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Abstract: During the last several decades, Earth´s climate has undergone significant changes due
to anthropogenic global warming, and feedbacks to the water cycle. Therefore, persistent efforts
are required to understand the hydrological processes and to engage in efficient water management
strategies under changing environmental conditions. The twenty-four contributions in this Special
Issue have broadly addressed the issues across four major research areas: (1) Climate and land-use
change impacts on hydrological processes, (2) hydrological trends and causality analysis faced in
hydrology, (3) hydrological model simulations and predictions, and (4) reviews on water prices
and climate extremes. The substantial number of international contributions to the Special Issue
indicates that climate change impacts on water resources analysis attracts global attention. Here,
we give an introductory summary of the research questions addressed by the papers and point the
attention of readers toward how the presented studies help gaining scientific knowledge and support
policy makers.

Keywords: climate variability; climate change; land use change; hydrological processes; trends; water
management; model; predictions

1. Introduction

It is commonly recognized that Earth´s atmosphere is subject to anthropogenic climate change
due to enhanced greenhouse gas concentrations in the lower atmosphere. This development also
influences hydrological processes across a range of spatial scales, reaching from the singular catchment
to regional and global scales. To cope with these changes, it is necessary to implement efficient water
management strategies at country, regional or global scale adaptation. To better grasp the mechanism
and response to climate variability and climate change, it is crucial to stimulate multidisciplinary
studies involving multiple cross-cutting disciplines such as hydrology, meteorology, remote sensing,
ecology, engineering, and agriculture.

To address these challenges, continuing efforts need to be undertaken to gain insights on
hydrological processes, and engage in more efficient water management strategies in a changing
environment across spatial and temporal scales. This Special Issue of Water contributes toward this aim
through broad research work on the hydrological consequences of climate and land use change and
hydrological modeling approaches. We published twenty-four peer-reviewed papers, and grouped
them into four categories (Table 1):

Water 2019, 11, 1492; doi:10.3390/w11071492 www.mdpi.com/journal/water1
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• Climate change and land use change impacts on hydrological processes;
• Trends and variation of hydrological variables, such as precipitation, runoff, actual

evapotranspiration, and soil moisture;
• Hydrological modeling in simulating and predicting hydrological variables, such as precipitation,

evapotranspiration and soil moisture in data-sparse regions, and
• Reviews on water prices and climate extremes

Table 1. Summary of 24 papers published in the special issue “Climate Variability and Climate Change
Impacts on Land Surface, Hydrological Processes and Water Management” in Water Journal.

Categories Authors Title Research Area Research Fields

Climate change
and land use

change impacts on
hydrological

processes

Sridhar
et al. [1]

Human-Induced Alterations to Land Use
and Climate and Their Responses for

Hydrology and Water Management in the
Mekong River Basin

Mekong River
Basin

Land use; Climate change;
Water resources management;

Hydrology model

Guo et al.
[2]

Quantifying the Impacts of Climate
Change, Coal Mining and Soil and Water

Conservation on Streamflow in a Coal
Mining Concentrated Watershed on the

Loess Plateau, China

Yulin Climate change; Coal mining;
Soil and water conservation

Pousa
et al. [3]

Climate Change and Intense Irrigation
Growth in Western Bahia, Brazil: The

Urgent Need for Hydroclimatic
Monitoring

Western Bahia,
Brazil

Climate change;
Water security

Shang
et al. [4]

Land Use and Climate Change Effects on
Surface Runoff Variations in the Upper

Heihe River Basin

Upper Heihe
River Basin

Climate change; Land use;
scenario simulation;

Hydrological simulation

Gao and
Zhang [5]

Effects of the Three Gorges Project on
Runoff and Related Benefits of the Key

Regions along Main Branches of the
Yangtze River

Yangtze River Runoff changes; Flood control

Deng et al.
[6]

Analyzing the Impacts of Climate
Variability and Land Surface Changes on
the Annual Water–Energy Balance in the

Weihe River Basin of China

Weihe River
Basin

Budyko; Climate variability;
Land surface change

Tian et al.
[7]

Quantifying the Impact of Climate
Change and Human Activities on

Streamflow in a Semi-Arid Watershed
with the Budyko Equation Incorporating

Dynamic Vegetation Information

Wuding River
Watershed

Budyko; Climate variability;
Land surface change

Wu et al.
[8]

Analysis of Natural Streamflow Variation
and Its Influential Factors on the Yellow

River from 1957 to 2010
Yellow River Streamflow variation;

Intra-annual climate change

Hydrological
trends and

causality analysis

Gedefaw
et al. [9]

Analysis of the Recent Trends of Two
Climate Parameters over Two

Eco-Regions of Ethiopia
Ethiopia Trend analysis;

Precipitation; Temperature

Dorjsuren
et al. [10]

Observed Trends of Climate and River
Discharge in Mongolia’s Selenga

Sub-Basin of the Lake Baikal Basin

Selenga
Sub-Basin of

the Lake Baikal
Basin

Precipitation; Temperature;
River discharge

Zhu et al.
[11]

Four Decades of Estuarine Wetland
Changes in the Yellow River Delta Based
on Landsat Observations Between 1973

and 2013

Yellow River
Delta

Estuarine wetlands;
Spatiotemporal
change analysis

2



Water 2019, 11, 1492

Table 1. Cont.

Categories Authors Title Research Area Research Fields

Li et al.
[12]

Spatiotemporal Variation of Snowfall to
Precipitation Ratio and Its Implication on
Water Resources by a Regional Climate

Model over Xinjiang, China

Xinjiang Snowfall to precipitation ratio;
WRF model

Yan [13]
Meteorological Factors Affecting Pan
Evaporation in the Haihe River Basin,

China

Haihe River
Basin Evapotranspiration

Li et al.
[14]

Assessing the Influence of the Three
Gorges Dam on Hydrological Drought

Using GRACE Data
Yangtze River Hydrological drought; Three

Gorges Dam; GRACE

Hydrological
model simulations

and predictions

Kim et al.
[15]

The Use of Large-Scale Climate Indices in
Monthly Reservoir Inflow Forecasting
and Its Application on Time Series and

Artificial Intelligence Models

Han River
basin in South

Korea

Climate variability;
Large-scale climate indices;
Artificial intelligence model

Wu
et al. [16]

Influence of Power Operations of Cascade
Hydropower Stations under Climate
Change and Human Activities and

Revised Optimal Operation Strategies: A
Case Study in the Upper Han River, China

Upper Han
River

Climate change; human
activities; Power operation

Paul
et al. [17]

Comparative Study of Two
State-of-the-Art Semi-Distributed

Hydrological Models

Baitarani river
basin in India Grid-based; HRU-based

Ri et al.
[18]

A Statistical–Distributed Model of
Average Annual Runoff for Water

Resources Assessment in DPR Korea
DPR Korea Runoffmap;

Hydrological model

Cho and
Lee [19]

Multiple Linear Regression Models for
Predicting Nonpoint-Source Pollutant

Discharge from a Highland Agricultural
Region

Lake Soyang
basin of South

Korea

Diffuse pollutant discharge;
Multiple regression model;

Climate change

Liu et al.
[20]

Integrating Field Experiments with
Modeling to Evaluate the Freshwater

Availability at Ungauged Sites: A Case
Study of Pingtan Island (China)

Pingtan Island
in southeast

China

Predictions in ungauged
basins; Rainfall-runoff

experiments; Distributed
hydrological model

Zhou et al.
[21]

The Effects of Litter Layer and Topsoil on
Surface Runoff during Simulated Rainfall
in Guizhou Province, China: A Plot Scale

Case Study

Guizhou
province

Runoff; Simulated rainfall;
Litter layer; Topsoil

Nyaupane
et al. [22]

Evaluating Future Flood Scenarios Using
CMIP5 Climate Projections

Carson River in
the desert of

Nevada
Flood; Climate change; CMIP5

Review

Soto Rios
et al. [23]

Explaining Water Pricing through a Water
Security Lens -

Water security; Water pricing;
Sustainable water

management

Hao et al.
[24]

Compound Extremes in
Hydroclimatology: A Review -

Compound extremes; Climate
change; Multivariate

distribution

2. Contributed Papers

2.1. Climate Change and Land Use Change Impacts on Hydrological Processes

There are eight papers published in this category. Sridhar et al. [1] evaluated human-induced
alterations to land use and climate and their responses to hydrology and water management in the
Mekong river basin. Authors used two hydrological models to evaluate the impacts of natural and
climate-induced changes on water budget components, particularly streamflow. Model simulations
show that wet season flows were increased by up to 10% and there was no significant change in dry
season flows under natural conditions. Their results suggest an increasing trend in streamflow without
the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow
of 6% to 15%, possibly due to irrigation diversions and climate change. Guo et al. [2] quantified the

3
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impacts of climate change, coal mining, and soil and water conservation on streamflow in a coal
mining concentrated watershed on the Loess Plateau, China. They found that relative to the baseline
period, i.e., 1955–1978, the mean annual streamflow reduction in 1979–1996 was mainly affected by
climate change, which was responsible for a decreased annual streamflow of 12.70 mm (70.95%).
However, in a recent period of 1997–2013, the impact of coal mining on streamflow reduction was
dominant, reaching 29.88 mm (54.24%). Pousa et al. [3] analyzed climate change and intense irrigation
growth in western Bahia, Brazil and concluded that urgent management is required for hydroclimatic
monitoring. They found that the irrigated area has increased over 150-fold in 30 years, and in the
most irrigated regions, has increased by 90% in the last eight years only. Their findings suggest that a
monitoring system in which the availability and demand of water resources for irrigation are actually
measured and monitored is the safest path to provide water security to this region. Shang et al. [4]
separated climate change impacts on surface runoff variations from land use impacts in the upper
Heihe river basin. Authors found that in this region the contribution rate of climate change is 87.1%,
while the contribution rate of land use change is only 12.9%. The climate change scenario simulation
analysis shows that the change in runoff is positively correlated with the change in precipitation. The
relationship with the change in temperature is more complicated, but the influence of precipitation
change is stronger than the change in temperature. Under the economic development scenario of land
use simulation, the runoff decreases, whereas under the historical trend and ecological protection
scenario of land use simulation, the runoff increases. Gao and Zhang [5] analyzed the effects of the
Three Gorges Project (TPG) on runoff and related benefits of the key regions along main branches of the
Yangtze River. Their results show that the main benefits of TGP on flood control are remarkable in the
reduction of disaster-affected population, the decrease of agricultural disaster-damaged area, and the
decline of direct economic loss. Due to torrentially seasonal and non-seasonal precipitation, the sharp
rebounds of three standards for Hubei and Anhui occurred in 2010 and 2016, and the percentage of
agricultural damage area of five regions in the core and extended areas did not decline synchronously
and performed irregularly. The five key regions along the main branches of the Yangtze River should
establish a flood control system and promote the connectivity of infrastructures at different levels
to meet the significant functions of TGP. Deng et al. [6] analyzed the impacts of climate variability
and land surface changes on the annual water–energy balance in the Weihe river basin of China.
Authors used the Budyko framework in which the catchment properties represent land surface changes,
climate variability comprises precipitation (P) and potential evapotranspiration, and found that the
contribution of land surface changes to runoff reduction in period I was less than that in period II,
indicating that changes in human activity further decreased runoff. Tian et al. [7] used the Budyko
framework incorporating dynamic vegetation information to quantify the impact of climate change
and human activities on streamflow in Wuding river basin, a semi-arid basin within the Yellow River
Basin. Their results show that climate change generated a dominant effect on the streamflow and
decreased it by 72.4% in this basin. This climatic effect can be further explained with the drying trend
of the Palmer severity drought index, which was calculated based only on climate change information.
Wu et al. [8] analyzed natural streamflow variation and its influential factors on the Yellow River from
1957 to 2010. They found that the reduction of annual streamflow was mainly caused by a precipitation
decline and a rise in temperature for all Yellow River regions before 2000, whereas the contribution of
anthropogenic interference increased significantly—more than 45%, except for Tang-Tou region after
2000. In the humid Yellow River region, annual streamflow was more sensitive to annual precipitation
than temperature, and the opposite situation was observed in the arid region.

2.2. Hydrological Trends and Causality Analysis

There are six papers published in this category. Gedefaw et al. [9] analyzed the recent trends
of precipitation and temperature over two eco-regions of Ethiopia. Authors found that the effects of
precipitation and temperature changes on water resources are significant after 1998 and the consistency
in the precipitation and temperature trends over the two eco-regions confirms the robustness of
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the changes. Dorjsuren et al. [10] used observed data detecting trends of annual precipitation, air
temperature, and river discharge at five selected stations in Mongolia’s Selenga sub-basin of the
Lake Baikal Basin. The observation results indicate that the average air temperature has significantly
increased by 1.4 ◦C in the past 38 years and there exists a significantly decreasing trend in river
discharge during that period. Zhu et al. [11] investigated estuarine wetland changes in the Yellow River
Delta based on Landsat observations between 1973 and 2013. Their results show that natural wetlands
are significantly decreased, meanwhile, the artificial wetlands are significantly increased. The main
reason for wetland degradation in the Yellow River Delta is human activities such as urban construction,
cropland expansion, and oil exploitation. Li et al. [12] investigated spatiotemporal variation of snowfall
to precipitation ratio and its implication on water resources by a regional climate model over Xinjiang,
China. Their results reveal that the snowfall is increased in the southern edge of the Tarim Basin, the Ili
Valley, and the Altay Mountains, but decreased in the Tianshan Mountains and the Kunlun Mountains.
However, the trends in snowfall/precipitation ratio are opposite in low-elevation regions and mountains
of the study area. Yan et al. [13] attributed meteorological factors affecting pan evaporation in the Haihe
River Basin (HRB). The average temperature, maximum temperature, and minimum temperature
of the HRB increased, while precipitation, relative humidity, sunshine duration, wind speed and
evaporation observed from pan exhibited a downward trend. Attribution analysis shows a significant
reduction in sunshine duration, which was found to be the primary factor in the pan evaporation
decrease, while declining wind speed was the secondary factor. Li et al. [14] assessed the influence
of the Three Gorges Dam (TGD) on hydrological drought using GRACE remote sensing data. They
proposed the dam influence index (DII) to assess the influence of the TGD on hydrological drought in
the Yangtze River Basin (YRB) in China, and found that impoundments of the TGD between 2003 and
2008 slightly alleviated the hydrological drought in the upper sub-basin and significantly aggravated
the hydrological drought in the middle and lower sub-basins, which is consistent with the Palmer
drought severity index.

2.3. Hydrological Model Simulations and Predictions

There are eight papers published in this category. Kim et al. [15] used large-scale climate indices
in monthly reservoir inflow forecasting for considering climate variability. They demonstrate that
there exists potential to use climate indices in artificial intelligence models to improve the model
performance, and the ARX-ANN and AR-RF models generally show the best performance among the
employed models. Wu et al. [16] proposed an optimal operation model of cascade power stations
based on the simulation model to generate single and joint optimal operation charts for future
hydrological scenarios. Their modeling results show that under existing hydrological conditions, the
modified single and joint operation charts would increase power generation by about 32 million and
47 million kWh for a case study carried out in the upper Han River, China. Paul et al. [17] developed a
semi-distributed hydrological model (SHM) whose simulation appears to be superior in comparison
to SWAT simulation in Baitarani River Basin in India for both calibration and validation periods.
Furthermore, the SHM model is superior to the SWAT model in annual peak flow, monthly flow
variability, and different flow percentiles. Differences in data interpolation techniques and physical
processes of the models are identified as the probable reasons behind the differences among the models’
outputs. Ri et al. [18] developed a statistical–distributed model of average annual runoff for water
resources assessment in DPR Korea. The model was derived from 50 years’ observations of 200
meteorological stations in DPRK, considering the influence of climatic factors. Based on the water
balance equation and assumptions, the empirical relationship for runoff depth and impact factors
was established and calibrated. Cho and Lee [19] used multiple linear regression (MLR) models for
predicting nonpoint-source pollutant discharge from a highland agricultural region in South Korea.
The explanatory variables used in the MLR models are the percentage of fields, sub-basin area, and
mean slope of sub-basin as topographic parameters, and the number of preceding dry days, rainfall
intensity, rainfall depth, and rainfall duration as rainfall parameters. The MLR models are good for
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simulating and predicting pollutant load except for total nitrogen. Liu et al. [20] integrated field
experiments with modeling to evaluate the freshwater availability at ungauged sites in Pingtan Island,
China. The simulation results indicate high heterogeneity and distinct seasonal dynamics in freshwater
availability across the entire island. This is pioneering Prediction in Ungauged Basin (PUB) study for
Chinese islands, which could provide reference for planning and management of freshwater in a water
shortage area. Zhou et al. [21] conducted a plot scale study to investigate the effects of litter layer and
topsoil on surface runoff during simulated rainfall. They investigated three kinds of plots: The thin
litter layer with low soil bulk density type (T-L type), the thick litter layer with high soil bulk density
type (T-H type), and the moderate litter depth and soil bulk density type (M type), and three artificial
rainfall intensities (30 mm/h, 70 mm/h, 120 mm/h). The runoff volume was largest in the T-H type plot
at different rainfall intensities and durations. Runoff in the M type plot had characteristics of both the
T-L and T-H type plots. The runoff yielding speed was significantly higher and the runoff yielding
time was significantly lower in the T-H type plot. Nyaupane et al. [22] evaluated future flood scenarios
under CMIP5 climate projections for Carson River in the desert of Nevada. Altogether, 97 projections
from 31 models with four emission scenarios were used to predict the future flood flow over 100 years
using a best fit distribution. The developed floodplain map for the future streamflow indicated a
larger inundation area compared with the current Federal Emergency Management Agency’s flood
inundation map, highlighting the importance of climate data in floodplain management studies.

2.4. Review

There are two papers published in this category. Soto Rios et al. [23] reviewed water pricing
through a water security lens. This paper analyzed how water pricing can be used as a tool to enact
the water security agenda, Three facets were reviewed for tackling water crises, including (i) economic
aspects—the multiple processes through which water is conceptualized and priced, (ii) analysis of
water pricing considering its effect in water consumption, and (iii) arguments for assessing the potential
of water pricing as a tool to appraise water security. Hao et al. [24] reviewed compound extremes
in hydroclimatology. This review covers different approaches for the statistical characterization and
modeling of compound extremes in hydroclimatology, including the empirical approach, multivariate
distribution, the indicator approach, quantile regression, and the Markov Chain model. Several key
challenges in the statistical characterization and modeling of compound extremes include the limitation
in the data availability to represent extremes and lack of flexibility in modeling asymmetric/tail
dependences of multiple variables/events.

3. Conclusions

Over the last several decades, Earth´s climate has experienced substantial changes because of
global warming linked to increased anthropogenic atmospheric greenhouse gas concentrations. This
process affects the hydrological cycle at different levels of observations, ranging from plot to catchment,
regional and global scales. Enhancing our overall knowledge on this topic requires multi-disciplinary
efforts to learn about hydrological processes and to engage in more efficient water management
strategies under changing environmental conditions across those scales.

The research papers published in this Special Issue contribute significantly toward our
understanding of the hydrological impacts of climate and land-use change as well as on hydrological
modeling approaches in four main subject areas:

• Climate and land use change impacts on hydrological processes;
• Trends and variability of hydrological quantities, such as precipitation, runoff, actual

evapotranspiration, and soil moisture;
• Hydrological modeling in simulating and predicting hydrological variables, such as precipitation,

evapotranspiration and soil moisture in data-sparse regions; and
• Reviews on water prices and climate extremes
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The twenty-four papers presented in this Special Issue reflect on the fact that climate change
impact analysis on water resources is a very relevant, albeit challenging topic because of hydrological
nonstationary under conditions of global change and the uncertainty related to model inputs, model
parameterization, and model structure. The papers published in this issue can not only advance water
sciences but support policy makers toward more sustainable and effective water management.
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Abstract: The Mekong River Basin (MRB) is one of the significant river basins in the world. For
political and economic reasons, it has remained mostly in its natural condition. However, with
population increases and rapid industrial growth in the Mekong region, the river has recently become
a hotbed of hydropower development projects. This study evaluated these changing hydrological
conditions, primarily driven by climate as well as land use and land cover change between 1992
and 2015 and into the future. A 3% increase in croplands and a 1–2% decrease in grasslands,
shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1–6 ◦C and
in precipitation of 15% was projected for 2015–2099. These natural and climate-induced changes
were incorporated into two hydrological models to evaluate impacts on water budget components,
particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry
season flows under natural conditions was evident. Anomaly in streamflows due to climate change
was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up
to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the
pre- and post-development of hydropower projects. The results suggested an increasing trend in
streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased
river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However,
these estimates fall within the range of uncertainties in natural climate variability and hydrological
parameter estimations. This study offers insights into the relationship between biophysical and
anthropogenic factors and highlights that management of the Mekong River is critical to optimally
manage increased wet season flows and decreased dry season flows and handle irrigation diversions
to meet the demand for food and energy production.

Keywords: hydrology; land cover; land use and climate change; water resources management; macro
scale modeling

1. Introduction

The Mekong is one of the most important rivers in Asia. Its significance is evident from its
geographical location, topographic variability, biodiversity, and large population of inhabitants in the
basin. A cascade of dams, population increase, and climate change have also complicated hydrology
and water resources management in the Mekong River Basin (MRB). The nexus of food–energy–water
is highly pronounced as the basin relies on rice production and fisheries to feed the population. The
conversion of lands from forests to agriculture, subsequent expansion and intensification of irrigation,
and hydropower development projects have changed the characteristics of the MRB, in which the
river previously flowed unhindered for most of its length [1,2]. The Tibetan Plateau in China—where
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the river originates at about 4000 m—and the downstream regions are going through natural and
human-induced climatic changes and experiencing a general increase in precipitation and temperature
in the 21st century, and this can affect the basin’s hydrology. Low flow days are expected to decrease
and flooding potential may also increase, and hence policies to mitigate the impacts are urgently
needed [3,4].

Considerable implications of dam constructions, climate change, irrigation, and land use change to
downstream ecosystems have resulted in numerous studies to predict floods, droughts, and sediment
yield over the past two decades [5–7]. The next few paragraphs will cover some of these studies and
identify the knowledge gaps that still exist. Specifically, the understanding of unintended consequences
of dams require a comprehensive investigation of reservoir management [8]. Construction and
initial filling of the upstream dams reduced the annual streamflow in wet seasons and increased the
streamflow in dry seasons, resulting in a unique seasonal variation in the streamflow [9], and the
dams had significant impacts on the low pulse duration. Besides, study authors [10,11] reported that
construction of dams in the basin is expected to decrease total sediment transportation by 40%–80%
over the whole basin, which would impact the river’s morphology, aquatic biodiversity, ecosystem
services, and agriculture.

By employing simulation models, many studies have projected the basin conditions, but the
uncertainties in climate model projections are greater than those of the hydrological models; therefore,
comparisons of different climate models and hydrological model outputs at a relatively high resolution
are necessary to characterize these uncertainties [12,13]. Study authors [14,15] evaluated the climate
change impacts on the hydrological characteristics of the Harvey River catchment in western Australia
and the Richmond River catchment in eastern Australia using a rainfall-runoff model (HBV model)
and climate model outputs from the Coupled Model Intercomparison Project 5 (CMIP5). The results
suggested that there were decreases and increases in the mean annual flows due to the precipitation
and temperature variabilities in the future. In another study [16], authors compared two different
models (conceptual-HBV and distributed-BTOPMC) in several catchments in Australia and assessed
the impacts of climate change on streamflow. Both models simulated a decrease in wet and dry season
streamflow across the catchments. An evaluation of the water resource development scenarios over
different future time periods’ horizons by Piman et al. [17] reported reductions in the average wet
season flows by 4%–14% and flow reversal to the Tonle Sap Lake by up to 16%. It predicted an increase
in flooded areas by 5%–8% and in salinity intrusion areas in the Viet Nam Delta by up to 17% in
the future. It was also reported that the small and nonlinear response of annual river discharge to
progressive change in global mean temperature, the change in monthly river discharge varying from
−16% to +55%—showed the greatest decrease in July–August and increase in May–June for natural
flow only. The impacts of climate change for six catchments around the world, including the Mekong
Basin, using a global hydrological model (GHM) and catchment-scale hydrological models (CHM)
was performed by [18], and this study reported that substantial differences in the projected change
of mean annual runoff between GHM and CHM were dependent on climate model outputs and did
not evaluate the regulated flow impacted by the reservoirs. Finally, a semi-distributed hydrological
model (SLURP) with the pattern-scaled GCM scenarios was used by [19] to assess the impact of climate
change on the freshwater resources associated with GCM structure and climate change sensitivity in
the Mekong River Basin.

The effect of land use land cover change (LULCC) impact on the water balance studied by
Homdee et al. [20] using the soil and water assessment tool (SWAT) in the Chi River basin, Thailand,
reported that land use changes impacted annual and seasonal water yield and evapotranspiration
(ET). In addition, the conversion of forested area and agricultural lands affected the flow regimes
in the basin. Replacing sugarcane with rice paddies resulted in clearly reduced water flows and
increased ET by almost 5.0% during the dry season. Also, the increased conversion of rice paddies
to farmland showed a significant effect on seasonal flows. Also, the results of this change showed
a decrease in ET by 12.0% and an increase in water yield by 5.1% during the dry season. However,
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the implications of this study for the entire Mekong basin is not well understood. Another study [21]
evaluated, the Mae Chaem River—which was subjected to land use change—by developing three
plausible future forest-to-crop expansion scenarios and a scenario of crop-to-forest reversal based on
the land cover transition from 1989 to 2000. In this study, the resulting hydrologic responses of the
basin were simulated using the distributed hydrology soil vegetation model (DHSVM). The authors
also reported that the expansion of highland crop fields affected annual and wet-season water yields
compared with a similar expansion in the lowland–midland zone and that the downstream sections of
the river were sensitive to irrigation diversion.

The effect of irrigation water abstraction on the streamflow, energy state, and fluxes was evaluated
using a model simulation to predict changes in the Bowen Ratio, surface temperature, and water
resources within the Mekong River Basin based on the variable infiltration capacity (VIC) macroscale
hydrological model [22]. Their results revealed a significant decrease in the Bowen Ratio and surface
temperature due to irrigation water withdrawal. The irrigation water withdrawals from runoff, river
channels, and dams decreased the total monthly runoff by 32%. Study authors [1] identified the
relative roles of precipitation and soil moisture in runoff variability in the Mekong River Basin and
reported that simulated soil moisture plays an important role in determining the timing and amount
of generated runoff.

However, while these studies reported the changing biophysical conditions of the basin, flow
regimes, hydroclimatic extremes, and ecosystems, long-term simulation of the basin hydrology
highlighting the role of land use and climate change as well as the effect of dams on the downstream
flows have been limited. To our knowledge there is no study that compared SWAT and VIC simulations
as well as with and without-reservoir effects. Given their differences in model structure and strengths
in simulating global river basins, how they characterize the basin responses under changing conditions
of land use and climate change needs a periodic reanalysis. Finally, two different hydrology models are
implemented to understand how the major reservoirs play a role in modifying the peak flow in the wet
season and low flows in the dry season. While management inputs are needed to precisely quantify the
impoundment effects, sensitivity analysis of regulated and natural flows has the potential to know the
role of human-induced changes to the flow regimes. Due to the range of predictions and uncertainties,
it is imperative to evaluate the changing conditions in the basin in the multi-model framework in order
to generate an updated assessment for policy decisions. Therefore, our objective is to evaluate two
macroscale hydrological models in capturing basin responses and investigate the historical streamflow
changes by explicitly considering the effect of dams and future projections of streamflow and other
water budget components. We use both SWAT and VIC to evaluate the hydroclimatological behavior
by including six major dams and two climate model projections combined with four global circulation
models to characterize the peak flow regime shifts in the basin.

2. Materials and Methods

2.1. The Mekong River Basin

MRB covers an area of about 800,000 km2 and the mainstem and its tributaries drain six
countries: China, Myanmar, Thailand, Laos, Cambodia, and Vietnam. The basin is divided into
seven sub-watersheds with flow stations and major dams as shown in Figure 1a. The upper reaches of
the Mekong River flow through higher elevations in the Himalayan mountain ranges, through the
steep terrain of Laos and Thailand and the lowlands of Cambodia, and into the delta in Vietnam before
draining into the South China Sea. For both development and management of this transboundary
river basin, a complex river basin agreement was formulated between the member countries and
coordinated by the Mekong River Commission; however, rapid changes in this basin have necessitated
a comprehensive understanding of conditions in a system modeling framework.
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Figure 1. Location map of the Mekong River Basin with reservoirs (in red circles), flow stations (black
boxes), and sub-watershed boundaries.

The mean annual discharge from the basin is approximately 15,000 km3/year. The heterogeneous
distribution of the precipitation follows an east–west gradient, with the mean annual value of 1200 mm.
Nearly 70% of the annual precipitation in the MRB occurs during the monsoon season. However, the
temperature and elevation variations follow a north–south gradient. The temperature in the MRB
varies from 38 ◦C during March–April to 15 ◦C during November–February. Since conditions in the
MRB are hot and humid with the glaciated portion for the upper region, the climate is classified as
tropical monsoonal. The elevation drop of more than 4900 m in the MRB also affects the climate
heterogeneity. A major portion of the MRB is covered with croplands (40%), followed by evergreen
broadleaf forest (28%), closed shrublands (10.3%), and grasslands (9.3%). Irrigated wet season rice
grown throughout the year and fishing (4.4 million tons per year) provide food security to more than
60 million people residing in the MRB. In addition, the hydropower potential of the MRB amounts
to more than 88,000 MW, with only a small portion utilized. Hence, more than 450 dam projects are
currently being planned/constructed by the member countries to take advantage of the hydropower
capabilities of the MRB.

2.2. Hydrological Models

Both VIC and SWAT have been widely used in our previous studies in several basins around
the world and both are currently incorporated in the Mekong River simulation studies. The physical
diagrams of these models are available in published literature and websites [23,24]. The range of
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applications to evaluate water resource problems includes drought [25–28], water management [29,30],
and climate impacts [31–34]. The VIC model is grid-based, whereas SWAT is a hydrologic response
unit (HRU)-based model that is defined using soil, slope, and land-use data. The resolution of the VIC
model varies depending on the availability of forcing data. In our study, we used 0.25◦ (about 25 km),
while the SWAT model considered 1153 climate grids at the same resolution but subdivided into 2196
sub-watersheds. The VIC model was implemented to simulate the natural flows in the basin, whereas
the SWAT model was used to simulate both natural and managed flows across selected reservoirs.

The SWAT model [35–37] is a river basin-scale, semi-distributed, and continuous model that
generates hydrologic variables based on hydrologic response units (HRUs), which combine diverse
land uses, soil types, and slopes. SWAT has been applied to various river basins around the globe
to evaluate climate change impacts on streamflow [38–40], agricultural systems [41], and hydrologic
extremes [25,26,42,43]. SWAT estimates several hydrologic components—such as surface runoff,
baseflow, evapotranspiration (ET), and soil moisture—which are the primary variables for streamflow
calculation (Equation (1)).

SWt = SW0 +
t

∑
i=1

Pday − Qsur f − ETa − Wseep − Qgw, (1)

where SWt is the final soil water (mm) on day i, t is the time (days), SW0 is the initial soil water on day
i, Pday is the daily precipitation (mm), Qsur f is the surface runoff (mm), ETa is the evapotranspiration
(mm), Wseep is the water entering to the vadose zone from the soil layer (mm), and Qgw is the return
flow (mm).

The SWAT model needs a meteorological dataset (e.g., daily precipitation, maximum and
minimum temperatures), digital elevation model (DEM), soil properties, and land use. For the historic
simulation (1951–2015), a 0.25◦ resolution of the meteorological forcing dataset was applied [44,45].
The MRB was delineated as 2196 sub-watersheds to consider all climate grids (1153 grids). In addition,
the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010; 250-m resolution) [46] was
applied, and the soil properties were obtained from the Food and Agriculture Organization of the
United Nations dataset [47]. Finally, the Global Land Cover Characterization (GLCC) was used to
determine land use [48].

The VIC model was also implemented to estimate the streamflow at the gage station locations for
observed and projected future climates. The VIC is a semi-distributed, physically based hydrological
model that solves water and energy balance for each grid separately at a designated daily time.
The meteorological parameters for the execution of the model include precipitation from the
APHRODITE dataset and minimum and maximum temperatures and wind speed from the Global
Meteorological Forcing Dataset (GMFD) gridded dataset, available at 0.25◦ spatial and daily temporal
resolution [44,45]. The vegetation texture—containing the land cover type, leaf area index, and
albedo—was developed using the Advanced Very High Resolution Radiometer (AVHRR) at a 1 km
spatial resolution. The soil class was taken from the United States Department of Agriculture (USDA)
classification and pedo-transfer functions [49] applied to the Harmonized World Soil Database (HWSD)
were combined to extract soil parameters.

The infiltration mechanism utilized in the Xinanjiang model [50] was adopted for use in the VIC
model to generate the runoff from precipitation when it is higher than the available infiltration capacity.
This scheme is commonly used in models that are used for flood forecasting, climate change studies,
and water resource assessment in the humid and sub-humid regions of the world [51]. The model
is capable of catchment response on any scale and can account for nonlinear spatial retention of soil
moisture [52]. Also, the Xinanjiang model accounts for soil heterogeneity and assumes the variation of
the infiltration capacity within an area [53]. In the VIC, the Xinanjiang formulation is assumed to hold
for the upper soil layer only. The Xinanjiang model effectively assumes that runoff is generated by
those areas for which precipitation, when added to soil moisture storage at the end of the previous
time step, exceeds the storage capacity of the soil. When the precipitation is less than or equal to the
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available infiltration capacity, overland runoff is not generated. However, the soil moisture transfers
from the upper soil layer to the lower soil layer for subsurface runoff generation using the Arno model
conceptualization [54]. The top two layers of the three soil layers in the model respond to the rainfall,
whereas the bottom layer corresponds to baseflow computed using the Arno model formulation [54].
The variable infiltration curve [55] governs the infiltration of water into the soil layer. The total ET
is estimated using the Penman–Monteith approach and defined as the accumulation of evaporation
from bare soil and canopy and transpiration from vegetation features. Since VIC is a unidimensional
hydrological model, the fluxes are exchanged only in the vertical direction and the lateral movement
in the subsurface layer is considered negligible. Moreover, the routing scheme developed by [56,57] is
employed on the fluxes simulated by the VIC model for each grid to estimate the monthly streamflow
at the gage station locations. The surface and subsurface fluxes of the grids were explicitly routed by
the routing scheme using a unit hydrograph of a channel network, in which the node of the channel
network represented each grid-cell of the VIC model.

The observed monthly streamflow from the seven gauging stations distributed across the
basin—namely Chiang Saen, Luang Prabang, Nakhon Phanom, Vientiane, Mukdahan, Pakse, and
Kratie—were used to calibrate and evaluate the VIC model. The VIC model has been used by the
various studies for hydrological assessment of the MRB [8,22,58–60].

2.3. Choice of General Circulation Models

Figure 2 shows the distribution of wet/dry and cold/hot global circulation models (GCM)
from 2 Representative Concentration Pathways (RCPs), 4.5 and 8.5, showing changing precipitation
and temperature for 5 future periods F1 through F5 between 2006 and 2099. These models
are GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. Each model was
bias-corrected and statistically downscaled to 0.25◦ resolution by the Intersectoral Impact Model
Intercomparison Project (ISI-MIP) [61]. These models exhibited a wide range of temperatures (1–6 ◦C)
and precipitation changes (−5%–20%) in the basin and were widely used to predict climate change
impacts on hydrology as well as in other basins [61–63]. Clearly, MIROC showed wetter and hotter
conditions for the later part of the century, while GFDL and IPSL projected drier and cooler conditions
through 2040.

2.4. Calibration and Simulation of Streamflows and Water Budget Components

The SWAT model was calibrated using the monthly streamflow and the SWAT calibration and
uncertainty assessment tool (SWAT-CUP) [64] with 4 parameters (Table 1) at 7 stations. Similarly, VIC
was also calibrated, and the results are shown in Table 2. As shown in Table 3, monthly calibration
metrics of correlation coefficient (R2) and Nash–Sutcliff (NS) efficiency were above 0.8 for both SWAT
and VIC models. The parameters used to calibrate the VIC model included the variable infiltration
curve parameter (bi), the depth of the second and third soil layers (D), the fraction of maximum
velocity of baseflow where non-linear baseflow begins (Ds), and the fraction of maximum soil moisture
where non-linear baseflow occurs (Ws) with allowable ranges of 0.1–0.5, 0.1–1.5, 0–0.4, and 0.5–1.0
respectively. The calibration was carried out for the gage stations stepwise from upstream basins, with
the exclusion of the regions already considered for the upstream station. The Nash–Sutcliffe efficiency
coefficient [65] and coefficient of determination (R2) between the monthly simulated and observed
streamflows was used to evaluate the capability of the VIC model. This exercise was necessary to
ensure that the model’s parameters were able to characterize the hydrologic responses to changing
environmental and bio-physical conditions.
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Figure 2. Choice of wet/dry and cold/hot global circulation models (GCM) from two representative
concentration pathways (RCPs)—4.5 and 8.5—showing changing precipitation and temperature for
five future periods F1 through F5 between 2006 and 2099.

Table 1. Description of the soil and water assessment tool (SWAT) model input parameters for
the calibration.

Parameter Description Min Max Best Parameters

r_CN2.mgt Curve number for moisture condition II −0.2 0.2 0.06

v_ALPHA_BF.gw Baseflow alpha factor 0 1 0.35

v_GW_DELAY.gw Groundwater delay time 30 450 177

v_GWQMN.gw Threshold water depth in shallow aquifer
for back discharge 0 2000 1500

Notes: v_, denotes the default parameter is replaced by a given value; r_, means the existing parameter value is
multiplied by (1 + a given value).
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Table 2. Description of the variable infiltration capacity (VIC) model input parameters for
the calibration.

S. No. Parameter Description
Allowable Range

Lower Upper

1 bi variable infiltration curve parameter 0.1 0.5

2 D the depth of soil layers 0.1 1.5

Table 2. Cont.

S. No. Parameter Description
Allowable Range

Lower Upper

3 Ds
fraction of maximum velocity of baseflow

where non-linear baseflow begins 0 0.4

4 Ws
fraction of maximum soil moisture where

non-linear baseflow occurs 0.5 1

Table 3. Statistical indicators showing the hydrology model calibration and validation for the historical
period between 1984 and 1992 in the Mekong River Basin.

Station
Calibration

Period
Validation

Period

Calibration Validation

R2 NS R2 NS

SWAT VIC SWAT VIC SWAT VIC SWAT VIC

Chiang Saen 1984–1990 1991–1996 0.92 0.93 0.86 0.83 0.93 0.91 0.85 0.81
Luang

Prabang 1984–1990 1991–1997 0.93 0.93 0.81 0.73 0.94 0.89 0.86 0.67

Vientiane 1984–1990 1991–1996 0.92 0.93 0.83 0.91 0.95 0.94 0.88 0.92
Nakhon
Phanom 1984–1990 1991–1995 0.93 0.93 0.87 0.90 0.92 0.92 0.86 0.79

Mukdahan 1984–1990 1991–1995 0.93 0.94 0.89 0.86 0.93 0.94 0.88 0.83
Pakse 1984–1990 1991–1998 0.90 0.91 0.84 0.86 0.90 0.93 0.85 0.87
Kratie 1984–1990 1991–1998 0.90 0.90 0.85 0.85 0.91 0.93 0.86 0.86

2.5. Study Design

Our approach consisted of the following steps: monthly calibration of the hydrology models for
the historic period, simulation of streamflows using the climate model outputs by dividing them into
seven sub-basins with the outlets where the observations were available, evaluation of peak flows,
assessment of flow changes in the context of reservoirs, and spatial mapping of temperature and
precipitation anomalies and water budget components (ET and runoff). Monthly calibration of the
hydrology models for the historic period was required in order to understand whether the models
could capture the basin scale responses hydrologically and reliably so as to as extend to the other
periods of interest [66,67]. Subsequent analysis was aimed to investigate if there were any differences
in streamflows and peakflows considering the spatial and temporal variability of the forcings, land
use and reservoir management. This sequential approach enabled us to understand and quantify the
impact of spatial variability and shift in the flow regimes as shown in Figure 3. Finally, this study
is framed to seek an answer for the suitability of these models for changing conditions in the future.
To answer this question, we evaluated the differences between them in multiple variables, including
peakflows, sub-basin scale hydrologic budgets and see whether they help us decide the suitability for
decision making in the context of the sustainable management of the basin and food–energy–water
nexus considering the data needs and resolution. For instance, food systems need high resolution,
field scale data for decision making while hydropower and water would be decided based on the
catchment scale runoff and inflows to the dam. This particular study offers insights based on 0.25◦
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forcings and a relatively high-resolution land use and soil properties with major reservoirs across the
basin all of which can be integrated in a simple framework.

Figure 3. Flow diagram of the overall processes of hydrologic modeling and analyses.
SWAT: soil and water assessment; VIC: variable infiltration capacity; APHRODTE: Asian
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation; CMIP5: Coupled
Model Intercomparison Project 5; ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project; RCP:
representative concentration pathway.

3. Results

3.1. Hydroclimatology of Streamflow

The annual hydrograph was primarily driven by the southwest monsoon in the basin and the
typical flood hydrograph consisted of peak flows in the wet season (July–October) and relatively
low flows in the dry season (January–May). Generally, the smooth hydrographs reflecting the size of
the catchment were evident. Figure 4a–f show the long-term streamflow simulations by SWAT and
VIC. The historical simulation period was between 1954 and 2015, and due to limited availability of
observational data, a relatively short period between 1984 and 1990 was used for calibration and the
remaining period from 1991 to 1996 for validation. The locations distributed across the entire lower
Mekong from the upstream point in the basin—Chiang Sean to downstream at Kratie—demonstrated
how the annual average streamflow gathered in magnitude from about 2000 m3/s to 10,000 m3/s.
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Table 1 shows the list of four runoff-, base flow-, and groundwater-related parameters calibrated in
SWAT. Similarly, the calibration parameters shown in Table 2 for VIC include the variable infiltration
curve parameter, the depth of the second and third soil layers, the fraction of maximum velocity of
baseflow where nonlinear baseflow begins, and the fraction of maximum soil moisture where nonlinear
baseflow occurs.

Figure 4. Long-term streamflow simulations (1954–2015) compared against observations (1984–1996)
with two different time periods for calibration and validation by the SWAT and the VIC macro scale
hydrological models. The box plot (on the right) shows the mean and spread of flows captured by
SWAT and VIC.

Clearly, the multi-decadal simulations showed interannual variability in flows caused mostly
by precipitation changes; however, the shifts in flows on annual scales were indistinguishable. The
box plot (on the right) shows the mean and spread of annual streamflows captured by SWAT and
VIC. While the mean values between these models across all seven stations were close, the spread was
greater for SWAT. Also, the coefficient of variation (standard deviation/mean) computed for each of
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the gage locations showed a low value of less than 0.7 consistently for all the stations and they were
comparable between the observed and simulated flows. This could be considered typical for a tropical
river basin where variability was minimal.

3.2. Historical Peakflow Assessment

In order to understand the dynamics of drivers of change, particularly climate and land use,
we evaluated the peakflow magnitudes simulated by SWAT and VIC. Our assessment of change
in land use between 1992 and 2015 suggested a 3% increase in croplands and a 1–2% decrease in
grasslands, shrublands and forests. Figure 5 shows the differences in peakflows between the two
periods—1956–1965 and 2006–2015—to compare pre-development and post-development conditions
in the basin. Other than a reduction in flows of 4–8% for Chiang Sean and less than 1% for Luang
Prabang, all of the other flow stations indicated an increase of 8–11%. The decrease in flows in the
upstream location can be attributed partly to climate change in the Tibetan Plateau. However, the
tropical monsoon impacts on the lower portion of the basin were evident in the increased flows.
These increased peakflows can result in flooding, and therefore impoundments of these flows can
potentially reduce the risk of flooding in this basin, which is prone to seasonal flooding. This is further
highlighted in Figure 5h, where the streamflow anomaly (%) for the seven locations between 1992
and 2015 decreased up to 4% for Chiang Saen and Luang Prabang. The remaining stations showed
a positive anomaly of up to 5%. Noticeably, the differences between 1992 and 2015 in both SWAT
and VIC showed no difference in anomaly, which suggested that natural flows between pre- and
post-development of hydropower projects are not significant. In other words, while the flow alterations
in the basin could not be attributed to land use changes in the basin, human-induced changes—such
as irrigation diversions—and climate change can affect peakflows.

3.3. Projected Changes in Flows and Comparison of Models

Since the effect of climate change was evident with increased precipitation and temperature in the
basin, it was considered appropriate to assess the climate change impacts on streamflow and other
water budget components. Figure 6 shows the projected streamflows from the VIC and SWAT models
between 2020 and 2099 for the same seven locations where calibration and validation of streamflows
were performed for the historic periods. The results included the ensemble average of all four GCMs
introduced in the earlier sections. The annual hydrographs resembled historical estimates of flows,
with interannual variability and seasonal peaks. Most notably, the differences in SWAT and VIC
were also similar to historic simulations, as SWAT produced more flows relative to VIC. While the
hydrological model processes that caused the increased flow in SWAT are not discussed here in detail,
the role of the calibration parameters that previously estimated higher flows could be substantial. Also,
the irrigation extraction for croplands—whereby the streamflows remained mostly natural and hence
the attenuation of flows was not obvious—was not explicitly considered.

Due to increased precipitation in the basin, as predicted by most of the GCMs, hydrological flow
simulation had shown similar increases in peakflows, ranging from 10%–70% between RCP 4.5 and
8.5 scenarios. The hydrological model responses in the form of streamflow were directly proportional
to increased precipitation, typical of a tropical basin. The substantial increases were also expected in
the later part of the century across all flow stations between 2060 and 2099. Projected peakflow changes
simulated by VIC and SWAT are shown in Figure 7. On the one hand, the reductions in dry season
flows were not evident, and counterintuitively, on the other hand, the management of reservoirs and
their releases can augment them.

19



Water 2019, 11, 1307

Figure 5. (a–g) Differences in peakflows between two periods; (h) streamflow anomaly (%) for seven
locations between 1992 and 2015.

3.4. Projected Peakflow Estimation

Changes in peak flows were analyzed, and the shifts in peakflows with and without reservoirs
simulated by the SWAT model for the period 1992–2015 (14 year average) are shown in Figure 8.
A similar analysis for future climate projections from 2020–2099 (80 year average) from RCP 4.5 is
shown in Figure 9. The results are similar for RCP 8.5, and the percentage changes in flows are shown
in Table 4. In general, the reductions in flows in 2015 were lesser when compared to 1992 in simulations
in which reservoirs were taken into account with certain parameters. These reductions, ranging from
3%–15%, can only be considered changes due to climate variability, as exact operation and releases of
flows were not integrated into this analysis. When the simulations did not include reservoirs, both
wet and dry season flows were higher for the same period. However, general reductions of up to
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35% in dry season flows and 16% in wet season flows were identical in simulations that considered
reservoirs in their analyses. This analysis emphasizes the importance of incorporating the actual
reservoir operations to predict wet and dry season flows.

Figure 6. Projected streamflows from VIC and SWAT models between 2020 and 2099 for seven locations
where calibration and validation of streamflows were performed for the historic periods.
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Figure 8. Shifts in peakflows with and without reservoirs, simulated by the SWAT model for the period
between 1992 and 2015 (14 year average).

Table 4. Percentage change in dry- and wet-season flows projected by SWAT and VIC for RCP 4.5 and
RCP 8.5 between 2020 and 2099.

Station Season

SWAT VIC

RCP4.5 RCP8.5 RCP4.5 RCP8.5

2020–2059 2060–2099 2020–2059 2060–2099 2020–2059 2060–2099 2020–2059 2060–2099

Chiang
Saen

Wet 10.5 21.9 10.7 25.1 31.4 41.0 31.7 49.1

Dry 17.6 25.7 14.7 21.3 33.6 41.3 32.2 36.6

Luang
Prabang

Wet 11.3 23.5 11.9 25.8 56.1 68.7 57.1 77.7

Dry 17.7 25.5 14.1 19.4 26.8 34.2 25.2 29.7

Vientiane
Wet 14.3 27.6 15.6 29.3 12.1 22.3 13.8 26.8

Dry 20.4 28.6 16.5 22.0 −11.3 −5.3 −12.4 −8.6

Nakhon
Phanom

Wet 18.8 32.2 21.0 32.7 28.0 39.4 30.1 42.7

Dry 26.0 33.5 21.4 26.9 −8.7 −3.8 −10.8 −6.5

Mukdahan
Wet 19.2 32.4 21.4 32.3 38.2 50.5 40.4 53.5

Dry 27.6 35.0 22.8 28.5 −3.3 1.9 -5.5 −0.7

Pakse
Wet 18.6 30.4 20.2 29.3 22.6 32.0 23.5 33.2

Dry 31.7 39.0 26.3 33.4 −31.2 −27.0 −32.5 −28.2

Kratie
Wet 21.0 30.2 21.5 29.4 32.1 39.7 32.0 40.6

Dry 37.2 42.8 31.4 39.4 −22.7 −19.0 −24.3 −18.8
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Figure 9. Shifts in peakflows (RCP 4.5) with and without reservoirs, simulated by the SWAT model for
the period between 2020 and 2099 (80 year average).

3.5. Basin Scale Water Budget Analysis

Figure 10 presents the bar charts of ET and runoff changes for the historic and future periods
from the SWAT and VIC models, and Figure 11 shows the spatial maps of changes in precipitation,
temperature, ET, and runoff. The historic changes were the percentage alterations of the last 10 years
(2006–2015) compared to the entire historic period (1954–2015), and the future changes were the percent
increases of the future period (2020–2099) to the historic period. Both ET and runoff changes were
computed for each sub-region and grid in the MRB. As in Figure 10, reductions in runoff of up to 6%
in the historic period did not persist in other locations or into the future. Historic reductions were
more pronounced in the upper portion. Both RCP 4.5 and RCP 8.5 projected increases in ET of 4–15%
and runoff increases of up to 60%. In both historic and future periods, water budget changes were
highly influenced by precipitation and temperature alterations in the MRB, as shown in Figure 11a–f.
Relative to the past period, both RCPs projected increased precipitation between 10 and 60% across
all of the sub-basins, with higher increases in the central and lower portions of the basin. However,
temperature increases were notable in the upper and central sub-watersheds, ranging from 1–4 ◦C. This
can potentially impact snowmelt-driven flow in the Tibetan Plateau before the monsoon season begins.

For the historic period, there were overall ET and runoff increases from the SWAT model for
the entire MRB, except for the runoff in Upper Mekong. In the VIC model, there were also overall
increases, but some regions showed ET and runoff decreases (e.g., Upper Mekong, Delta). The highest
increase of runoff occurred in the middle of the basins from both SWAT and VIC (13.7% and 8.5%
respectively; Figure 11j,p), and these increases were derived from the highest precipitation increase in
the middle Mekong region during the last 10 years (Figure 11a). However, there were runoff decreases
in the upper Mekong and Siem Bok (Figure 11j,p), and the precipitation decreases mainly derived from
these in the corresponding areas (Figure 11a).
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Figure 10. Water budget changes for historic and future periods for each sub-watershed; (a) SWAT;
(b) VIC.

For the future period, there were ET and runoff increases for the entire regions and both models,
and the precipitation and temperature increases were the main drivers of those changes. VIC projected
decreased runoff in the delta in the future, and in general, estimates of the water budget from the two
models were considerably different. The runoff estimations from the SWAT model were more sensitive
to the precipitation increase. For instance, in the Tolne Sap region, where more than 40% precipitation
increases occurred in the entire area, the runoff increases were 56% and 57% for RCP 4.5 and RCP
8.5 using the SWAT model, but 38% and 46% using the VIC model. In addition, the results of runoff
increases in the Siem Bok showed similar results. These results were derived from the different runoff
estimations between the two models. The SWAT model is based on the soil conservation service (SCS)
curve number (CN) [68], while the VIC model uses the variable infiltration curve method [55]. The
SCS CN method has been known to have a higher sensitivity for runoff estimation [69], and this could
be credited for those discrepancies.
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Figure 11. Spatial plot of precipitation, temperature, and water budget changes for historic and future
periods. (a–c) Precipitation changes; (d–f) temperature changes; (g–i) evapotranspiration (ET) and
runoff changes from the SWAT model; (m–r). ET and runoff changes from the VIC model.

4. Conclusions

The Mekong region is at the center of a multitude of changes, including hydropower development,
land use, and climate change. While it is important to characterize the basin’s responses to these
changes at the local level, macroscale changes to climate and hydrology spanning all six basin countries
at the sub-watershed domain is critical. This study evaluated historic streamflows and impacts of
21st century hydropower development on those flows through simulation. The limiting factor in
considering basic scale changes arose from lack of information about the management of the currently
operated dams. Hence, the initial simulation of flows could be used to identify the changes in dry-
and wet-season flows driven primarily by both natural and ongoing anthropogenic-induced climatic
changes while integrating reservoirs into the models to accommodate the inflows in a simplistic way.
Several key insights were gained from this study. More broadly, the comparison of two hydrological
model simulations highlighted that basin responses to peakflows for both historic and future periods
were in close agreement despite the differences in the model formulations and both can serve as a
predictive model for future water resources assessment with some improvements to field-scale crop
water estimation. The increase in peakflow estimations due to increased precipitation in a changing
climate was quantified for several locations and agreed with several previous studies. These increased
peakflows are expected to be harnessed for both hydropower and irrigation water demand, and these
new insights are useful for making policy decisions and developing operating procedures for water
resources development projects. Additionally, the spatial variability in ET and runoff highlighted
the need for a differential approach at the sub-basin level to sustain food and energy production in
the context of drought and other anthropogenic-induced changes, including land use and population
increase. Perhaps, irrigation water assessment by VIC was providing a more realistic estimates of ET
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and both hydrological models require improvements to simulate crop-specific, field scale estimates of
water balance components.

Our findings from this investigation also suggested that the hydrological models SWAT and VIC
were capable of predicting large-scale changes to the system by accounting for up to 90% variability
under natural conditions. Relative changes in flows impacted by recent hydropower projects between
1992 and 2015 revealed that anomalies in peakflows during this period were less than 5%. This suggests
that system-level changes were not identifiable due to modest land cover changes in croplands and
forests unless storage and irrigation diversion were properly considered. Increased precipitation over
several sub-watersheds also resulted in increased peakflows, as the monsoon season variability for
multiple decades included only nominal changes.

Generally, climate models projected a wide range of temperature (1–6 ◦C) and precipitation
changes (−5–20%) in the basin between 2020 and 2099. Corresponding increases in peakflows—ranging
from 10–70% between RCP 4.5 and 8.5 scenarios—were expected to occur, leading to possible flooding
and inundation unless the reservoir management for both peakflows and diversions for crop water
requirements were optimally handled. Without reservoirs in the modeling assessment, both wet-
and dry-season flows were higher, but general reductions of up to 35% in dry-season flows and
16% in wet-season flows were identical to simulations that considered reservoirs in their analysis.
However, with expanded irrigated areas in the basins and increased peakflows, not only can conflicts
be alleviated to manage dry season flows, but increased crop production and hydropower generation
also become feasible.

Author Contributions: Conceptualization, V.S.; methodology, H.K. and S.A.A.; software, H.K. and S.A.A.;
validation, V.S., H.K. and S.A.A.; formal analysis, V.S., H.K. and S.A.A.; investigation, V.S., H.K. and S.A.A.;
resources, V.S.; data curation, V.S., H.K. and S.A.A.; writing—original draft preparation, V.S., H.K. and S.A.A.;
writing—review and editing—V.S.; visualization, V.S., H.K. and S.A.A.; supervision, V.S.; project administration,
V.S.; funding acquisition, V.S.

Funding: This work was supported in part by NASA under the award 80NSSC17K0259.

Acknowledgments: We thank Jiaguo Qi, William McConnell, Yadu Pokhrel, and David Hyndman from Michigan
State University for their indirect assistance. We are grateful for the general discussions on the Mekong Basin
with our partners from the Mekong River Commission, Asian Institute of Technology and the Vietnam National
Mekong Committee.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Costa-Cabral, M.C.; Richey, J.E.; Goteti, G.; Lettenmaier, D.P.; Feldkötter, C.; Snidvongs, A. Landscape
structure and use, climate, and water movement in the Mekong River basin. Hydrol. Process. 2008, 22,
1731–1746. [CrossRef]

2. Pokhrel, Y.; Burbano, M.; Roush, J.; Kang, H.; Sridhar, V.; Hyndman, D. A review of the integrated effects of
changing climate, land use, and dams on Mekong river hydrology. Water 2018, 10, 266. [CrossRef]

3. Kiem, A.S.; Ishidaira, H.; Hapuarachchi, H.P.; Zhou, M.C.; Hirabayashi, Y.; Takeuchi, K. Future
hydroclimatology of the Mekong River basin simulated using the high-resolution Japan Meteorological
Agency (JMA) AGCM. Hydrol. Process. 2008, 22, 1382–1394. [CrossRef]

4. Thompson, J.R.; Green, A.J.; Kingston, D.G.; Gosling, S.N. Assessment of uncertainty in river flow projections
for the Mekong River using multiple GCMs and hydrological models. J. Hydrol. 2013, 486, 1–30. [CrossRef]

5. Eastham, J.; Mpelasoka, F.; Mainuddin, M.; Ticehurst, C.; Dyce, P.; Hodgson, G.; Ali, R.; Kirby, M. Mekong
River Basin Water Resources Assessment: Impacts of Climate Change; CSIRO: Canberra, Australia, 2008.

6. Shrestha, B.; Babel, M.S.; Maskey, S.; Van Griensven, A.; Uhlenbrook, S.; Green, A.; Akkharath, I. Impact of
climate change on sediment yield in the Mekong River basin: A case study of the Nam Ou basin, Lao PDR.
Hydrol. Earth Syst. Sci. 2013, 17, 1–20. [CrossRef]

7. Thilakarathne, M.; Sridhar, V. Characterization of future drought conditions in the Lower Mekong River
Basin. Weather Clim. Extrem. 2017, 17, 47–58. [CrossRef]

27



Water 2019, 11, 1307

8. Bonnema, M.; Hossain, F. Inferring reservoir operating patterns across the Mekong Basin using only space
observations. Water Resour. Res. 2017, 53, 3791–3810. [CrossRef]

9. Li, D.; Long, D.; Zhao, J.; Lu, H.; Hong, Y. Observed changes in flow regimes in the Mekong river basin.
J. Hydrol. 2017, 551, 217–232. [CrossRef]

10. Kummu, M.; Lu, X.; Wang, J.; Varis, O. Basin-wide sediment trapping efficiency of emerging reservoirs along
the mekong. Geomorphology 2010, 119, 181–197. [CrossRef]

11. Wild, T.B.; Loucks, D.P. Managing flow, sediment, and hydropower regimes in the sre pok, se san, and se
kong rivers of the mekong basin. Water Resour. Res. 2014, 50, 5141–5157. [CrossRef]

12. Perra, E.; Piras, M.; Deidda, R.; Paniconi, C.; Mascaro, G.; Vivoni, E.R.; Cau, P.; Marras, P.A.; Ludwig, R.;
Meyer, S. Multimodel assessment of climate change-induced hydrologic impacts for a Mediterranean
catchment. Hydrol. Earth Syst. Sci. 2018, 22, 4125–4143. [CrossRef]

13. Mendoza, P.A.; Clark, M.P.; Mizukami, N.; Newman, A.J.; Barlage, M.; Gutmann, E.D.; Rasmussen, R.M.;
Rajagopalan, B.; Brekke, L.D.; Arnold, J.R. Effects of hydrologic model choice and calibration on the portrayal
of climate change impacts. J. Hydrometeorol. 2015, 16, 762–780. [CrossRef]

14. Al-Safi, H.I.J.; Sarukkalige, P.R. The application of conceptual modelling to assess the impacts of future
climate change on the hydrological response of the Harvey River catchment. J. Hydro-Environ. Res 2018.
[CrossRef]

15. Al-Safi, H.I.J.; Sarukkalige, P.R. Evaluation of the impacts of future hydrological changes on the sustainable
water resources management of the Richmond River catchment. J. Water Clim. Chang. 2018, 9, 137–155.
[CrossRef]

16. Al-Safi, H.I.J.; Kazemi, H.; Sarukkalige, P.R. Comparative study of conceptual versus distributed hydrologic
modelling to evaluate the impact of climate change on future runoff in unregulated catchments. J. Water
Clim. Chang. 2019. [CrossRef]

17. Piman, T.; Lennaerts, T.; Southalack, P. Assessment of hydrological changes in the lower Mekong basin from
basin-wide development scenarios. Hydrol. Process. 2013, 27, 2115–2125. [CrossRef]

18. Gosling, S.; Taylor, R.G.; Arnell, N.; Todd, M.C. A comparative analysis of projected impacts of climate
change on river runoff from global and catchment-scale hydrological models. Hydrol. Earth Syst. Sci. 2011,
15, 279–294. [CrossRef]

19. Kingston, D.G.; Thompson, J.R.; Kite, G. Uncertainty in climate change projections of discharge for the
Mekong River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 1459–1471. [CrossRef]

20. Homdee, T.; Pongput, K.; Kanae, S. Impacts of land cover changes on hydrologic responses: A case study of
chi river basin, Thailand. J. Jpn. Soc. Civ. Eng. Ser. B1 2011, 67, I31–I36. [CrossRef]

21. Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M. Effects of landuse change on
the hydrologic regime of the Mae Chaem river basin, NW Thailand. J. Hydrol. 2007, 334, 215–230. [CrossRef]

22. Tatsumi, K.; Yamashiki, Y. Effect of irrigation water withdrawals on water and energy balance in the Mekong
River Basin using an improved VIC land surface model with fewer calibration parameters. Agric. Water
Manag. 2015, 159, 92–106. [CrossRef]

23. Introduction to SWAT and the Instructional Videos. Available online: https://swat.tamu.edu/workshops/
instructional-videos/ (accessed on 24 June 2019).

24. VIC Model Overview. Available online: https://vic.readthedocs.io/en/master/Overview/ModelOverview/
(accessed on 24 June 2019).

25. Kang, H.; Sridhar, V. Combined statistical and spatially distributed hydrological model for evaluating future
drought indices in Virginia. J. Hydrol. Reg. Stud. 2017, 12, 253–272. [CrossRef]

26. Kang, H.; Sridhar, V. Assessment of Future Drought Conditions in the Chesapeake Bay Watershed. JAWRA J.
Am. Water Res. Assoc. 2018, 54, 160–183. [CrossRef]

27. Kang, H.W.; Sridhar, V. Improved drought prediction using near real-time climate forecasts and simulated
hydrologic conditions. Sustainability 2018, 10, 1799. [CrossRef]

28. Sehgal, V.; Sridhar, V. Watershed-scale retrospective drought analysis and seasonal forecasting using
multi-layer, high-resolution simulated soil moisture for Southeastern U.S. Weather Clim. Extrem. 2019,
23, 100191. [CrossRef]

29. Hoekema, D.J.; Sridhar, V. A system dynamics model for conjunctive management of water resources in the
Snake River basin. JAWRA J. Am. Water Res. Assoc. 2013, 49, 1327–1350. [CrossRef]

28



Water 2019, 11, 1307

30. Sridhar, V.; Ali, S.; Modi, P.; Kang, H.; Quan, N.; Dat, N.D.; Kansal, M.D. Can we quantify the resilience of
the Lower Mekong Basin in the face of dams and agricultural expansion? In Proceedings of the EWRI World
Environmental & Water Resource Congress, Pittsburgh, PA, USA, 19–23 May 2019.

31. Kang, H.; Sridhar, V.; Mills, B.F.; Hession, W.C.; Ogejo, J.A. Economy-wide climate change impacts on green
water droughts based on the hydrologic simulations. Agric. Syst. 2019, 171, 76–88. [CrossRef]

32. Sehgal, V.; Sridhar, V.; Juran, L.; Ogejo, J. Integrating Climate Forecasts with the Soil and Water Assessment
Tool (SWAT) for High-Resolution Hydrologic Simulations and Forecasts in the Southeastern US. Sustainability
2018, 10, 3079. [CrossRef]

33. Jin, X.; Sridhar, V. Impacts of climate change on hydrology and water resources in the Boise and Spokane
River Basins. JAWRA J. Am. Water Res. Assoc. 2012, 48, 197–220. [CrossRef]

34. Sridhar, V.; Jin, X.; Jaksa, W.T.A. Explaining the hydroclimatic variability and change in the Salmon River
basin. Clim. Dyn. 2013, 40, 1921–1937. [CrossRef]

35. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment
part I: Model development1. JAWRA J. Am. Soc. Water Resour. Assoc. 1998, 34, 73–89. [CrossRef]

36. Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation
Version 2009; Texas Water Resources Institute: Temple, TX, USA, 2011.

37. Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.;
Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation.
Trans. ASABE 2012, 55, 1491–1508. [CrossRef]

38. Jha, M.; Arnold, J.G.; Gassman, P.W.; Giorgi, F.; Gu, R.R. Climate change sensitivity assessment on upper
Mississippi River Basin streamflow using SWAT. JAWRA J. Am. Water Resour. Assoc. 2006, 42, 997–1015.
[CrossRef]

39. Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in
western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [CrossRef]

40. Wu, Y.; Liu, S.; Abdul-Aziz, O.I. Hydrological effects of the increased CO2 and climate change in the Upper
Mississippi River Basin using a modified SWAT. Clim. Chang. 2012, 110, 977–1003. [CrossRef]

41. Ficklin, D.L.; Luo, Y.; Luedeling, E.; Zhang, M. Climate change sensitivity assessment of a highly agricultural
watershed using SWAT. J. Hydrol. 2009, 374, 16–29. [CrossRef]

42. Taye, M.T.; Ntegeka, V.; Ogiramoi, N.P.; Willems, P. Assessment of climate change impact on hydrological
extremes in two source regions of the Nile River Basin. Hydrol. Earth Syst. Sci. 2011, 15, 209–222. [CrossRef]

43. Ashraf Vaghefi, S.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Analyses of the impact of climate
change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin
in Iran. Hydrol. Process. 2014, 28, 2018–2032. [CrossRef]

44. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a
long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges. Bull. Am.
Meteorol. Soc. 2012, 93, 1401–1415. [CrossRef]

45. Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of
Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [CrossRef]

46. Danielson, J.J.; Gesch, D.B. Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010); No. 2011-1073;
US Geological Survey (USGS): Sioux Falls, SD, USA, 2011.

47. FAO (Food and Agriculture Organization). Digital Soil Map of the World and Derived Soil Properties; Food and
Agriculture Organization of the United Nations: Rome, Italy, 1995.

48. Global Land Cover Characterization (GLCC). Available online: https://www.usgs.gov/centers/eros/
science/usgs-eros-archive-land-cover-products-global-land-cover-characterization-glcc?qt-science_
center_objects=0#qt-science_center_objects (accessed on 24 June 2019).

49. Cosby, B.J.; Hornberger, G.M.; Clapp, R.B.; Ginn, T.R. A Statistical Exploration of the Relationships of Soil
Moisture Characteristics to the Physical Properties of Soils. Water Resour. Res. 1984, 20, 682–690. [CrossRef]

50. Ren-Jun, Z. The Xinanjiang model applied in China. J. Hydrol. 1992, 135, 371–381. [CrossRef]
51. Ahirwar, A.; Jain, M.K.; Perumal, M. Performance of the Xinanjiang model. In Hydrologic Modeling; Springer:

Singapore, Singapore, 2018; pp. 715–731.
52. Sahoo, B. The Xinanjiang model and its derivatives for modeling soil moisture variability in the land-surface

schemes of the climate change models: An overview. In Proceedings of the International Conference on
Hydrological Perspectives for Sustainable Development, New Delhi, India, 23–25 February 2005.

29



Water 2019, 11, 1307

53. Liang, X.; Lettenmaier, D.P.; Wood, E.F.; Burges, S.J. A simple hydrologically based model of land surface
water and energy fluxes for general circulation models. J. Geophys. Res. Atmos. 1994, 99, 14415–14428.

54. Franchini, M.; Pacciani, M. Comparative analysis of several conceptual rainfall-runoff models. J. Hydrol.
1991, 122, 161–219. [CrossRef]

55. Wood, E.F.; Lettenmaier, D.P.; Zartarian, V.G. A land-surface hydrology parameterization with subgrid
variability for general circulation models. J. Geophys. Res. Atmos. 1992, 97, 2717–2728. [CrossRef]

56. Lohmann, D.; Nolte-Holube, R.; Raschke, E. A large-scale horizontal routing model to be coupled to land
surface parametrization schemes. Tellus A 1996, 48, 708–721. [CrossRef]

57. Lohmann, D.; Raschke, E.; Nijssen, B.; Lettenmaier, D.P. Regional scale hydrology: II. Application of the
VIC-2L model to the Weser River, Germany. Hydrol. Sci. J. 1998, 43, 143–158. [CrossRef]

58. Haddeland, I.; Lettenmaier, D.P.; Skaugen, T. Effects of irrigation on the water and energy balances of the
Colorado and Mekong river basins. J. Hydrol. 2006, 324, 210–223. [CrossRef]

59. Västilä, K.; Kummu, M.; Sangmanee, C.; Chinvanno, S. Modelling climate change impacts on the flood pulse
in the Lower Mekong floodplains. J. Water Clim. Chang. 2010, 1, 67–86. [CrossRef]

60. Zhou, T.; Nijssen, B.; Gao, H.; Lettenmaier, D.P. The contribution of reservoirs to global land surface water
storage variations. J. Hydrometeorol. 2016, 17, 309–325. [CrossRef]

61. Hempel, S.; Frieler, K.; Warszawski, L.; Schewe, J.; Piontek, F. A trend-preserving bias correction–the ISI-MIP
approach. Earth Syst. Dyn. 2013, 4, 219–236. [CrossRef]

62. Burhan, A.; Waheed, I.; Syed, A.A.B.; Rasul, G.; Shreshtha, A.B.; Shea, J.M. Generation of high-resolution
gridded climate fields for the upper Indus River Basin by downscaling CMIP5 outputs. J. Earth Sci. Clim.
Chang. 2015, 6, 1.

63. Ruan, Y.; Liu, Z.; Wang, R.; Yao, Z. Assessing the Performance of CMIP5 GCMs for Projection of Future
Temperature Change over the Lower Mekong Basin. Atmosphere 2019, 10, 93. [CrossRef]

64. Abbaspour, K.C. User Manual for SWAT-CUP: SWAT Calibration and Uncertainty Analysis Programs; Swiss
Federal Institute Aquatic Science and Technology: Dübendorf, Switzerland, 2011.

65. Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles.
J. Hydrol. 1970, 10, 282–290. [CrossRef]

66. Sridhar, V.; Hubbard, K.G.; Wedin, D.A. Assessment of soil moisture dynamics of the Nebraska Sandhills
using long-term measurements and a hydrology model. J. Irrig. Drain. Eng. 2006, 132, 463–473. [CrossRef]

67. Sridhar, V.; Wedin, D.A. Hydrological behaviour of grasslands of the Sandhills of Nebraska: Water and
energy-balance assessment from measurements, treatments, and modelling. Ecohydrol. Ecosyst. Land Water
Process Interact. Ecohydrogeomorphol. 2009, 2, 195–212. [CrossRef]

68. USDA (U.S. Department of Agriculture). Soil Conservation Service, National Engineering Handbook; Hydrology
(Section 4, Chapters 4–10); GPO: Washington, DC, USA, 1972.

69. Boughton, W.C. A review of the USDA SCS curve number method. Soil Res. 1989, 27, 511–523. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

30



water

Article

Quantifying the Impacts of Climate Change,
Coal Mining and Soil and Water Conservation on
Streamflow in a Coal Mining Concentrated Watershed
on the Loess Plateau, China

Qiaoling Guo 1,2,3, Yaoyao Han 1, Yunsong Yang 4,*, Guobin Fu 5 and Jianlin Li 1,3

1 Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454003, China;
guoqiaoling@hpu.edu.cn (Q.G.); 15139179673@163.com (Y.H.); lijianlin@hpu.edu.cn (J.L.)

2 School of Water Resources & Environmental Engineering, East China University of Technology,
Nanchang 330000, China

3 Collaborative Innovation Center of Coalbed Methane and Shale Gas for Central Plains Economic Region,
Jiaozuo 454003, China

4 Institute of Business Management, Henan Polytechnic University, Jiaozuo 454003, China
5 CSIRO Land and Water, Private Bag 5, Wembley, WA 6913, Australia; GUOBIN.FU@CSIRO.AU
* Correspondence: yangyunsong@hpu.edu.cn or yys7401@163.com; Tel.: +1-553-899-2635

Received: 21 March 2019; Accepted: 28 April 2019; Published: 21 May 2019
��������	
�������

Abstract: The streamflow has declined significantly in the coal mining concentrated watershed of the
Loess Plateau, China, since the 1970s. Quantifying the impact of climate change, coal mining and soil
and water conservation (SWC), which are mainly human activities, on streamflow is essential not only
for understanding the mechanism of hydrological response, but also for water resource management
in the catchment. In this study, the trend of annual streamflow series by Mann-Kendall test has been
analyzed, and years showing abrupt changes have been detected using the cumulative anomaly
curves and Pettitt test. The contribution of climate change, coal mining and SWC on streamflow has
been separated with the monthly water-balance model (MWBM) and field investigation. The results
showed: (1) The streamflow had an statistically significant downward trend during 1955–2013;
(2) The two break points were in 1979 and 1996; (3) Relative to the baseline period, i.e., 1955–1978,
the mean annual streamflow reduction in 1979–1996 was mainly affected by climate change, which was
responsible for a decreased annual streamflow of 12.70 mm, for 70.95%, while coal mining and
SWC resulted in a runoff reduction of 2.15 mm, 12.01% and 3.05mm, 17.04%, respectively; (4) In
a recent period, i.e., 1997–2013, the impact of coal mining on streamflow reduction was dominant,
reaching 29.88 mm, 54.24%. At the same time, the declining mean annual streamflow induced through
climate change and SWC were 13.01 mm, 23.62% and 12.20 mm, 22.14%, respectively.

Keywords: streamflow reduction; climate change; coal mining; SWCM; coal mining concentrated
watershed; the Loess Plateau

1. Introduction

Over the second half of the 20th century, the two factors which affected the change of catchment
hydrology were climate change and human activities [1]. Plenty of studies have indicated that the
streamflow of many rivers has changed due to climate change and anthropogenic activities [2,3],
especially in arid and semi-arid regions. Climate change, for example, the redistribution of precipitation
and temperature change, has affected hydrological systems and water resources [4,5]. Human activities,
such as agricultural irrigation, cultivation, dam construction, reservoir operation, soil and water
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conservation (SWC), urbanization construction and coal mining could also affect hydrological processes,
resulting in natural ecosystem and water resource problems [6,7].

The Loess Plateau, located in the middle reaches of the Yellow River, is the most severe soil and
water loss region worldwide [8]. Most areas of the Loess Plateau comprises gully-hill dominated
regions, with the most widely distributed loess on Earth. Intensive soil and water loss has resulted
in water shortages, land productivity decline, and river ecosystem and environmental degradation.
Soil from tributaries in middle reaches of the Yellow River is the major source of sediment in the
lower reach of the Yellow River [9]. SWC are important measures for improving the ecosystem and
the environment of the Loess Plateau. Since the 1970s, large-scale SWCs have been carried out by
the Chinese government [10], which has brought about major changes to the runoff conditions and
hydrological characteristics in tributaries of middle reaches of the Yellow River, and has had an impact
on storm floods and river runoff [11,12]. The maximum runoff utilization rate of the SWC is 63%,
which can significantly reduce the amount of water entering the river [13]. The Loess Plateau is rich in
mineral resources [14], which plays a critical role on energy sources in China’s economic development.
The Shenfu-Dongsheng coalfield, accounting for 1/4 of the China’s coal reserves, is located in the
northern edge of Loess Plateau [15]. Subsidence and cracks formed by coal mining have changed the
surface conditions, and thus, have altered runoff generation and confluence, leading to degradation of
river ecological environment in the mining area [16,17].

The Kuye River Basin is located in a wind and water erosion interlaced area in the northern of the
Loess Plateau [18]. It is a typical loess hilly landform [19], and is one of the most severely water and
soil losing areas on the Loess Plateau. The Shenfu-Dongsheng coalfield is through the middle of the
Kuye River Basin, which is the main source of sediment in the lower Yellow River. Su et al. analyzed
precipitation and runoff changing trend in Kuye River Basin [20]. Guo et al. studied the trend of
inner-annual runoff in Kuye River Basin [21]. Zhao et al. analyzed the flood characteristics and their
changing trends in the Kuye River Basin [22]. Liu et al. and Bai et al. studied the impact of climate
change and anthropogenic activities on runoff variation, indicating that SWC and coal mining had had
an important impact on the runoff change in Kuye River Basin [23,24].

Three groups methods are used for assessing the effects of climate change and human activities on
runoff variation: the paired catchments approach, the statistical method and hydrological modeling [25].
The paired catchments approach is usually considered in small experimental catchments; the statistical
method can only analyze the impact of climate change and human activities on runoff variation, as it
lacks a physical mechanism. Hydrological modeling is widely used to assess the effects of climate
change and human activity on runoff variation. Wang et al. used a monthly water balance model
to simulate the runoff of nine tributaries in the middle reaches of the Yellow River, achieving high
simulation accuracy [26]. Xing et al. and Guo et al. simulated the runoff in Kuye River Basin by monthly
water balance model and received satisfactory results [27,28]. Cheng et al. simulated daily and monthly
discharges by SWAT model, and found that it is not effective [29]. Li et al. simulated the monthly
runoff in Kuye River Basin using SWAT model, and the simulation effect was not satisfactory [30].
Considering that the monthly water balance model has a simple structure, few parameters and a good
simulation effect, this method is used to separate the effects of climate change and human activities in
this study.

In this work the objectives are: (1) Analysis of the annual streamflow variation since 1950s; and (2)
Quantitative assessments of climate change, coal mining and SWC impacts on runoff decline in past
60 years. This work will provide a better understanding of the interactions between humans and
nature, while also provide important insights into water-resource management in the Kuye River Basin.
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2. Studied Watershed and Data

2.1. Studied Watershed

The Kuye River Basin is a first-tributary in the middle Yellow River. It has a main stream length of
242 km and a drainage area of 8706 km2 [28]. There are two major tributaries (Wulanmulun River and
Beiniuchuan River) in the upper reaches, and a large number of coal mine are along the two tributaries.
The water system of the Kuye River Basin is shown in Figure 1. Affected by continental monsoons,
the climate fluctuates dramatically throughout the year. The precipitation from June to September
accounts for 75–81% of the annual total [31]. Rain storms usually take place in summer, especially
in July and August. The drainage landform mainly consists of wind-dust region and hill-gully loess
region [32]. The wind-dust region is relatively flat with hardly any vegetation, and the hill-gully loess
region is covered by exposed soft bedrock.

Figure 1. The sketch map of the Kuye River Watershed.

The coal resources are rich in the Kuye River Basin. There are 209 coal mines on both sides of the
river; the coal seams are shallow, and the exploited mine areas reach 2482 km2, which accounts for
28.51% of the basin areas. According to the survey data, the raw coal output was 6.25 × 106 t in 1991,
31.293 × 106 t in 2002, and 172.262 × 106 t in 2011, with the average annual growth of 7.905 × 106 t.
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Along with the coal mining amount increasing, coal mining subsidence areas were 26.01 km2 in 1991,
48.82 km2 in 2000, and 266.15 km2 in 2011, and the average annual growth reached to 11.435 km2.
The large surface cracks in the subsidence changed the surface characteristics, and impacted the
streamflow (Figure 2).

 
Figure 2. The cracks in the coal mining subsidence.

Water and soil loss are serious in the Kuye River Basin. The SWC consists of terraces, grassland,
afforestation, and the construction of sediment-trapping dams. Before 1979, the areas of SWC were
609.42 km2. From 1980s to 1990s, the areas of SWC reached 1480.02 km2 in the late 1990s [33]. By 2009,
the areas of SWC were 3739.90 km2, and the sediment-trapping dams were 1548. The increasing of
SWC also transformed the surface characteristics, and impacted on runoff.

In Kuye River Basin, human influence on streamflow includes coal mining, SWC and the water
abstraction from the river for domestic, irrigation, and industry uses. Among these influencing factors,
coal mining and SWC are mainly impact factors, and the water abstraction from the river is only a
small part [34,35]. Therefore, this study separated the impact of coal mining and SWC on runoff.

2.2. Data

The daily streamflow records of Wenjiachuan hydrological station which is the furthest downstream
hydrological station (8645 km2 at Wenjiachuan hydrological station) were used in this study. The daily
streamflow data was provided by the Yellow River Conservancy Commission. The data of daily
precipitation, average daily temperature was from two meteorological stations (Yijinhuoluo and
Dongsheng), and four hydrological stations. The data of meteorological stations was obtained from
the China Meteorological Administration, and the data of hydrological stations (Wangdaohengta,
Xinmiao, Shenmu, and Wenjiachuan) was from the Yellow River Conservancy Commission. All the
data were from 1955 to 2013. The monthly (year) streamflow, the monthly (year) precipitation, and the
average monthly (year) temperature were calculated from daily discharge, daily rainfall, and average
daily temperature.

2.3. Methods

First, the modified Mann–Kendall trend test was used to analyze the trends of annual
streamflow [36]. Then, cumulative anomaly curves and the Pettitt test were applied to detect
the abrupt change years of streamflow variables [37]. Finally, the contributions of climate change,
coal mining and SWC on streamflow decreasing in the same period was analyzed using the monthly
water-balance model (MWBM) and survey data. The brief introduction of MWBM, and the methods
of distinguishing the impacts of climate change, coal mining and SWC on streamflow reduction are
presented below.
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2.3.1. Separating Climate Change, Coal Mining and SWC Impacts on the Streamflow

In an attempt to separate the effect of climate change, coal mining and SWC, we need to choose a
baseline period. The streamflow difference between the baseline period and human induce period is
the impact of climate change, coal mining and SWC, and is calculated as follows:

ΔQcm + ΔQsb + ΔQc = Qi −Qb (1)

where ΔQc, ΔQcm and ΔQsb are the contributions of climate change, coal mining and SWC on
streamflow change, respectively; Qi, Qb are the observed streamflow during the human induced period
and baseline periods, respectively.

ΔQcm + ΔQsb = Qi −Qm (2)

ΔQc = Qm −Qb (3)

ΔQsb =
4∑

i=1

εiAi (4)

where Qm is the reconstructed streamflow by the monthly water-balance model (MWBM), εi is the
water reduction coefficient, which use the research results of the reference [38], Ai is areas of terrace,
afforestation, grassland and sediment-trapping dams.

The impact percentages from climate change (ηc), coal mining (ηcm) and SWC (ηsb), are stated as

ηc =
ΔQc

ΔQcm + ΔQsb + ΔQc
× 100% (5)

ηcm =
ΔQcm

ΔQcm + ΔQsb + ΔQc
× 100% (6)

ηsb =
ΔQsb

ΔQcm + ΔQsb + ΔQc
× 100% (7)

The above equations were used to quantify the impacts of climate change, coal mining and SWC
on streamflow variance in Kuye River Basin from 1955 to 2013. The next step is to reconstruct natural
streamflow using the MWBM.

2.3.2. Brief Introduction of the MWBM

The MWBM was developed by the U.S. Geological Survey. It used a monthly accounting procedure
based on the methodology, originally proposed by Thornthwaite [39]. Mean monthly temperature and
monthly total precipitation are the input files to the model. The input parameters include runoff factor,
soil-moisture-storage capacity, rain temperature threshold, maximum melt rate, direct runoff factor,
snow temperature threshold and latitude of location. The individual components of the water balance
included the amount of monthly precipitation (P) that is rain (Prain) or snow (Prain), direct runoff
DRO, snow melt (SM), potential evapotranspiration (PET), soil-moisture storage withdrawal (STW),
and runoff [40].

Psnow = P×
[

Train − T
Train − Tsnow

]
(8)

Prain = P− Psnow (9)

DRO = Prain × drofrac (10)

Premain = Prain −DRO (11)

SMF =
T− Tsnow

Train − Tsnow
×meltmax (12)
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SM = snostor× SMF (13)

PET = 13.97× d×D2 × 4.95× e0.062×T

100
(14)

STW = STi−1 −
[
abs(Ptotal − PET) × (STi−1

STC
)
]

(15)

where Premain, SMF, ST, SMF are remaining precipitation, snow melt fraction, soil-moisture storage,
and the soil-moisture storage capacity, respectively.

The Nash Sutcliffe coefficient (NSE) and relative error (RE) were used to evaluate the performance
of the model. NSE close to 1 and RE close to 0 are the good simulation result. The qualified conditions
of simulation are that NSE is much more 0.6 and RE is less than 0.1 [41].

3. Results

3.1. Long-Term Variation of the Annual Streamflow Series

3.1.1. Trend Analysis of the Annual Streamflow Series

The annual streamflow in 1955–2013 at Wenjiachuan hydrological station was shown in Figure 3.
The maximum annual streamflow was 13.706 × 108 m3 and occurred in 1959. While, the minimum
annual streamflow reached 1.187 × 108 m3 in 2011. The mean annual streamflow from 1955 to 2013 was
5.187× 108 m3. Average annual streamflow in 1950s, 1960s, 1970s, 1980s, 1990s and the early 21st century
were 6.827 × 108 m3, 7.642 × 108 m3, 6.867 × 108 m3, 5.278 × 108 m3, 4.226 × 108 m3, and 1.919 × 108 m3,
respectively. Since the 1980s, average annual runoff began to decrease. At the beginning of the
21st century, average annual runoff decreased the most, which only accounted for 37% of mean
annual streamflow. The annual streamflow has an obvious declining gradient of −0.113 × 108 m3/year.
When being analyzed using the modified M-K trend test, the annual streamflow during 1955–2013
presented a significant decreasing trend; the Zc reached the value of −2.325, and passed the 0.05
significance test.

Figure 3. The variation trend of streamflow at Wenjiachuan hydrological station.

3.1.2. Abrupt Change Years of Annual Streamflow Series

To detect abrupt changes of annual streamflow change, cumulative anomaly curves and Pettitt
test were used. Both Figures 4 and 5 show that the annual streamflow has an increasing trend before
1979, and that it then fluctuated slightly from 1979 to 1996, and finally, declined considerably after
1996. There were two significant change points in 1979 and 1996. According to the two change
points, the annual streamflow series were divided into 3 stages which were 1955–1978, 1979–1996,
and 1997–2013, respectively.
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Figure 4. Cumulative anomaly curve of annual streamflow.

Figure 5. K value change calculated by Pettitt test.

3.2. Separating the Impacts of Climate Change and Human Activities by MWBM

3.2.1. Model Calibration and Verification

In this study, we took 1955–1978 as the baseline period. The observed climatic and streamflow
data at the Wenjiachuan station in 1955–1970 was used for calibration, and the data from 1971 to 1978
were used for verification. Figure 6 show that the recorded and simulated data fit well. The points
of the correlation between recorded and simulated streamflow are concentrated around the 1:1 line
(Figure 7). In addition, The NSE in calibration period and verification period were 77.95% and 75.69%,
respectively. Furthermore, the RE were 3.58% and 4.21%. Overall, the calibration and verification
accuracies of the model were acceptable. The next step is investigating the effect of climate change and
human activities in the human-induced periods by the MWBM.

Figure 6. Monthly time series of recorded streamflow and simulated streamflow in 1955–1978 at
Wenjiachuan station.
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Figure 7. Correlation between simulated and recorded monthly streamflow in the baseline period.

3.2.2. Separating the Impacts of Climate Change and Human Activities

According to the abrupt change years, the streamflow series were divided into periods of the
baseline period (1955–1978), human impacted (HIP) period (1979–1996), and human strong induced
(HSIP) period (1997–2013), respectively. Given the recorded streamflow and reconstructed streamflow,
the influence of climate change and human activities on streamflow in HIP and HSIP are summarized
in Table 1.

Table 1. The contributions of climate change and human activities to annual streamflow reduction.

Periods

Recorded
Streamflow

(mm)

Reconstructed
Streamflow

(mm)

Total Change (%)
Impact by

Climate Change
Impact by

Human Activities

ΔQ
(mm)

η (%)
ΔQc

(mm)
ηc (%)

ΔQh

(mm)
ηh (%)

1955–1978 81.02
1979–1996 63.12 68.32 −17.90 22.09 −12.7 70.95 −5.20 29.05
1997–2013 25.93 68.01 −55.09 67.99 −13.01 23.62 −42.08 76.38
1979–2013 45.06 68.17 −35.96 44.38 −12.85 35.73 −23.11 64.27

During the period of 1979–2013, the recorded annual streamflow was obviously less than that of
the baseline period. The absolute and relative values of total impacts of climate change and human
activities on annual streamflow were −35.96 mm and 44.38%. Both climate change and human activities
resulted in streamflow decreases compared to the baseline period. During 1979–1996, the climate
change was the main factor that decreased streamflow with a contribution of 70.95% relative to the
baseline period, while the reduction percentage due to human activities were only 29.05%. However,
the contribution of climate variations to streamflow reduction dropped to 23.62%, corresponding that
of human activities which ascended to 76.38% in 1997–2013. Human activity has become the major
factor in reducing streamflow. Specific impacts of climate change on annual streamflow were −12.7 mm
for HIP and −13.01 mm for HSIP, while the influence of human activities were from −5.20 mm in HIP
to −42.08 mm in HSIP. On average, human activities and climate change were responsible for 64.27%
and 35.73% of streamflow reduction, respectively.

3.3. Separating the Coal Mining and SWC Impacts on Streamflow Decreasing

The SWC in Kuye River Basin includes the construction of terraces, planting trees and afforestation,
and building sediment-trapping dams. Water and soil loss is severe in the Kuye River Basin. Before 1979,
the area of SWC was generally small, and less than 7% of the basin area. After 1979, a large number of
SWC were carried out. Because there are not the information about the areas of the different SWC in
every year. The analysis uses the areas in the survey years. The water reduction of SWC are calculated
in HIP and HQIP by the water reduction coefficient and the areas of SWC in the representative years
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(Table 2). The streamflow reduction caused by the SWC from −3.05 mm in HIP to −12.20 mm in HQIP.
During 1979–2013, the average annual streamflow reduction was −7.57 mm.

Table 2. Cumulative area of SWC since the 1950s.

Year

Terrace Afforestation Grassland Sediment-Trapping Dams

A
(km2)

ε

(m3/km2)
A

(km2)
ε

(m3/km2)
A

(km2)
ε

(m3/km2)
dam

ε

(per dam/m3)

1959 5

44,600

27

20,900

22

16,600

0

12,000

1969 33 97 52 2
1979 66 415 110 8
1989 67 1004 353 12
1996 99 1184 380 19
2009 101 2652 938 1548
2013 105 3555 638 2271

Based on the influence of human activities and the SWC to annual streamflow reduction,
respectively, we could calculate the contribution of coal mining to runoff reduction (Table 3). The average
annual impact of the coal mining on streamflow were from −2.15 mm in HIP to −29.88 mm in HQIP.
The percentage of the effect was increasing from 41.35% to 71.02%. However, the percentage of the effect
for the SWC was decreasing from 58.65% to 28.99%. Seen from the impact quantity, the contribution
of coal mining and SWC on streamflow decreasing showed an increasing trend. At the same time,
the growth rate of the impact of coal mining was greater than that of the SWC. During 1979–2013,
the influence of the SWC and the coal mining on streamflow was −7.57mm, 32.76% and −15.54 mm,
67.24%, respectively. Thus, the coal mining demonstrated the dominant influence on streamflow
decline gradually.

Table 3. The contributions of the SWC and coal mining to annual streamflow reduction.

Period
Impact by Human

Activities (mm)

Impact by SWC Impact by Coal Mining

ΔQsb (mm) ηsb (%) ΔQcm (mm) ηcm (%)

1979–1996 −5.20 −3.05 58.65 −2.15 41.35
1997–2013 −42.08 −12.20 28.99 −29.88 71.02
1979–2013 −23.11 −7.57 32.76 −15.54 67.24

3.4. Quantification Climate Change, Coal Mining and SWC Impacts on Streamflow Decreasing

Based on separating the impacts of climate change and human activities, and the contribution of
coal mining and SWC among human activities, we could quantify the influence of climate change,
coal mining and SWC on annual streamflow decline (Table 4). During 1979–1996, the annual runoff
reduction was −17.90 mm induced by climate change, coal mining and SWC, among which the impacts
of climate change was −12.70 mm, 70.95%; that of coal mining was −2.15 mm, 12.01%; and that of
SWC was −3.05 mm, 17.04%, climate change was the main influencing factor. However, in 1997–2013,
the impact of coal mining on annual streamflow was −29.88 mm, and that of climate change and SWC
were −13.01 mm and −12.20 mm. The relative values of impacts were 54.24% for coal mining, 23.62%
for climate change, and 22.14% for the SWC, respectively.
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Table 4. The quantification of impacts of climate change, coal mining and SWC on streamflow decreasing.

Periods
Total Change

(mm)

Impact by Climate Change Impact by Coal Mining Impact by SWC

ΔQc (mm) ηc (%) ΔQcm (mm) ηcm (%)
ΔQsb

(mm)
ηsb

(%)

1979–1996 −17.90 −12.70 70.95 −2.15 12.01 −3.05 17.04
1997–2013 −55.09 −13.01 23.62 −29.88 54.24 −12.20 22.14
1979–2013 −35.96 −12.85 35.73 −15.54 43.22 −7.57 21.05

4. Discussion

4.1. Impact of Climate Change and Human Activities on Streamflow

In recent decades, the streamflow of many rivers around the world exhibited a decreasing trend
because of climate change and human activity [42]. Over the past 40 years in the Central Rift Valley of
Ethiopia, almost all rainfall indices have an increasing trend in the valley floor and a decreasing trend in
the escarpment and highlands [43]. For responding to the effects of climate change, and simultaneously
satisfy environmental, societal, and economic, the implementation of environment friendly techniques
policies in Romania have been studied [44]. The research found that a 10% decrease in precipitation
may cause a decrease in streamflow of between 19% in the tropical zone and 30% in the arid zone
in Africa [45]. Climate change may contribute 26%–31% of streamflow decline relative to the base
period in Beichuan river basin of China [46]. In northwest China, the streamflow reduction caused by
climate change accounting for 14.3% [47]. For the tributaries in the middle reaches of the Yellow River
basin, climate change accounted for more of the streamflow reduction in the Beiluo River and Yan
River, while human activities has a greater effect on the streamflow reduction in other tributaries [48].
In this study, climate change along with human activity led to a decrease in streamflow in HIP to
HSIP. However, the contribution of climate to streamflow reduction was in a relatively stable state,
and the absolute amount of influence was −12.7 mm in HIP and −13.01 mm in HSIP. By contrast,
the contributions of human activities to streamflow reduction between HIP and HSIP were significantly
different and have an enhanced trend from −5.20 mm in HIP to −42.08 mm in HSIP. The two abrupt
points of streamflow change were in 1979 and 1996, which were in consonance with the extensive
SWC in the late 1970s (Table 2) and the massive coal mining in the late 1990s (Figure 9). During the
HIP period, the contributions of climate change reached 70.95%, and was the main factor affecting
streamflow reduction due to the low intensity of human activity. But, the total amount of streamflow
decreasing significantly increased from −17.90 mm to −55.09mm to the HSIP, and 76.38% of the
contributions was due to human activities, indicating that intensity of human activities has increased
significantly since the end of 1990s.

4.2. Impacts of Coal Mining on Streamflow

The contribution of coal mining impacts on streamflow decline increased −27.73 mm from HIP
to HSIP, and became the dominant factor affecting streamflow in HSIP. It is related to the dramatic
increase in coal mining since the end of the 20th century (Figure 8). Raw coal production increased
from 1102.58 × 104 t in 1996 to 17,262.21 × 104 t in 2011 which was 15 times that of 1996. A large
number of coal mining produced significant impact on streamflow. The surface of mining areas are the
aeolian sand of the Sarawusu Formation. The Quaternary Sarawusu group loose pore phreatic aquifer
is significant for water supply, and the coal seam is under the Sarawusu group aquifer. After coal seam
mining, the water conducting fissure extended to the surface (Figure 9) [49], which not only increased
rainfall infiltration, but also lowered the phreatic level. The rapid loss of the phreatic and surface water
inevitably led to streamflow reduction.
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Figure 8. Relation of raw coal production and annual streamflow in Kuye River Basin.

  
(a) (b) 

Figure 9. The coal mine aquifer in Kuye River Basin. (a) Before coal mining; (b) After coal mining.

4.3. Impacts of SWC on Streamflow

SWC techniques are widely used to alter soil and water processes and improve ecosystem
environment. A study of sample plots from 22 countries indicated that afforestation, soil amendment
and terraces may reduce annual streamflow by 55%, 48% and 44% respectively [50]. Both catch crops
and weeds may enhance infiltration rates, delay and decrease the runoff discharge under single ring
ponding conditions [51]. A cover of 50% of straw is able to delay the time to runoff initiation from 57
to 129 s, and mulching reduces the runoff coefficient from 65.6 to 50.5% in clementine plantations [52].
Surface runoffmay be reduced by about 19% by the SWC in Ethiopian [53]. On the most severely eroded
Loess Plateau in the world, large scale SWC were implemented, which induced streamflow decline [54].
The construction of terraces, planting trees and afforestation, and building sediment-trapping dams
were the main measures of SWC in the watersheds which located on Loess Plateau. After building
terracing, the topography of the basin has been changed, the rainfall infiltration has been greatly
improved, and streamflow has been reduced. After planting trees and afforestation on bare hill
slopes, a considerable proportion of rainfall can be intercepted by the canopy and evaporate into the
atmosphere. Thus, the effective rainfall for runoff generation is reduced. The sediment-trapping dams
are built in the ditch and channel of the Loess Plateau, and may intercept floods, and is an important
measure to prevent water and soil loss. Although the percentage of the contribution of SWC impacts
on streamflow reduction has decreased. In fact, its absolute amount of the contribution of SWC impacts
on streamflow decline increased −9.15 mm, indicating the contributions of coal mining and SWC
streamflow reduction were on an increasing trend, while the increase rate of coal mining was greater.

4.4. Uncertainties of Quantitative Assessment

The uncertainty of quantitative assessment came mainly from the following aspects. (1) Model
parameters and input data may lead to uncertainty in the simulation process. For instance, in this
study only mean monthly temperature and monthly total precipitation are as the climatic input data
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which should actually include sunshine, wind speed, evaporation and other factors. (2) We analyzed
the contribution of climate change and human activities to streamflow variation with the assumption
that the streamflow in the baseline period was not affected by human activities. However, in fact,
the streamflow was also affected by human activities although with less intensity. (3) In this study,
only coal mining and SWC were considered as elements of human activities affecting streamflow,
and not considered water consumption for domestic, irrigation, and industry which also has the impact
on streamflow. for example, Shenmu County, which accounts for more than 50% of the basin area,
increased industrial water supply by nearly 10 times from 1980 to 2011; and the construction of the
massive water landscape and urban grassland has increased evaporation loss and irrigation water
consumption. So the quantitative assessment values of the contribution of coal mining and SWC
were higher than the actual values. (4) It should also be note that the influence of climate change,
coal mining and SWC on streamflow are not independent in theory and cannot be separated exactly.
These factors interact with each other.

4.5. Prospects for Future Research

The researched watershed is located in the water and soil erosion zone of the Loess Plateau.
The surface gully is vertical and horizontal, the terrain is broken, the loess is loose, the vegetation is
scarce. At the same time, a large number of coal mines are distributed along the river, and the coal
seams are shallow. Similar rivers in the middle reaches of the Yellow River include Wuding River,
Tuwei River, etc. The commonality of these basins are: (1) the fragile ecological environment; (2) the
main source of sediment in the Yellow River; (3) coal mining and SWC are the main human activities.
The research conclusions are applicable to such watershed mentioned above. However, for the other
coal mining concentrated watershed, the impact of coal mining on streamflow should been further
studied. In addition, in this study, the water reduction of SWC are calculated by the water reduction
coefficient and the areas of SWC in the representative years, and it made the accuracy of the results was
affected to a certain extent. Future research should utilize hydrological models to effectively separate
the effects of different types of human activity to streamflow.

4.6. Adaptive Strategies and Options

There are many watersheds in which coal mining and SWC are the main human activities on the
Loess Plateau, for example, the Tuwei River Basin and the Wudin River Basin. Some previous studies
indicate that the abrupt points of streamflow change were also in 1979 and 1996 for the Tuwei River
and the Wudin River [55,56]. The contribution of climate change and human activities to streamflow
reduction were 57.95% and 42.05% from 1997 to 1996, respectively. Nevertheless, the contribution of
climate change dropped to 24.19%, and that of human activities ascended to 75.81% after 1996 in the
Tuwei River basin. For the Wuding River, the contribution of climate change was 79.8% from the 1970s
to the end of the 1990s, and human activity became the main factor affecting streamflow reduction to
the 21st century [57]. The common features of these rivers are that they are located on the Loess Plateau
and the ecological environment there is fragile. To protect water resources, local governments should
adopt strategies such as strengthening water resources protection and popularizing water-preserving
technology in coal mining, developing water saving irrigation technology, and reusing and recycling
water resources in industry.

5. Conclusions

In this paper, we analyzed streamflow change trends, abrupt change years from 1955 to 2013,
separated the contributions of climate change, coal mining and SWC impacts on streamflow decreasing.
The main findings are as follows:

(1) The annual runoff presented a decreasing trend, and passed the 0.05 significance test during
1955–2013.The two significant change years was in 1979 and 1996.
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(2) In the first impact period (1979–1996), climate change was the main factor for annual streamflow
decreasing. Meanwhile, in the second impact period (1997–2013), coal mining was the dominant
influence on streamflow decline.

(3) Compare two impact periods, the absolute value of climate change, coal mining and SWC impacts
on streamflow reduction were all ascending, which indicated that the impacts of above three
factors on streamflow decreasing were increasing. Meanwhile, the growth rate of coal mining
impact on streamflow decline was greater than that of climate change and SWC.

(4) Quantifying the impacts of climate change, coal mining and SWC on streamflow decline by the
MWBM and field investigation was reasonable and feasible.
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Abstract: Water resource management is critical for the economic development of the Democratic
People’s Republic of Korea (DPRK), where runoff plays a central role. However, long and continuous
runoffdata at required spatial and temporal scales are generally not available in many regions in DPRK,
the same as in many countries around the world. A common practice to fill the gaps is to use some
kind of interpolation or data-infilling methods. In this study, the gaps in annual runoff data were filled
using a distributed runoffmap. A novel statistical–distributed model of average annual runoffwas
derived from 50 years’ observation on 200 meteorological observation stations in DPRK, considering
the influence of climatic factors. Using principal component analysis, correlation analysis and residual
error analysis, average annual precipitation, average annual precipitation intensity, average annual
air temperature, and hot seasonal air temperature were selected as major factors affecting average
annual runoff formation. Based on the water balance equation and assumptions, the empirical
relationship for runoff depth and impact factors was established and calibrated. The proposed
empirical model was successfully verified by 93 gauged stations. The cartography of the average
annual runoff map was automatically implemented in ArcGIS. A case study on the Tumen River
Basin illustrated the applicability of the proposed model. This model has been widely used for the
development and management of water resources by water-related institutes and design agencies
in DPRK. The limitation of the proposed model and future works are also discussed, especially the
impacts of climate changes and topology changes and the combination with the physical process of
runoff formation.

Keywords: average annual runoff; runoffmap; hydrological model; GIS; DPR Korea

1. Introduction

Research regarding water resources estimation at regional and continental level contributes a
lot in establishing water resources management policy [1–3], and water resources assessment is the
first step for water resources development. Runoff plays a central role in water resources assessment.
Generally, water resources are evaluated by means of average annual runoff [4,5], the mathematical
expectation of multiyear observations of annual runoff, and can be described as runoff depth [4,6–12].
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Usually, in hydrologic modeling, a water balance equation is used for the computation of average
annual runoff, keeping in mind the factors affecting annual runoff [5,9,13–19].

Usually, average annual runoff is computed by means of multiyear data, while in some cases,
from one-year data. However, long and continuous runoff data at required spatial and temporal
scales are generally not available in many regions around the world, due to the costs involved in
measurements, difficulty in accessing the locations of interest, and malfunctioning of the measurement
devices, among others. A common practice to fill the gaps is to use some kind of interpolation or
data-infilling methods. Many average annual runoffmodels have been reported for water resources
development in regions which lack observational data [1,4,8,12,20–22]. The accuracy of the average
annual runoff model mainly depends on the factors affecting annual runoff [23–27], which can be
computed by principal component analysis and the factor analysis method [11,28,29].

Research has confirmed that the factors affecting runoff formation vary with locality [17]. It is well
accepted that precipitation is the main meteorological factor for runoff formation [22]. The physical
characteristics of the watershed underlying surface also play an important role, which includes land
use, soil type, slope, vegetation, etc. [30–32]. Human activities like agriculture irrigation, urban water
supply, and drainage, water division projects inevitably lead to changes in water resources.

Recently, lots of hydrological progress has been observed in modeling spatial variation of
precipitation, infiltration, and evaporation with the advancement in 3S technology (GIS—geographic
information system, RS—remote sensing, and GPS—global position system) [33] and computer
information processing [5,34–38]. It is highly practiced in those regions for runoff estimation which
lacks observational data, i.e., ungauged areas, for evaluating water resources.

Runoff maps are frequently used for highlighting spatiotemporal changes in water
resources [10,20,39–42], while maps of meteorology factors are used for interpreting spatiotemporal
changes in precipitation [13], evaporation [5], catchment classification, estimation of hydrologic
response in ungauged catchments [10,12], etc.

In general, average annual runoff is computed by methods based on the geometric center of
the river basin. Such methods, however, often fail to provide reliable runoff maps for small- and
medium-sized rivers. Since hydrologic models take into account the local natural geographic, climatic,
hydrologic characteristics and local data, such models are very useful for generating runoffmaps in
small and medium-sized rivers.

This study was rooted in the Democratic People’s Republic (DPR) of Korea, where very limited
hydrology studies were reported in the literature. Scientific water resources management is critical
for the recent economic reformation and opening up of DPR Korea. Runoff-based water resources
assessment on the whole nation is significant. However, due to the data limitation, advanced hydrology
models with high resolution are not applicable in DPR Korea. An empirical statistical approach to
produced distributed runoff results is preferred, especially for ungauged areas. Therefore, we attempted
to address these issues in the present study. Making good use of 50 years of records in 200 meteorological
stations, a statistical–distributed average annual runoff model was developed in this work.

The rest of this paper is organized as follows: In Section 2, the climate condition and the water
balance relationship in DPR Korea is described. The factors affecting the average annual runoff are
analyzed by principal component analysis (PCA) and explained. In Section 3, the new statistical annual
runoffmodel is clearly described. Furthermore, model verification and cartography of the runoffmap
in GIS are presented. Section 4 presents the analysis and results for the Tumen River Basin. Sections 5
and 6 discuss and conclude the research.

2. Rainfall–Runoff Relationship and Runoff Impact Factors

2.1. The Precipitation and Temperature Characteristics in DPR Korea

DPR Korea has a temperate monsoon climate, four distinct seasons, average annual temperature
varies from 8 ◦C to 12 ◦C, and average annual precipitation varies from 1000 to 1200 mm. Most of the
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precipitation falls in July–August (see Figures 1 and 2). Average annual monthly temperature and
precipitation characteristics are shown in Table 1.

Figure 1. The monthly distribution of precipitation in the Democratic People’s Republic (DPR) of Korea.

 

Figure 2. The monthly distribution of temperature in DPR Korea.

