+ VDT

2014 ≥100 mm3

(≥5 mm)
+ VDT

LC diagnosed at screening, % 1.02 0.9

5 mm Reduction of LC mortality 20% 26% a

*, ≥15 cigarettes/day for 25 years or ≥10 cigarettes/day for 30 years; º, both in Belgium; VDT, volume doubling
time; a, in men.

The global shortage of radiologists facing a growing and aging population in Europe will quickly
overload existing LC clinics and multidisciplinary teams. In addition, the high rate of false-positive
results will lead to cumbersome follow-up and surveillance of incidental pulmonary nodules. Thus,
there is urgent need to improve LDCT-based LCS, and especially to reduce the false-positive rate that
plagues the current detection technology, to provide patients earlier access to life-saving intervention.

2. Lung Cancer Screening Can Be Improved

Lung cancer screening can be improved in several ways: (1) refine selection criteria (risk factor
assessment); (2) use Computer-Aided Diagnosis (CAD) to make it easier to interpret chest CTs; (3) use
biomarkers to detect early-stage LC, to spot the optimal target population or to help classify lung
nodules; and (4) use highly sensitive bronchoscopic techniques to enhance the detection rate of central
airway lesions.
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2.1. Refine Selection Criteria to Improve the Effectiveness and Efficiency of Lung Cancer Screening

The following terms must be defined here: 1) screening effectiveness, which is the number
needed to screen (NNS) per LC death prevented, and 2) screening efficiency, which is the number of
false-positive results and downstream diagnostic procedures per LC death prevented (a surrogate of
harm-to-benefit ratio).

Risk-based selection improved LCS effectiveness by 17% as compared to UPSTF screening
criteria [11]. A similar conclusion was drawn by Caverly et al., who relied on the Bach risk model [12,13]
in the VHA study and found an NNS per LC death prevented ranging from 687 in the highest risk
quintile to 6903 in the lowest risk quintile [12]. Risk-based selection can also improve the LCS efficiency.
In the VHA study, although the harm (overall rates of false positives requiring tracking or requiring
downstream evaluations) did not differ between low- and high-risk quintiles, LCS was much more
efficient in the high-risk quintile [7,12].

2.2. Use Computer Aided Diagnosis for Low-Dose Computed Tomography Interpretation to Facilitate Lung
Cancer Screening and Lessen the False-Positive Rate

The interpretation of LDCT may be difficult in the setting of LCS. The simple algorithm design
should be based on two questions surrounding the key lesion detected with LDCT (i.e., lung nodule):
(1) “Does this individual have a nodule?” If the answer is “no”, then he/she will be given an
appointment for the next screening round; (2) if the answer is yes, then the second question is
“Is this nodule cancerous?” Depending on its features, the nodule will be classified as malignant (M),
benign (B), or indeterminate (I) (Figure 1). Figure 2 exemplifies the range of difficulties encountered by
physicians of LC clinics in the setting of LCS. Lung cancer screening takes time when relying on LDCT
alone. Indeed, most decision-making algorithms for lung nodules advocate a repeat CT to study the
volume-doubling time (VDT), a datum which, combined with the morphology of the nodule, has the
most determinant weight to decide whether or not to go to invasive procedures including surgery [14].

Figure 1. “I” nodules, the “grey zone” of lung cancer screening.
To exemplify the stress and anxiety generated by the discovery of a lung nodule, one can look at

the VHA experience in which 56% of the nonmalignant nodules required tracking and took an average
of more than a year for the patient to be reassured (or not) of the nature of their nodule.

Deep convolutional neural networks (CNNs) have been successfully developed in the field
of medical image analysis over the past five years and can be specifically trained for lung nodule
detection and reduction of false positivity. CAD systems for LCS involve two steps: (1) detection of
pulmonary nodules (which often includes lung segmentation, nodule detection, and segmentation);
and (2) diagnosis of their malignancy based on the analysis of a set of features, such as volume, shape,
VDT, and density gradient of each nodule (Figure 3). Currently, there are many studies about the first
step, but few about the second step [15,16]. Convolutional neural networks are trained on publicly
available databases (Table 2) and then tested on different datasets.
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Figure 2. Six lung cancer screening cases illustrating to what extent interpretation of low-dose
computed tomography may be difficult. NSCLC: non-small cell lung cancer; GGO: ground
glass opacities.

 

Figure 3. Architecture of computer-aided diagnosis systems for lung cancer screening. t1: first
screening round. t2: follow-up.
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Table 2. Publicly available databases for lung cancer screening.

Kaggle Luna16 NLST COPDG Gene LTRC

Number 1397 888 >1000 >1000 >1000

Date
2002–2004 to

2009 Start 2008

Available
without

registration
Yes Yes No No No

COPD * cases Yes Yes

Ground truth

Cancer/no
cancer one year

after the CT
scan

x, y, z
coordinates

and diameter of
nodules

Image data Yes Yes Yes Yes Yes

Cohort level
“high-risk
patient”

Age 55–74
>30 years
smoking
history

<15 years since
quitting

Age 45–80
>10 pack-years

smoking
history

“Most donor
subjects have

interstitial
fibrotic lung

disease or
COPD”

Average age 60

Individual
level

Questionnaire:
living

condition,
family history.

Cancer
diagnosis:

location/tumor
size

Subject
phenotype:

living
condition,

gender, medical
history,

comorbidities,
physical

characteristics
. . .

Clinical and
pathological
diagnoses,
pulmonary

function tests,
living

condition,
exercises tests

. . .

Biological data Lung tissues SNP genotype Blood and lung
tissues

* Chronic obstructive pulmonary disease (COPD); CT: computed tomography; SNP: single
nucleotide polymorphisms.

Training databases include: (1) chest CTs with annotated nodules, such as the Lung Nodule
Analysis 2016 (LUNA16) dataset, which is a collection of 888 axial CT scans of the patients’ chest
cavities taken from the Lung Image Database Consortium image collection (LIDC/IDRI) database [17];
in total, 1186 nodules were annotated across 601 patients; and (2) chest CTs labeled as “with cancer” if
the associated patient was diagnosed with cancer within one year of the scan, and “without cancer”
otherwise. Once trained, the CNN output provided a probability of malignancy between 0 and 1
(Figure 4).
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Figure 4. Training CNN for lung cancer screening.

The 2017 Kaggle Data Science Bowl was a critical milestone in support of the National Cancer
Institute Cancer Moonshot by convening the data science and medical communities to develop LCS
algorithms [18]. Using a dataset of 2101 high-resolution lung scans provided by the National Cancer
Institute and labeled as “with” or “without cancer”, the 1972 competing teams have developed
algorithms to accurately determine when lesions in the lungs were cancerous. Liao et al. won this 2017
Data Science Bowl by proposing the first volumetric end-to-end 3D CNN for 3D lung nodule detection
and characterization with an AUC of 87% on the blinded test set [19].

2.3. Use Blood Biomarkers in the Setting of Lung Cancer Screening

Different tumor-derived components can be detected and isolated from blood samples, including
circulating tumor cells (CTCs), circulating cell-free tumor DNA (cftDNA), cell-free tumor RNA
(cftRNA), exosomes, and tumor-educated platelets (TEP) [20,21] (Figure 5). These components can be
used as biomarkers: (1) to detect early stage LC; (2) to spot the optimal target population for LCS; or
(3) to help classify indeterminate lung nodules.

Figure 5. Tumor-derived components that can be used in the setting of lung cancer screening. TEP:
tumor-educated platelets; miRNA: microRNA.

2.3.1. Biomarkers to Detect Early-Stage Lung Cancer

We previously showed that in high-risk patients (i.e., Chronic Obstructive Pulmonary Disease
(COPD) and heavy smokers), circulating tumor cells (CTCs) detected with the isolation by size of
epithelial tumor cell (ISET) technique (RARECELLS, Paris, France) could be detected in patients with
COPD without clinically detectable LC up to four years before LC was identified on LDCT [22]. The
CTCs detected had a heterogeneous expression of epithelial and mesenchymal markers, and some
specific antigens (such as TTF1), which were similar to the corresponding phenotype of the lung
tumor [23]. No CTCs were detected in control smoking and nonsmoking healthy individuals. From
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these preliminary results, we demonstrated for the first time that in high-risk patients, CTCs can be
detected very early in the course of LC. We therefore launched a national prospective cohort study (the
AIR study) to assess the role of CTCs in LCS in a high-risk population, that is, patients with COPD,
heavy smokers, and >55-year-old patients (NCT02500693) [24].

In addition to CTCs, a more or less complex signature of the plasma microRNA (miRNA) has
been shown to be associated with localized or metastatic LC [25–27]. More recently, studies have been
performed on populations with a high risk of developing LC but without a known cancer. In particular,
Sozzi et al. identified a signature of plasma microRNAs that showed an excellent predictive value
for LC in a high-risk population [28]. In this latter study, the authors showed that the addition of a
24-microRNA signature classifier (MSC) to LDCT could raise LC detection sensitivity to 98% [28].

Montani et al. identified an LC-predictive signature of 13 microRNAs for high-risk individuals
with a sensitivity of 77.8% and a negative predictive value greater than 99%, similar to LDCT test
performance, suggesting the eventuality to use first miRNA tests in this population of patients [29].

In addition to CTC and miRNA, Cohen et al. described the CancerSEEK test, which utilizes
combined assays for genetic alterations (mutation present in plasma circulating tumor DNA) and
protein biomarkers. Not only does this test have the capacity to identify the presence of stage I to
III cancers of the ovary, liver, stomach, pancreas, esophagus, colo-rectum, lung, or breast, but also to
localize the organ of origin of these cancers [30].

Although still exploratory, gene expression profiling in the respiratory epithelium may help assess
LC risk in the setting of detection of early-stage LC. Indeed, there is some evidence that nontumor
adjacent cells share some molecular characteristics with tumor cells. In this context, it has been
recently demonstrated that most genetic alterations expressed in smoker patients are not only found in
bronchial but also in the nasal epithelium [31]. Thus, LC-associated gene expression assessment in
nontumor respiratory epithelium may represent a promising field of development to optimize LC risk
evaluation and, thus, to better understand its pathogenesis [31].

2.3.2. Biomarkers to Identify High-Risk Individuals and to Spot the Optimal Target Population for
Lung Cancer Screening

Several markers were investigated in large prospective LCS programs, such as the Continuous
Observation of Smoking Subjects (COSMOS) and the Multicenter Italian Lung Detection (MILD) trial; in
interventional programs, such as the Carotene and Retinol Efficacy Trial (CARET); and in observational
cohorts, such as the European Prospective Investigation into Cancer and Nutrition (EPIC) and the
Northern Sweden Health and Disease Study (NSHDS) [28,29,32]. The miRNA signature [28,29] and
serum proteins [32] were evaluated and performed well in determining a risk score for developing LC.

Other investigations, such as methylation of free plasma DNA, are potential options for identifying
individuals at high risk of developing LC [33–38] but still need to be evaluated in validation studies.

2.3.3. Biomarkers to Help Classify Indeterminate Lung Nodules

Appropriate management of indeterminate lung nodules is one of the key factors of success in
LCS implementation. Several biological signatures have been studied or are under investigation to
help classify indeterminate lung nodules. Among them, plasma protein biomarkers combined with
clinical risk factors (age, smoking history, nodule diameter, nodule edge characteristics, and nodule
location) in an “integrated classifier” performed well in identifying benign nodules among nodules
classified as indeterminate [39].

The presence of serum antibodies to a panel of seven LC-associated antigens distinguished
malignant from benign nodules in a prospective registry [40]. In this study, patients harboring a
4–20 mm lung nodule with a positive antibodies panel test (EarlyCDT-Lung Test, (ECLS), Oncimmune,
De Sotto, MO, USA) had a twofold increased relative risk to develop an LC than patients with a
negative test [40]. A combined strategy using ECLS test and risk model integration showed a high
specificity (>92%) and a positive predictive value of >70% for LC detection. The capacity of this
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tumor-associated antigen test, combined with LDCT, to reduce the incidence of late-stage LC at
presentation is presently being investigated in a randomized controlled trial [41]. This interventional
study includes 12,000 Scottish patients, aged 50–75 years, current or former smokers (with at least 20
pack-years or with less than 20 pack-years plus a family history of LC), tested with ECLS, X-ray chest,
and CT scan, and with a follow-up of 24 months [41].

Other immune biological signatures, such as C4d-specific antibodies, have been investigated to
diagnose indeterminate lung nodules and showed equivocal results [42].

Finally, a prespecified miRNA signature showed its ability to distinguish LC from the large
majority of benign LDCT-detected pulmonary nodules. The combination of MSC/LDCT could reduce
LC false-positive rate detection fivefold (19.7% vs. 3.7% for LDCT and MSC/LDCT, respectively) [28].

2.4. Highly Sensitive Bronchoscopic Techniques to Enhance the Detection Rate of Central Airway Lesions

Low-dose computed tomography has a very low detection rate for central airway lesions that are
more commonly squamous cell carcinomas (SqCC) and for preinvasive lesions. Therefore, enhancing
LDCT detection rate using bronchoscopic techniques, such as autofluorescence bronchoscopy (AFB),
narrow band imaging, or high magnification bronchovideoscopy, can be promising [43]. Some authors
have incorporated endoscopic techniques in LCS strategies. McWilliams et al. showed promising
results when combining sputum atypia with LDCT and AFB [44,45]. The benefit of combining AFB
with LDCT in LCS was not confirmed in the large-scale trial performed by Tremblay et al. [46] in which
AFB detected too few CT-occult cancers, and thus failed to show any benefit in high-LC-risk patient
screening. Furthermore, due to the decreasing incidence of SqCC, and its precursors, that is, dysplasias
and SqCC in situ, relative to adenocarcinoma, and in the absence of a clear survival benefit to detecting
precancerous central airway lesions, AFB does not seem to have a place in today’s LCS strategies [47].

3. Deep Learning for Early Cancer Detection

As yet, in the setting of early cancer diagnosis, deep learning has essentially been applied to chest
imaging interpretation. However, the complexity of the approach of deep learning techniques can
now be considered, as soon as one simultaneously analyzes parameters that appear to be completely
independent. For instance, when developing their CancerSEEK test, Cohen et al. used supervised
machine learning to predict the underlying cancer type. The input algorithm took into account the
circulating tumor DNA (ctDNA) and protein biomarker levels as well as the gender of the patient [29].

4. Conclusions

It can be reasonably assumed that very soon, European health authorities will provide coverage
for LDCT-based LCS. This, added to the global shortage of radiologists, will result in a large number
of anxious patients with “indeterminate lung nodules” overloading lung clinics, waiting for repeat
chest imaging and invasive tests to obtain a definite answer.

In this context, we strongly believe that there is room for using, as a first reading approach, a
CNN-driven LDCT with a predefined detection threshold to label all “nodule-free” examinations as
reassuring, and then to incorporate the trilogy of chest imaging, risk factors, and biological signatures
into machine learning algorithms to classify the nodules that have been detected according to the level
of suspicion. For health care professionals, CNNs are often considered as a black box. Thus, to avoid
this pitfall, one will also have to demystify the decision tree and to report on the respective weight of
each clinical, radiological, and biological input that led to nodule classification (Figure 6).

103



Cancers 2019, 11, 212

Figure 6. Workflow of lung cancer screening.
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Abstract: Todays challenge in geriatric oncology is to screen patients who need geriatric follow-up.
The main goal of this study was to analyze factors that identify patients, in a large cohort of patients
with solid tumors, who need more geriatric interventions and therefore specific follow-up. Between
April 2012 and May 2018, 3530 consecutive patients were enrolled in the PACA EST cohort (France).
A total of 3140 patients were finally enrolled in the study. A Comprehensive Geriatric Assessment
(CGA) was performed at baseline. We analyzed the associations between factors at baseline (geriatric
and oncologic factors) and the need to perform more than three geriatric interventions. The mean
age of the population was 82 years old with 59% of patients aged older than 80 years old. A total of
8819 geriatric interventions were implemented for the 3140 patients. The percentage of patients with
three or more geriatric interventions represented 31.8% (n = 999) of the population. In multivariate
analyses, a Mini Nutritional assessment (MNA) <17, an MNA ≤23·5 and ≥17, a performans status
(PS) >2, a dependence on Instrumental Activities of Daily Living (IADL), a Geriatric Depression
Scale (GDS) ≥5, a Mini Mental State Examination (MMSE) <24, and a Screening tool G8 ≤14 were
independent risk factors associated with more geriatric interventions. Factors associated with more
geriatric interventions could assist practitioners in selecting patients for specific geriatric follow-up.

Keywords: cancer; older adults; geriatric assessment; geriatric interventions

1. Introduction

Cancer is significantly associated with aging, and life expectancy is increasing in France and
worldwide [1]. Thus, the proportion of older adults with cancer is rising [2]. Despite this “demographic
tsunami,” elderly patients are under-represented in clinical studies [3]. The population of the French
Riviera is one the oldest populations in France; a quarter of the population is over 60 years old, and the
proportion of the population over 80 years old has increased by nearly 40% within the past decade [4].
In this context, this region is a “living laboratory” for elderly patients. In 2011, we set up the geriatric
coordination unit for geriatric oncology (UCOG PACA EST) with the support of the French National
Cancer Institute (INCA). It aims to upgrade care, research, and teaching in geriatric oncology field in
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Southeast France. To study this population, we decided to create a database called the “PACA EST Cohort”
by developing a strong partnership between the Lacassagne Cancer Center (Nice, France) and the geriatric
department of the University Hospital of Nice. In 2016, to participate in further collaborative research, the
UCOG PACA EST team joined the Hospital Federation for research, OncoAge, a consortium of skills of a
high level from several fields in health care, research, and education dedicated to cancer in the elderly.

In a clinical routine, the International Society of Geriatric Oncology (SIOG) and the American
Society of Clinical Oncology (ASCO) recommend performing a comprehensive geriatric assessment
(CGA) due to the substantial heterogeneity among elderly patients [5,6]. A CGA as defined by
Rubenstein is a “multidimensional interdisciplinary diagnostic process focused on determining a frail
elderly person’s medical, psychological, and functional capability in order to develop coordinated and
integrated plan for treatment” [7]. The CGA is time-consuming, but specific tools for frailty screening
are available to detect patients who really need to perform a complete CGA [8–10]. During the
past decade, the partnership between geriatricians and oncologists has improved patient care by
profiling the level of patient frailty with this process. Therefore, the CGA has been shown to predict
outcomes (chemotherapy toxicity, life expectancy) to help make therapeutic decisions but also provide
the best interventions [11,12]. Previous studies have described adherence of geriatric assessment
recommendations [13,14] as well as guidelines for practical assessment and management of older
patients receiving chemotherapy [6]. Now, the challenge in geriatric oncology is to screen patients
who require geriatric follow-up with specific guided interventions. The main purpose is to determine
which patients need to have repeated geriatric assessment in the follow-up. Therefore, the goal of this
study was to analyze a large cohort of patients with solid tumors, for factors that provide a profile of
the phenotype of patients who need more geriatric interventions and therefore specific follow-up.

2. Results

2.1. Patient Characteristics

The mean age of the population was 81.9 years old (range 70–102) with 59% of patients aged older
than 80 years old. Fifty-five percent were women and 33% had a metastatic status. The most common
cancers observed in the cohort were breast cancers (n = 548/17.5%), colorectal cancer (n = 527/16.7%),
and lung cancers (n = 356/11.3%) (Table 1).

Table 1. Demographic and tumor characteristics.

Demographic and Tumor Characteristics n = 3140 %

Age, years
Median 81.9 Range (70–102)
<80 1286 41
80–85 978 31.1
>85 876 27.9
Gender
Male 1395 44.4
Cancer Site
Breast 548 17.5
Colorectal 525 16.7
Lung 356 11.3
Cholangiocarcinoma/pancreatic 281 8.9
Gynecological 226 7.2
Dermatologic 246 7.8
Bladder 219 7
Upper digestive 198 6.3
Head and neck 176 5.6
Prostatic 157 5
Kidney 94 3
Hepatocarcinoma 73 2.3
Other 41 1.4
Stage IV 1028 32.9
ECOG-PS
0 260 8.3
1 966 30.8

109



Cancers 2019, 11, 192

Table 1. Cont.

Demographic and Tumor Characteristics n = 3140 %

2 855 27.2
3 807 25.7
4 226 7.2
>2 1033 32.9
Missing 26 0.8

PS: performance status.

2.2. Geriatric Assessment Model

Only 13.5% of patients had a G8 >14, which allows practitioners to not perform a full CGA in
clinical routines.

In the whole cohort, 16% felt homebound, 48.6% had dependence on ADL, and 16% were
malnourished according to the MNA. Table 2 shows a description of the domains that were explored
in the standardized CGA at baseline.

Table 2. Comprehensive geriatric assessment (CGA) at baseline.

Comprehensive Geriatric Assessment Heading Title n = 3140 %

Activity of Daily Living (ADL)
≥5.5 1528 48.6
Missing 7 0.2
Instrumental Activity of Daily Living (IADL)
>0 1885 60
Missing 8 0.3
Speed Gait
<0.8 m/s 1482 47.2
Missing 5 0.2
One leg stand
<5 s 2232 71.2
Missing 8 0.3
Isolation 242 7.7
Missing 6 0.2
Home confinement 896 28,6
Missing 4 0.1
Balducci Score
1 146 4.6
2 1568 49.9
3 1426 45,4
Missing 0
MNA
>23.5 1030 32.8
17–23.5 1500 47.8
<17 502 16
Missing 108 3.4
MMSE
≤24 1230 39.2
Missing 104 3.3
GDS
<5 1912 69.9
Missing 249 7.9
G8 > 14 424 13.5
Missing 68 2.2
Lee Score
0–5 52 1.7
0–9 763 24.3
0–13 1083 34.5
>14 1210 38
Missing 32 1
Ponderated Charlson
<5 277 8.9
Missing 26 0.8
NCASS
0–6 1592 50.7
7 to 9 762 24.2
8 to 9 490 15.6
11 138 4.5
Missing 158 5

ADL: Activity Daily Living; IADL: Instrumental Activity Daily Living; MNA: Mini Nutritional Assessment; GDS:
Geriatric Depression Scale; MMSE: Mini Mental State Evaluation; NCCAS: Nice Cancer Aging Survival Score.
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2.3. Treatments Proposed and Influence of the CGA

Patients were referred to a geriatrician; 47.7% were referred for treatment with chemotherapy or a
combined treatment, 28% for surgery, 10.2% for radiotherapy, 8.3% for best supportive care, and 6%
for other treatments. In 22% of patients, the CGA modified the therapeutic decision.

2.4. Geriatric Interventions

2.4.1. Description

A total of 8819 geriatric interventions were implemented for the 3140 patients. On average,
fit patients benefited from 1.5 geriatric interventions, patients classified as “Balducci 2” from 2.4
interventions, and frail patients from 3.3 interventions. In the whole cohort, the medium number
of interventions per patient was 2.8. Vulnerable and frail patients had significantly more geriatric
interventions (p < 0.0001). The guided geriatric interventions are listed in Table 3.

Table 3. Geriatric guided interventions.

Geriatric Interventions n = 8819 %

Nutritional care 2231 71.1
Physiotherapist intervention 1462 46.6
Delirium prevention 599 19.1
Social worker interventions 733 23.3
Psychological/Psychiatric care 510 16.2
Treatment modification for optimization 667 21.2
Adjustment medication for iatrogenic disorders 351 11.2
Comorbidity management 970 30.9
Nursing interventions 580 18.5
Specialized pain management 96 3.1
Caregiver care 355 11.3
Care pathway modification 265 8.4

2.4.2. Factors Associated with an Increased Need of Geriatric Interventions

Patients with three or more geriatric interventions represented 31.8% (n = 999) of the population.
Univariate significant factors associated with an increased need of geriatric interventions are listed in Table 4.
In multivariate analyses, an MNA <17, an MNA ≤23.5 and ≥17, a PS >2, a dependence on IADL, a GDS
≥5, an MMSE ≤24, and a G8 ≤14 are independent risk factors associated with this requirement (Table 5).

Table 4. Univariate significant factors of an increased need of geriatric interventions.

Geriatric Interventions (GI) 3 GI n = 999 % <3 GI n = 2137 % p value

Dependence on ADL 598 59.9 935 43.8 p < 0.0001
Dependence on IADL 743 74.4 1147 53.7 p < 0.0001
Speed gait
<0.8m/s 572 57.4 908 42.5 p < 0.0001
Isolation 103 10.3 140 6.6 p < 0.0001
Delirium 79 7.9 97 4.5 p < 0.0001
Home Confinement 436 43.6 461 21.6 p < 0.0001
MNA score
17–23.5 531 55.3 968 46.8 p < 0.0001
<17 256 27.0 242 11.7 p < 0.0001
MMSE
≤24 508 52.6 721 34.9 p < 0.0001
GDS
≥5 427 46.9 550 27.8 p < 0.0001
G8 score
>14 928 94.6 1716 82.2 p < 0.0001
Charlson score
≥6 931 93.8 1904 89.9 p < 0.0001
Stage IV

361 36.4 666 31.3 p = 0.005
Performance status
>2 472 47.4 562 26.6 p < 0.0001

ADL: Activity Daily Living; IADL: Instrumental Activity Daily Living; MNA: Mini Nutritional Assessment, GDS:
Geriatric Depression Scale; MMSE: Mini Mental State Evaluation.
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Table 5. Independent factors associated with an increased need of geriatric interventions.

Factors p OR 95%CI

G8 ≤ 14 0.023 1.5 (1.1–2.1)
Dependence on IADL 0.013 1.3 (1.1–1.6)
MNA score
>23.5 Reference
17–23.5 <0.0001 1.9 (1.5–2.4)
<17 <0.0001 3.1 (2.2–4.3)
GDS ≥ 5 <0.0001 1.5 (1.2–1.8)
MMS ≤ 24 0.009 1.3 (1.1–1.5)
PS > 2 p = 0.003 1.4 (1.1–1.8)

MNA: Mini Nutritional Assessment; PS: Performance Status; MMS: Mini Mental State; GDS: Geriatric Depression
Scale. Adjusted to metastatic status, age, comorbidity index, and ADL.

3. Discussion

3.1. The Challenge in Geriatric Oncology Is to Screen Patients for Follow-Up

The first step in geriatric oncology is to screen patients who need a complete geriatric assessment.
A number of tools are available and recommended for screening [8–10]. Thus, practitioners can propose
a comprehensive assessment and elaborate recommendations according to the deficits observed [6]. In
2013, Kenis et al. [15] demonstrated that screening and CGA are feasible in clinical practice and detected
unknown geriatric problems in 51% of cases. This study also showed that oncologists were aware of
the geriatric assessment results only in 2/3 of the patients, and recommendations were planned in only
25%. This cohort study highlights the difficulty of implementing geriatric interventions and of the
necessity of follow-up. Recent studies have listed the types of interventions and their implementation,
but they did not analyze the factors that can lead to more interventions [13,14]. Baitar et al. [16] in
2015 described an adherence of 35.5% to geriatric interventions, and Kenis et al. [14] in 2018 adherence
of over 40% in the most important domains. These three studies were conducted by the same team
and suggest that the increased rate of implementation is obviously due to the learning curve. To
our knowledge, there are no studies exploring the phenotype of patients who need more geriatric
interventions. Screening patients who may need follow-up to check for intervention is new.

3.2. Influence of the CGA on Treatment Changes

This study confirms the influence of the CGA on 22% of therapeutic decisions. This rate is very
similar to that found in other studies. Kenis et al. [12] found 25%, Caillet et al. [17], 20%. Feasibility of
treatment and guided geriatric interventions seem to have different mechanisms, but they are probably
two sides of the same coin. Changes in treatment plan according to the CGA certainly influence
the level and type of guided interventions. Furthermore, geriatricians implement different types of
interventions depending on the type of treatment (chemotherapy, surgery, palliative care, etc.), and
this process could probably lead to support deficits in areas of geriatric assessment and help in the
treatment feasibility. These considerations need to be confirmed in further prospective studies in the
PACA EST cohort.

3.3. Factors Associated with an Increase in the Need for Intervention

In multivariate analyses, to be malnourished or at risk of being malnourished regarding the MNA,
a PS >2, a dependence on IADL, a positive screening for depression regarding the GDS, cognitive
disorders regarding an MMSE <24, and a positive screening regarding a G8 ≤14 are independent risk
factors associated with an increased requirement of geriatric interventions.

These are well-known factors for a worse outcome in geriatric oncology. Regarding the PS, there
are several studies showing a prediction of an increased risk of death in this population [18–20].
In addition, there is abundant literature showing that the nutritional status and the MNA predict
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outcomes such as early death, early discontinuation of chemotherapy, poor tolerance of chemotherapy,
and an increased risk of morbidities [21–24]. Mood disorders and cognitive impairment have also
been explored in other studies showing early functional decline on chemotherapy and decreased
survival [25–27]. Moreover, dependence on IADL was associated with increased mortality, morbidity,
hospitalization, and functional decline [6]. These data invite us to take into account these factors to
optimize the management and the follow up of elderly patients. However, we do not yet have robust
data (randomized studies) in geriatric oncology supporting the fact that interventions improve the
outcome, but some studies are underway to analyze the impact of a multimodal approach [6]. For
example, the PREPARE study in France plans an interventional multimodal approach using “case
management.” We hope that this study by Soubeyran et al. will supply abundant information and
evidence in favor of guided interventions. (PREPARE, ClinicalTrials.gov Identifier: NCT02704832) [28].

