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Abstract: During the last several decades, Earth’s climate has undergone significant changes due
to anthropogenic global warming, and feedbacks to the water cycle. Therefore, persistent efforts
are required to understand the hydrological processes and to engage in efficient water management
strategies under changing environmental conditions. The twenty-four contributions in this Special
Issue have broadly addressed the issues across four major research areas: (1) Climate and land-use
change impacts on hydrological processes, (2) hydrological trends and causality analysis faced in
hydrology, (3) hydrological model simulations and predictions, and (4) reviews on water prices
and climate extremes. The substantial number of international contributions to the Special Issue
indicates that climate change impacts on water resources analysis attracts global attention. Here,
we give an introductory summary of the research questions addressed by the papers and point the
attention of readers toward how the presented studies help gaining scientific knowledge and support
policy makers.

Keywords: climate variability; climate change; land use change; hydrological processes; trends; water
management; model; predictions

1. Introduction

It is commonly recognized that Earth’s atmosphere is subject to anthropogenic climate change
due to enhanced greenhouse gas concentrations in the lower atmosphere. This development also
influences hydrological processes across a range of spatial scales, reaching from the singular catchment
to regional and global scales. To cope with these changes, it is necessary to implement efficient water
management strategies at country, regional or global scale adaptation. To better grasp the mechanism
and response to climate variability and climate change, it is crucial to stimulate multidisciplinary
studies involving multiple cross-cutting disciplines such as hydrology, meteorology, remote sensing,
ecology, engineering, and agriculture.

To address these challenges, continuing efforts need to be undertaken to gain insights on
hydrological processes, and engage in more efficient water management strategies in a changing
environment across spatial and temporal scales. This Special Issue of Water contributes toward this aim
through broad research work on the hydrological consequences of climate and land use change and
hydrological modeling approaches. We published twenty-four peer-reviewed papers, and grouped
them into four categories (Table 1):

Water 2019, 11, 1492; d0i:10.3390/w11071492 1 www.mdpi.com/journal/water
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e  Climate change and land use change impacts on hydrological processes;

e Trends and variation of hydrological variables, such as precipitation, runoff, actual

evapotranspiration, and soil moisture;

e  Hydrological modeling in simulating and predicting hydrological variables, such as precipitation,
evapotranspiration and soil moisture in data-sparse regions, and

e  Reviews on water prices and climate extremes

Table 1. Summary of 24 papers published in the special issue “Climate Variability and Climate Change
Impacts on Land Surface, Hydrological Processes and Water Management” in Water Journal.

Categories Authors Title Research Area Research Fields
Human-Induced Alterations to Land Use Land use: Climate change:
Sridhar and Climate and Their Responses for Mekong River ! 8¢
. : Water resources management;
etal. [1]  Hydrology and Water Management in the Basin Hydroloay model
Mekong River Basin y 8y
Quantifying the Impacts of Climate
Guo et al. Change, C0‘a1 Mining and Soil ,and Water . Climate change; Coal mining;
2] Conservation on Streamflow in a Coal Yulin Soil and water conservation
Mining Concentrated Watershed on the
Loess Plateau, China
Climate Change and Intense Irrigation
Pousa Growth in Western Bahia, Brazil: The Western Bahia, Climate change;
etal. [3] Urgent Need for Hydroclimatic Brazil Water security
Monitoring
. Shan Land Use and Climate Change Effects on Upper Heihe Climate change; Land use;
Climate change etal [%1] Surface Runoff Variations in the Upper R}?per Basin scenario simulation;
and land use ’ Heihe River Basin 1 ! Hydrological simulation
change impacts on
hydrological Effects of the Three Gorges Project on
Gao and Runoff and Related Benefits of the Key .
rocesses :
P Zhang [5] Regions along Main Branches of the Yangtze River ~ Runoff changes; Flood control
Yangtze River
Analyzing the Impacts of Climate
Dengetal. Variability and Land Surface Changes on Weihe River Budyko; Climate variability;
[6] the Annual Water-Energy Balance in the Basin Land surface change
Weihe River Basin of China
Quantifying the Impact of Climate
Tian et al. Change ar}d Human AF fivities on Wuding River Budyko; Climate variability;
71 Streamflow in a Semi-Arid Watershed Watershed Land surface change
with the Budyko Equation Incorporating &
Dynamic Vegetation Information
Analysis of Natural Streamflow Variation -
Wu et al. X . Streamflow variation;
18] and Its Influential Factors on the Yellow Yellow River Intra-annual climate change
River from 1957 to 2010
Gedefaw Analy_51s of the Recent Trends of Two o Trend analysis;
etal. [9] Climate Parameters over Two Ethiopia Precipitation; Temperature
: Eco-Regions of Ethiopia !
Hydrological . Observed Trends of Climate and River Selenga o
Dorjsuren N . ., Sub-Basin of Precipitation; Temperature;
trends and tal. [10] Discharge in Mongolia’s Selenga the Lake Baikal River disch.
causality analysis %" Sub-Basin of the Lake Baikal Basin ¢ ga:inal a ver discharge
Four Decades of Estuarine Wetland Estuarine wetlands:
Zhuetal. Changes in the Yellow River Delta Based Yellow River Spatiotemporal !
[11] on Landsat Observations Between 1973 Delta P P

and 2013

change analysis
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Table 1. Cont.

Categories Authors Title Research Area Research Fields
Spatiotemporal Variation of Snowfall to
Lietal.  Precipitation Ratio and Its Implication on Xiniian Snowfall to precipitation ratio;
[12] Water Resources by a Regional Climate jlang WRF model
Model over Xinjiang, China
Meteorological Factors Affecting Pan Haihe River
Yan [13] Evaporation in the Haihe River Basin, - Evapotranspiration
. Basin
China
Lietal. Assessing the Influence °,f the Three . Hydrological drought; Three
[14] Gorges Dam on Hydrological Drought Yangtze River Gorges Dam; GRACE
Using GRACE Data ’
) The Use of Large-Sf:ale Climate Indlc?s in Han River Climate variability;
Kim et al. Monthly Reservoir Inflow Forecasting R . L
A . A basin in South Large-scale climate indices;
[15] and Its Application on Time Series and Korea Artificial intellizence model
Artificial Intelligence Models &
Influence of Power Operations of Cascade
Wu Hydropower Stations un(.ie.r Chmate Upper Han Climate change; human
etal. [16] Change and Human Activities and River activities; Power operation
) Revised Optimal Operation Strategies: A . P
Case Study in the Upper Han River, China
Paul Comparative Study of Two Baitarani river
State-of-the-Art Semi-Distributed L A Grid-based; HRU-based
etal. [17] . basin in India
Hydrological Models
. Rietal A Statistical-Distributed Model of Runoff map;
Hydr'ologlcaill 18] : Average Annual Runoff for Water DPR Korea Hydrological P del
model simulations Resources Assessment in DPR Korea ydrologieal mode
and predictions Multiole Li R o Models f
Whip e Linear Begression M ode's for Lake Soyang Diffuse pollutant discharge;
Cho and Predicting Nonpoint-Source Pollutant R . .
. . . basin of South Multiple regression model;
Lee [19] Discharge from a Highland Agricultural N
2 Korea Climate change
Region
Integrating Field Experiments with . R Predictions in ungauged
Liuetal. Modeling to Evaluate the Freshwater P;ggsfliizlaa;d basins; Rainfall-runoff
[20] Availability at Ungauged Sites: A Case China experiments; Distributed
Study of Pingtan Island (China) hydrological model
The Effects of Litter Layer and Topsoil on
Zhou et al.  Surface Runoff during Simulated Rainfall Guizhou Runoff; Simulated rainfall;
[21] in Guizhou Province, China: A Plot Scale province Litter layer; Topsoil
Case Study
. . Carson River in
Nyaupane  Evaluating Future Flood Scenarios Using s X
efal. [22] CMIP5 Climate Projections the desert of Flood; Climate change; CMIP5
Nevada
Soto Rios  Explaining Water Pricing through a Water Water security; Water pricing;
. - Sustainable water
etal. [23] Security Lens
. management
Review -
Hao et al. Compound Extremes in B Comfﬁ;?i?ﬁfﬁ?j;gimate
[24] Hydroclimatology: A Review 8¢

distribution

2. Contributed Papers

2.1. Climate Change and Land Use Change Impacts on Hydrological Processes

There are eight papers published in this category. Sridhar et al. [1] evaluated human-induced
alterations to land use and climate and their responses to hydrology and water management in the
Mekong river basin. Authors used two hydrological models to evaluate the impacts of natural and
climate-induced changes on water budget components, particularly streamflow. Model simulations
show that wet season flows were increased by up to 10% and there was no significant change in dry
season flows under natural conditions. Their results suggest an increasing trend in streamflow without
the effect of dams, while the inclusion of a few major dams resulted in decreased river streamflow
of 6% to 15%, possibly due to irrigation diversions and climate change. Guo et al. [2] quantified the
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impacts of climate change, coal mining, and soil and water conservation on streamflow in a coal
mining concentrated watershed on the Loess Plateau, China. They found that relative to the baseline
period, i.e., 1955-1978, the mean annual streamflow reduction in 1979-1996 was mainly affected by
climate change, which was responsible for a decreased annual streamflow of 12.70 mm (70.95%).
However, in a recent period of 1997-2013, the impact of coal mining on streamflow reduction was
dominant, reaching 29.88 mm (54.24%). Pousa et al. [3] analyzed climate change and intense irrigation
growth in western Bahia, Brazil and concluded that urgent management is required for hydroclimatic
monitoring. They found that the irrigated area has increased over 150-fold in 30 years, and in the
most irrigated regions, has increased by 90% in the last eight years only. Their findings suggest that a
monitoring system in which the availability and demand of water resources for irrigation are actually
measured and monitored is the safest path to provide water security to this region. Shang et al. [4]
separated climate change impacts on surface runoff variations from land use impacts in the upper
Heihe river basin. Authors found that in this region the contribution rate of climate change is 87.1%,
while the contribution rate of land use change is only 12.9%. The climate change scenario simulation
analysis shows that the change in runoff is positively correlated with the change in precipitation. The
relationship with the change in temperature is more complicated, but the influence of precipitation
change is stronger than the change in temperature. Under the economic development scenario of land
use simulation, the runoff decreases, whereas under the historical trend and ecological protection
scenario of land use simulation, the runoff increases. Gao and Zhang [5] analyzed the effects of the
Three Gorges Project (TPG) on runoff and related benefits of the key regions along main branches of the
Yangtze River. Their results show that the main benefits of TGP on flood control are remarkable in the
reduction of disaster-affected population, the decrease of agricultural disaster-damaged area, and the
decline of direct economic loss. Due to torrentially seasonal and non-seasonal precipitation, the sharp
rebounds of three standards for Hubei and Anhui occurred in 2010 and 2016, and the percentage of
agricultural damage area of five regions in the core and extended areas did not decline synchronously
and performed irregularly. The five key regions along the main branches of the Yangtze River should
establish a flood control system and promote the connectivity of infrastructures at different levels
to meet the significant functions of TGP. Deng et al. [6] analyzed the impacts of climate variability
and land surface changes on the annual water-energy balance in the Weihe river basin of China.
Authors used the Budyko framework in which the catchment properties represent land surface changes,
climate variability comprises precipitation (P) and potential evapotranspiration, and found that the
contribution of land surface changes to runoff reduction in period I was less than that in period 1II,
indicating that changes in human activity further decreased runoff. Tian et al. [7] used the Budyko
framework incorporating dynamic vegetation information to quantify the impact of climate change
and human activities on streamflow in Wuding river basin, a semi-arid basin within the Yellow River
Basin. Their results show that climate change generated a dominant effect on the streamflow and
decreased it by 72.4% in this basin. This climatic effect can be further explained with the drying trend
of the Palmer severity drought index, which was calculated based only on climate change information.
Wu et al. [8] analyzed natural streamflow variation and its influential factors on the Yellow River from
1957 to 2010. They found that the reduction of annual streamflow was mainly caused by a precipitation
decline and a rise in temperature for all Yellow River regions before 2000, whereas the contribution of
anthropogenic interference increased significantly—more than 45%, except for Tang-Tou region after
2000. In the humid Yellow River region, annual streamflow was more sensitive to annual precipitation
than temperature, and the opposite situation was observed in the arid region.

2.2. Hydrological Trends and Causality Analysis

There are six papers published in this category. Gedefaw et al. [9] analyzed the recent trends
of precipitation and temperature over two eco-regions of Ethiopia. Authors found that the effects of
precipitation and temperature changes on water resources are significant after 1998 and the consistency
in the precipitation and temperature trends over the two eco-regions confirms the robustness of



Water 2019, 11, 1492

the changes. Dorjsuren et al. [10] used observed data detecting trends of annual precipitation, air
temperature, and river discharge at five selected stations in Mongolia’s Selenga sub-basin of the
Lake Baikal Basin. The observation results indicate that the average air temperature has significantly
increased by 1.4 °C in the past 38 years and there exists a significantly decreasing trend in river
discharge during that period. Zhu et al. [11] investigated estuarine wetland changes in the Yellow River
Delta based on Landsat observations between 1973 and 2013. Their results show that natural wetlands
are significantly decreased, meanwhile, the artificial wetlands are significantly increased. The main
reason for wetland degradation in the Yellow River Delta is human activities such as urban construction,
cropland expansion, and oil exploitation. Li et al. [12] investigated spatiotemporal variation of snowfall
to precipitation ratio and its implication on water resources by a regional climate model over Xinjiang,
China. Their results reveal that the snowfall is increased in the southern edge of the Tarim Basin, the Ili
Valley, and the Altay Mountains, but decreased in the Tianshan Mountains and the Kunlun Mountains.
However, the trends in snowfall/precipitation ratio are opposite in low-elevation regions and mountains
of the study area. Yan et al. [13] attributed meteorological factors affecting pan evaporation in the Haihe
River Basin (HRB). The average temperature, maximum temperature, and minimum temperature
of the HRB increased, while precipitation, relative humidity, sunshine duration, wind speed and
evaporation observed from pan exhibited a downward trend. Attribution analysis shows a significant
reduction in sunshine duration, which was found to be the primary factor in the pan evaporation
decrease, while declining wind speed was the secondary factor. Li et al. [14] assessed the influence
of the Three Gorges Dam (TGD) on hydrological drought using GRACE remote sensing data. They
proposed the dam influence index (DII) to assess the influence of the TGD on hydrological drought in
the Yangtze River Basin (YRB) in China, and found that impoundments of the TGD between 2003 and
2008 slightly alleviated the hydrological drought in the upper sub-basin and significantly aggravated
the hydrological drought in the middle and lower sub-basins, which is consistent with the Palmer
drought severity index.

2.3. Hydrological Model Simulations and Predictions

There are eight papers published in this category. Kim et al. [15] used large-scale climate indices
in monthly reservoir inflow forecasting for considering climate variability. They demonstrate that
there exists potential to use climate indices in artificial intelligence models to improve the model
performance, and the ARX-ANN and AR-RF models generally show the best performance among the
employed models. Wu et al. [16] proposed an optimal operation model of cascade power stations
based on the simulation model to generate single and joint optimal operation charts for future
hydrological scenarios. Their modeling results show that under existing hydrological conditions, the
modified single and joint operation charts would increase power generation by about 32 million and
47 million kWh for a case study carried out in the upper Han River, China. Paul et al. [17] developed a
semi-distributed hydrological model (SHM) whose simulation appears to be superior in comparison
to SWAT simulation in Baitarani River Basin in India for both calibration and validation periods.
Furthermore, the SHM model is superior to the SWAT model in annual peak flow, monthly flow
variability, and different flow percentiles. Differences in data interpolation techniques and physical
processes of the models are identified as the probable reasons behind the differences among the models’
outputs. Ri et al. [18] developed a statistical-distributed model of average annual runoff for water
resources assessment in DPR Korea. The model was derived from 50 years’ observations of 200
meteorological stations in DPRK, considering the influence of climatic factors. Based on the water
balance equation and assumptions, the empirical relationship for runoff depth and impact factors
was established and calibrated. Cho and Lee [19] used multiple linear regression (MLR) models for
predicting nonpoint-source pollutant discharge from a highland agricultural region in South Korea.
The explanatory variables used in the MLR models are the percentage of fields, sub-basin area, and
mean slope of sub-basin as topographic parameters, and the number of preceding dry days, rainfall
intensity, rainfall depth, and rainfall duration as rainfall parameters. The MLR models are good for
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simulating and predicting pollutant load except for total nitrogen. Liu et al. [20] integrated field
experiments with modeling to evaluate the freshwater availability at ungauged sites in Pingtan Island,
China. The simulation results indicate high heterogeneity and distinct seasonal dynamics in freshwater
availability across the entire island. This is pioneering Prediction in Ungauged Basin (PUB) study for
Chinese islands, which could provide reference for planning and management of freshwater in a water
shortage area. Zhou et al. [21] conducted a plot scale study to investigate the effects of litter layer and
topsoil on surface runoff during simulated rainfall. They investigated three kinds of plots: The thin
litter layer with low soil bulk density type (T-L type), the thick litter layer with high soil bulk density
type (T-H type), and the moderate litter depth and soil bulk density type (M type), and three artificial
rainfall intensities (30 mm/h, 70 mm/h, 120 mm/h). The runoff volume was largest in the T-H type plot
at different rainfall intensities and durations. Runoff in the M type plot had characteristics of both the
T-L and T-H type plots. The runoff yielding speed was significantly higher and the runoff yielding
time was significantly lower in the T-H type plot. Nyaupane et al. [22] evaluated future flood scenarios
under CMIP5 climate projections for Carson River in the desert of Nevada. Altogether, 97 projections
from 31 models with four emission scenarios were used to predict the future flood flow over 100 years
using a best fit distribution. The developed floodplain map for the future streamflow indicated a
larger inundation area compared with the current Federal Emergency Management Agency’s flood
inundation map, highlighting the importance of climate data in floodplain management studies.

2.4. Review

There are two papers published in this category. Soto Rios et al. [23] reviewed water pricing
through a water security lens. This paper analyzed how water pricing can be used as a tool to enact
the water security agenda, Three facets were reviewed for tackling water crises, including (i) economic
aspects—the multiple processes through which water is conceptualized and priced, (ii) analysis of
water pricing considering its effect in water consumption, and (iii) arguments for assessing the potential
of water pricing as a tool to appraise water security. Hao et al. [24] reviewed compound extremes
in hydroclimatology. This review covers different approaches for the statistical characterization and
modeling of compound extremes in hydroclimatology, including the empirical approach, multivariate
distribution, the indicator approach, quantile regression, and the Markov Chain model. Several key
challenges in the statistical characterization and modeling of compound extremes include the limitation
in the data availability to represent extremes and lack of flexibility in modeling asymmetric/tail
dependences of multiple variables/events.

3. Conclusions

Over the last several decades, Earth’s climate has experienced substantial changes because of
global warming linked to increased anthropogenic atmospheric greenhouse gas concentrations. This
process affects the hydrological cycle at different levels of observations, ranging from plot to catchment,
regional and global scales. Enhancing our overall knowledge on this topic requires multi-disciplinary
efforts to learn about hydrological processes and to engage in more efficient water management
strategies under changing environmental conditions across those scales.

The research papers published in this Special Issue contribute significantly toward our
understanding of the hydrological impacts of climate and land-use change as well as on hydrological
modeling approaches in four main subject areas:

e  Climate and land use change impacts on hydrological processes;

e Trends and variability of hydrological quantities, such as precipitation, runoff, actual
evapotranspiration, and soil moisture;

e  Hydrological modeling in simulating and predicting hydrological variables, such as precipitation,
evapotranspiration and soil moisture in data-sparse regions; and

e  Reviews on water prices and climate extremes
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The twenty-four papers presented in this Special Issue reflect on the fact that climate change
impact analysis on water resources is a very relevant, albeit challenging topic because of hydrological
nonstationary under conditions of global change and the uncertainty related to model inputs, model
parameterization, and model structure. The papers published in this issue can not only advance water
sciences but support policy makers toward more sustainable and effective water management.
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Abstract: The Mekong River Basin (MRB) is one of the significant river basins in the world. For
political and economic reasons, it has remained mostly in its natural condition. However, with
population increases and rapid industrial growth in the Mekong region, the river has recently become
a hotbed of hydropower development projects. This study evaluated these changing hydrological
conditions, primarily driven by climate as well as land use and land cover change between 1992
and 2015 and into the future. A 3% increase in croplands and a 1-2% decrease in grasslands,
shrublands, and forests was evident in the basin. Similarly, an increase in temperature of 1-6 °C and
in precipitation of 15% was projected for 2015-2099. These natural and climate-induced changes
were incorporated into two hydrological models to evaluate impacts on water budget components,
particularly streamflow. Wet season flows increased by up to 10%; no significant change in dry
season flows under natural conditions was evident. Anomaly in streamflows due to climate change
was present in the Chiang Saen and Luang Prabang, and the remaining flow stations showed up
to a 5% increase. A coefficient of variation <1 suggested no major difference in flows between the
pre- and post-development of hydropower projects. The results suggested an increasing trend in
streamflow without the effect of dams, while the inclusion of a few major dams resulted in decreased
river streamflow of 6% to 15% possibly due to irrigation diversions and climate change. However,
these estimates fall within the range of uncertainties in natural climate variability and hydrological
parameter estimations. This study offers insights into the relationship between biophysical and
anthropogenic factors and highlights that management of the Mekong River is critical to optimally
manage increased wet season flows and decreased dry season flows and handle irrigation diversions
to meet the demand for food and energy production.

Keywords: hydrology; land cover; land use and climate change; water resources management; macro
scale modeling

1. Introduction

The Mekong is one of the most important rivers in Asia. Its significance is evident from its
geographical location, topographic variability, biodiversity, and large population of inhabitants in the
basin. A cascade of dams, population increase, and climate change have also complicated hydrology
and water resources management in the Mekong River Basin (MRB). The nexus of food—-energy-water
is highly pronounced as the basin relies on rice production and fisheries to feed the population. The
conversion of lands from forests to agriculture, subsequent expansion and intensification of irrigation,
and hydropower development projects have changed the characteristics of the MRB, in which the
river previously flowed unhindered for most of its length [1,2]. The Tibetan Plateau in China—where
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the river originates at about 4000 m—and the downstream regions are going through natural and
human-induced climatic changes and experiencing a general increase in precipitation and temperature
in the 21st century, and this can affect the basin’s hydrology. Low flow days are expected to decrease
and flooding potential may also increase, and hence policies to mitigate the impacts are urgently
needed [3,4].

Considerable implications of dam constructions, climate change, irrigation, and land use change to
downstream ecosystems have resulted in numerous studies to predict floods, droughts, and sediment
yield over the past two decades [5-7]. The next few paragraphs will cover some of these studies and
identify the knowledge gaps that still exist. Specifically, the understanding of unintended consequences
of dams require a comprehensive investigation of reservoir management [8]. Construction and
initial filling of the upstream dams reduced the annual streamflow in wet seasons and increased the
streamflow in dry seasons, resulting in a unique seasonal variation in the streamflow [9], and the
dams had significant impacts on the low pulse duration. Besides, study authors [10,11] reported that
construction of dams in the basin is expected to decrease total sediment transportation by 40%-80%
over the whole basin, which would impact the river’s morphology, aquatic biodiversity, ecosystem
services, and agriculture.

By employing simulation models, many studies have projected the basin conditions, but the
uncertainties in climate model projections are greater than those of the hydrological models; therefore,
comparisons of different climate models and hydrological model outputs at a relatively high resolution
are necessary to characterize these uncertainties [12,13]. Study authors [14,15] evaluated the climate
change impacts on the hydrological characteristics of the Harvey River catchment in western Australia
and the Richmond River catchment in eastern Australia using a rainfall-runoff model (HBV model)
and climate model outputs from the Coupled Model Intercomparison Project 5 (CMIP5). The results
suggested that there were decreases and increases in the mean annual flows due to the precipitation
and temperature variabilities in the future. In another study [16], authors compared two different
models (conceptual-HBV and distributed-BTOPMC) in several catchments in Australia and assessed
the impacts of climate change on streamflow. Both models simulated a decrease in wet and dry season
streamflow across the catchments. An evaluation of the water resource development scenarios over
different future time periods’ horizons by Piman et al. [17] reported reductions in the average wet
season flows by 4%-14% and flow reversal to the Tonle Sap Lake by up to 16%. It predicted an increase
in flooded areas by 5%-8% and in salinity intrusion areas in the Viet Nam Delta by up to 17% in
the future. It was also reported that the small and nonlinear response of annual river discharge to
progressive change in global mean temperature, the change in monthly river discharge varying from
—16% to +55%—showed the greatest decrease in July-August and increase in May—June for natural
flow only. The impacts of climate change for six catchments around the world, including the Mekong
Basin, using a global hydrological model (GHM) and catchment-scale hydrological models (CHM)
was performed by [18], and this study reported that substantial differences in the projected change
of mean annual runoff between GHM and CHM were dependent on climate model outputs and did
not evaluate the regulated flow impacted by the reservoirs. Finally, a semi-distributed hydrological
model (SLURP) with the pattern-scaled GCM scenarios was used by [19] to assess the impact of climate
change on the freshwater resources associated with GCM structure and climate change sensitivity in
the Mekong River Basin.

The effect of land use land cover change (LULCC) impact on the water balance studied by
Homdee et al. [20] using the soil and water assessment tool (SWAT) in the Chi River basin, Thailand,
reported that land use changes impacted annual and seasonal water yield and evapotranspiration
(ET). In addition, the conversion of forested area and agricultural lands affected the flow regimes
in the basin. Replacing sugarcane with rice paddies resulted in clearly reduced water flows and
increased ET by almost 5.0% during the dry season. Also, the increased conversion of rice paddies
to farmland showed a significant effect on seasonal flows. Also, the results of this change showed
a decrease in ET by 12.0% and an increase in water yield by 5.1% during the dry season. However,

10



Water 2019, 11, 1307

the implications of this study for the entire Mekong basin is not well understood. Another study [21]
evaluated, the Mae Chaem River—which was subjected to land use change—by developing three
plausible future forest-to-crop expansion scenarios and a scenario of crop-to-forest reversal based on
the land cover transition from 1989 to 2000. In this study, the resulting hydrologic responses of the
basin were simulated using the distributed hydrology soil vegetation model (DHSVM). The authors
also reported that the expansion of highland crop fields affected annual and wet-season water yields
compared with a similar expansion in the lowland—-midland zone and that the downstream sections of
the river were sensitive to irrigation diversion.

The effect of irrigation water abstraction on the streamflow, energy state, and fluxes was evaluated
using a model simulation to predict changes in the Bowen Ratio, surface temperature, and water
resources within the Mekong River Basin based on the variable infiltration capacity (VIC) macroscale
hydrological model [22]. Their results revealed a significant decrease in the Bowen Ratio and surface
temperature due to irrigation water withdrawal. The irrigation water withdrawals from runoff, river
channels, and dams decreased the total monthly runoff by 32%. Study authors [1] identified the
relative roles of precipitation and soil moisture in runoff variability in the Mekong River Basin and
reported that simulated soil moisture plays an important role in determining the timing and amount
of generated runoff.

However, while these studies reported the changing biophysical conditions of the basin, flow
regimes, hydroclimatic extremes, and ecosystems, long-term simulation of the basin hydrology
highlighting the role of land use and climate change as well as the effect of dams on the downstream
flows have been limited. To our knowledge there is no study that compared SWAT and VIC simulations
as well as with and without-reservoir effects. Given their differences in model structure and strengths
in simulating global river basins, how they characterize the basin responses under changing conditions
of land use and climate change needs a periodic reanalysis. Finally, two different hydrology models are
implemented to understand how the major reservoirs play a role in modifying the peak flow in the wet
season and low flows in the dry season. While management inputs are needed to precisely quantify the
impoundment effects, sensitivity analysis of regulated and natural flows has the potential to know the
role of human-induced changes to the flow regimes. Due to the range of predictions and uncertainties,
it is imperative to evaluate the changing conditions in the basin in the multi-model framework in order
to generate an updated assessment for policy decisions. Therefore, our objective is to evaluate two
macroscale hydrological models in capturing basin responses and investigate the historical streamflow
changes by explicitly considering the effect of dams and future projections of streamflow and other
water budget components. We use both SWAT and VIC to evaluate the hydroclimatological behavior
by including six major dams and two climate model projections combined with four global circulation
models to characterize the peak flow regime shifts in the basin.

2. Materials and Methods

2.1. The Mekong River Basin

MRB covers an area of about 800,000 km? and the mainstem and its tributaries drain six
countries: China, Myanmar, Thailand, Laos, Cambodia, and Vietnam. The basin is divided into
seven sub-watersheds with flow stations and major dams as shown in Figure 1a. The upper reaches of
the Mekong River flow through higher elevations in the Himalayan mountain ranges, through the
steep terrain of Laos and Thailand and the lowlands of Cambodia, and into the delta in Vietham before
draining into the South China Sea. For both development and management of this transboundary
river basin, a complex river basin agreement was formulated between the member countries and
coordinated by the Mekong River Commission; however, rapid changes in this basin have necessitated
a comprehensive understanding of conditions in a system modeling framework.
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Figure 1. Location map of the Mekong River Basin with reservoirs (in red circles), flow stations (black
boxes), and sub-watershed boundaries.

The mean annual discharge from the basin is approximately 15,000 km3/ year. The heterogeneous
distribution of the precipitation follows an east-west gradient, with the mean annual value of 1200 mm.
Nearly 70% of the annual precipitation in the MRB occurs during the monsoon season. However, the
temperature and elevation variations follow a north-south gradient. The temperature in the MRB
varies from 38 °C during March—April to 15 °C during November—February. Since conditions in the
MRB are hot and humid with the glaciated portion for the upper region, the climate is classified as
tropical monsoonal. The elevation drop of more than 4900 m in the MRB also affects the climate
heterogeneity. A major portion of the MRB is covered with croplands (40%), followed by evergreen
broadleaf forest (28%), closed shrublands (10.3%), and grasslands (9.3%). Irrigated wet season rice
grown throughout the year and fishing (4.4 million tons per year) provide food security to more than
60 million people residing in the MRB. In addition, the hydropower potential of the MRB amounts
to more than 88,000 MW, with only a small portion utilized. Hence, more than 450 dam projects are
currently being planned/constructed by the member countries to take advantage of the hydropower
capabilities of the MRB.

2.2. Hydrological Models

Both VIC and SWAT have been widely used in our previous studies in several basins around
the world and both are currently incorporated in the Mekong River simulation studies. The physical
diagrams of these models are available in published literature and websites [23,24]. The range of
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applications to evaluate water resource problems includes drought [25-28], water management [29,30],
and climate impacts [31-34]. The VIC model is grid-based, whereas SWAT is a hydrologic response
unit (HRU)-based model that is defined using soil, slope, and land-use data. The resolution of the VIC
model varies depending on the availability of forcing data. In our study, we used 0.25° (about 25 km),
while the SWAT model considered 1153 climate grids at the same resolution but subdivided into 2196
sub-watersheds. The VIC model was implemented to simulate the natural flows in the basin, whereas
the SWAT model was used to simulate both natural and managed flows across selected reservoirs.

The SWAT model [35-37] is a river basin-scale, semi-distributed, and continuous model that
generates hydrologic variables based on hydrologic response units (HRUs), which combine diverse
land uses, soil types, and slopes. SWAT has been applied to various river basins around the globe
to evaluate climate change impacts on streamflow [38-40], agricultural systems [41], and hydrologic
extremes [25,26,42,43]. SWAT estimates several hydrologic components—such as surface runoff,
baseflow, evapotranspiration (ET), and soil moisture—which are the primary variables for streamflow
calculation (Equation (1)).

t
SWr = SWy + Z Pday - qurf —ET, — Wsezp - ng/ (€]
i=1

where SW; is the final soil water (mm) on day i, ¢ is the time (days), SW) is the initial soil water on day
i, Pygy is the daily precipitation (mm), Qs is the surface runoff (mm), ET, is the evapotranspiration
(mm), Ws,p is the water entering to the vadose zone from the soil layer (mm), and Qg is the return
flow (mm).

The SWAT model needs a meteorological dataset (e.g., daily precipitation, maximum and
minimum temperatures), digital elevation model (DEM), soil properties, and land use. For the historic
simulation (1951-2015), a 0.25° resolution of the meteorological forcing dataset was applied [44,45].
The MRB was delineated as 2196 sub-watersheds to consider all climate grids (1153 grids). In addition,
the Global Multi-Resolution Terrain Elevation Data 2010 (GMTED2010; 250-m resolution) [46] was
applied, and the soil properties were obtained from the Food and Agriculture Organization of the
United Nations dataset [47]. Finally, the Global Land Cover Characterization (GLCC) was used to
determine land use [48].

The VIC model was also implemented to estimate the streamflow at the gage station locations for
observed and projected future climates. The VIC is a semi-distributed, physically based hydrological
model that solves water and energy balance for each grid separately at a designated daily time.
The meteorological parameters for the execution of the model include precipitation from the
APHRODITE dataset and minimum and maximum temperatures and wind speed from the Global
Meteorological Forcing Dataset (GMFD) gridded dataset, available at 0.25° spatial and daily temporal
resolution [44,45]. The vegetation texture—containing the land cover type, leaf area index, and
albedo—was developed using the Advanced Very High Resolution Radiometer (AVHRR) at a 1 km
spatial resolution. The soil class was taken from the United States Department of Agriculture (USDA)
classification and pedo-transfer functions [49] applied to the Harmonized World Soil Database (HWSD)
were combined to extract soil parameters.

The infiltration mechanism utilized in the Xinanjiang model [50] was adopted for use in the VIC
model to generate the runoff from precipitation when it is higher than the available infiltration capacity.
This scheme is commonly used in models that are used for flood forecasting, climate change studies,
and water resource assessment in the humid and sub-humid regions of the world [51]. The model
is capable of catchment response on any scale and can account for nonlinear spatial retention of soil
moisture [52]. Also, the Xinanjiang model accounts for soil heterogeneity and assumes the variation of
the infiltration capacity within an area [53]. In the VIC, the Xinanjiang formulation is assumed to hold
for the upper soil layer only. The Xinanjiang model effectively assumes that runoff is generated by
those areas for which precipitation, when added to soil moisture storage at the end of the previous
time step, exceeds the storage capacity of the soil. When the precipitation is less than or equal to the
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available infiltration capacity, overland runoff is not generated. However, the soil moisture transfers
from the upper soil layer to the lower soil layer for subsurface runoff generation using the Arno model
conceptualization [54]. The top two layers of the three soil layers in the model respond to the rainfall,
whereas the bottom layer corresponds to baseflow computed using the Arno model formulation [54].
The variable infiltration curve [55] governs the infiltration of water into the soil layer. The total ET
is estimated using the Penman-Monteith approach and defined as the accumulation of evaporation
from bare soil and canopy and transpiration from vegetation features. Since VIC is a unidimensional
hydrological model, the fluxes are exchanged only in the vertical direction and the lateral movement
in the subsurface layer is considered negligible. Moreover, the routing scheme developed by [56,57] is
employed on the fluxes simulated by the VIC model for each grid to estimate the monthly streamflow
at the gage station locations. The surface and subsurface fluxes of the grids were explicitly routed by
the routing scheme using a unit hydrograph of a channel network, in which the node of the channel
network represented each grid-cell of the VIC model.

The observed monthly streamflow from the seven gauging stations distributed across the
basin—namely Chiang Saen, Luang Prabang, Nakhon Phanom, Vientiane, Mukdahan, Pakse, and
Kratie—were used to calibrate and evaluate the VIC model. The VIC model has been used by the
various studies for hydrological assessment of the MRB [8,22,58-60].

2.3. Choice of General Circulation Models

Figure 2 shows the distribution of wet/dry and cold/hot global circulation models (GCM)
from 2 Representative Concentration Pathways (RCPs), 4.5 and 8.5, showing changing precipitation
and temperature for 5 future periods F1 through F5 between 2006 and 2099. These models
are GFDL-ESM2M, IPSL-CM5A-LR, MIROC-ESM-CHEM, and NorESM1-M. Each model was
bias-corrected and statistically downscaled to 0.25° resolution by the Intersectoral Impact Model
Intercomparison Project (ISI-MIP) [61]. These models exhibited a wide range of temperatures (1-6 °C)
and precipitation changes (—5%-20%) in the basin and were widely used to predict climate change
impacts on hydrology as well as in other basins [61-63]. Clearly, MIROC showed wetter and hotter
conditions for the later part of the century, while GFDL and IPSL projected drier and cooler conditions
through 2040.

2.4. Calibration and Simulation of Streamflows and Water Budget Components

The SWAT model was calibrated using the monthly streamflow and the SWAT calibration and
uncertainty assessment tool (SWAT-CUP) [64] with 4 parameters (Table 1) at 7 stations. Similarly, VIC
was also calibrated, and the results are shown in Table 2. As shown in Table 3, monthly calibration
metrics of correlation coefficient (R?) and Nash-Sutcliff (NS) efficiency were above 0.8 for both SWAT
and VIC models. The parameters used to calibrate the VIC model included the variable infiltration
curve parameter (b;), the depth of the second and third soil layers (D), the fraction of maximum
velocity of baseflow where non-linear baseflow begins (Ds), and the fraction of maximum soil moisture
where non-linear baseflow occurs (Ws) with allowable ranges of 0.1-0.5, 0.1-1.5, 0-0.4, and 0.5-1.0
respectively. The calibration was carried out for the gage stations stepwise from upstream basins, with
the exclusion of the regions already considered for the upstream station. The Nash-Sutcliffe efficiency
coefficient [65] and coefficient of determination (R2) between the monthly simulated and observed
streamflows was used to evaluate the capability of the VIC model. This exercise was necessary to
ensure that the model’s parameters were able to characterize the hydrologic responses to changing
environmental and bio-physical conditions.
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Figure 2. Choice of wet/dry and cold /hot global circulation models (GCM) from two representative
concentration pathways (RCPs)—4.5 and 8.5—showing changing precipitation and temperature for
five future periods F1 through F5 between 2006 and 2099.

Table 1. Description of the soil and water assessment tool (SWAT) model input parameters for
the calibration.

Parameter Description Min Max Best Parameters

r_CN2.mgt Curve number for moisture condition II —0.2 0.2 0.06
v_ALPHA_BF.gw Baseflow alpha factor 0 1 0.35
v_GW_DELAY.gw Groundwater delay time 30 450 177

Threshold water depth in shallow aquifer

V-GWQMN.gw for back discharge

0 2000 1500

Notes: v_, denotes the default parameter is replaced by a given value; r_, means the existing parameter value is
multiplied by (1 + a given value).
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Table 2. Description of the variable infiltration capacity (VIC) model input parameters for
the calibration.

L. Allowable Range
S. No. Parameter Description
Lower Upper
1 b; variable infiltration curve parameter 0.1 0.5
2 D the depth of soil layers 0.1 15
Table 2. Cont.
L. Allowable Range
S. No. Parameter Description
Lower Upper
3 D, fraction of maximum velocity of baseflow 0 0.4

where non-linear baseflow begins

fraction of maximum soil moisture where
4 Wy . 0.5 1
non-linear baseflow occurs

Table 3. Statistical indicators showing the hydrology model calibration and validation for the historical
period between 1984 and 1992 in the Mekong River Basin.

Calibration Validation
Station Calibration ~ Validation 2 2
Period Period R NS R NS

SWAT  VIC SWAT  VIC SWAT VIC SWAT VIC
Chiang Saen ~ 1984-1990 1991-1996 0.92 0.93 0.86 0.83 0.93 0.91 0.85 0.81

Luang 1984-1990  1991-1997  0.93 0.93 0.81 073 094 089 086 0.67
Prabang
Vientiane ~ 1984-1990  1991-1996 092 093 083 091 095 094 088 092
Nakhon 1984-1990  1991-1995 093 093 087 090 092 092 086 079
Phanom
Mukdahan ~ 1984-1990  1991-1995 093 094 089 086 093 094 088  0.83
Pakse 1984-1990  1991-1998 090 091 084 08 090 093 085 087
Kratie 1984-1990  1991-1998 090 090 085 085 091 093 086  0.86

2.5. Study Design

Our approach consisted of the following steps: monthly calibration of the hydrology models for
the historic period, simulation of streamflows using the climate model outputs by dividing them into
seven sub-basins with the outlets where the observations were available, evaluation of peak flows,
assessment of flow changes in the context of reservoirs, and spatial mapping of temperature and
precipitation anomalies and water budget components (ET and runoff). Monthly calibration of the
hydrology models for the historic period was required in order to understand whether the models
could capture the basin scale responses hydrologically and reliably so as to as extend to the other
periods of interest [66,67]. Subsequent analysis was aimed to investigate if there were any differences
in streamflows and peakflows considering the spatial and temporal variability of the forcings, land
use and reservoir management. This sequential approach enabled us to understand and quantify the
impact of spatial variability and shift in the flow regimes as shown in Figure 3. Finally, this study
is framed to seek an answer for the suitability of these models for changing conditions in the future.
To answer this question, we evaluated the differences between them in multiple variables, including
peakflows, sub-basin scale hydrologic budgets and see whether they help us decide the suitability for
decision making in the context of the sustainable management of the basin and food—energy—water
nexus considering the data needs and resolution. For instance, food systems need high resolution,
field scale data for decision making while hydropower and water would be decided based on the
catchment scale runoff and inflows to the dam. This particular study offers insights based on 0.25°
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forcings and a relatively high-resolution land use and soil properties with major reservoirs across the
basin all of which can be integrated in a simple framework.

Obtaining SWAT and VIC inpuls
for the Mekong River asin (MRI3)
(SWAT, VIC})

Model validation

Calibration and validation
maonthly streamflow at scven
location of the MRB

Future simulation

Historic simulation

Future streamflow simulation of
Historic streamflow simulation of SWAT and VIC models
SWAT and VIC models (2020-2099)
(1954-2015)

CMIPS precipitation and
APLIRODITE precipitation temperature data statistically
Shellield’s lemperature downscaled by

(0.25 degree resolution) ISI-MIP approach
(Four models. RCP4.5 and RCPS.5)

(0.25 degree resolution)

Evaluation of reservorr impacts by

SWAT Evaluation of reservoir impacts by
< S/ SWAT
3 —=
Historic analyses (_[ Future analyses
Ilistoric peak flow changes Future peak flow changes

Historic reservoir impacts by

SWAT Future water budgets changes

Future reservoir impacts by
SWAT

p

Figure 3. Flow diagram of the overall processes of hydrologic modeling and analyses.
SWAT: soil and water assessment; VIC: variable infiltration capacity; APHRODTE: Asian
Precipitation—Highly-Resolved Observational Data Integration Towards Evaluation; CMIP5: Coupled
Model Intercomparison Project 5; ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project; RCP:
representative concentration pathway.

3. Results

3.1. Hydroclimatology of Streamflow

The annual hydrograph was primarily driven by the southwest monsoon in the basin and the
typical flood hydrograph consisted of peak flows in the wet season (July-October) and relatively
low flows in the dry season (January-May). Generally, the smooth hydrographs reflecting the size of
the catchment were evident. Figure 4a—f show the long-term streamflow simulations by SWAT and
VIC. The historical simulation period was between 1954 and 2015, and due to limited availability of
observational data, a relatively short period between 1984 and 1990 was used for calibration and the
remaining period from 1991 to 1996 for validation. The locations distributed across the entire lower
Mekong from the upstream point in the basin—Chiang Sean to downstream at Kratie—demonstrated
how the annual average streamflow gathered in magnitude from about 2000 m?/s to 10,000 m3/s.
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Table 1 shows the list of four runoff-, base flow-, and groundwater-related parameters calibrated in
SWAT. Similarly, the calibration parameters shown in Table 2 for VIC include the variable infiltration
curve parameter, the depth of the second and third soil layers, the fraction of maximum velocity of
baseflow where nonlinear baseflow begins, and the fraction of maximum soil moisture where nonlinear
baseflow occurs.
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Figure 4. Long-term streamflow simulations (1954-2015) compared against observations (1984-1996)
with two different time periods for calibration and validation by the SWAT and the VIC macro scale
hydrological models. The box plot (on the right) shows the mean and spread of flows captured by
SWAT and VIC.