Table 1. The average annual temperature and precipitation in DPR Korea.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Average daily
maximum temperatures

(◦C)
−1 2 9 17 23 27 29 29 25 18 9 2

Average daily
minimum temperature

(◦C)
−11 −8 −2 5 11 16 21 20 14 7 0 −7

Average precipitation
amount (mm) 12 11 25 50 72 90 275 213 100 40 35 16

Average precipitation
days (d) 5 4 5 7 8 9 14 11 7 6 7 6

2.2. Watershed Water Balance Relationship

Annual runoff is computed using the classical water balance Equation [43]:

Y = P− E± ΔS (1)

where Y is the annual runoff depth (mm); P is the annual amount of precipitation (mm); E is the annual
amount of evaporation (mm); and ΔS is the change in water storage.

The change in basin water storage can be ignored, i.e., equal to zero, when considering multiyear
average (see Equation (2)):

Y = P− E (2)

Equation (2) can also be denoted by annual runoff coefficient ϕ= Y/P and annual evaporation
coefficient ηE = E/P.

ϕ = 1− η (3)
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E can be computed indirectly by hydrometeorological observations using the values of P and Y.
Calculating the values of E is challenging due to the influences from climatic factors, geographical
factors, etc. [44]. Since soil type affects water exchanges with the atmosphere, Reder et al. evaluated the
sensitivity of the annual average of runoff, precipitation, evaporation, and deep drainage to different
soil types in China and argued the importance of clarifying the role of “geomorphological factors” [30].
Li et al. found that the effect of climate change on evapotranspiration was much more significant than
the effect of land use and land cover changes in China [44].

Usually, the average annual runoffmodel is formulated by establishing a relationship between the
parameters and elucidating the influence of factors affecting evaporation E or evaporation coefficient ηE.

In DPR Korea, the correlation coefficient between rainfall and runoff varies from 0.90 to 0.98,
which makes the surface water consistent throughout the year. There are regional differences among
river runoff, but 60% to 80% runoff flows occur in the summer.

2.3. Factors Affecting the Annual Runoff Formation by PCA

Time series of the main factors affecting runoff formation can be obtained using the principal
component analysis method. The basic data matrix can be configured as follows:

Y(p× n) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y11 y12 · · · y1n
y21 y22 · · · y2n

...
... · · · ...

yp1 yp2 · · · ypn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (4)

where y is annual runoff; p is the size of observational series; and n is the number of observation stations.
Then, the measured values can be represented as follows:

Y(t, x) = T1(t)x1(x) + T2(t)x2(x) + · · ·Tm(t)xm(x) (5)

Or:

Y(t, x) =
m∑

k=1

Tk(t)Xk(x) (6)

where Tk(t) is the coefficient related to the time; Xk(x) is the function characterizing the distribution
field; and m is the number of factors affecting average annual runoff formation, k = 1,2, . . . ,g, . . . ,m.

Standardizing basis data and evolving obtains an n × n correlation matrix. It should satisfy a
relationship of m ≤ n. In this case, the principal component analysis model can be obtained as follows:

(R− λI)X = 0 (7)

where R is correlation matrix and I is a unit matrix.
The characteristic equation is:

|R− λI| = 0 (8)

Time coefficient matrix is:

Tgz =

m∑
z=1

YtzXgz

m∑
z=1

X2
gz

(9)

where z = 1, 2, . . . , m.
The contribution rate is:

β =
λk

m∑
k=1
λk

× 100%, (10)
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where
m∑

i=1
λi = m (i = 1, 2, . . . , m).

Eigenvalue λk(k = 1 ∼ m), eigenvector matrix X(m × n), and the time coefficient matrix can be
computed using Equations (7)–(9) consecutively. We computed all the main components using the
correlation coefficient between the time coefficient matrix and the factor variables.

The meteorological and hydrological observatory is in the countryside in DPR Korea (see
Figures 3–5 for the spatial distribution of average annual precipitation and average annual temperature
evaluated over the 1961–2010 period, respectively, by interpolation).

 

Figure 3. Network of meteorological stations (the northern area in DPR Korea).

 

Figure 4. Spatial distribution of average annual precipitation evaluated over the 1961–2010 period (cell
size: 10.0 km × 7.1 km).

Table 2 shows the contribution rate and the cumulative contribution rate for the components
of factors affecting runoff, calculated using the hydrological observation station data in DPR Korea.
The principal component analysis mainly highlights the first four factors. It is obvious that runoff
depth in the mentioned regions in Table 2 can be computed using two factors, but for other river basins,
at least four factors should be used. Next, the correlation coefficients between time coefficient s and
major factors were computed.
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Figure 5. Spatial distribution of average annual temperature evaluated over the 1961–2010 period (cell
size: 10.0 km × 7.1 km).

Table 2. The contribution rates for components (%).

No Region

First
Component

Second
Component

Third Component Fourth Component

Cumulative Cumulative Cumulative

1 Taedong River Bain 86.6 5.9 92.5 4.1 96.6 1.2 97.8

2 Chongchon River Basin 87.9 6.0 93.9 2.2 96.1 1.8 97.9

3 Ryesong River Basin,
Rimjin River Basin 88.1 5.2 93.3 4.8 98.1 1.0 99.1

4 Abrok River Basin 74.9 7.2 82.1 6.4 88.5 3.8 92.3

5 East coast area 66.5 11.1 77.6 8.3 85.9 4.6 89.9

6 Whole DPR Korea 68.5 7.0 75.5 5.2 80.7 4.5 85.2

2.3.1. The Primary Factor: Average Annual Precipitation

Precipitation is obviously the major factor affecting runoff formation. The relationship between
precipitation and time coefficient for the first component is computed. Variation in annual precipitation
P is considered to be the first factor, and the time coefficient T1 of the first principal component in
the Taedong River Basin is shown in Figures 6 and 7. It is obvious from Figure 6 that the Taedong
River Basin has a high correlation of 0.94 between P(t) and T1(t), while for other river basins, it is 0.78
or more.

It is clear from Table 2 that in the whole area of DPR Korea, the first and second component
contribute 68.5% and 7% to the river basin, respectively. It is difficult to identify and directly calculate
the second, third, and fourth component. Therefore, they are computed using correlation and
regression analysis.

In correlation analysis, the water balance equation is as follows:

h = P− z = P− E− u
z = E + u = P− h
H = h + u = P− E

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (11)

where h is the runoff depth of surface water; z is loss of precipitation; u is underground runoff depth;
and H is whole runoff depth, including surface water and underground water.
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Figure 6. The relationship between P(t) and T1(t) in the Taedong River Basin.

Figure 7. The change curves of P(t) and T1(t) in the Taedong River Basin.

2.3.2. The Relationship between Average Annual Losses and Average Annual Air Temperature

The second factor can be computed indirectly using a water balance equation, considering annual
loss as the effect of precipitation (the first factor) removed up to some level. Generally, most of the
annual precipitation is lost by evaporation. Seepage losses are usually ignored while using the water
balance relationship for the computation of average annual runoff.

As shown in Figure 8, high correlation exists between average annual precipitation losses z and
average annual temperature T in Taedong River. The high correlation coefficient of 0.64 between z
and T also denotes that groundwater movement is relatively active in the Taedong River Basin. It is
worth noting that there is no linear relationship between z and T, as shown by the lower bound line
(dotted line) of distributed dots. The average annual temperature is the primary factor, while the air
temperature is the secondary factor affecting evaporation losses.

 

Figure 8. The relationship between the average annual losses z and the average annual temperature T
(Taedong River).
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2.3.3. The Relationship between Average Annual Losses and Average Annual Precipitation Intensity

Compute evaporation losses by primary and secondary factors affecting evaporation losses and
then find out the residue for average annual loss as shown below:

Δz1 = z− z′ = z− f (P, T) (12)

where z′ is the calculated evaporation loss.
The residue Δz1 is high in some areas (northern inland and northern area of the east coast of DPR

Korea), as the remaining factors affecting evaporation losses were not considered.
Annual precipitation intensity is defined as:

I =
P

Np
(13)

The residual coefficient is defined as:

ηΔz1 =
Δz1

P
(14)

where Np is the number of annual precipitation days.
The correlation coefficient between I and ηΔz1 is −0.51, which denotes their inverse relationship

(Figure 9). It was stated earlier that evaporation loss has a nonlinear relationship with precipitation
intensity, which shows that the number of annual precipitation days (annual precipitation intensity) is
one of the major factors affecting the annual runoff formation.

Figure 9. The relation between I and ηΔz1 in DPR Korea.

2.3.4. The Relationship between Continuous Residue and Air Temperature of the Hot Season

Continuous residue (Δz2) and its coefficient for annual losses can be written as follows:

Δz2 = z− f (P, T, I) (15)

ηΔz1 =
Δz2

P
(16)

It is obvious from the computation that the average range of variation in ηΔz2 is less, compared to
ηΔz1 , but some new factors affecting ηΔz2 have a large value which cannot be ignored. The evaporation
rate is higher in summer compared to winter owing to air temperature. Therefore, the average annual
and air temperature of the summer should be considered. The difference in air temperature is given
as follows:

Δt = T′ − T (17)

where T′ is average air temperature from May to October and T is the average annual air temperature.
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The relationship between the difference in air temperature (Δt) and the continuous residue
coefficient (ηΔz2 ) is shown in Figure 10. The correlation coefficient between Δt and ηΔz2 is 0.74.

 

Figure 10. The relationship between Δt and ηΔz2 in DPR Korea.

The air temperature of the hot season (or the difference of air temperature) is one of the main
factors affecting annual runoff [4,45]. The difference (or range of variation) between the upper boundary
and the lower boundary indicated by a broken line in Figures 9 and 10 is as follows:

ηΔz1(I) =
[
ηΔz1(I)

]
up
−

[
ηΔz1(I)

]
down

≈ 0.30

ηΔz2(Δt) =
[
ηΔz2(Δt)

]
up
−

[
ηΔz2(Δt)

]
down

≈ 0.20

The functional relationship of ηΔz1(I) and ηΔz2(Δt) is illuminated, as it causes 30% and 20% of
the annual precipitation, which leads to the error reduction in annual runoff and/or annual losses
computation. It is worth noting that the number of annual precipitation days, the air temperature of
the hot season, average annual air temperature, and annual precipitation are the main factors in runoff
formation. This can be expressed by the general function, which is given below:

h = f (P, T, I, Δt) (18)

3. Development of an Empirical Average Annual RunoffModel

3.1. Model Development and Description

The general formula can be obtained from the water balance equation and runoff formation factors
stated above:

E = f (P, T, I, Δt)
z = f (P, T, I, Δt,α)

}
. (19)

Therefore:
H = P− E = f (P, T, I, Δt)

h = P− z = f (P, T, I, Δt,α)

}
(20)

where α is a set of variables affecting the underground runoff.
Whole runoff coefficient ϕH and surface runoff coefficient ϕh can be written as follows:

ϕH = 1− ηE = f (P, T, I, Δt)
ϕh = 1− ηz = f (P, T, I, Δt,α)

}
(21)
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E ≤ z and ηE ≤ ηz because most of the losses (z) are caused by evaporation (E). Only E or ηE can
be computed by the mathematical method using the observational data and the factors (P, T, and Δt)
studied above.

Let us consider the relationship between the loss coefficient ηz, precipitation p, and air temperature
t. Draw a curve for the west area of the river basin. The relationship is given as follows:

ηEtp = kpηEt (22)

where:

kP =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

P
1000

)−1.16
(P > 1000 mm)(

P
1000

)−0.72
(P ≤ 1000 mm)

(23)

ηEt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.218e0.109T(T > 11

◦
C)

0.072e0.210t(11◦C ≥ T > 4
◦
C)

0.110e0.104t(T ≤ 4
◦
C)

(24)

where ηEtp is the evaporation loss coefficient defined by the precipitation and air temperature, and kP

is the influence coefficient of annual precipitation.
As shown in Figure 11, some dots are remarkably deflected from the curve drawn by Equation (22).

Quantities are computed to characterize the deflected degree for each region, which is given below:

ηΔz = ηz − ηEtp (25)

k′I =
ηz

ηEtp
(26)

where ηΔz1 is the first residual coefficient of losses, and k′I is the proportionality coefficient which
characterizes the deflected degree between ηz and ηEtp.

Figure 11. Scatter plot of k′I vs. I and the relationship curve of kI = f (I).

The factor defining the first residue Δz1 and the coefficient ηΔz1 of annual precipitation intensity I
have already been investigated. The relationship between k′I and I is shown in Figure 11, where the
kI = f (I) curve is drawn for the lower boundary condition, which estimates the underground runoff
component in the future. Then, the equation of the relationship curve is given below:

kI = 2.98I−0.39 (27)

where kI is the influence coefficient of annual precipitation intensity.
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The deflection degree of dots from the curve can be computed as follows:

ηEtpI = kIηEtp (28)

ηΔzI = ηz − ηEtpI (29)

k′Δt =
ηz

ηEtpI
(30)

where ηEtpI is the evaporation coefficient calculated by the air temperature, precipitation, and number
of annual precipitation days.

Continuous residue Δz2 or coefficient ηΔz2 is related to the difference between the average
temperature T′ of the hot season (May to October) and the average annual temperature T. Therefore,
the relationship between coefficient k′Δt and Δt is analyzed as shown in Figure 12.

Figure 12. Scatter plot of k′Δt vs. Δt and the relationship curve of kΔt = f (Δt).

The lower bound line of the relationship defines the lost quantity due to the influence of factors
(P, T, I, Δt), as mentioned earlier.

The equation of the relationship curve can be written as follows:

kΔt =

{
0.089e0.250Δt(Δt > 10

◦
C)

0.1973e0.1694Δt(Δt ≤ 10
◦
C)

(31)

The evaporation loss coefficient defined by P, T, I, and Δt can be represented as follows:

ηEtpIΔt = ηEtkpkIkΔt (32)

The third residue Δz3 and coefficient ηΔz3 can be calculated as follows:

ηΔz3 = ηz − ηEtpIΔt (33)

Δz3 = z− PηEtpIΔt (34)

It is worth noting that the values of Δz3 and ηΔz3 were found to be very small or close to zero except
for some special regions. There was a small difference in the computed values for some regions (west
coast zone, northern inland, and east coast zone), while a big difference for other regions (Taedong
River Basin). It is reasonable to consider Δz3 as the loss constituent by the underground runoff rather
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than evaporation loss by the climate factors. If Δz3 is the loss component of the underground runoff,
then the evaporation coefficient ηE and the evaporation can be represented as follows:

ηE = ηEtpIΔt = ηEtkpkIkΔt (35)

E = PηEtkpkIkΔt (36)

Whole runoff coefficient ϕH and whole runoff depth can be represented as follows:

ϕH = 1− ηEtkpkIkΔt (37)

H = P
(
1− ηEtkpkIkΔt

)
(38)

Equations (37) and (38) are just the average annual runoffmodels.
This model has high accuracy as well as logical validity, universality, and objectivity that can be

applied to all river basins in DPR Korea. Underground runoff can be computed from surface runoff
using this model.

The average annual runoffmodel has some characteristics as follows. The first model considers
all the influencing factors of average annual runoff formation and computes them. This model is
based on factor analysis, which takes into account annual average precipitation P, air temperature
t, annual precipitation intensity I, and hot season temperature t0. This model is consistent and has
logical validity.

This model is consistent with the physical nature of the natural phenomenon. If P→∞ , then
kp → 0 , and finally ηE → 0 and ϕ→ 1 . Moreover, when precipitation is reduced to zero, i.e., P→ 0 ,
precipitation Pa, called a lower limit precipitation as greater than zero at the moment that runoff
reaches to zero, i.e., Y = 0 and/or φ = 0, is present, i.e., Pa > 0, and Pa is determined by temperature T,
precipitation intensity I, and temperature difference Δt.

This model demonstrates that when P = 0, not only ηE = 1 or ϕ = 0, but also ηE = 1 or ϕ = 0
subjected to P = Pa > 0 according to the values of T, I, and Δt. This model also considers the regional
distribution characteristics of influencing factors. The annual runoffmap of each factor influencing the
annual runoff formation should be developed by a spatial interpolation tool before developing the
annual runoffmap. All those factors influencing the average annual runoff formation are computed
through the Kriging interpolation method [46] (see Figures 4 and 5).

The interpolation accuracy of factor fields was high at a grid cell size 10 × 10 km, keeping in mind
the density of the meteorological observation network in DPR Korea. The model using values of grid
cell type is treated linearly values on the same grid cell. Therefore, grid cell size greatly affects the
calculation accuracy of models.

This study, to correctly determine grid cell size, analyzed the spatial change of climatic factors
according to the distance between observation stations for 200 stations, and the analysis results showed
that values of all climatic factors linearly changed within 10~20 km. Additionally, we estimated the
interpolation error by calculating values and observed values for grid cell sizes of 10 km, 15 km, and
20 km, respectively. The results as an example of average annual precipitation and average annual air
temperature show that their relative errors are within 7~18% in a flat area and mountains for the case
of more than 10 km, and within 0.2% for the case of 10 km. The study used a grid cell size of 10 km
based on the above research.

Water resources can be exactly evaluated using the average annual runoffmodel based on the
regional distribution of factors affecting the annual runoff formation. Therefore, an annual runoffmap
of grid cell type can be developed using this model.

3.2. Model Verification on Guauged Area

The proposed average annual runoffmodel was verified by relative errors between computed
values and observed values of runoff depth in 93 gauged sites in DPR Korea. Table 3 shows the number
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of sites where the relative error is less than 5%; among the 93 sites, this applies to 83, meaning 89.25%
of all sites, and all sites have a relative error of less than 10%. This denotes the usability of the empirical
model in the whole area of DPR Korea.

Table 3. Relative errors of calculated runoff depth.

Statistics
Relative Error (%)

≤3.0 3.1~5.0 5.1~10.0

The number of sites 62 21 10
Rate occupied sites (%) 66.67 22.58 10.75

Accumulated number of sites 62 83 93
Accumulated rate of sites (%) 66.67 89.25 100

3.3. Cartography of Average Annual RunoffMap

Initially, 200 observation station data were interpolated from 1961 to 2010 using the Kriging
interpolation technique for the factors (precipitation P, temperature, T, precipitation intensity I, and
temperature difference Δt) affecting annual runoff formation using ArcGIS 9.2 (see Figures 4 and 5).
Average annual runoff depth and average annual runoffmodulus for the node points of the grid cells
was computed using the average annual runoffmodel. Then, the values of the grid cell center were
computed. Using Equation (38), the value of average annual runoff depth in each node points is
computed as follows:

yi,i = Pi, j
(
1− ηEt(i, j) × kp(i, j) × kI(i, j) × kΔt(i, j)

)
(39)

where:

ηEt(i, j) is the influence coefficients of average annual temperature in grid cell i, j;

kp(i, j) is average annual precipitation in grid cell i, j;

kI(i, j) is average annual precipitation intensity in grid cell i, j;

kΔt(i, j) is the temperature of hot season affecting the annual evaporation in grid cell i, j.

A value of any grid cell center point is computed as the mean value of its four nodal points
(Equation (40)).

Yi, j = (ya + yb + yc + yd)/4 (40)

The central values were updated, which leads to the completion of the average annual runoffmap.
Water resources information can be easily obtained from the ungauged region using the runoff

map developed by GIS spatial analysis tools. Average annual runoff depth can be computed in the
upper basin of any river cross section using ArcGIS 9.2 and the runoffmap of grid cell type using the
weighted average method as follows:

Y =
1
n

∑
i

∑
j

Yijki j (41)

where Yij is average annual runoff depth in a grid cell i, j; n is the number of grid cells included in the
selected area; and ki, j is the area weight in grid cell i, j, namely:

kij =
Δ fi j

ΔF
(42)

where ΔF is the area of a grid cell having the size of 10 km× 10 km, i.e., ΔF = 100 km2; and Δ fi j (km2)
is the component area occupied on the grid cell.

kij = 1.0 and kij ≤ 1.0 for completely and partially contained grid cells within the watershed
boundary, respectively. Average annual runoff depth can be obtained directly from the average annual
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runoffmap on the river basin, where the basin area is smaller than 100~200 km2, i.e., F ≤ 100 ∼ 200 km2.
The abovementioned procedure is automatically executed by a spatial analysis tool in GIS.

4. Application on Tumen River Basin

4.1. The Natural Geographic Characteristics of Tumen River Basin

Tumen River is a boundary river passing through the border of DPR Korea, China, and Russia (see
Figure 13). The area and length of the Tumen River Basin is 32,920.0 km2 and 547.8 km, respectively.
Tumen River is the second longest, and the basin area is the third largest in DPR Korea. The average
annual precipitation of the river basin is below 600 mm. It is smaller than other basins because
of the influence of the Hamgyong Mountain Range. Figures 14 and 15 show the map of average
annual precipitation and the map of average annual temperature evaluated for 50 years in the Tumen
River Basin.

 

Figure 13. Tumen River Basin (DPR Korea side).

 

Figure 14. The map of average annual precipitation evaluated for 50 years in the Tumen River Basin
(DPR Korea side).
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Figure 15. The map of average annual temperature evaluated for 50 years in the Tumen River Basin
(DPR Korea side).

4.2. Water Resources of Tumen River Basin (DPR Korea Side)

The proposed average annual runoffmodel was applied to the Tumen River Basin (DPR Korea
side) for water resources computation. Figures 16 and 17 show the map of average annual evaporation
and average annual runoff depth of the Tumen River Basin (DPR Korea side), respectively. The mean
value of average annual precipitation, average annual evaporation, average annual runoff depth,
average annual runoff, and total water resources of the Tumen River Basin are approximately 604 mm,
254 mm, 350 mm, 11 �/s · km2, and 3,707,829 ×103 m3, respectively. It is evident from the results that
great care is needed to protect water resources for ecological environment protection, establishment
and implementation of the strategy for supports development because the water resources of the
Tumen River Basin are running short due to exceeding evaporation, which is comparatively greater
than in other river basins.

Figure 16. The map of average annual evaporation evaluated for 50 years in the Tumen River Basin
(DPR Korea side).
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Figure 17. The map of average annual runoff depth evaluated for 50 years in the Tumen River Basin
(DPR Korea side).

5. Discussion

At present, it seems we are more interested in modeling runoff at finer resolutions, i.e., daily and
subdaily scales, rather than an annual scale. However, such a straightforward empirical model is also a
useful management tool. An average annual runoffmodel was applied to assess the water resources of
the river basin and can be used to determine average annual runoff in ungauged basins. This method
is widely used for the development and management of water resources by the water-related institutes
and the design agencies in DPR Korea.

Water resources can be easily computed in any region by a spatial analysis tool of GIS. The study
of the distributed hydrologic model considering the physical, geographical, and meteorological factors
influencing the runoff formation is one of the current trends in hydrological studies. Spatial variation
in all those factors affecting runoff formation can be easily obtained by emerging technology such as 3S
(GIS, RS, GPS). The distributed parameter model is more efficient than the lumped parameter model.
This model develops a water resources map for the whole country in a very short time compared to
the traditional models. The accuracy of the distributed model partly depends on the interpolation
accuracy of the influencing factors in the model. In this study, variation in meteorological factors by
topography was not considered. Due to a long length of 50 years of records in the case study of the
Tumen River Basin, climate change may be taken into consideration in future work, and this is an
important topic on recent water resource management studies [15,18,47–49]. The proposed statistical
model can also be used for evaluation of climate change and human activity influence on the water
resources of DPR Korea.

The formation of surface runoff–infiltration and Hortonian overland flow [36,50] is disregarded in
the modeling process since the spatial–temporal scale in this study is much larger. The in situ process
of runoff formation was not described in the model. It may be an interesting topic to be considered
in future studies that focus on how to combine the infiltration and Hortonian flow process in our
empirical model to improve the model accuracy.

DPR Korea is characterized by a combination of a continental climate and an oceanic climate.
The calibrated model in the work can rationally be used on other countries or regions where runoff
formation condition is the same as DPR Korea, and the proposed approach has universal applicability,
since it is deduced from the basic water balance model. To apply to other countries or regions,
it needs to consider different climate, runoff formation condition, and data availability in the local area,
and the empirical relationship may differ. Hydrological models should be derived considering the
meteorological, natural geographical conditions, and hydrological characteristics of the study area.

Comparison with more complex distributed hydrological models [51] like SWAT is able to support
the verification of this new statistical model. However, due to data limitation, this is an issue at
this stage.
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6. Conclusions

This work developed an empirical hydrological model to provide fundamental information on
the principal components of the water balance period in a predefined area over a selected time. It can
also be used for future projections to some extent. PCA identified the four major factors contributing
to the variation of average annual runoff in DPR Korea. The proposed average annual runoffmodel
was composed of average annual precipitation, average precipitation intensity, average annual air
temperature, and hot seasonal air temperature. It was proven through hydrologic data for 93 river
basins of DPR Korea that the proposed statistical model can sufficiently reflect the physical nature of
runoff formation in DPR Korea. Kriging interpolation tools of Arc GIS 9.2 were used to estimate the
spatial distribution of factors affecting average annual runoff formation. A 10 km × 10 km grid cell size
was used to interpolate factor fields, which was determined through analysis for spatial change of
climate elements in 200 weather stations of DPR Korea. Average annual runoff depth for each grid
cell can be easily computed through Equation (39) using the spatially distributed fields of factors
affecting annual runoff formation. Further, in this study, a grid cell type runoffmap was developed
by the average annual runoff data of each grid cell and the proposed cartography of the average
annual runoffmap and use method. The case study on the Tumen River Basin demonstrates that this
research work is highly significant for decision makers as it highlights variations in water resources,
which are important for water resources development and management. The statistical–distributed
hydrological model facilitates hydrologists in water resources assessment and information sharing in
an ungauged area.
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Abstract: In Western Bahia, one of the most active agricultural frontiers of the world, cropland area
and irrigated area are increasing at fast rates, and water conflicts have been happening at least since
2010. This study makes a hydroclimatic analysis of the water resources in Western Bahia, from both
supply and demand viewpoints. Time series of precipitation for the period 1980–2015 and river
discharge for the period 1978–2015 are analyzed, indicating a significant reduction of up to 12% in
rainfall since the 1980s, and a reduction in river discharge in all stations studied, in both the rainy
season and the dry season. Combined with that, irrigated area has increased over 150-fold in 30 years,
and in the most irrigated regions, has increased by 90% in the last eight years only. Seven regions in
Western Bahia have been identified where the potential for water use conflicts is critical. Moreover,
the combination of reduced availability and increased demand of water resources indicates that,
if current trends are maintained, conflicts over water may become more frequent in the next years
or decades. A short-term alternative to avoid such conflicts is to largely avoid irrigation during the
months with low discharge. However, a monitoring system in which the availability and demand
of water resources for irrigation are actually measured and monitored, is the safest path to provide
water security to this region.

Keywords: climate change; MATOPIBA agricultural frontier; water security; hydroclimatic analysis;
water conflicts

1. Introduction

The relationship between water and conflict is an area of continued interest and debate in both
the policy and water resources literature and in the popular press [1]. Conflicts arise by several
socioeconomic, political, or biophysical causes, including proximity to the water source, government
type, aridity, climate variability and change, and rapid population growth. The dispute becomes much
more challenging when there are multiple causes for the conflict. This work provides a case study of a
region where two factors, climate change and intense irrigation growth, contribute to increased friction
on the use of water resources: Western Bahia, in Brazil.

The western part of the state of Bahia is one of the most active agricultural frontiers of the world,
where land use transition started in 1985 [2]. Western Bahia (Figure 1) is part of a wider region called
MATOPIBA (acronym formed by the states of Maranhão, Tocantins, Piauí, and Bahia), an agricultural
frontier in the Cerrado biome in Brazil, and characterized by rapid changes in land cover and land
use for cropland, especially soybean, and agricultural intensification through the adoption of new
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technologies, leading to high yields. In Western Bahia, cropland area has reached 2 million hectares in
the 2016/2017 growing season, mainly soybeans, cotton, and maize [3].

A major difference between Western Bahia and the rest of MATOPIBA is that the impressive
extensification has been followed by a no less impressive increase in irrigated area, which grew from
9 pivots in 1985 to 1550 center pivots in 2016 [4]. The region includes three river basins (Rio Grande,
Rio Corrente, and the northern part of the Rio Carinhanha), all tributaries of the São Francisco River,
and also sits on the top of the Urucuia aquifer [5], a vast geological formation that is connected to the
rivers, and helps regulate their seasonality and interannual variability. Five small hydroelectric plants
operate in the region, all on tributaries of the Rio Grande upstream of the town of Barreiras (Figure 1),
with power ranging from 450 kW to 25 MW [6].

Figure 1. Study area representing the river networks, sub-basins with flow measurements analyzed in
this study (hatched areas), regions with high irrigation (gray areas), and the location of main towns.
LEM is the town of Luis Eduardo Magalhães. The rectangles represent the zoom areas detailed in
Figure 5. River flow stations A–F are described in Table 1.

The long-term (1980–2015) precipitation, evapotranspiration, and runoff for the region are
1060 mm year−1, 860 mm year−1, and 200 mm year−1, respectively. However, the region is located in the
transition between the seasonally dry Cerrado biome to the west (annual precipitation>1200 mm year−1

and a six-month rainy season, from mid-October to mid-April) and the semi-arid Caatinga biome
to the east (annual precipitation <800 mm year−1 and a four-month rainy season). Precipitation,
evapotranspiration, and runoff are seasonal. Precipitation typically varies from 0–10 mm month−1 in
the driest months (June, July, August) to about 150–200 mm month−1 in the rainiest months (December
and January). Monthly evapotranspiration (from MODIS MOD16 product) typically varies between
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20 mm month−1 in September and 85 mm month−1 in February. Despite the high seasonality in
precipitation, the seasonal variability in runoff is relatively small, with maximum discharge about three
times greater than the minimum discharge, which is an indication of the strong regulation provided by
the Urucuia aquifer. Temperatures and solar radiation are high around the year and, with the aid of
irrigation, would allow for year-round crops (five to six crop growing seasons in two years), limited
only by phytosanitary regulations. These circumstances have contributed to the intense growth of
irrigation in the region [7].

Conflicts over the use of water have become common in the region in the last decade, however few of
them have been documented. Maybe the first documented conflict happened in 2010. The hydropower
station Sítio Grande on the Rio das Fêmeas, a tributary of the Rio Grande, is the largest plant in the
region and has a water permit of 12 m3 s−1, the largest water permit in the region, about 1/3 of the water
rights granted in the Rio Grande basin [8]. Despite being the largest grant, this is a non-consumptive
use of water, as the water is not withdrawn from the river, but instead it must be available at the
river to flow through the turbines. The conflict happened during the initial filling of the lake, which
interrupted the flow of the river for several days with environmental and social consequences.

Conflicts kept being reported informally through social networks, personal communications, etc.
Another formal documentation happened in 2015, an El Niño year when the region experienced a
severe drought (2015 annual rainfall was 674 mm, one of the lowest on record). On 11 December 2015,
the Rio Corrente Basin Committee requested a temporary suspension on the concession of water use
permits on the basin until further criteria for water permits on the basin are defined [9]. On 2 November
2017, the usually peaceful town of Correntina (population 32,000) made the national headlines [10],
when about 500 people invaded one farm that received recent irrigation systems and destroyed a
significant part of their facilities and equipment as a way of protesting against the appropriation of
water by agribusiness. A week after, on 11 November, approximately 10,000 people marched peacefully
through Correntina, in defense of the Rio Corrente and its tributaries [11].

Although the water use conflicts in the region are usually attributed to the immense growth
rate of irrigation systems, climate variability may also play an important role. Being in the transition
between the semi-arid and the seasonally dry tropical climate regions, Western Bahia may be a serious
candidate for climate change. This study makes an hydroclimatic analysis of the water resources in
Western Bahia, from both the supply and demand viewpoints.

2. Data and Methods

Data and methods used in this analysis are summarized in Figure 2. Long-term time series
of precipitation and river discharge are analyzed to evaluate the availability of water resources for
irrigation, while maps of irrigation areas and interviews with irrigators are produced to evaluate the
demand of water resources. We conclude with recommendations to improve water management and
avoid further water conflicts.
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Figure 2. Flowchart illustrating the data and methods.

2.1. Precipitation and River Flow Data

Precipitation data in the region have been available through the INMET (Instituto Nacional de
Meteorologia) and ANA (Agência Nacional das Águas) weather station and rain gauge networks since the
1930s, but the network was sparse and the time series were frequently interrupted. A somewhat dense
network was available only in the late 1970s. To characterize regional patterns, the daily precipitation
dataset of Xavier et al. [12] was used, which is available at a grid resolution of 0.25× 0.25 (approximately
28 km × 28 km) for a 36-year period of 1980–2015. This dataset was assembled from the available rain
gauge, conventional, and automatic weather stations. Original data were quality-controlled, and six
different interpolation methods were tested (average of the five nearest data points; natural neighbor;
thin plate spline; inverse distance weighting; angular distance weighting; and ordinary point kriging).
The accuracy of the interpolation methods was evaluated by a cross-validation procedure, in which an
observed data point was temporarily removed from the database, and then used to test the estimated
value by each interpolation method at the location of the station. Angular distance weighting was
considered the method with best skill [12,13]. To evaluate longer trends (before 1980), the station of
Barreiras (WMO code 83236) was also used, which has nearly continuous data since 1961.

The daily river flow data (m3/s) used are provided by ANA. The fluviometric data are available
since the 1930s, with a low density of stations and significant gaps. From 1930s to 1970s, there are
about 30% of gaps in the data series and some discontinued stations. Quantity and quality of data
increased in the 1970s, with only 2% of gaps, and we initially selected 25 river flow stations with few
gaps since 1978.

The granting of water use permits in the Grande and Corrente basins is an attribution of the State
of Bahia, which uses the criterion that 80% of Q90 can be granted for human use (according to State
Decree number 6296 of 21 March 1997). Q90 is the flow expected to be present in the river during at
least 90% of the time, i.e., during 90% of the time series used in the calculation, there is a flow equal or
greater than Q90 in the river.

To follow this criterion, our analyses of water availability are based on the flow duration curve of
specific sections of the rivers. A flow duration curve is a cumulative frequency curve that shows the
percent of time specified discharges were equaled or exceeded during a given period. Here, Q90 was

68



Water 2019, 11, 933

calculated using the long-term series (LT Q90), which is a more common criterion for granting water
use permits, but we also calculate Q90 using two periods, to characterize hydroclimate change.

Although we analyzed data for 25 fluviometric stations, six stations were selected for a deeper
analysis (Table 1, Figure 1). These stations are spread throughout the region and are representative
of the regional variability. Moreover, four stations were chosen because they have dense irrigation
systems upstream (A–D), while two of them (E,F) were chosen for their low irrigation density upstream.

The flow stations drain relatively large areas, and (with the exception of station B) may not be
representative of the densest irrigated areas. Thus, seven ottobasins with the highest concentration of
center pivots (represented by gray areas in Figure 1) were also analyzed. Ottobasins, or Otto-codified
hydrographic basins, are areas of contribution of the stretches of the hydrographic network coded
according to the topological system proposed by Otto Pfafstetter [14,15] and officially adopted by ANA
to uniquely identify contribution areas in any watershed using a simple 10-base code. The system is
hierarchical and recursive, and the higher number of digits in the ottobasin code implies a higher level
of sub-division of a watershed.

Table 1. Selected river flow stations. The letters correspond to the labels of stations in Figure 1.

ANA
Station
Code

River Station Name Municipality
Drainage

Area (km2)
Station

Coordinates

A 46543000 Rio de Ondas Fazenda Redenção Barreiras 5383.758 12◦08′ S, 45◦06′ W
B 46570000 Rio de Janeiro Ponte Serafim Barreiras 2522.118 11◦54′ S, 45◦36′ W
C 46415000 Rio Grande Sítio Grande São Desidério 4943.866 12◦25′ S, 45◦05′ W
D 45840000 Rio Formoso Gatos Jaborandi 7132.696 13◦42′ S, 44◦38′ W
E 45910001 Rio Corrente Santa Maria da Vitória Santana 29,643.660 13◦24′ S, 44◦12′ W
F 46790000 Rio Preto Formosa do Rio Preto Formosa do Rio Preto 14,326.870 11◦03′ S, 45◦12′ W

2.2. Statistical Tests

We applied four statistical analyses to detect changes in the rainfall time series. First, we applied
the non-parametric Pettitt’s test [16] for detecting changing points to the region-wide precipitation
time series. This is a rank-based and distribution-free test for detecting a significant change in the
mean of a time series and it is particularly useful when no hypothesis is required about the location
of the changing point. The Pettitt test has been widely applied to detect changes in the observed
hydroclimatic time series [17,18], and can only be applied to continuous time series. Considering a
sequence of random variables X1, X2, . . . , XT, which have a change point at t = τ. As a result, (X1, X2,
..., Xτ) have a common distribution function F1(X), but (Xτ+1, Xτ+2, ..., XT) are distributed as F2(X),
where F1(X) � F2(X). The null hypothesis H0 for this test is that the observations are independent and
identically distributed (no change, or τ = T), and is tested against the alternative hypothesis H1: change
(or 1 ≤ τ < T); using the non-parametric statistic KT =max|Ut,T|where:

Ut,T =
t∑

i=1

T∑
j=t+1

sign
(
Xt −Xj

)
.

The confidence level for a change-point is defined as

ρ = exp

⎛⎜⎜⎜⎜⎝ −6 K2
T

T3 + T2

⎞⎟⎟⎟⎟⎠.

Second, we applied a classical Student’s t-test to test the null hypothesis that the annual mean
precipitation is not significantly different from one period to the other, where periods are divided at
t = τ, obtained by the Pettitt’s test.

Third, we applied the Mann–Kendall test for trends in the time series, a non-parametric,
distribution-free test that makes no assumptions of linearity or distribution of the values. This test has
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been recommended widely by the World Meteorological Organization for general trend analysis of
time series [19]. Finally, we used box plots to evaluate the interannual variability of precipitation.

2.3. Irrigated Area

The irrigated area by center pivots was obtained by a four-step procedure. First, imagery from
Landsat 5, 7, and 8 for the period 1990 to 2018 was processed using the Google Earth Engine cloud.
The images were filtered using the median of the pixels for the dry period (April to September) and
mosaicked for the study region, to produce a single region mosaic per year. Second, the filtered map
was merged with the center pivots data from Landau et al. [20] and from the OpenStreetMaps project
to obtain an initial pivots map of the region. Then, duplicated features and topology errors were
removed from the dataset. Third, with the aid of the visible bands (RGB) and the normalized difference
vegetation index (NDVI) from the generated mosaics, the center pivot features were digitized or erased
according to the recognition in the images of each year. Finally, the annual center pivot geometries
went through a trend and precision analysis of their positional components for positional accuracy
validation, producing a final map without trends in center pivot sizes and with accuracy adequate to
the scale of 1:150,000, compatible with the resolution of the Landsat images.

The resulting yearly maps for Western Bahia were further processed at the ottobasin scale, to
select only the highly irrigated regions, i.e., ottobasins with at least 4% of their total area irrigated in
2018. A total of seven regions were selected (gray areas in Figure 1).

2.4. Calculations of Regional Water Demand for Irrigation

The regional water uptake for irrigation depends on (1) the effective area irrigated at some time
(AI), in km2; (2) the reference evapotranspiration rate (ETo), in mm/day; (3) the crop being irrigated and
its stage of development, which are integrated into an adimensional “crop coefficient” Kc, that usually
varies between 0.3 and 1.3; and (4) the efficiency of the system (ε), which for center pivots is typically
around 0.8. The water uptake for irrigation (QI) in m3 s−1 is the product of these four terms:

QI =
AI Kc ETo

86.4 ε
.

Although we have mapped all center pivots in these regions, our estimates of irrigated area
should be understood in terms of area with installed irrigation systems. These systems may be used
fully, partially, or not at all, depending on the year and the season. Currently, there are no regionally
consolidated data of the actual amount of irrigated area nor the crops planted per center pivot as a
function of time.

To overcome this limitation, we interviewed 20 irrigators and one irrigation consultant (who
consulted for several tens of irrigators). Interviews were conducted between July 2018 and October
2018, either in person or by phone. We asked questions about the frequency of irrigated crops a year,
typical planting dates, crops planted, amount of irrigation applied, and the main reasons why they
make their management decisions.

3. Results

3.1. Changes in Precipitation

Figure 3 shows the evolution of annual mean regional precipitation for the three basins. In addition,
data for the Barreiras station are also shown. An analysis of Figure 3 indicates that two main
characteristics of these time series stand out. First, annual mean precipitation presents strong
interannual variability, ranging from ~600 to>1700 mm year−1. In other words, individual precipitation
years range from values typical of the semi-arid climate east of the region to values typical of the
tropical seasonally dry climate west of the region. The interannual variability pattern is also consistent
across the three basins, which indicates that it is large-scale driven. In addition, the regional pattern
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correlates well with the data at the Barreiras station, which allows for speculative interpretations in the
period before 1980.

Second, basin-wide precipitation has not been greater than 1370 mm year−1 since 1992, while
this level has been exceeded five times between 1980 and 1992, and another five times in the period
from 1961 to 1979, if considering the Barreiras data. This is a major shift in the precipitation regime,
that affects the regional decadal means. To be sure, we applied the non-parametric Pettitt’s test for
detecting changing points to the region-wide 1980–2015 time series, which confirms a changing point
at τ = 13 (1992), with KT = 87 and significance level 4.6 × 10−9.

Figure 3. Annual mean precipitation for the three basins and historical precipitation for the Barreiras
rain gauge.

Based on this evidence, the 36-year time series of rainfall and river flow were divided in two
periods, namely P1 (1980–1992) and P2 (1993–2015), to test the hypothesis of precipitation change
between the two periods. We also tested other divisions of the rainfall time series (two periods of
18 years, three periods of 12 years), but the division in P1 and P2 was the choice that yielded the highest
significance in precipitation change.

Indeed, the regional patterns of mean precipitation for the two periods (P1, P2) show that isohyets
are moving westward from P1 to P2 (Figure 4a,b), translating into a regional drying from P2 with respect
to P1 (Figure 4c). Although the period of analysis is relatively small, significant precipitation change has
been detected. Extremely likely (α = 0.05) precipitation reduction, averaging −165 mm year−1 (−12%
compared to P1 mean), appears in a core area in the west of the region. This core area is surrounded
by very likely (α = 0.10) precipitation changes (Figure 4c), and average drier conditions throughout
nearly all the region (Figure 4c). Moreover, the Mann–Kendall trend test indicates precipitation trends
consistent both in sign and in significance with the precipitation differences (Figure 4d).

Considering basin-wide averages, the significant reduction in precipitation has happened mainly
in the months with higher precipitation (December and January) in the three basins (Figure 5, α = 0.05).
In addition, the interannual variability of precipitation, measured by both the interquartile difference
and the range of variability, has also decreased in the three basins in P2, when compared to P1 (Figure 6).
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Figure 4. Average precipitation map for periods P1 (a), P2 (b) the difference between P2 and P1 (c),
and the Mann–Kendall S statistic (negative values represent decreasing trends). The six selected river
flow stations are also shown. Dotted areas represent differences significant at α = 0.05, according
to Student’s t test (in c), or according to the Mann-Kendall test (in d), while shaded areas represent
differences or trends significant at α = 0.10.

Figure 5. Monthly mean precipitation for two periods (P1 and P2) for the three basins. The shaded
area in P2 is the confidence interval for the mean (α = 0.05). Averages in P1 outside the shaded area are
statistically different at this level of confidence.
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Figure 6. Boxplot displaying the median (thick lines), the lower and upper quartile (box), the mean (red
dots), and the minimum and maximum of the distribution (whiskers) for annual values of precipitation
in periods P1 and P2. Period P1, although much shorter than P2, has higher interannual variability.

Two main large-scale systems are likely the cause of the reduced rainfall in this region, both linked
to higher interannual variability and more extreme drought years [21]. First, the warming of the
tropical North Atlantic Ocean leads to a higher frequency of anomalously northward positions of the
intertropical convergence zone (ITCZ). In addition, changes in the temperature of the Pacific manifested
as extremes of the El Niño-southern oscillation (ENSO) are partially associated with extreme drought
in the region [22,23].

We suggest that the strong interannual variability of precipitation is driven by the seasonal
expansion of the subtropical high across northeast Brazil. In dry years (El Niño years and warmer
North Atlantic years), it expands more to the west, reaching the Bahia/Tocantins border. In wet
years (La Niña years and cooler North Atlantic years), it expands less, staying to the east of the São
Francisco River.

3.2. Changes in River Flow

The flow duration curves for the six stations analyzed in this work are presented in Figure 7.
These curves show the percent of time specified discharges were equaled or exceeded during each
period (P1, P2). All panels show that discharge has been decreasing at all levels of probability.

The discharge of these rivers is heavily regulated by the Urucuia aquifer. Parallel flow duration
curves, like Figure 7c–f, indicate that the decrease in discharge is mainly caused by the reduction in
rainfall, and modulated by the aquifer. While a monitoring piezometer network of the aquifer was set
up only in 2011, by 2015 it already shows groundwater level drawdown of up to 5 m [24].

On the other hand, when the decrease in discharge is smaller in the wet season (lower percentiles)
and higher in the dry season (higher percentiles), which is the case of Figure 7b, this is an indication that
withdrawal of water during the dry season may be playing a relevant role in the decrease of discharge.
It is no coincidence that station B (also region R2 in Table 2) is the one among the six selected with the
highest density of irrigation upstream (4.8% of the upstream area irrigated), while the other ones have
less than 1% of their drainage area irrigated. We suggest that water withdrawal for irrigation is only
detectable in fluviometric records when irrigation upstream is between 1% and 4% of the drainage
area of the station.

In addition, it can also be verified in Figure 7 that nearly all discharge data recorded during
P1 in these six stations are higher than Q90 of P2. This means that, even considering the long term
(1978–2015), Q90 is mostly defined by the discharges observed in P2 only. This is confirmed by Figure 8,
which clearly shows that most of the situations when daily discharge Q is smaller than the long-term
Q90 (LT Q90) happens after 2000. In an extreme case, station D in a very dry year like 2015, 72% of
the days (263 days out of 365) had daily Q lower than the LT Q90. Although this is a severe case, it is
relatively common to find years when more than half of the days are below the LT Q90.
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Figure 7. Flow duration curves for stations A–F for periods P1 and P2. Values in the x-axis are the
probability that a given discharge (Qp) is exceeded during that period. The intersection of the dashed
line, representing the 90% percentile, and each curve, represents the Q90.

Our interpretation of these data is that, even if considering its relatively short (38 years) duration,
all river discharge time series are non-stationary. Discharge has been decreasing all over the spectrum
and throughout the region, minimum discharges have been defined in the most recent years, and
even when the most recent dry years have been considered for the definition of minimum discharges,
the actual recent rate of occurrence of a relatively unlikely phenomenon like Q < Q90 is four to
seven times higher than the expected probability. Under these circumstances, probability discharges
cannot be used to predict the distribution of future flows. In addition, although the results are not
shown here, the above characteristics are consistent across 24 of the 25 stations analyzed, except the
northwesternmost station (upstream of station F), only area where precipitation did not decrease.

Non-stationarity can be explained by several factors, such as changes in river basins by
anthropogenic effects, climate change, and low-frequency climate variability [25]. Moreover, this
does not seem to be the case of uncertainty dominating the distribution of extremes, as suggested
by Serinaldi and Kilsby [26]. The entire flow duration curve has shifted down, not only the extreme
values. This is very much consistent with the picture of rivers regulated by a decreasing-level aquifer,
following a reduction of the aquifer recharge after reductions in precipitation, arguably caused by a
strengthening of the South Atlantic subtropical high-pressure system associated with the warming
of the North Atlantic and Central Pacific, the ultimate causes for the non-stationarity. This is our
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current reasoning for the attribution of causes, although it can only be verified through detailed
hydrogeological modeling and large-scale climate dynamics studies, which are beyond the scope of
this work.

Figure 8. Percentage of days in each year when actual Q is below the long-term Q90. Long-term Q90 is
calculated for the period 1978–2015. The concentration of cases of Q < LT (long-term) Q90 after 2000
indicates drastic reductions in minimum discharges.

3.3. Trends in Irrigated Area and Water Uptake on the River Flows

To evaluate the effects of irrigation water uptake on the river flows, we choose seven regions
with the highest concentration of irrigated area, where these effects are expected to be most significant.
These seven regions have between 4.8% and 12.6% of the area of the ottobasin irrigated, while no
other ottobasin in the region has more than 4%. The spatial evolution in irrigated area in these regions
(R1 to R7) is shown in Figure 9. The total irrigated area in these seven regions was 662.4 km2 in 2010,
which increased to 1256.1 km2 in 2018, a 90% increase in just eight years (Table 2). Figure 10 shows the
temporal evolution of irrigated area for each region. Each region has a different pattern of growth,
but all regions show a substantial increase in irrigation since the 1990s.
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Figure 9. Evolution of irrigated area for selected regions for 2010 and 2018. Each center pivot ranges
from 26.9 ha to 355 ha in area. The North–South scale of (c) and (d) is different than the same scale of
(a), (b), (e), and (f).

Table 2. Selected regions (R1–7) where irrigated area is located in Figure 9, with corresponding ANA
Ottobasin codes. The region R2 coincides with the drainage area of station B.

Region
(Ri)

ANA
Ottobasin

Code
River

Total Area (km2) Irrigated Area in 2018

Ottobasin Region
Ottobasin

(km2)
Region
(km2)

% of Total
Area

R1 76243 Rio Branco 3403.5 232.9 232.9 6.8%

R2 46570000 * Rio de Janeiro 2522.1 122.2 4.8%

R3 762641 Rio Cabeceira de Pedras 1739.6 108.6 6.2%

R4 762691 Rio Borá 938.3 89.2 9.5%

R5 7626711 Rio de Ondas 778.64 1939.2 121.1 244.2 12.6%
762661 Rio de Ondas mouth 222.33 33.9
762691 Rio Borá (upstream) 938.3

R6 762891 Rio Grande 197.10 2075.2 42.0 194.7 9.4%
76489 Rio Guará 295.04 11.1

762871 Rio Grande 361.45 42.1
76285 Rio Grande 789.94 37.2
76282 Vereda Passaginha 431.66 62.3

R7 764271 Rio Pratudão 662.35 3865.0 14.3 264.2 6.8%
76426 Riacho do Váu 702.94 115.0
764241 Rio Formoso 2499.73 134.9

* Represents the fluviometric station code.
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Figure 10. Evolution of irrigated area in selected regions, as defined in Figure 9 and Table 2.

With the area irrigated estimated and the areas with intense irrigation growth identified, in order
to calculate water uptake, information on water demands per unit area are still needed (Section 2.4).
From the interviews conducted, during the driest period of the year (September and October),
when river discharge approaches Q90 values, water application rates (Kc ETo/ε) could be as high as
10 mm day−1, if the irrigator had a high consumption crop like maize at the peak of the cycle (Kc ~1.3);
at the same time, when ETo is very high, because cloudiness is low, incoming solar radiation is at a
yearly maximum and relative humidity is low. However, this is a highly avoided situation by irrigators,
because of the high costs of energy in September and October.

The electric energy fares in most of Brazil are flagged (green, yellow, or red) according to the
actual costs to produce energy in the country. In 2017, on an annual mean, 63.8% of the electricity
generated was hydroelectric, 17.2% was produced from fossil fuels sources, other renewables (biomass,
solar, and wind) accounted for 17.6%, and nuclear participated with 1.3% [27]. Hydroelectricity is
usually much cheaper than the other sources, and its availability is also seasonal. So, during the end
of the rainy season, when reservoirs are at the highest level, proportion of hydroelectricity increases
and costs decrease (green flag), while at the end of the dry season (September and October), when
reservoirs are at the lowest level, proportion of fossil fuels (and costs) increase, leading to the red flag
tariff (Bandeira vermelha). Although this is the general pattern, other factors, like interannual variability
of rainfall, and any other significant changes in supply or demand may also affect the flagging, which
is updated monthly.

If the irrigators generally avoid having high consumption of water during the driest months, what
management do they usually practice at this time of the year? The results of our interviews indicate
that the most common situations are either to have a crop at the end of the cycle when Kc is small
(~0.65), or to have the crop cycle (and irrigation) finished by this time of the year.
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We then consider two scenarios of regional water management for these seven regions,
an aggressive one and a conservative one. In the aggressive scenario, maximum crop output is
emphasized; regionally, irrigators would be planting year-round crops (either perennial crops like
coffee, or sequential seasonal crops, like soy, cotton, maize, or beans); if sequential seasonal crops, one of
the crops would be at the end of the cycle in September and October (Kc = 0.65), demanding on average
5 mm/day (150 mm/month) for all areas with irrigation systems installed; and irrigators plan to sow the
next crop after the onset of rains in late October or November. The conservative scenario assumes that
one-third of the irrigated area is cultivated with only two crops a year, and there is no irrigation during
the driest months (Kc = 0); two-thirds of the irrigators still act aggressively, as in the previous scenario,
some of them because they grow perennial crops and must irrigate year-round; all farmers still plan to
sow the next crop after the onset of rains in late October or November, to minimize the costs of energy.
Regional irrigation in this conservative scenario is the weighted average of the irrigation levels (1/3 × 0
+ 2/3 × 150), or 100 mm/month.

Again, these are scenarios based on the declared experience of the local people. So far, there are no
public yearbooks that document month-by-month variations in planted area, just snapshots of irrigated
area that do not capture the quick growth of irrigation systems in the region, neither the seasonality,
nor the timing of irrigated crops. In a future work, we plan to use remote sensing to estimate the actual
amount of irrigated area and the irrigation period per center pivot as a function of time.

Water uptake for irrigation (QI) was estimated from the multiplication of the total area irrigated
by the water application rates in the two irrigation management scenarios. Evolution of QI from
1990 to 2018 is shown in Figure 11, for regions R1 to R7. Discharge measurements are not available
for these regions (except for R2, which will be analyzed again in Figure 12), so we use regionalized
values of Q90 [28]. This technique is a downscale of discharge for drainage areas smaller than the
available measurements, using empirical equations based on independent variables like area upstream
or average precipitation upstream. These authors tested several empirical relationships, and the best
skill low streamflow regionalization was obtained by basin-specific regression equations of Q90 against
the upstream long-term annual rainfall minus an initial abstraction of 750 mm (Peq750 = P − 750) as
independent variable [29].

Figure 11 plots 80% of long-term Q90 (the maximum discharge that could be granted for all human
use, including irrigation). A water use conflict situation appears when the demanded water resources
(blue or green lines) are higher than the availability of water resources (horizontal dashed red line).
The aggressive scenario (blue line) implies conflicts in regions R1, R2, and R4. In the Rio de Janeiro
region (R2), at least since 1997, these conflicts may have been sporadically occurring, depending on
year-by-year decision to irrigate in the low flow months. This helps explain why the installation of
center pivots has been halted between 2005 and 2013 (Figure 10b). Conflicts, however, may be avoided
by a community decision to follow the more conservative scenario, which tolerates additional increases
in irrigation area, as observed after 2015 (Figure 10b).

In R3 and R5, although the estimated demand of water resources has not yet reached the limit of
80% LT Q90, they all show a quick increase in the use of water, and if the rates of irrigation growth
continue to be high, water conflicts are imminent. In regions R6 and R7, although imminent conflicts
may be in principle discarded, conflicts may still arise in the timescale of a decade or two, if irrigation
growth rates remain high.
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Figure 11. Scenarios of discharge uptake for irrigation in selected regions, assuming two water
application rates (100 and 150 mm/month). 80% of long-term Q90 is the maximum river discharge that
can be granted permission for human use [17].

The intense growth of irrigation systems (90% from 2010 to 2018, Table 2) is hardly the only
concern for water users in Western Bahia. As described in Figure 7, the safe discharge for concession of
water use permits, Q90, has decreased everywhere in the basin. Q90 is mostly defined by the discharges
observed in P2 only, which covers the period 1993–2015, so the use of updated hydrological information
is crucial to minimize the hydroclimatic risks (Figure 8). In fact, Figure 12A–F does a similar water
conflict analysis for the six selected hydrological stations. Of those, four (Figure 12A–D) have much
irrigation upstream, while two of them (Figure 12E,F) have little irrigation upstream. A remarkable
feature of Figure 12 is the decrease of Q90, calculated only with data for P1 and only with data for P2
(black dashed lines).
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Figure 12. Evolution of discharge uptake for irrigation (QI) in the drainage area of each river flow
station, assuming two water application rates (100 and 150 mm/month). 80% of long-term Q90 (dashed
red line) is the maximum that can be allocated at that point. The black dashed lines represent the
change in the availability of water resources from P1 to P2.

4. Discussion and Conclusions

4.1. Climate Change and Intense Iirrigation Growth: Increasing Water Stress

An analysis of Figure 12A–D indicates that conflicts of water use may arise much sooner if outdated
hydroclimatic information is used to define water granting rights. For example, a hypothetical Q90
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defined using only pre-1992 data is between 15% and 60% higher than the Q90 calculated when the
more recent years are considered (black dashed lines). Following the non-stationarity of the time series,
the long-term Q90 (1978–2015) nearly coincides with the recent, shorter-term (P2) Q90 everywhere in
the basin. In particular in Station B, which is coincident with R2, as early as the late 1990s, irrigation
water demands, probably granted based on data of a wetter period, were no longer consistent with
the decreasing availability of water resources. This inconsistency was probably understood in 2003,
when discharge was low (below long-term Q90) during 45% of the year (Figure 8b), leading to a
halt in the installation of new center pivots in the area shortly after (Figure 10b). However, since
2015, irrigated area in the region has resumed its expansion, which is of much concern (Figure 10b).
Water withdrawn for irrigation certainly affects the measurements, in particular in regions with a high
density of irrigation systems like the sub-basin upstream of station B. This effect, however, is reduced
in the other stations, which have a smaller density of irrigation systems.

At least seven sub-basins in Western Bahia are either in a state of conflict for the use of water
or are moving rapidly towards it: Rio Branco, Rio de Janeiro, Rio Cabeceira de Pedras, Rio Borá,
Rio de Ondas, Rio Grande (headwaters), and Rio Formoso. These sub-basins account for 17% of the
area of Western Bahia. In these seven critical sub-basins, water conflicts are imminent, if irrigators
actually irrigate in the driest months of the year, when discharge usually gets around or below Q90.
As a short-term alternative, conflicts can be avoided if irrigators largely avoid irrigation during these
months. As shown in Figure 8, this is not restricted to a few months of the year. In many dry years,
nearly half of the year daily discharges were below Q90, with an extreme case in station D (Formoso
river) in the very dry year of 2015, when daily Q was below Q90 during 72% of the year. To be sure,
such Q90 already includes 2015 data.

Because of the declining rains and water resources, the water resource concession limits (80% of LT
Q90) may be reached with a much higher frequency than originally planned if outdated hydroclimate
information is used. The combination of strong increase in demand of water for irrigation and the
maintenance of low flows may bring much more critical consequences for water management in the
region in the next years. Here, we discuss four different pathways to reduce water stress and increase
water security: (i) Avoid irrigation during the low flow period; (ii) halt the installation of new irrigation
systems; (iii) bet on a return to wet conditions; and (iv) invest in a hydroclimatic monitoring system.

4.2. Avoid Irrigation during the Low Flow Period

Avoiding irrigation during low-flow periods can be achieved by planting only two crops a year,
one from November to February, and a second one from March to June. This is the most natural
reaction to improve water security. This practice maximizes the use of rain during the six-month rainy
season and cuts the use of irrigation to typically two months, reducing the water consumption not
only because of the short irrigation period, but also because of the low ET rates at the end of the cycle.
In addition to increasing water security, this practice also reduces production costs by avoiding the
high costs of energy during the end of the dry season in Brazil, when additional energy tariffs (bandeira
vermelha) are charged.

On the other hand, this practice has several drawbacks. Multiple cropping increases the revenue
per plot, provides diversification of income, reduces pest pressure, and helps to maintain a more stable
pool of farm labor, avoiding seasonal unemployment and the related social consequences [30]. It is also
an important factor in the intensification of land use, which, if combined with additional conservation
measures, reduces the pressure to expand cropland at the expense of natural ecosystems, possibly
sparing land from deforestation. Moreover, this practice is not applicable on perennial crops.

4.3. Halt the Installation of New Irrigation Systems

Halting the installation of new irrigation systems, either through a ban of new water permits or
by collective irrigators decision, is a short-term measure that vigorously attacks the problem from the
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viewpoint of the increasing demand. As stated earlier, this alternative has been requested by the Rio
Corrente Basin Committee as a precautionary measure.

This option, however, does not resolve the conflicts of the regions already under a state of conflict,
in particular in the Rio Grande basin, where the water demands are already too high in some places.
It also does not address the problem of decreasing water availability. In addition, there are the economic
consequences on jobs, tax revenue, and economic growth.

Although severe, it may be necessary in some regions with very high demands, in particular if the
minimum discharges continue to decrease. A constant update of the low discharge values would be
desired in this case.

4.4. Bet on A Return to Wet Conditions

The third alternative is to consider that current low precipitation period is not permanent and
climate will return to the pre-1992 wet state.

Given the low skill of the current generation of interdecadal climate prediction models [31], it is
hard to forecast whether these reducing precipitation trends will continue in the next decades. As said
before, the location of Western Bahia in the transition between the semi-arid and the seasonally dry
tropical climate regions makes it a serious candidate for climate change. CMIP5 simulations indicate a
strengthening of the South Atlantic subtropical high, with a reduction of precipitation in the semi-arid
of Northeast Brazil, and a possible expansion of the semi-arid climate over the region with a current
seasonally dry climate [32]. This expansion, however, is somewhat uncertain given the relatively
coarse resolution of the climate models involved in the CMIP5 ensemble (from 1.1◦ to 2.8◦), when
compared to the east–west dimension of the region (~2.5◦). Despite the low skill of these models,
the most likely scenario for the 21st century, as simulated by the CMIP5 ensemble, is an additional
drying of the region, in particular in the months of September, October, and November, with very high
agreement among models [21].

In addition, because the local rivers are connected to the Urucuia aquifer, pre-1992 river discharge
levels may only be resumed after the aquifer previous levels of storage are restored, which may take
from several years to several decades—our current understanding of the coupling of the aquifer and
the rivers of the region is not sufficient to answer this question more precisely. Moreover, since the
aquifer water level monitoring network was only set up in 2011, we do not know what the state of the
aquifer was during the wet climate period.

In summary, climate models do not support a return to wet conditions—on the contrary. Even if
climate models drying predictions do not materialize, it may take several decades to return to former
conditions. Betting on this is a risky alternative.

4.5. Invest in A Hydroclimatic Monitoring System

The three alternatives discussed earlier may mitigate water conflicts, but all have their setbacks
and risks. Western Bahia is an agriculture frontier under constant change, lacking a crucial element
for management: Data. As stated earlier, the water resource management based on the long-term
probability of hydroclimatic events requires at least a constant update of the low discharge values.
But this does not seem to be sufficient. In the most water-stressed regions described above, a true
management, in which the availability and demand of water resources for irrigation are actually
measured and monitored, is the safest path to provide water security to this region. Such a monitoring
system will allow a more confident and sustainable regional management of irrigated agriculture,
maximizing the use of water resources, food production, and economic development, while reducing
the risk of water conflicts.

This monitoring system should have three components: (1) Measurement and short term reporting
of river discharge at key points in these basins, in particular in the sub-basins where the concentration
of irrigation areas is higher; (2) a hydroclimatic forecast system to predict the availability of water
resources at the period of lowest availability (September and October) several months in advance,

82



Water 2019, 11, 933

in order to influence the irrigator decision to conduct an irrigated crop and when to plant this irrigated
crop; and (3) monitoring and short-term reporting of the actual consumption of water for irrigation at
the sub-basin scale. The latter can be done using either one of three possibilities: (i) Installation of
hydrometers at each pumping station; (ii) correlation of water consumption with energy consumption,
and monitor the latter; and (iii) monitor the actual evapotranspiration through operational remote
sensing products, such as the MOD16 evapotranspiration product, correctly calibrated with field data
for a reliable representation of reality. These measurements must be integrated at a monitoring center,
which would periodically issue recommendations of how much area can be irrigated that year.

4.6. Final Remarks

It has been argued that water crises are mainly crises of governance [33]. Governance is a
more inclusive concept than government itself, embracing the relationship between a society and
its government. Governments mediate behavior through institutions, policies, laws, norms (like
issuing water permits), and actions (like fiscalization and enforcement), but governance also relates
to domestic activities, networks of influence, international market forces, the private sector, and civil
society [34]. This concept has been incorporated by the Brazilian Policy on Water Resources (Law 9433
of 8 January 1997), which states that management of water resources must be decentralized with the
participation of the government, users, and communities. The suggested monitoring system would
provide the regional stakeholders (government agencies, agribusiness, and organized civil society)
with the necessary data and decision-making tools to make key decisions.

One such key decision is the determination of how much area may be irrigated at each ottobasin in
each year, a critical decision in this region with very high interannual variability of rainfall. The correct
decision of how much area to be irrigated each year, according to the estimated availability of water
resources, may contribute to avoid water use conflicts during the low water season, providing water
security for both large irrigators and small farmers. If used wisely, it may also promote the long-term
planning of the sustainable expansion of irrigation in the region, supporting the increase in the
production of food, feed, and fiber, improving food security as well as water security.

Author Contributions: Conceptualization, methodology, project administration, and funding acquisition, M.H.C.;
formal analysis, R.P.; writing—original draft preparation, review and editing, R.P. and M.H.C.; visualization, R.P.
and F.M.P.; supporting data, V.C.F., V.F.A.d.B., and M.C.

Funding: This research was funded by PRODEAGRO (grant 011/2016) and CNPq (process 441210/2017-1). R.P. is
supported through CAPES, Finance Code 001.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study, in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

References

1. Yoffe, S.; Fiske, G.; Giordano, M.; Giordano, M.; Larson, K.; Stahl, K.; Wolf, T. Geography of international
water conflict and cooperation: Data sets and applications. Water Resour. Res. 2004, 40, 1–12. [CrossRef]

2. Batistela, M.; Valladares, G.S. Farming expansion and land degradation in Western Bahia, Brazil. Biota Neotrop.
2009, 9, 61–76. [CrossRef]

3. AIBA (Associação de Agricultores e Irrigantes da Bahia). Anuário Agropecuário Oeste da Bahia—Safra
2015/2016. Available online: http://aiba.org.br/wp-content/uploads/2018/06/anuario-16-17.pdf (accessed on
15 July 2018).

4. ANA (Agência Nacional de Águas). Atlas de Irrigação—Uso da Água na Agricultura. 2017. Available
online: http://arquivos.ana.gov.br/imprensa/publicacoes/AtlasIrrigacao-UsodaAguanaAgriculturaIrrigada.
pdf (accessed on 17 December 2018).

5. ANA (Agência Nacional de Águas). Estudos hidrogeológicos na Bacia Hidrográfica do São Francisco—
Sistema Aquífero Urucuia/Areado e Sistema Aquífero Bambuí. Comitê Bacia Hidrográfica do São Francisco.
2013. Available online: http://cbhsaofrancisco.org.br (accessed on 11 November 2018).

83



Water 2019, 11, 933

6. Web Map EPE—Sistema de Informações Geográficas do Setor Energético Brasileiro. Available online:
https://gisepeprd.epe.gov.br/webmapepe/# (accessed on 17 April 2019).

7. Ministério do Desenvolvimento, Indústria e Comércio Exterior. Panorama Agroeconômico do Oeste da
Bahia e Safra 2016/17. Available online: http://www.mdic.gov.br/images/REPOSITORIO/czpe/Eventos/ZPE_
Agroneg%C3%B3cio/Panorama_do_agroneg%C3%B3cio_baiano_Aiba__Celestino_Zanella.pdf (accessed on
17 December 2018).

8. Almeida, W.A.; Moreira, M.C. Análise das outorgas da bacia do Rio Grande, Estado da Bahia. In Proceedings
of the XLII Congresso Brasileiro de Engenharia Agrícola—CONBEA 2013, Campo Grande, Brazil, 27–31
July 2014.

9. Deliberação CBHRC 01/2015. Available online: https://www.conjur.com.br/dl/deliberacao-comite-bacia-
corrente.pdf (accessed on 17 April 2019).

10. G1. Grupo invade fazendas e incendeia galpão em protesto no Oeste da Bahia. Available online: https://g1.globo.
com/bahia/noticia/grupo-invade-fazendas-e-incendeia-galpao-em-protesto-no-oeste-da-bahia.ghtml (accessed
on 17 April 2019).

11. Correio 24 horas. Guerra pela água em Correntina se arrasta desde 2015. Available online: https:
//www.correio24horas.com.br/noticia/nid/guerra-pela-agua-em-correntina-se-arrasta-desde-2015/ (accessed
on 17 April 2019).

12. Xavier, A.C.; King, C.W.; Scanlon, B.R. Daily gridded meteorological variables in Brazil (1980–2013).
Int. J. Climatol. 2016, 36, 2644–2659. [CrossRef]

13. Data Gridded Meteorological Data from 1980–2013 (and updated precipitation through 2015). Available
online: http://careyking.com/data-downloads/ (accessed on 10 November 2018).

14. Pfafstetter, O. Classificação de Bacias Hidrográficas; Departamento Nacional de Obras de Saneamento:
Rio de Janeiro, Brazil, 1989.

15. Verdin, K.L.; Verdin, J.P. A topological system for delineation and codification of the Earth’s river basins.
J. Hydrol. 1999, 218, 1–12. [CrossRef]

16. Pettitt, A.N. A non-parametric approach to the change-point problem. Appl. Stat. 1979, 2, 126–135. [CrossRef]
17. Verstraeten, G.; Poesen, J.; Demarée, G.; Salles, C. Long-term (105 years) variability in rain erosivity as

derived from 10-min rainfall depth data for Ukkel (Brussels, Belgium): Implications for assessing soil erosion
rates. J. Geophys. Res. 2006, 111, 1–11. [CrossRef]

18. Rybski, D.; Bunde, A.; Havlin, S.; von Stoch, H. Long-term persistence in climate and the detection problem.
Geophys. Res. Lett. 2006, 33, 1–4. [CrossRef]

19. Mitchell, J.M., Jr.; Dzerdzeevskii, B.; Flohn, H.; Hofmeyr, W.L.; Lamb, H.H.; Rao, K.N.; Wallén, C.C. Climatic
Change; WMO Technical Note No. 79; World Meteorological Organization: Geneva, Switzerland, 1966.

20. Landau, E.C.; Guimarães, D.P.; Souza, D.L. Concentração de áreas irrigadas por pivôs no Oeste da
Bahia. In Proceedings of the Anais do Simpósio Regional de Geoprocessamento e Sensoriamento
Remoto—GEONORDESTE 2014, Aracajú, Brazil, 18–21 November 2014.

21. Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, Present, and Future. Theor. Appl.
Climatol. 2017, 129, 1189–1200. [CrossRef]

22. Kane, R.P. Prediction of Droughts in North-East Brazil: Role of ENSO and Use of Periodicities. Int. J. Climatol.
1997, 17, 655–665. [CrossRef]

23. Ambrizzi, T.; Souza, E.B.; Pulwarty, R.S. The Hadley and Walker Regional Circulations and Associated
ENSO Impacts on the South American Seasonal Rainfall. In The Hadley Circulation: Present, Past and Future;
Diaz, H.F., Bradley, R.S., Eds.; Kluwer Academic: Dordrecht, The Netherlands, 2004; Volume 21, pp. 203–235.

24. Marques, E.A.G.; Silva Júnior, G.C.; Illambwetsi, A.M.; Eger, G.Z.S.; Pousa, R.; Generoso, T.N.; Oliveira, J.
Analysis of Groundwater Table and River Stage Fluctuations and their Relation to Rainfall and Water Use on
Alto Grande Watershed, Northeastern Brazil. Unpublished work. 2018.

25. Bayazit, M. Nonstationary of hydrological records and recent trends in trend analysis: A state-of-the-art
review. Environ. Process. 2015, 2, 247–542.

26. Serinaldi, F.; Kilsby, C.G. Stationarity is undead: Uncertainty dominates the distribution of extremes.
Adv. Water Res. 2005, 77, 17–36. [CrossRef]

27. Ministério de Minas e Energia. Empresa de Pesquisa Energética, Brazilian Energy Balance. Available online:
http://epe.gov.br/en/publications/publications/brazilian-energy-balance (accessed on 17 April 2019).

84



Water 2019, 11, 933

28. Oliveira, J.R.S.; Ribeiro, R.B.; Sousa, J.R.C.; Serrano, L.O.; Ramos, M.C.A.R.; Generoso, T.N.; Pruski, F.F.
Hydrological Information System to quantify water availability (SIHBA). Unpublished work. 2019.

29. Pruski, F.F.; Rodriguez, R.D.G.; Nunes, A.A.; Pruski, P.L.; Singh, V.P. Low-flow estimates in regions of
extrapolation of the regionalization equations: A new concept. Eng. Agríc. 2015, 35, 808–816. [CrossRef]

30. Richards, P.; Pellegrina, H.; VanWey, L.; Spera, S. Soybean development: The impact of a decade of agricultural
change on urban and economic growth in Mato Grosso, Brazil. PLoS ONE 2015, 10, e0122510. [CrossRef]
[PubMed]

31. Kirtman, B.; Power, S.B.; Adedoyin, J.A.; Boer, G.J.; Bojariu, R.; Camilloni, I.; Doblas-Reyes, F.J.; Fiore, A.M.;
Kimoto, M.; Meehl, G.A.; et al. Near-term Climate Change: Projections and Predictability. In Climate
Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of
the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK;
New York, NY, USA, 2013; pp. 953–1028.

32. Magrin, G.O.; Marengo, J.A.; Boulanger, J.-P.; Buckeridge, M.S.; Castellanos, E.; Poveda, G.; Scarano, F.R.;
Vicuña, S. Central and South America. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part
B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change; Barros, V.R., Field, C.B., Dokken, D.J., Mastrandrea, M.D., Mach, K.J., Bilir, T.E.,
Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge,
UK; New York, NY, USA, 2014; pp. 1499–1566.

33. United Nations Educational, Scientific and Cultural Organization (UNESCO); World Water Assessment
Programme. Water, a Shared Responsibility; The United Nations World Water Report 2; Berghahn Books: Paris,
France; New York, NY, USA, 2006; pp. 43–86.

34. Rogers, P.; Hall, A.W. Effective Water Governance; Global Water Partnership Technical Committee Background
Papers No. 7; Global Water Partnership: Stockholm, Sweden, 2003.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

85



water

Article

Influence of Power Operations of Cascade
Hydropower Stations under Climate Change and
Human Activities and Revised Optimal Operation
Strategies: A Case Study in the Upper Han
River, China

Lianzhou Wu , Tao Bai * , Qiang Huang, Ming Zhang and Pengfei Mu

State Key Laboratory Base of Eco-Hydraulic Engineering in Arid Area, Xi’an University of Technology,
Xi’an 710048, China; wlzxaut@126.com (L.W.); wreshxaut@163.com (Q.H.); zhang_ming_1996@163.com (M.Z.);
PengfeiMu@hotmail.com (P.M.)
* Correspondence: baitao@xaut.edu.cn; Tel.: +86-029-8231-2036

Received: 29 March 2019; Accepted: 24 April 2019; Published: 28 April 2019
��������	
�������

Abstract: Climate change and human activities are two driving factors that affect the hydrological
cycle of watersheds and water resource evolution. As a pivotal input to hydropower stations, changes
in runoff processes may reduce the effectiveness of existing operation procedures. Therefore, it is
important to analyze the influences of cascade hydropower stations under climate change and human
activities and to propose revised optimal operation strategies. For the present study, three runoff
series conditions including: Initial runoff, affected by only climate change, and affected by both
climate change and human activities are examined by a simulation model to analyze the influence on
power generation with four schemes. Additionally, an optimal operation model of cascade power
stations is proposed based on the simulation model to generate single and joint optimal operation
charts for future hydrological scenarios. The paper also proposes to change human activities based
on optimizing operation rules to reduce its influence on downstream power stations. This procedure
is theoretically applied and varied for three power stations in the upper Han River, China. The
results show that the influence of climate change is greater than that of human activities in that power
generation decreased by 17.95% and 12.83%, respectively, whereas combined, there is a reduction of
25.71%. Under existing hydrological conditions, the modified single and joint operation charts would
increase power generation by about 32 million and 47 million kWh. Furthermore, after optimizing
the upstream project, the abandoned water and power generation of these cascade power stations
would reduce by 150 million m3 and 5 million kWh, respectively. This study has practical significance
for the efficient operation of cascade hydropower stations and is helpful for developing reservoir
operation theory under changing environments.

Keywords: climate change; human activities; power operations; cascade joint operation chart;
inter-basin water transfer project

1. Introduction

Climate change and human activities are two factors driving change in the hydrological cycle of
watersheds and water resources in terms of hydrological response, energy structure, and the social
economy, which have become the focus of current research in the field of global change [1,2]. Climate
change leads to changes in atmospheric circulation including evaporation and precipitation conditions,
through changes in rainfall distribution, and the evaporation and precipitation conditions in surface
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waters and soils [3,4]. Human activities including agricultural irrigation, water conservancy projects,
and urbanization have directly affected the natural circulation of water resources in many regions [5,6].
These changes lead to decreases in runoff and increases in extreme events [7,8]. According to the IPCC
assessment report, global climate has warmed over the past 100 years, and the climate change has
seriously affected the streamflow regime [3]. Consequently, climate change and human activities have
threatened the availability of water resources that is critical to human survival, especially in terms of
energy structure and production [9,10].

According to the U.S. Climate Change Science Program (CCSP), a new clean energy structure
that includes solar, wind, and hydro-power would be an effective solution to control CO2 emissions
caused by coal power generation [11]. Additionally, hydropower is also responsible for regulating
the safety of power grid systems in future energy structures [12]. Take the current Chinese energy
structure as an example, the hydropower installed capacity had exceeded 300 GW, about 50% of the
total installed power capacity, up to 2015, and about half of total power generation was hydropower
from 2000–2015 [13]. However, hydropower is vulnerable to climate change and human activities [14].
As an important input to the hydropower generation system, runoff and water distribution changes
under the influences of climate change and human activities would directly impact the operation
of power stations. Therefore, researching the influences of climate change and human activities on
hydrological systems and establishing efficient coping strategies are of great significance for cascade
power stations.

In recent years, scholars have carried out research on how climate change and human activities
have affected the hydrological processes and the operation of hydropower stations. Viers considered it
necessary to anticipate changing climatic and hydrological conditions for a similar period of time for
operations of hydropower stations [15]. Harrison G P built a simulation model based on electricity
systems to explore the sensitivity of power station operations to climate change [16]. Ehsani indicated
that modifying reservoir operations and increasing the size and number of dams was necessary to
offset the vulnerabilities of water resources to future climate uncertainties [17]. Ahmadi established
the reservoir optimization scheduling model on the premise of considering future climate change,
and the model coordinated the contradiction between the power generation guarantee rate and the
vulne’rability of the reservoir [18]. Minville took the Peribonka basin water resources system in Canada
as an example, and evaluated the impact of climate change scenarios on the adaptive scheduling results
of the water resources system [19]. However, most previous research has focused on determining the
characteristics and extent of change in hydropower systems under climate change [15–19]. There have
been few studies on the combined effects of climate change and human activity coping strategies for
power stations. Chang proposed an optimal adaptive operation chart for cascade hydropower system
to increase power generation under changing environmental conditions providing novels methods for
hydropower station operation under climate change [13].

Meanwhile, to balance the economic development of different regions, changing the distribution of
water resources artificially has occurred more frequently [20]. For example, a number of Inter-Basin Water
Transfer (referred to hereafter as “IBWT”) projects have been built, so the runoff of the source area was
changed [21]. The operation of original cascade hydropower stations under new hydrological conditions
would be challenging for both water source areas and water intake areas [22,23]. Therefore, assessing the
combined impact of climate change and human activities on the operations of hydropower stations and
developing novel operational strategies to respond to changing conditions are more necessary.

Based on previous studies, the main objective of this study is to generate modified operation
charts for the cascade power stations in the upper Han River to reduce the influence of climate change
and human activities. This study analyzes the extent of impacts from climate change and human
activities on power station operation both separately and combined. Then, the simulated reservoir
operation charts are modified based on the traditional operation chart, and an optimal single and
cascade operation charts are generated by the cuckoo algorithm based on the simulated chart. Finally,
an optimal operation chart of the Hanjiang to Weihe River Valley Water Diversion Project (referred
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to hereafter as “the Project”) is generated considering the downstream cascade power stations. This
research would help quantify the impact of climate change and human activities on the operation of
power stations, and provide reference value for the coping strategies for power stations.

2. Study Area and Data

2.1. The Upper Han River

The Han River is the largest tributary of the Yangtze River, China. The upper Han River is located
before the Danjiangkou reservoir, with a length of 918 km and a drainage area of 95,200 km2. The
upper Han River is in an area with a subtropical humid climate. The annual rainfall distribution in this
area is uneven and most runoff recharge is surface runoff from rainfall. The main flood season is from
July–September; however, some small floods also occur from mid–late April [24].

The Han River occupies a prominent position in the social development of the Yangtze River
Basin. Besides providing water to the provinces in the basin, the Han River is also the water source
of some IBWT projects, such as the Project and the Mid-Line Project of the South-to-North Water
Transfer Project. The Project being built is the only large-scale human activities in the upstream of
the cascade power stations, like Figure 1 shows, the cascade power stations must be affected by the
future operation of the Project [25]. Also, Chang has verified that the runoff in the upper Han River is
mutated resulted from climate change [13]. Therefore, it is urgently needed to modify the operation
charts for these hydropower stations to respond to future changing hydrological environments caused
by climate change and human activities.

 

Figure 1. distribution map of power stations and reservoirs in the upper Han River, the blue area is
water resource areas of the Project, the brown area is intake areas of the Project and the gray area is
power stations in the downstream of the Project.
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2.2. Cascade Hydropower Stations

There are three hydropower stations on the upper Han River, namely Shiquan, Xihe, and Ankang,
which are the research objects of this paper. The characteristics of the cascade reservoirs are listed in
Table 1.

Table 1. The characteristics of the cascade reservoirs of Shiquan, Xihe, and Ankang hydropower stations.

Index Unit Shiquan Xihe Ankang

Average annual discharge m3/s 308.3 378 621
Normal water level m 410 362 330

Dead water level m 400 360 305
Regulation storage 108m3 1.8 0.22 14.72

regulation performance / seasonal Daily incomplete yearly
Installed capacity MW 225 180 852.5

Guaranteed output (Ng) MW 32 21.8 175
Annual average power generation 108 kW·h 6.06 4.92 27.48

Maximum head m 47.5 32.5 88
Minimum head m 26.3 13 57

Maximum power flow m3/s 677.5 811 1500

These three power stations are an important part of the Northwest Power Grid, which is responsible
for power generation, power grid peaking, and frequency modulation. In the upstream of the cascade
hydropower station, the Project is being built, which will inevitably affect the operation of the cascade
hydropower stations.

2.3. The Project

Uneven distribution of water resource is obvious in Shaanxi province, China, where the southern
region has a large amount of water resource, and the central and northern regions is shortage.
This situation is caused by weather conditions and the rapidity of the economic development and
urbanization in the area coupled with a growing population and poor water resource management [26].
As a strategic project to improve the ecological environment and to upgrade industry, the Project is
being developed in the upper Han River and will be in operation by 2025. The main task of the Project
is to transfer multi-year average of 1.5 billion m3 of water from the Han River to the Guanzhong
region, including important cities, counties, and industrial parks. The Project consists of two water
source areas connected by a water transfer tunnel. The Huangjinxia reservoir (HJX) in the main stream
has abundant water with no regulation ability, and the Sanhekou reservoir (SHK) in a tributary has
pluriennal regulation capacity with less water.

The reservoirs and power stations in the upper Han River are shown in Figure 1, the Project is
located upstream of the Shiquan power station. The Shiquan reservoir has an annual average inflow of
about of 10 billion m3, it means that the amount of water transferred by the Project accounts for 15% of
the inflow of the Shiquan reservoir.

2.4. Data Collection

In the present study, the monthly inflow data series for the three reservoirs were from 1954–2010
and were considered to be reasonable and representative. Information on the water transfer process of
the Project from 1954 - 2010 was from the Yangtze River Water Resources Commission. The reservoir
inflow data and the conventional hydroelectric operation charts (Figure 2) of Shiquan and Ankang were
obtained from the hydropower plants. The operation chart consisted of four parts and the meaning
and application of each is as follows:
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(1) Part A refers to the guaranteed output area located between the upper and lower basic
lines. If the water level at time t is in this part, then the hydropower station operates based on the
guaranteed output.

(2) Part B refers to the increased output area located between the upper basic line and the
anti-abandon water line. If the water level at time t is in this part, then the hydropower station should
increase output based on the guaranteed output. In Shiquan and Ankang power station, the discount
factor is 1.2, it means the hydropower station should operate based on 1.2 times guaranteed output.

(3) Part C refers to the decreased output area located between the lower basic line and the dead
water line. If the water level at time t is in this part, then the hydropower station should decrease
output based on the guaranteed output. In Shiquan and Ankang power station, the discount factor is
0.8, it means the hydropower station should operate based on 0.8 times guaranteed output.

(4) Part D refers to the flood control area. Once the water level is in this part, the reservoir should
operate under the specified flood control rules.

(a) 

 
(b) 

Figure 2. Conventional hydroelectric operation charts for Shiquan (a) and Ankang (b). The red line
and green line are the upper basic line and lower basic line, respectively. The blue line and the purple
line are the 1.2 Ng and 0.8 Ng line, respectively.
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3. Materials and Methods

3.1. Variation of Runoff

The Mann-Kendall (MK) test is a nonparametric method for analyzing trends in time series and
is recommended by the World Meteorological Organization [27,28]. Many scholars have used the
MK test to analyze trends in precipitation, runoff, temperature, and water quality. The MK test is
simple and easy to calculate and is applicable to data of non-normal distribution such as the data
generally found in hydrology and meteorology studies. The detailed calculation process can be found
in References [29,30].

3.2. Hydroelectric Operation Charts

Operation rules are an intuitive and practical way to guide the operation of reservoir, and the
operation chart is a practical method for applying the rules in practice and so have been widely used
in engineering operations [31,32]. The hydropower plant compares the conditions of the reservoir
with the operation chart and accordingly stores or discharges water from the reservoir to meet the
power generation requirements of the power system. For most hydropower plants, the hydroelectric
operation charts were generated by historical runoff series and practical experience without hydrological
forecasting [33]. However, under the combined influences of climate change and human activities,
inflow runoff has changed since the traditional operation chart is designed according the initial runoff
series. If the regulation capacity of a reservoir is limited compared with its inflow runoff, then runoff
would largely determine the power generation of the hydropower stations. Especially if the guaranteed
output area is too wide so that it further increases the difficulties in finding optimal global solutions.
Therefore, exploring the coping strategies that are used to adjust conventional operation charts is of
great urgency.

In recent years, much research regarding operation charts has been conducted, from which the
methods of operation charts can be classified into three categories. One is the regular operation chart
based on a simulation model with some manual corrections [34]. Second is the implicit stochastic
optimal operation. The historical runoff series are input into the deterministic optimization model to
obtain the optimal running solutions of the reservoir, and the operation rules are mined based on these
solutions [35]. However, this operation chart is easily influenced by data mining methods and system
errors. Third is to optimize the generalized operation chart directly [36]. The advantage being that the
operation chart is optimized directly with less decision variables to avoid the “dimension disaster”,
and getting reasonable solutions by the long runoff series instead typical year. The optimization results
can directly generate operation charts and can be analyzed and compared intuitively. Considering the
existing conventional operation charts and basic rules, the third method was chosen for the present
study. The four main parts are defined as follows:

(1) Part one: Generalize the initial operation charts, including the type and location of the selected
water level line.

(2) Part two: Build a simulation model based on the basic rules and determine the
objective functions.

(3) Part three: Choose the decision variables and an optimization method, and input the
runoff series into the simulation model to calculate the objective function based on the generalized
operation charts.

(4) Part four: Start evolution and iteration, and select the final operation chart corresponding to
the best objective function result.

Reservoir operation methods have been greatly developed over the past 64 years. Little first
applied dynamic programming and Markov chain methods to reservoir scheduling [37]. Evolutionary
algorithms have also been widely used to optimize reservoir operations owing to their simple
principles, easy implementation, parallel search capability, and global optimization ability, such as
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Genetic Algorithm [38], Particle Swarm Optimization [39], Cuckoo Search Algorithm (CS) [40], and
Differential Evolution Algorithm (DE) [41]. The CS algorithm was chosen for use in the present study
owing to its superior search performance, fewer parameters, and robustness to obtain the optimal
operation charts. CS mainly involves initializing the population, using Levi’s flight to update the bird’s
nest position, and calculating fitness values; specific steps were shown in Reference [40].

3.3. Model Construction and Parameters

3.3.1. Simulation Model

The simulation model is constructed to analyze the influences of climate change and human
activities singly and combined and to calculate the regular operation chart. This is also one part of the
optimal model, which is used to obtain the optimal operation chart. The main purpose of establishing
the simulation model is to generate the regular hydroelectric operation chart with the climate change
and human activities data. The regular hydroelectric operation chart is drawn by the typical year
method and co-output method. In this method, the dry season and wet season are determined first,
then repeated to try out the power plant’s output process until the output at time t is close to the
basic output. The basic principle of the simulation model is water balance, and the main calculation
processes are as follows:

Step one: Calculate the regulated flow during the dry season and determine the guaranteed
output according to formulae (1)–(9).

Qd =
1

Td·
(∑Td

j=1 Qi( j) + Vn

) (1)

Qw =
1

Tw·
(∑Tw

j=1 Qi( j) −Vn

) (2)

V(t + 1) = V(t) + (Qi(t) −Qo(t))·Δt (3)

V(t) =
V(t + 1) + V(t)

2
(4)

Z(t) = fvz
(
V(t)

)
(5)

Z(t + 1) = fqz(Qo(t)) (6)

H(t) = Z(t) − Z(t + 1) − Δ f (7)

N′(t) = k·Qo(t)·H(t) (8)

Ng =
1

Td·∑Td
j=1 N′(t)

(9)

where Qd and Qw represent regulated flow during the dry season and wet season, respectively and
Qi and Qo represent the inflow and outflow, respectively. Td and Tw represent the length of the dry
season and wet season, respectively. If the reservoir is in the dry season or wet season, Qo = Qp or
Qo = Q f , respectively. If the reservoir would not regulate the runoff, Qo = Qi. V(t) and V(t) represent
the reservoir storage and monthly average reservoir storage at t time, respectively. Vn represents the
designed regulating reservoir storage, and Δt is the iteration step, which is 1 month. j represents the
operation time point, which matches with runoff time series. fvz(·) and fqz(·) represent the functional
relationship of V~Z and Q~Z, respectively. Z(t) and Z(t + 1) represent the water level at the beginning
and end of time t, respectively. H(t) and Δ f represent the water head for generation and head loss at
time t, respectively. N′(t) and Ng represent the output in the regulating period and the guaranteed
output in the dry season, respectively.
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Step two: Assume an initial power generation flow and calculate the initial reservoir storage
based on the water balance formula and the upstream water level as follows:

V(t) = V(t + 1) − (Qi(t) −Qo(t))·Δt (10)

V(t), Z(t + 1), Z(t), H(t), and N′(t) are calculated as in formulae (4)–(8).
Step three: Compare the power plant output N′(t) with Ng. Then adjust the outflow with Δq and

return to step two: {
Qo(t) = Qo(t) − Δq, N′(t) > Ng

Qo(t) = Qo(t) + Δq, N′(t) < Ng
(11)

where Δq is the change in the outflow of the power plant according to the actual reservoir conditions.
Step four: If formula (12) is successfully calculated, then go ahead to step five, otherwise adjust

the outflow and return to step two: ∣∣∣N′(t) −Ng
∣∣∣ < δ (12)

where, usually, δ = 0.01, kW.
Step five: If formula (13) is successfully calculated, then stop, otherwise adjust the outflow and

return to step two.
|Ze −Zdead| < δ (13)

where Ze and Zdead represent the water level at the end of whole period and the designed water dead
level. The time trial ends when the above formula is satisfied; repeating all the steps until to the first
period of the wet season.

3.3.2. Optimal Model of Cascade Hydropower Joint Operation

The main purpose of establishing an optimal model is to determine the optimized hydroelectric
operation charts under the influences of climate change and human activities. However, with the
development of reservoir operations over the past 60 years, researches on the cascade reservoir joint
operations have been recognized by the public compared with single reservoir operation. Joint
operation of cascade reservoirs with hydrological and hydraulic connections can obtain greater benefits
than single reservoir operations. Additionally, in practice, cascade hydropower joint operations are one
of bottlenecks to achieve more benefit in hydropower stations of the Han River. Therefore, an optimal
model for cascade hydropower joint operations is established and maximizing power generation is the
main objective function of the optimal model. The objective function and constraints of this model are
as follows:

(1) Objective function

E = Max
T∑

t=1

M∑
m=1

Nm(t)·Δt (14)

Nm(t) = km·Qm
o (t)·hm(t) (15)

where E is equal to the total power generation of the three power stations in operation series, 108 kWh.
T and M represent the length of the operation cycle and the number of reservoirs, followed by Shiquan,
Xihe, and Ankang. hm(t) represents the water head of the m reservoir at time t, km represents the power
coefficient of the m power station.

(2) Operational constraints

1) Water balance

Vm(t + 1) −Vm(t) =
(
Qm

i (t) −Qm
o (t)

)
·Δt (16)

2) Water level
Zm

min ≤ Zm(t) ≤ Zm
max(t) (17)
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3) Maximum overflow
Qm

o (t) ≤ Qm
max(t) (18)

4) Output of power station
Nm(t) ≤ Nm

ins (19)

Nm
dry(t) ≤ Nm

g (20)

5) Operation lines are not allowed to be intersected in the operation chart optimization.

DZm
k−1(t) ≤ DZm

k (t), t = 1, 2, . . . , T, k = 1, 2, . . . , K (21)

where Nm
ins is the installed capacity of the m hydropower station; DZm

k (t) is the value of the water
level line of the operation chart of m hydropower station at time t and k is the number of the
water level line.

3.3.3. Parameter Setting and Evaluation Indicators

According to optimal model determined in the present study, the value of the water level of the
operation line of the operation chart is chosen as the decision variable, and the specific parameters are
listed in Table 2.

Table 2. Parameters for the solution algorithm.

Parameters CS Algorithm

Decision variable Water level
Number of operation lines 4

Number of decision variables 48
Population size 400

Generation 5000
Discovery probability 0.25

In addition to the two indicators of power generation and guaranteed output, three other indicators
are increased including the rate of water abandonment, the assurance rate of power generation, and
the rate of water consumption to evaluate the optimized performance of the hydroelectric operation
charts. The formulae are as follows:

1) The rate of water abandonment-Pa

Pm
a =

1

T·∑T
i=1 qm

a (t)/Qm
o (t)

(22)

where qm
a (t) represents the discarded outflow at time t.

2) The assurance rate of power generation-P

Pm =
f (Nm(t) > Nm

g )

T
·100% (23)

where f (Nm(t) > Nm
g ) represents the number of the output of the power station is greater than the

guaranteed output.
3) The rate of water consumption—Pw (m3/k·Wh)

Pw =
W
E

(24)

where W is equal to the water quantity used for power generation.
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3.4. Calculation Schemes

In this study, the coping operation charts are the final objective for managers. Therefore, four
operation scenarios are designed, including the initial runoff series, the influence of climate change,
the influence of human activities, and combined influence of climate change and human activities.

Before the construction of the Project, there is no large-scale human development in the upper
reaches of the cascade power station, so the Project represents human activity. Since the Project is not
yet operational, if the existing observed runoff data mutates, it is caused by the influence of climate
change. Runoff variation point (Y) is obtained by MK test. The runoff series before the variation point
is the initial runoff series, and the data series after the variation point is the runoff series affected by the
climate change. In other study of the research group, the simulated results of the Project are obtained.
So the operation data of the Project is subtracted from the runoff data before and after the variation
point respectively, and runoff data series affected by human activities only and affected by combined
influence of climate change and human activities have been obtained.

Three kinds of operations charts as coping strategies are the final results in this paper. Chart 1
is the conventional corrections for traditional single reservoir operation chart. Data series of four
operation scenarios are calculated in designed traditional operation charts. Chart 1 is generated from
the results of the data series affected comprehensively by climate change and human activities. Chart 2
and Chart 3 is the optimal single and cascade reservoir operation chart, respectively. Both are generated
by CS algorithm from the results of the data series affected comprehensively by climate change and
human activities.

Six schemes are designed in terms of the operation cascade hydropower stations under climate
change and human activities and its revised optimal operation strategies. The specific schemes are
presented in Table 3. Correspondingly, the flow chart of calculation for coping operation charts are
showed in Figure 3.

Table 3. Calculation schemes and the operation model.

Scheme Operation Scenario Operation Mode Coping Strategy

1 Initial natural runoff (1954-Y)
Single reservoir operation in

conventional operation charts Chart 1
2 Only climate change: natural runoff (Y-2010)

3 Only human activities: 1954-Y, natural runoff
(1954-Y) minus transferred process (1954-Y)

4
Combined climate change and human
activities: natural runoff (Y-2010) minus

transferred process (Y-2010)

5 Combined climate change and human
activities: natural runoff (Y-2010) minus

transferred process (Y-2010)

Single reservoir optimization Chart 2
6 Cascade reservoir optimization Chart 3

There are four classes of operation chart including the conventional designed operation chart.
The main reasons and purposes of the six schemes were as follows:

(1) To identify the influence of climate change and human activities on hydropower stations, the
station was set to operate under four scenarios with the conventional operation chart. The power
generation (E), guaranteed output (Ng), Pa, P, and Pw were used to quantitatively analyze the impacts.

(2) Chang. J. generates cascade joint operation charts for Shiquan, Xihe, and Ankang to respond to
climate change in the upper Han River [13]. Also, the Project will run until 2030; therefore, calculating
the operation charts after the Project has operated is one of the main tasks. Chang. J. indicates that
optimal operation charts could lead to the generation of more power in the cascade stations [13].
Scheme five is therefore set in the optimal model.

(3) Before the Project operated, the operation chart in Reference [13] is applied. Once the Project
has been operated, a cascade joint operation chart under climate change and human activities will be
necessary. Therefore, scheme six is set in the cascade joint optimal model.
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Set model calculation series of 
three scenarios

Only climate change:
natural runoff (Y - 2010)   

Only human activities:1954 - Y
natural runoff (1954 - Y) minus transferred 
process (1954 - Y)

Combined climate change and human 
activities: natural runoff (Y - 2010) minus 
transferred process (Y - 2010) 

Input data
 Shiquan inflow runoff

Determine the variation point: Y 

MK Test

Simulation model

Coping regular operation chart 1

Establish an optimal model of 
hydroelectric operation charts

Scheme 4

Calculate fitness function and 
filter nests

Input the chart as initial generalized nest

Maximum evolution
 algebra?

Renew the nest

N

Coping optimal hydroelectric 
operation chart

Coping optimal single operation chart 2

Coping optimal joint operation chart 3

Y

Initial natural runoff (1954 - Y)   

Scheme 5 Scheme 6

Figure 3. Flow chart for generating the optimal operation charts under climate change and human
activities. See Section 3.2 in the main text for definition of the different parts. MK =Mann-Kendall test.

4. Results and Discussion

The results include analysis of runoff variation points, the influences of climate change and
human activities on hydropower generation, and the coping regular and optimal operation charts.
All operation charts are expanded based on the order of the schemes. Then we discuss the effects on
cascade hydropower joint operations of the combined influence of climate change and human activities
and generate three cascade hydropower joint operation charts.

4.1. Analysis of Runoff Variation Point

Only the runoff data series is used in the present study, therefore, the runoff variation point is
acquired using the inflow runoff of Shiquan reservoir with the MK test (Figure 4). Then, we review the
references to verify the existence of the variation point.
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Figure 4. Mann-Kendall test results of inflow of Shiquan reservoir, UBk and UFk are time statistics.

In the MK test, the statistical variable is −2.5372, which indicates a decreasing trend for the runoff
(Figure 4). The curves of UBk and UFk crossed in 1990, which may indicate that the runoff begins to
change in this year.

He reports that increased in average temperature and decreased in precipitation leading to changes
in the hydrological process from 1950–2005 in the upper Han River [42]. The climate become drier from
1980–2005. Similarly, Chang. J. also finds the runoff in the upper Han River has changed in 1990 [13].
Both of these studies report similar meteorological factors under climate change, and 1990 is regarded
as the beginning of the observed variation. Therefore, 1990 is the variation point (Y) in this study, and
the runoff data of four operation scenarios are listed as follows:

(1) Initial natural runoff (1954–1990)
(2) Only climate change: Natural runoff (1991–2010)
(3) Only human activities: Natural runoff (1954–1990) minus transferred process (1954–1990)
(4) Combined climate change and human activities: natural runoff (1991–2010) minus the transferred

process (1991–2010)

4.2. Influences of Climate Change and Human Activities on Hydropower Operation

According to the results in Section 4.1 and the schemes in Table 3, the Operating results calculated
in conventional operation charts are shown in Table 4 and Figure 5.

97



Water 2019, 11, 895

T
a

b
le

4
.

O
pe

ra
ti

ng
re

su
lt

s
of

hy
dr

op
ow

er
st

at
io

n
un

de
r

th
e

in
flu

en
ce

of
cl

im
at

e
ch

an
ge

an
d

hu
m

an
ac

ti
vi

ti
es

(S
ch

em
e

1,
Sc

he
m

e
2,

Sc
he

m
e

3,
an

d
Sc

he
m

e
4)

.

S
ch

e
m

e
1

:
In

it
ia

l
R

u
n

o
ff

(1
9

5
4

~
1

9
8

9
)

2
:

C
li

m
a

te
C

h
a

n
g

e
(1

9
9

0
~

2
0

0
9

)
3

:
H

u
m

a
n

A
ct

iv
it

ie
s

(1
9

5
4

~
1

9
8

9
)

4
:

C
li

m
a

te
C

a
n

g
e

a
n

d
H

u
m

a
n

A
ct

iv
it

ie
s

(1
9

9
0

~
2

0
0

9
)

S
ta

ti
o

n
E

N
g

P (%
)

P
w

P
a

(%
)

E
N

g
P (%

)
P

w
P

a
(%

)
E

N
g

P (%
)

P
w

P
a

(%
)

E
N

g
P (%

)
P

w
P

a
(%

)

Sh
iq

ua
n

7.
08

35
88

10
.4

28
.1

0
5.

9
28

64
10

.4
0

27
.3

0
5.

63
27

59
10

.6
26

.3
4

4.
45

25
50

10
.7

25
.2

4
X

ih
e

4.
95

23
91

14
.3

22
.4

2
4.

75
20

80
14

.3
22

.1
1

3.
91

18
75

14
.8

21
.3

4
3.

71
16

65
15

.1
20

.3
7

A
nk

an
g

27
.5

8
18

5
81

5.
8

15
.0

1
21

.8
5

15
9

74
6.

2
13

.5
6

24
.9

9
17

0
69

6.
3

13
.9

2
19

.2
6

16
5

67
6.

3
12

.2
1

C
as

ca
de

st
at

io
ns

39
.6

1
24

3
87

10
.1

7
21

.8
4

32
.5

20
7

73
10

.3
0

20
.9

9
34

.5
3

21
5

68
10

.5
7

20
.5

3
27

.4
2

20
6

61
10

.7
0

19
.2

7

98



Water 2019, 11, 895

  
(a) Shiquan (b) Xihe 

  
(c) Ankang (d) Cascade reservoirs 

Figure 5. Operating parameters (E, Ng, P, Pw, and Pa) of the hydropower stations in the conventional
operation chart under the four schemes. The blue, green, yellow, and red curve are in turn scheme 1 to 4.

The results of the present study show that both climate change and human activities affect the
operation of the three hydropower stations under investigation. Only the power generation and
guaranteed output of scheme 1 is found to reach or exceed the design value in the three power stations.
Because the calculation series used in designing conventional operation charts is different from that
used in the present study, scheme 1 is regarded as a reference standard of conventional operation
charts rather than for designed values. Compared with scheme 1, the results indicate that:

(1) The results of schemes 2–4 are significantly worse than those of scheme 1. This indicates that
the conventional operation chart is no longer suitable for the operation and development of the power
stations under the varied hydrological situations. For example, the power generation of Shiquan
under schemes 2–4 decrease by 1.18 × 108 kWh (16.67%), 1.45 × 108 kWh (20.48%), and 2.73 × 108 kWh
(38.56%), respectively. Additionally, the same decreasing trend occurs in Xihe, which decreases by
0.2× 108 kWh (4.04%), 0.3× 108 kWh (6.06%), and 0.37× 108 kWh (7.47%) and Ankang, which decreases
by 5.73 × 108 kWh (20.78%), 2.59 × 108 kWh (9.39%), and 7.68 × 108 kWh (27.85%), respectively

(2) From the results of cascade reservoir operations, the influence of climate change is greater than
that of human activities. For instance, power generation under schemes 2 and 3 decreases by 17.95%
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and 12.83%, respectively. The reason for this is that the natural runoff after 1990 decreases by an annual
average of about 2.5 billion m3 in the upper Han River area.

(3) Based on the sensitivity of the power stations to these changes, Shiquan is the most affected
followed by Ankang. The reason for this is that there is lower storage capacity in Shiquan than in
Ankang, which means that Shiquan does not have sufficient capacity to save water and regulate the
power head when runoff is reduced. This once again verifies the necessity to modify the operation
charts under existing engineering and hydrological conditions.

4.3. Coping Hydropower Operation Charts under the Influence of Climate Change and Human Activities

Because the Project is planned to operate completely by 2030, hydropower operations of cascade
power stations are currently mainly affected by climate change. Considering that [13] proposes
adaptive operation charts and cascade joint optimal operation charts for the upper Han River, the main
object of the present study is to develop the coping strategies to deal with the combined influence
of climate change and human activities after 2030. As shown in Table 4, scheme 4 and 5 are used to
generate the modified regular and optimal single hydropower operation charts, respectively. Scheme
6 is used to generate the modified optimal cascade hydropower operation chart. All the modified
operation charts are listed in Figure 6.

Chart 1: Modified regular single reservoir operation charts 

Chart 2: Modified optimal single reservoir operation charts 

Figure 6. Cont.
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Chart 3: Modified optimal cascade reservoirs operation charts 

(a) Shiquan (b) Ankang

Figure 6. Modified hydropower operation charts for Shiquan (a) and Ankang (b) to address the effects
of climate change and human activities. The solid and dashed lines indicate the modified and traditional
operation lines, respectively. The red line and green line are the upper basic line and lower basic line,
respectively. The blue line and the purple line are the 1.2 Ng and 0.8 Ng line, respectively.

4.3.1. Chart 1: Modified Regular Single Reservoir Operation Chart

Comparing Chart 1 in Figure 6 with the conventional operation charts (Figure 1), shows that
the integral operation trend is similar to the traditional one. The upper and lower basic lines move
slightly up and down. Specifically, the upper basic lines of both reservoirs move up a little during the
main flood season and move down during the dry season. Furthermore, both lower basic lines move
down during operation time, and the water storage period of the Ankang reservoir move forward
for about 20 days. The main reason for this change is that reservoir inflow is decreased compared
with the designed data series. During the main flood season, to improve power generation efficiency,
the guaranteed output area is expanded and moves down, and the increased output area becomes
smaller. This change would probably make the power stations work more in the guaranteed output
area. Then, once the power plant is working in part A, it would be able to maintain a high water
level and guarantee water demand during the dry season. Furthermore, in contrast to the previous
conditions, the Ankang reservoir should store water in advance to raise the water level and avoid
the power plant operating at a decreased output after the flooding season. In the dry season, the
operation mode is different from during the wet season, in which the increased output area become
larger making the power plant work in the increased output area, avoiding the abandoned water.

We assume that the cascade power stations are running under the Chart 1 (Figure 6) to verify their
usefulness. The simulation results show that the effect of both operation charts could not reach the
design value under the current runoff situation, but the modified chart is preferable to the conventional
chart. Cascade power generation increases by about 12 million kWh, of which Ankang reservoir
increases by about 9 million kWh. If the electricity price is calculated at RMB 0.25, then the increased
value of the power generated is about RMB 3 million. Therefore, it is necessary and valuable to modify
the operation charts for the changing hydrological environment, especially for reservoirs that are
designed for power generation.