3.4. A Call for Co-Management

This study shows that elderly patients require different interventions with various health partners.
Creating individualized “care” and “take care” plans require a strong partnership between a network
including geriatricians, oncologists, specialized doctors, but also nurses, psychologists, dieticians,
social workers, physiotherapists, and many other actors. The task of the UCOG teams in France
is to coordinate and streamline patient care, offering easy lines of communication and shortening
referral times. In the domain of co-management, perspectives in geriatric oncology from innovative
professions coordinating the development of specific e-health tools are plentiful [29].

3.5. How This Model Could Add Value in Clinical Practice?

The utility of the multivariable model lies in the determination of independent factors strongly
associated with the establishment of more geriatric interventions. This model underlines some domains
of the GA that can be assessed by other health partners, such as dieticians, nutritionists, psychologists,
or psychiatrists, even if there is no geriatrician on the team. A nurse could coordinate and educate
patients who present these factors and link them to general practitioners that can provide them with
simple interventions such as nutritional support, advice, physiotherapy, and so on.

3.6. Improving Together Prediction and Outcome

Clinicians and researchers are working together to elaborate scoring systems or factors aimed
at improving the outcome and patient care of older adults with cancer. The PACA EST cohort is a
prospective and multicentric cohort (n > 3800) created to better understand elderly cancer patients.
Prospective and systematic follow-up improve substantially the quality of care and connect general
practitioners and heath partners. The UCOG PACA EST team joined the Hospital Federation University
in research into OncoAge so that research and care become a continuum in the future. Subsequent
studies will focus on adherence and on the impact of geriatric interventions in this cohort, but also
on the barriers and difficulties of implementation. An OncoAge work package aims to improve and
analyze a lifestyle plan. Educating patients and caregivers about the options of care, including guided
geriatric interventions, is crucial.

3.7. Strengths and Limitations

The strengths of this study lie in the large cohort studied, which enrolled a “true life population”
with a mean age of 82 years old. A complete and standardize CGA was performed at baseline.
Interventions were guided by the deficits observed in the CGA. However, this study did not analyze
the level of intervention and adherence at follow-up. A pilot study conducted in the PACA EST
cohort (n = 50) had shown that, after one month, the adherence to interventions ranged from 73 to
89 % depending on the domains. This is probably because geriatricians in the PACA EST cohort
implemented the interventions at baseline and did not propose recommendations only.
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4. Materials and Methods

4.1. Patient Population

Between April 2012 and May 2018, 3530 consecutive patients were enrolled in the PACA EST
cohort. The UCOG PACA EST cohort is an observational, multicentric cohort (five centers in Southeast
France: a teaching hospital, a specialized cancer center, and three cancer clinics). Three thousand one
hundred and forty patients with various types of solid cancers at any stage and aged older than 70
years old (no upper limit) were enrolled in this study at the time of diagnosis and before the final
therapeutic decision. Patients could be outpatients or hospitalized. Patients were referred by more than
60 practitioners (oncologists, surgeons, and radiotherapists) to the UCOG PACA EST team (Geriatric
Oncology Coordination Unit) for a CGA before a final therapeutic decision.

4.2. Ethics

At the first visit of inclusion, patients gave informed consent and were registered at baseline in
compliance with the French database and privacy law (CNIL, Commission Nationale de l’Informatique
et Liberté, registration number CILS: 188). This study was approved by an ethics committee (Espace
Ethique Gériatrique Report 04-2012).

4.3. Study Methods

4.3.1. CGA and Data Collected at Baseline

Four geriatricians received the same training at baseline and performed a standardized
comprehensive geriatric baseline assessment as described in Table 1. The CGA included cognitive
function screening using the Mini-Mental Test (MMSE) [30], an autonomy assessment using Activity
in Daily Living (ADL) [31] and Instrumental Activity of Daily Living (IADL) [32,33], a nutritional
status assessment using the Mini Nutritional Assessment [34], a gait assessment using gait speed [35],
and the one leg balance test, screening for depression using the Geriatric Depression Scale 15 for
patients with an MMSE score higher than 15 (GDS) [36], and acomorbidities assessment using the
Charlson Index [37]. Prediction of early death was assessed with the Nice Cancer Aging Survival
Score (NCASS) [21], and mortality at 4 years was assessed with the Lee score [38]. Demographic
data and the perception of isolation and being homebound were also determined (homebound was
defined in the study as going out of home with or without assistance only for important activities,
e.g., a medical visit). Finally, the Balducci score was assessed [39]. The validated cut-offs for scales are
specified in Table 2. In addition, data on guided geriatric interventions, on oncologic treatments
proposed by oncologists, and on tumor type and tumor stage were collected during follow-up.
Geriatric interventions were defined by interventions implemented by a geriatrician at baseline
in 12 domains (nutrition, psychological care, specialized pain management, prevention of delirium,
comorbidities management, nursing interventions, social worker interventions, treatment modification
for optimization, adjustment medication for iatrogenic disorders, physiotherapy, caregiver care, and
care pathway modification). Geriatric interventions are standardized (based on guidelines when
available) and individualized (focused on specific deficits). Some interventions as caregiver care or
social interventions are based on experience (no guidelines available). Geriatric interventions are
described in Table 6. Within a month, geriatricians who included patients in the cohort received a
specific training on the CGA and on guided interventions. They received a prescription book with
standardized recommendations.

114



Cancers 2019, 11, 192

Table 6. Guided geriatric intervention description.

Interventions Description

Nutritional Care

Nutritional Advice
Nutritional supplements
Artificial nutrition
Based on guidelines [40,41], standardized prescription

Physiotherapist Interventions

Balance
Strength
Pain management
Recommendations of walking aids
Coordination
Promotion of physical activity
Based on patient deficits, standardized prescription (list)

Delirium Prevention
Checklist for patient, caregiver and medical team: advice,
recommendations for prescription for surgical team.
Based on guidelines [42], standardized check list

Social Worker Interventions

Prevention, In home health services, housing, social inclusion,
financial accommodations, legal action, end of life services,
institutional placement, nutrition accommodations.
Based on social worker and geriatrician experiences.

Psychological/Psychiatric Care
Consultation with psychologist or psychiatrist
Duration and methods based on patient needs and
practitioners experience

Treatment Modification for Optimization
Medical treatment assessment, optimization of treatment
Based on geriatrician experience

Adjustment Medication for Iatrogenic Disorders
Inappropriate medication assessment.
Based on geriatrician experience

Comorbidity Management
Advice, treatment modification, referral to others clinicians or
paramedical, medical checkup
Based on geriatrician experience

Nursing Interventions

Specialized Pain Management
Drug or non-drug therapy, referral to specific pain management
Based on guidelines [43]

Caregiver Care

Counselling, training courses, social supports, medical supports,
psychological care, assistance bureaucracies, advocacy, crisis
interventions
Based on geriatrician and social worker experiences

Care Pathway Modification

Identification of appropriate resources, coordination of the care
process, coordination of admission in acute care unit
rehabilitation unit (rehabilitation/prehabilitation), long stay
hospitalization, referral to a one-day hospital, integration on
specific organization (palliative care, home care hospitalization)
Based on geriatrician and social worker experiences

4.3.2. Statistics

The primary aim of the study was to analyze the association between geriatric and oncologic
factors and the need to implement more than three geriatric interventions (the median number of
guided interventions in the whole cohort) using a logistic regression model in a univariate analysis.
A multivariable analysis was performed with all geriatric and oncologic items that reached a significant
level of p < 0.05. Regarding frailty levels and interventions, we compared the medium number of
geriatric interventions in the three groups according to the Balducci classification by using an ANOVA
test and the Bonferroni adjusted p-value.

5. Conclusions

Nutritional status, a PS >2, a dependence on IADL, a positive screening for depression, cognitive
impairment, and a G8 ≤14 were independent risk factors associated with more geriatric interventions.
Factors associated with more geriatric interventions could assist practitioners in selecting patients
for specific geriatric follow-up. Further studies on the PACA EST cohort will focus on the level of
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intervention and adherence at follow-up. Research needs to not only focus on interventions but also on
the quality of the implementation according to the guidelines. Standardization of the interventions is
an important task, and research is underway in a number of studies being performed in the world [11].
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Abstract: The implementation of cancer immunotherapeutics for solid tumors including lung cancers
has improved clinical outcomes in a small percentage of patients. However, the majority of patients
show little to no response or acquire resistance during treatment with checkpoint inhibitors delivered
as a monotherapy. Therefore, identifying resistance mechanisms and novel combination therapy
approaches is imperative to improve responses to immune checkpoint inhibitors. To address this, we
performed an in vivo shRNA dropout screen that focused on genes encoding for FDA-approved drug
targets (FDAome). We implanted epithelial and mesenchymal Kras/p53 (KP) mutant murine lung
cancer cells expressing the FDAome shRNA library into syngeneic mice treated with an anti-PD-1
antibody. Sequencing for the barcoded shRNAs revealed Ntrk1 was significantly depleted from
mesenchymal tumors challenged with PD-1 blockade, suggesting it provides a survival advantage
to tumor cells when under immune system pressure. Our data confirmed Ntrk1 transcript levels
are upregulated in tumors treated with PD-1 inhibitors. Additionally, analysis of tumor-infiltrating
T cell populations revealed that Ntrk1 can promote CD8+ T cell exhaustion. Lastly, we found that
Ntrk1 regulates Jak/Stat signaling to promote expression of PD-L1 on tumor cells. Together, these
data suggest that Ntrk1 activates Jak/Stat signaling to regulate expression of immunosuppressive
molecules including PD-L1, promoting exhaustion within the tumor microenvironment.

Keywords: non-small cell lung cancer; immunotherapy; PD-1/PD-L1 checkpoint blockade

1. Introduction

Lung cancer is the leading cause of cancer-related deaths, killing more people in the U.S. than the
next three most prevalent cancer types combined [1,2]. The five-year survival rate for all lung cancer
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patients is about 18%, which has improved marginally over the past several decades even with the
improvement of genomic profiling and rational implementation of targeted therapies. Thus, a better
understanding of the complexities of lung cancer progression, the contributing microenvironmental
factors and how to target them would benefit patient outcomes.

Research focusing on systemic and tumor-infiltrating immune cell populations and their impact on
shaping cancer progression in solid tumor types has provided compelling evidence for immune escape
as a crucial survival mechanism. These studies have revealed that tumors avoid immune detection
through a variety of complex mechanisms. For example, tumors can recruit immunosuppressive
populations of cells such as myeloid derived suppressor cells or CD4+ T regulatory cells, which secrete
suppressive cytokines that interfere with the cytotoxic functions of CD8+ T cells [3–5]. Additionally,
tumors upregulate expression of PD-L1, which can occur de novo through oncogenic signaling or as a
consequence of IFNγ-stimulation due to immune cell activation. PD-L1 binds to the PD-1 molecule on
CD8+ T cells and blocks the full activation necessary for the cytotoxicity [6,7], thus representing an
avenue of therapeutic intervention to promote cytotoxic activity of T cells.

The implementation of immunotherapies to release immune system braking mechanisms like
those described above has been paradigm-shifting for cancer therapeutics. Clinical studies in
lung cancer have revealed that inhibiting the PD-L1/PD-1 axis results in a significantly improved
clinical outcome in ~15–20% of patients with lung cancer when compared to standard of care
chemotherapy [8–10] and thus shows promise in improving patient prognosis. While some patients
do show clinical benefit to checkpoint inhibitors when administered as single agents, the majority of
patients either show no response or develop resistance to single agent checkpoint inhibition [9–15];
thus, discovering mechanisms of resistance and tumor cell dependencies in the face of immune-related
pressure is imperative in furthering the potential for immunotherapy in treating lung tumors.

Several factors have been identified as impacting response to immune checkpoint inhibitors. For
example, tumor mutational burden significantly correlates with response to immunotherapy, likely
due to the creation of neoantigens that activate the immune response. Additional work has focused
on oncogenic drivers of lung cancer. Kirsten rat sarcoma (KRAS) mutations occur in about 30% of
lung adenocarcinomas, and unlike other common oncogenic drivers (such as epidermal growth factor
receptor (EGFR) and anaplastic lymphoma kinase (ALK)), effective targeted therapeutic strategies for
KRAS mutant lung cancer have been limited [16]. Interestingly, KRAS mutant lung tumors and their
degree of immune system engagement and infiltration vary based upon the co-occurring mutations
found within the tumor. Patients that present with a p53 mutation concurrently with oncogenic
Kras (KP) exhibit higher expression of PD-L1 and other inflammatory markers when compared to
other commonly co-occurring mutations such as STK11/LKB1 or CDKN2A [17], and these patients
respond better to PD-1/PD-L1 axis blockade [18]. However, the mechanisms of tumor-regulated
immunosuppression and the potential avenues of resistance in KP mutant lung cancer are vastly
unknown, and the understanding of these factors is necessary for intelligent use of immunotherapies
for maximum benefit to patients.

Previous work in our laboratory has focused on understanding the biology of KP mutant lung
tumors through cancer cell intrinsic properties as well as extrinsic factors influencing cancer progression
that are present within the tumor microenvironment. We have previously derived murine lung cancer
cell lines from the primary or metastatic lesions of the KrasLA1/+/p53R172HΔg/+ genetically engineered
mouse model of lung cancer [19,20]. These cells demonstrate heterogeneity in their epigenetic state
and propensity to metastasize when re-implanted syngeneically into wildtype mice. Specifically, the
KP murine cell lines that have undergone an epithelial-to-mesenchymal transition (EMT) are not only
more metastatic and aggressive, but they also have lower CD8+ T cell infiltration and an increase
in an exhaustive signature when compared to cells in an epithelial state [21]. This heterogeneity
also translates to a response to PD-1 blockade, with mesenchymal cells responding initially to the
anti-PD-1 antibody but ultimately acquiring resistance [22]. Thus, our in vivo models closely mimic
patient disease progression and immune checkpoint inhibitor response, providing the opportunity to
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discover novel mechanisms regulating tumor response to immune checkpoint blockade in KP mutant
lung cancer.

To identify novel mechanisms of KP lung cancer cell resistance to PD-1 checkpoint inhibition,
we performed a clinically relevant and powerful in vivo dropout screen. KP murine mouse cell
lines stably expressing the FDAome, a library of barcoded shRNAs specific to genes that encode for
clinically actionable targets, were implanted into wildtype mice and treated with an anti-PD-1 antibody.
Tumors were sequenced and analyzed for depleted shRNA sequences when mice were treated with an
anti-PD-1 antibody, thus revealing genes essential for tumor survival in the face of PD-1 blockade. From
this screen, neurotrophic receptor tyrosine kinase 1 (Ntrk1) was identified as a top lead candidate as it
dropped out significantly in anti-PD-1 treated tumors. Our data indicate that Ntrk1 regulates KP cell
biology including cell growth and invasion in vitro while also impacting the tumor-infiltrating immune
populations and their functionality with a consistent promotion of an exhausted microenvironment.
Thus, we determined that Ntrk1 is a novel regulator of immune functionality in KP lung cancer, and
combinatory treatment strategies could circumvent PD-1 blockade resistance.

2. Results

2.1. An In Vivo Functional Genomics Screen to Identify Novel Tumor Cell Vulnerabilities in the Face of
Immune Checkpoint Blockade

To explore novel avenues of therapeutic combinations with immune checkpoint blocking
antibodies, we performed a powerful and clinically relevant in vivo dropout screen in combination
with PD-1 checkpoint blockade treatment (Figure 1A). The screen library contained short hairpin
RNAs (shRNAs) designed against ~200 genes, each of which encoded for a clinically actionable target,
termed the FDAome. To ensure robustness and prevent false hits due to shRNA off-target effects, each
gene was targeted with 10 unique shRNA sequences. Lentiviral particles expressing the shRNAs were
used to transduce two murine Kras/p53 (KP) mutant lung cancer cells. The 393P epithelial cells are
a non-metastatic line, whereas the 344P mesenchymal line is an aggressive and metastatic cell line,
and each were originally derived from KrasG12D/+/p53R172HΔg primary lung tumors as previously
described by our laboratory [19]. The 393P and 344P cells stably expressing the FDAome library were
implanted subcutaneously into 129/sv wildtype mice (3 mice/treatment group) (Figure 1B). Once
tumors reached 150–200 mm3, they were then treated with either an isotype control antibody or a
PD-1 blocking antibody. 344P tumors, which responded to PD-1 treatment initially but eventually
demonstrated resistance (Supplementary Figure S1), were collected at two time points of anti-PD-1
treatment to identify genes that synergize to prevent the development of resistance. After tumor
collection and deep sequencing, quality control measures were completed to ensure sufficient barcode
coverage across the library was maintained in vivo (Figure 1C). Importantly, strong separation of
hairpins targeting positive controls (Psma1 and Rpl30) and hairpins targeting Luc was observed
(Figure 1D, Supplementary Table S1). Furthermore, an additional positive control, the proteasomal
gene Psmb1, ranks in the top 10 percent of the most significantly depleted genes across all conditions,
thus strengthening the validity of the screen hits (Supplementary Table S2). To prioritize hits from the
screen, a redundant shRNA activity (RSA) score method was used to assign significance of shRNA
dropout, then assigning a rank from 1 to 192 for most significant to least significant dropout in
each condition.
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Figure 1. An in vivo functional genomics screen to identify novel tumor survival vulnerabilities when
treated with PD-1 blocking antibody. (A) Schematic illustrating the workflow of the FDAome short
hairpin RNA (shRNA) dropout screen. Briefly, a library of lentiviral particles expressing 10 different
barcoded shRNAs for each of 192 genes was transduced into murine Kras/p53 mutant lung cancer
cells. Genes included in the library have FDA-approved drugs that target the gene product. These cells
were implanted into syngeneic 129/Sv and tumors were treated with PD-1 blocking antibody or IgG
control. Tumors were sequenced for barcoded shRNAs and compared to reference cells for enriched
or depleted shRNAs between isotype and PD-1 treated tumors. (B) 393P epithelial cells and 344P
mesenchymal cells used in the FDAome screen were implanted subcutaneously and tumor growth
was measured via calipers. T1 indicates time point 1 of tumor collection with PD-1 treatment in the
344P tumors, and T2 indicates time point 2. (C) Viral integration distribution of reference population
and tumors determined through barcode sequencing (cmp counts per million). Ctrl.1-3 indicate 3
independent IgG treated tumors, and PD1.t1.1-3 label triplicates of anti-PD-1 treated tumors collected
at the early time point. PD1.t2.1-3 indicate 344P tumors which were collected 1 week later at time point
2. (D) Fold change distribution (log2) of individual tumors relative to the initial transduction references
with individual barcodes for positive controls Psma1 (red)/Rpl30 (purple), and the negative control
Luc (green). Individual tumor samples per each group (ctrl, PD1.t1, PD1.t2) are shown.

2.2. Short Hairpin RNAs Targeting Ntrk1 Dropped out Significantly from 344P Mesenchymal Tumors Treated
with PD-1 Blocking Antibody

The results of the FDAome screen revealed several shRNAs that dropped out from tumors treated
with anti-PD-1 treatment, suggesting these genes to be vital for the survival of tumor cells when
challenged with immune-related pressure through PD-1 treatment. We compared the differential in
RSA value between isotype treated and anti-PD-1 treated tumors to compare nonessential to essential
changes in the gene dropout score. Using this metric, we identified Ntrk1 as being one of the hits
with the largest differential in RSA value between vehicle and PD-1 treated 344P tumors at both time
points of treatment (Figure 2A, Supplementary Table S2). This was unique to the mesenchymal 344P
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tumors, as the epithelial 393P tumors do not show Ntrk1 shRNA dropout in anti-PD-1 treated tumors
(Supplementary Figure S2). A similar screen using the same FDAome library but completed in vitro
and in immunocompromised mice did not show significant dropout of Ntrk1 shRNAs [23]. These
data suggest that Ntrk1 is nonessential for the survival of tumor cells in normal in vitro and in vivo
conditions. However, when challenged with a PD-1 blocking antibody and therefore under immune
system pressure, Ntrk1 then becomes essential for tumor cell survival. Importantly, Ntrk1 is a top hit
across both time points of tumor collection and sequencing, suggesting the validity of this gene as a
positive hit from the screen that is more likely to play a role in PD-1 treatment resistance in the face of
long-term treatments.

Figure 2. Ntrk1 shRNA drops out significantly from 344P tumors treated with anti-PD-1 and is
upregulated in tumor cells treated with anti-PD-1 antibody. (A) Results from FDAome shRNA dropout
screen in 344P tumors graphed as a differential score. The RSA from the isotype treatment condition
for each gene was subtracted from the RSA from the same gene in the anti-PD-1 treatment group. Time
point 1 is shown to the left, and time point 2 to the right. The top 10% of hits are depicted and these
are divided into three groups, with the most significant shown in red. Ntrk1 is highlighted in bold
red in both graphs. (B) Real-time PCR (qPCR) data for Ntrk1 expression in 393P tumors treated with
anti-PD-1 or isotype control for 14 or 28 days. Expression values are normalized against L32 reference
gene, relative to one isotype treated tumor sample. (C) Ntrk1 expression was analyzed in 344P tumors
as described in panel B. (D) 344SQ tumor cells implanted in syngeneic mice were treated with isotype
control or anti-PD-1 antibody. Tumors were collected after development of resistance to PD-1 blockade
(~week 6), cell lines were derived from the tumors, and Ntrk1 expression analyzed via qPCR. The
numbers below bars denote the individual mouse from which the cell line was derived. (E) Cell lines
described in panel D were probed for phospho-TrkAY674/675 levels by Western blotting. (F) 393P and
344P cells were cultured in vitro either alone (-) or in the presence of splenocytes (sp.) at a 5:1 ratio
of splenocytes to tumor cells. The treatment of either IgG or PD-1 blocking antibody was added to
the co-culture and after 4 days, splenocytes were washed out and tumor cells were collected for RNA.
Ntrk1 expression was analyzed using qPCR.
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2.3. Transcript Level and Protein Activity of Ntrk1 Are Increased in PD-1 Treated Tumors

Because Ntrk1 dropped out significantly in the FDAome hairpin screen with a PD-1 blocking
antibody, we next wanted to determine if the levels of Ntrk1 expression are elevated in tumors treated
with immune checkpoint inhibitors. 393P and 344P tumors treated with an IgG control or anti-PD-1
antibody were collected for RNA after 14 or 28 days of treatment. Quantitative real-time PCR (qPCR)
revealed that Ntrk1 transcript levels were significantly enhanced in two of the 393P tumors after 14
days of treatment, whereas the 344P tumors showed a more consistent and significant upregulation of
Ntrk1 at both time points of treatment (Figure 2B,C). Additionally, another mesenchymal KP murine
cell line, 344SQ, was used to derive primary lines from tumors after the development of resistance
to PD-1 treatment, which we have previously shown to typically occur between weeks 5 and 7 of
treatment [22]. When re-implanted into wildtype mice, these cells showed no response to anti-PD-1
treatment (Supplementary Figure S3). Compared to isotype treated 344SQ tumors, three of four
independent 344SQ PD-1 resistant cell lines showed upregulation of Ntrk1 transcript levels, as well as
increased phosphorylation of TrkA protein as shown by western blot (Figure 2D,E). Specifically, the
PD-1 resistant cells showed increased expression of the fully glycosylated, mature 140 kDa species
of phospho-TrkA, suggesting that downstream signaling of TrkA is more active in these cells. Lastly,
393P and 344P cells were cultured alone or co-cultured with total splenocytes in vitro and treated with
an IgG or a PD-1 blocking antibody. Ntrk1 was again found to be significantly upregulated in 344P
cells co-cultured with splenocytes that were treated with a PD-1 blocking antibody compared to the
isotype control (Figure 2F).

Taken together, these data indicate that anti-PD-1 treatment in tumors or in cell lines co-cultured
with an immune compartment upregulates Ntrk1 transcription and activation status, suggesting this
pathway may be aberrantly activated as a result of an activated T cell response.

2.4. Baseline Expression of Ntrk1 Is Higher in Mesenchymal Murine and Human Lung Cancer Cell Lines and
Is Necessary for Invasion and Migration

Previously, our lab generated a panel of KP murine cell lines and profiled them based on their
epithelial and mesenchymal status [19,20]. Using these lines, we assayed baseline Ntrk1 expression and
found that Ntrk1 levels and phosphorylation correlate with cells in a mesenchymal state (Figure 3A,B),
which may explain the differential findings between 393P and 344P from the screen. Similarly, a
small panel of human cells delineated by epithelial or mesenchymal status showed the same trend,
with Ntrk1 expression correlating with a mesenchymal status. Additionally, cells driven into a
mesenchymal state via Zeb1 induction or a more epithelial state with miR-200 induction, as described
previously [21,24,25], also confirmed that Ntrk1 expression is higher in cells pushed into a mesenchymal
state (Supplementary Figure S4). Because Ntrk1 expression is higher in mesenchymal cells, we
generated stable shRNA-mediated knockdowns in the mesenchymal 344P and 344SQ murine lines
and assayed the effect of Ntrk1 knockdown on the ability of these cells to migrate and invade a
microenvironment. We found that Ntrk1 knockdown significantly reduced the ability of 344SQ
cells to migrate and invade using transwell assays (Figure 3C). Additionally, when plated on a
50% Matrigel:50% collagen type I matrix, the ability of multicellular aggregates to invade was also
significantly reduced with Ntrk1 depletion (Figure 3D). Conversely, we generated cell lines stably
overexpressing the human cDNA of Ntrk1 in the 393P epithelial murine cell line. Compared to
vector control cells, the overexpression of Ntrk1 was sufficient to stimulate invasion and migration
(Figure 3E,F). We also analyzed whether another member of the same family, Ntrk3, can impact KP
cancer cell biology in a similar manner as Ntrk1. We generated cell lines overexpressing the human
cDNA of Ntrk3 in the epithelial 393P cells and determined that these also demonstrate increased
invasion and migration (Figure S5). These data indicate that both Ntrk1 and Ntrk3 can regulate cell
migration and invasion in KP mutant lung cancer cells, and the expression of Ntrk1 correlates with a
more aggressive, mesenchymal state.
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Figure 3. Ntrk1 expression correlates with cells in a mesenchymal state and regulates cell migration,
invasion, and AKT and MAPK signaling pathways. (A) Real-time qPCR data for Ntrk1 expression
in 3 epithelial and 3 mesenchymal murine KP lung cancer cell lines (left) and in 3 epithelial and 3
mesenchymal human lung cancer cell lines (right). (B) Western blot showing phospho-TrkA expression
in murine KP lung cancer cells as a function of epithelial and mesenchymal status. Actin was used
as a loading control. (C) Ntrk1 was stably depleted using 3 different shRNA sequences. 344SQ Ntrk1
knockdown cells were plated in triplicate in transwell chambers with Matrigel to measure invasion
or without to measure migration. After 16 hours, cells that had migrated or invaded were fixed and
stained with crystal violet. Representative images of a single chamber are shown. Quantifications
were done using ImageJ and are graphed to the right as a fold change compared to non-targeting
scrambled control cells. (D) 344SQ shNtrk1 cells were plated on a 50% Matrigel:50% collagen type I
matrix. Images were taken after 3 days and the percentage of invasive structures was quantified and
graphed below. (E) Human cDNA encoding for Ntrk1 was stably introduced into 393P cells. These
cells were plated in migration and invasion transwell assays as described in panel C. Representative
images are shown and quantifications are graphed to the right. (F) 393P Ntrk1 overexpressing cells
were plated on a Matrigel and collagen type 1 mixed matrix as described in panel D. Invasive structures
were quantified and are shown in the graph below. (G) Western blot analysis of 344P Ntrk1 knockdown
cells to examine protein expression of TrkA to confirm knockdown and signaling pathways including
AKT and MEK/ERK. Actin was used as a loading control. (H) 393P empty vector (EV) and Ntrk1
overexpression cells were stimulated with NGF over the course of 4 hours and protein collected for
western blot analysis of phospho-TrkA, and AKT and MEK/ERK signaling pathways.
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2.5. Ntrk1 Activates AKT and MAPK Signaling in KP Lung Cancer Cell Lines to Regulate Cell Growth

Additional analysis of Ntrk1-modulated cells revealed that Ntrk1 regulates not only invasion and
migration but also cell growth. Specifically, knockdown of Ntrk1 results in a significant reduction of
cell growth over time, whereas overexpression of Ntrk1—or exogenous addition of nerve growth factor
(NGF) to stimulate TrkA signaling—can stimulate cell growth in epithelial 393P cells (Supplementary
Figure S6).

To determine if Ntrk1 regulates known downstream signaling pathways involved in cell growth
and survival, we performed western analysis of Ntrk1 knockdown cell lines. Compared to scrambled
control cells, depletion of Ntrk1 decreased both protein kinase B (PKB/AKT) and extracellular
receptor kinase 1/2 (ERK1/2) phosphorylation (Figure 3G). Similarly, we utilized the Ntrk1 and
Ntrk3 overexpression cells and stimulated signaling with exogenous NGF or NT-3, respectively. In
both Ntrk1 and Ntrk3 overexpression cells, AKT and ERK1/2 were quickly and robustly activated,
with long term kinetics compared to the control cell line (Figure 3H and Supplementary Figure S5).
We also investigated endogenous signaling cascades regulated by TrkA in KP lung cancer cells. In
the 393P and 344P cells stimulated with an NGF ligand, phospho-TrkA was higher at baseline in
the mesenchymal 344P cells compared to the 393P cells, as observed in Figure 3B (Supplementary
Figure S6). Additionally, AKT and ERK1/2 signaling cascades were activated in both cell lines, though
the kinetics and degree of response differed between them (Supplementary Figure S6).