Clearly, the multi-decadal simulations showed interannual variability in flows caused mostly
by precipitation changes; however, the shifts in flows on annual scales were indistinguishable. The
box plot (on the right) shows the mean and spread of annual streamflows captured by SWAT and
VIC. While the mean values between these models across all seven stations were close, the spread was
greater for SWAT. Also, the coefficient of variation (standard deviation/mean) computed for each of
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the gage locations showed a low value of less than 0.7 consistently for all the stations and they were
comparable between the observed and simulated flows. This could be considered typical for a tropical
river basin where variability was minimal.

3.2. Historical Peakflow Assessment

In order to understand the dynamics of drivers of change, particularly climate and land use,
we evaluated the peakflow magnitudes simulated by SWAT and VIC. Our assessment of change
in land use between 1992 and 2015 suggested a 3% increase in croplands and a 1-2% decrease in
grasslands, shrublands and forests. Figure 5 shows the differences in peakflows between the two
periods—1956-1965 and 2006-2015—to compare pre-development and post-development conditions
in the basin. Other than a reduction in flows of 4-8% for Chiang Sean and less than 1% for Luang
Prabang, all of the other flow stations indicated an increase of 8-11%. The decrease in flows in the
upstream location can be attributed partly to climate change in the Tibetan Plateau. However, the
tropical monsoon impacts on the lower portion of the basin were evident in the increased flows.
These increased peakflows can result in flooding, and therefore impoundments of these flows can
potentially reduce the risk of flooding in this basin, which is prone to seasonal flooding. This is further
highlighted in Figure 5h, where the streamflow anomaly (%) for the seven locations between 1992
and 2015 decreased up to 4% for Chiang Saen and Luang Prabang. The remaining stations showed
a positive anomaly of up to 5%. Noticeably, the differences between 1992 and 2015 in both SWAT
and VIC showed no difference in anomaly, which suggested that natural flows between pre- and
post-development of hydropower projects are not significant. In other words, while the flow alterations
in the basin could not be attributed to land use changes in the basin, human-induced changes—such
as irrigation diversions—and climate change can affect peakflows.

3.3. Projected Changes in Flows and Comparison of Models

Since the effect of climate change was evident with increased precipitation and temperature in the
basin, it was considered appropriate to assess the climate change impacts on streamflow and other
water budget components. Figure 6 shows the projected streamflows from the VIC and SWAT models
between 2020 and 2099 for the same seven locations where calibration and validation of streamflows
were performed for the historic periods. The results included the ensemble average of all four GCMs
introduced in the earlier sections. The annual hydrographs resembled historical estimates of flows,
with interannual variability and seasonal peaks. Most notably, the differences in SWAT and VIC
were also similar to historic simulations, as SWAT produced more flows relative to VIC. While the
hydrological model processes that caused the increased flow in SWAT are not discussed here in detail,
the role of the calibration parameters that previously estimated higher flows could be substantial. Also,
the irrigation extraction for croplands—whereby the streamflows remained mostly natural and hence
the attenuation of flows was not obvious—was not explicitly considered.

Due to increased precipitation in the basin, as predicted by most of the GCMs, hydrological flow
simulation had shown similar increases in peakflows, ranging from 10%-70% between RCP 4.5 and
8.5 scenarios. The hydrological model responses in the form of streamflow were directly proportional
to increased precipitation, typical of a tropical basin. The substantial increases were also expected in
the later part of the century across all flow stations between 2060 and 2099. Projected peakflow changes
simulated by VIC and SWAT are shown in Figure 7. On the one hand, the reductions in dry season
flows were not evident, and counterintuitively, on the other hand, the management of reservoirs and
their releases can augment them.
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Figure 5. (a—g) Differences in peakflows between two periods; (h) streamflow anomaly (%) for seven
locations between 1992 and 2015.

3.4. Projected Peakflow Est

Changes in peak flows were analyzed, and the shifts in peakflows with and without reservoirs
simulated by the SWAT model for the period 1992-2015 (14 year average) are shown in Figure 8.
A similar analysis for future climate projections from 2020-2099 (80 year average) from RCP 4.5 is
shown in Figure 9. The results are similar for RCP 8.5, and the percentage changes in flows are shown
in Table 4. In general, the reductions in flows in 2015 were lesser when compared to 1992 in simulations
in which reservoirs were taken into account with certain parameters. These reductions, ranging from
3%-15%, can only be considered changes due to climate variability, as exact operation and releases of
flows were not integrated into this analysis. When the simulations did not include reservoirs, both
wet and dry season flows were higher for the same period. However, general reductions of up to

imation
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35% in dry season flows and 16% in wet season flows were identical in simulations that considered
reservoirs in their analyses. This analysis emphasizes the importance of incorporating the actual
reservoir operations to predict wet and dry season flows.
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Figure 6. Projected streamflows from VIC and SWAT models between 2020 and 2099 for seven locations
where calibration and validation of streamflows were performed for the historic periods.
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Figure 8. Shifts in peakflows with and without reservoirs, simulated by the SWAT model for the period
between 1992 and 2015 (14 year average).
Table 4. Percentage change in dry- and wet-season flows projected by SWAT and VIC for RCP 4.5 and
RCP 8.5 between 2020 and 2099.
SWAT VIC
Station Season RCP4.5 RCP8.5 RCP4.5 RCP8.5
2020-2059 2060-2099 2020-2059 2060-2099 2020-2059 2060-2099 2020-2059 2060-2099
Chiang Wet 10.5 21.9 10.7 25.1 31.4 41.0 31.7 49.1
Saen Dry 17.6 25.7 14.7 21.3 33.6 413 322 36.6
Luang Wet 11.3 23.5 119 25.8 56.1 68.7 57.1 77.7
Prabang Dry 17.7 255 14.1 19.4 26.8 342 252 29.7
L Wet 14.3 27.6 15.6 29.3 12.1 223 138 26.8
Vientiane
Dry 20.4 28.6 16.5 220 —11.3 —53 —124 —8.6
Nakhon Wet 18.8 322 21.0 327 28.0 39.4 30.1 427
Phanom Dry 26.0 33.5 214 26.9 -8.7 -3.8 -10.8 —6.5
Wet 19.2 324 214 32.3 38.2 50.5 40.4 53.5
Mukdahan ¢
Dry 27.6 35.0 22.8 285 -3.3 1.9 5.5 —-0.7
Wet 18.6 30.4 20.2 29.3 22.6 32.0 235 33.2
Pakse
Dry 31.7 39.0 26.3 33.4 —31.2 —27.0 —325 —28.2
. Wet 21.0 30.2 21.5 29.4 32.1 39.7 32.0 40.6
Kratie
Dry 37.2 42.8 31.4 39.4 —22.7 —19.0 —24.3 —18.8
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Figure 9. Shifts in peakflows (RCP 4.5) with and without reservoirs, simulated by the SWAT model for
the period between 2020 and 2099 (80 year average).

3.5. Basin Scale Water Budget Analysis

Figure 10 presents the bar charts of ET and runoff changes for the historic and future periods
from the SWAT and VIC models, and Figure 11 shows the spatial maps of changes in precipitation,
temperature, ET, and runoff. The historic changes were the percentage alterations of the last 10 years
(2006-2015) compared to the entire historic period (1954-2015), and the future changes were the percent
increases of the future period (2020-2099) to the historic period. Both ET and runoff changes were
computed for each sub-region and grid in the MRB. As in Figure 10, reductions in runoff of up to 6%
in the historic period did not persist in other locations or into the future. Historic reductions were
more pronounced in the upper portion. Both RCP 4.5 and RCP 8.5 projected increases in ET of 4-15%
and runoff increases of up to 60%. In both historic and future periods, water budget changes were
highly influenced by precipitation and temperature alterations in the MRB, as shown in Figure 11a—f.
Relative to the past period, both RCPs projected increased precipitation between 10 and 60% across
all of the sub-basins, with higher increases in the central and lower portions of the basin. However,
temperature increases were notable in the upper and central sub-watersheds, ranging from 1-4 °C. This
can potentially impact snowmelt-driven flow in the Tibetan Plateau before the monsoon season begins.

For the historic period, there were overall ET and runoff increases from the SWAT model for
the entire MRB, except for the runoff in Upper Mekong. In the VIC model, there were also overall
increases, but some regions showed ET and runoff decreases (e.g., Upper Mekong, Delta). The highest
increase of runoff occurred in the middle of the basins from both SWAT and VIC (13.7% and 8.5%
respectively; Figure 11j,p), and these increases were derived from the highest precipitation increase in
the middle Mekong region during the last 10 years (Figure 11a). However, there were runoff decreases
in the upper Mekong and Siem Bok (Figure 11j,p), and the precipitation decreases mainly derived from
these in the corresponding areas (Figure 11a).
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Figure 10. Water budget changes for historic and future periods for each sub-watershed; (a) SWAT;

(b) VIC.

For the future period, there were ET and runoff increases for the entire regions and both models,
and the precipitation and temperature increases were the main drivers of those changes. VIC projected
decreased runoff in the delta in the future, and in general, estimates of the water budget from the two
models were considerably different. The runoff estimations from the SWAT model were more sensitive
to the precipitation increase. For instance, in the Tolne Sap region, where more than 40% precipitation
increases occurred in the entire area, the runoff increases were 56% and 57% for RCP 4.5 and RCP
8.5 using the SWAT model, but 38% and 46% using the VIC model. In addition, the results of runoff
increases in the Siem Bok showed similar results. These results were derived from the different runoff
estimations between the two models. The SWAT model is based on the soil conservation service (SCS)
curve number (CN) [68], while the VIC model uses the variable infiltration curve method [55]. The
SCS CN method has been known to have a higher sensitivity for runoff estimation [69], and this could

be credited for those discrepancies.
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Figure 11. Spatial plot of precipitation, temperature, and water budget changes for historic and future
periods. (a—c) Precipitation changes; (d—f) temperature changes; (g-i) evapotranspiration (ET) and
runoff changes from the SWAT model; (m-r). ET and runoff changes from the VIC model.

4. Conclusions

The Mekong region is at the center of a multitude of changes, including hydropower development,
land use, and climate change. While it is important to characterize the basin’s responses to these
changes at the local level, macroscale changes to climate and hydrology spanning all six basin countries
at the sub-watershed domain is critical. This study evaluated historic streamflows and impacts of
21st century hydropower development on those flows through simulation. The limiting factor in
considering basic scale changes arose from lack of information about the management of the currently
operated dams. Hence, the initial simulation of flows could be used to identify the changes in dry-
and wet-season flows driven primarily by both natural and ongoing anthropogenic-induced climatic
changes while integrating reservoirs into the models to accommodate the inflows in a simplistic way.
Several key insights were gained from this study. More broadly, the comparison of two hydrological
model simulations highlighted that basin responses to peakflows for both historic and future periods
were in close agreement despite the differences in the model formulations and both can serve as a
predictive model for future water resources assessment with some improvements to field-scale crop
water estimation. The increase in peakflow estimations due to increased precipitation in a changing
climate was quantified for several locations and agreed with several previous studies. These increased
peakflows are expected to be harnessed for both hydropower and irrigation water demand, and these
new insights are useful for making policy decisions and developing operating procedures for water
resources development projects. Additionally, the spatial variability in ET and runoff highlighted
the need for a differential approach at the sub-basin level to sustain food and energy production in
the context of drought and other anthropogenic-induced changes, including land use and population
increase. Perhaps, irrigation water assessment by VIC was providing a more realistic estimates of ET
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and both hydrological models require improvements to simulate crop-specific, field scale estimates of
water balance components.

Our findings from this investigation also suggested that the hydrological models SWAT and VIC
were capable of predicting large-scale changes to the system by accounting for up to 90% variability
under natural conditions. Relative changes in flows impacted by recent hydropower projects between
1992 and 2015 revealed that anomalies in peakflows during this period were less than 5%. This suggests
that system-level changes were not identifiable due to modest land cover changes in croplands and
forests unless storage and irrigation diversion were properly considered. Increased precipitation over
several sub-watersheds also resulted in increased peakflows, as the monsoon season variability for
multiple decades included only nominal changes.

Generally, climate models projected a wide range of temperature (1-6 °C) and precipitation
changes (—5-20%) in the basin between 2020 and 2099. Corresponding increases in peakflows—ranging
from 10-70% between RCP 4.5 and 8.5 scenarios—were expected to occur, leading to possible flooding
and inundation unless the reservoir management for both peakflows and diversions for crop water
requirements were optimally handled. Without reservoirs in the modeling assessment, both wet-
and dry-season flows were higher, but general reductions of up to 35% in dry-season flows and
16% in wet-season flows were identical to simulations that considered reservoirs in their analysis.
However, with expanded irrigated areas in the basins and increased peakflows, not only can conflicts
be alleviated to manage dry season flows, but increased crop production and hydropower generation
also become feasible.
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Abstract: The streamflow has declined significantly in the coal mining concentrated watershed of the
Loess Plateau, China, since the 1970s. Quantifying the impact of climate change, coal mining and soil
and water conservation (SWC), which are mainly human activities, on streamflow is essential not only
for understanding the mechanism of hydrological response, but also for water resource management
in the catchment. In this study, the trend of annual streamflow series by Mann-Kendall test has been
analyzed, and years showing abrupt changes have been detected using the cumulative anomaly
curves and Pettitt test. The contribution of climate change, coal mining and SWC on streamflow has
been separated with the monthly water-balance model (MWBM) and field investigation. The results
showed: (1) The streamflow had an statistically significant downward trend during 1955-2013;
(2) The two break points were in 1979 and 1996; (3) Relative to the baseline period, i.e., 1955-1978,
the mean annual streamflow reduction in 1979-1996 was mainly affected by climate change, which was
responsible for a decreased annual streamflow of 12.70 mm, for 70.95%, while coal mining and
SWC resulted in a runoff reduction of 2.15 mm, 12.01% and 3.05mm, 17.04%, respectively; (4) In
a recent period, i.e., 1997-2013, the impact of coal mining on streamflow reduction was dominant,
reaching 29.88 mm, 54.24%. At the same time, the declining mean annual streamflow induced through
climate change and SWC were 13.01 mm, 23.62% and 12.20 mm, 22.14%, respectively.

Keywords: streamflow reduction; climate change; coal mining; SWCM; coal mining concentrated
watershed; the Loess Plateau

1. Introduction

Over the second half of the 20th century, the two factors which affected the change of catchment
hydrology were climate change and human activities [1]. Plenty of studies have indicated that the
streamflow of many rivers has changed due to climate change and anthropogenic activities [2,3],
especially in arid and semi-arid regions. Climate change, for example, the redistribution of precipitation
and temperature change, has affected hydrological systems and water resources [4,5]. Human activities,
such as agricultural irrigation, cultivation, dam construction, reservoir operation, soil and water
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Water 2019, 11, 1054

conservation (SWC), urbanization construction and coal mining could also affect hydrological processes,
resulting in natural ecosystem and water resource problems [6,7].

The Loess Plateau, located in the middle reaches of the Yellow River, is the most severe soil and
water loss region worldwide [8]. Most areas of the Loess Plateau comprises gully-hill dominated
regions, with the most widely distributed loess on Earth. Intensive soil and water loss has resulted
in water shortages, land productivity decline, and river ecosystem and environmental degradation.
Soil from tributaries in middle reaches of the Yellow River is the major source of sediment in the
lower reach of the Yellow River [9]. SWC are important measures for improving the ecosystem and
the environment of the Loess Plateau. Since the 1970s, large-scale SWCs have been carried out by
the Chinese government [10], which has brought about major changes to the runoff conditions and
hydrological characteristics in tributaries of middle reaches of the Yellow River, and has had an impact
on storm floods and river runoff [11,12]. The maximum runoff utilization rate of the SWC is 63%,
which can significantly reduce the amount of water entering the river [13]. The Loess Plateau is rich in
mineral resources [14], which plays a critical role on energy sources in China’s economic development.
The Shenfu-Dongsheng coalfield, accounting for 1/4 of the China’s coal reserves, is located in the
northern edge of Loess Plateau [15]. Subsidence and cracks formed by coal mining have changed the
surface conditions, and thus, have altered runoff generation and confluence, leading to degradation of
river ecological environment in the mining area [16,17].

The Kuye River Basin is located in a wind and water erosion interlaced area in the northern of the
Loess Plateau [18]. It is a typical loess hilly landform [19], and is one of the most severely water and
soil losing areas on the Loess Plateau. The Shenfu-Dongsheng coalfield is through the middle of the
Kuye River Basin, which is the main source of sediment in the lower Yellow River. Su et al. analyzed
precipitation and runoff changing trend in Kuye River Basin [20]. Guo et al. studied the trend of
inner-annual runoff in Kuye River Basin [21]. Zhao et al. analyzed the flood characteristics and their
changing trends in the Kuye River Basin [22]. Liu et al. and Bai et al. studied the impact of climate
change and anthropogenic activities on runoff variation, indicating that SWC and coal mining had had
an important impact on the runoff change in Kuye River Basin [23,24].

Three groups methods are used for assessing the effects of climate change and human activities on
runoff variation: the paired catchments approach, the statistical method and hydrological modeling [25].
The paired catchments approach is usually considered in small experimental catchments; the statistical
method can only analyze the impact of climate change and human activities on runoff variation, as it
lacks a physical mechanism. Hydrological modeling is widely used to assess the effects of climate
change and human activity on runoff variation. Wang et al. used a monthly water balance model
to simulate the runoff of nine tributaries in the middle reaches of the Yellow River, achieving high
simulation accuracy [26]. Xing et al. and Guo et al. simulated the runoff in Kuye River Basin by monthly
water balance model and received satisfactory results [27,28]. Cheng et al. simulated daily and monthly
discharges by SWAT model, and found that it is not effective [29]. Li et al. simulated the monthly
runoff in Kuye River Basin using SWAT model, and the simulation effect was not satisfactory [30].
Considering that the monthly water balance model has a simple structure, few parameters and a good
simulation effect, this method is used to separate the effects of climate change and human activities in
this study.

In this work the objectives are: (1) Analysis of the annual streamflow variation since 1950s; and (2)
Quantitative assessments of climate change, coal mining and SWC impacts on runoff decline in past
60 years. This work will provide a better understanding of the interactions between humans and
nature, while also provide important insights into water-resource management in the Kuye River Basin.
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2. Studied Watershed and Data

2.1. Studied Watershed

The Kuye River Basin is a first-tributary in the middle Yellow River. It has a main stream length of
242 km and a drainage area of 8706 km? [28]. There are two major tributaries (Wulanmulun River and
Beiniuchuan River) in the upper reaches, and a large number of coal mine are along the two tributaries.
The water system of the Kuye River Basin is shown in Figure 1. Affected by continental monsoons,
the climate fluctuates dramatically throughout the year. The precipitation from June to September
accounts for 75-81% of the annual total [31]. Rain storms usually take place in summer, especially
in July and August. The drainage landform mainly consists of wind-dust region and hill-gully loess
region [32]. The wind-dust region is relatively flat with hardly any vegetation, and the hill-gully loess
region is covered by exposed soft bedrock.
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Figure 1. The sketch map of the Kuye River Watershed.

The coal resources are rich in the Kuye River Basin. There are 209 coal mines on both sides of the
river; the coal seams are shallow, and the exploited mine areas reach 2482 km?2, which accounts for
28.51% of the basin areas. According to the survey data, the raw coal output was 6.25 x 10° t in 1991,
31.293 x 10° t in 2002, and 172.262 x 10° t in 2011, with the average annual growth of 7.905 x 10° t.
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Along with the coal mining amount increasing, coal mining subsidence areas were 26.01 km? in 1991,
48.82 km? in 2000, and 266.15 km? in 2011, and the average annual growth reached to 11.435 km?.
The large surface cracks in the subsidence changed the surface characteristics, and impacted the
streamflow (Figure 2).

Figure 2. The cracks in the coal mining subsidence.

Water and soil loss are serious in the Kuye River Basin. The SWC consists of terraces, grassland,
afforestation, and the construction of sediment-trapping dams. Before 1979, the areas of SWC were
609.42 km?2. From 1980s to 1990s, the areas of SWC reached 1480.02 km? in the late 1990s [33]. By 2009,
the areas of SWC were 3739.90 km?, and the sediment-trapping dams were 1548. The increasing of
SWC also transformed the surface characteristics, and impacted on runoff.

In Kuye River Basin, human influence on streamflow includes coal mining, SWC and the water
abstraction from the river for domestic, irrigation, and industry uses. Among these influencing factors,
coal mining and SWC are mainly impact factors, and the water abstraction from the river is only a
small part [34,35]. Therefore, this study separated the impact of coal mining and SWC on runoff.

2.2. Data

The daily streamflow records of Wenjiachuan hydrological station which is the furthest downstream
hydrological station (8645 km? at Wenjiachuan hydrological station) were used in this study. The daily
streamflow data was provided by the Yellow River Conservancy Commission. The data of daily
precipitation, average daily temperature was from two meteorological stations (Yijinhuoluo and
Dongsheng), and four hydrological stations. The data of meteorological stations was obtained from
the China Meteorological Administration, and the data of hydrological stations (Wangdaohengta,
Xinmiao, Shenmu, and Wenjiachuan) was from the Yellow River Conservancy Commission. All the
data were from 1955 to 2013. The monthly (year) streamflow, the monthly (year) precipitation, and the
average monthly (year) temperature were calculated from daily discharge, daily rainfall, and average
daily temperature.

2.3. Methods

First, the modified Mann-Kendall trend test was used to analyze the trends of annual
streamflow [36]. Then, cumulative anomaly curves and the Pettitt test were applied to detect
the abrupt change years of streamflow variables [37]. Finally, the contributions of climate change,
coal mining and SWC on streamflow decreasing in the same period was analyzed using the monthly
water-balance model (MWBM) and survey data. The brief introduction of MWBM, and the methods
of distinguishing the impacts of climate change, coal mining and SWC on streamflow reduction are
presented below.
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2.3.1. Separating Climate Change, Coal Mining and SWC Impacts on the Streamflow

In an attempt to separate the effect of climate change, coal mining and SWC, we need to choose a
baseline period. The streamflow difference between the baseline period and human induce period is
the impact of climate change, coal mining and SWC, and is calculated as follows:

AQcm + Ast + AQC =Qi-Q 1

where AQ., AQ, and AQy, are the contributions of climate change, coal mining and SWC on
streamflow change, respectively; Q;, Qy, are the observed streamflow during the human induced period
and baseline periods, respectively.

AQcm + Ast = Qi - Qm (2)
AQ: = Qm - Qs ©)

4
AQw = ) &iA; 4)

i=1
where Q,, is the reconstructed streamflow by the monthly water-balance model (MWBM), ¢; is the
water reduction coefficient, which use the research results of the reference [38], A, is areas of terrace,
afforestation, grassland and sediment-trapping dams.

The impact percentages from climate change (1), coal mining (n,,) and SWC (ng,), are stated as

AQ.
= % 100% 5
Mle AQcm + Ast + AQC ( )
AQem
= X 100% 6
flem AQcm + Ast + AQC ( )
Ast
= % 100% 7
"0 7 AQen + AQuy T AQ @

The above equations were used to quantify the impacts of climate change, coal mining and SWC
on streamflow variance in Kuye River Basin from 1955 to 2013. The next step is to reconstruct natural
streamflow using the MWBM.

2.3.2. Brief Introduction of the MWBM

The MWBM was developed by the U.S. Geological Survey. It used a monthly accounting procedure
based on the methodology, originally proposed by Thornthwaite [39]. Mean monthly temperature and
monthly total precipitation are the input files to the model. The input parameters include runoff factor,
soil-moisture-storage capacity, rain temperature threshold, maximum melt rate, direct runoff factor,
snow temperature threshold and latitude of location. The individual components of the water balance
included the amount of monthly precipitation (P) that is rain (Prin) or snow (Prain), direct runoff
DRO, snow melt (SM), potential evapotranspiration (PET), soil-moisture storage withdrawal (STW),
and runoff [40].

Train—T
Prain = P = Ponow ©)
DRO = Pyain X drofrac (10)
Premain = Prain — DRO (11)
SMF = M X meltmax (12)
Train = Tsnow
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SM = snostor X SMF (13)
0.062xT
PET = 13.97 xd x D? x 222X € 77 (14)
100
STiy
STW = ST;_; — |abs(Piota1 — PET) X (2n2) (15)

STC
where Premain, SMF, ST, SMF are remaining precipitation, snow melt fraction, soil-moisture storage,
and the soil-moisture storage capacity, respectively.

The Nash Sutcliffe coefficient (NSE) and relative error (RE) were used to evaluate the performance
of the model. NSE close to 1 and RE close to 0 are the good simulation result. The qualified conditions
of simulation are that NSE is much more 0.6 and RE is less than 0.1 [41].

3. Results
3.1. Long-Term Variation of the Annual Streamflow Series

3.1.1. Trend Analysis of the Annual Streamflow Series

The annual streamflow in 1955-2013 at Wenjiachuan hydrological station was shown in Figure 3.
The maximum annual streamflow was 13.706 x 108 m? and occurred in 1959. While, the minimum
annual streamflow reached 1.187 x 108 m?® in 2011. The mean annual streamflow from 1955 to 2013 was
5.187 x 108 mS. Average annual streamflow in 1950s, 1960s, 1970s, 1980s, 1990s and the early 21st century
were 6.827 x 108 m3, 7.642 x 108 m3, 6.867 x 10® m3, 5.278 x 108 m?, 4.226 x 10® m?, and 1.919 x 108 m3,
respectively. Since the 1980s, average annual runoff began to decrease. At the beginning of the
21st century, average annual runoff decreased the most, which only accounted for 37% of mean
annual streamflow. The annual streamflow has an obvious declining gradient of —0.113 x 108 m3/year.
When being analyzed using the modified M-K trend test, the annual streamflow during 1955-2013
presented a significant decreasing trend; the Zc reached the value of —2.325, and passed the 0.05
significance test.
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Figure 3. The variation trend of streamflow at Wenjiachuan hydrological station.
3.1.2. Abrupt Change Years of Annual Streamflow Series

To detect abrupt changes of annual streamflow change, cumulative anomaly curves and Pettitt
test were used. Both Figures 4 and 5 show that the annual streamflow has an increasing trend before
1979, and that it then fluctuated slightly from 1979 to 1996, and finally, declined considerably after
1996. There were two significant change points in 1979 and 1996. According to the two change
points, the annual streamflow series were divided into 3 stages which were 1955-1978, 1979-1996,
and 1997-2013, respectively.
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Figure 4. Cumulative anomaly curve of annual streamflow.
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Figure 5. K value change calculated by Pettitt test.

3.2. Separating the Impacts of Climate Change and Human Activities by MWBM

3.2.1. Model Calibration and Verification

In this study, we took 1955-1978 as the baseline period. The observed climatic and streamflow
data at the Wenjiachuan station in 1955-1970 was used for calibration, and the data from 1971 to 1978
were used for verification. Figure 6 show that the recorded and simulated data fit well. The points
of the correlation between recorded and simulated streamflow are concentrated around the 1:1 line
(Figure 7). In addition, The NSE in calibration period and verification period were 77.95% and 75.69%,
respectively. Furthermore, the RE were 3.58% and 4.21%. Overall, the calibration and verification
accuracies of the model were acceptable. The next step is investigating the effect of climate change and
human activities in the human-induced periods by the MWBM.

80

Recorded —— Simulated

Runoff (mm)

Figure 6. Monthly time series of recorded streamflow and simulated streamflow in 1955-1978 at
Wenjiachuan station.
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Figure 7. Correlation between simulated and recorded monthly streamflow in the baseline period.

3.2.2. Separating the Impacts of Climate Change and Human Activities

According to the abrupt change years, the streamflow series were divided into periods of the
baseline period (1955-1978), human impacted (HIP) period (1979-1996), and human strong induced
(HSIP) period (1997-2013), respectively. Given the recorded streamflow and reconstructed streamflow,
the influence of climate change and human activities on streamflow in HIP and HSIP are summarized
in Table 1.

Table 1. The contributions of climate change and human activities to annual streamflow reduction.

Impact by Impact by

0,
Recorded Reconstructed  Total Change (%) Climate Change Human Activities
Periods Streamflow Streamflow A0 A0 20
(mm) (mm) o, c o h o,
(mm) n %) (mm) M (%) (mm) Mh (%)
1955-1978 81.02
1979-1996 63.12 68.32 -17.90 22.09 -12.7 70.95 -5.20 29.05
1997-2013 25.93 68.01 —55.09 67.99 -13.01 23.62 —42.08 76.38
1979-2013 45.06 68.17 -35.96 44.38 -12.85 35.73 -23.11 64.27

During the period of 19792013, the recorded annual streamflow was obviously less than that of
the baseline period. The absolute and relative values of total impacts of climate change and human
activities on annual streamflow were —35.96 mm and 44.38%. Both climate change and human activities
resulted in streamflow decreases compared to the baseline period. During 1979-1996, the climate
change was the main factor that decreased streamflow with a contribution of 70.95% relative to the
baseline period, while the reduction percentage due to human activities were only 29.05%. However,
the contribution of climate variations to streamflow reduction dropped to 23.62%, corresponding that
of human activities which ascended to 76.38% in 1997-2013. Human activity has become the major
factor in reducing streamflow. Specific impacts of climate change on annual streamflow were —12.7 mm
for HIP and —13.01 mm for HSIP, while the influence of human activities were from —5.20 mm in HIP
to —42.08 mm in HSIP. On average, human activities and climate change were responsible for 64.27%
and 35.73% of streamflow reduction, respectively.

3.3. Separating the Coal Mining and SWC Impacts on Streamflow Decreasing

The SWC in Kuye River Basin includes the construction of terraces, planting trees and afforestation,
and building sediment-trapping dams. Water and soil loss is severe in the Kuye River Basin. Before 1979,
the area of SWC was generally small, and less than 7% of the basin area. After 1979, a large number of
SWC were carried out. Because there are not the information about the areas of the different SWC in
every year. The analysis uses the areas in the survey years. The water reduction of SWC are calculated
in HIP and HQIP by the water reduction coefficient and the areas of SWC in the representative years
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(Table 2). The streamflow reduction caused by the SWC from —3.05 mm in HIP to —12.20 mm in HQIP.
During 1979-2013, the average annual streamflow reduction was —7.57 mm.

Table 2. Cumulative area of SWC since the 1950s.

Terrace Afforestation Grassland Sediment-Trapping Dams

Year A € A € A € d €

(km?)  (m%*km?) (km?) (m3%km?) (km?)  (m3/km?) am (per dam/m?)
1959 5 27 22 0
1969 33 97 52 2
1979 66 415 110 8
1989 67 44,600 1004 20,900 353 16,600 12 12,000
1996 99 1184 380 19
2009 101 2652 938 1548
2013 105 3555 638 2271

Based on the influence of human activities and the SWC to annual streamflow reduction,
respectively, we could calculate the contribution of coal mining to runoff reduction (Table 3). The average
annual impact of the coal mining on streamflow were from —2.15 mm in HIP to —29.88 mm in HQIP.
The percentage of the effect was increasing from 41.35% to 71.02%. However, the percentage of the effect
for the SWC was decreasing from 58.65% to 28.99%. Seen from the impact quantity, the contribution
of coal mining and SWC on streamflow decreasing showed an increasing trend. At the same time,
the growth rate of the impact of coal mining was greater than that of the SWC. During 1979-2013,
the influence of the SWC and the coal mining on streamflow was —7.57mm, 32.76% and —15.54 mm,
67.24%, respectively. Thus, the coal mining demonstrated the dominant influence on streamflow
decline gradually.

Table 3. The contributions of the SWC and coal mining to annual streamflow reduction.

Period Impact by Human Impact by SWC Impact by Coal Mining
Activities (mm) AQg, mm)  ng, (%) AQey (mm)  ney (%)
1979-1996 -5.20 -3.05 58.65 -2.15 41.35
1997-2013 —42.08 -12.20 28.99 —-29.88 71.02
1979-2013 -23.11 -7.57 32.76 —-15.54 67.24

3.4. Quantification Climate Change, Coal Mining and SWC Impacts on Streamflow Decreasing

Based on separating the impacts of climate change and human activities, and the contribution of
coal mining and SWC among human activities, we could quantify the influence of climate change,
coal mining and SWC on annual streamflow decline (Table 4). During 1979-1996, the annual runoff
reduction was —17.90 mm induced by climate change, coal mining and SWC, among which the impacts
of climate change was —12.70 mm, 70.95%; that of coal mining was —2.15 mm, 12.01%; and that of
SWC was —3.05 mm, 17.04%, climate change was the main influencing factor. However, in 1997-2013,
the impact of coal mining on annual streamflow was —29.88 mm, and that of climate change and SWC
were —13.01 mm and —12.20 mm. The relative values of impacts were 54.24% for coal mining, 23.62%
for climate change, and 22.14% for the SWC, respectively.
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Table 4. The quantification of impacts of climate change, coal mining and SWC on streamflow decreasing.

Impact by Climate Change  Impact by Coal Mining  Impact by SWC

. Total Change
Periods (mm) A o o AQy, TNsb
Qc (mm) Mec (%) AQcm (mm) Nem (%) (mm) (%)
1979-1996 —-17.90 -12.70 70.95 -2.15 12.01 -3.05 17.04
1997-2013 —55.09 -13.01 23.62 —29.88 54.24 -12.20 22.14
1979-2013 —-35.96 -12.85 35.73 —-15.54 43.22 -7.57 21.05

4. Discussion

4.1. Impact of Climate Change and Human Activities on Streamflow

In recent decades, the streamflow of many rivers around the world exhibited a decreasing trend
because of climate change and human activity [42]. Over the past 40 years in the Central Rift Valley of
Ethiopia, almost all rainfall indices have an increasing trend in the valley floor and a decreasing trend in
the escarpment and highlands [43]. For responding to the effects of climate change, and simultaneously
satisfy environmental, societal, and economic, the implementation of environment friendly techniques
policies in Romania have been studied [44]. The research found that a 10% decrease in precipitation
may cause a decrease in streamflow of between 19% in the tropical zone and 30% in the arid zone
in Africa [45]. Climate change may contribute 26%-31% of streamflow decline relative to the base
period in Beichuan river basin of China [46]. In northwest China, the streamflow reduction caused by
climate change accounting for 14.3% [47]. For the tributaries in the middle reaches of the Yellow River
basin, climate change accounted for more of the streamflow reduction in the Beiluo River and Yan
River, while human activities has a greater effect on the streamflow reduction in other tributaries [48].
In this study, climate change along with human activity led to a decrease in streamflow in HIP to
HSIP. However, the contribution of climate to streamflow reduction was in a relatively stable state,
and the absolute amount of influence was —12.7 mm in HIP and —13.01 mm in HSIP. By contrast,
the contributions of human activities to streamflow reduction between HIP and HSIP were significantly
different and have an enhanced trend from —5.20 mm in HIP to —42.08 mm in HSIP. The two abrupt
points of streamflow change were in 1979 and 1996, which were in consonance with the extensive
SWC in the late 1970s (Table 2) and the massive coal mining in the late 1990s (Figure 9). During the
HIP period, the contributions of climate change reached 70.95%, and was the main factor affecting
streamflow reduction due to the low intensity of human activity. But, the total amount of streamflow
decreasing significantly increased from —17.90 mm to —55.09mm to the HSIP, and 76.38% of the
contributions was due to human activities, indicating that intensity of human activities has increased
significantly since the end of 1990s.

4.2. Impacts of Coal Mining on Streamflow

The contribution of coal mining impacts on streamflow decline increased —27.73 mm from HIP
to HSIP, and became the dominant factor affecting streamflow in HSIP. It is related to the dramatic
increase in coal mining since the end of the 20th century (Figure 8). Raw coal production increased
from 1102.58 x 10% t in 1996 to 17,262.21 x 10* t in 2011 which was 15 times that of 1996. A large
number of coal mining produced significant impact on streamflow. The surface of mining areas are the
aeolian sand of the Sarawusu Formation. The Quaternary Sarawusu group loose pore phreatic aquifer
is significant for water supply, and the coal seam is under the Sarawusu group aquifer. After coal seam
mining, the water conducting fissure extended to the surface (Figure 9) [49], which not only increased
rainfall infiltration, but also lowered the phreatic level. The rapid loss of the phreatic and surface water
inevitably led to streamflow reduction.
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Figure 8. Relation of raw coal production and annual streamflow in Kuye River Basin.
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Figure 9. The coal mine aquifer in Kuye River Basin. (a) Before coal mining; (b) After coal mining.

4.3. Impacts of SWC on Streamflow

SWC techniques are widely used to alter soil and water processes and improve ecosystem
environment. A study of sample plots from 22 countries indicated that afforestation, soil amendment
and terraces may reduce annual streamflow by 55%, 48% and 44% respectively [50]. Both catch crops
and weeds may enhance infiltration rates, delay and decrease the runoff discharge under single ring
ponding conditions [51]. A cover of 50% of straw is able to delay the time to runoff initiation from 57
to 129 s, and mulching reduces the runoff coefficient from 65.6 to 50.5% in clementine plantations [52].
Surface runoff may be reduced by about 19% by the SWC in Ethiopian [53]. On the most severely eroded
Loess Plateau in the world, large scale SWC were implemented, which induced streamflow decline [54].
The construction of terraces, planting trees and afforestation, and building sediment-trapping dams
were the main measures of SWC in the watersheds which located on Loess Plateau. After building
terracing, the topography of the basin has been changed, the rainfall infiltration has been greatly
improved, and streamflow has been reduced. After planting trees and afforestation on bare hill
slopes, a considerable proportion of rainfall can be intercepted by the canopy and evaporate into the
atmosphere. Thus, the effective rainfall for runoff generation is reduced. The sediment-trapping dams
are built in the ditch and channel of the Loess Plateau, and may intercept floods, and is an important
measure to prevent water and soil loss. Although the percentage of the contribution of SWC impacts
on streamflow reduction has decreased. In fact, its absolute amount of the contribution of SWC impacts
on streamflow decline increased —9.15 mm, indicating the contributions of coal mining and SWC
streamflow reduction were on an increasing trend, while the increase rate of coal mining was greater.

4.4. Uncertainties of Quantitative Assessment

The uncertainty of quantitative assessment came mainly from the following aspects. (1) Model
parameters and input data may lead to uncertainty in the simulation process. For instance, in this
study only mean monthly temperature and monthly total precipitation are as the climatic input data
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which should actually include sunshine, wind speed, evaporation and other factors. (2) We analyzed
the contribution of climate change and human activities to streamflow variation with the assumption
that the streamflow in the baseline period was not affected by human activities. However, in fact,
the streamflow was also affected by human activities although with less intensity. (3) In this study,
only coal mining and SWC were considered as elements of human activities affecting streamflow,
and not considered water consumption for domestic, irrigation, and industry which also has the impact
on streamflow. for example, Shenmu County, which accounts for more than 50% of the basin area,
increased industrial water supply by nearly 10 times from 1980 to 2011; and the construction of the
massive water landscape and urban grassland has increased evaporation loss and irrigation water
consumption. So the quantitative assessment values of the contribution of coal mining and SWC
were higher than the actual values. (4) It should also be note that the influence of climate change,
coal mining and SWC on streamflow are not independent in theory and cannot be separated exactly.
These factors interact with each other.

4.5. Prospects for Future Research

The researched watershed is located in the water and soil erosion zone of the Loess Plateau.
The surface gully is vertical and horizontal, the terrain is broken, the loess is loose, the vegetation is
scarce. At the same time, a large number of coal mines are distributed along the river, and the coal
seams are shallow. Similar rivers in the middle reaches of the Yellow River include Wuding River,
Tuwei River, etc. The commonality of these basins are: (1) the fragile ecological environment; (2) the
main source of sediment in the Yellow River; (3) coal mining and SWC are the main human activities.
The research conclusions are applicable to such watershed mentioned above. However, for the other
coal mining concentrated watershed, the impact of coal mining on streamflow should been further
studied. In addition, in this study, the water reduction of SWC are calculated by the water reduction
coefficient and the areas of SWC in the representative years, and it made the accuracy of the results was
affected to a certain extent. Future research should utilize hydrological models to effectively separate
the effects of different types of human activity to streamflow.

4.6. Adaptive Strategies and Options

There are many watersheds in which coal mining and SWC are the main human activities on the
Loess Plateau, for example, the Tuwei River Basin and the Wudin River Basin. Some previous studies
indicate that the abrupt points of streamflow change were also in 1979 and 1996 for the Tuwei River
and the Wudin River [55,56]. The contribution of climate change and human activities to streamflow
reduction were 57.95% and 42.05% from 1997 to 1996, respectively. Nevertheless, the contribution of
climate change dropped to 24.19%, and that of human activities ascended to 75.81% after 1996 in the
Tuwei River basin. For the Wuding River, the contribution of climate change was 79.8% from the 1970s
to the end of the 1990s, and human activity became the main factor affecting streamflow reduction to
the 21st century [57]. The common features of these rivers are that they are located on the Loess Plateau
and the ecological environment there is fragile. To protect water resources, local governments should
adopt strategies such as strengthening water resources protection and popularizing water-preserving
technology in coal mining, developing water saving irrigation technology, and reusing and recycling
water resources in industry.

5. Conclusions

In this paper, we analyzed streamflow change trends, abrupt change years from 1955 to 2013,
separated the contributions of climate change, coal mining and SWC impacts on streamflow decreasing.
The main findings are as follows:

(1) The annual runoff presented a decreasing trend, and passed the 0.05 significance test during
1955-2013.The two significant change years was in 1979 and 1996.
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@)

©)

4)

In the first impact period (1979-1996), climate change was the main factor for annual streamflow
decreasing. Meanwhile, in the second impact period (1997-2013), coal mining was the dominant
influence on streamflow decline.

Compare two impact periods, the absolute value of climate change, coal mining and SWC impacts
on streamflow reduction were all ascending, which indicated that the impacts of above three
factors on streamflow decreasing were increasing. Meanwhile, the growth rate of coal mining
impact on streamflow decline was greater than that of climate change and SWC.

Quantifying the impacts of climate change, coal mining and SWC on streamflow decline by the
MWBM and field investigation was reasonable and feasible.
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Abstract: Water resource management is critical for the economic development of the Democratic
People’s Republic of Korea (DPRK), where runoff plays a central role. However, long and continuous
runoff data at required spatial and temporal scales are generally not available in many regions in DPRK,
the same as in many countries around the world. A common practice to fill the gaps is to use some
kind of interpolation or data-infilling methods. In this study, the gaps in annual runoff data were filled
using a distributed runoff map. A novel statistical-distributed model of average annual runoff was
derived from 50 years’ observation on 200 meteorological observation stations in DPRK, considering
the influence of climatic factors. Using principal component analysis, correlation analysis and residual
error analysis, average annual precipitation, average annual precipitation intensity, average annual
air temperature, and hot seasonal air temperature were selected as major factors affecting average
annual runoff formation. Based on the water balance equation and assumptions, the empirical
relationship for runoff depth and impact factors was established and calibrated. The proposed
empirical model was successfully verified by 93 gauged stations. The cartography of the average
annual runoff map was automatically implemented in ArcGIS. A case study on the Tumen River
Basin illustrated the applicability of the proposed model. This model has been widely used for the
development and management of water resources by water-related institutes and design agencies
in DPRK. The limitation of the proposed model and future works are also discussed, especially the
impacts of climate changes and topology changes and the combination with the physical process of
runoff formation.

Keywords: average annual runoff; runoff map; hydrological model; GIS; DPR Korea

1. Introduction

Research regarding water resources estimation at regional and continental level contributes a
lot in establishing water resources management policy [1-3], and water resources assessment is the
first step for water resources development. Runoff plays a central role in water resources assessment.
Generally, water resources are evaluated by means of average annual runoff [4,5], the mathematical
expectation of multiyear observations of annual runoff, and can be described as runoff depth [4,6-12].
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Usually, in hydrologic modeling, a water balance equation is used for the computation of average
annual runoff, keeping in mind the factors affecting annual runoff [5,9,13-19].