4.3.2. Chart 2: Modified Optimal Single Reservoir Operation Chart

Comparing the Chart 2 in Figures 6 and 7 shows that the overall trends at Shiquan and Ankang
have not changed. After the calculation of the CS algorithm, part B of Shiquan increases to avoid
abandoned water during the flood season because heavy rains often occur in the Han River basin, and
rainfall is particularly heavy during the flood season. Additionally, the flooding season commonly
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lasts until October. Therefore, the hydropower plant should increase its outflow to improve power
generation and avoid abandoned water. Part A of the Ankang reservoir increases to raise the water
level, and the water level line of 0.8 Np is slightly low compared with Figure 6b. All these changes are
used to increase the power generation of the power stations.

Figure 7. The monthly average change process of water abandoned of the Shiquan, Xihe, and Ankang
reservoirs in condition of the Project optimized. The upper right part is the multi-year average change
of abandoned water when the operation of Project is optimized or not.

Like in scheme 5, we assume that the cascade power stations are running under the Chart
2 to verify their usefulness. The simulation results show that the optimal chart outperforms the
conventional chart. Cascade power generation increases by about 32 million kWh, of which Shiquan
and Ankang reservoirs increases by about 9 and 23 million kWh, respectively. The increased value of
the power generated is about RMB 8 million. Therefore, the single optimal operation chart (Chart 2)
further improves the power generation of the power stations compared to the modified single regular
operation chart (Chart 1).

4.3.3. Chart 3: Modified Optimal Cascade Reservoir Operation Chart

Comparing the Charts 2 and Chart 3, it can be seen that the operating areas of the Shiquan and
Ankang reservoirs have not changed. In Chart 3, the upper basic lines moves down slightly during
the dry season and the increasing output areas become lager. Similarly, under joint operation, the
guaranteed output is increased to avoid abandoning water.

Like in scheme 5, we assume that the cascade power stations are running under the Chart 3 to
verify their usefulness. The simulation results show that if the power stations run in a joint operation,
the effects of human activities and climate change are greatly reduced. Cascade power generation
increases by about 47 million kWh, of which Shiquan and Ankang reservoirs increases by about 12 and
35 million kWh, respectively. The increased value of the power generated is about RMB 11.25 million.
These joint operation charts consider the effects of human activities and climate change that could
be applied in the cascade hydropower stations in theory once the Project is finished in 2030. Climate
change is a gradual process, and its effects on runoff are subtle. At present, runoff cannot be restored to
its original state. However, it is possible to reduce the effect on runoff by making significant changes to
human activities.
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4.4. Optimal Operation of the Project

As the Project is based at the first cascade of the upper reaches of the Han River, its operation
mode will directly affect the operation of the downstream power station group. [24] studies the joint
optimization scheduling of the Huangjinxia (HJX) and Sanhekou (SHK) reservoirs of the Project to
determine water supply, power generation, and energy consumption for the Project’s own operation.
While the modified optimal single reservoir and joint reservoirs operation charts of the cascade power
stations increase power generation, abandoned water of reservoirs will always occur and reduce water
energy efficiency. Therefore, based on the optimal models in Reference [24], preventing the occurrence
of abandoned water at the downstream cascade power stations is as important as determining water
supply and energy efficiency.

The results from schemes 5 and 6 show that abandoned water of cascade reservoirs often occur
before and during the flood season (June–November). Therefore, the Project in upstream should
increase the outflow constraint in the joint operation model during this period to avoid the cascade
power stations generating excessive abandoned water

The operation process for the whole system includes two steps: (1) Obtaining reservoir outflow
series for the joint optimal operation of the Project. These series are also taken as the inflow of the
Shiquan reservoir. (2) Joint operation chart 3 is regarded as another fitness function. The model locates
the series in which the corresponding power generation process resulted in higher levels of generated
power coupled with lower levels of abandoned water. Then, following iterative optimization, an
operation process for the Project is determined.

Figure 7 shows the monthly average change process of water abandoned of the cascade power
stations in condition of the operation of the Project is optimized. When the Project operates in optimal
situation, and the cascade power stations operate according the Chart 3, the operation results of the
cascade power stations show: (1) The average annual of abandoned water would decrease by about
150 million m3 and power generation would increase by 5 million kWh. (2) The Project would reduce
the water level pressure for the downstream reservoirs before the flood season, and the abandoned
water of Shiquan, Xihe, and Ankang power stations would decrease by 5.19%, 6.67%, and 5.33%,
respectively. (3) The abandoned water from Shiquan and Xihe reservoirs always occurs at the same
time, and the largest amount of abandoned water is July. These three reservoirs occur abandoned
water in June and September at the same time, and Ankang reservoir has the largest abandoned water
before the flood season (June).

The results for the joint operation model of the Project are suitable for the operation of the Project
itself (data not shown in detail). Additionally, this section focuses on the operation rules of the Project,
which are conducive to the operation of the downstream power stations.

Figure 8 shows that the differences between the two operation charts are mainly in terms of the
hedging rule curve for abandoned water and the combined water supply. (1) The modified hedging
rule curve for abandoned water shifts upward about 3 m from March–October compared with the
initial curve. This part is defined as the operation area for preventing the abandonment of water. If
the SHK water level at time t is in this location, then the SHK reservoir would be regarded as the first
water resource to supply water and the HJX reservoir is the second. Otherwise, the HJX reservoir
would still undertake the majority of the water supply task and reduce the probability that of water
abandonment at the downstream power plants. (2) The modified hedging rule curve for abandoned
water shifts down about 10 m from May–November compared with the initial curve. This part is
defined as the guaranteed operation area of combined water supply. If the SHK water level at time t is
in this location, then the HJX reservoir would be regarded as the first water resource. This change
increased the probability of the HJX reservoir supply water for intake areas.

The water transferred scale of the Project is limited by the adjustable water volume which is
approved by the government. Therefore, the basis of the Project operation chart change is in the range
of adjustable water volume, what’s more, HJX reservoir must take on more water supply tasks, and
the SHK reservoir would mainly regulate the main stream runoff through the water supply. These
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measures have been validated in the model to mitigate the abandoned water of the downstream
reservoirs. This also means that, if the effects of human activities are inevitable, then the optimal
operation of the whole system could reduce the impact.

Figure 8. The modified operation chart for the Sanhekou reservoir of the Project. The original
interpretation of the operation chart is listed in the supplementary material.

5. Conclusions

Many conventional operation rules for reservoir operations no longer apply to the current
hydrological environment, which has been affected by climate change and human activities. Therefore,
revised strategies are urgently needed for the optimized operation of cascade reservoirs. In the present
study, the influence of climate change and human activities is analyzed and procedures are formulated
to develop revised strategies. We consider three runoff series conditions including initial runoff, only
affected by climate, and affected by both climate and human activities. A simulation model is applied
to analyze the effects on power generation under four schemes, and a modified regular operation
chart is generated through scheme 4. An optimal model for operation charts based on the simulation
model is constructed to generate single and joint optimal operation charts for cascade power stations
under the influence of climate change and human activities. We also attempt to change the influence of
human activities by optimizing the rules of the Project to reduce its influence on power stations in the
downstream. The primary conclusions are as follows:

(1) Both climate change and human activities affect the operation of cascade power stations. At
the same time, the effect on power generation is greatest when climate change and human activities
were combined, followed by climate change alone, and finally human activities alone. Compared
with the initial condition, corresponding power generation decreases by 25.71%, 17.95%, and 12.83%,
respectively. Furthermore, owing to geographical location and its own storage capacity, the Shiquan
reservoir is the most sensitive to these changes.

(2) Three kinds of revised strategies for the cascade power stations are proposed herein, mainly by
modifying existing operation charts. The three modified operation charts include a regular chart, an
optimal single operation chart, and an optimal joint operation chart. Compared with the conventional
chart, all three modified charts are preferable for the cascade power stations. The optimal joint
operation chart shows better adaptability to the changes in runoff and the most evident increase in
power generation (47 million kWh; RMB 11.25 million).

(3) Optimizing the upstream Project and slowing down its impact on the downstream power
stations is another revised strategy proposed herein. If the Project works as in Figure 8, then the average
annual abandoned water of the downstream power stations would decrease by about 150 million m3,
and the abandoned water of Shiquan, Xihe, and Ankang power stations would decrease by 5.19%,
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6.67%, and 5.33%, respectively, which could increase power generation by 5 million kWh. The Project
can also reduce the water level pressure before the flood season for the downstream power stations.

The present study has practical significance for the efficient operation of cascade hydropower
stations and is informative for reservoir operation theory under changing environmental conditions.
In future, studies should focus on power generation operations considering river ecology to solve the
conflicting objectives of ecological benefit and power generation under changing environments.

6. Supplementary Material

6.1. The Multi-Objective Optimal Model for the Project

The multi-objective optimal model for the Project considers energy consumption, power generation,
and water supply.

(1) Multi-objective function:

minF(x) =
(
Epump, Epower, W

)
(25)

Objective one: minimizing energy consumption

min Epump = min

⎡⎢⎢⎢⎢⎢⎣
T∑

t=1

M∑
m=1

Pm
pump(t)·Δt

⎤⎥⎥⎥⎥⎥⎦ (26)

M∑
m=1

Pm
pump(t) =

M∑
m=1

g·qm
pump(t)

ηm
pump

(27)

Objective two: maximizing power generation

max Epower = max

⎡⎢⎢⎢⎢⎢⎣
T∑

t=1

M∑
m=1

Nm
power(t)·Δt

⎤⎥⎥⎥⎥⎥⎦ (28)

M∑
m=1

Nm
power(t) =

M∑
m=1

k·Qm
power(t)·h(t) (29)

Objective three: meeting water demand

W =
T∑

t=1

M∑
m=1

Qs(m, t)·Δt (30)

where Ω represents the set of optimal solutions for multi-objective operation models, Epump represents
the total energy consumption of two pump stations in an operation series, Epower represents the total
power generation of two power stations in an operation series, W represents the transferred water
quantity. T, M, and Δt represent the same as in the simulated operation model; Pm

pump(t) represents the
power from pump station m consumed in the period t, qm

pump(t) represents the water flow of pump
station m transferred in the period t, ηm

pump represents the efficiency of pump station m, g represents
gravity; Nm

power(t) represents the power generation of power station m generated in the period t,
Qm

power(t) represents the power flow of power station m used in the period t, h(t) represents the water
head of reservoir m in the period t, and k represents the power coefficient of power station m.

(2) Operational constraints

The operational constraints were as follows:
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1) Water balance

Vm(t + 1) −Vm(t) =
[
Qm

I (t) −Qm
O(t) −Qm

S (t)
]
·Δt (31)

2) Water level
Z2

min ≤ Z2(t) ≤ Z2
max(t) (32)

3) Transferable water quantity
M∑

m=1

Qm
S (t)·Δt ≤Wqty

max(t) (33)

4) Maximum overflow
Qm

power(t) ≤ Qm
max (34)

Qtunnel(t) ≤ Qtunnel
max (35)

5) Output of power station
Nm(t) ≤ Nm,max

installed (36)

N1
dry(t) ≥ N1

f irm (37)

6) Power of pump station
Pm(t) ≤ Pm,max

installed (38)

where Vm(t) represents storage capacity of the m reservoir in t period (108 m3); Qm
I (t), Qm

O(t), and
Qm

S (t) represent the inflow runoff, outflow runoff, and water transferred flow of the reservoir m
in period t, respectively (m3/s); Z2(t) represents the water level of the SHK reservoir in period t,
Z2

min represents the dead water level and Z2
max(t) represents the highest water level, including the

flood control level during flooding season and the normal high water level during non-flooding
seasons (m); Wqty

max(t) represents the maximum transferable water quantity of the Han River in
period t (108 m3); Qm(t) represents the outflow of the power station m in period t, Qm

max represents
the maximum outflow of the power station m (m3/s); Qtunnel(t) represents the average transferred
flow in the Qinling tunnel in period t, Qtunnel

max represents the maximum water transfer capability
of the Qinling tunnel (m3/s); Nm(t) represents the output of power station m in period t, Nm,max

installed
represents the installed capacity of power station m, N1

dry(t) and N1
f irm represent the output in the

dry season and the firm power of HJX power station, respectively; Pm(t) represents the power
consumption of the pump station m in period t, Pm,max

installed represents the installed capacity of pump
station m. All variables were non-negative.

6.2. The Original Interpretation of the Operation Chart for the Project

The operation chart (Figure 8) includes four parts defined as follows:

(1) Part I

This part was defined as the operation area for preventing the occurrence of abandoned water. If
the SHK water level at time t was in this location, then to save energy, the SHK reservoir would be
regarded as the first water resource and its pump station would not work in this moment. At the same
time, the HJX reservoir would be regarded as an auxiliary water resource. If the SHK reservoir is able
to meet the water demands of the Guanzhong area, then the HJX pump station would not be needed,
otherwise it would need to start supplying water.

(2) Part II

This part was defined as the guaranteed operation area for combined water supply. If the SHK
water level at time t was in this location, then the HJX reservoir would be regarded as the first water
resource and its pump station should supply the Guanzhong area and the SHK reservoir as much as
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possible. If the water in HJX is not sufficient, then the SHK reservoir would start to supply. In this part,
the Project should meet the water demand of the Guanzhong area.

(3) Part III

This part was defined as the control operation area of combined water supply. In this part, the
HJX and SHK reservoirs would supply the Guanzhong area together, and the HJX reservoir would
not supply the SHK reservoir. The actual water supply of the Project would not meet the water
demand because the actual water demand was applied according to the modified ratios set by the
decision makers.

(4) Part IV

This part was defined as the minimum capacity water supply operation area. In this part, the HJX
and SHK reservoirs both supply water according to their minimum capacity, and the HJX reservoir
stops supplying the SHK reservoir.
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Abstract: Performance of a newly developed semi-distributed (grid-based) hydrological model
(satellite-based hydrological model (SHM)) has been compared with another semi-distributed soil and
water assessment tool (SWAT)—a widely used hydrological response unit (HRU)-based hydrological
model at a large scale (12,900 km2) river basin for monthly streamflow simulation. The grid-based
model has a grid cell size of 25 km2, and the HRU-based model was set with an average HRU
area of 25.2 km2 to keep a balance between the discretization of the two models. Both the model
setups are calibrated against the observed streamflow over the period 1977 to 1990 (with 1976 as
the warm-up period) and validated over the period 1991 to 2004 by comparing simulated and
observed hydrographs as well as using coefficient of determination (R2), Nash–Sutcliffe efficiency
(NSE), and percent bias (PBIAS) as statistical indices. Result of SHM simulation (NSE: 0.92 for
calibration period; NSE: 0.92 for validation period) appears to be superior in comparison to SWAT
simulation (NSE: 0.72 for calibration period; NSE: 0.50 for validation period) for both calibration
and validation periods. The models’ performances are also analyzed for annual peak flow, monthly
flow variability, and for different flow percentiles. SHM has performed better in simulating annual
peak flows and has reproduced the annual variability of observed streamflow for every month of
the year. In addition, SHM estimates normal, moderately high, and high flows better than SWAT.
Furthermore, total uncertainties of models’ simulation have been analyzed using quantile regression
technique and eventually quantified with scatter plots between P (measured data bracketed by the
95 percent predictive uncertainty (PPU) band) and R (the relative length of the 95PPU band with
respect to the model simulated values)-values, for calibration and validation periods, for both the
model simulations. The analysis confirms the superiority of SHM over its counterpart. Differences in
data interpolation techniques and physical processes of the models are identified as the probable
reasons behind the differences among the models’ outputs.

Keywords: grid-based; HRU-based; SHM; SWAT; large scale basin

1. Introduction

Distributed hydrological models, with varying degree of complexity, are essential tools for
modeling the spatial variability effects of basin characteristics and forcing variables (e.g., precipitation)
on streamflow [1–4]. These models divide spatially heterogeneous space (basin or watersheds) into a
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number of near homogeneous units following various discretization schemes including: representative
elementary area (REA) [5], grouped response unit (GRU) [6], representative elementary watersheds
(REW) [7], hydro-landscape unit [8], triangular irregular network (TIN) [9], hydrological response unit
(HRU) [10] and grid-based approaches [11]. Among these discretization schemes, HRU and square
grid approaches are the most commonly used in hydrological modeling.

HRUs are formed by lumping individual areas of similar soil, topography, and land-use altogether
within a sub-basin. However, there is no interaction between the HRUs, and these are routed
individually to the sub-basin outlet [12,13]. Arnold et al. [13] studied the effect of HRU discretization
on streamflow and concluded that many HRUs are too big to resolve into individual topographic
positions since they occupy the landscape continuum from the divide up to valley bottom. They
also identified that the impact of an upslope HRU management on a downslope HRU cannot be
assessed. Furthermore, though the HRU-based approach is simple and computationally efficient,
spatial information from high-resolution land-use or soil maps can be lost depending on the scale of
the HRUs. On the other hand, grid-based discretization scheme uses aggregated spatial variations over
each grid. The use of smaller HRUs, instead of grid cells, may yield similar results but incorporating
raster data into the HRU based approach would require data transformation from simple grid geometry
to a patchy geometry of irregular polygons. Therefore, a grid-based approach appears better to use to
avoid the inconvenience.

To describe the basin topography accurately, the grid size is considered up to an acceptable range
while keeping the trade-off between model simulation time and simulation accuracy to a minimum.
Though, in theory, modeling with a finer grid cell resolution is expected to yield better results because
of better-resolved model input data (e.g., rainfall, topography, land cover, etc.), it may not always
happen [14]. Therefore, several studies have focused on examining the impact of grid cell size on
model simulation results and model simulation time to find out the optimum resolution of grid cells
for a particular modeling study. Finnerty et al. [15] illustrated the changes in water budget with
continuous simulations at various spatial scales, ranging from 4 km × 4 km to 256 km × 256 km.
Wood et al. [16] used a 1◦ × 1◦ gridded structure for modeling continental-scale basins. Kuo et al. [17]
applied a variable-source-area hydrological model to grid sizes ranging from 10 to 600 m and observed
increasing misrepresentation of the curvature of the landscape with increasing grid size. In modeling
the 375,000 km2 Senegal River basin, Andersen et al. [18] used grid cell resolution of 4 km × 4 km.
Booij [19] compared three versions of Hydrologiska Byråns Vattenbalansavdelning (HBV) model [20]
with different spatial resolutions in the Meuse river basin in Europe and found that the version with
finer resolution reproduced a slightly improved average and extreme discharge behavior at the basin
outlet in both calibration and validation periods. Recently, Haghnegahdar et al. [21] carried out a
modeling study in a 2700 km2 area with model grid cells of 15 km × 15 km resolution.

The effect of different spatial discretization schemes on streamflow simulation has been studied by
researchers. For example, Abu El-Nasr et al. [22] assessed performances of fully distributed grid-based
MIKE Systeme Hydrologique Europeen (SHE) and the semi-distributed HRU-based SWAT and showed
that MIKE SHE can predict the overall variation of stream flow slightly better. There are more examples
of studies investigated utility of different grid-based models and compared results with an HRU
based SWAT model [23–30]. Arnold et al. [13] used a modified SWAT model, with landscape routing
method, to compare modeling results, under four discretization methods: lumped, HRU, catena, and
grid. The comparison showed that a high-resolution grid approach would include the impact of an
upslope grid cell on a downslope grid cell and provide accurate spatial detailed output. Comparing
SWAT model performances with HRU and grid-based structures, Pignotti et al. [31] concluded that the
grid-based model under predicts streamflow from 5% to 50% with respect to the usual HRU-based
model. Surfleet et al. [32] compared two HRU-based models namely the precipitation–runoffmodeling
system (PRMS) [33] and groundwater and surface-water flow (GSFLOW) with the grid-based variable
infiltration capacity (VIC) model for future climate change analysis and concluded that the future
changes can quantitatively be attributed not only to the scale of the models but also to the ability of
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models to represent hydrological processes. Findings of these various studies also pointed out that
model simulation results also vary depending on several factors other than the spatial discretization
scheme. These factors include the physiographic characteristics of the basin, seasonality of precipitation,
season of the year, and dominating runoff producing mechanisms and, thus, emphasize the uncertainty
of analysis of model simulation results for successful comparisons of different hydrological models in
a particular study (e.g., [34,35]).

Keeping this in mind, this study aims at in-depth inter-comparison of simulation results of
two state-of-the-art semi-distributed hydrological models, namely the satellite-based hydrological
model (SHM) and soil and water assessment tool (SWAT), under similar discretization scale, and
uncertainty related to the simulations [36,37] in a large scale (>1000 km2) [13,36] sub-tropical river
basin, namely Baitarani. The idea behind the similar discretization scale is to reduce the effect of
different discretization schemes of the two models and analyze the effect of other factors on the
streamflow simulation.

The remainder of this paper is organized as follows. The following section presents the description
of the study basin and data used in the study. A description of the models along with sensitive
parameters employed in the study is provided in Section 3. The methodologies of model setup,
calibration, and validation procedure, as well as the consequent data analysis (including uncertainty
analysis), are outlined in Section 4. The results are presented and discussed in Section 5. The final
section, Section 6 provides conclusions.

2. Study Area and Data

The study has been performed in Baitarani river basin (12,900 km2) in India which is bounded
between 20◦35′ N to 22◦15′ N latitude and 85◦10′ E to 87◦03′ E longitude (Figure 1). It comes within
the sub-tropical monsoon climate zone [38] and receives an annual rainfall of about 1450 mm (Annual
Report, 2011-12, 2011). Almost 80% of the annual rainfall occurs during the four months of south-west
monsoon season (June to September) that generates heavy flow and creates floods in lower reaches [39].
Daily temperature varies from 5 ◦C to 47.5 ◦C. The elevation of the basin ranges from 10 m to 750 m
above mean sea level. Soils of this area vary from rich red loamy to gravely detritus.

For a consistent comparison of performances, the same datasets were used in SHM and SWAT
models. Daily Rainfall and daily maximum and minimum temperature have been obtained from the
India Meteorological Department (IMD), Pune at 1◦ × 1◦ resolution. Data have been interpolated to
5 km × 5 km resolution by using bi-linear interpolation technique to use as input into the SHM. Soil and
land use land cover (LULC) maps were collected from the Food and Agriculture Organization (FAO)
website (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-
database-v12/en/) at 1 km × 1 km scale. The digital elevation model (DEM) of 30 m × 30 m resolution
was taken from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
website (https://asterweb.jpl.nasa.gov/gdem.asp). All the static information (soil map, LULC map, and
DEM) have been resampled into 5 km × 5 km resolution to use in the SHM. The weather database of
SWAT is developed using the weather generator (WXGEN) model using the closest station scheme [40].
Observed streamflow data, at Anandpur gauging station (21.21◦ N, 86.12◦ E), were collected for the
period of 1977 to 2004 from the Central Water Commission (CWC), Bhubaneswar, India.
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Figure 1. Index map of Baitarani river basin showing streamline and grid cells of SHM.

3. Comparative Discussion on SHM and SWAT

In this section, short descriptions of the SHM and SWAT are provided (Sections 3.1 and 3.2,
respectively). Then the identified sensitive parameters of both the models, which have been used to
calibrate the models, are discussed in Section 3.3.

3.1. Description of the SHM

The SHM works on 5 km × 5 km spatial grid resolution and properties at the center of a cell
are assumed to be the properties of the cell. SHM has five modules: surface water (SW), forest (F),
snowmelt (S), groundwater (GW), and routing (ROU). SHM grid cells corresponding to forest and
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snow land cover are modeled using the F and S modules, respectively; whereas other grid cells are
modeled using the SW module.

In the SW module [41,42], the Soil Conservation Service (SCS) curve number (CN) method [43]
is used to estimate the surface runoff along with the Hargreaves method [44] to estimate the
potential evapotranspiration (PET). Soil moisture is estimated by using the water balance technique.
The soil profile is considered as a single-layered zone of 300 mm, and moisture-holding and
moisture-transmitting characteristics of the soil layer and underlying layer are considered to account
for the soil moisture. Infiltrated water wets the soil layer, and excess water from the maximum
capacity (saturation) contributes after percolation to GW module. The soil moisture is depleted by
evapotranspiration, at a potential rate or actual rate, depending on soil moisture condition.

The F module serves, based on water balancing and the dynamics of the subsurface, to provide
output in the form of runoff, soil moisture, evapotranspiration, and contribution to groundwater
using the technique and parameters stated in [45]. Subsurface is reckoned on having soil matrix and
macropores of main bypass and internal catchment types. The main bypass directly contributes to
groundwater. Soil matrix is considered of having three layers, which are important with respect
to water balance and change in soil moisture. After infiltration, the saturation of three layers gets
started from the top in batch, and after complete saturation of the three layers, the excess water goes
to groundwater. After a precipitation event, runoff generation occurs according to the antecedent
moisture conditions in the subsurface.

The S module determines the snow density from snow albedo [46] for estimating snowmelt depth
by using two different algorithms, viz., the temperature index algorithm and radiation-temperature
index algorithm. Since the study area does not have any snow land cover; the S module is not
considered in this study.

The GW module uses the contribution from SW, F, and S modules and generates baseflow
following the water level variation process described in [47]. The resultant baseflow along with the
surface runoff generated from other modules is routed up to the outlet as streamflow.

In SHM, a distributed routing technique [41], termed as time-variant spatially distributed direct
hydrograph (SDDH) travel time method [48], was adopted. It requires the flow path, which is derived
from DEM. The downstream cell, in the direction of the steepest descent, is defined from the DEM by
the use of the flow direction geographic information system (GIS) function with a unique connection
from each cell to the watershed outlet. This process produces a cell network to present the flow paths.
The threshold number of upstream cells is set equal to two (based on trial and error) to delineate the
channel network for the watershed. Any cell with a number of upstream draining cells equal to or
greater than the threshold value is considered to be a channel cell, whereas others are considered as
overland flow cells. The key point of this approach is the travel time estimation. SHM uses MySQL
(open source software) as a relational database management system (RDBMS).

3.2. Description of SWAT

SWAT is used for simulation of the water cycle and its corresponding fluxes of energy and matter
(e.g., sediment, nutrients, pesticides, and bacteria) as well as the impact of management practices
on these fluxes at basin scale [49]. SWAT uses Microsoft Access as RDBMS. SWAT, however, first
discretizes the watershed into a network of irregular sub-basins and then divides each sub-basin into
HRUs. The model includes components for hydrology, sedimentation, crop growth, nutrients, and
agricultural management [11]. A detailed description of all components of the model can be found in
Arnold et al. [49] and Neitsch et al. [10].

In the present study, SWAT has been used with the Soil Conservation Service Curve Number
(SCS-CN) method as a runoff generation technique along with the Hargreaves method to determine
PET. SWAT calculates baseflow contribution to streamflow from groundwater depending on the water
balance approach in a shallow aquifer [49]. In SWAT, runoff is first computed separately for each
of the HRUs within the sub-basin and then routed through the stream network to obtain the total
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streamflow for the watershed. Since the study area does not have snow-covered land, the snow-melt
runoff simulation procedure of SWAT is not discussed here.

3.3. Sensitive Parameters of Both the Models Used for Calibration

The total number of parameters of the two models varies in number for streamflow analysis.
Three parameters of SHM and seven parameters of SWAT have been found sensitive for streamflow
simulation (Table 1), in this study.

During calibration of SHM, parameters of SW and ROU modules have been changed manually
(since an auto-calibration option is not available). For this purpose CN, Manning’s roughness coefficient
for overland cell (no), and Manning’s roughness coefficient for channel cell (nc) have been used as
sensitive parameters [50]. The parameters of the F and GW modules have been set at their default
values as recommended by the developers. The theoretical ranges of sensitive parameters are given in
Table 1. CN is responsible for runoff generation in the SW module, and no and nc affect the routing
procedure of generated runoff and baseflow from a grid cell up to the outlet of a basin. Using calibrated
values of the sensitive parameters, SHM simulates monthly streamflow at Anandpur gauging station
of Baitarani basin.

For the SWAT model, seven sensitive parameters are identified (Table 1) for model calibration
based on the analysis of parameter sensitivity using the Latin hypercube-one factor at a time (LH-OAT)
method [51]. Curve number (Cn2) and baseflow recession constant (Alpha_bf) are responsible for
runoff generation; delay time for aquifer recharge (Gw_delay) and threshold water level in a shallow
aquifer for base flow (Gwqmn) are responsible for baseflow generation, and the soil evaporation
compensation coefficient (Esco) is responsible for soil evaporation losses. Manning’s n for the main
channel (Ch_N2) and Effective hydraulic conductivity of soil (Ch_K2) are responsible for controlling
river flow routing. Table 1 summarizes the sensitive parameters of both the models with corresponding
hydrological processes, estimation methodology and their theoretical ranges. The table also focuses on
the spatial variability of the sensitive parameters.
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4. Methodology

4.1. Model Setup, Calibration, Validation

At first, both the models were setup with the same input data. For SHM setup, the Baitarani
basin is represented by 498 grid cells of 25 km2. The threshold values of LULC, soil, and slope were
taken, respectively, 1%, 1%, and 2% for the development of HRUs in the SWAT model so that the
average area of HRUs is around 25 km2 and two discretization schemes come in a balanced scale.
This assumption led to having 312 sub-basins and 511 HRUs in the Baitarani basin. However, the
smallest HRU has an area of 1.9 km2, and the largest HRU has an area of 52 km2 with an average area
of 25.2 km2. Both the models were then calibrated (1977–1990) and validated (1991–2004) on a monthly
basis. The performance evaluation of both the models has been done by comparing observed and
simulated streamflows by using graphical interpretation and statistical indices, namely coefficient of
determination (R2), Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) for the calibration and
validation periods, separately. The used statistical analyses are discussed below.

4.1.1. Nash Sutcliffe Efficiency (NSE)

It is defined as one minus the sum of the absolute squared differences between observed and
simulated values normalized by the variance of observed values [53]. It varies from −∞ to 1, 1 being
the perfect fit. It is chosen because of its extensive use in the field of hydrology, which facilitates
comparison between different studies. However, it is highly sensitive to peak flows resulting in
negligence of low flows.

NSE = 1−
∑N

i=1(Qo −Qsim)2

∑N
i=1

(
Qo −Qo

)2 (1)

where Qo is the observed streamflow; Qsim is the simulated streamflow; Qo is the average observed
streamflow and N is the number of events in the time-series of streamflow.

4.1.2. Coefficient of Determination (R2)

The coefficient of determination (R2) describes the proportion of the total variance in the observed
data that can be explained by a model. It ranges from 0 to 1, with higher values indicating better
agreement, and is given by:

R2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
∑n

i=1

(
Qo −Qo

)(
Qsim −Qsim

)
{∑N

i=1

(
Qo −Qo

)}0.5{∑n
i=1

(
Qsim −Qsim

)}0.5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
2

(2)

where, Qsim is the average simulated value of streamflow.

4.1.3. Percent Bias (PBIAS)

It measures the average tendency of the simulated data to be larger or smaller than their observed
counterparts. Its ideal value is 0. A positive value indicates model underestimation bias and a negative
value indicates model overestimation bias.

PBIAS =

∑n
i=1(Qo −Qsim) × 100∑n

i=1 Qo
(3)

4.2. Analysis of Results

After calibration and validation, the model-simulated streamflows were analyzed to compare
model performances for both the periods with respect to annual peaks. Then, inter-annual variability
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of simulations of both the models for each month of the year, for the total period of analysis, were
analyzed. Eventually, the capability of both models was compared using the five percentile series
derived from observed data. Therefore, to understand the difference in the capability of the models
to simulate different streamflow ranges in an improved manner, four percentile points of observed
monthly streamflow, S5 (5th percentile), S25 (25th percentile), S75 (75th percentile), and S95 (95th
percentile), were used to divide the overall flow range into five percentile series: low flows (<S5:
<139.95 m3/s), moderately low flows (S5–S25: 139.95 m3/s to <349.4 m3/s), normal flows (S25–S75:
349.4 m3/s to <6590 m3/s), moderately high flows (S75–S95: 6590 m3/s to <20,760 m3/s), and high flows
(≥S95: ≥20,760 m3/s). Finally, uncertainty analysis has been performed of the models.

Uncertainty Analysis

Using quantile regression, a stochastic approach [54], uncertainty from all sources was analyzed,
as a whole and for monthly simulation of both the models at Anandpur gauging station for both the
calibration and validation periods. The observed, simulated, and residual values of streamflow are
linked with the following equation:

Q (t) = Q̂(t) + e(t) (4)

where Q(t) is the observed daily streamflow, Q̂(t) is the simulated streamflow, and e(t) is the residual.
The method assumes a functional relationship between residuals and estimates in the Gaussian

domain, i.e., normalized quantile streamflow (NQS) and normalized quantile residual (NQR). A linear
relation between NQS and NQR was also used in previous studies [55,56]. Hence, NQR may be
expressed as:

NQR = a × NQS + b (5)

Different quantile regression lines may be obtained by minimizing the absolute bias by assigning
different weights to positive and negative residuals in the Gaussian domain. Absolute bias can be
considered for this purpose as an objective function (OF) which is expressed mathematically as:

OF = Min
∑

ρτ(mod[NQR− (a ×NQS + b)]) (6)

where a is the slope, b is the intercept, and ρτ is the quantile regression function which pushes the
regression line to the desired location.

To estimate the streamflow corresponding to a given confidence limit, the simulated streamflow is
transformed to the Gaussian domain as NQS first, and then, the error in the Gaussian domain, NQR
is estimated using the regression line (Equation (5)). The estimated error, NQR is transformed back
to the original domain using the pre-estimated mean and standard deviation of the residual. Finally,
the estimated residual is added to the daily simulated streamflow to obtain the streamflow which
includes uncertainty. Regression lines were used to analyze uncertainty in the simulated streamflow
for different confidence intervals. The slope and intercept of these lines are estimated by Equation (6)
using the calibration period data. Furthermore, to verify the correctness of error models, the models
were applied for both the calibration and validation periods.

Moreover, to have quantitative realization of uncertainty, P and R values have been calculated,
and P vs. R plot has been generated for both the calibration and validation periods.

P-value represents the measured data bracketed by the 95 percent predictive uncertainty (PPU)
band [57]. P-value has been determined by the following equation:

P− value =
qin

N
(7)

where, qin are the total number of observed data points bracketed by the 95PPU band, N is the total
number of observed data points.
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R-value expresses the relative length of the 95PPU band with respect to the model simulated
values [57]. R-value has been determined by the following equation:

R− value =
dx

σx
(8)

where σx is the standard deviation of the model simulation x. dx is the average distance between the
upper and lower limit of the 95PPU band. dx has been calculated using the following equation:

dx =
1
k

k∑
l=1

(
qU − qL

)
l

(9)

where l is counter, k is the total number of simulated data points for streamflow q, qU and qL are the
upper and lower limit of the 95PPU band.

Both the values vary between 0 and 1. P-value equal to 1 and R-value 0 represent the best
model simulation with no uncertainty. In the P-Q plot, this point can be identified as the point of no
uncertainty. Since to reach the point of no uncertainty is nearly impossible to achieve for any model
simulation as a result of model uncertainties and measurement errors, the simulation nearest to the
point may be considered as the simulation with the lowest uncertainty.

5. Results and Discussion

5.1. Calibration and Validation of the Models

Comparison between observed and models’ simulated monthly streamflow are shown in Figure 2a
for the calibration period and in Figure 2b for the validation period. Figures show good agreement
among observed and simulated streamflow by both the models. However, SHM simulates the temporal
pattern of observed streamflow relatively better in comparison to the SWAT model in both calibration
and validation periods including the reproduction of peak flows. To strengthen this observation 1:1
scatter plots, between observed and models’ simulations for the calibration and validation periods,
have also been used (shown in Figure 2a,b). From the scatter plots it is evident that SWAT simulated
streamflow deviates considerably from the observed streamflow with respect to the SHM simulated
counterpart during both the calibration and validation periods. Moreover, scatter plots also depict that
SWAT underestimates high flow more in comparison to SHM.

The goodness-of-fit statistics of both the models on monthly calibration and validation are shown
in Table 2. Generally, if R2 > 0.6, NSE > 0.5, and −25% ≤ PBIAS ≤ 25%, the model simulation results are
judged as satisfactory [58,59]. Thus, both SHM and SWAT models have produced satisfactory model
simulations for both the calibration and validation periods in the study area. However, the monthly
streamflow simulated by SHM shows better fit with the observed monthly flow in comparison to
the SWAT simulated streamflow during the calibration as well as validation periods. SHM shows
similarity in results during both the calibration and validation periods with a slightly reduced PBIAS
during validation than calibration period, thus, improvement in water balance dynamics. On the other
hand, SWAT shows considerable deterioration in results during the validation period in comparison
to the calibration period which is evident from the values of R2 and NSE (Table 2). The results, thus,
show improved performances of both SHM and SWAT simulations in comparison to previous studies
performed at the Anandpur sub-basin [60–65].
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Table 2. Calibration and validation performances of the models at a monthly scale.

Period Statistics SHM SWAT

Calibration
R2 0.93 0.75

NSE 0.92 0.72
PBIAS 11.62 2.01

Validation
R2 0.93 0.58

NSE 0.92 0.50
PBIAS 8.67 −1.4

5.2. Analysis to Compare Annual Peaks

To perform comparison of the annual peak simulation capabilities of both the models, observed
and simulated annual peaks (from both the models) for the calibration (Figure 3a) and validation
(Figure 3b) periods have been plotted against the 1:1 line. Figure 3 depicts that SHM reproduces annual
peaks better than SWAT. Therefore, SHM can be a good option for streamflow simulation for extreme
rainfall events as well as analyzing flooding possibility in the region. Findings are well comparable
with the study performed by Baratti et al. [66] in which they estimated annual flood frequency for the
same region.
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Figure 3. Comparison between observed and models simulated annual peaks during (a) calibration
and (b) validation period.

5.3. Inter-Annual Variability of Model Simulations

To understand the difference in models’ capabilities of producing inter-annual variability of
monthly streamflow, comparison between observed and simulated monthly streamflow from both
the models have been analyzed and are shown in Figure 4. From the figure, it is evident that SHM
performs satisfactorily in simulating streamflow during the months of June to October (monsoon)
season with the best simulation identified for the month of August throughout the analysis period. In
addition, it is also evident that SHM reproduces observed streamflow better for all the months over the
analysis period in comparison to SWAT streamflow.
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Figure 4. Comparison between observed and simulated monthly streamflow for each month of the
year over the total period (calibration and validation) of analysis.

The differences in the results of two models for inter-annual variability on a monthly scale for the
total period of analysis is mainly attributable to two reasons: different input data interpolation schemes
and variation in modeling processes. First, meteorological data have been bi-linearly interpolated into
5 km × 5 km to run SHM and SWAT model and have used the meteorological data from the closest
IMD grid to simulate monthly streamflow in a sub-basin instead of interpolation [67] (as stated earlier
in Section 2). Different input data interpolation schemes and variation in spatial discretization create
the difference in the spatial distribution of meteorological input for the models [30]. Second, apart from
SCS-CN of the SW module, no modeling process of SHM matches with the SWAT model. However,
the modeling process combination of SHM proved to be better in monsoonal months in comparison
to SWAT; though modeling processes of both models may require improvement for the low rainfall
months. In particular, water level variation approach of baseflow generation, in SHM, and water
balance approach of baseflow calculation, in SWAT, may be compared with separate analysis for the
non-monsoonal months, for the purpose. Furthermore, better calibration may also improve results for
months with low rainfall.
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5.4. Comparison of Model Simulations for Percentile Flows

The models’ performance has also been analyzed in simulating streamflow of various magnitudes
by considering five percentile classes (Section 4.2). The respective simulated flows by both models have
been compared with that of observed streamflow by using scatter plots for the calibration (Figure 5a)
and validation periods (Figure 5b). The performance of SWAT in simulating moderately low flows
during the calibration period is better than simulating other streamflow percentiles during both the
calibration and validation periods. SHM performs better for simulating normal, moderately high,
and high flows during both the calibration and validation periods. Overall, both the models show an
extremely poor performance in simulating low flows during both the periods and moderately low
flows during the validation period.

The variation in percentile flow estimation of the models can also be attributable to different
input data interpolation schemes. However, SCS-CN plays a major role in both models. Therefore,
streamflow simulation may not be appropriate when the rainfall amount is small [30,49,68]. Similar
results have been identified for the non-monsoonal months during analysis of inter-annual variability
of the models, in the previous section. In addition, the different runoff generation technique of the F
module and baseflow generation technique of the GW module of SHM (stated earlier in Section 3.1)
with respect to techniques used in the SWAT model are also responsible for the different results of the
months. In particular, the soil matrix and antecedent condition of the F module may play a role in the
poor model simulation of SHM for low and moderate low flows. Moreover, the routing technique of
SHM seems to be the reason behind the upper hand in simulating high flows in comparison to SWAT,
by capturing the travel time of the streamflow in a better manner.

5.5. Uncertainty Analysis of Monthly Simulations

Figure 6a,c present the 95PPU uncertainty band for monthly simulation during the calibration
period. Figure 6e,g present the 95PPU uncertainty band for monthly simulation during the validation
period. Among them Figure 6a,e are for SHM simulations and Figure 6c,g are for SWAT simulations.
In addition, Figure 6b,d present the scatter plot of NQR and NQS along with two regression lines:
corresponding to upper and lower limits of 95% confidence interval (CI) and one corresponding to the
median for the calibration period. Figure 6b,d are for the SHM and SWAT simulation, respectively.
Figure 6f,h present the scatter plot of NQR and NQS along with two regression lines: corresponding to
upper and lower limits of 95% confidence interval (CI) and one corresponding to the median for the
validation period. Figure 6f,h are for SHM and SWAT simulation, respectively.

Figure 6a,c,e,g depict that most of the observed streamflow falls inside the defined bands, though
the amount is higher for SHM simulations (Figure 6a,c). Moreover, from Figure 6a,c,e,g it is also evident
that the width of 95PPU band is thinner for SHM simulations in comparison to SWAT simulations.
Thus, it can be inferred that SHM has less uncertainty in model simulations in comparison to SWAT
simulations. Figure 6b,d,f,h depict the relationship between residual and simulated streamflow in the
Gaussian domain and confirm that the simulated streamflow is able to capture 95% of the observed
streamflow during the calibration and validation periods for both the models. For estimating the
collective uncertainty, Dogulu et al. [69] supported the use of the quantile regression (QR) technique
due to its simplicity and linearity which has been used elaborately by Kumar et al. [70].
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P and R values based on the uncertainty analysis results of SHM and SWAT simulations for the
calibration and validation periods, respectively shown in Figure 7a,b, elaborate that SHM poses less
uncertainty in monthly simulation than SWAT model.

Though uncertainties from all sources have been counted in the QR uncertainty analysis technique,
spatial distributions of input data are different for the models due to different data interpolation
techniques and model structures of the two models. Although the models’ parameters take care of the
modeling processes during calibration, the spatial variation of input data may affect the uncertainty
of the models’ simulation significantly. The results of the uncertainty analysis also represent this
aspect and show that SHM represents the spatial variations of landscape characteristics and input data
more accurately.
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Figure 7. P-value vs. R-value for (a) calibration period and (b) validation period for the SHM and
SWAT model simulations.

6. Conclusions

SHM and SWAT models were used to simulate the monthly streamflow at Anandpur gauging
station of Baitarani basin for in-depth inter-comparison of the models’ performances. The SWAT model
was set to have an average size of the HRUs equal to 25.2 km2, (nearly equal to the grid cell resolution
of SHM, i.e., 25 km2) so that the two discretization schemes were in similar scale. Results showed
that although both SHM and SWAT have produced reasonable results, SHM performed better. To be
more specific, SHM performed better in simulating annual peak flows, and reproduced the annual
variability of observed streamflow for every month of the year. In addition, SHM estimates normal,
moderately high, and high flows better than SWAT. Uncertainty analysis of simulated streamflow
of both the models also supports the superiority of SHM model in comparison with SWAT model.
Possible impacts of the model structure were also identified for the results.

In summary, SHM produced better results in comparison to SWAT at the monthly scale with proof
of better model structure for the large research catchment. However, we cannot draw a conclusion that
grid-based hydrological modeling is better than the HRU based. More researches should be carried out
for comparing different discretization schemes for other Indian basins and other parts of the world.
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Abstract: Climate variability is strongly influencing hydrological processes under complex
weather conditions, and it should be considered to forecast reservoir inflow for efficient dam
operation strategies. Large-scale climate indices can provide potential information about climate
variability, as they usually have a direct or indirect correlation with hydrologic variables. This study
aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering
climate variability. For this purpose, time series and artificial intelligence models, such as
Seasonal AutoRegressive Integrated Moving Average (SARIMA), SARIMA with eXogenous variables
(SARIMAX), Artificial Neural Network (ANN), Adaptive Neural-based Fuzzy Inference System
(ANFIS), and Random Forest (RF) models were employed with two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-).
Several statistical methods, including ensemble empirical mode decomposition (EEMD), were used
to select the lagged climate indices. Finally, monthly reservoir inflow was forecasted by SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models. As a result,
the use of climate indices in artificial intelligence models showed a potential to improve the model
performance, and the ARX-ANN and AR-RF models generally showed the best performance among
the employed models.

Keywords: Climate variability; Large-scale climate indices; Reservoir inflow forecasting;
Ensemble empirical mode decomposition; Time series model; Artificial intelligence model

1. Introduction

Reservoir inflow forecasting is an essential task in dam operation and is strongly linked to water
resource planning and management. Reservoir inflow forecasting has become increasingly complex
and important due to changes in the frequency and magnitude of water-related disasters under climate
change. To better understand the responses to climate change, a large number of models have been
developed for more accurate and reliable inflow forecasting [1–9].

In the hydrological field, time series models are widely used to analyze the linear stochastic
progress of observed time series and forecast future time series. Based on AutoRegressive Integrated
Moving Average (ARIMA) family models proposed by [10], Seasonal ARIMA (SARIMA) and Seasonal
ARIMA with eXogenous variables (SARIMAX) models have been widely applied to model hydrological
time series considering seasonality [11–15]. Previous studies have successfully proved the applicability
of the SARIMA model following the Box and Jenkins procedures, because of the simple mathematical
structure, ideal representation of the statistical and correlation structures, and relatively small number
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of parameters [16]. In addition, hydrological variable forecasting has been performed using artificial
intelligence models since the artificial intelligence technique began to be increasingly developed
in the 1990s. The Artificial Neural Network (ANN) and Adaptive Neural-based Fuzzy Inference
System (ANFIS) models have been frequently used and showed good performance in hydrological
variable forecasting [1,17–23]. Since the ANN and ANFIS models consider both linear and nonlinear
processes of the observed time series, they were suggested as alternatives to traditional time series
models for the complex practice of hydrological variable forecasting. In addition to the above two
classic artificial intelligence models, a new type of machine learning method, i.e., Random Forest (RF)
model, has been recently introduced as a state-of-art artificial intelligence model in the hydrologic
field. The RF model has produced more accurate and stable predictions with the additional advantage
of handling nonlinear and non-Gaussian data series; therefore, it has been widely used in reservoir
operations [24–26].

Many studies have focused on comparing the forecasting performances of time series and artificial
intelligence models as numerous forecasting models begin to propose in recent decades [27–29].
Wang et al. [1] compared several artificial intelligence methods such as ANN, ANFIS, genetic
programming and support vector machine models for monthly river flow discharges. They concluded
that the best model differed depending on the evaluation criteria. Valipour et al. [4] compared
AutoRegressive Moving Average (ARMA), ARIMA, and autoregressive ANN models for forecasting
monthly inflow while increasing the number of parameters to improve accuracy. They concluded that
the ARIMA model is more appropriate to forecast over 12 months while the autoregressive ANN model
showed a better forecasting performance over five years. Emamgholizadeh et al. [30] compared the
ANN and ANFIS models for forecasting the groundwater level at the Bastam Plain in Iran. The results
showed that the ANFIS model leads to better performance than the ANN model. Li et al. [25] applied
the RF model to compare the predictability of water level variations with various artificial intelligence
models such as ANN, support vector regressions, and a linear model. They concluded that the
RF model can be calibrated to provide information for water management and decision-making by
providing efficient forecasting performance. They also stated that the lagged variables are important
predictors, and the meteorological indices should be included in the future study.

Recently, large-scale climate indices have been employed in hydrological processes because it
was proved that the climate indices can provide potential information about climate variability in
the global climate system. Kashid et al. [31] predicted weekly rainfall using a genetic programming
model with El Niño Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation indices,
outgoing longwave radiation, and lagged rainfall. They suggested that information about large-scale
atmospheric circulation patterns can be successfully used for prediction of weekly rainfall with
reasonable accuracy. Schepen et al. [32] provided evidence that lagged oceanic and atmospheric
climate indices are potentially useful predictors of Australian seasonal rainfall by quantifying the
pseudo-Bayes factor based on cross-validation predictive densities. Mekanik et al. [33] applied the
ANN model and multiple linear regression analysis to forecast long-term rainfall using lagged ENSO
and Indian Ocean Dipole (IOD) indices as potential predictors of spring rainfall. They suggested the
use of combined lagged ENSO-IOD in ANN models can provide more reliable forecasting results,
therefore, contributing significant positive impacts to water resource management. Abbot and
Marohasy [34] evaluated the utility of climate indices in rainfall forecasting using the ANN model
in Queensland, Australia. They focused on the selection of input variables including climate indices
and concluded that the optimization of input variable selection could provide better performance
in monthly rainfall forecasting. Li et al. [35] investigated teleconnections between large-scale
ocean-atmosphere patterns as potential sources of nonstationarity in annual maximum flood series
in the Wangkuai Reservoir watershed, China. They found that the North Pacific Oscillation (NPO),
North Atlantic Oscillation (NAO), and Atlantic Oscillation (AO) indices all had significant correlations
with flood peak.
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To identify information on climate variability and trends due to the effects of climate change on
hydro-climatic variables, a decomposition method named ensemble empirical mode decomposition
(EEMD) was applied in recent studies. Wu et al. [36] suggested that empirical mode decomposition
(EMD) can reveal intrinsic properties, i.e., trend and variability, in nonlinear and nonstationary
data. Lee and Ouarda [37] predicted future precipitation and extreme hydrological variables by
modeling a nonstationary oscillation process using the EMD process. Breaker and Ruzmaikin [38]
used the EEMD to analyze a 154-year record of monthly sea level data. They identified that the
extracted long-term trend modes contain variabilities on time scales consistent with the Pacific Decadal
Oscillation (PDO). Shi et al. [39] applied EEMD to past temperature and precipitation data and
found that the extracted low-frequency signals in temperature data significantly correlated with
Northern Hemisphere temperatures. Castino et al. [40] analyzed the trend and oscillatory modes of
river discharge in the southern Central Andes of northwestern Argentina using EEMD to find the
statistically significant climate indices and time intervals. They determined the time intervals according
to the mean period of the intrinsic mode functions (IMFs) extracted via EEMD and found the significant
climate indices for each IMF. Kim et al. [41] suggested a procedure to select climate indices that affect
long-term precipitation using EEMD to identify the relationship between long-term precipitation and
climate indices. They found that the lagged NINO 1+2 and the Atlantic Multidecadal Oscillation
(AMO) index should be preferentially considered as predictive indicators used to forecast monthly
precipitation in South Korea. As these studies demonstrate, climate indices can be used as input
variables because they provide predictive information on large-scale climate modes for long-term
forecasting based on the global climate system under complex weather conditions. The EEMD
can also be employed as an effective tool for reservoir inflow forecasting. Yu et al. [42] proposed
three decomposition methods—Fourier transformation, EEMD, and singular spectrum analysis—for
pre-processing, and used autoregressive input variables to support the vector regression model.
They showed that this decomposition method is an effective method for reservoir inflow forecasting.
Therefore, the use of large-scale climate indices and the EEMD for long-term forecasting is increased to
utilize the predictive information provided by large-scale climate modes.

Two critical research questions for reservoir inflow forecasting are to identify highly-correlated
climate indices, and to find a model which provides the best performance through applications. So far,
many studies have a limited focus primarily on examining the relationship between climate indices and
hydrologic variables. One of the important needs for today in monthly reservoir forecasting is not only
identifying potential indicators, but also increasing their applicability for efficient water management
strategies and operation. This study aims to apply and compare the model performance with highly
correlated input variables including lagged inflow and lagged climate indices. For this purpose,
time series and artificial intelligence models—i.e., SARIMA, SARIMA with eXogenous variables
(SARIMAX), ANN, ANFIS, and RF models—were used to forecast the monthly reservoir inflow at the
Soyanggang (SY), Chungju (CJ), and Goesan (GS) dams in South Korea. Two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-),
were constructed to examine the impacts of climate indices for reservoir inflow. To select appropriate
climate indices and construct input variables for monthly reservoir inflow, several statistical methods
consisting of partial autocorrelation function (PACF), EEMD, cross-correlation analysis, and the
backward elimination method were employed. The EEMD was applied to extract the oscillatory
modes inherent in the reservoir inflow for selecting the climate indices with a significant correlation.
Consequently, a total of eight models including time series and artificial intelligence models with two
types of input variables (e.g., SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS,
AR-RF, ARX-RF) were constructed to forecast the monthly reservoir inflow. Model performance was
compared using the correlation coefficient (r), root mean square error (RMSE), and Nash–Sutcliffe
Efficiency (NSE).

The rest of this paper is organized as follows. Section 2 presents the employed forecasting models
such as time series and artificial intelligence models. Section 3 presents data and study area, including
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monthly reservoir inflow and large-scale climate indices used in this study. Section 4 presents a process
of input variable selection and explains the detailed methods. Application and results including model
input variables, model parameters and setting, and the model performance are described in Section 5,
and discussions are presented in Section 6. Section 7 concludes the paper.

2. Time Series and Artificial Intelligence Models

2.1. Seasonal AutoRegressive Integrated Moving Average (SARIMA) Model

The Box–Jenkins approach using the ARIMA family of models is widely used to forecast future
values based on an observed time series. The ARIMA model parsimoniously interprets a stochastic
process with autoregressive (AR) and moving average (MA) operators. If there is seasonality in the
time series, the SARIMA model is more useful for modeling as it considers seasonality through a
differencing procedure [10]. The SARIMA model is defined in Equation (1):

φ(B)pΦs(B)P
(

1 − Bd
)(

1 − BD
)

yt = θ(B)qΘs(B)Qεt (1)

where yt is a given time series, φ(B)p and θ(B)q are the non-seasonal AR and MA operators, and Φs(B)P

and Θs(B)Q are the seasonal AR and MA operators with seasonal period, s, d and D are non-seasonal
and seasonal differencing orders, εt represents white noise with zero mean and standard deviation σ2

ε ,
and B is the backshift operator. The operators are defined in Equations (2)–(5), respectively.

φ(B) = 1 − φ1B − φ2B2 − · · · − φpBp (2)

θ(B) = 1 − θ1B − θ2B2 − · · · − θqBq (3)

Φs(B) = 1 − Φ1BS − Φ2B2S − · · · − ΦPBPS (4)

Θs(B) = 1 − Θ1BS − Θ2B2S − · · · − ΘQBQS (5)

2.2. SARIMA with eXogenous Variables (SARIMAX) Model

The SARIMAX model is a multivariate time series model extended from the SARIMA model to
consider the effect of the exogenous variables in a time series [43]. SARIMAX is useful in modeling a
time series that has a dominating variable. The SARIMAX model is an advanced model of the ARIMA
family because it can consider trends, seasonality, and exogenous variables. The SARIMAX model
with exogenous variable (xt) is defined in Equation (6):

φ(B)pΦs(B)P
[(

1 − Bd
)(

1 − BD
)

yt − cxt

]
= θ(B)qΘs(B)Qεt (6)

where c is the regression coefficient of the exogenous variable, and all other parameters are described
in Section 2.1.

2.3. Artificial Neural Network (ANN) Model

The ANN model is a powerful machine learning technique that is designed to mimic the structure
of the brain [44]. It has been widely applied in hydrology to improve the predictability of future
hydrologic variables because it considers both linear and nonlinear structures. In general, the basic
structure of the ANN model is three layers (input, hidden, and output) as shown in Figure 1.
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Consider there are n number of input variables in the input node (xi, i = 1, 2, . . . , n), the p
number of nodes in the hidden layer (zj, j = 1, 2, . . . , p), and the k number of output variables in the
output node (ym, m = 1, 2, . . . , k). The ANN model can be described in Equations (7) and (8):

ŷm = fy

(
p

∑
j=1

zjWkj + bk

)
(7)

zj = fz

(
n

∑
i=1

xiWji + cj

)
(8)

where the weight parameters Wkj and Wji indicate the strength of the connections between the nodes,
bk and cj are the bias, fy and fz are the activation functions that are connected to each other with
weight parameters.

The key purpose of the ANN model is to find the best weight parameters using a training
algorithm. The backpropagation algorithm is most commonly used for ANN training by adjusting the
weight parameters between the hidden and output layers to reduce the margin of error in the output.
The optimal number of hidden nodes can be determined by trial-and-error approaches because there
is no exact way to decide the number of hidden nodes. However, it was found that better results
can be obtained when the number of hidden nodes is smaller than or equal to the number of input
nodes [4,45]. In addition, there are several types of activation functions such as the sigmoid function,
hyperbolic tangent function, and sign function that can learn nonlinear relationships between the input
and output. The general process of ANN modeling is to construct a model which reduces errors in the
training set and then applying this model to the test set.

Figure 1. The basic structure of the Artificial Neural Network (ANN) model (input, hidden,
and output layers).

2.4. Adaptive Neural-Based Fuzzy Inference System (ANFIS) Model

The ANFIS model is a multilayer feed-forward network that combines the ANN model and fuzzy
logic based on the Takagi–Sugeno fuzzy inference system [46]. It is a powerful tool for hydrological
forecasting because it integrates the advantages of both the ANN and fuzzy inference systems.
The fuzzy reasoning system for a first-order Sugeno fuzzy model has the following two if-then rules:

• Rule 1: if x is A1 and y is B1 then f1 = p1x + q1y + r1

• Rule 2: if x is A2 and y is B2 then f2 = p2x + q2y + r2 where A1, A2 and B1, B2 are the membership
functions of each input x and y, f1 and f2 are the output functions and p1, q1, r1 and p2, q2, r2

are linear parameters. The ANFIS model consists of five layers as shown in Figure 2.
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Figure 2. The basic structure of the Adaptive Neural-based Fuzzy Inference System (ANFIS) model.

Layer 1: The fuzzy membership grade for each node is generated by the fuzzy membership
function (MF). An MF is an indicator function that defines how a point in the input space is mapped to
a membership value between 0 to 1. The output of node i is defined in Equations (9) and (10):

Q1,i = μAi (x), i = 1, 2 (9)

Q1,i = μBi−2(y), i = 3, 4. (10)

where x and y are the input for node i, and μAi (or μBi−2 ) is the degree of MF for a fuzzy set Ai (or Bi−2).
The fuzzy set Ai (or Bi−2) is a linguistic label for a MF that could be given by appropriate functions
such as Gaussian, generalized Bell shaped, trapezoidal shaped, and triangular shaped functions [1].

Layer 2: The incoming signals are multiplied to generate the output that represents the firing
strength of the rules, as described in Equation (11).

Q2,i = wi = μAi (x)× μBi (x), i = 1, 2 (11)

Layer 3: The firming strength is normalized. The normalized firming strength for node i as
described in Equation (12).

Q3,i = wi =
wi

(w1 + w2)
, i = 1, 2 (12)

Layer 4: Consequent parameters {pi, qi, ri} at node i compute the contribution of the ith rule to
the overall output. It can be described by Equation (13) using the output obtained from layer 3 (wi).

Q4,i = wi fi = wi(pix + qiy + ri) (13)

Layer 5: Finally, the overall output is calculated from a single node by summation of all rules as
described in Equation (14).

Q5,i = ∑
i

wi fi =
∑i wi fi

∑i wi
(14)

In this study, the ANFIS model used hybrid learning that was a combination of descent gradient for
precedents and least squares estimation for consequents. The normalized Gaussian MF and Bell-shaped
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MF are popular, with the advantage of being smooth and nonzero at all points. The linguistic term of
the normalized Gaussian MF and the Bell-shaped MF are given by Equations (15) and (16):

μAi (x) = exp

(
− (x − ci)

2

2σ2
i

)
(15)

μAi (x) =
1

1 +
[(

x−ci
ai

)2
]

bi

(16)

where σi, ai, bi, and ci are the parameters of the membership function (i.e., ci and σi are the center
and width of the fuzzy set).

2.5. Random Forest (RF) Model

The RF model is a state-of-art machine learning technique which is a nonparametric white-box
regression model [24]. For the regression, the RF model employs an ensemble-learning algorithm
which operates by constructing a multitude of decision trees based on bootstrap samples from the
training dataset. Unlike linear regression models, RF is the most robust technique for handling a
combination of nonlinear interactions between the input variables and the output. The basic structure
of the RF is shown in Figure 3.

The RF begins with many bootstrap samples that are randomly selected from the original input
variables. A decision tree is built for each of the bootstrap samples. For each node of a decision
tree, proper input variables are selected by binary partitioning. Finally, the forecasting result can be
obtained by combining the results over all trees [47]. Therefore, three parameters need to be specified:
(1) the number of trees; (2) number of variables in each node (default value is 5 for regression random
forest); and (3) the number of input variables per node (default value is one third of the total number
of variables).

Figure 3. The basic structure of the Random Forest (RF) model.

3. Data and Study Area

Monthly reservoir inflow in the SY, CJ, and GS dams was employed in this study. The three dams
are located in the Han River basin, and they are totally separate reservoirs on different branches of the
Han River. The three dams have only natural reservoir inflow that is not affected by artificial control
in their upstream areas. The Han River basin in South Korea plays an important role in supplying
water to the capital, Seoul, and other metropolitan cities. Therefore, the three dams should be carefully
operated to provide effective long-term water management.
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The SY dam is a multi-objective dam located in the upstream section of the North Han River,
which has a basin area of 2783 km2. The CJ dam is the largest multi-objective dam in South Korea
and is located on the South Han River, which has the basin area of 6705 km2. The GS dam is
a small hydropower dam located on the Dalcheon, a tributary of the South Han River, with a
basin area of 671 km2. There are seasonal characteristics to the inflow, with the monthly reservoir
inflow concentrated during the flood season from June to September, since more than 70% of annual
precipitation occurs in this season. The geographical locations of the three dams and basin areas are
shown in Figure 4. Further detailed information about the three dams is presented in Table 1.

Figure 4. Locations of the Soyangang (SY), Chungju (CJ), and Goesan (GS) dams and their basins.

Table 1. Detailed information about the SY, CJ and GS dams.

Station Type Data Period
Basin
Area
(km2)

Volume
(×103 m3)

Water
Supply

Capacity
(×103 m3)

Mean Inflow
(m3/s)

Annual
Seasonal

(JJAS)

Soyangang
dam

Multi-purpose
(E.C.R.Da)

January
1974–December 2016 2703 9600 1,900,000 68.28 221.99

Chungju
dam

Multi-purpose
(C.G.Db)

January
1986–December 2016 6705 902 1,789,000 162.39 359.22

Goesan
dam

Hydro-power
(C.G.Db)

January
1982–December 2016 671 19.6 5700 13.72 30.18

a Earth Core Rock Fill Dam. b Concrete Gravity Dam.

A total of 24 large-scale climate indices from the National Oceanic & Atmospheric
Administration/Earth System Research Laboratory (NOAA/ESRL) were used in this study.
The climate indices represent the atmospheric-oceanic circulation patterns, therefore, it can be
possible to consider the impact of large-scale climate variability directly or indirectly on the monthly
reservoir inflow series. Each index indicates an aspect of the geophysical system based on different
measurements, and they are provided by the form of the monthly time series. Table 2 presents a list of
the climate indices used in this study.
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Table 2. List of the climate indices used in this study.

Climate Index Classification Climate Index Classification

NINO 1+2 (NINO12) ENSO/SST:Pacific Tropical Northern Atlantic Index (TNA) SST:Atlantic
NINO 3 (NINO3) ENSO/SST:Pacific Tropical Southern Atlantic Index (TSA) SST:Atlantic
NINO 4 (NINO4) ENSO/SST:Pacific Carribbean SST Index (CAR) SST:Atlantic

NINO 3.4 (NINO34) ENSO/SST:Pacific Pacific Decadal Oscillation (PDO) Teleconnections
Bivariate ENSO Timeseries (BEST) ENSO Northern Oscillation Index (NOI) Teleconnections

Multivariate ENSO Index (MEI) ENSO Pacific North American Index (PNA) Teleconnections
Trans-Nino Index (TNI) SST:Pacific Western Pacific Index (WP) Teleconnections

Western Hemisphere Warm Pool (WHWP) SST:Pacific/SST:Atlantic Eastern Atlantic/Western Russia (EAWR) Teleconnections
Oceanic Nino Index (ONI) SST:Pacific North Atlantic Oscillation (NAO) Teleconnections

Atlantic Multidecadal Oscillation (AMO) SST:Atlantic Southern Oscillation Index (SOI) Atmosphere
Atlantic Meridional Mode (AMM) SST:Atlantic Quasi-Biennial Oscillation (QBO) Atmosphere

North Tropical Atlantic SST Index (NTA) SST:Atlantic Artic Oscillation (AO) Atmosphere

4. Input Variable Selection

The time series and artificial intelligence models were conducted by two types of input variables
to compare the impacts of the climate indices. The first type of input variable only includes the
autoregressive variables (AR-) such as the lagged inflow. The lag time was determined by the PACF.
The second type of input variable includes the combination of autoregressive and exogenous variables
(ARX-) composed of lagged inflow and lagged climate indices. To select the candidate climate indices
for the second type of input variables, the EEMD method was employed to the monthly reservoir
inflow series. A finite number of decomposed components, which are the IMFs, were extracted
by the EEMD. Cross-correlation analysis was performed between the IMFs and the climate indices
considering lag times from 1 to 12 months. The lagged climate indices with the highest correlation
coefficient with each IMF were selected as the candidate climate indices. Therefore, the candidate
variables include: (1) the lagged inflow obtained via PACF; and (2) the lagged climate indices obtained
via EEMD. Finally, the backward elimination method was performed on the candidate variables to
select the second type of input variables. Figure 5 shows the procedure followed to select the two types
of input variables. Detailed methodologies are explained in the subsections.

Figure 5. Procedure to select the two types of input variables: (1) Autoregressive variables (AR-);
(2) a combination of autoregressive and exogenous variables (ARX-).
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4.1. Partial Autocorrelation Function (PACF)

PACF is a statistic that measures the strength of relationships in a time series considering a time
lag, after removing the presence of all other time lags. The range of PACF is between −1 and 1.
In a PACF plot, it is able to identify the relationship between a time series and its lagged time series
through the spikes and confidence intervals. For example, a significant spike at lag 12 in the PACF plot
means that there is a strong correlation between a time series and the same time series with twelve
intervals apart. PACF also provides useful information for selecting the autoregressive parameters in
the time series models.

4.2. Ensemble Empirical Mode Decomposition (EEMD)

EMD has been recently introduced in the hydrology as an innovative analysis method to
decompose statistically significant cycles and trends inherent in time series data [36,40,48]. EMD is a
data-driven method that decomposes an original data series into a set of IMFs. IMFs indicate oscillatory
modes that reflect the cycles and trends in the data series and should satisfy two conditions: (1) the
number of extrema and zero crossings must either be equal or differ at most by one in the whole data
series; (2) the mean value of the upper envelope defined by connecting all of the local maxima, and the
lower envelope defined by connecting all of the local minima, must be zero at any point [47]. EEMD is
a modified version of EMD proposed by Wu and Huang [49] to overcome the drawbacks of EMD due
to the mode mixing problem. EEMD performs a sifting algorithm by adding an ensemble of white
noise signals to the original data series, and the final result is obtained from the mean of the data series.

We will briefly introduce the sifting algorithm which is carried out to decompose a set of IMFs
from an original data series y(t), t = 1, 2, . . . , n [36]. At first, the upper and lower envelopes are found by
connecting the local maxima (yu(t)) and local minima yl(t)) using a cubic spline method. Second, the mean
value between the local maxima and local minima is calculated, i.e., ymean(t) = (yu(t) + yl(t))/2.
Third, the ymean(t) is extracted from the original time series y(t), i.e., h(t) = y(t)− ymean(t). If h(t)
satisfies the two conditions of IMFs, then h(t) is the first IMF; else h(t) is treated as y(t) and the steps
are repeated until h(t) becomes the IMF. Fourth, a new data series is defined by extracting the IMF from
y(t) and repeating the steps until no more IMF can be extracted. The last IMF becomes the residue r(t).
Finally, y(t) is defined as the sum of the IMFs and the residue as follows:

y(t) =
k

∑
i=1

IMFi(t) + r(t) (17)

where k is the number of IMFs.

4.3. Cross-Correlation Analysis

Cross-correlation function is a measure of the strength of a linear correlation between two different
time series considering a range of time lags. The range of the correlation coefficient (r) is between −1
and 1. If the two different time series are positively correlated, r is close to 1; if they are negatively
correlated, r is close to −1; if they have no correlation, r is 0.

4.4. Backward Elimination Method

Backward elimination method is a kind of variable selection method beginning with all candidate
input variables for a model. From the initially selected candidate input variables, the least significant
variables are eliminated one by one until only one variable remains. The input variable showing
the smallest contribution to the model performance is deleted at each step according to the model
selection criteria. The relative importance of the input variable may be determined by removing the
input variable [50]. The backward elimination method is useful for improving the model’s performance
with an iterative procedure, although it requires significant computational time.
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5. Application and Results

5.1. Model Input Variables

To determine the autoregressive variables, the PACF was used to identify the lag time of the
monthly reservoir inflow series. Figure 6 shows the PACF of the three dams with 95% confidence
intervals. At all three dams, the spikes are mainly prominent at 1, 12, 24, and 36 months (lag1, lag12,
lag24, lag36; yt−1, yt−12, yt−24, yt−36). Therefore, the first type of input variables for all the three dams
includes the four cases of lagged inflows as shown in the second column of Table 3.

Figure 6. Partial Autocorrelation Function (PACF) of the three dams with 95% confidence intervals
(dotted line): (a) SY dam, (b) CJ dam, (c) GS dam.

To determine the exogenous variables for the second type of input variables, the monthly reservoir
inflow series was decomposed by EEMD to extract the IMFs. The IMFs indicate the different inherent
frequencies of the reservoir inflow series. Lagged climate indices which have the highest correlation
coefficient for each IMF were selected as the candidate exogenous variables. Figure 7 shows the IMFs
(solid black line) of the three dams and the lagged climate indices which have the highest correlation
coefficient for each IMF (blue dotted line). The reservoir inflow of the SY dam was decomposed
into eight IMFs and a residue, and the reservoir inflow of the CJ and GS dams were decomposed
into seven IMFs and a residue. For all three dams, the NINO12 index was mainly selected in the
low-frequency IMF, the NTA and QBO indices were mainly selected in the middle frequency IMF,
and the AMO index was mainly selected in the high-frequency IMF or residue. Table 4 shows the
correlation coefficients (r) between the IMFs and the lagged climate indices in the SY, CJ, and GS dams.
In the SY dam, the 4-month lagged NINO12 index had the highest correlation coefficient (r = 0.76)
with the third IMF and the 6-month lagged AMO index has the second highest correlation coefficient
(r = −0.57) with the eighth IMF. In the CJ dam, the 5-month lagged NINO12 index had the highest
correlation coefficient (r = 0.75) with the third IMF, and the 12-month lagged AMO index had the
second highest correlation coefficient (r = 0.49) with the seventh IMF. In the GS dam, the 5-month
lagged NINO12 index had the highest and the second highest correlation coefficients (r = 0.75, r = 0.45)
with the third and second IMFs, respectively. The 12-month lagged NTA index had the third highest
correlation coefficient (r = −0.40) with the fifth IMF.
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Figure 7. IMFs resulted from ensemble empirical mode decomposition (EEMD) (solid black line) and
the lagged climate indices (blue dotted line) which have the highest correlation coefficient for each IMF.
(a) SY dam, (b) CJ dam, (c) GS dam.

Table 3. The two types of input variables for the three dams.

Station Autoregressive Variables (AR-) A Combination of Autoregressive and Exogenous Variables (ARX-)

SY dam
Lag1, Lag12, Lag24, Lag36

Lag12, Lag36, NTA(12), AMO(6), NINO4(12), NINO12(10), AMM(12)
CJ dam Lag36, TNI(12), AMO(12), NINO12(11), NTA(11), NINO12(5)
GS dam Lag12, Lag36, NINO12(5), QBO(9), AMO(1)

To determine the second type of input variables for each dam, the backward elimination method
was applied to the candidate variables, including the lagged inflows and the lagged climate indices.
The backward elimination method results were shown in the third column in Table 3, which are
the second type of input variables for each dam composed of a combination of autoregressive and
exogenous variables. Therefore, a total of seven, six, and five input variables were finally selected for
the SY, CJ, and GS dams. Notably, the 36-month lagged inflow, lagged NINO12 index, and lagged
AMO index were identically selected as the second type of input variables at all the three dams.

Table 4. Correlation coefficients (r) between the intrinsic mode functions (IMFs) and the lagged climate
indices in the SY, CJ, and GS dams.

SY Dam CJ Dam GS Dam
IMFs CI Lag r IMFs CI Lag r IMFs CI Lag r

IMF1 NINO12 10 0.21 IMF1 NINO12 11 0.22 IMF1 NINO12 11 0.19
IMF2 NINO12 5 0.42 IMF2 NINO12 5 0.48 IMF2 NINO12 5 0.45
IMF3 NINO12 4 0.76 IMF3 NINO12 5 0.75 IMF3 NINO12 5 0.75
IMF4 QBO 7 −0.32 IMF4 QBO 8 −0.33 IMF4 QBO 9 −0.29
IMF5 NTA 12 −0.21 IMF5 NTA 11 −0.42 IMF5 NTA 12 −0.40
IMF6 AMM 12 −0.29 IMF6 NINO4 12 −0.38 IMF6 TNI 12 0.32
IMF7 NINO4 12 −0.15 IMF7 AMO 12 0.49 IMF7 AMO 1 0.30
IMF8 AMO 6 −0.57 RES TNI 12 −0.21 RES AMO 1 0.25
RES AMO 1 0.47

5.2. Model Parameters and Setting

A total of eight models including time series and artificial intelligence models with the two types
of input variables (SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF,
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and ARX-RF) were constructed. To calibrate and validate the time series models, the monthly reservoir
inflow series was divided into train and test periods. The training period was set from the start of
the data record to December 2012 and the test periods were set to the last four years (January 2013 to
December 2016). In the artificial intelligence models, the monthly reservoir inflow series was divided
into three parts, training, validation, and test periods to avoid overfitting problem. The training period
was set from the start of the data record to December 2008 and the validation period was set to the
next four years (January 2009 to December 2012). The test periods were set to the last four years
(January 2013 to December 2016). Detailed descriptions of the model parameters and architectures are
presented in the subsections.

5.2.1. SARIMA and SARIMAX Models

The SARIMA model is a conventional statistical model used to forecast future values. It is
composed of autoregressive terms. The SARIMAX model, which is very similar to the SARIMA model,
extends into the SARIMA model with an exogenous variable. Both the SARIMA and SARIMAX
models consist of the parameters (p, d, q)(P, D, Q)[s]. In general, it is sufficient to consider up to
two non-seasonal AR and MA parameters (p,q) and seasonal AR and MA parameters (P, Q) [51].
In this study, the SARIMA and SARIMAX models were composed of the non-seasonal AR and MA
parameters (p,q) and the seasonal AR and MA parameters (P, Q) up to three (from 0 to 3) for more
flexible model construction. Depending on the behavior of the reservoir inflow, non-seasonal and
seasonal differencing orders were respectively set to 0 and 1 (d = 0, D = 1), and the seasonal
periods were set to 12 (s = 12)) reflecting seasonality with 12-month intervals in the reservoir inflow
(in Figure 5).

A total of 256 (4 × 1 × 4 × 4 × 1 × 4) SARIMA models were respectively constructed for the SY,
CJ, and GS dams. The number of constructed SARIMAX models was the number of SARIMA models
multiplied by the number of combination autoregressive and exogenous variables in Table 3, because
the SARIMAX model is able to consider one exogenous variable. The rest of the parameters were
identical to the structure of the SARIMA model. A total of 1792 (256 × 7), 1536 (256 × 6), 1280 (256 × 5)
SARIMAX models were respectively constructed for the SY, CJ, and GS dams. The best SARIMA and
SARIMAX models were selected based on the minimum Akaike information criterion (AIC) value,
which is commonly used for model selection. Table 5 shows the parameters of best SARIMA and
SARIMAX models for the SY, CJ, and GS dams. For both model types, the best models were selected
when the non-seasonal parameters had little effect (p = 0). In addition, the lagged inflow was selected
as the exogenous variable for the SARIMAX models for all the three dams.

Table 5. Parameters of best SARIMA and SARIMAX models for the SY, CJ, and GS dams.

Station SARIMA (p, d, q)(P, D, Q)[s] SARIMAX (p, d, q)(P, D, Q)[s]

SY dam
SARIMA(0,0,0)(2,1,2)[12] SARIMAX(0,0,0)(3,1,1)[12]. × Lag12

Φ1−0.926, Φ2−0.271, Θ1−0.155,
Θ2−0.732

Φ1−0.117, Φ2−0.202, Φ30.148,
Θ1−0.954, c0.326

CJ dam
SARIMA(0,0,0)(1,1,3)[12] SARIMAX(0,0,0)(2,1,1)[12] × Lag36

Φ1−0.758, Θ1−0.147, Θ2−0.887,
Θ30.148

Φ1−0.071, Φ2 0.052, Θ1−0.949,
c0.133

GS dam
SARIMA(0,0,1)(1,1,1)[12] SARIMAX(0,0,0)(1,1,1)[12] × Lag12

θ10.171, Φ1−0.066, Θ1−0.888 Φ10.152, Θ1−0.937, c−0.254

5.2.2. ANN Models

For the AR-ANN and ARX-ANN models, a number of hidden nodes ranging from 1 to 10 were
considered in all three dams. The sigmoid activation function was used because of its superiority [4].
The optimal number of the hidden nodes for each dam was determined by considering the performance
during the validation period. The correlation coefficient (r) and root mean square error (RMSE) of
the AR-ANN and ARX-ANN models according to the number of the hidden nodes in the validation
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periods are shown in Figure 8. The optimal number of the hidden nodes was determined based on
the highest r and the lowest RMSE. In cases of two criteria were different, the RMSE was preferred.
Table 6 shows the optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the
three dams.

Figure 8. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANN and ARX-ANN
models according to the number of nodes in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 6. The optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the
three dams.

Station AR-ANN ARX-ANN

SY dam 3 5
CJ dam 4 4
GS dam 2 2

5.2.3. ANFIS Models

For the AR-ANFIS and ARX-ANFIS models, two MFs were built on the normalized Gaussian
MF (ci = −5, σi = 2 and ci = + 5, σi = 2) and Bell-shaped MF (a = 4, b = 1, c = −5 and a = 4, b = 1,
c = +5), and 20 epochs based on trial and error [52]. The optimal MF was determined by considering
the performance during the validation period. The correlation coefficient (r) and root mean square
error (RMSE) of the AR-ANFIS and ARX-ANFIS models according to the MF in the validation periods
are shown in Figure 9. The optimal MF was determined based on the highest r and the lowest
RMSE. In cases where two criteria were different, the RMSE was preferred. For the AR-ANFIS model,
there were eight input MFs and 16 rules in the three dams because there are four cases of lagged
inflow in the autoregressive input variable set. For the ARX-ANFIS model, the number of input MFs
according to the number of input nodes was 14, 12, and 10 for the SY, CJ, and GS dams, respectively.
Therefore, the number of rules were 128, 64, and 32. Table 7 shows the optimal MF, the number of
input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.
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Figure 9. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANFIS and
ARX-ANFIS models according to the MF in the validation period for the SY, CJ, and GS dams. The NS
is normalized Gaussian MF and the BS is the Bell-shaped MF. The blue line is the r-value in the
validation period and the red line is the RMSE in the validation period.

Table 7. A number of input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.

Station

AR-ANFIS ARX-ANFIS

Optimal MF
Number of
Input MF
(Layer2)

Number of
Rules

(Layer3)
Optimal MF

Number of
Input MF
(Layer2)

Number of
Rules

(Layer3)

SY dam BS 8 16 BS 14 128
CJ dam BS 8 16 BS 12 64
GS dam BS 8 16 NG 10 32

5.2.4. RF Models

For the AR-RF and ARX-RF models, the number of trees ranging from 100 to 1000 (in 100 units)
were considered in all the three dams. The optimal number of trees was determined by considering
the performance during the validation period. The correlation coefficient (r) and root mean square
error (RMSE) of the AR-RF and ARX-RF models according to the number of trees in the validation
periods are shown in Figure 10. The optimal MF was determined based on the highest r and the lowest
RMSE. In the case of two criteria were different, the RMSE was preferred. Table 8 shows the optimal
number of trees of the AR-RF and ARX-RF models for the three dams.
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Figure 10. Correlation coefficients (r) and root mean square error (RMSE) of the AR-RF and ARX-RF
models according to the number of trees in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 8. The optimal number of trees of the AR-RF and ARX-RF models for the three dams.

Station AR-RF ARX-RF

SY dam 200 500
CJ dam 200 300
GS dam 100 200

5.3. Model Performance

Model performance can be evaluated based on different statistical measures. Two statistical
criteria were used to estimate the model performance in this study. The correlation coefficient (r) is
widely used to identify the linear relationship between observed and forecasted data. The value of r
has a range of –1 to 1 that indicates either a negative or positive correlation. The root mean square
error (RMSE) is used to measure the difference between observed and forecasted data. The value of
RMSE indicates the magnitude of the error. The Nash–Sutcliffe Efficiency (NSE) is used to assess the
predictive power of hydrological models. The value of NSE has a range from −∞ to 1. The r, RMSE,
NSE are defined in Equations (18), (19), and (20), respectively.

r =
∑T

t=1
(
Y(t)− Y(t)

)(
X(t)− X(t)

)
√

∑T
t=1
(
Y(t)− Y(t)

)2√
∑T

t=1
(
X(t)− X(t)

)2 (18)

RMSE =

√√√√ 1
T

T

∑
t=1

(Y(t)− X(t))2 (19)

NSE = 1 − ∑T
t=1(Y(t)− X(t))2

∑T
t=1
(
X(t)− X(t)

)2 (20)

where T is data length, Y(t) and X(t) are the forecasted and observed data series, and Y (t) and X (t)
are the mean of the forecasted and observed data series, respectively.

The calculated r, RMSE, and NSE during the training, validation, and test periods of SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY,
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CJ, and GS dams were presented in Table 9. The underlined values indicate the best statistics among
the employed models in the training, validation, and test periods. In the SY dam, the result shows
that the ARX-RF and AR-RF models are very competitive and have good performance in the training
and validation periods, respectively. On the other hand, in the test period, the AR-ANN or ARX-ANN
models shows the best performance although it is slightly different according to the statistical criteria.
In CJ dam, the ARX-RF model shows the best performance in the training and validation periods.
On the other hand, the ARX-ANN model outperforms in the test period. In the GS dam, the ARX-RF
model shows the best performance in the training period while the AR-ANN model shows the best
performance in the validation period. The SARIMA and AR-RF models achieve the best performance
in the test period depending on the statistical criteria. Overall, the ARX-RF model outperforms in
the training period. Focusing on the test period, the ARX-ANN model generally provided better
predictions, except for the GS dam. In summary, the time series model does not prove that the use
of climate indices as an exogenous variable is more efficient. However, the use of climate indices
generally tends to produce better performance in the ANN and RF models.

Table 9. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models during the training, validation, and test periods for the SY,
CJ, and GS dams.

Station Model
r RMSE NSE

Train. Vali. Test Train. Vali. Test Train. Vali. Test

SY dam

SARIMA 0.65 0.53 84.17 83.69 0.42 −0.04
SARIMAX 0.65 0.38 84.52 93.82 0.42 −0.31
AR-ANN 0.66 0.70 0.58 82.89 89.18 72.28 0.44 0.49 0.22

ARX-ANN 0.64 0.68 0.63 85.56 91.63 80.64 0.40 0.46 0.03
AR-ANFIS 0.65 0.73 0.53 84.54 88.49 74.97 0.42 0.49 0.16

ARX-ANFIS 0.61 0.71 0.41 87.93 89.53 86.96 0.37 0.48 −0.13
AR-RF 0.94 0.83 0.47 42.61 75.33 77.78 0.85 0.63 0.10

ARX-RF 0.95 0.66 0.50 42.45 93.76 75.71 0.85 0.43 0.15

CJ dam

SARIMA 0.65 0.57 203.35 179.26 0.41 −0.93
SARIMAX 0.63 0.57 205.62 180.51 0.40 −0.96
AR-ANN 0.64 0.71 0.52 204.71 202.42 162.32 0.40 0.48 −0.58

ARX-ANN 0.61 0.74 0.67 209.49 191.73 151.26 0.37 0.53 −0.37
AR-ANFIS 0.63 0.70 0.46 205.29 208.25 162.20 0.40 0.45 −0.58

ARX-ANFIS 0.64 0.76 0.41 203.89 186.34 203.91 0.41 0.56 −1.50
AR-RF 0.93 0.68 0.42 110.41 207.17 157.52 0.83 0.46 −0.49

ARX-RF 0.93 0.79 0.40 108.83 174.11 169.53 0.83 0.62 −0.73

GS dam

SARIMA 0.65 0.52 17.44 15.55 0.42 −1.56
SARIMAX 0.67 0.51 17.14 17.86 0.44 −2.38
AR-ANN 0.62 0.72 0.37 17.88 15.37 13.67 0.39 0.51 −0.98

ARX-ANN 0.69 0.63 0.51 16.48 17.41 14.21 0.48 0.37 −1.14
AR-ANFIS 0.65 0.71 0.35 17.31 15.58 14.37 0.43 0.50 −1.19

ARX-ANFIS 0.77 0.68 0.42 14.77 16.69 19.40 0.58 0.42 −2.99
AR-RF 0.93 0.59 0.38 9.13 18.02 13.45 0.84 0.33 −0.92

ARX-RF 0.94 0.68 0.46 8.69 16.35 16.76 0.86 0.45 −1.98

The reservoir inflow forecasting results from the SARIMA, SARIMAX, AR-ANN, ARX-ANN,
AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY, CJ, and GS dams are shown in
Figures 11–13, respectively. The training periods for the SY, CJ, and GS dams were respectively
started in 1981, 1992, and 1987 considering the order of the time series models. In Figures 11–13,
a part of forecasting results in the training period of the SARIMA and SARIMAX models were
illustrated to the validation period. The general results of the time series models showed that they
forecast only seasonal patterns even in both training, validation, and test periods. In addition,
there were no significant differences between the SARIMA and SARIMAX models depending on
the exogenous variables. The forecasted reservoir inflows of the SARIMA and SARIMAX models were
very close, and were unable to forecast the extreme inflow during the flood season in both the training
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and test periods. This indicates the impact of the climate index was insufficient in the time series
model. On the other hand, the exogenous variables have an impact on the performance of artificial
intelligence models. The general results of the ARX-RF models showed that they forecast well not
only seasonal patterns, but also peak flows during the flood season in the training and validation
periods for all three dams. During the test period, the ARX-ANN model matched the seasonal patterns
of inflow better than the other employed models, although it showed less accuracy in the volume.
Although the ARX-ANN model showed lower forecasting performance in the training period than the
ARX-RF model, the ARX-ANN model was able to make better forecasts of low and medium reservoir
inflows than the ARX-RF model in the test period. By adding the validation period, we could avoid
the overfitting problem. With regard to unsatisfactory performance in the test period captured by the
NSE, this will be discussed further in the discussion section.

Figure 11. Forecasting results from the eight models in the SY dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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Figure 12. Forecasting results from the eight models in the CJ dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).

Figure 13. Forecasting results from the eight models in the GS dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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6. Discussion

In this study, the statistical methods (e.g., PACF and EEMD) were employed to select the two types
of input variables including lagged inflow and lagged climate indices. The PACF for all three dams
mainly resulted in prominent spikes at 1, 12, 24, and 36 months. The EEMD showed that the third IMF
had the highest correlation coefficient with the four or five-month lagged NINO12 index and residues,
and the last IMF also had a considerably high correlation coefficient with the 1- or 12-month lagged
AMO index. It was found that the EEMD can obtain the inherent climate variability and long-term
trend in the reservoir inflow. Therefore, the statistical relationship between the reservoir inflow and
the climate indices can be deeply examined through EEMD.

From the results of the backward elimination method, the 36-month lagged inflow, NINO12 index,
and the AMO index were selected as a combination of autoregressive and exogenous variables for
the three dams in Table 3. Consequently, we found that the three variables mainly affect reservoir
inflow and play an important role as input variables. This finding supported the results obtained by
Kim et al. [41] that identified the four-month lagged NINO12 and AMO indices as effective indicators
for long-term precipitation in South Korea, as the precipitation is causally related to reservoir inflow.
In addition, this result also agrees with previous studies [36,38,40,53,54] that showed the IMFs
identified through EEMD include the cyclical variabilities and overall trends of time series data.

The comparison of model performance proved that the impact of the climate index was insufficient
in the time series model while the exogenous variables have an impact on the performance of
artificial intelligence models. The ARX-RF models generally forecasted well not only seasonal
patterns, but also peak flows during the flood season in the training and validation periods for
all the three dams. On the other hand, the ARX-ANN model generally showed better performance
in the test period by matching the seasonal patterns of inflow although it showed less accuracy in
the volume. However, the unsatisfactory performance in the test period captured by the NSE was due
to severe weather conditions that rarely occurred in the observation period. To further understand
the model performance under extreme weather conditions, the test period (2013–2016) was divided
into each year, and the inflow characteristics were examined in each year. Figure 14(a) shows the
percentage of the inflow rate of the year compared to the mean annual inflow in the 2013 to 2016 years
for each dam. Figure 14(b) shows the percentage of the variation rate of the year compared to the
mean annual variation in the 2013 to 2016 years for each dam. For example, the percentage of the
inflow rate of 2013 year is calculated by (the mean annual inflow in 2013/the mean annual inflow in
the training period) × 100(%). The percentage of the variation rate is calculated in the same way.

Figure 14. Percentages of (a) the inflow rate of the year compared to the mean annual inflow in the
2013 to 2016 years and (b) the variation rate of the year compared to the mean annual variation in the
2013 to 2016 years.

Notably, extreme weather conditions occurred during the test period. The dam inflow in 2013
approximated the mean annual inflow, however, there was a large difference in annual variation
compared to the mean variation for the three dams. The annual inflow of the three dams was less than
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half the mean annual inflow in 2014 and decreased further in 2015 because a severe drought occurred
in these two years. Due to the severe drought, the annual variation in inflow was also lower than
average and there was minor difference in variation between the three dams. Inflow slightly increased
in 2016 reaching half the mean annual inflow. In this study, the years of test period are defined as an
ordinary year (2013), a drought year (2014), a severe drought year (2015), and a restored year (2016).
Table 10 presents the model performances in the 2013 to 2016 years for the three dams.

In the ordinary year (2013), the time series models generally showed better performance than
the artificial intelligence models. When the percentage of the annual variation was similar or smaller
than the mean annual variation, such as was observed in GS dam, the AR-RF model generally showed
the best forecasting accuracy based on both the RMSE and NSE. There were no significant differences
according to the exogenous variables.

In the drought year (2014), the time series model performance was significantly poorer than
during the ordinary year. The forecasting accuracy of the ARX-ANN and AR-RF models was generally
better than other models based on the r and RMSE. The NSE captured poor performance at all dams
because the mean inflows had been lowered due to drought effects. This result indicates that exogenous
variables in the ANN model can improve forecasting accuracy during drought years, although there
are limitations to forecasting the inflow volume.

In the severe drought year (2015), when the annual inflow was close to 50% of the mean annual
inflow such as in the SY dam, all models showed improved forecasting accuracy. The ARX-ANFIS
model showed the best forecasting accuracy based on the RMSE and NSE while the AR-RF model
showed the best forecasting accuracy based on the r. However, when the annual inflow was lower than
40% of the mean annual inflow such as in the CJ and GS dams, the forecasting accuracy showed the
worst performance, especially based on the NSE. This result shows a limitation of the use of exogenous
variables in forecasting extreme weather conditions such as severe droughts, since the lagged climate
indices mainly reflect the inherent climate variabilities and long-term trends.

In the restored year (2016), the ARX-RF and ARX-ANN models usually had the best forecasting
accuracy for the SY and GS dams. Although the AR-ANN model showed better forecasting accuracy
than the ARX-ANN model for the CJ dam based on the RMSE and NSE, the ARX-ANN model
showed best forecasting accuracy based on the r. This result implies that the exogenous variables in
the artificial intelligence models play an important role in forecasting accuracy under the restored
climate conditions.

It was observed that the time series models have quite similarly forecasted inflow in the test
period for the three dams. Mainly in the drought and severe drought years, the results generally
described a limitation of the time series and artificial intelligence models, because the models are based
on the observed data series. They only forecasted ordinary patterns of the observed inflow series. The r
of the time series models decreased in the drought and severe drought years and slightly increased in
the restored year because the time series models maintain seasonal patterns regardless of changing
weather characteristics. The model performance in the artificial intelligence models was slightly
different depending on the dam, period, climate conditions, and input variables. This also implies a
difficulty to forecast events that have not been previously observed, although the model was trained
very well. Among them, the AR-RF and ARX-ANN models generally showed better forecasting
accuracy under drought conditions in our case study. Therefore, we can conclude that the use of
artificial intelligence model and climate indices as exogenous variables has the potential to provide a
suitable forecasting performance under the changing climatic conditions.

Reservoir inflow forecasting is still a challenge for reservoir managers all over the world.
Reservoir managers should strive to operate the reservoir considering the various results from
statistical, artificial intelligence, and dynamic models. In light of this decision-making, our study
can be useful in making decisions for reservoir operation, because they showed good performance
in forecasting inflow patterns by using lagged inflows and lagged climate indices. Finally, we also
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agree with Zhang et al. [55] that future studies should be ongoing by applying a new type of machine
learning algorithm, i.e., deep learning, derived from the ANN model.

Table 10. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models by year during test period for the three dams.

Station Model
r RMSE NSE

2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016

SY dam

SARIMA 0.62 0.43 0.78 0.75 102.18 99.57 59.86 63.84 0.38 −9.02 −2.31 0.38
SARIMAX 0.53 0.10 0.67 0.69 110.61 131.76 43.73 60.81 0.28 −16.54 −0.77 0.44
AR-ANN 0.53 0.18 0.75 0.93 110.56 75.68 43.94 31.80 0.28 −4.79 −0.79 0.85
ARX-ANN 0.50 0.58 0.71 0.99 114.18 80.57 49.75 63.31 0.23 −5.56 −1.29 0.39
AR-ANFIS 0.50 0.23 0.80 0.90 112.66 80.56 44.31 36.59 0.25 −5.56 −0.82 0.80
ARX-ANFIS 0.27 0.14 0.75 0.96 130.77 104.71 39.43 25.02 −0.01 −10.08 −0.44 0.91

AR-RF 0.41 0.29 0.82 0.68 121.48 58.62 49.12 59.95 0.13 −2.47 −1.23 0.45
ARX-RF 0.36 0.21 0.69 0.97 122.78 72.36 45.84 22.66 0.11 −4.29 −0.94 0.92

CJ dam

SARIMA 0.81 0.45 0.58 0.76 115.63 227.95 189.39 165.34 0.64 −7.96 −28.82 −0.52
SARIMAX 0.75 0.40 0.59 0.78 140.97 221.25 204.75 139.94 0.47 −7.45 −33.85 −0.09
AR-ANN 0.58 0.38 0.64 0.83 181.56 210.36 147.21 80.67 0.12 −6.63 −17.02 0.64
ARX-ANN 0.62 0.83 0.42 0.99 169.29 137.67 190.67 86.89 0.23 −2.27 −29.22 0.58
AR-ANFIS 0.54 0.30 0.68 0.76 182.45 214.87 131.65 91.90 0.11 −6.96 −13.41 0.53
ARX-ANFIS 0.39 0.50 0.45 0.74 212.50 237.39 211.93 141.02 −0.21 −8.72 −36.34 −0.10

AR-RF 0.43 0.36 0.66 0.78 182.52 167.42 172.71 89.85 0.11 −3.84 −23.80 0.55
ARX-RF 0.35 0.47 0.61 0.69 230.87 162.34 153.13 108.92 −0.43 −3.55 −18.49 0.34

GS dam

SARIMA 0.87 0.47 0.05 0.62 9.52 16.66 19.43 14.87 −0.02 −4.11 −49.30 −0.16
SARIMAX 0.88 0.48 0.10 0.62 9.32 18.26 22.81 18.30 0.02 −5.14 −68.31 −0.75
AR-ANN 0.82 0.50 −0.21 0.01 10.10 15.14 13.00 15.70 −0.15 −3.22 −21.52 −0.29
ARX-ANN 0.82 0.79 −0.39 0.71 8.89 15.67 18.74 11.49 0.11 −3.52 −45.80 0.31
AR-ANFIS 0.79 0.44 −0.20 0.10 10.11 17.06 14.50 14.90 −0.15 −4.36 −27.00 −0.16
ARX-ANFIS 0.77 0.58 −0.33 0.57 8.11 24.36 21.03 20.11 0.26 −9.93 −57.96 −1.12

AR-RF 0.85 0.46 0.02 0.11 7.63 14.51 13.74 16.29 0.34 −2.88 −24.17 −0.39
ARX-RF 0.80 0.61 -0.16 0.59 7.98 18.23 20.88 17.07 0.28 −5.12 −57.10 −0.52

7. Conclusions

In this study, the use of large-scale climatic indices as exogenous input variables to hydrologic
forecasting models was considered to reflect climate variability due to climate change. To do this, a total
of eight models including time series and artificial intelligence models (SARIMA, SARIMAX, AR-ANN,
ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF) were applied to monthly reservoir inflow
forecasting. The results of this study led to the following conclusions:

(1) For input variable selection, the PACF and EEMD can be used to find lagged inflow and
lagged climate indices that have a significant relationship with dam inflow. As a result, four lagged
inflows (lag1, lag12, lag24, lag36) were selected as the autoregressive variables, and the 36-month
lagged inflow, the lagged NINO12 index, and the lagged AMO index were commonly selected as the
combinations of autoregressive and exogenous variables for the three dams. Therefore, the procedure
for input variable selection using the PACF, EEMD, cross-correlation analysis, and backward
elimination in this study is a suitable method for input variable selection.

(2) The ARX-RF model generally showed the highest forecasting accuracy in the training period,
which proves that a combination of autoregressive and exogenous variables is useful for constructing
an RF model for the three dams. In the test period, the ARX-ANN model generally showed the highest
forecasting accuracy by capturing the seasonal patterns of reservoir inflow well, although there are
limitations to its ability to accurately forecast inflow volume.

(3) The model performance in the test period (from 2013 to 2016) was examined according
to the inflow characteristics of each year. The inflow of the three dams maintained the seasonal
patterns in 2013. Drought occurred in 2014, and it worsened in 2015. The ordinary pattern was slightly
restored in 2016. Although the model performance was not consistent in each year of the test period,
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the ARX-ANN and the AR-RF models generally matched the seasonal patterns well, especially during
the drought and restored years.

Based on this study, the results prove that the use of large-scale climate indices as exogenous
variables has the potential to provide more efficient forecasting performance for water resource
management and planning. Furthermore, there is a possibility to provide better forecasting results
by using a state-of-art artificial intelligence models such as RF. Future studies should be required to
identify the best forecasting models through many applications considering local weather conditions
and inflow characteristics under the changing climate conditions for effective water management
and planning.
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Abstract: The runoff in the upper reaches of the Heihe River has been continuously abundant for
more than a decade, and this has not happened previously in history. Quantitative analysis of runoff
variation and its influencing factors are of great significance for the ecological protection of the
basin. In this paper, the soil and water assessment tool model was used to simulate runoff in the
study area, and the method of scenario simulation was used to quantitatively analyze the runoff
response with respect to land use and climate change. According to the abruptness of the runoff
sequence, the years before 2004 are categorized as belonging to the reference period, and after 2004 is
categorized as the interference period. According to the analysis, compared with the reference period,
the contribution rate of climate change is 87.15%, while the contribution rate of land use change is only
12.85%. The climate change scenario simulation analysis shows that the change in runoff is positively
correlated with the change in precipitation. The relationship with the change in temperature is more
complicated, but the influence of precipitation change is stronger than the change in temperature.
According to the land use scenario simulation analysis, under the economic development scenario,
the runoff decreased, whereas under the historical trend and ecological protection scenario, the runoff
increased. Additionally, the runoff increased more under the ecological protection scenario.

Keywords: hydrological simulation; quantitative analysis; SWAT model; land use/cover change;
climate change; scenario simulation

1. Introduction

Runoff is the product of the interaction between climate and land use change in a basin [1–3].
Climate change will directly change the spatial distribution and temporal variability of atmospheric
precipitation and change the spatial configuration of runoff [4,5]. Changes in land use can directly lead
to changes in the production and flow processes, which lead to changes in runoff [6,7]. To some extent,
changes in land use also represent the impact of human activities on water resources [8]. Changes in
runoff in a source area will directly affect life production in the middle and lower reaches [9]. This is
crucial to revealing the characteristics of river basin runoff and its evolution against a background of
land use change and climate change [10–12].

For arid and semiarid areas, where meteorological and hydrological monitoring data are scarce,
it is particularly important to select appropriate methods to quantify the contribution rates of land
use and climate change [13]. Many studies have been carried out on the impact of climate and land
use change on the water resources of a basin [14–16]. The main methods used are long-term data
comparative analysis, experimental comparative analysis and watershed hydrological simulation.
The basin test method requires a long period of time and is difficult to implement, and this
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method is not suitable for large-scale watershed research [17]. The long-sequence data statistical
method can be used to analyze hydro-meteorological data trends, but the spatial heterogeneity
of the basin and the mechanism of land use and climate change on the hydrology of the basin
cannot be considered. Large-scale watershed attribution analysis is also difficult [18]. Therefore,
a semi-distributed hydrological model based on physical processes is selected in this paper to evaluate
the hydrological response of climate variability and land use change and to further quantify the degree
of impact. In the model setting, climate change and human activities are assumed to be independent
factors that lead to changes in runoff [19]. The hydro-meteorological sequence is divided into reference
stages and stages affected by land use change. Finally, the natural runoff during the impact of land use
change is simulated, and the contribution of the two factors to runoff is calculated based on the water
balance [20–22].

The main difficulties in this study are the determination of the mutation point and the contribution
rate calculation. The determination of the mutation point uses statistical analysis methods, including
the Mann-Kendall test method, wavelet analysis method, Pettitt test method, cumulative anomaly
analysis method and so on [23–26]. The runoff in the reference period generally takes the measured
runoff in the reference period of the basin as the reference value, and considers that the difference
between the measured runoff and the reference value in the period of impact of land use change is
caused by environmental changes. This difference consists of two parts: one is the climate change
impact contribution, and the other is the contribution of land use change [27]. Using a hydrological
model, according to the different periods of runoff mutation location, the meteorological data and
land use data for different periods are combined to establish a real situation based on the combination
of meteorological data and land use data before the mutation. In addition, the natural runoff is
simulated under the influence of both climate and land use change using the meteorological data
of the time period after mutation. The land use data are used for the pre-mutation time period to
simulate the runoff under the influence of climate change alone using the time before the mutation.
The meteorological data within the segment and the land use data during the post-mutation period
simulate runoff under land use change alone [28–30].

Many researchers have conducted simulations of the upstream runoff for the Heihe River, but the
quantitative analysis is relatively simple and uses the traditional mathematical statistics method [31].
Wang et al. used a wavelet analysis, wavelet neural network model and GIS spatial analysis for
the Heihe River [32]. The analysis and prediction of watershed runoff showed that the increase in
annual runoff has a causal relationship with the increase in upstream air temperature and precipitation.
He et al. used the M-K test and cumulant slope change rate comparison method to calculate the
contribution of climate change and human activities to runoff rate, and the researchers found that
the upper reaches of the Heihe River are dominated by climate change, and the impact of human
activities is small [33]. Other studies have been conducted in the Heihe River Basin. Wang et al.
studied the impact of land use change on hydrological processes in the middle reaches of the Heihe
River and found that human activities dominated the changes in runoff in the middle reaches of the
Heihe River [34]. Zhang et al. studied the effects of irrigation on surface climate in the Heihe River
Basin [35]. Although some scholars have conducted preliminary research on the runoff simulation of
the SWAT model in the upper reaches of the Heihe River, it is necessary to conduct systematic research
on the hydrological effects in the changing environment. Zhao et al. used the Hydrologiska Fyrans
Vattenbalans model to study the corresponding effects of runoff on climate change in the Heihe River
Basin [36]. He et al. used the Variable Infiltration Capacity model to analyze the uncertainty of runoff
simulation in the upper reaches of the Heihe River [37].

In the study of the upper reaches of the Heihe River, the SWAT model is a relatively more used
model, and it is more suitable for simulations with long time periods and continuous spatiotemporal
runoff changes. It is convenient to use the spatial information provided by remote sensing and GIS to
simulate the hydrological effects in many different scenarios. The application of the SWAT model in
the upper reaches of the Heihe River began in the early 21st century. Liu et al. first applied the SWAT
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model to the Heihe River Basin [38]. In later studies, they carried out improvements in the SWAT
model, including the study of the snowmelt module [39]. Due to the small number of meteorological
stations in the Heihe River Basin, Zou, Meng et al conducted a coupling study of SWAT with other
models to obtain a more accurate simulation [40,41]. Zhang, Luo and others used the SWAT model to
simulate the runoff and evaporation of the Heihe River Basin [42,43]. They are analytical studies based
on historical data. In this paper, the contribution rate of climate and land use change to surface runoff
is separated based on hydrological model. And combined with the analysis of different climate and
land use scenarios, on the one hand, it repeals the response of runoff to climate and land use change,
on the other hand, it can make some predictions on the future changes in runoff under climate and
land use scenarios.

In this paper, based on the hydrological model, we calculate the contribution rate of climate and
land use change to surface runoff. Based on the scenario setting method of the model, the response
of surface runoff to climate and land use change is studied. The possible scenarios are used
to predict the runoff under future climate and land use conditions; it also provides a reference
for the rational allocation of water resources in the basin. The main objectives of this paper are
threefold: (1) determining the point of change of runoff based on long-term hydrological sequence;
(2) quantitatively analyzing the contribution rate of climate and land use change to runoff impact;
(3) through the scenario setting simulation method, studying the response of runoff to climate and
land use change. The aim is to provide a reference for the rational allocation of living, production and
ecological water in the basin.

2. Materials and Methods

2.1. Study Area and Data Sources

2.1.1. Study Area

The Heihe River Basin is the second largest inland river basin in China. Due to the arid
and semiarid climate, water shortages are a major factor limiting the sustainable development
of the socioeconomic and ecological environment in the region [44,45]. Recently, the grassland
degradation trend in the Heihe River Basin has been obvious, and the ecological damage is serious [46].
To alleviate this series of problems, in August 2001, the State Council began to carry out comprehensive
management of the Heihe River Basin and implement Heihe River water dispatching and integrated
river basin management [47]. According to the upstream water supply situation, the difference in
different annual water levels has led to an increased contradiction between water and water demand
in the middle and lower reaches [48]. To achieve rational allocation of water resources, the upstream
water supply trend must be understood. The upstream runoff of the Heihe River has been abundant
for more than a decade, and such a history of runoff has never before been seen [49]. Therefore, it is
necessary to analyze the causes of water abundance and combine these data into a model to study the
contribution of climate change and land use factors and to develop and utilize water resources for the
basin, which will provide a reference for rational planning.