To determine if either AKT or MAPK signaling regulates the cell growth phenotype observed
with Ntrk1 overexpression, we utilized either MK2206, an AKT specific inhibitor, or trametinib, a
mitogen-activated protein kinase kinase (MAP2K/MEK) specific inhibitor. Utilizing MTT viability
assays, we determined that while AKT inhibition does inhibit the viability of Ntrk1 overexpression
cells, exogenous stimulation of TrkA signaling via NGF was sufficient to circumvent this repression
(Supplementary Figure S6), suggesting that an independent pathway regulates cell growth. By contrast,
the addition of trametinib significantly inhibited cell viability, and this was not able to be rescued via
exogenous NGF addition.

Taken together, our data indicate that Ntrk1 and Ntrk3 both regulate downstream signaling to
AKT and MAPK in KP lung cancer cells, but the regulation of cell growth by Ntrk1 mainly occurs via
MAPK signaling cascades.

2.6. Ntrk1 Overexpression Promotes Tumor Growth In Vivo and Augments the Tumor Infiltrating Immune
Compartment by Promoting CD8+ T Cell Exhaustion

Because Ntrk1 was originally identified from the FDAome hairpin screen as being necessary
for tumor cell survival when under immune-mediated pressure via PD-1 blockade, we wanted to
determine if Ntrk1 modulates the immune compartment within tumors. To address this, we implanted
the Ntrk1 overexpressing and control cells subcutaneously into 129/sv wildtype mice to assay the
effects on the immune microenvironment. The overexpression of Ntrk1 significantly enhanced tumor
size in vivo (Figure 4A), corroborating the in vitro growth data. Flow cytometry data collected from
four-week tumors revealed that Ntrk1 overexpression correlated with a significant reduction of the total
T cell infiltrate within the primary tumor, likely due to the significant reduction in total CD8+ T cells,
with no significant effect observed on the CD4+ population (Figure 4B–D). Additionally, we found that
Ntrk1 overexpression also impacted the functionality of CD8+ cells, with the Ntrk1-expressing tumors
presenting with an almost three-fold increase in the level of PD-1+ CD8+ T cells (Figure 4E,F). These
cells were also double positive for Tim3, suggesting this population of CD8+ cells were exhausted.
In vitro co-culture assays also confirmed that Ntrk1 overexpression can reduce the proliferative
capabilities of immune cells as measured by flow cytometry, whereas depleting Ntrk1 promotes
the proliferation of immune cells (Supplementary Figure S7).
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Figure 4. Ntrk1 modulates tumor growth as well as CD8+ T cell exhaustion and activity in vivo. (A–F)
393P EV and Ntrk1 cells were implanted subcutaneously into 129/sv wildtype mice. After 4 weeks of
growth, tumors were collected and processed for flow cytometry analysis of immune cell populations.
n = 5 mice/cell line. (A) Tumor growth was monitored weekly via caliper measurements. (B) The
percentage of CD3+ T cells in the microenvironment was gated from live CD45+ cells. (C) CD4+ T
cells were calculated as a percentage of total CD3+. (D) CD8+ T cells were calculated as percentage
of CD3+ T cells. (E) T cell exhaustion was measured as PD-1+/TIM3+ from the CD8+ population.
(F) A representative dot plot of PD1+/TIM3+ T cells from each condition. (G–M) 344P cells with stable
depletion of Ntrk1 were implanted subcutaneously into 129/sv wildtype mice and compared to a
non-targeting control cell line. One week post-implantation, tumors were then treated with either IgG
control or PD-1 blocking antibody for 2 weeks, at which point tumors were collected and processed
for flow cytometry analysis. (G) Tumor growth was monitored weekly via caliper measurements.
(H) The total CD3+ T cells was quantified from total live CD45+ cells in tumors. (I) CD4+ T cells were
calculated from total CD3+ cells. (J) CD8+ T cells were quantified as a percentage of total CD3+ T cells.
(K) PD-1+/TIM3+ exhausted T cells were calculated as described in panel E. (L) Representative dot
plots from each condition showing PD1+/TIM3+ T cells. (M) Effector (left graph) and naïve (right
graph) CD8+ T cells were calculated as a percentage from total CD8+ T cells. Effector cells were
characterized as CD62L+/CD44high and naïve cells as CD62L+/CD44low.
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These data suggest that Ntrk1 expression promotes tumor growth at least in part by promoting T
cell exhaustion.

2.7. Combination of Ntrk1 Knockdown with PD-1 Blockade Significantly Reduces Tumor Growth and CD8+ T
Cell Exhaustion In Vivo

To further explore the function of Ntrk1 in immunosuppression, we subcutaneously implanted
344P Ntrk1 knockdown or scrambled control cells and treated them either with an IgG control or a
PD-1 blocking antibody. The depletion of Ntrk1 alone was sufficient to reduce tumor burden, with the
addition of anti-PD-1 treatment further repressing tumor growth (Figure 4G). Tumors were analyzed
for infiltrating immune subpopulations using flow cytometry, and while knockdown had no impact
on total levels of the immune populations (Figure 4H–J), we found a trend towards decreased CD8+
exhaustion with Ntrk1 knockdown alone, and this was further enhanced with the addition of an
anti-PD-1 antibody (Figure 4K,L). Additionally, the population of CD62L+/CD44high effector CD8+ T
cells was also significantly increased (Figure 4M), so that the proportion of active CD8 to exhausted
CD8 was significantly altered with PD-1 blockade in Ntrk1 depleted tumors. Together with the
overexpression analyses, the data demonstrate that Ntrk1 modulates immune functionality with a
consistent impact on CD8+ activity and exhaustion.

2.8. Ntrk1 Expression Impacts Jak Signaling and Correlates with PD-L1 Levels in Cells Co-Cultured with an
Immune Compartment and in Tumor Samples

To determine how Ntrk1 may be modulating tumor growth and the immune microenvironment,
we examined Jak/Stat signaling as a function of Ntrk1 expression; this is a known pathway utilized by
tumors to promote immunosuppression. By western blot, we found that Ntrk1 knockdown in 344SQ
mesenchymal cells did result in decreased phosphorylation of Jak1 and Stat3 as compared to scrambled
control cells (Figure 5A). Additionally, stimulation of TrkA signaling via exogenous NGF also increased
phospho-Jak1 levels consistently in the 393P cells, whereas phospho-Jak1 levels were high in the 344P
cells initially and then fluctuated throughout the time course with NGF stimulation (Figure 5B). One
of the well-studied immunosuppressive molecules altered downstream of Jak signaling is Irf1, which
in turn triggers the transcription of CD274 or PD-L1. Thus, we assayed whether Ntrk1 can directly
impact the expression of PD-L1. In co-culture assays with Ntrk1 knockdown cells, we found that
at baseline, Irf1 and PD-L1 expression levels are lower in knockdown versus control cells and this
becomes more drastic when knockdown cells are co-cultured with splenocytes (Figure 5C). Conversely,
we found a robust and significant increase in Irf1 and PD-L1 expression in Ntrk1 overexpressing
cells when cultured with splenocytes (Figure 5D). The upregulation of PD-L1 by Ntrk1 has functional
consequences on T cell proliferation. As demonstrated previously, Ntrk1 expression can decrease
immune cell proliferation. However, the addition of an anti-PD-L1 antibody to a co-culture of Ntrk1
overexpressing cells with splenocytes can restore immune cell proliferative capabilities (Supplementary
Figure S7). Ntrk1 overexpressing cells also demonstrate a robust increase of PD-L1 expression at 5:1 and
20:1 ratios of splenocytes to tumor cells at the protein level (Figure 5E). Importantly, this upregulation
of PD-L1 could be partially reversed when cells were treated with LOXO-101, a pan-Trk inhibitor. These
findings were consistent in Ntrk1 overexpressing tumors, with increased PD-L1 levels when compared
to vector control tumors (Figure 5F). As expected, treatment with Ruxolitinib, a Jak1/2 inhibitor,
significantly inhibited the upregulation of both Irf1 and PD-L1 as a consequence of co-culture with
the immune compartment in both vector and Ntrk1-overexpressing cells (Supplementary Figure S8),
suggesting that Trk signaling is just one upstream molecule that impacts Jak-dependent upregulation
of PD-L1.
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Figure 5. Ntrk1 can regulate JAK/STAT signaling to promote expression of PD-L1. (A) Western
blot analysis of 344SQ Ntrk1 knockdown cells probing for phospho-Jak1 and phospho-Stat3. Actin
was used as a loading control. (B) Western blot analysis of 393P and 344P cell lines stimulated with
NGF at 100ng/ml over a short time course to assay activation of phospho-Jak1 and phospho-TrkA.
Densitometry calculations of phospho-Jak1 intensity relative to actin were normalized to 393P (-) and
are shown below the phospho-Jak1 blot. (C) Real-time qPCR analysis of CD274 (PD-L1) expression in
344P Ntrk1 knockdown cells when co-cultured with total splenocytes. (D) 393P Ntrk1 overexpression
cells were co-cultured with total splenocytes and assayed using qPCR for expression of CD274. (E) 393P
Ntrk1 overexpression cells were cultured alone (0:1) or co-cultured with total splenocytes at 5:1 and
20:1 ratios. Either DMSO control or LOXO-101, a pan Trk-inhibitor, were added to the co-culture at the
time of seeding. After 3 days, tumor cells were assayed for protein expression of PD-L1, phospho-TrkA,
and phospho-Jak1. (F) Western blot analysis of PD-L1 expression in 393P empty vector (EV) control
and Ntrk1 overexpression tumors.

Interestingly, although signaling cascades and biological phenotypes such as invasion and
migration are similar between Ntrk1 and Ntrk3 expressing cells, the overexpression of Ntrk3 in
393P cells has no impact on PD-L1 expression when in co-culture with splenocytes (Supplementary
Figure S7). Thus, the regulation of PD-L1 and other immunosuppressive molecules downstream of
Jak/Stat signaling cascades may be a unique function of Ntrk1 in KP mutant lung cancer.

Together, these data demonstrate that Ntrk1 expression can modulate KP lung cancer biology
as well as the immune microenvironment via Jak1 signaling to promote the expression of
immunosuppressive molecules including PD-L1.

3. Discussion

The data generated from the in vivo FDAome dropout screen provide compelling evidence for
the use of in vivo functional genomic screens to identify novel tumor cell genes and/or pathways that
promote immunosuppression and thus may contribute to immunotherapy resistance. We and others
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have demonstrated the utility of these screens, in the context of immunotherapy or in the context of
other tumor biology hallmark dependencies (i.e., cellular growth), to provide preliminary evidence for
novel drug targets as well as stimulate new research questions. For example, human patient-derived
xenografts and genetically engineered mouse models have been utilized to perform loss-of-function
screens using a shRNA library targeting known epigenetic regulators in pancreatic cancer to identify
novel tumor survival dependencies [26]. This group provided strong evidence for WDR5 as being
essential for pancreatic tumorigenesis and thus targeting it as a potential therapeutic strategy to further
explore for pancreatic cancer patients.

Recently, functional genomic screens have moved towards the CRISPR-Cas9 system for gene
editing as it has several advantages over shRNA-based screens, including complete gene knockout
as well as greater genomic coverage with larger libraries. Two recent screens did so in the context of
tumor cell-immune cell interactions. One was completed in vitro with human T cells in co-culture
with melanoma cells to identify tumor genes essential for the effector functions of T cells [27]. The
other CRISPR-Cas9 screen was performed in vivo with anti-PD-1 treatment in combination with
GM-CSF-secreting, irradiated tumor cell vaccine (GVAX) [28]. This screen contained ~2500 genes
and identified hits in the IFNγ response and antigen presentation pathways as expected, but also
less understood hits such as PTPN2. From these two studies alone, the breadth of knowledge and
the resources available to develop hypothesis-driven research about tumor cell influence on immune
system response was significantly expanded and will continue to provide additional knowledge about
these complex processes.

To contribute to these efforts and better understand response and resistance to immune checkpoint
inhibitors in a complex system, we performed a clinically relevant FDAome in vivo dropout screen
using a Kras/p53 mutant syngeneic mouse model of lung cancer. This model and the GEM model
from which the KP mutant cell lines were originally derived [19] closely recapitulate the progression
of human lung cancer disease, with development of metastatic lesions throughout the body, as well
as heterogeneity of immune infiltrate and response to immunotherapy agents [19–22,29]; thus, the
similarity to KRAS-driven human lung cancer validates the use of these models to address specific
immune-related questions, as well as to perform mechanistic and therapeutic studies. We identified
Ntrk1 as a top lead hit as being essential for tumor cell survival in vivo when challenged with an
anti-PD-1 antibody and therefore a potential avenue of acquired resistance. Molecular studies revealed
that Ntrk1 regulates KP lung cancer cell intrinsic biological processes such as cell signaling to AKT and
MAPK to promote cellular growth as well as regulation of in vitro invasive capacity. In vivo analyses
demonstrated that Ntrk1 also augments immune infiltrate and functionality. Specifically, Ntrk1
expression can promote CD8+ T cell exhaustion within the tumor microenvironment, suggesting that
its expression may contribute to CD8+ T cell dysfunction and thus diminish response to PD-1 inhibition.

We now provide the first evidence that Ntrk1 can regulate the expression of the
immunosuppressive molecule PD-L1, likely due to modulation of Jak/Stat signaling cascade. In
melanoma, loss-of-function JAK1/JAK2 mutations were discovered in a minority of patients after
relapse on the anti-PD-1 treatment pembrolizumab; therefore, it is a potential avenue of acquired
resistance to immune checkpoint blockade [30]. Our data may indicate a distinct mechanism by which
this pathway becomes aberrantly hyperactivated in lung cancer cells to promote immunosuppression
and resistance to immune checkpoint inhibition. Ntrk1 can promote activation of Jak1 and Stat3, and
Ntrk1 depletion reduces this signaling and downstream PD-L1 expression. There is little evidence
in the literature connecting Ntrk1 to Jak signaling, so this mechanism needs to be further explored.
However, previous work in neuronal cells demonstrated that neurotrophin-dependent stimulation
of downstream transcription and neuronal cell elongation can be blocked by depletion of Stat3 [31],
suggesting that Stat3 does function downstream of neurotrophin receptors. Additionally, knockout of
gp130, a type I cytokine receptor, can diminish NGF-induced neurite extension, thus linking Ntrk1
signaling and cytokine signaling. However, both of these studies were limited to neuronal cells and
lacked further mechanistic studies to determine whether Ntrk1 directly interacts with these cytokine
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response elements. Thus, the mechanism for Ntrk1-dependent activation of Jak/Stat signaling remains
to be fully elucidated. Additionally, other immunosuppressive molecules that are upregulated as a
result of Ntrk1 overexpression in addition to PD-L1 need to be explored to understand the full impact
of Ntrk1 upregulation on various immune subpopulations and their functionality within tumors.

In vivo functional genomics screens to address specific immune-related questions such as
undiscovered mechanisms of acquired resistance to the anti-PD-1 antibody will drive the field forward
and bolster our understanding of the regulatory pathways driving tumor cell evasion of immune
detection and death. The goal of the work described was to identify novel therapeutic combinations to
improve patient response to immunotherapy. Our data indicate that Ntrk1 may be one such hit that
could be carried forward clinically to improve patient response to a single agent PD-1 blocking antibody.
In some solid tumor types such as lung cancer, Ntrk1 genetic rearrangements occur infrequently
(~1–3% of lung adenocarcinomas), leading to fusion proteins with constitutive kinase activity. Targeted
therapies have recently been FDA approved, with most patients showing durable responses [32–36].
Importantly, our preliminary in vivo screen and supporting data suggest that a significantly broader
patient population may benefit from these well-tolerated Trk inhibitors in the context of immune
checkpoint blockade.

4. Materials and Methods

4.1. Cell Culture and Reagents

The human lung cancer cell lines used in these studies were H1299, H157, A549, H441,
H358, and HCC827. Murine lung cancer cells were created from KrasLA1/+/p53R172HΔg/+ genetically
engineered mice as previously described [19]. All lung cancer cell lines were cultured in Roswell
Park Memorial Institute (RPMI) + 10% Fetal Bovine Serum (FBS). A total of 293T cells were cultured
in Dulbecco’s Modified Eagle’s Medium (DMEM) + 10% FBS and were used to generate lentiviral
particles for creating stable cell lines. The miR-200ab inducible H1299 cells and Zeb1-inducible 393P
cells were generated using the pTRIPz plasmid as previously described by our laboratory [21,24].
Expression of mir-200ab or Zeb1 was induced using 2 μg/mL of doxycycline. Ntrk1 overexpression
cells were generated by subcloning human Ntrk1 cDNA from pCMV5 TrkA (Addgene plasmid
#15002; http://n2t.net/addgene:15002; RRID:Addgene_15002 [37]) into the pLenti-puro vector
backbone using EcoRI and AgeI restriction cut sites. Human Ntrk3 cDNA was cloned into
the pLD6E2F vector. The Ntrk1 shRNA sequences that were used in these studies were as
follows: sh#1: 5′-TCAAGCGCCAGGACATCATT; sh#2: 5′-GTGGCTGCTGGTATGGTATATCT; sh#3:
5′-TCTATAGCACAGACTATTACC; sh#4: 5′-TTGGAGTCTGCGCTGACTAAT.

NGF and NT-3 ligands were obtained from Sigma (St. Louis, MO, USA) and used at a final
concentration of 100 ng/mL. MK2206, LOXO-101, trametinib, and ruxolitinib inhibitors were obtained
from SelleckChem (Houston, TX, USA). Anti-PD-L1 (clone 10F.9G2), PD-1 (clone RMP1-14), and
isotype control antibodies (Rat IgG2b and IgG2a, respectively) were obtained from BioXCell (West
Lebanon, NH, USA).

4.2. Animal Studies

Cancer cells were prepared at a concentration of 1 × 106 cells in 100μl of serum free media. The
cells were subcutaneously implanted into the right flanks of male and female syngeneic 129/sv mice
of at least three months of age. Tumors were allowed to grow for 3–4 weeks, depending on the study.
Where indicated, mice were treated with an anti-PD-1 or isotype control antibody via i.p. injections
biweekly (100 μL per dose for a total of 200 μg). After euthanasia, tumors were measured both by
calipers and weight and subsequently collected for flow cytometry analyses or sequencing for the
FDAome screen (see below). All animal experiments were reviewed and approved by the Institutional
Animal Care and Use Committee at the University of Texas MD Anderson Cancer Center (protocol
#00001271).
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4.3. FDAome Dropout Screen

Murine lung cancer cell lines (393P and 344P) were infected at a multiplicity-of-infection (MOI) of
0.3 with a pooled shRNA lentiviral library targeting 192 genes associated with FDA-approved target
therapies (10 independent shRNAs/gene). The FDAome expressing cells were implanted into 129/Sv
mice at 1.0 × 106 cells/mouse in triplicate for each condition. Once tumor size reached ~150 mm3 as
measured by calipers, mice were either treated with an isotype control or PD-1 blocking antibody as
described above. Tumors were collected after 10 days (time point 1) or 17 days (time point 2) in the
344P model, or after 25 days in the 393P model.

The shRNA-coupled barcodes were detected deploying high-throughput sequencing technology
(for detailed procedures and primer sequences see the following reference) [26]. Raw counts for the
screen endpoints and a reference population, isolated after transduction, were normalized using the
variance stabilizing transformation in R (version 3.3.2) with the DESeq2 in R. A fold change in barcode
abundance was estimated by dividing the normalized counts by the reference. Four independent
shRNA targeting essential genes (Rpl30, Psma1) or the negative control luciferase (LUC) were cloned
with five unique barcodes each and incorporated in the library as positive and negative controls
(20 reagents/control, see Table S1). One LUC hairpin showed an apparent off-target effect, whereas
one hairpin for Psma1 did not show a robust drop out; however, this result was not reflective of poor
screen performance as the trend was consistent across the five barcodes. After excluding those hairpins,
the separation of positive and negative controls was evaluated by the robust strictly standardized
mean (SSM, Table S1). Fold change distribution was converted to percentiles, and biological replicates
were collapsed for RSA analysis. The RSA logP-values and ranks are provided in Table S2.

4.4. Cell Viability and Growth Assays

Cell growth in Ntrk1 knockdown or overexpression cells was measured by plating an equal
cell number at day 0 and then counting viable cells (using Trypan blue exclusion) every day over a
three-day period. Cell growth in Ntrk3 overexpression cells was measured in 3D cultures. These cells
were plated on top of a thick Matrigel layer in 8 well chamber slides as single cells. NT-3 ligand was
added at the time of cell seeding. Growth was monitored over six days and media refreshed every
other day. Images from day 6 were used to measure 3D structure diameter using ImageJ software
(version 1.5h). Two independent chambers were quantified for each condition.

Cell viability in the presence of either dimethyl sulfoxide (DMSO,) MK2206 (1 μM), or trametinib
(1 μM) was measured using a 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT)
reagent (Sigma, St. Louis, MO, USA). Cells were plated in a 96 well plate and the drug was added
at the time of seeding at the indicated concentrations. After 72 h, an MTT reagent (1.5 mg/mL) was
added to each well, incubated for one hour, then supernatant aspirated and precipitate solubilized in
DMSO. Absorbance values were read using an Epoch plate reader at 570 nm and 630 nm (background),
and background absorbance values were subtracted from 570 nm values.

4.5. Invasion and Migration Assays

Cells were plated in an equal number in 8 μm Transwell inserts (BD Biosciences) placed in 24
well plates as described previously [19]. Cells were incubated overnight for 16 h and then stained
with a crystal violet solution. Chambers were then imaged by brightfield microscopy on an Olympus
IX73 (Olympus, Center Valley, PA, USA), and ImageJ software was used to count cells that had
migrated/invaded through the insert pores.

3D cultures were completed as previously described [19]. Briefly, either 100% Matrigel or a
Matrigel/collagen type I mixture (50:50) were used to coat 8 well chamber slides. Collagen was used
at a final concentration of 1.5–2.0 mg/mL. Single tumor cells were plated on top of the matrix (1500
cells/chamber) in media containing 2% Matrigel. Cells then grew over a period of 3–5 days and

132



Cancers 2019, 11, 462

invasive structures were manually counted as a percentage of total structures in each well. 30–50
structures were counted per well, and each condition was plated in triplicate.

4.6. Co-Culture Assays

Spleens were extracted from 129/Sv mice bearing either 393P or 344P tumors. These were then
mechanically processed and filtered to obtain single cells. Red blood cells were lysed using red blood
cell (RBC) Lysis buffer (BioLegend, San Diego, CA, USA). Splenocytes were frozen in 90% FBS/10%
DSMO. After thaw, viable splenocytes were counted using Trypan blue exclusion and incubated with
a far red proliferation dye (Life Technologies, Carlsbad, CA, USA). After 30 min at 37 ◦C, the dye was
washed out with complete media, and stained splenocytes were plated at various ratios with matched
tumor cells (i.e., splenocytes from 393P tumors were plated with 393P tumor cells in co-culture) in
media supplemented with 5 μg/mL of anti-CD-3 and anti-CD28 (Thermo). Where indicated, an
anti-PD-L1 antibody was added at the time of seeding at a concentration of 20 μg/mL. The percentage
of far red positive splenocytes was then measured by flow cytometry using a FACSCanto II machine
(BD Biosciences, San Jose, CA, USA).

4.7. Flow Cytometry Analysis for Immune Subpopulations

Tumors were processed for flow cytometry into single cells using mechanical and enzymatic
digestion (enzyme mixture—collagenase, DNAse, and hyaluronidase). Red blood cells were lysed as
described above and viable tumor cells counted. The following antibodies were used to stain immune
cell populations: Ghost violet 510 Live/Dead, Pacific Blue CD45, PE-594 CD3, PE/Cy7 CD8, APC/Cy7
CD4, BV605 PD-1, APC Tim3, FITC CD62L, BV711 CD44 (BioLegend).

Samples were run on an LSR Fortessa machine. Single color compensation controls were
performed using compensation beads (Thermo Fisher Scientific, Waltham, MA, USA) to correct for
overlap in signal among antibodies. Spleen samples were used to set a gating strategy for CD3+/CD4+
and CD3+/CD8+ T cells. FlowJo software (version 10) was used to perform all downstream analyses
on subpopulations.

4.8. Western Blot Analysis

Cells were harvested and lysed in radioimmunoprecipitation assay buffer (RIPA) lysis buffer
supplemented with phenylmethylsulfonyl fluoride (PMSF), a protease inhibitor (Cell Signaling),
and phosphatase inhibitors (Sigma). Lysates were separated by SDS-PAGE (BioRad, Hercules, CA,
USA), transferred to nitrocellulose or polyvinylidene fluoride (PVDF) (BioRad) membranes, and
probed with the following primary antibodies: phospho-TrkA(Y674/675), phospho-TrkA(Y785), TrkA,
phospho-MEK, MEK, phospho-ERK, ERK, phospho-AKT, AKT, phospho-GSK3b, phospho-Jak1, Jak1,
phospho-Stat3, Stat3 (Cell Signaling, Danvers, MA, USA), phospho-TrkC, total TrkC (Thermo Fisher),
PD-L1 (Abcam, Cambridge, MA, USA), and actin (ProteinTech, Rosemont, IL, USA).

4.9. RNA Extraction and Real-Time qPCR

RNA was extracted from cells in vitro using a TRIzol reagent (Thermo Fisher). Tumor cell RNA
was extracted using the mirVana RNA extraction kit (Life Technologies). Briefly, tumors were collected
and snap frozen, then processed in 300 μL of lysis buffer using homogenization. RNA was then
extracted as directed by the kit protocol.

All RNA samples were quantified, and reverse transcription was performed with 2 μg of RNA
using qSCRIPT cDNA SuperMix (Quantabio, Beverly, MA, USA). Real-time PCR was performed using
primer sets specific for each gene (obtained from Origene, Rockland, MD, USA) and the SYBR® Green
PCR Master Mix (Life Technologies). L32 (60S ribosomal gene) was used to normalize expression
across samples.
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4.10. Statistical Analyses

All analyses were performed using GraphPad Prism software (version 7.01). Unpaired Student’s t
tests were used in comparison of two conditions, and one-way ANOVA was used for comparisons of
three or more conditions. Tukey’s test was used to correct for multiple comparisons. All analyses were
2-tailed and p-values < 0.05 were regarded as significant.

5. Conclusions

Functional genomics screening in vivo generates novel scientific questions in the context of a
complex ecosystem within a whole animal. The FDAome in vivo dropout screen revealed Ntrk1
as a novel regulatory molecule of both KP tumor cell intrinsic biology and extrinsic immune
microenvironment factors. Our data indicate that Ntrk1 regulates KP tumor cell invasion, migration,
as well as signaling downstream to survival and growth pathways. Additionally, Ntrk1 augments
the immune profile within tumors, pushing them towards a dysfunctional, exhausted state. Together,
these data suggest that targeted Trk inhibitors may have utility in combination therapy strategies with
immune checkpoint inhibitors to improve lung cancer patient response and survival.
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Abstract: Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue
integrity, preserve self-tolerance and protect against invading pathogens. Lung macrophages within
the distal airways face around 8000–9000 L of air every day and for that reason are continuously
exposed to a variety of inhaled particles, allergens or airborne microbes. Chronic exposure to
irritant particles can prime macrophages to mediate a smoldering inflammatory response creating
a mutagenic environment and favoring cancer initiation. Tumor-associated macrophages (TAMs)
represent the majority of the tumor stroma and maintain intricate interactions with malignant cells
within the tumor microenvironment (TME) largely influencing the outcome of cancer growth and
metastasis. A number of macrophage-centered approaches have been investigated as potential
cancer therapy and include strategies to limit their infiltration or exploit their antitumor effector
functions. Recently, strategies aimed at targeting IL-1β signaling pathway using a blocking antibody
have unexpectedly shown great promise on incident lung cancer. Here, we review the current
understanding of the bridge between TAM metabolism, IL-1β signaling, and effector functions in
lung adenocarcinoma and address the challenges to successfully incorporating these pathways into
current anticancer regimens.

Keywords: lung adenocarcinoma; macrophage; immunotherapy; interleukin-1β and immunometabolism

1. Introduction

Lung cancer is the leading cause of cancer-related death and the second most common malignancy
with non-small cell lung cancer (NSCLC) referring for lung adeno and squamous carcinomas and
accounting for up to 80% of all newly diagnosed lung cancer cases [1,2]. The overall five-year survival
rate among newly diagnosed lung cancer patients remains in the low range of 15% [3]. This is in part
because (1) the majority of lung cancer cases are diagnosed relatively late in the course of the disease
despite advances in lung cancer screening and diagnosis and (2) lung adenocarcinomas are extremely
diverse in terms of histopathology, radiology, and molecular spectrum impeding treatments despite
multimodality therapeutics [4]. Since the 80’s, macrophage density from biopsies of dozen types of
cancer, including lung adenocarcinoma, has been linked to tumor growth and poor outcomes for
cancer patients [5–8]. However, distinct subsets of tumor-associated macrophages (TAMs) exist within
tumors and these cells can adopt a wide array of phenotypes depending on their environment. We are
just starting to better appreciate the ontogeny and effector functions of these TAMs and how they can
influence the initiation and growth of the tumor depending on a dynamic equilibrium influenced by
the tumor microenvironment (TME) [5,6,9–11].
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The plasticity of macrophages has now been largely accepted [12] and is reflected by their ability
to sense, respond, and rapidly adapt to their local environment [13–17] to maintain tissue integrity
and preserve self-tolerance [18–20]. However, when the host is chronically challenged, upon chronic
exposure to irritant particles or infection, for example, macrophages may play a detrimental role
contributing to a low-grade inflammatory state that leads to disease progression or even cancer
initiation [21,22]. This is illustrated by the increased lung cancer risk in smokers and patients with
chronic obstructive pulmonary disease (COPD).