Usually, average annual runoff is computed by means of multiyear data, while in some cases,
from one-year data. However, long and continuous runoff data at required spatial and temporal
scales are generally not available in many regions around the world, due to the costs involved in
measurements, difficulty in accessing the locations of interest, and malfunctioning of the measurement
devices, among others. A common practice to fill the gaps is to use some kind of interpolation or
data-infilling methods. Many average annual runoff models have been reported for water resources
development in regions which lack observational data [1,4,8,12,20-22]. The accuracy of the average
annual runoff model mainly depends on the factors affecting annual runoff [23-27], which can be
computed by principal component analysis and the factor analysis method [11,28,29].

Research has confirmed that the factors affecting runoff formation vary with locality [17]. It is well
accepted that precipitation is the main meteorological factor for runoff formation [22]. The physical
characteristics of the watershed underlying surface also play an important role, which includes land
use, soil type, slope, vegetation, etc. [30-32]. Human activities like agriculture irrigation, urban water
supply, and drainage, water division projects inevitably lead to changes in water resources.

Recently, lots of hydrological progress has been observed in modeling spatial variation of
precipitation, infiltration, and evaporation with the advancement in 35 technology (GIS—geographic
information system, RS—remote sensing, and GPS—global position system) [33] and computer
information processing [5,34-38]. It is highly practiced in those regions for runoff estimation which
lacks observational data, i.e., ungauged areas, for evaluating water resources.

Runoff maps are frequently used for highlighting spatiotemporal changes in water
resources [10,20,39-42], while maps of meteorology factors are used for interpreting spatiotemporal
changes in precipitation [13], evaporation [5], catchment classification, estimation of hydrologic
response in ungauged catchments [10,12], etc.

In general, average annual runoff is computed by methods based on the geometric center of
the river basin. Such methods, however, often fail to provide reliable runoff maps for small- and
medium-sized rivers. Since hydrologic models take into account the local natural geographic, climatic,
hydrologic characteristics and local data, such models are very useful for generating runoff maps in
small and medium-sized rivers.

This study was rooted in the Democratic People’s Republic (DPR) of Korea, where very limited
hydrology studies were reported in the literature. Scientific water resources management is critical
for the recent economic reformation and opening up of DPR Korea. Runoff-based water resources
assessment on the whole nation is significant. However, due to the data limitation, advanced hydrology
models with high resolution are not applicable in DPR Korea. An empirical statistical approach to
produced distributed runoff results is preferred, especially for ungauged areas. Therefore, we attempted
to address these issues in the present study. Making good use of 50 years of records in 200 meteorological
stations, a statistical-distributed average annual runoff model was developed in this work.

The rest of this paper is organized as follows: In Section 2, the climate condition and the water
balance relationship in DPR Korea is described. The factors affecting the average annual runoff are
analyzed by principal component analysis (PCA) and explained. In Section 3, the new statistical annual
runoff model is clearly described. Furthermore, model verification and cartography of the runoff map
in GIS are presented. Section 4 presents the analysis and results for the Tumen River Basin. Sections 5
and 6 discuss and conclude the research.

2. Rainfall-Runoff Relationship and Runoff Impact Factors

2.1. The Precipitation and Temperature Characteristics in DPR Korea

DPR Korea has a temperate monsoon climate, four distinct seasons, average annual temperature
varies from 8 °C to 12 °C, and average annual precipitation varies from 1000 to 1200 mm. Most of the
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precipitation falls in July-August (see Figures 1 and 2). Average annual monthly temperature and
precipitation characteristics are shown in Table 1.
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Figure 1. The monthly distribution of precipitation in the Democratic People’s Republic (DPR) of Korea.
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Figure 2. The monthly distribution of temperature in DPR Korea.

Table 1. The average annual temperature and precipitation in DPR Korea.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Average daily
maximum temperatures -1 2 9 17 23 27 29 29 25 18 9 2
O
Average daily
minimum temperature -1 -8 -2 5 11 16 21 20 14 7 0 -7
O
Average precipitation
amount (mm)

12 11 25 50 72 90 275 213 100 40 35 16

Average precipitation 5 4 5 7 8 9 14 11 7 6 7 6
days (d)

2.2. Watershed Water Balance Relationship

Annual runoff is computed using the classical water balance Equation [43]:
Y=P-ExAS (1)

where Y is the annual runoff depth (mm); P is the annual amount of precipitation (mm); E is the annual
amount of evaporation (mm); and AS is the change in water storage.
The change in basin water storage can be ignored, i.e., equal to zero, when considering multiyear
average (see Equation (2)):
Y=P-E ()
Equation (2) can also be denoted by annual runoff coefficient p= Y /P and annual evaporation
coefficient ng = E/P.

p=1-1 ©)
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E can be computed indirectly by hydrometeorological observations using the values of P and Y.
Calculating the values of E is challenging due to the influences from climatic factors, geographical
factors, etc. [44]. Since soil type affects water exchanges with the atmosphere, Reder et al. evaluated the
sensitivity of the annual average of runoff, precipitation, evaporation, and deep drainage to different
soil types in China and argued the importance of clarifying the role of “geomorphological factors” [30].
Li et al. found that the effect of climate change on evapotranspiration was much more significant than
the effect of land use and land cover changes in China [44].

Usually, the average annual runoff model is formulated by establishing a relationship between the
parameters and elucidating the influence of factors affecting evaporation E or evaporation coefficient 7.

In DPR Korea, the correlation coefficient between rainfall and runoff varies from 0.90 to 0.98,
which makes the surface water consistent throughout the year. There are regional differences among
river runoff, but 60% to 80% runoff flows occur in the summer.

2.3. Factors Affecting the Annual Runoff Formation by PCA

Time series of the main factors affecting runoff formation can be obtained using the principal
component analysis method. The basic data matrix can be configured as follows:

Yyu Yz o Y
yipxm =| TR @
Ypi Y2 o Ypn

where y is annual runoff; p is the size of observational series; and # is the number of observation stations.
Then, the measured values can be represented as follows:

Y(t,x) = Ta(£)x1 (x) + Ta(£)x2(x) + - Tou(£)m (x) )
Or: "
Y(tx) = ) Te(t)Xk(x) (6)
k=1

where Ty (t) is the coefficient related to the time; Xj(x) is the function characterizing the distribution

field; and m is the number of factors affecting average annual runoff formation, k=12, ... ,g,... ,m.
Standardizing basis data and evolving obtains an #n X n correlation matrix. It should satisfy a

relationship of m < n. In this case, the principal component analysis model can be obtained as follows:

(R-ADX =0 @)

where R is correlation matrix and I is a unit matrix.
The characteristic equation is:

[R—AIl =0 (8)
Time coefficient matrix is:
m
Z Ythgz
z=1
ng = m ) (9)
Z ng
z=1
wherez =1,2,...,m.
The contribution rate is: A
= —t— x100%, (10)
Y M
k=1
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m
where Y A =m (i=1,2,...,m).
i=1
Eigenvalue Ax(k =1 ~ m), eigenvector matrix X(m x n), and the time coefficient matrix can be

computed using Equations (7)—(9) consecutively. We computed all the main components using the
correlation coefficient between the time coefficient matrix and the factor variables.

The meteorological and hydrological observatory is in the countryside in DPR Korea (see
Figures 3-5 for the spatial distribution of average annual precipitation and average annual temperature
evaluated over the 1961-2010 period, respectively, by interpolation).
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Figure 4. Spatial distribution of average annual precipitation evaluated over the 1961-2010 period (cell
size: 10.0 km x 7.1 km).

Table 2 shows the contribution rate and the cumulative contribution rate for the components
of factors affecting runoff, calculated using the hydrological observation station data in DPR Korea.
The principal component analysis mainly highlights the first four factors. It is obvious that runoff
depth in the mentioned regions in Table 2 can be computed using two factors, but for other river basins,
at least four factors should be used. Next, the correlation coefficients between time coefficient s and
major factors were computed.
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Figure 5. Spatial distribution of average annual temperature evaluated over the 1961-2010 period (cell
size: 10.0 km x 7.1 km).

Table 2. The contribution rates for components (%).

No Region Conll:;r;:\ent Cosne\;(::\int Third Component  Fourth Component
Cumulative Cumulative Cumulative
1 Taedong River Bain 86.6 59 92.5 4.1 96.6 12 97.8
2 Chongchon River Basin 87.9 6.0 93.9 22 96.1 18 97.9
3 Rgf;‘].’;g;\i";‘:r]aia;““’ 88.1 52 93.3 48 98.1 1.0 99.1
4 Abrok River Basin 749 7.2 82.1 6.4 88.5 3.8 92.3
5 East coast area 66.5 111 77.6 8.3 85.9 4.6 89.9
6 Whole DPR Korea 68.5 7.0 75.5 52 80.7 45 85.2

2.3.1. The Primary Factor: Average Annual Precipitation

Precipitation is obviously the major factor affecting runoff formation. The relationship between
precipitation and time coefficient for the first component is computed. Variation in annual precipitation
P is considered to be the first factor, and the time coefficient Ty of the first principal component in
the Taedong River Basin is shown in Figures 6 and 7. It is obvious from Figure 6 that the Taedong
River Basin has a high correlation of 0.94 between P(t) and T (t), while for other river basins, it is 0.78
or more.

It is clear from Table 2 that in the whole area of DPR Korea, the first and second component
contribute 68.5% and 7% to the river basin, respectively. It is difficult to identify and directly calculate
the second, third, and fourth component. Therefore, they are computed using correlation and
regression analysis.

In correlation analysis, the water balance equation is as follows:

h=P-z=P-E-u
z=E4+u=P-h (11)
H=h4+u=P-E

where  is the runoff depth of surface water; z is loss of precipitation; # is underground runoff depth;
and H is whole runoff depth, including surface water and underground water.
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Figure 6. The relationship between P(t) and T (t) in the Taedong River Basin.
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Figure 7. The change curves of P(t) and T (t) in the Taedong River Basin.
2.3.2. The Relationship between Average Annual Losses and Average Annual Air Temperature

The second factor can be computed indirectly using a water balance equation, considering annual
loss as the effect of precipitation (the first factor) removed up to some level. Generally, most of the
annual precipitation is lost by evaporation. Seepage losses are usually ignored while using the water
balance relationship for the computation of average annual runoff.

As shown in Figure 8, high correlation exists between average annual precipitation losses z and
average annual temperature T in Taedong River. The high correlation coefficient of 0.64 between z
and T also denotes that groundwater movement is relatively active in the Taedong River Basin. It is
worth noting that there is no linear relationship between z and T, as shown by the lower bound line
(dotted line) of distributed dots. The average annual temperature is the primary factor, while the air
temperature is the secondary factor affecting evaporation losses.
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Figure 8. The relationship between the average annual losses z and the average annual temperature T
(Taedong River).
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2.3.3. The Relationship between Average Annual Losses and Average Annual Precipitation Intensity

Compute evaporation losses by primary and secondary factors affecting evaporation losses and
then find out the residue for average annual loss as shown below:

Azy =z—-2 =z-f(P,T) (12)

where 2’ is the calculated evaporation loss.

The residue Az; is high in some areas (northern inland and northern area of the east coast of DPR
Korea), as the remaining factors affecting evaporation losses were not considered.

Annual precipitation intensity is defined as:

P
I=— (13)
Ny
The residual coefficient is defined as:
Az
Naz = 71 (14)

where Nj, is the number of annual precipitation days.

The correlation coefficient between I and 1, is —0.51, which denotes their inverse relationship
(Figure 9). It was stated earlier that evaporation loss has a nonlinear relationship with precipitation
intensity, which shows that the number of annual precipitation days (annual precipitation intensity) is
one of the major factors affecting the annual runoff formation.

Figure 9. The relation between I and 1, in DPR Korea.

2.3.4. The Relationship between Continuous Residue and Air Temperature of the Hot Season

Continuous residue (Azp) and its coefficient for annual losses can be written as follows:

Azy =z - f(P,T,I) (15)
Az
Nazy = Tz (16)

It is obvious from the computation that the average range of variation in 1,,, is less, compared to
1z, but some new factors affecting 1, have a large value which cannot be ignored. The evaporation
rate is higher in summer compared to winter owing to air temperature. Therefore, the average annual
and air temperature of the summer should be considered. The difference in air temperature is given
as follows:

At=T -T (17)

where T is average air temperature from May to October and T is the average annual air temperature.
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The relationship between the difference in air temperature (At) and the continuous residue
coefficient (1)a,) is shown in Figure 10. The correlation coefficient between At and 7, is 0.74.
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Figure 10. The relationship between At and 1,,, in DPR Korea.

The air temperature of the hot season (or the difference of air temperature) is one of the main
factors affecting annual runoff [4,45]. The difference (or range of variation) between the upper boundary
and the lower boundary indicated by a broken line in Figures 9 and 10 is as follows:

Moz, (1) = [1a2, (D], = [182, (D], ¥ 030

up

ey (81) = [z, (A1)] = [0z, (A1), > 020

The functional relationship of 1, (I) and 1, (At) is illuminated, as it causes 30% and 20% of
the annual precipitation, which leads to the error reduction in annual runoff and/or annual losses
computation. It is worth noting that the number of annual precipitation days, the air temperature of
the hot season, average annual air temperature, and annual precipitation are the main factors in runoff
formation. This can be expressed by the general function, which is given below:

h=f(P,T,I,At) (18)
3. Development of an Empirical Average Annual Runoff Model

3.1. Model Development and Description

The general formula can be obtained from the water balance equation and runoff formation factors

stated above:
E = f(P,T,1,At)
z=f(P,T,I,At, ) } (19)

Therefore:
H=P-E=f(P,T,I,At) 0)
h=P-z=f(P,T,1Ata)
where « is a set of variables affecting the underground runoff.
Whole runoff coefficient gy and surface runoff coefficient ¢;, can be written as follows:
({)H=1—T]E=f(P,T,I,At) 1)
op=1-n.=f(P,T,I,At, )
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E < zand ng < 1, because most of the losses (z) are caused by evaporation (E). Only E or ng can
be computed by the mathematical method using the observational data and the factors (P, T, and At)
studied above.

Let us consider the relationship between the loss coefficient 11,, precipitation p, and air temperature
t. Draw a curve for the west area of the river basin. The relationship is given as follows:

NEtp = ka]Et (22)
where: L6
L7 (P > 1000 mm)
kp = (1330)—0.72 (23)
() (P <1000 mm)

0.218¢%1°T(T > 11 °C)
ner =4 0.072e021%(11°C > T >4°C) (24)
0.110e"1%%(T < 4°C)

where 1]gy, is the evaporation loss coefficient defined by the precipitation and air temperature, and kp
is the influence coefficient of annual precipitation.

As shown in Figure 11, some dots are remarkably deflected from the curve drawn by Equation (22).
Quantities are computed to characterize the deflected degree for each region, which is given below:

Naz = Nz = NEwy (25)

K = U"T; 26)

where 75, is the first residual coefficient of losses, and k] is the proportionality coefficient which
characterizes the deflected degree between 7, and 7gyy.
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0.0 L
0 2 4 6 8 10 12 14

Figure 11. Scatter plot of k; vs. I and the relationship curve of k; = f(I).

The factor defining the first residue Az; and the coefficient 7,,, of annual precipitation intensity I
have already been investigated. The relationship between k; and I is shown in Figure 11, where the
kr = f(I) curve is drawn for the lower boundary condition, which estimates the underground runoff
component in the future. Then, the equation of the relationship curve is given below:

ky = 2.98170-% (27)

where kj is the influence coefficient of annual precipitation intensity.
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The deflection degree of dots from the curve can be computed as follows:

NEepl = kimegy (28)

NAzl = Mz — NEtpl (29)
’ 1z

K, = — 30

At T]Etpl ( )

where NEwpI 18 the evaporation coefficient calculated by the air temperature, precipitation, and number
of annual precipitation days.

Continuous residue Az, or coefficient 1,;, is related to the difference between the average
temperature T” of the hot season (May to October) and the average annual temperature T. Therefore,
the relationship between coefficient k), and At is analyzed as shown in Figure 12.
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Figure 12. Scatter plot of k, vs. At and the relationship curve of ka; = f(At).

The lower bound line of the relationship defines the lost quantity due to the influence of factors
(P, T, I, At), as mentioned earlier.
The equation of the relationship curve can be written as follows:

K = { 008 o > 10°O) (1)
0.1973e%16%48 (At < 10 °C)
The evaporation loss coefficient defined by P, T, I, and At can be represented as follows:
NEtpiat = NEtkpkikat (32)
The third residue Azz and coefficient 75, can be calculated as follows:
NAzy = Tz = NEtpIAt (33)
Azz =z — Pgwia (34)

It is worth noting that the values of Azz and 1., were found to be very small or close to zero except
for some special regions. There was a small difference in the computed values for some regions (west
coast zone, northern inland, and east coast zone), while a big difference for other regions (Taedong
River Basin). It is reasonable to consider Az3 as the loss constituent by the underground runoff rather

56



Water 2019, 11, 965

than evaporation loss by the climate factors. If Azj is the loss component of the underground runoff,
then the evaporation coefficient nr and the evaporation can be represented as follows:

NE = NEwpiat = NEtkpkika (35)
E = P']EtkpklkAt (36)

Whole runoff coefficient ¢y and whole runoff depth can be represented as follows:
on = 1 —nekpkika (37)

H= P(l - nEfkkakAt) (38)

Equations (37) and (38) are just the average annual runoff models.

This model has high accuracy as well as logical validity, universality, and objectivity that can be
applied to all river basins in DPR Korea. Underground runoff can be computed from surface runoff
using this model.

The average annual runoff model has some characteristics as follows. The first model considers
all the influencing factors of average annual runoff formation and computes them. This model is
based on factor analysis, which takes into account annual average precipitation P, air temperature
t, annual precipitation intensity I, and hot season temperature ty. This model is consistent and has
logical validity.

This model is consistent with the physical nature of the natural phenomenon. If P — oo, then
ky — 0, and finally ng — 0 and ¢ — 1. Moreover, when precipitation is reduced to zero, i.e.,, P — 0,
precipitation P,, called a lower limit precipitation as greater than zero at the moment that runoff
reaches to zero, i.e., Y = 0 and/or ¢ = 0, is present, i.e., P, > 0, and P; is determined by temperature T,
precipitation intensity I, and temperature difference At.

This model demonstrates that when P = 0, notonly ng = 1 or ¢ = 0, butalsong =1lor¢e =0
subjected to P = P, > 0 according to the values of T, I, and At. This model also considers the regional
distribution characteristics of influencing factors. The annual runoff map of each factor influencing the
annual runoff formation should be developed by a spatial interpolation tool before developing the
annual runoff map. All those factors influencing the average annual runoff formation are computed
through the Kriging interpolation method [46] (see Figures 4 and 5).

The interpolation accuracy of factor fields was high at a grid cell size 10 x 10 km, keeping in mind
the density of the meteorological observation network in DPR Korea. The model using values of grid
cell type is treated linearly values on the same grid cell. Therefore, grid cell size greatly affects the
calculation accuracy of models.

This study, to correctly determine grid cell size, analyzed the spatial change of climatic factors
according to the distance between observation stations for 200 stations, and the analysis results showed
that values of all climatic factors linearly changed within 10~20 km. Additionally, we estimated the
interpolation error by calculating values and observed values for grid cell sizes of 10 km, 15 km, and
20 km, respectively. The results as an example of average annual precipitation and average annual air
temperature show that their relative errors are within 7~18% in a flat area and mountains for the case
of more than 10 km, and within 0.2% for the case of 10 km. The study used a grid cell size of 10 km
based on the above research.

Water resources can be exactly evaluated using the average annual runoff model based on the
regional distribution of factors affecting the annual runoff formation. Therefore, an annual runoff map
of grid cell type can be developed using this model.

3.2. Model Verification on Guauged Area

The proposed average annual runoff model was verified by relative errors between computed
values and observed values of runoff depth in 93 gauged sites in DPR Korea. Table 3 shows the number
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of sites where the relative error is less than 5%; among the 93 sites, this applies to 83, meaning 89.25%
of all sites, and all sites have a relative error of less than 10%. This denotes the usability of the empirical
model in the whole area of DPR Korea.

Table 3. Relative errors of calculated runoff depth.

Relative Error (%)

Statistics
<3.0 3.1~5.0 5.1~10.0
The number of sites 62 21 10
Rate occupied sites (%) 66.67 22.58 10.75
Accumulated number of sites 62 83 93
Accumulated rate of sites (%) 66.67 89.25 100

3.3. Cartography of Average Annual Runoff Map

Initially, 200 observation station data were interpolated from 1961 to 2010 using the Kriging
interpolation technique for the factors (precipitation P, temperature, T, precipitation intensity I, and
temperature difference At) affecting annual runoff formation using ArcGIS 9.2 (see Figures 4 and 5).
Average annual runoff depth and average annual runoff modulus for the node points of the grid cells
was computed using the average annual runoff model. Then, the values of the grid cell center were
computed. Using Equation (38), the value of average annual runoff depth in each node points is
computed as follows:

vii = Pif(1 = e ) X o) X Kicijy X Kari ) (39)

where:

NEi(i,j) is the influence coefficients of average annual temperature in grid cell i, j;

k(i
ky(;,j) is average annual precipitation intensity in grid cell 7, j;

) is average annual precipitation in grid cell 7, j;

kag(i,j) is the temperature of hot season affecting the annual evaporation in grid cell 7, j.

A value of any grid cell center point is computed as the mean value of its four nodal points
(Equation (40)).
Yij = (Ya+ Yo+ Ye +ya) /4 (40)

The central values were updated, which leads to the completion of the average annual runoff map.

Water resources information can be easily obtained from the ungauged region using the runoff
map developed by GIS spatial analysis tools. Average annual runoff depth can be computed in the
upper basin of any river cross section using ArcGIS 9.2 and the runoff map of grid cell type using the
weighted average method as follows:

r

where Yj; is average annual runoff depth in a grid cell i, j; n is the number of grid cells included in the
selected area; and k; jis the area weight in grid cell 7, j, namely:

L

ki = AF

(42)
where AF is the area of a grid cell having the size of 10 km X 10 km, i.e., AF = 100 km?; and A fi j (kmz)
is the component area occupied on the grid cell.

kij = 1.0 and k;; < 1.0 for completely and partially contained grid cells within the watershed
boundary, respectively. Average annual runoff depth can be obtained directly from the average annual
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runoff map on the river basin, where the basin area is smaller than 100~200 km?, ie., F <100 ~ 200 km?.
The abovementioned procedure is automatically executed by a spatial analysis tool in GIS.

4. Application on Tumen River Basin

4.1. The Natural Geographic Characteristics of Tumen River Basin

Tumen River is a boundary river passing through the border of DPR Korea, China, and Russia (see
Figure 13). The area and length of the Tumen River Basin is 32,920.0 km? and 547.8 km, respectively.
Tumen River is the second longest, and the basin area is the third largest in DPR Korea. The average
annual precipitation of the river basin is below 600 mm. It is smaller than other basins because
of the influence of the Hamgyong Mountain Range. Figures 14 and 15 show the map of average
annual precipitation and the map of average annual temperature evaluated for 50 years in the Tumen
River Basin.
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Figure 14. The map of average annual precipitation evaluated for 50 years in the Tumen River Basin
(DPR Korea side).
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Figure 15. The map of average annual temperature evaluated for 50 years in the Tumen River Basin
(DPR Korea side).

4.2. Water Resources of Tumen River Basin (DPR Korea Side)

The proposed average annual runoff model was applied to the Tumen River Basin (DPR Korea
side) for water resources computation. Figures 16 and 17 show the map of average annual evaporation
and average annual runoff depth of the Tumen River Basin (DPR Korea side), respectively. The mean
value of average annual precipitation, average annual evaporation, average annual runoff depth,
average annual runoff, and total water resources of the Tumen River Basin are approximately 604 mm,
254 mm, 350 mm, 11 £/s - km?, and 3,707,829 x103 m3, respectively. It is evident from the results that
great care is needed to protect water resources for ecological environment protection, establishment
and implementation of the strategy for supports development because the water resources of the
Tumen River Basin are running short due to exceeding evaporation, which is comparatively greater
than in other river basins.
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Figure 16. The map of average annual evaporation evaluated for 50 years in the Tumen River Basin
(DPR Korea side).
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Figure 17. The map of average annual runoff depth evaluated for 50 years in the Tumen River Basin
(DPR Korea side).

5. Discussion

At present, it seems we are more interested in modeling runoff at finer resolutions, i.e., daily and
subdaily scales, rather than an annual scale. However, such a straightforward empirical model is also a
useful management tool. An average annual runoff model was applied to assess the water resources of
the river basin and can be used to determine average annual runoff in ungauged basins. This method
is widely used for the development and management of water resources by the water-related institutes
and the design agencies in DPR Korea.

Water resources can be easily computed in any region by a spatial analysis tool of GIS. The study
of the distributed hydrologic model considering the physical, geographical, and meteorological factors
influencing the runoff formation is one of the current trends in hydrological studies. Spatial variation
in all those factors affecting runoff formation can be easily obtained by emerging technology such as 35
(GIS, RS, GPS). The distributed parameter model is more efficient than the lumped parameter model.
This model develops a water resources map for the whole country in a very short time compared to
the traditional models. The accuracy of the distributed model partly depends on the interpolation
accuracy of the influencing factors in the model. In this study, variation in meteorological factors by
topography was not considered. Due to a long length of 50 years of records in the case study of the
Tumen River Basin, climate change may be taken into consideration in future work, and this is an
important topic on recent water resource management studies [15,18,47-49]. The proposed statistical
model can also be used for evaluation of climate change and human activity influence on the water
resources of DPR Korea.

The formation of surface runoff-infiltration and Hortonian overland flow [36,50] is disregarded in
the modeling process since the spatial-temporal scale in this study is much larger. The in situ process
of runoff formation was not described in the model. It may be an interesting topic to be considered
in future studies that focus on how to combine the infiltration and Hortonian flow process in our
empirical model to improve the model accuracy.

DPR Korea is characterized by a combination of a continental climate and an oceanic climate.
The calibrated model in the work can rationally be used on other countries or regions where runoff
formation condition is the same as DPR Korea, and the proposed approach has universal applicability,
since it is deduced from the basic water balance model. To apply to other countries or regions,
it needs to consider different climate, runoff formation condition, and data availability in the local area,
and the empirical relationship may differ. Hydrological models should be derived considering the
meteorological, natural geographical conditions, and hydrological characteristics of the study area.

Comparison with more complex distributed hydrological models [51] like SWAT is able to support
the verification of this new statistical model. However, due to data limitation, this is an issue at
this stage.
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6. Conclusions

This work developed an empirical hydrological model to provide fundamental information on
the principal components of the water balance period in a predefined area over a selected time. It can
also be used for future projections to some extent. PCA identified the four major factors contributing
to the variation of average annual runoff in DPR Korea. The proposed average annual runoff model
was composed of average annual precipitation, average precipitation intensity, average annual air
temperature, and hot seasonal air temperature. It was proven through hydrologic data for 93 river
basins of DPR Korea that the proposed statistical model can sufficiently reflect the physical nature of
runoff formation in DPR Korea. Kriging interpolation tools of Arc GIS 9.2 were used to estimate the
spatial distribution of factors affecting average annual runoff formation. A 10 km x 10 km grid cell size
was used to interpolate factor fields, which was determined through analysis for spatial change of
climate elements in 200 weather stations of DPR Korea. Average annual runoff depth for each grid
cell can be easily computed through Equation (39) using the spatially distributed fields of factors
affecting annual runoff formation. Further, in this study, a grid cell type runoff map was developed
by the average annual runoff data of each grid cell and the proposed cartography of the average
annual runoff map and use method. The case study on the Tumen River Basin demonstrates that this
research work is highly significant for decision makers as it highlights variations in water resources,
which are important for water resources development and management. The statistical-distributed
hydrological model facilitates hydrologists in water resources assessment and information sharing in
an ungauged area.
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Abstract: In Western Bahia, one of the most active agricultural frontiers of the world, cropland area
and irrigated area are increasing at fast rates, and water conflicts have been happening at least since
2010. This study makes a hydroclimatic analysis of the water resources in Western Bahia, from both
supply and demand viewpoints. Time series of precipitation for the period 1980-2015 and river
discharge for the period 1978-2015 are analyzed, indicating a significant reduction of up to 12% in
rainfall since the 1980s, and a reduction in river discharge in all stations studied, in both the rainy
season and the dry season. Combined with that, irrigated area has increased over 150-fold in 30 years,
and in the most irrigated regions, has increased by 90% in the last eight years only. Seven regions in
Western Bahia have been identified where the potential for water use conflicts is critical. Moreover,
the combination of reduced availability and increased demand of water resources indicates that,
if current trends are maintained, conflicts over water may become more frequent in the next years
or decades. A short-term alternative to avoid such conflicts is to largely avoid irrigation during the
months with low discharge. However, a monitoring system in which the availability and demand
of water resources for irrigation are actually measured and monitored, is the safest path to provide
water security to this region.

Keywords: climate change; MATOPIBA agricultural frontier; water security; hydroclimatic analysis;
water conflicts

1. Introduction

The relationship between water and conflict is an area of continued interest and debate in both
the policy and water resources literature and in the popular press [1]. Conflicts arise by several
socioeconomic, political, or biophysical causes, including proximity to the water source, government
type, aridity, climate variability and change, and rapid population growth. The dispute becomes much
more challenging when there are multiple causes for the conflict. This work provides a case study of a
region where two factors, climate change and intense irrigation growth, contribute to increased friction
on the use of water resources: Western Bahia, in Brazil.

The western part of the state of Bahia is one of the most active agricultural frontiers of the world,
where land use transition started in 1985 [2]. Western Bahia (Figure 1) is part of a wider region called
MATOPIBA (acronym formed by the states of Maranhao, Tocantins, Piaui, and Bahia), an agricultural
frontier in the Cerrado biome in Brazil, and characterized by rapid changes in land cover and land
use for cropland, especially soybean, and agricultural intensification through the adoption of new
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technologies, leading to high yields. In Western Bahia, cropland area has reached 2 million hectares in
the 2016/2017 growing season, mainly soybeans, cotton, and maize [3].

A major difference between Western Bahia and the rest of MATOPIBA is that the impressive
extensification has been followed by a no less impressive increase in irrigated area, which grew from
9 pivots in 1985 to 1550 center pivots in 2016 [4]. The region includes three river basins (Rio Grande,
Rio Corrente, and the northern part of the Rio Carinhanha), all tributaries of the Sao Francisco River,
and also sits on the top of the Urucuia aquifer [5], a vast geological formation that is connected to the
rivers, and helps regulate their seasonality and interannual variability. Five small hydroelectric plants
operate in the region, all on tributaries of the Rio Grande upstream of the town of Barreiras (Figure 1),
with power ranging from 450 kW to 25 MW [6].
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Figure 1. Study area representing the river networks, sub-basins with flow measurements analyzed in
this study (hatched areas), regions with high irrigation (gray areas), and the location of main towns.
LEM is the town of Luis Eduardo Magalhaes. The rectangles represent the zoom areas detailed in
Figure 5. River flow stations A-F are described in Table 1.

The long-term (1980-2015) precipitation, evapotranspiration, and runoff for the region are
1060 mm year‘l, 860 mm year‘l, and 200 mm year‘l, respectively. However, the region is located in the
transition between the seasonally dry Cerrado biome to the west (annual precipitation >1200 mm year™!
and a six-month rainy season, from mid-October to mid-April) and the semi-arid Caatinga biome
to the east (annual precipitation <800 mm year~! and a four-month rainy season). Precipitation,
evapotranspiration, and runoff are seasonal. Precipitation typically varies from 0-10 mm month™! in
the driest months (June, July, August) to about 150-200 mm month~! in the rainiest months (December
and January). Monthly evapotranspiration (from MODIS MOD16 product) typically varies between

66



Water 2019, 11, 933

20 mm month~! in September and 85 mm month~! in February. Despite the high seasonality in
precipitation, the seasonal variability in runoff is relatively small, with maximum discharge about three
times greater than the minimum discharge, which is an indication of the strong regulation provided by
the Urucuia aquifer. Temperatures and solar radiation are high around the year and, with the aid of
irrigation, would allow for year-round crops (five to six crop growing seasons in two years), limited
only by phytosanitary regulations. These circumstances have contributed to the intense growth of
irrigation in the region [7].

Conflicts over the use of water have become common in the region in the last decade, however few of
them have been documented. Maybe the first documented conflict happened in 2010. The hydropower
station Sitio Grande on the Rio das Fémeas, a tributary of the Rio Grande, is the largest plant in the
region and has a water permit of 12 m3 s™!, the largest water permit in the region, about 1/3 of the water
rights granted in the Rio Grande basin [8]. Despite being the largest grant, this is a non-consumptive
use of water, as the water is not withdrawn from the river, but instead it must be available at the
river to flow through the turbines. The conflict happened during the initial filling of the lake, which
interrupted the flow of the river for several days with environmental and social consequences.

Conflicts kept being reported informally through social networks, personal communications, etc.
Another formal documentation happened in 2015, an El Nifio year when the region experienced a
severe drought (2015 annual rainfall was 674 mm, one of the lowest on record). On 11 December 2015,
the Rio Corrente Basin Committee requested a temporary suspension on the concession of water use
permits on the basin until further criteria for water permits on the basin are defined [9]. On 2 November
2017, the usually peaceful town of Correntina (population 32,000) made the national headlines [10],
when about 500 people invaded one farm that received recent irrigation systems and destroyed a
significant part of their facilities and equipment as a way of protesting against the appropriation of
water by agribusiness. A week after, on 11 November, approximately 10,000 people marched peacefully
through Correntina, in defense of the Rio Corrente and its tributaries [11].

Although the water use conflicts in the region are usually attributed to the immense growth
rate of irrigation systems, climate variability may also play an important role. Being in the transition
between the semi-arid and the seasonally dry tropical climate regions, Western Bahia may be a serious
candidate for climate change. This study makes an hydroclimatic analysis of the water resources in
Western Bahia, from both the supply and demand viewpoints.

2. Data and Methods

Data and methods used in this analysis are summarized in Figure 2. Long-term time series
of precipitation and river discharge are analyzed to evaluate the availability of water resources for
irrigation, while maps of irrigation areas and interviews with irrigators are produced to evaluate the
demand of water resources. We conclude with recommendations to improve water management and
avoid further water conflicts.
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Figure 2. Flowchart illustrating the data and methods.
2.1. Precipitation and River Flow Data

Precipitation data in the region have been available through the INMET (Instituto Nacional de
Meteorologia) and ANA (Agéncia Nacional das Aguas) weather station and rain gauge networks since the
1930s, but the network was sparse and the time series were frequently interrupted. A somewhat dense
network was available only in the late 1970s. To characterize regional patterns, the daily precipitation
dataset of Xavier et al. [12] was used, which is available at a grid resolution of 0.25 x 0.25 (approximately
28 km X 28 km) for a 36-year period of 1980-2015. This dataset was assembled from the available rain
gauge, conventional, and automatic weather stations. Original data were quality-controlled, and six
different interpolation methods were tested (average of the five nearest data points; natural neighbor;
thin plate spline; inverse distance weighting; angular distance weighting; and ordinary point kriging).
The accuracy of the interpolation methods was evaluated by a cross-validation procedure, in which an
observed data point was temporarily removed from the database, and then used to test the estimated
value by each interpolation method at the location of the station. Angular distance weighting was
considered the method with best skill [12,13]. To evaluate longer trends (before 1980), the station of
Barreiras (WMO code 83236) was also used, which has nearly continuous data since 1961.

The daily river flow data (m3/s) used are provided by ANA. The fluviometric data are available
since the 1930s, with a low density of stations and significant gaps. From 1930s to 1970s, there are
about 30% of gaps in the data series and some discontinued stations. Quantity and quality of data
increased in the 1970s, with only 2% of gaps, and we initially selected 25 river flow stations with few
gaps since 1978.

The granting of water use permits in the Grande and Corrente basins is an attribution of the State
of Bahia, which uses the criterion that 80% of Qg can be granted for human use (according to State
Decree number 6296 of 21 March 1997). Qg is the flow expected to be present in the river during at
least 90% of the time, i.e., during 90% of the time series used in the calculation, there is a flow equal or
greater than Qg in the river.

To follow this criterion, our analyses of water availability are based on the flow duration curve of
specific sections of the rivers. A flow duration curve is a cumulative frequency curve that shows the
percent of time specified discharges were equaled or exceeded during a given period. Here, Qg was
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calculated using the long-term series (LT Qqp), which is a more common criterion for granting water
use permits, but we also calculate Qg using two periods, to characterize hydroclimate change.

Although we analyzed data for 25 fluviometric stations, six stations were selected for a deeper
analysis (Table 1, Figure 1). These stations are spread throughout the region and are representative
of the regional variability. Moreover, four stations were chosen because they have dense irrigation
systems upstream (A-D), while two of them (E,F) were chosen for their low irrigation density upstream.

The flow stations drain relatively large areas, and (with the exception of station B) may not be
representative of the densest irrigated areas. Thus, seven ottobasins with the highest concentration of
center pivots (represented by gray areas in Figure 1) were also analyzed. Ottobasins, or Otto-codified
hydrographic basins, are areas of contribution of the stretches of the hydrographic network coded
according to the topological system proposed by Otto Pfafstetter [14,15] and officially adopted by ANA
to uniquely identify contribution areas in any watershed using a simple 10-base code. The system is
hierarchical and recursive, and the higher number of digits in the ottobasin code implies a higher level
of sub-division of a watershed.

Table 1. Selected river flow stations. The letters correspond to the labels of stations in Figure 1.

ANA Drainage Station
Station River Station Name Municipality Area (km?) Coordinates

Code
A 46543000 Rio de Ondas Fazenda Redengao Barreiras 5383.758 12°08’ S, 45°06” W
B 46570000 Rio de Janeiro Ponte Serafim Barreiras 2522.118 11°54’ S, 45°36’ W
C 46415000 Rio Grande Sitio Grande Sao Desidério 4943.866 12°25’ S, 45°05" W
D 45840000 Rio Formoso Gatos Jaborandi 7132.696 13°42' S, 44°38' W
E 45910001 Rio Corrente Santa Maria da Vitdria Santana 29,643.660 13°24’ S, 44°12' W
F 46790000 Rio Preto Formosa do Rio Preto  Formosa do Rio Preto 14,326.870 11°03’ S, 45°12' W

2.2. Statistical Tests

We applied four statistical analyses to detect changes in the rainfall time series. First, we applied
the non-parametric Pettitt’s test [16] for detecting changing points to the region-wide precipitation
time series. This is a rank-based and distribution-free test for detecting a significant change in the
mean of a time series and it is particularly useful when no hypothesis is required about the location
of the changing point. The Pettitt test has been widely applied to detect changes in the observed
hydroclimatic time series [17,18], and can only be applied to continuous time series. Considering a
sequence of random variables Xj, Xy, ... , X7, which have a change point at t = 7. As a result, (X1, Xy,

., X¢) have a common distribution function Fy(X), but (X(;1, X¢42, ..., X7) are distributed as F,(X),
where F;(X) # F2(X). The null hypothesis Hy for this test is that the observations are independent and
identically distributed (no change, or T = T), and is tested against the alternative hypothesis H;: change
(or 1 < 1 < T); using the non-parametric statistic Kt = max|U 1| where:

T
Z signl Xt )
t+

1

t
Uy =
i=1j=

The confidence level for a change-point is defined as

-6K2
p=exp T3 TZ

Second, we applied a classical Student’s t-test to test the null hypothesis that the annual mean
precipitation is not significantly different from one period to the other, where periods are divided at
t = 7, obtained by the Pettitt’s test.

Third, we applied the Mann-Kendall test for trends in the time series, a non-parametric,
distribution-free test that makes no assumptions of linearity or distribution of the values. This test has
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been recommended widely by the World Meteorological Organization for general trend analysis of
time series [19]. Finally, we used box plots to evaluate the interannual variability of precipitation.

2.3. Irrigated Area

The irrigated area by center pivots was obtained by a four-step procedure. First, imagery from
Landsat 5, 7, and 8 for the period 1990 to 2018 was processed using the Google Earth Engine cloud.
The images were filtered using the median of the pixels for the dry period (April to September) and
mosaicked for the study region, to produce a single region mosaic per year. Second, the filtered map
was merged with the center pivots data from Landau et al. [20] and from the OpenStreetMaps project
to obtain an initial pivots map of the region. Then, duplicated features and topology errors were
removed from the dataset. Third, with the aid of the visible bands (RGB) and the normalized difference
vegetation index (NDVI) from the generated mosaics, the center pivot features were digitized or erased
according to the recognition in the images of each year. Finally, the annual center pivot geometries
went through a trend and precision analysis of their positional components for positional accuracy
validation, producing a final map without trends in center pivot sizes and with accuracy adequate to
the scale of 1:150,000, compatible with the resolution of the Landsat images.

The resulting yearly maps for Western Bahia were further processed at the ottobasin scale, to
select only the highly irrigated regions, i.e., ottobasins with at least 4% of their total area irrigated in
2018. A total of seven regions were selected (gray areas in Figure 1).

2.4. Calculations of Regional Water Demand for Irrigation

The regional water uptake for irrigation depends on (1) the effective area irrigated at some time
(A1), in km?; (2) the reference evapotranspiration rate (ET,), in mm/day; (3) the crop being irrigated and
its stage of development, which are integrated into an adimensional “crop coefficient” K., that usually
varies between 0.3 and 1.3; and (4) the efficiency of the system (e), which for center pivots is typically

around 0.8. The water uptake for irrigation (Qy) in m® s™! is the product of these four terms:
_ A{K.ET,
Q=g

Although we have mapped all center pivots in these regions, our estimates of irrigated area
should be understood in terms of area with installed irrigation systems. These systems may be used
fully, partially, or not at all, depending on the year and the season. Currently, there are no regionally
consolidated data of the actual amount of irrigated area nor the crops planted per center pivot as a
function of time.

To overcome this limitation, we interviewed 20 irrigators and one irrigation consultant (who
consulted for several tens of irrigators). Interviews were conducted between July 2018 and October
2018, either in person or by phone. We asked questions about the frequency of irrigated crops a year,
typical planting dates, crops planted, amount of irrigation applied, and the main reasons why they
make their management decisions.

3. Results

3.1. Changes in Precipitation

Figure 3 shows the evolution of annual mean regional precipitation for the three basins. In addition,
data for the Barreiras station are also shown. An analysis of Figure 3 indicates that two main
characteristics of these time series stand out. First, annual mean precipitation presents strong
interannual variability, ranging from ~600 to >1700 mm year~!. In other words, individual precipitation
years range from values typical of the semi-arid climate east of the region to values typical of the
tropical seasonally dry climate west of the region. The interannual variability pattern is also consistent
across the three basins, which indicates that it is large-scale driven. In addition, the regional pattern
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correlates well with the data at the Barreiras station, which allows for speculative interpretations in the
period before 1980.

Second, basin-wide precipitation has not been greater than 1370 mm year~! since 1992, while
this level has been exceeded five times between 1980 and 1992, and another five times in the period
from 1961 to 1979, if considering the Barreiras data. This is a major shift in the precipitation regime,
that affects the regional decadal means. To be sure, we applied the non-parametric Pettitt’s test for
detecting changing points to the region-wide 19802015 time series, which confirms a changing point
at T =13 (1992), with Kt = 87 and significance level 4.6 X 1077,
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Figure 3. Annual mean precipitation for the three basins and historical precipitation for the Barreiras
rain gauge.

Based on this evidence, the 36-year time series of rainfall and river flow were divided in two
periods, namely P1 (1980-1992) and P2 (1993-2015), to test the hypothesis of precipitation change
between the two periods. We also tested other divisions of the rainfall time series (two periods of
18 years, three periods of 12 years), but the division in P1 and P2 was the choice that yielded the highest
significance in precipitation change.