The Heihe River originates in the Qilian Mountain region on the northern edge of the Tibetan
Plateau. This area is a typical inland river basin in the arid region of northwest China, located in
the middle of the Hexi Corridor [50]. The upstream area is attached to Qilian County in the Qinghai
Province, and the basin area is approximately 10,000 km2. This area is located in the central part of
the Eurasian continent and is the site of the ancient Silk Road. The study area is far from the sea and
the elevation ranges between 1600 m and 4800 m. Affected by the circulation of the westerly winds in
the middle–high latitudes and the influence of polar cold air masses, the climate in the upper reaches
is dry, and precipitation is scarce and concentrated [51]. The upper Heihe River is the main area
of the Heihe River Basin. Surface runoff mainly comes from atmospheric precipitation and melting
snow and ice. The runoff distribution throughout the year is basically the same as the precipitation
process and during the high temperature season [52]. The runoff and precipitation are concentrated
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in summer and autumn, and the annual average precipitation exceeds 400 mm. This area is sparsely
populated, and the main economic activities are forestry and animal husbandry. The low level of
economic development has led to a limited level of water resource development and utilization [53].
The location of the study area is shown in Figure 1, as well as the distribution of the hydrology and
meteorology stations.

Figure 1. Upper reaches of the Heihe River Basin.

2.1.2. Data Sources

The data used in this paper are divided into two parts. The first part is used to analyze the water
resource situation in the upper reaches of the Heihe River and the relationship between runoff and
climate elements. The second part is the data needed for the soil and water assessment tool model
(SWAT). The model data mainly include two parts: model input data and model calibration verification
data. Model input data includes DEM data (1000 m × 1000 m), soil data (1:1,000,000), land use/cover
data (1:100,000), and meteorological data. The model’s calibration verification data is primarily the
runoff and flow of the hydrological station. The data are based on ARCGIS 9.3 unified projection
processing, in which all spatial data are converted into a unified projection with a spatial reference of
Beijing_1954_GK_Zone_17N. DEM data and land use/cover data are from the Cold and Arid Regions
Science Data Center. According to the standard, land use data are divided into six categories: forestland,
grassland, water area, cultivated land, unused land, and urban construction land, as shown in detail in
Table 1 and Figure 2. Soil data are from the HWSD-World Harmony Soil Database and include 8 soil
classes, 14 soil classes, and 24 subcategories. See Figure 3 for details. The time series of climate data
were selected from January 1980 to December 2008 and include daily precipitation, maximum and
minimum temperature, humidity and wind speed. Meteorological data and hydrological data were
downloaded from the Heihe River Bureau for model calibration and evaluation and include the Qilian
station, Zhangye station, Yeniugou station, Tuole station, and Yingluoxia station, seeing Tables 2 and 3
for details.
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Table 1. Land use/cover type.

Land Use Type Land Use Secondary Classification SWAT Code

urban construction land urban resident land, rural resident land URLD
forestland forestland, shrub land, woodland, other woodland FRST

grassland high-covered grassland, medium-covered
grassland, and low-covered grassland HAY

water area lakes, swamps, glacial snow, canals, beaches WATR
unused land sand, Gobi, swamp, bare rock BALD
arable land mountain drylands, plain dryland AGRL

 
(a) (b) 

Figure 2. (a) Distribution of land use/cover types; (b) Distribution of soil types.

Table 2. Meteorological station information.

Station Name Longitude/◦ Latitude/◦ Elevation/m

Tuole station 98.42 38.8 3367
Yeniugou station 99.58 38.42 3320

Qilian station 100.25 38.18 2787.4
Zhangye station 100.43 38.93 1482.7

Table 3. Hydrological station information.

Station Name Longitude/◦ Latitude/◦ Elevation/m

Yingluoxia station 100.18 38.82 1700

2.2. Methodology

2.2.1. Mann-Kendall Trend Test

The Mann-Kendall test was performed on the mutation point. The Mann-Kendall test method
is a nonparametric method. The M-K test is simple to calculate, and the results are not disturbed by
a few outliers in the time series such as temperature, rainfall, and runoff. At the same time, it is not
necessary for the sample to follow a certain distribution, and it can clearly indicate the start time of the
sudden change of the time series of temperature, rainfall, runoff, and the like [54].

It is assumed that time series Xt, such as temperature, rainfall, runoff, etc., are composed of n
randomly independent and identically distributed samples, such as X = x1, x2, . . . , xn.

First, construct an order column:

sk = ∑k
i=1 ri, k = 2, 3, . . . , n (1)

when xi > xj, ri has a value of 1, otherwise it has a value of 0.
The order column sk is the cumulative number of times the value of the stat ri at time i is greater

than the value at time j.
Based on the assumption that the sample X = {x1, x2, . . . , xn,} is a random independent and

identical distribution, the normalized order column sk is defined as the statistic UFk.
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UFk =
|sk − E(sk)|√

Var(sk)
(2)

where UF1 = 0, and E(sk), Var(sk) are the mean and variance, respectively, of the cumulative
number sk.

The above process is repeated in time series x in reverse order xn, xn−1, . . . ,x1, making
UBk = −UFk, k = n, n − 1, . . . , 1, UB1 = 0.

Given the significance level α = 0.05, the critical value U0.05 = ±1.96, the two statistical sequence
curves of UFk and UBk, and the two critical values are plotted on the same graph for analysis.

If one of the statistics UFk or UBk is positive, it can be judged that time series such as temperature,
rainfall, and runoff have an upward trend. In addition, when the absolute values of the statistics
UFk or UBk exceed the threshold of the significance level, it can be further judged that the rising or
falling trend of the time series such as temperature, rainfall, runoff, etc. is significant; in particular, the
statistics UFk or UBk are at the level of significance. When the critical values intersect, the intersection
point is the sudden change point, and the corresponding time is the sudden change time of temperature,
rainfall and runoff [55].

2.2.2. Cumulative Anomaly Method

The anomaly is a commonly used statistic that indicates that the runoff deviates from the normal
situation [56]. The difference between a certain value and the average value of a series of values is the
anomaly; that is, xi − x. Any runoff series can be transformed into a sequence with an average value
of 0 after anomaly processing. The cumulative anomaly is a statistical method for judging the trend of
discrete data points by curve. The calculation process involves first calculating the anomaly value of
annual runoff and then accumulating values year-by-year according to the time series to obtain the
variation process of the cumulative anomaly value with time. The trend of discrete data points can be
visually judged by the curve. The cumulative anomaly for a sequence X at a certain time t is expressed
as follows:

Xt = ∑t
i=1(xi − x), t = 1, 2, . . . , n (3)

x =
1
n

n

∑
t=1

xt (4)

The runoff cumulative anomaly curve can be used to characterize the abundance of runoff change.
When the curve changes downward, this indicates that the runoff enters the dry season. An upward
change indicates that the runoff enters the wet season, and a horizontal change indicates that the runoff
enters the flat period.

2.2.3. Soil and Water Assessment Tool (SWAT Model)

The SWAT model is a typical distributed hydrological model based on the GIS platform, which was
developed by the United States Department of Agriculture [57]. The model can predict the trend and
impact of runoff changes under different land use patterns, soil conditions, and river basin management
conditions in large watersheds [58]. The data required for the SWAT model include topography, soil,
land use/cover, weather, hydrology, etc., and different databases can be selected depending on the
purpose of the study [59]. The SWAT-simulated watershed hydrological process is divided into the
land phase of the hydrological cycle and the convergence phase of the hydrological cycle. The entire
water circulation system follows the law of water balance, and the formula is as follows:

SWt = SW0 +
t

∑
i=1

(
Rday − Qsurf − Ea − Wseep − Qgw

)
(5)
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where SWt is the final soil moisture content, mm; SW0 is the initial soil moisture content of the i-th day,
mm; t is the time, d; Rday is the precipitation of the i-th day, mm; Qsurf is the surface runoff of day i,
mm; Ea indicates the amount of evapotranspiration on day i, mm; Wseep indicates the amount of water
entering the vale zone from the soil profile on day i, mm; and Qgw indicates the return flow amount on
day i, mm.

The runoff simulation in the SWAT model is the SCS runoff curve method based on daily
precipitation data and the Green&Ampt infiltration method based on time precipitation data. The SCS
runoff curve number model links soil type, runoff, land use and management measures to provide
a basis for estimating runoff under various land uses and soil types. According to the collected
precipitation data, this paper selects the SCS runoff curve method to simulate the runoff.

The SWAT model has the following basic assumptions: The ratio between the actual water
storage amount F and the maximum water storage capacity S is equal to the ratio of the runoff Q
to the difference between the rainfall P and the initial loss Ia; a linear relationship between Ia and S.
Its rainfall-runoff relationship expression is as follows:

F
S
=

Q
P − Ia

(6)

According to the water balance, it can be obtained that:

F = P − Ia − Q (7)

Therefore, Equation (6) can be derived as follows:

Q =
(P − Ia)

2

S + P − Ia
(8)

Ia is affected by factors such as land use, farming methods, irrigation conditions, canopy
interception, etc. It has a certain proportional relationship with the maximum possible permeability S.
Based on the analysis of a large number of long-term experimental results, the SWAT model provides
that the most suitable scale factor for Ia and S is 0.2:

Ia = 0.2S (9)

S is closely related to the underlying surface factors such as land use type, soil type and slope.
The model can introduce CN to better determine S. The formula is as follows:

S =
25400
CN

− 254 (10)

CN is a dimensionless parameter. The CN value reflects a comprehensive parameter of the
characteristics of the pre-rainfall watershed. It is a combination of factors such as soil moisture, slope,
land use type and soil type.

The principle of runoff simulation of the SWAT model is as follows: when the rainfall reaches
the ground, the water infiltration rate is larger due to the dryness of the surface soil. The continuous
rainfall process causes the soil moisture to increase, which leads to the decrease of water infiltration
rate. When the rainfall intensity is greater than the infiltration rate, the filling begins. Once the surface
is filled, the surface runoff will be generated. The hydrological simulation of the SWAT model is based
on the water balance equation [38].

2.2.4. Parameter Sensitivity Analysis and Model Calibration and Validation

For the calibration of the model, the Yingluoxia hydrological station is selected, which controls
the upstream outlets and has a strong representativeness, which helps to improve the accuracy of
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the model. First, the annual scale simulation is performed, and then the monthly scale simulation is
performed. SWAT-CUP software was used for the calibration of the model. The SUFI-2 algorithm was
used for iterative calculation. According to previous research experience, the parameters were selected
for the LH-OAT sensitivity analysis. First, the initial range of the model is determined, and then
multiple operations are performed until the optimal value of the parameter is determined. The model
was evaluated using the decision coefficient R2 and the model efficiency coefficient NSE to achieve
good results:

R2 =

[
∑n

i=1

(
Qobs

i − Qmean

)(
Qsim

i − Qsmean

)]2
∑n

i=1

(
Qobs

i − Qmean

)2
∑n

i=1

(
Qsim

i − Qsmean

)2 (11)

NSE = 1 −

⎡
⎢⎣ ∑n

i=1

(
Qobs

i − Qsim
i

)2

∑n
i=1

((
Qobs

i − Qmean

))2

⎤
⎥⎦ (12)

where Qobs
i is the observed streamflow, Qsim

i is the simulated streamflow, Qsmean and Qmean are the
average simulated and observed streamflow values, respectively, and n is the simulation number.
The range of R2 is 0~1, and the closer this value to 1, the better the simulation effect. For NSE, greater
than 0.5 indicates that the simulation result is acceptable, and the NSE is between 0.5–0.65, indicating
suitable simulation results [60].

2.2.5. Contribution Rate Calculation

The semi-distributed hydrological model, the SWAT model, is used to calculate the contribution
rate of climate change and human activities to runoff effects. The reference period and the
interference period are accurately divided according to the abrupt position of the runoff, and then the
meteorological, hydrological and land use data rates of the reference period are used to determine the
hydrological model parameters. The period before the runoff mutation point is the reference period,
and the period after the runoff mutation point is the interference period. To analyze the contribution
of the calculation of land use and climate change, the following scenarios are used for analysis; see
Table 4. Based on scenario 1, scenario 3 is compared with the common impacts of land use change on
runoff, scenario 2 is compared with the impact of climate change on runoff, and finally, the impacts
of land use and climate change on runoff during different periods are quantitatively analyzed in the
upper reaches of the Heihe River.

Table 4. Scenarios for quantitative attribution analysis.

Scenarios Land Use/Cover Data Meteorological Data

1 1980s 1980–2003
2 1980s 2004–2008
3 2000s 1980–2003
4 2000s 2004–2008

Q1, Q2, Q3, and Q4 are the average annual runoffs simulated under scenarios 1, 2, 3, and 4,
respectively. In addition, the following formula is used to complete the calculation of the contribution
rate of climate change and land use change.

αc =
Q3 − Q1
Q4 − Q1

× 100% (13)

αh =
Q2 − Q1
Q4 − Q1

× 100% (14)
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2.2.6. Scenario Setting and Model Analysis

To further explore the impact of climate change on runoff in the upper reaches of the Heihe River,
the range of possible future variabilities in climate change, precipitation and temperature changes
were given. The following scenarios are determined: The existing precipitation conditions remain
unchanged, precipitation is increased by 10% and 20%, and the precipitation is reduced by 10% and
20%, which gives a total of 5 scenario options. Additionally, the existing temperature is maintained,
reduced by 0.5 ◦C, 1 ◦C, 1.5 ◦C and 2 ◦C, and increased by 0.5 ◦C, 1 ◦C, 1.5 ◦C, and 2 ◦C, for a total of
9 options.

To further explore the impact of land use on the runoff in the upper reaches of the Heihe River,
according to the scenario analysis of the Western Data Center future trend of land use in the Heihe
River, the ecological protection trend, the economic development trend and historical trend are adopted.
(http://westdc.westgis.ac.cn/) Based on the historical development trend and existing problems of
the Heihe River Basin, this dataset uses the Dyna-CLUE model to simulate land use development
scenarios in the Heihe River Basin in 2020 and 2030.

3. Results and Discussion

3.1. Parameter Sensitivity Analysis and Model Calibration and Validation

Through the sensitivity analysis of the SWAT model, 14 parameters with higher sensitivity were
selected to calibrate and verify the model (Table 5). The initial values and the range of the parameters
can refer to the existing research, which can save time for parameter adjustment and improve efficiency.
The period of 1980–1984 was used as the model’s warm-up period, 1985–1998 was used as the model’s
calibration period, and 1999–2008 was used as the validation period of the model. SWAT-CUP was
used to calibrate the model parameters, and the monthly streamflow at the upstream outlet at the
Yingluoxia station was calibrated and adjusted. The monthly streamflow R2 and ENS at the Yingluoxia
station during the calibration period were 0.75 and 0.65, respectively, and the verification periods were
0.71 and 0.63. The SWAT model is suitable for the upper reaches of the Heihe River. The simulation
results are shown in Figure 3 and Table 6.

Table 5. Parameter sensitivity analysis.

Parameter Sensitive Value Range Fitted Value

CN2.mgt 2 (35,98) 29.532
Ch_K2.ret 5 (−0.01,500) 21.402
Ch_N2.ret 12 (0,0.2) 0.098
ESCO.hru 1 (0,1) 0.815
EPCO.hru 14 (0,1) 0.188

CANMX.hru 10 (0,100) 6.634
SOL_Z.sol 4 (0,3500) 0.187
SOL_K.sol 6 (0,2000) −0.248

SOL_AWC.sol 3 (0,1) 0.358
GWQMN.gw 8 (0,5000) 3398.502
GW_Delay.gw 13 (0,500) 17,795
REVAPMN.gw 11 (0,500) 0.225
GW_REVAP.gw 7 (0.02,0.2) 0.02
ALPHA_BF.gw 9 (0,1) 0.008

CN2: Moisture condition SCS curve number; Ch_K2: River effective water transfer coefficient; Ch_N2: Manning’s “n”
value for the main channel; ECSO: Soil evaporation compensation factor; EPCO: Plant transpiration compensation
coefficient; CANMX: Maximum canopy storage; SOL_Z: Depth from soil surface to bottom of layer; SOL_K:
Saturated hydraulic conductivity; SOL_AWC: Available water capacity of the soil layer; GWQMN: Threshold
water level in shallow aquifer for base flow; GW_Delay: Groundwater delay coefficient; REVAPMN: Threshold
water level in in shallow aquifer for “revap”; GW_REVAP: Groundwater “revap” coefficient; ALPHA_BF: Baseflow
recession constant.
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Table 6. Calibration and validation results of SWAT model for monthly streamflow.

Period Measured Average m3/s Simulated Average m3/s Nash-Suttcliffe R2

1985–1998 51.65 58.52 0.65 0.75
1999–2008 66.08 57.62 0.63 0.71
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Figure 3. Calibration and validation results of SWAT model for monthly streamflow.

3.2. Trends in Annual Runoff

Figure 4 shows the linear analysis of the runoff from 1958 to 2017 and the 5-year moving average
curve of the hydrological station at the water outlet of the Heihe source area. In the past 60 years, the
annual runoff of the Yingluoxia shows an increasing trend, on the whole. The annual runoff at the
Yingluoxia station reached its maximum in 2017, at 23.31 × 108 m3, while the minimum appeared in
1971 at 10.32 × 108 m3, with a tendency to change of 0.93 × 108 m3·10 a−1. After entering the 21st
century, runoff is generally large, showing a fluctuating rising trend.
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Figure 4. Trend analysis of runoff at Yingluoxia station.

We use a combination of two methods to identify the point of abrupt changes in the runoff
sequence. In the M-K curve, the UFk and UBk graphs are plotted. If the value of UFk or UBk is greater
than 0, this indicates that the sequence is on an upward trend, and less than 0 indicates a downward
trend. When these values exceed the critical line, this indicates a significant increase or decrease.
The range exceeding the critical line is determined as the time zone in which the mutation occurs.
If there is an intersection between the curves of UFk and UBk, and the intersection is between the
critical lines, then the moment corresponding to the intersection is the time when the mutation starts.

As shown in Figure 5a, in the 1980s, the UFk value began to be greater than 0 and was always
greater than 0, indicating that the runoff sequence of Yingluoxia station began to rise from the 1980s.
In 2008, the UFk value was greater than 1.96, indicating that the trend of increasing the runoff was
significant based on a significance level test of 0.05. Also, an intersection of the curves appeared in
2004. As seen in the cumulative anomaly curve of Figure 5b, the cumulative anomaly change process
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can be roughly divided into three stages: from 1958 to 1980, the annual runoff showed a decreasing
trend; from 1981 to 2003, the annual runoff showed a relatively gradual fluctuation trend; after 2004,
runoff showed a clear upward trend. The mutations may be caused by symptoms of climate change,
such as increased precipitation. In the 21st century, the global climate is warming, and the climate in
northwestern China is warm and humid, but there is a significant hysteresis effect, which may lead to
sudden changes of runoff appearing in 2004. Combining the two methods, the mutation point was
set to 2004. Therefore, in the follow-up study, we divided the study period into a reference period
pre-2004 and an interference period after 2004.

 
(a) (b) 

Figure 5. (a) Change trends of the M-K test; (b) Cumulative anomaly of the annual runoff in
Yingluoxia station.

3.3. Precipitation and Runoff Correlation Analysis

The Double Mass Curve (DMC) is a common method for testing the consistency of relationships
between two parameters and their changes. The DMC is the relationship between the continuous
cumulative value of one variable and the continuous cumulative value of another variable plotted
in the Cartesian coordinate system. It can be used to test the consistency of hydro-meteorological
elements. The DMC of the runoff and precipitation in the upper reaches of the Heihe River was
plotted to test the correlation between the two factors. The M-K test and the cumulative anomaly
curve analysis of the annual runoff of the Yingluoxia hydrological station have been well verified in
the precipitation-runoff DMC. As seen in Figure 6, the precipitation-runoff DMC is roughly divided
into three phases, 1958–1979, 1980–2003, and 2004–2014.

Figure 6. The precipitation-runoff DMC.
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Figure 7 shows the correlation analysis between runoff and precipitation changes. From the
annual scale, the runoff changes are consistent with the precipitation changes, and there is a clear
correlation. In addition, the correlation passed the significance test.

Figure 7. The correlation analysis between precipitation and runoff.

3.4. Contribution of Land Use and Climate Change to Runoff Variation

The different meteorological data and land use data for the designated natural period and
interference period are combined and the runoff contribution rate of land use and climate change
in the Heihe River Basin is calculated according to different scenarios. In the upper reaches of the
Heihe River, the contribution rate of climate change runoff is much greater than the contribution rate
of human activities.

The simulation results are shown in Table 7. The simulated annual runoff is 622.67 m3/s in the
reference period and 710.90 m3/s in the interference period. Compared with the reference period, the
total runoff increased during the interference period by 88.23 m3/s. Among the scenarios, the increase
caused by climate change is 76.89 m3/s, and the increase caused by human activities is 11.34 m3/s.
The contribution rate of climate change is 87.15%, while the contribution rate of human activities is
only 12.85%.

He et al. calculated the contribution rate of climate change and human activities to runoff in the
upper reaches of the Heihe River by the elastic coefficient method, and found that the contribution rate
of climate change is greater than that of human activities, but because of the analysis based on statistical
characteristics, the land use type and soil are ignored the type and other physical mechanisms [32].
Lin et al. identified the effects of climate and land use change on runoff and evapotranspiration
through hydrological model separation. The role of climate change is found to be much greater than
land use change [50]. Meng et al. used the SWAT model to study the Aksu River in the northwest
inland area and found that climate factors and human activities were responsible for 92.28% and 7.72%
of the variability, respectively [61]. These are consistent with the results of this paper.
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Table 7. Simulated response of human activities and climate change in Heihe River Basin.

Time Interval Period
Simulated Annual

Runoff m3/s
Total Increase

m3/s
Effect of Human Activities

on Runoff
Effect of Climate Change

on Runoff

Reference period 1980–2003 622.67 —— —— —— —— ——

Interference period 2004–2008 710.9 88.23
Increase m3/s Proportion Increase m3/s Proportion

11.34 12.85% 76.89 87.15%

3.5. Scenario Simulation of Climate Change and Land Use Cover Change

3.5.1. Climate Change Factor

The SWAT model was used to analyze the combined scenarios of different meteorological data.
According to Table 8, the influence of temperature on runoff is complicated, and the increase or
decrease in runoff caused by temperature cannot be determined. When the temperature is lowered,
evaporation is reduced, which leads to an increase in surface runoff. However, when the temperature
rises, the change of surface runoff presents uncertainty due to the conflict effect caused by evaporation
and snowmelt runoff. An increase in temperature causes an increase in evaporation, resulting in a
decrease in surface runoff. At the same time, an increase in temperature will also lead to an increase in
glacial snowmelt runoff, which will increase surface runoff. In the case of maintaining the precipitation
in the upper reaches of the Heihe River, the runoff also changed with the change in temperature, but all
scenarios showed an increasing trend; as the temperature increases, the increase in surface runoff has
been alleviated. The effect of rainfall on runoff is positive. With the temperature of the upper reaches
of the Heihe River remains unchanged, the runoff increases with increasing rainfall, and vice versa.

Table 8. Relative variation of mean annual runoff for different scenarios/%.

Temperature
Precipitation

−20% −10% 0 +10% +20%

−2 ◦C −11.87 −4.45 17.39 23.21 38.65
−1.5 ◦C −15.85 −6.76 13.13 18.86 32.97
−1 ◦C −20.69 −7.70 9.11 11.24 21.75
−0.5 ◦C −22.45 −15.33 4.35 8.96 16.50

0 −30.63 −20.85 0 7.45 14.69
+0.5 ◦C −21.35 −9.64 9.2 10.52 22.49
+1 ◦C −23.44 −12.17 6.29 12.48 25.86

+1.5 ◦C −23.96 −12.96 5.36 16.63 26.52
+2 ◦C −25.79 −15.59 4.43 18.72 30.03

Table 9 shows the response of runoff to lower temperatures and higher precipitation. As shown
in Table 9, when ΔT = 0, it means the response of the runoff to the increase of precipitation when the
temperature is constant. It can be seen that the increase in precipitation increases the runoff, and the
more the precipitation increases, the more the runoff increases. When ΔP = 0, it means the response of
the runoff to the temperature decreases when the precipitation is constant. It can be seen that the lower
the temperature, the more the runoff increases, and the more the temperature is lowered, the more
the runoff increases. When both ΔT and ΔP are not zero, it means that the temperature decreases and
the precipitation increases. It can be found that when the temperature decreases and the precipitation
increases, the runoff increases the most.
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Table 9. Response of runoff to temperature reduction and precipitation increase.

Temperature Change
Precipitation Change

ΔP=0 ΔP=10% ΔP=20%

ΔT = 0 0 7.45 14.69
ΔT = −0.5 4.35 8.96 16.50
ΔT = −1.0 9.11 11.24 21.75
ΔT = −1.5 13.13 18.86 32.97
ΔP = −2.0 17.39 23.21 38.65

Table 10 shows the response of runoff to both elevated temperature and precipitation. It can be
seen from Table 10 that when ΔP = 0, when the precipitation is constant, the runoff will increase when
the temperature rises. When both ΔT and ΔP are not zero, it indicates the response of the runoff when
the temperature and precipitation increase simultaneously. When the increase of precipitation reaches
10% or more, the runoff increases, indicating that the effect of precipitation on runoff is more significant.
Due to the large area of glaciers in the upper reaches of the Heihe River, when the temperature rises,
the increase of glacial snowmelt will also lead to an increase in runoff.

Table 10. Response of runoff to simultaneous increase in temperature and precipitation.

Temperature Change
Precipitation Change

ΔP=0 ΔP=10% ΔP=20%

ΔT = 0 0 7.45 14.69
ΔT = 0.5 9.2 10.52 22.49
ΔT = 1.0 6.29 12.48 25.86
ΔT = 1.5 5.36 16.63 26.52
ΔT = 2.0 4.43 18.72 30.03

Table 11 shows the response of runoff to simultaneous decrease in temperature and precipitation.
From Table 11, when ΔT = 0, it means that when the temperature is constant, the runoff decreases when
the precipitation decreases. When both ΔT and ΔP are not zero, it indicates the response of the runoff
when both temperature and precipitation decrease. It can be seen that the decrease in temperature and
the decrease in precipitation have the opposite effect on runoff. When the precipitation is constant,
the temperature decreases, the runoff increases, and the lower the temperature, the larger the runoff.
When the temperature is constant, the decrease in precipitation will result in a decrease in runoff, and
the lower the temperature, the lower the runoff.

Table 11. Response of runoff to simultaneous decrease in temperature and precipitation.

Temperature Change
Precipitation Change

ΔP=−20% ΔP=−10% ΔP=0

ΔT = 0 −30.63 −20.85 0
ΔT = −0.5 −22.45 −15.33 4.35
ΔT = −1.0 −20.69 −7.70 9.11
ΔT = −1.5 −15.85 −6.76 13.13
ΔT = −2.0 −11.87 −4.45 17.39

Table 12 shows the response of runoff to elevated temperatures and reduced precipitation. It can
be seen from Table 12 that when ΔT = 0, and the temperature is constant, when the precipitation
decreases, the runoff will decrease, and the more the precipitation decreases, the smaller the runoff.
When both ΔT and ΔP are not zero, it indicates the response of the runoff when the temperature rises
and precipitation decreases. It can be seen that both the increase in temperature and the decrease in
precipitation can reduce the runoff.
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Table 12. Response of runoff to temperature increase and precipitation decrease.

Temperature Change
Precipitation Change

ΔP=−20% ΔP=−10% ΔP=0

ΔT = 0 −20.69 −7.70 0
ΔP = 0.5 −21.35 −9.64 9.2
ΔP = 1.0 −23.44 −12.17 6.29
ΔP = 1.5 −23.96 −12.96 5.36
ΔP = 2.0 −25.79 −15.59 4.43

3.5.2. Land Use Change Factor

According to the historical development trend and existing problems in the Heihe River Basin,
the Dyna-CLUE model was used to simulate the land use scenarios of the 2020 and 2030 (Figure 8).
Considering the actual land use setting in 2000 as a basic scenario, the impact of future land use
changes on runoff was analyzed. The dataset was provided by the Heihe Plan Science Data Center,
National Natural Science Foundation of China.

Under natural scenarios, land-use change evolves according to existing trends. The ecological
protection scenario is to strictly limit the land use type to occupy land for forest land, grassland and
water land, strictly implementing the measures of returning farmland to forests and grasslands. Under
circumstances of economic development, with the development of the social economy and the increase
of the urban population, the demand for industry, residential and public land is urgent, leading to the
continuous expansion of the urban scale, leading in turn to an increase in urban construction land and
cultivated land.

 
(a) (b) 

 
(c) (d) 

Figure 8. Cont.
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(e) (f) 

Figure 8. Distribution of land use types under different simulation scenarios. (a) Natural growth
scenario in 2020, (b) Natural growth scenario in 2030, (c) Ecological protection scenario in 2020,
(d) Ecological protection scenario in 2030, (e) Economic development scenario in 2020, (f) Economic
development scenario in 2030.

It can be seen from Table 13 that under the future scenario, land use areas of various types will
increase or decrease to different degrees. Under natural growth, from 2020 to 2030, the cultivated
land will increase, and the forest and grassland area will decrease. Under the protection situation,
from 2020 to 2030, the area of cultivated land, forest land and grassland will increase, and the area
of bare land will decrease. Under the economic development situation, from 2020 to 2030, the area
of cultivated land will increase, the area of bare land will increase, and the area of forest land and
grassland will decrease.

Table 13. Area ratio of different land use scenarios.

Type of Landuse
Natural Growth Scenario Ecological Protection Scenario Economic Development

2020 2030 2020 2030 2020 2030

AGRL 12.009% 12.569% 11.565% 11.778% 12.889% 13.764%
FRST 12.930% 12.786% 13.060% 13.102% 12.680% 12.413%
HAY 35.344% 34.824% 35.753% 35.848% 34.533% 33.728%

WATR 2.295% 2.294% 2.294% 2.293% 2.290% 2.290%
URLD 0.983% 0.986% 0.959% 0.972% 1.037% 1.091%
BALD 36.439% 36.541% 36.369% 36.007% 36.570% 36.714%

The land use scenario simulation results are shown in Table 14. In 2020, under the natural growth
scenario and ecological protection scenario, runoff showed an increasing trend, but the degree of
increase was different between the scenarios, while under economic development, runoff showed
a decreasing trend. Under the natural growth scenario, the area of grassland decreased, the area of
cultivated land and bare land increased, and by 2030, the amount of runoff increased. Under the
ecological protection scenario, the area of arable land and bare land decreased, and the area of
forestland and grassland increased. The increase in runoff was larger than that under the natural
growth scenario, which shows that the increase in forestland and grassland has a greater impact on the
increase in runoff than that of cultivated land or bare land. In future planning, the area of ecological
land such as forest and grass can be appropriately increased.

In the future land use scenario, the SWAT model is used to simulate, and the results show that
the runoff increases or decreases in different situations. In the case of natural growth and ecological
protection, runoff shows an increasing trend. However, in the case of ecological protection, the increase
in runoff is more significant. Under the economic development situation, the runoff is reduced due to
the large reduction in grassland area. It can be seen that the construction of ecological construction
land such as forest land and grassland can, to a certain extent, improve the regional microclimate,
improve the soil environment, reduce the surface temperature, reduce the direct evaporation of water,
and have a positive effect on the surface runoff.
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Table 14. Change of runoff under land use/cover scenarios.

Land Use/Cover Change Scenarios Change Rate of Runoff

2020
(a) 0.27%
(c) 0.34%
(e) −0.10%

2030
(b) 1.57%
(d) 3.74%
(f) −0.22%

4. Conclusions

By analyzing the impact of climate and land use change on runoff in this paper, a qualitative
analysis is turned into a quantitative analysis for the development and utilization of water resources
in the Heihe River Basin, providing a reference base. In this paper, the runoff change trend at the
Yingluoxia station in the upper reaches of the Heihe River over the past 60 years is analyzed and
combined with the SWAT model to simulate runoff. We combine different scenarios of climate and
land use change to simulate surface runoff. The results show the following:

(1) The annual runoff in the upper reaches of the Heihe River is increasing. The long-term runoff
sequence was mutated in 2004. Therefore, the runoff sequence was divided into the reference
period before 2004 and the interference period after 2004.

(2) The SWAT model has good applicability in runoff simulation of the Yingluoxia hydrological
station. It can be used for contribution rate calculations and scenario simulations.

(3) The contribution rates of climate change and land use to watershed runoff are very different.
In the upper reaches of the Heihe River, the contribution rate of climate change to runoff change
is 87.15%, while human activities contribute only 12.85%.

(4) According to different temperature and rainfall scenarios, the simulation analysis shows that
decreased temperature causes increased surface runoff. However, when the temperature rises,
the change of surface runoff presents uncertainty due to the conflict effect caused by evaporation
and snowmelt runoff. While an increase in rainfall will lead to an increase in runoff, but the
amount of increase will differ. It can be found that when the precipitation increases and the
temperature decreases, the runoff increases the most. When the temperature increases and the
precipitation decreases, the amount of runoff reduction is most significant.

(5) Land use in different scenarios has different effects on runoff. Both natural and ecological
conservation trends lead to increased runoff, but the increase in runoff is greater under the
ecological protection scenario, while under economic development, runoff showed a decreasing
trend. The increase of forest land and grassland area caused the increase of surface runoff. It can
improve the regional climate to a certain extent and have a positive effect on surface runoff. Also,
the cultivated land has a negative contribution to soil and water conservation and has a negative
effect on the occurrence of surface runoff.

Although climate change plays a key role in the runoff changes in the UHRB, the impact of
human activities cannot be ignored. Against the background of climate change, according to the water
resource utilization management objectives, watershed management measures can be adjusted to
realize the rational layout of land use and then change the river basin runoff trend, which provides
a reference for effective scientific planning in river basins. In the future watershed management
process, while meeting upstream water demand, the land use structure can be adjusted and rationally
distributed, thereby increasing the upstream water output and ensuring water use in the lower reaches
of the basin. In this paper, research regarding a certain contribution rate was conducted, but there are
still many factors that have not been considered. For example, climate change can be combined with
evapotranspiration, and other human activities can also be added to considerations for further research.
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Abstract: Pan evaporation (Epan) is an important indicator of regional evaporation intensity and
degree of drought. However, although more evaporation is expected under rising temperatures, the
reverse trend has been observed in many parts of the world, known as the “pan evaporation paradox”.
In this paper, the Haihe River Basin (HRB) is divided into six sub-regions using the Canopy and
k-means (The process for partitioning an N-dimensional population into k sets on the basis of
a sample is called “k-means”) to cluster 44 meteorological stations in the area. The interannual
and seasonal trends and the significance of eight meteorological indicators, including average
temperature, maximum temperature, minimum temperature, precipitation, relative humidity,
sunshine duration, wind speed, and Epan, were analyzed for 1961 to 2010 using the trend-free
pre-whitening Mann-Kendall (TFPW-MK) test. Then, the correlation between meteorological
elements and Epan was analyzed using the Spearman correlation coefficient. Results show that
the average temperature, maximum temperature, and minimum temperature of the HRB increased,
while precipitation, relative humidity, sunshine duration, wind speed and Epan exhibited a downward
trend. The minimum temperature rose 2 and 1.5 times faster than the maximum temperature and
average temperature, respectively. A significant reduction in sunshine duration was found to be the
primary factor in the Epan decrease, while declining wind speed was the secondary factor.

Keywords: evapotranspiration; Pan evaporation; TFPW-MK; Haihe River Basin

1. Introduction

Global warming has become an indisputable fact [1]. Temperature records indicate that the earth
has warmed by approximately 0.6 ◦C during the 20th century [2]. This increase in global temperature
has significantly impacted the natural environment, ecosystem, and social economy [3], and has led
to a series of changes in hydrological factors, such as precipitation, evaporation, water infiltration,
soil moisture, river runoff, and groundwater flow, all of which affect the global hydrological cycle.
This, in turn, causes temporal and spatial redistribution of water resources, and thereby threatens
water security, food security, social security, and national security [4,5]. As a key component in the
hydrological cycle, evapotranspiration is associated with water balance and water exchange, as well
as surface energy balance; hence, of all components of the water cycle, evapotranspiration is the
factor most directly affected by climate change [6]. Therefore, analyzing the climate sensitivity of
evapotranspiration has important theoretical and practical implications for understanding the impact
of climate change on the hydrological cycle [7].

Evapotranspiration is the process of water transport from the earth’s surface to the atmosphere [8].
As a core process of the climate system, evapotranspiration closely links the hydrological cycle,
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energy budget, and carbon cycle [9]. Pan evaporation (Epan) [10] is the most universal and simplest
way to measure evapotranspiration, which is often used to indicate the humidity level of a given
regional climate [11]. Although Epan cannot directly represent the evaporation of the water surface,
it has a close correlation with water surface evaporation. Therefore, it has remained an important
reference indicator in the assessment of water resources, water resources planning, and the design
of irrigation systems, to name a few examples [12]. As the global temperature rises, Epan should
theoretically gradually increase. However, in reality, only certain regions in the world have an Epan

value that is consistent with theoretical expectations, and the majority of the world’s regions have been
found to have declining Epan values. This phenomenon is called the “pan evaporation paradox” [3].
Specifically, countries such as Spain [13], Iran [14], Israel [15], and Brazil [16] have been found to
have increasing Epan values, and countries such as the former Soviet Union, the United States [17,18],
New Zealand [19], China [20–23], Thailand [24], India [12], Nigeria [25], and Australia [26,27] have
been found to have declining Epan values. Correctly interpreting the overall declining trend of Epan in
the context of rising global temperatures and uncovering the main meteorological factors that affect
the reduction of Epan is of great importance to accurately predict future hydrological cycles.

Many scholars have studied the temporal and spatial changes of Epan at global and regional
scales, as well as the causes of such changes. According to their findings, the causes of Epan reduction
can be categorized as follows. (1) An increase in humidity in the surrounding environment of the
evaporation pan: Brutsaert and Parlange ascertained that the decrease in Epan value was due to an
increase in the volume of evaporation from the land surface, considering the difference between
evaporation from the land surface and the evaporation volume observed through the evaporation
pan [28]. Zuo et al. employed observational data from 62 conventional meteorological stations with
solar-radiation observation equipment in China to analyze in detail the relationship between Epan

and corresponding environmental factors, as well as the environmental factors’ responses to global
climate change. The researchers discovered that Epan was most correlated to atmospheric relative
humidity [20]. (2) Changes in precipitation: Tebakari et al. [24] analyzed the temporal and spatial
variation of Epan in Thailand from 1982 to 2000 and concluded that both Epan and precipitation showed
a declining trend. This conclusion was inconsistent with findings from the United States, where Epan

was found to be decreasing while precipitation was increasing [29]. Jaswal et al. utilized evaporation
and rainfall data from 1971 to 2000 from 58 stations that were evenly distributed in India to analyze
the overall correlation between evaporation and rainfall in a year, as well as their correlation in winter,
summer, monsoon season, and post-monsoon season. The results showed that, in southern India,
the evaporation trend had a complementary relationship with rainfall during the same period [30].
(3) A decrease in the diurnal temperature range: Peterson et al. compared data from both the United
States and the former Soviet Union from 1950 to 1990 and found a steady decline in Epan values in all
investigated regions (except Central Asia), as well as a decline in diurnal temperature range. Epan and
diurnal temperature range were thus clearly correlated. Therefore, the researchers concluded that the
reduction in the diurnal temperature range, caused by an increase in cloud cover, consequently caused
the reduction in Epan [17]. (4) A reduction in solar radiation: Roderick and Farquhar found that Epan

values observed in many parts of the world over the past 50 years showed a clear downward trend
and asserted that such a decline was caused by the reduction in overall solar radiation resulting
from an increase in cloud cover and aerosol concentrations [3]. (5) A reduction in wind speed:
Burn and Hesch conducted a trend analysis on the evaporation data of 48 sites in the Canadian
Prairies over three analysis periods and concluded that wind speed has a substantial influence on
the decreasing trend of evaporation, while vapor-pressure deficit has a significant influence on the
increasing trend of evaporation [31]. Hoffman et al. studied the changes in Epan, rainfall, wind speed,
temperature, and vapor-pressure deficit from 1974 to 2005 taken from 20 climate stations in the Cape
Floristic Region (CFR), South Africa, and suggested that the reduction in Epan was likely due to a
reduction in wind speed [32]. Yang and Yang analyzed the daily Epan, temperature, wind speed,
solar radiation, and relative humidity of 54 meteorological stations in China for 1961 to 2001 and
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concluded that the reduction in Epan in the majority of regions in China is due to a decrease in
wind speed [33]. (6) The comprehensive impact of meteorological elements: Roderick and Farquhar
analyzed data from Australia for 1970 to 2002 and found that Epan values showed a downward trend.
The results showed that such a change might be related to a decrease in solar radiation, wind speed,
and diurnal temperature range [26]. Sheng examined Epan data and other meteorological factors from
468 meteorological stations in China, measured simultaneously from 1957 to 2001, and found that
the main influential factors of Epan were solar radiation, diurnal temperature range, and wind speed,
while the influence of humidity was the weakest factor [21]. Liu et al. investigated data for 1955
to 2001 taken from 671 sites in China. The results revealed an overall decline in Epan. In addition,
diurnal temperature range and wind speed were found to have the greatest correlation with such a
decline [22]. Based on the aforementioned studies, the causes of the reduction of Epan appear to be very
complicated. Owing to the location, climate, atmospheric differences, and even the differences in the
length of the data series, the conclusions of these studies are inconsistent. Therefore, identifying the
impact of various meteorological variables on Epan trends is critical to quantifying the impact of
global warming.

The HRB is located in a region with a warm semi-arid climate and a continental monsoon climate.
This area is sensitive to climate change and is a region with a fragile ecological environment. Owing to
the area’s dense population and rapid economic development, as well as its status as one of China’s
major wheat producers, the contradiction between water supply and water demand is prominent
in the area. Water shortages have become a major factor restricting sustainable economic and social
development in the HRB [34]. Epan in the HRB generally exhibits a decreasing trend [35–37], which is
largely consistent with Epan trends in other regions of China [38–48]. However, scholars have differing
views on the causes of the Epan trend in the HRB. Zheng et al. analyzed the effects of temperature,
wind speed, solar radiation, and atmospheric pressure on Epan in the HRB for 1957 to 2001 and
concluded that wind speed is the main factor leading to the decrease of Epan in the region [49]. Hao et al.
selected eight meteorological elements from 34 climate stations for 1958 to 2011 in order to analyze the
spatial and temporal variations in the HRB. The results showed that the potential evapotranspiration
in the region was negatively correlated with relative humidity and was positively correlated with
diurnal temperature range [50]. Guo and Ren examined data observed from the evaporation pans
of 117 meteorological stations for 1956 and 2000 and analyzed the changes in evaporation in the
Huang-Huai-Hai River Basin. The findings showed that the direct climatic cause of the decrease in
evaporation may be a reduction in sunshine duration and solar radiation. In addition, a reduction
in wind speed and diurnal temperature range may also play an important role [51]. In summary,
though most of the papers consider that the decrease of wind speed is a main factor causing the Epan

declining, but different literatures have different conclusions on the influence of other meteorological
factors on the Epan decreasing. So, this study aimed to analyze the trend of changes in Epan in the HRB
using data collected by 44 meteorological stations for 1961 to 2010, and to explore the temporal and
spatial variation laws of Epan, as well as the main driving forces of declining Epan trend in the region.

2. Materials and Methods

The HRB is located between 112–120◦ E longitude and 35–43◦ N latitude, with the Bohai Sea to
the east, the Yellow River to the south, the Yunzhong and Taiyue Mountains to the west, and the Inner
Mongolia Plateau to the north. The total area of the HRB is 320,600 km2, accounting for 3.3% of the total
area of the country. The HRB spans eight provinces: Beijing, Tianjin, Hebei, Shanxi, Shandong, Henan,
Inner Mongolia, and Liaoning. It is a political and cultural center and an economically developed
region of strategic significance in China. The HRB has two major rivers: the Hai River and the Luan
River. The Hai River, which is the main water system for the area, consists of the Ji Canal River,
Chaobai River, North Canal, Yongding River, Daqing River, Ziya River, and Zhangwei River, as well as
plains rivers, such as the Tuhai River and Majia River, each of which enters the sea individually.
The Luan River includes itself and the rivers along the eastern coast of Hebei Province. The annual
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average temperature range of the basin is between 1.5 ◦C and 14 ◦C, the annual average relative
humidity is between 50% and 70%, and the average annual precipitation is 539 mm (semi-arid climate).
The annual average land-surface evaporation is 470 mm, and the water surface evaporation is 1100 mm.
The geographical location and topographic distribution of the study area are shown in Figure 1.

Figure 1. Location and topography of the HRB.

Meteorological data from the HRB and 55 meteorological stations in the surrounding area,
provided by the National Meteorological Center of the China Meteorological Administration,
were used in this study, including the daily average temperature, highest, and lowest temperatures,
average relative humidity, sunshine duration, wind speed, precipitation, and daily evaporation from
an evaporation pan 20 cm in diameter. In terms of missing data, the following rules were respected:
when the daily data for five or more days were missing for a specific meteorological element in a
month, the data of the entire month were considered missing; when the data for one or more months
were missing, the data of the entire year were considered invalid. The time series of the data was from
1961 to 2010, and the length of the time series was 50 years. After excluding the station data that did
not satisfy the time series requirements, data for 44 stations were retained.

In order to better analyze the seasonal changes of the elements, the data were divided into spring
(March to May), summer (June to August), fall (September to November), and winter (December to
February). The annual temperature (average, maximum, and minimum), annual average relative
humidity, annual average sunshine duration, and annual average wind speed of each station were
calculated based on the mean of the daily data. The annual Epan and precipitation were calculated by
summing the daily data. The same methods were applied to obtain the seasonal data for each element.

2.1. Canopy and k-means Clustering

In order to explore patterns in the spatial and temporal variations of the HRB climate, as well as
geomorphological differences in the region and the climatic characteristics, this study selected eight
representative indicators as references to categorize the HRB into several sub-regions. The indicators
included geodetic coordinates (X and Y values), elevation, average temperature, precipitation,
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relative humidity, sunshine duration, and wind speed. The Canopy and k-means clustering technique
was adopted. This method performs clustering in two stages. In Stage 1, the Canopy clustering
algorithm is used to calculate the similarity of the objects and to categorize similar objects in the same
subset (canopy). In Stage 2, the k-means clustering algorithm [52] is used to cluster the points in
each canopy. Once Stage 1 is complete, the algorithm only needs to accurately cluster the points in
each canopy, which greatly reduces the time spent on the accurate calculation of all data points that
was performed in a traditional clustering algorithm. In addition, the number of canopies obtained in
Stage 1 can be used as the K value in K-means clustering, which may minimize the irrational selection
of the K value to a certain degree. The Canopy and k-means clustering technique not only greatly
reduces the calculation of distance between points, the result is also more accurate when compared to
general clustering methods [53,54].

MATLAB software (MATLAB 9.0, R2016a, MathWorks, Natick, MA, USA) was used to train
the algorithm. The clustering results of the stations and their spatial distribution are presented in
Figure 2. According to the clustering results, the HRB could be divided into six sub-regions (Figure 3).
Detailed information for each sub-region is shown in Table 1.

Table 1. Basic information for the sub-regions of the HRB.

Sub-Regions Climate Type
Number of

Meteorological Stations
Ratio of Meteorological

Stations (%)

I Temperate monsoon climate 7 16
II Temperate continental climate 7 16
III 7 16
IV

Temperate monsoon climate
5 12

V 9 20
VI 9 20

Figure 2. The Canopy and k-means clustering results and spatial distribution of the stations in the HRB.
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Figure 3. The sub-region categorization of the HRB.

2.2. Trend-Free Pre-Whitening Mann-Kendall Test (TFPW-MK)

The Mann-Kendall (M-K) test [55,56] is a non-parametric statistical method. Compared to
parametric statistical methods, the M-K test does not require samples to follow a certain distribution,
the results are not subject to interference from a few outliers, and the method is simple and efficient
in calculations. Therefore, it is commonly used to detect trends in a series of values. For that reason,
the M-K test is suitable for examining the trend of the hydrological variables in this study [57–59].
Assuming X1, X2, · · · , Xn is a time series, n is the length of the time series; then, the M-K method
defines the statistical variable S as follows:

S =
n−1

∑
k=1

n

∑
j=k+1

sgn
(
xj − xk

)
(1)

sgn
(

xj − xk
)
=

⎧⎪⎨
⎪⎩

+1 i f (xj − xk) > 0
0 i f (xj − xk) = 0
−1 i f (xj − xk) < 0

(2)

where xj and xk are the measured values of years j and k, respectively; and k, j ≤ n and k �= j.
When the number of samples is greater than 10, Z is calculated as follows:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
Var(S)

S > 0

0 S = 0
S+1√
Var(S)

S < 0
(3)

Var(S) =

[
n(n − 1)(2n + 5)− ∑

t
t(t − 1)(2t + 5)

]
/18 (4)
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where, Z is a normally distributed statistic, and Var(S) is the variance. If the Z value is positive, the data
shows an increasing trend; if the Z value is negative, the data shows a decreasing trend [60]. Given the
level of significance α, if |Z| ≥ Z1−α/2, the null hypothesis is rejected, and the trend of the time series
data (increasing or decreasing) is statistically significant at α.

The existence of serial correlation increases the probability that the M-K test will detect a significant
trend [61,62]. The meteorological and hydrological data are mostly skewed and do not follow the same
distribution, and there may be autocorrelation. Thus, in this paper, the TFPW method proposed by
Yue et al. [62] is used to limit the influence of serial correlation; then, the significance of the time series
is assessed by the M-K test.

The TFPW-MK steps are as follows:
Step 1. Use the Theil–Sen estimator(TSA) [63–66] to estimate the slope β of a trend in sample data.
The slope of a trend is estimated using the TSA [63–66], and it is estimated as follows:

β = Median
(Xj − Xi

j − i

)
, ∀i < j (5)

where β is the estimate of the slope of the trend, and Xi is the ith observation. The slope determined
by the TSA is a robust estimate of the magnitude of a trend. Since the publication of Hirsch et al. [67],
the TSA has been popularly employed to identify the slope of trends in hydrological time series [68–70].

Step 2. If β = 0, there is no need to continue trend analysis; if β �= 0, it is assumed to be linear,
and the sample data are detrended as:

Yt = Xt − Tt = Xt − βt (6)

Step 3. The lag-1 serial correlation coefficient r1 of Yt is calculated using Equation (7), and then
the autocorrelation is removed by Equation (9).

r1 =

1
n−1

n−1
∑

t=1
[Xt − E(Xt)][Xt+1 − E(Xt)]

1
n

n
∑

t=1
[Xt − E(Xt)]

2
(7)

E(Xt) =
1
n

n

∑
t=1

Xt (8)

Y′
t = Yt − r1Yt−1 (9)

Step 4. The identified trend Tt and the residual Y′′
t are blended by

Y′′
t = Y′

t + Tt = Y′
t + βt (10)

Step 5. Verify the significance of trend of the blended series using the MK test.

2.3. Spearman Correlation Coefficient

The Spearman correlation coefficient [71] is a nonparametric test method independent of
distribution and can be used as an indicator to measure the relationship between two variables.
If there are no repeated values in the data, the Spearman correlation coefficient is +1 or 1 when two
variables are monotonously correlated. For a sample of size n, the n raw scores Xi, Yi are converted to
ranks xi, yi, and the Spearman correlation coefficient ρ can be calculated as [72,73].

ρ = 1 − 6∑ d2
i

n(n2 − 1)
, (11)
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where di = xi − yi is the difference between the two ranks of each observation. The correlation degree
between Xi, Yi can be used according to the grading standards of ρ shown in Table 2 [74].

Table 2. Grading table of Spearman correlation coefficient (ρ).

Grading Standards Correlation Degree

ρ = 0 no correlation
0 < |ρ| ≤ 0.19 very week

0.20 ≤ |ρ| ≤ 0.39 weak
0.40 ≤ |ρ| ≤ 0.59 moderate
0.60 ≤ |ρ| ≤ 0.79 strong
0.80 ≤ |ρ| ≤ 1.00 very strong

1.00 monotonic correlation

3. Results

3.1. Trend and Significance Analysis

This study adopted the M-K test to analyze Epan, temperature (average, maximum, and minimum),
precipitation, relative humidity, sunshine duration, and wind speed of the HRB. The TFPW method
was used to eliminate the trends and autocorrelation of meteorological sequence data before the M-K
Test was applied. If the value of Z was positive, the data exhibited an upward trend, while if the value
of Z was negative, the data exhibited a downward trend. The threshold of the significance level was
defined as α = 0.05. If the change trend of a given meteorological variable was found to be significant
at this level, then |Z| > Z α

2
= 1.96 [75]. The results of significance test of the interannual variations are

shown in Figure 4, and that of the seasonal variations are shown in Table 3.
For TFPW-MK test detrending, the TSA method is used to calculate the magnitude of the trend of

the meteorological variables. The rates of the meteorological elements of each sub-region for 1961 to
2010 are shown in Table 4.

 
Figure 4. Cont.
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Figure 4. Results of significance test on the interannual variations of the meteorological elements.
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As shown in Figure 4, the interannual average temperatures (Tmean) in sub-regions I to VI
presented a significant upward trend. With the exception of sub-region V, the average maximum
temperatures (Tmax) of all sub-regions also increased significantly. The significance level of the trend of
the average minimum temperatures (Tmin) was consistent with that of the Tmean. The Tmean in spring
and winter in sub-regions I to VI increased significantly; in summer, it increased significantly only
in sub-regions II and III. In fall, it increased significantly in the majority of sub-regions (except for
sub-region I). Only the significance levels for Tmax in winter of sub-regions I to VI were consistent with
those of Tmax. The Tmin of sub-regions I to VI in all four seasons significantly increased. However,
it can be seen from Table 2 that the Tmin rose more rapidly, followed by the Tmean, with the Tmax rising
the most slowly.

The interannual variations of average precipitation (Pmean) showed a downward trend of the
six sub-regions: the decline rates were 22.50, 5.02, 4.07, 23.49, 5.35 and 19.71 mm/10a, respectively.
However, the trend is not significant. The Pmean in spring showed an upward trend; only the trends of
sub-regions II and VI were significant. In summer, it was found to be declining, except for sub-region
V; the declining trends of sub-regions I, II, and VI were significant. The Pmean in fall showed an
upward trend, except for sub-regions IV and V; The Pmean in winter showed an upward trend except
for sub-region VI. The trends were not statistically significant in fall and in winter. As the decline of
precipitation in summer offsets the increase of precipitation in spring, the interannual Pmean of the
region showed a general downward trend.

The interannual variations of average relative humidity (RHmean) of all sub-regions showed
a downward trend, except for sub-region I; however only the trends of sub-regions IV and VI
were statistically significant. The change rates of sub-regions I to VI were 0.20%/10a, −0.35%/10a,
−0.30%/10a, −0.71%/10a, −0.56%/10a, and −0.78%/10a, respectively. As the increase in the RHmean

in fall and winter was larger than the sum of the reduction of the RHmean in spring and summer,
the RHmean in sub-region I was found to be increasing. The RHmean in spring, summer, and fall of
sub-regions I to VI was found to be declining, except for sub-region I in fall and sub-region V in
summer; however, the trends of the majority of sub-regions were not significant. The changes in
the RHmean of winter were not consistent across sub-regions I to VI, and none of the analyzed trends
were significant.

The interannual variations of the average sunshine duration (SDmean) in sub-regions I to VI
showed a significant downward trend; the decline rates were 0.27, 0.13, 0.17, 0.29, 0.31, and 0.32 h/10a,
respectively. In addition, the significance values for the changes in the SDmean per season in sub-regions
I to VI were consistent with those of the interannual variation.

The interannual average wind speed (Umean) of sub-regions I to VI had significantly decreased;
the rates were 0.16, 0.15, 0.28, 0.05, 0.17, and 0.16 m/(s·10a), respectively. The seasonal variation of
the Umean was showed a downward trend in all sub-regions, except for sub-region VI in summer.
The Umean in summer and fall in sub-region IV was not significant, while the declining trends of the
Umean per season of the other sub-regions were found to be significant.

The interannual Epan of sub-regions I to VI was found to be decreasing over the research period at
speeds of 55.2, 11.7, 24.4, 30.7, 82.6, and 65.7 mm/10a, respectively. However, the trends of Epan for all
sub-regions were significant except for sub-regions II and III. The Epan of sub-region II presented an
upward trend in summer, fall, and winter, while the Epan of other sub-regions showed a downward
trend in all seasons. Apart from sub-region IV, the Epan of other regions was significantly decreased
in spring. The significance test results in summer aligned with those of the interannual variations.
The changes of Epan in fall and winter in the majority of sub-regions were not statistically significant.
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Table 3. Z-Value of the Mann-Kendall test on the meteorological variables (α = 0.05).

Time Sub-Regions Tmean Tmax Tmin Pmean RHmean SDmean Umean Epan

Spring

I 3.04 * 2.24 * 4.58 * 1.24 −0.15 −3.71 * −7.04 * −4.00 *
II 3.58 * 2.46 * 5.14 * 2.06 * −0.75 −2.63 * −5.69 * −2.61 *
III 3.38 * 1.91 3.86 * 1.02 −0.90 −2.48 * −7.29 * −3.16 *
IV 3.60 * 2.79 * 2.89 * 0.50 −2.43 * −2.19 * −3.41 * −1.29
V 3.25 * 0.84 5.59 * 0.90 −0.49 −2.31 * −6.17 * −3.45 *
VI 3.86 * 2.24 * 5.84 * 1.97 * −1.59 −2.86 * −6.57 * −3.28 *

Summer

I 1.77 1.44 3.28 * −2.73 * −1.00 −4.70 * −5.24 * −2.07 *
II 3.18 * 2.59 * 5.15 * −2.28 * −2.07 * −2.86 * −2.58 * 0.10
III 3.06 * 2.34 * 4.95 * −1.92 −1.96 −2.99 * −6.31 * −0.17
IV 1.39 1.19 3.03 * −1.57 −0.94 −5.50 * 0.55 −2.26 *
V 0.50 −1.37 3.65 * 0.18 0.15 −5.77 * −5.89 * −4.62 *
VI 1.86 0.64 4.33 * −2.19 * −2.21 * −5.62 * −5.67 * −3.25 *

Autumn

I 1.66 1.67 3.15 * 0.72 0.67 −5.02 * −6.27 * −3.31 *
II 3.20 * 2.14 * 4.90 * 1.20 −1.69 −3.76 * −4.55 * 0.07
III 2.94 * 2.33 * 3.76 * 0.90 −0.03 −3.70 * −6.37 * −0.70
IV 2.71 * 2.88 * 2.36 * −1.04 −1.84 −3.40 * −1.32 −0.20
V 3.09 * 1.77 3.75 * −1.52 −2.64 * −3.58 * −6.14 * −1.41
VI 2.63 * 1.82 4.08 * 0.25 −2.68 * −4.82 * −5.29 * −2.43 *

Winter

I 4.08 * 2.58 * 5.25 * 0.22 1.79 −4.45 * −6.79 * −2.98 *
II 4.12 * 2.79 * 5.42 * 0.87 0.25 −3.38 * −5.52 * 2.07 *
III 3.83 * 2.99 * 4.37 * 0.07 0.12 −4.10 * −5.94 * −0.52
IV 4.55 * 2.59 * 5.40 * 0.85 0.64 −4.94 * −4.55 * −1.51
V 4.13 * 1.20 5.81 * 0.42 −0.49 −4.30 * −5.92 * −2.23 *
VI 4.40 * 2.46 * 5.60 * −1.16 −0.85 −3.93 * −6.27 * −1.78

* Trends statistically significant at the 95% confidence level.

Table 4. Climate tendency rates of the meteorological elements per sub-region from 1961 to 2010.

Time
Sub-

regions
Tmean

(◦C/10a)
Tmax

(◦C/10a)
Tmin

(◦C/10a)
Pmean

(mm/10a)
RHmean
(%/10a)

SDmean
(h/10a)

Umean
(m/s/10a)

Epan
(mm/10a)

Interannual

I 0.3 0.2 0.4 −22.50 0.20 −0.27 −0.16 −55.2
II 0.4 0.3 0.5 −5.02 −0.35 −0.13 −0.15 −11.7
III 0.4 0.3 0.5 −4.07 −0.30 −0.17 −0.28 −24.4
IV 0.3 0.3 0.3 −23.49 −0.71 −0.29 −0.05 −30.7
V 0.3 0.1 0.4 −5.35 −0.56 −0.31 −0.17 −82.6
VI 0.3 0.2 0.5 −19.71 −0.78 −0.32 −0.16 −65.7

Spring

I 0.3 0.3 0.4 3.84 −0.10 −0.24 −0.21 −21.8
II 0.4 0.3 0.6 4.03 −0.31 −0.13 −0.19 −14.2
III 0.3 0.2 0.4 2.40 −0.40 −0.17 −0.36 −18.1
IV 0.3 0.3 0.3 1.66 −1.38 −0.17 −0.06 −12.7
V 0.3 0.1 0.5 3.65 −0.34 −0.17 −0.19 −32.7
VI 0.4 0.3 0.6 5.50 −0.90 −0.21 −0.23 −27.7

Summer

I 0.1 0.1 0.2 −33.14 −0.25 −0.39 −0.08 −13.7
II 0.3 0.3 0.4 −13.95 −0.82 −0.14 −0.04 0.5
III 0.3 0.2 0.3 −9.60 −0.79 −0.20 −0.17 −1.4
IV 0.1 0.1 0.2 −13.00 −0.34 −0.45 0.02 −17.9
V 0.0 −0.1 0.2 1.07 0.05 −0.52 −0.13 −40.0
VI 0.1 0.1 0.3 −26.22 −0.80 −0.50 −0.10 −24.7

Autumn

I 0.1 0.1 0.2 2.45 0.17 −0.27 −0.12 −8.7
II 0.3 0.2 0.5 2.89 −0.50 −0.11 −0.10 0.3
III 0.3 0.2 0.4 2.81 −0.03 −0.16 −0.25 −2.8
IV 0.2 0.3 0.2 −6.67 −1.09 −0.26 −0.03 −0.8
V 0.2 0.2 0.4 −9.48 −1.42 −0.28 −0.14 −5.9
VI 0.2 0.2 0.4 1.67 −1.11 −0.31 −0.12 −9.0

Winter

I 0.5 0.4 0.6 0.16 0.81 −0.20 −0.19 −4.5
II 0.6 0.4 0.8 0.28 0.08 −0.09 −0.23 3.8
III 0.6 0.5 0.7 0.04 0.10 −0.17 −0.35 −1.0
IV 0.5 0.4 0.6 0.71 0.41 −0.32 −0.12 −4.2
V 0.5 0.2 0.7 0.45 −0.35 −0.35 −0.19 −8.0
VI 0.6 0.3 0.7 −0.87 −0.49 −0.26 −0.19 −3.6
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3.2. Sensitivity Analysis

Changes in meteorological variables led to temporal and spatial fluctuations in Epan, and their
roles appeared to be different in different sub-regions. The influence of each meteorological element
on changes in Epan depended on two factors: the sensitivity of the meteorological elements toward Epan

and the change trend and corresponding significance level of the meteorological element. Therefore,
it was necessary to analyze the meteorological elements that drive changes in Epan for each sub-region,
to qualitatively evaluate the contribution of each meteorological element on the changes of Epan.
The Spearman correlation coefficient was applied to qualitatively analyze the effects of Tmax, Tmean,
Tmin, Pmean, RHmean, SDmean, and Umean on Epan. The results are shown in Table 5.

The sensitivity factors that caused changes in Epan in the HRB were different. It can be seen from
Table 5 that there were significant correlations between Epan and Tmin, Pmean, RHmean, SDmean, and Umean

in sub-region I. Although the correlations between Epan and Pmean and RHmean were significant,
the trends of Pmean and RHmean were not significant. Therefore, the meteorological elements that
affected the interannual changes in Epan of sub-region I were Tmin, SDmean, and Umean. Epan was found
to have a negative correlation with Tmin, which does not align with what is commonly expected.
Epan and SDmean and Umean were positively correlated. The significant decline in SDmean and Umean

directly led to the significant decline of Epan. Based on the above analysis, the significant decrease in
Epan in sub-region I was mainly due to the significant reduction in the SDmean and Umean. The Spearman
correlation coefficient between Epan and SDmean was 0.75, indicating that the correlation is strong
(see Table 2). The Spearman correlation coefficient between Epan and Umean was 0.46, indicating a
moderate correlation. Thus, the primary factor affecting Epan decline in sub-region I was SDmean,
followed by Umean. According to the same analysis method, the factors responsible for Epan decline in
each sub-region were also analyzed. The primary factor affecting the decline of Epan in sub-regions I, III,
IV, V, and VI was SDmean, followed by Umean, while the reasons for the changes in Epan in sub-regions II
was the significant reduction in the SDmean.

In addition, the contributing factors to Epan in sub-regions I to VI for each season were also
analyzed. In spring, the decrease in Epan in sub-regions I to VI was primarily caused by a significant
decrease in SDmean, followed by a decline in Umean. In summer, significant decreases in SDmean and
Umean were the primary and secondary driving factors of Epan in sub-regions I, V, and VI, respectively;
the decrease in Epan for sub-regions III and IV was mainly due to the significant decrease in SDmean.
Moreover, the change trend of Epan in sub-region II was found to be the opposite to that for other
sub-regions, which could be due to a significant increase in temperature, as well as a significant drop
in Pmean and RHmean. In fall, the decline in Epan in sub-regions I, III, V, and VI was attributed to a
significant reduction in SDmean and Umean, while the decline in Epan in sub-region IV was caused by a
significant reduction in SDmean. In addition, the change trend of Epan in sub-region II was the opposite
of that for other sub-regions, which was mainly caused by a significant increase in Tmax and Tmean.
In winter, apart from sub-region II, where a significant increase in temperature resulted in an upward
trend in Epan, the reduction of Epan in all sub-regions was caused by a significant reduction in SDmean

and Umean.
In summary, the primary factor responsible for the decline in Epan in the HRB was a reduction in

sunshine duration, followed by a reduction in wind speed. The factors responsible for the reduction
in Epan in each sub-region were consistent with the overall reduction in Epan of the HRB. However,
the correlation between Umean and Epan was not significant in sub-region II, where the only influential
factor was the decrease of sunshine duration.
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Table 5. The Spearman correlation coefficients between Meteorological Elements and Epan

per Sub-Region.

Time Sub-Regions Tmean Tmax Tmin Pmean RHmean SDmean Umean

Interannual

I 0.01 0.22 −0.35 * −0.46 * −0.68 * 0.75 * 0.46 *
II 0.26 0.40 * 0.00 −0.64 * −0.57 * 0.51 * 0.12
III 0.05 0.15 −0.11 −0.52 * −0.55 * 0.44 * 0.43 *
IV 0.14 0.29 * −0.13 −0.31 * −0.47 * 0.61 * 0.59 *
V −0.06 0.37 * −0.48 * −0.38 * −0.33 * 0.83 * 0.73 *
VI −0.16 0.19 −0.45 * −0.40 * −0.22 0.76 * 0.62 *

Spring

I 0.18 0.33 * −0.20 −0.68 * −0.71 * 0.84 * 0.55 *
II 0.13 0.30 * −0.19 −0.69 * −0.66 * 0.68 * 0.48 *
III 0.09 0.27 −0.20 −0.50 * −0.67 * 0.62 * 0.61 *
IV 0.45 * 0.65 * 0.09 −0.73 * −0.73 * 0.86 * 0.68 *
V 0.46 * 0.72 * −0.05 −0.66 * −0.72 * 0.84 * 0.60 *
VI 0.22 0.46 * −0.18 −0.78 * −0.63 * 0.84 * 0.65 *

Summer

I 0.63 * 0.71 * 0.12 −0.42 * −0.81 * 0.72 * 0.43 *
II 0.68 * 0.79 * 0.30 * −0.64 * −0.83 * 0.64 * 0.34 *
III 0.59 * 0.74 * 0.15 −0.66 * −0.89 * 0.58 * 0.12
IV 0.61 * 0.71 * 0.08 −0.48 * −0.78 * 0.59 * 0.33 *
V 0.52 * 0.76 * −0.09 −0.50 * −0.69 * 0.82 * 0.71 *
VI 0.48 * 0.66 * −0.03 −0.36 * −0.58 * 0.78 * 0.53 *

Autumn

I 0.02 0.17 −0.32 * −0.53 * −0.70 * 0.70 * 0.53
II 0.40 * 0.49 * 0.16 −0.60 * −0.61 * 0.43 * 0.09
III 0.19 0.37 * −0.09 −0.56 * −0.81 * 0.62 * 0.30 *
IV 0.14 0.59 * −0.35 * −0.65 * −0.83 * 0.76 * 0.59 *
V 0.11 0.53 * −0.39 * −0.54 * −0.68 * 0.81 * 0.35 *
VI −0.10 0.24 −0.44 * −0.49 * −0.53 * 0.77 * 0.55 *

Winter

I 0.16 0.40 * −0.01 −0.60 * −0.62 * 0.68 * 0.36 *
II 0.68 * 0.72 * 0.62 * −0.36 * −0.46 * 0.35 * −0.01
III 0.49 * 0.55 * 0.44 * −0.37 * −0.74 * 0.31 * 0.29 *
IV 0.26 0.57 * 0.01 −0.51 * −0.71 * 0.70 * 0.57 *
V 0.25 0.63 * −0.11 −0.54 * −0.72 * 0.75 * 0.47 *
VI 0.21 0.47 * 0.00 −0.38 * −0.61 * 0.66 * 0.43 *

* Trends statistically significant at the 95% confidence level.

4. Discussion

As noted above, when global temperature increases, the overall temperature of the HRB increases.
However, there are differences in the spatial and temporal distribution. From 1961 to 2010, the lowest
temperature increased approximately two times faster than the highest temperature, and approximately
1.5 times faster than the average temperature. This result is consistent with the results from an analysis
of variations in annual temperatures by Zheng et al. [49] in the HRB for 1957 to 2001, but it is
different from the results obtained by Salinger and Griffiths [76], which indicated that the lowest
temperature rose approximately three times faster than the highest temperature globally from 1951 to
1998. Meanwhile, the average temperature, highest temperature, and lowest temperature in spring
and winter increased much more quickly than the corresponding values in summer and autumn,
for both the HRB and every sub-region. The temperatures in winter increased most significantly,
three times faster than those in summer, and two times faster than those in autumn. Additionally,
temperatures decreased to some extent in some areas of the HRB. For example, unlike the highest
temperature in other sub-regions, which increased, the highest temperature in area V decreased.

The “evaporation paradox” also exists in the HRB. With respect to both the whole area and the
sub-regions in the HRB, except for the slight increase in Epan in sub-region II in autumn and winter,
Epan decreased, and this decline mostly occurred in spring and summer. This result agrees with
the conclusions of Zheng et al. [49] and Liu et al. [77]. However, it contradicts with the findings in
Liu et. al. [78] that from 1992 to 2007, Epan significantly increased in North China, including the
HRB. The correlation between the general decrease in Epan and the temperature variation was
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weak, suggesting that the increase in temperature was not directly related to the decrease in Epan.
The main factors responsible for the decline in Epan in the HRB included decreases in sunshine
duration, which was the main factor, and in wind speed. This result differed from the conclusions of
Zheng et al. [49], which stated that the decrease in wind speed is the main factor responsible for the
decrease in Epan. In addition, this result does not agree with the conclusions from Liu et al. [79] that
in the semi-humid/semi-arid region of China (including the HRB), decreases in diurnal temperature
range, sunshine duration and wind speed were found to be the main factors contributing to the pan
evaporation declines. Liu et al. [78] concluded that wind speed and solar radiation are the main factors
that led to the decline in pan evaporation in North China, which differs from our findings. However,
it is generally accepted that wind speed is one of the main driving factors of the decrease in Epan in
the HRB. This statement is consistent with the conclusion that wind speed is one of the main factors
driving the decrease in Epan in areas such as the Canadian Prairies [31], the Cape Floristic Region in
South Africa [32], and Australia [26].

The factors attributed to the decrease in sunshine duration and wind speed also vary among
studies [36,80–82]. For sunshine duration, multiple studies have concluded that this decrease may
be related to the increase in aerosols and other air pollutants [3,83]. In other studies, it is argued
that the decrease may be related to the increase in cloud cover. In addition, several studies have
reported a correlation between a decrease in sunshine duration and urbanization [84]. Recently,
Wei Pan [85] reported that the number of haze days significantly increased in North China (including
in the HRB). Therefore, a decrease in sunshine duration may be related to the increase in haze
days in the HRB. Regarding the decrease in wind speed, conclusions of various areas also differ;
however, the main consensus is that the decrease in wind speed may be related to variations in global
circulation [86,87], as well as the increase in surface roughness caused by afforestation and urbanization
near the observation sites [88]. Based on the present studies, it is difficult to determine the reasons for
the decrease in wind speed, and further studies are required.

5. Conclusions

In this study, the Canopy and k-means clustering method was employed to categorize the
HRB into six sub-regions. Then, 44 out of the 55 meteorological stations in the surrounding area
that had relatively complete data were selected, and the trends and significance of the interannual
and seasonal variations of the pan evaporation, temperature, precipitation, relative humidity,
sunshine duration, and wind speed for 1961 to 2010 were analyzed using TFPW-MK. Based on
this analysis, the sensitivities of the average, maximum, and minimum temperatures, and precipitation,
relative humidity, sunshine duration, and average wind speed to Epan were qualitatively analyzed
using the Spearman correlation coefficient. In the whole basin, the primary cause of declining Epan

was a significant reduction in sunshine duration, followed by a significant reduction in wind speed.
In sub-regions, Epan showed a downward trend; however, the influential factors on Epan reduction per
sub-region were slightly different from those of the entire region. Except for sub-region II, which was
only affected by sunshine duration, reductions in Epan in other sub-regions were due to the joint
influence of decreasing sunshine duration and wind speed.

In this paper, only a qualitative analysis was performed on the reduction of sunshine duration
and wind speed in the HRB, and an explanation for this reduction is still lacking, and thus further
research is needed.
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Abstract: The Three Gorges Project (TGP) is the largest hydroelectric project in the world. It is crucial
to understand the relationship between runoff regime changes and TGP’s full operation after 2009 in
the Yangtze River Basin (YRB). This paper defines core, extended and buffer areas of YRB, analyzes
the effects of TGP on runoff anomaly (RA), runoff variation (RV) and change of coefficient of variation
(CCV) between two periods (2003–2008 and 2009–2016), takes percentage of runoff anomaly (PRA)
as the evaluation standard, assures alleviation effect on severe dry and wet years of the research
area, and finally summarizes related benefits of flood control from TGP. Our results indicate the
inter-annual fluctuation of runoff in the core and extended areas expanded, but reduced in the buffer
areas, and the frequencies of severe dry and wet years alleviated in the buffer, core and extended
areas. Generally, the extended and core areas become less wet, and the buffer areas become less dry.
The RV and CCV are both strengthened in the extended and core areas, but are weakened in the
buffer areas, and RV is well positively correlated (R2 = 0.80) to CCV. Furthermore, the main benefits
of TGP on flood control are remarkable in the reduction of disaster affected population, the decrease
of agricultural disaster-damaged area, and the decline of direct economic loss. However, due to
torrentially seasonal and non-seasonal precipitation, the sharp rebounds of three standards for Hubei
and Anhui occurred in 2010 and 2016, and the percentage of agricultural damage area of five regions
in the core and extended areas did not decline synchronously and performed irregularly. Our results
suggest that the five key regions along the main branches of the Yangtze River should establish a
flood control system and promote the connectivity of infrastructures at different levels to meet the
significant functions of TGP. It is a great challenge for TGP operation to balance the benefits and
conflicts among flood control, power generation and water resources supply in the future.

Keywords: Three Gorges Project; dam; runoff changes; flood control; Yangtze River; benefits

1. Introduction

Water is one of the most significant resources for a country’s social, economic and environmental
development, and most nations are facing different degrees of floods and drought threats caused by
the imbalance of water distribution in the world [1]. In order to rebalance, redistribute and make
full use of potential water resources, many countries made great efforts to construct dams to control
floods, generate electricity, improve shipping capacity, and supply water, including Egypt, Japan,
U.S., Canada, Australia, China, and so on. By the year 2000, about 45,000 large dams and 800,000
small ones have been built worldwide. Globally, discussions and arguments on large dams have
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increasingly emerged because of the potential and comprehensive impacts. They basically include
enormous environmental changes of habitats inundation and fragmentation, extinction of local species
of plants and fishes, ugly landscapes of water level fluctuation zone, sedimentation accumulation
and capacity decrease of reseRVoir and regional climate changes, the apparent economic impacts of
loss of old industries and enterprises and shortages of new ones, depressed livelihood of involuntary
resettlement, high unemployment rates, infertile farmland located far away from economic centers,
and the continuous social uncertainties of loss of unique historical and cultural heritage, spiritual
sustenance and cultural integration of migration [2–7]. Among the changes, coastal erosion, caused
by sediments reduction at river outlet, is a serious environmental problem in many nations. For
example, the case study of Nestos River (Greece) indicated the sedimentation effect of construction
and operation of two reseRVoirs (Thisavros and Platanovrysi) to coastal erosion, the sharp sediments
decrease impacted sediments supply to basin outlet of river delta, the neighboring coast and the coastal
morphology, which even inversed the erosion/accretion balance in the deltaic as well as the adjacent
shorelines, from accretion predominated erosion to erosion predominates accretion, just within five
years after the reseRVoirs’ construction [8,9].

China’s geographical and climatic location within monsoon zones determines its large difference
in precipitation and potential evapotranspiration among the 31 provinces, municipalities and
autonomous regions. The main spatial pattern is that more water exists in its southern parts than in
its northern parts, and so ‘too much water to control in Southern China’ is one of the key issues for
water resources management. Flooding has resulted in major disasters in both the midstream and
downstream parts of YRB. For example, three big recorded floods occurred in YRB in 1934, 1954 and
1998, respectively [10]. The 1998 flood, called the 1998 Great Flood in China, caused significant losses
in human lives and properties. Flooding threats became unpredictable under climate change and
high intensities of human activities, which have resulted in large changes in hydrological processes,
precipitation, runoff and groundwater in YRB.

To solve the flooding issue, China started large-scale dam construction from the 1950s. For
instance, Sanmenxia Dam was built in the midstream of the Yellow River in 1954, and was aimed at
flood control, irrigation, electric power generation, and shipping improvement; Gezhou Dam built
in the downstream of the Yangtze River (YR) in 1971, aiming to provide hydropower generation and
shipping improvement; Xiaolangdi Dam built in the downstream of the Yellow River in 1991, intended
not only to provide flood and ice control, sedimentation reduction, and electric power generation, but
for water supply and irrigation; the Three Gorges Project (TGP) was launched in the midstream of YR
in 1994, aiming to provide flood control, shipping improvement, electric power generation, and so on.

Among the dams, TGP is well-known worldwide for its scale, cost, range, migration, ecological
and environmental impact, and even for its controversial impacts on sustainability. It achieved primary
impoundment in 2003 and the full operation in 2009. Afterwards many ecological and environmental
problems emerged. One particular example was more frequent severe droughts that have occurred
since its operation [11–16], which have impacted on Sichuan Province and Chongqing Municipality.
This resulted in serious hydrological, ecological, and socioeconomic consequences in spatial pattern
and temporal process [17–19], and also initiated controversial debates on TGP.

There were three research issues on the hydrological consequences of TGP. The first is the drought
frequency of the Three Gorges ReseRVoir (TGR) and the relationship between TGP and the drought
trends of YRB [20]. In the last two decades, YRB displayed significant vacillation between droughts
and floods of TGR, indicated by the increasing drought trend in the upper reaches of YRB and TGP,
with the drought evolution being inseparable from the background of the whole basin level. The
second area has been water regulation and storage capacity between the lakes and YR and the response
to TGP [21–24]. YR discharges into Dongting Lake in Hubei Province, Poyang Lake in Jiangxi Province,
but receives inflow from the lakes from January to March. After the full operation of TGP under
different dispatching modes, the weakened water from YR resulted in enhancing of the compensation
ability of the lakes into YR in the neighboring provinces. The third research area is the impact of
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TGP’s impoundment on the flood and low stage adjustment in the midstream of YRB [25–27]. After
the impoundment of TGP, the water storage capacities of provinces have experienced no change
because the flood stage did not significantly decrease, although the flow discharge compensation
of TGR improved the low flow stage, and the wharf change in the water stages was harmful to the
improvement of the channel depth and the water storage of TGP. Meanwhile, the flow of YR decreased
after flood season, increased in the dry season, and benefited from the peak shaving and flood control
of TGP. Flow also decreased from July to August, and the annual runoff allocation also changed, which
benefited flood control and water resources use in the midstream and downstream of YRB.

The rest of this paper is organized as follows: Section 2 reviews the basic conditions of TGP;
Section 3 introduces the definition of the research area, data sources and methods; Referring to the
hierarchy framework of Environmental Impact Assessment of Impacts on TGP [28], Section 4 presents
TGP’s effects on runoff changes between two periods of 2003–2008 and 2009–2016, including runoff
anomaly, percentage of runoff anomaly, runoff variation, change of coefficient of variation, and then
sums the related benefits of flood control of TGP from disaster affected populations, direct economic
loss, agricultural disaster-damaged areas and the percentage of the agricultural disaster-damaged area;
Section 5 proposes the discussions; Section 6 draws the main conclusions.

2. Basic Conditions of TGP

As the largest water generation project in the world, TGP located in the main stream of YR between
Chongqing Municipality and Yichang City of Hubei Province (Figure 1), with a general storage capacity
of 39.3 × 109 m3 and a controllable storage capacity of 22.1 × 109 m3 water, aimed at controlling
effectively floods of the upstream of YR, with a general generation electricity of 84.7 × 109 kWh per
year, aimed at alleviating the shortage of electricity in East, Central and South China, an amount equal
to that produced by burning 50 million tons of coal, with a water depth improvement from 2.9 m for
Chaotian Gate of Chongqing Municipality to 3.5–4.5 m for Yichang City, aimed at improving transport
capacity from 3000 tons to 10,000 tons, and the transport capacity of the channels of YR with a length
of 660 km, from Shanghai Port to Chongqing Port, was promoted from 1000 tons to 5000 tons.

The formal construction of TGP started on 14th December 1994, in Sandouping Town of Yichang
City, Hubei Province. Then, TGP was implemented in three stages, 1993–1997 was the first stage,
mainly for the construction preparation and damming up of YR, with the water level up to 90 m;
1998–2003 was the second one, mainly for primary impoundment, operation of first generator unit,
and perpetual navigation of ship lock, with the water level up to 135 m; 2004–2009 was the third one,
mainly for operation of all generator units and the accomplishment of whole project, with the water
level up to 156 m (2006) and 175 m (2009).

Figure 1. Locations of TGP, the Jing River (red), the Yangtze River (blue), and the definition of the
research area, the buffer (yellow), core (green) and extended areas (pink).
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3. Research Area, Data Sources and Methods

3.1. Research Area

According to the flow direction of main YRB branches (Qinghai to Shanghai), there are 5 regions in
the upstream, which are Qinghai, Tibet, Sichuan, Yunnan and Chongqing, 3 regions in the midstream,
which are Hubei, Hunan and Jiangxi, and 3 regions in the downstream, which are Anhui, Jiangsu
and Shanghai. Meanwhile, according to China’s traditional geographical regionalization of YR, the
branches upward of Yichang City belong to the upstream; the branches between Yichang and Hukou
County in Jiangxi Province belong to the midstream; and the branches below Hukou belong to the
downstream. The major originally scheduled flood control of TGP mainly focused on the Jing River in
Hubei Province (Figure 1), which cultivated two Plains of Jiang-Han and Dongting Lake, an important
basis for commodity grain and aquatic products for China. In addition to the effect of extending back
tail-waters of the Three Gorges Dam wall with 181 m height to the upstream after the full impoundment
of 175 m, especially to Chongqing and Sichuan, the 7 key regions impacted by TGP regarding effects
of runoff changes of YRB are defined as follows (Figure 1): the core areas including Hubei, Hunan
and Jiangxi, the extended areas including Anhui and Jiangsu, and the buffer areas including Sichuan
and Chongqing.

3.2. Data Sources

The information on TGP was obtained from the website of TGP (www.3g.gov.cn). The annual
runoff data of the 7 regions and YRB were obtained from Changjiang and Southeast Rivers Water
Resources Bulletin (2003–2016), the website of Changjiang Water Resources Commission, Ministry of
Water Resources of China (www.cjw.gov.cn). The annual disaster data of the 5 regions were obtained
from Bulletin of Flood and Drought Disasters in China (2006–2016), the website of Ministry of Water
Resources of China (www.mwr.gov.cn).

3.3. Methods

This study compares and evaluates four runoff indices between two periods (2003–2008 and
2009–2016) for the 7 key regions in YRB, including runoff anomaly (RA), percentage of runoff anomaly
(PRA), runoff variation (RV), and change of coefficient of variation (CCV).

The classic model on runoff (R) is calculated by Equation (1):

R = P − E − ΔW (1)

where R, P, E and ΔW is the annual runoff, precipitation, evaporation, and storage change of
groundwater of the typical year of regions, respectively, and here the value of surface water is regarded
as runoff [29].

The runoff anomaly (RA) is calculated by Equation (2). Then, to judge the dry or wet state of
typical year, the percentage of runoff anomaly (PRA) is defined and categorized according to the
standard of Equation (3) [30]:

RA = Ry − Rn (2)

PRA =
(

Ry − Rn
)
/Rn × 100 (3)

where Ry and Rn is the runoff of typical year and the mean annual runoff during the period, respectively.
The standards and the categories are as follows: the year with PRA < −20% belongs to a dry year; the
year with −20% < PRA < −10% belongs to a less dry year; the year with −10% < PRA < 10% belongs
to a normal year; the year with 10% < PRA < 20% belongs to a less wet year; the year with 20% < PRA
belongs to a wet year.
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The runoff variation (RV) is calculated by Equation (4):

RV = (Rn2 − Rn1)/Rn1 × 100 (4)

where Rn1 and Rn2 is the mean annual runoff of two periods of 2003–2008 and 2009–2016, respectively.
The coefficient of variation (CV) and the change of CV (CCV) are calculated by Equations (5) and

(6), respectively:
CV = σ/μ (5)

CCV = CVn2 − CVn1 (6)

here σ and μ is the standard deviation and the mean annual runoff during the period, and CVn1 and
CVn2 is CV of two periods of 2003–2008 and 2009–2016, respectively.

Three indices are used to present the benefits of TGP on flood control, the disaster-affected
population (DAP), the direct economic loss (DEL), the agricultural disaster-affected area (ADAA),
the agricultural disaster-damaged area (ADDA), and one index, the percentage of agricultural
disaster-damaged area (PADDA), is used to evaluate the flood control effect, which is calculated
by Equation (7):

PADDA = ADDA/ADAA × 100 (7)

where ADDA and ADAA represent the agricultural area with yield reduction including and over 30%
and 10% affected by flood and waterlogging, respectively.

4. Results

After the full operation of TGP with 175 m height impoundment in 2009, an enormous flowing
reseRVoir of the river-channel type crossing Chongqing and Hubei was formed with a general area
of 1084 km2. Considered the potential influence of water adjustment of TGR between wet and dry
season, the runoff changes, including RA, PRA, RV and CCV, are compared between two periods of
2003–2008 and 2009–2016 among the core, extended and buffer areas.

4.1. Impacts of TGP on RA and PRA

4.1.1. Inter-Annual Fluctuation of RA Expanded in the Core and Extended Areas but Reduced in the
Buffer Areas

When comparing 2003–2008 to 2009–2016, RA expanded in the core and extended areas but
converged in the buffer areas, and the amplification extent was higher in the extended areas than that
in the core areas. In the core areas (Figure 2a), RA for Hubei, Hunan and Jiangxi kept a remarkable
increase trend, with an amplification of the fluctuation range of 0.25, 1.4 and 1.2 times, respectively.
Similarly in extended areas (Figure 2b), RA also amplified, and the increased trend for Jiangsu
(2.2 times) was stronger than that for Anhui (1.6 times). In contrast, the buffer areas differed (Figure 2c),
Sichuan and Chongqing both converged on 1/3 of the fluctuation range of RA. The results indicate
that TGP’s effects were diversified among the core, extended and buffer areas [31]. Generally, the
inter-annual fluctuation of RA expanded in the extended and core areas but reduced in the buffer
areas, compared to pre-2009.
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Figure 2. Change trends of the runoff anomaly (RA) among the core (a), extended (b) and buffer
areas (c).

4.1.2. Alleviation on the Frequencies of Dry and Wet Years in the Buffer, Core and Extended Areas

YRB went into a drier phase with sharp fluctuations in 2009–2016 (Figure 3a and Table 1), with
62.5% dry and 37.5% wet years. Under the extreme drought, the alleviation effect of TGP at the whole
basin scale was remarkable among the core, extended and buffer areas [32]. First, the core areas (Hubei,
Hunan and Jiangxi) showed different patterns in PRA (Figure 3b and Table 1). Hubei became drier
from 2003–2008 to 2009–2016. In comparison, Hunan and Jiangxi became wetter in 2009–2016. Second,
the extended areas (Anhui and Jiangsu) shifted from dry to wet (Figure 3c and Table 1). For Anhui,
dry and less dry years both decreased and correspondingly normal and wet years increased by 58%.
Then for Jiangsu, the proportions of dry and less dry years decreased and those of normal, less wet
and wet years increased by 62%, respectively. Third, the buffer areas (Sichuan and Chongqing) had
a drying tendency, but with the majority of years remaining under the normal condition (Figure 3d
and Table 1). Chongqing had a drying tendency, with less dry years increasing by 50%. In summary,
Hubei, Sichuan and Chongqing went into a less dry or dry period after the full operation of TGP in
2009. Meanwhile, Hunan, Jiangxi, Anhui and Jiangsu went into a less wet or wet period.
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Figure 3. Change trends of the percentage of runoff anomaly (PRA) among YRB (a), the core (b),
extended (c) and buffer areas (d).
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Table 1. Frequencies of dry or wet years of YRB and the 7 regions based on PRA.

Dry Years
Proportion (%)

Less Dry Years
Proportion (%)

Normal Years
Proportion (%)

Less Wet Years
Proportion (%)

Wet Years
Proportion (%)

2003–2008 2009–2016 2003–2008 2009–2016 2003–2008 2009–2016 2003–2008 2009–2016 2003–2008 2009–2016
YRB 33.33 62.50 66.67 37.50

Sichuan 16.67 12.50 66.67 75.00 16.67 12.50
Chongqing 16.67 50.00 33.33 25.00 33.33 12.50 16.67 12.50

Hubei 16.67 25.00 25.00 66.67 25.00 16.67 25.00
Hunan 16.67 25.00 16.67 12.50 50.00 16.67 12.50 50.00
Jiangxi 33.33 25.00 33.33 12.50 33.33 12.50 50.00
Anhui 66.67 25.00 16.67 16.67 37.50 37.50
Jiangsu 83.33 25.00 16.67 12.50 12.50 12.50 37.50

The occurrence of these droughts in YRB was related to drought and flood transformation at
a large scale and the characteristics of precipitation evolution, and according to statistical data [33],
YRB experienced a wet period around the 1980s, and went into a less wet period after 1999. During
the last decade or so, the annual precipitation in YRB decreased by 10–12%. YRB’s drought occurred
just at this background of less wet climate. Our results are consistent with the findings that severe
droughts occurred inevitably in the southwestern parts and the midstream and downstream of YRB,
including the great drought in Sichuan and Chongqing in 2006, the severe drought in the southwestern
China from 2009 to 2010, and the serious drought in midstream and downstream of YRB during
2010–2011. They indicate that there is no direct relationship between the drought disasters in YRB
and TGP operation, and the drought in the 7 key regions in the past two decades was mainly driven
by climate conditions. The TGP operation alleviated drought severity among the core, extended and
buffer areas after 2009.

4.2. RV and CCV Both Strengthened in the Extended and Core Areas but Weakened in the Buffer Areas

The RV and CCV both apparently increased from 2003–2008 to 2009–2016 in all three areas
(Figure 4a). The RV kept almost stable in Sichuan, decreased in Chongqing, increased slightly in Hubei
and Hunan, but increased sharply in Jiangxi, Anhui and Jiangsu, with RV increasing by 31.4%, 43.1%
and 78.5%, respectively. The RV mean in the extended areas is almost 4 and 20 times higher than that
in the core and buffer areas, respectively. A similar situation occurred for CCV, which increased by
29.6% in Jiangsu, followed by Anhui, Hunan and Jiangxi, with their increased mean of 11~12%, then
followed by Hubei with an increase of 7.0%, but instead decreased by −4.8% and −2.7% in Sichuan
and Chongqing, respectively. The results indicate that RV and CCV were strengthened in the extended
and core areas, but weakened in the buffer areas. Moreover, RV was strongly correlated (R2 = 0.80) to
CCV (Figure 4b), indicating that there existed coherence between the effects of TGP on runoff increase
and the period fluctuation among the 7 regions.

 

Figure 4. Change trends of RV and CCV (a) and their relationships (b) among the core, extended and
buffer areas.
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4.3. Related Benefits of Flood Control of TGP

As mentioned above, the originally scheduled function of flood control of TGP was mainly on the
midstream and downstream of YRB, especially the Jing River (Figure 1). The benefits of flood control of
TGP started in 2003, and were remarkably exhibited after TGP fully operated with 175m impoundment
in 2010. Based on the available disasters data from 2006 to 2016, we analyzed the benefits of flood
control in the core and extended areas, including DAP, DEL, ADDA, and PADDA.

4.3.1. Reduction of the Disaster-Affected Population (DAP)

DAP in the core and extended areas decreased sharply in the latter phase, especially after 2010. In
the core areas (Figure 5a,b), DAP of the 3 regions remained higher and fluctuated remarkably during
2006–2008. DAP for Hubei declined remarkably from 2010 to 2014, but rebounded to the maximum in
2016; DAP for Hunan declined gradually with fluctuations until 2016, and DAP for Jiangxi declined
sharply and became stable until 2016. The mean DAP for Hubei and Hunan decreased by 16% and
34% from 2006–2008 to 2009–2016, respectively. Similarly in the extended areas (Figure 5c), Anhui had
a peak in 2007, then kept decreasing from 2010 to 2014, but rebounded during 2015–2016, and Jiangsu
went into a steady period during in 2008–2014 after a sharp fall in 2007, then rebounded more than
10 times during 2015–2016, and the corresponding mean for Anhui and Jiangsu decreased by 25% and
67% during 2009–2016, respectively, compared to 2006–2008.

 
Figure 5. Change trends of DAP for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas (c).
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DAP for Hubei had a sharp rebound in 2016, and those of Anhui also emerged during 2015–2016.
From the records of Bulletin of Flood and Drought Disasters in China (2015–2016), during the flood
season (May–September), the mean precipitation of Hubei in 2016 increased by 19%, compared to the
normal year. As a result, three big floods occurred in Yichang and other cities along YR. The mean
precipitation of Anhui also increased by 14% and 27% in 2015 and 2016, resulting in three and two
floods, respectively, which led to DAP rebounding in Hubei and Anhui.

4.3.2. Decline of the Direct Economic Loss (DEL)

In the core areas (Figure 6a,b), except for 2016, the mean DEL remained stable with little
fluctuations, after the 2010 rebounds. The 2011–2015 mean DEL for Hubei, Hunan and Jiangxi
accounted for 24%, 40% and 14% of the 2010 DEL, respectively. This is mainly caused by the abnormal
conditions of 2010 (Bulletin of Flood and Drought Disasters in China, 2010). There were four heavily
intensified precipitations that occurred in YRB in 2010, the first occurred in the southern parts of YRB
in 13–28 June, the second and third occurred in the upstream of YRB in 15–25 July and 10–26 August,
the fourth occurred in the Han River Basin in 10–26 August. These led to four big floods and the higher
DEL in in Hubei, Hunan and Jiangxi, and the second and third precipitations even caused the biggest
flooding events in the main branches of YRB since 1987, and the highest floods peak to TGR since TGP
was constructed. Moreover, except for Anhui in 2016, the extended areas kept stable (Figure 6c), the
DEL mean for Anhui and Jiangsu during 2009–2015 accounted for 56% and 29% of the peak in 2015,
respectively. The DAP also illustrated the sharp rebound of DEL for Hubei and Anhui in 2016.

 

Figure 6. Change trends of DEL for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas (c).
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4.3.3. Decrease of the Agricultural Disaster-Damaged Area (ADDA) and Irregularities of the
Percentage of Agricultural Disaster-Damaged Area (PADDA)

The ADDA of Hubei, Jiangxi and Hunan fluctuated remarkably in the core areas from 2006 to
2009 (Figure 7a,b). The ADDA for the three regions declined sharply and remained stable from 2011 to
2014 after the high rebound of 2010. The ADDA mean of Hubei decreased by 31% during 2009–2016,
compared to 2006–2008; Hunan remained flat; Jiangxi increased by 27%. Nevertheless, in the extended
areas (Figure 7c), the ADDA mean of Anhui and Jiangsu both decreased by 42% and 73% in 2009–2016,
compared to 2006–2008, respectively. The reason why the ADDA of Hubei (2016) and Anhui (2015 and
2016) rebounded sharply was the same as that for DAP and DEL.

 
Figure 7. Change trends of ADDA for Hubei (a), Hunan and Jiangxi (b) in the core and extended
areas (c).

Except for 2015 and 2016, the ADDA in the core areas after 2009 and in the extended areas
after 2007 both showed a descending trend, respectively. However, the PADDA did not decline
synchronously. In the core areas (Figure 8a,b), the PADDA of Hubei, Hunan and Jiangxi fluctuated
sharply during 2006–2008, and during 2009–2016 Hubei went into a fluctuating period with a difference
of 33% between the peak (62%, 2016) and the trough (28%, 2011), and Hunan and Jiangxi both went
into a smooth period. The extended areas, however, performed differently (Figure 8c), the PADDA of
Anhui and Jiangsu both showed an ascending trend from 2009 to 2016 with an increase of 32% and
18%, respectively. In summary, the TGP operation did not work for the middle and lower basin of YRB,
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since the PADDA among the five regions showed various trends: one (Hubei) fluctuated sharply, two
(Hunan and Jiangxi) remained steady, two (Anhui and Jiangsu) increased.

 
Figure 8. Change trend of PADDA for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas
(c).

5. Discussions

Based on the definition of research area and the analysis of four runoff indices, and by comparing
the period of 2003–2008 with 2009–2016, we find that: (1) TGP operation after 2009 intensified the
inter-annual fluctuation of RA in the extended and core areas, but reduced the fluctuation in the buffer
areas. Based on the effective flood control of the upstream and water adjustment between the dry
and wet seasons, TGP alleviated the frequencies of severe dry and wet years in the buffer, core and
extended areas; (2) TGP strengthened RV and CCV in the extended and core areas but weakened them
in the buffer areas, the RV was strongly correlated to CCV in the 7 regions, the runoff of the extended
and core areas increased, and the corresponding inter-period of CCV was also amplified, especially
in Jiangsu, Anhui and Jiangxi; (3) the benefits of TGP’s flood control were mainly reflected by the
reduction of DAP, the decline of DEL, and the decrease of ADDA in the core and extended areas.

Our results indicate some preliminary trends regarding TGP’s effects on runoff regime changes.
The following three aspects should be further considered and strengthened in the future. The first is
the operating years of TGP. From 2009 to 2016, TGP was fully operated for only 7 years, while the
comprehensive impacts and benefits need a long period of time to demonstrate. The second is the
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climate condition of YRB. YRB went into a drier period during 2009–2016, with sharp fluctuations.
The capacity of water storage and reallocation of TGP between the dry and wet periods results in
either drier or wetter influence in the core and extended areas. The third is the influence of seasonal
and non-seasonal precipitation. One main function of TGP is flood controlling for the upstream of
YRB. Nevertheless, besides the upstream, local precipitation is another flood source for the core and
extended areas. Therefore, DAP, DEL, and ADDA for Hubei and Anhui rebounded sharply in 2010,
2015 and 2016, respectively, and the three indices presented a higher consistence when they faced the
severe seasonal and non-seasonal precipitations than they would during a normal year, and big floods
caused by regional heavy precipitations become a major disaster for Provincial Governments to solve.
To cope with the extreme weather conditions under climate change of YRB, the standard for flood
control of water conseRVancy infrastructures and projects in Hubei and Anhui need to improve.

Beyond for the climate change and the disasters of YRB from heavy precipitations, runoff variation
and water reallocation, two significant problems highly influence the development of TGP. One is the
resettlement displacement and economic development of TGR. The regulations developed by the State
Council of China to guide the resettlement were the Regulations on Resettlement for the Construction of
TGP on YR in 1993 (henceforth the 1993 regulations), which required rural resettlements were to move
up the inundation line and draw back to the feasible farmlands in higher altitude mountainous areas,
named exploration-oriented migration (kaifa yimin in Chinese), which meant rural households lived near
their old houses and made a living on the reclaimed farmland, and resettled populations in urban areas
were to employed in State-owned Enterprises [34]. However, due to the Great 1998 Flood, the impact
of intensive land reclamation, deforestation and environmental degradation on TGR [35], the pressure
of a resettlements arrangement increase from 1993 to 1998 of 20% beyond the scheduled 1.13 million
registered in 1992, and the ceaseless problems in exploration resettlement, the State Council of China
announced the adjustment to the 1993 regulations at a working meeting on TGP resettlement in May
1999 (henceforth the 2001 regulations), and resettled 190,000 rural residents (about 15% of the total) to
11 provinces outside TGR, including Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Hunan, Guangdong, Hubei and Sichuan. Meanwhile, with China’s environmental protection policy
being reformed and becoming increasingly strict since the beginning of the 1990s, lots of State-owned
Enterprises were closed or restructured [36]. To make matters worse, substandard infrastructure, steep
terrain and an unskilled workforce didn’t attract investors, so few new enterprises set up in TGR,
which led to the economic growth failing to keep pace with non-TGR regions in Chongqing and Hubei.
Therefore the State Council of China initiated the Partner-ship Support Program (PSP) in 1992 and
2014, respectively. Another is sedimentation of TGR. In October 2002, in order to solve the problem
of sedimentation from the upstream of YR, the State Council of China approved the Three Gorges
Corporation building four hydropower stations along the Jinsha River, Wudongde, Baihetan, Xiluodu
and Xiangjia Dam, to share the accumulation and decrease the velocity of sedimentation in TGR.

6. Conclusions

This study conducted a comprehensive analysis on TPG operation impacts by comparing the
period of 2009–2016 with 2003–2008. Our results indicated the primary effects of TGP operation
after 2009 on runoff changes of the 7 regions in the following three aspects. Firstly, the inter-annual
fluctuation of the runoff anomaly in the extended (Anhui and Jiangsu) and core areas (Hubei, Hunan
and Jiangxi) expanded and the buffer areas (Sichuan and Chongqing) converged, while the decrease
trend was remarkable from the extended, core to buffer areas. With a macro-background of climate
change, YRB went into a drier period with sharp fluctuations, while TGP alleviated the frequencies
of dry or wet years in the research area. The core (except for Hubei) and extended areas both had
a tendency of becoming less wet, however, Hubei and the buffer areas went into a less dry period.
Secondly, the runoff variation and the change of CV both strengthened in the extended and core
areas but weakened in the buffer areas, and the RV presented a highly positive correlation to CCV.
The inter-period increase of runoff was sharp in Jiangsu, Anhui and Hunan, but the corresponding
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CCV also amplified sharply, which benefited drought alleviation but intensified the flood control
risk of the inter-period. Thirdly, the general benefits of flood control of TGP mainly exhibited in the
reduction of the DAP, the decline of DEL and the decrease of ADDA in the core and extended areas.
Nevertheless, the PADDA of the 5 regions performed in irregularities after 2009, as Hubei went into a
sharp fluctuating period, Hunan and Jiangxi both went into a smooth period, Anhui and Jiangsu both
showed an ascending trend, respectively, instead of keeping descending trends during 2006–2008.

Moreover, due to big floods caused by heavy precipitations, the sharp rebounds occurred in the
DAP, DEL and ADDA for Hubei and Anhui in 2010 and 2016, respectively. So flood control and disaster
mitigation capacity within the core and extended areas not only depend on TGP but also rely on the
intra system. TGP aims to control the big floods from the upstream of YR, and the intra-system focuses
on controlling the seasonal and non-seasonal heavy precipitations. Regional flood control and disaster
alleviation is comprehensive and systemic, e.g., agricultural flood control in YRB, one guarantee comes
from the regulation and storage of water conseRVancy projects of main branches, tributaries and
rivers, while another comes from the storage and reallocation capacity of lakes, reseRVoirs, and ponds
connecting with the farmlands.

After experiencing the stages of argument, construction and operation, the Chinese Central
Government became cautious towards large dam construction for hydropower exploration [37,38], and
the management countermeasures on TGP and YR also became more scientific, including resettlement
support [39], sediment sharing in the upstream, securities management, economic supports to TGR,
and TGP going into a stage of rehabilitation and improvement. In the future, in order to match and
promote the scheduled functions of TGP on flood control, the key regions along the main branches of
YR need to build a system and strengthen the connectivity between projects and infrastructure from
the county, city, and provincial levels, to the regional level, and even to the national level. Under the
drought intensification of YRB in recent years, it is a great challenge for TGP operation to balance the
benefits and conflicts among flood control, power generation and water resources distribution in the
key regions of the research area.
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Abstract: The changes in climatic variables in Ethiopia are not entirely understood. This paper
investigated the recent trends of precipitation and temperature on two eco-regions of Ethiopia.
This study used the observed historical meteorological data from 1980 to 2016 to analyze the trends.
Trend detection was done by using the non-parametric Mann-Kendall (MK), Sen’s slope estimator
test, and Innovative Trend Analysis Method (ITAM). The results showed that a significant increasing
trend was observed in the Gondar, Bahir Dar, Gewane, Dembi-Dolo, and Negele stations. However,
a slightly decreasing trend was observed in the Sekoru, Degahabur, and Maichew stations regarding
precipitation trends. As far as the trend of temperature was concerned, an increasing trend was
detected in the Gondar, Bahir Dar, Gewane, Degahabur, Negele, Dembi-Dolo, and Maichew stations.
However, the temperature trend in Sekoru station showed a sharp decreasing trend. The effects of
precipitation and temperature changes on water resources are significant after 1998. The consistency
in the precipitation and temperature trends over the two eco-regions confirms the robustness of
the changes. The findings of this study will serve as a reference for climate researchers, policy and
decision makers.

Keywords: trend analysis; precipitation; temperature; eco-region; Ethiopia

1. Introduction

Extreme climatic and weather events in recent decades have been a critical global issue due to the
severity of the impacts on natural environments, economy, and on human life [1–3]. These extreme
events are unpredictable and destructive, especially, on agriculture production. The likelihood of fewer
cool days and nights, increasing heavy precipitation events, and droughts has increased since the
1970s [4]. This indicates that the global climate is undergoing a significant change which is manifested
by rising temperature, droughts, rainstorms, and flooding. Scientific studies showed that the mean
global temperature could rise by 1.4 to 5.8 ◦C in 2100 with a mean sea level rise of 10 cm over the same
period as reported by Intergovernmental Panel for Climate Change in 2008 [5]. However, considerable
regional and seasonal changes in the climate are expected, affecting climatic variables differently
depending on the regions with great impact on environments and human systems [6]. The recent
increasing frequency of heavy rainfall and severe droughts in many parts of the world is an indication
of these situations [7]. Any change of mean global and regional temperature will impact the spatial and
temporal distribution of rainfall [8]. This, in turn, affects the hydrological cycles and the availability
of water resources [9]. The probability of the frequency of extreme events in the near future is very
likely to increase and thus understanding the recent trends is crucial in order to predict the future
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climate changes. Hence, climate change is perceived through extreme events which tend to alter the
magnitude of the predicted climate impacts and this may also be supported by severe flood events.
The impacts of climate change on different regions are very different. In this regard, different studies
have been conducted in many regions of the world such as in China [10–12], Iran [13], Senegal [14],
and India [15,16].