The origin of TAMs within lung adenocarcinoma and their selective functions are currently a
topic for debate but a mixed ontogeny and immunosuppressive functions are emerging depending
of the stage and location of the tumors [23–26]. For instance, tumors can early on secrete the
colony-stimulating factor 1 (CSF-1 or M-CSF) that expands the pool of macrophages towards the
cancer supporting TAM phenotype and later on the chemokine (C-C motif) ligand 2 (CCL2) that
attracts monocytes [5,6,9–11]. Once infiltrated within the tumor, TAMs maintain intricate interactions
with malignant cells within the TME and this is most likely the key culprit of their antitumoral response
largely influencing the outcome of tumor growth and metastasis.

In this review, we describe recent advances made on the ontogeny of lung resident macrophages
and their expansion and metabolic rewiring towards the lung cancer supporting TAM phenotype,
which depend on a specialized TME. We discuss therapeutic promises of general therapies to block
macrophage recruitment to tumors or more selective therapies to reeducate their tumoricidal functions,
both having reached clinical trials. We further outline the contribution of the IL-1β signaling pathway,
and how its metabolic-dependent modulation in TAMs could explain part of the anti-tumorigenic
potential of IL-1β inhibition.

2. Environment-Dependent Maintenance of Lung Macrophages during Homeostasis

2.1. Lung Macrophage Ontogeny and Maintenance

Macrophages are tissue-resident cells that act as immune sentinels to maintain tissue integrity,
preserve self-tolerance, and protect against invading pathogens [18–20]. In the lung, early preclinical
studies have suggested that monocytes poorly contribute to tissue-resident macrophages at steady
state and their maintenance mainly relies on homeostatic self-renewal [27–29]. Modern tools using
fate mapping and tracing methods in mice have confirmed that a specific population of lung alveolar
macrophages (AMs) originates from fetal liver progenitors and relies in large part on their ability to
self-renew at steady state [30–36]. Alveolar macrophages remain the main macrophage population
investigated in the lung and reside in the airspace lumen where they are specialized in recycling
surfactant molecules and clearing inhaled particles and debris [37–41]. Alveolar macrophages are
long-lived, with a turnover rate of only approximately 40% in a year [41]. By contrast to most of
tissue-resident macrophages, the maintenance of AMs is not supported by CSF-1 as illustrated in
op/op mice that harbor a mutation in this gene [18–20]. Indeed, mouse AMs are highly dependent
on the granulocyte-macrophage colony-stimulating factor (GM-CSF) and the transforming growth
factor beta (TGF-β) for their genesis and survival [42,43]. Three additional subpopulations of mouse
interstitial macrophages (IMs) have been identified in the pulmonary interstitium, comprising up to 4%
of lung macrophages and presumably existing between the blood compartment and the airways [44,45].
These macrophage populations are defined by their location and site of origin, and distinguished by
specific cell surface markers (Figure 1, left panel) [46]. As for AMs, two populations of mouse IMs may
self-maintain independently of adult hematopoiesis [44,45]. Emphasizing the complexity of IMs, the
third population of IMs could be maintained by circulating monocytes to exert their tissue remodeling
and immunoregulatory activities [47–49]. Consistently, there is a strong interest to develop new tools
to specifically target these different macrophage populations in vivo and address their transcriptional
signature and immune function during lung homeostasis and diseases [50].
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Figure 1. Lung macrophage origin and contribution to “smoldering inflammation”. Left panel:
lung-resident macrophages are derived from fetal liver monocytes originating during embryogenesis.
The genesis and self-maintenance of macrophages depend on granulocyte-macrophage
colony-stimulating factor (GM-CSF) and transforming growth factor β (TGF-β). Four populations
of macrophages are present in the lung and are defined by their locations and expression of specific
cell surface markers (please refer to boxes): alveolar macrophages (AMs) reside in the airspaces of
lung where they self-renew thanks to GM-CSF-expressing alveolar cells. AMs express peroxisome
proliferator-activated receptor γ (PPARγ) to maintain lipid homeostasis most likely required for
surfactant lipid recycling. Three interstitial macrophage (IMs) populations are located in the lung
interstitium and have potential immunoregulatory properties. Right panel: upon exposure to irritant
particles or chronic inflammation, macrophages can be primed into an inflammatory M1 phenotype
participating to a “smorldering inflammation”. This inflammation is illustrated by the secretion
inflammatory cytokines such as interleukin-1β (IL-1β) or tumor necrosis factor α (TNFα) that are
under the control of the transcriptional factor NF-kB and the production of reactive oxygen or nitrogen
species (ROS/RNS) that favor the induction of somatic mutations in surrounding epithelial cells.

2.2. Environment-Dependent Lung Macrophage Identity during Homeostasis

The plasticity of macrophages has now been largely accepted [12] and is reflected by their ability
to sense, respond and rapidly adapt to their local environment, including inflammatory signals [13],
ectopic nutrient deposition [14,15] or apoptotic debris [16,17]. Consistently, gene expression patterns
of mouse macrophages are diverse among various peripheral tissues reflecting their propensity to
sense environmental cues and the wide array of phenotypes they can adopt [51–53]. For instance,
macrophages within the distal airways face around 8000–9000 L of air every day and for that reason are
continuously exposed to a variety of inhaled particles, allergens or airborne microbes [37–40]. A handy
and consequently persistent shorthand for understanding macrophage function divides these cells into
two extreme phenotypes of a large spectrum in vitro by polarizing them into a pro-inflammatory M1
phenotype induced by LPS (alone or in combination with INFγ) or an alternative M2 phenotype
induced after IL-4 stimulation [54–56]. Although oversimplified, this in vitro classification has
provided a useful guide for investigating the mechanisms that dictate macrophage switch during lung
inflammation or repair [57,58]. For instance, while the inflammatory properties of M1 macrophages
contribute to early host defense or injury responses, the repair functions of M2 macrophages play a
crucial role during wound healing. This adaptation to the environment could explain why macrophage
effector functions is intimately linked to intracellular metabolic reprograming to rapidly respond
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to the adequate energy demand [59–62]. However, this classification limits our ability to clearly
define a boundary and categorize cells during homeostasis as macrophages respond to a vast number
of steady state single or combined environmental cues, thus complicating our understanding of
the precise mechanisms and metabolic flows that maintain macrophage basic cellular functions
in vivo. At least, compared to other tissue resident macrophages, AMs are better equipped with
genes involved in gas exchange such as the carbonic anhydrase Car4 due to their proximity to the
airways or genes regulating lipid metabolism in order to catabolize the surfactant, which are in large
part controlled by the transcription factor peroxisome proliferator-activated receptor γ (PPARγ) [51,53].
Consistently, PPARγ expression is important to maintain lung macrophage transcriptome, functionality,
and surfactant catabolism as well as response to infection in mice [63–66]. This tissue specific
transcriptional signature is in part the consequence of a chromatin landscape reshaping induced by the
local microenvironment [53] that could largely be influenced by acute and chronic inflammation [57,67]
and epigenetic-dependent reprogramming [67,68]. In contrast, little is known about the regulation
of IM populations. Besides sensing microbial products [47], IMs may be impacted by low oxygen
tension (i.e., hypoxia) to exert their immunoregulatory activities in mouse pulmonary hypertension or
allergenic contexts [69,70]. Thus, given their different phenotypes and ontogenies, it is now clear that
AMs and IMs perform different functions in the lung that are so far been linked to tissue maintenance
(i.e., surfactant catabolism and luminal infection) and innate immunoregulatory mechanisms (i.e.,
hypoxia and allergen sensing and tissular infection).

3. Lung Macrophage Origin and Diversity in Lung Adenocarcinoma

3.1. Smoldering Inflammation

Environmental and genetic factors influence lung cancer pathogenesis with cigarette smoke
being the major environmental risk factor, followed by chronic infection and dietary factors. Chronic
inflammatory diseases are linked to the initiation of tumorigenesis in part by creating a mutagenic
environment in sub-epithelial stroma [21,22]. This type of inflammation with increased cancer risk
is often referred to “smoldering inflammation”. Immune cells, especially macrophages, participate
to the mutagenic environment by producing various cytokines (including IL-1β) and generating
reactive nitrogen and oxygen species that promote genetic instability and induce somatic mutations
in epithelial cells (Figure 1, right panel). Even if detailed mechanisms underlying tobacco-induced
cancerogenesis are not completely elucidated [71], there is strong evidence that cigarette smoke
contributes to this smoldering inflammation by inducing secretion of inflammatory cytokines and
macrophage apoptosis [72,73] along with the formation of lung nodules [74]. The two most frequent
oncogenic mutations in lung adenocarcinoma, which are generally mutually exclusive, include the
activating mutations in a small GTPase transductor protein KRAS (V-KI-ras2 Kirsten rat sarcoma viral
oncogene homolog) and the epidermal growth factor receptor (EGFR) [4]. In preclinical and clinical
studies, chronic obstructive pulmonary disease (COPD) leads to increased lung cancer risk [75,76].
This disease is predicted to rank in the top five of overall burden of disease by 2020 according to
the World Heathy Organization (WHO) [77] because of increased tobacco use and its relationship
to the metabolic syndrome [78,79]. There are also evidences that COPD could be driven by chronic
exposure to irritant particles such as asbestos or silica through NOD-like receptor family, pyrin domain
containing 3 (NLRP3) inflammasome-dependent IL-1β secretion [80,81]. Thus, chronic inflammatory
diseases, dominated by macrophage inflammation, is a culprit of cancer initiation.

3.2. Resident Tumor-Associated Macrophages (rTAMs)

On the site where a tumor develops, malignant cells are surrounded by non-malignant stroma cells
that are part of the TME. Non-malignant populations include connective tissue cells and leucocytes,
with TAMs representing the majority of the leukocyte population [82,83]. The specific maintenance of
tissue-resident macrophages through in situ proliferation and the diversity of TAMs within tumors
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have challenged our understanding of their role in tumors. Indeed, in mouse models of brain tumors
and pancreatic cancer, TAMs can originate from both circulating monocytes and tissue-resident
macrophages where they could facilitate tumor growth by contributing to tissue remodeling [25,84].
After inoculation of TC-1 lung carcinoma cells in mice, the group of Boissonnas identified a specific
population of mouse rTAMs that originated from tissue-resident IMs already present in healthy
lungs that could support lung tumor development (Figure 2, left panel) [85]. In comparison to other
macrophage subsets, profiling of rTAMs revealed a transcriptional signature associated to tissue
remodeling including transcripts related to extracellular matrix (ECM) and vasculature interactions
that supported tumor cell growth [85]. Using single-cell and mass cytometry by time of-flight
(CyTOF) analyses in early human lung adenocarcinomas, the group of Merad also identified a unique
tumor-specific macrophage population that dissociated from tissue-resident macrophages (Figure 2,
left panel) [86]. These rTAMs exhibited an upregulation of transcripts involved in macrophage effector
functions such as triggering receptor expressed on myeloid cells-2 (TREM2), tetraspanin CD81 or
macrophage receptor with collagenous structure (MARCO) that were associated with a significant
survival disadvantage [86]. As reviewed elsewhere, it was previously reported that both TREM2 and
MARCO are critical in mouse airway macrophages to limit pro-inflammatory or Toll-like receptor
responses [41]. Intriguingly, these human rTAMs also expressed higher levels of the transcription factor
PPARγ involved in tissue-resident AM immunomodulatory functions and surfactant catabolism [86].
These findings suggest that rTAMs signature may be associated with a tumor-specific metabolic
rewiring opening therapeutic perspectives for lung cancer diagnosis and treatment [87]. For instance,
pro-surfactant protein B (SFTPB), known to be transcriptionally controlled by PPARγ, is used as a
serum biomarker of lung adenocarcinoma both in preclinical and clinical studies [88–90]. Additionally,
higher density of anti-tumoral TAMs were observed in human lung tumor nests and stroma [21] and
stroma TAMs were associated with systemic blood inflammation (i.e., elevated plasma CRP levels),
adverse prognostic factors (i.e., lymph node metastasis) or poor overall survival [91,92].

3.3. Monocyte-Derived TAMs (MoTAMs)

While the role of rTAMs in promoting cancers spread (i.e., metastasis) is well documented,
the role of MoTAMs remains much less understood beyond their potential roles in continuously
replenishing tumors [6,93]. The TAMs were originally hypothesized to originate from circulating
monocytes that were recruited in response to chemotactic signals released from tumor cells with
a subset of these cells being called myeloid-derived-suppressor cells [94,95]. Targeting chemokine
interactions and subsequent recruitment of macrophages within tumors, including the CCL2/CCR2
or CXCL12/CXCR4/7 chemokine-chemokine receptor axes, have shown great potential for cancer
therapies in various mouse models of cancer metastasis [96–98]. In the clinic, antibodies that selectively
target CCL2 (CNTO888) have produced mixed results as antitumor activity [99–101]. By contrast,
CCR2 inhibitors (i.e., PF04136309 or CCX872) are currently tested in metastatic pancreatic cancer
(Figure 3) [102,103]. Using, a mouse model of lung cancer metastasis driven by p53 deficiency and
the oncogenic mutation KrasG12D the group of Pittet showed that circulating classical inflammatory
monocytes employ the chemokine receptor CCR2 to promote a potent macrophage amplification
program that generated TAMs within the lung (Figure 2, right panel) [23,94]. A role for the
CXCL12/CXCR4/7 chemokine–chemokine receptor axes has also been proposed in mouse lung cancer
metastasis-induced by lung carcinoma cell transplantation [104,105] most likely by shaping infiltrated
immune cell population and promoting angiogenesis [106]. By contrast to classical monocytes,
the group of Hedrick recently identified that nonclassical “patrolling” monocytes, enriched in the
microvasculature of multiple mouse metastatic tumor models, prevented tumor invasion and reduced
lung metastasis by scavenging tumor material from the lung vasculature (Figure 2, right panel) [107].
Further investigations will be required to pinpoint at with stage the imbalance between classical
and non-classical MoTAMs occurs in lung cancer. Still, some evidences in humans indicate that the
lymphocyte–monocyte ratio (LMR) could not only be an independent prognostic factor in patient with
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NSCLC (Figure 3) [108] but also a predictor of survival and clinical outcome before complete resection
for primary lung cancer or after treatment with anti-angiogenic therapy plus chemotherapy [109–112].
However, whether this ratio predicts a chemokine gradient, a switch between MoTAMs and/or the
pathologic role for infiltrated MoTAMs remain to be fully elucidated.

Figure 2. Macrophage effector functions as part of the 7th hallmark of cancer. Right panel: In established
tumors, tumor-associated macrophages (TAMs) are the major part of the immune infiltrate that
constitutes the tumor microenvironment (TME). Malignant cells produce the colony stimulating factor
1 (CSF-1), which participates to the conversion of tissue-resident macrophages into resident-TAMs
(rTAMs). Their origin and cell surface makers may differ between mice and humans, with PPARγ
being highly expressed in human rTAMs. Tumor cells also produce lactate through anaerobic
glycolysis referred as the “Warburg effect” that can feed cancer cells in a cell-autonomous fashion
for proliferation or act in a paracrine fashion to stabilize the hypoxia-inducible factor 1α (HIF1α)
and promote a non-classical “M2-like” macrophage polarization. The signal transducer and activator
of transcription 3 (STAT3) is another key transcription factor of M2 polarization. These M2-like
macrophages participate to the tumor growth through at least 4 mechanisms: (1) secretion of the
angiogenic vascular endothelial growth factor A (VEGFA), (2) expression of the immune checkpoint
programmed death-1 (PD-1), (3) defect in recognizing and phagocytosing CD47-expressing tumor
cells and (4) immunosuppression through inhibition of Th1 helper cells (Th1) and recruitment of
regulatory T cells (Treg). Left panel: TAMs are also involved in more chaotic metastatic tumors.
A feed-forward loop between CSF-1-expressing tumor cells and EGF-expressing TAMs contributes
to intensive proliferation and oxygen consumption leading to a hypoxic environment. Tumor cells
also secrete chemokine ligands such as CXCL12 and CCL2, involved in the recruitment into the tumor
site of newly monocyte-derived TAMs (MoTAMs) from circulating Ly6Chi monocytes contributing
to the expansion of the tumor and the hypoxic niche. Hypoxia within tumor nest alters tumor cells
and surrounding MoTAMs promoting extracellular matrix (ECM) remodeling through secretion of
IL-1β and metalloproteases (MMPs). This remodeling favors the “angiogenic switch”. A population
of Tie2+ TAMs, which most likely derives from a subpopulation of circulating Ly6Clo monocytes,
is located within the tumor vasculature interacting with mammalian-enabled (MENA)-expressing
tumor cells and endothelial cells to further promote angiogenesis and create a metastatic environment.
Circulating Ly6Clo monocytes also scavenge tumor materials to prevent tumor invasion whereas
metastasis-associated macrophages (MAMs) allow the extravasation of tumor cells into the lung.
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Figure 3. Lung adenocarcinoma treatment and emerging therapeutic potential of targeting
macrophages. Diagnosis of lung adenocarcinoma patient requires at first magnetic resonance imaging
(MRI) or positron-emission tomography scan (PET-scan). Tumor biopsies were also performed to
further characterize the histology of the tumor and to determine the cancer cell’s origin, the disease
progression, and the expression of PD-L1 among other features. Oncogenic mutations driving lung
adenocarcinomas were screened, of which V-KI-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS) and epidermal growth factor receptor (EGFR) mutations were the most frequent. These different
diagnoses allow personalized treatment options with targeted oncogenic pathway inhibitors and/or
chemotherapy. Immunotherapy is highly patient-dependent since the treatment with a checkpoint
inhibitor that targets the PD-1/PD-L1 pathway requires tumors expressing levels of PD-L1 higher
than 50%. These therapies are generally not exclusive and different strategies are employed for a
better healing without remission. Novel potential therapies are aimed at targeting tumor-associated
macrophages (TAMs). Whether or not IL-1β inhibitory antibody (Canakinumab) targets macrophages,
its use on patients with C-reactive protein (CRP) levels higher than 2 mg/L reduced the rate of
lung cancer. Composition of the tumor microenvironment (TME) may allow patient stratification.
For instance, lymphocyte-monocyte ratio (LMR), a prognostic factor and a predictor survival, could
be modified with CCR2 inhibitors (PF04136309 or CCX872) or with CCL2 inhibitors (CNTO888),
preventing the recruitment of circulating Ly6Chi monocytes into tumors. To limit the conversion
of tissue-resident macrophages (i.e., alveolar macrophages AMs and interstitial macrophages IMs)
into TAMs, blocking antibodies anti-CSF-1R (IMC-CS4 or AMG820) and tyrosine kinase inhibitors
(PLX3397, BLZ945 or JNJ-40346527) are used. Cancer cells express CD47 on their surface, known to be
a “don’t eat me” signal and recognized by SIRP1α expressed on macrophages, which triggers a cascade
of events that inhibit phagocytosis: anti-CD47 (Hu5F9-G4 or CC90002) or competitive recombinant
SIRP1αFC (TTI-621 or ALX148) are developed as a way to reeducate TAMs for eliminating cancer cells.
As for T-cells, TAMs also express the immune checkpoint receptor PD-1, inducing immune tolerance
and TAMs PD-1 expression reduced the phagocytic potency against tumor cells. Immunotherapy
with the use of αPD-1 not only targets PD-1/PD-L1 pathway on T-cells but is efficient to reactivate
phagocytic potency of macrophages. However, TAMs could limit anti-PD-1 therapeutic benefits by
stealing and capturing αPD-1 antibody from the CD8+ T-cells via FcγRIIb/III receptors unless if
αFcγRs antibodies are administrated before. Another way to reeducate TAMs is to convert M2-like
macrophages to an antitumor phenotype in targeting MARCO (αMarco Ab) or in inhibiting histone
deacetylase (TMP195) to reprogram macrophage-dependent T-cell immune responses. Rebastinib
reduced cancer cell metastasis by inhibiting a specific Tie2+ TAMs population implicated in the
angiogenic switch.
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4. Lung Macrophage Immunometabolism and Function in Lung Adenocarcinoma

4.1. TAM Immunomodulation

Understanding the distinct functions of different TAM populations within tumors remains an
intense area of research. Nevertheless, in the vast majority of cancers, macrophages exhibit an
overall immunosuppressive phenotype characterized by low levels of inflammatory molecules and an
increased expression of transcripts expressed by alternatively activated M2 macrophages (Figure 2,
left panel) [6]. Their in vitro and in vivo responses are associated with TGF-β and other growth factor
such as vascular endothelial growth factor (VEGFA), interleukin or metalloprotease production that
could impact their proliferation and differentiation in an autocrine manner and their surrounding
environment in a paracrine manner [113,114]. This macrophage switch was recently highlighted in a
transcriptional single cell analysis of human lung adenocarcinomas [115]. This antitumor response is
thought to be mediated by the local environment created by the tumor to educate and take advantage
of them. Although the M1/M2 distinction is oversimplified, therapies aimed at reprogramming TAMs
towards a pro-inflammatory phenotype have emerged as a way to promote tumoricidal functions of
TAMs. In animal models, drugs that inhibit key signaling molecules involved in M2 polarization (i.e.,
IL-4, STAT3 or PI3-kinase) successfully limited the immunosuppressive functions of TAMs and shrank
tumors [116–120]. Macrophage-specific deletion of c-MYC also reduced tumor growth by preventing
alternative TAM polarization [121]. Similarly, targeting the macrophage receptor with collagenous
structure (MARCO), which is a key M2 marker, reprogrammed macrophage-dependent T-cell immune
responses restricting tumor development and metastasis in mice (Figure 3) [122]. These findings
add on the original Weissman’s work on how cancer cells escape TAM’s cancer-killing potential.
Indeed, almost every type of cancer cell expresses CD47 at their cell surface, which is a molecule
known for its role on normal, healthy cells as a “don’t eat me” signal to phagocytosing macrophages
(Figure 2, left panel) [123]. By expressing CD47, cancer cells will block “eat me” signals (such as
the molecule calreticulin, which marks the cells for phagocytosis) by engaging the signal regulatory
protein alpha (SIRP1α) on the surface of macrophages and limiting their cellular rearrangement for
efficient engulfment. These findings led to novel therapeutic approaches targeting CD47 or SIRP1α
(i.e., anti-CD47 antibodies such as Hu5F9-G4 or CC90002 and competitive recombinant SIRP1αFC
such as TTI-621 and ALX148) as a way to reeducate TAMs for eliminating cancer cells in humans
(Figure 3) [124,125]. Another example to reeducate the tumoricidal activity of TAMs is the use of
CD40 agonists [126] that have also found their ways to the clinic [11]. Despite major efforts in
precision medicine in the era of personalized medicine [127], identifying the type of cancer and patient
population who will benefit the most from these emerging “macro-immunotherapies” is still a matter of
intense investigations. At least in mouse models of lung cancer metastasis-induced by lung carcinoma
cell transplantation or xenograft, therapeutic targeting of intracellular signaling pathways that regulate
the switch between macrophage polarization states or the efferocytic function of TAMs was efficient to
promote tumor regression and synergized with checkpoint inhibitor therapy [116,117,124,128–131].

4.2. Adaptation of TAM to the “Warburg Effect”

Although the immunosuppression of TAMs is anticipated to be highly complex and
context-dependent, recent evidence suggest that metabolic changes in tumor cells could create a
metabolic imbalance within the TME that can significantly impact TAM effector functions [132,133].
This environment is generally characterized by hypoxia and acidosis. The latter arises from the
propensity for cancer cells to convert glucose to lactate despite the presence of oxygen, a mechanism
originally described by Otto Warburg and referred as the “Warburg effect” [134]. Consistently, positron
emission tomography (PET) scans using 18F-labeled 2-deoxyglucose as a non-metabolizable glucose
analog light up primary and metastatic mouse and human lung cancers (Figure 3). Additionally,
an inverse association between the tumor expression of the hypoxia-inducible factor (HIF)-1α, glucose
transporter GLUT1 or the lactate dehydrogenase LDHA and the prognostic of patients was observed in
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lung adenocarcinoma [135–138]. Recent works from the group of DeBerardinis elegantly showed that
human NSCLC heterogeneously oxidize glucose in the tricarboxylic acid (TCA) cycle [139] and even
use a larger amount of lactate in a cell-autonomous fashion [140]. Some preclinical evidence in a lung
cancer murine xenograft model suggest that targeting GLUT1 inhibits cancer cell growth [141,142]. In a
murine model of KrasG12D-driven lung cancer, pharmaceutical LDHA inhibition also inhibited both
tumor progression and regression [143]. Thus, optimization of GLUT1 (BAY and DRB-18) or LDHA
inhibitors may offer novel therapeutic strategies for treating lung cancer [144–146]. The importance
of this metabolic pathway for TAM effector functions has been revealed by Colegio et al. who
demonstrated in a murine model of Lewis lung carcinoma that lactic acid produced by tumors
stabilizes HIF1α in TAMs, leading to an “M2-like” phenotype that was independent of IL-4R signaling
(Figure 2, left panel) [147]. In other mouse model of cancer, the immunosuppression of TAMs was
rather attributed to a role of HIF2α in accelerating tumor burden [148]. These discrepancies may reflect
the specific metabolic rewiring of tumors depending on the oncogenic driver mutation, the local TME
organization or the tissue where they develop and how TAMs form an alliance with cancer cells for
metabolic symbiosis or compete for precious nutrients [132,149,150]. Recently, Carmona-Fontaine et al.
showed that the modular organization of hypoxia and acidosis within the mouse TME may not only
dictate the metabolic rewiring of TAMs but may also be sufficient to recapitulate their spatial diversity
in vitro [151,152]. Although oxidative phosphorylation (OXPHOS) is a hallmark of anti-inflammatory
M2 macrophages by contrast to glycolytic M1 macrophages in vitro [59,60] and the high glucose
requirement of the tumor competes with the surrounding cells present in the mouse TME [153], reports
on the glucose utilization and OXPHOS by TAMs in lung adenocarcinoma remain scarce [133].

4.3. TAM Immunometabolism beyond Glycolytic Activity

Besides glucose metabolism, modulation of lipid and amino acid metabolism by tumors could
also impact the metabolic flexibility and mitochondrial OXPHOS in TAMs [133,149,150]. Although
current knowledge on whether modulation of peripheral lipid flux affects cancer pathogenesis is still
elusive and controversial [154], an original study from the group of Hoefler revealed that inhibition of
peripheral lipolysis was not sufficient to locally affect tumor burden [155]. Moreover, the importance
of the pathophysiological tissue context for cancer growth has recently been highlighted by the
metabolic phenotyping of a murine model of KrasG12D-driven lung tumor revealing that glutamine
utilization was minimal in contrast to in vitro culture or other types of cancer [156]. Thus, the origin of
alteration of lipid and amino acid metabolism in lung adenocarcinoma remains to be fully understood.
On one hand, it could be linked to local acidosis that reprogram mitochondrial metabolism and
promote histone deacetylation [157–159]. In line with these observations, checkpoint blockade therapy
to restore immune cell nutrition restriction, nutritional intervention or treatment with a histone
deacetylase inhibitor (TMP195) converted immune cells to an antitumor phenotype in mouse models
of cancer metastasis (Figure 3) [153,160–162] including a shift from an M2 phenotype to a more
efferocytic function of TAMs against cancer cells [160]. Alternatively, there is emerging evidence of
local communication between cancer cells and TAMs through energy metabolism-derived (i.e., lipid
and amino acid) mediators, referred to nowadays as “oncometabolites” or “metabokines” [163–165],
even though their identification in lung adenocarcinoma has been limited [156,163–165]. At least,
alteration of lipid metabolism within different populations of macrophages, especially AMs, in an
immunocompetent syngeneic murine model injected with Lewis lung carcinoma cell correlated with
selective expression of eicosanoids from both tumor cells and TAMs [166,167]. Although a new
fatty acid-synthesis inhibitor (ND-646) was shown to blunt lung tumor growth in xenograft and
genetically engineered mouse models of NSCLC [168], it is unknown if this compound may restore the
functional polarization of TAMs as it has been shown by metformin in other cancer models [169,170].
Apart from glutamine, other amino acids such as arginine derived from the urea cycle may also be
involved in the communication between cancer cells and TAMs. Indeed, knockdown of arginase
1 (ARG1) in macrophages prevented lung tumor growth by limiting the hydrolysis of arginine to
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ornithine [147]. Most of these metabolic pathways converge to increase localized ROS in cancer cells,
which activate signaling pathways and transcription factors such as the transcription factor nuclear
factor (erythroid-derived 2)–related factor-2 (NRF2) to promote tumorigenesis [160]. For instance,
NRF2 regulates serine biosynthesis in NSCLC to generate NADPH and recycle oxidized glutathione,
which is critical for the redox balance of cancer cells. Thus, emerging mechanistic insights linking
tumor cells to the metabolic reprogramming of TAMs in lung adenocarcinoma hold promise for novel
cancer therapy.