Indeed, the regional patterns of mean precipitation for the two periods (P1, P2) show that isohyets
are moving westward from P1 to P2 (Figure 4a,b), translating into a regional drying from P2 with respect
to P1 (Figure 4c). Although the period of analysis is relatively small, significant precipitation change has
been detected. Extremely likely (« = 0.05) precipitation reduction, averaging —165 mm year™! (~12%
compared to P1 mean), appears in a core area in the west of the region. This core area is surrounded
by very likely (x = 0.10) precipitation changes (Figure 4c), and average drier conditions throughout
nearly all the region (Figure 4c). Moreover, the Mann-Kendall trend test indicates precipitation trends
consistent both in sign and in significance with the precipitation differences (Figure 4d).

Considering basin-wide averages, the significant reduction in precipitation has happened mainly
in the months with higher precipitation (December and January) in the three basins (Figure 5, « = 0.05).
In addition, the interannual variability of precipitation, measured by both the interquartile difference
and the range of variability, has also decreased in the three basins in P2, when compared to P1 (Figure 6).
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Figure 4. Average precipitation map for periods P1 (a), P2 (b) the difference between P2 and P1 (c),
and the Mann-Kendall S statistic (negative values represent decreasing trends). The six selected river
flow stations are also shown. Dotted areas represent differences significant at « = 0.05, according
to Student’s ¢ test (in c), or according to the Mann-Kendall test (in d), while shaded areas represent
differences or trends significant at « = 0.10.
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Figure 5. Monthly mean precipitation for two periods (P1 and P2) for the three basins. The shaded
area in P2 is the confidence interval for the mean (& = 0.05). Averages in P1 outside the shaded area are
statistically different at this level of confidence.
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Figure 6. Boxplot displaying the median (thick lines), the lower and upper quartile (box), the mean (red
dots), and the minimum and maximum of the distribution (whiskers) for annual values of precipitation
in periods P1 and P2. Period P1, although much shorter than P2, has higher interannual variability.

Two main large-scale systems are likely the cause of the reduced rainfall in this region, both linked
to higher interannual variability and more extreme drought years [21]. First, the warming of the
tropical North Atlantic Ocean leads to a higher frequency of anomalously northward positions of the
intertropical convergence zone (ITCZ). In addition, changes in the temperature of the Pacific manifested
as extremes of the El Nifio-southern oscillation (ENSO) are partially associated with extreme drought
in the region [22,23].

We suggest that the strong interannual variability of precipitation is driven by the seasonal
expansion of the subtropical high across northeast Brazil. In dry years (El Nifio years and warmer
North Atlantic years), it expands more to the west, reaching the Bahia/Tocantins border. In wet
years (La Nifia years and cooler North Atlantic years), it expands less, staying to the east of the Sao
Francisco River.

3.2. Changes in River Flow

The flow duration curves for the six stations analyzed in this work are presented in Figure 7.
These curves show the percent of time specified discharges were equaled or exceeded during each
period (P1, P2). All panels show that discharge has been decreasing at all levels of probability.

The discharge of these rivers is heavily regulated by the Urucuia aquifer. Parallel flow duration
curves, like Figure 7c—f, indicate that the decrease in discharge is mainly caused by the reduction in
rainfall, and modulated by the aquifer. While a monitoring piezometer network of the aquifer was set
up only in 2011, by 2015 it already shows groundwater level drawdown of up to 5 m [24].

On the other hand, when the decrease in discharge is smaller in the wet season (lower percentiles)
and higher in the dry season (higher percentiles), which is the case of Figure 7b, this is an indication that
withdrawal of water during the dry season may be playing a relevant role in the decrease of discharge.
It is no coincidence that station B (also region R2 in Table 2) is the one among the six selected with the
highest density of irrigation upstream (4.8% of the upstream area irrigated), while the other ones have
less than 1% of their drainage area irrigated. We suggest that water withdrawal for irrigation is only
detectable in fluviometric records when irrigation upstream is between 1% and 4% of the drainage
area of the station.

In addition, it can also be verified in Figure 7 that nearly all discharge data recorded during
P1 in these six stations are higher than Qg of P2. This means that, even considering the long term
(1978-2015), Qg is mostly defined by the discharges observed in P2 only. This is confirmed by Figure 8,
which clearly shows that most of the situations when daily discharge Q is smaller than the long-term
Qqp (LT Qgp) happens after 2000. In an extreme case, station D in a very dry year like 2015, 72% of
the days (263 days out of 365) had daily Q lower than the LT Qgy. Although this is a severe case, it is
relatively common to find years when more than half of the days are below the LT Qqg.
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Figure 7. Flow duration curves for stations A-F for periods P1 and P2. Values in the x-axis are the
probability that a given discharge (Qp) is exceeded during that period. The intersection of the dashed
line, representing the 90% percentile, and each curve, represents the Qq.

Our interpretation of these data is that, even if considering its relatively short (38 years) duration,
all river discharge time series are non-stationary. Discharge has been decreasing all over the spectrum
and throughout the region, minimum discharges have been defined in the most recent years, and
even when the most recent dry years have been considered for the definition of minimum discharges,
the actual recent rate of occurrence of a relatively unlikely phenomenon like Q < Qg is four to
seven times higher than the expected probability. Under these circumstances, probability discharges
cannot be used to predict the distribution of future flows. In addition, although the results are not
shown here, the above characteristics are consistent across 24 of the 25 stations analyzed, except the
northwesternmost station (upstream of station F), only area where precipitation did not decrease.

Non-stationarity can be explained by several factors, such as changes in river basins by
anthropogenic effects, climate change, and low-frequency climate variability [25]. Moreover, this
does not seem to be the case of uncertainty dominating the distribution of extremes, as suggested
by Serinaldi and Kilsby [26]. The entire flow duration curve has shifted down, not only the extreme
values. This is very much consistent with the picture of rivers regulated by a decreasing-level aquifer,
following a reduction of the aquifer recharge after reductions in precipitation, arguably caused by a
strengthening of the South Atlantic subtropical high-pressure system associated with the warming
of the North Atlantic and Central Pacific, the ultimate causes for the non-stationarity. This is our
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current reasoning for the attribution of causes, although it can only be verified through detailed

hydrogeological modeling and large-scale climate dynamics studies, which are beyond the scope of
this work.
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Figure 8. Percentage of days in each year when actual Q is below the long-term Qgg. Long-term Qg is
calculated for the period 1978-2015. The concentration of cases of Q < LT (long-term) Qg after 2000
indicates drastic reductions in minimum discharges.

3.3. Trends in Irrigated Area and Water Uptake on the River Flows

To evaluate the effects of irrigation water uptake on the river flows, we choose seven regions
with the highest concentration of irrigated area, where these effects are expected to be most significant.
These seven regions have between 4.8% and 12.6% of the area of the ottobasin irrigated, while no
other ottobasin in the region has more than 4%. The spatial evolution in irrigated area in these regions
(R1 to R7) is shown in Figure 9. The total irrigated area in these seven regions was 662.4 km? in 2010,
which increased to 1256.1 km? in 2018, a 90% increase in just eight years (Table 2). Figure 10 shows the
temporal evolution of irrigated area for each region. Each region has a different pattern of growth,
but all regions show a substantial increase in irrigation since the 1990s.
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Figure 9. Evolution of irrigated area for selected regions for 2010 and 2018. Each center pivot ranges
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Table 2. Selected regions (R1-7) where irrigated area is located in Figure 9, with corresponding ANA
Ottobasin codes. The region R2 coincides with the drainage area of station B.

. ANA Total Area (km?) Irrigated Area in 2018
Region . .
(Ri) Ottobasin River Ottobasin  Region Ottobasin ~ Region % of Total
Code 8 (km?) (km?) Area
R1 76243 Rio Branco 3403.5 2329 2329 6.8%
R2 46570000 * Rio de Janeiro 2522.1 122.2 4.8%
R3 762641 Rio Cabeceira de Pedras 1739.6 108.6 6.2%
R4 762691 Rio Bora 938.3 89.2 9.5%
R5 7626711 Rio de Ondas 778.64 1939.2 121.1 2442 12.6%
762661 Rio de Ondas mouth 222.33 339
762691 Rio Bora (upstream) 938.3
R6 762891 Rio Grande 197.10 2075.2 42.0 194.7 9.4%
76489 Rio Guara 295.04 11.1
762871 Rio Grande 361.45 421
76285 Rio Grande 789.94 37.2
76282 Vereda Passaginha 431.66 62.3
R7 764271 Rio Pratudao 662.35 3865.0 14.3 264.2 6.8%
76426 Riacho do Vau 702.94 115.0
764241 Rio Formoso 2499.73 134.9

* Represents the fluviometric station code.
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Figure 10. Evolution of irrigated area in selected regions, as defined in Figure 9 and Table 2.

With the area irrigated estimated and the areas with intense irrigation growth identified, in order
to calculate water uptake, information on water demands per unit area are still needed (Section 2.4).
From the interviews conducted, during the driest period of the year (September and October),
when river discharge approaches Qg values, water application rates (K. ETo/¢) could be as high as
10 mm day~!, if the irrigator had a high consumption crop like maize at the peak of the cycle (K. ~1.3);
at the same time, when ET|, is very high, because cloudiness is low, incoming solar radiation is at a
yearly maximum and relative humidity is low. However, this is a highly avoided situation by irrigators,
because of the high costs of energy in September and October.

The electric energy fares in most of Brazil are flagged (green, yellow, or red) according to the
actual costs to produce energy in the country. In 2017, on an annual mean, 63.8% of the electricity
generated was hydroelectric, 17.2% was produced from fossil fuels sources, other renewables (biomass,
solar, and wind) accounted for 17.6%, and nuclear participated with 1.3% [27]. Hydroelectricity is
usually much cheaper than the other sources, and its availability is also seasonal. So, during the end
of the rainy season, when reservoirs are at the highest level, proportion of hydroelectricity increases
and costs decrease (green flag), while at the end of the dry season (September and October), when
reservoirs are at the lowest level, proportion of fossil fuels (and costs) increase, leading to the red flag
tariff (Bandeira vermelha). Although this is the general pattern, other factors, like interannual variability
of rainfall, and any other significant changes in supply or demand may also affect the flagging, which
is updated monthly.

If the irrigators generally avoid having high consumption of water during the driest months, what
management do they usually practice at this time of the year? The results of our interviews indicate
that the most common situations are either to have a crop at the end of the cycle when K. is small
(~0.65), or to have the crop cycle (and irrigation) finished by this time of the year.
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We then consider two scenarios of regional water management for these seven regions,
an aggressive one and a conservative one. In the aggressive scenario, maximum crop output is
emphasized; regionally, irrigators would be planting year-round crops (either perennial crops like
coffee, or sequential seasonal crops, like soy, cotton, maize, or beans); if sequential seasonal crops, one of
the crops would be at the end of the cycle in September and October (K. = 0.65), demanding on average
5 mm/day (150 mm/month) for all areas with irrigation systems installed; and irrigators plan to sow the
next crop after the onset of rains in late October or November. The conservative scenario assumes that
one-third of the irrigated area is cultivated with only two crops a year, and there is no irrigation during
the driest months (K. = 0); two-thirds of the irrigators still act aggressively, as in the previous scenario,
some of them because they grow perennial crops and must irrigate year-round; all farmers still plan to
sow the next crop after the onset of rains in late October or November, to minimize the costs of energy.
Regional irrigation in this conservative scenario is the weighted average of the irrigation levels (1/3 x 0
+ 2/3 x 150), or 100 mm/month.

Again, these are scenarios based on the declared experience of the local people. So far, there are no
public yearbooks that document month-by-month variations in planted area, just snapshots of irrigated
area that do not capture the quick growth of irrigation systems in the region, neither the seasonality,
nor the timing of irrigated crops. In a future work, we plan to use remote sensing to estimate the actual
amount of irrigated area and the irrigation period per center pivot as a function of time.

Water uptake for irrigation (Qy) was estimated from the multiplication of the total area irrigated
by the water application rates in the two irrigation management scenarios. Evolution of Q; from
1990 to 2018 is shown in Figure 11, for regions R1 to R7. Discharge measurements are not available
for these regions (except for R2, which will be analyzed again in Figure 12), so we use regionalized
values of Qg [28]. This technique is a downscale of discharge for drainage areas smaller than the
available measurements, using empirical equations based on independent variables like area upstream
or average precipitation upstream. These authors tested several empirical relationships, and the best
skill low streamflow regionalization was obtained by basin-specific regression equations of Qg against
the upstream long-term annual rainfall minus an initial abstraction of 750 mm (Peq750 = P — 750) as
independent variable [29].

Figure 11 plots 80% of long-term Qg (the maximum discharge that could be granted for all human
use, including irrigation). A water use conflict situation appears when the demanded water resources
(blue or green lines) are higher than the availability of water resources (horizontal dashed red line).
The aggressive scenario (blue line) implies conflicts in regions R1, R2, and R4. In the Rio de Janeiro
region (R2), at least since 1997, these conflicts may have been sporadically occurring, depending on
year-by-year decision to irrigate in the low flow months. This helps explain why the installation of
center pivots has been halted between 2005 and 2013 (Figure 10b). Conflicts, however, may be avoided
by a community decision to follow the more conservative scenario, which tolerates additional increases
in irrigation area, as observed after 2015 (Figure 10b).

In R3 and R5, although the estimated demand of water resources has not yet reached the limit of
80% LT Qqy, they all show a quick increase in the use of water, and if the rates of irrigation growth
continue to be high, water conflicts are imminent. In regions R6 and R7, although imminent conflicts
may be in principle discarded, conflicts may still arise in the timescale of a decade or two, if irrigation
growth rates remain high.
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Figure 11. Scenarios of discharge uptake for irrigation in selected regions, assuming two water
application rates (100 and 150 mm/month). 80% of long-term Qg is the maximum river discharge that
can be granted permission for human use [17].

The intense growth of irrigation systems (90% from 2010 to 2018, Table 2) is hardly the only
concern for water users in Western Bahia. As described in Figure 7, the safe discharge for concession of
water use permits, Qqg, has decreased everywhere in the basin. Qg is mostly defined by the discharges
observed in P2 only, which covers the period 1993-2015, so the use of updated hydrological information
is crucial to minimize the hydroclimatic risks (Figure 8). In fact, Figure 12A-F does a similar water
conflict analysis for the six selected hydrological stations. Of those, four (Figure 12A-D) have much
irrigation upstream, while two of them (Figure 12E,F) have little irrigation upstream. A remarkable

feature of Figure 12 is the decrease of Qq, calculated only with data for P1 and only with data for P2
(black dashed lines).
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Figure 12. Evolution of discharge uptake for irrigation (QI) in the drainage area of each river flow
station, assuming two water application rates (100 and 150 mm/month). 80% of long-term Qg (dashed
red line) is the maximum that can be allocated at that point. The black dashed lines represent the
change in the availability of water resources from P1 to P2.

4. Discussion and Conclusions

4.1. Climate Change and Intense Iirrigation Growth: Increasing Water Stress

An analysis of Figure 12A-D indicates that conflicts of water use may arise much sooner if outdated
hydroclimatic information is used to define water granting rights. For example, a hypothetical Qg

80



Water 2019, 11, 933

defined using only pre-1992 data is between 15% and 60% higher than the Qg calculated when the
more recent years are considered (black dashed lines). Following the non-stationarity of the time series,
the long-term Qg (1978-2015) nearly coincides with the recent, shorter-term (P2) Qg everywhere in
the basin. In particular in Station B, which is coincident with R2, as early as the late 1990s, irrigation
water demands, probably granted based on data of a wetter period, were no longer consistent with
the decreasing availability of water resources. This inconsistency was probably understood in 2003,
when discharge was low (below long-term Qg) during 45% of the year (Figure 8b), leading to a
halt in the installation of new center pivots in the area shortly after (Figure 10b). However, since
2015, irrigated area in the region has resumed its expansion, which is of much concern (Figure 10b).
Water withdrawn for irrigation certainly affects the measurements, in particular in regions with a high
density of irrigation systems like the sub-basin upstream of station B. This effect, however, is reduced
in the other stations, which have a smaller density of irrigation systems.

At least seven sub-basins in Western Bahia are either in a state of conflict for the use of water
or are moving rapidly towards it: Rio Branco, Rio de Janeiro, Rio Cabeceira de Pedras, Rio Bora,
Rio de Ondas, Rio Grande (headwaters), and Rio Formoso. These sub-basins account for 17% of the
area of Western Bahia. In these seven critical sub-basins, water conflicts are imminent, if irrigators
actually irrigate in the driest months of the year, when discharge usually gets around or below Qqgg.
As a short-term alternative, conflicts can be avoided if irrigators largely avoid irrigation during these
months. As shown in Figure 8, this is not restricted to a few months of the year. In many dry years,
nearly half of the year daily discharges were below Qgp, with an extreme case in station D (Formoso
river) in the very dry year of 2015, when daily Q was below Qgy during 72% of the year. To be sure,
such Qg already includes 2015 data.

Because of the declining rains and water resources, the water resource concession limits (80% of LT
Qqp) may be reached with a much higher frequency than originally planned if outdated hydroclimate
information is used. The combination of strong increase in demand of water for irrigation and the
maintenance of low flows may bring much more critical consequences for water management in the
region in the next years. Here, we discuss four different pathways to reduce water stress and increase
water security: (i) Avoid irrigation during the low flow period; (ii) halt the installation of new irrigation
systems; (iii) bet on a return to wet conditions; and (iv) invest in a hydroclimatic monitoring system.

4.2. Avoid Irrigation during the Low Flow Period

Avoiding irrigation during low-flow periods can be achieved by planting only two crops a year,
one from November to February, and a second one from March to June. This is the most natural
reaction to improve water security. This practice maximizes the use of rain during the six-month rainy
season and cuts the use of irrigation to typically two months, reducing the water consumption not
only because of the short irrigation period, but also because of the low ET rates at the end of the cycle.
In addition to increasing water security, this practice also reduces production costs by avoiding the
high costs of energy during the end of the dry season in Brazil, when additional energy tariffs (bandeira
vermelha) are charged.

On the other hand, this practice has several drawbacks. Multiple cropping increases the revenue
per plot, provides diversification of income, reduces pest pressure, and helps to maintain a more stable
pool of farm labor, avoiding seasonal unemployment and the related social consequences [30]. It is also
an important factor in the intensification of land use, which, if combined with additional conservation
measures, reduces the pressure to expand cropland at the expense of natural ecosystems, possibly
sparing land from deforestation. Moreover, this practice is not applicable on perennial crops.

4.3. Halt the Installation of New Irrigation Systems

Halting the installation of new irrigation systems, either through a ban of new water permits or
by collective irrigators decision, is a short-term measure that vigorously attacks the problem from the
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viewpoint of the increasing demand. As stated earlier, this alternative has been requested by the Rio
Corrente Basin Committee as a precautionary measure.

This option, however, does not resolve the conflicts of the regions already under a state of conflict,
in particular in the Rio Grande basin, where the water demands are already too high in some places.
It also does not address the problem of decreasing water availability. In addition, there are the economic
consequences on jobs, tax revenue, and economic growth.

Although severe, it may be necessary in some regions with very high demands, in particular if the
minimum discharges continue to decrease. A constant update of the low discharge values would be
desired in this case.

4.4. Bet on A Return to Wet Conditions

The third alternative is to consider that current low precipitation period is not permanent and
climate will return to the pre-1992 wet state.

Given the low skill of the current generation of interdecadal climate prediction models [31], it is
hard to forecast whether these reducing precipitation trends will continue in the next decades. As said
before, the location of Western Bahia in the transition between the semi-arid and the seasonally dry
tropical climate regions makes it a serious candidate for climate change. CMIP5 simulations indicate a
strengthening of the South Atlantic subtropical high, with a reduction of precipitation in the semi-arid
of Northeast Brazil, and a possible expansion of the semi-arid climate over the region with a current
seasonally dry climate [32]. This expansion, however, is somewhat uncertain given the relatively
coarse resolution of the climate models involved in the CMIP5 ensemble (from 1.1° to 2.8°), when
compared to the east-west dimension of the region (~2.5°). Despite the low skill of these models,
the most likely scenario for the 21st century, as simulated by the CMIP5 ensemble, is an additional
drying of the region, in particular in the months of September, October, and November, with very high
agreement among models [21].

In addition, because the local rivers are connected to the Urucuia aquifer, pre-1992 river discharge
levels may only be resumed after the aquifer previous levels of storage are restored, which may take
from several years to several decades—our current understanding of the coupling of the aquifer and
the rivers of the region is not sufficient to answer this question more precisely. Moreover, since the
aquifer water level monitoring network was only set up in 2011, we do not know what the state of the
aquifer was during the wet climate period.

In summary, climate models do not support a return to wet conditions—on the contrary. Even if
climate models drying predictions do not materialize, it may take several decades to return to former
conditions. Betting on this is a risky alternative.

4.5. Invest in A Hydroclimatic Monitoring System

The three alternatives discussed earlier may mitigate water conflicts, but all have their setbacks
and risks. Western Bahia is an agriculture frontier under constant change, lacking a crucial element
for management: Data. As stated earlier, the water resource management based on the long-term
probability of hydroclimatic events requires at least a constant update of the low discharge values.
But this does not seem to be sufficient. In the most water-stressed regions described above, a true
management, in which the availability and demand of water resources for irrigation are actually
measured and monitored, is the safest path to provide water security to this region. Such a monitoring
system will allow a more confident and sustainable regional management of irrigated agriculture,
maximizing the use of water resources, food production, and economic development, while reducing
the risk of water conflicts.

This monitoring system should have three components: (1) Measurement and short term reporting
of river discharge at key points in these basins, in particular in the sub-basins where the concentration
of irrigation areas is higher; (2) a hydroclimatic forecast system to predict the availability of water
resources at the period of lowest availability (September and October) several months in advance,
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in order to influence the irrigator decision to conduct an irrigated crop and when to plant this irrigated
crop; and (3) monitoring and short-term reporting of the actual consumption of water for irrigation at
the sub-basin scale. The latter can be done using either one of three possibilities: (i) Installation of
hydrometers at each pumping station; (ii) correlation of water consumption with energy consumption,
and monitor the latter; and (iii) monitor the actual evapotranspiration through operational remote
sensing products, such as the MOD16 evapotranspiration product, correctly calibrated with field data
for a reliable representation of reality. These measurements must be integrated at a monitoring center,
which would periodically issue recommendations of how much area can be irrigated that year.

4.6. Final Remarks

It has been argued that water crises are mainly crises of governance [33]. Governance is a
more inclusive concept than government itself, embracing the relationship between a society and
its government. Governments mediate behavior through institutions, policies, laws, norms (like
issuing water permits), and actions (like fiscalization and enforcement), but governance also relates
to domestic activities, networks of influence, international market forces, the private sector, and civil
society [34]. This concept has been incorporated by the Brazilian Policy on Water Resources (Law 9433
of 8 January 1997), which states that management of water resources must be decentralized with the
participation of the government, users, and communities. The suggested monitoring system would
provide the regional stakeholders (government agencies, agribusiness, and organized civil society)
with the necessary data and decision-making tools to make key decisions.

One such key decision is the determination of how much area may be irrigated at each ottobasin in
each year, a critical decision in this region with very high interannual variability of rainfall. The correct
decision of how much area to be irrigated each year, according to the estimated availability of water
resources, may contribute to avoid water use conflicts during the low water season, providing water
security for both large irrigators and small farmers. If used wisely, it may also promote the long-term
planning of the sustainable expansion of irrigation in the region, supporting the increase in the
production of food, feed, and fiber, improving food security as well as water security.
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Abstract: Climate change and human activities are two driving factors that affect the hydrological
cycle of watersheds and water resource evolution. As a pivotal input to hydropower stations, changes
in runoff processes may reduce the effectiveness of existing operation procedures. Therefore, it is
important to analyze the influences of cascade hydropower stations under climate change and human
activities and to propose revised optimal operation strategies. For the present study, three runoff
series conditions including: Initial runoff, affected by only climate change, and affected by both
climate change and human activities are examined by a simulation model to analyze the influence on
power generation with four schemes. Additionally, an optimal operation model of cascade power
stations is proposed based on the simulation model to generate single and joint optimal operation
charts for future hydrological scenarios. The paper also proposes to change human activities based
on optimizing operation rules to reduce its influence on downstream power stations. This procedure
is theoretically applied and varied for three power stations in the upper Han River, China. The
results show that the influence of climate change is greater than that of human activities in that power
generation decreased by 17.95% and 12.83%, respectively, whereas combined, there is a reduction of
25.71%. Under existing hydrological conditions, the modified single and joint operation charts would
increase power generation by about 32 million and 47 million kWh. Furthermore, after optimizing
the upstream project, the abandoned water and power generation of these cascade power stations
would reduce by 150 million m? and 5 million kWh, respectively. This study has practical significance
for the efficient operation of cascade hydropower stations and is helpful for developing reservoir
operation theory under changing environments.

Keywords: climate change; human activities; power operations; cascade joint operation chart;
inter-basin water transfer project

1. Introduction

Climate change and human activities are two factors driving change in the hydrological cycle of
watersheds and water resources in terms of hydrological response, energy structure, and the social
economy, which have become the focus of current research in the field of global change [1,2]. Climate
change leads to changes in atmospheric circulation including evaporation and precipitation conditions,
through changes in rainfall distribution, and the evaporation and precipitation conditions in surface
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waters and soils [3,4]. Human activities including agricultural irrigation, water conservancy projects,
and urbanization have directly affected the natural circulation of water resources in many regions [5,6].
These changes lead to decreases in runoff and increases in extreme events [7,8]. According to the IPCC
assessment report, global climate has warmed over the past 100 years, and the climate change has
seriously affected the streamflow regime [3]. Consequently, climate change and human activities have
threatened the availability of water resources that is critical to human survival, especially in terms of
energy structure and production [9,10].

According to the U.S. Climate Change Science Program (CCSP), a new clean energy structure
that includes solar, wind, and hydro-power would be an effective solution to control CO, emissions
caused by coal power generation [11]. Additionally, hydropower is also responsible for regulating
the safety of power grid systems in future energy structures [12]. Take the current Chinese energy
structure as an example, the hydropower installed capacity had exceeded 300 GW, about 50% of the
total installed power capacity, up to 2015, and about half of total power generation was hydropower
from 2000-2015 [13]. However, hydropower is vulnerable to climate change and human activities [14].
As an important input to the hydropower generation system, runoff and water distribution changes
under the influences of climate change and human activities would directly impact the operation
of power stations. Therefore, researching the influences of climate change and human activities on
hydrological systems and establishing efficient coping strategies are of great significance for cascade
power stations.

In recent years, scholars have carried out research on how climate change and human activities
have affected the hydrological processes and the operation of hydropower stations. Viers considered it
necessary to anticipate changing climatic and hydrological conditions for a similar period of time for
operations of hydropower stations [15]. Harrison G P built a simulation model based on electricity
systems to explore the sensitivity of power station operations to climate change [16]. Ehsani indicated
that modifying reservoir operations and increasing the size and number of dams was necessary to
offset the vulnerabilities of water resources to future climate uncertainties [17]. Ahmadi established
the reservoir optimization scheduling model on the premise of considering future climate change,
and the model coordinated the contradiction between the power generation guarantee rate and the
vulne’rability of the reservoir [18]. Minville took the Peribonka basin water resources system in Canada
as an example, and evaluated the impact of climate change scenarios on the adaptive scheduling results
of the water resources system [19]. However, most previous research has focused on determining the
characteristics and extent of change in hydropower systems under climate change [15-19]. There have
been few studies on the combined effects of climate change and human activity coping strategies for
power stations. Chang proposed an optimal adaptive operation chart for cascade hydropower system
to increase power generation under changing environmental conditions providing novels methods for
hydropower station operation under climate change [13].

Meanwhile, to balance the economic development of different regions, changing the distribution of
water resources artificially has occurred more frequently [20]. For example, a number of Inter-Basin Water
Transfer (referred to hereafter as “IBWT”) projects have been built, so the runoff of the source area was
changed [21]. The operation of original cascade hydropower stations under new hydrological conditions
would be challenging for both water source areas and water intake areas [22,23]. Therefore, assessing the
combined impact of climate change and human activities on the operations of hydropower stations and
developing novel operational strategies to respond to changing conditions are more necessary.

Based on previous studies, the main objective of this study is to generate modified operation
charts for the cascade power stations in the upper Han River to reduce the influence of climate change
and human activities. This study analyzes the extent of impacts from climate change and human
activities on power station operation both separately and combined. Then, the simulated reservoir
operation charts are modified based on the traditional operation chart, and an optimal single and
cascade operation charts are generated by the cuckoo algorithm based on the simulated chart. Finally,
an optimal operation chart of the Hanjiang to Weihe River Valley Water Diversion Project (referred
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to hereafter as “the Project”) is generated considering the downstream cascade power stations. This
research would help quantify the impact of climate change and human activities on the operation of
power stations, and provide reference value for the coping strategies for power stations.

2. Study Area and Data

2.1. The Upper Han River

The Han River is the largest tributary of the Yangtze River, China. The upper Han River is located
before the Danjiangkou reservoir, with a length of 918 km and a drainage area of 95,200 km?. The
upper Han River is in an area with a subtropical humid climate. The annual rainfall distribution in this
area is uneven and most runoff recharge is surface runoff from rainfall. The main flood season is from
July-September; however, some small floods also occur from mid-late April [24].

The Han River occupies a prominent position in the social development of the Yangtze River
Basin. Besides providing water to the provinces in the basin, the Han River is also the water source
of some IBWT projects, such as the Project and the Mid-Line Project of the South-to-North Water
Transfer Project. The Project being built is the only large-scale human activities in the upstream of
the cascade power stations, like Figure 1 shows, the cascade power stations must be affected by the
future operation of the Project [25]. Also, Chang has verified that the runoff in the upper Han River is
mutated resulted from climate change [13]. Therefore, it is urgently needed to modify the operation
charts for these hydropower stations to respond to future changing hydrological environments caused
by climate change and human activities.
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Figure 1. distribution map of power stations and reservoirs in the upper Han River, the blue area is
water resource areas of the Project, the brown area is intake areas of the Project and the gray area is
power stations in the downstream of the Project.
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2.2. Cascade Hydropower Stations

There are three hydropower stations on the upper Han River, namely Shiquan, Xihe, and Ankang,
which are the research objects of this paper. The characteristics of the cascade reservoirs are listed in
Table 1.

Table 1. The characteristics of the cascade reservoirs of Shiquan, Xihe, and Ankang hydropower stations.

Index Unit Shiquan Xihe Ankang
Average annual discharge m%/s 308.3 378 621
Normal water level m 410 362 330
Dead water level m 400 360 305
Regulation storage 108m? 1.8 0.22 14.72
regulation performance / seasonal Daily incomplete yearly
Installed capacity MW 225 180 852.5
Guaranteed output (Ng) MW 32 21.8 175
Annual average power generation 108 kW-h 6.06 4.92 27.48
Maximum head m 47.5 325 88
Minimum head m 26.3 13 57
Maximum power flow m?/s 677.5 811 1500

These three power stations are an important part of the Northwest Power Grid, which is responsible
for power generation, power grid peaking, and frequency modulation. In the upstream of the cascade
hydropower station, the Project is being built, which will inevitably affect the operation of the cascade
hydropower stations.

2.3. The Project

Uneven distribution of water resource is obvious in Shaanxi province, China, where the southern
region has a large amount of water resource, and the central and northern regions is shortage.
This situation is caused by weather conditions and the rapidity of the economic development and
urbanization in the area coupled with a growing population and poor water resource management [26].
As a strategic project to improve the ecological environment and to upgrade industry, the Project is
being developed in the upper Han River and will be in operation by 2025. The main task of the Project
is to transfer multi-year average of 1.5 billion m® of water from the Han River to the Guanzhong
region, including important cities, counties, and industrial parks. The Project consists of two water
source areas connected by a water transfer tunnel. The Huangjinxia reservoir (HJX) in the main stream
has abundant water with no regulation ability, and the Sanhekou reservoir (SHK) in a tributary has
pluriennal regulation capacity with less water.

The reservoirs and power stations in the upper Han River are shown in Figure 1, the Project is
located upstream of the Shiquan power station. The Shiquan reservoir has an annual average inflow of
about of 10 billion m?, it means that the amount of water transferred by the Project accounts for 15% of
the inflow of the Shiquan reservoir.

2.4. Data Collection

In the present study, the monthly inflow data series for the three reservoirs were from 19542010
and were considered to be reasonable and representative. Information on the water transfer process of
the Project from 1954 - 2010 was from the Yangtze River Water Resources Commission. The reservoir
inflow data and the conventional hydroelectric operation charts (Figure 2) of Shiquan and Ankang were
obtained from the hydropower plants. The operation chart consisted of four parts and the meaning
and application of each is as follows:
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(1) Part A refers to the guaranteed output area located between the upper and lower basic
lines. If the water level at time ¢ is in this part, then the hydropower station operates based on the
guaranteed output.

(2) Part B refers to the increased output area located between the upper basic line and the
anti-abandon water line. If the water level at time ¢ is in this part, then the hydropower station should
increase output based on the guaranteed output. In Shiquan and Ankang power station, the discount
factor is 1.2, it means the hydropower station should operate based on 1.2 times guaranteed output.

(8) Part C refers to the decreased output area located between the lower basic line and the dead
water line. If the water level at time t is in this part, then the hydropower station should decrease
output based on the guaranteed output. In Shiquan and Ankang power station, the discount factor is
0.8, it means the hydropower station should operate based on 0.8 times guaranteed output.

(4) Part D refers to the flood control area. Once the water level is in this part, the reservoir should
operate under the specified flood control rules.
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Figure 2. Conventional hydroelectric operation charts for Shiquan (a) and Ankang (b). The red line
and green line are the upper basic line and lower basic line, respectively. The blue line and the purple
line are the 1.2 Ng and 0.8 Ng line, respectively.
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3. Materials and Methods

3.1. Variation of Runoff

The Mann-Kendall (MK) test is a nonparametric method for analyzing trends in time series and
is recommended by the World Meteorological Organization [27,28]. Many scholars have used the
MK test to analyze trends in precipitation, runoff, temperature, and water quality. The MK test is
simple and easy to calculate and is applicable to data of non-normal distribution such as the data
generally found in hydrology and meteorology studies. The detailed calculation process can be found
in References [29,30].

3.2. Hydroelectric Operation Charts

Operation rules are an intuitive and practical way to guide the operation of reservoir, and the
operation chart is a practical method for applying the rules in practice and so have been widely used
in engineering operations [31,32]. The hydropower plant compares the conditions of the reservoir
with the operation chart and accordingly stores or discharges water from the reservoir to meet the
power generation requirements of the power system. For most hydropower plants, the hydroelectric
operation charts were generated by historical runoff series and practical experience without hydrological
forecasting [33]. However, under the combined influences of climate change and human activities,
inflow runoff has changed since the traditional operation chart is designed according the initial runoff
series. If the regulation capacity of a reservoir is limited compared with its inflow runoff, then runoff
would largely determine the power generation of the hydropower stations. Especially if the guaranteed
output area is too wide so that it further increases the difficulties in finding optimal global solutions.
Therefore, exploring the coping strategies that are used to adjust conventional operation charts is of
great urgency.

In recent years, much research regarding operation charts has been conducted, from which the
methods of operation charts can be classified into three categories. One is the regular operation chart
based on a simulation model with some manual corrections [34]. Second is the implicit stochastic
optimal operation. The historical runoff series are input into the deterministic optimization model to
obtain the optimal running solutions of the reservoir, and the operation rules are mined based on these
solutions [35]. However, this operation chart is easily influenced by data mining methods and system
errors. Third is to optimize the generalized operation chart directly [36]. The advantage being that the
operation chart is optimized directly with less decision variables to avoid the “dimension disaster”,
and getting reasonable solutions by the long runoff series instead typical year. The optimization results
can directly generate operation charts and can be analyzed and compared intuitively. Considering the
existing conventional operation charts and basic rules, the third method was chosen for the present
study. The four main parts are defined as follows:

(1) Part one: Generalize the initial operation charts, including the type and location of the selected
water level line.

(2) Part two: Build a simulation model based on the basic rules and determine the
objective functions.

(8) Part three: Choose the decision variables and an optimization method, and input the
runoff series into the simulation model to calculate the objective function based on the generalized
operation charts.

(4) Part four: Start evolution and iteration, and select the final operation chart corresponding to
the best objective function result.

Reservoir operation methods have been greatly developed over the past 64 years. Little first
applied dynamic programming and Markov chain methods to reservoir scheduling [37]. Evolutionary
algorithms have also been widely used to optimize reservoir operations owing to their simple
principles, easy implementation, parallel search capability, and global optimization ability, such as
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Genetic Algorithm [38], Particle Swarm Optimization [39], Cuckoo Search Algorithm (CS) [40], and
Differential Evolution Algorithm (DE) [41]. The CS algorithm was chosen for use in the present study
owing to its superior search performance, fewer parameters, and robustness to obtain the optimal
operation charts. CS mainly involves initializing the population, using Levi’s flight to update the bird’s
nest position, and calculating fitness values; specific steps were shown in Reference [40].

3.3. Model Construction and Parameters

3.3.1. Simulation Model

The simulation model is constructed to analyze the influences of climate change and human
activities singly and combined and to calculate the regular operation chart. This is also one part of the
optimal model, which is used to obtain the optimal operation chart. The main purpose of establishing
the simulation model is to generate the regular hydroelectric operation chart with the climate change
and human activities data. The regular hydroelectric operation chart is drawn by the typical year
method and co-output method. In this method, the dry season and wet season are determined first,
then repeated to try out the power plant’s output process until the output at time ¢ is close to the
basic output. The basic principle of the simulation model is water balance, and the main calculation
processes are as follows:

Step one: Calculate the regulated flow during the dry season and determine the guaranteed
output according to formulae (1)—(9).

Qi = M
To(L], Qi) + Vi)

Qw = T ! (2)
Tw‘(zjil Q1(]) - Vn)

V(t+1) = V(1) + (Qi(t) — Qo(t))-At ®)

Vi) = V(t+ 1; + V() @

Z(t) = fDZ(V(t)) ©®)

Z(t+l) :fqz(Qo(t)) (6)

H(t) = Z(t) - Z(t+1) = Af @)

N'(£) = k-Qo(t)-H(t) ®)

N, = ! ©)

Ty L N'(1)

where Q; and Qy, represent regulated flow during the dry season and wet season, respectively and
Q; and Q, represent the inflow and outflow, respectively. T; and T, represent the length of the dry
season and wet season, respectively. If the reservoir is in the dry season or wet season, Q, = Qp or
Qo = Qf, respectively. If the reservoir would not regulate the runoff, Q, = Q;. V(t) and V(t) represent
the reservoir storage and monthly average reservoir storage at ¢ time, respectively. V), represents the
designed regulating reservoir storage, and At is the iteration step, which is 1 month. j represents the
operation time point, which matches with runoff time series. fo(-) and f;;(-) represent the functional
relationship of V~Z and Q~Z, respectively. Z(t) and Z(t + 1) represent the water level at the beginning
and end of time ¢, respectively. H(t) and Af represent the water head for generation and head loss at
time ¢, respectively. N’(t) and N, represent the output in the regulating period and the guaranteed
output in the dry season, respectively.
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Step two: Assume an initial power generation flow and calculate the initial reservoir storage
based on the water balance formula and the upstream water level as follows:

V(t) = V(E+1) - (Qi(t) = Qo(t))-At (10)

V(t), Z(t+1), Z(t), H(t), and N’(t) are calculated as in formulae (4)—(8).
Step three: Compare the power plant output N’(t) with Ny. Then adjust the outflow with Ag and
return to step two:
{ Qo(t) = Qo(t) — Ag, N’(t) > Ng (a1
Qo(t) = Qo(t) + Ag, N'(£) < Ng

where Ag is the change in the outflow of the power plant according to the actual reservoir conditions.
Step four: If formula (12) is successfully calculated, then go ahead to step five, otherwise adjust

the outflow and return to step two:
[N"(£) = Ng| < 6 (12)

where, usually, 6 = 0.01, kW.
Step five: If formula (13) is successfully calculated, then stop, otherwise adjust the outflow and
return to step two.
1Ze = Zgeaal < 0 13)

where Z, and Z,,, represent the water level at the end of whole period and the designed water dead
level. The time trial ends when the above formula is satisfied; repeating all the steps until to the first
period of the wet season.

3.3.2. Optimal Model of Cascade Hydropower Joint Operation

The main purpose of establishing an optimal model is to determine the optimized hydroelectric
operation charts under the influences of climate change and human activities. However, with the
development of reservoir operations over the past 60 years, researches on the cascade reservoir joint
operations have been recognized by the public compared with single reservoir operation. Joint
operation of cascade reservoirs with hydrological and hydraulic connections can obtain greater benefits
than single reservoir operations. Additionally, in practice, cascade hydropower joint operations are one
of bottlenecks to achieve more benefit in hydropower stations of the Han River. Therefore, an optimal
model for cascade hydropower joint operations is established and maximizing power generation is the
main objective function of the optimal model. The objective function and constraints of this model are
as follows:

(1) Objective function

T M
E=Max) Y Ny(t)At (14)

t=1 m=1
Nm(t) = ki Z’(t)ﬁ(t) (15)

where E is equal to the total power generation of the three power stations in operation series, 103 kWh.
T and M represent the length of the operation cycle and the number of reservoirs, followed by Shiquan,
Xihe, and Ankang. E(t) represents the water head of the m reservoir at time ¢, k;, represents the power
coefficient of the m power station.

(2) Operational constraints

1)  Water balance
V(1) = V(1) = (QF (1) - QU (1)) A (16)
2)  Water level
Zoin S Z" (1) < Znax () 17)

min =
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3)  Maximum overflow

Q' (1) < Qpax (1) (18)

4)  Output of power station
N™(t) < NI (19)
Ngiy(t) <Ny (20)

5)  Operation lines are not allowed to be intersected in the operation chart optimization.
DZ!' (1) <DZ'(t), t=1,2,...,T, k=1.2,... K 1)

where N?' is the installed capacity of the m hydropower station; DZ]'(t) is the value of the water
level line of the operation chart of m hydropower station at time ¢ and k is the number of the
water level line.

3.3.3. Parameter Setting and Evaluation Indicators

According to optimal model determined in the present study, the value of the water level of the
operation line of the operation chart is chosen as the decision variable, and the specific parameters are
listed in Table 2.

Table 2. Parameters for the solution algorithm.

Parameters CS Algorithm
Decision variable Water level
Number of operation lines 4
Number of decision variables 48
Population size 400
Generation 5000
Discovery probability 0.25

In addition to the two indicators of power generation and guaranteed output, three other indicators
are increased including the rate of water abandonment, the assurance rate of power generation, and
the rate of water consumption to evaluate the optimized performance of the hydroelectric operation
charts. The formulae are as follows:

1) The rate of water abandonment-P,

W= % (22)
T'Zizl Ta (t)/Qo (t)
where ¢/ (t) represents the discarded outflow at time ¢.
2) The assurance rate of power generation-P
N™(t) > N™
" = SN > N) -100% (23)

T

where f(N"(t) > Ny') represents the number of the output of the power station is greater than the
guaranteed output.
3) The rate of water consumption—Ps, (m3/k-Wh)
Py == (24)

where W is equal to the water quantity used for power generation.
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3.4. Calculation Schemes

In this study, the coping operation charts are the final objective for managers. Therefore, four
operation scenarios are designed, including the initial runoff series, the influence of climate change,
the influence of human activities, and combined influence of climate change and human activities.

Before the construction of the Project, there is no large-scale human development in the upper
reaches of the cascade power station, so the Project represents human activity. Since the Project is not
yet operational, if the existing observed runoff data mutates, it is caused by the influence of climate
change. Runoff variation point (Y) is obtained by MK test. The runoff series before the variation point
is the initial runoff series, and the data series after the variation point is the runoff series affected by the
climate change. In other study of the research group, the simulated results of the Project are obtained.
So the operation data of the Project is subtracted from the runoff data before and after the variation
point respectively, and runoff data series affected by human activities only and affected by combined
influence of climate change and human activities have been obtained.

Three kinds of operations charts as coping strategies are the final results in this paper. Chart 1
is the conventional corrections for traditional single reservoir operation chart. Data series of four
operation scenarios are calculated in designed traditional operation charts. Chart 1 is generated from
the results of the data series affected comprehensively by climate change and human activities. Chart 2
and Chart 3 is the optimal single and cascade reservoir operation chart, respectively. Both are generated
by CS algorithm from the results of the data series affected comprehensively by climate change and
human activities.