Ethiopia is the most vulnerable country with regard to climate change due to its climatic,
hydrology, and low economic conditions [17]. Annual rainfall is highly variable, ranging from less than
200 mm in the southeast, east, and northeast borders to 1200 mm in the central and western highlands
of the country [18]. Notably, the country mainly depends on rainfed agriculture and available water
resources in the highlands, while large parts of its southern and eastern regions are extremely arid and
prone to drought and desertification [5]. Hence, the rainfall is determined by seasonal and interannual
variability in the country. Changes in precipitation have a direct impact on floods, droughts, and water
resources [19].

Climate change threatens to increase temperature and evapotranspiration; and hence, increasing
the risks of heat waves associated with drought [20]. Thus, the change in climate is expected to increase
vulnerability in all eco-regions through the increased temperature and more erratic rainfall, which will
impact food security and economic growth. Some regional analysis was undertaken to understand the
extreme climate and trends. However, the trend indices showed significant increases and decreases
in seasonal and annual precipitation, for example, Asfaw et al. [21] reported a decreased rainfall
in annual, Belg, and Kiremt in the Woleka sub-basin of Ethiopia. On the other hand, Bewket and
Conway [22] reported variations in daily rainfall with no consistent trends. Mekasha et al. [23] also
reported increasing warm extremes in temperature and increasing precipitation in different stations
across Ethiopia.

Thus, extreme climate indices should be tested for future studies on the perception of climate
change with a wide coverage within the country. Therefore, it is essential to analyze the recent trends
of climatic variables as these show the climate-related adaptation and mitigation strategies employed
by different entities to improve the agrarian economy of the country at large. Furthermore, trend
analysis of climatic variables is very important to understand the climate system of the country and has
become a vital research area for other researchers. The objective of this study was to assess the recent
trends of precipitation and temperature between 1980 and 2016. Therefore, the output of this paper
will provide insights for concerned body with ecological and sustainable economic development.

2. Materials and Methods

2.1. Study Area Description

Ethiopia lies between 3◦–15◦ N and 33◦–48◦ E. The total area of the country is about 1.13 million
km2 [18], see Figure 1. The country is characterized by a diversified climate due to its equatorial
positioning and topography. Its climate is controlled by atmospheric circulations, complex
physiography, and the marked contrast in elevation [18]. The country is mainly divided into two
eco-regions, namely lowlands and highlands, where the lowest point is at Danakil Depression and
the highest point (4543 m) is at Ras Dejen, above sea level [24]. This classification is mainly based on
altitudinal classes, precipitation, and temperature variations. We mainly focused on precipitation and
temperature variations for this paper. The lowest mean minimum temperature and high precipitation
mostly occur in the highland regions of the country. The highest mean temperature and low
precipitation occur in lowland parts of the country. The rainfall also showed seasonal and interannual
variability [25].
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Figure 1. Location map of the study area.

2.2. Data Sources

The raw climatic data were collected from the National Meteorological Services Agency of
Ethiopia [26]. As the data series from 1980 to 2016 are complete, the observed precipitation and
temperature data were selected as the basic analysis data in this study. All the necessary data
for this manuscript were provided after quality control. The stations were also selected based on
the completeness of the data during the study periods. We have selected eight stations from two
eco-regions (four from highland and four from lowland eco-regions to represent the entire study
regions) for this study, see Table 1.

Table 1. Meteorological information’s of stations.

Station’s Name Elevation (m) Latitude (N) Longitude (E) Eco-Regions

Dembi-Dolo 1850 34.8◦ 8.5167◦ Highland
Gondar 1973 37.4319◦ 12.5212◦ Highland

Bahir Dar 1827 37.322◦ 11.6027◦ Highland
Sekoru 1928 37.4167◦ 7.9167◦ Highland

Gewane 568 40.633◦ 10.15◦ Lowland
Maichew 2432 39.5337 12.7841◦ Lowland

Degahabur 1070 43.55◦ 8.2167◦ Lowland
Negele 1544 39.5667◦ 5.4167◦ Lowland

2.3. Methods

This paper used various methods to detect trends in the precipitation and temperature.
The methods are either Parametric or non-parametric which are essential to detect the trends of
hydrometeorological observations [27]. Following, are the lists of trend detection non-parametric tests
used in this paper, see Figure 2.
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Figure 2. Flow diagram to detect trends of precipitation and temperature.

2.3.1. Mann-Kendall (MK) Test

The Mann-Kendall (MK) test is suited for hydrometeorological observations where the data
points are not necessarily uniform [13,28–31]. It is used to detect the presence of either increasing or
decreasing monotonic trends in the study area and to see whether the trend is statistically significant
or not. Since the test statistics of the MK test are based on plus or minus signs, the determined trends
are less affected by the outliers. It is given by:

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Xj − Xi

)
(1)

where, Xi (i = 1, 2, . . . , n−1) and Xj (j = i + 1, 2, . . . , n). The observations of each Xi and Xj are
calculated as:

sgn
(
Xj − Xi

)
=

⎧⎪⎨
⎪⎩

+1 if
(
Xj − Xi

)
> 0

0 if
(
Xj − Xi

)
= 0

−1 if
(
Xj − Xi

)
< 0

(2)

where Xi and Xj are the data points in i and j years. The variance is calculated with the following
equations when the data points (n ≥ 10) and the mean E(S) = 0 [32]:

Var(S) =
n × (n − 1)× (2n + 5)− ∑

p
q=1 tq ×

(
tq − 1

)× (2tq + 5
)

18
(3)

where p is tied groups in data points, and tq is the time series in the qth tied groups. The Z(mk) is given as:

Z(mk) =

⎧⎪⎨
⎪⎩

S−1
δ i f S > 0
0 i f S = 0

S+1
δ i f S < 0

(4)

When Z(mk) ≥ 10, it shows an upward trend and when Z(mk) < 10, it shows a downward trend.
In a time series data sequence, the test statistics are defined separately:

UFk =
dk − E(dk)√

var(dk)
(K = 1, 2, 3, . . . , n) (5)

If UFk > UFα/2, it shows that the trend is significant.

UBk = −UFk (6)

K = n + 1 − k (7)

Finally, UBk and UFk are drawn as UB and UF curves. The intersection is the beginning of mutation
between the two curves [33].
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2.3.2. Sen’s Slope Estimator Test

This test is used to estimate the magnitude of trends in time series data [9]. The slope (Qi) between
two time series data is given as:

Qi= =
Xp − Xt

p − t
, f or i = 1, 2, . . . , N (8)

where Xp and Xk are time series at period p and t (p > t), respectively. If there is single datum in

each time, then N = n(n−1)
2 ; n is number of time series. Whereas, if there are many data points, N is

computed as N < n(n−1)
2 ; n total number of observations. The N values of the slope estimator are

arranged from smallest to biggest.
A positive value of Qi indicates an upward trend and a negative value of Qi represents a

downward trend in the time series data. The median of these N values of Qi is represented as
Sen’s slope estimator. The median of slope (β) is given:

β =

{
Q × [(N + 1)/2] when N is odd

Q × [(N/2) + Q × (N + 2)/(2)/(2)] when N is even
. (9)

When β is positive, it indicates the trend is increasing. However, a negative value of β represents
a decreasing trend.

2.3.3. Trend Analysis by Innovative Method (ITAM)

Trend Analysis through Innovative Method (ITAM) is also used for trend detection and its
reliability was checked with the MK test [9,34]. The observational time series data were classified
into two classes and then the data points were arranged independently in ascending order. The mean
difference between Xi and Xj would give the magnitude of the trend of the data series. The first
observed time series data in this paper were not considered since the total time series data are odd.
The test is multiplied by 10 to make the scale similar to MK and Sen’s slope estimator tests [9]:

Φ =
1
n

n

∑
i=1

10
(
Xj − Xi

)
μ

(10)

where, Φ = slope estimator, n = number of time series in the subseries, Xi = observations in the first
half subseries, Xj = observations in the second half subseries and μ = mean of data series Xi subseries.

When Φ is positive, it indicates the trend is increasing. However, a negative value of Φ represents
a decreasing trend.

3. Results

3.1. Analysis of Mean Annual Precipitation

From 1980 to 2016, the mean annual precipitation of the study area was found to be 834.97 mm,
with a CV (coefficient of variation) of 15% and a standard deviation of 122.27 mm. Quantities of 509.93
and 1015.90 mm were the minimum and maximum precipitation per annum, respectively. An increase
in the precipitation levels was observed in 2000, 2005, 2007, 2010, and 2013 (R2 = 0.01), with a sharp
decreasing trend in 1992. The highest annual precipitation was recorded at the highland eco-region
stations (Gondar, Bahir Dar, Sekoru, and Dembi-Dolo), which accounts for approximately 20.3% of
lowland eco-regions (Gewane, Degahabur, Negele, and Maichew). The annual precipitation was
mainly contributed by the Kiremt months of June–August (47.58%), especially in July and August.
These two months contributed 56% of the total annual rainfall.

As far as the seasonal rainfall was concerned, the values varied from 133.82 to 2018.24 mm (Kiremt),
from 1176.13 to 1219.32 mm (Meher), from 59.73 to 80.80 mm (Bega), and 551.63 to 1144.75 mm (Belg).
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3.2. Trend Analysis of Precipitation

The MK curve annual precipitation (UF and UB = Changing Parameters) shows the trends of
precipitation in highland and lowland eco-environments of the study area. The result showed that the
trend in Gondar (Z = 1.69), Dembi-Dolo (Z = 0.28) and Bahir Dar (Z = 0.72) was increasing and the
trend in Sekoru (Z = 0.45) was decreasing. On the other hand, in lowland eco-regions, a significant
increasing trend was observed in the Gewane (Z = 0.80) and Negele (Z = 0.72) stations, respectively.
However, the trend in Degahabur (Z = 0.30) and Maichew (Z = 0.51) was a decreasing one, see Figure 3.

Figure 3. Mean annual precipitation trends of (a) Gondar, (b) Bahir Dar, (c) Sekoru, (d) Dembi-Dolo,
(e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

The trend results of precipitation by three trend detection tests are presented in Table 2 with a
level of significance α = 5%, α = 10%.
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Table 2. Statistical trend results of precipitation.

No. Stations Z Φ β

1 Gondar 1.69 ** 0.54 1.84 **
2 Bahir Dar −0.07 * −23.51 1.80 *
3 Sekoru 1.37 0.21 0.01
4 Dembi-Dolo −0.28 −0.07 −11.55
5 Gewane 5.59 ** 0.69 0.10 **
6 Degahabur 0.30 −0.56 4.13
7 Negele 0.72 ** −0.03 23.40 **
8 Maichew 0.51 * −0.05 18.49 *

Note: * α = 0.1; ** α = 0.05.

3.3. Analysis of Mean Annual Temperature

The mean annual temperature of the study area was found to be 29.16 ◦C during the study
period. The minimum and maximum recorded temperature were 27.92 and 30.35 ◦C, respectively.
An increasing temperature was recorded in 2010 and 2015 with (R2 = 0.67), and a decreasing trend
in the temperature was recorded in 1989. The highest temperature was recorded in the lowland
eco-regions (Gewane, Degahabur, Negele, and Maichew). Whereas, a slightly lower temperature was
observed in highland eco-regions (Gondar, Bahir Dar, Sekoru, and Dembi-Dolo).

3.4. Trend Analysis of Temperature

The statistical test result of this study showed that the trends of temperature in the Gondar
(Z = 5.68), Bahir Dar (Z = 7.59), Dembi-Dolo (Z = 3.88), Maichew (Z = 6.45), Gewane (Z = 5.59),
Degahabur (Z = 4.78), and Negele (Z = 8.01) stations are significantly increasing. However, a statistically
significant decreasing trend was observed in Sekoru (Z = 1.37) station, as shown in Figure 4. The trend
results of the temperature by three trend detection tests are presented in Table 3.

Table 3. Statistical trend results of temperature.

No. Stations Z Φ β

1 Gondar 5.68 ** 0.35 0.04 **
2 Bahir Dar 7.59 ** 0.62 0.08 **
3 Sekoru 1.37 ** 0.21 0.01 **
4 Dembi-Dolo 3.88 * 0.22 0.02 *
5 Gewane 5.59 ** 0.69 0.10 **
6 Degahabur 4.78 * 0.18 0.03 *
7 Negele 8.01 * 0.48 0.07 *
8 Maichew 6.388 ** 0.42 0.06 **

Note: * α = 0.1; ** α = 0.05.
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Figure 4. Average annual temperature trends of (a) Gondar, (b) Bahir Dar, (c) Sekoru, (d) Dembi-Dolo,
(e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

3.5. Temporal Patterns of Precipitation and Temperature in Individual Stations

The temporal pattern (1980–2016) of precipitation and temperature is illustrated in Figure 5.
It is observed that precipitation shows a sharply increasing trend in the Bahir-Dar station, though
other stations showed a non-uniform pattern. However, all stations showed an increasing trend in
the temperature.
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Figure 5. Temporal patterns of precipitation and temperature: (a) Gondar, (b) Bahir Dar, (c) Sekoru,
(d) Dembi-Dolo, (e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

4. Discussion

The trends in the precipitation and temperature were analyzed in two eco-regions of Ethiopia.
The findings of the study indicated that there is a general tendency towards increasing temperature
and a non-uniform pattern of precipitation trends across the stations. Increasing precipitation has
been reported in the Gondar, Bahir Dar, Dembi-Dolo, Gewane, and Negele stations. However, slightly
decreasing trends were detected in the Sekoru, Maichew, and Degahabur stations. As far as trends of
temperature are concerned, almost all stations exhibit a general tendency of increasing temperature.
The observed trends have an implication, particularly, on agriculture production of the two eco-regions
which are unable to mitigate the impacts of climate change. The observed warming trend may lead
to a high energy demand for cooling, high evapotranspiration rate, and weaken the economy at
large [35]. Increasing temperature also increases transpiration which increases the chance of rainfall
and may interfere with groundwater recharge triggered by reduction in Kiremt season. In the same
way, an increasing occurrence of extreme rainfall events impacts the production systems.

The change in trends of precipitation and temperature observed in each station could imply that
the variations are more pronounced for certain stations and less for others. It was confirmed that
precipitation is mainly caused by a cold summer, and thus correlates to a large extent with temperature
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in the study area. Therefore, the cause of these variations needs to be studied further to link them with
climate variability and change.

Our findings are consistent with previous studies concerning the variations of precipitation and
temperature trends [3,7,23,36–41]. However, the causes of such changes of climatic trends across the
stations during the study period (1980–2016) will require another detailed investigation.

5. Conclusions

This study analyzed recent changes in precipitation and temperature trends in Ethiopia for the
study period from 1980 to 2016. The temporal variability of precipitation and temperature were
analyzed. A Mann-Kendall test, Sen’s slope estimator test, and Innovative Trend Analysis Methods
were used to analyze the trends. Our results showed that five out of eight stations showed increasing
trends of precipitation. On the other hand, the Sekoru, Degahabur, and Maichew stations showed
decreasing trends of precipitation.

The study eco-regions are characterized by maximum precipitation in Kiremt (June to August)
season. The trend is positive in Kiremt season and negative in Bega season which may lead to shifting
of the annual cycles of the hydrologic regime. Furthermore, this paper would suggest other studies
are conducted to confirm the changing climatic trends over two eco-regions by increasing the sample
meteorological stations and, additionally, to investigate the rainfall intensity and frequency of wet
and hot days. This finding thus provides insights for policy and decision makers to take proactive
measures for climate change mitigation.
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Abstract: Frequent flooding events in recent years have been linked with the changing climate.
Comprehending flooding events and their risks is the first step in flood defense and can help to
mitigate flood risk. Floodplain mapping is the first step towards flood risk analysis and management.
Additionally, understanding the changing pattern of flooding events would help us to develop flood
mitigation strategies for the future. This study analyzes the change in streamflow under different
future carbon emission scenarios and evaluates the spatial extent of floodplain for future streamflow.
The study will help facility managers, design engineers, and stakeholders to mitigate future flood risks.
Variable Infiltration Capacity (VIC) forcing-generated Coupled Model Intercomparison Project phase
5 (CMIP5) streamflow data were utilized for the future streamflow analysis. The study was done on
the Carson River near Carson City, an agricultural area in the desert of Nevada. Kolmogorov–Smirnov
and Pearson Chi-square tests were utilized to obtain the best statistical distribution that represents the
routed streamflow of the Carson River near Carson City. Altogether, 97 projections from 31 models
with four emission scenarios were used to predict the future flood flow over 100 years using a best
fit distribution. A delta change factor was used to predict future flows, and the flow routing was
done with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model to obtain
a flood inundation map. A majority of the climate projections indicated an increase in the flood
level 100 years into the future. The developed floodplain map for the future streamflow indicated a
larger inundation area compared with the current Federal Emergency Management Agency’s flood
inundation map, highlighting the importance of climate data in floodplain management studies.

Keywords: flood; streamflow; CMIP5; climate change; HEC-RAS

1. Introduction

A rise in the mean surface temperature around the globe has been observed in recent climatic
records with some warming hole exceptions. The global mean surface temperature in the past three
decades has been higher than that of previous decades [1]. This global warming has induced a rise
in the evaporation of surface water and evapotranspiration over the land surface, which in turn has
increased the average global amount of precipitation. Additionally, the wind and ocean current pattern
affects local precipitation trends, which eventually causes fluctuations in the streamflow. Different
regions around the globe have already shown signs of adverse effects on water availability due to
climate change. The peak streamflow is expected to increase in some parts of the globe [2–7]. At the
same time, low flow is also expected to decrease with a greater number of drought days across the
globe [8–10]. The occurrence of both high and low flows as a result of climate change is generally
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placed on the same footing. However, there might be differences in the statistical significance at which
low and high flows show variability resulting from climate change [11]. Overall, extreme weather
phenomena occur more frequently these days, and this is anticipated to continue in the future.

Flooding is one of the major natural hazards in the U.S., along with tropical cyclones and
drought/heatwaves [12]. A reduction in carbon emissions could result in a huge monetary benefit
in the long term, as the difference in future flow by the end of the 21st century from a higher
emissions pathway to a lower emissions pathway will be billions of dollars per year [13]. Despite these
benefits, climate change and its impact on the community have intensified in recent years [14,15].
Flood prevention practice along with a proper understanding of a flooding event can mitigate the risks
of this hazard, and floodplain mapping is one of the widely used techniques to quantify the severity of
flooding [16].

The Coupled Model Intercomparison Project (CMIP), which is a framework for analyzing and
quantifying the results of the Atmosphere–Ocean Coupled General Circulation Model (AOGCM),
was first started in 1995. World Climate Research Programme (WCRP) projections through CMIP5
represent future climate projections from new-generation global climate models and advancements
in recent climate science [17]. These CMIP5 projections are based on updated global greenhouse gas
emission scenarios represented as representative concentration pathways (RCPs). The CMIP5 model,
which is large in scale and comprises major climate models from different groups, incorporates a
simulation of the 20th century’s climate for projecting the climatic scenario of the 21st century [18].
Recently, earth system models have combined conventional Earth system models (ESM) and the
AOGCM under an experimental design, where ESM and AOGCM observations were compared.
Recent decades were initialized based on the observations and its use for future climate prediction
provides the CMIP5 models with enhanced capability [18].

The CMIP5 hydrology projection was released in 2015, and was based on a total of 234
CMIP5 climate projections. These projections were downscaled to the contiguous U.S. utilizing
the Bias-Corrected Statistically Downscaled (BCSD) technique [19]. The results of the BCSD projection
from phase 3 and phase 5 are known as BCSD3 and BCSD5, respectively. The model results from the
BCSD5 hydrology projections were based on a common gridded daily historical meteorology forced
simulation [20]. The Constructed Analog (CA) method was applied to spatially downscale a General
Circulation Model (GCM) day by matching the same grid-coarsened set of observed days [21]. Projected
precipitation changes at spatial and temporal scales show the climate’s impact on peak streamflow.
The projections from the GCMs need to be translated into similar locally relevant precipitation data
before any further use at local scales. This includes, but is not limited to, the selection of an appropriate
GCM for a given study area [22], removing biases, and downscaling the GCM to a local resolution [23].
Gangopadhyay et al. [24] translated a downscaled projection into hydrologic projections over a portion
of the western U.S., making the projections consistent and making more easy an analysis of climate
change’s hydrologic impact. Due to the practical limitation on the scope of the hydrologic modeling,
only 97 BCSD5 climate projections from 31 CMIP5 climate models with four emission scenarios
were available.

Over a long period of time, runoff is equivalent to the tradeoff between precipitation and
evapotranspiration. Hence, it is equal to the horizontal water flux that converges at a particular
location [25]. For the simulation of hydrology in the future, the Variable Infiltration Capacity (VIC) [26]
hydrologic model was utilized. The VIC model is a semi-distributed model in which key aspects
of large-scale land surface models are coupled with GCMs [27]. A VIC forcing modeling code and
generation process were evaluated before obtaining the VIC forcing results through the modeling code.
During the production of the VIC results, we ensured that the forcing generation and VIC simulation
process were error-free. For more details on the VIC model, readers are referred to Liang et al. [28]
and Nijssen et al. [29]. The correct size and number of output files were produced. After obtaining the
output files, BCSD climate monthly data were compared with monthly derived data by aggregating
the daily forcing data to check whether any error occurred during the VIC forcing generation process.
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There was exact matching in most of the cases [30]. BCSD5 features a larger range compared to BCSD3,
as CMIP5 uses a variety of scenarios that mimic the larger range of future greenhouse emissions as
compared to CMIP3 [31]. The main difference between BCSD3 and BCSD5 climate projections is in
the driving emission scenarios and climate model change, making the projections of temperature
and precipitation somewhat different. However, other differences were from model updates on VIC
to generate projections with BCSD5 that provide a complete representation of the range of possible
future climate and hydrology scenarios. CMIP5 meteorological parameters along with soil parameters,
land cover, and vegetation root depth are the main input parameters for the VIC model. Thus,
CMIP5 model output from AOGCM was used in a prebuild VIC model to obtain the streamflow data.
VIC-generated streamflow is utilized in the current study to predict future streamflow at different
recurrence intervals.

The occurrence of extreme events can be estimated from historical flow records by fitting different
probability distribution functions [32–36]. Using only the historic flow may not truly reflect the
probable future scenario due to climate change. Since, in the stationary approach, the conventional
way to predict extreme events in the future is to use historical data only, it is not the best way to
deal with the nonstationary climate. To overcome the shortcomings in the design based on the
nonstationarity of the climate, climate models and projections are useful. Various climate models
based on the Intergovernmental Panel on Climate Change (IPCC)’s fifth assessment report and Special
Report on Emission Scenarios (SRES) representing future climate scenarios are available for research
and use. Besides the available data, the selection of the distribution method significantly impacts
the design value. In most cases, governmental agencies select Generalized Extreme Value (GEV)
distribution along with Gumbel and log-Pearson type III distribution. The GEV is mostly used to fit
the streamflow distribution and has been shown to be efficient [37]. Further, the streamflow of dry,
arid, and semi-arid regions follows the GEV distribution [33,34,38,39]. However, the GEV does not
always best fit the annual peak flood. Similarly, studies have utilized other distributions to define
a streamflow’s behavior [35,36]. Thus, it is worth examining the given sets of yearly flood data and
choosing those distributions that produce reliable estimates. Twenty-seven prospective statistical
distributions for a semi-arid region are tested in the current study to evaluate which distribution best
fits the streamflow. An empirical goodness of fit is one of the criteria for the selection of appropriate
distributions. At the same time, the theoretical assumptions associated with all statistical distributions
should be taken into account [40]. The selection of the distribution that best fits the peak annual
streamflow of Carson River is one of the objectives of this study.

Climate change, which alters the magnitude and frequency of precipitation, ultimately changes
the design flood. The comprehension of the changing pattern of the design flood is necessary for
flood risk management in the current scenario of a changing climate. This paper uses the VIC-forced
CMIP5 streamflow to find the underlying best-fit probability distribution of an area among 27 different
statistical distributions. The best-fit distribution was then employed to predict the future streamflow.
Finally, a comparison among the existing design parameters was made and the change in hydraulic
parameters, such as velocity, top width, and flow area of the river, was estimated. This study will
add to the current literature by answering the following research questions regarding variability in
streamflow. (1) Is it valid to assume stationarity in streamflow data and to design future structures
based on this assumption? (2) What type of statistical distribution does the streamflow follow? (3) By
what factor should the occurrence of future flooding events be anticipated to be lesser/greater than
that of current flooding events? This paper further presents floodplain mapping for the future design
flood that was identified assuming nonstationarity in the climate. The study also evaluates whether,
under the changing and nonstationary nature of the climate, the extent of future flooding will be
greater than that of the past at the study area. The floodplain map will help us to understand the extent
of inundation for the evaluated future flooding events corresponding to different return periods.
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1.1. Study Area

The southwestern United States not only experiences extreme heat but is also vulnerable to
extreme flooding due to climate change [41]. Carson City, NV has had, since 1852, a historical record of
flood, and is currently experiencing some flooding due to extreme storm events. Carson Valley, which
lies 4700–5000 feet above the mean sea level, is the rain shadow of the Sierra Nevada. The highest point
of the catchment lies on the Sierra Nevada, and is 11,462 feet above the mean sea level. The climate of
the area ranges from semi-arid over the valley plain to humid or super humid over the peaks of the
catchment. The catchment receives precipitation mostly as rain at the lower altitude and as snow at the
higher altitude. Runoff reaches its yearly peak mainly in May. In this study, the downstream end of
Carson River at Carson City is examined for future floods. The selected reach was flooded in 2007, and
is susceptible to similar events in the future. The spatial location of the Carson River reach at Carson
City selected for the current study is shown in Figure 1. Figure 1 also shows the digital elevation map
(DEM) that represents the altitude along the river reach that was considered for hydraulic modeling.

Figure 1. Carson River flowing through Carson City in Nevada.

1.2. Data

The latest daily average runoff from 31 AOGCMs participating in the CMIP5 was used to analyze
the change in the extreme runoff for Carson River. These CMIP5-AOGCMs have produced the
Bias-Corrected Spatially Downscaled (BCSD) streamflow for different streams in the United States
from 1950 to 2099. The data produced by these AOGCMs were routed over a historic period of 1950
to 1999. Thus, in this study, the same period of 1950–1999 is considered to be the historic period.
The farthest 50-year period i.e., 2050–2099, is considered to be the future period. The VIC-enforced
streamflow for 195 different locations is available, among which 152 locations are co-located with the
United States Geological Survey (USGS)’s Hydroclimatic Data Network (HCDN), and 43 locations
are co-located with West Wide Climate Risk Assessment spatially downscaled locations. Streamflow
data for East Fork Carson River near Gardnerville from total 97 projections that were derived through
31 models and four RCPs were used to estimate the change in streamflow due to climate change.
The location of the streamflow is at Latitude 38.844◦ N and Longitude 119.702◦ W, which is co-located
with the ’East Fork Carson River near Gardnerville’ HCDN station (station ID 0071). The projections
were used for the future streamflow analysis, while the HCDN station was used for the historic record.
The details of the climate model and the relevant institutions are summarized in Table 1.
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Table 1. The Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere–Ocean Coupled
General Circulation Models (AOGCMs) adopted in the study (a total of 31 models with 97 projections).

Modeling Center Institution Model

Used Concentration
Path (RCP)

2.6 4.5 6.0 8.5

CSIRO-BOM
CSIRO (Commonwealth Scientific and Industrial Research
Organisation, Australia) and BOM (Bureau of Meteorology,

Australia)
ACCESS1.0

√ √

BCC Beijing Climate Center, China Meteorological Administration BCC-CSM1.1
√ √ √ √

BCC-CSM1.1(m)
√ √

CCCma Canadian Centre for Climate Modelling and Analysis CanESM2
√ √ √

NCAR National Center for Atmospheric Research CCSM4
√ √ √ √

NSF-DOE-NCAR
National Science Foundation, Department of Energy, and

National Center for Atmospheric Research
CESM1(BGC)

√ √
CESM1(CAM5)

√ √ √ √
CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CM

√ √

CNRM-CERFACS
Centre National de Recherches Meteorologiques/Centre
Europeen de Recherche et Formation Avancees en Calcul

Scientifique
CNRM-CM5

√ √

CSIRO-QCCCE
Commonwealth Scientific and Industrial Research

Organisation in collaboration with the Queensland Climate
Change Centre of Excellence

CSIRO-Mk3.6.0
√ √ √ √

LASG-CESS LASG, Institute of Atmospheric Physics, Chinese Academy
of Sciences; and CESS, Tsinghua University FGOALS-g2

√ √ √

FIO The First Institute of Oceanography, State Oceanic
Administration, Beijing, China FIO-ESM

√ √ √ √

NOAA GFDL Geophysical Fluid Dynamics Laboratory
GFDL-CM3

√ √ √ √
GFDL-ESM2G

√ √ √ √
GFDL-ESM2M

√ √ √ √

NASA GISS NASA Goddard Institute for Space Studies
GISS-E2-H-CC

√
GISS-E2-R

√ √ √ √
GISS-E2-R-CC

√

MOHC (additional
realizations by INPE)

Met Office Hadley Centre (additional HadGEM2-ES
realizations contributed by Instituto Nacional de Pesquisas

Espaciais)

HadGEM2-A
√ √ √ √

HadGEM2-CC
√ √

HadGEM2-ES
√ √ √ √

INM Institute for Numerical Mathematics INM-CM4
√ √

IPSL Institute Pierre-Simon Laplace IPSL-CM5A-MR
√ √ √ √

IPSL-CM5B-LR
√ √

MIROC
Atmosphere and Ocean Research Institute (The University of

Tokyo), National Institute for Environmental Studies, and
Japan Agency for Marine-Earth Science and Technology

MIROC5
√ √ √ √

MIROC
Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute (The University of
Tokyo), and National Institute for Environmental Studies

MIROC-ESM
√ √ √ √

MIROC-ESM-CHEM
√ √ √ √

MPI-M Max Planck Institute for Meteorology (MPI-M)
MPI-ESM-LR

√ √ √
MPI-ESM-MR

√ √ √
MRI Meteorological Research Institute MRI-CGCM3

√ √ √
NCC Norwegian Climate Centre NorESM1-M

√ √ √ √

The DEM required for the river terrain was obtained from the USGS National Map viewer. Models
using fine-resolution DEM products are more stable and accurate as compared to models that use
DEM products of a coarser resolution. Additionally, it is recommended to adopt Light Detecting
and Ranging using Remote-Sensing-based products to model a riverine system of higher depths.
Due to the limitations of data availability in the study area, the current study utilizes a 1/3 arc-second
DEM product for producing the river profile and cross-sections. The river cross-section locations
were considered at and in between the Federal Emergency Management Agency (FEMA)’s adopted
cross-sections for a comparison purpose. The levee and other existing structures were not adopted
in the prepared model as the details of the structures are not readily available. Manning’s roughness
values were adopted from the Flood Insurance Study (FIS) for the area [42]. Figure 2 represents
the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) geometric model with the
river sections. Eighteen of these cross-sections match with the cross-sections in the FEMA-developed
flood map.
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Figure 2. Carson River with the intermediate cross sections and the Federal Emergency Management
Agency (FEMA) cross-sections. Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC,
® OpenStreetMap contributors, and the GIS User Community.

2. Method

The method section is subdivided into three subsections: (i) Frequency analysis and best fit,
(ii) Future flow prediction, and (iii) flow routing.

(i) Frequency analysis and best fit: The streamflow projections, along with the nearby real gauge
station, were analyzed with a frequency distribution to find the best-fit frequency distribution for
the study area. From the 97 streamflow projections for the historic and future periods, a total of
194 projection datasets, each containing 50 years of yearly peak flow, were prepared. These datasets,
along with one Carson River gauge dataset, for a total of 195 datasets, were fitted with 27 different
distribution methods to obtain the best-fit distribution. The 27 different distributions that were applied
to the datasets are listed in Table 2. The data were tested for goodness of fit with Kolmogorov–Smirnov
and Pearson Chi-square tests. The tests were implemented over the 195 datasets for the historic
and future periods of the model and the historic gauge data. Each best-fit test returns a significance
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level as an attained value, which is represented as αattained [43]. The significant level for the Pearson
Chi-square test and the Kolmogorov–Smirnov test is given, respectively, by

αattained = 1 − χ2 (m = k − r − 1, q) (1)

αattained = 1 − χ2 (m, q) (2)

where, m is the degree of freedom, k is the class interval, r is the number of parameters of the
distribution, and q is the computed Pearson parameter, which is given by

q =
k
n

k

∑
j=1

n2
j − n (3)

where n is the size of the sample.
These analyses were performed utilizing the statistical Hydrognomon software developed by the

National Technical University of Athens [43]. Hydrognomon is a robust tool for performing different
time-series analyses: regularization of data, interpolation, regression, fitting a distribution function
to a time series, statistical predictions, and homogeneity testing. This tool can handle time-series
data at different time scales: daily, monthly, and annual. The current study only uses the capabilities
of the Hydrognomon tool to fit a distribution function to a hydrologic time series. Hydrognomon
includes 27 different functions that were utilized in the current study to fit the historical records
with the help of the Pearson Chi-square and Kolmogorov–Smirnov tests. Hydrognomon utilizes
the Monte-Carlo algorithm to determine the confidence interval of any fitted distribution function.
The best-fit distribution based on the Hydrognomon tool was selected to generate the future streamflow.
All 27 distribution functions included in the Hydrognomon tool are summarized in Table 2.

Table 2. The 27 different distributions used in the best-fit analysis.

Distribution Methods

Normal, Normal(L-Moments), Log Normal, Galton, Exponential, Exponential (L-Moments), Gamma, Pearson
III, Log Pearson III, EV1-Max (Gumbel), EV2-Max, EV1-Min (Gumbel), EV3-Min (Weibull), GEV-Max,
GEV-Min, Pareto, GEV-Max (L-Moments), GEV-Min (L-Moments), EV2-Max (L-Moments), EV1-Min (Gumbel,
L-Moments), EV3-Min (Weibull, L-Moments), Pareto (L-Moments), GEV-Max (Kappa Specified), GEV-Min
(Kappa Specified), GEV-Max (Kappa Specified, L-Moments), GEV-Min (Kappa Specified, L-Moments)

(ii) Future flow prediction: Based on the best-fitted distribution method, 100-year flood (the
design flood) was calculated for the historic and projected streamflow datasets. The Delta Change
Factor (DCF) was used to calculate the future flow at the stream station. The future flow that was
estimated using the FEMA and delta change methods depicts a flood under a stationary condition
and a flood under climate change conditions in the future, respectively. Among the range of delta
change factor future flows, the peak one was selected to represent the maximum increase in the future
design flood’s condition. In this study, it was assumed that the ratio of the downstream peak flow to
the upstream peak flow remains same in the future.

Delta change factor =
Future model daily peak

Historic model daily peak
(3)

(iii) Flow routing: A HEC-RAS model was prepared from the available DEM model. Eighteen
cross-sections from the Flood Insurance Rate Map (FIRM) and 58 intermediate cross-sections were
prepared for the HEC-RAS model using ArcGIS (Version 10.4, Environmental Systems Research
Institute (Esri), Redlands, CA, USA). A total of 76 cross-sections were assigned using the FIS-suggested
Manning’s roughness coefficient. The existing 100-year return period’s flow (the design flow) was
routed to the prepared model and compared with the existing FIRM map. Finally, the prepared model
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was routed to the future peak flood, and the hydraulic parameters were compared with the existing
design condition of the FEMA map. The aforementioned steps involved in flow routing and flood
plain delineation is summarized as the flowchart in Figure 3.

Figure 3. The best fit analysis, future design flow prediction, and future design flow routing using
HEC-RAS. VIC, Variable Infiltration Capacity; DCF, Delta Change Factor; DEM, digital elevation mode;
HEC-RAS, Hydrologic Engineering Center’s River Analysis System; NLCD, National Land Cover Data.

3. Results

The daily streamflow series that was derived from the climate model projections shows a clear
trend of an increasing future peak streamflow in Carson River and, at the same time, a decreasing
yearly peak minimum, as shown in Figure 4. This signifies the occurrence of both more intense
high flows and low flows as shown by the spread time series in Figure 4, which increases along the
positive abscissa. The maximum and minimum yearly flow plotted in Figure 4 were obtained from
97 streamflow projections of 31 models and four RCPs. In this study, only the probable maximum
flow was analyzed, as the study area is subject to a greater flood risk as a result of the high flows as
compared to the low flows.
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Figure 4. The spread of the band of yearly peak flow from the 97 climate projections, indicating the
variability in the future streamflow.

Yearly maximum streamflow data from the 97 climate projections from 1950 to 2099 were selected
and analyzed using Pearson Chi-square and Kolmogorov–Smirnov tests. The best fit from both models
is presented in Figure 5. The bars in Figure 5 represent the number of projections that was best-fitted
with a specific distribution method from the two different tests. From Figure 5, GEV-Max (L-Moments)
was selected as the best-fit distribution from the Pearson Chi-square and Kolmogorov–Smirnov tests,
with a count of 24 and 53, respectively, out of 97 total projections. Thus, GEV-Max (L-moments) was
found to be the best distribution method and selected to analyze future floods in the study area.

Figure 5. The best fit analysis for the 27 different distributions using Pearson Chi-square and
Kolmogorov–Smirnov tests.
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The best-fit distribution method, GEV-Max (L-Moments), was used to calculate the peak flow
over 100 years (the design flow) for the historic and future period. The selected distribution method
was used to calculate the Delta Change Factor. The delta change factor is the ratio of the future to the
historic design flow. It was calculated from each climate model, and the values of the delta change
factor are summarized in Figure 6a. The inclined lines DCF1, DCF2, and DCF4 represent the delta
change factors 1, 2, and 4, respectively, which represent that the future design flood would be the
same, two times, and four times the historic period, respectively. In the figure, each emission scenario
projection is represented with a different color so that they can be easily distinguished. Figure 6b
represents the boxplot of the DCFs corresponding to each RCP. The red-colored horizontal lines in the
boxplots represent the median and horizontal edges of the boxes, which represent the 25th and 75th
percentiles, respectively, of the DCFs corresponding to each RCP. Similarly, the whiskers in the boxplots
represent the 5th and 95th percentiles, and the red data point corresponding to RCP2.6 boxplot is the
outlier. From Figure 6a, RCP2.6 has the lowest delta change factor, and RCP8.5 has the highest delta
change factor. Figure 6b represents that, with an increase in greenhouse gases, the future extremes of
streamflow are expected to increase. Although the two lower RCPs have only a few models with a
delta change factor of less than one, the higher RCPs have a DCF that is greater than one. For the flood
mapping, the maximum delta change factor of 5.086, which was obtained from the CNRM-CM5 model
with RCP8.5, is considered.

Figure 6. A comparison of the delta change factors from the 97 climate projections. (a) Historic versus
future design flow (the peak flow over 100 years), (b) box plots comparing the delta change factor for
different RCPs.

Table 3 shows a hydrological summary of USGS gauge site 1031000 in Carson City, for which
a flood analysis has been carried out that developed estimates of flood chance for different return
periods. For this study’s purpose, only the 1% chance and the 0.2% chance of an annual occurrence, i.e.,
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the 100-year and 500-year return periods, were used. FEMA has developed estimates of the 100-year
and 500-year return period flows for the selected study area. A FIRM map with the panel numbers
3200010227E, 3200010112E, and 3200010114F covers the study area.

Table 3. A hydrological summary of flow at USGS gauge site 1031000 (flow in m3/s) as per the FEMA
Flood Insurance Study (FIS).

Flooding
Source

Location
Drainage Area
(Square Miles)

10% Annual
Chance

2% Annual
Chance

1% Annual
Chance

0.2%
Annual
Chance

Carson River
5 km Upstream of

Lloyds Bridge
(USGS 1031000)

2269 238 674 1020 2560

The calibration of the HEC-RAS two-dimensional (2D) model was performed with 100 years
of historic streamflow data that was obtained from the gauge site. The calibration was done by
comparing the HEC-RAS-generated floodplain map for the past 100 years with FEMA’s 100-year flood
boundary estimation. A perfect model would result in the same HEC-RAS-generated floodplain map
as compared to the FEMA 100-year flood boundary estimation. This result is shown in Figure 7a.
Some discrepancy may be attributed to the errors associated with the Manning’s roughness coefficient
of the reach, which is a function of how a river meanders and channel bed roughness. The robustness
of the HEC-RAS model was established with its conformity to the simulated water surface elevation
and the observed gauge height at USGS gage station 10311400, which is located downstream of the
selected river reach. The Nash–Sutcliffe efficiency coefficient (NSE), the correlation coefficient (R2), and
the percent bias (P-Bias) were computed with the simulated water surface elevation resulting from the
observed streamflow that was recorded at USGS gauge station 10311400 corresponding to the observed
gauge height. Based on the observed and simulated data, the NSE, R2, and P-Bias were evaluated as
0.79, 0.98, and −0.008, respectively. These statistical parameters demonstrate the robustness of the
calibrated HEC-RAS model, and the water surface elevation predicted by the model can be utilized to
generate a future floodplain map with the estimated future streamflow.

The delta change factor that was calculated for the study was used to calculate the future design
flood (the flood flow over 100 years). The future design flood flow comes to be 5185 m3/s, which
is more than the current 500-year flood flow. Thus, the climate-generated future design flood flow
may be greater than the recent 500-year flood flow. The developed HEC-RAS model routed for the
three different flood flows, that is, the existing 100-year, the existing 500-year, and the future 100-year
flows, a discharge of 1020 m3/s, 2560 m3/s, and 5185 m3/s, respectively. The flood area developed
using HEC-RAS and ArcGIS is presented in Figure 7b. The floodplain for the present design flood
flow, the present 500-year flood flow, and the future design flood flow was plotted. The area covered
by these three conditions is 3,915,290 m2, 4,762,168 m2, and 5,947,893 m2, respectively, while the
FEMA 100-year flood flow covers 4,882,183 m2. The floodplain for each of these three conditions was
compared, and it was observed that the extreme future 100-year floodplain could cover more than
1.5 times the area covered by the present 100-year floodplain.
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Figure 7. (a) A comparison of the Flood Insurance Rate Map (FIRM)’s 100-year flood area versus
the baseline scenario (the 100-year flood area obtained from the HEC-RAS model). (b) The three
layers of flood area for the 100-year historic, 500-year historic, and 100-year future floodplains (from a
smaller to a larger area, respectively). Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC,
® OpenStreetMap contributors, and the GIS User Community.

Further, the channel velocity, flow area, and top width were compared between the historic
100-year, the historic 500-year, and the future 100-year floods. The FIRM map has 18 cross-sections
within the reach length. Hydraulic parameters, such as channel velocity, flow area, and top width, were
compared within this reach length and the FIRM map cross sections, and are presented in Figure 8.
The calibration of the HEC-RAS model can also be verified from Figure 7a, which shows a similar
floodplain for 100-year event as compared to the 100-year event from the FIRM map. The generated
floodplain maps shows that there will be more flooding on the left bank of the river than the right due
to its topography. In addition, the city nearby the river might be affected due to this change in future
flow. The low-lying agricultural land on the Carson floodplain will be vulnerable to flooding events in
the future, as our results suggest that these events will be more intense than in the past.
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Figure 8. A comparison of the (a) channel velocity, (b) flow area, and (c) top width for different
flood scenarios.

Channel velocity, flow area, and top width are the key hydraulic parameters of floods, and were
compared under different flow conditions. The future 100-year flood has the highest channel velocity
(around 8 m/s). The channel flow area will more than double at most of the cross-sections, and there
will be a significant increase in the top width along sections N, O, and P.

4. Discussion

Floodplain management should reduce flood damage in the future with efficient mitigation
measures at minimal expense. A flood protection decision can endure for more than a century; thus,
it is worth considering long-term changes in environmental conditions. A decision on floodplain
management would likely affect the long-term performance of infrastructure [44]. As human beings
have evolved, societies have started to inhabit places close to freshwater to ensure water for drinking
and agricultural and livestock use. Major civilizations of the past settled very close to rivers with an
adequate supply of fresh water. More than half of the total global population resides within 3 km
from freshwater bodies, mostly near a river [45]. This population is more vulnerable to changes in
streamflow in the future. In this study, such a case is analyzed using CMIP5 hydrologic projections.
The CMIP5 data helped to predict the nature of future streamflow without assuming stationarity in the
hydro-climatic data. Further, CMIP5 models consider different carbon emission scenarios, allowing us
to comprehend a wide range of future streamflow conditions.

As different probability distributions result in different flood frequencies, selecting an appropriate
flood distribution method is crucial in flood frequency analysis. To select the best-fit distribution,
two different tests—the Pearson Chi-Square and the Kolmogorov–Smirnov—were implemented.
The selected distribution was used to predict the design flood for present and future datasets of
climate projections. Further, the performance of different distribution methods varies spatially. Thus,
one distribution that performs well for a given dataset of an area may not represent another distribution.
Thus, it is always recommended to analyze the results that are obtained with different distributions,
and the best distribution should be selected with a different approach. It is good to test a variety
of statistical distributions; however, at the same time, it is impractical to test all of the possible
distributions. In the current study, the selected distributions were based on a previous study that was
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pertinent to the climatic conditions of the selected study region. Testing other distributions over a
wide variety of watersheds is recommended for future studies. Both the Pearson Chi-Square test and
the Kolmogorov–Smirnov test showed that GEV-max (L-moment) was the best distribution. Previous
studies suggest that GEV is to likely to fit the streamflow across semi-arid regions, which was also
established in the current findings [32–34,38,39].

From the 97 total models/selections, the Pearson Chi-square test and the Kolmogorov–Smirnov
test selected GEV-max (L-moment) 24 and 53 times, respectively. GEV-max (L-moment) was then used
to calculate the design flow for the present and future periods. Among the 97 models, 86 models had a
DCF greater than one, suggesting that the design flow for the future period should be more than that
for the present period. This suggests that there is a higher possibility that the design flow on the river
would be higher in the future. Among the 97 models, 39 (more than 40% of the models) indicated that
the design flow in the future will be more than 2 times the present design flow. The DCF results also
show that the higher the emission or RCP, the higher the delta change factor will be, which represents
an increase in the design flow in the future. The delta change method was adopted to predict the
flow of future floods, which was routed on a HEC-RAS one-dimensional (1D) model to compare the
floodplain and hydraulic parameters.

The maximum increase in future design flow resulted from the CNRM-CM5 model with the
RCP8.5 scenario and the maximum DCF. The CNRM-CM5 model with RCP8.5 scenario was also
considered for the flood mapping of the Carson River near Carson City, Nevada as it would represent
the most extreme flooding scenario. The model indicates that a 5.086-fold increase in the design flow
of the river will occur. This suggests that the future 100-year flood flow will be more than that of the
current 500-year flow, while the future 100-year flood flow will be more than 1.5 times the current
100-year flood flow. The floodplain map showed an increase in the extent of the flooding in the future
as compared to that of current flooding events. Most of the GCMs suggested an increase in the future
design flow when compared to present conditions, which can be attributed to the nonstationary nature
of the climate. Further, the floodplain variability in the future may also be affected by other factors,
such as a change in land use [46]. An increase in the streamflow in a semi-arid region as a result of
climate change has also been documented by previous studies. For example, an increase in streamflow
has been projected for the city of Las Vegas [47], and a positive streamflow trend has been documented
in the Colorado River basin [48].

The population of Carson City is settled on the left bank of the Carson River. The topography of
the river shows that the river has more floodplain on left side than on the right side. The floodplain
contains fertile agricultural land that is crucial, as Carson City lies in the desert of Nevada. Due to
the predicted increase in the design flood flow in the future, more area than expected might be
flooded. Future flooding will not only affect the agricultural supply but also people residing near the
river. Thus, a proper analysis of future streamflow will help to minimize the flood risk. The current
study’s evaluation of the best-fit distribution, and use of a climate distribution, to evaluate the future
streamflow frequency suggested that the streamflow data has a nonstationary nature as a result of
climate variability and change. Thus, future design streamflow may not be same as the current design
streamflow. This should be considered by planners and engineers when planning and building new
hydraulic structures to minimize the flood risks associated with the changing climate.

5. Conclusions

The risk of hydrologic extremes as a result of the changing climate is one of the main global
challenges of the 21st century. This risk has been increasing in recent years, as limited effort has
been made to curb the emission of greenhouse gases. Most governmental agencies apply stationary
approaches to flood management. Due to this, the effect of climate change cannot be incorporated into
flood flow predictions. Thus, this study suggests the possible approach of applying a nonstationary
approach to future streamflow prediction in those regions vulnerable to flooding events. As most
flood management structures are constructed for a lifespan of several decades to more than a
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century, forecasting streamflow while considering the effects of climate change can contribute to
the optimization of hydraulic structures. Hence, this study’s contribution is to present guidelines to
planners, designers, engineers, and policy-makers for incorporating climate change into flood risk
management. The current study was focused on the Carson River at Carson City at a regional scale; so,
the results may not be similar to those obtained from other watersheds, whilst the proposed algorithm
can be utilized elsewhere.

The key findings of the current study are as follows:

1. The best-fit distribution was evaluated utilizing both Pearson Chi-square and Kolmogorov
Smirnov tests for the considered study area.

2. A majority of the climate models indicated an increase in the future streamflow in the study
region, while 40 percent of the models suggested that the future 100-year streamflow would be
more than 2 times the present 100-year streamflow in the selected study area.

3. A higher increase in the future 100-year streamflow was observed for a higher RCP, suggesting
that the streamflow in the study region will increase as carbon emissions increase.

4. A majority of climate models depicted DCFs higher than 1, suggesting that the streamflow in the
Carson River exhibits nonstationary behavior and that the future streamflow is likely to exceed
that of the past.

5. The CNRM-CM5 model with the RCP8.5 scenario showed the maximum increase in future runoff
for the Carson River.

6. The future flow, depth of flow, and inundation comparison gave an explicit image of the extent of
future flooding due to climate change for the Carson River at Carson City.

7. The extent of flooding of the future 100-year streamflow for the Carson River at Carson City was
evaluated to be higher than that of the past 500-year streamflow, highlighting the likelihood of an
increase in the extent of future flooding.

To summarize, hydraulic structures are conventionally designed for different return periods
assuming the stationarity in the streamflow. The current research highlights the utilization of climate
information for evaluating the future streamflow in different recurrence intervals. This future
streamflow is then used to evaluate future floodplain maps and design the streamflow. We also
recommend testing the application of other statistical distributions to a variety of watersheds with a
higher resolution dataset in the future to extend the current study.
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Abstract: The serious soil erosion problems and decreased runoff of the Loess Plateau may aggravate
the shortage of its local water resources. Understanding the spatiotemporal influences on runoff
changes is important for water resource management. Here, we study this in the largest tributary of
the Yellow River, the Weihe River Basin. Data from four hydrological stations (Lin Jia Cun (LJC), Xian
Yang (XY), Lin Tong (LT), and Hua Xian (HX)) and 10 meteorological stations from 1961–2014 were
used to analyze changes in annual runoff. The Mann–Kendall test and Pettitt abrupt change point
test diagnosed variations in runoff in the Weihe River basin; the time periods before and after abrupt
change points are the base period (period I) and change period (period II), respectively. Within the
Budyko framework, the catchment properties (ω in Fu’s equation) represent land surface changes;
climate variability comprises precipitation (P) and potential evapotranspiration (ET0). All the stations
showed a reduction in annual runoff during the recording period, of which 22.66% to 50.42% was
accounted for by land surface change and 1.97% to 53.32% by climate variability. In the Weihe River
basin, land surface changes drive runoff variation in LT and climate variability drives it in LJC, XY,
and HX. The contribution of land surface changes to runoff reduction in period I was less than that in
period II, indicating that changes in human activity further decreased runoff. Therefore, this study
offers a scientific basis for understanding runoff trends and driving forces, providing an important
reference for social development, ecological construction, and water resource management.

Keywords: climate variability; land surface change; runoff; Budyko framework; elasticity coefficient;
Weihe River Basin

1. Introduction

In a long-term hydrological system, changes in runoff can be influenced by many factors, such
as climate change (including natural and anthropogenic climate change) and land surface changes
(including changes in vegetation and agricultural irrigation and changes in water quantity and quality
caused by various types of water use), which has triggered a series of questions about the water
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cycle [1,2]. In recent years, many river runoff values have shown decreasing trends, but it remains
unclear whether these changes were caused by climate warming or human activities, and their relative
contributions are also poorly understood. In response to this problem, domestic and foreign researchers
have begun to attempt to quantitatively distinguish the impacts of human activities and climate change
on hydrological processes. Due to the enormous influence of changes in rivers, ecological systems,
social development, global climate, and recreation, many people are interested in understanding the
trends of river changes and their driving forces. The response of runoff to land surface change in
the Loess Plateau of China accounted for more than 50% of the decrease in mean annual runoff [3].
The impacts of climate variability and land surface changes on runoff in the upper reaches of the Yellow
River Basin in China indicate that land use changes were responsible for more than 70% of the decrease
in runoff in the 1990s [4]. Climate change has also led to changes in global precipitation patterns [5], and
human activities have changed the spatial and temporal distribution of water resources [6]. The extent
of the total change in runoff in the Loess Plateau and the degrees of influence of various factors on this
change are variable. The integrated consequences of climatic variability and human activities are the
main drivers impacting runoff change [7]. Climate variability is of vital importance if water resource
management systems are to be sustainable [8]. Land use and water resources are closely linked in
comprehensive management, in which land use is a key factor in the allocation of water resources
in watersheds [9]. A considerable global variability of catchment hydrological processes has been
observed in most basins throughout the world, and quantifying the effects of climate variability and
human activities is crucial for the management and sustainable development of water resources [10].

Quantitative attribution methods have been developed to isolate the hydrological effects of
climate variability and land surface changes [11], including the following: (i) statistical methods [12],
(ii) the Budyko-based elasticity coefficient method [13], and (iii) hydrological modelling [14].

It is difficult to explain the physical mechanisms between runoff and climatic factors using
statistical methods, thus long-term historical hydrological and meteorological data are usually
required [4,15]. Regression relationship analyses [16], time-trend analyses [17,18], and change abrupt
point analyses are the main statistical methods used in these studies. Vogel et al. [19] adopted the
regional multivariate regression model and suggested that a 1% increase in precipitation would result
in a 1.9% increase in annual runoff in the upper reaches of the Colorado River. Xu [12] showed that
climate change can explain the observed reductions in natural runoff (72.9%) and annual observed
runoff (78.6%) by using linear regression to assess the impact of climate change and human activities
on the annual changes in runoff. Zhao et al. [20] used linear regression to analyze sediment load and
runoff in the Yangtze River from 1953 to 2010 and showed that 72% of runoff and 14% of sediment
load decreased due to the effects of climate change.

Schaake [21] originally proposed utilizing the elasticity coefficient to evaluate the effects of
precipitation and potential evapotranspiration on changes in runoff. The most widely utilized methods
based on the elasticity coefficient method include the nonparametric method and an analytical method
based on the Budyko framework [22,23]. The Budyko hypothesis is a coupled water–energy balance
equation developed by Budyko himself when conducting global water and energy balance analysis.
The Budyko hypothesis indicates that actual evapotranspiration is controlled by the availability of
water and energy by annual precipitation and potential evapotranspiration, respectively, on an annual
scale. This approach is based on the principle of water–energy balance in terms of the long-term
variability of hydrometeorological variables; it is a simple and practical approach used to study the
hydrological response of the basin to environmental changes. The Budyko hypothesis is a useful
way to investigate the relationship between hydrological processes, climate change, and land change
characteristics [24,25]. The improved Budyko-based elasticity coefficient method [13] was proposed
to assess the impact of climate change and human activities on runoff reduction; it was found that
human activities accounted for 71–78% and climate change accounted for 22–29% of the changes in
runoff reduction. The hydrological response to climate change and human activities in the Jingjiang
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River Basin from 1961 to 2009 was determined using the Budyko hypothesis; the results showed that
climate change accounted for >63% of the decrease in runoff [26].

The hydrological model was first used to predict changes in runoff caused by changes in land
surface [27], which has recently become a major method by which to distinguish the hydrological
response between climate variability and land surface change. In hydrological models, which include
sound physical mechanisms, time-series continuity, and large amounts of observation data in their
model structures and parameters, variations in the uncertainty associated with the model calibration
will yield different results; for example, in the SWAT (Soil and Water Assessment Tool), TETIS, and
Xinanjiang models, the parameters are often controversial due to the calibration and uncertainty of
each model [28–30]. In recent years, a simple water balance model called the Budyko curve has been
widely utilized to distinguish the effects of climate variability and land surface changes on runoff
response [24,31].

The objectives of this study are as follows: (i) to statistically determine the trend and abrupt
change points in the runoff data for the period 1961–2014; (ii) to differentiate between the effects
of climate variability and land surface changes in time and space based on the elasticity coefficient;
and (iii) to discuss the associations between different factors and their corresponding quantitative
attributions. These findings will deepen our understanding of the runoff response to climate variability
and land surface changes in the Weihe River Basin, which is essential for improving soil conservation
measures and the sustainable development of water resource management.

2. Materials and Methods

2.1. Study Area

The Loess Plateau (35–41◦ N, 102–114◦ E) covers a total area of 624,000 km2; it is located in
the middle and upper reaches of the Yellow River, and it comprises an ancient loess deposit. The
Wei River Basin (WRB; latitude 33.5◦ N–37.5◦ N; longitude 103.5◦ E–110.5◦ E), which is the largest
tributary of the Yellow River (China), originates north of the Niaoshu Mountains at an altitude of
3485 m in Gansu Province; it then flows for 818 km, with a drainage area of 13.5 × 104 km2, which
accounts for 17.9% of the total area of the Yellow River Basin (Figure 1). The WRB runs from east to
west through Gansu, Ningxia, and Shaanxi Provinces, and it plays an important role in the social,
ecological, and economic development of these regions [32]. The watershed length of Shaanxi Province
is approximately 502.4 km, with a basin area of approximately 6.67 × 104 km2; this region is where the
well-known Guanzhong Plain in northwest China is located. The WRB is characterized by a warm,
semihumid continental monsoon climate with high precipitation and temperatures in summer and
low precipitation and temperatures in winter [33,34]. The annual mean temperature in the WRB
varies from 7.8 ◦C to 13.5 ◦C. The precipitation throughout the entire basin ranges from 558–750 mm,
with over 60% of the annual precipitation falling in the summer monsoon period between June and
September [35].

241



Water 2018, 10, 1792

Figure 1. Geographic location of Weihe River basin and its hydrological and meteorological stations.

2.2. Data Collection

The monthly runoff data obtained from the 4 hydrological stations at Lin Jia Cun (LJC), Xian
Yang (XY), Lin Tong (LT), and Huan Xian (HX), which were available for the period 1961–2014, were
used in this study (WRB) and were collected from the Yellow River Conservancy Commission. LJC
is located in the upper reaches of the WRB, XY is located in the middle stream, and LT and HX are
located downstream. The control areas of the LJC, XY, LT, and HX stations are 30.661 km2, 46.827
km2, 97.299 km2, and 106.498 km2, respectively and they account for 22.7%, 34.7%, 72.2%, and 79%
of the catchment, respectively. Daily metrological data (1961–2014) were collected from 10 stations
in the WRB from the National Meteorological Data Sharing Service Platform (http://data.cma.cn),
including daily precipitation and mean, maximum, and minimum temperature data at a height of 2 m;
mean relative humidity and wind speed data at a height of 10 m; and daily sunshine duration data.
The potential evapotranspiration data were calculated using the Penman–Monteith equation outlined
in FAO-56 [36].

2.3. Methodology

2.3.1. Trend Analysis and Breakpoint Test

The nonparametric Mann–Kendall test method [37,38] is an effective tool for identifying trends.
In this paper, the Mann–Kendall test method was used to examine the trend of hydrological data
variables with the runoff series of the watershed, with a significance level of 0.05, and the magnitude
and direction of the trend were also calculated. A positive trend indicates that the sequence has an
increasing trend; a negative trend indicates that it has a decreasing trend. The Pettitt abrupt change
point test [39] is a nonparametric method that can be used to detect abrupt changes in various variables.
A given continuous time series (n1, n2, . . . , nT) is divided into a base period (period I; n1, n2, . . . , nT)
and a change period (period II; nt + 1, nt + 2, . . . , nT), which is calculated based on the characteristic
hydroclimatic values of the 2 subperiod series, then the degree of hydrologic climate change between
the 2 subperiods is estimated.
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2.3.2. Budyko Framework

The water–energy balance based on the Budyko hypothesis describes the relationship between
precipitation (P), potential evotranspiration (ET0), and runoff. In this study, the water balance in a
given watershed is calculated using the following equation:

Q = P − ET − ΔS (1)

where Q is the runoff, P is the precipitation (mm), ET is the actual evapotranspiration, and ΔS is
the change in water storage in the basin. The Budyko hypothesis assumes that under stable water
balance conditions, the water storage capacity of the watershed can be neglected on a large time scale.
According to Budyko [20], ET is a function of P, ET0, and the controlling parameter ω (which represents
land surface conditions). For simplicity, Fu’s equation is expressed in the following form [40]:

ET
P

= 1 +
ET0

P
−
[

1 +
(

ET0

P

)ω]1/ω

(2)

or
E

ET0
= 1 +

P
ET0

−
[

1 +
(

P
ET0

)ω]1/ω

(3)

where ω is a model parameter that is based on land cover, vegetation, soil infiltration, topography, and
hydraulic properties. The water–energy coupled balance equation can be expressed in the following
form:
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[
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P

)ω] 1
ω

− ET0 (4)

or

Q = ET0 ×
[

1 +
(

P
ET0

)ω] 1
ω

− ET0 (5)

Thus, the parameter ω in Fu’s equation can be calculated based on ET0, Q, and P, according to
Equations (4) and (5).

2.3.3. Sensitivity Analysis

Based on Equations (4) and (5), the following differential forms can be used to assess the change
in runoff:

dQ =
∂Q
∂p

dp +
∂Q
∂E0

dET0 +
∂Q
∂ω

dω (6)

Schaake [19] first proposed a method using climate elasticity to predict the impact of climate
change on runoff and expressed the p, ET0, and land surface change elasticity coefficients of runoff as
εP = dQ/Q

dP/P , εET0 = dQ/Q
dET0/ET0

, and εω = dQ/Q
dω/ω , respectively.

In this method, ∅ = ET0
P , εP, εET0 , and εω can be obtained as follows:

εP =
(1 +∅

ω)1/ω+1 −∅
ω+1

(1 +∅ω)
[
(1 +∅ω)1/ω −∅

] (7)

εETO =
1

(1 +∅ω)
[
1 − (1 +∅−ω)1/ω

] (8)

εω =
ln(1 +∅

ω ) +∅
ω ln(1 +∅

−ω)

ω(1 +∅ω)[1 − (1 +∅−ω)1/ω (9)
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According to Equations (7)–(9), the εP, εET0 , and εω elasticity coefficients of annual runoff can be
deduced based on P, ET0, and land surface data, which reflect the average hydrological climate and
underlying surface characteristics of the basin over many years.

2.3.4. Contribution Analysis

To differentiate between the effects of climate variability and human activities on runoff, the study
period was divided into 2 subperiods: the base period (period I) and the change period (period II).
According to Equation (6), the changes in mean annual runoff are caused by changes in climate and
human activities, and total changes can be expressed as:

Q (all) = Con(P) + Con(ET0) + Con(ω) (10)

where Q (all) is the total change in annual mean runoff due to climate variability and human activities
and Con(P), Con(ET0), and Con(ω) are the contributions of changes in P, ET0, and land surface,
respectively, to changes in Q. The contribution of each variable to the change in runoff can be
expressed as follows:

E_Con(P) =
Con(P)
Q (all)

× 100% (11)

E_Con(ET0)
=

Con(ET0)

Q (all)
× 100 (12)

E_Con(ω) =
Con(ω)

Q (all)
× 100% (13)

where E_Con(P), E_Con(ET0)
, and E_Con(ω) are the percentages representing the contribution of each

variable to the total decrease in runoff. These contributions can be explored and used to provide
information for water resource management.

3. Results

3.1. Changes in Long-Term Hydrometeorological Variables

The Mann–Kendall trend was applied to detect the trend and significance of variables during the
period 1961–2014. As indicated in Table 1, at all four hydrological stations in the WRB, the annual
runoff showed a significant downward trend (at confidence levels of 0.05 (*) and 0.01 (**)). The annual
runoff at LJC, XY, LT, and HX decreased by 0.45, 0.71, 0.75, and 0.83 mm yr−1, respectively, representing
2.4%, 1.9%, 1.2%, and 3.0%, respectively, of the corresponding annual runoff. In addition, the four
stations showed minor downward trends in P, which decreased in LJC, XY, LT, and HX by 0.66, 0.77,
0.50, and 1.08 mm yr−1, respectively. ET0 showed an insignificant upward trend in LJC and significant
decreases in XY and HX. To summarize, runoff and precipitation exhibit the same downward trend,
thus indicating that climate variability may have an important impact on the reduction of runoff.

The Pettitt abrupt change point test was applied to detect the change points in the annual runoff
series during the period 1961–2014 at these four hydrological stations. The results show that the abrupt
changes in annual runoff at LJC, XY, and HX occurred in 1993 and at LT in 1990. These four abrupt
change points are thus basically consistent, as they all occurred in the early 1990s. The entire research
period was then divided into two subperiods to quantify the effects of changes in climate variability
and human activities on runoff. The runoff data at the four hydrological stations before the abrupt
change points exhibited a downward trend, with LJC and XY exhibiting a significant downward trend.
After the abrupt change points, the runoff data exhibited an upward trend, with significant increases
at XY and HX.
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At all four hydrological stations, P (except at LJC) and ET0 showed a downward trend in period I,
and ET0 showed a significant downward trend; in period II, P and ET0 both exhibited an increasing
trend at all stations except for HX.

3.2. Elasticity Coefficients on Runoff

The catchment property (ω) characterizes the water balance parameters based on the long-term
mean annual values of ET0, runoff depth, P, and the actual evapotranspiration data (E = P − Q)
covering the entire period of the study (1961–2014). In Fu’s equation, the optimization problem of
parameter ω is solved by using the programming solution tool in Excel to more accurately express the
elasticity coefficient. As shown in Table 2, the optimal values of ω for LJC, XY, LT, and HX are 2.94,
3.10, 2.47, and 2.92, respectively.

Table 2. Elasticity coefficients of runoff to climate variability and land surface change; the best
calibration value of ω.

Station ω Period εET0 εP εω

LJC 2.94
Whole −2.62 3.62 −2.60

1961–1992 −2.58 3.58 −2.49
1993–2014 −2.66 3.66 −2.77

XY 3.10
Whole −2.74 3.74 −2.59

1961–1992 −2.71 3.71 −2.49
1993–2014 −2.78 3.78 −2.74

LT 2.47
Whole −2.11 3.11 −2.25

1961–1989 −2.08 3.08 −2.16
1990–2014 −2.14 3.14 −2.35

HX 2.92
Whole −2.56 3.56 −2.47

1961–1992 −2.53 3.53 −2.36
1993–2014 −2.61 3.61 −2.64

Table 2 shows that runoff is positively correlated with P and negatively correlated with ET0 and
ω; these trends are exactly the same in each sub-basin and subperiod. The ranges of the elasticity
coefficients of ET0, P, and ω are −2.08 to −2.78, 3.08 to 3.78, and −2.16 to −2.77, respectively. From
these results, we can conclude that when P, ET0, and ω all decrease by 1%, the annual runoff of
each typical watershed will decrease by 3.08–3.78, increase by 2.08–2.74, and increase by 2.16–2.77,
respectively. The changes in the elasticity coefficient due to climate change decreased from big to small,
followed by XY, LJC, HX, and LT; in contrast, the changes in the elasticity coefficient due to human
activities decreased from LJC to XY, HX, and LT. The elasticity coefficients of the four hydrological
stations, ET0, P, and ω were greater after than before the abrupt change. It can be seen from Figure 2
that the elasticity coefficients (P, ET0, and ω) are higher in the upstream region of ZJS and the vicinity
of the XY hydrological station than in the XY and HX stations, which is consistent with the data shown
in Table 2.

Figure 2 shows the annual elasticity coefficients of the four hydrological stations from 1961 to
2014; this not only shows the annual changes in the elasticity coefficients due to climate variability
and land surface changes, but also reflects the spatial variability of the sensitivity of the WRB to these
variables. In terms of the absolute values of the elasticity coefficients, those of climate change (ET0 and
P) and land surface change (ω) in LJC, XY, and HX are higher than those in LT. The absolute value
observed at the LT hydrological station is smaller than those observed at the other three stations, which
may indicate that the effects of human activities at the LT station are relatively small.
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Figure 2. Spatial variation characteristics of the elasticity coefficient of runoff in the Weihe River Basin:
elasticity coefficient of (a) precipitation; (b) potential evapotranspiration; (c) land surface change.
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3.3. Attribution Analysis of Runoff Reduction

Changes in either of these factors, i.e., climate change (P and ET0) or land surface change (ω),
may lead to changes in runoff. The influence of changes in all variables on runoff was estimated
using hydrological sensitivity analysis and Equations (11)–(13). Table 3 shows that from 1961 to 2014
in the WRB, the decrease in P had a positive effect on runoff, with an average contribution rate of
47.6%; ET0 and ω mainly had negative effects on runoff, with average contribution rates of 14.8% and
37.6%, respectively. Table 3 also shows that at the LJC, XY, and HX hydrological stations, the average
proportions of P, ET0, and ω decreased in the order p > ω > ET0, in which the proportion of P at LJC
and HX always exceeded 50%. It can be seen that in terms of the three indicators (P, ET0, ω), the
change in P has the greatest effect on the change in runoff, the change in ω has an intermediate effect,
and the change in ET0 has the smallest effect.

Table 3. Contributions of P, ET0, and ω to changes in runoff.

Station Period RC_(P) (%) RC_(ET0) (%) RC_(ω) (%)

LJC
Period I 1961–1992 9.38 39.05 51.58
Period II 1993–2014 50.51 5.27 44.22
Whole 1961–2014 51.76 7.46 40.78

XY
Period I 1961–1992 5.6 46.46 47.94
Period II 1993–2014 47.72 1.13 51.15
Whole 1961–2014 37.58 25.74 36.68

LT
Period I 1961–1989 12.07 50.07 37.87
Period II 1990–2014 52.31 9.59 38.1
Whole 1961–2014 47.61 1.97 50.42

HX
Period I 1961–1989 14.22 49.02 36.76
Period II 1993–2014 43.51 4.77 51.71
Whole 1961–2014 53.32 24.02 22.66

The main factors affecting the changes in runoff during periods I and II at different hydrological
stations are different. At all stations except LJC, the proportions of P and ω in period II increased
relative to those in period I; however, the proportions of ET0 in period I were significantly lower
than those in period II. The decrease in runoff at LJC and LT for period II (the change period, i.e.,
1993–2014 for LJC and 1990–2014 for LT) was controlled by changes in P (which contributed 50.51%
and 52.31%, respectively). However, land surface change was the main controlling factor at XY and HX
for period II (the change period, i.e., 1993–2014 for XY and HX). Based on these results, we conclude
that precipitation and land surface changes were the main driving forces of the changes in runoff
observed at these hydrological stations.

4. Discussion

Assessing the continuity and integrity of data is becoming a fundamental problem that cannot be
ignored in data-based research. During the preparation, analysis, and presentation of data, confirming
its continuity and integrity guarantees the completeness, validity, and accuracy of the results. Data from
four hydrological stations and 10 meteorological stations were used in the study area; however, these
data may not be sufficient to cover the Weihe River Basin, which has a drainage area of 13.5 × 104 km2.
This may thus limit the calculation of the PET data and the accuracy of the estimated runoff. The
quantitative estimation was based on the assumption that climate variability and land surface changes
are independent. However, land surfaces interact with climate systems, especially at the catchment
scale [4]. The data used in the hydrological sensitivity analysis method were derived from periodic
runoff data, which are not affected by long-term human activities and are thus used for calibration
of the model. In the Weihe River Basin during the runoff observation period, disturbances were
caused by human activities, such as the building of reservoirs and dams [41,42], which may restrict the
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accuracy of the observation data and model parameters. The expansion of the Taylor series based on
the Budyko equation may be another cause of data uncertainty. The first-order Taylor expansion has
been widely studied and used in many studies; however, with the decrease in P and increases in ET0

and ω, uncertainty in the data will increase. Therefore, eliminating this uncertainty to improve the
accuracy of prediction is a key issue that needs to be resolved in future research.

Based on the Budyko equation of Fu and taking P, ET0, and Q as variables, the parameter ω

was determined using the programming solution function in Excel. The precision of the hydrological
model parameters can be improved by using the ω value determined by the programming solution
function to better explain the accuracy of runoff reduction in the WRB. The catchment characteristic
parameter ω in the Budyko equation is related to topography [43], soil [44], vegetation [45,46], and
climate seasonality [47]. The land surface changes in the WRB were mainly due to the implementation
of water and soil conservation and ecological restoration activities. In the short term, the soil properties
and topographic changes remain unchanged, while changes in the vegetation cover and climate
are considered to influence the characteristic parameter ω. The normalized difference vegetation
index (NDVI) is the most widely used index to characterize vegetation coverage (V) status and can
adequately reflect vegetation cover, growth vitality, and biomass. All other conditions being similar,
the parameter ω of a drainage basin with a larger vegetation cover is generally larger than that of a
drainage basin with smaller vegetation coverage. Generally, the average NDVI has fluctuated upward
in recent decades in the WRB. The relationship between V and ω showed a similar interannual change
from 1961 to 2014, which indicated that the change in vegetation had a positive effect on ω.

In addition to changes in vegetation, changes in soil and water conservation measures have
significantly altered the surface, including biological measures (e.g., afforestation and pasture
improvement) and engineering measures (e.g., dams, terraces, and reservoirs). For example, by
the end of 2000, more than 3150 reservoirs had been built in the Yellow River Basin, including 171 large-
and medium-sized reservoirs with a total capacity of 22.6 km3. A study conducted by Liang et al. [48]
indicated that key dams (e.g., the LJC dam) have altered land surface changes and resulted in noticeable
changes in the hydrological regime [49], which could intercept stormwater runoff for a short period
during flood seasons and allow more time for infiltration [50]. Land surface changes caused by the
impact of soil and water conservation measures, such as the construction of reservoirs and dams,
could significantly change the availability of natural water resources in the region. Moreover, many
studies have shown that climate change cannot be regarded as a unilateral phenomenon, which means
that the climate drive and feedback of local infrastructure such as dams cannot be ignored. Soil and
water conservation, especially the implementation of the “returning farmland to forests and grassland”
policy in 1999, has thus affected the hydrological processes in this area. From 1959 to 2006, the terraced
field area increased from 5.30 to 285.40 104 km2, and the growth rate has only increased since then.
Zhang et al. [51] previously showed that the conversion of sloping farmland to terraces can result in a
significant decrease in runoff. It can be seen that the implementation of soil and water conservation
measures has achieved significant ecological benefits and has had temporal and spatial effects on
hydrological processes in recent years; however, these measures are also one of the most important
reasons for the decrease in runoff.

Due to the high-scale dependence of runoff on rainfall, the impact of land surface change has
been limited; however, climate change has been the main driving force of large-scale changes [12].
Table 3 shows that the relationship between runoff, average annual precipitation, and ω was relatively
close and that this change has exhibited good consistency in the WRB. The runoff values of almost all
hydrological stations in the WRB obviously decreased in the 1990s; in terms of climate change, runoff
was more sensitive to changes in precipitation than it was to changes in potential evapotranspiration.
Zuo et al. [52] concluded that the impacts of climate variability and land surface changes on runoff
were 31%–51% and 33%–65%, respectively, which is consistent with the results obtained in this study.
The WRB contains rainfall-recharge rivers, thus changes in its precipitation-runoff have continually
been a focus of scholars. However, as can be seen in Table 3, whether in the total period or in the
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subperiod, the proportion of ω is always relatively small (i.e., below 50%). There is no significant
relationship between ω and V. At the four hydrological stations, the proportion of ω was greater than
that before the abrupt change (i.e., the abrupt change for LJC, XY, and HX occurred in 1993 and at LT
occurred in 1990). Previous studies have proposed that the best vegetation in the WRB occurred in
1990, indicating that the ecological environment there generally improved from the 1980s to the 1990s.
In 2000, V (vegetation coverage) was significantly worse than it was in other years, but it improved
from 2000 to 2005; nevertheless, there was a small decline in 2007. Generally speaking, the average V
value has fluctuated upward in recent decades in the WRB.

When comparing period I and period II (in Table 3), P and ω increased almost at all stations
in period II, which may be due to the fact that the ω part represents the V value, and with the
increase of V, the precipitation significantly increased. Wang et al. [11] concluded that the contribution
of climate variability and land surface change to runoff evolution temporally varies, which is in
line with the results of periods I and II. This has considerable significance for water resources
utilization management. The traditional water management strategies do not adequately take into
account hydrological regime changes over time, especially changes in climatic conditions. Climate
variability also greatly impacts stakeholders, e.g., farming households and government decision
makers. Stakeholders, in return, deal with climate variability in a host of ways, e.g., with water
use rights and regulations. Incorporating climate variability puts forward new thinking on the
development of water resources [9,53]. Changes in climate conditions alter the processes of the
hydrological cycle and affect the structure of the water resources system, bringing new challenges
to the development and utilization of water resources worldwide. Consequently, we recommend
that adaptive management of water resources should be implemented to match environmental
changes. Adaptive management enables regional river and reservoir systems to sustain and even
strengthen the interests of all stakeholders in the context of climate change [54]. Finally, through the
implementation of a strict water resources management system, adaptive countermeasures including
extensive development of water resources could be achieved.

5. Conclusions

The annual changes in climate variability and land surfaces in the WRB are based on data
collected from meteorological and hydrologic stations from 1961 to 2014, and quantitative analysis
of the contributions of runoff change can be an effective part of the water management of the Loess
Plateau. Taking stations LJC, XY, LT, and HX as examples, the runoff data were analyzed by trend
analysis and the mutation point test, and the entire period was divided into two subperiods (base
period and change period). The elasticity coefficient method, which is based on the Budyko framework,
was used in this study. The runoff data of all hydrological stations showed a significant downward
trend. The abrupt change points of the four stations were basically consistent and occurred in the
early 1990s. Runoff was positively correlated with precipitation and negatively correlated with
potential evapotranspiration and ω, which were exactly the same in each sub-basin and subperiod.
Three indicators (P, ET0, ω) contribute the most to changes in runoff; the change in P has the largest
contribution, the change in ω has an intermediate contribution, and the change in ET0 has the smallest
contribution. The proportion of land surface change is relatively small, owing partly to the construction
of soil and water conservation facilities, such as check dams and terraces, and partly to the measures
of returning farmland to forests and grassland.

Two avenues should be explored in future research. For one thing, the empirical formula of
parameter ω should be calculated through a stepwise regression analysis, and subsequently, mean
annual and interannual changes should be predicted. Such measures would ultimately propose
a universal equation of to apply to different watersheds, providing a powerful tool for assessing
water–energy balance using the Budyko hypothesis. For another, during the snowy season, a warming
climate may lead to less precipitation in the form of snow, which not only alters the temporal
distribution of annual runoff, but also leads to a reduction in the total annual runoff. Therefore,

250



Water 2018, 10, 1792

the effect of snow on runoff as well as its related process on the catchment scale will be discussed.
How snow couples with the Budyko hypothesis needs to be answered in future research.
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Abstract: Understanding hydrological responses to climate change and land use and land cover
change (LULCC) is important for water resource planning and management, especially for
water-limited areas. The annual streamflow of the Wuding River Watershed (WRW), the largest
sediment source of the Yellow River in China, has decreased significantly over the past 50 years at a
rate of 5.2 mm/decade. Using the Budyko equation, this study investigated this decrease with the
contributions from climate change and LULCC caused by human activities, which have intensified
since 1999 due to China’s Grain for Green Project (GFGP). The Budyko parameter that represents
watershed characteristics was more reasonably configured and derived to improve the performance
of the Budyko equation. Vegetation changes were included in the Budyko equation to further improve
its simulations, and these changes showed a significant upward trend due to the GFGP based on
satellite data. An improved decomposition method based on the Budyko equation was used to
quantitatively separate the impact of climate change from that of LULCC on the streamflow in the
WRW. Our results show that climate change generated a dominant effect on the streamflow and
decreased it by 72.4% in the WRW. This climatic effect can be further explained with the drying
trend of the Palmer Severity Drought Index, which was calculated based only on climate change
information for the WRW. In the meantime, although human activities in this watershed have been
very intense, especially since 1999, vegetation cover increase contributed a 27.6% decline to the
streamflow, which played a secondary role in affecting hydrological processes in the WRW.

Keywords: climate change; LULCC; Budyko equation; streamflow; drought

1. Introduction

Climate change and land use and land cover change (LULCC) have had profound influences
on global and regional hydrological processes [1–3]. Understanding the hydrological responses in
watersheds to climate change and LULCC is important for water resource planning and management
throughout the world, especially in arid and semi-arid areas where water is the primary limiting
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factor for environmental services and social development [4–6]. Climate change causes changes in
different components of hydrological processes [2,7]. These components include evapotranspiration,
infiltration, streamflow, soil moisture, etc. Global evapotranspiration has shown a significant upward
trend over the past three decades, caused partly by the increasing atmospheric moisture demand [8].
In particular, hydrological processes are very sensitive to climate change in arid and semi-arid areas.
In the Middle East, acceleration of hydrological processes induced by climate change has caused more
severe droughts and flooding events, affecting the region’s well-being [9].

In addition to climate change, LULCC also alters hydrological processes. Reforestation/afforestation
or deforestation changes surface evapotranspiration, canopy water interception, and soil water infiltration
capacity, changing the hydrological processes within watersheds. Many previous studies have shown
that reforestation results in a decrease in streamflow due to greater infiltration into the soil and higher
precipitation interception by vegetation [10,11]. Deforestation can reduce root density and depth,
and lower leaf mass, resulting in decreased vegetation water consumption, weaker evapotranspiration,
and higher streamflow [12,13]. These changes within a watershed lead to a redistribution among the
components of hydrological processes [14].

As mentioned, climate change and LULCC are two important factors that significantly affect
hydrological processes at different temporospatial scales. Streamflow observations around the world
have indicated varying levels of climate change and LULCC impact, particularly in basins located
in arid and semi-arid climate zones [15,16]. Modeling techniques have been adopted to evaluate
the contributions of climate change and LULCC to streamflow changes. The Budyko equation is a
commonly used and effective tool to address such contributions due to its simplicity and physical
background [17,18]. The Budyko equation, based on the water and energy balance at a watershed
scale, demonstrates the physical distribution among precipitation, evapotranspiration, and streamflow
at a long-term temporal scale [19]. Since it was established, the Budyko equation has been widely used
to answer water and energy balance questions throughout the world [20–22].

However, limitations still exist for applications of the Budyko equation, which assumes
non-changing water storage in a watershed over an application period. This assumption is often very
difficult to satisfy due to the lack of sufficient observations. Yang et al. [23] used the Budyko equation
to derive the elasticity of streamflow in relation to climatic variables in China at an annual timescale.
Jiang et al. [24] used a time length of 11 years to satisfy the non-changing water storage assumption
without observed evidence. Donohue et al. [25] asserted that 30 years of data were required to meet
the criterion of the Budyko non-changing water storage for their study watersheds. In addition, many
studies assume that the physical properties of a watershed do not exhibit significant changes by setting
the Budyko parameter that represents such properties to a constant [26,27]. Nevertheless, vegetation as
a key component in the watershed often changes significantly under climate change and/or through
human activities. In this study, variable vegetation was introduced to the Budyko equation to improve
understanding of the influence of LULCC on hydrological processes. Thus, we applied the Budyko
equation to a watershed in the Loess Plateau, China, where vegetation cover has been significantly
altered by climate and human activities. In Section 2, the study methods are described, Section 3
introduces the study area and data, Section 4 describes the results, and conclusions are given in
Section 5.

2. Methods

2.1. Budyko Parameter Estimation

With the Budyko equation’s assumption that changes in water storage in a watershed are
negligible over a sufficiently long time, precipitation (P) is partitioned into evapotranspiration (E) and
streamflow (R) for a watershed [19]. The ratio of actual evapotranspiration to precipitation (θ = E/P,
the evapotranspiration ratio) is controlled principally by the ratio of potential evapotranspiration to
precipitation (ε = Ep/P, the climatic dryness index) on a long-term timescale. For humid watersheds

255



Water 2018, 10, 1781

(P > Ep), the actual evapotranspiration is controlled predominantly by the energy supply (Ep), while
for non-humid watersheds (P < Ep), it is controlled mainly by the water supply (P), as shown in
Figure 1. Different functional forms of the Budyko equation have been developed [28]; one of the most
widely used forms, the Choudhury-Yang (CY hereafter) equation, was selected for this study [29]. Ep

was estimated using the Penman-Monteith method [30], and P, Ep, and R were used as inputs for the
CY equation:

E = P ∗ Ep/
(

Pη + Eη
p

) 1
η (1)

where η is the Budyko parameter that represents the average state of watershed characteristics such as
vegetation cover, soil properties, topography, etc.

Figure 1. Schematic of water-energy balance changes in a watershed as indicated by the Choudhury-
Yang (CY) Budyko-type equation, and the decomposition method.

Traditionally, η can be derived from climate and streamflow data [27], but η cannot be calculated
for ungauged watersheds using such a method (e.g., lack of streamflow data). Thus, determining η for
ungauged watersheds is a challenge. For this study, we propose a polynomial equation to calculate
η using climate, soil, topography, vegetation, and other available data (e.g., remote sensing data) for
ungauged watersheds (without streamflow measurements) as follows:

η = β0 + βh H + βcC (2)

where H represents explanatory variables defining LULCC caused by human activities, C represents
explanatory variables defining climate change; β0 is a constant term, and βh and βc are the
corresponding regression coefficients. Through the maximum likelihood estimation method, βh
and βc are estimated, and η is then estimated.

2.2. Quantifying the Contributions of Different Factors to Streamflow Changes

The Budyko parameter η might change for a watershed, implying a change in the watershed’s
characteristics. To quantify the contribution of each factor to a change in a watershed’s water-energy
balance, we adopted the decomposition method [14,24], described in Figure 1. There are two assumed
paths to change a watershed from Point A to Point B: (1) a move from A to C along the dashed line,
and (2) a vertical move from C to B. The first (A to C) shows that the η value for the watershed does
not change, implying that the watershed ecosystem automatically adapts itself to climate change.
The second (C to B) indicates a change in η, implying that external forcing alters the watershed’s
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physical features such as vegetation. Such external forcing could stem from human influences and/or
climate change, but in the original decomposition method this external forcing is wholly attributed
to human activities, assuming that all the factors that influence η originate from human activities.
In our study, the contribution represented by the second path is decomposed based on the polynomial
equation (Equation (2)) in Section 2.1.

2.3. Calculation of Vegetation Fraction and Relative Infiltration Capacity

The accuracy of the Budyko equation can be improved if vegetation changes are included [31–33].
To study the effect of vegetation on the hydrological processes, the green vegetation fraction (Fg) was
introduced in the Budyko equation. Fg can be derived from the normalized difference vegetation index
(NDVI) based on satellite data. In this study, a quadratic equation was adopted to calculate Fg using
NDVI [34]:

Fg = (NDVIi − NDVIs/NDVI∞ − NDVIs)
2 (3)

where NDVIi is the NDVI value on a remote sensing map, NDVIs is for bare soil, and NDVI∞ is for
dense green vegetation. For this study, NDVI∞ and NDVIs were set to 0.05 and 0.68, respectively,
based on remotely sensed data and land use types [35,36].

Besides vegetation, water infiltration into the soil also affects the production of streamflow.
The infiltration rate is controlled by rainfall intensity and soil infiltration capacity. In this study,
the relative infiltration capacity was used to describe the relationship between the soil and the
parameter η. The relative infiltration capacity is defined as the ratio of the saturation hydraulic
conductivity, Ks, to the average rainfall intensity, ir, within a period of 24 h [37]; ir is the average
value for rainy days, and Ks is obtained from the soil type database for the Wuding River Watershed
(WRW) [38].

3. Study Area and Data Sources

3.1. Study Area

To control soil erosion and improve environmental conditions, many soil conservation measures
have been applied in the Loess Plateau (Figure 2) since the 1960s, one of which is the Grain for Green
Project (GFGP) [39]. This project has remarkably increased the vegetation cover in the Loess Plateau
through afforestation/reforestation [40]. Furthermore, this water-limited, environmentally fragile area
is vulnerable to climate change at different temporospatial scales [41]. For this study, we selected a
typical watershed in the Loess Plateau, the WRW (Figure 2), to explore how afforestation/reforestation
due to the GFGP affects hydrological processes under climate change.

Covering an area of approximately 30,261 km2, the WRW, located at 37.04◦–39.03◦ N and
108.04◦–110.57◦ E, is in the center of the Loess Plateau. The Wuding River is a first-order tributary of
the Yellow River. Streamflow data for this study were obtained from the Baijiachuan gauging station,
which is located 100 km from the outlet of the WRW and has a drainage area accounting for 98%
of the WRW. The WRW is in a semi-arid temperate continental climate zone, with average annual
precipitation of 405 mm, a mean annual temperature of 8.0 ◦C, and potential evapotranspiration of
1007 mm, based on observational data over 1960–2011 (http://data.cma.cn/). Affected by the East
Asian monsoon, approximately 75% of the annual rainfall occurs between June and September and
is characterized by a significant number of heavy rain events. The topography is a typical loess
hilly/gullied landscape with elevation ranging from 579 m to 1824 m.
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Figure 2. Locations of the study area and hydrometeorological stations (asterisk shows the river outlet).

3.2. Data Sources

3.2.1. Hydrometeorological Data

Monthly streamflow data from gauge stations located in the main stream and first-order tributaries
in the WRW were obtained from the Yellow River Hydrological Bureau. Only data covering at least
50 years were used in this study; data from eight stations met this criterion. Thus, all streamflow data
used in this study covered the period from 1960 to 2011. Daily meteorological data from 12 stations
in and around the WRW were obtained from the National Meteorological Information Center, China
Meteorological Administration (http://data.cma.cn/), for the study period. These meteorological
data include precipitation, maximum and minimum temperature, relative humidity, wind speed,
sunshine duration, and solar radiation. We used the nonparametric Mann-Kendall (MK) test to detect
the significance of temporal trends with a 95% confidence interval [42].

3.2.2. Digital Elevation Model (DEM) and Soil Data

A DEM dataset at 30-m resolution was provided by the Geospatial Data Cloud site, Computer
Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn). A soil dataset at
1-km resolution, containing soil property data and the spatial distribution of each soil type in the WRW,
was provided by the Ecological Environment Database of the Loess Plateau (http://www.loess.csdb.
cn/pdmp/index.action). The saturation hydraulic conductivity was verified with site observations
from the WRW.

3.2.3. Satellite Remote Sensing Data

As one of the most useful indices for vegetation monitoring in terrestrial ecosystems, NDVI
derived from remote sensing data was used. This study selected the Global Inventory Modeling
and Mapping Studies Normalized Difference Vegetation Index 3rd generation dataset (NDVI3g)
for the WRW [43]. The NDVI3g covers the period from 1982 to 2011 at a 0.083◦ spatial resolution
and a semi-monthly time step. NDVI3g data have been examined and compared with other NDVI
products [44] and were found to be consistent with these data. The maximum value composite
method was used to obtain the monthly and annual NDVI values [45]. Therefore, this dataset
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was used to analyze the long-term vegetation trends and the relationship between vegetation and
climate variability.

4. Results

4.1. Hydrometeorological Trends Analysis

4.1.1. Temporal Trends of Streamflow

Figure 3a shows the changes in annual streamflow in the WRW from 1960 to 2011. The annual
streamflow in the WRW experienced a significant decrease over this 52-year period. The observed
downward trend of 5.2 mm/decade passes the 95% significance level using the MK test. Moreover,
the annual streamflow shows two significant abrupt points in 1972 and 1998, which were detected
using the nonparametric multiple change-points detection method [46]. These abrupt points divide
the study period into three stages, i.e., 1960–1972, 1973–1998, and 1999–2011, defined as Stages 1, 2,
and 3, respectively. Figure 3a also shows that the amplitude of streamflow variation over the study
period becomes weaker with time.

Figure 3. Annual changes in hydrometeorological variables in the Wuding River Watershed (WRW)
from 1960 to 2011: (a) streamflow; (b) precipitation; and (c) temperature.

These three stages are consistent with water and soil conservation activities in the WRW, according
to a survey of the WRW [47] (p. 385), which shows that soil and water conservation activities over the
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WRW involve approximately three stages. The first stage spans from the 1950s to early 1970s, during
which small-scale experimental field tests were performed to explore suitable ways of controlling soil
erosion. The second stage lasts from the mid-1970s to the end of the 1990s, when the WRW was used
as a national water and soil erosion management area. The last stage begins in 1999, when the WRW
was one of the first GFGP pilot areas and more intensive conservation was performed. Watershed
management records prove the validity of the abrupt statistical tests employed; thus, streamflow
changes are closely related to human activities in the watershed.

4.1.2. Temporal Trends of Precipitation and Temperature

Climate change is one of the main factors affecting hydrological processes in the WRW.
In Figure 3b, the annual precipitation shows a downward trend of 10 mm/decade, but this trend
does not reach the 95% statistical significance level. A comparison of Figure 3a,b demonstrates
that streamflow variability is controlled partly by precipitation changes. The correlation coefficients
between precipitation and streamflow over the three stages are 0.8, 0.5, and 0.4, respectively, implying
that the response by streamflow to precipitation becomes weaker. There must be other factors causing
the decline in streamflow.

Figure 3c shows the time series of area-averaged annual temperature for the WRW. An upward
trend of 0.27 ◦C/decade at the 95% significance level was detected by the MK test. This remarkable
trend is five times the global average temperature change [48]. A rising temperature could contribute
to the reduced streamflow in this area by increasing evapotranspiration [49], as will be discussed again
in Section 4.5.

4.2. Determination of Timescale in the Budyko Equation

In the Budyko equation, water storage change in a watershed is assumed to be zero or very close
to zero over a long-term period. However, the length of this period is watershed dependent, and it
is impossible to accurately measure water storage change in almost any watershed. In some studies,
researchers have arbitrarily set water storage change to be zero over a period ranging from 1 to 30 years
with no support from observed evidence [23–25]. For this study, we made a series of sensitivity tests to
determine the timescale at which the water storage change is reasonably close to zero in the WRW.
In these tests, we calculated the Budyko parameter η on timescales of 1 to 52 years with increments of
one year. For each of the 52 tests, the water storage change was set to zero. We found that the Budyko
parameter η stabilized on timescales longer than 13 years, although there was a slight upward trend
between timescales of 13 and 52 years (Figure 4). Therefore, we derived the value of η on a timescale
of 13 years, at which water storage change can be reasonably assumed to be zero.

Figure 4. Sensitivity tests determining the timescale used to calculate the Budyko parameter η.
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4.3. Temporospatial Changes in Vegetation

NDVI is an effective parameter representing vegetation cover in the WRW. Figure 5 shows that
the area-averaged annual NDVI for the WRW increased from 1982 to 2011, indicating a growth in
vegetation over this period. There was a pronounced change around 2000, which divided the period
into two stages. These two stages fall within Stages 2 and 3, characterized by significant water
conservation activities in the watershed. The NDVI trends for these two stages are 3.6 × 10–3/yr and
11.8 × 10–3/yr, respectively. The significant increase in the latter stage indicates remarkable vegetation
growth in the WRW associated with the GFGP since 1999 [41].

Figure 5. Variation in area-averaged annual normalized difference vegetation index (NDVI) from
1982 to 2011 in the WRW (dashed lines are the trends of periods before and after the Grain for Green
Project (GFGP)).

The average NDVI spatial distributions over the two stages are shown in Figure 6a,b. Generally,
the NDVI increases from southeast to northwest in the watershed during both stages, consistent with a
change from a humid climate to a semi-arid one. The vegetation cover increases quite dramatically
from the 1982–1998 to 1999–2011 periods. Figure 6c,d show the trends of NDVI in the WRW (pixels)
and their 95% significance levels (black dots) for the same two stages, where 29% of the WRW in
1982–1998 and 83% of the WRW in 1999–2011 pass the 95% significance level. Particularly in the second
stage, the middle and lower reaches of the WRW have the most significant NDVI increases, where the
most severe soil erosion often occurs, and thus where reforestation/afforestation has been focused.
In addition, pixels that did not pass the 95% significance level are predominantly urban areas.

Based on the above analysis, the WRW has experienced remarkable vegetation growth,
particularly from 1999 to 2011, due to reforestation/afforestation. Such a substantial landscape
change goes against the rules of the Budyko equation application, which assumes minimal landscape
changes in a watershed. In this study, we made a significant effort to include landscape changes in the
Budyko equation, with a focus on vegetation.
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Figure 6. Spatial distribution of average annual NDVI in the WRW: (a) average annual NDVI from
1982 to 1998; (b) average annual NDVI from 1999 to 2011; (c) linear regression slope of NDVI from 1982
to 1998; and (d) linear regression slope of NDVI from 1999 to 2011 (dots denote the slope at the 95%
significance level).

4.4. Estimation of Parameter η in the Budyko Equation

By considering the vegetation changes in the WRW, we used covariate analysis with the
Akaike information criterion [50] to develop an empirical scheme to estimate η. In this scheme,
we parameterized η as a function of explanatory variables including vegetation cover, Fg, the relative
infiltration capacity, irrigation area, and terrace area. The Budyko parameter η was optimized using
the above method to quantify the relationship between η and the explanatory variables. Finally, η was
estimated as follows:

η = 2.21 + 0.19 × log10Fg − 1.29 × 10−5 × exp(Ks/ir) (4)

where Fg reflects the vegetation conditions as one of the most important landscape factors in a
watershed and is derived from NDVI through the conversion model discussed above. The relative
infiltration capacity denotes the infiltration property that influences streamflow generation.

The multiple R-squared of the regression equation is 0.86 and passes the 95% significance
level, indicating that these factors can realistically explain η. These factors represent vegetation,
soil, and climate conditions, in which vegetation changes are induced mainly by human activities.
The result reveals a significant positive correlation (0.76) between Fg and η in the WRW. Figure 7

262



Water 2018, 10, 1781

illustrates the η estimated with Equation (4) versus the η calculated based on the Budyko equation
with the observed input variables. For the WRW, the η value generated with the above regressed
polynomial equation agrees very well with that derived from the Budyko equation.

Figure 7. Comparison of η calculated by observed input variables with η′ estimated by the regression
equation (dashed line is the 1:1 line).

By inputting this estimated η into the Budyko equation, we calculated the streamflow for the
WRW. As shown in Figure 8, the root mean square error and Nash Sutcliffe efficiency coefficient are
1.22 mm and 0.91, respectively. The streamflow results calculated by a constant η are also displayed in
Figure 8, and the root mean square error and Nash Sutcliffe efficiency coefficient are 2.95 mm and 0.49,
respectively. The constant η was derived on a timescale of the entire period, indicating no watershed
landscape change over the study period. A comparison between these two calculated results indicates
that the Budyko equation is more accurate when changes in landscape factors, especially vegetation,
are included. The streamflow calculated by the η that considers vegetation changes reflects not only
the streamflow trend but also the magnitude. Conversely, the streamflow calculated by a constant
η greatly underestimates streamflow during the first several years and overestimates streamflow in
the last several years of the period. This implies that a constant η cannot reflect dynamic changes
in watershed landscape characteristics. However, it is worth noting that the constant η case also
substantially demonstrates the streamflow trend. This case is useful for situations where vegetation
data are insufficient, especially on the large timescale of future climate scenarios.

4.5. Contributions of Climate Change and Vegetation to Streamflow

To quantify the contributions of different factors to streamflow changes, the improved
decomposition method mentioned in Section 2 was applied. In view of the good performance of
explanatory variables at interpreting the Budyko parameter η, Equation (4) was used to calculate
the change in mean annual streamflow in each 13-year period, together with the Budyko equation
(Equation (1)). Therefore, the streamflow changes in each period are compared with the baseline period
1970–1982, which is the first 13-year period containing vegetation information. The baseline period
is denoted as the pre-stage, and other lengths are denoted as the post-stage. The calculated result of
the decomposition method is shown in Figure 9, indicating that a combination of climate and human
activities (mainly from vegetation changes) led to the streamflow decline in recent years. From the
average contributions of climate and vegetation during different periods (Figure 9a), the conclusion
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can be made that climate change is the dominant factor affecting streamflow, accounting for nearly
76% of the total streamflow reduction. Vegetation changes are also important factors, accounting for
about 24% of the streamflow decrease. Further, the streamflow reduction induced by climate increased
substantially after 1999 (Figure 9a), which is attributed to the increasingly dry climate. The relationship
between drought and streamflow change is discussed in the following.

Figure 8. Comparison of two types of calculated streamflow with the observed streamflow.

Climate and landscape changes in a watershed have an important effect on hydrological processes;
this effect can be reflected in the Budyko equation by altering parameter η. The contribution from
climate can be divided into two parts: the first part is caused by change in the meteorological input of
precipitation and potential evapotranspiration to the WRW (direct climate change); the other part is
caused by climate change through modification of the watershed landscape characteristics (indirect
climate change). In this study, the impact of climate change on η (indirect climate change) originates
from the change in average rainfall intensity, which influences the relative infiltration capacity. This is
a crucial factor to consider in landscape characteristics, because infiltration excess overland flow is
the main mechanism for streamflow generation in a typical loess soil watershed [51]. In order to
distinguish the impact of climate and vegetation changes on η, the streamflow reduction induced by
these two factors via altering η is compared in Figure 9b. In Figure 9b, streamflow reduction caused
by climate change remains steady with little variation and is smaller than that caused by vegetation
changes. This indicates that changes in η induced by climate change are not negligible, which has
not previously been considered [52]. Figure 9b also indicates that vegetation is the primary factor
affecting η; streamflow reduction induced by vegetation changes represents the majority of streamflow
reduction caused by altering parameter η. This implies that vegetation is vital to the hydrology in
this semi-arid watershed, and growth in vegetation cover increases the evapotranspiration ratio and
reduces the streamflow ratio to precipitation. It also demonstrates the significance of introducing a
vegetation factor into streamflow estimates in the Budyko equation.
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Figure 9. Contributions separation results of the decomposition method: (a) comparison of the
contributions of climate change and vegetation; (b) comparison of the contributions of climate change
and vegetation by altering the Budyko parameter; and (c) comparison of the contributions of two types
of climate change.

The two different components of climate change contribution to the streamflow are shown
in Figure 9c. One represents the contribution directly induced by climate change (direct climate
change), and the other is the contribution induced by altering η by climate change (indirect climate
change). The direct climate change contribution accounts for the majority (88%) of the total climate
change contribution, and the indirect climate change contribution accounts for 12%. In order to
test the validity and rationality of the improved decomposition method, the contribution was also
quantified using another mainstream method called the elasticity method [27,53]. The elasticity method
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results are not shown here, but our results with this method are similar to those with the improved
decomposition method.

There are 74 dams with a storage capacity greater than one million cubic meters in the WRW
with the purpose of flooding control [54] (p. 705). Nevertheless, these dams mainly affect the seasonal
variations of streamflow in the WRW, and they do not have a significant influence on the volume of
annual streamflow. In addition, most of these dams lost normal function in the end of 1980s due to the
sediment deposition caused by severe soil erosion [55] (pp. 428–429). Thus, our study did not include
the influence of dam regulation on the streamflow, and focused on the change in annual streamflow in
WRW over the period of 1982 to 2011.

Precipitation is the only source of water input to a closed watershed and is partitioned into
different parts, such as soil water storage and evapotranspiration. The results with our improved
Budyko equation application indicate that hydrological processes are the result of the long-term
co-evolution of a watershed’s vegetation and climate [14]. The contribution analysis results of the
WRW demonstrate the dominant role of climate in this complex evolved system. These findings
were further confirmed with the Palmer Drought Severity Index (PDSI) [56,57], a physically based
hydrometeorological index. The calculation of PDSI does not consider interference from human
activities in this watershed, and thus this index explains hydrological drought patterns regardless of
human influences [58]. The annual changes in streamflow and PDSI in the WRW from 1960 to 2011 are
shown in Figure 10. These two variables derived from independent datasets exhibit similar trends
and variations. The downward trend of streamflow is −0.048 mm/yr and that of PDSI is −0.047.
The MK test results indicate that both show a significant downward trend at the 95% significance
level. The decreasing PDSI indicates that the WRW has experienced increasingly serious droughts
since the early 1980s. Moreover, this similarity shows that PDSI captures the trend of streamflow
change and the dominant role of climate in streamflow reduction. However, the performance of PDSI
deteriorates in Stage 2 and Stage 3 compared to Stage 1, which demonstrates that human activities
play a non-negligible role in streamflow reduction in the WRW.

Figure 10. Annual streamflow and Palmer Drought Severity Index (PDSI) changes in the WRW from
1960 to 2011.

5. Conclusions

In this study, we diagnosed hydrometeorological changes in the WRW, with a focus on vegetation
cover changes. Over recent years, streamflow has dramatically declined, regional climate change
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has become evident, and the watershed has experienced more severe drought. Vegetation cover
changes are the main reason for underlying surface changes in the WRW. The timing of abrupt changes
indicates that NDVI changes are closely tied to water and soil conservation activities in the WRW and
streamflow changes. Intense variations of NDVI in such a short time reveal that human activities are
the main driving force of vegetation cover changes.

Using the moving average method with a timescale of 13 years, an optimized model was
established, incorporating the Budyko parameter, vegetation cover, and relative infiltration capacity.
The main factors that influence watershed landscape characteristics were then determined, i.e., climate
change and vegetation changes. The good performance of the estimated streamflow implies that the
Budyko parameter can be explained by these variables. Based on this optimized model, an improved
decomposition method was used to separate the impact of climate change and vegetation cover
changes on streamflow. It should be noted that we considered the climatic impact on the Budyko
parameter η, which has previously been ignored. Furthermore, introducing the main factors that
affect the Budyko parameter improved the performance of the Budyko equation by incorporating
physical mechanisms.
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Abstract: Snow contributes one of the main water sources to runoff in the arid region of China. A
clear understanding of the spatiotemporal variation of snowfall is not only required for climate
change assessment, but also plays a critical role in water resources management. However,
in-situ observations or gridded datasets hardly meet the requirement and cannot provide precise
spatiotemporal details on snowfall across the region. This study attempted to apply the Weather
Research and Forecasting (WRF) model to clarify the spatiotemporal variation of snowfall and the
ratio of snowfall to total precipitation over Xinjiang in China during the 1979–2015 period. The
results showed that the snowfall increased in the southern edge of the Tarim Basin, the Ili Valley,
and the Altay Mountains, but decreased in the Tianshan Mountains and the Kunlun Mountains.
The snowfall/precipitation (S/P) ratio revealed the opposite trends in low-elevation regions and
mountains in the study area. The S/P ratio rose in the Tarim Basin and the Junggar Basin, but
declined in the Altay Mountains, the Tianshan Mountains, and the west edge of the Junggar Basin.
The study area comprises two major rivers in the middle of the Tianshan Mountains. Both the runoff
magnitude increase and earlier occurrence of snowmelt recharge in runoff identified for the 1980s
were compared with the 2000s level in decreasing S/P ratio regions.

Keywords: snowfall to precipitation ratio; WRF model; arid region; Xinjiang; water resources
management

1. Introduction

Snow plays an important role in balancing radiation and generating streamflow in arid and
semi-arid regions. It regulates the energy balance and hydrological cycle, which exerts a large influence
on atmospheric circulation and the climatic system [1]. An increase in temperature will reduce the
fraction of precipitation that falls as snowfall, shorten snow cover duration in the cold season, bring
early timing of snowmelt in spring, and increase snowmelt intensity [2,3]. Recent model simulations,
satellite-derived records, and in-situ observations demonstrated that the snow cover extent experienced
a strong negative trend in North America and Eurasia, particularly in spring time [4–7], which is
consistent with an increase in the mean winter temperature in the Northern Hemisphere. In addition,
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the changes in the fraction of snowfall to precipitation alter snow dynamics and runoff amount [8,9],
leading to more rain-on-snow floods [10,11]. Thus, a combined indicator, defined as the ratio of
snowfall to total precipitation (S/P), has been developed to represent the simultaneous change of
snowfall and precipitation for the sake of clarifying dynamics of snow with distinct characteristics on
a regional scale [9,12,13].