4.4. Tie2+ TAMs and Metastasis-Associated Macrophages (MAMs)

From original works by the group of Pollard and others [5,6], it has been well appreciated
that, by supporting tumor angiogenesis, TAMs not only supply oxygen, nutrients and growth
factors for tumor’s development but also lay out a path for metastatic cells to reach new sites in
the body, a process known as the “angiogenic switch” [171]. In the mid-1990s, evidence arose from
CSF-1 deficient mice that the maturation and survival of macrophages had to do with cancer’s
spread (i.e., metastasis), rather than cancer tumor growth [5,6,9–11]. This led to the development of
several anti-CSF-1R therapies (including CSF-1R blocking antibodies IMC-CS4 or AMG820 or tyrosine
kinase inhibitors such as PLX3397, BLZ945 or JNJ-40346527) for patients with advanced solid tumors
refractory to standard therapy (Figure 3) [11]. A specific Tie2-positive TAM population has been
identified to mediate tumor angiogenesis and support tumor cell intravasation [172,173]. These TAMs
could originate from Tie2-positive monocytes that are a subpopulation of nonclassical “patrolling”
monocytes playing a role during mouse tumor neovascularization [174–177]. Mechanistically, these
TAMs secrete VEGFA and proteases that degrade basement membranes of the ECM and participate
in the formation of a TME of metastasis that comprises a pyramid-type structure on the vessel
wall with mammalian-enabled (MENA)-expressing tumor cells that allow interactions with Tie2+
TAMs and blood vessel endothelial cells (Figure 2, right panel) [172,173]. These interactions suggest
cell–cell contact for short-range transmission of growth and survival signals as recently illustrated for
macrophage-fibroblast circuit [178] and resembles the paracrine EGF–CSF-1 interactions previously
observed between TAMs and tumor cells [5,6]. Hypoxia is a major determinant of angiogenesis
and HIF1α in TAMs acts as a major regulator of the “angiogenic switch” by inducing a switch from
aerobic to anaerobic metabolism and increasing expression of diverse range of factors including
VEGFA [174]. Despite mitigated cancer patient outcomes with VEGFR tyrosine kinase inhibitors
or VEGFR2 antibodies [4,179], these findings have set up the stage for therapeutic approaches
aimed at reducing cancer cell metastasis using a selective Tie2 inhibitor Rebastinib (Figure 3).
In mice, the cooperation of the two oncogenes Kras and Myc has been recently shown to be required
for the “angiogenic switch” and the transition to invasive adenocarcinoma [180]. It will remain
to be carefully investigated in lung adenocarcinoma whether these Tie2+ TAMs also impact the
epithelial–mesenchymal transition (EMT) that has been linked to invasive potential of various cancer
cells [113,114,181,182]. Additionally, another population of TAMs seeding at distant sites and being
recruited by CCL2 were dubbed metastasis-associated macrophages (MAMs) (Figure 2, right panel).
These MAMs allow the extravasation of mouse tumor cells by secreting the chemokine ligand CCL3
and CSF-1 that facilitates metastatic seeding of breast cancer cells in the lung [183,184] and potentially
VCAM-1 that transmits survival signals to these tumor cells [185]. The relevance of these MAMs in
helping cancer cells to leave blood vessels and promote lung adenocarcinoma metastasis in mice was
previously illustrated through their recruitment to extravasating pulmonary metastatic cells regardless
of species of origin [186].

4.5. Bone Marrow Macrophages and Bone Metastasis

Osteolytic bone metastasis is a frequent event in late stage of lung cancer and is associated
with high mortality of lung adenocarcinoma [187–189]. Once metastatic tumor cells reach the
bone marrow (BM) after adhesion to the mineralized matrix through their invadopodia [190], they
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promote resorption and bone destruction by interfering with the osteoblastic bone-forming cells and
osteoclastic bone-resorbing cells [191]. Osteoclasts are large multinucleated cells that differentiate from
macrophage lineage precursors by increasing tartrate-resistant acid phosphatase (TRAP) expression
following coregulation by CSF-1 and the receptor activator of nuclear factor κB ligand (RANKL) among
other growth factors [192,193]. These growth factors can all be secreted by metastatic lung tumor
cells [194–196]. Two different populations of macrophage have been described in the BM namely
CD11bhi osteomacs [197] and CD11bintCD169+ macrophages [198] that are localized in different
hypoxic area of the BM [199]. Targeting of these macrophage populations influences tumor-induced
bone modelling in mouse models of prostate or Lewis lung cancer-induced bone metastasis [200,201].
The underlying mechanisms are not fully understood but could be linked to perturbation of osteoclast
differentiation and disruption of the endosteal “osteoblastic niche” through bone resorption (i.e.,
mineral dissolution, followed by a degradation of the organic phase) and demineralization (i.e.,
acidification of the extracellular microenvironment and exposure to proteases) [138]. Future studies
will be required to investigate whether tumor cells could also locally impact bone tissue, which
is a specialized connective tissue consisting of cells and mineralized extracellular matrix (i.e.,
hydroxyapatite, a type of calcium phosphate) that could be responsible for the production of the
calcified matrix in lung nodules [202–204].

5. IL-1β Signaling and Immunometabolism: A New Role in Lung Adenocarcinoma?

5.1. CANTOS Trial and Lung Adenocarcinoma

A recent retrospective analysis by Ridker et al. [205] reveal an unexpected dramatic reduction in
the number of incident cases of lung cancer in the large, randomized CANTOS trial (Canakinumab
Anti-inflammatory Thrombosis Outcomes Study) originally designed to test the hypothesis that
canakinumab, an interleukin 1β (IL-1β) inhibitory antibody, could reduce a secondary cardiovascular
event in very high-risk patients with prior myocardial infarction and inflamed setting (i.e., C-reactive
protein (CRP) levels > 2 mg/L) (Figure 3). Of note, the incidence rate for all non-lung cancers
was not statistically significant and one has to be cautious with hypothesis-based retrospective
analysis [206,207]. Nevertheless, these findings led to a follow-up phase I study aimed at
testing the combination of canakinumab and PD-1 inhibitor in NSCLC patients. As discussed
above the relationship between inflammation and cancer is complicated, probably driven by an
immunosuppression within TME. However, the concept of immunotherapy came from Coley’s
observation that cancer regression can be achieved by active bacterial infection [208,209]. Thus,
the higher incidence of bacterial infection in the CANTOS trial [210] may suggest that by dampening
chronic low-grade inflammation, canakinumab has unlocked an unspecific bacterial lung antitumoral
activity. However, there are several evidences that blocking IL-1β signaling or upstream NLRP3
inflammasome regulation may have direct anticancer activity [211–215]. First, anti-IL-1β antibody
dampens low-grade inflammation [211,216], which could prevent “smoldering inflammation” and
reduce the mutagenic environment created by inflammatory immune cells [21,22]. Consistently,
expression of specific inflammasome gene modules stratifies older individuals into two extreme
clinical and immunological states that was associated with all-cause mortality [217]. Since IL-1β has
been linked to airway inflammation [218,219], it will be of interest to know if the high CRP levels in the
CANTOS trial at baseline were associated with an incidence of COPD, known to increase lung cancer
risk [75,76]. Reduced COPD incidence could partially explain how canakinumab at the 300 mg dose
induced a marked separation of the incidence curves for lung cancer within few months. Additionally,
deficiency or inhibition of IL-1β signaling in TME has been shown to inhibit tumor angiogenesis
and metastasis in mouse models of lung metastases-induced by various metastatic cells regardless of
species of origin [220–225]. These findings may suggest an additional direct effect of canakinumab
on established lung tumors. The CANTOS trial has opened the door to the human relevance of the
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relationship between IL-1β signaling and lung cancer and provides promising avenue with which to
explore new anti-cancer therapies.

5.2. IL-1β Signaling and Lung Adenocarcinoma

The cell origin of IL-1β secretion and the implication of NLRP3 or other inflammasomes in
lung TME remain to be identified and could have crucial therapeutic implications. Indeed, this
pathway could promote on one hand leukocyte priming and trafficking or on the other hand, tumor
growth. The tumor growth potential could be attributed to (1) an imbalance between cancer cell
proliferation and pyroptosis, (2) an increased epithelial–mesenchymal transition (EMT) through
secretion of metalloproteases and other ECM remodeling proteins or (3) an effect on lymphangiogenesis
and angiogenesis [211–215]. While macrophages are the main source of IL-1β secretion in the
immune response to pathogen [226–228], the TME of established tumors is characterized by an
immunosuppression dominated by a M2 alternatively activated TAM phenotype that inhibits
NLRP3-dependent IL-1β secretion [229]. Consistently, reduced NLRP3-dependent IL-1β secretion is
observed in AMs isolated from the bronchoalveolar lavage of lung cancer patients despite a systemic
higher NLRP3 inflammasome activation and IL-1β secretion in peripheral blood leukocytes from these
patients [230,231]. Thus, the elevated IL-1β concentration in TME [232] could either derive directly
from oncogenic lung cancer cells [233] or eventually from another TAM population (i.e., infiltrated
MoTAMs) [230]. In the first scenario, combination of canakinumab with anti-PD-1 therapy, as initiated
in phase I trial, may be beneficial by dual targeting of cancer and immune cells. However, in the
second scenario, outcomes may be mitigated depending on the stage of tumor development and how
suppression of an inflammatory response by canakinumab affect the antitumoral anti-PD-1 therapy
response [211–215].

5.3. Immunometabolism: The Missing Link?

As discussed above, the origin of the tumor immunosuppression could be in part mediated
by the hypoxia and acidosis within the TME [147,148], the metabolic restriction imposed by the
high energy demand of the tumor [153] or an epigenetic reprogramming of immune cells [160], all
these mechanisms being intimately linked to IL-1β secretion [226,234]. However, whether, where
and how IL-1β secretion and potentially the activation of the NLRP3 or other inflammasomes could
occur in tumor tissues remain elusive. At least, IL-1β secretion in macrophages must be primed
by HIF1α and nuclear factor-kappa B (NF-κB)-dependent transcriptional regulation prior cleavage
of pro-IL-1β into active IL-1β by caspase 1 [234,235]. Although historically, hypoxia was seen as
a main driver of the activation of HIF1α and the expression of glycolytic enzymes to support an
anaerobic glycolysis, it has become apparent that other metabolic stimuli can cause HIF1α-dependent
metabolic reprogramming, especially in macrophages [59,62]. Are there such metabolic stimuli driving
macrophage IL-1β priming in the heterogeneous lung TME [139,156]? As discussed above HIF1α
can be stabilized under acidic conditions in TAMs [147]. So, could we envision that IL-1β secretion
is dictated by acidosis in TAMs [236]? What we have learned from in vitro studies is that a broken
TCA cycle with a concomitant reduction in mitochondrial respiration allows for funneling citrate
and succinate out of the mitochondria where succinate acts as an activator of HIF1α turning on the
transcriptional expression of pro-IL-1β [237]. Itaconate, one of the most highly induced metabolites in
response to pathogens, could be responsible for the upstream regulation of succinate at least in activated
macrophages [238]. Thus, it may not be surprising that succinate and itaconate also mediates crosstalk
between macrophage metabolism and tumor growth [239,240]. In parallel, perturbed mitochondria
metabolism could provide the second signal for proper activation of the inflammasome and subsequent
cleavage of pro-IL-1β into active IL-1β by caspase 1 including mitochondrial DNA (mtDNA), calcium
and ROS (mROS) among other stimuli [241]. Thus, future studies are warranted to delineate the
metabolic communication between cancer cells and macrophages and how it specifically shapes the
tumor immune microenvironment response.
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6. Lung Adenocarcinoma Treatment and Macrophage Interaction

6.1. Lung Cancer Therapy Options

In recent years, treatments for all the different hallmarks of cancer have been investigated
including anti-proliferative therapies (i.e., tyrosine kinase receptor, cyclin-dependent kinase or growth
factor receptor inhibitors), pro-apoptotic therapies (i.e., mitochondrial cell death activation, blockade
of DNA repair or telomere destabilization) or anti-angiogenic therapies to limit tumor growth
and metastasis [82]. In the context of NSCLC, targeted therapies have been embraced thanks to
genetic testing [242]. Targeted therapies prior cytotoxic chemotherapies include EGFR antagonists
(i.e., tyrosine kinase inhibitors such as erlotinib, gefitinib, afatinib, necitumumab or osimertinib) for
patients harboring an EGFR mutation [243–248], ALK inhibitors (i.e., ceretinib, alectinib or crizotinib)
for ALK-rearranged NSCLC patients [249] or c-Met inhibitors (i.e., c-Met tyrosine kinase receptor
inhibitors) for ALK/c-Met positive NSCLC (Figure 3) [250]. Details on these current therapies are
deeply reviewed elsewhere [249–251]. However, the majority of lung tumors do not contain identified
oncogenic mutations, thereby limiting the use of targeted oncogenic pathway inhibitors to a small
fraction of patients (Figure 3). Moreover, no highly effective therapies have been developed for cancers
harboring mutant KRAS. For instance, lung cancer patients who are positive for KRAS mutation
have a low response rate to EGF tyrosine kinase receptor in part because KRAS and EGFR mutations
are generally mutually exclusive and when they co-exist, KRAS mutations may confer resistance
to EGFR mutations [4]. Thus, there continues to be a great need for new therapeutic strategies for
patients with lung adenocarcinoma. Although several groups have demonstrated that concomitant
use of MEK and phosphoinositide 3-kinase (PI3K) inhibitors (MEKi/PI3Ki) can induce dramatic tumor
regressions in mouse models of KRAS-mutant non-small cell lung cancer (NSCLC), clinical trials
investigating this strategy have been underwhelming [252,253] most likely because of heterogeneity in
induction of cancer cell apoptosis [254]. By determining anti-apoptotic addiction, novel BH3-mimetic
compounds have been developed to overwhelm anti-apoptotic defense mechanisms in response to
oncogenic stress or anti-cancer therapy and a recent study revealed that this treatment could synergize
with chemotherapy to induce tumor regression in KrasG12D mutant lung cancer mouse model [255].
Clinical trials evaluating safety and efficacy of this approach are currently ongoing [252]. Although
clinical trials using telomerase inhibitors in NSCLC patients found that overall survival was not
improved and this treatment may even causes some adverse decrease in platelet counts [256], they
might still be effective in some tumor types (i.e., subgroup of patients with shortened telomers) [257,258]
as it was recently observed in preclinical mouse models bearing the KrasG12D oncogenic mutation [259].
Some drug resistant NSCLC cells could also be sensitized by epigenetic drugs to other cytotoxic
drugs [260]. As novel molecular mechanisms of cell death emerge [261], pro-apoptotic therapies
may find its path to fight NSCLC, especially KRAS-bearing mutations. Nevertheless, these therapies
will have to face drug resistance and find their way within immune checkpoint inhibitors that are
increasingly being incorporated into lung cancer treatment protocols.

6.2. Emerging Immunotherapy

New paradigms such as targeting tumor immune microenvironments have been tested [262]
and from this research, immune checkpoint inhibitors have emerged in the last decade has a new
means to treat human cancer. In the context of NSCLC, immunotherapy (i.e., anti-programmed death-1
(PD-1) antibodies such as pembrolizumab or nivolumab and anti-programmed death ligand-1 (PD-L1)
antibodies including atezolizumab, durvalumab and avelumab) was used for PD-L1 expression in
at least 50% of tumor biopsies (Figure 3) [263–266]. In preclinical and clinical studies, combined
anti-PD-L1 and anti-cytotoxic T-lymphocyte antigen-4 (CTLA-4) monoclonal antibodies may result in
higher and more durable responses [267,268]. Even though immune checkpoint inhibitors (anti-CTLA-4
and PD-1/PD-L1 antibodies) have signaled a new direction for lung cancer care, the proportion of
patients that respond to these agents remains low and the duration of response is often short [4].
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Apart from loss of mismatch-repair function of cancer cells [269], driver mutations could also dampen
immune checkpoint blockage by shaping TME. For instance, heterogeneity of intratumor neoantigen or
EMT could predict sensitivity to immune checkpoint blockage [270,271] and inactivation of the tumor
suppressor liver kinase B1 (LKB1), occurring in one-third of KRAS-mutated lung adenocarcinoma
promotes the accumulation of immunosuppressive neutrophils and loss of PD-L1 expression, which is
associated with fewer cytotoxic lymphocytes responsible for killing the tumor [272]. Therefore, novel
methodologies to enhance the efficacy of immunotherapy in lung cancer are highly desirable.

6.3. TAMs and Lung Cancer Therapy Responses

The mechanisms by which TAMs could inhibit antitumor T cell responses involve more than
one mechanism. First, TAMs have “tissue-reparative” activity, particularly M2-like macrophages that
support tissue remodeling but at the same time suppress type 1 immune response [273]. Indeed, TAMs
could inhibit antitumor T cell responses by secreting various factors including interleukin-10, which
prevent dendritic cells from activating antitumor T-cell responses [274] or migration inhibitory factor
(MIF), TGF-β and amino-acid degrading enzymes such as ARG1 and indoleamine 2,3-dioxygenase
1(IDO1), which promote survival of a subset of anti-inflammatory regulatory T-cells (Figure 2,
left panel) [147,274–277]. The influx of new TAMs to tumors after first chemotherapy could also
suppress the cytotoxic activity of antimitotic agents and stimulate tumor relapse [278,279], although
they can in some cases be required for optimal therapy [280]. The group of Pittet identified an
anti-PD-1 steal mechanism by TAMs which depends on FcγRIIb/III receptors and limits binding
and activation to tumor-killing T-cells (Figure 3) [281]. Interestingly, PD-L1 and PD-1 expression by
TAMs also inhibits phagocytosis and tumor immunity revealing that immune checkpoint therapy
functions through a direct effect on macrophage effector functions (Figure 2, left panel) [282,283].
Recently, the specific enrichment of M2-like CD163+CD33+PDL-1+ TAMs was associated with
paradoxical boost in tumor growth in patients treated with immunotherapy, a phenomenon referred
as “hyperprogression” [284]. Thus, TAMs may limit anti-PD-1 and other therapies by different means
both in mice and humans. Altogether, these findings open substantial perspectives for improving
immunotherapy efficacy including the combinations with strategies aimed at reeducating TAMs to
limit their immunosuppressive functions or drug clearance capacity and help them eat cancer cells.

7. Conclusions

We have entered an exciting era of precision medicine with novel genetic and imaging modalities
that should help to better stratify patient populations for which a battery of novel checkpoint blockade
therapies will become available. Characterization of TME, especially its immune component, has
provided an undoubtful value to our understanding of cancer development. Emerging evidences
suggest that targeting macrophages and their metabolic reprogramming may have great therapeutic
potential. Although, many large questions remain, there is no doubt that human clinical studies and
the recent success of the CANTOS trial using an IL-1β inhibitory antibody will pave the way to the
investigation of novel approaches to targeting not only traditional checkpoint blockade therapies but
also immune checkpoint therapies to fight the residual burden of unmet need of NSCLC patients.
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Abstract: Hormones are messengers circulating in the body that interact with specific receptors on
the cell membrane or inside the cells and regulate, at a distal site, the activities of specific target
organs. The definition of hormone has evolved in the last years. Hormones are considered in
the context of cell–cell communication and mechanisms of cellular signaling. The best-known
mechanisms of this kind are chemical receptor-mediated events, the cell–cell direct interactions
through synapses, and, more recently, the extracellular vesicle (EV) transfer between cells. Recently,
it has been extensively demonstrated that EVs are used as a way of communication between cells
and that they are transporters of specific messenger signals including non-coding RNAs (ncRNAs)
such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Circulating ncRNAs in body
fluids and extracellular fluid compartments may have endocrine hormone-like effects because they
can act at a distance from secreting cells with widespread consequences within the recipient cells.
Here, we discuss and report examples of the potential role of miRNAs and lncRNAs as mediator for
intercellular communication with a hormone-like mechanism in cancer.

Keywords: non-coding RNAs; microRNAs; long non-coding RNAs; hormones; hormone-like action

1. Introduction

The term “hormone” was first introduced in 1905 by Starling, referring to the discovery of
secretin [1]. A hormone is a chemical messenger (in general, a peptide or a steroid) produced by
the endocrine glands and circulating in the body to regulate the activities of specific target organs
at a distal site [2,3]. The mode of action of hormones requires an interaction of these chemical
messengers with specific receptors located on the cell membrane or inside the cell. The binding
hormone-receptor generates a signaling cascade that modifies cellular activity [4]. The definition of
hormones is quite restrictive since not all hormones are originated from endocrine glands, with many of
them acting locally via autocrine/paracrine regulation. Specialized cells in various other organs also
secrete hormones in response to specific biochemical signals from a wide range of regulatory systems.
Serum/calcium concentration, for instance, affects parathyroid hormone synthesis while serum glucose
concentration affects insulin synthesis. In addition, since the outputs of the stomach and exocrine
pancreas become the input of the small intestine, the small intestine itself secretes hormones to
stimulate/inhibit the stomach and pancreas in accordance to how busy it is, in a regulated feedback

Cancers 2019, 11, 378; doi:10.3390/cancers11030378 www.mdpi.com/journal/cancers166



Cancers 2019, 11, 378

known more generally as “diffuse endocrine system” [5]. In a broader view, hormones are considered
in the cell–cell communication context and in mechanisms of cellular signaling [2,3]. The best-known
mechanisms of this kind are chemical receptor-mediated events, the cell–cell direct interactions through
synapses, and, more recently, the extracellular vesicle (EV) transfer between cells [6]. EVs are small
membrane-enclosed structures produced by different mechanisms that can be secreted from almost all
cell types [7,8] in a process evolutionary conserved from bacteria to humans [9]. Each cell type is able to
turn on EV biogenesis depending on the physiological states and, also, the EV cargo components can
be highly regulated [10]. EVs, such as exosomes and microvesicles, represent the way donor cells
communicate with recipient cells and influence their gene expression [11]. In the last years, it has
been extensively demonstrated that EVs are used as a way of communication between cells and that
they are transporters of specific messenger signals. EVs are, in fact, enriched for specific proteins
(as for example cytokines), lipids, messenger RNAs (mRNA), and non-coding RNAs (ncRNAs), such as
microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) [6,8,12]. The nature and abundance of
EV content are related to the specific cell type, and are influenced by the physiopathological state of the
donor cell [13]. The cell–cell communication mediated by RNAs included in EVs has been described
for the first time by Valadi et al. in 2007: exosomes carried miRNAs and other RNAs from one cell to
another and, when released in the target cell, were able to interact with the gene expression machinery
to modify the gene expression profile of the recipient cell [6].

EVs result as an alternative mode of communication between neighboring and distant cells.
Respect to conventional mechanisms of cell communication, EVs differ because of specific temporal
and spatial properties and mostly because of the potentiality to group multiple signals together [14].

2. miRNAs and Their Hormone-Like Activity in Cancer

The advances in high-throughput sequencing technology and bioinformatics have revolutionized
ncRNA discovery [15]. Mammalian genomes are highly transcribed and the majority of the transcripts
do not code for proteins. However, this high rate of transcription is not done in an indiscriminate
way: the cellular repertoire of ncRNAs includes small housekeeping RNAs (such as ribosomal RNAs
(rRNAs) and transfer RNAs (tRNAs)), as well as miRNAs and lncRNAs [16].

miRNAs are a class of single-stranded ncRNAs that play a critical role in the negative regulation of
gene expression at post-transcriptional level [17]. Thousands of miRNAs have been identified in all
eukaryotes and, so far, the latest version of miRBase (release 22 March 2018) accounts for over 38,000
miRNA gene loci in 271 species. In animal cells, miRNAs pair, in a complementary manner, with
the 3′UTR of target mRNAs, inhibiting their translation or inducing their degradation [17]. miRNAs
are crucial regulators in a wide range of biological processes but they are also implicated in human
diseases, including cancer [16,18–20]. There are several lines of evidence that miRNAs are involved
in endocrinology. It has been demonstrated that miRNAs can regulate directly genes encoding
hormones or other enzymes involved in hormone maturation and metabolism. miRNAs can also
target hormone antagonists or receptors indirectly modifying the hormone-mediated cell signaling
transmission [21,22] or could be regulated by hormones either at the level of miRNA transcription and
processing [23–25]. For instance, miR-21 and miR-181-b1 genes are expressed after STAT3 induction,
which is activated by interleukin 6 (IL-6) [26]. Moreover, miR-21 is repressed by thyroid hormone
(TH) and this downregulation regulates GRHL3, a transcriptional inhibitor of type 3 iodothyronine
deiodinase (D3) which, in turn, inactivates TH [27].

Recently, the role of miRNAs as mediators for intercellular communication with a hormone-like
mechanism has also been established. miRNAs can work as autocrine, paracrine, and endocrine
messengers. In fact, the classic mechanism of action of a miRNA is to be transcribed by a cell and
induce local signaling on that same cell (autocrine signaling, Figure 1A). On the other hand, a miRNA
can also transmit local signaling between nearby cells (paracrine signaling, Figure 1B) [8]. In cancer,
the intercellular signaling mediated by miRNAs has been related to the tumor microenvironment
(TME) setting or pre-metastatic niche induction [28–30]. An example of this kind of signaling in
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cancer is the one in which tumor-derived EVs containing miRNAs can directly modify tumor cell
invasiveness and motility through modification of the TME [31,32]. Moreover, it has been observed
that the ectopic expression of miR-409 in normal prostate fibroblasts conferred a cancer-associated
stroma-like phenotype. The release of this miRNA via EVs was able to promote tumorigenesis and
epithelial-to-mesenchymal transition (EMT) through repression of Ras suppressor 1 (RUS1) and stromal
antigen 2 (STAG2), well-known tumor suppressors [33]. The discovery of miRNAs in extracellular
fluids or loaded in EVs, such as exosomes, is the main evidence that miRNAs may act as paracrine
and endocrine interactors [11,34]. EVs containing miRNAs can either work locally or distally via
transport within the circulatory system. Moreover, miRNAs circulating within bodily fluids and
extracellular fluid compartments may have an endocrine hormone-like effect because they can reach
cells that are distant from the secreting cell, modifying their gene expression (Figure 1C) [34,35].
Once released, the EVs containing miRNAs can interact with a recipient cell, deliver its cargo to the
cytosol, and modulate the phenotype of the target cell [36]. There is evidence that demonstrates
that miRNAs in EVs can be taken up into neighboring or distant cells and modulate the function of
those recipient cells in many physiological and pathological conditions [37–39]. For example, Le et al.
demonstrated, in vitro and in vivo, that murine and human metastatic breast cancer cells release
miR-200 family miRNAs to nonmetastatic cells via EVs. The transfer of these molecules altered
gene expression in the recipient cells (which were lung cancer cells in the in vivo experiments) and
promoted mesenchymal-to-epithelial transition [40]. Interestingly, the exosomal miRNA cargo occurs
non-randomly and, also, the recipient cells are finely targeted, enforcing the idea of specific function
for a single miRNA on a specific target [6,16]. miRNA species that are transported via EVs do not
reflect the miRNA expression profiling of the donor cells [41,42] and, interestingly, several studies
demonstrated that cancer patients have elevated levels of tumor-derived exosomes in plasma or
serum compared with healthy controls [43–45]. The secretion of tumor-specific miRNAs via exosomes
indicates the importance of this mechanism in influencing the surrounding microenvironment [34].

 
Figure 1. MicroRNAs (miRNAs) working in a hormone-like fashion. (A) Autocrine communication:
a miRNA produced by a cell binds to autocrine receptors of the same cell inducing a local signaling.
(B) Paracrine communication: a miRNA produced by a cell transmit a local signaling between nearby
cells. (C) Endocrine communication: an extracellular vesicle (EV)-embedded miRNA is the mediator of
distant signaling.
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Functional interactions between cancer cells and the TME are mediated by small molecules such
as cytokines and growth factors [46]. In addition, cancer cells may also transfer important functional
information through paracrine communication via EVs [47]. EV cargo may actually influence the
stroma by activating molecular pathways that differ from those mediated by soluble factors [8].
Therefore, tumor-derived EVs can alter the physiology of surrounding cells and distant non-tumor
cells to facilitate cancer dissemination and growth [31].

The TME (which includes extracellular matrix, cancer-associated fibroblasts, tumor-associated
macrophages, immune cells, and others) plays a crucial role in all steps of carcinogenesis [48]. Several
examples of this biological information transfer between malignant cells and TME components via
EV-transported miRNAs have been reviewed in a recent work by Bayraktar et al. [8]. For instance,
Baroni et al. [49] found that in cancer-associated fibroblasts from triple-negative breast cancer patients,
miR-9 was upregulated when compared with normal fibroblasts. Moreover, miR-9 was released by
tumor cells and transferred via exosomes to normal fibroblasts recipients which, as a consequence,
overexpressed this miRNA and increased their motility. Therefore, high expression of miR-9 in
fibroblasts affects breast cancer progression [49]. Another example was described in the work of
Chen et al. in which it was found that miR-940, released in exosomes by ovarian cancer cells, targeted
tumor-associated macrophages and promoted tumor growth via the CD206 and CD163 pathways [50].

The assumption that a miRNA might work as a hormone or with a hormone-like mechanism
implicates the possibility of the existence of a protein receptor for miRNAs (defined as miRceptor
by [34]) and miRNA–protein interaction. The first study demonstrating miRNA–protein binding was
published in 2010 by Eiring et al., where the authors provided evidence of steric binding between
miR-328 and hnRNPE2 in blast crisis of chronic myelogenous leukemia. This “decoy activity” of
miRNA prevents hnRNPE2 binding to CEBPA mRNA, thus restoring C/EBPα expression that further
and directly enhances miR-328 transcription [51].

In 2012, it was demonstrated that EVs containing miR-21 and miR-29a released by non-small
cell lung cancer cell lines were targeting tumor-associated macrophages and, more specifically, the
human toll-like receptor 8 (TLR8), triggering the downstream pathway. As a result, authors observed
an increased secretion of IL-6 and tumor necrosis factor-α (TNFα) by tumor-associated macrophages,
which determines a pro-tumoral inflammatory response promoting cancer growth and metastasis [52].