Six schemes are designed in terms of the operation cascade hydropower stations under climate
change and human activities and its revised optimal operation strategies. The specific schemes are
presented in Table 3. Correspondingly, the flow chart of calculation for coping operation charts are
showed in Figure 3.

Table 3. Calculation schemes and the operation model.

Scheme Operation Scenario Operation Mode Coping Strategy
1 Initial natural runoff (1954-Y)
2 Only climate change: natural runoff (Y-2010) Single reservoir operation in Chart 1
3 Only human activities: 1954-Y, natural runoff ~ conventional operation charts ar

(1954-Y) minus transferred process (1954-Y)
Combined climate change and human
4 activities: natural runoff (Y-2010) minus
transferred process (Y-2010)

5 Combined climate change and human Single reservoir optimization Chart 2
6 activities: natural runoff (Y-2010) minus Cascade reservoir optimization Chart 3
transferred process (Y-2010)

There are four classes of operation chart including the conventional designed operation chart.
The main reasons and purposes of the six schemes were as follows:

(1) To identify the influence of climate change and human activities on hydropower stations, the
station was set to operate under four scenarios with the conventional operation chart. The power
generation (E), guaranteed output (Ng), Ps, P, and P;, were used to quantitatively analyze the impacts.

(2) Chang. J. generates cascade joint operation charts for Shiquan, Xihe, and Ankang to respond to
climate change in the upper Han River [13]. Also, the Project will run until 2030; therefore, calculating
the operation charts after the Project has operated is one of the main tasks. Chang. J. indicates that
optimal operation charts could lead to the generation of more power in the cascade stations [13].
Scheme five is therefore set in the optimal model.

(3) Before the Project operated, the operation chart in Reference [13] is applied. Once the Project
has been operated, a cascade joint operation chart under climate change and human activities will be
necessary. Therefore, scheme six is set in the cascade joint optimal model.
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Input data
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MK Test —| Initial natural runoff (1954 - Y)
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Determine the variation point: Y natural runoff (Y - 2010)
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natural runoff (1954 - Y) minus transferred
Set model calculation series of | | process (1954 - Y)
three scenarios Combined climate change and human
activities: natural runoff (Y - 2010) minus
transferred process (Y - 2010)
Simulation model
Coping regular operation chart 1 2cheme
Establish an optimal model of
hydroelectric operation charts
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l Input the chart as initial generalized nest ~ _ _ _ _ _ _ _ _ _ Y____ .
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Maximum evolution
algebra?

Coping optimal hydroelectric
operation chart
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Coping optimal single operation chart 2

Coping optimal joint operation chart 3 [«

Figure 3. Flow chart for generating the optimal operation charts under climate change and human
activities. See Section 3.2 in the main text for definition of the different parts. MK = Mann-Kendall test.

4. Results and Discussion

The results include analysis of runoff variation points, the influences of climate change and
human activities on hydropower generation, and the coping regular and optimal operation charts.
All operation charts are expanded based on the order of the schemes. Then we discuss the effects on
cascade hydropower joint operations of the combined influence of climate change and human activities
and generate three cascade hydropower joint operation charts.

4.1. Analysis of Runoff Variation Point

Only the runoff data series is used in the present study, therefore, the runoff variation point is
acquired using the inflow runoff of Shiquan reservoir with the MK test (Figure 4). Then, we review the
references to verify the existence of the variation point.
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1990

Statistics

1954 1958 1962 1966 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006

Year

Figure 4. Mann-Kendall test results of inflow of Shiquan reservoir, UBk and UFk are time statistics.

In the MK test, the statistical variable is —2.5372, which indicates a decreasing trend for the runoff

(Figure 4). The curves of UBj and UFj crossed in 1990, which may indicate that the runoff begins to
change in this year.

He reports that increased in average temperature and decreased in precipitation leading to changes

in the hydrological process from 1950-2005 in the upper Han River [42]. The climate become drier from
1980-2005. Similarly, Chang. ]. also finds the runoff in the upper Han River has changed in 1990 [13].
Both of these studies report similar meteorological factors under climate change, and 1990 is regarded
as the beginning of the observed variation. Therefore, 1990 is the variation point (Y) in this study, and
the runoff data of four operation scenarios are listed as follows:

M
@)
®G)
&)

Initial natural runoff (1954-1990)

Only climate change: Natural runoff (1991-2010)

Only human activities: Natural runoff (1954-1990) minus transferred process (1954-1990)
Combined climate change and human activities: natural runoff (1991-2010) minus the transferred
process (1991-2010)

4.2. Influences of Climate Change and Human Activities on Hydropower Operation

According to the results in Section 4.1 and the schemes in Table 3, the Operating results calculated

in conventional operation charts are shown in Table 4 and Figure 5.
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(c) Ankang (d) Cascade reservoirs

Figure 5. Operating parameters (E, Ng, P, Py, and P,) of the hydropower stations in the conventional
operation chart under the four schemes. The blue, green, yellow, and red curve are in turn scheme 1 to 4.

The results of the present study show that both climate change and human activities affect the
operation of the three hydropower stations under investigation. Only the power generation and
guaranteed output of scheme 1 is found to reach or exceed the design value in the three power stations.
Because the calculation series used in designing conventional operation charts is different from that
used in the present study, scheme 1 is regarded as a reference standard of conventional operation
charts rather than for designed values. Compared with scheme 1, the results indicate that:

(1) The results of schemes 2—4 are significantly worse than those of scheme 1. This indicates that
the conventional operation chart is no longer suitable for the operation and development of the power
stations under the varied hydrological situations. For example, the power generation of Shiquan
under schemes 2—4 decrease by 1.18 x 108 kWh (16.67%), 1.45 x 108 kWh (20.48%), and 2.73 x 108 kWh
(38.56%), respectively. Additionally, the same decreasing trend occurs in Xihe, which decreases by
0.2 x 108 kWh (4.04%), 0.3 X 108 kWh (6.06%), and 0.37 x 10% kWh (7.47%) and Ankang, which decreases
by 5.73 x 10% kWh (20.78%), 2.59 x 108 kWh (9.39%), and 7.68 x 10% kWh (27.85%), respectively

(2) From the results of cascade reservoir operations, the influence of climate change is greater than
that of human activities. For instance, power generation under schemes 2 and 3 decreases by 17.95%
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and 12.83%, respectively. The reason for this is that the natural runoff after 1990 decreases by an annual
average of about 2.5 billion m3 in the upper Han River area.

(3) Based on the sensitivity of the power stations to these changes, Shiquan is the most affected
followed by Ankang. The reason for this is that there is lower storage capacity in Shiquan than in
Ankang, which means that Shiquan does not have sufficient capacity to save water and regulate the
power head when runoff is reduced. This once again verifies the necessity to modify the operation
charts under existing engineering and hydrological conditions.

4.3. Coping Hydropower Operation Charts under the Influence of Climate Change and Human Activities

Because the Project is planned to operate completely by 2030, hydropower operations of cascade
power stations are currently mainly affected by climate change. Considering that [13] proposes
adaptive operation charts and cascade joint optimal operation charts for the upper Han River, the main
object of the present study is to develop the coping strategies to deal with the combined influence
of climate change and human activities after 2030. As shown in Table 4, scheme 4 and 5 are used to
generate the modified regular and optimal single hydropower operation charts, respectively. Scheme
6 is used to generate the modified optimal cascade hydropower operation chart. All the modified
operation charts are listed in Figure 6.

Chart 1: Modified regular single reservoir operation charts
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Chart 2: Modified optimal single reservoir operation charts
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Figure 6. Cont.
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Chart 3: Modified optimal cascade reservoirs operation charts
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Figure 6. Modified hydropower operation charts for Shiquan (a) and Ankang (b) to address the effects
of climate change and human activities. The solid and dashed lines indicate the modified and traditional
operation lines, respectively. The red line and green line are the upper basic line and lower basic line,
respectively. The blue line and the purple line are the 1.2 Ng and 0.8 Ng line, respectively.

4.3.1. Chart 1: Modified Regular Single Reservoir Operation Chart

Comparing Chart 1 in Figure 6 with the conventional operation charts (Figure 1), shows that
the integral operation trend is similar to the traditional one. The upper and lower basic lines move
slightly up and down. Specifically, the upper basic lines of both reservoirs move up a little during the
main flood season and move down during the dry season. Furthermore, both lower basic lines move
down during operation time, and the water storage period of the Ankang reservoir move forward
for about 20 days. The main reason for this change is that reservoir inflow is decreased compared
with the designed data series. During the main flood season, to improve power generation efficiency,
the guaranteed output area is expanded and moves down, and the increased output area becomes
smaller. This change would probably make the power stations work more in the guaranteed output
area. Then, once the power plant is working in part A, it would be able to maintain a high water
level and guarantee water demand during the dry season. Furthermore, in contrast to the previous
conditions, the Ankang reservoir should store water in advance to raise the water level and avoid
the power plant operating at a decreased output after the flooding season. In the dry season, the
operation mode is different from during the wet season, in which the increased output area become
larger making the power plant work in the increased output area, avoiding the abandoned water.

We assume that the cascade power stations are running under the Chart 1 (Figure 6) to verify their
usefulness. The simulation results show that the effect of both operation charts could not reach the
design value under the current runoff situation, but the modified chart is preferable to the conventional
chart. Cascade power generation increases by about 12 million kWh, of which Ankang reservoir
increases by about 9 million kWh. If the electricity price is calculated at RMB 0.25, then the increased
value of the power generated is about RMB 3 million. Therefore, it is necessary and valuable to modify
the operation charts for the changing hydrological environment, especially for reservoirs that are
designed for power generation.

4.3.2. Chart 2: Modified Optimal Single Reservoir Operation Chart

Comparing the Chart 2 in Figures 6 and 7 shows that the overall trends at Shiquan and Ankang
have not changed. After the calculation of the CS algorithm, part B of Shiquan increases to avoid
abandoned water during the flood season because heavy rains often occur in the Han River basin, and
rainfall is particularly heavy during the flood season. Additionally, the flooding season commonly
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lasts until October. Therefore, the hydropower plant should increase its outflow to improve power
generation and avoid abandoned water. Part A of the Ankang reservoir increases to raise the water
level, and the water level line of 0.8 N}, is slightly low compared with Figure 6b. All these changes are
used to increase the power generation of the power stations.
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Figure 7. The monthly average change process of water abandoned of the Shiquan, Xihe, and Ankang
reservoirs in condition of the Project optimized. The upper right part is the multi-year average change
of abandoned water when the operation of Project is optimized or not.

Like in scheme 5, we assume that the cascade power stations are running under the Chart
2 to verify their usefulness. The simulation results show that the optimal chart outperforms the
conventional chart. Cascade power generation increases by about 32 million kWh, of which Shiquan
and Ankang reservoirs increases by about 9 and 23 million kWh, respectively. The increased value of
the power generated is about RMB 8 million. Therefore, the single optimal operation chart (Chart 2)
further improves the power generation of the power stations compared to the modified single regular
operation chart (Chart 1).

4.3.3. Chart 3: Modified Optimal Cascade Reservoir Operation Chart

Comparing the Charts 2 and Chart 3, it can be seen that the operating areas of the Shiquan and
Ankang reservoirs have not changed. In Chart 3, the upper basic lines moves down slightly during
the dry season and the increasing output areas become lager. Similarly, under joint operation, the
guaranteed output is increased to avoid abandoning water.

Like in scheme 5, we assume that the cascade power stations are running under the Chart 3 to
verify their usefulness. The simulation results show that if the power stations run in a joint operation,
the effects of human activities and climate change are greatly reduced. Cascade power generation
increases by about 47 million kWh, of which Shiquan and Ankang reservoirs increases by about 12 and
35 million kWh, respectively. The increased value of the power generated is about RMB 11.25 million.
These joint operation charts consider the effects of human activities and climate change that could
be applied in the cascade hydropower stations in theory once the Project is finished in 2030. Climate
change is a gradual process, and its effects on runoff are subtle. At present, runoff cannot be restored to
its original state. However, it is possible to reduce the effect on runoff by making significant changes to
human activities.
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4.4. Optimal Operation of the Project

As the Project is based at the first cascade of the upper reaches of the Han River, its operation
mode will directly affect the operation of the downstream power station group. [24] studies the joint
optimization scheduling of the Huangjinxia (HJX) and Sanhekou (SHK) reservoirs of the Project to
determine water supply, power generation, and energy consumption for the Project’s own operation.
While the modified optimal single reservoir and joint reservoirs operation charts of the cascade power
stations increase power generation, abandoned water of reservoirs will always occur and reduce water
energy efficiency. Therefore, based on the optimal models in Reference [24], preventing the occurrence
of abandoned water at the downstream cascade power stations is as important as determining water
supply and energy efficiency.

The results from schemes 5 and 6 show that abandoned water of cascade reservoirs often occur
before and during the flood season (June-November). Therefore, the Project in upstream should
increase the outflow constraint in the joint operation model during this period to avoid the cascade
power stations generating excessive abandoned water

The operation process for the whole system includes two steps: (1) Obtaining reservoir outflow
series for the joint optimal operation of the Project. These series are also taken as the inflow of the
Shiquan reservoir. (2) Joint operation chart 3 is regarded as another fitness function. The model locates
the series in which the corresponding power generation process resulted in higher levels of generated
power coupled with lower levels of abandoned water. Then, following iterative optimization, an
operation process for the Project is determined.

Figure 7 shows the monthly average change process of water abandoned of the cascade power
stations in condition of the operation of the Project is optimized. When the Project operates in optimal
situation, and the cascade power stations operate according the Chart 3, the operation results of the
cascade power stations show: (1) The average annual of abandoned water would decrease by about
150 million m® and power generation would increase by 5 million kWh. (2) The Project would reduce
the water level pressure for the downstream reservoirs before the flood season, and the abandoned
water of Shiquan, Xihe, and Ankang power stations would decrease by 5.19%, 6.67%, and 5.33%,
respectively. (3) The abandoned water from Shiquan and Xihe reservoirs always occurs at the same
time, and the largest amount of abandoned water is July. These three reservoirs occur abandoned
water in June and September at the same time, and Ankang reservoir has the largest abandoned water
before the flood season (June).

The results for the joint operation model of the Project are suitable for the operation of the Project
itself (data not shown in detail). Additionally, this section focuses on the operation rules of the Project,
which are conducive to the operation of the downstream power stations.

Figure 8 shows that the differences between the two operation charts are mainly in terms of the
hedging rule curve for abandoned water and the combined water supply. (1) The modified hedging
rule curve for abandoned water shifts upward about 3 m from March-October compared with the
initial curve. This part is defined as the operation area for preventing the abandonment of water. If
the SHK water level at time ¢ is in this location, then the SHK reservoir would be regarded as the first
water resource to supply water and the HJX reservoir is the second. Otherwise, the HJX reservoir
would still undertake the majority of the water supply task and reduce the probability that of water
abandonment at the downstream power plants. (2) The modified hedging rule curve for abandoned
water shifts down about 10 m from May-November compared with the initial curve. This part is
defined as the guaranteed operation area of combined water supply. If the SHK water level at time £ is
in this location, then the HJX reservoir would be regarded as the first water resource. This change
increased the probability of the HJX reservoir supply water for intake areas.

The water transferred scale of the Project is limited by the adjustable water volume which is
approved by the government. Therefore, the basis of the Project operation chart change is in the range
of adjustable water volume, what’s more, HJX reservoir must take on more water supply tasks, and
the SHK reservoir would mainly regulate the main stream runoff through the water supply. These
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measures have been validated in the model to mitigate the abandoned water of the downstream
reservoirs. This also means that, if the effects of human activities are inevitable, then the optimal
operation of the whole system could reduce the impact.

660

----- Maximum storage capacity

640 1 . . .
’ 1 [ Initial hedging rule curve for

@ | % abandoned water
20701 @ @ Modified hedging rule curve

for abandoned water

Initial hedging rule curve for

I combined water supply
580 1 Modified hedging rule curve
__//\ for combined water supply
v . . .
Hedging rule curve for basic

560 1

water supply

— — minimum storage capacity

540
Month

Figure 8. The modified operation chart for the Sanhekou reservoir of the Project. The original
interpretation of the operation chart is listed in the supplementary material.

5. Conclusions

Many conventional operation rules for reservoir operations no longer apply to the current
hydrological environment, which has been affected by climate change and human activities. Therefore,
revised strategies are urgently needed for the optimized operation of cascade reservoirs. In the present
study, the influence of climate change and human activities is analyzed and procedures are formulated
to develop revised strategies. We consider three runoff series conditions including initial runoff, only
affected by climate, and affected by both climate and human activities. A simulation model is applied
to analyze the effects on power generation under four schemes, and a modified regular operation
chart is generated through scheme 4. An optimal model for operation charts based on the simulation
model is constructed to generate single and joint optimal operation charts for cascade power stations
under the influence of climate change and human activities. We also attempt to change the influence of
human activities by optimizing the rules of the Project to reduce its influence on power stations in the
downstream. The primary conclusions are as follows:

(1) Both climate change and human activities affect the operation of cascade power stations. At
the same time, the effect on power generation is greatest when climate change and human activities
were combined, followed by climate change alone, and finally human activities alone. Compared
with the initial condition, corresponding power generation decreases by 25.71%, 17.95%, and 12.83%,
respectively. Furthermore, owing to geographical location and its own storage capacity, the Shiquan
reservoir is the most sensitive to these changes.

(2) Three kinds of revised strategies for the cascade power stations are proposed herein, mainly by
modifying existing operation charts. The three modified operation charts include a regular chart, an
optimal single operation chart, and an optimal joint operation chart. Compared with the conventional
chart, all three modified charts are preferable for the cascade power stations. The optimal joint
operation chart shows better adaptability to the changes in runoff and the most evident increase in
power generation (47 million kWh; RMB 11.25 million).

(3) Optimizing the upstream Project and slowing down its impact on the downstream power
stations is another revised strategy proposed herein. If the Project works as in Figure 8, then the average
annual abandoned water of the downstream power stations would decrease by about 150 million m3,
and the abandoned water of Shiquan, Xihe, and Ankang power stations would decrease by 5.19%,
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6.67%, and 5.33%, respectively, which could increase power generation by 5 million kWh. The Project
can also reduce the water level pressure before the flood season for the downstream power stations.
The present study has practical significance for the efficient operation of cascade hydropower
stations and is informative for reservoir operation theory under changing environmental conditions.
In future, studies should focus on power generation operations considering river ecology to solve the
conflicting objectives of ecological benefit and power generation under changing environments.

6. Supplementary Material

6.1. The Multi-Objective Optimal Model for the Project

The multi-objective optimal model for the Project considers energy consumption, power generation,
and water supply.

(1) Multi-objective function:
minF(x) = (Epump/ Epower, W) (25)

Objective one: minimizing energy consumption

T M
min Epympy = min Z Z pn ump

t=1m=1

M m
STy (1)
Z P,mmp =y (27)

m= w1 pump

(26)

Objective two: maximizing power generation

max Epower = max[z Z pnwer (28)
t=1m=1
M
Z N;HOZULV Z k QPOZ‘W ( ) (29)
m=1

Objective three: meeting water demand

W= ZT: f Qs(m, t)-At (30)

t=1m=1

where () represents the set of optimal solutions for multi-objective operation models, Epymp represents
the total energy consumption of two pump stations in an operation series, Ejouer represents the total
power generation of two power stations in an operation series, W represents the transferred water
quantity. T, M, and At represent the same as in the simulated operation model; P}, (t) represents the
power from pump station m consumed in the period t, 4}, () represents the water flow of pump
station m transferred in the period ¢, 1;,,,,, represents the efficiency of pump station m, g represents
gravity; Npi,.,(t) represents the power generation of power station m generated in the period f,
Qptwver(t) represents the power flow of power station m used in the period ¢, h(t) represents the water
head of reservoir m in the period t, and k represents the power coefficient of power station .

(2) Operational constraints

The operational constraints were as follows:
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1)  Water balance

V(1) = V) = Q) - QB - QU(e) Q)
2)  Water level
Zﬁu’n = Zz(t) < Z%zux(t) (32)

3) Transferable water quantity

)" Qeyar < Wk (33)
m=1
4)  Maximum overflow
Qpower () < Qpiax (34)
Qe () < Qe (35)
5)  Output of power station
N <N @)
Niy () = Np 37)
6) Power of pump station
P <P @)

where V(1) represents storage capacity of the m reservoir in t period (108 m?); Q' (t), Qp(t), and
QU (#) represent the inflow runoff, outflow runoff, and water transferred flow of the reservoir m
in period t, respectively (m3/s); Z?(t) represents the water level of the SHK reservoir in period t,
Zﬁm represents the dead water level and Z2,,.(f) represents the highest water level, including the
flood control level during flooding season and the normal high water level during non-flooding
seasons (m); Wf,fayx(t) represents the maximum transferable water quantity of the Han River in
period ¢ (108 m3); Q" (t) represents the outflow of the power station m in period t, Q.. represents
the maximum outflow of the power station m (m3/s); Qtummel (f) represents the average transferred
flow in the Qinling tunnel in period ¢, Q4! represents the maximum water transfer capability
of the Qinling tunnel (m®/s); N™(t) represents the output of power station m in period ¢, N/ |
represents the installed capacity of power station 1, N}iry(t) and N}irm represent the output in the
dry season and the firm power of HJX power station, respectively; P"(t) represents the power
consumption of the pump station m in period ¢, P"""* _ represents the installed capacity of pump

. X . installed
station m. All variables were non-negative.

6.2. The Original Interpretation of the Operation Chart for the Project
The operation chart (Figure 8) includes four parts defined as follows:
(1) Part I

This part was defined as the operation area for preventing the occurrence of abandoned water. If
the SHK water level at time t was in this location, then to save energy, the SHK reservoir would be
regarded as the first water resource and its pump station would not work in this moment. At the same
time, the HJX reservoir would be regarded as an auxiliary water resource. If the SHK reservoir is able
to meet the water demands of the Guanzhong area, then the HJX pump station would not be needed,
otherwise it would need to start supplying water.

(2) Part II

This part was defined as the guaranteed operation area for combined water supply. If the SHK
water level at time f was in this location, then the HJX reservoir would be regarded as the first water
resource and its pump station should supply the Guanzhong area and the SHK reservoir as much as
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possible. If the water in HJX is not sufficient, then the SHK reservoir would start to supply. In this part,
the Project should meet the water demand of the Guanzhong area.

(3) Part III

This part was defined as the control operation area of combined water supply. In this part, the
HJX and SHK reservoirs would supply the Guanzhong area together, and the HJX reservoir would
not supply the SHK reservoir. The actual water supply of the Project would not meet the water
demand because the actual water demand was applied according to the modified ratios set by the
decision makers.

(4) Part IV

This part was defined as the minimum capacity water supply operation area. In this part, the HJX
and SHK reservoirs both supply water according to their minimum capacity, and the HJX reservoir
stops supplying the SHK reservoir.
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Abstract: Performance of a newly developed semi-distributed (grid-based) hydrological model
(satellite-based hydrological model (SHM)) has been compared with another semi-distributed soil and
water assessment tool (SWAT)—a widely used hydrological response unit (HRU)-based hydrological
model at a large scale (12,900 km?) river basin for monthly streamflow simulation. The grid-based
model has a grid cell size of 25 km* and the HRU-based model was set with an average HRU
area of 25.2 km? to keep a balance between the discretization of the two models. Both the model
setups are calibrated against the observed streamflow over the period 1977 to 1990 (with 1976 as
the warm-up period) and validated over the period 1991 to 2004 by comparing simulated and
observed hydrographs as well as using coefficient of determination (R?), Nash-Sutcliffe efficiency
(NSE), and percent bias (PBIAS) as statistical indices. Result of SHM simulation (NSE: 0.92 for
calibration period; NSE: 0.92 for validation period) appears to be superior in comparison to SWAT
simulation (NSE: 0.72 for calibration period; NSE: 0.50 for validation period) for both calibration
and validation periods. The models” performances are also analyzed for annual peak flow, monthly
flow variability, and for different flow percentiles. SHM has performed better in simulating annual
peak flows and has reproduced the annual variability of observed streamflow for every month of
the year. In addition, SHM estimates normal, moderately high, and high flows better than SWAT.
Furthermore, total uncertainties of models’ simulation have been analyzed using quantile regression
technique and eventually quantified with scatter plots between P (measured data bracketed by the
95 percent predictive uncertainty (PPU) band) and R (the relative length of the 95PPU band with
respect to the model simulated values)-values, for calibration and validation periods, for both the
model simulations. The analysis confirms the superiority of SHM over its counterpart. Differences in
data interpolation techniques and physical processes of the models are identified as the probable
reasons behind the differences among the models’ outputs.

Keywords: grid-based; HRU-based; SHM; SWAT; large scale basin

1. Introduction

Distributed hydrological models, with varying degree of complexity, are essential tools for
modeling the spatial variability effects of basin characteristics and forcing variables (e.g., precipitation)
on streamflow [1-4]. These models divide spatially heterogeneous space (basin or watersheds) into a
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number of near homogeneous units following various discretization schemes including: representative
elementary area (REA) [5], grouped response unit (GRU) [6], representative elementary watersheds
(REW) [7], hydro-landscape unit [8], triangular irregular network (TIN) [9], hydrological response unit
(HRU) [10] and grid-based approaches [11]. Among these discretization schemes, HRU and square
grid approaches are the most commonly used in hydrological modeling.

HRUs are formed by lumping individual areas of similar soil, topography, and land-use altogether
within a sub-basin. However, there is no interaction between the HRUs, and these are routed
individually to the sub-basin outlet [12,13]. Arnold et al. [13] studied the effect of HRU discretization
on streamflow and concluded that many HRUs are too big to resolve into individual topographic
positions since they occupy the landscape continuum from the divide up to valley bottom. They
also identified that the impact of an upslope HRU management on a downslope HRU cannot be
assessed. Furthermore, though the HRU-based approach is simple and computationally efficient,
spatial information from high-resolution land-use or soil maps can be lost depending on the scale of
the HRUs. On the other hand, grid-based discretization scheme uses aggregated spatial variations over
each grid. The use of smaller HRUs, instead of grid cells, may yield similar results but incorporating
raster data into the HRU based approach would require data transformation from simple grid geometry
to a patchy geometry of irregular polygons. Therefore, a grid-based approach appears better to use to
avoid the inconvenience.

To describe the basin topography accurately, the grid size is considered up to an acceptable range
while keeping the trade-off between model simulation time and simulation accuracy to a minimum.
Though, in theory, modeling with a finer grid cell resolution is expected to yield better results because
of better-resolved model input data (e.g., rainfall, topography, land cover, etc.), it may not always
happen [14]. Therefore, several studies have focused on examining the impact of grid cell size on
model simulation results and model simulation time to find out the optimum resolution of grid cells
for a particular modeling study. Finnerty et al. [15] illustrated the changes in water budget with
continuous simulations at various spatial scales, ranging from 4 km X 4 km to 256 km x 256 km.
Wood et al. [16] used a 1° x 1° gridded structure for modeling continental-scale basins. Kuo et al. [17]
applied a variable-source-area hydrological model to grid sizes ranging from 10 to 600 m and observed
increasing misrepresentation of the curvature of the landscape with increasing grid size. In modeling
the 375,000 km? Senegal River basin, Andersen et al. [18] used grid cell resolution of 4 km X 4 km.
Booij [19] compared three versions of Hydrologiska Byrans Vattenbalansavdelning (HBV) model [20]
with different spatial resolutions in the Meuse river basin in Europe and found that the version with
finer resolution reproduced a slightly improved average and extreme discharge behavior at the basin
outlet in both calibration and validation periods. Recently, Haghnegahdar et al. [21] carried out a
modeling study in a 2700 km? area with model grid cells of 15 km x 15 km resolution.

The effect of different spatial discretization schemes on streamflow simulation has been studied by
researchers. For example, Abu El-Nasr et al. [22] assessed performances of fully distributed grid-based
MIKE Systeme Hydrologique Europeen (SHE) and the semi-distributed HRU-based SWAT and showed
that MIKE SHE can predict the overall variation of stream flow slightly better. There are more examples
of studies investigated utility of different grid-based models and compared results with an HRU
based SWAT model [23-30]. Arnold et al. [13] used a modified SWAT model, with landscape routing
method, to compare modeling results, under four discretization methods: lumped, HRU, catena, and
grid. The comparison showed that a high-resolution grid approach would include the impact of an
upslope grid cell on a downslope grid cell and provide accurate spatial detailed output. Comparing
SWAT model performances with HRU and grid-based structures, Pignotti et al. [31] concluded that the
grid-based model under predicts streamflow from 5% to 50% with respect to the usual HRU-based
model. Surfleet et al. [32] compared two HRU-based models namely the precipitation-runoff modeling
system (PRMS) [33] and groundwater and surface-water flow (GSFLOW) with the grid-based variable
infiltration capacity (VIC) model for future climate change analysis and concluded that the future
changes can quantitatively be attributed not only to the scale of the models but also to the ability of
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models to represent hydrological processes. Findings of these various studies also pointed out that
model simulation results also vary depending on several factors other than the spatial discretization
scheme. These factors include the physiographic characteristics of the basin, seasonality of precipitation,
season of the year, and dominating runoff producing mechanisms and, thus, emphasize the uncertainty
of analysis of model simulation results for successful comparisons of different hydrological models in
a particular study (e.g., [34,35]).

Keeping this in mind, this study aims at in-depth inter-comparison of simulation results of
two state-of-the-art semi-distributed hydrological models, namely the satellite-based hydrological
model (SHM) and soil and water assessment tool (SWAT), under similar discretization scale, and
uncertainty related to the simulations [36,37] in a large scale (>1000 km?) [13,36] sub-tropical river
basin, namely Baitarani. The idea behind the similar discretization scale is to reduce the effect of
different discretization schemes of the two models and analyze the effect of other factors on the
streamflow simulation.

The remainder of this paper is organized as follows. The following section presents the description
of the study basin and data used in the study. A description of the models along with sensitive
parameters employed in the study is provided in Section 3. The methodologies of model setup,
calibration, and validation procedure, as well as the consequent data analysis (including uncertainty
analysis), are outlined in Section 4. The results are presented and discussed in Section 5. The final
section, Section 6 provides conclusions.

2. Study Area and Data

The study has been performed in Baitarani river basin (12,900 km?) in India which is bounded
between 20°35" N to 22°15” N latitude and 85°10" E to 87°03” E longitude (Figure 1). It comes within
the sub-tropical monsoon climate zone [38] and receives an annual rainfall of about 1450 mm (Annual
Report, 2011-12, 2011). Almost 80% of the annual rainfall occurs during the four months of south-west
monsoon season (June to September) that generates heavy flow and creates floods in lower reaches [39].
Daily temperature varies from 5 °C to 47.5 °C. The elevation of the basin ranges from 10 m to 750 m
above mean sea level. Soils of this area vary from rich red loamy to gravely detritus.

For a consistent comparison of performances, the same datasets were used in SHM and SWAT
models. Daily Rainfall and daily maximum and minimum temperature have been obtained from the
India Meteorological Department (IMD), Pune at 1° x 1° resolution. Data have been interpolated to
5 km x 5 km resolution by using bi-linear interpolation technique to use as input into the SHM. Soil and
land use land cover (LULC) maps were collected from the Food and Agriculture Organization (FAO)
website (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-
database-v12/en/) at 1 km x 1 km scale. The digital elevation model (DEM) of 30 m x 30 m resolution
was taken from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
website (https://asterweb.jpl.nasa.gov/gdem.asp). All the static information (soil map, LULC map, and
DEM) have been resampled into 5 km X 5 km resolution to use in the SHM. The weather database of
SWAT is developed using the weather generator (WXGEN) model using the closest station scheme [40].
Observed streamflow data, at Anandpur gauging station (21.21° N, 86.12° E), were collected for the
period of 1977 to 2004 from the Central Water Commission (CWC), Bhubaneswar, India.
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Figure 1. Index map of Baitarani river basin showing streamline and grid cells of SHM.
3. Comparative Discussion on SHM and SWAT

In this section, short descriptions of the SHM and SWAT are provided (Sections 3.1 and 3.2,
respectively). Then the identified sensitive parameters of both the models, which have been used to
calibrate the models, are discussed in Section 3.3.

3.1. Description of the SHM

The SHM works on 5 km X 5 km spatial grid resolution and properties at the center of a cell
are assumed to be the properties of the cell. SHM has five modules: surface water (SW), forest (F),
snowmelt (S), groundwater (GW), and routing (ROU). SHM grid cells corresponding to forest and
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snow land cover are modeled using the F and S modules, respectively; whereas other grid cells are
modeled using the SW module.

In the SW module [41,42], the Soil Conservation Service (SCS) curve number (CN) method [43]
is used to estimate the surface runoff along with the Hargreaves method [44] to estimate the
potential evapotranspiration (PET). Soil moisture is estimated by using the water balance technique.
The soil profile is considered as a single-layered zone of 300 mm, and moisture-holding and
moisture-transmitting characteristics of the soil layer and underlying layer are considered to account
for the soil moisture. Infiltrated water wets the soil layer, and excess water from the maximum
capacity (saturation) contributes after percolation to GW module. The soil moisture is depleted by
evapotranspiration, at a potential rate or actual rate, depending on soil moisture condition.

The F module serves, based on water balancing and the dynamics of the subsurface, to provide
output in the form of runoff, soil moisture, evapotranspiration, and contribution to groundwater
using the technique and parameters stated in [45]. Subsurface is reckoned on having soil matrix and
macropores of main bypass and internal catchment types. The main bypass directly contributes to
groundwater. Soil matrix is considered of having three layers, which are important with respect
to water balance and change in soil moisture. After infiltration, the saturation of three layers gets
started from the top in batch, and after complete saturation of the three layers, the excess water goes
to groundwater. After a precipitation event, runoff generation occurs according to the antecedent
moisture conditions in the subsurface.

The S module determines the snow density from snow albedo [46] for estimating snowmelt depth
by using two different algorithms, viz., the temperature index algorithm and radiation-temperature
index algorithm. Since the study area does not have any snow land cover; the S module is not
considered in this study.

The GW module uses the contribution from SW, F, and S modules and generates baseflow
following the water level variation process described in [47]. The resultant baseflow along with the
surface runoff generated from other modules is routed up to the outlet as streamflow.

In SHM, a distributed routing technique [41], termed as time-variant spatially distributed direct
hydrograph (SDDH) travel time method [48], was adopted. It requires the flow path, which is derived
from DEM. The downstream cell, in the direction of the steepest descent, is defined from the DEM by
the use of the flow direction geographic information system (GIS) function with a unique connection
from each cell to the watershed outlet. This process produces a cell network to present the flow paths.
The threshold number of upstream cells is set equal to two (based on trial and error) to delineate the
channel network for the watershed. Any cell with a number of upstream draining cells equal to or
greater than the threshold value is considered to be a channel cell, whereas others are considered as
overland flow cells. The key point of this approach is the travel time estimation. SHM uses MySQL
(open source software) as a relational database management system (RDBMS).

3.2. Description of SWAT

SWAT is used for simulation of the water cycle and its corresponding fluxes of energy and matter
(e.g., sediment, nutrients, pesticides, and bacteria) as well as the impact of management practices
on these fluxes at basin scale [49]. SWAT uses Microsoft Access as RDBMS. SWAT, however, first
discretizes the watershed into a network of irregular sub-basins and then divides each sub-basin into
HRUs. The model includes components for hydrology, sedimentation, crop growth, nutrients, and
agricultural management [11]. A detailed description of all components of the model can be found in
Arnold et al. [49] and Neitsch et al. [10].

In the present study, SWAT has been used with the Soil Conservation Service Curve Number
(SCS-CN) method as a runoff generation technique along with the Hargreaves method to determine
PET. SWAT calculates baseflow contribution to streamflow from groundwater depending on the water
balance approach in a shallow aquifer [49]. In SWAT, runoff is first computed separately for each
of the HRUs within the sub-basin and then routed through the stream network to obtain the total
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streamflow for the watershed. Since the study area does not have snow-covered land, the snow-melt
runoff simulation procedure of SWAT is not discussed here.

3.3. Sensitive Parameters of Both the Models Used for Calibration

The total number of parameters of the two models varies in number for streamflow analysis.
Three parameters of SHM and seven parameters of SWAT have been found sensitive for streamflow
simulation (Table 1), in this study.

During calibration of SHM, parameters of SW and ROU modules have been changed manually
(since an auto-calibration option is not available). For this purpose CN, Manning’s roughness coefficient
for overland cell (n,), and Manning’s roughness coefficient for channel cell (n.) have been used as
sensitive parameters [50]. The parameters of the F and GW modules have been set at their default
values as recommended by the developers. The theoretical ranges of sensitive parameters are given in
Table 1. CN is responsible for runoff generation in the SW module, and n, and n, affect the routing
procedure of generated runoff and baseflow from a grid cell up to the outlet of a basin. Using calibrated
values of the sensitive parameters, SHM simulates monthly streamflow at Anandpur gauging station
of Baitarani basin.

For the SWAT model, seven sensitive parameters are identified (Table 1) for model calibration
based on the analysis of parameter sensitivity using the Latin hypercube-one factor at a time (LH-OAT)
method [51]. Curve number (Cn2) and baseflow recession constant (Alpha_bf) are responsible for
runoff generation; delay time for aquifer recharge (Gw_delay) and threshold water level in a shallow
aquifer for base flow (Gwqmn) are responsible for baseflow generation, and the soil evaporation
compensation coefficient (Esco) is responsible for soil evaporation losses. Manning’s n for the main
channel (Ch_N2) and Effective hydraulic conductivity of soil (Ch_K2) are responsible for controlling
river flow routing. Table 1 summarizes the sensitive parameters of both the models with corresponding
hydrological processes, estimation methodology and their theoretical ranges. The table also focuses on
the spatial variability of the sensitive parameters.
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4. Methodology

4.1. Model Setup, Calibration, Validation

At first, both the models were setup with the same input data. For SHM setup, the Baitarani
basin is represented by 498 grid cells of 25 km?. The threshold values of LULC, soil, and slope were
taken, respectively, 1%, 1%, and 2% for the development of HRUs in the SWAT model so that the
average area of HRUs is around 25 km? and two discretization schemes come in a balanced scale.
This assumption led to having 312 sub-basins and 511 HRUs in the Baitarani basin. However, the
smallest HRU has an area of 1.9 km?, and the largest HRU has an area of 52 km? with an average area
of 25.2 km?. Both the models were then calibrated (1977-1990) and validated (1991-2004) on a monthly
basis. The performance evaluation of both the models has been done by comparing observed and
simulated streamflows by using graphical interpretation and statistical indices, namely coefficient of
determination (R?), Nash-Sutcliffe efficiency (NSE), and percent bias (PBIAS) for the calibration and
validation periods, separately. The used statistical analyses are discussed below.

4.1.1. Nash Sutcliffe Efficiency (NSE)

It is defined as one minus the sum of the absolute squared differences between observed and
simulated values normalized by the variance of observed values [53]. It varies from —oco to 1, 1 being
the perfect fit. It is chosen because of its extensive use in the field of hydrology, which facilitates
comparison between different studies. However, it is highly sensitive to peak flows resulting in
negligence of low flows.

Z%i1 (Qo - Qsim)2
Zﬁ] (Qo - @)2

where Q, is the observed streamflow; Qgip, is the simulated streamflow; Qo is the average observed
streamflow and N is the number of events in the time-series of streamflow.

NSE =1 - @]

4.1.2. Coefficient of Determination (R?)

The coefficient of determination (R?) describes the proportion of the total variance in the observed
data that can be explained by a model. It ranges from 0 to 1, with higher values indicating better
agreement, and is given by:

Rz _ ?:I(Qo - @)(Qsim - Qsﬁ) 2 (2)
{ %il (Qo - @)}O'S{Ziﬂ:1 (Qsim - (QSﬁ)}O.5

where, Qsim is the average simulated value of streamflow.

4.1.3. Percent Bias (PBIAS)

It measures the average tendency of the simulated data to be larger or smaller than their observed
counterparts. Its ideal value is 0. A positive value indicates model underestimation bias and a negative
value indicates model overestimation bias.

PBIAS — ?:1 (Qo - Qsim) %100
Yt Qo

®)

4.2. Analysis of Results

After calibration and validation, the model-simulated streamflows were analyzed to compare
model performances for both the periods with respect to annual peaks. Then, inter-annual variability
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of simulations of both the models for each month of the year, for the total period of analysis, were
analyzed. Eventually, the capability of both models was compared using the five percentile series
derived from observed data. Therefore, to understand the difference in the capability of the models
to simulate different streamflow ranges in an improved manner, four percentile points of observed
monthly streamflow, S5 (5th percentile), S25 (25th percentile), S75 (75th percentile), and S95 (95th
percentile), were used to divide the overall flow range into five percentile series: low flows (<S5:
<139.95 m?/s), moderately low flows (S5-525: 139.95 m?3/s to <349.4 m3/s), normal flows (525-S75:
349.4 m3/s to <6590 m/s), moderately high flows (S75-595: 6590 m3/s to <20,760 m?/s), and high flows
(=595: 220,760 m%/s). Finally, uncertainty analysis has been performed of the models.

Uncertainty Analysis

Using quantile regression, a stochastic approach [54], uncertainty from all sources was analyzed,
as a whole and for monthly simulation of both the models at Anandpur gauging station for both the
calibration and validation periods. The observed, simulated, and residual values of streamflow are
linked with the following equation:

Q (1) = Q(t) +e(t) 4)

where Q(t) is the observed daily streamflow, Q(t) is the simulated streamflow, and e(t) is the residual.
The method assumes a functional relationship between residuals and estimates in the Gaussian
domain, i.e., normalized quantile streamflow (NQS) and normalized quantile residual (NQR). A linear
relation between NQS and NQR was also used in previous studies [55,56]. Hence, NQR may be

expressed as:
NQR =axNQS +b )

Different quantile regression lines may be obtained by minimizing the absolute bias by assigning
different weights to positive and negative residuals in the Gaussian domain. Absolute bias can be
considered for this purpose as an objective function (OF) which is expressed mathematically as:

OF = MinZ p-(mod[NQR - (a X NQS +Db)]) (6)

where a is the slope, b is the intercept, and p. is the quantile regression function which pushes the
regression line to the desired location.

To estimate the streamflow corresponding to a given confidence limit, the simulated streamflow is
transformed to the Gaussian domain as NQS first, and then, the error in the Gaussian domain, NQR
is estimated using the regression line (Equation (5)). The estimated error, NOR is transformed back
to the original domain using the pre-estimated mean and standard deviation of the residual. Finally,
the estimated residual is added to the daily simulated streamflow to obtain the streamflow which
includes uncertainty. Regression lines were used to analyze uncertainty in the simulated streamflow
for different confidence intervals. The slope and intercept of these lines are estimated by Equation (6)
using the calibration period data. Furthermore, to verify the correctness of error models, the models
were applied for both the calibration and validation periods.

Moreover, to have quantitative realization of uncertainty, P and R values have been calculated,
and P vs. R plot has been generated for both the calibration and validation periods.

P-value represents the measured data bracketed by the 95 percent predictive uncertainty (PPU)
band [57]. P-value has been determined by the following equation:

P — value — din @)
where, g;, are the total number of observed data points bracketed by the 95PPU band, N is the total
number of observed data points.
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R-value expresses the relative length of the 95PPU band with respect to the model simulated
values [57]. R-value has been determined by the following equation:

R - value = d (8)

Ox

where oy is the standard deviation of the model simulation x. HX is the average distance between the

upper and lower limit of the 95PPU band. dy has been calculated using the following equation:

k
2 (av ) ©)
1=1

where 1 is counter, k is the total number of simulated data points for streamflow q, q; and q; are the
upper and lower limit of the 95PPU band.