Many efforts have focused on the variability of the S/P ratio along with the rising temperature. For
instance, Huntington et al. [14] found a significant reduced trend of the S/P ratio in New England from
1949 to 2000. Similar trends of the winter total snowfall-water-equivalent (SWE) and S/P ratio in the
United States were also confirmed during the period from 1949 to 2004 [15], but there was no significant
change in the S/P ratio for the Canadian Arctic, except for the summer [16]. Serquet et al. [17] analyzed
the S/P ratio at 76 meteorological stations in Switzerland for up to 100 years and discovered a clear
decreasing trend, especially at lower elevations. The same trend was found in the middle altitude of
1500 to 2500 m in the Tianshan Mountains [13]. Yang et al. [18] and Littell et al. [19] found that the S/P
ratio significantly decreased at the end of 21st century in the Tianshan Mountains and Alaska. Long
term change in the S/P ratio over time is of importance to the extent that it influences the magnitude
and timing of spring runoff and recession to summer baseflow. As a consequence, it is important to
expound the distinct regional variation of snowfall and S/P ratio in pursuit of realizing the change
of snowfall and precipitation under climate change. However, studies on long-term and large-scale
variations of snowfall and S/P ratio are insufficient, such as in the arid region of China, where snowfall
is an important water source and observations are scarce.

Situated far from oceans, the arid region in western China has a typical continental climate marked
by generally low precipitation, high evaporation potential, wide temperature fluctuations, and strong
winds [20,21]. Mountainous precipitation, water from snowmelt, and glacier-melt are the main water
sources in this region, which are highly sensitive to climate change [22]. During the last five decades,
the rise in annual temperature in this region was greater than that of China’s national average, and
has been in a state of high variability since 1997 [23]. A higher warming rate was also observed in
the Tianshan Mountains [24,25]. Such variation would greatly influence the snowfall regimes and
change the supplying patterns of runoff in both spring and summer in the arid region [26]. As a good
indicator of climate change, the S/P ratio also has a significant influence on annual runoff [8]. Thus,
effectively monitoring the snowfall and S/P ratio would make clear sense for local climate change and
water resources management.

The distribution of precipitation has been mainly statistically assessed on the basis of observed
data. However, due to the scarcity of meteorological stations in spatial distribution and the complex
topography in Xinjiang, China, the dataset from observations (including the gridded dataset from the
extrapolation by in-situ observation) does not represent the local climate feature well, nor provide
spatiotemporal details of precipitation over the region, especially in the high altitude where stations
are not installed. Furthermore, quality problems in time series data resulting from observation metric
and systematic errors of the equipment during conventional meteorological observation are serious,
particularly in the cold season. The under-catch errors in precipitation gauge records can be as large as
50–100% at a high latitude [27–29]. Dynamical downscaling is therefore an inevitable alternative in
order to characterize the spatiotemporal variation of snowfall and S/P ratio, especially in the region
with a large vertical gradient from basin to mountain and a lack of observations. Some studies have
reported that precipitation patterns simulated by the Weather Research and Forecasting (WRF) model
were highly accurate at different spatial scales, including high-elevation and complex topography
regions [30–35]. Consequently, the WRF model could provide the most accurate available estimation
of the mesoscale precipitation distribution [33], enabling research on long-term variation of snowfall
and the S/P ratio over complex terrain. This study attempted to employ the outputs of the WRF model
to: (1) investigate the ability of the WRF model to reproduce the temporal and spatial distribution of
the S/P ratio over the region, (2) characterize the regional variation pattern of both snowfall and the
S/P ratio over complex topography and a large vertical gradient region, and (3) reveal the changes in
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hydrological processes in the study area and discuss the implications on water resources based on (1)
and (2). The results could help to assess the impact of regional climate change on snowfall and provide
information for water resources management in arid regions.

2. Data and Methodology

2.1. Study Area

This study focuses on Xinjiang, a typical arid region in northwestern China. The region is located
within the range of 34◦25′–48◦10′ N and 73◦40′–96◦18′ E, with an area of about 1.66 × 106 km2, and is
characterized by its highly vulnerable water resources and fragile environment. Complex topographic
and geomorphologic features build mountains, plains, and basins in this region. The elevation of
this region ranges from below sea level with 161 m a.s.l. to as high as 7906 m a.s.l. (Figure 1). The
annual mean precipitation is less than 200 mm. Due to diverse and extreme terrains in the region,
the spatial and temporal distributions of precipitation are rather heterogeneous. The river runoff in
Xinjiang is generated in the mountainous region and mainly depends on glacier-melt, snowmelt, and
precipitation. The study area comprises two major rivers in the middle of the Tianshan Mountains:
the Manas River in the north slope and the Kaidu River in the south slope. The Kaidu River Basin
is gauged at Bayanbulak (2458 m a.s.l.) for monitoring runoff, where the area above Bayanbulak
is 18,725 km2 [36]. The Manas River Basin is gauged at Kensiwate (940 m a.s.l.) for monitoring
runoff, where the area above Kensiwate is 4637 km2, which consists of 608 km2 with glacier [37]. The
area above both gauges is little influenced by human activities. The summer precipitation accounts
for about 60–80% of total annual precipitation in both rivers [22]. Annual runoffs over the period
1958–2007 were 9.18 × 108 m3 and 12.37 × 108 m3 for the Kaidu River Basin and Manas River Basin,
respectively [22,38]. Snowmelt water is the main recharge source in both rivers in spring. Maximum
monthly discharge occurs in July at Bayanbulak gauge and in August at Kensiwate gauge, when runoff
is generated by snowmelt, glacier-melt, and rainfall.

Figure 1. Cont.
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Figure 1. Study area. (a) Distribution of meteorological stations, (b) annual precipitation (mm),
(c) annual temperature (◦C).

2.2. WRF Model Set Up

The WRF model used in this study runs at a resolution of 12 km across western China. The
simulation domain covers 73.447◦–127.017◦ E, 26.855◦–53.585◦ N. The model contains a large number
of physical processes, and their parameterizations are as follows: the top of atmosphere has been set to
50 hpa, with 31 layers along the vertical direction. The base period of the climatic simulation started
from 06:00:00 BJT 1 January 1979 (8 h earlier than the UTC) and ended at 23:00:00 BJT 31 December
2015, with a 3-h interval for outputs. The initial lateral boundary condition was forced using the
NCEP/DOE dataset, and the sea surface temperature was obtained from the ERA-Interim dataset.
Other parameterization included the Kain-Fritsch Cumulus Scheme [39], the Rapid Radiation Transfer
Model (RRTM) for longwave radiation [40], the Dudhia shortwave radiation model [41], the WRF
Single-Moment 3-Class microphysics model, the Noah Land Surface Model (Noah LSM) [42], and the
Yonsei University model for the planetary boundary layer (YSU) [43].

2.3. Meteorological and Streamflow Datasets

Before further analysis was carried out for the S/P ratio in this study, bias analysis between
simulated results and in-situ observations, as well as the distribution of CN05.1, a dataset extrapolated
with 2480 meteorological stations across the whole of China in terms of the Thin Plate Spline (TPS)
method, was implemented. Fifty-one stations of in-situ observations in Xinjiang, China, selected from
a total of 793 stations in the China Meteorological dataset version 3.0 (http://www.escience.gov.cn),
were collected to evaluate the performance of the WRF model. In addition, the CN05.1 dataset was
applied for spatial validation of the model outputs. The dataset contains daily precipitation and daily
temperature at the resolution of 0.25 degree from 1961 to 2015. The accuracy analysis on WRF outputs
showed small differences over eastern China with dense observation stations, but larger differences
over western China, where there were less stations [44,45].

Daily discharge data for the Bayanbulak and Kensiwate gauges are available for the period of
1979 to 2011. The daily data were checked for homogeneity and continuity, and then monthly sums of
daily data were used for analyzing the changes in water resources in the study area.

2.4. Snowfall Calculation

In this study, snowfall was calculated from precipitation. Based on the study from Dai [46], the
conditional frequencies of snowfall (F) can be calculated using a hyperbolic tangent function. Snowfall
occurs when the temperature-dependence exceeds 50%. Therefore, a sigmoidal hyperbolic tangent
curve was used to fit the observations of snow conditional frequency per 0.3 ◦C Ta bin from −10 ◦C to
10 ◦C in this study.

F = a[tanh(b(Ta − c))− d] (1)
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where Ta is the temperature, and parameters a, b, c, and d are calculated by least squares fitting
observations. This method was estimated in the North Hemisphere for rain-snow partition [47]. The
parameters were fitted best as −49.7648, 0.3146, 1.6540, and 0.9786 in the study area during the cold
season (from October to April, respectively).

2.5. Assessment of Performance of the WRF Model

Bias (BIAS) and root mean square error (RMSE) were used to evaluate the performance of the
WRF model before further analysis. BIAS measures the average tendency of the simulated data with
observations [48], while RMSE measures the deviation between the simulated data and observations.
For the BIAS, positive values indicate model overestimation bias, and negative values indicate model
underestimation bias.

BIAS =
n

∑
i=1

(Yobs
i − Ysim

i ) (2)

RMSE =

√
1
n

n

∑
i=1

(Yobs
i − Ysim

i )
2 (3)

where Yobs and Ysim are the in-situ observations and simulated data, respectively. The optimal value of
BIAS and RMSE is 0.0, with low values indicating accurate model simulation.

2.6. Trend Analysis

The Mann-Kendall (MK) test was employed to detect the trends of snowfall and its ratio to total
precipitation in this study. This test has been widely used in hydro-meteorological time series analysis
as a non-parametric statistical test [49,50]. Compared with parametric statistical tests, non-parametric
tests are more suitable to analyze the monotonic trends for non-normally distributed data [49]. To
reduce the effect of autocorrelation, all data went through pre-whitening before the MK test [49].

3. Results

3.1. Performance of the WRF Model

Table 1 reveals the mean BIAS and RMSE of monthly total precipitation and mean temperature
between WRF outputs and observations of the selected 51 stations in Xinjiang. The simulated
temperature agreed well with observations. The model displayed a cold bias in summer, but warm
bias in spring, winter, and annual mean. Overestimation in precipitation was more frequently noted
in all seasons, and especially occurred in high elevation areas such as the Altay Mountains and the
Tianshan Mountains. The distribution of RMSE was similar to that of bias, with the largest value in
high altitude regions.

Table 1. Bias and RMSE over Xinjiang for annual and seasonal mean temperature and precipitation
between WRF simulation and observation. A stands for annual, MAM for March-April-May, SON for
September-October-November, and DJF for December-January-February.

Temperature Bias
(◦C month−1)

RMSE
(◦C month−1)

Precipitation Bias
(mm month−1)

RMSE
(mm month−1)

A 0.33 2.44 7.54 15.56
MAM −2.02 3.51 11.12 16.85
SON 0.81 2.51 5.65 13.01
DJF 1.16 4.00 11.45 17.22

Figure 2 shows the spatial distribution patterns of two datasets for climatology snowfall during
the cold season. Both the outputs of WRF and the gridded dataset (CN05.1) shared similar distributions.
High snowfall mainly occurred in the mountainous areas, such as the Tianshan Mountains, the Kunlun
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Mountains, and the Altay Mountains, while low values took place in the Tarim Basin and the Junggar
Basin. Although the snowfall in both datasets had very similar distributions in the context of amount,
the WRF output was higher than that of CN05.1. The result of WRF was overestimated in the alpine
area, especially in the Tianshan Mountains, the Kunlun Mountains, and the Altay Mountains.

Figure 2. Spatial distributions of climatology snowfall during the cold season (mm). (a) is CN05.1,
(b) is WRF.

3.2. Climatology and Changes of Snowfall over Xinjiang

Figure 2b shows the spatial distribution of climatology snowfall during the cold season over
Xinjiang from 1979 to 2015. High snowfall mainly occurred in the mountainous areas, such as
the Tianshan Mountains, the Kunlun Mountains, and the Altay Mountains, while low values were
exhibited in the Tarim Basin and the Junggar Basin. The spatial distribution of changes in snowfall
during 1979–2015 is shown in Figure 3. Changes were defined as the linear regression slope. The
snowfall varied in different regions, although the snowfall revealed no significant decreasing trend in
Xinjiang during last decades. Significantly decreasing trends were found in the high-elevation regions
of the Kunlun Mountains, and the middle and south slope of the Tianshan Mountains. However,
dramatic increases occurred in the Altay Mountains, as well as in the Ili Valley and low-elevation
regions of the Kunlun Mountains. There also existed a slightly increasing trend in the Junggar Basin.

Figure 3. Spatial distribution variation of snowfall time series of WRF during the cold season from
1979 to 2015. Black dots represent significance at the 0.05 level.
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3.3. Climatology and Changes of S/P Ratio over Xinjiang

Figure 4 displays the spatial distribution of climatology and changes in the S/P ratio during the
cold season from 1979 to 2015 over Xinjiang. The distribution of S/P ratio is similar to that of snowfall,
with high values occurring in the Mountains and high-elevation regions, but low values observed in
basins and valleys. The value of the S/P ratio was near 1 at an elevation above 3500 m, where the
temperature is often below 0 ◦C. The S/P ratio slightly increased during the past decades in Xinjiang.
Based on the results of the Mann-Kendall test, the S/P ratios estimated by the WRF model did not
show a significant change at a level of 0.10 in the study area. As illustrated in Figure 4b, the changes
of S/P ratio also varied in different regions, which was similar to the distribution of the changes of
snowfall. The ratio had a rising trend in low-elevation regions, such as the Tarim Basin and the Junggar
Basin, but a decreasing trend in relative high-elevation regions, such as the Tianshan Mountains, the
Altay Mountains, and the western edge of the Junggar Basin.

Figure 4. Spatial distribution of climatology (a) and variation (b) of the S/P ratio in Xinjiang revealed
by WRF from 1979 to 2015. Black dots represent significance at the 0.05 level.

3.4. Changes in Hydrological Processes in the Tianshan Mountains

The runoff time series between the 1980s and 2000s from two hydrological stations at the two river
basins in the Tianshan Mountains are shown in Figure 5. The annual runoff significantly increased
from 1979 to 2011 by 17.4% and 20.4% in Manas River Basin and Kaidu River Basin, respectively.
The runoffs in the two river basins all exhibited decreasing trends in spring, but increasing trends in
summer and autumn. For both river basins, insignificant trends were found in the runoff during winter.
In addition, an earlier melt was found in the Bayanbulak station at Kaidu River Basin. Compared with
the 1980s, about five days in advance were observed in Bayanbulak stations in the 2000s.

Figure 5. Runoff time series between the 1980s and 2000s. Left: the Kaidu River Basin, right: the Manas
River Basin.
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4. Discussion

4.1. Performance of WRF

The WRF outputs were evaluated with in-situ observation and the CN05.1 dataset on point-scale
and spatial distribution, respectively. The bias values of temperature ranged from −2.02 ◦C to 1.16 ◦C
in the WRF simulations, which was more consistent with the observations from −0.5 ◦C to 4 ◦C of
Tang et al. [32]. It is noted that WRF generally overestimated precipitation compared with in-situ
observations, especially in the alpine region and lake area. It indicated that the simulated precipitation
in this study was very reliable in the basins and low-elevation regions, while the overestimation
leading to more uncertainty occurred in high-elevation regions. This uncertainty may result from
various sources, not only by overestimation of the model, but also possibly from the underestimation
of in-situ observations that were caused by the snowdrift and sublimation in the alpine area. The
underestimation of rain gauges caused by measurement errors for solid precipitation has frequently
exceeded 50% in alpine areas [51,52]. On the other hand, some studies reported that the WRF model
produced strong wet biases in precipitation over China, with overestimation exceeding 150% against
in-situ observations in some regions [30,32,53,54]. However, the simulation from WRF was close to the
snowfall records which were required for the maintenance of glaciers in the Karakoram Mountains
(above 4 km a.s.l.) [33].

The distribution of in-situ observations is uneven over the study area, especially in alpine regions.
Therefore, the observation datasets might increase the uncertainty and representativeness of data in the
study area. The same problem existed in observation-based gridded rainfall data (CN05.1). Although
more than 2400 stations were used to extrapolate the data across China in the CN05.1 dataset, stations
were still not enough in the western China for efficient extrapolation. The gridded rainfall data is also
too coarse to capture the orographic precipitation patterns, due to the complex topography of Xinjiang.
Previous studies documented that the WRF model performed reasonably at rainfall predicting of
a single precipitation event [30], as well as the climatological precipitation pattern and interannual
precipitation variability with a fine resolution [33,55]. In this study, the results of WRF and CN05.1
have similar distributions in snowfall amount, and the WRF model could achieve higher-resolution
grids data (12 km in this study) than the CN05.1 dataset, and capture more details of spatial snowfall
features. Additionally, based on dynamic processes, the WRF model can exhibit precipitation events
in areas that lack in-situ observations. As a result, WRF output prevailed over in-situ observations
and CN05.1 in characterizing the long-term spatiotemporal distribution of snowfall and the S/P ratio,
and offered a convincing basis for analysis of the long-term and large-scale variation of snowfall,
particularly over large vertical gradient and complex topography regions.

4.2. Spatiotemporal Variations of Snowfall and S/P Ratio

A decreased S/P ratio could be explained by snowfall decreases that were proportionally larger
than decreases in rainfall, constant snowfall, and increasing rainfall, or increases in both, but larger
increases in rainfall than snowfall. However, an increasing S/P ratio may be caused by increasing
snowfall or decreasing rainfall. Although changes in snowfall more closely paralleled the pattern of
S/P ratio trends, the total precipitation had a weak correlation with the S/P ratio [15]. In addition,
the relative changes in snowfall and precipitation contributed together to the variation of the S/P
ratio [13]. According to Figures 3b and 6a, the variations of snowfall and precipitation were similar,
but had different magnitudes, in the study area. The precipitation mainly occurred as snowfall at an
elevation above 3500 m.

In this study, the trends of the S/P ratio were the opposite for the low-elevation regions and
mountains. The decreasing variability of the S/P ratio was because of the decline in precipitation more
than that of snowfall in the relative high-elevation Tianshan Mountains. Additionally, although both
snowfall and precipitation increased at the western edge of the Junggar Basin, the S/P ratio exhibited
a downward trend. This could be because increasing snowfall would offset a portion of decreased
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snowfall that was caused by the warming temperature in this region (see Figure 6b). The fall of the S/P
ratio in the Tianshan Mountains was also reported in a previous study by Guo and Li [13]. The rise in
S/P ratio was caused by the increase in both the snowfall and precipitation, but was larger for snowfall
than precipitation in the Tarim Basin. However, the S/P ratios have also changed a little at elevations
above 3500 m, where the temperature is often far below 0 ◦C, such as the Kunlun Mountains.

Figure 6. Decadal trends of precipitation (a) and temperature (b) time series of WRF during the cold
season from 1979 to 2015. Black dots represent significance at the 0.05 level.

4.3. Water Resources Management in Different Regions Based on Current Findings

The Manas River Basin and Kaidu River Basin are located in the decreasing S/P ratio regions. The
correlation coefficients between the S/P ratio and runoff were −0.52 (p < 0.05) and −0.65 (p < 0.05)
in the Manas River Basin and Kaidu River Basin, respectively. This negative correlation indicated
that the larger runoff was associated with the lower S/P ratio during the cold season, with a larger
impact on the runoff of the Kaidu River Basin. Under climate change, the change in snowfall and S/P
ratio has implications for the water resources, which poses a serious challenge to the water resources
management authorities.

In the decreasing S/P ratio regions, by the 2000s, both the changes in runoff magnitude and shift of
intra-annual patterns in runoff were found in the river basins in the Tianshan Mountains with respect to
the 1980s level. More rainfall than snowfall in late winter and spring implies an increase in temperature,
which may influence the peak river runoff and promote the risks of early snowmelt in spring in the
decreasing S/P ratio regions [10,11,56]. For the snowmelt-recharged river, the runoff of the Kaidu River
showed an earlier occurrence of maximum snow melt and glacial recharge. However, for the glacial
melt-recharged river, the runoff of the Manas River showed an increasing trend when comparing the
1980s with the 2000s level. Both the changes in runoff magnitude and shift of intra-annual patterns
in runoff were in line with the decreasing S/P ratio. On the other hand, in the increasing S/P ratio
regions, the runoffs of headwaters of the Tarim River significantly increased over the past decades in
winter, spring, and summer [57]. In addition, strong fluctuation in river runoffs from the three main
water systems of the Tarim River were observed during the past decades [58]. However, the runoff
from Tarim River is expected to increase in the period 2010–2039, but reduce in 2070–2099 with the
shrinking of glaciers [59].

As a result, it is important to allocate the annual water resources in the decreasing S/P ratio
regions, including the Tianshan Mountains, which can reduce the influence on farm land and grass
land. By contrary, more snowfall in winter would trigger more floods in spring and summer in the
increasing S/P ratio regions, which occurred in the Tarim Basin and the region to its east. Although
flooding could cause damage to agricultural development and the rural residential area, it would also
provide water resources for these regions where precipitation hardly contributed throughout the year,
and play an important role in maintaining ecosystem stability in these regions.
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5. Conclusions

In this study, the WRF model outputs were used to dynamically downscale and evaluate the
long-term variation of snowfall and S/P ratio in Xinjiang, China. The results showed that the snowfall
displayed complex spatial patterns concerning its long-term variation, with an increase in the southern
edge of the Tarim Basin, the Ili Valley, and the Altay Mountains, but a decrease in the Tianshan
Mountains and the Kunlun Mountains. The S/P ratio experienced an increasing trend in low-elevation
regions, such as the Tarim Basin and the Junggar Basin, but the opposite trends were identified in
relatively high-elevation regions, such as the Altay Mountains, the Tianshan Mountains, and the
western edge of the Junggar Basin. However, the S/P ratios have also changed a little at elevations
above 3500 m, where the temperature is often far below 0 ◦C, such as the Kunlun Mountains. The
increasing runoff was in line with the decreasing S/P ratio in Kaidu River Basin and Manas River
Basin, due to the negative correlation between the S/P ratio and the runoff during the cold season. It
is important to allocate the annual water resources in the decreasing S/P ratio regions, because both
the runoff magnitude and intra-annual patterns in runoff were changed in this region. Validation of
WRF outputs proved that the outputs agreed fairly well with in-situ observations and the CN05.1
dataset. The model captured most details of the precipitation distribution and the results can be
used for assessing the impacts of climate change on snowfall and water resources. However, since
the uncertainty exists in the evaluation of simulating precipitation at high altitude and a complex
topography area, more parameterization schemes and boundary conditions are also needed for
investigating the regional climate change in complex topography areas. A series of sensitivity studies
are also needed to improve the accuracy of the simulations. In addition, it is necessary to couple a
physically-based hydrological model with the WRF model for the estimation of runoff changes.
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Abstract: Mongolia’s Selenga sub-basin of the Lake Baikal basin is spatially extensive, with
pronounced environmental gradients driven primarily by precipitation and air temperature on broad
scales. Therefore, it is an ideal region to examine the dynamics of the climate and the hydrological
system. This study investigated the annual precipitation, air temperature, and river discharge
variability at five selected stations of the sub-basin by using Mann-Kendall (MK), Innovative trend
analysis method (ITAM), and Sen’s slope estimator test. The result showed that the trend of annual
precipitation was slightly increasing in Ulaanbaatar (Z = 0.71), Erdenet (Z = 0.13), and Tsetserleg
(Z = 0.26) stations. Whereas Murun (Z = 2.45) and Sukhbaatar (Z = 1.06) stations showed a significant
increasing trend. And also, the trend of annual air temperature in Ulaanbaatar (Z = 5.88), Erdenet
(Z = 3.87), Tsetserleg (Z = 4.38), Murun (Z = 4.77), and Sukhbaatar (Z = 2.85) was sharply increased.
The average air temperature has significantly increased by 1.4 ◦C in the past 38 years. This is very
high in the semi-arid zone of central Asia. The river discharge showed a significantly decreasing
trend during the study period years. It has been apparent since 1995. The findings of this paper could
help researchers to understand the annual variability of precipitation, air temperature, and river
discharge over the study region and, therefore, become a foundation for further studies.

Keywords: precipitation; air temperature; river discharge; Mann-Kendall test; Selenga river basin;
Lake Baikal basin; Mongolia

1. Introduction

The Lake Baikal basin (LBB) is a suitable area to study climate change impacts. The climate is a
long-term prevailing weather condition. Weather parameters include air temperature, precipitation,
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humidity, sunshine hours, cloudiness, atmospheric pressure, the number of rainy days, wind velocity,
etc. These parameters interact directly or indirectly, greatly affecting the environment and the living
organisms [1]. The semi-arid environment is highly vulnerable to climate change [2,3]. Land surface
temperature is an important ecological factor and its warming trend will influence the topsoil [4,5].
Evapotranspiration and precipitation rates may change due to changes in soil temperature and
air temperature.

Precipitation change may greatly affect the hydrological system of the basin. Due to climate
change and intensive human activities in recent decades, the runoff of many rivers in the world has
been changing. About 22% of the world’s rivers were shown to have a significant decrease in the
annual runoff because of increasing water consumptions and diversion [6,7].

The most sensitive areas for climate change are arid and semi-arid regions of central Asia [2,8,9].
LBB is the largest representative of these regions [3,10]. Lake Baikal, as the world’s largest natural
freshwater lake and its corresponding catchments, is already affected by climate change and the water
quantity becomes erratic [10]. In recent decades, changes in hydrological and water quantity are
primarily attributed to climate change, land use change, contaminant influx from mining areas and
urban settlements as well [11].

As the largest sub-basin of LBB, Selenga River basin is located in the Mongolian and Russian
Federation. The Mongolian plateau is spatially extensive, with pronounced environmental gradients
driven primarily by precipitation and air temperature on large scales. Therefore, it is an ideal region to
examine the dynamics of the landscape structures and hydrology parameters [9]. This area, hydro-climatic
changes can also lead to a shift in hydrology parameters, ecosystem and lake conditions in these areas.
In addition, human activity effects on water pollution, water resources, sedimentary, and river discharge.
In particular, in the Mongolian’s Selenga River basin high socio-economic activities are taking place. In the
study region, there is high population density particularly, around Tuul and Kharaa sub basin. The sub
basin is located in the biggest cities of Mongolia (Ulaanbaatar, Darkhan, and Erdenet), thus the river basin is
highly consumed by the city residence. They consumed the water for agriculture, recreation and domestic
use. In addition, the Selenga river basin water resource is used by the mining industry. Thus, it has a great
role in reducing the quantity of the basin water flow [3,11,12].

This paper aims to investigate spatial and temporal changes in climate and river discharge changes
in Mongolia’s Selenga sub-basin of the LBB understanding from 1979 to 2016. The overall objectives
of the present study are (i) to identify historical climate trends, (ii) to identify trends of spatial and
temporal changes in the river discharge, (iii) to assess the relationship and to which extent can climate
change trends affect the river discharge.

2. Materials and Methods

2.1. Study Area

Lake Baikal is the oldest (about 25 million years old), deepest (1637 m) and largest freshwater lake
(23,000 km3) and is located in the southern part of East Siberia [13]. The transboundary basin of Lake Baikal
is located on the boundary of North and Central Asia (96◦52′–113◦50′ N, 46◦28′–56◦42′ W) [12]. The longest
stretch of the basin from southwest to north-east is 1470 km, and from west to east is 962 km. The minimal
length from west to east is 193 km (Figure 1). The total area of the basin is 573,478 km2, and 52% of
which belong to Mongolia and the remaining belongs to the Russian Federation [14]. In recognition of its
biodiversity and endemism, United Nations Educational, Scientific and Cultural Organization (UNESCO)
declared Lake Baikal as a World Heritage Site in 1996. The lake contains an outstanding variety of endemic
flora and fauna, which is an exceptional value to evolutionary science. It is also surrounded by a system of
protected areas with good scenery and natural values [10,15,16].

As the largest sub-basin of LBB, Selenga River basin is located in the Mongolian and Russian
Federation. The Selenga is a Trans-boundary river, the largest tributary of Lake Baikal. On the
average, it discharges into Lake Baikal ~30 km3 of water, i.e., half of the total inflow into the lake.

285



Water 2018, 10, 1436

Forty-six percent of Selenga annual runoff forms in Mongolian territory. The Mongolian plateau is
spatially extensive, with pronounced environmental gradients driven primarily by precipitation and
air temperature on large scales. The length of the river is 1024 km, its drainage area is 447.06 thousand
km2, of which 148.06 thousand km2 are in the territory of Russia.

 

Figure 1. Location of Lake Baikal basin (LBB), Water gauge station and meteorological stations of the
Selenga River basin located in the Mongolian.

2.2. Data Sources

The data of air temperature, precipitation and hydrologic data of in Mongolia’s Selenga river basin
were taken from Information and Research Institute of Meteorology, Hydrology, and Environment
(IRIMHE) hosts (http://irimhe.namem.gov.mn/), and National Centers for Environmental Information
NOAA’s National Centers for Environmental Information (NCEI) hosts (https://ngdc.noaa.gov/).
The location of the 5 water gauge stations used in this study is shown in Figure 1. For the selection of
climate and water gauge stations in Mongolia’s Selenga sub-basin of the LBB, the following factors
were taken into consideration: (1) spatial distribution; (2) capacity of stations and (3) whether it is near
to the water system (Figure 1) [8,17].

2.3. Methods

Analyses of long-term trends in both the observed and adjusted data were done using
the Mann-Kendall test, with linear changes in the data represented by Kendall-Theil Robust
Lines. This non-parametric approach is well suited for evaluating changes in hydrologic regimes.
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The appendix of [18] provides a concise explanation of the statistics as applied to river discharge
data [19], to remove the influence of serial correlations on the trend analyses. Trend analysis is
used to investigate whether the trend is upward, downward, or no trend in data value points.
The non-parametric Mann-Kendall (MK) test has been applied in studies to detect the trends in
hydro-meteorological observations that do not need the normal distribution of data points. This paper
used the Mann-Kendall (MK) test method to detect the trends in climate and river discharge time
series data. To evaluate the reliability of Mann-Kendall (MK), the results were compared with
ITAM and Sen’s slope estimator test. In addition, annual and seasonal precipitation variability
time series data were investigated by statistical analysis. The study region has four distinct seasons:
summer (June–August), autumn (September–November), winter (December–February) and spring
(March–May). Significance levels at 10%, 5%, and 1% were taken to assess the climate and river
discharge time’s series data by MK, ITAM, and Sen’s slope estimator method (Figure 2).

 
Figure 2. Workflow diagram to detect the changing trends in hydro-meteorological.

2.3.1. Mann-Kendall Trend Test

The Mann-Kendall (MK) test method also shows upward and downward trends with statistical
significance. The strength of the trend depends on the magnitude, sample size, and variations of data
series. The trends in the MK test is not significantly affected by the outliers occurred in the data series
since the MK test statistic depends on positive or negative signs [20–22].

Annual and seasonal data series are used for trend analysis in this study. The trends of annual
precipitation, air temperature, and river discharge have been also analyzed separately.

Individual time series data of climate and discharge are compared with all corresponding time
series data of the year. When the data point of later year is larger than the data point of the previous
year, the MK statistics is increased by one otherwise the MK statistics decreased by one. Thus, the MK
statistics is the cumulative result of all the data values. The Mann-Kendall test statistics “S” is then
equated as:

S =
n−1

∑
i = 1

n

∑
j = i+1

sgn
(

xj − xi
)

(1)
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The trend test is applied to xi data values (i = 1, 2, . . . , n − 1) and xj (j = i + 1, 2, . . . , n).
The data value of each xi is used as a reference point to compare with the data value of xj which is
given as:

sgn
(
xj − xi

)
=

⎧⎪⎨
⎪⎩

+1 if
(

xj − xi
)
> 0

0 if
(
xj − xi

)
= 0

−1 if
(

xj − xi
)
< 0

(2)

where xj and xi are the values in period j and i. When the number of data series greater than or equal
to ten (n ≥ 10), MK test is then characterized by a normal distribution with the mean E(S) = 0 and
variance Var(S) is equated as [23]:

E(S) = 0 (3)

Var(S) =
n(n − 1)(2n + 5)− ∑m

k = 1 tk(tk − 1)(2tk + 5)
18

(4)

where m is the number of the tied groups in the time series, and tk is the number of ties in the kth
tied group.

The test statistics Z is as follows:

Z =

⎧⎪⎨
⎪⎩

s−1
δ if S > 0

0, if S = 0
s+1

δ if S < 0
(5)

when Z is greater than zero, it indicates an increasing trend and when Z is less than zero, it is a
decreasing trend.

In time sequence, the statistics are defined independently:

UFk =
dk − E(dk)√

var(dk)
(k = 1, 2, . . . , n) (6)

Firstly, given the confidence level α, if the UFk > UFα/2, indicates that the sequence has the
significant trend. Then, the time sequence is arranged in reverse order. According to the equation
calculation, while making

UBk = −UFk (7)

K = n + 1 − k (8)

Finally, UBk and UFk are drawn as UB and UF curve. If there is an intersection between the two
curves, the intersection is the beginning of the mutation [24].

2.3.2. Innovative Trend Analysis Method (ITAM)

Innovative trend analysis method (ITAM) has been used in many studies to detect the
hydrometeorological observations and its accuracy was compared with the results of MK
method [25,26]. The ITAM divides a time series into two equal parts, and it sorts both sub-series in
ascending order. Then after, the two halves placed on a coordinate system (xi : i = 1, 2, 3, . . . , n/2)
on X-axis and

(
xj : j = n/2 + 1, n/2 + 2, . . . , n

)
on Y-axis. If the time series data on a scattered plot

are collected on the 1:1 (45◦) straight line, it indicates no trend. However, the trend is increasing when
data points accumulate above the 1:1 straight line and decreasing trend when data points accumulate
below the 1:1 straight line.

The mean value difference between xi and xj could give the trend magnitude of data series.
The first observed data point was not considered in this study when classifying the time series
data into xi and xj data plots since the total number of observed data points are 38 from 1979–2016.
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The direction of the trend is also affected by xi data series. The trend indicator of ITAM is multiplied
by 10 to make the scale similar to the other two tests. The trend indicator is given as:

=
1
n

n

∑
i = 1

10
(

xj − xi
)

μ
(9)

where ф = trend indicator, n = number of observation on the subseries, xi = data series in the first half
subseries class, xj = data series in the second half subseries part and μ = mean of data series in the first
half subseries part.

A positive value of ф indicates an increasing trend. However, a negative value of ф indicates a
decreasing trend. However, when the scatter points closest around the 1:1 straight line, it implies the
non-existence of a significant trend.

2.3.3. Sen’s Slope Estimator Test

The trend magnitude is calculated by [27–30] slope estimator methods. The slope Qi between
two data points is given by the equation:

Qi =
xj − xk

j − k
, for i = 1, 2, . . . , N (10)

where xj and xk are data points at time j and (j > k), respectively. When there is only single datum in

each time, then N = n(n − 1)
2 ; n is number of time periods. However, if the number of data in each

year is many, then N < n(n − 1)
2 ; n total number of observations. The N values of slope estimator are

arranged from smallest to biggest. Then, the median of slope (β) is computed as:

β =

{
Q[(N + 1)/2] when N is odd
Q[(N/2) + Q(N + 2)/(2)/(2)] when N is even

(11)

The sign of β shown whether the trend is increasing or decreasing.

3. Results

3.1. Analysis of Precipitation

Annual mean precipitation of the study region from 1979 to 2016 was found to be 295.2 mm.
The minimum and maximum recorded annual average precipitations were 175.0 and 380.0 mm
respectively. The seasons of the study region are divided into four categories: Spring, summer, autumn,
and winter seasons. The summer season has the largest proportion of precipitation. The seasonal
precipitation varied from spring 39.27 mm (13.3%) to Summer 204.11 mm (69.15%), autumn 43.51mm
(14.74%) to Winter 8.29 mm (2.81%) (Table 1).

The MK curve annual precipitation (changing parameters) shows a sharp decreasing trend in
Ulaanbaatar 1994 to 2010 (Z = 0.71), a sharp decreasing trend in Erdenet from 1994 to 2005 (Z = 0.13),
also, a sharp decreasing trend in Tsetserleg from 1994 to 2005 (Z = 0.26), a statistically significant
increasing trend in Murun from 1984 to 1995 (Z = 2.45), in Sukhbaatar a significant increasing trend
was observed with (Z = 1.06) from 1981 to 2016 and finally a statistically significant increasing trend
was observed in Average (five stations) from 1984 to 1987 (Z = 0.68) (Figure 3).

The annual trend analysis of precipitation in all station using the Mann Kendall test, ITAM, Sen’s
slope estimator test result are presented in (Table 2). The trend in ITAM test shows an increasing trend
in Murun and decreasing trend in other stations. Hence, the increase and decrease in innovative trend
analysis ф test value predict that the magnitude becomes strong and weak, respectively.
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Table 1. The monthly and seasonal precipitation of stations.

Months, Season
Ulaanbaatar

(mm)
Erdenet

(mm)
Tsetserleg

(mm)
Murun
(mm)

Sukhbaatar
(mm)

Average
Precipitation (mm)

Z-Score

January 2.38 2.54 2.52 1.47 3.09 2.40 (−0.83)
February 2.45 2.56 2.90 1.10 2.18 2.24 (−0.84)

March 4.60 6.93 7.37 1.40 2.66 4.59 (−0.75)
April 8.39 14.03 13.47 7.71 9.74 10.67 (−0.52)
May 20.53 24.13 32.52 17.89 24.98 24.01 (−0.02)
June 48.23 69.73 58.95 48.19 48.78 54.78 1.13
July 69.37 99.39 86.13 69.86 64.01 77.75 1.99

August 66.80 86.26 75.71 57.60 71.55 71.58 1.76
September 25.52 34.71 25.98 19.78 32.45 27.69 0.12

October 8.94 12.34 13.07 5.62 10.02 10.00 (−0.55)
November 5.48 7.61 6.27 3.06 6.73 5.83 (−0.70)
December 3.52 4.28 3.02 2.98 4.44 3.65 (−0.79)

Spring 33.52 45.09 53.36 26.99 37.38 39.27 (13.3%) 0.55
Summer 184.41 255.38 220.79 175.65 184.34 204.11 (69.15%) 6.73
Autumn 39.94 54.66 45.31 28.46 49.20 43.51 (14.74%) 0.71
Winter 8.35 9.39 8.43 5.56 9.71 8.29 (2.81%) (−0.61)

Annual precipitation 266.22 364.52 327.89 236.66 280.62 295.18 (100%) 10.14

Note: The number in the brackets indicates low precipitation rates.

(a) Ulaanbaatar station 

 

(b) Erdenet station 

 
 

(c) Tsetserleg station 

 

(d) Murun station 

 
(e) Shukhbaatar station 

 

(f) Average conditions 

 
Figure 3. Trends of annual precipitation across stations (note: UF and UB are changing parameters
where UB = −UF).
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Table 2. The result of Z-statistic of Mann-Kendall (MK), Innovative Trend Analysis Method (ITAM)
(ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)  β

1 Ulaanbaatar 0.71 −0.53 0.63
2 Erdenet 0.13 −0.41 0.28
3 Tsetserleg 0.26 −0.49 0.13
4 Murun 2.45 ** 0.25 1.21 *
5 Sukhbaatar 1.06 * −0.03 0.62
6 Average 0.68 −0.28 0.31

* Trends at 0.1 significance level; ** Trends at 0.05 significance level.

3.2. Analysis of Air Temperature

The MK curve annual air temperature (changing parameters) shows a statistically sharply increasing
trend in Ulaanbaatar from 1994 to 2016 (Z = 5.88), a statistically sharp increasing trend in Erdenet from
1988 to 2016 (Z = 3.87), a statistically sharply increasing trend in Tsetserleg from 1993 to 2016 (Z = 4.38),
a statistically sharp increasing trend in Murun from 1992 to 2016 (Z = 4.77), in Sukhbaatar a statistically
significant increasing trend was observed with (Z = 2.85) from 1986 to 2013 and finally a statistically
significant increasing trend was observed in Average (five stations) (Z = 4.71) (Figure 4).

(a) Ulaanbaatar station 

 

(b) Erdenet station 

 
(c) Tsetserleg station 

 

(d) Murun station 

 
(e) Shukhbaatar station 

 

(f) Average conditions 

 

Figure 4. Trends of annual air temperature across stations (note: UF and UB are changing parameters
where UB = −UF).

The annual trend analysis of air temperature in all station using the Mann Kendall test, ITAM,
Sen’s slope estimator test result is presented in (Table 3). The trend in ITAM test shows an increasing
trend in all stations. Hence, the increase and decrease in innovative trend analysis ф test value predict
that the magnitude becomes strong.
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Table 3. The result of Z-statistic of MK, ITAM (ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)  β

1 Ulaanbaatar 5.88 *** −54.55 *** 0.05
2 Erdenet 3.87 *** 8.39 ** 0.03
3 Tsetserleg 4.38 *** 7.26 0.04
4 Murun 4.77 *** −47.56 0.06
5 Sukhbaatar 2.85 ** 7.13 *** 0.02
6 Average 4.71 *** 18.66 *** 0.04

** Trends at 0.05 significance level; *** Trends at 0.01 significance level.

3.3. Analysis of River Discharge

The MK curve annual river discharge (changing parameters) shows a sharply decreasing trend in
Ulaanbaatar 1994 to 2016 (Z = −3.32), a statistically sharp decreasing trend in Tsetserleg from 1982 to
2016 (Z = −3.84), a significant decreasing trend in Murun from 1986 to 2016 (Z = −1.28), in Sukhbaatar
a significant decreasing trend was observed with (Z = −2.05) from 1993 to 2016 and finally a significant
decreasing trend was observed in Average (five stations) (Z = −2.05) (Figure 5). The annual trend
analysis of river discharge in all station using the Mann Kendall test, ITAM, Sen’s slope estimator
test result are presented in (Table 4). The trend in ITAM test shows a decreasing trend in all stations.
Hence, the increase and decrease in innovative trend analysis ф test value predict that the magnitude
becomes strong.

(a) Ulaanbaatar station 

 

(b) Erdenet station 

 
(c) Tsetserleg station 

 

(d) Murun station 

 
(e) Shukhbaatar station 

 

(f) Average conditions 

 
Figure 5. Trends of annual discharge across stations (note: UF and UB are changing parameters where
UB = −UF).
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Table 4. The result of Z-statistic of MK, ITAM (ф), and Sen’s slope estimator test (β).

S/No. Name of Stations Z (MK)  β

1 Ulaanbaatar −3.32 *** −5.63 −144.12
2 Erdenet 0.00 −0.96 4.46
3 Tsetserleg −3.84 *** −4.65 −56.31
4 Murun −1.28 * −1.01 −64.15
5 Sukhbaatar −2.05 ** −2.00 −550.33
6 Average −2.05 ** −2.00 −169.80

* Trends at 0.1 significance level; ** Trends at 0.05 significance level; *** Trends at 0.01 significance level.

River discharge trend is generally exhibited a downward trend from 1979 to 2016. Especially, river
discharges show a sharp decreasing trend in all stations since 1995.

3.4. Relationship of Climate and River Discharge

The annual average air temperature of the study region from 1979 to 2016 was found to be
0.83 ◦C. The minimum and the maximum recorded air temperature were −0.9 ◦C and 2.9 ◦C per
year, respectively. A dramatic increase in air temperature was observed from 1984 to 2007. In the
study region, the observed air temperature was increased from 1979 to 2016 (R2 = 0.2632) (Figure 6f).
The warmest year was in 2007 (2.9 ◦C). The air temperature most increasing area is Ulaanbaatar city,
it was increasing 1.9 ◦C (R2 = 0.4226) (Figure 6a). The annual average air temperature increased
significantly by 1.4 ◦C. The mean annual air temperature is 16 ◦C to 18 ◦C in July and −16 ◦C to
−22 ◦C in January. In the Mongolian’s Selenga river basin, precipitation varies both in time and space
scale. The average precipitation is 295.2 mm/year. About 85% of the total precipitation falls from April
to September, of which about 69.15% falls during June, July and August. The air temperature and
precipitation changes within the five stations show a different value (Figure 6). Overall precipitation
showed a slightly increasing trend during the period from 1979 to 2016 (Figure 6f).
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Figure 6. Cont.
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(c) Tsetserleg  

 

(d) Murun 

 

(e) Sukhbaatar 

 

(f) Average 
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Figure 6. The air temperature and precipitation trend for the period 1979–2016. The vertical column is
air temperature and precipitation change, and fluctuations line indicates annual values and solid lines
indicate period running averages.

The ratio of precipitation and river discharge to this basin is calculated by the location of the five
meteorological stations and water gauge stations (Figure 7). However, precipitation has been relatively
stable ranging from 1979 to 2016 (Figure 7f).

The trend of air temperature change and the trend of river discharge were estimated. A statistically
significant increase in average air temperature (five stations average) was from 1994 to 2016 (Z = 4.71).
Also, the air temperature increased on all meteorological stations. River discharge exhibited a
decreasing pattern (Figure 8).
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(f) Average conditions-Selenga river 
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Figure 7. Long-term in precipitation and discharge change, in during 1979–2016.
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Figure 8. Long-term in air temperature and discharge change, in during 1979–2016.

Potential linkages between climate variables and the observed changes in river discharge are the
subject of ongoing debate. To determine this, it was the estimation of the relationship between climate
parameters and river discharge (Figure 9).
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(a) Precipitation and discharge 

 

(b) Air temperature and discharge 
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Figure 9. Correlation coefficient: climate and river discharge.

The correlation coefficient between precipitation and river discharge has a strong positive
correlation (r = 0.64) from 1979 to 2016. In this case, the volume of the river discharge will increase when
the number of precipitation increases. During this period, precipitation has increased. The correlation
coefficient between air temperature and river discharge has a weak negative relationship (r = −0.22)
from 1979 to 2016. In this case, the volume of the river discharge will decrease when the air temperature
increases. However, Figures 7 and 8 shows that the river discharge has a sharp decreasing trend
significantly since 1995, it may be related to the impact of other factors. During this period, quantities
of the river discharge passing through bigger cities are dramatically decreasing. Climate change and
river discharges are interdependent [31]. Especially in the rivers fed by precipitation, precipitation can
directly affect the hydrological changes in the basin. Changes in river discharge are different at the five
stations. In particular, River discharge decreased at the Tuul river water gauge station in Ulaanbaatar
city. It has been decreased apparently since 1995. The water shortage was (y = −224.26x + 13,143).
Also, The River discharge has been decreased in Zuunburen station near Sukhbaatar city. The water
shortage was (y = −570.18x + 101,208). This may be due to the high consumption of the river water
(Figure 7).

The average change in climate and river discharge was categorized by 10 years period.
These include: from 1979 to 1988 (I), from 1989 to 1998 (II), from 1999 to 2008 (III), from 2009 to
2016 (IV) (Figure 10). During the III period, precipitation decreases, the temperature increases and also
the river discharge decrease this is in illustrated in Figure 9.
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Figure 10. Decades changing of climate and river discharge.
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However, during in period IV, the amount of precipitation increased, the air temperature
decreased, and the river discharge also decreased. This could be related to other factors rather
than climatic factors.

4. Discussion

An increase in air temperature is among the manifestations of global climate change. The global
average air temperature has increased by 0.85 ◦C from 1880 to 2012, and this may even accelerate
in the near future. The air temperature of worldwide large inland water bodies has been rapidly
warming since 1985 with an average rate of 0.045 ± 0.011 ◦C/year and with the highest rate of
0.10 ± 0.01 ◦C/year [32]. There has been an observed increasing trend mean annual air temperature in
the Selenga River basin by 1.4 ◦C or 0.036 ◦C/year during the considered historical period from 1979 to
2016 (p < 0.05). This is almost twice as much as the global average warming rate of 0.012 ◦C/year
(0.72 ◦C increase during the period from 1951 to 2012). The climate of the Mongolian’s Selenga
river basin is characterized by long and cold winters, dry and hot summers, less precipitation,
and high-temperature fluctuations [10,33]. The annual mean precipitation is 300–400 mm/year in
the Khangai, Khentein, and Huvsgul mountainous regions 150–250 mm/year in the steppe and river
valleys. The results of this study are generally consistent with other research results which reported
increased air temperature and changes precipitation [33,34].

The Selenga River basin lies in the zone of extremely continental climate and a considerable
portion of the basin is occupied by permafrost [10]. Runoff formation conditions in the Selenga River
basin are very diverse. The southern part of the Selenga River basin shows low soil moisture content
and steppe vegetation, while its northern part is covered by dense taiga vegetation and permafrost—an
important source of soil water in summer. The high elevation difference (from 418 to 3514 m) also has
its effect on runoff formation conditions. Rains are the main source of Selenga River basin nourishment.
Snow cover in its drainage basin is not rich, hence the low share of snow in river nourishment.
About half of Selenga annual runoff is the runoff occurred in summer season (June–August), the role of
groundwater in river nourishment is also small [35]. Selenga river basin runoff varies mostly because
of variations of summer precipitation. The rivers of the Selenga River basin show pronounced winter
low-water period from November to March (3–10% of the annual runoff volume), a relatively low
spring snow-melt flood and a series of rain floods in summer and autumn. Many rivers freeze in the
winter season [36]. Especially hydrological processes are very sensitive. The MK, ITAM, and Sen’s
slope estimator test analysis showed that decreasing trend of river discharge was observed across the
stations. The river discharge has a sharp decreasing trend significantly since 1995. It is maybe related
to the impact of other factors. Especially, this may be due to the socioeconomic activities including
mining, industry, agriculture, and urbanization in the basin [8,37–40].

5. Conclusions

In this study, the Mann–Kendall trend test, ITAM, and Sen’s slope estimator test methods were
used to analyze the variability of precipitation, air temperature, and river discharge on an annual basis
in the study basin.

Seasonal variability of precipitation was investigated in all stations. The small significant
increasing trend was observed in Ulaanbaatar, Erdenet, and Tsetserleg stations, whereas other
Murun and Sukhbaatar stations demonstrated a significant increasing trend. The average annual
air temperature for Mongolian’s Selenga river basin is 0.83 ◦C. The average air temperature has
significantly increased by 1.4 ◦C in the past 38 years. This is very high in the semi-arid zone of central
Asia during the past 40 years. This is almost twice the global average warming rate. The river discharge
trend has significantly decreased in the determined study periods. It has been particularly apparent
since 1995. There was conformity in the results obtained from the Mann-Kendall, ITAM test, Sen’s
slope estimator test and the trend line for all stations during the specified study period.
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In the near future, it’s vital to conduct scientific studies on the causes of river discharge change
and its potential influences on the Ecohydrological systems in the basin area.
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Abstract: Sediment runoff from dense highland field areas greatly affects the quality of downstream
lakes and drinking water sources. In this study, multiple linear regression (MLR) models were built
to predict diffuse pollutant discharge using the environmental parameters of a basin. Explanatory
variables that influence the sediment and pollutant discharge can be identified with the model, and
such research could play an important role in limiting sediment erosion in the dense highland field
area. Pollutant load per event, event mean concentration (EMC), and pollutant load per area were
estimated from stormwater survey data from the Lake Soyang basin. During the wet season, heavy
rains cause large amounts of suspended sediment and the occurrence of such rains is increasing due
to climate change. The explanatory variables used in the MLR models are the percentage of fields,
subbasin area, and mean slope of subbasin as topographic parameters, and the number of preceding
dry days, rainfall intensity, rainfall depth, and rainfall duration as rainfall parameters. In the MLR
modeling process, four types of regression equations with and without log transformation of the
explanatory and response variables were examined to identify the best performing regression model.
The performance of the MLR models was evaluated using the coefficient of determination (R2),
root mean square error (RMSE), coefficient of variation of the root mean square error (CV(RMSE)),
the ratio of the RMSE to the standard deviation of the observed data (RSR) and the Nash–Sutcliffe
model efficiency (NSE). The performance of the MLR models of pollutant load except total nitrogen
(TN) was good under the condition of RSR, and satisfactory for the NSE and R2. In the EMC and
load/area models, the performance for suspended solids (SS) and total phosphorus (TP) was good
for the RSR, and satisfactory for the NSE and R2. The standardized coefficients for the models were
analyzed to identify the influential explanatory variables in the models. In the final performance
evaluation, the results of jackknife validation indicate that the MLR models are robust.

Keywords: highland agricultural field area; diffuse pollutant discharge; multiple regression model;
climate change; jackknife validation

1. Introduction

In Lake Soyang basin of South Korea, large amounts of sediment are discharged from highland
agricultural field regions in the wet season. To develop environmental preservation measures that
protect water resources from the turbid water problem and diffuse pollution, prediction models are
necessary to estimate the amount of pollutants discharged from subbasins. In this study, a multiple linear
regression (MLR) model is established to predict the pollutant runoff discharge using environmental
parameters, such as land use, rainfall, and topography.

Water 2018, 10, 1156; doi:10.3390/w10091156 www.mdpi.com/journal/water302
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In South Korea, rainfall events of 200 mm or more occurred only once annually, on average, until
the end of the 1970s, but increased to a frequency of two per year in the 1980s and thereafter occurred
five times in both 1984 and 1998. And, annual precipitation increased by 19% in the past decade,
compared to the first half of the 20th century [1]. Conditions in Lake Soyang, located in the upper
reaches of the Han River, greatly affect the water quality of the water supply of the capital region of
South Korea. Discharged sediments from the highland field area flow into Lake Soyang in the wet
season. Consequently, the turbidity of the lake increases to high levels and persists for a long time.
In July 2006, a heavy rain event occurred in the Lake Soyang watershed. Overall, 670 mm fell over
8 days, with a maximum intensity of 66 mm per hour. The suspended sediment stayed in Lake Soyang
for an extended period of time because of stratification; thus, the turbidity of the lake remained high
and was measured at over 20 nephelometric turbidity units (NTU) for 168 days [2,3].

Regression models have been developed to estimate the sediment discharge using the subbasin
environmental parameters in many areas. Valtanen et al. [4] applied stepwise multiple linear
regression (SMLR) analysis to identify the variables that best explained the variation in event mass
loads (EMLs) in each study catchment during cold and warm periods. Runoff duration, peak flow,
antecedent dry period, mean runoff intensity, total suspended solids (TSS), TN, TP and total organic
carbon (TOC) were used as explanatory variables. Another SMLR analysis was also carried out to
assess whether catchment variables explain the EML and EMC values during the cold and warm
periods [4]. The catchment variables included total impervious area and land use type. All data
were log10-transformed to obtain approximately normal distributions. Bian et al. [5] proposed
a procedure combining different statistical methods and a hydrological model to quantify the annual
runoff response to spatial and temporal variations in impervious surface areas in an urbanized basin.
A hydrological model relating annual runoff depth to precipitation, potential evapotranspiration
and spatial metrics of the impervious area for baseline periods and periods of change was built
using stepwise multiple regression analysis. Roman et al. [6] developed multivariate regression
models to enable the prediction of mean annual suspended sediment discharge on the basis of
basin characteristics, which is useful for many ungaged river locations in the eastern United States.
The models are based on long-term mean sediment discharge estimates and explanatory variables,
such as drainage area, mean elevation, and urban area, obtained from a combined dataset of 1201 US
Geological Survey (USGS) stations. Tuset et al. [7] analyzed rainfall, runoff and sediment transport
relationships in a meso-scale Mediterranean mountain catchment. The relationships among rainfall,
runoff and suspended sediment transport were analyzed with Pearson correlations and multivariate
regression analysis. The multivariate regression method was used to analyze the relationship between
the independent variables (pre-event conditions, rainfall and runoff) and suspended sediment transport
for all flood events. Seasonal relationships between total surface runoff and total sediment transport
indicate that the sediment transport magnitude shows a clear seasonality influenced by rainfall
intensity and sediment availability.

Buendia et al. [8] attempted to use empirical relationships to assess the relationship between
sediment yield and basin scale and to provide an update on the main drivers controlling sediment yield
in these particular river systems. Quantile regression analysis was used to assess the correlation between
basin area and sediment yield, while additional basin-scale descriptors were related to sediment yield by
means of multiple regression analysis. The performance of the model was tested through the jackknife
validation method [8–14]. Paule-Mercado et al. [15] used MLRs to identify the significant parameters
affecting fecal-indicator bacteria concentrations and to predict the response of bacteria concentrations
to changes in land use and land cover. Stormwater temperature, 5-day biochemical oxygen demand
(BOD5), turbidity, TSS, and antecedent dry days were the most influential independent variables for
the bacteria concentrations at the monitoring sites. Several studies have utilized linear regression
techniques to predict bacteria concentrations in rivers [16–19]. Furthermore, regression models have
been widely used to predict and characterize rainfall and runoff characteristics and to determine the
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relationship between these two variables [20–26]. Process-based erosion prediction models have also
been established to predict the intensity of soil erosion in a particular area [27–30].

In this study area, two types of environmental parameters affect the stormwater sediment runoff:
meteorological factors, such as rainfall depth, rainfall intensity, rainfall duration; and number of
preceding dry days and topographic factors, such as percentage of upland field area, subbasin
area, and subbasin slope. In this study, the Pearson correlation test was employed to identify the
linear relationship between the explanatory environmental parameters and the observed stormwater
discharge. SMLR analysis was applied to identify the best performing regression model. Four types of
regression equations were examined to determine the best MLR model. Explanatory and dependent
variables with and without log e-transformation were tested. Then, the MLR models were validated
via a jackknife validation procedure.

2. Materials and Methods

2.1. Study Area and Field Data

Lake Soyang formed following the construction of the Soyang River Dam. The dam was built
to provide irrigation water, flood control and hydroelectric power. The dam has a height of 123 m,
a length of 530 m, and a total storage capacity of 2900 million m3. The basin area is 2969.3 km2;
the forest occupies 86.4%; and the dry field, paddy field and residential areas occupy 4.4%, 1.58%, and
1.60% of the basin, respectively.

In Lake Soyang basin (Figure 1), sediment discharge occurred mainly from the upper part of the
basin. Land use in the tributary watersheds in the dense highland upland field area is shown in Table 1.
In the case of Mandaecheon, the percentage of agricultural area is 27.7%, and upland fields represent
75% of the agricultural land. The Jungjohangcheon, Johangcheon and Jauncheon subbasins contain
very small paddy field areas. In the highland area, to decrease the damage caused by the continuous
cultivation of economic crops, manage pests, maximize crop productivity and improve soil fertility,
30–50 cm of soil dressing has been applied to the top layer of soil. This soil dressing is a significant
contributor to the sediment discharge from the highland fields.

During rainfall, water sampling and flow measurements were performed at the same time. Field
surveys were conducted to perform flow measurements at most of the survey points. For the remaining
points, such as Inbukcheon, Bukcheon, and Soyang River, real-time water level and flow measurements
were obtained from the Ministry of Land Infrastructure and Transport and the Korea Water Resources
Corporation. The sampled water from the measurement sites was delivered to the laboratory as quickly
as possible, and BOD, chemical oxygen demand (COD), SS, TP, TN, and TOC were analyzed using
standard methods [2].

Table 1. Land use of the tributary watersheds in the dense highland fields area.

Stream
Subbasin
Area (ha)

Land Use

Forest
(ha)

Upland
Field (ha)

Paddy
Field (ha)

Others (ha)
Proportion of

Agricultural Land (%)

Jungjohangcheon 1022 860 150 0 12 14.6
Johangcheon 4161 3556 489 0.3 117 12.0

Jauncheon 13,641 11,703 1445 0.4 493 11.0
Mandaecheon 6079 1261 1261 420 3137 27.7

Gaahcheon 4732 1104 578 298 2752 18.5

In the statistical analysis of this study, the results of stormwater runoff surveys from 2013 to 2016
at nine points in the Jaun, Mandae and Gaha area [31] were used. Of the 79 rainfall events, nine data
were too high or too low for rainfall amount due to runoff load measurements and calculation errors;
those data were excluded. The discharge load survey was performed from the beginning of the rainfall
to the point where it returned to the normal water level after the end of the rainfall. Runoff discharge
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data of 70 storm events were used to build the MLR models to predict the pollutant load, EMC and
pollutant load per area. The range of the rainfall depth used in the MLR model construction was from
10 mm to 215 mm.

Figure 1. Soyang River basin and stormwater survey sites.

2.2. Data Analysis

Using water quality and runoff flow data from 70 rainfall events in the Lake Soyang basin,
pollutant load per event, EMC, and pollutant load per area were estimated for each rainfall event.
The total pollutant load during a rainfall event was calculated using Equation (1). The EMC was
defined as the pollutant mass contained in the runoff event divided by the total flow volume of the
event. The total pollutant load was divided by the subbasin area to estimate the pollutant load per area.

Total pollution load/rain f all event =
n

∑
i=1

CiQiΔti (1)

EMC =
∑ QiCiΔt

∑ QiΔt
(2)

where n represents the number of total measurements, Qi is the runoff flow at n number of time steps
(Δt) and Ci is the concentration of a water quality measurement.

The distribution of the nonpoint pollutant discharge for the 70 rainfall events from 2013 to 2016 is
presented in Table 2. Figure 2 shows box plots of pollutant load per event, EMC, and pollutant load
per area at the survey points in the Lake Soyang basin. The maximum, minimum and median values
of the suspended sediment (SS) load/event were 46,125,100 kg, 613 kg and 263,083 kg, respectively.
The maximum, minimum and median values of the TP load/event were 32,406 kg, 1.83 kg and 480 kg,
respectively. As shown in Figure 2, all the mean values of the pollutant loads are larger than the
values of the third quartile, and the distributions are biased toward the high values. The maximum,
minimum and median values of the SS EMC were 1437 mg/L, 3.8 mg/L and 157 mg/L, respectively.
The maximum, minimum and median values of the TP EMC were 1.96 mg/L, 0.011 mg/L and
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0.27 mg/L, respectively. All the mean values of the EMCs lie between the 50th percentile and the 75th
percentile, and the distributions are relatively uniform.

The explanatory variables that are considered to explain the nonpoint pollutant discharge in the
MLR models are the percentage of fields (% field), subbasin area (SA), and mean slope of subbasin
(slope) as topographic parameters, and the number of preceding dry days (Ndry), rainfall intensity
(Rint), rainfall depth (Rain), and rainfall duration (Dur) as rainfall parameters (Table 3).

(a) 

(b) 

(c) 

Figure 2. Box plots of nonpoint pollutant discharge in the Lake Soyang basin. The top (a) and bottom
(c) of each box represent the third and first quartiles, the solid line inside the box is the second quartile
(b), and the dotted line inside the box is the mean. One whisker stretches from the third quartile to the
maximum, and the other whisker stretches from the first quartile to the minimum.

306



Water 2018, 10, 1156

Table 2. Distribution of the nonpoint pollutant discharge for the 70 rainfall events in the Lake
Soyang basin.

Pollutant Min.
25th

Percentile
50th

Percentile
75th

Percentile
Max. Mean

SS load (kg) 613 44,839 263,083 1,802,409 46,125,100 1,843,969
COD load (kg) 186 4410 13,192 44,608 1,686,594 83,565
BOD load (kg) 31 689 3477 15,982 456,773 20,233
TN load (kg) 187 1852 6563 20,745 541,563 28,277
TP load (kg) 1.8 111 480 1685 32,406 2010

SS (EMC) (mg/L) 3.8 75.6 157 338 1437 266
COD (EMC) (mg/L) 1.5 5.13 7.21 12.2 43.6 9.16
BOD (EMC) (mg/L) 0.20 1.1 1.85 3.47 9.0 2.49
TN (EMC) (mg/L) 0.67 1.89 3.48 7.63 11.4 4.75
TP (EMC) (mg/L) 0.011 0.13 0.27 0.54 1.96 0.37

SS (load/area) (kg/ha) 0.129 5.81 22.6 95.37 2118 130
COD (load/area) (kg/ha) 0.0139 0.57 1.38 3.54 44.0 3.12
BOD (load/area) (kg/ha) 0.0078 0.10 0.34 1.18 9.5 0.87
TN (load/area) (kg/ha) 0.0164 0.21 0.69 1.93 20.4 1.54
TP (load/area) (kg/ha) 0.00038 0.012 0.047 0.12 5.19 0.16

Table 3. Explanatory variables considered in the regression models to predict pollutant discharge.

Variables Description Units

% field Percentage of fields %
SA Subbasin area km2

Ndry Number of preceding dry days day
Rint Rainfall intensity mm/h

Slope Mean slope of the subbasin ◦
Rain Rainfall depth mm
Dur Rainfall duration h

A Pearson correlation coefficient matrix was used to identify the correlations among the
surveyed pollutant discharge estimates and the explanatory variables. The correlations among natural
log-transformed variables were also tested using Pearson correlation.

2.3. MLR Model Building

MLR modeling was performed to predict the pollutant discharge from the subbasins in the Soyang
River. The models were built to explain the pollutant discharge using the subbasin topographic and
rainfall data. In the MLR modeling, four types of regression equations are examined:

Type1 : Y = a0 + ∑n
i=1 aiXi (3)

Type2 : Ln(Y) = a0 + ∑n
i=1 aiXi (4)

Type3 : Y = ea0 Xa1
1 Xa2

2 · · · Xan
n or Ln(Y) = a0 + ∑n

i=1(aiLn(Xi)) (5)

Type4 : Y = ea0 Xa1
1 Xa2

2 · · · Xam
m eam+1Xm+1 · · · eanXn or Ln(Y) = a0+∑m

i=1(aiLn(Xi)) + ∑n
i=m+1(aiXi) (6)

where a0 is the regression constant and ai is the regression coefficient of the explanatory variable Xi.
In type 1, the original variables are used to build the MLR model. In type 2, dependent variables,
such as pollutant load, EMC and load/area, are log e-transformed to reduce skewness. In type 3,
all the explanatory and dependent variables are log e-transformed. In type 4, the dependent variables
and some of the explanatory variables are log e-transformed. The fitness of the four regression
equations was evaluated by the coefficients of determination of the MLR models. The MLR models
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were examined in terms of their ability to predict the runoff pollutant discharge for each water quality
variable (SS, COD, BOD, TN, and TP).

Collinearity may introduce serious stability problems, such as high mean square errors, in a
regression model. Therefore, the collinearity of the predictor variables in the created MLR model
were tested by calculating the variance inflation factor (VIF) [32]. Collinearity is present when the
largest VIF is greater than 10 or the average VIF value is substantially greater than 1 [32,33]. VIFs were
calculated to analyze the multicollinearity in this MLR model.

The MLR model performance was evaluated using the R2, RMSE, CV(RMSE), RSR and the NSE.

R2 =

[
∑n

i=1
(

Pi − P
)(

Oi − O
)]2

∑n
i=1 (Pi − P)2

∑n
i=1
(
Oi − O

)2 (7)

RMSE = [
1
N

n

∑
i=1

(Pi − Oi)
2]

1/2

(8)

CV(RMSE ) =
[∑n

j=1 (Pij − Oij)
2/n]

1/2

(∑n
i=1 Oij/n)

(9)

RSR =

[√
∑n

i=1 (Oi − Pi)
2
]

[√
∑n

i=1 (Oi − O)
2
] (10)

NSE = 1 − ∑n
i=1 (Oi − Pi)

2

∑n
i=1
(
Oi − O

)2 (11)

where Oi is the observed daily load, O is the mean of the observed daily load, pi is the calculated
daily load, and n is the number of data values. The R2 index describes the ability of the model to
explain variability among the data. RSR incorporates the benefits of error index statistics and includes
a scaling/normalization factor; the lower the RSR is, the better the model simulation performance.
The performance ratings for stream flow proposed by Moriasi et al. [33] were ‘very good’ (0.00 ≤
RSR ≤ 0.50), ‘good’ (0.50 < RSR ≤ 0.60), or ‘satisfactory’ (0.60 < RSR ≤ 0.70). NSE is a normalized
statistic that reflects the relative magnitude of the residual variance compared with the variance in the
observed data (good (NSE > 0.7), satisfactory (0.4 < NSE ≤ 0.7) and unsatisfactory (NSE ≤ 0.4)) [30,34].

Finally, the performance of the MLR model was tested using the jackknife validation
method [8,11,14]. This method consists of deleting one site and carrying out the multiple regression
analysis with the same dependent variables and the remaining sites. The pollutant discharge of the
deleted site is calculated with the equation resulting from the multiple regression associated with the
remaining sites. This process is repeated, deleting one site each time.

3. Results and Discussion

3.1. Correlation Analysis between Nonpoint Pollutant Discharge and Explanatory Variables

Table 4 shows the Pearson correlation between runoff discharge and subbasin characteristics,
without log transformation of the variables. In Table 5, the Pearson correlation matrix between
log-transformed variables is introduced. As the values of the correlation coefficients between
log-transformed variables were slightly higher (r < 0.69; Table 5) than those of the non-log-transformed
variables (r < 0.65; Table 4), we used log-transformed variables as explanatory variables in the MLR
models. Compared to other environmental parameters, the rainfall depth and subbasin area showed
a relatively significant correlation with most response discharge variables. The rainfall intensity had
a relatively significant positive correlation with the response variables of EMC and load/area because
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the rainfall intensity directly affects the EMC and load/area of each storm event. On the other hand,
the subbasin slope had a negative correlation with the response variables of EMC and load/area.

Table 4. Pearson correlation matrix between stormwater runoff discharge and subbasin characteristics.

Variables % field SA Rain Dur Ndry Rint Slope

SS (load) −0.187 0.102 0.524 0.236 −0.135 0.260 0.088
COD (load) −0.211 0.563 0.317 0.297 0.015 0.022 0.239
BOD (load) −0.217 0.458 0.352 0.353 −0.080 0.011 0.213
TN (load) −0.214 0.488 0.374 0.316 −0.053 0.057 0.220
TP (load) −0.205 0.417 0.514 0.356 −0.150 0.160 0.178
SS (EMC) 0.498 −0.293 0.387 0.181 −0.115 0.251 −0.585

COD (EMC) 0.125 −0.199 0.166 −0.098 −0.099 0.397 −0.150
BOD (EMC) 0.120 −0.317 0.187 0.095 −0.049 0.147 −0.227
TN (EMC) 0.196 −0.065 0.157 −0.022 0.227 0.195 −0.207
TP (EMC) 0.355 −0.366 0.223 −0.115 −0.216 0.404 −0.391

SS (load/area) 0.198 −0.166 0.632 0.313 −0.185 0.283 −0.240
COD (load/area) 0.102 −0.095 0.599 0.367 −0.175 0.224 −0.108
BOD (load/area) 0.077 −0.147 0.652 0.476 −0.212 0.172 −0.124
TN (load/area) 0.132 −0.180 0.583 0.348 −0.172 0.210 −0.137
TP (load/area) 0.108 −0.114 0.441 0.190 −0.148 0.212 −0.106

Note: Bold marked correlations are significant at p < 0.01.

Table 5. Pearson correlation matrix between natural log-transformed stormwater runoff discharge and
subbasin characteristics.

Variables ln(% field) ln(SA) ln(Rain) ln(Dur) ln(Ndry) ln(Rint) Slope

ln(SS(load)) −0.12 0.42 0.58 0.44 −0.12 0.29 −0.16
ln(COD(load)) −0.38 0.69 0.43 0.49 −0.12 0.08 0.25
ln(BOD(load)) −0.34 0.60 0.51 0.49 −0.11 0.18 0.14
ln(TN(load)) −0.32 0.61 0.47 0.48 −0.12 0.14 0.17
ln(TP(load)) −0.16 0.48 0.59 0.43 −0.16 0.30 −0.06
ln(SS(EMC)) 0.40 −0.37 0.47 0.03 −0.11 0.48 −0.63

ln(COD(EMC)) 0.19 −0.40 0.23 −0.12 −0.06 0.33 −0.14
ln(BOD(EMC)) 0.20 −0.44 0.37 −0.06 −0.02 0.44 −0.36
ln(TN(EMC)) 0.33 −0.49 0.23 −0.13 0.09 0.35 −0.38
ln(TP(EMC)) 0.45 −0.56 0.36 −0.17 −0.08 0.52 −0.59

ln(SS(load/area)) 0.34 −0.30 0.64 0.28 −0.16 0.47 −0.54
ln(COD (load/area)) 0.17 −0.18 0.62 0.39 −0.22 0.37 −0.23
ln(BOD (load/area)) 0.18 −0.24 0.65 0.35 −0.18 0.43 −0.33
ln(TN(load/area)) 0.30 −0.37 0.59 0.29 −0.19 0.41 −0.36
ln(TP(load/area)) 0.37 −0.37 0.65 0.24 −0.21 0.52 −0.52

Note: Bold marked correlations are significant at p < 0.01.

3.2. MLR Analysis

Four types of MLR models corresponding to Equations (3)–(6) were tested to identify the most
suitable models (Table 6). The R2 values for SS, COD, BOD, TN, and TP in the type 1 MLR of pollutant
load ranged from 0.275 to 0.447. The R2 values for SS, COD, BOD, TN, and TP in the type 1 MLR of
EMC and load/area were also low, indicating poor performance of the regression models. The R2

values for SS, COD, BOD, TN, and TP in the type 2 MLR of pollutant load were 0.76, 0.67, 0.64, 0.65,
and 0.80, respectively. The R2 values of the type 2 MLR were quite high, but most of the VIF values
were larger than 5, with a few values greater than 10. Thus, the VIF showed that multicollinearity was
observed in the established models and that the type 2 MLR was not adapted. Although the R2 values
of the type 2 MLR for load/area were acceptable, the VIF values were high, indicating multicolinearity.
VIF values and other statistics of MLRs were presented only for the selected model. The results of the
MLR model employing the type 4 equation are listed in Tables 7–9.
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Table 6. Coefficients of determination from four types of MLR analysis.

Runoff Discharge Type MLR Type SS COD BOD TN TP

Load Type 1 0.275 0.425 0.340 0.386 0.447
Type 2 0.764 0.672 0.641 0.654 0.801
Type 3 0.720 0.687 0.688 0.614 0.689
Type 4 0.736 0.687 0.694 0.614 0.741

EMC Type 1 0.477 0.157 0.100 0.254 0.33
Type 2 0.646 0.123 0.273 0.321 0.584
Type 3 0.536 0.226 0.324 0.539 0.592
Type 4 0.655 0.226 0.324 0.539 0.662

Load/Area Type 1 0.448 0.359 0.460 0.340 0.195
Type 2 0.734 0.503 0.526 0.497 0.686
Type 3 0.640 0.424 0.496 0.471 0.651
Type 4 0.695 0.427 0.509 0.471 0.675

The R2 values for SS, COD, BOD, TN, and TP in the type 3 MLR of the pollutant load were also
fairly high, but all VIF values were less than 5. Among the type 3 MLR models, the SS, TN, and TP in
the MLR of EMC and the SS and TP in the MLR of load/area showed acceptable R2 values. The values
of R2 for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were 0.74, 0.69, 0.69, 0.61,
and 0.74 respectively. The R2 values of the type 4 MLR were a little better than those of the type 3
MLR, and all VIF values were less than 5. Thus, we selected the type 4 equation as the MLR model
to predict the runoff pollutant discharge in the study area. However, the COD and BOD in the MLR
of EMC and COD and TN in the MLR of load/area could not explain the variance in the pollutant
discharge properly.

Using the stepwise variable selection method, two to five variables were retained in the pollutant
load model, as shown in Table 7. In the case of the SS model, given the R2 value, 73.6% of the variability
of the dependent variable ln(SS load) is explained by the four explanatory variables. The MLR models
indicated in Tables 7–9 are statistically significant at p < 0.0001 except for the ln(COD EMC) model
(p = 0.00019). The R2 values for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were
fairly high (0.614 < R2 < 0.741), as indicated in Table 7. The performance evaluation by CV(RMSE) [35]
shows that the SS model was the best and that the other models of the water quality variables were
also acceptable. The range of RSR for SS, COD, BOD, and TP in the MLR models of pollutant load
(Table 7) was from 0.509 to 0.559, and the performance of the MLR for these variables was good [34].
The RSR for TN was 0.622, and the performance of the TN model was satisfactory. The NSE values for
the MLR models of pollutant load ranged from 0.61 to 0.74, and the MLR models of the pollutant load
had good performance. As a special case, in linear regression forecasting models like this study, NSE is
equal to the coefficient of determination, R2 [36]. Overall, all the MLR models of the pollutant load
had good prediction performance.

All VIF values in Table 7 are lower than 5, and the mean VIF values are not large. These results
suggest that the coefficient of regression for the explanatory variables could be statistically acceptable
and that multicollinearity was not present in the established models.

Standardized coefficients refer to how many standard deviations a dependent variable will change
in response to an increase of one standard deviation in the predictor variable. This statistic allows us
to compare the relative contribution of each independent variable in the prediction of the dependent
variable. The higher the absolute value of a coefficient is, the more important the weight of the
corresponding variable. Standardized coefficients are useful for comparing effects across different
measures. The standardized regression coefficients of Table 7 indicate that subbasin area (0.576 < βi
< 0.709) and rainfall depth (0.453 < βi < 0.563) are important influential parameters for all the load
predictions. In addition, % field has relatively small effects on the SS, BOD and TP models.
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The area with the high density of highland fields in Lake Soyang basin has steeper slopes than
the other areas. However, Lake Soyang basin also contains highly mountainous terrain; thus, the mean
slopes of the dense highland field subbasins are lower than the average slope of the entire Lake Soyang
basin. Therefore, the standardized regression coefficients of mean slope for the SS and TP load models
have (−) signs, and the mean slope has a negative influence on the SS and TP loads.

The explanatory variables for the SS and TP models explained 65.5% and 66.2% of variation in
the response variables of EMC. The R2 values were fairly high, as indicated in Table 8. The R2 value
for the TN model of EMC was 0.539, and the TN model was acceptable [34]. The CV(RMSE) value of
the BOD model was quite high, and the model was not acceptable. The RSR values for SS and TP in
the MLR models of EMC (Table 8) were 0.587 and 0.581, respectively, and the performances of these
models were good. The RSR for the TN model was 0.679, and the performance of the TN model was
satisfactory. However, the RSR values for the COD and BOD models were high, and these models
were unsatisfactory. The NSE values for the MLR models of the EMC show that the SS, TP, and TN
models were satisfactory but that the COD and BOD models were not satisfactory. The VIF values for
the EMC models were lower than 5, and the mean VIF values were not large. Overall, the MLR models
for SS and TP have good prediction performance, and the TN model has acceptable performance.

The standardized regression coefficients in Table 8 indicate that rainfall intensity and rainfall
depth are influential explanatory variables for the EMC response variables. Rainfall intensity (0.234 <
βi < 0.426) is an important factor for the TP, TN, and COD models, and rainfall depth is important for
the SS and BOD models. In the pollutant load model, rainfall depth is a very important parameter,
whereas rainfall intensity is not an important explanatory variable. However, rainfall intensity is an
influential parameter for the EMC of a storm event. From the Pearson correlation matrix between
natural log-transformed stormwater runoff discharge and subbasin characteristics in Table 5, we also
can see that EMCs are better correlated to rainfall intensity than rainfall depth, and pollutant loads are
much better correlated to rainfall depth than rainfall intensity. In agricultural areas such as the study
area, the larger the rainfall intensity, the more nutrients are released from fertilizer and vegetation roots.
The standardized regression coefficients of the mean slope for the SS and TP load models have (−)
sign, and the mean slope has a large negative influence on the SS and TP EMC. Additionally, % field
also has a negative impact on the SS and TP EMC.

The explanatory variables for the SS and TP models explained 69.5% and 67.5% of the variation in
the load/area response variables, and the R2 values were fairly high, as indicated in Table 9. The R2

value for the BOD model of load/area was 0.51; thus, the BOD model was acceptable. The RSR values
for SS and TP in the MLR models of load/area (Table 9) were 0.55 and 0.57, respectively, and the
performances of these models were good. The RSR for the BOD model was 0.70, and the performance
of the TN model was satisfactory. The NSE values in the MLR models of the load/area show that the
SS, TP, and BOD models were satisfactory. The VIF values for the load/area models were less than 5,
and the mean VIF values were not large. Overall, the MLR models of load/area for SS and TP have
good performance, and the BOD model has acceptable performance.

The standardized regression coefficients in Table 9 indicate that rainfall depth (0.576 < βi < 0.634) is
a highly influential parameter for all response variables in the load/area prediction. The β coefficients
of the mean slope for the SS and TP load/area models are −0.79 and −0.49, respectively, and the
absolute values of the coefficients are comparable to the coefficients of rainfall depth, indicating that
the mean slope is a remarkable negative parameter on the SS and TP load/area results.

3.3. Jackknife Validation of the MLR Model

The performance of the jackknife validation was evaluated using R2, RSR and NSE (Table 10).
The R2 values were calculated by the linear regression between observed and jackknife validation
values, and RSR and NSE were also calculated. The R2 (Figure 3) and NSE values associated with the
jackknife procedure were slightly lower than the results of the MLR models, whereas the RSR values
were slightly higher than the MLR models. Therefore, the performance of the jackknife validation was
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slightly worse than that of the MLR models. The results of jackknife validation indicate that the MLR
models are robust.

(a) MLR model (b) Jackknife validation 

 

 

 

 

 

 

Figure 3. Comparison between the observed and predicted values during storm events based on
(a) MLR models and (b) the results of jackknife validation.
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Table 10. Three performance indicators for the stormwater runoff discharge values based on
jackknife validation.

Response Variable (Jackknife) R2 RSR NSE

ln(SS load) 0.694 0.554 0.693
ln(COD load) 0.630 0.611 0.627
ln(BOD load) 0.607 0.630 0.603
ln(TN load) 0.550 0.674 0.545
ln(TP load) 0.609 0.629 0.605
ln(SS EMC) 0.537 0.684 0.533

ln(COD EMC) 0.155 0.924 0.147
ln(BOD EMC) 0.211 0.894 0.202
ln(TN EMC) 0.503 0.730 0.468
ln(TP EMC) 0.601 0.633 0.599

ln(SS load/area) 0.655 0.588 0.654
ln(COD load/area) 0.305 0.845 0.287
ln(BOD load/area) 0.478 0.723 0.477
ln(TN load/area) 0.413 0.768 0.410
ln(TP load/area) 0.602 0.632 0.600

4. Conclusions

MLR models were built to predict the nonpoint-source pollutant discharge in the highland field
area in the wet season using environmental parameters as explanatory variables. Runoff discharge
data from 70 storm events were used to build the MLR models to predict the pollutant load, EMC and
pollutant load per area. Pearson correlation tests were employed to identify the linear relationships
between subbasin environmental parameters and the observed stormwater discharge. As the values of
correlation coefficients between log-transformed variables were slightly higher than those of variables
that had not been log transformed, the log-transformed variables were selected as explanatory variables
in the MLR models.

The R2 values for SS, COD, BOD, TN, and TP in the type 4 MLR of pollutant load were quite high
(the best among the four examined MLR types), and all VIF values were less than 5. Thus, the type 4
equation was chosen as the MLR model to predict the runoff pollutant discharge.

The R2 values for the five water quality variables in the MLR of pollutant load were fairly high
(0.614 < R2 < 0.741), and the RSR values for SS, COD, BOD, and TP in the MLR models of pollutant
load ranged from 0.509 to 0.559. Hence, the performance of the MLR for these variables was good [34].
The RSR for TN was 0.622, and the performance of the TN model was satisfactory. The NSE values for
the MLR models of the pollutant load indicated good performance. Hence, most of the MLR models of
the pollutant load have good prediction performance.

The MLR models of EMC for SS and TP also have good prediction performance, and TN model
has acceptable performance. The MLR models of load/area for SS and TP have relatively good
performance, and the BOD model has acceptable performance. Based on the R2, RSR and NSE values,
the performance of the jackknife validation was slightly worse than that of the MLR models. Thus,
the results of jackknife validation indicate that the MLR models are robust.

The results of the standardized coefficients for the MLR models indicate that subbasin area and
rainfall depth are important influential parameters for all the load predictions. The mean slope exerts
a negative influence on the SS and TP loads on account of topographic characteristics, as previously
explained. For the pollutant load model, rainfall depth is a very important parameter, whereas rainfall
intensity was not chosen as an explanatory variable. However, rainfall intensity has an influence on
the EMC of the storm event. The mean slope has a large negative influence on the SS and TP EMC,
and % field has a negative impact on the SS and TP EMC. Additionally, the rainfall depth is a highly
influential parameter for all response variables of the load/area predictions, similar to the pollutant
load models. The mean slope has a large negative influence on the SS and TP load/area.
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The average slope of fields, rather than the average slope of the whole sub-basin, can be
an important explanatory variable for the pollutant discharge load of each subbasin. Similar or
even better MLR results for EMC could have been obtained using peak rainfall intensity as explanatory
variables. Therefore, future studies on MLR need to consider this.
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Abstract: In this study, variation characteristics of hydrometeorological factors were explored based
on observed time-series data between 1957 and 2010 in four subregions of the Yellow River Basin.
For each region, precipitation–streamflow models at annual and flood-season scales were developed
to quantify the impact of annual precipitation, temperature, percentage of flood-season precipitation,
and anthropogenic interference. The sensitivities of annual streamflow to these three climatic factors
were then calculated using a modified elasticity coefficient model. The results presented the following:
(1) Annual streamflow exhibited a negative trend in all regions; (2) The reduction of annual streamflow
was mainly caused by a precipitation decrease and temperature increase for all regions before 2000,
whereas the contribution of anthropogenic interference increased significantly—more than 45%,
except for Tang-Tou region after 2000. The percentage of flood-season precipitation variation can
also be responsible for annual streamflow reduction with a range of 7.36% (Tang-Tou) to 21.88%
(Source); (3) Annual streamflow was more sensitive to annual precipitation than temperature in
the humid region, and the opposite situation was observed in the arid region. The sensitivities
to intra-annual climate variation increased after 2000 for all regions, and the increase was more
significant in Tou-Long and Long-Hua regions.

Keywords: intra-annual climate change; variation in percentage of flood-season precipitation;
natural streamflow variation; contribution and sensitivity analysis; Yellow River

1. Introduction

A number of studies have reported streamflow reduction in several rivers throughout the
world [1–5], putting enormous stress on ecological and socioeconomic systems. This is especially
stressful for semiarid and semihumid regions, where the hydrological cycle and water yield will be
more vulnerable to climate change and anthropogenic interference [6]. Climatic changes include
temperature changes and the redistribution of precipitation, which together affect streamflow
discharge [7]. Anthropogenic interference mainly consists of land use/cover change (LUCC),
urbanized and industrialized extension, and hydropower development and irrigation intensification,
which greatly alter the underlying surface and water resource reapportionment [8]. Quantification of
streamflow changes and identification of the various contributing factors are of considerable
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importance for a better understanding of the hydrologic mechanisms, which is beneficial for planning
suitable adaptation strategies and water management.

There are various methods to separate the impacts of climate change and anthropogenic
interference on streamflow, mainly including catchment experiments, hydrological models,
and statistical methods [9]. Catchment experiments are the most rigorous empirical research design
for estimating the effects of land use on aquatic systems [10], but they can be influenced by the
variation in experimental conditions and the presentation of results [11]. Most relevant studies
indicate that catchment streamflow decreased significantly after afforestation and increased after
deforestation [10,12,13]. Hydrological models, both distributed and lumped, have been widely
used [7,14–16]. Hu et al. applied the water and energy budget-based distributed hydrological
model (WEB-DHM) to diagnose and quantify climate and human impacts on streamflow change [17].
Hundecha et al. applied a conceptual rainfall–runoff model to 95 catchments in the Rhine basin to
model the effect of land use change on runoff [18]. Statistical methods such as streamflow elasticity have
also been used in regions specifically with available long-term climate and hydrologic data [9,19,20].
Tian et al. used regression analysis to illustrate runoff decline via comparison of precipitation–runoff
correlation for the period prior to and after sharp runoff decline [21].

The semiarid and arid Yellow River Basin (YRB) is the main source of surface water in the
northwest and northern part of China. The annual streamflow is about 58 billion m3, and the water
resource per capita is 905 m3—only a third of the national average, which poses a threat to the
YRB’s water resources availability. The climbing industry, agriculture, and household demand for
water induced by rapid economic development and expanding urbanization is also a challenge [22].
In addition, some ecological programs launched by the Chinese government since 1999 have greatly
altered the regional water cycle, including the Natural Forest Conservation Program (NFCP) and
Grain for Green Project (GFGP) (http://tghl.forestry.gov.cn/) [6,23], and therefore, the basin is very
sensitive to climate change and anthropogenic interference. Attempts have been made to understand
the long-term streamflow variation and the sensitivity of streamflow to climate change in the Yellow
River Basin. Tang et al. used a distributed biosphere hydrological (DHB) model system to simulate
hydroclimate connections in the Yellow River Basin and found that climate change dominated the
predicted changes in the upper and middle reaches, but anthropogenic interference dominated the
lower reaches [24]. Liu et al. found that streamflow was more sensitive to precipitation in humid
regions or wet years than in arid regions or dry years by means of streamflow elasticity [25].
Li et al. investigated the changing properties and underlying causes for decreased streamflow by
both the Budyko framework and hydrological modeling techniques [26]. However, most of these
previous studies focused on the entire basin or a local scale of catchments instead of comparing
different subregions, let alone the comparison before and after the implementation of Natural Forest
Conservation Program and Grain for Green Project. Moreover, few studies have paid attention to the
contribution made by variations in the intra-annual distribution of precipitation, with only the annual
precipitation considered.

The objectives of this paper are as follows: (1) to explore the spatial–temporal variation of annual
precipitation, average temperature, the percentage of flood-season precipitation and natural streamflow
in different subregions of YRB; (2) to quantitatively analyze the spatial–temporal characteristics of the
contribution made by different meteorological factors and anthropogenic interference to streamflow
changes in different subregions; (3) to analyze the spatial–temporal characteristics of the sensitivity of
annual streamflow to various meteorological factors.

2. Study Area and Data

2.1. Study Area

The Yellow River (Figure 1) originates in the Qinghai Province of China and flows into Bohai
Bay, forming the Yellow River Basin, which covers a total watershed area of 795,000 km2 (including
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endoreic inter flow area). The main stream is 5464 km long with a slope of 4480 m. It can be divided
into three parts. The upper reach travels 3472 km and drains 428,000 km2 of land. The middle reach
flows for 1206 km, with a drainage area of 344,000 km2. When the middle reach flows through the
Loess Plateau, the tributaries transport vast amounts of sediment, proclaiming the Yellow River as
having the highest sediment content in the world. The remaining down reach has a length of 786 km
and a drainage area of 23,000 km2. The climatic and hydrologic conditions of the YRB are complex
because of the large geographical extent and elevation difference. The precipitation exhibits high
spatial and temporal variabilities: the ratio of rainfall between the North and South is greater than 5,
70% of precipitation falls between June and September, and the variation coefficient (Cv) is between
0.15 and 0.4. Temperature disparity is one of the major climate features in the YRB, with an annual
mean temperature fluctuating from −4 ◦C to 14 ◦C. Considering the critical role played by the Yellow
River in regional water supply and the tremendous challenges posed by water shortages, an analysis
of the variation and sensitivity of annual streamflow is both important and imperative.

Figure 1. Location and national network of the meteorological and hydrological stations in the YRB.

2.2. Data Collection and Preprocessing

The datasets used in this study include climate, streamflow, leaf area index (LAI), and Digital
Elevation Model (DEM) data.

Climate data were obtained from the China Meteorological Administration (CMA), including daily
precipitation from 582 rainfall gauges and the daily mean, maximum, and minimum temperatures
from 97 meteorological stations inside and near the Yellow River basin from 1957 to 2010.

The monthly naturalized streamflow time-series for four hydrological stations (Tangnaihai,
Toudaoguai, Longmen, and Huayuankou) between 1957 and 2010 were obtained from the Yellow River
Hydrographic Bureau (YRHB). These four-gauge stations were selected with the intent of determining
streamflow changes in four different subregions. Specifically, streamflow at Tangnaihai was considered
the source region; the streamflow from the upper reach was the difference between Toudaoguai and
Tangnaihai; the difference between Huayuankou and Toudaoguai was declared as the middle reach
streamflow. Due to the complex hydrogeological conditions in middle reach (Loess Plateau), Longmen
station was added to separate the middle reach into two detailed parts. Four regions were thus formed:
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the source region, Tang-Tou region, Tou-Long region, and Long-Hua region. Particularly, this dataset
was the naturalized streamflow, having removed the variation caused by artificial water intake and
reservoir storage and streamflow. That is to say, different from the broad sense, the anthropogenic
interference defined in this study mainly included soil and water conservation measures.

GLASS LAI, one of the five typical global LAI products, was chosen for this study because it
includes the longest duration (1982–2013) LAI product. Additionally, compared with those of the
current MODIS and CYCLOPES LAI products, it provides temporally continuous LAI profiles with
much better quality and accuracy [27].

Furthermore, a 30 × 30 m digital elevation model (DEM) was used for the interpolation of
climatic variables. ANUSPLIN, a well-performed spatial interpolation package based on thin-plate
smooth-spline interpolation, was selected to interpolate climatic variables. Developed by Australian
National University, it is a tool mainly used for the transparent analysis and interpolation of noisy
multi-variants data [28]. Using the longitude, latitude, and elevation of the meteorological stations as
variables, daily precipitation and mean temperature datasets were aggregated to obtain mean monthly
and annual values in four different subregions.

3. Methodology

3.1. Time-Series Analysis Method

3.1.1. Change-Point Detection and Trend Analysis of Hydrological and Climate Data

Both the change-point detection of annual streamflow data and trend analysis of
hydrometeorological data were conducted by a Mann–Kendall (MK) test, which is widely used for its
simplicity, robustness and the ability to deal with non-normal and missing data distributions [29,30].
After estimating the test statistics UFi and UBi, the curve of these two test statistics are plotted. If a
match point of the two curves exists and the trend is statistically significant, the match point can be
regarded as a change-point of the time series [17]. In terms of trend analysis, the MK test statistic Z
was calculated. A positive and negative Z value represent increasing and declining trends, respectively.
The null hypothesis, H0, states that there is no statistically significant trend in the series for a given
significance level α. In this paper, α was set to be 0.05 and the 1−α/2 quantile of the standard normal
distribution for α (Z(1−α/2)) was 1.96. If |Z| > Z(1−α/2), the null hypothesis is rejected, indicating the
trend is significant. Otherwise, the H0 hypothesis is accepted.

In addition, the precipitation–runoff double cumulative curve (DCC) was also used as an auxiliary
confirmation of the change-points by providing a visual representation of the consistency of the
precipitation and streamflow data [31].

3.1.2. Trend Analysis of LAI

The temporal and spatial variation of the mean LAI were analyzed using a linear regression
analysis method in this study. Using overall LAI trend computations to identify spatial patterns of
directions and rates of change, a least squares regression was fit through the time series of each pixel
and the slope coefficient that represent trends was calculated [27]. The slope of the trend coefficient
was defined as follows:

slope =
n × n

∑
i=1

i × LAIi −
n
∑

i=1
i

n
∑

i=1
LAIi

n × n
∑

i=1
i2 − (

n
∑

i=1
i)2

(1)

where n is the cumulative number of years in the study periods, i is the order of year, and LAIi is the
value of LAI in the ith year. In general, if slope > 0, LAI will increase, suggesting better vegetation in
this pixel.
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3.2. Multitemproal-Scale Precipitation–Runoff Model

Since access to very limited information and data for basin geometry can hardly satisfy the
minimal requirements of basin-scale models, statistical methods were employed to determine the
relationship of streamflow and other climatic factors for the baseline period. Both an annual scale
model and flood and nonflood season model were built.

At annual scale, the precipitation–runoff model was built using multiple linear regression analysis.
At flood and nonflood season scale, given the fact that linear regression analysis method may not satisfy
the requirement of model accuracy, a statistical model based on the Random Forest (RF) regression,
which is one of the most effective machine learning models for predictive analytical approaches [32,33],
was trained to reconstruct streamflow data in the human-affected period. RFs were developed as a
method of improving the predictions of classification and regression trees by alleviating the overfitting
concern of regression trees [34]. It has proved to be more robust and accurate than traditional linear
(e.g., multiple linear regression) or more complex methods [35]. Two parameters need to be set in
order to produce the forest trees: the number of decision trees to be generated (Ntree) and the number
of variables to be selected and tested for the best split when growing the trees (Mtry) [36]. In this paper,
Ntree was set as 200, and Mtry was set as the default value in the R package for random forests.

In this study, the correlation of different climatic variables (annual precipitation, mean
temperature, precipitation in the former years, flood-season precipitation and mean temperature,
nonflood season precipitation and mean temperature, precipitation of the last month of the flood
season) between annual streamflow, flood-season streamflow and nonflood season streamflow were
analyzed using Pearson correlation coefficient analysis respectively, and those with a high correction
coefficient between streamflow were chosen as the independent variable [36] for developing annual,
flood and nonflood seasonal precipitation–runoff models. Furthermore, variance analysis and an F-test
were conducted to test the accountability of the statistical models.

3.3. Contribution Calculation of Climatic and Anthropogenic Factors on Annual Streamflow

Model simulation, along with the hypothesis that climate fluctuations and anthropogenic
interference are independent, was employed to separate the impacts on streamflow variation.
Several scenarios were designed to reconstruct natural streamflow and then separate the impact
of climatic fluctuations and anthropogenic interference on natural streamflow:

S1: Conducting the control simulation based on the annual precipitation–runoff model with
observed changes in precipitation and temperature over the human-affected period;

S2: Using the same forcing data as the control simulation S1, except the mean value of the
temperature was fixed to the mean of the baseline period;

S3: Conducting the control simulation based on the flood and nonflood season
precipitation–runoff model with observed changes in precipitation and temperature over the
human-affected period;

S4: Using the same forcing data as the control simulation S3, except the mean of the percentage of
flood-season precipitation was fixed at the level of the baseline period and the annual precipitation
remained as the S3 observations.

The total streamflow change (ΔRtotal) can be obtained by the difference between the observed
streamflow in baseline period (Rob) and that in human-affected period (Roh), which can be expressed as:

ΔRtotal = Roh − Rob = ΔRC + ΔRH = ΔRP + ΔRT + ΔRH (2)

where ΔRtotal includes two main parts, the streamflow change caused by climate fluctuations ΔRC
and anthropogenic interference ΔRH , and the former ΔRC is made up of precipitation-induced change
ΔRP and temperature-induced variation ΔRT .
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The difference between S1 and S2 (S1–S2) was used to estimate the change magnitude of the
simulated annual streamflow caused by the temperature variation ΔRT :

ΔRT = RS1 − RS2 (3)

where RS1 is the mean of simulated annual natural streamflow in the scenario S1, and RS2 is the mean
of simulated annual natural streamflow for the scenario S2.

ΔRC can be calculated by the following equation:

ΔRC = RS1 − Rob (4)

The streamflow change magnitudes caused by anthropogenic factor (ΔRH) and annual
precipitation variation (ΔRP) are calculated using Equation (2).

The contribution rate of each factor, which is defined as ηk, is quantitatively estimated by:

ηk =
ΔRk

ΔRtotal
× 100% (5)

where k can be referred to as precipitation (P), temperature (T), and anthropogenic interference (H).
The difference between S3 and S4 (S3–S4) was used to estimate the change magnitude of the

simulated annual streamflow caused by the variation of the percentage of flood-season precipitation:

ΔRP_dis = RS3 − RS4 (6)

ηP_dis =
ΔRP_dis
ΔRtotal

× 100% (7)

where RS3 is the mean of simulated annual natural streamflow in S3, and RS4 is the mean of simulated
annual natural streamflow for S4. ΔRP_dis is the change magnitude of natural streamflow caused by
the variation of the percentage of flood-season precipitation.

3.4. Sensitivity Calculation of Annual Streamflow to Climatic Factors

Contribution assessment alone cannot fully explain the response of streamflow to different
variables. For example, certain variable contributions may be greater because of the larger change
magnitude of this variable. Therefore, to better understand the streamflow response to climatic factor
changes in different regions and periods, a modified sensitivity coefficient was defined that reflects
sensitivity of streamflow to various climatic variables: The formula uses simulated streamflow data in
different scenarios and observed meteorological factor data to calculate the sensitivity of streamflow to
different meteorological factors. The specific calculation formulas are as follows:

RS1i − Rob
Rob

= f ′P × Pi − Pob
Pob

+ f ′T × Ti − Tob
Tob

(8)

RS3i − RS4

RS4
= f ′P_dis ×

γi − γob
γob

(9)

where Rob, Pob, Tob, γob are the means of annual natural streamflow, precipitation, temperature,
and percentage of flood-season precipitation over the baseline period, respectively. RS1i , RS3i , RS4i are
the simulated natural streamflow in the ith year in S1, S3, and S4, respectively. RS4 is the mean
of simulated annual natural streamflow for S4. Pi, Ti, γi are the observed annual precipitation,
temperature, and percentage of flood-season precipitation over the human-affected period, respectively.
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4. Results

4.1. Spatial–Temporal Variation Characters for Hydrometeorological Variables

4.1.1. Change-Point Detection

The change-point detection of annual streamflow was mainly conducted using MK mutation
analysis, combined with the auxiliary annual precipitation–streamflow double cumulative curve.
Figure 2a,b demonstrate a change in the relationship between annual precipitation and streamflow in
the Long-Hua region in 1989. Consequently, the study period in Long-Hua region was separated into
two parts: the baseline period (1957–1989) and human-affected period (1990–2010). The change-points
of the source region, Tang–Tou region, and Tou-Long region were 1989, 1991, and 1982, respectively.

  
(a) (b) 

Figure 2. Mann–Kendall test values (a) and precipitation–streamflow double cumulative curve (b) for
change-point detection in Long-Hua region of YRB (1957–2010).

Particularly, the Chinese government launched the Grain for Green Project (GFGP) in 1999.
Since then, the land cover and vegetation in the middle reaches of the Yellow River have undergone
drastic changes, which may also affect streamflow. In addition, it is found that there is a significant
change point in 2000 in Tou-Long region by DCC in Figure 3, indicating that the impacts of human
activities became more prominent in the Yellow River Basin, especially in the Loess Plateau after
2000. Therefore, the year 2000 was added to further divide the human-affected period into two parts:
from the change-point year to 2000 (Period I) and from 2001 to 2010 (Period II), with the intent of
analyzing how much non-meteorological factors have affected the streamflow after 2000 when land
cover and vegetation change became more intense.
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Figure 3. Precipitation–streamflow double cumulative curve for change-point detection in Tou-long
region of YRB (1957–2010).

4.1.2. Trend Analysis of Annual Precipitation, Mean Temperature, and Naturalized Streamflow

Overall, a drying and warming trend was apparent in the YRB throughout the past 54 years.
Figure 4 plots the annual time series of precipitation, mean temperature, naturalized streamflow,
and their mean value before and after the change-point across the Long-Hua region. Both the annual
precipitation and streamflow decreased, whereas mean temperature increased.

Figure 4. Long-term variations in annual precipitation (P), temperature (T), and streamflow (R) in the
Long-Hua region in YRB.

The other three regions in the YRB also exhibited a similar trend. According to the MK analysis
results in Figure 5, a decreasing trend of precipitation was detected in the YRB, excluding the source
region, which had a positive MK value. As for the reduction rate, Table 1 shows that the precipitation of
Tou-Long and Long-Hua in the middle reach reduced faster than that of Tang–Tou in the upper reach.
However, none of the decreasing trends of precipitation were statistically significant. Conversely,
the obvious warmer trend was statistically significant in the whole study area, with an average
increasing rate of about 0.04 ◦C/a. A decreasing streamflow occurred in the whole basin, with the
reduction rate ranging from 0.57 × 108 m3/a to 2.21 × 108 m3/a.
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Figure 5. MK results of the trend analysis for annual precipitation, mean temperature, and streamflow
in four regions of YRB.

Table 1. Average of annual precipitation, mean temperature, and streamflow and their change rate in
four regions of YRB.

Sub Basin

Precipitation Mean Temperature Streamflow

¯
P (mm) Δ (mm/a)

¯
T (◦C) Δ (◦C/a)

¯
R (108 m3) Δ (108 m3/a)

Source 528.93 0.42 0.39 0.04 201.78 −0.57
Tang–Tou 342.27 −0.43 6.23 0.05 126.50 −1.03
Tou-Long 433.85 −1.39 7.93 0.04 49.02 −0.86
Long-Hua 560.92 −1.38 10.26 0.03 162.91 −2.21

4.1.3. Trend Analysis of Percentage of Flood-Season Precipitation

Table 2 presents the MK test results and the average change in the percentage of flood-season
precipitation (γ). The overall declining trend of γ indicates that the intra-annual distribution of
precipitation had changed. Spatially, the absolute value of MK decreased from the upper reach to the
middle reach, with a significant trend in the source region (significance level = 0.05). For the entire
human-affected period, γ dropped 4.63%, 1.18%, 6.89%, and 3.21%. It should be noted that γ increased
by 2.70% during period I in the Tang-Tou region.

Table 2. MK results and average change of the percentage of flood-season precipitation in four regions
of YRB.

Sub Basin
M-K Test from 1957 to 2010 Average Change (%) Compared with Baseline Period

Z H0 Period I Period II Human-Affected Period

Source region −2.69 R −5.54 −3.52 −4.63
Tang-Tou region −1.37 A 2.70 −5.06 −1.18
Tou-Long region −1.27 A −6.75 −7.18 −6.89
Long-Hua region −0.81 A −4.52 −1.61 −3.21

R: reject H0; A: accept H0.

4.2. Precipitation–Runoff Model Calibration and Validation

4.2.1. Annual Model

According to the correlation coefficients in Table 3, annual precipitation was positively related
to annual streamflow, the largest coefficient among the influential factors, suggesting that annual
precipitation dominated the annual streamflow change in the Yellow River Basin. To better reflect the
condition of soil moisture content, precipitation from the former year was introduced as a factor [37]
and was also positively related to annual streamflow, with a varying correlation of 0.03 to 0.27.
In contrast, temperature was negatively related to annual streamflow. Among the four regions,
the correlation coefficient between temperature and annual streamflow in the source region was far
less than that of the other three regions, revealing a spatial difference. Thus, annual precipitation (P),
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precipitation of the former year (P−1), and mean temperature (T) were considered the main factors in
the construction of the annual-scale model.

Table 3. The correlation coefficient of each element to annual streamflow in four regions of the YRB.

Sub Basin Basin Scope P P−1 T

Source region Source region 0.84 0.27 −0.13
Tang-Tou region Upper 0.84 0.10 −0.53
Tou-Long region Midstream 0.84 0.03 −0.35
Long-Hua region Midstream 0.87 0.11 −0.45

Based on the correlation coefficients analysis results, a three-parameter linear regression model
was built for each region. All models were calibrated in the period of 1957–1977 with climatic data
and then validated in the period from 1978 to the change-point year. The observed annual streamflow
and simulated streamflow during calibration and validation period in each region are plotted in
Figure 6. The relative bias (BIAS), relative root-mean-square error (RRMSE), and Nash–Sutcliffe
efficiency coefficient (NSE) are given in Table 4. All four models performed reasonably well: their NSE
values were in the range of 0.75–0.89, and BIAS and RRMSE were within the range of 2.90% and 0.34,
respectively. Moreover, nearly all the trends were captured, and all models passed the F-test. Overall,
the model performance was acceptable within the study domain.

 

 

 

 

Figure 6. Observed and simulated annual streamflow in four regions during calibration and
validation period.
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Table 4. Calibration and validation of the annual, flood and nonflood season model in four subregions
of the YRB.