Patel and Gooderham observed that IL-6 triggers the IL-6R/STAT3 pathway and also increases
miR-21 and miR-29b expression in colorectal cancer cells. The authors proposed a model in which
these miRNAs are released via exosomes and reach immune cells, where they interact with the
TLR8 miRceptor. This interaction may induce an increase of IL-6 in a feed-forward loop involving
miRNA–miRceptor interactions which are responsible for the increased secretion of IL-6, a typical
phenomenon in the colorectal cancer microenvironment [53]. Interestingly, a similar mechanism
has also been found in neuroblastoma. Endovesicular miR-21, released by neuroblastoma cells,
binds to TLR8 in surrounding tumor-associated macrophages, inducing in these cells the upregulation
and the release in EVs of miR-155. Macrophage-derived EVs containing miR-155 are transferred
back to neuroblastoma cells where miR-155 acts on its target, telomeric repeat-binding factor 1
(TERF1, a telomerase inhibitor). The silencing of TERF1 induces increased resistance to cisplatin
in neuroblastoma cells [54].

miRNAs released by exosomes and working in a hormone-like fashion could also be an optimal
therapeutic target in the case of tumor drug resistance [55]. Wei et al., for example, demonstrated the
role of exosomal miR-221/222 in the resistance to tamoxifen in breast cancer cells [56]. In another
study, it was demonstrated that cancer-associated fibroblasts released exosomes containing miR-21,
miR-378e, and miR-143-3p, that were able to induce stemness and epithelial–mesenchymal transition
phenotypes in breast cancer cell lines [57].
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An intriguing aspect that could be bound to the hormone-like action of miRNAs has been raised
by Zhang et al. in 2012 [58] and reinforced by Zhou et al. in 2015 [59]. In these works, researchers
demonstrated the possibility that miRNAs derived from plants could potentially travel, through
food, from plants to animals via the gastrointestinal tract and access host cellular targets, where
they work as bioactive compounds able to influence recipients’ physiopathological conditions. The
authors proposed that epithelial cells in the intestine could absorb plant-derived miRNAs contained
in food and include them into EVs to protect them from degradation and facilitate their release into
the blood stream. These “exogenous miRNAs” then seem to be able to reach organs and tissues via
circulation and modulate gene expression. The evidence supporting this theory has been summarized
in a recent review by Li et al. [60]. This sort of plant–animal communication, named cross-kingdom
transmission, is still source of debate in the scientific community. In fact, there is a large amount of
evidence contradicting this cross-kingdom communication hypothesis (also widely reviewed by [60]).
The main concern is the mechanisms by which exogenous miRNAs can bypass and survive in the
gastrointestinal tract, to enter the bloodstream and ultimately reach specific targets. This “exogenous
post-transcriptional regulation” could be another factor influencing the development in special cases
of diseases, such as cancer, inserting additional levels of complication into an already complicated
scenario. If validated, this hypothesis may expand the current knowledge on dietary bioactive
compounds and their biological actions once internalized in the organism [60,61].

3. Long Non-Coding RNAs Acting as Hormones

miRNAs are the most studied species of ncRNAs but, in the last years, the attention of researchers
has also been focused on other ncRNAs whose functions are still not well described. A special
mention should be made for lncRNAs, since their biological roles and mechanisms of action are not yet
completely understood, especially in the context of carcinogenesis [62]. Assigning molecular, cellular,
and physiological functions to lncRNAs is among the greatest challenges of the next decade, and there
is now increased attention on their biological functions in hormonal signaling systems [63–66].

lncRNAs are defined as non-protein coding RNA transcripts larger than 200 nucleotides, but this
definition is quite vague since a universal scheme does not exist [62,67]. The working definition for
lncRNAs includes all RNA molecules longer than 200 nucleotides, having little coding potential,
transcribed by PolII, capped, spliced, and polyadenylated [63]. The expression of lncRNAs is
dependent on the cellular, tissue, and metabolic context. As a consequence, there are specific lncRNAs
associated with specific cellular processes that may be inferred by their differential pattern of expression
in tissues but also in different developmental time points or under specific stimuli [61,63,68]. It is a
common belief that lncRNAs are mostly involved in transcriptional regulation and, therefore, reside
principally in the nucleus. However, several lncRNAs act, or are even exclusively localized, within
the cytoplasm by working as post-transcriptional regulators in interaction with miRNAs, mRNAs,
or proteins [69–72]. Interestingly, the EV cargo may be enriched in lncRNAs [10,73,74], as observed
in plasma exosomes of patients with castration-resistant prostate cancer [75] and in renal cancer [76].
The scenario is even more complicated due to a large number of lncRNAs that have been implicated in
competing endogenous RNA (ceRNA) mechanisms. This is possible since lncRNAs can function as
sponges, able to bind and reduce the targeted effects of miRNAs on mRNAs [77,78].

lncRNA have been recognized as having endocrine, paracrine, and autocrine regulatory functions
in a way similar to the one already described for miRNAs [74]. In fact, they can have an autocrine
hormone-like behavior since they can modulate cellular activity directly by controlling transcription.
For example, they can interact with hormone-encoding genes or hormone antagonists/receptors,
indirectly modifying the cell signaling transmission [79]. Steroid receptor RNA activator (SRA) was
among the first lncRNA to be associated to hormone receptor pathways and acting with a hormone-like
mechanism. SRA is expressed in tissues specifically targeted by steroid hormone, and it works as a
co-activator of the steroid receptor to facilitate ligand-dependent transactivation [80]. Additionally,
SRA can interact with co-repressors of nuclear receptors [81]. Different expression patterns of SRA
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have been observed in breast cancer cell lines [82], demonstrating that its hormone receptor-associated
activity may be crucial in breast tumorigenesis.

Growth arrest-specific 5 (GAS5) is another interesting example of multifunctional lncRNAs.
It works as a multiple nuclear receptor decoy, forming an RNA stem–loop structure that mimics
nuclear receptor DNA response elements. For example, it interacts with glucocorticoid DNA binding
domain working as a decoy for glucocorticoid receptor response element [83]. As a consequence,
the glucocorticoid receptor is liberated from its sites of transcriptional activity. Therefore, the overexpression
of GAS5 blocks cell growths and induces apoptosis in adherent human cell lines. On the other hand,
its reduced expression has been observed in human breast cancer cell lines, indicating a possible
involvement of this lncRNA in breast carcinogenesis [84].

lncRNAs can also travel via EVs to nearby or distant cells, where they can induce specific
phenotypical changes in a paracrine and endocrine way [31]. The most interesting examples in cancer
apply to drug resistance, angiogenesis promotion, and tumorigenesis induction [74].

The ability of tumor cells to disseminate the drug-resistant phenotype via exosomes has been
recognized mainly through transferring of miRNAs and drug-efflux pumps [85]. However, there is
substantial evidence supporting a role for lncRNAs embedded in exosomes in this mechanism.
Expression levels of exosomal lncRNAs are greatly different from those of the donor cells, and there is
evidence that lncRNAs are not randomly secreted in EVs [86,87].

The role of EVs and lncRNAs in tumor progression and aggressiveness has been demonstrated
in several studies reviewed by Andaloussi et al. [55]. The lncRNA called metastasis-associated
lung adenocarcinoma transcript (MALAT1) regulates alternative splicing and gene expression [88,89]
contributing to lung cancer metastasis [90]. In addition, high levels of MALAT1 have been detected in
serum exosomes from non-small cell lung cancer patients and connected with the promotion of cell
proliferation and migration of this cancer [91].

Notably, Qu and collaborators demonstrated, in an elegant way, that lncRNA activated in renal
cell carcinoma with sunitinib resistance (lncARSR) is correlated with poor response to sunitinib, a drug
used for the treatment of advanced renal cell carcinoma. The resistance to the drug was directly
induced by lncARSR that works as a ceRNA for miR-34/miR-449 to facilitate the expression of specific
genes implicated in the sunitinib resistance. Most interestingly, the authors found that lncARSR is
incorporated into exosomes and transmitted to sensitive cells for the dissemination of the resistance
in a hormone-like fashion. The transmission of resistance is not only between tumor cells but also
involves endothelial cells, implicating that the exosome-mediated communication is also between
tumor and stromal cells [76]. The exosomal secretion of lncRNAs is highly selective and different
between normal and cancer cells or between sensitive and resistant cells, therefore, identifying cellular
molecules responsible for RNA secretion may help in finding a strategy to block this cell-specific
mechanism [76].

Lang and collaborators found that glioma cells were enriched in POU class 3 homeobox 3 (POUF3)
lncRNA. These cells were able to release POUF3 into the exosomes and target the surrounding normal
tissue, inducing cell proliferation, migration, and angiogenesis in an in vivo model [92].

In the last years, another lncRNA, the colon cancer-associated transcript 2 (CCAT2), attracted the
attention of researchers because of its dysregulation in cancer [65,66,93,94]. Notably, CCAT2 has been
demonstrated to work in a hormone-like fashion [95]. Our group demonstrated an important role of
CCAT2 in regulating MYC, miR-17-5p, and miR-20a [96]. Interestingly, CCAT2 interacts with these
targets through TCF7L2 enhancing the WNT signaling activity. However, it has been demonstrated
that CCAT2 is itself a WNT downstream target. Therefore, in colon cancer, there is a feedback loop
mechanism between MYC, WNT, and CCAT2 [96]. Moreover, CCAT2 released in exosomes by glioma
cells has also been found to be responsible of angiogenesis induction and apoptosis inhibition in
endothelial cells [92]. The pro-angiogenesis phenotype of endothelial cells can be induced also by H19,
another important lncRNA in carcinogenesis. Conigliaro et al. found that CD90+ liver cancer cells can
reprogram endothelial cells by releasing H19-enriched exosomes [97].
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4. Conclusions

In conclusion, there is an increasing interest in circulating ncRNAs as mediators of cell–cell
communication and regulators of gene expression in recipient cells. The concept that an ncRNA might
function as a hormone (i.e., mediating cells communication) is a challenge for the research community,
and the current knowledge is still insufficient for clarifying this topic. Understanding the role of
exogenous ncRNAs that could work as messengers in inter-individual and cross-species molecular
communication is one of the next scientific targets for researchers. There is high potential for clinical
applications not only as diagnostic or prognostic biomarkers but also as therapeutics [98]. Given
the rapid and extensive progress made in the field of ncRNAs in the last decade, in the near future,
researchers will be able to address these challenges.
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Abstract: Over the last decade, both early diagnosis and targeted therapy have improved the survival
rates of many cancer patients. Most recently, immunotherapy has revolutionized the treatment
options for cancers such as melanoma. Unfortunately, a significant portion of cancers (including
lung and breast cancers) do not respond to immunotherapy, and many of them develop resistance
to chemotherapy. Molecular characterization of non-responsive cancers suggest that an embryonic
program known as epithelial-mesenchymal transition (EMT), which is mostly latent in adults, can be
activated under selective pressures, rendering these cancers resistant to chemo- and immunotherapies.
EMT can also drive tumor metastases, which in turn also suppress the cancer-fighting activity of
cytotoxic T cells that traffic into the tumor, causing immunotherapy to fail. In this review, we compare
and contrast immunotherapy treatment options of non-small cell lung cancer (NSCLC) and triple
negative breast cancer (TNBC). We discuss why, despite breakthrough progress in immunotherapy,
attaining predictable outcomes in the clinic is mostly an unsolved problem for these tumors. Although
these two cancer types appear different based upon their tissues of origin and molecular classification,
gene expression indicate that they possess many similarities. Patient tumors exhibit activation of EMT,
and resulting stem cell properties in both these cancer types associate with metastasis and resistance
to existing cancer therapies. In addition, the EMT transition in both these cancers plays a crucial
role in immunosuppression, which exacerbates treatment resistance. To improve cancer-related
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survival we need to understand and circumvent, the mechanisms through which these tumors become
therapy resistant. In this review, we discuss new information and complementary perspectives to
inform combination treatment strategies to expand and improve the anti-tumor responses of currently
available clinical immune checkpoint inhibitors.

Keywords: CD8 T Cells; immune blockade; NSCLC; reversal of EMT; tumor microenvironment;
tumor plasticity; TNBC

1. Rethinking Cancer Therapy Development

Over the last decade, pivotal technological and clinical advances have dramatically impacted
the survival of some cancer patients. This began with rapid and efficient genomic sequencing that
markedly expanded our knowledge beyond the scaffold delivered by the initial Human Genome
Project into the realm of tumor-driving mutations, some of which are seen in only a small fraction of
cancers. Primarily due to the advancements facilitated by these data, the majority of new oncologic
agents approved today are biologically targeted as opposed to cytotoxics.

Among various cancers, non-small cell lung cancer (NSCLC) and triple-negative breast cancer
(TNBC) are the first and fourth most common causes of cancer-related mortality in the U.S. [1]. These
cancers possess many similarities based on molecular classification and gene expression analyses
despite their distinct tissues of origin [2]. Epithelial cells are the heartiest of embryologically derived
layers. Topologically, they are external-facing barrier cells that are therefore endowed with protective
mechanisms including membrane transport channels, tight junctions, and built-in plasticity mechanisms
for adaptive responses to numerous insults even in their benign states—this makes them formidable
enemies when they undergo malignant transformation. Targeted therapies for oncogenic aberration in
lung (e.g., EGFR and ALK kinase inhibitors) and breast (e.g., HER2 therapies) cancer have improved
survival, but have not resulted in cures for all patients. In advanced NSCLC, responsible for the largest
number of cancer-caused deaths in the U.S., it has now become standard clinical practice in metastatic
disease to obtain genomic sequencing, including for EGFR or ALK gene mutations/rearrangements in
order to select drugs that significantly improve survival. Assays for HER2 overexpression and/or gene
amplification are standard for every breast cancer case.

As the cost of gene sequencing has dropped, methods of “deeper” sequencing with accuracy
to single-cell resolution have been developed. Single-cell sequencing has revealed that tumors are
composed of genomically and transcriptionally diverse cells. Clonal selection and adaptive responses
lead to drug resistance, immune escape, and tumor dissemination. Single-cell sequencing using
topographic spatial information in tissue sections of breast ductal carcinoma and associated metastases
revealed the direct genomic lineage between in situ and invasive subpopulations, demonstrating that
such diversity is an early phenomenon that allows for pre-invasive selection and likely explains the
complex constellation of phenotypes that cancer cells possess from the outset [3–5]. Innovations in
both genomics and proteomic analytic techniques, increasingly being applied pre- and post-treatment,
have also revealed extensive rewiring of cellular networks associated with tumor progression, metastasis,
and drug resistance. These adaptive changes can be mediated by epigenetic modifications or microRNAs
(miRNAs), and other pre- and post-transcriptional, post-translational and tumor microenvironmental
events [6–8]. Each of these processes represents therapeutic opportunities that can be tested in
preclinical models and ultimately in the clinic.

Importantly, interactions of malignant cells with the tumor microenvironment, including immune
cells, the vascular system, stromal cells, and stem cells of different lineages contribute to phenotypic
plasticity driven by de-differentiation, increased stem-cell behavior, and cells that have undergone
the epithelial-mesenchymal transition (EMT) [9]. These events can generate overlapping yet distinct
functional compartments that escape natural immunity and subsequent treatment [10–12]. In fact,
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the characteristics of immunoevasion, energy reprogramming, and “collusion” with the tumor
microenvironment are recognized as the next generation of the hallmarks of cancer [13,14]. These
interacting traits are part of a multi-dimensional construct that necessitates creative approaches to
therapeutic intervention. RECIST (Response Evaluation Criteria in Solid Tumors) is currently used for
evaluating objective treatment response for the majority of clinical trials. Clearly, based upon the above
discussion RECIST as the sole endpoint for clinical trials is clearly not sufficient as revealed by the
extensive intratumoral and microenvironmental heterogeneity observed in both primary and metastatic
disease. Instead, better criteria, including the inclusion of the expression and spatial localization of
specific biomarkers, both tumor intrinsic and in the microenvironment, and the detailed evaluation of
residual disease will be required to develop more efficacious cancer therapies.

2. Tumors Responsive to Immunotherapy

Though immune responses to cancer have been recognized for decades, the general consensus
was that most were insufficient to eradicate established cancers due to immune suppression mediated
through several mechanisms. Immune checkpoint blockade therapies (ICBT) are revolutionizing
and rapidly emerging as a game-changing approach in the treatment of many cancer types. ICBTs
are remarkably effective and approved for several cancer types including metastatic melanoma and
non-small cell lung cancer [15–17]. The premise of cancer immune checkpoint therapy (ICBT) is that
harnessing the patient’s natural cancer immune defense system leads these cells to selectively search
out and destroy cancer cells [18]. By targeting negative regulators of T cell activity, they unleash
anti-tumor immunity.

In September 2014, the anti-PD-1 antibody pembrolizumab was the first agent targeting the
PD-1/PD-L1 interaction to receive FDA approval for metastatic melanoma. There are data suggesting
that PD-L1 expression on the tumor may be a biomarker predicting response to this class of
therapy [19,20]. PD-L1 expression was also seen in 20% of TNBC tumors suggesting that targeting
PD-1 or PD-L1 may have therapeutic benefit in TNBC [21]. Single-agent trials of PD-1 or PD-L1
inhibition in TNBC have demonstrated response rates of 5–19%, with some patients experiencing
prolonged, durable responses. [22–24]. Some of these studies required ≥1% expression of PD-L1 as an
entry criterion, while others did not. Responses have been seen in tumors that lack PD-L1 expression,
and thus far, the data do not definitively suggest that PD-L1 expression is required for single agent
biologic activity of immune checkpoint inhibitors in TNBC.

Tumor cell killing by cytotoxic chemotherapy like anthracyclines and carboplatins can facilitate
immunogenic cell death and facilitate an adaptive immune response [25]. Invigorating tumor-specific
T-cell immunity in this setting by inhibiting PD-L1/PD-1 signaling may result in deeper and more
durable responses compared to standard chemotherapy alone.

Supporting this hypothesis, a randomized phase III trial of nab-paclitaxel+/− atezolizumab for
the first line treatment of metastatic TNBC was the first to show a benefit for immunotherapy [26].
Notably, unlike single agent checkpoint inhibitor trials, benefit was only seen in the group of
tumors that expressed PD-L1 within the immune infiltrate and, as such, the combinatorial strategy
has been recently FDA approved for unresectable locally advanced or metastatic TNBC patients
who have PD-L1 stained tumor-infiltrating immune cells covering at least ≥1% of the tumor area
(https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm633065.htm).

In lung cancer, immunotherapy has rapidly become a standard part of therapy for patients
with advanced cancers, with several anti-PD1 and/or anti-PDL1 drugs approved by the FDA for
non-small cell lung cancer (NSCLC). Specifically, patients with metastatic NSCLC and PDL1 tumor
proportion score of at least 50% can be treated with front-line single agent pembrolizumab, while
patients with PDL1 levels below 50% can receive immunotherapy in combination with chemotherapy
(i.e., carboplatin-pemetrexed-pembrolizumab, carboplatin-taxane-pembrlizumab combinations) in
the frontline setting or one of three single-agent immunotherapy agents (pembrolizumab, nivolumab,
or atezolizumab) in the second-line setting for relapsed disease [27–29]. However, despite the

180



Cancers 2019, 11, 714

enthusiasm for immunotherapy for lung cancer, many patients do not receive clinical benefit from
these agents, and even in those who do respond initially, therapeutic resistance can develop over time.

The renaissance of immunotherapy with the discovery of checkpoints and other modulators
of immunity has brought on a new era in cancer therapeutics. In many types of non-epithelial
malignancies, immune checkpoint blockade therapy (ICBT) achieves long-term remissions. However,
ICBT is often ineffective in lung cancer and is rarely successful for breast cancer, for which this therapy
remains investigational [30,31]. In addition to intrinsic resistance to ICBT, acquired resistance, defined
as clinical progression after an initial response or prolonged stability, is also seen with targeted or
cytotoxic therapy.

3. Role of EMT in Immune Evasion

EMT directly regulates expression of PD-L1 and is associated with several other checkpoint
ligands [32,33] (Figure 1). Thus, EMT is expected to induce checkpoint-dependent resistance to
anti-tumor immunity. Due to the redundancy of the multiple checkpoints, EMT may render cancer
cells non-responsive to therapies targeting one or few checkpoints (e.g., anti-PD-L1 and anti-CTLA4).
Due to the limited scope of this review, we are unable to discuss many articles here; however,
the reader is referred some notable publications in this context [12,34–38]. Additionally, EMT
drives the recruitment of tumor-associated macrophages, which may, in turn, mediate resistance
to immunotherapies [39,40]. This may be achieved through direct regulation of cytokinome of
cancer cells (e.g., CCL2). The immunosuppression by macrophages, especially the alternatively
activated macrophages (M2), has been extensively studied and involves several mechanisms [41].
The tumor suppressive and tumor promoting effects of EMT shift the balance between macrophages
and neutrophils. Thus, inhibition of EMT, while overcoming immunosuppression by cancer cells
and macrophages, may coincidentally cause accumulation of a type of neutrophils in some tumors
defined as myeloid-derived suppressor cells leading to an “escape” pathway from anti-EMT treatment.
Therefore, it is important to examine the clinical correlation between EMT and the entire immune
microenvironment, including the myeloid cell compartment.
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Figure 1. Tumor cell EMT drives multiple parallel pathways of immune suppression. Epithelial tumor
cells are more sensitive to the effects of CD8+ effector cytotoxic T cells. Mesenchymal tumor cells,
as illustrated by high expression of the transcriptional repressor ZEB1 and concordant suppression
of the microRNA-200 family, express increased levels of PD-L1, immune suppressive cytokines (e.g.,
TGFβ), and enhanced recruitment of immune suppressive cells (e.g., CD4+ T regulatory cells). These
EMT-directed changes produce exhaustion of CD8+ T cells or suppress their recruitment into the tumor
microenvironment. CD8 T cell: CD8+ effector cytotoxic T cells; Treg: Regulatory T cell.

4. EMT as a Driver of Immune Escape from ICBT

Despite the presence of an immune response, some tumors continue to grow, a process that has been
referred to as “immune escape”. Tumor cell escape can occur through multiple different mechanisms [42].
Tumor cells themselves promote an immunosuppressive microenvironment by producing suppressive
cytokines including TGF-β, VEGF, or indoleamine 2,3-dioxygenase. The tumor microenvironment also
contains immune cells such as regulatory T cells and myeloid-derived suppressor cells that function to
suppress the immune response. At the individual tumor cell level, alterations leading to decreased
immune recognition (such as loss of tumor antigens, downregulation of major histocompatibility
complex molecules, or loss of antigen processing function within the tumor cell), or increased resistance
to the cytotoxic effects of immunity (such as via induction of anti-apoptotic mechanisms) can promote
tumor growth. Finally, tumor cells can upregulate T cell-inhibitory molecules such as PD-L1, which is
why activating the immune system for therapeutic benefit in cancer is an area of active investigation.
For a more elaborate discussion on this topic, we refer readers to some recent reviews [10,43,44].

We and others have previously described epithelial-mesenchymal transition (EMT) as a frequent
mechanism of de novo and acquired therapeutic resistance in mammary tumor cells, as well as all
subtypes of NSCLC, including lung cancers with oncogenic driver mutations in EGFR and KRAS [45–48].
Furthermore, we and others have demonstrated that EMT upregulates expression of PD-L1 in murine
and human NSCLC and directly leads to CD8+ T cell exhaustion and immunosuppression. To facilitate

182



Cancers 2019, 11, 714

the study of EMT across large cohorts, our group identified a robust, platform-independent lung
cancer EMT gene expression signature valid in lung cancer cell lines and NSCLC patient tumors [45].
The signature was then further refined to develop a patient-based, pan-cancer EMT signature using
1934 patient tumors from multiple solid tumor types including breast, lung, colon, and other common
cancers [2]. The Lung EMT and Pan-Cancer EMT signatures are highly correlated with mesenchymal
cancers from distinct tumor types showing striking similarities in their molecular profiles. Using
the EMT signatures, an individual cancer cell line or tumor can be scored for the degree to which it
has undergone EMT. These mRNA-based EMT signature scores are easy to measure, and are highly
correlated with other established EMT markers (such as expression of E-cadherin protein) as well as
with other factors known to regulate EMT (e.g., miR200 family and the transcription factor ZEB1).
The applicability of EMT scores to predict lung cancer has been mirrored in breast cancer patients as
well [49]. Residual breast cancers after conventional chemotherapy were shown to exhibit mesenchymal
features. In addition to applying the EMT scores in our lung cancer research, we generated EMT
scores for multiple TCGA cohorts, which has allowed integrated analyses of the relationships between
EMT and other molecular or immune data profiles (i.e., miRNA and methylation profiles, iCLUSTER
data) [32,50,51].

In addition to its broad tumor cell-autonomous impact, EMT in breast cancer also profoundly
alters the microenvironment landscape, especially immune cell constituents (Figure 1). Macrophages
and neutrophils are key modulators of the tumor microenvironment [52,53]. Recent evidence suggests
a strong correlation between EMT and a switch from a neutrophil- enriched immune profile to a
macrophage-dominant profile. Tumors exhibiting an epithelial-like phenotype tend to have local
and systemic accumulation of neutrophils. In contrast, tumors with mesenchymal features are
predominantly infiltrated with macrophages that are often but not always polarized to the M2
(alternatively activated) status. These two categories of tumors are defined as a neutrophil-enriched
subtype (NES) and a macrophage-enriched subtype (MES), respectively. Inducible expression of
miR-200, a master regulator of EMT, shifts the macrophage/neutrophil balance, supporting the causal
role of EMT in determining the myeloid cell profile of the tumor microenvironment.

Mechanistically, several transcriptional suppressors regulate EMT, including the two-handed
zinc-finger δEF1 family transcription factors ZEB1 and ZEB2 [54–57]. ZEB1/2 binds to E-box regions in
the promoters of key epithelial differentiation genes such as E-cadherin, and transcriptionally suppress
their expression [58]. ZEB1/2 also regulates the miR-200 family of miRNAs miR-141, 200a/b/c, and
429 that are broadly expressed in normal epithelial cells [59]. miR-200 is a master EMT regulator,
governed by a double-negative feedback loop with the ZEB repressors [60–64] and regulated by
multiple EMT inducers (e.g., TGFβ) [61,62]. miR-200 loss has been linked to stem-like features and
chemoresistance [65,66]. Evidence from several epithelial tumor types, including lung and breast,
implicates miR-200 dysregulation in disease progression [64,67,68]. Using the KP mouse model and
a panel of human NSCLC cell lines, we have demonstrated that the miR-200/ZEB1 feedback loop
is a critical regulatory axis that determines metastatic potential [69,70] by controlling global mRNA
changes in an invasive subset of tumor cells, modulating matrix-dependent tumor activation and
invasion [70–73].

5. Relationship between CD8 T Cells and EMT, and Impact of EMT on ICBT

In breast cancer, there is a strong correlation between tumor-infiltrating T and B cells and favorable
prognostic outcome or therapeutic responses (standard therapies) [18,74–77]. Many standard-of-care
therapies require the immune system to exert their effects. The most prominent example is anti-HER2
treatment with trastuzumab, which heavily relies on functional host immunity [78]. Furthermore, it
has recently been recognized that the response of some chemotherapy regimens is achieved by their
impact on immunosuppressive cells [79–81]. Thus, it appears that the immune system in breast cancer
patients retains the potential of fighting cancer. Ongoing clinical trials suggest that although some
breast cancer patients may benefit from ICBT [22,82], the percentage is disappointingly low. Possible
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mechanisms of resistance include low level or ineffective neoantigens [83,84] and/or the enrichment of
immunosuppressive cells [85,86], and the elaboration of immunosuppressive cytokines (e.g., IL-10,
TGF-β), all of which may result in a scarcity of functional cytotoxic T cells. Therefore, to improve the
efficacy of immunotherapy it will be critically important to tackle these potential mechanisms. In the
following section, we will focus on the latter: the immunosuppressive microenvironment that prevents
anti-tumor immunity.

ICBT enhances anti-tumor responses by increasing the activity of the cytotoxic CD8+ T lymphocyte
subpopulations; these cells are key players in the effector functions of adaptive immunity [87].
In addition to secreting chemokines and cytokines, tumor-specific T cells interact through T cell
receptors with the major histocompatibility complex (MHC) on antigen-presenting cells, which in
turn triggers a signaling cascade resulting in the death of target cells [88,89]. Currently, adoptive
T cell-transfer, oncolytic viruses, cancer vaccines, T cell co-stimulatory agonists and monoclonal
antibodies are used either alone or in combination with ICBT [90]. Checkpoint regulators of immune
activation help maintain immune homeostasis and prevent autoimmunity. However, the immune
checkpoint pathways are frequently activated in cancer to suppress the nascent anti-tumor immune
response. A combination of immune checkpoint inhibitors namely PD-1 and CTLA-4 can effectively
kill cancer cells because they function primarily through complementary mechanisms [91]. When
CD8+ T cells recognize self-antigen on tumor cells, they fail to kill cancer cells; this immunological
tolerance is a drawback of the ICBT [92]. In addition, CD8+ T cell exhaustion due to chronic exposure
to antigens negatively affects the efficacy of ICBT [93].