Both the values vary between 0 and 1. P-value equal to 1 and R-value 0 represent the best
model simulation with no uncertainty. In the P-Q plot, this point can be identified as the point of no
uncertainty. Since to reach the point of no uncertainty is nearly impossible to achieve for any model
simulation as a result of model uncertainties and measurement errors, the simulation nearest to the
point may be considered as the simulation with the lowest uncertainty.

dy =

=

5. Results and Discussion

5.1. Calibration and Validation of the Models

Comparison between observed and models” simulated monthly streamflow are shown in Figure 2a
for the calibration period and in Figure 2b for the validation period. Figures show good agreement
among observed and simulated streamflow by both the models. However, SHM simulates the temporal
pattern of observed streamflow relatively better in comparison to the SWAT model in both calibration
and validation periods including the reproduction of peak flows. To strengthen this observation 1:1
scatter plots, between observed and models” simulations for the calibration and validation periods,
have also been used (shown in Figure 2a,b). From the scatter plots it is evident that SWAT simulated
streamflow deviates considerably from the observed streamflow with respect to the SHM simulated
counterpart during both the calibration and validation periods. Moreover, scatter plots also depict that
SWAT underestimates high flow more in comparison to SHM.

The goodness-of-fit statistics of both the models on monthly calibration and validation are shown
in Table 2. Generally, if R2 > 0.6, NSE > 0.5, and —25% < PBIAS < 25%, the model simulation results are
judged as satisfactory [58,59]. Thus, both SHM and SWAT models have produced satisfactory model
simulations for both the calibration and validation periods in the study area. However, the monthly
streamflow simulated by SHM shows better fit with the observed monthly flow in comparison to
the SWAT simulated streamflow during the calibration as well as validation periods. SHM shows
similarity in results during both the calibration and validation periods with a slightly reduced PBIAS
during validation than calibration period, thus, improvement in water balance dynamics. On the other
hand, SWAT shows considerable deterioration in results during the validation period in comparison
to the calibration period which is evident from the values of R? and NSE (Table 2). The results, thus,
show improved performances of both SHM and SWAT simulations in comparison to previous studies
performed at the Anandpur sub-basin [60-65].
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Table 2. Calibration and validation performances of the models at a monthly scale.

Period Statistics SHM SWAT
R? 0.93 0.75
Calibration NSE 0.92 0.72
PBIAS 11.62 2.01
R2 0.93 0.58
Validation NSE 0.92 0.50
PBIAS 8.67 -14

5.2. Analysis to Compare Annual Peaks

To perform comparison of the annual peak simulation capabilities of both the models, observed
and simulated annual peaks (from both the models) for the calibration (Figure 3a) and validation
(Figure 3b) periods have been plotted against the 1:1 line. Figure 3 depicts that SHM reproduces annual
peaks better than SWAT. Therefore, SHM can be a good option for streamflow simulation for extreme
rainfall events as well as analyzing flooding possibility in the region. Findings are well comparable
with the study performed by Baratti et al. [66] in which they estimated annual flood frequency for the
same region.

35,000 , 35000 .
.
(@) - g
30,000 L 30,000 (b) &
o .
PR A

25,000 . 25,000 o .
@ e e
E 2 e ,et
E 20,000 o * - 20,000 5 ‘

d
E s 7 7 * 0"
< ’ o 4 o o
é 15,000 . @B’ 15,000 o Y o o
g 4 /0 o
B 10,000 g0 " 10,000 ..o
L. 5 Lo 0
,7 eg .
5,000 , 5,000 ,
4 [m] d
4 7
4 d
10,000 20,000 30,000 10,000 20,000 30,000
Observed (m?/s)
---------- 1: 1 Line ®  Simulation with SHM O Simulation with SWAT

Figure 3. Comparison between observed and models simulated annual peaks during (a) calibration
and (b) validation period.

5.3. Inter-Annual Variability of Model Simulations

To understand the difference in models” capabilities of producing inter-annual variability of
monthly streamflow, comparison between observed and simulated monthly streamflow from both
the models have been analyzed and are shown in Figure 4. From the figure, it is evident that SHM
performs satisfactorily in simulating streamflow during the months of June to October (monsoon)
season with the best simulation identified for the month of August throughout the analysis period. In
addition, it is also evident that SHM reproduces observed streamflow better for all the months over the
analysis period in comparison to SWAT streamflow.
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Figure 4. Comparison between observed and simulated monthly streamflow for each month of the
year over the total period (calibration and validation) of analysis.

The differences in the results of two models for inter-annual variability on a monthly scale for the
total period of analysis is mainly attributable to two reasons: different input data interpolation schemes
and variation in modeling processes. First, meteorological data have been bi-linearly interpolated into
5 km X 5 km to run SHM and SWAT model and have used the meteorological data from the closest
IMD grid to simulate monthly streamflow in a sub-basin instead of interpolation [67] (as stated earlier
in Section 2). Different input data interpolation schemes and variation in spatial discretization create
the difference in the spatial distribution of meteorological input for the models [30]. Second, apart from
SCS-CN of the SW module, no modeling process of SHM matches with the SWAT model. However,
the modeling process combination of SHM proved to be better in monsoonal months in comparison
to SWAT; though modeling processes of both models may require improvement for the low rainfall
months. In particular, water level variation approach of baseflow generation, in SHM, and water
balance approach of baseflow calculation, in SWAT, may be compared with separate analysis for the
non-monsoonal months, for the purpose. Furthermore, better calibration may also improve results for
months with low rainfall.
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5.4. Comparison of Model Simulations for Percentile Flows

The models’ performance has also been analyzed in simulating streamflow of various magnitudes
by considering five percentile classes (Section 4.2). The respective simulated flows by both models have
been compared with that of observed streamflow by using scatter plots for the calibration (Figure 5a)
and validation periods (Figure 5b). The performance of SWAT in simulating moderately low flows
during the calibration period is better than simulating other streamflow percentiles during both the
calibration and validation periods. SHM performs better for simulating normal, moderately high,
and high flows during both the calibration and validation periods. Overall, both the models show an
extremely poor performance in simulating low flows during both the periods and moderately low
flows during the validation period.

The variation in percentile flow estimation of the models can also be attributable to different
input data interpolation schemes. However, SCS-CN plays a major role in both models. Therefore,
streamflow simulation may not be appropriate when the rainfall amount is small [30,49,68]. Similar
results have been identified for the non-monsoonal months during analysis of inter-annual variability
of the models, in the previous section. In addition, the different runoff generation technique of the F
module and baseflow generation technique of the GW module of SHM (stated earlier in Section 3.1)
with respect to techniques used in the SWAT model are also responsible for the different results of the
months. In particular, the soil matrix and antecedent condition of the F module may play a role in the
poor model simulation of SHM for low and moderate low flows. Moreover, the routing technique of
SHM seems to be the reason behind the upper hand in simulating high flows in comparison to SWAT,
by capturing the travel time of the streamflow in a better manner.

5.5. Uncertainty Analysis of Monthly Simulations

Figure 6a,c present the 95PPU uncertainty band for monthly simulation during the calibration
period. Figure 6e,g present the 95PPU uncertainty band for monthly simulation during the validation
period. Among them Figure 6a,e are for SHM simulations and Figure 6c,g are for SWAT simulations.
In addition, Figure 6b,d present the scatter plot of NQR and NQS along with two regression lines:
corresponding to upper and lower limits of 95% confidence interval (CI) and one corresponding to the
median for the calibration period. Figure 6b,d are for the SHM and SWAT simulation, respectively.
Figure 6f h present the scatter plot of NQR and NQS along with two regression lines: corresponding to
upper and lower limits of 95% confidence interval (CI) and one corresponding to the median for the
validation period. Figure 6fh are for SHM and SWAT simulation, respectively.

Figure 6a,c,e,g depict that most of the observed streamflow falls inside the defined bands, though
the amount is higher for SHM simulations (Figure 6a,c). Moreover, from Figure 6a,c,e,g it is also evident
that the width of 95PPU band is thinner for SHM simulations in comparison to SWAT simulations.
Thus, it can be inferred that SHM has less uncertainty in model simulations in comparison to SWAT
simulations. Figure 6b,d,fh depict the relationship between residual and simulated streamflow in the
Gaussian domain and confirm that the simulated streamflow is able to capture 95% of the observed
streamflow during the calibration and validation periods for both the models. For estimating the
collective uncertainty, Dogulu et al. [69] supported the use of the quantile regression (QR) technique
due to its simplicity and linearity which has been used elaborately by Kumar et al. [70].
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P and R values based on the uncertainty analysis results of SHM and SWAT simulations for the
calibration and validation periods, respectively shown in Figure 7a,b, elaborate that SHM poses less
uncertainty in monthly simulation than SWAT model.

Though uncertainties from all sources have been counted in the QR uncertainty analysis technique,
spatial distributions of input data are different for the models due to different data interpolation
techniques and model structures of the two models. Although the models’ parameters take care of the
modeling processes during calibration, the spatial variation of input data may affect the uncertainty
of the models” simulation significantly. The results of the uncertainty analysis also represent this
aspect and show that SHM represents the spatial variations of landscape characteristics and input data
more accurately.

1 @ 1
a
0.8 0.8 (b
0.6 » 0.6
E SHM 2
s 04 ® 04
e o & SHM
0.2 0.2 [ ) ®
0 - ; ; oSt 0 ; ; . SWAT
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R-value R-value

Figure 7. P-value vs. R-value for (a) calibration period and (b) validation period for the SHM and
SWAT model simulations.

6. Conclusions

SHM and SWAT models were used to simulate the monthly streamflow at Anandpur gauging
station of Baitarani basin for in-depth inter-comparison of the models’ performances. The SWAT model
was set to have an average size of the HRUs equal to 25.2 km?, (nearly equal to the grid cell resolution
of SHM, i.e., 25 km?) so that the two discretization schemes were in similar scale. Results showed
that although both SHM and SWAT have produced reasonable results, SHM performed better. To be
more specific, SHM performed better in simulating annual peak flows, and reproduced the annual
variability of observed streamflow for every month of the year. In addition, SHM estimates normal,
moderately high, and high flows better than SWAT. Uncertainty analysis of simulated streamflow
of both the models also supports the superiority of SHM model in comparison with SWAT model.
Possible impacts of the model structure were also identified for the results.

In summary, SHM produced better results in comparison to SWAT at the monthly scale with proof
of better model structure for the large research catchment. However, we cannot draw a conclusion that
grid-based hydrological modeling is better than the HRU based. More researches should be carried out
for comparing different discretization schemes for other Indian basins and other parts of the world.
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Abstract: Climate variability is strongly influencing hydrological processes under complex
weather conditions, and it should be considered to forecast reservoir inflow for efficient dam
operation strategies. Large-scale climate indices can provide potential information about climate
variability, as they usually have a direct or indirect correlation with hydrologic variables. This study
aims to use large-scale climate indices in monthly reservoir inflow forecasting for considering
climate variability. For this purpose, time series and artificial intelligence models, such as
Seasonal AutoRegressive Integrated Moving Average (SARIMA), SARIMA with eXogenous variables
(SARIMAX), Artificial Neural Network (ANN), Adaptive Neural-based Fuzzy Inference System
(ANFIS), and Random Forest (RF) models were employed with two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-).
Several statistical methods, including ensemble empirical mode decomposition (EEMD), were used
to select the lagged climate indices. Finally, monthly reservoir inflow was forecasted by SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models. As a result,
the use of climate indices in artificial intelligence models showed a potential to improve the model
performance, and the ARX-ANN and AR-RF models generally showed the best performance among
the employed models.

Keywords: Climate variability; Large-scale climate indices; Reservoir inflow forecasting;
Ensemble empirical mode decomposition; Time series model; Artificial intelligence model

1. Introduction

Reservoir inflow forecasting is an essential task in dam operation and is strongly linked to water
resource planning and management. Reservoir inflow forecasting has become increasingly complex
and important due to changes in the frequency and magnitude of water-related disasters under climate
change. To better understand the responses to climate change, a large number of models have been
developed for more accurate and reliable inflow forecasting [1-9].

In the hydrological field, time series models are widely used to analyze the linear stochastic
progress of observed time series and forecast future time series. Based on AutoRegressive Integrated
Moving Average (ARIMA) family models proposed by [10], Seasonal ARIMA (SARIMA) and Seasonal
ARIMA with eXogenous variables (SARIMAX) models have been widely applied to model hydrological
time series considering seasonality [11-15]. Previous studies have successfully proved the applicability
of the SARIMA model following the Box and Jenkins procedures, because of the simple mathematical
structure, ideal representation of the statistical and correlation structures, and relatively small number
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of parameters [16]. In addition, hydrological variable forecasting has been performed using artificial
intelligence models since the artificial intelligence technique began to be increasingly developed
in the 1990s. The Artificial Neural Network (ANN) and Adaptive Neural-based Fuzzy Inference
System (ANFIS) models have been frequently used and showed good performance in hydrological
variable forecasting [1,17-23]. Since the ANN and ANFIS models consider both linear and nonlinear
processes of the observed time series, they were suggested as alternatives to traditional time series
models for the complex practice of hydrological variable forecasting. In addition to the above two
classic artificial intelligence models, a new type of machine learning method, i.e., Random Forest (RF)
model, has been recently introduced as a state-of-art artificial intelligence model in the hydrologic
field. The RF model has produced more accurate and stable predictions with the additional advantage
of handling nonlinear and non-Gaussian data series; therefore, it has been widely used in reservoir
operations [24-26].

Many studies have focused on comparing the forecasting performances of time series and artificial
intelligence models as numerous forecasting models begin to propose in recent decades [27-29].
Wang et al. [1] compared several artificial intelligence methods such as ANN, ANFIS, genetic
programming and support vector machine models for monthly river flow discharges. They concluded
that the best model differed depending on the evaluation criteria. Valipour et al. [4] compared
AutoRegressive Moving Average (ARMA), ARIMA, and autoregressive ANN models for forecasting
monthly inflow while increasing the number of parameters to improve accuracy. They concluded that
the ARIMA model is more appropriate to forecast over 12 months while the autoregressive ANN model
showed a better forecasting performance over five years. Emamgholizadeh et al. [30] compared the
ANN and ANFIS models for forecasting the groundwater level at the Bastam Plain in Iran. The results
showed that the ANFIS model leads to better performance than the ANN model. Li et al. [25] applied
the RF model to compare the predictability of water level variations with various artificial intelligence
models such as ANN, support vector regressions, and a linear model. They concluded that the
RF model can be calibrated to provide information for water management and decision-making by
providing efficient forecasting performance. They also stated that the lagged variables are important
predictors, and the meteorological indices should be included in the future study.

Recently, large-scale climate indices have been employed in hydrological processes because it
was proved that the climate indices can provide potential information about climate variability in
the global climate system. Kashid et al. [31] predicted weekly rainfall using a genetic programming
model with El Nifio Southern Oscillation (ENSO) indices, Equatorial Indian Ocean Oscillation indices,
outgoing longwave radiation, and lagged rainfall. They suggested that information about large-scale
atmospheric circulation patterns can be successfully used for prediction of weekly rainfall with
reasonable accuracy. Schepen et al. [32] provided evidence that lagged oceanic and atmospheric
climate indices are potentially useful predictors of Australian seasonal rainfall by quantifying the
pseudo-Bayes factor based on cross-validation predictive densities. Mekanik et al. [33] applied the
ANN model and multiple linear regression analysis to forecast long-term rainfall using lagged ENSO
and Indian Ocean Dipole (IOD) indices as potential predictors of spring rainfall. They suggested the
use of combined lagged ENSO-IOD in ANN models can provide more reliable forecasting results,
therefore, contributing significant positive impacts to water resource management. Abbot and
Marohasy [34] evaluated the utility of climate indices in rainfall forecasting using the ANN model
in Queensland, Australia. They focused on the selection of input variables including climate indices
and concluded that the optimization of input variable selection could provide better performance
in monthly rainfall forecasting. Li et al. [35] investigated teleconnections between large-scale
ocean-atmosphere patterns as potential sources of nonstationarity in annual maximum flood series
in the Wangkuai Reservoir watershed, China. They found that the North Pacific Oscillation (NPO),
North Atlantic Oscillation (NAO), and Atlantic Oscillation (AO) indices all had significant correlations
with flood peak.
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To identify information on climate variability and trends due to the effects of climate change on
hydro-climatic variables, a decomposition method named ensemble empirical mode decomposition
(EEMD) was applied in recent studies. Wu et al. [36] suggested that empirical mode decomposition
(EMD) can reveal intrinsic properties, i.e., trend and variability, in nonlinear and nonstationary
data. Lee and Ouarda [37] predicted future precipitation and extreme hydrological variables by
modeling a nonstationary oscillation process using the EMD process. Breaker and Ruzmaikin [38]
used the EEMD to analyze a 154-year record of monthly sea level data. They identified that the
extracted long-term trend modes contain variabilities on time scales consistent with the Pacific Decadal
Oscillation (PDO). Shi et al. [39] applied EEMD to past temperature and precipitation data and
found that the extracted low-frequency signals in temperature data significantly correlated with
Northern Hemisphere temperatures. Castino et al. [40] analyzed the trend and oscillatory modes of
river discharge in the southern Central Andes of northwestern Argentina using EEMD to find the
statistically significant climate indices and time intervals. They determined the time intervals according
to the mean period of the intrinsic mode functions (IMFs) extracted via EEMD and found the significant
climate indices for each IMF. Kim et al. [41] suggested a procedure to select climate indices that affect
long-term precipitation using EEMD to identify the relationship between long-term precipitation and
climate indices. They found that the lagged NINO 1+2 and the Atlantic Multidecadal Oscillation
(AMO) index should be preferentially considered as predictive indicators used to forecast monthly
precipitation in South Korea. As these studies demonstrate, climate indices can be used as input
variables because they provide predictive information on large-scale climate modes for long-term
forecasting based on the global climate system under complex weather conditions. The EEMD
can also be employed as an effective tool for reservoir inflow forecasting. Yu et al. [42] proposed
three decomposition methods—Fourier transformation, EEMD, and singular spectrum analysis—for
pre-processing, and used autoregressive input variables to support the vector regression model.
They showed that this decomposition method is an effective method for reservoir inflow forecasting.
Therefore, the use of large-scale climate indices and the EEMD for long-term forecasting is increased to
utilize the predictive information provided by large-scale climate modes.

Two critical research questions for reservoir inflow forecasting are to identify highly-correlated
climate indices, and to find a model which provides the best performance through applications. So far,
many studies have a limited focus primarily on examining the relationship between climate indices and
hydrologic variables. One of the important needs for today in monthly reservoir forecasting is not only
identifying potential indicators, but also increasing their applicability for efficient water management
strategies and operation. This study aims to apply and compare the model performance with highly
correlated input variables including lagged inflow and lagged climate indices. For this purpose,
time series and artificial intelligence models—i.e., SARIMA, SARIMA with eXogenous variables
(SARIMAX), ANN, ANFIS, and RF models—were used to forecast the monthly reservoir inflow at the
Soyanggang (SY), Chungju (CJ), and Goesan (GS) dams in South Korea. Two types of input variables,
autoregressive variables (AR-) and a combination of autoregressive and exogenous variables (ARX-),
were constructed to examine the impacts of climate indices for reservoir inflow. To select appropriate
climate indices and construct input variables for monthly reservoir inflow, several statistical methods
consisting of partial autocorrelation function (PACF), EEMD, cross-correlation analysis, and the
backward elimination method were employed. The EEMD was applied to extract the oscillatory
modes inherent in the reservoir inflow for selecting the climate indices with a significant correlation.
Consequently, a total of eight models including time series and artificial intelligence models with two
types of input variables (e.g., SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS,
AR-RF, ARX-RF) were constructed to forecast the monthly reservoir inflow. Model performance was
compared using the correlation coefficient (), root mean square error (RMSE), and Nash—Sutcliffe
Efficiency (NSE).

The rest of this paper is organized as follows. Section 2 presents the employed forecasting models
such as time series and artificial intelligence models. Section 3 presents data and study area, including
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monthly reservoir inflow and large-scale climate indices used in this study. Section 4 presents a process
of input variable selection and explains the detailed methods. Application and results including model
input variables, model parameters and setting, and the model performance are described in Section 5,
and discussions are presented in Section 6. Section 7 concludes the paper.

2. Time Series and Artificial Intelligence Models

2.1. Seasonal AutoRegressive Integrated Moving Average (SARIMA) Model

The Box—Jenkins approach using the ARIMA family of models is widely used to forecast future
values based on an observed time series. The ARIMA model parsimoniously interprets a stochastic
process with autoregressive (AR) and moving average (MA) operators. If there is seasonality in the
time series, the SARIMA model is more useful for modeling as it considers seasonality through a
differencing procedure [10]. The SARIMA model is defined in Equation (1):

9(B)'®*(B)" (1 BY) (1 - BP)y: = 0(B)'©°(B) % (1)
where y; is a given time series, ¢(B)? and 0(B) are the non-seasonal AR and MA operators, and ®* (B)?
and ©°(B )Q are the seasonal AR and MA operators with seasonal period, s, d and D are non-seasonal

and seasonal differencing orders, ¢; represents white noise with zero mean and standard deviation 03,
and B is the backshift operator. The operators are defined in Equations (2)—(5), respectively.

¢(B) =1—¢1B— B> —--- — B @
0(B) =1—6;B— 6,8 — .- —0,B1 (3)
O (B) =1—®1B° — ®,B* — ... — pB™ 4)
©°(B) =1—-0;B° — ©,B* — ... — ©gBY (5)

2.2. SARIMA with eXogenous Variables (SARIMAX) Model

The SARIMAX model is a multivariate time series model extended from the SARIMA model to
consider the effect of the exogenous variables in a time series [43]. SARIMAX is useful in modeling a
time series that has a dominating variable. The SARIMAX model is an advanced model of the ARIMA
family because it can consider trends, seasonality, and exogenous variables. The SARIMAX model
with exogenous variable (x;) is defined in Equation (6):

¢(B)'®*(B)P [(1 =) (1 —BP)yi - cxt} = 0(B)10°(B)%%; ©6)

where c is the regression coefficient of the exogenous variable, and all other parameters are described
in Section 2.1.

2.3. Artificial Neural Network (ANN) Model

The ANN model is a powerful machine learning technique that is designed to mimic the structure
of the brain [44]. It has been widely applied in hydrology to improve the predictability of future
hydrologic variables because it considers both linear and nonlinear structures. In general, the basic
structure of the ANN model is three layers (input, hidden, and output) as shown in Figure 1.
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Consider there are n number of input variables in the input node (x;, i = 1, 2, ..., n), thep
number of nodes in the hidden layer (zj, j=12, ..., p), and the k number of output variables in the
output node (yu, m =1, 2, ..., k). The ANN model can be described in Equations (7) and (8):

p
Om fy(ZZjij"Fbk) 7)
-1

zj=fz <21 xi Wi +Cj> ®)

where the weight parameters Wy; and W; indicate the strength of the connections between the nodes,
by and c; are the bias, f, and f; are the activation functions that are connected to each other with
weight parameters.

The key purpose of the ANN model is to find the best weight parameters using a training
algorithm. The backpropagation algorithm is most commonly used for ANN training by adjusting the
weight parameters between the hidden and output layers to reduce the margin of error in the output.
The optimal number of hidden nodes can be determined by trial-and-error approaches because there
is no exact way to decide the number of hidden nodes. However, it was found that better results
can be obtained when the number of hidden nodes is smaller than or equal to the number of input
nodes [4,45]. In addition, there are several types of activation functions such as the sigmoid function,
hyperbolic tangent function, and sign function that can learn nonlinear relationships between the input
and output. The general process of ANN modeling is to construct a model which reduces errors in the
training set and then applying this model to the test set.

Input layer Hidden layer Output layer

Wi
21

Z2

; ®

OJOXO

- OO0

©

-

Figure 1. The basic structure of the Artificial Neural Network (ANN) model (input, hidden,
and output layers).

2.4. Adaptive Neural-Based Fuzzy Inference System (ANFIS) Model

The ANFIS model is a multilayer feed-forward network that combines the ANN model and fuzzy
logic based on the Takagi-Sugeno fuzzy inference system [46]. It is a powerful tool for hydrological
forecasting because it integrates the advantages of both the ANN and fuzzy inference systems.
The fuzzy reasoning system for a first-order Sugeno fuzzy model has the following two if-then rules:

e Rulel:if xisAyandyis By thenf = p1x +q1y+n

o Rule2:if xis Ay and y is By then fy = pax + g2y + 1 where Ay, Ap and By, B are the membership
functions of each input x and y, f; and f; are the output functions and p1, g1, 1 and p2, g2, 72
are linear parameters. The ANFIS model consists of five layers as shown in Figure 2.
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Input Qutput
S

ol B ol [
®

OMNG)

1

OO

2

Figure 2. The basic structure of the Adaptive Neural-based Fuzzy Inference System (ANFIS) model.

Layer 1: The fuzzy membership grade for each node is generated by the fuzzy membership
function (MF). An MF is an indicator function that defines how a point in the input space is mapped to
a membership value between 0 to 1. The output of node i is defined in Equations (9) and (10):

Qi =pa(x),i=1,2 ©)

Qi =pp ,(), i=34 (10)

where x and y are the input for node 7, and p 4, (or pp, ,) is the degree of MF for a fuzzy set A; (or B;_»).
The fuzzy set A; (or B;_,) is a linguistic label for a MF that could be given by appropriate functions
such as Gaussian, generalized Bell shaped, trapezoidal shaped, and triangular shaped functions [1].

Layer 2: The incoming signals are multiplied to generate the output that represents the firing
strength of the rules, as described in Equation (11).

Qai = w; = pa,(x) X pp,(x), i =1,2 (11)
Layer 3: The firming strength is normalized. The normalized firming strength for node i as

described in Equation (12).

_ wi .
== —,i=1,2 12
Q3,l wi (wl +HJ2) 1 ( )

Layer 4: Consequent parameters {p;, g;, r;} at node i compute the contribution of the ith rule to
the overall output. It can be described by Equation (13) using the output obtained from layer 3 (w;).
Quj = Wif; = Wi(pix + qiy + 1) (13)

Layer 5: Finally, the overall output is calculated from a single node by summation of all rules as
described in Equation (14).

Qs = Lnf, = H5 1)

In this study, the ANFIS model used hybrid learning that was a combination of descent gradient for
precedents and least squares estimation for consequents. The normalized Gaussian MF and Bell-shaped
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MF are popular, with the advantage of being smooth and nonzero at all points. The linguistic term of
the normalized Gaussian MF and the Bell-shaped MF are given by Equations (15) and (16):

2
Jiay(x) = exp (“‘”) (15)
1

where 0;, a;, b;, and c; are the parameters of the membership function (i.e., ¢; and ¢; are the center
and width of the fuzzy set).

yAi(x) (16)

2.5. Random Forest (RF) Model

The RF model is a state-of-art machine learning technique which is a nonparametric white-box
regression model [24]. For the regression, the RF model employs an ensemble-learning algorithm
which operates by constructing a multitude of decision trees based on bootstrap samples from the
training dataset. Unlike linear regression models, RF is the most robust technique for handling a
combination of nonlinear interactions between the input variables and the output. The basic structure
of the RF is shown in Figure 3.

The RF begins with many bootstrap samples that are randomly selected from the original input
variables. A decision tree is built for each of the bootstrap samples. For each node of a decision
tree, proper input variables are selected by binary partitioning. Finally, the forecasting result can be
obtained by combining the results over all trees [47]. Therefore, three parameters need to be specified:
(1) the number of trees; (2) number of variables in each node (default value is 5 for regression random
forest); and (3) the number of input variables per node (default value is one third of the total number
of variables).

Input Bootstrap sample Decisiontrees ~ Combination Output
( s
@ Treet=1
@) | e i
® $
: i
@ @ (x> Treet=2 .,
i
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(&) @
§
® H
® Treet=k__ ,
® i
() o *
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® §
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Figure 3. The basic structure of the Random Forest (RF) model.
3. Data and Study Area

Monthly reservoir inflow in the SY, CJ, and GS dams was employed in this study. The three dams
are located in the Han River basin, and they are totally separate reservoirs on different branches of the
Han River. The three dams have only natural reservoir inflow that is not affected by artificial control
in their upstream areas. The Han River basin in South Korea plays an important role in supplying
water to the capital, Seoul, and other metropolitan cities. Therefore, the three dams should be carefully
operated to provide effective long-term water management.
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The SY dam is a multi-objective dam located in the upstream section of the North Han River,
which has a basin area of 2783 km?. The CJ dam is the largest multi-objective dam in South Korea
and is located on the South Han River, which has the basin area of 6705 km2. The GS dam is
a small hydropower dam located on the Dalcheon, a tributary of the South Han River, with a
basin area of 671 km2. There are seasonal characteristics to the inflow, with the monthly reservoir
inflow concentrated during the flood season from June to September, since more than 70% of annual
precipitation occurs in this season. The geographical locations of the three dams and basin areas are
shown in Figure 4. Further detailed information about the three dams is presented in Table 1.

Han River basin

4 i
Soyangang dam |

Figure 4. Locations of the Soyangang (SY), Chungju (CJ), and Goesan (GS) dams and their basins.

Table 1. Detailed information about the SY, CJ and GS dams.

Station Type Data Period I:‘s:: (X(;lol;n:3) SV‘\: ;t;:y MEE(I:;;/‘;?“W
(ol Anma S
Soyggiang ](\éf‘éf;*?];§§’°se 197 47]312::;?& 016 2703 9600 1,900,000 68.28 221.99
C}(‘i‘ff“ I\?gg-'%%;pose 19864)]22‘:;%; 2016 6705 902 1,789,000 162.39 359.22
G§§f§“ H(gicr;(.)l_apb‘;wer 1982—1%22;1:2;1'2016 671 196 5700 13.72 30.18

2 Earth Core Rock Fill Dam.  Concrete Gravity Dam.

A total of 24 large-scale climate indices from the National Oceanic & Atmospheric
Administration/Earth System Research Laboratory (NOAA/ESRL) were used in this study.
The climate indices represent the atmospheric-oceanic circulation patterns, therefore, it can be
possible to consider the impact of large-scale climate variability directly or indirectly on the monthly
reservoir inflow series. Each index indicates an aspect of the geophysical system based on different
measurements, and they are provided by the form of the monthly time series. Table 2 presents a list of
the climate indices used in this study.
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Table 2. List of the climate indices used in this study.

Climate Index Classification Climate Index Classification

NINO 1+2 (NINO12) ENSO/SST:Pacific Tropical Northern Atlantic Index (TNA) SST:Atlantic

NINO 3 (NINO3) ENSO/SST:Pacific Tropical Southern Atlantic Index (TSA) SST:Atlantic

NINO 4 (NINO4) ENSO/SST:Pacific Carribbean SST Index (CAR) SST:Atlantic
NINO 3.4 (NINO34) ENSO/SST:Pacific Pacific Decadal Oscillation (PDO) Teleconnections
Bivariate ENSO Timeseries (BEST) ENSO Northern Oscillation Index (NOI) Teleconnections
Multivariate ENSO Index (MEI) ENSO Pacific North American Index (PNA) Teleconnections
Trans-Nino Index (TNI) SST:Pacific Western Pacific Index (WP) Teleconnections
Western Hemisphere Warm Pool (WHWP)  SST:Pacific/SST:Atlantic ~ Eastern Atlantic/Western Russia (EAWR) Teleconnections
Oceanic Nino Index (ONI) SST:Pacific North Atlantic Oscillation (NAO) Teleconnections

Atlantic Multidecadal Oscillation (AMO) SST:Atlantic Southern Oscillation Index (SOI) Atmosphere

Atlantic Meridional Mode (AMM) SST:Atlantic Quasi-Biennial Oscillation (QBO) Atmosphere

North Tropical Atlantic SST Index (NTA) SST:Atlantic Artic Oscillation (AO) Atmosphere

4. Input Variable Selection

The time series and artificial intelligence models were conducted by two types of input variables
to compare the impacts of the climate indices. The first type of input variable only includes the
autoregressive variables (AR-) such as the lagged inflow. The lag time was determined by the PACFE.
The second type of input variable includes the combination of autoregressive and exogenous variables
(ARX-) composed of lagged inflow and lagged climate indices. To select the candidate climate indices
for the second type of input variables, the EEMD method was employed to the monthly reservoir
inflow series. A finite number of decomposed components, which are the IMFs, were extracted
by the EEMD. Cross-correlation analysis was performed between the IMFs and the climate indices
considering lag times from 1 to 12 months. The lagged climate indices with the highest correlation
coefficient with each IMF were selected as the candidate climate indices. Therefore, the candidate
variables include: (1) the lagged inflow obtained via PACF; and (2) the lagged climate indices obtained
via EEMD. Finally, the backward elimination method was performed on the candidate variables to
select the second type of input variables. Figure 5 shows the procedure followed to select the two types
of input variables. Detailed methodologies are explained in the subsections.

Monthly dam inflow

v ¥
Partial autocorrelation Ensemble empirical mode
function (PACF) decomposition (EEMD)

Intrinsic mode functions
(IMFs)

i i
E Laggedfﬂu i
i i

Autoregressive
input variables Cross-correlation analysis

]

Lagged climate indices

Backward elimination
method

Lagged inflow and Lagged
climate indices

A combination of autoregressive
and exogenous variables

Figure 5. Procedure to select the two types of input variables: (1) Autoregressive variables (AR-);
(2) a combination of autoregressive and exogenous variables (ARX-).
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4.1. Partial Autocorrelation Function (PACF)

PACF is a statistic that measures the strength of relationships in a time series considering a time
lag, after removing the presence of all other time lags. The range of PACF is between —1 and 1.
In a PACF plot, it is able to identify the relationship between a time series and its lagged time series
through the spikes and confidence intervals. For example, a significant spike at lag 12 in the PACF plot
means that there is a strong correlation between a time series and the same time series with twelve
intervals apart. PACF also provides useful information for selecting the autoregressive parameters in
the time series models.

4.2. Ensemble Empirical Mode Decomposition (EEMD)

EMD has been recently introduced in the hydrology as an innovative analysis method to
decompose statistically significant cycles and trends inherent in time series data [36,40,48]. EMD is a
data-driven method that decomposes an original data series into a set of IMFs. IMFs indicate oscillatory
modes that reflect the cycles and trends in the data series and should satisfy two conditions: (1) the
number of extrema and zero crossings must either be equal or differ at most by one in the whole data
series; (2) the mean value of the upper envelope defined by connecting all of the local maxima, and the
lower envelope defined by connecting all of the local minima, must be zero at any point [47]. EEMD is
a modified version of EMD proposed by Wu and Huang [49] to overcome the drawbacks of EMD due
to the mode mixing problem. EEMD performs a sifting algorithm by adding an ensemble of white
noise signals to the original data series, and the final result is obtained from the mean of the data series.

We will briefly introduce the sifting algorithm which is carried out to decompose a set of IMFs
from an original data series y(¢),t = 1,2,..., 1 [36]. At first, the upper and lower envelopes are found by
connecting the local maxima (i, (t)) and local minima y; (¢)) using a cubic spline method. Second, the mean
value between the local maxima and local minima is calculated, ie., Ymean(t) = (yu(t) +yi(t))/2.
Third, the Ymean(t) is extracted from the original time series y(t), i.e, h(t) = y(t) — Ymean(t). If h(t)
satisfies the two conditions of IMFs, then /(t) is the first IMF; else h(t) is treated as y(t) and the steps
are repeated until /1(t) becomes the IMF. Fourth, a new data series is defined by extracting the IMF from
y(t) and repeating the steps until no more IMF can be extracted. The last IMF becomes the residue r(t).
Finally, y(t) is defined as the sum of the IMFs and the residue as follows:

k
y(t) = Y IME(H) + (1) a7
i=1

where k is the number of IMFs.

4.3. Cross-Correlation Analysis

Cross-correlation function is a measure of the strength of a linear correlation between two different
time series considering a range of time lags. The range of the correlation coefficient (r) is between —1
and 1. If the two different time series are positively correlated, r is close to 1; if they are negatively
correlated, r is close to —1; if they have no correlation,  is 0.

4.4. Backward Elimination Method

Backward elimination method is a kind of variable selection method beginning with all candidate
input variables for a model. From the initially selected candidate input variables, the least significant
variables are eliminated one by one until only one variable remains. The input variable showing
the smallest contribution to the model performance is deleted at each step according to the model
selection criteria. The relative importance of the input variable may be determined by removing the
input variable [50]. The backward elimination method is useful for improving the model’s performance
with an iterative procedure, although it requires significant computational time.
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5. Application and Results

5.1. Model Input Variables

To determine the autoregressive variables, the PACF was used to identify the lag time of the
monthly reservoir inflow series. Figure 6 shows the PACF of the three dams with 95% confidence
intervals. At all three dams, the spikes are mainly prominent at 1, 12, 24, and 36 months (lagl, lag12,
lag24,1ag36; y;—1, Yi—12,Yi—24, Yi—36). Therefore, the first type of input variables for all the three dams
includes the four cases of lagged inflows as shown in the second column of Table 3.
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Figure 6. Partial Autocorrelation Function (PACF) of the three dams with 95% confidence intervals
(dotted line): (a) SY dam, (b) CJ dam, (c) GS dam.

To determine the exogenous variables for the second type of input variables, the monthly reservoir
inflow series was decomposed by EEMD to extract the IMFs. The IMFs indicate the different inherent
frequencies of the reservoir inflow series. Lagged climate indices which have the highest correlation
coefficient for each IMF were selected as the candidate exogenous variables. Figure 7 shows the IMFs
(solid black line) of the three dams and the lagged climate indices which have the highest correlation
coefficient for each IMF (blue dotted line). The reservoir inflow of the SY dam was decomposed
into eight IMFs and a residue, and the reservoir inflow of the CJ and GS dams were decomposed
into seven IMFs and a residue. For all three dams, the NINO12 index was mainly selected in the
low-frequency IMF, the NTA and QBO indices were mainly selected in the middle frequency IMF,
and the AMO index was mainly selected in the high-frequency IMF or residue. Table 4 shows the
correlation coefficients (r) between the IMFs and the lagged climate indices in the SY, CJ, and GS dams.
In the SY dam, the 4-month lagged NINO12 index had the highest correlation coefficient (r = 0.76)
with the third IMF and the 6-month lagged AMO index has the second highest correlation coefficient
(r = —0.57) with the eighth IMF. In the CJ dam, the 5-month lagged NINO12 index had the highest
correlation coefficient (r = 0.75) with the third IMF, and the 12-month lagged AMO index had the
second highest correlation coefficient (» = 0.49) with the seventh IMF. In the GS dam, the 5-month
lagged NINO12 index had the highest and the second highest correlation coefficients (r = 0.75, r = 0.45)
with the third and second IMFs, respectively. The 12-month lagged NTA index had the third highest
correlation coefficient (r = —0.40) with the fifth IMF.
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Figure 7. IMFs resulted from ensemble empirical mode decomposition (EEMD) (solid black line) and
the lagged climate indices (blue dotted line) which have the highest correlation coefficient for each IMF.
(a) SY dam, (b) CJ dam, (c) GS dam.

Table 3. The two types of input variables for the three dams.

Station Autoregressive Variables (AR-) A Combination of Autoregressive and Exogenous Variables (ARX-)
SY dam Lag12, Lag36, NTA(12), AMO(6), NINO4(12), NINO12(10), AMM(12)
CJ dam Lagl, Lag12, Lag24, Lag36 Lag36, TNI(12), AMO(12), NINO12(11), NTA(11), NINO12(5)

GS dam Lag12, Lag36, NINO12(5), QBO(9), AMO(1)

To determine the second type of input variables for each dam, the backward elimination method
was applied to the candidate variables, including the lagged inflows and the lagged climate indices.
The backward elimination method results were shown in the third column in Table 3, which are
the second type of input variables for each dam composed of a combination of autoregressive and
exogenous variables. Therefore, a total of seven, six, and five input variables were finally selected for
the SY, CJ, and GS dams. Notably, the 36-month lagged inflow, lagged NINO12 index, and lagged
AMO index were identically selected as the second type of input variables at all the three dams.

Table 4. Correlation coefficients (r) between the intrinsic mode functions (IMFs) and the lagged climate
indices in the SY, CJ, and GS dams.

SY Dam CJ Dam GS Dam
IMFs CI Lag r IMFs CI Lag r IMFs CI Lag r
IMF1  NINO12 10 0.21 IMF1  NINO12 11 0.22 IMF1  NINO12 11 0.19
IMF2 NINO12 5 0.42 IMF2 NINO12 5 0.48 IMF2 NINO12 5 0.45
IMF3  NINO12 4 0.76 IMF3  NINO12 5 0.75 IME3  NINO12 5 0.75
IMF4  QBO 7 -032 IMF4 QBO 8 -033 IMF4 QBO 9 -0.29
IMF5  NTA 12 -021 IMF5 NTA 11 —-042 IMF5 NTA 12 —0.40
IMF6 ~AMM 12 -029 IMF6 NINO4 12 -0.38 IMF6 TNI 12 0.32
IMF7 NINO4 12 -0.15 IMF7 AMO 12 0.49 IMF7  AMO 1 0.30
IMF8  AMO 6 —-057  RES TNI 12 —0.21 RES  AMO 1 0.25
RES  AMO 1 0.47

5.2. Model Parameters and Setting

A total of eight models including time series and artificial intelligence models with the two types
of input variables (SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF,
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and ARX-RF) were constructed. To calibrate and validate the time series models, the monthly reservoir
inflow series was divided into train and test periods. The training period was set from the start of
the data record to December 2012 and the test periods were set to the last four years (January 2013 to
December 2016). In the artificial intelligence models, the monthly reservoir inflow series was divided
into three parts, training, validation, and test periods to avoid overfitting problem. The training period
was set from the start of the data record to December 2008 and the validation period was set to the
next four years (January 2009 to December 2012). The test periods were set to the last four years
(January 2013 to December 2016). Detailed descriptions of the model parameters and architectures are
presented in the subsections.

5.2.1. SARIMA and SARIMAX Models

The SARIMA model is a conventional statistical model used to forecast future values. It is
composed of autoregressive terms. The SARIMAX model, which is very similar to the SARIMA model,
extends into the SARIMA model with an exogenous variable. Both the SARIMA and SARIMAX
models consist of the parameters (p, d, q)(P, D, Q)[s]. In general, it is sufficient to consider up to
two non-seasonal AR and MA parameters (p,q) and seasonal AR and MA parameters (P, Q) [51].
In this study, the SARIMA and SARIMAX models were composed of the non-seasonal AR and MA
parameters (p,q) and the seasonal AR and MA parameters (P, Q) up to three (from 0 to 3) for more
flexible model construction. Depending on the behavior of the reservoir inflow, non-seasonal and
seasonal differencing orders were respectively set to 0 and 1 (d = 0, D = 1), and the seasonal
periods were set to 12 (s = 12)) reflecting seasonality with 12-month intervals in the reservoir inflow
(in Figure 5).

A total of 256 (4 x 1 x 4 x 4 x 1 x 4) SARIMA models were respectively constructed for the SY,
CJ, and GS dams. The number of constructed SARIMAX models was the number of SARIMA models
multiplied by the number of combination autoregressive and exogenous variables in Table 3, because
the SARIMAX model is able to consider one exogenous variable. The rest of the parameters were
identical to the structure of the SARIMA model. A total of 1792 (256 x 7), 1536 (256 x 6), 1280 (256 x 5)
SARIMAX models were respectively constructed for the SY, CJ, and GS dams. The best SARIMA and
SARIMAX models were selected based on the minimum Akaike information criterion (AIC) value,
which is commonly used for model selection. Table 5 shows the parameters of best SARIMA and
SARIMAX models for the SY, CJ, and GS dams. For both model types, the best models were selected
when the non-seasonal parameters had little effect (p = 0). In addition, the lagged inflow was selected
as the exogenous variable for the SARIMAX models for all the three dams.

Table 5. Parameters of best SARIMA and SARIMAX models for the SY, CJ, and GS dams.