Sub Basin Period
Annual Flood Season Non-Flood Season

BIAS (%) RRMSE NSE BIAS (%) RRMSE NSE BIAS (%) RRMSE NSE

Source
Calibration 0.40 0.22 0.76 1.19 0.29 0.93 0.47 0.21 0.91
Validation 0.41 0.22 0.89 2.60 0.25 0.92 0.38 0.22 0.90

Tang-Tou Calibration 0.57 0.25 0.83 0.28 0.32 0.93 1.71 0.21 0.92
Validation 1.05 0.18 0.81 0.23 0.28 0.94 2.68 0.15 0.83

Tou-Long Calibration 2.90 0.30 0.78 1.53 0.49 0.94 2.09 0.17 0.87
Validation 0.11 0.24 0.75 8.55 0.40 0.89 9.70 0.21 0.76

Long-Hua Calibration 1.14 0.34 0.85 1.30 0.45 0.92 2.65 0.34 0.90
Validation 2.22 0.32 0.83 5.24 0.40 0.93 2.49 0.24 0.91

4.2.2. Flood and Nonflood Seasonal Model

To further identify the contribution made by the variation of the flood-season precipitation
percentage, a flood season model and nonflood season model were built, calibrated and validated after
identifying the contributing factor by correlation coefficients analysis. Specifically, flood season
precipitation and mean temperature were introduced to build the flood season model. In the
construction of nonflood season model, in addition to nonflood season precipitation and average
temperature, precipitation in October (the last month of the flood season in YRB) was also introduced
as a factor [38]. The model performance in Table 4 and Figure 7, as well as the successful F-test,
suggest that these models were reliable when reconstructing the natural streamflow, despite some
peak differences.

  
(a) (b) 

Figure 7. Observed and simulated streamflow in Long-Hua region during the calibration and validation
period in the flood season model (a) and nonflood season model (b).

4.3. Contribution Assessment

The quantitative assessment of the effects on streamflow due to climate fluctuations and
anthropogenic interference was carried out in four regions of the YRB. It can be seen from Table 5 that a
tremendous reduction had taken place in annual streamflow, up to 41.64 × 108 m3/a, 31.31 × 108 m3/a,
21.96 × 108 m3/a, and 72.24 × 108 m3/a, during the entire human-affected period. The reduction
accounted for 19.00%, 22.77%, 36.35%, and 37.82%, from the source region to the middle reach. Both
climate change and anthropogenic interference had a negative effect on annual streamflow in the YRB,
except for the annual precipitation in the source region from 2001 to 2010, which contributed to a rise
in annual streamflow of 20.72 × 108 m3/a. The climate fluctuations and anthropogenic interference
effects varied spatially and temporally. From the Tang-Tou to the Long-Hua regions, the negative
effect of precipitation increased from 6.68% to 53.07%, while the temperature impact decreased from
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78.10% to 17.55%. Anthropogenic interference had a greater contribution in the middle-reach Tou-Long
and Long-Hua regions than in the upper Tang-Tou region. Temporally, the dominant contributor
shifted from precipitation before 2000, to anthropogenic interference after 2000, in the Tou-Long and
Long-Hua regions.

Table 5. Contribution of precipitation, temperature, and anthropogenic interference on annual
streamflow variation in four regions of the YRB.

Sub Basin Period
Total Change Precipitation Temperature Anthropogenic Interference

ΔRtotal % ΔRP % ΔRT % ΔRH %

Source region
1990–2000 −43.78 −19.98 −21.95 50.14 −3.73 8.52 −18.10 41.34
2001–2010 −39.28 −17.92 20.72 −52.74 −18.89 48.08 −41.11 104.66
1990–2010 −41.64 −19.00 −1.63 3.92 −10.95 26.29 −29.06 69.78

Tang-Tou region
1992–2000 −31.04 −22.57 −4.22 13.60 −19.46 62.67 −7.36 23.72
2001–2010 −31.54 −22.94 −0.18 0.56 −28.94 91.77 −2.42 7.68
1992–2010 −31.31 −22.77 −2.09 6.68 −24.45 78.10 −4.76 15.21

Tou-Long region
1983–2000 −17.74 −29.36 −9.28 52.34 −4.50 25.37 −3.95 22.29
2001–2010 −29.55 −48.93 −5.36 18.14 −10.52 35.60 −13.67 46.26
1983–2010 −21.96 −36.35 −7.88 35.90 −6.65 30.29 −7.42 33.82

Long-Hua region
1990–2000 −73.21 −38.33 −53.23 72.71 −9.22 12.59 −10.76 14.70
2001–2010 −71.17 −37.26 −21.96 30.86 −16.48 23.16 −32.73 45.98
1990–2010 −72.24 −37.82 −38.34 53.07 −12.68 17.55 −21.22 29.38

It is obvious that the combination of decreased precipitation and increased mean temperature
caused the annual streamflow reduction in the YRB. Furthermore, the change in the percentage of
flood-season precipitation also affected streamflow variation. Table 6 shows that the flood-season
precipitation percentage variation mainly caused the streamflow reduction, up to 9.45 × 108 m3/a,
2.32 × 108 m3/a, 2.01 × 108 m3/a, and 14.81 × 108 m3/a—comprising 21.88%, 7.36%, 10.28%,
and 18.24%, respectively, of the total streamflow variation. The effects in the Tang-Tou region in
Period I were an exception, causing a 0.70 × 108 m3/a rise in streamflow. With the variation of the
flood-season precipitation percentage (Table 2) taken into consideration, a decline in the percentage of
flood-season precipitation led to a corresponding drop in streamflow. In contrast, a rise of γ resulted
in an increase in streamflow in the Tang-Tou region during Period I. This indicated that the greater the
percentage of precipitation in flood season, the greater the simulated streamflow in YRB, assuming the
same annual precipitation.

Table 6. Contribution of the variation of flood-season precipitation percentage in four regions of
the YRB.

Sub Basin
Period I Period II Human-Affected Period

ΔR % ΔR % ΔR %

Source region −10.04 22.08 −8.72 21.60 −9.45 21.88
Tang-Tou region 0.70 −2.11 −4.00 12.44 −2.32 7.36
Tou-Long region −1.87 12.61 −2.50 8.56 −2.01 10.28
Long-Hua region −13.40 16.86 −14.92 20.04 −14.81 18.24

Specifically, the contribution made by the variation in the percentage of flood-season precipitation
was relatively higher in the source and Long-Hua regions. Furthermore, the contribution lowered after
2000 in source and Tou-Long region. To conclude, the streamflow was affected not only by the amount
of annual precipitation but also the intra-annual distribution of precipitation.

4.4. Sensitivity Assessment

In this study, Equations (8) and (9) were used to calculate the sensitivity of streamflow to different
climatic factors in four regions and the results were presented in Table 7. In general, the absolute value
of the sensitivity coefficient to precipitation was larger than that to mean temperature in the humid

330



Water 2018, 10, 1155

regions including Source and Long-Hua regions, whereas an opposite situation was observed in the
relatively arid regions including Tang-Tou and Tou-Long regions, indicating that the sensitivity of
streamflow to various climatic factors are different for regions with different hydrothermal conditions
in YRB.

Table 7. Sensitivity of streamflow to various elements in four regions.

Sub-District
P T γ

Period I Period II Period I Period II Period I Period II

Source region 1.73 2.09 −0.01 −0.02 0.63 0.78
Tang-Tou region 0.99 1.06 −0.99 −1.07 0.34 0.36
Tou-Long region 1.09 1.23 −1.16 −1.54 0.19 0.42
Long-Hua region 1.64 1.88 −1.12 −1.15 0.37 0.80

In Period I, regarding the four regions of YRB, a 1% increase in annual precipitation would
generate a 0.99–1.73% (1.36% on average) annual streamflow increase, whereas a 1% increase
in temperature would produce a 0.01–1.16% (0.79% on average) decrease in annual streamflow.
In addition, the sensitivity to the percentage of flood-season precipitation ranged from 0.19 to 0.63 in
Period I. It should also be noted that the sensitivity of streamflow to various factors was not a constant.
The sensitivity to precipitation and temperature increased considerably in Period II compared to that
of Period I, suggesting that streamflow would be more sensitive to climate change. The sensitivities to
intra-annual climate variation increased after 2000 as well, and the increase in sensitivity to percentage
of flood-season precipitation was more significant in Tou-Long and Long-Hua regions.

5. Discussion

5.1. Analysis of the Impact of Anthropogenic Interference on Natural Streamflow

Overall, the findings of this study agreed with the results of other research in the contribution
assessment [8,29,32,39]. Table 5 shows that anthropogenic interference had a greater contribution in
Tou-Long and Long-Hua regions after 2000, which was mainly due to the ecological program launched
by the Chinese government in these two regions. Table 8 displays the implementation of different soil
and water conservation measures in the Tou-Long region (including 25 tributaries) in 1997, 2000, 2003,
and 2006 [40]. According to the table, the amount of all kinds of soil and water conservation had risen
gradually. Among them, forestland and grassland increased more sharply. By 2006, 28,540 km2 of
terraced area, 1310.26 km2 of dammed land, 58,613.53 km2 of forest land, 14,072.64 km2 of grassed
land, and 8380.18 km2 of closed hillside area had been constructed in the Tou-Long region. Moreover,
according to the analysis of LAI data before and after 2000 in Figure 8, the change intensity in forest
and grass vegetation was largest in the Tou-Long region, followed by Long-Hua.

Table 8. Implementation of different soil and water conservation in the Tou-Long region in 1997, 2000,
2003, and 2006 (unit: km2).

Year
Terraced

Area
Dammed

Land
Forest
Land

Grassland
Hillsides Closed

for Erosion Control
Total

1997 19,977.25 968.77 27,176.62 6939.60 2601.75 55,062.24
2000 23,291.18 1085.55 36,920.30 8929.06 3346.84 70,226.09
2003 26,166.33 1213.42 49,011.68 11,738.26 5528.36 88,129.69
2006 28,540.36 1310.26 58,613.53 14,072.64 8380.18 102,536.79

Studies have demonstrated that such large-scale land use and land-cover change, driven by soil
and water conservation measures, were closely related to streamflow reduction [41,42]. For example,
the terraced area can reduce the hillside slope and prolong streamflow retention, reducing surface
streamflow [17]. The increasing forests and grasslands play an important role in intercepting
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rainfall and alleviating streamflow [43]. To conclude, all of these can explain why anthropogenic
interference played a more critical role in streamflow reduction in the Tou-Long and Long-Hua regions,
especially during Period II.

 
     (a) (b) 

Figure 8. Overall change trend in annual LAI in 1982–2000 (a) and in 2001–2013 (b) in the YRB.

5.2. Analysis of the Sensitivity of Streamflow to Annual Precipitation and the Percentage of Flood-
Season Precipitation

This study modified the traditional formula of the elasticity coefficient and used the calculated
sensitivity coefficient to analyze the sensitivity of streamflow to meteorological factors. It should be
pointed out that the advantage of this modified sensitivity coefficient calculation formula is that it can
be combined with the runoff derived from scenario simulation. That is, the dynamic streamflow time
series under the influence of the target factor (such as precipitation, mean temperature, the percentage
of flood season precipitation, etc.) can be constructed by the scenario simulation method, and then the
sensitivity of streamflow to the certain target factor can be directly calculated based on the sensitivity
formula, and the underlying mechanics for calculating the sensitivity of streamflow to the specific
factor is relatively easy to understand. In contrast, the traditional elastic coefficient model can only use
the original observed streamflow, and the simulation accuracy of the elastic coefficient is affected by
the type and number of factors selected in the construction of the elastic model, leading to the greater
uncertainty in the sensitivity analysis of specific factors.

According to the results shown in Table 7, the sensitivity to annual precipitation exhibited both
temporal and spatial differences. The annual streamflow after 2000 became more sensitive to annual
precipitation in the whole basin. Chiew [44] reported a strong negative correlation between the
elasticity coefficient to precipitation and streamflow coefficient (RC) for 219 catchments in Australia.
Inspired by Zheng et al. [39], the relationship between the sensitivity to annual precipitation ( f ′P)
and RC, which were estimated within a moving window of 10 years, was analyzed in this study.
The relationship in Figure 9a shows that the sensitivity to annual precipitation ( f ′P) was positively
related to the inverse of the runoff coefficient (1/Rc), indicating that streamflow was more sensitive
to precipitation in catchments or periods with low streamflow coefficients. The declining trend of
streamflow coefficients of four regions, illustrated in Figure 8b, successfully explained the rise in
sensitivity to annual precipitation from period I to period II. This also shows that the sensitivity
coefficient calculated in this study has similar properties to the traditional elastic coefficient and can
appropriately reflect the sensitivity of streamflow to meteorological elements. Furthermore, part of the
reason for a streamflow coefficient decline may be that these regions experienced a significant rise in
forest and grass vegetation, as demonstrated in previous studies [42].
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Figure 9. Correlation between sensitivity to precipitation and streamflow coefficient in the Tou-Long
region (a) and the streamflow coefficients in different periods in four regions (b).

Table 7 also shows that streamflow in the source, Tou-Long, and Long-Hua regions was more
sensitive to precipitation than that in the Tang-Tou region. This spatial difference partly accorded with
their streamflow coefficient except for the source area, which was expected to have a similar sensitivity
to that of Tang-Tou. In fact, the value of the sensitivity of streamflow depends on many factors, such as
the stochastic nature of climate, vegetation conditions, field capacity of soils, soil moisture levels,
length of soil water depletion, and saturated hydraulic conductivity [24]. Compared with other regions,
the source region has a relatively saturated soil condition ascribed to good vegetation cover (Figure 8)
and humid climate conditions (Table 1), making it easy to form streamflow. Thus, streamflow in the
source region is more sensitive to precipitation change than that in other dry regions, such as the arid
Tang-Tou region.

As for the sensitivity to the percentage of flood-season precipitation, it increased more in the
Tou-Long and Long-Hua regions than in the source and Tang-Tou regions. Given the same annual
precipitation, streamflow yield would not be affected by the precipitation temporal pattern in the
regions with less forest and grass vegetation. However, as illustrated in Figure 8, forest and grass
vegetation increased in the Tou-Long and Long-Hua regions, playing a crucial role in streamflow yield:
streamflow would become more sensitive to flood-season precipitation, leading to greater sensitivity
to the percentage of flood-season precipitation.

5.3. Uncertainties Analysis

There are some uncertainties associated with the contribution assessment and sensitivity analysis.
First, combining two different-scaled models—namely, the annual model and flood and nonflood
season model—generates some uncertainties. Another uncertainty in the results exists in the
assumption that climate change is independent of anthropogenic interference. In fact, these two factors
are interrelated. For example, land cover change and vegetation increase caused by afforestation
would also lead to climatic changes.

Despite the uncertainties and limitations, this study provides a relatively easy way to analyze
the contribution of climate variables and the sensitivity of streamflow to these factors, including the
intra-annual distribution of precipitation. More detailed work, such as distributed models, should be
introduced to improve the understanding of the monthly streamflow response mechanism.
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6. Conclusions

With the intent of distinguishing the effect of climate fluctuations and anthropogenic interference
on streamflow reduction and analyzing the sensitivity of streamflow, an improved three-parameter
annual precipitation–streamflow model and flood and nonflood season models were built to simulate
natural streamflow. The major findings from this study are summarized below.

The MK results demonstrated a decreasing trend in annual precipitation, significant increasing
trend in mean temperature, and decreasing trend in annual streamflow across the Yellow River,
excluding the increasing annual precipitation in the source region during 1957–2010. Abrupt change
did not take place simultaneously, with the earliest change-point detected in the Tou-Long region.
On average, the percentage of flood-season precipitation exhibited a decreasing trend, with each of the
four regions experiencing a different level of decline.

The intensity of streamflow reduction improved spatially from 19.00% in the source region
to 37.82% in Long-Hua. The contribution made by the climatic fluctuations and anthropogenic
interference varied spatially and temporally. From Tang-Tou to Long-Hua, the impacts of annual
precipitation and anthropogenic interference increased, while the temperature effect decreased.
Temporally, the dominant factor in the Tou-Long and Long-hua regions had shifted from precipitation
to anthropogenic interference after 2000. Further, the variation in the percentage of flood-season
precipitation was responsible for streamflow variation. The greater the percentage of flood-season
precipitation, the greater the simulated streamflow will be.

The sensitivity of streamflow to various climatic factors are different for regions with different
hydrothermal conditions in YRB: annual streamflow was more sensitive to annual precipitation than
temperature in the humid regions, whereas an opposite situation was observed in the relatively
arid regions. Sensitivity to precipitation and temperature both increased in the whole basin after
2000, indicating that substantial challenges and uncertainties might be introduced to regional water
availability. The sensitivity of streamflow to the percentage of flood-season precipitation increased
most significantly in the Tou-Long and Long-Hua regions, where the highest change intensity of forest
and grass vegetation occurred after 2000. These research conclusions can provide a scientific reference
for future Yellow River water resource management and ecological construction planning.
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Abstract: Yellow River Delta wetlands are essential for the migration of endangered birds and
breeding. The wetlands, however, have been severely damaged during recent decades, partly due to
the lack of wetland ecosystem protection by authorities. To have a better historical understanding
of the spatio-temporal dynamics of the wetlands, this study aims to map and characterize patterns
of the loss and degradation of wetlands in the Yellow River Delta using a time series of remotely
sensed images (at nine points in time) based on object-based image analysis and knowledge transfer
learning technology. Spatio-temporal analysis was conducted to document the long-term changes
taking place in different wetlands over the four decades. The results showed that the Yellow River
Delta wetlands have experienced significant changes between 1973 and 2013. The total area of
wetlands has been reduced by 683.12 km2 during the overall period and the trend of loss continues.
However, the rates and trends of change for the different types of wetlands were not the same.
The natural wetlands showed a statistically significant decrease in area during the overall period
(36.04 km2·year−1). Meanwhile, the artificial wetlands had the opposite trend and showed a
statistically significant increase in area during the past four decades (18.96 km2·year−1). According
to the change characteristics revealed by the time series wetland classification maps, the evolution
process of the Yellow River Delta wetlands could be divided into three stages: (1) From 1973–1984,
basically stable, but with little increase; (2) from 1984–1995, rapid loss; and (3) from 1995–2013,
slow loss. The area of the wetlands reached a low point around 1995, and then with a little
improvement, the regional wetlands entered a slow loss stage. It is believed that interference
by human activities (e.g., urban construction, cropland creation, and oil exploitation) was the main
reason for wetland degradation in the Yellow River Delta over the past four decades. Climate change
also has long-term impacts on regional wetlands. In addition, due to the special geographical
environment, the hydrological and sediment conditions and the location of the Yellow River mouth
also have a significant influence on the evolution process of the wetlands.

Keywords: Yellow River Delta; estuarine wetlands; spatiotemporal change analysis; remote sensing

1. Introduction

The Yellow River Delta wetlands are a critical ecological system and are a transitional buffer
zone between the sea and inland areas [1–3]. They play a very important role because they affect
nitrogen absorption, geochemical cycles, climate regulation, and act as a carbon sink; they also
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provide a breeding ground and habitat for birds and land for bioconservation [4,5]. This area is also
a very important migratory route for nationally rare and endangered birds [6]. In 1992, the Chinese
government created the largest national wetland nature reserve (Yellow River Delta National Nature
Reserve, YRDNNR) as a stopover and breeding ground for globally endangered birds. In addition,
the Yellow River Delta is also one of the biggest and fastest growing deltas in the world due to
continuous sedimentation [7,8]. The average rate of newly created land is about 21.3 km2 per year [8].
It is characterized by extensive coverage of saline and wet soils due to a high groundwater table and
inundation by sea water [7]. Within the delta, there are a large number of shallow water areas with
an abundance of wetland vegetation and aquatic biological resources. The area of the wetlands is
4167 km2, and it occupies over 50% of the total area of the delta [9].

Globally, nearly half of all wetlands have been lost over the past century because of human
disturbance and climate change [7,8,10–13]. China’s wetlands have also suffered tremendous loss in
recent decades [14,15]. These trends are still generally continuing and result in serious environmental
problems [4,16–21]. Coastal wetland systems have, in particular, become one of the most vulnerable
ecosystems around the world [4,16–21]. The Yellow River delta is not only a highly dynamic area,
but it is also very important for ecological functions. Therefore, the conservation of wetland resources
has attracted the attention of scientists and local authorities. Existing research has found that the
degradation of the Yellow River Delta wetlands has triggered numerous environmental problems
and seriously threatened sustainable economic development in the region [7,8,22,23]. In a study from
the perspective of landscape ecology, using remote-sensing data from three different years (2000,
2005, 2010), Liu confirmed that the regional wetland landscape patches became more complex and
decentralized due to rapid economic development [22]. However, studies examining long-term time
series of change are lacking. The distribution of wetlands and their historical changes in this region
are not very clear. Timely surveying and mapping of wetlands is a fundamental task for the research,
management, and conversation of wetlands. So, it is imperative to examine the current status of
wetlands, how it has changed, and trends in the delta.

However, because of the complexity and poor accessibility of wetland areas, traditional field
surveys are limited by either spatial or temporal coverage. As a result, there is a lack of long-term
time series of wetland maps and no systematic temporal analyses of wetlands. Until now, we have not
had adequate knowledge of the characteristics of the majority of wetlands over the past few decades.
Therefore, it is imperative to quantify the spatio-temporal characteristics and status-trends of regional
wetlands and to determine the best ways to develop scientific strategies for wetland management,
conservation, and restoration. With the development of remote-sensing technology, there are abundant
multi-source satellite data (e.g., Landsat1~8, H-J1/2, MODIS) available online at no cost. These data
may provide accurate, reliable, and economical means for a wetland inventory. Currently, more than
90% of wetland maps in China were obtained by means of remote-sensing surveys [24], and remote
sensing has become one of the most efficient means for wetland monitoring [25].

Numerous methods have been developed to automatically identify and classify wetlands
from multisource remotely sensed imagery; they include unsupervised/supervised classification,
spectral angle mapping (SAM), artificial neural networks (ANN), Support vector machine (SVM),
and “TUPU” coupled hybrid classification [26–37]. The automatic extraction technique has been
pursued by researchers to extract the geographic area of wetlands. Due to the complexity, wetland
remote sensing has undergone manual interpretation, semi-automatic, and intelligent extraction
periods [14,29,36,38–44]. Wetland remote sensing has experienced changes in terms of data sources;
it has gone from a single data source to multi-phase, multi-angle, and multi-data sources for wetland
detection [36,37,45,46]. In terms of the scale of information extraction, wetland classifications have
been performed from the individual pixel level to the level of objects, which are equivalent to wetland
patches [2,28]. Although wetland extraction has been moderately successful in some applications,
automatic mapping remains a challenge, largely due to the ambiguous spectral characteristics and
complex shapes, sizes, and forms of wetlands [10,47,48].
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In order to assess the change characteristics and dynamics of wetlands in the Yellow River
Delta over the past four decades, we proposed a per-parcel level classification approach based on
the knowledge transfer classification and machine learning for automatic classification of wetlands.
This study produced time-series maps that document how these reginal wetlands have changed.
We examined the spatial distribution, change process, and drive mechanism of wetlands in the Yellow
River Delta over the past four decades. The results provide data and a scientific reference for wetland
management, conservation, and restoration.

2. Study Area

The Yellow River Delta is the fastest growing delta in the world (Figure 1); it is located in the
north-east of Shandong province, China, in the estuary of the Yellow River. The wetlands of the
Yellow River Delta are not only important for protection of the eco-environmental system but also for
internationally endangered bird species [22,49,50]. Generally, the modern Yellow River Delta is located
from Wu Hao Zhuang (north) to Song Chun Rong Gou (south) (longitude 118.30~119.30◦ E, latitude
37.05~38.20◦ N) [51]. This area has a temperate monsoon climate; the annual mean temperature is
11.9 ◦C and the average precipitation is about 640 mm with 196 frostless days [22,52,53]. Because of
the sedimentation in the Yellow River, the sediment builds and rebuilds the delta continuously. There
is an abundance of coastal wetland resources, and it has been named one of the most beautiful six
wetlands in China [2].

Figure 1. Location of study area.

Historically, wetlands have covered 80% of the total land area in the Yellow River Delta [2].
Natural wetlands (including lakes, rivers, marshes, swamps, lagoons, and intertidal zones) are mainly
distributed in the east of the delta from the Xiaodao River to the Tuhai River. Artificial wetlands
(including cultivated areas and salt pans) are primarily distributed in the mid-west of the delta.
The Yellow River Delta is an important breeding ground for birds and it is a migratory stopover location.
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In 1992, the Yellow River Delta National Nature Wetland Reserve (YRDNNW) was established to protect
the native wetland ecosystem and rare and endangered birds in the estuary. Hundreds of kinds of rare
and endangered birds are found in this area every year, including nationally protected birds [22,50].
However, according to the second wetland survey report of Shandong province, the wetland has
suffered tremendous degradation, but how this occurred and the causes are not clearly understood.
This study addressed this challenge by using four decades of Landsat observations ranging from 1973
to 2013.

3. Materials and Methods

3.1. Data Used for Wetlands Mapping

In this research, Landsat satellite series data (MSS: Multi spectral scanner, TM: Thematic mapper,
and OLI: Operational Land Imager) from the period of 1973–2013 were used to map regional wetlands.
Because they are affected by phenology and precipitation, wetlands are dynamic and have seasonal
changes throughout the year. Because wetlands have seasonal changes throughout the year, annual
seasonal changes impact time-series change analysis. In order to ensure comparability among the
results, the image acquisition time is very important. In order to ensure the comparability among
the results, Landsat images from nine different points in time were selected as the main data source.
These images’ acquisition times are mainly distributed in September and October (Table 1). During
this period, the regional hydrological characteristics are relatively stable. These images were used
to assess changes in the Yellow River Delta wetlands over the past four decades. These images,
downloaded from the United States Geological Survey (USGS) website (http://glovis.usgs.gov/),
have gone through radiometric calibration and geometric correction and were saved as 8-bit digital
numbers (DNs) with a coordinate system of Universal Transverse Mercator (UTM).

Table 1. List of remotely sensed images of the Yellow River Delta wetlands used for mapping.

No.
Acquisition

Time
Orbits

Path/Row
Satellite

No.
Sensor
Type

Spatial
Resolution

Cloud
Cover

Image
Quality

1 1973/12/06 130/034 Landsat 1 MSS 60 m 0.0% 9
2 1977/10/05 130/034 Landsat 3 MSS 60 m 0.0% 9
3 1984/10/05 121/034 Landsat 4 MSS 60 m 0.0% 5
4 1991/09/03 121/034 Landsat 5 TM 30 m 0.0% 7
5 1995/09/18 121/034 Landsat 5 TM 30 m 0.0% 9
6 2000/09/15 121/034 Landsat 5 TM 30 m 3.0% 9
7 2006/10/02 121/034 Landsat 5 TM 30 m 0.0% 9
8 2010/09/11 121/034 Landsat 5 TM 30 m 0.3% 9
9 2013/10/05 121/034 Landsat 8 OLI 30 m 2.5% 9

In the preprocessing stage, all images were converted to radiance (or reflectance). The image
DN-to-Lλ transform calculation was carried out using Formula (1) or (2) [54–56]. All images were
re-projected to Lambert azimuthal equal area projection for wetlands area qualitative statistics at
different times.

Lλ = Gains ∗ DN + Bias (1)

which is also expressed as,

Lλ = (Lλmax − Lλmin)/(QCALλmax − QCALλmin) ∗ (DN − QCALλmin) + Lλmin (2)

where, Lλ is the spectral radiance at the sensor’s aperture in mW/(cm2·sr·μm). DN is the digital
number of the quantized calibrated pixel value. Gains is the band-specific rescaling gain factor in
(mW/(cm2·sr·μm))/DN. Bias is the band-specific rescaling bias factor in mW/(cm2·sr·μm). Lλmax
is the maximum spectral radiance that is scaled to QCALλmax. Lλmin is the minimum spectral
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radiance that is scaled to QCALλmin. QCALλmax is the maximum quantized calibrated pixel value
in DN (corresponding to Lλmax). QCALλmin is the minimum quantized calibrated pixel value in DN
(corresponding to Lλmin).

3.2. Classification System for the Yellow River Delta Wetlands

Several classification systems have been developed to describe coastal wetlands (e.g., Ramsar
Convention (Convention on Wetlands of Importance Especially as Waterfowl Habitat) wetlands
classification system, Technical Specification of Survey National Wetlands Resources 2008, Chinese
Wetland Remote-Sensing mapping Classification System) [14]. Each classification system has its
specific purpose. In this study, the aim is to examine the status and change process of the regional
wetlands. Therefore, our main concerns are the number, distribution, and composition of wetlands.
In accordance with the regional characteristics and wetland types [57] and the international wetland
classification system (i.e., the Ramsar), and taking into account the spectral separability on the medium
resolution remotely sensed image, we classified the Yellow River Delta wetlands as natural wetlands
or artificial wetlands with six subclasses (Table 2). The minimum mapping unit of the wetlands was
0.01 km2.

Table 2. Classification system for regional wetland remote-sensing maps.

Wetland Type Code Subtype

The Yellow River Delta wetlands

01 Natural wetlands
11 River wetland
12 Marsh and swamp
13 Intertidal zone

02 Artificial wetlands
14 Reservoir and pond
15 Salt pan (salt evaporation pond)
16 Aquaculture

3.3. Wetland Automatic Classification and Updating via Transfer Learning

The object-oriented classification technology has many advantages, including that there are more
features that can be used, it avoids salt-and-pepper noise, it is convenient for spatial relations and
reasoning, and it reduces post-processing work [28]. However, the structure and spectral signature
of the different wetlands are heterogeneous across space and time [27,29,58]. It is hard to select
representative samples at the per-parcel level. This process requires a lot of manual intervention,
which greatly affects the classification accuracy and comparability of the classification results.
Therefore, the way in which to automatically select the classification of samples is the current technical
obstacle [59]. This study proposed a hybrid method for automatic classification of wetland thematic
maps and updating these by integrating the use of knowledge transfer and machine learning (Figure 2).
To improve the automation of wetland information extraction, knowledge transfer was used to create
classification training samples to aid in automatic selection.

341



Water 2018, 10, 933

Time 1 Multi-
spectral image

Multi-scale segmentation Change detection

No changed areaSupervised classification

Classification samples automatic
selection on time 2 image by sample

transfer

Do classify
by SVM model

Time 2 Multi-
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Figure 2. Diagram of wetland classification and updating process based on sample transfer learning.

The whole procedure of wetland classification and updating through sample transfer learning can
be summarized by the following six steps. In the first step, the first phase (Time 1) image is segmented
and classified by a supervised method based on object-oriented classification technology. Next, change
detection is calculated between the first (Time 1) and second phase (Time 2) data. The objective
of this step is to detect the changed region and the unaltered area on the second phase (Time 2)
image. For the third step, if there is no change area between the Time 1 and Time 2 images, then the
classification of the Time 1 image is used to label the samples on the Time 2 image as unchanged
areas and the classification sample automatic transfer is complete. The fourth step is the machine
(SVM) learning and training. Cross-validation (CV) is mainly used to evaluate the generalization
ability of machine-learning algorithms. The most commonly used cross-validation method is K-fold
cross-validation. The initial sample is divided into K sub-samples. A single sub-sample is retained as
the data for the validation model. The other K-1 samples are used for training. So, the new labeled
samples on the Time 2 image are classified into K parts (datasets); one part is used for the SVM training
and the other is used for model validation. Each time the results are verified once, and k = 10 is the
optimal parameter through the trial-and-error method (Figure 3). K is greater than 10, the improvement
of the classification accuracy is limited, and the training time of the model is too long. So, through
the 10-fold cross-validation, the SVM model initialization training was completed. The fifth step is
wetlands identification. The Time 2 image changed areas were reclassified by the trained SVM model.
At this point, the wetland updating is performed automatically. The last step is wetland remote-sensing
mapping on the Time 2 imagery followed by accuracy checking and validation. The results are checked
by overlaying the vector of wetland thematic map on the remotely sensed image. We performed
detailed manual editing of the classification results. Misclassified and missing points are corrected one
by one. This is done to test the accuracy of the classification of the wetlands and to revised the intertidal
zone manually according to optical remote elevation data (DEM: Digital elevation model) and the
average tidal range (0.9 m). The accuracy of the wetland thematic map was assessed by comparing the
map with reference data (obtained from visual interpretation and field surveys).
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Figure 3. Accuracy of K-fold cross-validation.

3.4. Wetland Change Analysis

3.4.1. Dynamic Change

To quantify the degradation of wetlands in the Yellow River Delta, the dynamic change (DC)
model was implemented [60,61]. Dynamic change, also known as the change degree, is an important
model for the study of wetland changes. The DC is defined as:

DC = (Ua − Ub)/Ub/T ∗ 100% (3)

where DC is the dynamic change, Ub is the initial wetland area, Ua is the wetland area at a later time,
and T is the time. The DC model can describe not only the degree of wetland area variation but also
the temporal features of the wetland changes.

3.4.2. Land-Use Transition Matrix

In order to better grasp the regional wetland change characteristics and reasons for change, change
intensity needs to be understood, but it is also essential to know the spatial change and transformation.
In this study, the land-use/cover transition matrix [62,63] was employed to analyze the theoretical
frequency of inter-class conversions. Through the superposition of wetland maps from two points
in time, we can find the number of mutual conversions between different types of land cover in a
period of time and then reveal the spatial variation between the different types. Generally, a land-use
transition matrix is expressed as a table (Table 3). In Table 3, the rows are the land types in time T1 and
the columns are the land types in time T2. Pij was the area or percentage of the type Ai transformed
into the type Aj between T1 and T2. Pij indicates that there was no change in area for the type Ai during
the period of the time from T1 to T2.
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Table 3. Land-use/cover transition matrix.

Time Types
T2

A1 A2 A3 . . . Aj . . . An

T1

A1 P11 P12 P13 . . . P1j . . . P1n
A2 P21 P22 P23 . . . P2j . . . P2n
A3 P31 P32 P33 . . . P3j . . . P3n
. . . . . . . . . . . . . . . . . . . . . . . .
Ai Pi1 Pi2 Pi3 . . . Pij . . . Pin
An Pn1 Pn2 Pn3 . . . Pnj . . . Pnn

4. Results: Long-Term Wetland Changes in the Yellow River Delta

4.1. 1973–2013 Wetlands Remote-Sensing Mapping

The pattern of wetlands in the Yellow River Delta has undergone a significant change over the past
four decades (Figure 4). Initially (1973–1984), there were abundant natural wetlands and the landscape
was relatively simple. The main wetland types were marsh and intertidal zone. There were almost no
artificial wetlands. Later (1984–2013), wetland coverage was reduced markedly with a large amount of
marsh and swamp degradation. Large areas of artificial wetlands appeared and added to the regional
wetland landscape. The natural wetland patches were shrinking. Also, due to the sedimentation in
the Yellow River and the movements of the channel, the delta area has been increasing constantly.
The newly formed land contained natural wetlands at the beginning and was later dominated by
human activities. This caused the shape of the delta to change continuously and the local shoreline to
erode into the sea.

To ensure classification accuracy is reliable and classification results are credible, accuracy
verification of results is an essential task. All results are checked by overlaying the vector of the
wetland thematic map on the remotely sensed image. On that basis, through the accuracy analysis
of classification maps and manual samples (manual interpretation), each phase of the classification
results has a detailed accuracy assessment report (Table 4). Overall accuracy reaches 85% or more.
Average producer accuracy is above 86%. Average user accuracy is above 85%. The Kappa coefficient
is more than 0.80.

The Yellow River Delta wetlands have experienced considerable degradation from 1973 to 2013
(Figure 5 and Table 5). The total area of wetlands in this region has decreased 683.12 km2, but not
all kinds of wetlands have decreased in the same way. Different types of wetlands have their own
individual change characteristics. The natural wetlands decreased by 1441.5 km2 (36.04 km2·year−1

on average). The largest reduction was marsh and swamp, its total area declined by 1036.22 km2.
The second largest decrease was intertidal zone (beach) and the total area decrease by 425.16 km2.
Although the river wetlands experienced fluctuations from 1991–2006, the area remained relatively
stable. Meanwhile, the extent of artificial wetlands has increased by 758.47 km2 (18.96 km2·year−1

on average). Specifically, aquaculture pond, salt pan, and reservoir and pond area have increased by
526.7 km2, 128.2 km2 and 103.57 km2, respectively.
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Figure 4. A time series of wetland distribution in the Yellow River Delta from 1973 to 2013. Maps were
created using remote sensing.
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Table 4. Wetlands classification accuracy evaluation in 2013.

Types

Manual Interpretation

Total User
Accuracy/%Aquaculture

Pond
River

Wetland

Marsh
and

Swamp
Salt Pan

Reservoir
and

Pond

Intertidal
Zone

Aquaculture
pond 185 6 10 5 0 0 206 89.81

River wetland 5 158 7 0 2 2 174 90.80
Marsh and

swamp 7 20 162 9 2 5 205 79.02

Salt pan 0 4 7 168 8 1 188 89.36
Reservoir and

pond 3 10 11 16 180 8 228 78.95

Intertidal zone 0 2 3 2 8 184 199 92.46
Total 200 200 200 200 200 200 1200

Producer
accuracy/% 92.50 79.00 81.00 84.00 90.00 92.00

Overall accuracy = 86.0% Kappa coefficient = 0.837
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Figure 5. Accumulation histogram of area and dynamic change for all types of wetlands through time.

Table 5. Wetland area by type in the Yellow River Delta at different periods from 1973 to 2013 (units: km2).

Time
Marsh and

Swamp
River

Wetland
Reservoir
and Pond

Aquaculture
Pond

Salt Pan
Intertidal

Zone
Total Area

1973 1996.44 92.18 30.23 0.00 0.00 732.90 2851.75
1977 2046.74 113.28 31.29 0.00 0.00 691.86 2883.16
1984 2064.86 113.22 23.08 8.13 0.20 710.64 2920.23
1991 1738.98 100.03 63.13 117.52 6.49 645.76 2671.90
1995 1114.18 87.80 79.78 149.09 7.60 716.60 2355.05
2000 1453.79 91.12 119.86 188.20 9.68 610.64 2473.29
2006 1271.25 83.78 136.43 313.22 60.36 549.09 2414.13
2010 942.42 112.68 150.18 552.67 98.77 423.88 2280.60
2013 960.22 111.97 133.8 526.70 128.20 307.74 2168.63

4.2. Wetlands Spatio-Temporal Changes Analysis

The total area of wetland was reduced by 683.12 km2; the natural wetland area decreased
by 1441.59 km2, while the artificial wetland area increased by 758.47 km2 (Figure 6). The total
area of wetlands in this region had a statistically significant decreasing trend (18.29 km2·year−1,
p < 0.05). At the same time, the natural wetlands also had a statistically significant decreasing trend
(38.52 km2·year−1, p < 0.05). Meanwhile, the area of artificial wetlands had a statistically significant
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increasing trend during the entire period (20.2 km2·year−1, p < 0.05). Additionally, natural wetlands
had a fluctuating downward trend, but the artificial wetlands showed a steadily rising trend.
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Figure 6. Area of natural and artificial wetlands in theYellow River Delta from 1973–2013.

The change process had three stages: steady increase (1973–1984), sharp decline (1984–1995),
and slow decrease (2000–2013). The average dynamic change rate was −1.61% (Figure 7). The marsh
and swamp had the most degradation, the intertidal zone area had a steady and slow decline over the
time period, and the river wetland area was relatively stable. For the artificial wetlands, the average
dynamic change rate was 12.09% (Figure 8). The area of the three types of artificial wetlands increased
consistently and aquaculture ponds had the biggest increase.

Figure 9 shows the wetland gain, loss and unchanged area. Wetland reduction areas were mainly
distributed in the center of the Yellow River Delta. The area where wetlands were expanding
predominantly occurred in the coastal zone and the mouth of the river. Also, natural wetland
landscapes were severely destroyed. The new wetlands formed from the deposition of sediment
and the creation of aquaculture. The newly formed land became colonized by natural wetlands (e.g.,
swamp and intertidal zone), but it was later occupied by humans and converted into other land uses.
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Figure 7. Accumulation histogram of natural wetland area and dynamic change. The blue line is the
average dynamic change (ave. DC).
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Figure 8. Accumulation histogram of artificial wetland area and dynamic change. The blue line is the
average dynamic change (ave. DC).

Figure 9. Map showing changes in area of wetlands in the Yellow River Delta over the past four
decades. Three scenarios of wetland change are shown: wetland loss, wetland expansion (wetland
gain), and unchanged wetland areas.

Various natural wetlands were converted into artificial wetlands, farmland, city, and other land
uses (Table 6). Firstly, a large area of river wetland became marsh and swamp (33.85%). The original
ponds were primarily transformed into marsh and swamp (44.67%), aquaculture pond (16.39%),
and cropland (27.46%). A large area of marsh and swamp were converted into cropland (30.08%),
city (15.16%), and artificial wetland (23.18%). The intertidal zone was mainly transformed into marsh
and swamp, salt pan, aquaculture pond, and oil fields. In addition, there was a large area of intertidal
zone (18.84%) that converted to sea because of sediment erosion. This was another factor in the
reduction of regional natural wetlands. In total, more than half of the natural wetlands have been
damaged. Meanwhile, some of the shallow sea (26.99%) in the study area transitioned into marsh and
swamp, intertidal zone, aquaculture pond, and other land types. This is an incremental increase for
regional wetland area and effectively slows down the rate of wetland loss.
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5. Discussion

5.1. Change Mode and Trend

From a comprehensive analysis of the change process of the total area of wetland in the Yellow
River Delta from 1973 to 2013, there are two significant turning points on the change curve (Figure 10).
One is in 1984 and the other in 1995. From 1973 to 1984, the regional wetland area was steady with
a small increase. Then, the total area of the regional wetlands rapidly dropped to the lowest point
in 1995, followed by a little rebound in 2000. Since then, the area of regional wetlands has slowly
decreased. According to these change characteristics, the entire change process can be divided into
three stages: (1) Stable with a little increase (1973–1984). In this stage, the regional wetlands area
steadily increased. This was possibly linked to the change in channel of the Yellow River which
occurred two times during this period (1976 and 1979). (2) Rapid decline (1984–1995). In this stage,
the regional natural wetlands showed a sharp decline in area. At the same time, artificial wetlands
were gaining significant area. This was possibly due to the high intensity of human activity (e.g., urban
construction, cropland creation, and oil exploitation). From reviewing historical literature, the lowest
point of wetland area was likely around 1997, because in 1997 the amount of precipitation was very
low, which resulted in the longest duration of no flow in the lower Yellow River and the river went
dry in this area. Also, the area suffered a major storm surge, which resulted in the destruction of a
large number of natural wetlands [57,64–67]. (3) Slow decline (1995–2013). In this stage, the wetland
experienced a little improvement and then slowly decreased in area. This may be associated with the
creation of regional wetland reserves and climate change. The regional wetlands had a small increase
in area around 2000, which could be related to the unified water resources scheduling that began in
1999 within the watershed.
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Figure 10. Change trends and mode of total wetlands area in the Yellow River Delta from 1973–2013.

5.2. Attribution Analysis

There are many reasons for wetland degradation in the Yellow River Delta over the past decades
(e.g., farmland reclamation, beach development, coastal erosion, and climate change). The original
natural wetlands in the Yellow River Delta were mainly converted to cropland, aquaculture ponds,
salt pans, oil fields, city, residential areas, and infrastructure (Figure 11). The reasons for this can
be summarized into four major categories: (1) Human activities (e.g., farmland reclamation, beach
development, hydraulic engineering, oil exploitation, infrastructure construction); (2) climate change
(e.g., temperature increase, precipitation decrease, evaporation enhancement, sea-level rise); (3) the
Yellow River diversion (e.g., river mouth migration, coastal erosion); (4) policies (e.g., conservation
policy and management regulations, restoration projects).
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5.2.1. Human Activities

Land reclamation for farming, the census data showed that the Yellow River Delta has been
a key area for land reclamation. This directly resulted in a large number of low-lying swamps
being drained and converted into farmland. In the late 1990s, in particular, there was an increase in
cotton production, so a lot of swamp land was transformed into cotton fields [68]. Beach resource
development, aquaculture, and salt production have been the major development activities in the
Yellow River Delta tidal flat for a long time. Beach aquaculture was developing rapidly (mainly shrimp
farming, tilapia, and artemia) in the mid-to-late 1980s, and the area of the aquaculture ponds increased
exponentially. A census of the aquaculture area showed that the area increased 10-fold in the estuary
region between 1995 and 2002 [67]. Additionally, Dongying city has a long history of salt production.
The city had 34 raw salt production fields, a total salt area of 10.82 km2 in 1983, and by 2000, the area
reached 70.72 km2 [67]. To create these salt fields, a large area of natural wetlands was changed to
artificial wetland. This is why the natural wetland loss rate was 50.55% from 1973 to 2013, but the total
area of wetland only decreased by 23.95%.

Crop land

Residential &infrastructure

Oil exploitation

Salt pan

Aquaculture pond

Coastal erosion

Others

Natural unchanged wetland

Newly formed wetland

Figure 11. Changes in land use for natural wetland areas from 1973 to 2013.

Oil exploitation, the Yellow River Delta was a critical oil production location in China. Shngli
oilfield has been exploring and developing since 1961 and has become China’s second largest crude oil
production location. With the discovery and exploitation of new oilfields, the invasion and destruction
of wetlands were inevitable [22,57]. The area of the Shengli oilfield increased by 2.28 times from 1984 to
2001, with a total area of 853 km2 in Dongying City [69]. The competition between oil production and
wetland protection cannot be reconciled in the short-term. Water conservancy construction, as a result
of an increase in water demand by industry and agriculture, a large number of water storage and water
diversion projects have been built in the Yellow River Basin. At present, the Yellow River Basin has
more than 10,000 water storage projects and over 3 million water pumping projects [67]. The volume
of water diverted reached 4.7 × 1010 m3 in the 1990s [67,70]. The various water conservation projects
allowed a rapid increase in water consumption and increased the competition between water supply
and demand in the basin. In 1972, part of the Yellow River channel dried up. Thereafter, periods when
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no water reached the lower part of the Yellow River became a common phenomenon; from 1972–1999,
this occurred 22 times. The most extreme occurrence of the river water drying up was in 1997, lasting
226 days and with no water in the channel up to 704 km up stream [65–67,71]. The absence of water
in the Yellow River fundamentally changed the water environment of the delta and directly resulted
in loss in the regional ecosystem, deterioration, and irreversible damage [72]. Because there is less
water, it is bringing less sediment to the area [67,73]. This not only slowed down the sedimentation,
but also reduced the area of newly formed coastal wetlands. It directly threatened the coastal wetland
ecosystem [57,72,74].

Additionally, economic development, population growth, and urban expansion, especially the
development of the Shengli oilfield, caused a number of wetlands to be destroyed by the building
of roads, dams, ports, and other infrastructure [7,8,22,75,76]. The integrity of the wetlands has been
undermined due to the infrastructure construction and the original wetland landscape has become
increasingly degraded and fragmented. Overall, this research has shown that human activities were
the main driver of wetland landscape changes in the Yellow River Delta [22,77,78].

5.2.2. Climate Change

Global warming has been accelerating sea-level rise, which has led to the submersion of low-lying
areas of coastal wetlands [79,80]. According to the China Sea Level Bulletin 2016, China’s sea-level
rise is generally higher than the global average over the period from 1980 to 2016 (3.2 mm/a) [81].
In the Yellow River estuary coastal district, the relative increase in sea level over the past 30 years
was 4.5–5.5 mm/a, including regional crustal subsidence [82]. Climate warming has also led to the
redistribution of water resources and exacerbated regional water resource imbalances. During the
period from 1961 to 2010, the annual average temperature in the coastal wetlands of the Yellow River
Delta increased by 1.85 ◦C, while the annual precipitation decreased by 121.42 mm [83]. A large number
of studies have shown that over the past four decades precipitation decreased in the Yellow River Basin
and the area showed a warm and dry trend [83–86]. The precipitation in the upper and middle reaches
of the river has decreased due to the warm and dry regional climate. Meanwhile, the water demand
for industry and resident life increased, which accelerated the crisis of the downstream ecological
water resources. The annual flow of the Yellow River has decreased dramatically in the past decade,
and the flow has a significant negative correlation with the temperature and positive correlation with
precipitation [49,86–90]. Climate change was a long-term critical impact factor on the reduction of flow.
However, it is understood that water diversion was the main cause of the flow changes in the lower
reaches of the Yellow River [91].

5.2.3. Yellow River Diversion

From 1973 to 2013, the Yellow River Delta had a great increase in area (495.77 km2) due to
sedimentation (Figure 12b), with an annual expansion rate of 21.3 km2/a. These newly formed
lands are the source of increased wetland area. Also, the Yellow River channel location has changed
periodically. The site of the river mouth not only affected the speed of siltation but it influenced the
direction of the delta’s expansion. Once the river mouth changed location to the other sites, the source
of sediment in the old Yellow River channel was cut off and the coastal erosion increased. Over the
period from 1973–2013, the mouth of the Yellow River has moved four times (Figure 12).
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Figure 12. (a) Map showing different locations of the Yellow River channel and mouth and the coastal
shoreline at different points in time. (b) Map showing past locations of the Yellow River and new areas
of land that formed in the Yellow River Delta since 1973.

From 1964–1976, the Yellow River flowed north into the sea from the Diao Mouth (Figure 12a
site A). The Yellow River was rechanneled in 1976 at the west river mouth. Between 1976 and 1979,
it flowed into the sea from the Qingshuigou (Figure 12a, site B). In the period from 1979 to 1996,
the location of the Yellow River channel was in an unstable condition and with little change at flood
season (Figure 12a, site C). In 1996, the Yellow River was diverted by human intervention at the location
of the Qing No.8 Brouch, which blocked the main channel and forced the river to veer north-east.
Since then, the Yellow River has flowed into the sea north-east of the Qing No.8 Brouch (Figure 12a,
site D). With all of these change in the estuary, the coastline also varied constantly over the past four
decades (Figure 12a). Wherever the mouth of the Yellow River was located, the delta expanded. Since
the mouth of the Yellow River moved from the Diao Mouth, the coastline there eroded severely.

Additionally, due to the special terrain and geographical environment, the Yellow River estuary
was prone to storm surge. There was a serious storm surge every 3 to 4 years on average [67]. Storm
surges led to coastal erosion and coastal wetlands being destroyed. According to the weather record
data, the storm surge in 1992 contributed to part of the coastline retreating up to 30 m, the direct
loss of land was 4.66 km2 [92]. The storm surge in 1997 directly destroyed the region’s largest area
of Robinia pseudoacacia [67]. From the discussion above, the mouth migration and coastal erosion
obviously had major impacts on the regional wetland changes.

5.2.4. Conservation Policies and Projects

Over past decades, natural wetlands in China have suffered a great loss of area and degradation.
This is inextricably linked to the development of agriculture, the lack of awareness of the importance of
wetlands, and government policies and laws [7,14,15,93,94]. The Yellow River Delta wetlands were no
exception; in the middle stage of wetland change (stage 2: 1984–1995), because of the lack of ecological
protection awareness and the excessive pursuit of economic interests, a large area of wetland was
converted into farmland, aquaculture ponds, salt pans and other uses (Table 2). After the regional
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wetland ecosystem was severely degraded, relevant government departments and authorities realized
the importance of wetlands and developed a series of protection policies and laws. For example,
in 1990, Dongying Municipal People’s Government approved the establishment of the Yellow River
Delta Nature Reserve (YRDNR). In 1991, the Yellow River Delta Nature Reserve was upgraded to
a provincial protected area. In 1992, the State Council of China approved the establishment of the
Yellow River Delta National Nature Reserve (YRDNNR). In 1999, the implementation of the Yellow
River basin unified water resources scheduling rectified the lack of flow (the river drying up) in the
lower reaches of the river and this has been fundamentally reversed. In 2004, the Yellow River Delta
Nature Reserve Phase II project was completed and passed the national acceptance. In the same year,
the Yellow River Delta National Nature Reserve wetlands monitoring project began, and it used remote
sensing, global position system (GPS), geographic information system (GIS), and other technology to
determine the timing and locations of fixed-point monitoring for the study area. In 2006, the Yellow
River Delta National Geo-park was opened.

In stage 3 (1996–2013) of wetland change, the degradation rate of the regional wetlands has slowed
down, which was potentially linked to these protection projects and laws. It should be noted that
there may have been some time lag between the implementation and effectiveness of the protection
policy. From the results of this study, in the late 1990s the effects of the conservation efforts began
to be visible. There was probably a five- to 10-year time lag. The unified water resources scheduling
which was begun in 1999 seems to be very effective, because the area of wetland rebounded in
about 2000 (Figure 3). There were likely links between these two events. However, the effective
protection of wetland resources was not a simple matter, it involved trade-offs among the interests and
behaviors of the various stakeholders (e.g., the petroleum industry, government departments at all
levels, urban developers). There is still a lot to be done to protect and restore these regional wetlands.
However, from the results of this study, great success in slowing down the rate of regional wetland
degradation has been achieved so far. The above discussion showed some possible, preliminary
reasons for the Yellow River Delta wetland degradation over the past four decades. To eventually
confirm the cause–effect relationship in this system, there needs to be more integrated and systematic
analysis using comprehensive technologies, such as multisource remote sensing and metrological and
hydrological models.

5.3. Credibility and Error Sources

5.3.1. Validity

Creating time-series maps over an extended period of time for the Yellow River Delta wetlands is
essential for wetland research and change analysis. It is also necessary to determine if it is possible
that the time-series changes came from misclassification. To insure that the classification results are
credible, the wetland information inferred from remotely sensed images should be validated. All of
the multispectral images used in the study have been carefully selected and strictly preprocessed.
The radiometric calibration and atmospheric correction was applied to polish the path radiance and
improve the clarity based on the ENVI 5.3 FLAASH model. The classification method used in this study
addressed the changed area map-updating by samples transfer learning rather than reclassification of
the whole image. The changed area machine identification improved the efficiency of classification,
and it also ensured classification accuracy. In addition, each section of the data change area was
manually checked carefully. Logical judgment was essential (e.g., wetlands can be transformed into
impervious surfaces, but the city’s impervious surfaces do not change into wetlands) to ensure that
errors of commission and omission were as small as possible. Therefore, we have confidence in the
accuracy of the wetlands classification maps.

The wetland area changes were possibly caused by inter-annual variation or linked to intra-annual
fluctuation. Sometimes, these two variables tend to interact. To discriminate the two different
changes in order to ensure that inter-annual variability was comparable in this study, the images
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used for wetland detection were from the same season (autumn—September to October), except
for the two earliest images. The river flow was relatively stable during this period each year [83,95].
So, the uncertainties of the inter-annual observed changes caused by intra-annual fluctuation was very
little and acceptable.

5.3.2. Error Source

Regardless of the methodology, to perform wetland classification and updating successfully, the
limitations (e.g., map scales, data acquisition time, spatial and spectral resolution, characteristics
of wetlands, algorithms) of remote sensing inevitably affected the accuracy of the mapping [96].
From analyzing potential error sources in this study, the cartographic errors were mainly from scale
and technical error.

Scale Errors

The scale factors were the inherent errors, which included both time scale and space scale
errors [97]. Time scale errors were due to the variation in precipitation and wetness from year to year
(i.e., drought or flood years). Accordingly, the ideal time for observations was at a time with average
weather conditions [96,98,99], but that is only an ideal condition. The time and weather conditions
of the images were not controllable. It cannot be known whether images captured during weather
extremes would affect the mapping of the wetlands, but using nine observations to characterize and
infer the change process and mode over the past four decades of the wetlands. This was a sample
survey to some extent because the images were spread out over so many years. It was not possible to
determine the exact time of a change. Therefore, the time scale error was not only related to the image
acquisition time but also linked to the time density of the observations.

The space scale factors included the spatial resolution of the images and the map scale. The spatial
resolution of the image reflects the ability to distinguish different category information, but it also has
a negative impact on the classification accuracy [97,100–102]. The richness of wetland information
derived from an image positively relates to its spatial resolution [100]. However, the specifications
necessary for a “good” wetland map is heavily dependent on what the map was to be used for [96,98,99].
Therefore, neither a high nor low spatial resolution is better [102,103]. In this study, the image resolution
of the earlier multiple spectral scanner (MSS) images was 60 m and the later (TM/OLI) images was
30 m. The difference in spatial resolution between MSS and TM is the size of one TM pixel (30 m).
The lower spatial resolution increased the mixed pixels problem and decreased the separability of
wetlands spectra. Also, the mis-registration between the different spatial resolution images is 15 m,
which has a direct impact on the transitions between wetland type. Furthermore, the minimum
mapping unit was 0.01 km2, which means an area of wetland less than that size was ignored. The map
scale also affects the map accuracy.

Technical Errors

No matter how good the algorithm, the classification accuracy cannot be 100% and errors
are unavoidable. The technical errors were mainly caused by the characteristics of the wetlands,
such as changes in different season, they have complex spectra, they are heterogeneous, and the
same land cover types have multiple spectrums. To improve the classification accuracy in the future,
more research can be done on the following aspects: (1) To discover more effective features, not just in
spectrum, new technologic methods maybe good alternative choices (e.g., synthetic aperture radar,
lidar, and geospatial modeling); (2) to enhance the intensity of machine learning; taking into account the
all possible situations via the new learning structures (e.g., deep convolutional artificial neural network
(ANN) and deep learning) [104–112]. The deep convolutional neural network algorithm, in particular,
has better learning and generalization performance for multiple variables and large datasets.

Nevertheless, this is the first time that the Yellow River Delta wetlands have been mapped and had
a long time-series change analysis performed on them. The results provided important information
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and scientific support to help the local government agencies develop robust strategies for wetland
management, conservation, and restoration in the future. The study attempted to label classification
samples automatically by the transfer learning method. This methodology emphasized the importance
of existing thematic map knowledge. The entire technological procedure has greatly improved the
efficiency of the work and the level of automatic wetland classification. The hybrid method used in
this research could be extended to other regions for wetland surveys and mapping.

6. Conclusions

This study developed a new methodology to identify wetlands automatically and documented
the time-series changes from 1973 to 2013 in the Yellow River Delta using remotely sensed data.
Spatio-temporal change analysis was conducted to examine the long-term change processes and
modes of different wetlands over the last four decades using nine images for classification and
mapping. The results quantitatively assessed the temporal and spatial changes within the wetlands as
well as between wetland and non-wetland areas to determine the main reason for degradation. Several
findings were revealed and communicated in this study.

(1) The Yellow River Delta wetlands have been severely damaged over the past four decades (683.12
km2 were lost). Over half (50.55%) of the original natural wetland area was lost between 1973 and
2013. Meanwhile, the regional artificial wetland area had a significant increasing trend (20.2 km2·year−1,
p < 0.05).

(2) The whole change process can be divided into 3 stages: relatively stable (1973–1984), rapid
reduction (1984–1995), and slow degradation (1995–2013). Moreover, the total area of the regional
wetlands dropped to the lowest point in the second stage and then began to rebound around 1995.

(3) The designed hybrid method for wetland map automatic updating based on sample transfer
and machine learning has greatly improved the work efficiency. This approach provided a new way to
make full use of existing thematic maps and could be extended to other areas.

(4) Regional human activities (e.g., farmland creation, salt development, oilfield exploration,
aquaculture, industrialization) were the main cause of the regional wetland degradation in the
short-term. Climate change was a long-term factor that has been affecting the evolution of regional
wetlands. The hydrological factors and the channel diversion of the Yellow River directly affected
the formation and development of the regional wetlands. Regional wetland protection policies
and engineering have played an important role in slowing down the process of regional wetland
degradation to a certain extent. In order to fully understand the cause–effect relationship of the
wetland change, more integrated and systematic analysis by comprehensive technologies is needed.
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Abstract: Litter layers and topsoil have important effects on surface runoff. To investigate these effects
at the plot scale, artificial rainfall experiments were conducted on micro-runoff plots in Guizhou
Province, China. Three types of plots were selected, the thin litter layer with low soil bulk density
type (T-L type), the thick litter layer with high soil bulk density type (T-H type), and the moderate
litter depth and soil bulk density type (M type), and three artificial rainfall intensities (30 mm/h,
70 mm/h, 120 mm/h) were used. The runoff volume was largest in the T-H type plot at different
rainfall intensities and durations. Runoff in the M type plot had characteristics of both the T-L and
T-H type plots. The runoff yielding speed was significantly higher and the runoff yielding time was
significantly lower in the T-H type plot. In general, the runoff coefficient was the smallest in the
T-L type plot and largest in the T-H type plot. The variations in the runoff coefficient were 15.6%,
19.3%, and 5.8% for the T-L, T-H, and M type plots respectively. The results of this study can improve
the understanding of surface runoff processes at the plot scale under different litter and surface
soil conditions.

Keywords: runoff; simulated rainfall; plot scale; litter layer; topsoil; karst

1. Introduction

A litter layer is typically composed of dead leaves, twigs, small branches, and other fragmented
organic material, and influences the hydrological processes that operate in forested watersheds [1].
The regulation of the litter layer includes the interception, throughfall, and stemflow, which regulate
soil evaporation, increase permeability, reduce overland flow, and create a rapid-flow component
within the litter layer [2–4]. The simultaneous operation of these processes causes the litter layer
to affect both short-term runoff and long-term water balance within a hydrological cycle. Not only
the litter layer but also the topsoil has a notable impact on hydrological processes. The topsoil state
regarding water movement into the soil mass may affect evaporation, infiltration, and distribution
of topsoil [5]. Further, various runoff generating processes (saturation excess overland flow,
infiltration excess overland flow, and return flow) are highly regulated by the topsoil state [6,7].
In short, as one of the hydrological elements, the generation and dynamics of surface runoff are
significantly affected by the state of the litter layer and the topsoil.

Several studies examined how surface runoff is regulated by the extent of litter coverage.
To investigate the influence of the litter layer and undergrowth intercrops on surface runoff and
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soil erosion, experimental field plots were monitored by Liu et al. [8] over one rainy season in a rubber
monoculture and a rubber/tea agroforestry system. In a simulated rainfall experiment in runoff plots,
Li et al. [4] investigated the effect of litter cover on surface runoff in northern China. Miyata et al. [9]
examined the effects of forest floor coverage on overland flow generation and soil erosion in mature
Japanese cypress plantations with different coverage conditions. Prosdocimi et al. [10] evaluated the
immediate effectiveness of the litter layer in reducing surface runoff generation in Mediterranean
vineyards. These works have greatly enriched the understanding of the relationship between the litter
layer and surface runoff. In addition to litter layers, the runoff effect of surface soils has attracted
the attention of many researchers in the hydrology field. In terms of runoff generating processes,
overland flow generation mechanisms affected by topsoil treatment and Hortonian overland flow
is responsible for significant amounts of soil loss in Mediterranean geomorphological systems [11].
Sorbotten et al. [12] observed that in an Acrisol on a forested hillslope with a monsoonal subtropical
climate, the topsoil responded quickly to rainfall events, causing frequent cycles of saturation and
aeration of soil pores. Compaction and destruction of the topsoil structure by machinery, especially at
harvest, is important in initiating runoff [13]. In fact, the runoff effect of topsoil also has a scale effect.
At sites with intensive grazing small-plot devices deliver significantly higher runoff coefficients than
large-plot devices, due to topsoil compaction and the shortened flow path [14]. In terms of the impact
of revegetation on runoff, Zhang et al. [15] showed that revegetation with artificial plants improved
topsoil hydrological properties but intensified deep-soil drying in northern Loess Plateau, China.

Guizhou Province has the largest area of karst landforms in China, with the karst area accounting
for 64.2% of the total area of the province [16]. The karst hydrological system consists of two systems,
surface and underground, and surface water flow is connected with an extensive subsurface drainage
or karst conduit network by fissures, sinkholes, and swallets [17,18]. In a karst environment, due to the
slow rate of formation of soil, rainfall and subsequent surface runoff may scour the topsoil, leading to
soil erosion and consequent rocky desertification [19,20]. Precipitation in a karst area quickly infiltrates
the ground and enters the underground system. Thus, it cannot support plant growth. Areas with
a low density of surface streams often have high soil erosion and a more severe problem of rocky
desertification [21]. Thus, surface runoff is one of the key factors affecting the ecological problems
associated with karst regions, such as rocky desertification and sparse vegetation that may require
restoration. Furthermore, due to the shallowness of the soil in the karst area, the litter layer and topsoil
affect the formation of surface runoff. Therefore, it is necessary to conduct in-depth research on surface
runoff in Guizhou Province.

Since the 1990s, there has been a series of studies on karst surface runoff [22–27]. These studies
focused on the runoff generation on limestone slopes [28,29], the effects of the proportion of bare
bedrock and degree of underground pore fissures on surface runoff [30], and the research methods for
surface runoff in karst areas [31,32]. However, to the best of our knowledge, there have not been many
studies on the combined effects of litter layers and topsoil on surface runoff processes, especially in
karst areas.

In this study, three plots with similar climatic conditions and vegetation, but with different litter
and topsoil states, were selected in Guizhou Province, China. Simulated rainfall experiments were
conducted and the runoff characteristics of the three plots were compared. Our goal was to determine
the differences in surface runoff characteristics under different litter and surface soil combinations at
the plot scale in a case study at the three sites in Guizhou Province.

2. Materials and Methods

2.1. Study Area

The experimental sites were located in Huaxi District in Guiyang City, Guizhou Province in
southwestern China. The region has a subtropical moist monsoon climate and an annual precipitation
of 1129 mm. The mean annual temperature is 15.3 ◦C and the monthly averages range from −7.3 ◦C to
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35.1 ◦C. The elevation varies from 1002 to 1627 m above sea level and the relief is dominated by hills.
The landforms of the study area can be divided into three types: karst landforms, non-karst landforms,
and semi-karst landforms. In the karst area, the soils are calcareous soils developed from limestone
and the soil layer is thin and discontinuous. In the non-karst area, the soil type is yellow soil developed
from sandstone and the soil layer is thick. In the semi-karst area, the soil type is yellow soil developed
from dolostone and the soil layer is thinner than that in the non-karst area. The locations of the three
plots are shown in Figure 1.

 

Figure 1. The location and elevation of the study area.

2.2. Description of Plots

In this work, three experimental sites corresponding to the three litter and surface soil combination
types were selected. The first type is the thin litter layer with low soil bulk density (T-L type), the second
type is the thick litter layer with high soil bulk density (T-H type), and the third type is the moderate
litter depth and soil bulk density (M type). To ensure the consistency of climatic conditions, the three
sites were selected such that the distance between any sites was not more than 10 km. The main tree
species at all sites is Pinus massoniana. The T-L, T-H, and M types have an average tree age of 20,
12, and 17 y, an average tree height of 15, 13, and 16 m, and a canopy density of 0.85, 0.95, and 0.95,
respectively. All three sites have a small amount of natural understory vegetation on the forest floor
and the soil is mostly covered by a litter layer of needles. We set a group of nine runoff plots at each site
for a grand total of 27 runoff plots. The runoff plots at each site were adjacent to each other. The average
characteristic values of each runoff plot group at the sites are listed in Table 1. The experiments were
conducted in October 2016, which is in the early dry season. The soil moisture was generally low and
changed slightly because of the seasonal drought. Hence, the antecedent soil moisture differences did
not affect the simulation experiments.

Table 1. Characteristics of liter layer and topsoil.

Site
Litter Depth

(mm)
Litter Mass

(t/hm2)
Soil Bulk

Density (g/cm3)
Slope

Gradient

T-L type 54.16 30.52 1.515 40◦
T-H type 133.617 40.60 2.098 39◦
M type 68.85 45.26 1.742 37◦
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The experiments were carried out using a portable rainfall simulator. The nozzle was set on a steel
frame at the height of 2 m. At this height, the nozzle generated a constant intensity of rainfall within a
1 m radius around the rainfall simulator. The circular area was marked on the soil surface, and then a
60 cm × 100 cm rectangular runoff plot was set in the center of the circle. The plot boundaries were
defined using 30 cm high iron sheets that were inserted into the ground to a depth of 10 cm. A V-shaped
groove was placed at the lower end of the plot to collect runoff (Figure 2). Finally, clear water was
supplied through a 2.5 cm diameter high-pressure hose by a pump. The pump was powered by
a 2.0 Kw/220 V gasoline generator. The rainfall intensity was controlled by a flow meter attached
to the hose. The correspondence between rainfall intensity and flow has been determined by our
previous experiments.

2.3. Data Acquisition and Processing

Each simulated rainfall event lasted 30 min and runoff volume data were collected every 3 min.
When continuous water flow began to appear in the V-shaped groove, the runoff generation time was
recorded. Based on the rainfall intensity and rainfall frequency in this area, three rainfall intensity
values were selected: 30 mm/h, 75 mm/h, and 125 mm/h. The corresponding three rainfall intensity
experiments were conducted on each plot and three replications were made for each rainfall intensity.
Thus, a total of 27 rainfall experiments were conducted (3 litter layer and topsoil combination types
× 3 intensities × 3 replicates). Finally, to reduce the experimental error and obtain valid data for the
analysis, we averaged the data of each replicate.

   

Figure 2. Micro-runoff plot setup in the forest.

3. Results

3.1. Surface Runoff Changes under Different Litter Layer and Topsoil Combination Conditions

Figure 3 shows that runoff is typically greater in the T-H type than in the T-L type or M type
at various rainfall intensities. At the three sites, runoff first increased notably and then reached a
steady state. When the rainfall intensity was 30 mm/h, the runoff at an early stage at three different
litter layer and topsoil combination conditions was roughly the same. The runoff peaked at 9 min
in the T-L type, but it reached its maximum at 18 min in the T-H type and at 24 min in the M type.
The runoff in the T-H type fluctuated the most during the entire rainfall event and this runoff value
was always the largest one. The maximum value of the T-H type was 1.62 times that of the M type
and 1.78 times that of the T-L type. When the rainfall intensity was 75 mm/h, the increasing trend of
the runoff in three litter layer and topsoil combination conditions was consistent and stable. The T-H
type had the largest runoff, followed by the M type and the T-L type, respectively. When the rainfall
intensity was 120 mm/h, the runoff at the T-H type increased rapidly at the beginning of the rainfall
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event and reached its maximum at 18 min. This maximum was 1.55 times that at the M type and
1.99 times that at the T-L type. The runoff at the T-L and M type increased steadily with a small
gap. When the continuous runoff reached a peak, the runoff at the T-L and M type maintained the
steady state. The runoff at the T-H type was always the highest under different rainfall intensities and
durations. The runoff at the T-L type was typically the smallest. The increase in runoff became smaller
with the increase in the rainfall duration. The runoff at the M type was typically between the runoff
values at the T-L type and T-H type.
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Figure 3. Runoff changes under different surface landscape conditions. (a) 30 mm/h rainfall intensity;
(b) 75 mm/h rainfall intensity; and (c) 120 mm/h rainfall intensity. T-L stands for thin litter layer with
low soil bulk density, T-H stands for thick litter layer with high soil bulk density, and M stands for
moderate litter depth and soil bulk density.

3.2. Surface Runoff Changes under Different Rainfall Intensity

To understand the effect of rainfall intensity on surface runoff, this section analyzes the variations
in surface runoff for the T-L, M, and T-H types for the rainfall intensities of 30 mm/h, 75 mm/h,
and 120 mm/h, respectively (Figure 4). For the T-L type (Figure 4a), under the condition of heavy
rainfall (120 mm/h), the runoff reached a large value at the early stage of rainfall. In contrast, under the
conditions of small and medium rainfall intensity (30 mm/h and 75 mm/h, respectively), the runoff
took a long time to reach a large value. For the T-H type (Figure 4b), the runoff was relatively stable
when the rainfall intensity was 30 mm/h and 75 mm/h. However, the runoff fluctuated greatly when
the rainfall intensity was 120 mm/h and the maximum runoff at this intensity was 2.18 times the
maximum runoff at 75 mm/h and 3.1 times the maximum runoff at 30 mm/h. In the early stage
of rainfall (3 min), the runoff for the T-H type under the heavy rain intensity was not significantly
different from the runoff at the medium and small rainfall intensities. However, after a certain period
(6 min), the runoff under the highest rainfall intensity reached a much larger value and increased
rapidly with rainfall duration (Figure 4b). For the M type (Figure 4c), the trend of runoff was similar
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for three rainfall intensities. When the rainfall intensity was 120 mm/h, the maximum runoff was
1.6 times the maximum runoff at 75 mm/h and 3.6 times the maximum runoff at 30 mm/h. Figure 4c
shows that the runoff for the M type increased with the increase in rainfall intensity and reached a
steady state after attaining its maximum value. The effect of rainfall intensity on surface runoff for the
M type was limited to a change of magnitude. There was no significant difference in the surface runoff
pattern between the rainfall intensities for the M type (Figure 4c).
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Figure 4. Runoff variations under different rainfall intensities. (a) T-L type; (b) T-H type; and (c) M type.

3.3. Runoff Yield Characteristics under Different Litter Layer and Topsoil Combination Conditions

Figure 5a shows that the runoff yielding times for different litter layer and topsoil combination
conditions are 1–4 min. Under the same rainfall intensity, the T-H type had the shortest runoff yield
time. When the rainfall intensity was 120 mm/h, this site generated runoff in 0.9 min. The runoff
yielding time for the M type was longer than that for the T-H type, but runoff was generated within
1.51 min at the rainfall intensity of 120 mm/h. The T-L type had the longest runoff yielding time at the
rainfall intensity of 30 mm/h. Under this intensity, it took 3.27 min to generate runoff for the T-L type,
2.37 min for the M type, and 1.7 min for the T-H type. With increasing rainfall intensity, the runoff
yielding time of the three sites gradually shortened and the runoff yielding speed (Figure 5b) gradually
increased. The T-H type had the highest runoff yielding speed and the T-L type had the smallest runoff
yielding speed. In summary, the runoff yielding time for the T-H type was significantly shorter than
the time for the T-L type or the M type and the runoff yielding speed for the T-H type was significantly
higher than the rate for the T-L type or the M type.
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Figure 5. Runoff yielding time (a) and rate (b) at different sites. T-L stands for thin litter layer with
low soil bulk density, T-H stands for thick litter layer with high soil bulk density, and M stands for
moderate litter depth and soil bulk density.

3.4. Surface Runoff Coefficient under Different Litter Layer and Topsoil Combination Conditions

Figure 6a shows that the runoff coefficient of the T-L type was the smallest and the runoff
coefficient of the T-H type was the largest. However, at the rainfall intensity of 30 mm/h, the runoff
coefficient of the M type was slightly lower than the coefficient of the T-L type. Under the rainfall
intensity of 120 mm/h, the runoff coefficient of the M type was not significantly different from that
of the T-L type. At the T-L type and the T-H type, the runoff coefficient at the rainfall intensity of
75 mm/h was significantly lower than the rainfall coefficients of the other two rainfall intensities.
This difference was not obvious for the M type. The effect of rainfall intensity on the runoff coefficient
was insignificant. Under three rainfall intensities, the variation in the runoff coefficient was 15.6% for
the T-L type, 19.3% for the T-H type, and 5.8% for the M type.
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Figure 6. The general characteristics of the runoff coefficient (a) and the variations in the runoff
coefficient with time for the T-L type (b); T-H type (c); and M type (d) plots. T-L stands for thin litter
layer with low soil bulk density, T-H stands for thick litter layer with high soil bulk density, and M
stands for moderate litter depth and soil bulk density.
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In general, there were some differences in the variation of the runoff coefficient at different
sites. After 6 min of rainfall, in general, the runoff coefficient was close to its maximum value for
the T-L type (Figure 6b). Thereafter, the runoff coefficient basically remained stable. For the T-H
type (Figure 6c), the runoff coefficients peaked at ~18 min after the rainfall began. For the M type
(Figure 6d), the runoff coefficient reached its maximum at 12 min and remained basically stable
thereafter. The runoff coefficient of the T-H type fluctuated substantially with different rainfall intensity
values. The runoff coefficient of the T-L type fluctuated less and the runoff coefficient produced by
different rainfall intensities at different points in time showed no obvious differences. In summary,
the runoff coefficients of the T-H type were significantly larger than those of the T-L and M types.

4. Discussion

4.1. Influence of Litter Layer Conditions on Surface Runoff

Under normal circumstances, as rainfall intensity increases, the runoff coefficient continually
increases, decreases, or remains stable, and the rainfall intensity and runoff coefficient reflect a stable
relationship. In this study, the runoff coefficients for the T-H type and the T-L type were smaller at
the rainfall intensity of 75 mm/h than at 30 mm/h or 120 mm/h and the relationship between the
rainfall intensity and the runoff coefficient was not stable. However, the runoff coefficient for the M
type was basically stable under different rainfall intensities. The analysis of the differences in the
individual plots showed that there were some differences in litter thickness and the volume between
the three types. The litter thickness was higher at the T-H and T-L plots than at the M plots and the
litter thickness was the largest at the T-H plots.

The analysis of the characteristics of the litter showed that litter coverage plays an important role
in runoff generation in a small-area runoff plot. When the rainfall intensity is low, most of the rainfall
remains on the surface of the undecomposed litter and flows down the slope as it accumulates on the
surface. In this case, the litter plays the role of a conduit and the continuous leaf litter on the slope
surface forms a flow channel for surface runoff. As a result, more surface runoff is generated and the
runoff coefficient becomes larger.

The sample sites selected in this study were all in the Pinus massoniana forest. Because of the
elongated undecomposed litter of this species (pine needles), the guiding effect on water flow was
more obvious. However, the ability of the litter to guide the flow of water was limited. Under the
medium rainfall condition (75 mm/h), the amount of rainwater on the litter reaches its upper limit and
water moves downward under the force of gravity, escaping the surface water flow channel formed
by the litter. The water provided by the subsequent rainfall continues to drip beneath the water flow,
thereby cutting off the water flow channel on the slope surface, increasing the volume of infiltration
and reducing surface runoff and the runoff coefficient. When the rainfall intensity increases further
(120 mm/h), the larger rainfall intensity makes it easier for the moisture content of the mineral soil
layer to reach saturation or the rainfall intensity exceeds the infiltration capacity of the soil layer. In this
case, the infiltration capacity may decrease and a large amount of rainwater may become surface runoff.
Under these circumstances, the runoff coefficient may be relatively large. However, this discussion is
based only on a small number of existing research results, combined with experimental observations
and an analysis of possible causes. Thus, experimental errors, sample selection, and other accidental
uncertainties cannot be completely ruled out. In follow-up studies the role and significance of the
litter layer, especially the undecomposed layer, for surface runoff at the plot scale needs to be further
explored, and the nonlinear relationships of runoff with rainfall intensity and slope gradient need to
be analyzed. This will further reveal the formation and evolution mechanisms of slope runoff under
different landscape conditions.
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4.2. Influence of Topsoil Conditions on Surface Runoff

The results show that the surface runoff volume and runoff yielding speed of T-H are greater
than those of the other types (Figures 3 and 5) and the runoff yielding time is less than that of the
other two types (Figure 5). The soil bulk density for the T-H type is relatively large, meaning that the
soil porosity is small and saturation is easily reached or the permeability coefficient is small and the
rainfall intensity easily exceeds the infiltration rate, resulting in conversion of most of the precipitation
to surface runoff. In contrast, the small bulk density of the other two types leads to the easy infiltration
of the precipitation, resulting in a relatively small surface runoff value. Due to the large runoff volume
of the T-H type, within the same time frame, the runoff yielding speed of the T-H type is also greater
than the other two types. Similarly, due to the large soil bulk density of the T-H type and the low
infiltration rate, surface runoff is relatively easily generated. Thus, the runoff yielding time is shorter
and the runoff coefficient is larger in the T-H type than in the other types.

Although soil bulk density affects surface runoff, surface runoff is mainly determined by
geological conditions. The study area is in a karst region, but karst is an extremely heterogeneous
medium with varying lithology and sporadic non-carbonate areas. Although it is a carbonate rock,
the landscape and soil conditions for limestone, dolomite, and argillaceous limestone areas are different.
The selected three types (sites) have different lithological features. The T-H type lithology is sandstone,
which can usually develop relatively thick soils, and the texture in the humid subtropical region of
China is more viscous, resulting in a relatively large soil bulk density. The lithology for type T-L is
limestone, which is easily dissolved by water, resulting in a thin layer of soil and small bulk density.
The lithology for the M type is dolomite; dolomite and argillaceous limestone usually form a semi-karst
landscape that differs from the karst [33,34]. Dolomite belongs to carbonate rocks, which can retain
a part of the weathering products, forming a soil thickness and bulk density between those of the
former two types. Therefore, under the same climatic conditions, lithology largely determines the soil
conditions and thus affects the surface runoff process.

4.3. Possible Impact of Spatial Scale on Surface Runoff

In this study, the micro-runoff plot was taken as the unit of study. If the spatial scale is expanded
to the slope or the small-watershed scale, the surface runoff characteristics of each landscape type
can change substantially. Karst areas contain both surface and subsurface hydrological systems.
As the scale of the study is expanded to the slope scale, it is found that surface runoff can penetrate
the ground along the rocky fractures at low-lying sites. When the study scale is extended to the
small catchment scale, it is found that surface runoff can become groundwater by being diverted
into underground rivers along the loopholes and sinkholes. This expansion of the research scale
leads to significant changes in surface runoff coefficients and other surface runoff characteristics.
Therefore, although there is abundant research on the characteristics of surface runoff, the variations in
surface runoff characteristics at different spatial scales in different litter layers and topsoil combination
conditions remain the important problems to be solved.

5. Conclusions

A case study on three types of litter layer and topsoil combination (T-L, T-H, and M) was
conducted to evaluate the characteristics of surface runoff at the plot scale in Guizhou Province, China.
The results showed that the runoff volume was the largest for the T-H type under different rainfall
intensities and durations. Runoff was the smallest for the T-L type and the increase in runoff with the
increase in rainfall duration was also small. Runoff for the M type had similar characteristics to the
runoff for the T-L and T-H types. In the early stages of heavy rainfall, the response of surface runoff to
rainfall intensity for the M type was not significant. The runoff yielding speed was significantly higher
in the T-H type than in the T-L and M types, and the runoff yielding time was significantly lower.
In general, the runoff coefficient was smallest in the T-L type and largest in the T-H type. Under the
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three rainfall intensities, the variations in the runoff coefficient were 15.6% for the T-L type, 19.3% for
the T-H type, and 5.8% for the M type. In the T-L type, the runoff coefficient fluctuated slightly and
the runoff coefficients produced by different rainfall intensities at different points in time showed
no obvious differences. The results showed that the M type was between the T-L and T-H types in
terms of surface runoff, runoff yielding time, runoff yielding speed, and runoff coefficient. In addition,
although soil conditions notably affected surface runoff, it was eventually determined by geological
conditions. Further, despite a small number of field experiments, this work enriches knowledge of the
effects of different litter and topsoil conditions on runoff processes at the plot scale.
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Abstract: Predictions in ungauged basins (PUB) has been always a focus of hydrological research.
The problem presented by ungauged basins is how to reasonably estimate water resource availability.
To solve the issues of data scale, this study combines field experiments and hydrological models to
estimate freshwater availability in a typical ungauged sea island located in southeastern China. The free
parameters in the hydrological model were derived from the point-scale rainfall-runoff experiments
rather than calibration using river discharge observations. The rainfall-runoff experiments were
performed on six sites covering 11 land cover types. Model validation at a sub-catchment showed that
the combined method could successfully reproduce monthly streamflow, with a Nash–Sutcliffe Efficiency
of 0.82, correlation coefficient of 0.85, and flow volume error of 6.5%. The simulation results indicate
high heterogeneity and distinct seasonal dynamics in freshwater availability across the entire island.
This pioneering PUB study for Chinese islands could provide reference for planning and management
of freshwater in a water shortage area.

Keywords: PUB; rainfall-runoff experiments; distributed hydrological model; Hydro-Informatic
Modelling System (HIMS); freshwater availability

1. Introduction

China has been implementing a national strategy called the Belt and Road Initiative, where the
“Belt” stands for the Silk Road Economic Belt and the “Road” stands for the 21st Century Maritime
Silk Road. The development of the costal islands is an important part of the 21st Century Maritime
Silk Road. There are numerous islands off the continent along the coastline, and most of them suffer
from fresh water resource shortages and a lack of hydrologic monitoring. How to make a scientific
assessment of available water resources in these ungauged islands is not only a forefront of hydrology
research, but also a basic issue of reasonable exploitation and the utilization of water resources.

Predictions in ungauged basins (PUB) has always been a frontier and focus [1]. In the beginning
of the 21st century, the International Association of Hydrological Sciences (IAHS) began an initiative
of PUB focused on reducing the uncertainty in hydrological models and hydrological forecasts [2].
Many studies have been conducted since then, including hydrological simulation and parameter
optimization for data acquisition methods [3–7]. Among this research, distributed hydrological
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models have been widely used in hydrological process simulations in ungauged basins due to their
multi-resource information processing.

The problem presented by the ungauged basins in the utilization of water resources is how
to evaluate the regional water resource scientifically and reasonably. Conventional methods for
calculating water resources generally consider the total amount based on data from stations, which is
difficult to implement in areas where there are no data, and the lumped total estimate cannot clarify
the spatial distribution of water resources. Additionally, conventional water resource assessments
only include liquid water such as surface water and groundwater, known as blue water [8]. However,
the blue water only represents one-third of the freshwater resources if rainfall is taken as the original
source of freshwater, since rainfall is converted eventually into three parts—surface water, soil water
and groundwater—through hydrological processes such as vegetation interception, infiltration,
runoff generation, and confluence [9,10].

The importance of soil water as a part of the water resource was recognized during the
19th century [11], and it has been an important starting point for alleviating the global water crisis in
recent years [12], especially in an agricultural country like China. Therefore, a scientific evaluation of
water resources needs to consider unconventional water resources such as soil water, based on the
water cycle process. However, the definition of soil water resources has not been fully unified [13].
The authors refer to the renewable soil water in the unsaturated zone recharged by natural sources
(including precipitation, condensed water, and submersion), which can be used by vegetation and has
a certain effect on maintaining a stable circle of the natural ecological environment [14,15].

Many studies have been conducted on the estimation and evaluation of soil water resources,
and corresponding calculation methods attained from farmland [9,10] and regional scales [13]. The main
methods are based on the principle of water balance [16], although there are no widely used evaluation
models. Regional-scale assessment of soil water resources can use hydrological models, especially distributed
models, to simulate the spatial and temporal distribution, which can be combined with the estimation of
surface water resources and groundwater resources to evaluate the total water resource [17].

However, not all of the water can be extracted to serve the water supply. Research needs to
consider the water requirements of ecosystems that rely on freshwater [18]. It is necessary to ensure
the sustainable state of the ecosystems when estimating freshwater availability. Additionally, the
use of water resources in a region is also limited by the conditions of contemporary engineering
measures, especially flood control during the flood season. Therefore, for the foreseeable period,
abandoned floodwaters that cannot be controlled by engineering measures are difficult for localities to
use, and should be deducted from the total water resource availability.

This study selected Pingtan Island in southeast China as the study area, which is the fifth-largest island
in China, and is one of the starting points of the 21st Century Maritime Silk Road [19]. The ungauged
island is suffering from a freshwater shortage, and the freshwater availability in space and time is not clear
due to a lack of hydrological observations. The existing studies of the freshwater on the entire island are
lacking fine spatial and temporal distribution due to a dependence on measured streamflow data, and the
evaluation object is only surface and ground water. This work intends to reveal the freshwater availability,
including soil water availability, by integrating field experiments with modeling, and provide a basis for
future freshwater resource management on this ungauged island.

Against this background, the main objective of this study is to provide a basis for future freshwater
resource management in Pingtan and a pattern to assess available freshwater in ungauged areas.
The temporal and spatial distribution of freshwater availability in Pingtan Island will be estimated by
integrating field experiments with modelling.

To satisfy the objectives of this study, the authors managed to get the spatial distribution of
rainfall-runoff relation by ArcGIS based on field investigation and field rainfall-runoff experiments.
Then, a distributed hydrological model of the island based on HIMS (Hydro-Informatic Modeling
System) [20] was constructed and the model parameters were determined according to the spatial
distribution of rainfall-runoff relation. Applying this distributed model, this study quantitatively
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determined the volumes of components of available water resources, temporally and spatially,
with consideration of the environmental flow requirements and abandoned floodwater.

2. Study Area and Data

Pingtan Island is located in southeast China precisely between longitudes 119◦40′ E and 119◦53′ E
and latitudes 25◦23′ N and 25◦40′ N (Figure 1a). The total area is 275.2 km2. There are undulating hills
and low mountains in the south and north, and plains comprise the middle part. The average annual
temperature is 19.8 ◦C and the annual precipitation is 1236.1 mm. Due to the impact of typhoons,
the distribution of precipitation during the year is extremely uneven. The precipitation is generally
the highest from March to June, while from July to September most of the precipitation is caused by
typhoons. The surface layer of the island is mainly an aeolian layer, dominated by aeolian sand, and has
strong infiltration capacity. The change of topography in the island is relatively small. The highest
elevation is only 440 m, and the overall surface water storage capacity is weak [21]. Owing to the
restrictions of the topography and soil conditions, the water system of Pingtan Island is extremely
underdeveloped. The streams are seasonal, and the surface water is very limited. Pingtan Island lacks
hydrological monitoring stations.

This study collected the daily rainfall data, maximum and minimum temperature data of the
only national meteorological station on the island (data are monitored by the Pingtan Meteorological
Service, and are available at http://data.cma.cn/), and the observed daily rainfall data of a rainfall
station from 1986–2012 (data are monitored by the Hydrology and Water Resources Survey Bureau
of Fujian Province). The authors also collected a set of observed monthly inflow data of the largest
lake (36-Foot Lake, with a catchment area of 11.6 km2) on the island from the Hydrology and Water
Resources Survey Bureau of Fujian Province, which were only used for model validation.

Based on the interpretation of a scene of remote sensing images from Landsta8 (https://earthexplorer.
usgs.gov/), the land use has five categories: cultivated land (41.6%), wood land (14.1%), grass land (18.0%),
water (5.5%), and construction land (20.8%) (Figure 1b). According to the national soil census data (1:50,000,
1983), the soil is classified into three types: amorphic soil (54%), ferralsol (37.8%), and alkali-saline soil
and others (8.2%) (Figure 1c). According to the Second National Land Survey Technical Regulations of
China [22], the slope derived from the DEM data (spatial resolution 2 m × 2 m, came from the Fujian
Research Institute of Water Conservancy and Hydropower) is classified into four grades: (0◦–6◦), (6◦–15◦),
(15◦–25◦), (25◦–88◦) (the slope in the island ranges from 0◦ to 88◦) (Figure 1d).

Figure 1. Cont.
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Figure 1. (a) The study area and location of meteorological and rainfall stations; (b) Spatial distribution
of land use; (c) Spatial distribution of soil types; and (d) Map of slope classification.

3. Methods

3.1. Field Rainfall-Runoff Experiments

Due to the lack of hydrological monitoring data in Pingtan Island, this study carried out
rainfall-runoff field experiments in order to understand the hydrological characteristics and provide
a basis for the construction and parameter calibration of a HIMS model. Considering the main
underlying surface factors affecting the runoff, this study first identified the typical types of underlying
surface in the island, and then combined this information with a field survey to determine the
experimental sites that could cover the typical underlying surfaces.

Among the land use types, the cultivated land runoff coefficient was nearly zero due to the sandy
soil. The construction land runoff coefficient was high due to the high imperviousness degree, so its
runoff coefficient was determined according to China’s Code for the Design of Outdoor Wastewater
Engineering [23] as 0.8. Thus, the grassland and woodland were left for field experiments. Subsequent
to combining the woodland and grassland, soil, and the slope of the island, the underlying surface was
classified into 24 types. Then, the poorly represented types (less than 1.5% of the area) were merged
into those types which were similar, and the underlying surface was eventually classified into 11 types
(Table 1). According to the field research, this study identified six representative experimental sites
(Figure 2a). A 1 m × 1 m field was set under different underlying surfaces in the experimental area,
and a portable rainfall simulator device was applied [24], developed by the Institute of Geographic
Sciences and Natural Resources Research (IGSNRR) in the Chinese Academy of Sciences (Figure 2b,c).
The runoff volumes and duration were observed under different rainfall intensities (150 mm/h,
200 mm/h, 250 mm/h, 300 mm/h, 350 mm/h).

The artificial rainfall stopped when the runoff came to a stable state for a couple of minutes,
and the runoff monitoring stopped when there was no runoff generated for each experiment. The runoff
coefficient of each experiment was the ratio of total runoff to total rainfall, and the average runoff
coefficient of each underlying surface was the mean of runoff coefficients under five rainfall intensities.
The observed runoff coefficient was used for model calibration, and was used for generating the spatial
distribution map of runoff coefficients in the study area, together with an ArcGIS spatial assignment
and area-weighted statistics. Using ArcGIS, the authors joined the polygon-layer attribute table of
the underlying surfaces with the runoff coefficients table, and then intersected this layer with the
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sub-basins layer. Underlying surfaces polygons inside each sub-basin could be identified based on the
intersect result, and the comprehensive runoff coefficient of each sub-basin was determined from the
area-weighted statistic of these polygons’ runoff coefficients.

Table 1. Typical underlying surface types and their areas.

No. Typical Underlying Surface Type Area (km2)

1 Grassland + Ferralsol + (6◦–15◦) 13.86
2 Woodland + Ferralsol + (15◦–25◦) 11.25
3 Grassland + Amorphic soil + (0◦–6◦) 9.73
4 Woodland + Amorphic soil + (0◦–6◦) 10.81
5 Grassland + Ferralsol + (15◦–25◦) 10.04
6 Grassland + Ferralsol + (0◦–6◦) 8.65
7 Woodland + Ferralsol + (6◦–15◦) 8.15
8 Woodland + Ferralsol + (25◦–88◦) 5.96
9 Grassland + Ferralsol + (25◦–88◦) 3.90

10 Grassland + Alkali-saline soil and others + (0◦–6◦) 2.50
11 Woodland + Ferralsol + (0◦–6◦) 2.96

Figure 2. (a) Spatial distribution of underlying surface types and selected sites for the field rainfall-runoff
experiments; (b) Conducting field experiments; and (c) A field site for experiments (1 m × 1 m).

3.2. Hydrological Modeling

3.2.1. HIMS Model and Input Data

This study built a Pingtan Island distributed hydrological model based on HIMS [20,24]. This model
is described briefly here, and further details can be found in Liu et al. (2008) [20]. The HIMS model is
a distributed hydrological model for simulating the hydrological processes with appropriate hydrological
modules for the study area. Its hydrological processes included interception, infiltration, evapotranspiration,
snowmelt, surface runoff, sub-surface flow, and baseflow generation and concentration. It contains various
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choices of equations for each hydrological process and combines two runoff generation mechanisms of
saturation excess and intensity excess.

The input data included time series data (meteorological and hydrological data) and spatial data.
The spatial data input for modelling included land use data, soil data, and slope data. The rainfall data
from the national meteorological station and the local rainfall station were interpolated into surface
data with the Kriging method and then extracted to a sub-basin scale.

3.2.2. Sub-Basin Division

The plains in the middle of the island occupy 32% of the area of Pingtan Island, and the stream channels
influenced by human alterations cannot characterize the catchments properly. Therefore, this study applied
grids (1 km × 1 km) rather than sub-basins in the plain area to make discretization, and the flow direction
of each grid was determined according to actual river flow. The sub-basins’ boundaries were derived from
the DEM in the mountainous area and were set as the baseline when joining the grids of the plain area
(Figure 3). Thus, the study area was divided into 286 sub-basins and grids in total, with 119 estuaries as
shown in Figure 3.

Figure 3. Discretization in the plain area with grids, the mountainous area with sub-basins, and the
distribution of estuaries.

3.2.3. Calibration and Validation

The HIMS hydrological model was calibrated using local rainfall-runoff relations, and validated
against monthly streamflow observation. Due to the lack of hydrological monitoring, the authors
calibrated model parameters (Table A1 in Appendix A1) according to the comparison of rainfall-runoff
relations between experimental results and simulations. According to the geological survey of local
authorities, the groundwater is mostly shallow groundwater on Pingtan Island and is discharged
into channels in the same basin, so we referred to this condition when calibrating the parameters.
The model was validated at the 36-Foot Lake sub-basin by using the observed monthly streamflow
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data (1986–2012). The efficiency was evaluated by the Nash–Sutcliffe Efficiency (NSE), the flow volume
error (WE) and the correlation coefficient (r).

NSE = 1 − ∑n
i=1(Qobs,i − Qsim,i)

2

∑n
i=1
(
Qobs,i − Qobs

)2 , (1)

WE =
∑n

i=1(Qobs,i − Qsim,i)

∑n
i=1 Qobs,i

· 100%, (2)

r =
∑n

i=1
(
Qobs,i − Qobs

)(
Qsim,i − Qsim

)
√

∑n
i=1
(
Qobs,i − Qobs

)2 · ∑n
i=1
(
Qsim,i − Qsim

)2 , (3)

where Qobs,i is the ith observation, Qsim,i is the ith simulated value, Qobs and Qsim are the means of
observed data and simulated values, respectively, and n is the number of datasets. NSE describes
the fitting extent between simulation and observation datasets of streamflow and r describes the
correlation between simulated and observed streamflow. The simulating accuracy was high if NSE and
r were very close to 1. The simulation performance was not good if NSE was close to 0. The simulation
accuracy was high if the absolute value of WE was close to 0. Generally, if WE was within the range of
±10%, the simulation results were regarded as satisfactory.

3.3. Quantification of Freshwater Availability

3.3.1. Surface Water and Groundwater Availability

Monthly surface and ground water were estimated using the summation of water yield and deep
aquifer recharge in the model. The availability of this part of the water resource was calculated by
subtracting the environmental flow requirement and flood discharge from the surface water.

This study assumed that precipitation in humid areas could meet the needs of the terrestrial
ecosystem function outside the river, and thus only the environmental flow requirement in the river
was considered. Moreover, the streams in the study area were seasonal and flowed into the sea
independently. Therefore, to maintain the normal environment of estuaries, this study referred to the
Tennant method [25] and took 20% of the average annual flows in flood season (April–September) and
non-flood season (October–March) as the environmental flows.

The flood discharge was constrained by engineering measures such as ponds and reservoirs,
which were useful to collect water during the flood season. This study assumed that these ponds
and reservoirs could effectively collect floods, although many of them were not used due to a lack of
management, according to our field survey. Thus, the flood discharge came from basins without water
collection facilities. The annual monthly amount of flood discharge was determined based on the ratio
of the annual monthly maximum flow to the multi-year average monthly flow [26].

3.3.2. Soil Water Availability

The soil water resource was calculated based on the methods of Feng [27] and Shen [15]. The
amount of soil water resources within a period was:

Ws,total =
n

∑
i=1

Ws,i, (4)

where

Ws,i = Ei + Ti + ΔWSR,i. (5)
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Ws,total is the total amount of soil water resource within a period; i is the sub period from the start of the
ith rainfall to the start of the (i + 1)th rainfall within the period; Ws,i is the soil water resource of the ith sub
period, Ei is the soil evaporation, Ti is the transpiration; and ΔWSR,i is the soil water storage change.

Soil water availability refers to the renewable soil water that can be used by crops. All the soil
water resources of agricultural land (cultivated land) were considered as available water resources
because the evaporation and transpiration could be used by applying mulch or using greenhouses [28],
while the woodland and grassland were regarded as part of the eco-environment with the main
function of maintaining a good state of the environment and were unable to be arbitrarily changed.
Therefore, their soil water resources were not included in the available water resource.

3.3.3. Total Freshwater Availability

The total freshwater availability for each basin in this study was the sum of the surface water
availability, groundwater availability, and the soil water availability.

4. Results and Discussion

4.1. Spatial Distribution of Runoff Coefficients Based on Field Experiments

The runoff coefficients of typical underlying surfaces and the corresponding distribution in the
island were obtained based on the rainfall-runoff experimental data (Table 2, and Figure 4a). The results
showed the spatial heterogeneity of runoff coefficients. The grassland was relatively poor in surface
water permeability, in terms of land use type, and its runoff coefficient was greater than that of forest.
Regarding underlying surfaces, with the same land use type and the same slope classification in terms
of soil type, the ferralsol types had the smallest runoff coefficients, while the Alkali-saline soil and
others types had the largest. Concerning the slope classification, the larger the slope, the larger the
runoff coefficient. The runoff coefficients based on field experiments in the study area ranged from
0.01 to 0.85, and the overall runoff coefficient was 0.44.

Figure 4. Spatial distribution of runoff coefficients derived from (a) field experiments and (b) HIMS
(Hydro-Informatic Modeling System) model simulation.
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Table 2. Runoff coefficients of typical underlying surfaces based on field experiments.

No. Typical Underlying Surface Type Runoff Coefficient

1 Grassland + Ferralsol + (6◦–15◦) 0.72
2 Woodland + Ferralsol + (15◦–25◦) 0.13
3 Grassland + Amorphic soil + (0◦–6◦) 0.29
4 Woodland + Amorphic soil + (0◦–6◦) 0.25
5 Grassland + Ferralsol + (15◦–25◦) 0.80
6 Grassland + Ferralsol + (0◦–6◦) 0.59
7 Woodland + Ferralsol + (6◦–15◦) 0.08
8 Woodland + Ferralsol + (25◦–88◦) 0.14
9 Grassland + Ferralsol + (25◦–88◦) 0.85

10 Grassland + Alkali-saline soil and others + (0◦–6◦) 0.44
11 Woodland + Ferralsol + (0◦–6◦) 0.01

4.2. Calibration and Validation of HIMS Model

This study completed the HIMS model calibration based on the comparison of the spatial distribution
of runoff coefficients derived from the model simulation and field rainfall-runoff experiments. The simulated
overall average runoff coefficient of the island was 0.41, with only a 3% difference from the experimental
results. Moreover, the runoff coefficients’ spatial distribution of each sub-basin between the simulated and
experimental results showed a good consistency, with an average error of 13% (Figure 5). The HIMS model
not only simulated the average runoff coefficient, but also accurately captured the spatial distribution of the
runoff characteristics of the island.

A time series comparison between simulated and observed streamflows of 36-Foot Lake is shown
in Figure 6. The r was 0.85, NSE was 0.82, and WE was 6.5%, which meant the HIMS model simulation
was satisfactory in this sub-basin. The results showed that the parameters of the distributed HIMS
model established by this method were reasonable and the HIMS model was suitable for the island
and could be used for water resource estimation.

Figure 5. Comparison of sub-basin runoff coefficients between experimental and simulated values.
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Figure 6. Comparison of monthly streamflows between measured and simulated values at 36-Foot Lake.

4.3. Freshwater Availability

4.3.1. Surface Water and Groundwater Availability

The mean annual (from 1986 to 2012) surface water and groundwater was 1.40 × 108 m3 (or 509 mm)
based on the HIMS model results, which was less than the mean annual 1.79 × 108 m3 (or 652 mm) from
the Fujian Province Water Resources Bulletin (from 2012 to 2016). The surface water and groundwater
availability were 0.96 × 108 m3 (or 348 mm) after cutting off the environmental flow and flood discharge.

Due to the strong weathering on the island, the rocks were loose and the surface soil sandy with
strong infiltration, making runoff generation difficult when the rain intensity was low and the duration
was short. According to the distribution within the year, the total surface and groundwater availability
was concentrated from May to September (Figure 7a). Specifically, summer (June–August) was the
highest of the four seasons, accounting for 45.22% of the whole year, followed by spring and autumn,
while winter was the least, only 7.34% (Figure 7b).

The spatial distribution of annual surface and groundwater availability showed a spatial
differentiation (Figure 8a). There was more water in the central and northern parts of the island
than in the small watersheds scattered in the east, south, and on the edge of the island.

4.3.2. Soil Water Availability

The soil water availability in the study area is shown in Figures 7 and 8b. The mean annual
availability was 0.74 × 108 m3 (or 269 mm), which showed a considerable potential for agricultural
water use, especially in water shortage areas. Unlike the surface and groundwater, the soil water
availability was highest in spring, followed by summer, while autumn and winter were still the
lowest. The proportions of soil water availability were higher than those of surface and groundwater
availability during November to May, while the opposite was true during June to October. The soil
water availability was higher in the central and northern plains and small parts in the southern area.

4.3.3. Total Freshwater Availability

The mean annual total freshwater availability was 1.70 × 108 m3 (or 617 mm) on this island,
and summer accounted for the highest proportion (39.71%), followed by spring (31.18%). Spatially,
the central plain accounted for 0.60 × 108 m3, and the mountainous area accounted for 1.10 × 108 m3.
The available freshwater resources were concentrated in the central plain and the intermountain basins on
the inland of the island. The sub-basins around the island with short and dispersive flow channels had
small streamflow, which are difficult to collect and use. Moreover, the plains and intermountain basins had
good formation conditions for groundwater due to the distribution of loose rocks of aeolian deposits and
marine deposits, and cultivated lands were concentrated in these areas. Thus, the total available freshwater
resources in the plain area and the intermountain basins were larger than in the mountains.
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Figure 7. Temporal distribution of (a) monthly proportions of freshwater availability; (b) seasonal
proportions of freshwater availability; and (c) yearly freshwater availability.

Figure 8. Cont.
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Figure 8. Spatial distribution of (a) surface and groundwater availability; (b) soil water availability;
and (c) total freshwater availability.

5. Conclusions

This study provides a basis for freshwater management in Pingtan Island while demonstrating the
spatial and temporal distribution of freshwater availability. Additionally, this work provides a method
of estimating freshwater resources in an ungauged area. It showed good performance by using the
rainfall-runoff relations derived from field experiments to calibrate the distributed hydrological model,
and non-specific basin flow data to validate the model. Thus, freshwater resource distribution could be
estimated based on the model output. Noteworthy are model parameter adjustments that referred to
the local underlying surface and geological characteristics; for example, the groundwater was mostly
shallow groundwater on Pingtan Island and discharged into channels in the same basin, according to
the geological survey of local authorities.

The field experiment results revealed the spatial distribution of rainfall-runoff relations on
ungauged Pingtan Island, with an overall runoff coefficient of 0.44. The HIMS-based hydrological
model constructed and calibrated based on experimental results showed good performance in the
validation of sub-basin monthly data with an NSE of 0.82. Results revealed the spatial heterogeneity
and temporal characteristics of freshwater resources. Freshwater resources were concentrated in plains
and intermountain basins rather than mountains and small basins around the island. The freshwater
availability was concentrated from May to September within the year, and the highest availability
proportions were in summer, spring, and summer for surface and groundwater, soil water, and the
total freshwater resources, respectively. The temporal and spatial distribution of freshwater could
provide references for local flood control and water supply management.
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Appendix A

HIMS (Hydro-Informatic Modelling System)

HIMS was developed to facilitate water resources management and water environment protection.
It includes a hydrologic information system (HIS) and a hydrologic model library (HML). The HIS provides
functions to deal data with different sources and obtain geographical characters from DEM by integrating
with GIS and remote sensing. The HML incorporated most of the commonly used methods and some
new models developed by Liu’s team in modelling runoff generation and flow routing. These include
hydraulic methods and hydrologic methods whether physical, statistical, or conceptual one. In this study,
the surface runoff model was LCM model, which is a conceptual model developed by Liu et al. (1965) [29]
and has been the core module for runoff calculation in HIMS. Other models dealing with sediment,
water quality, ecology, and agriculture can also be incorporated into the framework. Based on spatial
topological relationships among the channel network, HIMS divides a catchment into different sub-basins
with different soil, vegetation and land use properties. Each sub-basin can include a channel, and sub-basins
are linked through stream network. The main parameters of HIMS model are shown in Table A1.

Table A1. Model parameters and range.

Parameters Meaning Range

Wsm maximum soil storage capacity 50~1200
R * parameter related to land use and soil moisture 0~2
r * parameter related to land use and soil moisture 0~1
La coefficient of sub-surface runoff 0~1
Rc coefficient of recharge into the groundwater 0~1
ε actual evapotranspiration index 0~10

Kb coefficient of base flow 0~1
C1, C2 Muskingum model parameters 0~1

* More details about LCM model can be found in Li et al. (2015) [30].