Tumor cells evade immunosurveillance by altering their phenotype via immunoediting, and
it is known that immuno-edited tumors display properties of cells that have undergone EMT [94].
Activated CD8+ T cells, macrophages, and several other immune cell types produce TGF-β, a crucial
promoter of EMT [95–97]. We previously demonstrated that two key EMT factors that are also markers
of cancer stem cells (CSCs), FOXC2 and Twist, are necessary for the process of breast carcinoma
metastasis [57,98]. Early evidence suggested an antitumor response of CD8+ T cells delayed metastasis
and eliminated disseminated tumor cells (DTC) of P815 mastocytoma [99]. In a melanoma mouse
model, CD8+ T cells are involved in maintaining DTC dormancy in visceral organs like the lungs
and the reproductive tract, thereby preventing overt metastasis and limiting disease progression [32].
CD8+ T cells are also known to inhibit tumor growth thus prolonging the survival of experimental
mice by selectively targeting cancer stem cells (CSCs) [100]. CD8+ T cell suppression within the tumor
microenvironment is dependent on PD-L1 regulation on tumor cells via a pathway involving the
microRNA miR-200 and the transcription factor ZEB1; these molecules are the links between EMT,
CD8+ T cell exhaustion, and tumor suppression [32]. Furthermore, the inhibition of breast cancer
onset and progression is inhibited by CD8+ T cells and natural killer (NK) cells due to increased
cytotoxic activity mediated by the protein TIPE2 [101]. Although EMT leads to up-regulation of
multiple checkpoint molecules that inhibit T cell-mediated cytotoxicity, it also reduces expression of
many adhesion molecules including E-cadherin, which is a known inhibitory ligand of NK cell receptor
(KLRG1) [102]. Other well-established NK cell-activating molecules, such as PVR, are also upregulated
upon EMT induction [103,104]. It is, therefore, not surprising that EMT may be accompanied by
increased sensitivity to NK cell-mediated cytotoxicity [105]. Although the anti-tumor potential of CD8+

T cells is well accepted, the prognostic significance of their intratumoral homing is highly variable
across different breast tumor subtypes [106]. The impact of CD8+ T cells in the tumor microenvironment
(TME) on tumor epithelial-mesenchymal plasticity, on the interplay with other immune cells, and on
associated metastatic traits in breast cancer cells are incompletely understood. Furthermore, it will be
critical to clarify how the inflammatory TME and epithelial-mesenchymal plasticity influence CD8+ T
cell activity and survival.
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6. Impact of Immunosuppressive TME on ICBT

The intertumoral heterogeneity of the immune microenvironment dictates ICBT responses.
We profiled the immune compartment in a wide variety of syngeneic triple-negative breast cancer
(TNBC) models and discovered two prototypes of the immune microenvironment. In the first
prototype, tumors induce systemic accumulation of neutrophils. These neutrophils overexpress
multiple immunosuppressive pathways and may represent granulocytic myeloid-derived suppressor
cells (gMDSCs). Macrophages co-exist but only constitute a minority of the myeloid cells in the
tumor. In the second prototype, there does not appear to be an increase of neutrophils; rather, there is
exclusively a local enrichment of tumor macrophages, which often (but not always) polarize toward
the immunosuppressive M2 status. We have denoted these two “immunosubtypes” of mammary
tumors as NES and MES, respectively. Apparently, NES and MES rely on different types of myeloid
cells to escape immunosurveillance (data not shown). Indeed, when initially responsive MES tumors
recurred neutrophils or gMDSCs accumulated, suggesting a conversion from MES toward NES or a
switch of suppressor cell types. Depletion of neutrophils reduced this acquired ICBT resistance. Thus,
immunosuppression may be exerted by different cell types in different tumor contexts.

EMT clearly contributes to the development of different immune microenvironments. Intriguingly,
analyses of eight murine models representative of both NES and MES subtypes revealed that EMT
contributes to the development of the dichotomous myeloid microenvironment. EMT has been linked
to the recruitment of macrophages to the tumor microenvironment via chemokines like CCL2 [39,40].
Previous studies have also demonstrated that EMT drives expression of checkpoint ligands in cancer
cells [51]. Taken together, the connection between EMT and cancer cell- or macrophage-mediated
immunosuppression has been well established, which makes it an appealing therapeutic target to
enhance immunotherapies. Inhibition of EMT, by targeting the EMT signaling pathways using TGF-β1
inhibitors while reverse immunosuppression by cancer cells and macrophages, may coincidentally cause
accumulation of neutrophils, which can act as gMDSCs and lead to an alternative immunosuppressive
mechanism, independent of checkpoints. Indeed, previous studies using syngeneic lung cancer
models already indicate the existence of the dichotomous myeloid cell compartment in this cancer
type as well [107]. Preclinical studies demonstrate that gMDSCs promote tumor progression through
suppressing anti-tumor immunity [108,109] and promoting tumor-initiating cells (TIC) through the
Notch pathway [109]. Interestingly, a recent study suggested that the former activity may depend
on endogenous estrogen receptor alpha (ER) signaling [110], raising the possibility that endocrine
deprivation therapies could be used for gMDSC elimination [111]. Endocrine deprivation therapies
are standard-of-care for ER+ breast cancer.

All these findings suggest that EMT drives a switch of immunosuppression from gMDSC-mediated,
checkpoint-independent mechanisms to macrophage/cancer cell-mediated, checkpoint-dependent
mechanisms. Consequently, gMDSC accumulation may represent an escape pathway upon EMT
inhibition that allows tumors to maintain an immunosuppressive microenvironment. Moreover,
estrogen signaling and the Notch pathway mediate the pro-tumor effects of gMDSCs and provide
potential therapeutic targets to eliminate these cells, a strategy that may complement anti-EMT
treatment and ICBT.

7. Role of Bioinformatics

To identify potential relationships between phenotypic traits of tumors, including EMT and
immune cell populations, and cancer outcomes, bioinformatics has long played a critical role. Gene
expression profiles reveal the underlying biology of the tumors and can be used to dissect the features
that are correlated with responses. A key observation is that signaling events lead to a transcriptional
response, even if they are driven upstream by post-translational modifications. Thus, the signature of
a pathway can be used to identify the molecular processes associated with clinical events.

Gene expression signatures involving biological processes have been generated using machine
learning techniques. In short, the development of signatures is typically framed as a classification
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problem, where the goal is to identify a set of genes that can distinguish two biological states, such
as epithelial or mesenchymal cells. To accomplish this, a training set is generated comprised of
gene expression profiles of the two states. Then, differential expression analysis methods, such as
DESeq2 [112] or EdgeR [113], are used to identify genes that can differentiate the two states. Finally,
machine learning algorithms, such as SIGNATURE [114], can be used to score the expression profiles
of new samples to provide a quantitative measure of the similarity to one or the other state.

Based on such approaches, an EMT signature has been linked to several outcomes including
responses to chemotherapy [115], targeted therapies [116], patient survival [117,118], recurrence [119],
and metastasis [120]. In addition to these outcomes, our studies and others have linked an EMT
signature with markers or other evidence of immune modulation such as immune checkpoints [51]
or low T cell infiltration in NSCLC [121]. Indeed, an increasing amount of evidence points to an
association between EMT and the immune system in human tumors.

Independent of EMT, several bioinformatic analyses have supported the role of immune cells and
clinical outcomes [122–130]. This demonstrates the ability of this technology to identify signatures of
immune cells in bulk tumor samples. These analyses are enabled by the fact that the gene expression
profiles of tumors reflect both the cancer cell and stromal/immune compartments. Although the
signature of the immune cells can be seen in the bulk gene expression profiles, methods have been
developed that can deconvolute the profiles into the constituent parts, enabling a more accurate
quantification of the immune cell types that comprise the tumor [131,132].

One of the limitations of the prior studies is that they provide a limited resolution in quantifying
the immune cell types (i.e., how many CD4+ T cells there are), and also in identifying the cell subtypes
(i.e., are these Th1, Th2, or other CD4+ T cells). To address these questions, single-cell sequencing
technologies that have the have the capacity to profile a range of cell types are rapidly being adopted.
While powerful, these technologies have introduced a new bioinformatics challenge. The result
of a single-cell RNA-Seq (scRNA-Seq) assay is the generation of transcriptional profiles of a likely
heterogeneous immune cell population. Therefore, one step in the processing is to identify the cell
types present in the population. While markers for immune cells have long been established for flow
cytometry experiments, they are of more limited use in scRNA-Seq profiles due to issues such as
drop-out, a phenomenon where a gene is not profiled due to factors including a lack of sensitivity in the
assay; or ambiguities in the accepted markers. In the future, to address this, machine learning methods
can be applied to identify immune cells from scRNA-Seq profiles. Nevertheless, a recent study has
revealed a previously unknown range of T cell activation states within breast tumors [133]. Future
studies using single-cell technologies, coupled with increasingly sophisticated bioinformatic analyses,
will likely reveal new nuances in the relationships between the immune system, EMT, and cancer.
Additional multiplex technologies will allow the spatial localization of these cells.

8. Conclusions

In this review, we have highlighted mechanistic vulnerabilities in mesenchymal tumor cells due
to their ability to reprogram the tumor immune microenvironment. Because immunotherapy is rapidly
emerging as a game-changing approach in many cancer types, including lung cancer, it will be critical
to develop a greater understanding of those patients most likely to benefit and the mechanisms defining
primary and acquired resistance. It will also be important to co-target EMT-related vulnerabilities
along with the PD-L1/PD-1 immune checkpoint axis, given the large contribution of EMT to resistance
mechanisms. Most importantly, the EMT phenotype has a distinct relationship with the immune
microenvironment that can potentially be leveraged for a transformative clinical benefit for common
epithelial tumors. EMT broadly up-regulates multiple immune checkpoint and inflammatory molecules
to produce CD8+ T cell exhaustion, highlighting multiple potential mechanisms for the development of
therapeutic resistance to immune therapy in mesenchymal tumors. EMT is a multidimensional process
with different axes and these multiple parameters are exploited in malignancy under selective pressures
including cytotoxic and biological therapies, hypoxia, energetics, and immune surveillance. As such,
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there is a pressing clinical need for targeted, biomarker-directed therapies to address both primary
and acquired immunotherapy resistance. Incorporation of targeted agents (and validated biomarkers)
that modulate immune suppression could expand the patient population that responds to immune
checkpoint inhibitors and help address immunotherapy resistance. Studying these questions and
integrating information across cancer types, instead of a single cancer, will shed light on combinatorial
strategies that may be more generally applicable. Moreover, these comparative studies may also
yield new insights since the treatment of cancer as evidenced in recent basket trials now is geared to
understanding common vulnerabilities, e.g., mismatch repair deficiencies, as criteria for using ICBT
across tumor types.
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Abstract: Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is one of the most
abundant, long non-coding RNAs (lncRNAs) in normal tissues. This lncRNA is highly conserved
among mammalian species, and based on in vitro results, has been reported to regulate alternative
pre-mRNA splicing and gene expression. However, Malat1 knockout mice develop and grow
normally, and do not show alterations in alternative splicing. While MALAT1 was originally described
as a prognostic marker of lung cancer metastasis, emerging evidence has linked this lncRNA to other
cancers, such as breast cancer, prostate cancer, pancreatic cancer, glioma, and leukemia. The role
described for MALAT1 is dependent on the cancer types and the experimental model systems.
Notably, different or opposite phenotypes resulting from different strategies for inactivating MALAT1
have been observed, which led to distinct models for MALAT1’s functions and mechanisms of action
in cancer and metastasis. In this review, we reflect on different experimental strategies used to
study MALAT1’s functions, and discuss the current mechanistic models of this highly abundant and
conserved lncRNA.

Keywords: lncRNA; MALAT1; metastasis

1. Introduction

Long non-coding RNAs (lncRNAs) are transcripts that are longer than 200 nucleotides (nt) without
protein-coding capacity. Despite the exponential growth in lncRNA publications, our understanding of
lncRNA functions and mechanisms is still limited, and outstanding caveats and controversies remain
in the current lncRNA knowledge [1,2]. The mechanisms of action of some well-known lncRNAs are
currently under discussion [3–11]. Questions have also been raised as to whether phenotypes arising
from deleting or inactivating a lncRNA gene can be unequivocally attributed to the loss of the lncRNA
per se [1]. A recent study revealed opposite effects from the deletion and insertional inactivation of the
lncRNA-encoding gene Haunt, and remarkably, the gene deletion effect was due to the loss of Haunt
genomic DNA, which dominated the effect of Haunt lncRNA loss [12]. In light of the accumulating
evidence for different or opposite phenotypes resulting from different strategies for inactivating the
same lncRNA (e.g., Fendrr, Evf2, and lincRNA-p21) in vivo, it has been concluded that genetic rescue
experiments, where the lncRNA is re-expressed from an independent transgene, are essential for
separating RNA-specific effects from those resulting from the manipulation of the genomic DNA [1];
however, such rescue experiments are generally lacking in the current lncRNA research, especially in
cancer studies, making it difficult to interpret many lncRNA results in the cancer field.

Unlike messenger RNAs (mRNAs) and microRNAs (miRNAs), many lncRNAs have poor
evolutionary conservation; however, a nuclear lncRNA, metastasis-associated lung adenocarcinoma
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transcript 1 (MALAT1, also known as nuclear enriched abundant transcript 2, NEAT2), is exceptionally
conserved for lncRNA, and is among the most abundantly expressed lncRNAs in normal tissues [13].
Despite its length (~8 kb in humans and ~7 kb in mice), MALAT1 is a single-exon gene whose transcript
is subject to further processing; for instance, in mice, Malat1 gives rise to a 7 kb full-length transcript
(low expression, nuclear), a 6.7 kb lncRNA (high expression, nuclear), and a 61 nt tRNA-like small
RNA (mascRNA, exported to the cytoplasm with unknown functions) [14]. At the molecular level,
MALAT1 lncRNA is recruited to nuclear speckles and has been reported to regulate pre-mRNA
splicing [13,15]. However, this finding is not supported by Malat1 knockout mice, which showed
normal development and growth and no global difference in alternative splicing [16–18]. In addition,
MALAT1 lncRNA is subject to post-transcriptional modifications, such as N6-methyladenosine
(m6A) [19] and 5-methylcytosine (m5C) [20], but the functional consequences of these modifications
remain unknown.

Originally, MALAT1 was identified as a prognostic marker for poor clinical outcomes (overall
survival and metastasis-free survival outcomes) in patients with early-stage non-small cell lung
cancer [21]. To date, there are more than 800 publications related to MALAT1 (the PubMed search word
“MALAT1” generated 809 results as of 13 February, 2019) and many of them reported a role of MALAT1
in cancer, making MALAT1 one of the most studied lncRNAs. Intriguingly, different studies yielded
conflicting results about MALAT1’s functions and mechanisms of action. In this review, we discuss
the progress and controversies in MALAT1 research, and reflect on the approaches and experimental
design used for lncRNA studies.

2. Does MALAT1 Regulate Alternative pre-mRNA Splicing and Global Gene Expression?

By performing RNA fluorescent in situ hybridization and protein immunofluorescent staining,
Hutchinson et al. found that MALAT1 lncRNA co-localizes with SC35 nuclear speckles, structures
involved in pre-mRNA processing [13]. Subsequently, based on small interfering RNA (siRNA)
knockdown results from cultured cell lines, MALAT1 was identified as a nuclear-retained regulatory
RNA that interacts with the serine/arginine-rich family of splicing factors, affects the distribution
of splicing factors in nuclear speckle domains, and regulates alternative splicing of pre-mRNAs [15].
Moreover, by using the CHART-seq technology, West at al. identified hundreds of MALAT1-binding
sites in human cells and most of these sites are on actively transcribed genes, indicating that MALAT1
might be involved in regulating gene transcription [22]. However, these effects were absent in
genetically engineered mouse models lacking Malat1 expression [16–18].

In 2012, three Malat1 knockout mouse models, generated by different strategies, were reported
by independent groups. Zhang et al. removed a 3 kb genomic region encompassing the 5′ end
of Malat1 and its promoter (Figure 1a) [16]. Eissmann et al. deleted the entire 7 kb mouse Malat1
gene (Figure 1b) [17]. Nakagawa et al. disrupted the Malat1 gene by inserting a transcriptional
terminator (lacZ and the polyadenylation sequences) 69 bp downstream of the transcriptional start site
of Malat1 (Figure 1c); similar to the two gene deletion strategies, this insertional inactivation approach
also abrogated Malat1 RNA expression in mice, as gauged by Northern blot analysis and in situ
hybridization [18]. Surprisingly, none of these three models showed phenotypes, and loss of Malat1 in
mice did not affect global gene expression, nuclear speckles, or alternative pre-mRNA splicing [16–18],
which argues against the in vitro siRNA knockdown results [13,15,22]. This discrepancy suggests
that in vitro findings could be cell line-specific, or rely on specific experimental settings and
approaches. Alternatively, Malat1 may have stress-dependent functions in vivo. It is also possible
that additional factors compensate for the effects of Malat1 loss in mice. These possibilities warrant
further investigation.
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Figure 1. Different strategies used to generate Malat1 knockout mice. (a) A 3 kb genomic region
encompassing the 5′ end of Malat1 and its promoter was deleted. (b) The full-length Malat1, including
250 bp upstream of the transcriptional start site and 321 bp downstream of the 3′ end of Malat1, was
deleted. (c) The β-galactosidase gene (lacZ) with polyadenylation sequences (pA) was inserted 69 bp
downstream of the transcriptional start site (TSS) of Malat1.

3. Is MALAT1 a Metastasis Promoter or a Metastasis Suppressor?

MALAT1 expression has been shown to be either upregulated or downregulated in human
cancers. On one hand, upregulation of MALAT1 was reported in lung cancer, hepatocellular carcinoma,
breast cancer, and colorectal carcinoma, which has been extensively reviewed previously [23–26].
On the other hand, several studies showed that the expression of MALAT1 is downregulated in
glioma [27], colorectal cancer [28], and breast cancer [29,30]. Previous in vitro and xenograft studies
demonstrated that MALAT1 promotes cell proliferation, migration, tumor growth, metastasis, and
chemoresistance [31–37]. In contrast, other studies reported that MALAT1 inhibits cell proliferation,
tumor growth, invasion, and epithelial-mesenchymal transition (EMT) [27,28,30,38–40].

As mentioned above, one of the three Malat1 knockout mouse models harbors a 3 kb deletion
of Malat1’s promoter and its 5′ end [16]. After breeding these mice to a metastasis-prone transgenic
model of breast cancer, MMTV (mouse mammary tumor virus)-PyMT (polyomavirus middle T
antigen) mice [41], Arun et al. observed a reduction of lung metastases [42]. Notably, despite no
difference in mammary tumor size, Malat1 gene-deleted PyMT tumors were liquid-filled and much
more differentiated with a drastically increased cystic phenotype [42], which might underlie the
metastasis reduction observed in this model. In addition, after treating MMTV-PyMT mice with Malat1
antisense oligonucleotides (ASOs), Arun et al. also observed increased cystic areas in primary tumors
and decreased lung metastases [42]. However, unlike genetic deletion, ASO treatment significantly
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decreased the tumor volume (by ~50%), suggesting that these ASOs have extra effects other than
knocking down Malat1. Unfortunately, the molecular mechanisms underlying the Malat1 gene deletion
and ASO effects remain unknown.

In stark contrast, after mice with targeted insertional inactivation of Malat1 [18] were bred to
MMTV-PyMT mice of a C57BL/6 strain, our group found that the transcriptional inactivation of Malat1
induced a striking increase in the number of visible metastatic nodules and in the number and area
of metastatic foci in the lungs [29]. Importantly, the metastatic-promoting effect of Malat1 insertional
inactivation, which contradicted the Malat1 genomic deletion effect, was completely reversed by the
genetic add-back of Malat1 achieved via breeding to mice with targeted transgenic expression of Malat1
from the ROSA26 locus [29]. Consistently, after MMTV-PyMT mice on an FVB background were crossed
to the Malat1 transgenic mice on an FVB background, overexpression of Malat1 markedly suppressed
lung metastasis [29]. In contrast to the gene deletion model [42], our group found that Malat1 wild-type,
Malat1-inactivated, and Malat1-overexpressing PyMT tumors showed similar degrees of cystic areas
and high-grade carcinoma areas [29]. Interestingly, insertional disruption of Malat1 significantly
elevated the percentages of circulating tumor cells (CTCs) in the peripheral blood of MMTV-PyMT mice,
which was also reversed by restoration of Malat1 expression. Furthermore, CRISPR (clustered regularly
interspaced short palindromic repeats)-Cas9-mediated knockout of MALAT1 (~650 bp deletion of the
5′ end) in the MDA-MB-231 breast cancer cell line promoted cell migration and invasion in vitro and
lung metastasis in vivo, which could be reversed by ectopic expression of mouse Malat1. Conversely,
overexpression of Malat1 in LM2 human breast cancer cells and in 4T1 mouse mammary tumor cells
led to a pronounced reduction of their lung metastatic ability in experimental metastasis assays [29].
Taken together, targeted inactivation, restoration (genetic rescue), and overexpression of MALAT1 in
multiple in vivo models suggest that the lncRNA MALAT1 suppresses breast cancer metastasis.

4. Experimental Dissection of MALAT1 and Other lncRNAs

What led to inconsistent conclusions about MALAT1’s function? While it remains to be determined
whether this is dependent on different cell/tissue types, cancer types, and genetic backgrounds, we can
carefully examine the experimental settings and approaches that have been used to study MALAT1 and
other lncRNAs; this offers important lessons. In fact, substantially different or opposite phenotypes
arising from different strategies (e.g., gene deletion, insertional inactivation, CRISPR-Cas9, and RNAi)
for inactivating the same lncRNA are not uncommon.

In mice, genetic deletion of the lncRNA Fendrr resulted in lung and gastrointestinal tract
defects [43], whereas transcriptional terminator insertion led to heart and body wall defects [44];
the defects caused by insertional inactivation were rescued by a Fendrr transgene [44]. Moreover,
RNAi experiments showed that the lncRNA Evf2 is important for activating Dlx5/6 expression [45],
but transcriptional terminator insertion in mice caused the opposite effect on Dlx5/6 expression [46];
the effect caused by insertional inactivation could be rescued by Evf2 expression from a separate
transgene [47]. Strikingly, a recent study reported opposing effects from the lncRNA Haunt gene
deletion and insertional inactivation [12]. The Haunt genomic locus contains enhancers for HOXA
genes, while Haunt lncRNA inhibits HOXA expression by binding to chromatin [12]. Yin et al.
showed that CRISPR-Cas9-mediated large deletion of the Haunt genomic locus attenuated HOXA
gene activation during retinoic acid-induced embryonic stem cell differentiation, whereas minimal
disruption of genomic sequences, such as insertional inactivation by CRISPR knockin, abrogated
Haunt transcription and upregulated HOXA expression [12]. Notably, Haunt cDNA was unable to
“rescue” the deletion phenotype [12], suggesting that the Haunt genomic deletion effect dominated
the effect of Haunt lncRNA loss. These and other studies strongly demonstrate the importance of
rescue experiments.

Two excellent reviews discussed considerations when investigating lncRNAs in general [1,2]. The
vast majority of MALAT1 reports are based on siRNA or short-hairpin RNA (shRNA) experiments,
and a few studies [42,48,49] used ASOs. However, nuclear RNAi is not fully established and the RNAi
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approach can be problematic for nuclear RNAs. Silencing a nuclear RNA by siRNA or shRNA requires
nuclear Ago2 and other RNAi factors [50]. It has been shown that subcellular localization of Ago2
depends on cell/tissue types and genetic backgrounds [51].

If a cell line or tissue does not have nuclear Ago2, the specificity of the MALAT1 siRNA or shRNA
should be questioned. It should be noted that antisense RNAs can have substantial non-specific effects,
and that an alarming and growing number of claimed anticancer targets have been invalidated due
to recent proof for off-target effects of previously used antisense RNAs and chemical inhibitors [52].
For example, MELK was previously identified as a kinase required for tumor cell survival and
proliferation in several cancer types. RNAi and small-molecule inhibitors of MELK demonstrated
anticancer efficacies in many studies, and one of the MELK inhibitors, OTS167, entered several clinical
trials. Recently, however, multiple independent studies [53–56] demonstrated that these results were
caused by off-target effects, thereby invalidating MELK as an anticancer target reported by many
groups. For these reasons, it is crucial to rule out off-target effects of antisense RNAs by genetic
add-back of RNAi-resistant mutants and by multiple loss-of-function approaches. Unfortunately, so
far no publication has demonstrated the specificity of the MALAT1 siRNA, shRNA, or ASO by rescue
experiments or by MALAT1 knockout cells.

Previous cell culture and xenograft studies showed contradictory effects of MALAT1 on cancer
cell growth, proliferation, and invasion [27,30–32,38–40]. With regard to genetically engineered mouse
models, opposite phenotypes were also observed. Whereas genetic deletion of Malat1 in MMTV-PyMT
mice inhibited lung metastasis [42], our group found that targeted insertional inactivation of Malat1
promoted lung metastasis in the PyMT mouse model [29]. It should be noted that we were able to
reverse the insertional inactivation phenotype by genetic add-back of Malat1 using a targeted Malat1
transgenic model [29], which suggests that the metastasis-promoting effect of Malat1 inactivation was
due to the loss of Malat1 lncRNA.

Why did the two different Malat1 knockout mouse models show different phenotypes? As
mentioned above, the Haunt lncRNA gene deletion effect has been attributed to the loss of the Haunt
genomic DNA, which dominated the effect of Haunt RNA loss [12]. It is possible that the similar
scenario applies to the Malat1 genomic locus versus Malat1 lncRNA, although the experimental
evidence for this hypothesis is lacking at present. Notably, the Malat1 genomic deletion model
showed significant upregulation of Malat1’s 12 adjacent genes [42]; in contrast, the Malat1 insertional
inactivation model showed no changes in expression levels of these neighboring genes both in normal
tissues and in mammary tumors [29]. It remains to be determined whether this is the reason for the
different phenotypes of the two Malat1 knockout mouse models. Among the concerns about deletion
of lncRNA genomic loci is that large deletions may eliminate regulatory elements for other genes or
destroy long-range genomic interactions.

As mentioned above, the Malat1 gene generates several transcripts with different expression levels
and localizations. It should be noted that all three different strategies used to generate Malat1 knockout
mice eliminated all Malat1 transcripts including the uncharacterized transcripts, and that our group
used full-length Malat1 to restore its expression in Malat1-defecient mice and in MALAT1-knockout
human cells. Among the transcripts derived from the Malat1 gene locus, the nuclear lncRNA Malat1 is
the predominant form and is expected to be the functional form. Nevertheless, functional dissection of
different transcripts warrants future studies.

5. Mechanistic Models of MALAT1 in Cancer and Metastasis

LncRNAs function through binding to other RNA, genomic DNA, or protein. Specifically, a
lncRNA can serve as a scaffold that keeps proteins together, as a guide that helps recruit proteins to
specific genomic DNA sequences, or as a molecular decoy (also called “sponge”) for proteins and other
RNAs. In this section, we discuss several molecular mechanisms by which MALAT1 regulates tumor
progression and metastasis.
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5.1. MALAT1 Serves a Competitive Endogenous RNA (ceRNA)

MALAT1 is a long and highly abundant lncRNA that contains many putative binding sites of
miRNAs. A number of studies reported that MALAT1 functions through sponging miRNAs, including
miR-145 [57], miR-1 [58], miR-202 [59], miR-200c [60], miR-206 [61], miR-204 [62], and so on. In these
studies, the authors typically showed that siRNA-mediated knockdown of MALAT1 in cancer cell
lines resulted in a certain phenotype, such as proliferation, migration, invasion, chemosensitivity, or
radiosensitivity, followed by luciferase assays to demonstrate the existence of the miRNA-binding site
on MALAT1. Then, functional experiments demonstrated that the miRNA and its target gene mediate
the effect of MALAT1. While the ceRNA model is interesting and MALAT1 might function as a ceRNA
under certain circumstances, more rigorous experiments are needed to prove this model. For instance,
the specificity of the siRNAs targeting MALAT1 or the miRNA targets should be clearly addressed.
Moreover, it would be critical to demonstrate that the miRNA-binding site on MALAT1 is important for
its function—key evidence that is generally lacking. In addition, gain-of-function experiments would
further strengthen the conclusions. Furthermore, if MALAT1 functions through sponging multiple
miRNAs, it is very challenging to experimentally prove the ceRNA model of MALAT1 (Figure 2a).

Figure 2. Mechanistic models of MALAT1 in cancer and metastasis. (a) MALAT1 sponges miRNAs,
leading to repression of miRNA target mRNAs. (b) MALAT1 binds PRC2 components and recruits
PRC2 to target gene loci. (c) MALAT1 binds, sequesters, and inactivates TEAD.

5.2. MALAT1 Interacts with the PRC2 Complex

Polycomb repressive complex 2 (PRC2) catalyzes histone H3K27 methylation, which plays
important roles in transcriptional repression and cancer [63]. HOTAIR was the first reported
PRC2-binding lncRNA that recruits PRC2 to target gene loci [64]. Subsequently, it has been shown
that HOTAIR directly interacts with EZH2 [65], and that HOTAIR negatively regulates epithelial gene
expression through H3K27 trimethylation [66,67]. Recently, additional lncRNAs, including MALAT1,
have been shown to bind PRC2 components (Figure 2b). Fan et al. reported that MALAT1 binds SUZ12,
a subunit of the PRC2 complex, and that MALAT1 and SUZ12 mediate TGF-β induced EMT in bladder
cancer [68]. Hirata et al. showed that MALAT1 interacts with EZH2, the catalytic subunit of PRC2, and
that both MALAT1 and EZH2 are required for the EMT in renal cell carcinoma [69]. In addition, several
studies showed that the interaction of MALAT1 with EZH2 is involved in other cancer types, such as
prostate cancer [70], gastric cancer [71], and lymphoma [72]. However, it remains unclear whether and
how the MALAT1-PRC2 interaction specifically regulates the transcription of target genes. Notably, a
recent EZH2 RIP-seq assay identified more than 1,000 EZH2-binding lncRNAs [73], while it is unclear
whether and how these lncRNAs regulate the activity of EZH2. Similarly, studies from Cech and
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colleagues revealed promiscuous RNA binding by PRC2 and indicated that mammalian PRC2 binds
thousands of RNAs in vivo [74,75]. While the hypothesis that lncRNAs recruit chromatin-modifying
complexes to target gene loci is intriguing, questions remain regarding the molecular mechanism by
which lncRNAs regulate transcription.