Station SARIMA (p, d, 9)(P, D, Q)Is] SARIMAX (p, d, 9)(P, D, Q)Is]

sva SARIMA(0,0,0)(2,1,2)[12] SARIMAX(0,0,0)3,1,1)[12]. x Lagl2
am ®,-0.926, D, —0.271, ©;—0.155, ®,—0.117, D, —0.202, d50.148,

©,-0.732 ©,-0.954, c0.326

o4 SARIMA(0,0,0)(1,1,3)[12] SARIMAX(0,0,0)(2,1,1)[12] x Lag36

am ®;—0.758, ©;—0.147, ©,—0.887, ®;—0.071, Py 0.052, ©1—0.949,
©50.148 €0.133

Gsd SARIMA(0,0,1)(1,1,1)[12] SARIMAX(0,0,0)(1,1,1)[12] x Lagl2

am 0,10.171, d;—0.066, ®; —0.888 ©,0.152, ®; —0.937, c—0.254

5.2.2. ANN Models

For the AR-ANN and ARX-ANN models, a number of hidden nodes ranging from 1 to 10 were
considered in all three dams. The sigmoid activation function was used because of its superiority [4].
The optimal number of the hidden nodes for each dam was determined by considering the performance
during the validation period. The correlation coefficient (r) and root mean square error (RMSE) of
the AR-ANN and ARX-ANN models according to the number of the hidden nodes in the validation
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periods are shown in Figure 8. The optimal number of the hidden nodes was determined based on
the highest r and the lowest RMSE. In cases of two criteria were different, the RMSE was preferred.
Table 6 shows the optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the
three dams.
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Figure 8. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANN and ARX-ANN
models according to the number of nodes in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 6. The optimal number of the hidden nodes of the AR-ANN and ARX-ANN models for the

three dams.
Station AR-ANN ARX-ANN
SY dam 3 5
CJ dam 4 4
GS dam 2 2

5.2.3. ANFIS Models

For the AR-ANFIS and ARX-ANFIS models, two MFs were built on the normalized Gaussian
MEF (¢; = =5,0; =2and ¢; = + 5, 0; = 2) and Bell-shaped MF (a=4,b=1,c=-5anda=4,b=1,
¢ = +5), and 20 epochs based on trial and error [52]. The optimal MF was determined by considering
the performance during the validation period. The correlation coefficient (r) and root mean square
error (RMSE) of the AR-ANFIS and ARX-ANFIS models according to the MF in the validation periods
are shown in Figure 9. The optimal MF was determined based on the highest  and the lowest
RMSE. In cases where two criteria were different, the RMSE was preferred. For the AR-ANFIS model,
there were eight input MFs and 16 rules in the three dams because there are four cases of lagged
inflow in the autoregressive input variable set. For the ARX-ANFIS model, the number of input MFs
according to the number of input nodes was 14, 12, and 10 for the SY, CJ, and GS dams, respectively.
Therefore, the number of rules were 128, 64, and 32. Table 7 shows the optimal MF, the number of
input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.
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Figure 9. Correlation coefficients (r) and root mean square error (RMSE) of the AR-ANFIS and
ARX-ANFIS models according to the MF in the validation period for the SY, CJ, and GS dams. The NS
is normalized Gaussian MF and the BS is the Bell-shaped MF. The blue line is the r-value in the
validation period and the red line is the RMSE in the validation period.

Table 7. A number of input MFs and rules of the AR-ANFIS and ARX-ANFIS models for the three dams.

AR-ANFIS ARX-ANFIS
Station Number of Number of Number of Number of
Optimal MF Input MF Rules Optimal MF Input MF Rules
(Layer2) (Layer3) (Layer2) (Layer3)
SY dam BS 8 16 BS 14 128
CJ dam BS 8 16 BS 12 64
GS dam BS 8 16 NG 10 32

5.2.4. RF Models

For the AR-RF and ARX-RF models, the number of trees ranging from 100 to 1000 (in 100 units)
were considered in all the three dams. The optimal number of trees was determined by considering
the performance during the validation period. The correlation coefficient (1) and root mean square
error (RMSE) of the AR-RF and ARX-RF models according to the number of trees in the validation
periods are shown in Figure 10. The optimal MF was determined based on the highest r and the lowest
RMSE. In the case of two criteria were different, the RMSE was preferred. Table 8 shows the optimal
number of trees of the AR-RF and ARX-RF models for the three dams.
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Figure 10. Correlation coefficients (r) and root mean square error (RMSE) of the AR-RF and ARX-RF
models according to the number of trees in the validation period for the SY, CJ, and GS dams. The blue
line is the r-value in the validation period and the red line is the RMSE in the validation period.

Table 8. The optimal number of trees of the AR-RF and ARX-RF models for the three dams.

Station AR-RF ARX-RF
SY dam 200 500
CJ dam 200 300
GS dam 100 200

5.3. Model Performance

Model performance can be evaluated based on different statistical measures. Two statistical
criteria were used to estimate the model performance in this study. The correlation coefficient (r) is
widely used to identify the linear relationship between observed and forecasted data. The value of r
has a range of -1 to 1 that indicates either a negative or positive correlation. The root mean square
error (RMSE) is used to measure the difference between observed and forecasted data. The value of
RMSE indicates the magnitude of the error. The Nash—Sutcliffe Efficiency (NSE) is used to assess the
predictive power of hydrological models. The value of NSE has a range from —oo to 1. The r, RMSE,
NSE are defined in Equations (18), (19), and (20), respectively.

Zt 1( Y ) ) - (18)
R v Y0 ¢ ~X(1)
1 & 5
RMSE = 7 Z(Y(t) — X(1)) (19)
NSE — 1 — T (Y (1) — X(1)* (20)

BNV
Tima (X(1) = X(1)
where T is data length, Y(t) and X(t) are the forecasted and observed data series, and Y (t) and X (t)
are the mean of the forecasted and observed data series, respectively.
The calculated r, RMSE, and NSE during the training, validation, and test periods of SARIMA,
SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY,
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CJ, and GS dams were presented in Table 9. The underlined values indicate the best statistics among
the employed models in the training, validation, and test periods. In the SY dam, the result shows
that the ARX-RF and AR-RF models are very competitive and have good performance in the training
and validation periods, respectively. On the other hand, in the test period, the AR-ANN or ARX-ANN
models shows the best performance although it is slightly different according to the statistical criteria.
In CJ dam, the ARX-RF model shows the best performance in the training and validation periods.
On the other hand, the ARX-ANN model outperforms in the test period. In the GS dam, the ARX-RF
model shows the best performance in the training period while the AR-ANN model shows the best
performance in the validation period. The SARIMA and AR-RF models achieve the best performance
in the test period depending on the statistical criteria. Overall, the ARX-RF model outperforms in
the training period. Focusing on the test period, the ARX-ANN model generally provided better
predictions, except for the GS dam. In summary, the time series model does not prove that the use
of climate indices as an exogenous variable is more efficient. However, the use of climate indices
generally tends to produce better performance in the ANN and RF models.

Table 9. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models during the training, validation, and test periods for the SY,

CJ, and GS dams.
Station Model r RMSE NSE
Train. Vali. Test Train. Vali. Test Train. Vali. Test
SARIMA 0.65 0.53 84.17 83.69 0.42 —0.04
SARIMAX 0.65 0.38 84.52 93.82 0.42 —0.31

AR-ANN 0.66 0.70 0.58 82.89 89.18 72.28 0.44 0.49 0.22
ARX-ANN 0.64 0.68 0.63 85.56 91.63 80.64 0.40 0.46 0.03

SYdam AR ANFIS 065 073 053 8454 8849 7497 042 049 016
ARX-ANFIS 061 071 041 8793 8953 8696 037 048  —0.3
AR-RF 094 083 047 4261 7533 7778 085 063 010
ARX-RF 095 066 050 4245 9376 7571 085 043 015
SARIMA 065 057 20335 17926 04l ~093
SARIMAX  0.63 057 20562 18051 040 —0.96
AR-ANN 064 071 052 20471 20242 16232 040 048  —058
Cdam  ARXANN 061 074 067 20949 L7 15126 037 05 0
AR-ANFIS 063 070 046 20529 20825 16220 040 045  —058
ARX-ANFIS 064 076 041 20389 18634 20391 041 056  —150
AR-RF 093 068 042 11041 20717 15752 083 046  —0.49
ARX-RF 093 079 040 10883 17411 16953 083  0.62  —073
SARIMA 065 052 1744 1555 042 ~156
SARIMAX  0.67 051 1714 1786 044 —238
AR-ANN 062 072 037 1788 1537 1367 039 051  —098
ARX-ANN 069 063 051 1648 1741 1421 048 037  —1.14
GSdam AR ANFIS 065 071 035 1731 1558 1437 043 050  —1.19
ARX-ANFIS 077 068 042 1477 1669 1940 058 042  —299
AR-RF 093 059 038 913 1802 1345 084 033 092
ARX-RF 094 068 046 869 1635 1676 086 045  —198

The reservoir inflow forecasting results from the SARIMA, SARIMAX, AR-ANN, ARX-ANN,
AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF models for the SY, CJ, and GS dams are shown in
Figures 11-13, respectively. The training periods for the SY, CJ, and GS dams were respectively
started in 1981, 1992, and 1987 considering the order of the time series models. In Figures 11-13,
a part of forecasting results in the training period of the SARIMA and SARIMAX models were
illustrated to the validation period. The general results of the time series models showed that they
forecast only seasonal patterns even in both training, validation, and test periods. In addition,
there were no significant differences between the SARIMA and SARIMAX models depending on
the exogenous variables. The forecasted reservoir inflows of the SARIMA and SARIMAX models were
very close, and were unable to forecast the extreme inflow during the flood season in both the training
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and test periods. This indicates the impact of the climate index was insulfficient in the time series
model. On the other hand, the exogenous variables have an impact on the performance of artificial
intelligence models. The general results of the ARX-RF models showed that they forecast well not
only seasonal patterns, but also peak flows during the flood season in the training and validation
periods for all three dams. During the test period, the ARX-ANN model matched the seasonal patterns
of inflow better than the other employed models, although it showed less accuracy in the volume.
Although the ARX-ANN model showed lower forecasting performance in the training period than the
ARX-RF model, the ARX-ANN model was able to make better forecasts of low and medium reservoir
inflows than the ARX-RF model in the test period. By adding the validation period, we could avoid
the overfitting problem. With regard to unsatisfactory performance in the test period captured by the
NSE, this will be discussed further in the discussion section.
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Figure 11. Forecasting results from the eight models in the SY dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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Figure 12. Forecasting results from the eight models in the CJ dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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Figure 13. Forecasting results from the eight models in the GS dam during the training, validation,
and test periods (a part of the forecasting results in the training period of the SARIMA and SARIMAX
models were illustrated for the validation period).
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6. Discussion

In this study, the statistical methods (e.g., PACF and EEMD) were employed to select the two types
of input variables including lagged inflow and lagged climate indices. The PACF for all three dams
mainly resulted in prominent spikes at 1, 12, 24, and 36 months. The EEMD showed that the third IMF
had the highest correlation coefficient with the four or five-month lagged NINO12 index and residues,
and the last IMF also had a considerably high correlation coefficient with the 1- or 12-month lagged
AMO index. It was found that the EEMD can obtain the inherent climate variability and long-term
trend in the reservoir inflow. Therefore, the statistical relationship between the reservoir inflow and
the climate indices can be deeply examined through EEMD.

From the results of the backward elimination method, the 36-month lagged inflow, NINO12 index,
and the AMO index were selected as a combination of autoregressive and exogenous variables for
the three dams in Table 3. Consequently, we found that the three variables mainly affect reservoir
inflow and play an important role as input variables. This finding supported the results obtained by
Kim et al. [41] that identified the four-month lagged NINO12 and AMO indices as effective indicators
for long-term precipitation in South Korea, as the precipitation is causally related to reservoir inflow.
In addition, this result also agrees with previous studies [36,38,40,53,54] that showed the IMFs
identified through EEMD include the cyclical variabilities and overall trends of time series data.

The comparison of model performance proved that the impact of the climate index was insufficient
in the time series model while the exogenous variables have an impact on the performance of
artificial intelligence models. The ARX-RF models generally forecasted well not only seasonal
patterns, but also peak flows during the flood season in the training and validation periods for
all the three dams. On the other hand, the ARX-ANN model generally showed better performance
in the test period by matching the seasonal patterns of inflow although it showed less accuracy in
the volume. However, the unsatisfactory performance in the test period captured by the NSE was due
to severe weather conditions that rarely occurred in the observation period. To further understand
the model performance under extreme weather conditions, the test period (2013-2016) was divided
into each year, and the inflow characteristics were examined in each year. Figure 14(a) shows the
percentage of the inflow rate of the year compared to the mean annual inflow in the 2013 to 2016 years
for each dam. Figure 14(b) shows the percentage of the variation rate of the year compared to the
mean annual variation in the 2013 to 2016 years for each dam. For example, the percentage of the
inflow rate of 2013 year is calculated by (the mean annual inflow in 2013/the mean annual inflow in
the training period) x 100(%). The percentage of the variation rate is calculated in the same way.
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Figure 14. Percentages of (a) the inflow rate of the year compared to the mean annual inflow in the
2013 to 2016 years and (b) the variation rate of the year compared to the mean annual variation in the
2013 to 2016 years.
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Notably, extreme weather conditions occurred during the test period. The dam inflow in 2013
approximated the mean annual inflow, however, there was a large difference in annual variation
compared to the mean variation for the three dams. The annual inflow of the three dams was less than
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half the mean annual inflow in 2014 and decreased further in 2015 because a severe drought occurred
in these two years. Due to the severe drought, the annual variation in inflow was also lower than
average and there was minor difference in variation between the three dams. Inflow slightly increased
in 2016 reaching half the mean annual inflow. In this study, the years of test period are defined as an
ordinary year (2013), a drought year (2014), a severe drought year (2015), and a restored year (2016).
Table 10 presents the model performances in the 2013 to 2016 years for the three dams.

In the ordinary year (2013), the time series models generally showed better performance than
the artificial intelligence models. When the percentage of the annual variation was similar or smaller
than the mean annual variation, such as was observed in GS dam, the AR-RF model generally showed
the best forecasting accuracy based on both the RMSE and NSE. There were no significant differences
according to the exogenous variables.

In the drought year (2014), the time series model performance was significantly poorer than
during the ordinary year. The forecasting accuracy of the ARX-ANN and AR-RF models was generally
better than other models based on the r and RMSE. The NSE captured poor performance at all dams
because the mean inflows had been lowered due to drought effects. This result indicates that exogenous
variables in the ANN model can improve forecasting accuracy during drought years, although there
are limitations to forecasting the inflow volume.

In the severe drought year (2015), when the annual inflow was close to 50% of the mean annual
inflow such as in the SY dam, all models showed improved forecasting accuracy. The ARX-ANFIS
model showed the best forecasting accuracy based on the RMSE and NSE while the AR-RF model
showed the best forecasting accuracy based on the . However, when the annual inflow was lower than
40% of the mean annual inflow such as in the CJ and GS dams, the forecasting accuracy showed the
worst performance, especially based on the NSE. This result shows a limitation of the use of exogenous
variables in forecasting extreme weather conditions such as severe droughts, since the lagged climate
indices mainly reflect the inherent climate variabilities and long-term trends.

In the restored year (2016), the ARX-RF and ARX-ANN models usually had the best forecasting
accuracy for the SY and GS dams. Although the AR-ANN model showed better forecasting accuracy
than the ARX-ANN model for the CJ] dam based on the RMSE and NSE, the ARX-ANN model
showed best forecasting accuracy based on the r. This result implies that the exogenous variables in
the artificial intelligence models play an important role in forecasting accuracy under the restored
climate conditions.

It was observed that the time series models have quite similarly forecasted inflow in the test
period for the three dams. Mainly in the drought and severe drought years, the results generally
described a limitation of the time series and artificial intelligence models, because the models are based
on the observed data series. They only forecasted ordinary patterns of the observed inflow series. The r
of the time series models decreased in the drought and severe drought years and slightly increased in
the restored year because the time series models maintain seasonal patterns regardless of changing
weather characteristics. The model performance in the artificial intelligence models was slightly
different depending on the dam, period, climate conditions, and input variables. This also implies a
difficulty to forecast events that have not been previously observed, although the model was trained
very well. Among them, the AR-RF and ARX-ANN models generally showed better forecasting
accuracy under drought conditions in our case study. Therefore, we can conclude that the use of
artificial intelligence model and climate indices as exogenous variables has the potential to provide a
suitable forecasting performance under the changing climatic conditions.

Reservoir inflow forecasting is still a challenge for reservoir managers all over the world.
Reservoir managers should strive to operate the reservoir considering the various results from
statistical, artificial intelligence, and dynamic models. In light of this decision-making, our study
can be useful in making decisions for reservoir operation, because they showed good performance
in forecasting inflow patterns by using lagged inflows and lagged climate indices. Finally, we also
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agree with Zhang et al. [55] that future studies should be ongoing by applying a new type of machine
learning algorithm, i.e., deep learning, derived from the ANN model.

Table 10. Model performance of the SARIMA, SARIMAX, AR-ANN, ARX-ANN, AR-ANFIS,
ARX-ANFIS, AR-RF, and ARX-RF models by year during test period for the three dams.

r RMSE NSE
2013 2014 2015 2016 2013 2014 2015 2016 2013 2014 2015 2016

SARIMA 062 043 078 075 10218 99.57 59.86 63.84 038 —9.02 —-231 0.38
SARIMAX 053 010 067 0.69 110.61 131.76 4373 60.81 028 —16.54 —0.77 0.44
AR-ANN 053 018 075 093 11056 75.68 43.94 3180 028 —479 -0.79 0.85
ARX-ANN 050 058 071 099 11418 80.57 49.75 6331 023 556 —129 039

Station Model

5Y dam AR-ANFIS 050 023 080 090 112.66 80.56 44.31 36.59 025 556 —0.82 0.80
ARX-ANFIS 027 014 075 096 130.77 10471 39.43 25.02 —0.01 -10.08 —0.44 091

AR-RF 041 029 0.82 0.68 12148 58.62 49.12 5995 0.13 247 -123 045

ARX-RF 036 021 0.69 097 12278 7236 4584 2266 0.11 —429 -094 0.92

SARIMA 081 045 058 0.76 115.63 22795 189.39 16534 0.64 —7.96 —28.82 —0.52

SARIMAX 075 040 059 078 14097 221.25 20475 13994 047 —745 -33.85 —0.09

AR-ANN 058 038 064 083 181.56 210.36 14721 80.67 0.12 —6.63 —17.02 0.64

CJ dam ARX-ANN 062 083 042 099 169.29 137.67 190.67 86.89 0.23 —2.27 —29.22 0.58
AR-ANFIS 054 030 0.68 0.76 18245 21487 131.65 9190 0.11 —6.96 —13.41 0.53
ARX-ANFIS 039 050 045 074 21250 237.39 211.93 141.02 —021 -8.72 —36.34 —0.10

AR-RF 043 036 0.66 078 18252 16742 17271 89.85 0.11 —-3.84 -23.80 0.55

ARX-RF 035 047 061 0.69 230.87 162.34 153.13 108.92 —0.43 —3.55 —1849 0.34
SARIMA 087 047 005 062 952 1666 1943 1487 —0.02 —411 -49.30 —0.16

SARIMAX 088 048 010 062 932 1826 2281 1830 002 —514 -6831 —0.75

AR-ANN 082 050 —021 0.01 10.10 1514 13.00 1570 -0.15 -3.22 —-21.52 —0.29

GS dam ARX-ANN 082 079 —-039 071 889 1567 1874 1149 011 —352 —4580 0.31

AR-ANFIS 079 044 —020 010 1011 17.06 1450 1490 —0.15 —4.36 -27.00 —0.16
ARX-ANFIS 0.77 058 —0.33 057 811 2436 21.03 2011 026 —993 -57.96 —1.12
AR-RF 085 046 0.02 011 763 1451 1374 1629 034 288 -24.17 —0.39
ARX-RF 080 061 -0.16 059 798 1823 2088 1707 028 512 -57.10 —0.52

7. Conclusions

In this study, the use of large-scale climatic indices as exogenous input variables to hydrologic
forecasting models was considered to reflect climate variability due to climate change. To do this, a total
of eight models including time series and artificial intelligence models (SARIMA, SARIMAX, AR-ANN,
ARX-ANN, AR-ANFIS, ARX-ANFIS, AR-RF, and ARX-RF) were applied to monthly reservoir inflow
forecasting. The results of this study led to the following conclusions:

(1) For input variable selection, the PACF and EEMD can be used to find lagged inflow and
lagged climate indices that have a significant relationship with dam inflow. As a result, four lagged
inflows (lagl, lag12, lag24, lag36) were selected as the autoregressive variables, and the 36-month
lagged inflow, the lagged NINO12 index, and the lagged AMO index were commonly selected as the
combinations of autoregressive and exogenous variables for the three dams. Therefore, the procedure
for input variable selection using the PACE, EEMD, cross-correlation analysis, and backward
elimination in this study is a suitable method for input variable selection.

(2) The ARX-RF model generally showed the highest forecasting accuracy in the training period,
which proves that a combination of autoregressive and exogenous variables is useful for constructing
an RF model for the three dams. In the test period, the ARX-ANN model generally showed the highest
forecasting accuracy by capturing the seasonal patterns of reservoir inflow well, although there are
limitations to its ability to accurately forecast inflow volume.

(8) The model performance in the test period (from 2013 to 2016) was examined according
to the inflow characteristics of each year. The inflow of the three dams maintained the seasonal
patterns in 2013. Drought occurred in 2014, and it worsened in 2015. The ordinary pattern was slightly
restored in 2016. Although the model performance was not consistent in each year of the test period,
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the ARX-ANN and the AR-RF models generally matched the seasonal patterns well, especially during
the drought and restored years.

Based on this study, the results prove that the use of large-scale climate indices as exogenous
variables has the potential to provide more efficient forecasting performance for water resource
management and planning. Furthermore, there is a possibility to provide better forecasting results
by using a state-of-art artificial intelligence models such as RF. Future studies should be required to
identify the best forecasting models through many applications considering local weather conditions
and inflow characteristics under the changing climate conditions for effective water management
and planning.
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Abstract: The runoff in the upper reaches of the Heihe River has been continuously abundant for
more than a decade, and this has not happened previously in history. Quantitative analysis of runoff
variation and its influencing factors are of great significance for the ecological protection of the
basin. In this paper, the soil and water assessment tool model was used to simulate runoff in the
study area, and the method of scenario simulation was used to quantitatively analyze the runoff
response with respect to land use and climate change. According to the abruptness of the runoff
sequence, the years before 2004 are categorized as belonging to the reference period, and after 2004 is
categorized as the interference period. According to the analysis, compared with the reference period,
the contribution rate of climate change is 87.15%, while the contribution rate of land use change is only
12.85%. The climate change scenario simulation analysis shows that the change in runoff is positively
correlated with the change in precipitation. The relationship with the change in temperature is more
complicated, but the influence of precipitation change is stronger than the change in temperature.
According to the land use scenario simulation analysis, under the economic development scenario,
the runoff decreased, whereas under the historical trend and ecological protection scenario, the runoff
increased. Additionally, the runoff increased more under the ecological protection scenario.

Keywords: hydrological simulation; quantitative analysis; SWAT model; land use/cover change;
climate change; scenario simulation

1. Introduction

Runoff is the product of the interaction between climate and land use change in a basin [1-3].
Climate change will directly change the spatial distribution and temporal variability of atmospheric
precipitation and change the spatial configuration of runoff [4,5]. Changes in land use can directly lead
to changes in the production and flow processes, which lead to changes in runoff [6,7]. To some extent,
changes in land use also represent the impact of human activities on water resources [8]. Changes in
runoff in a source area will directly affect life production in the middle and lower reaches [9]. This is
crucial to revealing the characteristics of river basin runoff and its evolution against a background of
land use change and climate change [10-12].

For arid and semiarid areas, where meteorological and hydrological monitoring data are scarce,
it is particularly important to select appropriate methods to quantify the contribution rates of land
use and climate change [13]. Many studies have been carried out on the impact of climate and land
use change on the water resources of a basin [14-16]. The main methods used are long-term data
comparative analysis, experimental comparative analysis and watershed hydrological simulation.
The basin test method requires a long period of time and is difficult to implement, and this
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method is not suitable for large-scale watershed research [17]. The long-sequence data statistical
method can be used to analyze hydro-meteorological data trends, but the spatial heterogeneity
of the basin and the mechanism of land use and climate change on the hydrology of the basin
cannot be considered. Large-scale watershed attribution analysis is also difficult [18]. Therefore,
a semi-distributed hydrological model based on physical processes is selected in this paper to evaluate
the hydrological response of climate variability and land use change and to further quantify the degree
of impact. In the model setting, climate change and human activities are assumed to be independent
factors that lead to changes in runoff [19]. The hydro-meteorological sequence is divided into reference
stages and stages affected by land use change. Finally, the natural runoff during the impact of land use
change is simulated, and the contribution of the two factors to runoff is calculated based on the water
balance [20-22].

The main difficulties in this study are the determination of the mutation point and the contribution
rate calculation. The determination of the mutation point uses statistical analysis methods, including
the Mann-Kendall test method, wavelet analysis method, Pettitt test method, cumulative anomaly
analysis method and so on [23-26]. The runoff in the reference period generally takes the measured
runoff in the reference period of the basin as the reference value, and considers that the difference
between the measured runoff and the reference value in the period of impact of land use change is
caused by environmental changes. This difference consists of two parts: one is the climate change
impact contribution, and the other is the contribution of land use change [27]. Using a hydrological
model, according to the different periods of runoff mutation location, the meteorological data and
land use data for different periods are combined to establish a real situation based on the combination
of meteorological data and land use data before the mutation. In addition, the natural runoff is
simulated under the influence of both climate and land use change using the meteorological data
of the time period after mutation. The land use data are used for the pre-mutation time period to
simulate the runoff under the influence of climate change alone using the time before the mutation.
The meteorological data within the segment and the land use data during the post-mutation period
simulate runoff under land use change alone [28-30].

Many researchers have conducted simulations of the upstream runoff for the Heihe River, but the
quantitative analysis is relatively simple and uses the traditional mathematical statistics method [31].
Wang et al. used a wavelet analysis, wavelet neural network model and GIS spatial analysis for
the Heihe River [32]. The analysis and prediction of watershed runoff showed that the increase in
annual runoff has a causal relationship with the increase in upstream air temperature and precipitation.
He et al. used the M-K test and cumulant slope change rate comparison method to calculate the
contribution of climate change and human activities to runoff rate, and the researchers found that
the upper reaches of the Heihe River are dominated by climate change, and the impact of human
activities is small [33]. Other studies have been conducted in the Heihe River Basin. Wang et al.
studied the impact of land use change on hydrological processes in the middle reaches of the Heihe
River and found that human activities dominated the changes in runoff in the middle reaches of the
Heihe River [34]. Zhang et al. studied the effects of irrigation on surface climate in the Heihe River
Basin [35]. Although some scholars have conducted preliminary research on the runoff simulation of
the SWAT model in the upper reaches of the Heihe River, it is necessary to conduct systematic research
on the hydrological effects in the changing environment. Zhao et al. used the Hydrologiska Fyrans
Vattenbalans model to study the corresponding effects of runoff on climate change in the Heihe River
Basin [36]. He et al. used the Variable Infiltration Capacity model to analyze the uncertainty of runoff
simulation in the upper reaches of the Heihe River [37].

In the study of the upper reaches of the Heihe River, the SWAT model is a relatively more used
model, and it is more suitable for simulations with long time periods and continuous spatiotemporal
runoff changes. It is convenient to use the spatial information provided by remote sensing and GIS to
simulate the hydrological effects in many different scenarios. The application of the SWAT model in
the upper reaches of the Heihe River began in the early 21st century. Liu et al. first applied the SWAT
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model to the Heihe River Basin [38]. In later studies, they carried out improvements in the SWAT
model, including the study of the snowmelt module [39]. Due to the small number of meteorological
stations in the Heihe River Basin, Zou, Meng et al conducted a coupling study of SWAT with other
models to obtain a more accurate simulation [40,41]. Zhang, Luo and others used the SWAT model to
simulate the runoff and evaporation of the Heihe River Basin [42,43]. They are analytical studies based
on historical data. In this paper, the contribution rate of climate and land use change to surface runoff
is separated based on hydrological model. And combined with the analysis of different climate and
land use scenarios, on the one hand, it repeals the response of runoff to climate and land use change,
on the other hand, it can make some predictions on the future changes in runoff under climate and
land use scenarios.

In this paper, based on the hydrological model, we calculate the contribution rate of climate and
land use change to surface runoff. Based on the scenario setting method of the model, the response
of surface runoff to climate and land use change is studied. The possible scenarios are used
to predict the runoff under future climate and land use conditions; it also provides a reference
for the rational allocation of water resources in the basin. The main objectives of this paper are
threefold: (1) determining the point of change of runoff based on long-term hydrological sequence;
(2) quantitatively analyzing the contribution rate of climate and land use change to runoff impact;
(3) through the scenario setting simulation method, studying the response of runoff to climate and
land use change. The aim is to provide a reference for the rational allocation of living, production and
ecological water in the basin.

2. Materials and Methods
2.1. Study Area and Data Sources

2.1.1. Study Area

The Heihe River Basin is the second largest inland river basin in China. Due to the arid
and semiarid climate, water shortages are a major factor limiting the sustainable development
of the socioeconomic and ecological environment in the region [44,45]. Recently, the grassland
degradation trend in the Heihe River Basin has been obvious, and the ecological damage is serious [46].
To alleviate this series of problems, in August 2001, the State Council began to carry out comprehensive
management of the Heihe River Basin and implement Heihe River water dispatching and integrated
river basin management [47]. According to the upstream water supply situation, the difference in
different annual water levels has led to an increased contradiction between water and water demand
in the middle and lower reaches [48]. To achieve rational allocation of water resources, the upstream
water supply trend must be understood. The upstream runoff of the Heihe River has been abundant
for more than a decade, and such a history of runoff has never before been seen [49]. Therefore, it is
necessary to analyze the causes of water abundance and combine these data into a model to study the
contribution of climate change and land use factors and to develop and utilize water resources for the
basin, which will provide a reference for rational planning.

The Heihe River originates in the Qilian Mountain region on the northern edge of the Tibetan
Plateau. This area is a typical inland river basin in the arid region of northwest China, located in
the middle of the Hexi Corridor [50]. The upstream area is attached to Qilian County in the Qinghai
Province, and the basin area is approximately 10,000 km?. This area is located in the central part of
the Eurasian continent and is the site of the ancient Silk Road. The study area is far from the sea and
the elevation ranges between 1600 m and 4800 m. Affected by the circulation of the westerly winds in
the middle-high latitudes and the influence of polar cold air masses, the climate in the upper reaches
is dry, and precipitation is scarce and concentrated [51]. The upper Heihe River is the main area
of the Heihe River Basin. Surface runoff mainly comes from atmospheric precipitation and melting
snow and ice. The runoff distribution throughout the year is basically the same as the precipitation
process and during the high temperature season [52]. The runoff and precipitation are concentrated
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in summer and autumn, and the annual average precipitation exceeds 400 mm. This area is sparsely
populated, and the main economic activities are forestry and animal husbandry. The low level of
economic development has led to a limited level of water resource development and utilization [53].
The location of the study area is shown in Figure 1, as well as the distribution of the hydrology and
meteorology stations.
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Figure 1. Upper reaches of the Heihe River Basin.

2.1.2. Data Sources

The data used in this paper are divided into two parts. The first part is used to analyze the water
resource situation in the upper reaches of the Heihe River and the relationship between runoff and
climate elements. The second part is the data needed for the soil and water assessment tool model
(SWAT). The model data mainly include two parts: model input data and model calibration verification
data. Model input data includes DEM data (1000 m x 1000 m), soil data (1:1,000,000), land use/cover
data (1:100,000), and meteorological data. The model’s calibration verification data is primarily the
runoff and flow of the hydrological station. The data are based on ARCGIS 9.3 unified projection
processing, in which all spatial data are converted into a unified projection with a spatial reference of
Beijing 1954_GK_Zone_17N. DEM data and land use/cover data are from the Cold and Arid Regions
Science Data Center. According to the standard, land use data are divided into six categories: forestland,
grassland, water area, cultivated land, unused land, and urban construction land, as shown in detail in
Table 1 and Figure 2. Soil data are from the HWSD-World Harmony Soil Database and include 8 soil
classes, 14 soil classes, and 24 subcategories. See Figure 3 for details. The time series of climate data
were selected from January 1980 to December 2008 and include daily precipitation, maximum and
minimum temperature, humidity and wind speed. Meteorological data and hydrological data were
downloaded from the Heihe River Bureau for model calibration and evaluation and include the Qilian
station, Zhangye station, Yeniugou station, Tuole station, and Yingluoxia station, seeing Tables 2 and 3
for details.
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Table 1. Land use/cover type.

Land Use Type Land Use Secondary Classification SWAT Code
urban construction land urban resident land, rural resident land URLD
forestland forestland, shrub land, woodland, other woodland FRST
grassland high-covered grassland, medium-covered HAY
grassland, and low-covered grassland

water area lakes, swamps, glacial snow, canals, beaches WATR
unused land sand, Gobi, swamp, bare rock BALD
arable land mountain drylands, plain dryland AGRL
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Figure 2. (a) Distribution of land use/cover types; (b) Distribution of soil types.

Table 2. Meteorological station information.

Station Name Longitude/® Latitude/® Elevation/m

Tuole station 98.42 38.8 3367
Yeniugou station 99.58 38.42 3320

Qilian station 100.25 38.18 2787.4
Zhangye station 100.43 38.93 1482.7

Table 3. Hydrological station information.

Station Name Longitude/® Latitude/® Elevation/m

Yingluoxia station 100.18 38.82 1700

2.2. Methodology

2.2.1. Mann-Kendall Trend Test

The Mann-Kendall test was performed on the mutation point. The Mann-Kendall test method
is a nonparametric method. The M-K test is simple to calculate, and the results are not disturbed by
a few outliers in the time series such as temperature, rainfall, and runoff. At the same time, it is not
necessary for the sample to follow a certain distribution, and it can clearly indicate the start time of the
sudden change of the time series of temperature, rainfall, runoff, and the like [54].

It is assumed that time series Xy, such as temperature, rainfall, runoff, etc., are composed of n
randomly independent and identically distributed samples, such as X = x1,x2, ..., xn.

First, construct an order column:

sk:Zleri,k:Z,B,...,n (1)

when x; > x;, r; has a value of 1, otherwise it has a value of 0.

The order column sy is the cumulative number of times the value of the stat r; at time i is greater
than the value at time j.

Based on the assumption that the sample X = {x1,x2,...,%y,} is a random independent and
identical distribution, the normalized order column sy is defined as the statistic UF.

159



Water 2019, 11, 344

UFk _ ‘Sk - E(sk)‘ (2)
Var (sy)
where UF; = 0, and E(sy), Var(sy) are the mean and variance, respectively, of the cumulative
number sj.
The above process is repeated in time series x in reverse order xn,Xn—1, -..,X;, making
UBy = -UF,k=nn-1,...,1,UB; =0.

Given the significance level « = 0.05, the critical value Ug g5 = 4-1.96, the two statistical sequence
curves of UFy and UBy, and the two critical values are plotted on the same graph for analysis.

If one of the statistics UFy or UBy is positive, it can be judged that time series such as temperature,
rainfall, and runoff have an upward trend. In addition, when the absolute values of the statistics
UFy or UBy exceed the threshold of the significance level, it can be further judged that the rising or
falling trend of the time series such as temperature, rainfall, runoff, etc. is significant; in particular, the
statistics UF or UBy are at the level of significance. When the critical values intersect, the intersection
point is the sudden change point, and the corresponding time is the sudden change time of temperature,
rainfall and runoff [55].

2.2.2. Cumulative Anomaly Method

The anomaly is a commonly used statistic that indicates that the runoff deviates from the normal
situation [56]. The difference between a certain value and the average value of a series of values is the
anomaly; that is, X; — X. Any runoff series can be transformed into a sequence with an average value
of 0 after anomaly processing. The cumulative anomaly is a statistical method for judging the trend of
discrete data points by curve. The calculation process involves first calculating the anomaly value of
annual runoff and then accumulating values year-by-year according to the time series to obtain the
variation process of the cumulative anomaly value with time. The trend of discrete data points can be
visually judged by the curve. The cumulative anomaly for a sequence X at a certain time t is expressed
as follows:

Xe=Y, ,(x-%), t=12,...,n 3)

X =

Sl=
ngEl

Xt (4)

t=1

The runoff cumulative anomaly curve can be used to characterize the abundance of runoff change.
When the curve changes downward, this indicates that the runoff enters the dry season. An upward
change indicates that the runoff enters the wet season, and a horizontal change indicates that the runoff
enters the flat period.

2.2.3. Soil and Water Assessment Tool (SWAT Model)

The SWAT model is a typical distributed hydrological model based on the GIS platform, which was
developed by the United States Department of Agriculture [57]. The model can predict the trend and
impact of runoff changes under different land use patterns, soil conditions, and river basin management
conditions in large watersheds [58]. The data required for the SWAT model include topography, soil,
land use/cover, weather, hydrology, etc., and different databases can be selected depending on the
purpose of the study [59]. The SWAT-simulated watershed hydrological process is divided into the
land phase of the hydrological cycle and the convergence phase of the hydrological cycle. The entire
water circulation system follows the law of water balance, and the formula is as follows:

t
SWi = SWy + 2 (Rday — Qsurf — Ea — Wseep - ng) ®)
i=1
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where SW; is the final soil moisture content, mm; SWj is the initial soil moisture content of the i-th day,
mm; t is the time, d; Rday is the precipitation of the i-th day, mm; Qg is the surface runoff of day i,
mm; E, indicates the amount of evapotranspiration on day i, mm; Wieep indicates the amount of water
entering the vale zone from the soil profile on day i, mm; and Qy,, indicates the return flow amount on
day i, mm.

The runoff simulation in the SWAT model is the SCS runoff curve method based on daily
precipitation data and the Green&Ampt infiltration method based on time precipitation data. The SCS
runoff curve number model links soil type, runoff, land use and management measures to provide
a basis for estimating runoff under various land uses and soil types. According to the collected
precipitation data, this paper selects the SCS runoff curve method to simulate the runoff.

The SWAT model has the following basic assumptions: The ratio between the actual water
storage amount F and the maximum water storage capacity S is equal to the ratio of the runoff Q
to the difference between the rainfall P and the initial loss I,; a linear relationship between I, and S.
Its rainfall-runoff relationship expression is as follows:

F Q
S P-1, ©)
According to the water balance, it can be obtained that:
F=P-1,-Q @)
Therefore, Equation (6) can be derived as follows:
_ (P-L)?
Q=5p_ L ®)

I, is affected by factors such as land use, farming methods, irrigation conditions, canopy
interception, etc. It has a certain proportional relationship with the maximum possible permeability S.
Based on the analysis of a large number of long-term experimental results, the SWAT model provides
that the most suitable scale factor for I, and S is 0.2:

I, = 0.28 ©)

S is closely related to the underlying surface factors such as land use type, soil type and slope.

The model can introduce CN to better determine S. The formula is as follows:
25400
S = N 254 (10)

CN is a dimensionless parameter. The CN value reflects a comprehensive parameter of the
characteristics of the pre-rainfall watershed. It is a combination of factors such as soil moisture, slope,
land use type and soil type.

The principle of runoff simulation of the SWAT model is as follows: when the rainfall reaches
the ground, the water infiltration rate is larger due to the dryness of the surface soil. The continuous
rainfall process causes the soil moisture to increase, which leads to the decrease of water infiltration
rate. When the rainfall intensity is greater than the infiltration rate, the filling begins. Once the surface
is filled, the surface runoff will be generated. The hydrological simulation of the SWAT model is based
on the water balance equation [38].

2.2.4. Parameter Sensitivity Analysis and Model Calibration and Validation

For the calibration of the model, the Yingluoxia hydrological station is selected, which controls
the upstream outlets and has a strong representativeness, which helps to improve the accuracy of
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the model. First, the annual scale simulation is performed, and then the monthly scale simulation is
performed. SWAT-CUP software was used for the calibration of the model. The SUFI-2 algorithm was
used for iterative calculation. According to previous research experience, the parameters were selected
for the LH-OAT sensitivity analysis. First, the initial range of the model is determined, and then
multiple operations are performed until the optimal value of the parameter is determined. The model
was evaluated using the decision coefficient R? and the model efficiency coefficient NSE to achieve
good results:
. 2
2 { ?:1 (Q;)bs - Qmean) (QjSIm - Qsmean)}
R®= 2 . 2 (1
?:1 <Q;)bs - Qmean) Z?:] (QiSIm - Qsmean)

m (-’
© (@~ Quean))

where Q?bs is the observed streamflow, inm is the simulated streamflow, Qgpean and Qean are the
average simulated and observed streamflow values, respectively, and n is the simulation number.
The range of R2 is 0~1, and the closer this value to 1, the better the simulation effect. For NSE, greater
than 0.5 indicates that the simulation result is acceptable, and the NSE is between 0.5-0.65, indicating
suitable simulation results [60].

NSE =1—

(12)

2.2.5. Contribution Rate Calculation

The semi-distributed hydrological model, the SWAT model, is used to calculate the contribution
rate of climate change and human activities to runoff effects. The reference period and the
interference period are accurately divided according to the abrupt position of the runoff, and then the
meteorological, hydrological and land use data rates of the reference period are used to determine the
hydrological model parameters. The period before the runoff mutation point is the reference period,
and the period after the runoff mutation point is the interference period. To analyze the contribution
of the calculation of land use and climate change, the following scenarios are used for analysis; see
Table 4. Based on scenario 1, scenario 3 is compared with the common impacts of land use change on
runoff, scenario 2 is compared with the impact of climate change on runoff, and finally, the impacts
of land use and climate change on runoff during different periods are quantitatively analyzed in the
upper reaches of the Heihe River.

Table 4. Scenarios for quantitative attribution analysis.

Scenarios Land Use/Cover Data Meteorological Data
1 1980s 1980-2003
2 1980s 2004-2008
3 2000s 1980-2003
4 2000s 2004-2008

Q1, Q2, Q3, and Q4 are the average annual runoffs simulated under scenarios 1, 2, 3, and 4,
respectively. In addition, the following formula is used to complete the calculation of the contribution
rate of climate change and land use change.

Q3 —Q
e = ———— X 100% 13
Q4—Q1>< 13)
Q—Q
= =< =1 % 100% 14
= g X 100% (14)
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2.2.6. Scenario Setting and Model Analysis

To further explore the impact of climate change on runoff in the upper reaches of the Heihe River,
the range of possible future variabilities in climate change, precipitation and temperature changes
were given. The following scenarios are determined: The existing precipitation conditions remain
unchanged, precipitation is increased by 10% and 20%, and the precipitation is reduced by 10% and
20%, which gives a total of 5 scenario options. Additionally, the existing temperature is maintained,
reduced by 0.5 °C, 1 °C, 1.5 °C and 2 °C, and increased by 0.5 °C, 1 °C, 1.5 °C, and 2 °C, for a total of
9 options.

To further explore the impact of land use on the runoff in the upper reaches of the Heihe River,
according to the scenario analysis of the Western Data Center future trend of land use in the Heihe
River, the ecological protection trend, the economic development trend and historical trend are adopted.
(http:/ /westdc.westgis.ac.cn/) Based on the historical development trend and existing problems of
the Heihe River Basin, this dataset uses the Dyna-CLUE model to simulate land use development
scenarios in the Heihe River Basin in 2020 and 2030.

3. Results and Discussion

3.1. Parameter Sensitivity Analysis and Model Calibration and Validation

Through the sensitivity analysis of the SWAT model, 14 parameters with higher sensitivity were
selected to calibrate and verify the model (Table 5). The initial values and the range of the parameters
can refer to the existing research, which can save time for parameter adjustment and improve efficiency.
The period of 1980-1984 was used as the model’s warm-up period, 1985-1998 was used as the model’s
calibration period, and 1999-2008 was used as the validation period of the model. SWAT-CUP was
used to calibrate the model parameters, and the monthly streamflow at the upstream outlet at the
Yingluoxia station was calibrated and adjusted. The monthly streamflow R? and ENS at the Yingluoxia
station during the calibration period were 0.75 and 0.65, respectively, and the verification periods were
0.71 and 0.63. The SWAT model is suitable for the upper reaches of the Heihe River. The simulation
results are shown in Figure 3 and Table 6.