HIMS has been widely tested for catchments under different natural conditions in both northern
and southern China, Australia, and some parts of the United States. The modeling results were
satisfactory. The HIMS system have been applied to simulate hourly streamflow in small and medium
watersheds and daily runoff in medium and large watersheds in case studies [20,31]. The system is
still developing and is available by contacting the Key Laboratory of Water Cycle and Related Land
Surface Processes.
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Abstract: With worldwide economic and social development, more dams are being constructed to
meet the increasing demand for hydropower, which may considerably influence hydrological drought.
Here, an index named the “Dam Influence Index” (DII) is proposed to assess the influence of the
Three Gorges Dam (TGD) on hydrological drought in the Yangtze River Basin (YRB) in China. First,
the total terrestrial water storage (TTWS) is derived from Gravity Recovery and Climate Experiment
data. Then, the natural-driven terrestrial water storage (NTWS) is predicted from the soil moisture,
precipitation, and temperature data based on an artificial neural network model. Finally, the DII
is derived using the empirical (Kaplan-Meier) cumulative distribution function of the differences
between the TTWS and the NTWS. The DIIs of the three sub-basins in the YRB were 1.38, −4.66,
and −7.32 between 2003 and 2008, which indicated an increase in TTWS in the upper sub-basin
and a reduction in the middle and lower sub-basins. According to the results, we concluded that
impoundments of the TGD between 2003 and 2008 slightly alleviated the hydrological drought in
the upper sub-basin and significantly aggravated the hydrological drought in the middle and lower
sub-basins, which is consistent with the Palmer Drought Severity Index. This study provides a new
perspective for estimating the effects of large-scale human activities on hydrological drought and a
scientific decision-making basis for the managing water resources over the operation of the TGD.

Keywords: hydrological drought; Three Gorges Dam; GRACE

1. Introduction

By implementing an operational definition of drought, three main physical drought types have
been established: Meteorological, agricultural, and hydrological [1–3]. Hydrological drought is caused
by the shortage of surface water and groundwater [4,5], affecting human society and economic
development. The severe hydrological droughts in the Yangtze River Basin (YRB) during the summer
of 2006 and the spring of 2011 [6,7] caused significant economic losses to the local people.

In 1993, the Chinese government decided to construct the Three Gorges Dam (TGD) in order
to mitigate the effects of global climate change including floods and to make full use of the water
resources for hydroelectric power generation [8–11]. The TGD began operation in 2003, and after three
major impoundments, construction was completed in 2009 [12]. With the construction and operation
of the TGD, YRB hydrological drought has been intensively affected by human activities [6], and the
reservoir operations may seriously affect the ecological balance of the downstream environments [13].

Dai et al. [6], Zhang et al. [7], Li et al. [14], Lai et al. [15], and Liu et al. [16] analyzed the effects of
the TGD on water levels in the middle and lower reaches of the Yangtze River using observational
data from hydrological stations and the TGD impounding data based on many mathematical

Water 2018, 10, 669; doi:10.3390/w10050669 www.mdpi.com/journal/water388
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models [17]. The results of their studies indicated that the construction and operation of the TGD had
a non-negligible impact on the water level changes of the Yangtze River. The influence of the TGD on
the hydrological drought in the YRB has been investigated using surface water level data from in-situ
hydrological stations, and it was found to not only be affected by the shortage of surface water but
also by the groundwater changes [4,5]. Moreover, the short-term variation in the total terrestrial water
storage (TTWS) was found to be mainly caused by changes in groundwater and surface water [18].

Since the Gravity Recovery and Climate Experiment (GRACE) mission was successfully launched
in March 2002 [19], GRACE has been widely used to estimate hydrological drought. Yaraw et al. [20],
Chen et al. [21], and Frappart et al. [22] estimated hydrological drought events based on GRACE data.
Thomas et al. [23] proposed a method to quantify hydrological drought events using GRACE satellite
gravity data. This method detects the beginning, end, duration, recovery, and severity of hydrological
drought events. Chao et al. [24] proposed a new GRACE-based index called the “non-seasonal
storage deficit” to quantify the hydrological drought characteristics in Southwestern China. Therefore,
the GRACE-based TTWS can accurately estimate the influence of the TGD on hydrological drought in
the YRB.

Here, the TTWS in the upper, middle, and lower sub-basins of the YRB were calculated using
GRACE data. Then, the naturally driven terrestrial water storage (NTWS) in the three sub-basins
(upper, middle, and lower sub-basins of the YRB) were estimated from the soil moisture, precipitation,
and temperature data based on an artificial neural network (ANN) model. Additionally, an index
named the “Dam Influence Index” (DII), which reflects the effects of large-scale dam impoundments on
the TTWS, was created by using the NTWS and the TTWS between 2003 and 2008. Finally, the effects of
TGD impoundments on the hydrological drought between 2003 and 2008 in the YRB were estimated.

2. Study Area

The world’s third largest river, the Yangtze River, with a total length of 6300 km, flows across
11 provinces in China and finally flows into the East China Sea. The YRB [25], with an area of
1.8 million km2, which accounts for approximately 18.8% of China’s territory, is divided into upper,
middle, and lower sub-basins by the Yichang and Hukou hydrological stations [26–28]. The region
above the Yichang hydrological station is the upper sub-basin of the YRB, and the world’s largest dam,
the TGD, is located in Yichang, approximately 100 km away from the Yichang hydrological station.
The region below the Hukou hydrological station is the lower sub-basin and the region between
Yichang and Hukou hydrological station is the middle sub-basin of the YRB. The upper, middle, and
lower sub-basins areas are 98, 51, and 29 km2, respectively. The major surface bodies of the middle and
lower sub-basins are Dongting Lake in the central YRB and Poyang Lake near the Hukou hydrological
station (Figure 1).

The Yangtze River, between the TGD and Chongqing, with a length of 663 km and an area of
1084 km2, composes the Three Gorges reservoirs (TGR) (Figure 1), which has a total water storage
capacity of 39.3 km3 [16]. In this study, the effects of the TGD on each sub-basin of the YRB will be
estimated based on GRACE data from April 2002 to July 2015.
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Figure 1. Map of the upper, middle, and lower sub-basins and the mainstream and tributaries of Yangtze
River Basin (YRB).

3. Data and Methods

3.1. GRACE

The GRACE monthly time-variable gravity field models from the Center for Space Research (CSR)
between April 2002 and July 2015 were used to infer the terrestrial water storage in the YRB after
reducing the effects of the atmosphere, tide, and solid tide. Moreover, the monthly time-variable gravity
field model with the maximum degree and order of the spherical harmonic coefficients was 60. To
eliminate the influence of the geocentric motions on the time-variable gravity field model, the first-order
coefficient was estimated from Swenson et al. [29]. To improve the accuracy of the second order of
the spherical harmonic coefficient, the C20 term of the GRACE time-variable gravity field models was
replaced by the satellite laser ranging (SLR) observation data [30]. The glacial isostatic adjustment
(GIA) was removed by using the ICE-5G (VM2) model (Peltier, W.R, Toronto, ON, Canada) [31,32].
The north-south strips and high-degree noises [33–35] in the TTWS estimated by the GRACE monthly
time-variable gravity field models were removed by de-striping [35] and 300-km Gaussian filtering [33].
Although noise was removed by two-step filtering, the true signal was also attenuated [36]. However,
the GRACE signal attenuation due to filtering can be recovered by a scale factor k [37–40]. Here, we
used the Global Land Data Assimilation System (GLDAS) and the same method used by Landerer and
Swenson [40] to restore the signal, which included attenuation and leakage.

3.2. GLDAS and TRMM

The Global Land Data Assimilation System (GLDAS) [41] model is a hydrological model
that contains soil moisture, surface temperature, accumulated snow, water/energy flux, and other
hydrological components on land between 60◦ S and 90◦ N. The uncertainty of GLDAS model vary in
different regions. According to Wang et al. [42], GLDAS precipitation and air temperature data match
the ground observations well in most areas of China, and the GLDAS TWS changes and GRACE TWS
changes are well correlated in wet eastern China (including the YRB), which demonstrating that the
precipitation, temperature, and TWS changes in the YRB from the GLDAS-NOAH model (L4 Monthly
1.0 × 1.0 degree, NASA, Washington, DC, USA) are reliable. In this study, the GLDAS-NOAH 10 M
series model from National Aeronautical and Spatial Administration (NASA) from April 2002 to
July 2015 with a spatial resolution of 1 × 1◦ was selected to calculate the average soil moisture and
temperature of the YRB.
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Furthermore, the scale factor k was calculated using the GLDAS hydrological model following the
same method used by Landerer and Swenson. [40], which is summarized as follows: (1) the total water
storage of the GLDAS model, named GLDAS TWS (GTWS), is extracted; (2) the GTWS extracted in the
first step is converted into a spherical harmonic coefficient with a degree of 60; (3) similar to the GRACE
data, de-striping (P5M8) and 300-km Gaussian filtering are applied to the GLDAS spherical harmonic
coefficients; and (4) the filtered GTWS time series of a basin is calculated using the filtered GLDAS
spherical harmonic coefficients, and the scale factor k is estimated using the following equation [40]:

M = ∑ (ΔST − kΔSF) (1)

where ΔST is the true GTWS time series and ΔSF is the filtered GTWS time series. The parameter k
that minimizes M is the scale factor needed in this study, and the TTWS is recovered by multiplying
the filtered TTWS time series by the estimated scale factor k [40].

The Tropical Rainfall Measuring Mission (TRMM) satellite [43] from NASA and the National
Space Development Agency (NSDA) provide global precipitation data between 50◦ S and 50◦ N.
In this study, the third-grade monthly precipitation data (3B43), which merged the Global Precipitation
Climatology Centre (GPCC) rain gauge data and other satellite precipitation data from April 2002 to
July 2015 with a spatial resolution of 0.25 × 0.25◦, and a temporal resolution of one month was used to
estimate the precipitation of the YRB.

3.3. ANN Approach

The ANN approach was proposed to extend the GRACE TTWS time series beyond the GRACE
observation period using a set of training samples based on the ANN model [44]. The reliability of the
ANN model depends on the correlation between the predictors and the target variable of the training
samples: The stronger the correlation, the higher the accuracy of the ANN model. Huang et al. [45]
found that a strong correlation between soil moisture and TTWS, and the GRACE TTWS time series
has been extended beyond the GRACE observation period based on the soil moisture, precipitation,
temperature data and the ANN model [46–48].

The mathematical ANN model is as follows [44]:

y = f (x) + ε (2)

where x is the input data (predictors), y is the output data (target variable), ε is the process noise, and
f is the function mapping of the input and output data. A more detailed description of the ANN
model can be found in the study of Long et al. [44]. After obtaining the function mappings from the
training samples, Equation (2) was used to extrapolate and predict the target variable (NTWS) using
the predictors (soil moisture, precipitation, and temperature). The accuracy of the ANN model was
evaluated based on three criteria: Nash–Sutcliff efficiency (NSE), the coefficient of determination (R2),
and mean absolute error (MAE) [44]:

NSE = 1 −

n
∑

i=1
(yi − oi)

2

n
∑

i=1
(oi − o)2

(3)

R2 =

⎡
⎢⎢⎢⎢⎣

n
∑

i=1
(yi − y)(oi − o)√

n
∑

i=1
(yi − y)2 n

∑
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⎤
⎥⎥⎥⎥⎦ (4)
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MAE =
1
n

n

∑
i=1

|yi − oi| (5)

where y is the predictions of the target data based on ANN model, o is the true value of the target data,
and n is the number of training samples. As the values of NSE and R2 increase and the value of MAE
decreases, the accuracy of the ANN model increases.

3.4. DII Based on TTWS and NTWS

After obtaining the basin-mean NTWS time series in the upper, middle, and lower sub-basins of
the YRB based on the ANN model, the differences x(t) of the basin-mean TTWS and the basin-mean
NTWS time series of the three sub-basins was calculated with:

x(t) = TTWS(t)− NTWS(t) (6)

where t = 1, 2, 3, ..., n and n are the number of TWS observations. The NTWS is defined so that it
cannot be affected by the TGD, and the inconsistency of the TTWS and the NTWS is mainly due to the
TGD impoundments. The DII for a specific region (YRB) was calculated by the following equation:

DII =
xmax∫
0

[ f (x)− f (0)]dx −
0∫

xmin

[ f (x)− f (xmin)]dx (7)

where f (x) is the empirical (Kaplan-Meier) cumulative distribution function (ECDF) of x(t) from
June 2003 to December 2008. The first formula in Equation (7) is the integration of f (x) minus f (0) in
the positive interval, and the second formula is the integration of f (x) minus f (xmin) in the negative
interval. Taking Equation (6) into account, a smaller value of the first formula in Equation (7) and
a larger value of the second formula indicate a more severe hydrological drought caused by the
TGD impoundments.

DII is an index developed in this study to evaluate anomalies of the TTWS due to the TGD
impoundments. High and low DII values represent high and low drought conditions, respectively.
For instance, a positive DII value indicates an alleviation of hydrological drought, whereas a negative
value represents an aggravation.

4. Results

4.1. Recovered TTWS in the YRB

The scale factors, calculated by using the basin-mean GLDAS TWS time series based on
Equation (1), of the upper, middle, and lower sub-basins of the YRB were 1.32, 1.15, and 1.54,
respectively [40]. Then, the TTWS of the three sub-basins were recovered by multiplying the filtered
TTWS time series by the scale factors (Figure 2). Moreover, the GRACE measurement error and the
leakage error of the recovered TTWS were estimated based on the method used by Wahr et al. [49] and
Landerer and Swenson [40], respectively (Table 1). Figure 2 shows the filtered and recovered TTWS
time series estimated using the GRACE data. For verification, the GLDAS TWS time series in the three
sub-basins are also shown in this figure. The correlation coefficients (R) between the GLDAS TWS and
the recovered TTWS time series during the TGD impoundment period from June 2003 to December
2008 were 0.89, 0.61, and 0.65 in the upper, middle, and lower sub-basins, respectively, indicating
that the recovered TTWS is more consistent with the GLDAS TWS in the upper sub-basin than in the
middle and lower sub-basins.
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Figure 2. The Global Land Data Assimilation System (GLDAS) terrestrial water storage (TWS), filtered
total terrestrial water storage (TTWS), and recovered TTWS time series in the (a) upper, (b) middle,
and (c) lower sub-basins of the Yangtze River Basin (YRB). The green, blue, and red lines represent the
GLDAS TWS, filtered TTWS, and recovered TTWS time series, respectively. The correlation coefficient
(R) between the GLDAS TWS and recovered GRACE TTWS time series during the Three Gorges Dam
(TGD) impoundment period are also shown.

Table 1. Measurement and leakage errors of the total terrestrial water storage (TTWS) in the upper,
middle and lower sub-basins of the YRB.

Sub-Basin Upper (cm) Middle (cm) Lower (cm)

Measurement error 1.66 2.28 2.94
Leakage error 2.03 2.77 2.69

4.2. NTWS in the YRB

Zhang et al. [47] extended the TTWS of the YRB (2002–2012) to a longer time series (1979–2012)
based on the ANN model. According to their study, the TTWS time series in the middle and lower
sub-basins of the YRB between 2003 and 2008 was significantly lower than in other years, and the
TTWS returned to a normal level in 2009. There are two interpretations for this phenomenon: (1) A
natural drought due to precipitation and evaporation anomalies occurred between 2003 and 2008, and
(2) during this period, significant human activities, such as the TGD impoundment, aggravated the
hydrological drought in the middle and lower sub-basins of the YRB.

Figure 3 shows the time series of precipitation and evaporation obtained from TRMM and GLDAS,
respectively, in the upper, middle, and lower sub-basins of the YRB from April 2002 to July 2015.
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Figure 3. Time series of precipitation and evaporation in the (a) upper; (b) middle; and (c) lower
sub-basins of the YRB from April 2002 to July 2015.
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Figure 4. Annual Average Precipitation (AAP), Adjusted Annual Average TTWS (AAAT), and yearly
relative change (YRC) of the AAP and AAAT in the (a) upper; (b) middle; and (c) lower sub-basins of
the YRB from 2003 to 2014.

395



Water 2018, 10, 669

The precipitation and evaporation in the YBR were regular from 2003 to 2008. Hence, the possibility
of natural drought was excluded. Because changes in the TTWS and droughts are closely related
to that of precipitation without significant human activity [50,51], the Annual Average Precipitation
(AAP) and Annual Average TTWS (AAT) in the YRB were calculated to determine whether TTWS in
the YRB were influenced by non-natural factors. For a more intuitive comparison, the AAT values
of the three sub-basins were adjusted by adding a constant, to ensure all Adjusted AAT (AAAT)
values were positive (Figure 4), and the yearly relative change (YRC) of the AAP and AAAT were
calculated as described in Ahmadalipour et al. [52]. The gap in the YRC between AAP and AAAT in
the upper sub-basin from 2003 to 2005 is significant, and the gap gradually narrowed between 2006
and 2008 (Figure 4a). The inconsistency between AAP and AAAT YRCs in the middle and lower
sub-basins from 2003 to 2008 was obvious (Figure 4b,c), and the AAP and AAAT in the three regions
were highly consistent after 2009. The results demonstrate that the TTWS in the YRB from 2003 to 2008
was significantly affected by human activities and returned to normal in 2009.

The TGD began to operate in 2003 and achieved full capacity in 2009 after three major impoundments.
The major impoundments of the TGD between 2003 and 2008 are listed in Table 2 [12,14], and the
water level of the TGR changed from 66 to 172.3 m after the three major impoundments, which were
the main human activities that may have significantly affected the TTWS and hydrological drought
in the YRB. After construction was completed in 2009, the TGD impounded water from September
to October and then discharged it from April to May every year. In this period, the operation of the
TGD was geared toward adjusting floods and droughts in the middle and lower sub-basins of the YRB,
and there were no significant water level changes in the TGR [12]. Thus, the operation of the TGD had
little influence on the change in the TTWS in the YRB after 2009, as shown in Figure 4.

Table 2. Three major impoundments of the TGD between 2003 and 2008.

Date Start Level (m) End Level (m) Change (m)

June 2003 66.0 135.0 69.0
October 2006 135.0 156.0 21.0

November 2008 145.0 172.3 27.3

To estimate the effects of the three major TGD impoundments on the TTWS and hydrological
drought in the YRB between 2003 and 2008, the TTWS time series from 2009 to 2015 unaffected by the
TGD was extended to a longer time series (2002–2015) using natural data (soil moisture, precipitation,
and surface temperature) based on the ANN approach [43]. The predicted TTWS time series is a NTWS
time series that is unaffected by the TGD.

Figure 5 shows the TTWS time series and the NTWS time series predicted by the ANN approach.
The predicted NTWS time series in the upper sub-basin had the highest accuracy among the three
basins (Table 3). Compared with the area of the three regions and the accuracy of the ANN model,
the accuracy of the ANN model is related to the area of the basin. The larger the area of the basin,
the higher the accuracy of the ANN model. This is consistent with the result of Zhang et al. [47].
The NSE and R2 of the three sub-basins were greater than found by Zhang et al. [47]. They used
the GRACE data (2003–2015) affected by the TGD in training the ANN model, which reduced the
correlation between inputs and target data, whereas we used the “normal” GRACE data (2009–2015),
which revealed results that are more accurate.

In this study, the GRACE TWS time series from 2009 to 2015 was defined not affected by the TGD
construction and was used as a true value to text the accuracy of the NTWS based on Equations (3)–(5)
(Table 3). However, the GRACE TWS contains measurement and the leakage error (Table 1). Therefore,
the uncertainty (Table 3) of the NTWS was calculated by:

σ =
√

σ2m + σ2
l + MAE2 (8)
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where σ is the uncertainty of the NTWS; σm and σl represent the measurement and leakage error of the
GRACE TWS respectively.

Figure 5. The natural-driven terrestrial water storage (NTWS) and TTWS time series in the (a) upper;
(b) middle; and (c) lower sub-basins of the YRB. The red line and the blue lines represent the NTWS and
TTWS time series, respectively. Notably, NTWS is predicted by natural data including precipitation,
temperature, and soil moisture based on an artificial neural network (ANN) model and TTWS was
calculated using GRACE data.

Table 3. The area and the accuracy of the predicted NTWS in the three sub-basins of the YRB.

Sub-Basin Area (km2) NSE R2 MAE (cm) Uncertainty (cm)

Upper 983,118 0.92 0.96 0.93 2.78
Middle 512,733 0.87 0.93 1.29 3.76
Lower 288,205 0.85 0.92 1.89 4.41

The change in the TTWS is mainly caused by changes in soil moisture, groundwater, and surface
water (Swenson and Wahr [34]); however, only groundwater may change rapidly with surface water
in the short term [18]. Therefore, the inconsistency between the two (NTWS and TTWS) time series in
the YRB is mainly due to the changes in groundwater and surface water.

4.3. DII of the YRB

After obtaining the TTWS and the NTWS, the differences x(t) of the two time series from April
2002 to July 2015 were derived using Equation (6). The DIIs of the YRB between June 2003 and
December 2008 were calculated based on Equation (7). To provide a decent validation for the DII, the
Palmer Drought Severity Index (PDSI; Dai et al. [53]) of the YRB from April 2002 to December 2014 [54]
was obtained (Figure 6). For comparison, the PDSI anomaly (PDSIA) in the YRB between June 2003
and December 2008 were estimated using the following equation:

PDSIA = avein − aveout (9)
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where avein is the average PDSI during the TGD impoundment period between June 2003 and
December 2008, and aveout is the average PDSI of this period, calculated respectively by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

avein =

t2
∑

t=t1
PDSI(t)

n1

aveout =

t1
∑

t=t0
PDSI(t)+

t3
∑

t=t2
PDSI(t)

n2

(10)

where t0 is April 2002, t1 is June 2003, t2 is December 2008, t3 is December 2014, and n1 and n2 are sum
of the PDSIs in the two periods.

Figure 6. Cont.
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Figure 6. Differences x(t) between TTWS and NTWS (black cylinders) from April 2002 to July 2015
and the Palmer Drought Severity Index (PDSI) (blue and red cylinders) between April 2002 and
December 2014 in the (a) upper, (b) middle, and (c) lower sub-basins of the YRB. The blue line in the
top window represents the empirical cumulative distribution function (ECDF) of x(t) between June
2003 and December 2008. The Dam Influence Indexes (DIIs) relative to the PDSIAs in the three regions
between June 2003 and December 2008 are also shown. Note: DIIs were calculated by subtracting the
area of the green block from the red block (i.e., DII = A(area) − B(area)), and PDSIAs were calculated
using Equation (9).

The DIIs of the upper, middle and lower sub-basins of the YRB between June 2003 and December
2008 were 1.38, −4.66, and −7.32, respectively (Figure 6). During this period, the DIIs in the middle
and lower sub-basins of the YRB were far below zero, demonstrating that the impoundment of the
TGD significantly reduced the TTWS in the middle and lower sub-basins. In the upper sub-basin, the
DII was 1.38, which is an increase in TTWS.

The PDSIAs of the upper, middle and lower sub-basins of the YRB between June 2003 and
December 2008 were 0.07, −0.63, and −1.61 (Figure 6), indicating that the PDSI slightly increased in
the upper sub-basin and was greatly reduced in the middle and lower sub-basins during the TGD
impoundment period, which is consistent to the DIIs of the three regions.

4.4. Characterization of the Hydrological Drought Events

According to Thomas et al. [23], the hydrological drought signals are calculated by removing
the annual and seasonal cycles from the TTWS and the NTWS time series. Any instance in which the
negative residuals (hydrological drought signals) last three or more consecutive months is designated
a hydrological drought “event”. The severity S(t) of a drought event is calculated using the following
equation [23]:

S(t) = M(t)× D(t) (11)

where M(t) and D(t) are the average water storage deficit and the duration of the hydrological drought
event, respectively [23].

Figure 7 shows the hydrological drought signals from the NTWS and TTWS time series in the
three sub-basins obtained using the method described in Thomas et al. [23]. Table 4 lists the frequency,
duration, and severity of the hydrological drought events shown by the dark area in Figure 7 in the three
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sub-basins of the YRB calculated by the NTWS and the TTWS time series from 2003 to 2008. The total
duration of hydrological drought in the upper sub-basin was reduced by 12 months, whereas the total
duration in the middle and lower sub-basins increased by 25 and 27 months, respectively. The total
severity of the hydrological drought in the upper sub-basin decreased by 3.49 km3/month, and the total
severity increased by 473.16 and 381.24 km3/month in the middle and lower sub-basins, respectively.
The results indicated that the impoundments of the TGD between 2003 and 2008 slightly alleviated
the hydrological drought in the upper sub-basin of the YRB but significantly aggravated hydrological
drought in the middle and lower sub-basins, which coincides with the DIIs and the PDSIAs.

Table 4. The frequency, duration, and severity of hydrological drought in the upper, middle, and lower
sub-basins of the YRB from 2003 to 2008 based on the NTWS and the TTWS.

Sub-Basin Data
Time Span of

Each Event
Duration
(Months)

Severity (km3

Months)
No. of Total

Months
Total Severity
(km3 Months)

Upper Area:
983,118 km2

NTWS

Jan. 2003 to Apr. 2003 4 −134.39

38 −616.21

Aug. 2003 to Jun. 2004 11 −62.14
Aug. 2004 to Oct. 2004 3 −17.61
Dec. 2004 to Feb. 2005 3 −207.58
Aug. 2006 to Jan. 2007 6 −165.79
Mar. 2007 to Oct. 2007 8 −14.07
Dec. 2007 to Feb. 2008 3 −134.39

TTWS

Jan. 2003 to May 2003 5 −203.39

26 −612.88
Oct. 2003 to Jul. 2004 10 −142.92
Jul. 2006 to Feb. 2007 8 −222.61
Oct. 2007 to Jan. 2008 4 −43.80

Middle Area:
512,733 km2

NTWS

Apr. 2003 to Feb. 2004 11 −185.43

32 −440.97
Jul. 2004 to Jan. 2005 7 −69.22

May 2006 to Feb. 2007 10 −126.87
Dec. 2007 to Mar. 2008 4 −59.45

TTWS

Jan. 2003 to Apr. 2003 4 −58.92

57 −914.13

Jun. 2003 to Aug. 2004 15 −335.13
Oct. 2004 to Feb. 2006 17 −242.72
Jun. 2006 to Feb. 2007 9 −145.17
Apr. 2007 to Jun. 2007 3 −49.41
Oct. 2007 to Mar. 2008 6 −60.99
May 2008 to Jul. 2008 3 −21.78

Lower Area:
288,205 km2

NTWS

Aug. 2003 to Feb. 2004 7 −88.60

24 −270.40

Nov. 2004 to Jan. 2005 3 −33.66
May 2005 to Jul. 2005 3 −31.30

Aug. 2006 to Nov. 2006 4 −21.41
Jun. 2007 to Aug. 2007 3 −67.86
Oct. 2007 to Jan. 2008 4 −27.58

TTWS

Aug. 2003 to Aug. 2004 13 −263.31

51 −651.64
Oct. 2004 to Apr. 2006 19 −193.32
Jun. 2006 to Nov. 2006 6 −68.57
Apr. 2007 to Aug. 2007 5 −52.27
Oct. 2007 to May 2008 8 −74.17
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Figure 7. Hydrological drought signals from 2003 to 2008 in the (a) upper; (b) middle; and (c) lower
sub-basins. The hydrological drought signals were obtained by removing the annual and seasonal
cycles from the TTWS and the NTWS time series. The blue and green lines represent hydrological
drought signals from the NTWS and TTWS time series, respectively, and the dark areas indicate
hydrological drought events.
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5. Conclusions

The effects of the TGD impoundments on the YRB hydrological drought from 2003 to 2008 were
evaluated based on the GRACE time-variable gravity field data. An ANN model was used to predict
the NTWS of the YRB based on soil moisture, precipitation, and temperature data. From 2003 to
2008, the NTWS time series in the upper sub-basin was in good agreement with the TTWS time series,
whereas the time series did not relate well to the middle and lower sub-basins, demonstrating the
considerable effect of the TGD impoundments on the TTWS in the middle and lower sub-basins.

The DIIs that reflect the influence of the TGD on the TTWS in the three sub-basins were calculated
based on the NTWS and the TTWS. The DIIs between June 2003 and December 2008 in the upper,
middle, and lower sub-basins of the YRB were 1.38, −4.66, and −7.32, respectively. These results
indicated that the three major TGD impoundments increased the TTWS in the upper sub-basin and
reduced the TTWS in the middle and lower sub-basins. For verification, the PDSIA of the YRB during
the TGD impoundments period between June 2003 and December 2008 were calculated. The PDSIAs
in the upper, middle, and lower sub-basins of the YRB were 0.07, −0.63, and −1.61, respectively, which
was consistent to the DIIs in the same regions.

The influence of the TGD impoundments on hydrological drought in the YRB from 2003 to 2008
was estimated based on the method used by Thomas et al. [23]. The total duration of hydrological
drought events in the upper sub-basin decreased by 12 months, whereas in the middle and lower
sub-basins, the drought duration increased by 25 and 27 months, respectively. The total drought
severity was reduced by 3.49 km3/month in the upper sub-basin and increased by 473.16 and
381.24 km3/month in the middle and lower sub-basins during 2003–2008, respectively, thereby
indicating that the TGD impoundments between 2003 and 2008 had little influence on the upper
sub-basin but significantly aggravated hydrological drought in the middle and lower sub-basins.
These results coincide with the results estimated by the DIIs and PDSIAs.
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Abstract: Can water security serve as a platform for developing a long-term solution to ongoing
water crises? Many regions around the world are experiencing severe water problems, including
water scarcity, water-borne diseases, water-related natural hazards, and water conflicts. These issues
are expected to increase and intensify in the future. Both developed and developing economies face a
water supply and demand imbalance that will potentially influence their water pricing structures.
Institutions and policies that govern the pricing of this natural capital remain crucial for driving
food production and providing services. The complex and multifaceted issues of sustainable water
management call for a standard set of tools that can capture and create desired water security
scenarios. Water pricing is an important contributing factor for achieving these scenarios. In this
paper, we analyze how water pricing can be used as a tool to enact the water security agenda.
This paper addresses these issues from three facets: (1) Economic aspects—the multiple processes
through which water is conceptualized and priced; (2) analysis of water pricing considering its effect
in water consumption; and (3) arguments for assessing the potential of water pricing as a tool to
appraise water security.

Keywords: water security; water pricing; sustainable water management; trends and patterns;
economics

1. Introduction

Water is a crucial and valuable global resource, and its sustainable use is one of the most important
challenges of our time. Unfortunately, water will soon be considered a scarce commodity as demand,
driven by pressures of economic and population growth and the impacts of climate change, exceeds
availability [1]. Among several definitions of water security available in the literature [2], we require
a specific framework in which we can analyze water as a commodity, linking water to its price
(the price of its access and distribution to consumers) and social good (the necessity for universal
access). The definition provided by The Hague Ministerial Declaration described water security as:
Ensuring that freshwater, coastal, and related ecosystems are protected and improved; that sustainable
development and political stability are promoted, that every person has access to enough safe water at
an affordable cost to lead a healthy and productive life, and that the vulnerable are protected from the
risks of water-related hazards [3]. Under this definition, discussion regarding water pricing as a tool to
achieve the objectives of sustainable development (affordable cost) can be created, considering not only
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the water resources sector but also different socioeconomic aspects. However, utilizing water pricing
as a tool to specifically manage water demand can dangerous when considering the unstable political
situations some developing countries have suffered by insulated pricing policies. Water pricing as
a tool must therefore be analyzed so that not only the tool itself, but also a set of other strategies,
are placed into action to acknowledge the complexity of the socio-hydrological relationship. The scale
of this research considers national policies that can be applied at the local level, such as for cities and
specific industrial and productive sectors within a country.

The United Nations defines water security as: The capacity of a population to safeguard
sustainable access to adequate quantities of acceptable quality water for sustaining livelihoods,
human well-being, and socio-economic development, for ensuring protection against water-borne
pollution and water-related disasters, and for preserving ecosystems in a climate of peace and
political stability [4]. Along with this definition, UN-Water also developed a conceptual framework
(Figure 1) outlining eight key aspects that form the larger nexus of water security with respect to good
governance, drinking water and human well-being, transboundary cooperation, ecosystems, financing,
water-related hazards and climate change, peace and political stability, and economic activities and
development. These aspects represent two dimensions: a core (key) with the elements under the
control of local and regional authorities within a country, and a boundary (enabling) that reflects the
external links governments need to carry out in order to advance national plans in the field of water
management. This is a cyclical feedback loop, reflecting inter-dependence and interconnectivity among
aspects such as governance, financing, peace, and political stability, and issues that extend beyond
national borders with issues such as shared water systems and hydro-diplomacy [5]. The usefulness of
this framework, for our purposes, is that the UN definition tackles water security with different levels
of interventions.

The water security framework highlights the critical importance of an interdisciplinary approach
if truly sustainable water management is to be achieved. The financial aspects of water management
have gained significant attention in recent years as a method to tackle economic and societal
interdependence [6,7]. Whereas water pricing has been long viewed from a supply standpoint,
there has been a shift to use demand management as a tool for potentially achieving the water security
agenda, as it acknowledges the unsustainable use of water and promotes the necessity of water
conservation [8,9]. Given the growing threat of water insecurity [10], the narratives of water necessity
versus desirability also need re-examination.

 

Figure 1. United Nation (UN)-Water’s conceptual framework [11].
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Achieving water security remains critical to meeting the water aspect of the Sustainable
Development Goals (SDGs). Numerous alternatives have been studied to reduce water use,
and several utilities service providers across the world are making strong efforts to advance water
conservation [12–14] not only in the urban water sector but also the agriculture sector. Research has
focused on the agricultural sector to improve water use efficiency (another water security tool). It is
anticipated that conceptual, empirical, and case study approaches on water pricing could serve as a
smart strategy to ensure long-term water security. The discussions presented in this paper explain
how a utility service provider (private or public) can employ water pricing policies to encourage
customers (users) to manage consumption, maintain financial viability, and promote the mindset
of water conservation. In this sense, allocations should account for actual water use and could be
adaptable to changes caused by other water security strategies—like water use efficiency—to prevent
and manage as many aspects as possible of the increase in water demand [15].

This paper is structured into the following sections: (1) how water is conceptualized and priced,
in which we describe the importance of the characteristics of water as a good, and the implication of
its human rights aspect (i.e., universal access), which, in many cases, generates misunderstandings
between society and policy makers when discussing the price to access water; (2) We then analyze
water pricing considering its effect on water demand, in which we provide a summary of sectoral
and temporal dynamics regarding the application of water pricing (e.g., price structure variation for
agricultural sector and drinking water sector), and spatial aspects (e.g., the availability of resources).
In order to evaluate the performance of water pricing policies already applied, we summarize five case
studies, two from the agricultural sector, and three from the urban drinking water sector (two from
a water scarce perspective, and one from an economic and water plentiful perspective); (3) Finally,
we critically analyze the potential of water pricing as a tool for water security, in which we analyze the
aforementioned study cases and establish tradeoffs in water pricing as a tool to regulate water demand,
while also evaluating the consideration of water a good (special economic good) in outcomes from the
applied case studies’ policies. The paper concludes with a summary of all previously discussed points
and describes how water pricing could be used as a tool to ensure water security objectives given the
framework (UN-Water approach) we outline, considering the scale and level of application stablished
at the beginning of the paper.

2. Materials and Methods

The complexity of applied water pricing policy reflects the efforts of governments and utility
service providers put into effect actions that will address water demand. Thus, we completed a
systematic review of academic and grey literature on the subject. During our review, we accessed
112 studies, with 40 being excluded due to their irrelevance to objective of this paper.

For the case studies, agriculture and urban water consumption were considered for analysis
because of their complexity and diversity with respect to water pricing. Both national and
municipal/district level examples were chosen. The paper focuses on the agriculture and urban
drinking water sectors because 86% of the total global water consumption is due to agricultural
activities [16] and given the importance urban water access to societal development.

3. Managing Water Resources: Conceptualization and Pricing Structures

3.1. Water as a “Good”

In 1992, the Fourth Dublin Principle established under principle (1) and (4) that water is a
finite and vulnerable resource that has an economic value and should be recognized as an economic
good [17]. In addition to this, the Rio Principle expressed that water is a social good and that humans
are entitled to, at least, a minimal quantity and quality of safe water. However, the emerging pluralism
in the valuation and interpretation of water could lead to scenarios of competing and conflicting
conceptualizations. The emerging concepts influence the existing debate by experts from various
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disciplines over water pricing. When water is priced as an economic good, its economic value can
vary depending on buyer and seller willingness to pay [18]. However, if the concept of social good
is applied to the pricing structure, then water should be affordable to the poor, benefiting the largest
number of people in the best possible way. To add further complexity with respect to the economic
principles, the true “economic” value of a good and its “financial” value seldomly correspond; hence,
the competitive market prices reflect only the financial and not necessarily the economic values of
water [19].

Briscoe [20] tried to connect the concept of water as an economic good by using water pricing.
Figure 2 shows the optimal consumption for water as X*, on the left. The graph on the right shows the
water consumption when the marginal cost of supply differs from the charged price, then the consumer
will not consume X* (optimal consumption) but X1 (new consumption), but still pay price P1 (charged
price). The increase in cost (the area under the cost curve) exceeds the increase in benefit (the area
under the benefit curve) and there is a corresponding loss of net benefit, called the deadweight loss.
However, this concept is only applicable to people who can actually afford the price of water, like any
other good. In this context, the deadweight loss is seen as a human gesture of tax-payers who are
willing to subsidize water to avoid water poverty. Thus, the supply curve will shift down to the point
where it intersects the demand curve at P1, X1.

 

Figure 2. Optimal consumption (left) and “deadweight losses” if water is underpriced (right) [19].

From the previous explanation and in order to continue this analysis, we must consider water as a
special economic good (discussed below). However, water utilities are usually a natural monopoly and
the marginal costs are usually lower than average costs. Such pricing would lead to a unit price that is
less than the average cost and the utility will not generate enough funds to cover all costs (operational,
management, quality, maintenance, or future events). From this, the question of how to use water
pricing as a strategy by using deadweight losses efficiently is answered using two main theories in
economics. One theory involves using subsidies and taxation as a form of lump sum transfer to make
up the loss as explained before. The second is to use price discrimination to recover costs through
Ramsey pricing and Pareto Superior Non-Linear Outlay Schedule [21]. The answer will vary according
to different conditions of time and place, especially as conflicts over resources increase values and
people’s rationale changes.

3.2. Commodifying the “Good”—Water Pricing Structures

The application of water pricing declined in the early 2000s due to a social resistance in many
countries and the lack of ability of governments to properly implement water pricing structures.
Each sector faces challenges with respect to pricing methods, not only between countries but within
regions of the same country. Water pricing is considered a crucial issue for decision makers, water

408



Water 2018, 10, 1173

services providers, and consumers. For this reason, assessing a socially fair average water price that
would be acceptable according to the reality of each area is recommended [22,23]. Water security could
be severely affected if innovations in water pricing are not developed and implemented. Some efforts,
such as the European Union Water Framework Directive (WFD), have been introduced to create
structures in which water users’ taxation reflects the complexity of valuing the water [24,25].

Water pricing can vary among and within different economic sectors. For example, water pricing
within the agricultural context can vary based on agricultural area (i.e., area-based pricing), agricultural
output, the value of the land (i.e., betterment levy pricing), or the amount of material used for
agricultural production (i.e., input pricing), or pricing can be uniform for all users [26,27]. However,
the most basic types of water pricing are: (1) flat rate, which implies no requirement for controlling
the demand with the price; (2) uniform (volumetric) rate, which is the basic structure used to put into
consideration the value of the quantity of delivered water to the final user; (3) block or tire rate, which
is used in order to focus the water consumption in specific values; and (4) complex rate structures,
based on behavioral analysis of water users to optimize not only revenues but also water consumption
itself [25]. These water pricing structures are illustrated in Figure 3.

 

(a) Flat Rate (b) Uniform Volumetric Rate 

 

(c) Block or Tire Rate 

 

(d) Complex Rate 

Figure 3. Cont.
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(e) Alternative Structures: Time of Day or Seasonal rates. 

Figure 3. Overview of water pricing design and structures: (a) All customers pay the same price
regardless of the amount they consume; (b) the total price of water is dependent on the amount of
water a customer uses. The unit price of water does not change but the total monthly price will
change. (c) Customers are charged for water based on increasing (or decreasing) flat rates; i.e., the price
of water changes once a limit has been reached. (d) Water price changes once a certain limit has
been reached and constantly increases. The total water price will always be different depending on
water consumption. (e) Water pricing is adjusted based on the time of day. The unit price of water is
higher during peak hours to encourage water conservation; water pricing is adjusted based on climatic
conditions, for example, wet and dry season.

3.3. Models for Water Provisioning

At the national scale, water resources are managed by different entities: normally public utilities
provide urban water services, while irrigation water is managed by irrigation districts, and water
pricing in both sectors is under the regulation of different government agencies [28].

For service delivery, there are three basic models: (1) Common property management; (2) municipal
companies; and (3) forms of privatization.

Common property management is controlled by the user's group that arranges the delivery
and supply of the resource. However, water resources are mostly managed by the public sector
(i.e., natural monopoly) to maintain the balance between water conservation and revenue stability in
water structures. In other cases, privatization is used as a model to enhance access to water, but for
some economists, privatization is no more than a means to create competition, since a monopoly
is expected to be inefficient whether it is private or public [29]. In Latin America, some cases of
privatization have been a polemical topic, leading to a series of protests and riots when the population
was not informed properly [30].

Given these realities of rivalries, externalities, and monopolies, as well as equity considerations,
some governments require a higher authority that can establish rules regarding the rights of individual
access and management of water. These standards basically refer to the amount (i.e., volume) of water
extracted from a primary source and the quality of the water both supplied to the end users and released
as a secondary source after its use. Overall, water management (although mostly focused on provision)
focuses on determining how much demand for water would inevitably increase in the future and how
increased demand will be addressed in different sectors (e.g., agriculture, urban water, commercial,
etc.). One of the challenges some governments are facing with respect to the conceptualization of water
as a special economic good is to identify who should be responsible for its management considering
that almost any intervention in managing water affects the environment, society, and the economy,
either intentionally or incidentally [29]. This discussion raises the question of whether water is a special
economic good that can be reasonably left to free market forces or if some amount of extra-market
management is required to effectively and efficiently serve social objectives [24]. Researchers have
considered the complex relationship of promoting water conservation and ensuring a stable revenue
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stream to cover the predominantly fixed charges of running a water utility. They state that, to achieve
maximum social efficiency and minimize deadweight losses, the pricing should be at the level of
long-run marginal cost [24]. The other challenge is fitting water provision within the overall mandate
of sustainable water management.

Van der Zaag and Savenije [31] stated that there is no other economic good that has the complicated
characteristics of water. For this reason, water should be called a special economic good that is
an essential, non-substitutable resource that needs reasonable pricing structures that aim at cost
recovery, and simultaneously ensure access to safe water for the poor, while considering ecological
requirements. The future predictions of global water scarcity demands highlight that a reasonable
water pricing structure should be assigned that encourages cost recovery and resilience by sending
a clear signal to water users that the resource should be used wisely. However, setting appropriate
prices depends on water use, making the selection process difficult since the nature of water's cost
varies in different economic sectors and geographic locations. For this reason, if water pricing is to be
defined as an economic policy intervention tool that can be used to achieve the environmental, social,
and economically efficient management of water, then it is essential to understand its implications in
real world situations to ensure its applicability as a water security tool.

4. Analysis of Water Pricing Considering its Effect on Water Consumption

Water pricing strategies vary between economic sectors and states. For example, pricing of
agriculture or urban water could be based on completely different underlying principles. To further
understand the use of water pricing as a tool for water security, it is an imperative to explore how the
concept is applied.

4.1. Sectoral and Temporal Dynamics

Water pricing in the agricultural sector has attracted special interest from researchers and
policy makers due to the complexity of water consumption concerning the food security nexus [8,9].
Irrigation water supply is often subsidized given that food security and rural livelihood issues
take precedence over the cost recovery model [32]. Studies report negative impacts of water
pricing on income and agro-production trends due to farmers reducing water consumption by
changing crop plants or introducing less profitable crops. Berbel and Gómez-Limón, Elnaboulsi,
Kanakoudis et al., and Aidam [33–36] proposed a base-price design through mathematical models
(e.g., Linear Programming or Multi-Analysis Tool for the Agricultural, MATA) to establish a tariff
that would not negatively affect farmers’ income, and in turn encourage saving water by reducing
waste and improving efficiency. The MATA model promises a strategy to address potential conflicts to
achieve positive results on water rights.

In the urban context, planning water supply methods while employing a based-price design
agreement and embedding scenarios with respect to droughts, water stress, or the “incremental cost”
of operation creates a challenge for proposing price reforms without polemic consequences or physical
conflicts [37]. With this in mind, we selected some case studies to support our argument. Case
studies 1 and 2 were selected to analyze the agricultural sector, specifically within the national scale
of policy intervention. Case studies 3 and 4 focus on urban water consumption, and the fifth case
study exemplifies the importance of water pricing in societies which has both water and resources
availability surplus.
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4.2. Case Studies

4.2.1. Irrigation Sector

Case Study 1: Smart Water Pricing in the African Continent—Ghana

Although the agricultural sector in Ghana has declined over the years [38], but it remains an
important contributor to Ghana’s export earnings and a major source of inputs to the manufacturing
sector and the most important sector for jobs and livelihoods in the rural areas. [39]. Major Ghanaian
crops include cocoa, coffee, oil palm, cashew, and rubber [38,40]. During the dry season, Ghanaian
farmers rely heavily on irrigation and are the dominant source of water resource consumption in the
country [41,42]. Reports suggest that the country is experiencing significant water scarcity, especially
in the agricultural sector, and poor management of agricultural irrigation pricing has resulted in poor
economic returns [43–45]. There are also reports of urban farmers using wastewater for irrigation
as an attempt to meet growing demand for vegetables due to inadequate health education [46,47].
Therefore, the need for different systems or an appropriate model to price water in the agricultural
sector remains crucial.

Aidam suggested a Multi-Analysis Tool for the Agricultural Sector (MATA) approach to
understand the relationship between the farmer’s activities and water pricing policy [36]. The model is
comprised of different modules and takes note of the behavior of the process for creating agricultural
products and the behavior of consumers with a price expectation and risk attitudes, while incorporating
the environment in which farmers, processors, and consumers make decisions. Finally, water supply
variables are also incorporated to add the impact of water demand on the agricultural sector in
Ghana [36,47]. This study selected areas according to their resource characteristics (e.g., land,
labor, capital, and management) and farmer management decisions were simulated to provide a
guideline on water pricing for a homogeneous agricultural sector with identical socio-economic and
agro-climatic environments. The principal assumption was income maximization as priority goal
for each farmer activities; incomes for each farm were GH¢ 449,867.00 (USD $101,550.63) for large
farms, GH¢ 454,081.00 (USD $102,501.88) for medium farms, and GH¢ 359,666.00 (USD $81,189.13) for
small farms. The crops used were rice, maize, and vegetables. If water prices increased significantly,
then water pricing policy would have a negative impact on the demand for water resources, resulting
in a subsequent reduction in both farmers’ income as well as labor employment, thus negatively
affecting agricultural and social business. However, after using the MATA tool, it was established that
adopting 2 cedi/m3 (0.43 USD/m3) in that year as the uniform volumetric rate was a measure that
both engaged farmers to consciously use less water resources and motivated them to implement water
saving technologies.

This analysis provides a different approach to manage water consumption in the sector and
focuses on irrigation efficiency. Linstead [15] examined the improvements in irrigation efficiency
in environmental services and concluded that allocation of water use should account for actual
consumptive use (i.e., irrigation consumption) and should be adaptable to changes over time in
irrigation efficiency, i.e., withdrawal or use allocation should decline as the irrigation efficiency
increases to prevent overall increases in consumptive use. In this sense, management and planification
strategy have a positive effect when water pricing is used as a tool by reducing and regulating
consumption growth by MATA modelling, and at the same time ensuring the incentive in the sector
remains focused on irrigation efficiency. This allows governments to implement strategies in other
sectors, such as the environment, by using the remaining water to improve conditions as a result of
the application of these two tools. This non-explicit behavior in the outcomes from the strategies
acknowledges the complexity of non-linear water—social response, a characteristic of a water security
tool [48].
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Case Study 2: National Strategies in Water Pricing—Spain

Agriculture production in Spain relies on the 60% of irrigated areas and only 19% of cultivated
areas; therefore, 80% of the water supply is consumed by agriculture. The old system for irrigation
was flat rate systems imposed by the Comunidades de Regantes (CR). These communities are assigned
by the government agencies to manage water; however, farmers are charged only part of the total
distribution cost. This fixed cost is calculated by hectare and used to irrigate subsidized extensive
crops. Common Agriculture Policy (CAP) is considered detrimental as it causes losses because
of the high consumption of water. Berbel and Gómez-Limón [33] applied Linear Programming
mathematical modulation by variables and interrelationships into a matrix algebra to better understand
the implication on decisions of policymakers and farmer’s objectives in annual herbaceous crops
(e.g., alfalfa, wheat, etc.) [33]. This study found that, for almost all crops (under CAP), adding a
price to water will cause unemployment and negatively affect farmer income, reducing it to 25–40%
before achieving the reduction in water consumption and making the region vulnerable, as farmers
would reduce the range of crop production. Berbel and Gómez-Limón simulated that a fixed tariff of
2 Ptas/m3 (former Spanish currency) could help reduce water consumption and persuade farmers
to use water-saving technologies that do not affect the crop [33]. The authors stated that this fixed
tariff should be analyzed continuously considering seasonal changes in the consumption and annual
income, so the water pricing policy could be implementing properly. In this example, we see the
problematic aspects and challenges of applying narrow perspectives (e.g., subsidized policy and flat
rate price) given a new national strategy of preserving water resources.

4.2.2. Urban Water Consumption Sector

Case Study 3: Incentive-Based Approach—São Paulo, Brazil

Companhia de Saneamento Básico do Estado de São Paulo S.A. (SABESP) is a Brazilian water and
waste management company owned by São Paulo State, considered the largest waste management
company in the world by market capitalization, providing water and sewage services. The 2014–2015
drought created a water crisis in Brazil and forced SABESP to implement a subsidy program based on
the combination of two forms of incentives to promote sustainable water use. A subsidy was offered
to members of the community who reduced their water consumption. By implementing the program,
environmental conditions improved and consumers received a government reward (i.e., discount on
the water price and sewage tariff). In addition, a contingency fee was imposed on consumers as a form
of punishment where an increase in demand was noted. This was implemented in the through taxes,
fees, and high charges per unit (Figure 4).

Figure 4. Companhia de Saneamento Básico do Estado de São Paulo S.A (SABESP) program to reduce
overconsumption of water [49].

In 2016, the City of Machado evaluated the effectiveness of SABESP’s program. The study took the
average consumption of water per household during the period of 2013 to 2015 covering 25 districts
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of the municipality. The dependent variable analyzed was the reduction in water consumption.
An increase in average residential consumption in all districts between January 2013 and January
2014 was observed. In contrast, between January 2014 and January 2015, the average reduction in this
period was 25.0%, with a median of 25.98% attributed to an “awareness effect” as a function of the
serious water crisis experienced. According to Gilbertson et al. [45], attitudes and behaviors in relation
to water conservation in households differ between regions and are based geographically [49,50].
However, in the case of São Paulo, even in the described scenario, households received water because
of SABESP’s program, whereas households of other municipalities in the region were affected by the
water crisis [49]. The strategy used by SABESP is similar to what is called Hybrid Policy, through
which subsidy and taxation systems are implemented at the same time based on consumption patterns
and trends. However, the success of SABESP during the water crisis was not accomplished by the
technical characteristic of the water pricing strategy (the Hybrid Policy) but by the complementary
strategies applied in conjunction with the Hybrid Policy. This awareness effect was created by the
intensive promotion of water conservation that SABESP deployed in parallel with the Hybrid Policy.
Therefore, this case study also illustrates that water policy strategies must work holistically, so they
become tools that recognize and manage the complexity of social, political, economic, and climatic
dimensions [51], which are characteristics of water security under our framework.

Case Study 4: Water Pricing and Conflict—Cochabamba, Bolivia

The privatization of Cochabamba’s water utilities was initiated by the World Bank, and the
International Monetary Fund (IMF). The privatization agreement was the result of a three-year,
USD $138 million national debt relief program from the IMF [52]. Following privatization, a private
international consortium (Aguas del Tunari) elevated water premiums by as much as 60% for some
consumers [53], resulting in months of protests, hundreds injured, and at least six dead. The protests
concluded with the President agreeing to a concession and returning water ownership to the municipal
authorities [54–56]

Prior to privatization, Cochabamba’s water services were owned and operated by the Municipal
Water and Sewage Service of Cochabamba (SEMAPA). Under SEMPAPA’s ownership, only 50.20% of
residents were connected to municipal water, with many people relying instead on public and private
wells, cistern trucks, springs, and neighbors as alternative sources of water [52]. The privatization
agreement was believed to address Cochabamba's significant water scarcity issues in addition to
alleviating national debt [52]. The privatization guaranteed a return on investment of at least 15%,
thereby justifying Bechtel’s (the majority stakeholder in the consortium) approach to increasing water
price, resulting in a multiple tier block rate structure [57].

It was argued that the price increase was necessary to reflect service costs and was consistent
with other utility contracts in high-risk countries. In addition, the policy was meant to be inclusive, as
the price increase among the poor was claimed to be no more than 30% [50]. However, as Shultz [58]
stated, price increases were actually 41% among the poor and 51% on average for all users. Many
residents felt that the new pricing structure was unfair and unaffordable, resulting in the violent
protests and eventually termination of the contract. Despite control returning to SEMAPA, issues of
water scarcity have not improved in Cochabamba, as fewer people have access to water than prior to
the privatization [59,60].

A key characteristic of the IMF and the World Bank’s policy intervention was that it only
considered water from an economic perspective. Bechtel and the consortium paid no regard to
two crucial elements in the city: the overall lack of water resources, and the spatial component of the
water scarcity. The lack of a holistic strategy led to a situation in which it was not the water pricing
strategy itself that was inapplicable, but the unilateral policy implementation that considered only a
return on investment.

414



Water 2018, 10, 1173

Case Study 5: Governance Reforms in a Developed Economy—France

In France, urban water services are publicly owned, but operational responsibilities can be given
to private operators if public operators cannot meet certain requirements [61]. Although national
legislation has had a history of affecting water pricing and management (e.g., the 1992 law), the current
water pricing structure is strongly influenced by France's 2006 water law (Loi sur l'eau et les milieux
aquatiques; LEMA). Under this law, specifically under article 57, water service providers are forbidden
the use of flat water pricing rates and declining water pricing rates (with exception to small cities and
water plenty areas). The 2006 law was meant to emphasize water conservation. However, it should
be noted that, overall, France has an abundance of surface and groundwater, although certain parts,
mainly the south and east regions, experience dry seasonal weather.

Before LEMA, the water pricing structure was mainly uniform volumetric (applied to 57% of
the districts). After the legislation of LEMA, statistics from 2013 show that the number of districts
using uniform volumetric pricing systems increased to 61%, and decreasing pricing systems—like
flat rate structure—dropped to 4%. Furthermore, the percentage of districts using increasing pricing
systems grew from 1% in 2003 to 29% in 2013 [62]. The pricing policy reform led to an increase in water
efficiency by 3% from 78% in 2008 to 81% in 2010, and a decline of 4.2% in the number of lead pipes in
the country [63]. Finally, France ensures that water prices remain below the national minimum wage
and water utilities have provided grants for low-income families that cannot meet their monthly water
usage bill [64].

In the case when there is an ideal situation between demand and supply, water pricing strategies
should focus on the optimization of the sector, an aspect that national agencies do not consider at first.
In the case of the French government, they chose to optimize their water pricing policies by practical
analysis and study of policy effect, which is a characteristic of the water security framework (expanded
research agenda) [51].

5. Potential of Water Pricing as a Tool for Water Security

As previously described in the case studies, the power of water pricing as a policy of regulation
for water consumption is quite relevant, as it implies that, as a water policy, pricing can control the
demand sector. Therefore, water pricing is considered a crucial issue for decision makers, water
utilities managers, and consumers. Water security can be severely affected if innovations in water
pricing are not developed and implemented efficiently to improve and ensure the effectiveness of
another strategies already in place. Efforts have commenced to address this issue in some parts of
the world. For example, the European Union Water Framework Directive (WFD) created a pricing
structure that taxes water users to reflect the scarce value of water [65]. The European Commission
report states that water pricing should be used as a key tool to support water management decisions,
and that underpriced water may lead to its unsustainable use. The report goes on to state that water
pricing should be discussed within social policies to help ensure that they are fair to all sections of
society and environmentally sustainable (i.e., ensuring that developing populations do not suffer from
high water pricing policies). Applying a participatory approach to water-related decision making
is recommended [50]. In contrast, other case examples reflect how water prices could lead to social
conflicts and increase government reluctance to adopt this approach, since the different views regarding
government’s role in water regulation are based on cultures, religions, and political interests [66].
Moreover, negotiation principles demonstrating different and often heavily asymmetric bargaining
positions of partners are related to water pricing of existing cross-border utilities [21]. Consequently,
to establish whether water pricing could serve as a tool for water security, from the case studies,
we concluded that the price of water as a strategy is highly sensitive in societies with problems of
scarcity. Therefore, its application must be carefully studied, considering the understanding as well
as who is in charge under different scenarios, and commitments of the water allocation, distribution,
and overall management.
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Yepes [67] sketched a pricing policy as one that distributes the costs of services among users,
which must be designed to achieve the objectives of economic efficiency, using multiple investment
and operations to provide an additional unit of service; financial sufficiency. The policy should have
the necessary resources for the provision and maintenance of the service in an efficient and sustainable
manner, along with the possibility of growing and improving infrastructural investments. The policy
should provide universal access for all to the water service with simplicity and transparency [67].
The pricing policy must be understood by all persons involved: users and officials. Regarding
transparency, rules must be clear with respect to the allocation of user costs so that they are accepted
by society. Hughes [68] explained how revenue sufficiency is the primary financial objective for
water utility systems that operate as enterprises and considers the other aspects (stated as below) as
secondary objectives.

(1) Affordability: Ensuring that water is affordable to a community for basic services is a priority of
many utilities and their governing boards. Maintaining affordable rates should almost never take
precedence over charging rates that are necessary to recover the full costs of service.

(2) Conservation promotion: The amount that customers pay for water service acts as a price signal,
often encouraging the customers to decrease consumption.

(3) Economic development: Utilities may strive to attract new or maintain existing commercial
customers through water rates to foster greater community benefit.

(4) Short-term revenue stability: Year to year, most water utilities rely on revenue from water
consumption charges to cover the predominantly fixed costs of the utility. Yet, water consumption
can vary and is on the decline for many utilities, undermining water utility revenue stability,
which some are calling the new normal.

Considering that the amount of water is finite, and the marginal cost of water can be very high in
droughts or when a reservoir runs dry at the end of the season, and once a person (or a crop) receives
sufficient enough water to alleviate physical stress and strain, the utility of additional units rapidly falls
and becomes negative. To evaluate potential drivers of an efficient water pricing policy as to tool for
water security realization, different perspectives—illustrated using the selected case studies—present
a fair argument that water pricing can be used either effectively or ineffectively to promote water
security. For instance, in the agricultural sector, water pricing draws special interest from the national
governments due to the link between production and food security [8,9]. There is consensus that
water pricing in agro-production and subsistence livelihood sectors report negative trends, referring to
impacts like change in cropping composition or introduction of less profitable crops [33].

Kanakoudis et al., Elnaboulsi, and Aidam [22,34,36] outlined a base-price design through
mathematical models. The Ghanaian and Spanish case studies exemplify the use of this concept,
and modeled evidence to establish a tariff that would not negatively affect the farmers’ income that
would help encourage saving water through consumption management using the MATA and LP
approaches. Whereas models are only reflective of scenarios specific to different contexts and situations,
researchers often point towards data gaps [69], showing that you cannot methodologically cover the
entire context. Therefore, water pricing policy should not be outlined as a standalone tool but as part
of overall water governance measures (i.e., irrigation technology policies) to achieve effective results.

In the municipal context, planning water supply employs a base-price design agreement and
embeds scenarios of droughts, water stress, or the incremental cost of operations, making it hard to
propose reforms without polemic consequences or physical conflicts [37]. For many municipalities,
water accessibility is a persistent issue, as illustrated in the Cochabamba case study. The privatization
contract was intended to increase water accessibility in this city, but the consortium failed to assess the
stakeholders’ economic and social needs (a multidisciplinary framework showed in water security
framework, not applied in this case).

However, increasing water rates does not always lead to social unrest, as illustrated in the French
case study. Although water pricing structures for many French municipalities changed from flat and
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decreasing pricing structures to volumetric and increasing ones, the average rate of water remained
below the national minimum wage. In theory, this approach would allow affordability while promoting
water conservation, aligning with national goals of water security. In addition, it allowed for the
provision of water subsidies for low-income families, which addressed issues of income inequality.

The new water management policies need to factor in multiple aspects highlighted in the water
security nexus. Many regions worldwide are facing natural- and anthropogenic-driven water scarcity,
and therefore require smart thinking (nonlinear) in valuing and pricing provisioning services. The case
of study in São Paulo presents a good example of a practical strategy to manage demand and
consumption that can in turn promote water conservation. Figure 5 illustrates how a smart water
pricing policy based on the presented arguments could enable prioritizing policies and approaches
dealing with positive and negative spillovers while ensuring water secure futures.

Figure 5. Prioritizing strategies lead to affect positively and negatively water pricing.

Furthermore, Figure 6 exemplifies the water pricing conceptual feedback process at the level and
scale analyzed in this study (national and sectorial scale for urban and irrigation sectors) in terms of a
water security framework. One of the outcomes may include tackling the risk of inadequate water
quality by understanding the importance of ecosystems services as a water source and instruments
of water pollution control and restoration. In such a scenario, we not only ensure or secure drinking
water and human well-being, but the society at large acknowledges, through conservation, that
natural ecosystems can assist in tackling climate change and disaster prevention [70] to provide
long-term revenue. In addition, even in the absence of human-induced climate change, more severe
drought is likely to occur in the future than has occurred in the past 30 years [71], which leads us to
a scenario of reduced water availability. Creating resilient systems is one of the strategies included
for short-term revenue generation, as in the case of Brazil. Using these systems leads to creating
more sustainable cities and an improvement in water resource management by providing viable,
cost-efficient, and effective solutions.

In addition, if solutions need to be developed and financially supported by fair pricing structures,
then this kind of setting may provide stability and better acceptance by society to newer policies and
arrangements. To provide this stability and ensure transparency of the water supply in urban areas,
IBNET (The International Benchmarking Network for Water and Sanitation Utilities) indicators of
the World Bank could help [72]. These indicators are based on a framework where the water utility
must provide services to all customers at affordable prices, while controlling quality and maintaining
financial incentives for its staff [73]. This analysis is based on a compilation of a databases from
utilities and companies in charge of distributing water. Special considerations about the data must
be evaluated prior the estimation itself, as many of the variables and performance indicators upon
which IBNET reports do not fit a normal distribution but rather form a skewed distribution, for which
the specific mean and the median differ. For those cases, the Blue Book recommends the median as a
better representation of the performance. Some of the IBNET indicators include: water coverage, waste
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water coverage, nonrevenue water, staff productivity, operating cost coverage ratio, operation and
maintenance cost, operating revenues, water consumption, collection period, affordability of water
and sewage service, and cross subsidies. IBNET indicators can help to reveal management efficiency
and allow for continuous updates to water structures according to their needs.

Figure 6. Suggested model for water pricing embedding water security guiding framework.

Mathematical economic models like MATA and LP are used to assess all the potential scenarios
that produce negative impacts on society, economy, and the environment in the case of irrigation.
It is also essential that the pricing of water services covers the costs of providing service for both
operations and maintenance, as well as capital expenses including future, operations, maintenance,
and capital costs. In the case of Ghana and Spain, the results of omitting the economic efficiency
indicator led to water being distributed under unsustainable growth. The LP and MATA models
offer a perspective on how to better implement water pricing changes under reasonable boundaries
(case studies 1 and 2). Other characteristics of the suggested model are simplicity and transparency.
Learning from Cochabamba (case study 4), wherein the water pricing policy was applied directly
without consensus with the population and simplicity in the applied policies led to an unsustainable
relationship between the water company and the society. The case of São Paulo (case study 3) showed
how the government outlined and applied a set of combined policy strategies for drought (water
scarcity) management. It was interesting to note how the population and communities reacted to
managing their own consumption post-crisis. The reaction drives us to follow the loop on cooperation
(users-providers) to achieve education and conservation as part of the suggested model. This highlights
that the complementary policy framework must not only be applied in the face of water crisis but also
in both the short and long-term policy trend, simply and transparently leveraging triggers in the policy
framework and their impacts. In order to avoid conflicts and organize resilient communities, water
pricing can be used as a tool for water security under specific principles and strategies, as shown in
Figure 6.

As mentioned above, the water pricing policy is quite sensitive in terms of social response despite
the characterization of water as an economic good, which is often considered inelastic. This implies
that both simplicity and transparency are required features of the implementation of the policy, without
mentioning that it must be managed in a participatory way. In the case of Cochabamba, due to the
simple lack of communication between decision makers and society, the policy could not be deployed
and social context was not considered (poor sectors in the metropolitan area without access to water
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and with the same rate as any other another sector). In the case of São Paulo, due to the simple intensive
communication between the state government and society, unforeseen positive effects were achieved
(water conservation by the population); the context of the drought crisis favored the application of
the politics.

The intention of this paper was not to promote flat rates over uniform volumetric rates or
privatization over public ownership. Instead, the goal was to illustrate that effective water pricing
can be used in a water security framework. Water pricing is complex, and as shown, it needs to be
case-specific to consider the ability of a system to respond to changes in prices. Unfortunately, there is
no single water pricing structure that can achieve the water security agenda. Therefore, instead of a
specific pricing system, we suggest that a water pricing policy based on current and future events is
needed that considers seasonal variability, household income, and reality of each sector and ideally the
vision of water security that the nations and the communities are planning to adopt.

6. Conclusions

Considering that water insecurity is a looming challenge to address when planning strategies
for sustainable development, discussion of re-organizing water pricing, especially in countries with
extreme hydro-climatic variability, is crucial. We attempted to present a set of arguments stating
how smart planning of water pricing design, structure, and enforcement can serve as potential tools
under the water security agenda. The water pricing case studies presented in this paper are not
intended to be viewed as best practices, but rather as examples of realities on the ground in different
countries. They also serve to illustrate how geographic, economic, and social diversity influence
water management planning and decision-making. Water pricing can be considered as a policy tool
to address some of the challenges and dimensions of the larger nexus of water security. If countries
and regions are able to balance the supply-demand dynamics while assuring a water-secure future
for their communities and citizens, pricing models that fit with the socio-economic and socio-political
and socio-cultural complex systems will need to be carefully chosen. Recognizing this complexity in
the relationship between government and society and their corresponding economic sectors, policies
adjusted to the reality of each region can be implemented within the framework of water security,
with strategies and tools working on systems in parallel (complementarity). Therefore, water pricing
tools must not be implemented in insolation, but governments must execute them within an integral
set of policies that have at least one complementary tool of social participation and cooperation
(transparency and simplicity).

The critical analysis of a range of case studies makes it increasingly clear that the social parameters,
environmental conditions, and cost recovery mechanisms are primary when pricing a natural resource.
For example, impoverished population groups or vulnerable economic sectors should not treat water
as a public or a pure economic good because of the current and predicted environmental conditions
from climate change and other kinds of uncertainties. The contribution of water pricing toward the
sustainable management of water resources requires large investments and financial commitments to
manage direct and indirect pressures impacting the quantity and quality of water resources. We argue
that these decisions should be taken in tandem with additional aspects with respect to innovations in
clean water technologies, building capacity of customers/user on larger merit of valuing water, putting
in place mechanisms and policies to manage and mitigate conflict, and overall, to set a long-term
agenda to develop water resilient communities and nations, with sustainable management of water
as normative.

Let us revisit some quick examples to set the final argument. Beginning with the Ghanaian case
study, the policy did not associate water price with efficiency indexes of water consumption and
therefore, instantly reflected unsustainable growth. In Spain, a fixed cost managed by the communities
led to subsidized extensive agriculture with no control over efficient use of water. The São Paolo case
study illustrated how urban water security was balanced in the face of the most critical drought in
recent history. The Hybrid Policy—balancing the subsidy and taxation systems—demonstrated how
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the objective of conserving water resources was achieved without much altering the regular water
price structures. The case study of drinking water provision in Cochabamba reflected the ineffective
process of privatization that resulted in a general negative impression of the privatization approach to
service provision. Finally, France’s national water policy increased the use of a uniform volumetric
pricing system and simultaneously improved infrastructural maintenance.

Overall, water pricing strategies and goals have the potential to tackle both physical and economic
water scarcity if they are intelligently planned and implemented. Furthermore, they demonstrate
that financial reserves appear to be the valuable aspect of the scenarios that can be achieved through
cost-recovery from water users (case studies 3 and 5), leading to a negative response from society
(case studies 1, 2 and 4). That being said, water pricing has the potential to positively trigger the
water security agenda as managed water extraction, supply, and strata-based management and
better investments in infrastructure can help ensure a sustainable water future. The feedback loop
of smart water pricing strategies can also have positive spillover effects. For example, managed
water withdrawals can help conserve services and benefits from aquatic ecosystems, whereas
financial availability can ensure investments in associated aspects such as water-borne diseases
and water-related disasters. The result of not considering water pricing as a tool for improved
management and behavior change on future water thinking and policies leaves us in a situation
where agricultural and urban water demands will continually increase without sustainable structures
regulating efficient use (as explained in case study 1: insulated efficient use does not control overall
irrigation consumption), conservation (as explained in case study 3: social water conservation
promotion did not work on its own), maintenance, utility for expansion, and revenue. All these
factors are prerequisites for countries to ensure water security, in the short-, medium-, and long-term.
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Abstract: Extreme events, such as drought, heat wave, cold wave, flood, and extreme rainfall,
have received increasing attention in recent decades due to their wide impacts on society and
ecosystems. Meanwhile, the compound extremes (i.e., the simultaneous or sequential occurrence of
multiple extremes at single or multiple locations) may exert even larger impacts on society or the
environment. Thus, the past decade has witnessed an increasing interest in compound extremes.
In this study, we review different approaches for the statistical characterization and modeling of
compound extremes in hydroclimatology, including the empirical approach, multivariate distribution,
the indicator approach, quantile regression, and the Markov Chain model. The limitation in the data
availability to represent extremes and lack of flexibility in modeling asymmetric/tail dependences of
multiple variables/events are among the challenges in the statistical characterization and modeling
of compound extremes. Major future research endeavors include probing compound extremes
through both observations with improved data availability (and statistical model development) and
model simulations with improved representation of the physical processes to mitigate the impacts of
compound extremes.

Keywords: compound extremes; climate change; multivariate distribution; quantile regression; indicator

1. Introduction

The climate system has been changing significantly as exhibited by global warning, which is
expected to intensify (and accelerate) the hydrologic cycle due to the involvement of certain
temperature dependence processes. This would lead to changes in the duration, frequency, spatial
extent, and timing of extreme weather and climate events [1–3]. A variety of climate and weather
related extremes, such as droughts, floods, heavy rainfalls, heat waves, tornadoes, cyclones or storms,
have been shown to change significantly in the past, posing serious challenges to different sectors
of the society including water, energy and food and their nexus (i.e., the water-energy-food nexus
(WEF)) [4–10]. Moreover, recent studies based on climate projections have revealed a potential increase
in these extremes in the future [3,11–15], which calls for an improved understanding of the changes in
extremes and their impacts under global warming.

Traditionally, studies on weather and climate extremes have mostly focused on the extremes
from a single process or variable, such as heavy precipitation or maximum temperature. For example,
a multitude of studies have shown increases in the severity, duration, and frequency of precipitation
and temperature extremes [4,16–21]. The extreme value theory (EVT) constitutes the basis for
statistical modeling of univariate extremes in this regard, which can generally be achieved with the
probability distribution of individual extremes, such as generalized extreme value (GEV) distribution
or generalized Pareto distribution (GPD) based on the annual maxima or peak over threshold [22,23].
However, hydroclimatic variables are interconnected and thus focusing on a single variable or
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extreme may not be sufficient to comprehensively characterize the impact of extremes, which calls for
multivariate modeling techniques.

Compound extremes, which are also referred to as simultaneous, concurrent, or coincident
extremes (e.g., the concurrence or succession of multiple extremes/events), may exacerbate an adverse
impact, leading to larger impacts to human society and the environment than those from individual
extremes alone [24–26]. The past decade has witnessed an upsurge in studies of compound extremes,
such as drought and heat wave (or low precipitation and high temperature) at different regions
including Europe (2003 and 2015), Russia (2010), and California in the U.S. (2014) [4,27–31].
For example, the recent 2012 extreme drought in the central U.S. with record deficit in precipitation
was accompanied by high temperatures during the May–August growing season, which significantly
affected crop yields [32].

The physical mechanism of a compound extreme (e.g., compound flood) is rather complex
depending on a variety of weather and hydrological processes [24,25,33–35]. Studies based on both
models and observations have been devoted to the modeling of multiple drivers or processes of
compound extremes. Correlations between occurrences of extremes may be induced due to a common
external factor (e.g., regional warming), mutual reinforcement of two events (e.g., land surface
feedback) or conditional dependence of the occurrence of one event to another event (e.g., extreme
precipitation and soil moisture for flood) in the weather or hydroclimatic system [25,36]. Statistical
methods have been commonly employed to model the correlation or interaction of multiple variables
or processes that may lead to compound extremes. One example is the occurrence of drought and
extreme heat in summer, which may be largely due to the land atmosphere feedback. Studies have
shown that the number of occurrences of the compound drought and extreme heat increased in
different regions [29,37]. In addition, the quantile regression method has been widely used for the
assessments of the contribution of the antecedent soil moisture deficit on the occurrence of high
temperature [38,39], leading to a compounded dry and hot extreme. In addition, coastal flooding
may be caused by large waves combined with a high sea level and its multivariate distribution has
been employed to study the compound extreme of wave height and water level at different coastline
stretches around the globe [40–46]. These studies advanced our understanding of compound extremes
and how to enhance the capacity to cope with the adverse impacts of these climate anomalies. However,
a thorough introduction and comparison of statistical methods for assessing compound extremes
is lacking.

The aim of this study therefore is to review commonly used statistical methods for the
characterization and modeling of compound extremes in hydroclimatology. This paper is organized as
follows. The definition and types of compound extremes are introduced in Section 2. An introduction
of statistical modeling of compound extremes is provided in Section 3. Section 4 discusses several
topics related to compound extremes, followed by conclusions in Section 5.

2. Compound Extremes

2.1. Definition of Compound Extremes

There are different definitions of compound extremes/events. The IPCC Special Report on
Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC
SREX) defines the compound event as follows [25]:

“(1) two or more extreme events occurring simultaneously or successively, (2) combinations
of extreme events with underlying conditions that amplify the impact of the events, or (3)
combinations of events that are not themselves extremes but lead to an extreme event or
impact when combined.”

It is emphasized in this definition that the coincidence of several factors, each of which may
not necessary to be extreme, may lead to adverse and extreme impacts [47,48]. By categorizing
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compound extremes into different classes, this definition is crucial in understanding the phenomenon;
however, some events are hard to be classified under this definition [24]. Recently, another definition
of compound event has been given as follows [24]:

“A compound event is an extreme impact that depends on multiple statistically dependent
variables or events.”

This definition of compound extremes/events emphasizes three aspects, including the impact,
presence of multiple variables (or events), and statistical dependence. A common feature of the two
definitions is that the compound extreme generally involves the interaction (or dependence) of multiple
drivers (or variables/events), either of the same type (e.g., extreme rainfall at both upstream and
downstream) or different types (e.g., compound drought and hot extreme). This highlights that the
dependence modeling of multivariate random variables plays a central role in the statistical modeling
of compound extremes.

2.2. Typical Compound Extremes

The compound extremes refer to a variety of cases in hydrology and climatology. In this
study, compound extremes in the bivariate case are classified into different types in which four
regions of extremes (I, II, III, and IV) are defined, as illustrated in Figure 1. A summary of typical
compound extremes is provided in the Appendix A, such as the drought and hot extreme, precipitation
and temperature extreme, and compound flood. Note that there are other types of compound
events that may be of particular interest, such as the combined wind speed and storm surges
(or precipitation) [36,49,50], combined humidity and temperature extremes [51], and the co-occurrence
of particulate matter (PM2.5) and maximum temperature [52].

The compound nonexceedance- nonexceedance extremes are illustrated in region I, in which
both variables lower than certain quantiles are of primary interest, such as the deficit in both
precipitation and soil moisture. Drought, a typical example in this case, is commonly classified as
meteorological, hydrological, agricultural, or socioeconomic drought [53], which may occur separately
or simultaneously. Recently, substantial efforts have been devoted to the drought characterization from
a multivariate perspective based on the concurrent deficit of multiple variables [54]. The compound
exceedance- exceedance extremes type falls in Region III, in which two variables higher than certain
values are of primary interest, such as storm surges (or sea level) and high precipitation (river
discharge) [35,48,55–60]. For example, in coastal areas, the risk of flood will increase if high coastal
water level (or storm surge) occurs simultaneously with high precipitation/runoff, leading to the
increase of the river water level [55,56,61,62]. In addition, the combination of high temperature and
heavy precipitation in the spring season in certain regions (e.g., Norway) can result in flooding when
runoff from snow-melt adds to river discharge due to rainfall [47].

Figure 1. Different types of compound extremes in the bivariate case for two variables X and Y.
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Regions II and IV indicate the compound exceedance- nonexceedance extremes, in which one
variable lower (or higher) than a threshold with the other variable higher (or lower) than a threshold
is of primary interest. Drought and heatwave have been among the most commonly investigated
compound extremes of this type [27,37,63–65], which may promote wildfires [66], affect agricultural
production [67,68], or reduce the net primary productivity (NPP) [69,70]. Drought and hot extremes
are interconnected, which is mostly due to the positive feedback in transitional regions between a wet
and dry climate, in that drought condition may be amplified/exacerbated when accompanied by heat
wave, while drought may create favorable conditions for hot extreme or heat wave [4,8,13,38,71,72].

Apart from multiple extremes at the same time introduced above, the compound extreme also
refers to sequential (or temporal clustering, successive) extremes, such as the temporal clustering of
extreme sea level and skew surge events [73]. The compound extremes at different locations (or spatial
extremes) may also be of interest, such as simultaneous flood in a wide area or extreme precipitation at
multiple stations [74–76]. Understanding these properties of the compound extreme is important for
the characterization and modeling to facilitate mitigation measures to reduce its impacts.

3. Statistical Approaches

Both models and observations have been used to explore the relationship between multiple
variables/components of compound extremes. Due to limited observations of extremes (or rare
events), the statistical inference of compound extremes and the extrapolation beyond observations are
of particular interest. In the following, we mainly focus on methods for modeling compound extremes
from a statistical perspective. These methods include the empirical approach, multivariate distribution,
the indicator approach, quantile regression, and the Markov Chain model.

3.1. Empirical Approach

The empirical approach for the analysis of compound extremes is executed through counting the
number of concurrent or consecutive occurrences of multiple extremes [29,51,57,77–80]. This approach
mainly characterizes the occurrence or variability of compound extremes. The individual extreme
is first defined (e.g., based on a threshold or percentile) [81], which is then used to obtain the
quantity of compound extremes based on the co-occurrence of individual extremes. For example,
a wide variety of indices of daily precipitation and temperature extremes (e.g., warm days defined as
percentage of time when daily max temperature >90th percentile) have been developed by the joint
CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI) (available
at: http://cccma.seos.uvic.ca/ETCCDI/list_27_indices.html), which are also known as the ‘ETCCDI’
indices [82–85]. Accordingly, a multitude of compound extremes can be defined by counting the
concurrence of these individual extremes. Usually the number of compound extremes for each period
(i.e., month, year) is first computed and statistical analysis (e.g., trend analysis, change point analysis)
is employed to detect associated changes.

The compound precipitation and temperature extreme has been widely explored. The precipitation
(and temperature) extreme for a specific period can be defined as dry/wet (and cold/warm) when
precipitation (and temperature) is lower/higher than certain thresholds (e.g., 25th/75th percentile).
The associated four compound extremes (dry-warm, dry-cold, wet-warm, wet-cold) can then be
defined when the two extremes occur concurrently [29,77,80]. The assessment of changes of these
four compound extremes generally showed an increase in the warm mode of compound extremes
(i.e., dry-warm, wet-warm). For example, it has been found that the occurrence of warm/dry and
warm/wet modes in Europe have increased in the 20th century and will continue to increase in the 21th
century [77]. In addition, assessments of combined precipitation and temperature modes in Spanish
mountains revealed an increase in the frequency of dry-warm and wet-warm days [80].

We use the monthly precipitation and temperature data near Melbourne, Australia (Longitude: 144.9,
Latitude: −37.8) to illustrate this approach. The monthly data for the period 1901–2016 were obtained
from the Climatic Research Unit (CRU TS3.25) (using the nearest grid). Note that the gridded data
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should be used with caution in analyzing extreme events due to the reason that extremes may be
smoothed during the interpolation process [86–89]. We use these data here and in the following
sections mainly for illustrative purposes. Based on the definition above, we computed the number
of compound dry-warm extreme occurrences for each year (and 5-year running average) during
1901–2016 for Melbourne, Australia, as shown in Figure 2. A significant increase in the occurrence of
the dry-warm extreme is shown during the past century, implying the increased risk of a compound
extreme under global warming in this region [90].

Figure 2. Number of the compound dry-warm extreme for each year (and 5-year running average)
during 1901–2016 for Melbourne, Australia.

3.2. Multivariate Distribution

A key property of the compound extreme is that dependence between different contributing
variables (or drivers) generally exists. The multivariate distribution plays a critical role in modeling
dependence of multiple variables/extremes for a variety of applications (e.g., estimate the combined
risk of extremes) [49,91]. For example, the multivariate distribution has been used to explore
joint properties of precipitation and temperature (or their extremes) for frequency assessments or
statistical simulations [92–97]. There are many ways to construct the multivariate distribution, such as
parametric distribution, copula, entropy, and nonparametric models [98]. Copula is among the most
recent advances in multivariate dependence modeling for a variety of applications in hydrology
and climatology [99–112]. It enables the construction of the joint distribution in a flexible way in
which the marginal distribution is independent of the modeling of dependence structure. In the
following, we introduce the copula model for constructing the multivariate distribution to model
compound extremes.

3.2.1. Copula Approach

For two random variables X and Y with marginal distributions U and V, respectively, the joint
distribution can be expressed with a copula C as [113]:
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F(x, y) = P(X ≤ x, Y ≤ y) = C(U, V; θ) (1)

where θ is the parameter of the copula.
Several copula families, including elliptical (e.g., Gaussian, Student t), Archimedean (e.g., Frank,

Clayton, Gumbel), and extreme-value copula (Gumbel, Galambos, extremal-t, and Hüsler–Reiss),
have been commonly used for the construction of multivariate distributions, which show different
properties in dependence modeling. Four commonly used 2-parameter copulas are shown in Table 1.
Random samples with a sample size of 1000 from these four copulas are illustrated in Figure 3 to
show the different properties of these copulas in modeling multivariate variables. Variables drawn
from the Gaussian and Frank copula exhibit symmetric dependences. The difference is that the
dependence in the Frank copula is weaker in tails and stronger in the center of the distribution
compared with the Gaussian copula [114]. Both the Clayton and Gumbel copula exhibit asymmetric
dependences. Specifically, the Clayton copula exhibits the lower tail dependence (LTD) while the
Gumbel copula shows the upper tail dependence (UTD) [115]. These properties imply that the Clayton
copula is best suited for applications with two outcomes likely experiencing low values together
while the Gumbel copula is suitable when two outcomes are likely to realize upper tail values
simultaneously [114]. The extreme-value copula is commonly used for modeling the dependence
structure between a rare event and the Gumbel copula is the only copula that is both an extreme value
copula and an Archimedean copula [116–119].

Table 1. Four copulas and their parameter spaces.

Copulas C(u,v) Parameter

Gaussian Φ2(Φ−1(u), Φ−1(v)) * θ ∈ [−1, 1]

Clayton
(

u−θ + v−θ − 1
)−1/θ

θ ∈ (0, ∞)

Frank − 1
θ ln
[

1 + (e−θu−1)(e−θv−1)
e−θ−1

]
θ ∈ (−∞, ∞)

Gumbel exp
{
−
[
(− log u)−θ + (− log v)−θ

]−1/θ
}

θ ∈ [1, ∞)

* Φ and Φ2 represent the standard normal distribution in the univariate and bivariate case.

Figure 3. Random samples (sample size 1000) from Gaussian, Frank, Clayton, and Gumbel copulas.
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3.2.2. Joint Probability

The multivariate distribution can be employed to model the joint behavior of compound extremes
and enables the comparison of individual and compound extremes based on the marginal probability
and joint probability (or percentile). We use the compound meteorological and hydrological drought
as an example to illustrate the comparison, which may be applied to other compound extremes
(e.g., drought and heatwave, storm surge and rainfall). Based on the monthly precipitation and runoff
for the period 1932–2011 from climate division 2 in Texas, USA (obtained from the National Climatic
Data Center, National Oceanic and Atmospheric Administration), the percentile of precipitation and
runoff (6-month time scale) in July is constructed with the Gumbel copula. The 20th percentile is
specified as the threshold to define the drought condition, which is shown in Figure 4 (i.e., lines L1
and L2). The 20th percentile of the joint distribution is also specified as a threshold to measure the
compound extreme and the joint percentile is shown in Figure 4 (L3 represents the 20th joint percentile).
The upper left region (e.g., P1(0.07, 0.58)) or the lower right region (e.g., P3(0.29,0.10)) is the case
with the occurrence of only meteorological drought or hydrological drought. The lower left region
(e.g., P2(0.16,0.07)) is the case with the concurrence of both meteorological and agricultural drought
(i.e., compound drought). Of particular interest is the marked region bounded by L1, L2 and L3
(e.g., P4(0.32,0.32)), in which neither the meteorological drought nor the hydrological drought occurs.
It can be seen that the joint percentile of this region is lower than the 20th percentile, which indicates
the occurrence of the compound meteorological and hydrological drought. This highlights that the
compound extreme may occur even when neither of its components are extreme.

Figure 4. Comparison of individual and compound drought based on the percentile of precipitation
and runoff (6-month time scale) for the period 1932–2011 using copula. The circled point represents the
data pairs during 2011.

The multivariate distribution has been applied for the frequency analysis of compound extremes
by computing the return period. An important way to quantify the risk of extremes is through
a frequency analysis of individual extremes entailing a return period (or return level) [120,121]. Usually
this return period can be obtained from the probability P with the relationship T = μ/(1 − P), where μ

is the mean interval time and P is the nonexceedance (or nonexceedance) probability of interest [122].
For univariate extremes, efforts are needed in selecting the distribution of extremes either through
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block maxima or threshold exceedance. In addition, other approaches such as the fractal approach
(or power law distribution) have also been discussed for the frequency analysis of rare events in
hydrology [123–125]. In the multivariate case, there are different ways to estimate the return period
of multiple variables or extremes either based on the joint distribution or the Kendall distribution
function [122,126–132]. Traditionally, the commonly used method in the bivariate case refers to the
estimation of the joint probability P(X ≤ x and Y ≤ y), P(X ≤ x and Y > y) and P(X > x and Y > y),
which can be applied for different cases of the compound extremes in the Appendix A. For example,
P(X ≤ x and Y ≤ y) is of interest for the compound meteorological-agricultural drought while P(X ≤ x
and Y > y) is of interest for the compound drought-hot extremes.

We use the compound meteorological and agricultural drought to illustrate the application based
on the monthly precipitation and runoff for the period 1932–2011 from climate division 2 in Texas,
USA. The Standardized Precipitation Index (SPI) [133] and Standardized Runoff Index (SRI) [134] are
commonly used drought indicators to track the meteorological drought and hydrological drought
and are used in this study. For the computation of these indices, the empirical Gringorten plotting
position formula is used to estimate the marginal probability of precipitation and runoff (6-month
time scale) [135]. The joint return period of the SPI and SRI can be used for the frequency analysis of
compound meteorological and agricultural drought. The empirical return period of the individual
meteorological drought and hydrological drought in 2011 is 143 and 32 years, respectively. Based on
joint probability, the joint return period of the compound meteorological-hydrological drought is
396 years. These results imply that the drought event in 2011 in this climate division is a 396-year
event if both the meteorological and agricultural drought are taken into account. These results are
consistent with previous studies, which highlighted that the risk of the compound extreme may be
underestimated if the dependence between contributing variables was ignored [48,61,136].

3.2.3. Conditional Probability

The multivariate distribution approach also enables the quantification of the conditional
relationship between two or more extremes. For example, the conditional distribution of the maximum
temperature given antecedent meteorological drought can be used to quantify the impact of drought
on hot extremes, which reflects the land surface feedback that contributes to the compound drought
and hot extremes [38,137,138]. Existing approaches for multivariate extreme modeling are generally
applicable to the case in which all variables are simultaneously extreme. As stated before, compound
extremes may occur when not all variables need to be extreme. In this case, the conditional extreme
model [139,140] is an attracting choice since it enables the dependence modeling of a multivariate
extreme in which only part of the component is extreme [141,142].

Two types of conditional distributions are of primary interest in studying compound extremes,
either conditioned on a specific value (e.g., u = u0) or range (e.g., u < u0). The conditional probability
of V ≤ v given U = u0 can be expressed with a copula C as [143]:

P(V ≤ v|U = u0) =
∂C(U, V)

∂U
|U = u0 (2)

The conditional probability of V > v conditioned on U ≤ u0 can be expressed as [128,138]:

P(V > v|U ≤ u0) = 1 − C(u0, v)
u0

(3)

Based on Equations (2) and (3), the conditional probability and return period can be derived
accordingly [143,144].

We use two examples to illustrate the application of the conditional distribution in a compound
extreme analysis. Based on the SPI and SRI of Climate Division 2 in Texas, the conditional distribution
of the hydrological drought (SRI) given meteorological drought (SPI) (SPI = −0.84 and 0.84) can
be modeled with the Gumbel copula, which is shown in Figure 5. It can be seen that given the
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meteorological drought (SPI = −0.84) in the antecedent period, the probability of SRI lower than −0.5
is higher than that given the wet condition (SPI = 0.84). As another example, based on monthly
precipitation and daily maximum temperature for the station at Dallas Fort Worth, TX for the
period 1948–2010 obtained from the Global Historical Climatology Network (GHCN) version 2
(https://www.ncdc.noaa.gov/ghcnm/v2.php), the conditional distribution of maximum temperature
given antecedent meteorological drought can be constructed to quantify the impact of drought
on hot extremes. For the SPI of July and daily maximum temperature of August (with Pearson
correlation −0.33), the joint distribution is constructed using the Frank copula for illustration purposes.
The conditional probability of hot extremes higher than the 80th percentile conditioned on the SPI
(SPI ≤ −0.84 and SPI > 0.84) in the antecedent period is computed as 0.40 and 0.06, implying the impact
of an antecedent drought on the subsequent hot extremes (i.e., drought induced high temperature).
The univariate return period of hot extremes higher than the 80th percentile is 5 years, which is longer
than the conditional return period given SPI ≤ −0.84 (2.5 years). These results indicate that ignoring
the dependences between contributing variables of compound extreme may lead to an underestimation
of risk.

Figure 5. Conditional distribution of hydrological drought (represented with SRI) conditioned on the
meteorological drought (represented with SPI).

3.3. Indicator Approach

Different indicators have been defined for the extremes in the univariate case [82,145].
The difference between univariate extremes and compound extremes is that in the multivariate
setting, there is no natural order of extremes (or variables) in higher dimensions. As such, a “threshold”
that can be used to define extremes in the multivariate setting does not exist [126]. For the indicator
approach, information from multiple variables or spatiotemporal fields can be distilled into an indicator
(by integrating multiple measures of extremes into one index) to inform users the condition and
variability of extremes in a specific area [7]. To summarize, an indicator I can be defined to study
compound extremes of multiple variables X, Y, . . . , Z as follows:

I = G(X, Y, . . . , Z) (4)

where the function G can be any form (e.g., a linear combination, maximum, joint distribution) that
serves to project the multiple variable into a unique index I. Based on the indicator I, the compound
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extremes can be characterized flexibly in different aspects including duration, severity, intensity,
and spatial extent.

In the compound extreme analysis, the Climate Extremes Index (CEI) [146–148] is such an index
defined as the average (or linear combination) of multiple indicators of extremes (including drought,
and extremes of precipitation and temperature) in the U.S. [148]. The multiple variables or extremes
can also be combined based on the “structure variable”, such as Z = max (Mx, My), where Mx and
My are two extremes (e.g., combined thunderstorm and tornado) [149–152]. Among different ways of
developing indicators, the multivariate distribution has been commonly explored for characterizing
compound extremes from a multivariate perspective, since it completely describes the joint behavior
of two or more variables [54,60,153]. The joint probability or percentile P1 = P(X ≤ x, Y ≤ y) can
be employed as the measure of the compound extreme of both variable X and Y lower than certain
thresholds (e.g., 10th percentile). Similarly, the joint probability P2 = P(X ≤ x, Y > y) can be used as
a measure of the compound extreme with X lower than a specific threshold (e.g., 10th percentile) and Y
exceeding a higher threshold (e.g., 90th percentile), such as the compound drought and hot extremes.

As an example, the Multivariate Standardized Drought Index (MSDI) can be defined to
characterize the compound meteorological and hydrological drought based on the joint probability of
SPI and SRI, which can be expressed as [135]:

MSDI = Φ−1[F(SPI, SRI)] (5)

where Φ is the standard normal distribution. Here the joint distribution is estimated with the empirical
Gringorten distribution in the bivariate case.

To illustrate the application of the MSDI, monthly precipitation and runoff data for climate
division 2 in Texas, USA were used to compute the MSDI based on the SPI and SRI, as shown in
Figure 6. It can be seen that when both meteorological and hydrological droughts show deficit, the
concurrent drought is more severe than those from SPI and SRI. The usefulness of MSDI partly resides
in that it enables to compare the severity of composite drought condition. For July 1936 and 1940 with
SPI and SRI values (−0.91, −0.27) and (−0.54, −1.39), it is not straightforward to define the overall
drought severity of these two periods (the SPI is more severe for the first period, while the SRI is
more severe for the second period). The MSDI for the two periods are −1.04 and −1.50, respectively,
indicating that the compound drought for July 1940 are more severe than that for July 1936.

Figure 6. Comparison of drought condition based on SPI, SRI and MSDI in the bivariate case for the
period from 1932-2011. (a) 1932–1971; (b) 1972–2011.
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3.4. Quantile Regression

The linear regression has been commonly used to explore the relationship between the response
variable and predictors. However, it only estimates the rate of change in the mean of the response
variable and thus is generally not suitable for exploring the relationship between extremes. The quantile
regression is capable of estimating the functional relationship between the response variable and
predictors for all portions of the data and is flexible in modeling data with heterogeneous variance or
conditional distribution [154,155].

The quantile regression of a response variable Y as a function of predictor X is introduced as
follows [39]. In the traditional linear regression, the conditional mean of Y is related linearly to X as:

E(Y|X) = α + βX = f (X; α, β) (6)

where α and β are the intercept and the slope parameters, respectively.
For the quantile regression, quantile τ of the response variable Y conditioned on X is used instead,

i.e., Qτ(Y|X). Specifically, for any quantile τ in (0,1), the quantile regression can be expressed as:

Qτ(Y|X) = fτ(X; ατ , βτ) (7)

where ατ and βτ are the parameters associated with quantile τ. By changing quantile τ, the relationship
between Y and X can be explored.

In studying compound extremes, the regression of high (or low) quantile of Y with respect to
X is generally of particular interest. In the past decade, the quantile regression has been commonly
used to assess the relationship between two extremes or variables, such as soil moisture deficit and
temperature extremes (or drought and hot extremes) [38,39,156,157] or rainfall frequency and hot
days [158]. For example, extensive studies have shown that the antecedent dry condition (or low soil
moisture/precipitation) may induce or intensify the heat wave or high temperature in different regions
including Australia [159], Europe [39], and Oklahoma, USA [157], leading to the compound drought
and hot extremes.

As an example, based on monthly precipitation and daily maximum temperature for one grid
(99.625 E, 30.875 N) in northeastern China (data obtained from [160]), the hot extremes in terms
of the number of hot days (NHD) during summer months of June, July, and August (JJA) and
an antecedent drought indicator SPI for May, June, and July (MJJ) were obtained from these data.
The quantile regression of NHD with respect to different SPI values during summer for different
quantiles (i.e., 95th, 75th, 50th, and 25th percentile) is shown in Figure 7. It can be seen that there is
an overall negative relationship between NHD and SPI indicated by the negative regression slope.
The negative dependence increases toward higher quantiles of NHD, which is more sensitive to the
antecedent drought condition. These results reveal the impact of drought on hot extremes in that the
dry surface condition intensifies hot extremes in this grid, from which the occurrence of compound
drought and hot extremes is partly explained.

 

Figure 7. Quantile regression of hot extremes (number of hot days, NHD) with respect to the drought
indicator SPI.
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3.5. Markov Chain Model

The Markov Chain model is commonly used to describe a sequence of possible events in which the
present state only depends on the antecedent state. It has been employed to analyze the variability of
the individual variable or extreme, such as a drought [161] or a heat wave [162]. A variety of quantities,
such as periodicity, persistence, or recurrence time, of the underlying sequence can be defined for
characterizing the variables of interest.

A discrete stochastic process Xt (t > 0) with each random variable taking values in the set
S = (1, 2, . . . , m) is a Markov Chain if [161],

P(xt = j|xt−1 = i, xt−2 = k, . . .) = P(xt = j|xt−1 = i) (8)

where 1 ≤ i, j, k ≤ m. Denote pij the transition probability of the Markov chain. The transition matrix
with element pij can be estimated as:

pij = P(xt = j|xt−1 = i) (9)

The transition probability is commonly used for characterizing properties of sequence of Xt

(e.g., persistence, recurrence time). For example, the persistence of Xt stays in the state j and will reside
in the same state j in the following time step can be expressed as pjj. Recently, the Markov Chain model
has been employed to study compound extremes (e.g., heavy precipitation- cold in winter and hot-
dry days in summer) for central Europe under changing climate [87].

We use the monthly precipitation and temperature data from 1901–2016 near Melbourne, Australia
(Longitude: 144.9, Latitude: −37.8) from CRU (TS3.25) to define the compound event of low
precipitation and high temperature based on the 50th percentile (i.e., precipitation < 50th percentile
and temperature > 50th percentile). The monthly precipitation and temperature series (detrended) are
then partitioned in two states (occurrence of compound extreme or not) and a Markov Chain analysis
of the occurrence sequence of compound precipitation and temperature sequence was then performed.
For illustration purposes, we computed the transition probability for the sequence of every 60 years
(i.e., 1901–1960, . . . , 1957–2016). The temporal variability of the transition probability to compound
extreme was shown in Figure 8. The overall increasing of the transition probability indicates that the
occurrence of compound extreme is expected to increase under global warming for this grid, which is
consistent with previous examples based on the empirical approach.

Figure 8. The change of the transition probability to the compound dry and hot extreme during
1960–2016 for Melbourne, Australia.
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4. Discussion

4.1. Comparison of Approaches

The approaches introduced above possess different properties in the characterization and
modeling of compound extremes. The empirical counting approach and indicator approach have
been commonly used to characterize the variability of compound extremes (e.g., occurrence frequency,
trend analysis). The empirical approach can be selected when the detection of changes of a compound
extreme (e.g., drought and hot extreme) is of primary interest [29]. The indicator approach can
be employed to combine different types of extremes for further analysis (e.g., spatial extent [147]).
However, they do not describe the interaction between the contributing variables of a compound
extreme. The empirical approach usually requires large amounts of data to assess the variation of
compound extremes. For 100 data pairs of precipitation and temperature, there would be only 4
co-occurrences of compound dry and hot extremes on average with the 20th and 80th percentile as
thresholds of precipitation and temperature if they are assumed to be independent. Observations
are usually not abundant enough and the parametric methods, such as the multivariate distribution
and quantile regression, can be employed for the statistical extrapolation and inference of compound
extremes. The multivariate distribution is capable of modeling the joint behavior of multiple variables
or events that lead to the compound extreme. This approach is commonly used for statistical inference
and risk assessments of compound extremes based on joint/conditional probability or associated return
periods [126,138]. Statistical modeling of multiple extremes through characterizing the dependence
among multiple variables or locations is the key in this approach and copula has been among the
most commonly used models due to its advantage of flexible dependence modeling. The potential
limitation is that most of the commonly used multivariate distributions generally fall short in capturing
a complicated dependence in higher dimensions. In an extreme analysis, one is generally interested in
the characteristics of a specific quantile (e.g., 80th or 20th percentile) and its relationship with other
variables. The quantile regression is advantageous in this case to estimate the relationship between the
extreme quantile and the independent variable. However, challenges still remain in the performance
of quantile regression in high quantiles (e.g., 99th percentile) due to the limitation of the sample
size [163]. The impact of compound extremes depends not only on the number of occurrences but also
the sequences of the occurrences [87]. The Markov Chain approach is particularly useful in this case,
which enables the characterization of occurrence sequences of different compound extremes.

4.2. High Dimensional Modeling

In this study, most of the compound extremes are introduced in the bivariate case. In reality,
there may be multiple variables involved in the occurrence of compound extremes. In this case, one has
to model the dependence among a large number of variables (with or without time lags), either at
a single location or multiple locations [98]. However, the construction of multivariate distribution in
high dimensions remains a challenge (i.e., curse of dimensionality). This calls for suitable tools for
dependence modeling in the high dimension to capture a complicated dependence, such as the tail
dependence and asymmetric dependence.

The multivariate normal distribution is a traditional model for statistical modeling of multiple
random variables even in high dimensions [164]. It is flexible in modeling multiple variables with the
dependence structure completely characterized by the variance-covariance matrix, but falls short in
modeling complicated dependences (e.g., asymmetric or tail dependence). The multivariate parametric
copula is commonly employed for the bivariate case while its extension to higher dimensions (say
4-dimension) is limited in capturing complicated dependence. The vine copula (or the pair-copula
construction, PCC), which decomposes the dependence structure into a bivariate dependence that
can be modeled with bivariate copulas [165], is among the most recent development in multivariate
modeling in a variety of areas [48,166–168]. It is expected that the vine copula may provide useful
alternatives in modeling compound extremes due to its advantage of flexible dependence modeling
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even in high dimensions. In addition, the influence diagram, which provides a graphical representation
of the conditional dependence and allows the joint distribution of variables to be factorized according
to local conditional relationships, is also a potential method for risk estimations of compound extremes
in high dimensions [24].

4.3. Compound Extremes Under Climate Change

An important assumption in statistical approaches to model extremes is the stationary assumption
of the underlying system [23,169]. It has been highlighted that the fundamental assumption of
stationary has been affected by climate change and anthropogenic effects and is not applicable for
water resources planning and management [170]. As such, it is advised to check the non-stationary
property based on the univariate or multivariate trend analysis using methods such as the (multivariate)
Mann–Kendall and Spearman tests [171,172]. The nonstationary property should also be taken into
account in the statistical modeling of compound extremes (e.g., frequency analysis). A commonly
used method is to incorporate the non-stationary property as covariates [173–177]. For example,
the dynamical copula model has been employed for the compound or multivariate extreme analysis
with the copula parameter (or parameters of marginal distributions) varying with time [172,173,177].

Assessment of the climate change impact on compound extremes in a hydroclimatic framework
is of particular importance for adaptation measures due to their tendency to have a larger impact than
an individual extreme [3]. Efforts in assessing the variation of the compound extreme in the future
have been growing based on climate projections [28,77,87]. For example, an overall increase of the
number of incidences of compound drought and extreme heat is shown for the projection period
(2021–2050) over central Europe [28]. In addition, a substantial increase in US East coast flood hazard
is expected to occur over the twenty-first century based on the joint projections of the US East coast
sea level and storm surge [178]. Research along this line also includes the climate change impact on
the dependence structure of multiple variables or extremes, which may affect the risk of compound
extremes [179–181]. An uncertainty quantification of the impact on the compound extreme is needed
to assess the reliability of the change signal, which can be addressed based on the ensemble simulation
from the General Circulation Models (GCMs) or Regional Climate Models (RCMs) [28].

5. Conclusions

Analyses of compound extremes have received increasing attention in recent decades due to the
exaggerated impacts of multiple extremes that may occur concurrently or consecutively. In this study,
we review commonly used statistical methods for characterizing and modeling compound extremes,
including the empirical approach, multivariate distribution, the indicator approach, quantile regression
and the Markov Chain model. The purposes, data requirements, pros and cons of different approaches
are also elaborated upon. A discussion of related topics on compound extremes, such as climate change
impacts, is also provided. This study introduced commonly used tools for the characterization and
modeling of compound extremes; however, other methods may also be applied, such as a complex
network analysis or the covariate approach [182,183]. In addition, we mainly focused on the statistical
approaches in modeling different properties of compound extremes. The dynamical model simulations
have also been employed for analyzing occurrences of compound extremes [58,184], such as storm
surge and sea level/precipitation.

Future efforts are needed to understand the physical processes that lead to compound extremes
based on observations and models. Data availability is a potential challenge in investigating compound
extremes, since the occurrence of compound extremes is rare, which limits the accurate identification
of long-term changes. This may be partly bypassed through pooling observations from multiple sites
or employing ensembles from physical models (or simulations from statistical models) [35,56,185].
In addition, modeling the dependence of multiple variables based on historical records is of particular
importance in investigating the occurrence or risk of compound extremes. The incorporation of
asymmetric dependence and tail dependence in the statistical modeling of compound extremes is still
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challenging, especially in high dimensions. Moreover, a potential limitation of global climate model
for studying extremes is the low resolution that hinders the representation of smaller scale features
potentially relevant to climate and weather extremes. Modeling compound extremes with high spatial
resolution (e.g., through statistical downscaling or RCMs) is of great importance for resolving local
scale phenomena (or interactions) [24,25]. The limitation in the parameterization of certain physical
processes (e.g., convective parameterization) also needs to be addressed in the accurate simulation of
compound extremes across a wide range of temporal and spatial scales.

Human activities may also influence the occurrence of certain compound extremes. For example,
the negative impact of flood occurring immediately after a long term drought, during which
a reservoir should be kept as full as possible, may be exacerbated [186–188], as shown in the 2011
flooding of Brisbane, Australia that occurred after an exceptional multiyear drought (or “Millennium
Drought”) [189]. Thus, continuous efforts are needed in incorporating the interaction of human activity
to mitigate the potential impacts of compound extremes. At last, a variety of studies have assessed the
impacts of individual extremes (e.g., drought or heat wave) on different sectors, such as agricultural
production, for the mitigation and resilience under global warming. The even larger impact of the
compound extreme than that of the individual extreme calls for enhanced assessments of the changes
and impacts to alleviate the potential threat caused by compound extremes, especially under a changing
climate that may induce more extremes.
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Appendix A. Types of Compound Extremes

Table A1. Summary of Different Types of Compound Extremes and Statistical Approaches.

Type of Compound Extremes Combined Variables/Events/Extremes Approaches

Compound drought and hot extreme Drought and heat wave (hot days or months,
high temperature) [37–39,65,90,138,156,157,159]

Empirical approach, Quantile regression,
Multivariate distribution

Compound precipitation and
temperature extreme

Heavy precipitation and cold/warm condition
[47,87,184,190] Empirical approach, Markov Chain approach

Low precipitation and high temperature [29,179,181,191] Empirical approach, Multivariate distribution
Dry-warm/dry-cold/wet-warm/wet-cold condition
[29,77,80,192] Empirical approach

Compound flood

Storm surge and high rainfall [35,57,185,193] Multivariate distribution
Storm surge and high discharge/runoff
[48,55,56,60,61,136]

Empirical approach, Indicator approach,
Multivariate distribution

Storm surge and sea level [73,178] Empirical approach, Indicator approach
Sea levels and rainfall/river flow [59,97,136,194] Multivariate distribution

Compound drought Deficit from precipitation, soil moisture, runoff or other
variables [54,153,195] Indicator approach, Multivariate distribution

Combined drought, moisture surplus,
precipitation/temperature, and other
extremes

Drought indices, precipitation extremes and temperature
extremes [146–148,196] Indicator approach
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