5.3. MALAT1 Binds and Inactivates TEAD

Recently, our group performed a chromatin isolation by RNA purification coupled to mass
spectrometry (ChIRP-MS) assay to identify Malat1’s endogenous binding proteins in mammary
tumors from MMTV-PyMT mice. We identified a list of 23 proteins that specifically bind to Malat1
but not two negative controls (nuclear RNA U1 and probe-free beads) [29]. Interestingly, all four
members of the Tead transcription factor family (Tead1, Tead2, Tead3, and Tead4) were present in
this list. Through subsequent validation by ChIRP-Western, RNA pulldown, RIP-qPCR, and UV
crosslinking-immunoprecipitation and qPCR (CLIP-qPCR) assays, we found that MALAT1 binds
to the transactivation domain of TEAD proteins, which are unconventional RNA-binding proteins
(RBPs), but does not bind to GAPDH, histone H3, or the TEAD co-activator YAP [29]. Moreover,
the results from TEAD reporter assays, co-IP, qPCR, ChIP-qPCR, and functional rescue experiments
demonstrated that MALAT1 lncRNA sequesters the transcription factor TEAD, thereby blocking TEAD
from associating with its co-activator YAP and target genes, which in turn leads to inhibition of TEAD’s
transcriptional activity and pro-metastatic function in breast cancer [29] (Figure 2c). It remains to
be determined whether MALAT1 suppresses metastasis by inactivating TEAD in other cancer types.
In addition, the functional consequences of the interaction of Malat1 with its other binding partners
warrant further studies.

5.4. MALAT1 Regulates Multiple Signaling Pathways

In addition to the Hippo-YAP pathway, MALAT1 has been reported to regulate other signaling
pathways in cancer, including PI3K-AKT, MAPK, WNT, and NF-κB pathways. For instance, by
modulating Wnt signaling, MALAT1 has been shown to regulate cancer cell EMT, migration, invasion,
and metastasis [76–78]. MALAT1 was also found to regulate hepatocellular carcinoma progression
through the mTOR pathway [79]. In certain cancer types, a MALAT1–NF-κB axis is involved in
chemoresistance and EMT [80,81], and PI3K-AKT signaling has been found to mediate the effect of
MALAT1 on metastasis [30,82,83]. Moreover, MALAT1 may regulate proliferation and metastasis of
esophageal squamous cell carcinoma through the ATM-CHK2 pathway [84]. In addition, MALAT1 has
been reported to regulate tumor cell proliferation through the MAPK pathway [27,36]. Unfortunately,
validation of these results in genetically engineered mouse models is lacking, and very little is known
about the molecular mechanisms by which MALAT1 regulates these pathways.

6. Conclusions and Future Perspectives

As one of the most abundantly expressed lncRNAs in normal tissues, MALAT1 has attracted
substantial interests from multiple fields including the cancer field. Malat1 knockout mice are viable
and develop normally, suggesting that MALAT1 is dispensable for development. It remains to be
determined whether this lncRNA plays important roles in stress responses or various pathological
processes, such as cardiac stress, vascular injury, intestinal injury, immune response, and various
oncogenic insults, and whether mice with Malat1 deficiency show phenotypes in response to external
or internal perturbations.

MALAT1 was previously described by many papers as a cancer-promoting and
metastasis-promoting lncRNA, while other reports suggested a tumor-suppressing role of
MALAT1. A major pitfall in these studies was the lack of rescue experiments for loss-of-function
approaches. In contrast, our group conducted genetic rescue experiments to demonstrate that the
metastasis induction by Malat1 germline inactivation or somatic knockout (CRISPR-Cas9) was
specific to the loss of MALAT1 lncRNA [29]. This finding underscores the importance of rigorous
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characterization of lncRNAs, and illustrates how a lncRNA can interact with unconventional RBPs
(TEAD proteins) to inhibit metastasis. Non-coding RNA functions should be unambiguously
established by rescue experiments in which the RNA expression is restored in knockout cells or
knockout mice by means of an independent transgene. Moreover, it is critical to rule out non-specific
effects in all types of loss-of-function experiments, including gene deletion, insertional inactivation,
CRISPR-Cas9, RNAi, ASO, and chemical inhibition; this is particularly important for the validation
of anticancer targets. The current understanding of lncRNAs remains very limited. Moreover, RNA
modifications and RBPs can regulate RNA’s fate; on the other hand, RBPs, especially unconventional
RBPs, could be controlled by RNA, as exemplified by the MALAT1-TEAD interaction [29]. We still
have a lot to learn about lncRNAs and a lot to expect from the discovery of RNA epigenetics and many
new unconventional RBPs. The ongoing and future studies will profoundly advance understanding
of the roles of RNA biology in tumor progression and metastasis, and will likely unearth novel
anti-metastatic targets for treatment.
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Abstract: The benefit and burden of contemporary techniques for the molecular characterization of
samples is the vast amount of data generated. In the era of “big data”, it has become imperative that
we develop multi-disciplinary teams combining scientists, clinicians, and data analysts. In this review,
we discuss a number of approaches developed by our University of Texas MD Anderson Lung Cancer
Multidisciplinary Program to process and utilize such large datasets with the goal of identifying
rational therapeutic options for biomarker-driven patient subsets. Large integrated datasets such as
the The Cancer Genome Atlas (TCGA) for patient samples and the Cancer Cell Line Encyclopedia
(CCLE) for tumor derived cell lines include genomic, transcriptomic, methylation, miRNA, and
proteomic profiling alongside clinical data. To best use these datasets to address urgent questions
such as whether we can define molecular subtypes of disease with specific therapeutic vulnerabilities,
to quantify states such as epithelial-to-mesenchymal transition that are associated with resistance
to treatment, or to identify potential therapeutic agents in models of cancer that are resistant to
standard treatments required the development of tools for systematic, unbiased high-throughput
analysis. Together, such tools, used in a multi-disciplinary environment, can be leveraged to identify
novel treatments for molecularly defined subsets of cancer patients, which can be easily and rapidly
translated from benchtop to bedside.

Keywords: bioinformatics; integrated approaches; lung cancer; rational therapy

1. Introduction

While many targeted therapies have been tested in lung cancers, the challenge remains to identify
the subset(s) of patients who will respond to these treatments. Integrated approaches are necessary
to combine in vitro, in vivo, in silico, and clinical data to identify and validate potential treatments
and the cohorts of patients in which these should be used. The University of Texas MD Anderson
Lung Cancer Multidisciplinary Program integrates a team of investigators with expertise in biologic,
bioinformatics, and clinical studies and has a track record of utilizing high-throughput “-omics” data
to identify new therapeutic targets and biomarkers. Here, we discuss three approaches to utilize large
datasets with the goal of identifying rational therapeutic options for biomarker-driven patient subsets.

2. Datasets

The approaches described in this manuscript use a combination of publically available clinical
datasets accessible through cBioPortal for Cancer Genomics (http://www.cbioportal.org/) or the
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National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/), and cell line
data from the Broad Institute Cancer Cell Line Encyclopedia (CCLE) (https://portals.broadinstitute.
org/ccle), the Genomics of Drug Sensitivity in Cancer (GDSC) (https://www.cancerrxgene.org/),
and the National Cancer Institute (NCI) Developmental Therapeutics Program (http://sclccelllines.
cancer.gov) summarized in Table 1, in additional to data generated at the University of Texas MD
Anderson Cancer Center as part of our cell line characterization efforts and clinical trials. The datasets
contain a variety of profiling data including genomic, transcriptomic (either array based or RNASeq),
methylation, miRNA expression, and protein expression (by reverse phase protein array (RPPA)),
as well as drug response for the cell lines and clinical data for patients (e.g., overall survival, progression
free survival, smoking history). Compatibility between datasets is crucial and requires taking into
account possible batch effects, probe selection in the use of array-based data [1], and fundamental
differences in technology (i.e., microarrays versus RNAseq). For example, when comparing cell line
drug sensitivity, the manner in which both single agent [2] and combination data [3–6] were generated
(e.g., length of experiment, drug dose, and dilution factors) must also be carefully considered, to ensure
that the approaches used are compatible, and that the analysis model chosen is adequately supported
by the data. Sample source must also be considered, regardless of the type of data available. While cell
lines can be used for drug sensitivity assays and candidate biomarker discovery, they do not reflect the
role of the tumor stroma and immune microenvironment. Patient derived data, however, do reflect
the tumor stroma and immune microenvironment and often include outcome data and other clinical
parameters, but do not allow for screening of candidate agents. These considerations highlight some
of the underlying reasons behind the assembly of the Multidisciplinary Program, drawing upon a
range of expertise from across the institution.

Table 1. Publically available datasets. Summary of publically available datasets used in the approaches
presented. * Datasets obtained from the National Center for Biotechnology Information (NCBI) for
these analyses include those from George et al., Sato et al. [7,8], BATTLE-1, BATTLE-2, and PROSPECT.
# Data types available vary by study. TCGA—The Cancer Genome Atlas; CCLE—Broad Institute
Cancer Cell Line Encyclopedia; GDSC—Genomics of Drug Sensitivity in Cancer; SCLC—small cell
lung cancer; EMT—epithelial-to-mesenchymal transition.

Resource Malignancy Data Types Pre-Clinical/Clinical Approach

TCGA [9] Various

Genomic,
transcriptomic,
methylation, copy
number, proteomic,
and clinical #

Clinical EMT

NCBI * [10] Various

Genomic,
transcriptomic,
methylation, copy
number and
clinical #

Both EMT, SCLC
subgroups

CCLE [11] Various
Drug sensitivity,
genomic, and
transcriptomic

Pre-clinical SCLC subgroups,
DISARM

GDSC [12] Various
Drug sensitivity,
genomic, and
transcriptomic

Pre-clinical SCLC subgroups,
DISARM

NCI
Developmental
Therapeutics
Program [13]

SCLC Drug sensitivity,
and transcriptomic Pre-clinical SCLC subgroups,

DISARM

DISARM [14] Various Drug sensitivity Pre-clinical DISARM
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3. Approaches

3.1. Cancer EMT Signature

The concept of epithelial-to-mesenchymal transition (EMT), a process by which epithelial cells
lose cellular polarity and cell–cell adhesion and enter a mesenchymal state with enhanced migratory
and invasive properties, was first described more than a decade ago in cancer [15,16].

As EMT plays a role in resistance to standard treatments for non-small cell lung cancer (NSCLC)
(and other cancers), and no standard method existed to quantify the degree to which a tumor
had undergone EMT, we first developed a lung cancer-specific EMT signature, and subsequently a
pan-cancer derived signature based on transcriptomic profiling (Figure 1A) [17]. Using gene expression
in 54 NSCLC cell lines, the lung cancer EMT signature was first based on those genes whose mRNA
expression levels were significantly correlated (either positively or negatively) with at least one of four
putative EMT markers—E-cadherin, vimentin, N-cadherin, and/or fibronectin 1. These “seed genes”
were selected as they had previously been established as markers of EMT in lung cancers and other
epithelial tumor types. Second, the set of genes correlated to the EMT markers was further limited to
those with a bimodal expression pattern to facilitate the ability of the signature to dichotomize the cell
lines into distinct epithelial and mesenchymal groups. Third, genes correlated to the EMT markers
also had to correlate in an independent mRNA microarray dataset to reduce artifacts and identify
the most biologically and technically robust genes. We then used the epithelial or mesenchymal
status of the cell lines to determine if EMT predicted response to various targeted agents (Figure 1B).
As expected, EGFR inhibitors had greater activity in epithelial models. An interesting observation
was that the AXL inhibitor SGI7079 was more efficacious in the mesenchymal models. Expression of
AXL, a receptor-tyrosine kinase, was higher in the mesenchymal cell lines, suggesting AXL as a novel
target in mesenchymal NSCLC. We then tested the efficacy of SGI7079 in an epithelial mouse xenograft
model, where we observed single agent activity and a greater than additive effect when combined
with erlotinib (Figure 1C). As a clinical validation of our observations, we classified NSCLC patients
with prior systemic therapy and subsequent relapse enrolled to the BATTLE-1 (Biomarker-integrated
Approaches of Targeted Therapy for Lung Cancer Elimination) [18] clinical trial as either epithelial or
mesenchymal. As expected, EGFR wild-type patients with an epithelial tumor treated on the erlotinib
arm had significantly better eight-week disease control than those with mesenchymal tumors.

To account for the contribution of the tumor microenvironment to EMT, we built on the lung
cell line EMT score, to develop a pan-cancer, patient tumor-derived, EMT score [19]. Using an
approach similar to the lung-EMT score, we identified mRNAs best correlated with established “seed”
markers of EMT (E-cadherin, vimentin, fibronectin, and N-cadherin) across nine distinct, primarily
epithelial, solid tumor types from The Cancer Genome Atlas (TCGA) [9]. Using this approach, we
identified 77 genes across the nine tumor types tested (breast invasive carcinoma—BRCA, lung
squamous cell carcinoma—LUSC, basal-like breast cancer—basal, head and neck squamous cell
carcinoma—HNSC, lung adenocarcinoma—LUAD, ovarian carcinoma—OVCA, bladder urothelial
cancer—BLCA, uterine corpus endometrial carcinoma—UCEC, and colon adenocarcinoma—COAD).
Nineteen genes identified overlapped with the original lung cancer EMT signature, and when applied
over 11 tumor types (those used to derive the signature, plus kidney clear cell carcinoma—KIRC, and
rectal adenocarcinoma—READ), a wide range of the pan-cancer EMT signature gave a wide range of
scores (Figure 1D). As expected, the pan-cancer signatures identify KIRC as highly mesenchymal and
both READ and COAD as highly epithelial, in agreement with existing knowledge identifying these
cancer types as such.

To better understand tumor gene expression pathways globally dysregulated in the context of
EMT, we performed a pathway analysis of all genes correlated with the pan-cancer EMT score in all 11
tumor types. In addition to EMT pathways, among the top hits were pathways related to immune
cell signaling. In the context of data generated by our group showing a relationship between EMT
and immune escape [20], we investigated the relationship between the EMT score and expression
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of 20 potentially targetable immune checkpoint genes (Figure 1E). Across all the tumor types tested,
we observed a strong positive correlation between EMT score and expression of the targetable immune
checkpoint genes. This enrichment of immune target expression in mesenchymal tumors corroborated
other work in our group in lung cancer where lung adenocarcinomas with a high lung cell line EMT
score had high expression of PD-L1, which is a target of miR-200, which is also a suppressor of EMT
and metastasis [20].

As a validation of the association between EMT and immune checkpoint genes, we stained lung
adenocarcinoma sections included in a tissue microarray developed from the PROSPECT trial for
expression of PD-L1. Automated quantification of immunohistochemistry (IHC) staining (H-score,
calculated by multiplying extent and intensity of staining [21]) showed significantly higher expression
of PD-L1 in both tumor and non-tumors cells in tumors with a mesenchymal pan-cancer EMT score
(Figure 1F). As PD-L1 expression is a biomarker of response to PD-L1 blockade [22], by virtue of
mesenchymal tumors expressing higher PD-L1, our analyses indicate that patients with mesenchymal
tumors are more likely to be candidates for PD-L1 blockade, and other similar immune checkpoint
blockade treatments.

 

Figure 1. Development of an epithelial-to-mesenchymal transition (EMT) signature. Schematic
describing the development of the lung-cancer and pan-cancer EMT scores (A). Using the lung-EMT
score, mesenchymal cells are less sensitive to EGFR and PI3K inhibition, but are more sensitive to
AXL inhibition (B). AXL blockade inhibits growth of mesenchymal (A549) non-small cell lung cancer
(NSCLC) xenografts (C). The Cancer Genome Atlas (TCGA) pan-cancer tumor types display a range of
EMT scores (D). A mesenchymal pan-cancer EMT score is correlated with higher expression of immune
checkpoint genes across multiple cancer types (E). Mesenchymal lung adenocarcinoma (LUAD) has
higher expression of PD-L1 in both tumor and non-tumor cells by immunohistochemistry (F). Adapted
from Byers et al. 2013 [17] and Mak et al. 2015 [19].
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The approach of using a “seed” to generate cell line and tumor-based signatures to quantify a
biological program has been demonstrated in our work both to define alterations in signaling pathways
and to identify therapeutic vulnerabilities. This signature generating approach has the potential to be
applied to any scenario in which a few known markers describing two distinct morphologies or states
have been defined.

3.2. Proteomic Subgrouping of SCLC

Proteomic profiling by RPPA measures a discrete number of targets enriched for druggable and
oncologically important pathways (typically around 200 total/phosphorylated proteins) [23,24], and
offers significant advantages over other profiling approaches. For example, proteomics, unlike DNA-
or RNA-based profiling, directly measures pathway activation and candidate target expression (i.e.,
the protein “target” itself) [25]. Furthermore, protein biomarkers, particularly those that can be assayed
by IHC have the potential for rapid translation into the clinic, as illustrated by the clinical use of PD-L1
IHC in NSCLC [22], and MET IHC in breast cancer [26].

Clinically, SCLC is currently treated as a single disease, with all patients receiving essentially
the same standard-of-care (SOC) treatment. The variability in response to SOC seen in the clinic,
however, suggested a need to identify subgroups of SCLC with specific vulnerabilities that could be
leveraged to develop more personalized approaches. Using proteomic data for 169 targets from a panel
of 63 SCLC cell lines [27], we used a model-based clustering method [28,29] to determine the optimal
number of clusters. Specifically, the cell lines were categorized into subgroups (range 1–20) using
six distinct models, and Bayesian index clustering (BIC) was then applied to determine to optimal
number of groups. The optimal model/group combination was then used to segregate the cell lines
into two groups. When separated into two groups, we used two sample t-tests to compare expression
of protein markers between the groups, identifying TTF1 and cMYC as the highest expressed proteins
in groups 1 and 2, respectively (Figure 2B). Differences in expression of total protein between the
cell line groups were then verified using publically available RNASeq data [30]. As cell culture may
impact gene/protein expression, we used two cohorts of human SCLC tumors with gene expression
data to validate our observations [7,8]. Using the 38 genes corresponding to total protein differences
observed in the cell lines, we clustered the human samples. At the highest level, both patient cohorts
separated into two groups, with striking differences in NKX2-1 (the gene name of TTF1) and MYC
between the groups.

Having identified two proteomically defined subsets of SCLC, we used a combination of
internal [27] and publically available drug sensitivity data [30,32] to determine if these groupings drove
differential responses to candidate treatments. Having identified a large number of targeted agents
with differential sensitivity between the two subgroups of SCLC, we were intrigued to see if we could
use information about the drug targets to identify targets common to multiple drugs. Adapting our
clustering data, as expression of TTF1 is bimodal, we segregated the cell lines into two groups (TTF1
high and low) and identified drugs that had a minimum three-fold difference in mean IC50 between
TTF1 high and low cell lines. We then used an in-house curated drug target database that includes
the primary, secondary, and tertiary targets of a given agent to generate a “Drug-TargEt ConsTellation
map” (DTECT map—Figure 3). The DTECT map identified multiple common targets including Aurora
Kinase and the PI3K/mTOR pathway, similar to the group-based analysis (Figure 2), confirming the
validity of the approach. DTECT mapping is an approach that can be used to identify high priority drug
targets in any situation where cell lines can be dichotomized on the basis of gene or protein expression,
or other statuses such as epithelial versus mesenchymal. The Aurora Kinase inhibitor alisertib has
shown pre-clinical and clinical activity in a number of cancer types, including SCLC [33,34]. However,
in a phase II study of paclitaxel with alisertib or placebo in an unselected relapsed/refractory SCLC
cohort, treatment with alisertib did not improve response rates or survival [35]. As our sub-group
comparisons, as well as DTECT mapping using both TTF1 and cMYC expression, had all indicated
that Aurora Kinase inhibition was more effective in cMYC high SCLC cell lines, we performed a
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supervised analysis of candidate proteomic biomarkers of response to single agent alisertib in a panel
of 51 SCLC cell lines [31]. Using two approaches (correlating IC50 values to protein expression, and
comparing protein expression between the most and least sensitive models), high cMYC expression
was the top biomarker of sensitivity to alisertib. A retrospective analysis of biopsies from patients
enrolled in the phase II trial of alisertib, based on our preliminary data, showed a strong association
between cMYC protein expression and improved progression free survival, validating our pre-clinical
analyses, despite only being evaluable in a small number of patients [35]. Alisertib is no longer in
clinical development for SCLC, in large part because of the lack of efficacy in the unselected phase II
trial. An alternative study in an SCLC population selected for patients with tumors that express high
levels of cMYC or low TTF1 (for which CLIA certified assays are available) may have yielded a positive
outcome and highlights the utility of high-throughput biomarker discovery in the development and
subsequent use of novel therapeutics.

 

Figure 2. Proteomic subtyping of SCLC. Schematic of how SCLC was divided into two molecular
subgroups using proteomic profiling data from 63 cell lines (A). Supervised hierarchical analysis
shows distant protein expression patterns between the two cell line subgroups (B). Comparison of
MYC and NKX2-1 expression between the two subsets in patient tumors (C). Comparison of relative
IC50 values between the two subsets shows group 2 (TTF1 low) to be more sensitive to a range of
targeted agents (D). Working model of how SCLC patients may be divided into two groups (E) based
on immunohistochemistry (IHC) tests currently in clinical use with different therapeutic vulnerabilities
between the groups. Adapted from Cardnell et al 2017 [31]. RPPA—reverse phase protein array.
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Figure 3. Drug-target constellation (DTECT) mapping. DTECT map of drugs differentially sensitive
between TTF1 high and low SCLC cell line (Fold Change (FC) > 3.0, p < 0.001). Drugs with differential
sensitivity are mapped by their primary, secondary, and tertiary targets. Underlined drugs are either
FDA approved or licensed for use in Canada/Europe. Adapted from Cardnell et al. 2017 [31].

3.3. DISARM

Over recent years, a tremendous quantity of publically available drug-sensitivity data has been
generated using a plethora of therapeutic agents across multiple cancer types [30,32,36–38]. Our tools
and approaches to utilizing this data have, however, not developed at the same rate. Pre-clinical data
generated in unselected populations may result in potential therapies being discarded because of
their lack of efficacy in the overall population despite their potential efficacy in a targeted population
(e.g., Aurora Kinase inhibitors in MYC high SCLC). Similarly, answering the supposedly simple
question of, “if a group of tumor models are resistant to a given drug, to what are they sensitive?” is
not easily addressed and is often unintentionally biased by the researchers’ pre-existing knowledge.
To address this, we developed DISARM (Differential Sensitivity Analysis for Resistant Malignancies),
a bioinformatics tool designed to identify drugs with efficacy in models that are resistant to a reference
drug [39]. DISARM operates by comparing IC50 values for two drugs (the reference and candidate
drugs), placing them into a 2 × 2 table to identify instances in which a significant number of models are
sensitive to a candidate drug and are resistant to the reference drug (Figure 4A). DISARM calculates a
score—the DISARM score—for each drug combination that follows a standard distribution. A higher
DISARM score corresponds to a higher significance level, the minimum score is zero and, while there
is no theoretical maximum to the score, a score of ≥2 is considered to be meaningful. This approach
was validated using two clinical paradigms where there is an approved treatment option (candidate
drug) for patients with tumors resistant to standard of care (reference drug). One such scenario is
the treatment of metastatic NSCLC with exon 19 deletions or L858R mutations in EGFR. Here, SOC
therapy includes the tyrosine kinase (TKI) inhibitor erlotinib (EGFR inhibitor), to which resistance
invariably develops, approximately half of which occurs through the acquisition of an additional
T790M mutation in EGFR. A second generation EGFR inhibitor—osimertinib—is, however, effective in
patients with EGFR T970M erlotinib-resistance mutations. Using response values to both erlotinib and
osimertinib from a previous study [40], DISARM successfully identified osimertinib as a candidate for
cell lines with T970M EGFR mutations (Figure 4A).
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Figure 4. DISARM. DISARM places cell lines, based on IC50 data, into a 2 × 2 grid. Using data for
erlotinib (reference) and osimertinib (candidate), DISARM correctly identifies osimertinib as a candidate
drug in erlotinib-resistant EGFR T970M mutant NSCLC (A). DTECT mapping of top candidate drugs
identified by DISARM in cisplatin-resistant SCLC (B). Venn diagrams depicting shared mRNA and
protein biomarkers of sensitivity to multiple PI3K inhibitors in platinum-resistant SCLC (C). Map
demonstrating the interrelatedness of drug targets identified as candidate drugs for cisplatin-resistant
disease across multiple cancer types (D). Adapted from Gay et al. 2018 [39].

We subsequently used DISARM to interrogate data from a large NCI funded drug screen effort in
SCLC [30]. Using sensitivity to platinum, the backbone to all frontline SOC treatments for SCLC [41] to
which resistance develops rapidly and almost universally, as the reference drug, we applied DISARM
to the problem of platinum-resistance in SCLC. Using cisplatin sensitivity data from our laboratory
and data from 526 FDA approved an investigational anti-cancer agent [30], DISARM selected 31
candidate drugs (including 26 with defined molecular targets) for use in platinum-resistant SCLC.
The 26 candidate drugs with defined molecular targets, all of which had DISARM scores ≥4.0 were
then plotted using a DTECT map of their primary target, which revealed a number of common targets
including PI3K, mTOR, and Aurora Kinase A (Figure 4B). We then tested if cell lines identified by
DISARM on the basis of their sensitivity to a candidate drugs targeting the same molecule shared
common biomarkers of sensitivity. Comparing mRNA [30] and protein expression data [27,42] between
cell lines identified as sensitive and resistant by DISARM, we identified low expression of the gene
NKX2-1 and its protein (TTF1) as common markers of sensitivity to PI3K inhibitors (Figure 4C), in
agreement with our proteomic subtyping of SCLC (Figure 2D) [31].

As platinum-resistance is not unique to SCLC, we expanded our analysis to include nine solid
tumor types for which platinum-based therapy is an established frontline therapy according to National
Comprehensive Cancer Network (NCCN) guidelines [43]. These included SCLC, NSCLC, stomach
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adenocarcinoma (STAD), pancreatic adenocarcinoma (PAAD), ovarian (OV), head and neck squamous
cell carcinoma (HSC), esophageal carcinoma (ESCA), colon adenocarcinoma (COAD), and bladder
carcinoma (BLCA). Using IC50 data for 138 drugs for which there were adequate data across these
nine tumor types in the GDSC database [32], we used DISARM to identify common drugs and drug
targets across cisplatin-resistant models of different tumor types (Figure 4D). Although sensitivity to
many candidate drugs varies between cisplatin-sensitive and -resistant disease for many tumor types,
some patterns did emerge. For example, vinblastine and etoposide consistently performed better in
cisplatin-resistant models, with DISARM scores of ≥2 in 4/7 and 5/7 tumor types tested, respectively.
DISARM analyses also revealed a number of common drug targets across multiple platinum-resistant
malignancies including PI3K, mTOR, MEK, BCL-2, and HSP-90.

In order to make DISARM available to the broader cancer research community, we also developed
a Java-Script based webtool to all investigators to query the available databases with a disease,
reference drug, and cut-offs for sensitivity of their choice. The DISARM web-based tool is available
at http://ibl.mdanderson.org/DISARM/index. The analyses presented here and in the DISARM
manuscript are only the beginning of how this approach can be used to interrogate in vitro data
from datasets that are yet to be incorporated, such as the Connectivity Map [44] and from individual
investigators. While not yet explored in our analyses, DISARM has the potential to be applied beyond
the setting of in vitro drug response data. If properly adapted and validated, DISARM-like approaches
could be applied in the analysis of in vivo drug response data using parameters such as tumor volume
or ΔT/ΔC in lieu of IC50 values. Taking the concept further, scenarios in which DISARM could be
used in the analysis of clinical data combining together tumor types with shared drug resistance can
also be envisioned.

4. Conclusions

The approaches reviewed here represent the work of a large multi-disciplinary team that
utilized large datasets to develop approaches for the unbiased classification of models/tumors and
identification of novel candidate drugs. These approaches have incorporated both large cell line
datasets (proteomic profiling, transcriptomic data, genomic data, and drug sensitivity data) from
multiple sources along with patient derived data (transcriptomic, genomic, immunohistochemical,
and clinical) from large collaborative efforts (TCGA), publically available data (George et al., Sato et
al.; [7,8]), as well as clinical trials (BATTLE-1, BATTLE-2, PROSPECT; [18,21,45]) from multiple cancer
types. One example of how these and related approaches have altered our approach to the treatment of
lung cancer patients is the discovery of SLFN11 as a biomarker of response to PARP inhibition in SCLC.
A proteomic comparison of NSCLC and SCLC led to the initial discovery of PARP1 as a potential
therapeutic target in SCLC [42], which was validated in vitro, in vivo, and in SCLC patients [46,47].
Further biomarker analysis using proteomic and transcriptomic profiling data in combination with
response data to PARP inhibition in cell lines and PDX models led to the identification of SLFN11 as
a biomarker of response [48]. Subsequent retrospective analysis of biopsies from patients enrolled
in a Phase II study of temozolomide with or without veliparib (a PARP inhibitor) showed a survival
advantage for patients with SLFN11 positive tumors (by IHC) who received veliparib [49].

The tools developed by the University of Texas MD Anderson Lung Cancer Multidisciplinary
Program have been highly productive for advancing our understanding of both thoracic and
extra-thoracic cancers, particular in expanding our knowledge of the mechanisms of resistance to
treatment and identifying new treatment options for patients for whom no treatment options currently
exist. These tools, used in the context of multi-disciplinary teams, have the potential to be further
leveraged to explore a variety of questions about the biology of lung and other cancers, but most
importantly, have the potential to translate into novel, biomarker-driven, personalized treatments for
our patients.
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