Table 5. Parameter sensitivity analysis.

Parameter Sensitive Value Range Fitted Value
CN2.mgt 2 (35,98) 29.532
Ch_K2.ret 5 (—0.01,500) 21.402
Ch_N2.ret 12 0,0.2) 0.098
ESCO.hru 1 0,1) 0.815
EPCO.hru 14 0,1) 0.188
CANMX hru 10 (0,100) 6.634
SOL_Z.sol 4 (0,3500) 0.187
SOL_K.sol 6 (0,2000) —0.248
SOL_AWC.sol 3 0,1) 0.358
GWQMN.gw 8 (0,5000) 3398.502
GW _Delay.gw 13 (0,500) 17,795
REVAPMN.gw 11 (0,500) 0.225
GW_REVAP.gw 7 (0.02,0.2) 0.02
ALPHA_BF.gw 9 0,1) 0.008

ro 1t

CN2: Moisture condition SCS curve number; Ch_K2: River effective water transfer coefficient; Ch_N2: Manning’s “n
value for the main channel; ECSO: Soil evaporation compensation factor; EPCO: Plant transpiration compensation
coefficient; CANMX: Maximum canopy storage; SOL_Z: Depth from soil surface to bottom of layer; SOL_K:
Saturated hydraulic conductivity; SOL_AWC: Available water capacity of the soil layer; GWQMN: Threshold
water level in shallow aquifer for base flow; GW_Delay: Groundwater delay coefficient; REVAPMN: Threshold
water level in in shallow aquifer for “revap”; GW_REVAP: Groundwater “revap” coefficient; ALPHA_BF: Baseflow
recession constant.
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Table 6. Calibration and validation results of SWAT model for monthly streamflow.

Period Measured Average m3/s  Simulated Average m®/s  Nash-Suttcliffe R?
1985-1998 51.65 58.52 0.65 0.75
1999-2008 66.08 57.62 0.63 0.71
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Figure 3. Calibration and validation results of SWAT model for monthly streamflow.
3.2. Trends in Annual Runoff

Figure 4 shows the linear analysis of the runoff from 1958 to 2017 and the 5-year moving average
curve of the hydrological station at the water outlet of the Heihe source area. In the past 60 years, the
annual runoff of the Yingluoxia shows an increasing trend, on the whole. The annual runoff at the
Yingluoxia station reached its maximum in 2017, at 23.31 x 108 m3, while the minimum appeared in
1971 at 10.32 x 108 m3, with a tendency to change of 0.93 x 108 m3.10 a—!. After entering the 21st
century, runoff is generally large, showing a fluctuating rising trend.
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Figure 4. Trend analysis of runoff at Yingluoxia station.

We use a combination of two methods to identify the point of abrupt changes in the runoff
sequence. In the M-K curve, the UFy and UBy graphs are plotted. If the value of UFy or UBy is greater
than 0, this indicates that the sequence is on an upward trend, and less than 0 indicates a downward
trend. When these values exceed the critical line, this indicates a significant increase or decrease.
The range exceeding the critical line is determined as the time zone in which the mutation occurs.
If there is an intersection between the curves of UF, and UBy, and the intersection is between the
critical lines, then the moment corresponding to the intersection is the time when the mutation starts.

As shown in Figure 5a, in the 1980s, the UF value began to be greater than 0 and was always
greater than 0, indicating that the runoff sequence of Yingluoxia station began to rise from the 1980s.
In 2008, the UFy value was greater than 1.96, indicating that the trend of increasing the runoff was
significant based on a significance level test of 0.05. Also, an intersection of the curves appeared in
2004. As seen in the cumulative anomaly curve of Figure 5b, the cumulative anomaly change process
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can be roughly divided into three stages: from 1958 to 1980, the annual runoff showed a decreasing
trend; from 1981 to 2003, the annual runoff showed a relatively gradual fluctuation trend; after 2004,
runoff showed a clear upward trend. The mutations may be caused by symptoms of climate change,
such as increased precipitation. In the 21st century, the global climate is warming, and the climate in
northwestern China is warm and humid, but there is a significant hysteresis effect, which may lead to
sudden changes of runoff appearing in 2004. Combining the two methods, the mutation point was
set to 2004. Therefore, in the follow-up study, we divided the study period into a reference period
pre-2004 and an interference period after 2004.
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Figure 5. (a) Change trends of the M-K test; (b) Cumulative anomaly of the annual runoff in
Yingluoxia station.

3.3. Precipitation and Runoff Correlation Analysis

The Double Mass Curve (DMC) is a common method for testing the consistency of relationships
between two parameters and their changes. The DMC is the relationship between the continuous
cumulative value of one variable and the continuous cumulative value of another variable plotted
in the Cartesian coordinate system. It can be used to test the consistency of hydro-meteorological
elements. The DMC of the runoff and precipitation in the upper reaches of the Heihe River was
plotted to test the correlation between the two factors. The M-K test and the cumulative anomaly
curve analysis of the annual runoff of the Yingluoxia hydrological station have been well verified in
the precipitation-runoff DMC. As seen in Figure 6, the precipitation-runoff DMC is roughly divided
into three phases, 1958-1979, 1980-2003, and 2004-2014.
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Figure 6. The precipitation-runoff DMC.

165



Water 2019, 11, 344

Figure 7 shows the correlation analysis between runoff and precipitation changes. From the
annual scale, the runoff changes are consistent with the precipitation changes, and there is a clear
correlation. In addition, the correlation passed the significance test.
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Figure 7. The correlation analysis between precipitation and runoff.
3.4. Contribution of Land Use and Climate Change to Runoff Variation

The different meteorological data and land use data for the designated natural period and
interference period are combined and the runoff contribution rate of land use and climate change
in the Heihe River Basin is calculated according to different scenarios. In the upper reaches of the
Heihe River, the contribution rate of climate change runoff is much greater than the contribution rate
of human activities.

The simulation results are shown in Table 7. The simulated annual runoff is 622.67 m3/s in the
reference period and 710.90 m3 /s in the interference period. Compared with the reference period, the
total runoff increased during the interference period by 88.23 m?/s. Among the scenarios, the increase
caused by climate change is 76.89 m?/s, and the increase caused by human activities is 11.34 m?/s.
The contribution rate of climate change is 87.15%, while the contribution rate of human activities is
only 12.85%.

He et al. calculated the contribution rate of climate change and human activities to runoff in the
upper reaches of the Heihe River by the elastic coefficient method, and found that the contribution rate
of climate change is greater than that of human activities, but because of the analysis based on statistical
characteristics, the land use type and soil are ignored the type and other physical mechanisms [32].
Lin et al. identified the effects of climate and land use change on runoff and evapotranspiration
through hydrological model separation. The role of climate change is found to be much greater than
land use change [50]. Meng et al. used the SWAT model to study the Aksu River in the northwest
inland area and found that climate factors and human activities were responsible for 92.28% and 7.72%
of the variability, respectively [61]. These are consistent with the results of this paper.
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Table 7. Simulated response of human activities and climate change in Heihe River Basin.

Simulated Annual  Total Increase  Effect of Human Activities Effect of Climate Change

Time Interval Period Runoff m3/s m3s on Runoff o0 Romott
Reference period 1980-2003 622.67 —_— —_ — — JE—
) - VR -

Interference period  2004-2008 710.9 88.23 Increase m?/s ~ Proportion  Increase m®/s  Proportion

11.34 12.85% 76.89 87.15%

3.5. Scenario Simulation of Climate Change and Land Use Cover Change

3.5.1. Climate Change Factor

The SWAT model was used to analyze the combined scenarios of different meteorological data.
According to Table 8, the influence of temperature on runoff is complicated, and the increase or
decrease in runoff caused by temperature cannot be determined. When the temperature is lowered,
evaporation is reduced, which leads to an increase in surface runoff. However, when the temperature
rises, the change of surface runoff presents uncertainty due to the conflict effect caused by evaporation
and snowmelt runoff. An increase in temperature causes an increase in evaporation, resulting in a
decrease in surface runoff. At the same time, an increase in temperature will also lead to an increase in
glacial snowmelt runoff, which will increase surface runoff. In the case of maintaining the precipitation
in the upper reaches of the Heihe River, the runoff also changed with the change in temperature, but all
scenarios showed an increasing trend; as the temperature increases, the increase in surface runoff has
been alleviated. The effect of rainfall on runoff is positive. With the temperature of the upper reaches
of the Heihe River remains unchanged, the runoff increases with increasing rainfall, and vice versa.

Table 8. Relative variation of mean annual runoff for different scenarios/%.

T Precipitation
emperature

—20% —10% 0 +10% +20%
—2°C -11.87 —4.45 17.39 23.21 38.65
-1.5°C —15.85 —6.76 13.13 18.86 32.97
-1°C —20.69 —7.70 9.11 11.24 21.75
—-0.5°C —22.45 —15.33 4.35 8.96 16.50
0 —30.63 —20.85 0 7.45 14.69
+0.5°C —21.35 —9.64 9.2 10.52 22.49
+1°C —23.44 —12.17 6.29 12.48 25.86
+1.5°C —23.96 —12.96 5.36 16.63 26.52
+2°C —25.79 —15.59 4.43 18.72 30.03

Table 9 shows the response of runoff to lower temperatures and higher precipitation. As shown
in Table 9, when AT = 0, it means the response of the runoff to the increase of precipitation when the
temperature is constant. It can be seen that the increase in precipitation increases the runoff, and the
more the precipitation increases, the more the runoff increases. When AP = 0, it means the response of
the runoff to the temperature decreases when the precipitation is constant. It can be seen that the lower
the temperature, the more the runoff increases, and the more the temperature is lowered, the more
the runoff increases. When both AT and AP are not zero, it means that the temperature decreases and
the precipitation increases. It can be found that when the temperature decreases and the precipitation
increases, the runoff increases the most.
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Table 9. Response of runoff to temperature reduction and precipitation increase.

Temperature Change Precipitation Change

AP=0 AP=10% AP=20%
AT =0 0 7.45 14.69
AT = -05 4.35 8.96 16.50
AT = -1.0 9.11 11.24 21.75
AT = —15 13.13 18.86 32.97
AP = 2.0 17.39 23.21 38.65

Table 10 shows the response of runoff to both elevated temperature and precipitation. It can be
seen from Table 10 that when AP = 0, when the precipitation is constant, the runoff will increase when
the temperature rises. When both AT and AP are not zero, it indicates the response of the runoff when
the temperature and precipitation increase simultaneously. When the increase of precipitation reaches
10% or more, the runoff increases, indicating that the effect of precipitation on runoff is more significant.
Due to the large area of glaciers in the upper reaches of the Heihe River, when the temperature rises,
the increase of glacial snowmelt will also lead to an increase in runoff.

Table 10. Response of runoff to simultaneous increase in temperature and precipitation.

Temperature Change Precipitation Change

AP=0 AP=10% AP=20%
AT =0 0 7.45 14.69
AT =05 9.2 10.52 22.49
AT =1.0 6.29 12.48 25.86
AT =15 5.36 16.63 26.52
AT =20 4.43 18.72 30.03

Table 11 shows the response of runoff to simultaneous decrease in temperature and precipitation.
From Table 11, when AT =0, it means that when the temperature is constant, the runoff decreases when
the precipitation decreases. When both AT and AP are not zero, it indicates the response of the runoff
when both temperature and precipitation decrease. It can be seen that the decrease in temperature and
the decrease in precipitation have the opposite effect on runoff. When the precipitation is constant,
the temperature decreases, the runoff increases, and the lower the temperature, the larger the runoff.
When the temperature is constant, the decrease in precipitation will result in a decrease in runoff, and
the lower the temperature, the lower the runoff.

Table 11. Response of runoff to simultaneous decrease in temperature and precipitation.

Temperature Change Precipitation Change

AP=—20% AP=—10% AP=0

AT =0 —30.63 —20.85 0
AT = —05 —22.45 —15.33 4.35
AT = -1.0 —20.69 —7.70 9.11
AT = —-15 —15.85 —6.76 13.13
AT = -2.0 —11.87 —4.45 17.39

Table 12 shows the response of runoff to elevated temperatures and reduced precipitation. It can
be seen from Table 12 that when AT = 0, and the temperature is constant, when the precipitation
decreases, the runoff will decrease, and the more the precipitation decreases, the smaller the runoff.
When both AT and AP are not zero, it indicates the response of the runoff when the temperature rises
and precipitation decreases. It can be seen that both the increase in temperature and the decrease in
precipitation can reduce the runoff.
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Table 12. Response of runoff to temperature increase and precipitation decrease.

Temperature Change Precipitation Change

AP=—20% AP=—10% AP=0
AT =0 —20.69 —7.70 0
AP =05 —21.35 —9.64 9.2
AP =1.0 —23.44 -12.17 6.29
AP =15 —23.96 —12.96 5.36
AP =20 —25.79 —15.59 4.43

3.5.2. Land Use Change Factor

According to the historical development trend and existing problems in the Heihe River Basin,
the Dyna-CLUE model was used to simulate the land use scenarios of the 2020 and 2030 (Figure 8).
Considering the actual land use setting in 2000 as a basic scenario, the impact of future land use
changes on runoff was analyzed. The dataset was provided by the Heihe Plan Science Data Center,
National Natural Science Foundation of China.

Under natural scenarios, land-use change evolves according to existing trends. The ecological
protection scenario is to strictly limit the land use type to occupy land for forest land, grassland and
water land, strictly implementing the measures of returning farmland to forests and grasslands. Under
circumstances of economic development, with the development of the social economy and the increase
of the urban population, the demand for industry, residential and public land is urgent, leading to the
continuous expansion of the urban scale, leading in turn to an increase in urban construction land and
cultivated land.
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Figure 8. Distribution of land use types under different simulation scenarios. (a) Natural growth
scenario in 2020, (b) Natural growth scenario in 2030, (c) Ecological protection scenario in 2020,
(d) Ecological protection scenario in 2030, (e) Economic development scenario in 2020, (f) Economic

development scenario in 2030.

It can be seen from Table 13 that under the future scenario, land use areas of various types will
increase or decrease to different degrees. Under natural growth, from 2020 to 2030, the cultivated
land will increase, and the forest and grassland area will decrease. Under the protection situation,
from 2020 to 2030, the area of cultivated land, forest land and grassland will increase, and the area
of bare land will decrease. Under the economic development situation, from 2020 to 2030, the area
of cultivated land will increase, the area of bare land will increase, and the area of forest land and

grassland will decrease.

Table 13. Area ratio of different land use scenarios.

T Natural Growth Scenario Ecological Protection Scenario Economic Development

ype of Landuse
2020 2030 2020 2030 2020 2030

AGRL 12.009% 12.569% 11.565% 11.778% 12.889% 13.764%

FRST 12.930% 12.786% 13.060% 13.102% 12.680% 12.413%

HAY 35.344% 34.824% 35.753% 35.848% 34.533% 33.728%

WATR 2.295% 2.294% 2.294% 2.293% 2.290% 2.290%

URLD 0.983% 0.986% 0.959% 0.972% 1.037% 1.091%

BALD 36.439% 36.541% 36.369% 36.007% 36.570% 36.714%

The land use scenario simulation results are shown in Table 14. In 2020, under the natural growth
scenario and ecological protection scenario, runoff showed an increasing trend, but the degree of
increase was different between the scenarios, while under economic development, runoff showed
a decreasing trend. Under the natural growth scenario, the area of grassland decreased, the area of
cultivated land and bare land increased, and by 2030, the amount of runoff increased. Under the
ecological protection scenario, the area of arable land and bare land decreased, and the area of
forestland and grassland increased. The increase in runoff was larger than that under the natural
growth scenario, which shows that the increase in forestland and grassland has a greater impact on the
increase in runoff than that of cultivated land or bare land. In future planning, the area of ecological
land such as forest and grass can be appropriately increased.

In the future land use scenario, the SWAT model is used to simulate, and the results show that
the runoff increases or decreases in different situations. In the case of natural growth and ecological
protection, runoff shows an increasing trend. However, in the case of ecological protection, the increase
in runoff is more significant. Under the economic development situation, the runoff is reduced due to
the large reduction in grassland area. It can be seen that the construction of ecological construction
land such as forest land and grassland can, to a certain extent, improve the regional microclimate,
improve the soil environment, reduce the surface temperature, reduce the direct evaporation of water,
and have a positive effect on the surface runoff.
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Table 14. Change of runoff under land use/cover scenarios.

Land Use/Cover Change Scenarios Change Rate of Runoff
(@) 0.27%
2020 (c) 0.34%
(e) —0.10%
(b) 1.57%
2030 (d) 3.74%
(f) —0.22%

4. Conclusions

By analyzing the impact of climate and land use change on runoff in this paper, a qualitative
analysis is turned into a quantitative analysis for the development and utilization of water resources
in the Heihe River Basin, providing a reference base. In this paper, the runoff change trend at the
Yingluoxia station in the upper reaches of the Heihe River over the past 60 years is analyzed and
combined with the SWAT model to simulate runoff. We combine different scenarios of climate and
land use change to simulate surface runoff. The results show the following:

(1)  The annual runoff in the upper reaches of the Heihe River is increasing. The long-term runoff
sequence was mutated in 2004. Therefore, the runoff sequence was divided into the reference
period before 2004 and the interference period after 2004.

(2) The SWAT model has good applicability in runoff simulation of the Yingluoxia hydrological
station. It can be used for contribution rate calculations and scenario simulations.

(3)  The contribution rates of climate change and land use to watershed runoff are very different.
In the upper reaches of the Heihe River, the contribution rate of climate change to runoff change
is 87.15%, while human activities contribute only 12.85%.

(4) According to different temperature and rainfall scenarios, the simulation analysis shows that
decreased temperature causes increased surface runoff. However, when the temperature rises,
the change of surface runoff presents uncertainty due to the conflict effect caused by evaporation
and snowmelt runoff. While an increase in rainfall will lead to an increase in runoff, but the
amount of increase will differ. It can be found that when the precipitation increases and the
temperature decreases, the runoff increases the most. When the temperature increases and the
precipitation decreases, the amount of runoff reduction is most significant.

(5) Land use in different scenarios has different effects on runoff. Both natural and ecological
conservation trends lead to increased runoff, but the increase in runoff is greater under the
ecological protection scenario, while under economic development, runoff showed a decreasing
trend. The increase of forest land and grassland area caused the increase of surface runoff. It can
improve the regional climate to a certain extent and have a positive effect on surface runoff. Also,
the cultivated land has a negative contribution to soil and water conservation and has a negative
effect on the occurrence of surface runoff.

Although climate change plays a key role in the runoff changes in the UHRB, the impact of
human activities cannot be ignored. Against the background of climate change, according to the water
resource utilization management objectives, watershed management measures can be adjusted to
realize the rational layout of land use and then change the river basin runoff trend, which provides
a reference for effective scientific planning in river basins. In the future watershed management
process, while meeting upstream water demand, the land use structure can be adjusted and rationally
distributed, thereby increasing the upstream water output and ensuring water use in the lower reaches
of the basin. In this paper, research regarding a certain contribution rate was conducted, but there are
still many factors that have not been considered. For example, climate change can be combined with
evapotranspiration, and other human activities can also be added to considerations for further research.
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Abstract: Pan evaporation (Epg,) is an important indicator of regional evaporation intensity and
degree of drought. However, although more evaporation is expected under rising temperatures, the
reverse trend has been observed in many parts of the world, known as the “pan evaporation paradox”.
In this paper, the Haihe River Basin (HRB) is divided into six sub-regions using the Canopy and
k-means (The process for partitioning an N-dimensional population into k sets on the basis of
a sample is called “k-means”) to cluster 44 meteorological stations in the area. The interannual
and seasonal trends and the significance of eight meteorological indicators, including average
temperature, maximum temperature, minimum temperature, precipitation, relative humidity,
sunshine duration, wind speed, and Eps;;, were analyzed for 1961 to 2010 using the trend-free
pre-whitening Mann-Kendall (TFPW-MK) test. Then, the correlation between meteorological
elements and Ej,;; was analyzed using the Spearman correlation coefficient. Results show that
the average temperature, maximum temperature, and minimum temperature of the HRB increased,
while precipitation, relative humidity, sunshine duration, wind speed and Ej,;; exhibited a downward
trend. The minimum temperature rose 2 and 1.5 times faster than the maximum temperature and
average temperature, respectively. A significant reduction in sunshine duration was found to be the
primary factor in the Ep,, decrease, while declining wind speed was the secondary factor.

Keywords: evapotranspiration; Pan evaporation; TFPW-MK; Haihe River Basin

1. Introduction

Global warming has become an indisputable fact [1]. Temperature records indicate that the earth
has warmed by approximately 0.6 °C during the 20th century [2]. This increase in global temperature
has significantly impacted the natural environment, ecosystem, and social economy [3], and has led
to a series of changes in hydrological factors, such as precipitation, evaporation, water infiltration,
soil moisture, river runoff, and groundwater flow, all of which affect the global hydrological cycle.
This, in turn, causes temporal and spatial redistribution of water resources, and thereby threatens
water security, food security, social security, and national security [4,5]. As a key component in the
hydrological cycle, evapotranspiration is associated with water balance and water exchange, as well
as surface energy balance; hence, of all components of the water cycle, evapotranspiration is the
factor most directly affected by climate change [6]. Therefore, analyzing the climate sensitivity of
evapotranspiration has important theoretical and practical implications for understanding the impact
of climate change on the hydrological cycle [7].

Evapotranspiration is the process of water transport from the earth’s surface to the atmosphere [8].
As a core process of the climate system, evapotranspiration closely links the hydrological cycle,
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energy budget, and carbon cycle [9]. Pan evaporation (Eps,) [10] is the most universal and simplest
way to measure evapotranspiration, which is often used to indicate the humidity level of a given
regional climate [11]. Although Ep; cannot directly represent the evaporation of the water surface,
it has a close correlation with water surface evaporation. Therefore, it has remained an important
reference indicator in the assessment of water resources, water resources planning, and the design
of irrigation systems, to name a few examples [12]. As the global temperature rises, Epq, should
theoretically gradually increase. However, in reality, only certain regions in the world have an Epg,
value that is consistent with theoretical expectations, and the majority of the world’s regions have been
found to have declining E;;; values. This phenomenon is called the “pan evaporation paradox” [3].
Specifically, countries such as Spain [13], Iran [14], Israel [15], and Brazil [16] have been found to
have increasing Epq, values, and countries such as the former Soviet Union, the United States [17,18],
New Zealand [19], China [20-23], Thailand [24], India [12], Nigeria [25], and Australia [26,27] have
been found to have declining Epq, values. Correctly interpreting the overall declining trend of Epgy in
the context of rising global temperatures and uncovering the main meteorological factors that affect
the reduction of Epgy is of great importance to accurately predict future hydrological cycles.

Many scholars have studied the temporal and spatial changes of Ej,; at global and regional
scales, as well as the causes of such changes. According to their findings, the causes of E,;, reduction
can be categorized as follows. (1) An increase in humidity in the surrounding environment of the
evaporation pan: Brutsaert and Parlange ascertained that the decrease in Epan value was due to an
increase in the volume of evaporation from the land surface, considering the difference between
evaporation from the land surface and the evaporation volume observed through the evaporation
pan [28]. Zuo et al. employed observational data from 62 conventional meteorological stations with
solar-radiation observation equipment in China to analyze in detail the relationship between Epg,
and corresponding environmental factors, as well as the environmental factors’ responses to global
climate change. The researchers discovered that Ep;; was most correlated to atmospheric relative
humidity [20]. (2) Changes in precipitation: Tebakari et al. [24] analyzed the temporal and spatial
variation of Ej,y, in Thailand from 1982 to 2000 and concluded that both Ej,; and precipitation showed
a declining trend. This conclusion was inconsistent with findings from the United States, where Epan
was found to be decreasing while precipitation was increasing [29]. Jaswal et al. utilized evaporation
and rainfall data from 1971 to 2000 from 58 stations that were evenly distributed in India to analyze
the overall correlation between evaporation and rainfall in a year, as well as their correlation in winter,
summer, monsoon season, and post-monsoon season. The results showed that, in southern India,
the evaporation trend had a complementary relationship with rainfall during the same period [30].
(3) A decrease in the diurnal temperature range: Peterson et al. compared data from both the United
States and the former Soviet Union from 1950 to 1990 and found a steady decline in Ey,y values in all
investigated regions (except Central Asia), as well as a decline in diurnal temperature range. Ey; and
diurnal temperature range were thus clearly correlated. Therefore, the researchers concluded that the
reduction in the diurnal temperature range, caused by an increase in cloud cover, consequently caused
the reduction in Epgy, [17]. (4) A reduction in solar radiation: Roderick and Farquhar found that Epgy
values observed in many parts of the world over the past 50 years showed a clear downward trend
and asserted that such a decline was caused by the reduction in overall solar radiation resulting
from an increase in cloud cover and aerosol concentrations [3]. (5) A reduction in wind speed:
Burn and Hesch conducted a trend analysis on the evaporation data of 48 sites in the Canadian
Prairies over three analysis periods and concluded that wind speed has a substantial influence on
the decreasing trend of evaporation, while vapor-pressure deficit has a significant influence on the
increasing trend of evaporation [31]. Hoffman et al. studied the changes in Ejy, rainfall, wind speed,
temperature, and vapor-pressure deficit from 1974 to 2005 taken from 20 climate stations in the Cape
Floristic Region (CFR), South Africa, and suggested that the reduction in E,, was likely due to a
reduction in wind speed [32]. Yang and Yang analyzed the daily Ej,,, temperature, wind speed,
solar radiation, and relative humidity of 54 meteorological stations in China for 1961 to 2001 and
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concluded that the reduction in Ep;, in the majority of regions in China is due to a decrease in
wind speed [33]. (6) The comprehensive impact of meteorological elements: Roderick and Farquhar
analyzed data from Australia for 1970 to 2002 and found that Ej,;,; values showed a downward trend.
The results showed that such a change might be related to a decrease in solar radiation, wind speed,
and diurnal temperature range [26]. Sheng examined Ep,, data and other meteorological factors from
468 meteorological stations in China, measured simultaneously from 1957 to 2001, and found that
the main influential factors of Ep,,; were solar radiation, diurnal temperature range, and wind speed,
while the influence of humidity was the weakest factor [21]. Liu et al. investigated data for 1955
to 2001 taken from 671 sites in China. The results revealed an overall decline in E;. In addition,
diurnal temperature range and wind speed were found to have the greatest correlation with such a
decline [22]. Based on the aforementioned studies, the causes of the reduction of E,., appear to be very
complicated. Owing to the location, climate, atmospheric differences, and even the differences in the
length of the data series, the conclusions of these studies are inconsistent. Therefore, identifying the
impact of various meteorological variables on Ep; trends is critical to quantifying the impact of
global warming.

The HRB is located in a region with a warm semi-arid climate and a continental monsoon climate.
This area is sensitive to climate change and is a region with a fragile ecological environment. Owing to
the area’s dense population and rapid economic development, as well as its status as one of China’s
major wheat producers, the contradiction between water supply and water demand is prominent
in the area. Water shortages have become a major factor restricting sustainable economic and social
development in the HRB [34]. Epg, in the HRB generally exhibits a decreasing trend [35-37], which is
largely consistent with Epy, trends in other regions of China [38-48]. However, scholars have differing
views on the causes of the E; trend in the HRB. Zheng et al. analyzed the effects of temperature,
wind speed, solar radiation, and atmospheric pressure on Ej,y, in the HRB for 1957 to 2001 and
concluded that wind speed is the main factor leading to the decrease of Ej,;; in the region [49]. Hao et al.
selected eight meteorological elements from 34 climate stations for 1958 to 2011 in order to analyze the
spatial and temporal variations in the HRB. The results showed that the potential evapotranspiration
in the region was negatively correlated with relative humidity and was positively correlated with
diurnal temperature range [50]. Guo and Ren examined data observed from the evaporation pans
of 117 meteorological stations for 1956 and 2000 and analyzed the changes in evaporation in the
Huang-Huai-Hai River Basin. The findings showed that the direct climatic cause of the decrease in
evaporation may be a reduction in sunshine duration and solar radiation. In addition, a reduction
in wind speed and diurnal temperature range may also play an important role [51]. In summary,
though most of the papers consider that the decrease of wind speed is a main factor causing the Epg,
declining, but different literatures have different conclusions on the influence of other meteorological
factors on the Ep,; decreasing. So, this study aimed to analyze the trend of changes in Ej,; in the HRB
using data collected by 44 meteorological stations for 1961 to 2010, and to explore the temporal and
spatial variation laws of Ep,y, as well as the main driving forces of declining Ej,z; trend in the region.

2. Materials and Methods

The HRB is located between 112-120° E longitude and 35-43° N latitude, with the Bohai Sea to
the east, the Yellow River to the south, the Yunzhong and Taiyue Mountains to the west, and the Inner
Mongolia Plateau to the north. The total area of the HRB is 320,600 km?, accounting for 3.3% of the total
area of the country. The HRB spans eight provinces: Beijing, Tianjin, Hebei, Shanxi, Shandong, Henan,
Inner Mongolia, and Liaoning. It is a political and cultural center and an economically developed
region of strategic significance in China. The HRB has two major rivers: the Hai River and the Luan
River. The Hai River, which is the main water system for the area, consists of the Ji Canal River,
Chaobai River, North Canal, Yongding River, Daqing River, Ziya River, and Zhangwei River, as well as
plains rivers, such as the Tuhai River and Majia River, each of which enters the sea individually.
The Luan River includes itself and the rivers along the eastern coast of Hebei Province. The annual
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average temperature range of the basin is between 1.5 °C and 14 °C, the annual average relative
humidity is between 50% and 70%, and the average annual precipitation is 539 mm (semi-arid climate).
The annual average land-surface evaporation is 470 mm, and the water surface evaporation is 1100 mm.
The geographical location and topographic distribution of the study area are shown in Figure 1.

112°F 116°E 120°E

N

Inner Mongolia

2(1\\ F42°N

42°Nq
Inner Mongolia

38°NA [F38°N

Shanxi

Shandong

Do

- Legend

34°Nq

Henan

[ Region boundary
[ Provincial boundary

7 Asitude

[]-s2-300

[ 300 - 800
I 500 - 1400
I 1400 - 3061

F34°N

112°E

116°E

120°E

Figure 1. Location and topography of the HRB.

Meteorological data from the HRB and 55 meteorological stations in the surrounding area,
provided by the National Meteorological Center of the China Meteorological Administration,
were used in this study, including the daily average temperature, highest, and lowest temperatures,
average relative humidity, sunshine duration, wind speed, precipitation, and daily evaporation from
an evaporation pan 20 cm in diameter. In terms of missing data, the following rules were respected:
when the daily data for five or more days were missing for a specific meteorological element in a
month, the data of the entire month were considered missing; when the data for one or more months
were missing, the data of the entire year were considered invalid. The time series of the data was from
1961 to 2010, and the length of the time series was 50 years. After excluding the station data that did
not satisfy the time series requirements, data for 44 stations were retained.

In order to better analyze the seasonal changes of the elements, the data were divided into spring
(March to May), summer (June to August), fall (September to November), and winter (December to
February). The annual temperature (average, maximum, and minimum), annual average relative
humidity, annual average sunshine duration, and annual average wind speed of each station were
calculated based on the mean of the daily data. The annual Ej,; and precipitation were calculated by
summing the daily data. The same methods were applied to obtain the seasonal data for each element.

2.1. Canopy and k-means Clustering

In order to explore patterns in the spatial and temporal variations of the HRB climate, as well as
geomorphological differences in the region and the climatic characteristics, this study selected eight
representative indicators as references to categorize the HRB into several sub-regions. The indicators
included geodetic coordinates (X and Y values), elevation, average temperature, precipitation,
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relative humidity, sunshine duration, and wind speed. The Canopy and k-means clustering technique
was adopted. This method performs clustering in two stages. In Stage 1, the Canopy clustering
algorithm is used to calculate the similarity of the objects and to categorize similar objects in the same
subset (canopy). In Stage 2, the k-means clustering algorithm [52] is used to cluster the points in
each canopy. Once Stage 1 is complete, the algorithm only needs to accurately cluster the points in
each canopy, which greatly reduces the time spent on the accurate calculation of all data points that
was performed in a traditional clustering algorithm. In addition, the number of canopies obtained in
Stage 1 can be used as the K value in K-means clustering, which may minimize the irrational selection
of the K value to a certain degree. The Canopy and k-means clustering technique not only greatly
reduces the calculation of distance between points, the result is also more accurate when compared to
general clustering methods [53,54].

MATLAB software (MATLAB 9.0, R2016a, MathWorks, Natick, MA, USA) was used to train
the algorithm. The clustering results of the stations and their spatial distribution are presented in
Figure 2. According to the clustering results, the HRB could be divided into six sub-regions (Figure 3).
Detailed information for each sub-region is shown in Table 1.

Table 1. Basic information for the sub-regions of the HRB.

. . Number of Ratio of Meteorological
Sub-Regions Climate Type Meteorological Stations Stations (%)
I Temperate monsoon climate 7 16
I . . 7 16
I Temperate continental climate 7 16
v 5 12
\% Temperate monsoon climate 9 20
VI 9 20
112‘°F, II()IOF_ lZ()fF.
42° N [42°N
387 N4 F38°N
5 Legend
5 5 D Haihe Basin
¢ ¢ |
34° N4 . ! —F34°N
112°E 116°E 120°E

Figure 2. The Canopy and k-means clustering results and spatial distribution of the stations in the HRB.
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Figure 3. The sub-region categorization of the HRB.

2.2. Trend-Free Pre-Whitening Mann-Kendall Test (TFPW-MK)

The Mann-Kendall (M-K) test [55,56] is a non-parametric statistical method. Compared to
parametric statistical methods, the M-K test does not require samples to follow a certain distribution,
the results are not subject to interference from a few outliers, and the method is simple and efficient
in calculations. Therefore, it is commonly used to detect trends in a series of values. For that reason,
the M-K test is suitable for examining the trend of the hydrological variables in this study [57-59].
Assuming X;, Xp, -+, Xy is a time series, n is the length of the time series; then, the M-K method
defines the statistical variable S as follows:

n-1 n
S=3Y" Y sgn(xj—xx) M
k=1 j=k+1

+1 if(xj—x) >0
sgn(xj — x;) = 0 if(xj—x)=0 2)
-1 zf(x] — Xk) <0

where x; and x; are the measured values of years j and k, respectively; and k, j < nand k # j.
When the number of samples is greater than 10, Z is calculated as follows:

51 5$>0
Var(S)
Z= 0 S=0 ©)
S+1
Var(S) 5<0
Var(S) = |n(n—1)(2n+5) = Y t(t—1)(2t+5)| /18 (4)

t
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where, Z is a normally distributed statistic, and Var(S) is the variance. If the Z value is positive, the data
shows an increasing trend; if the Z value is negative, the data shows a decreasing trend [60]. Given the
level of significance o, if |Z| > Z;_, /2, the null hypothesis is rejected, and the trend of the time series
data (increasing or decreasing) is statistically significant at «.

The existence of serial correlation increases the probability that the M-K test will detect a significant
trend [61,62]. The meteorological and hydrological data are mostly skewed and do not follow the same
distribution, and there may be autocorrelation. Thus, in this paper, the TFPW method proposed by
Yue et al. [62] is used to limit the influence of serial correlation; then, the significance of the time series
is assessed by the M-K test.

The TFPW-MK steps are as follows:

Step 1. Use the Theil-Sen estimator(TSA) [63-66] to estimate the slope f8 of a trend in sample data.

The slope of a trend is estimated using the TSA [63-66], and it is estimated as follows:

X.
5:A@mm( ! ﬂ),W<q )

where B is the estimate of the slope of the trend, and X; is the ith observation. The slope determined
by the TSA is a robust estimate of the magnitude of a trend. Since the publication of Hirsch et al. [67],
the TSA has been popularly employed to identify the slope of trends in hydrological time series [68-70].

Step 2. If B = 0, there is no need to continue trend analysis; if B # 0, it is assumed to be linear,
and the sample data are detrended as:

Yy =Xi — T = X; — ft (6)

Step 3. The lag-1 serial correlation coefficient rq of Y; is calculated using Equation (7), and then
the autocorrelation is removed by Equation (9).

n=—="—; . )
n L 1Xe = E(X0)]

1 n
E(X:) ==Y Xi (8)

=
Yy =Yr—r1Yi )

Step 4. The identified trend T; and the residual Y;' are blended by

Y =Y, +Ti=Y, +pt (10)

Step 5. Verify the significance of trend of the blended series using the MK test.

2.3. Spearman Correlation Coefficient

The Spearman correlation coefficient [71] is a nonparametric test method independent of
distribution and can be used as an indicator to measure the relationship between two variables.
If there are no repeated values in the data, the Spearman correlation coefficient is +1 or 1 when two
variables are monotonously correlated. For a sample of size 1, the n raw scores X;, Y; are converted to
ranks x;, y;, and the Spearman correlation coefficient p can be calculated as [72,73].

6y d?

p=1- n(n?2—-1)" an
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where d; = x; — y; is the difference between the two ranks of each observation. The correlation degree

between X;, Y; can be used according to the grading standards of p shown in Table 2 [74].

Table 2. Grading table of Spearman correlation coefficient (p).

Grading Standards Correlation Degree
p=0 no correlation
0<|p] <019 very week
0.20 < |p|] < 0.39 weak
0.40 < |p|] <0.59 moderate
0.60 < |p] <0.79 strong

0.80 < |p| < 1.00
1.00

very strong
monotonic correlation

3. Results

3.1. Trend and Significance Analysis

This study adopted the M-K test to analyze Epa;, temperature (average, maximum, and minimum),
precipitation, relative humidity, sunshine duration, and wind speed of the HRB. The TFPW method
was used to eliminate the trends and autocorrelation of meteorological sequence data before the M-K
Test was applied. If the value of Z was positive, the data exhibited an upward trend, while if the value
of Z was negative, the data exhibited a downward trend. The threshold of the significance level was
defined as & = 0.05. If the change trend of a given meteorological variable was found to be significant
at this level, then |Z| > Z ¢ = 1.96 [75]. The results of significance test of the interannual variations are
shown in Figure 4, and that of the seasonal variations are shown in Table 3.

For TFPW-MK test detrending, the TSA method is used to calculate the magnitude of the trend of
the meteorological variables. The rates of the meteorological elements of each sub-region for 1961 to
2010 are shown in Table 4.
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Figure 4. Results of significance test on the interannual variations of the meteorological elements.
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As shown in Figure 4, the interannual average temperatures (Ty;e,) in sub-regions I to VI
presented a significant upward trend. With the exception of sub-region V, the average maximum
temperatures (T,y) of all sub-regions also increased significantly. The significance level of the trend of
the average minimum temperatures (T,,;,,) was consistent with that of the Tyeq. The Tyeqn in spring
and winter in sub-regions I to VI increased significantly; in summer, it increased significantly only
in sub-regions II and III. In fall, it increased significantly in the majority of sub-regions (except for
sub-region I). Only the significance levels for T,y in winter of sub-regions I to VI were consistent with
those of Tyx. The Ty, of sub-regions I to VI in all four seasons significantly increased. However,
it can be seen from Table 2 that the T,,;, rose more rapidly, followed by the Teqn, with the Ty4x rising
the most slowly.

The interannual variations of average precipitation (Pea) showed a downward trend of the
six sub-regions: the decline rates were 22.50, 5.02, 4.07, 23.49, 5.35 and 19.71 mm/10a, respectively.
However, the trend is not significant. The Py;eq, in spring showed an upward trend; only the trends of
sub-regions II and VI were significant. In summer, it was found to be declining, except for sub-region
V; the declining trends of sub-regions I, II, and VI were significant. The Pjeq, in fall showed an
upward trend, except for sub-regions IV and V; The Pes; in winter showed an upward trend except
for sub-region VI. The trends were not statistically significant in fall and in winter. As the decline of
precipitation in summer offsets the increase of precipitation in spring, the interannual Pjeq, of the
region showed a general downward trend.

The interannual variations of average relative humidity (RH;eq,) of all sub-regions showed
a downward trend, except for sub-region I, however only the trends of sub-regions IV and VI
were statistically significant. The change rates of sub-regions I to VI were 0.20%/10a, —0.35%/10a,
—0.30%/10a, —0.71%/10a, —0.56%/10a, and —0.78%/10a, respectively. As the increase in the RHeq
in fall and winter was larger than the sum of the reduction of the RHy;eq in spring and summer,
the RHjyeq, in sub-region I was found to be increasing. The RHyjeq, in spring, summer, and fall of
sub-regions I to VI was found to be declining, except for sub-region I in fall and sub-region V in
summer; however, the trends of the majority of sub-regions were not significant. The changes in
the RHeqn of winter were not consistent across sub-regions I to VI, and none of the analyzed trends
were significant.

The interannual variations of the average sunshine duration (SDye;) in sub-regions I to VI
showed a significant downward trend; the decline rates were 0.27, 0.13, 0.17, 0.29, 0.31, and 0.32 h/10a,
respectively. In addition, the significance values for the changes in the SD;;¢q; per season in sub-regions
I to VI were consistent with those of the interannual variation.

The interannual average wind speed (Ujeqn) of sub-regions I to VI had significantly decreased;
the rates were 0.16, 0.15, 0.28, 0.05, 0.17, and 0.16 m/(s-10a), respectively. The seasonal variation of
the Ujean was showed a downward trend in all sub-regions, except for sub-region VI in summer.
The Ujeqn in summer and fall in sub-region IV was not significant, while the declining trends of the
Ujnean per season of the other sub-regions were found to be significant.

The interannual Epan of sub-regions I to VI was found to be decreasing over the research period at
speeds of 55.2, 11.7, 24.4, 30.7, 82.6, and 65.7 mm/10a, respectively. However, the trends of Epg, for all
sub-regions were significant except for sub-regions II and III. The Ej;, of sub-region II presented an
upward trend in summer, fall, and winter, while the E,;;; of other sub-regions showed a downward
trend in all seasons. Apart from sub-region 1V, the E;, of other regions was significantly decreased
in spring. The significance test results in summer aligned with those of the interannual variations.
The changes of Epgy in fall and winter in the majority of sub-regions were not statistically significant.
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Table 3. Z-Value of the Mann-Kendall test on the meteorological variables (¢« = 0.05).

Time Sub-Regions  Tyean Tinax Tonin Pinean RHyean ~ SDimean Unmean Epan
I 3.04 % 224 % 458 % 1.24 —015  —371*% —7.04%* —4.00*%
i 3.58* 2.46* 5.14* 2,06 * —075  —263* —569% —261*
Sorin I 3.38* 191 3.86 % 1.02 —090  -248* —729% —316*
pring v 360*  279*  289* 050  —243* -219* 341* 129
\% 325% 0.84 559 * 0.90 —049  —231* —617* —345*
VI 3.86 % 224 % 5.84 % 1.97# —159  —286* —657* —328*%
I 1.77 1.44 328%  —273*  —1.00 —470* —524* —207*
hii 3.18* 2,59 * 515%  —228* —207* —286%* —258% 0.10
S I 3.06 * 234 % 495% ~192  —196  —299* —631*  —017
ummer v 1.39 1.19 3.03* ~157 —094  —550* 055 —226*
\% 0.50 ~137  365* 0.18 0.15 —577% —589% —462%*
VI 1.86 0.64 433*  —219* —221* —562* —567* —325*%
I 1.66 1.67 3.15% 0.72 0.67 —502*% —627% —331*
il 3.20% 2.14% 490 % 1.20 —1.69  —376* —455* 0.07
A I 294 % 233* 3.76* 0.90 —003 —370* —637* —070
utumn v 2.71% 2.88 % 2.36* —1.04 —1.84  —340* —132 —~0.20
\% 3.09 * 1.77 3.75* —152  —264* —358* —6l14* 141
VI 263% 1.82 4,08 * 0.25 —268* —482% —529% —243*
I 4.08 % 2.58 525 % 0.22 1.79 —445%  —679% —298%
hii 412* 279 * 542 % 0.87 0.25 —338* —552%  207*
Wint I 3.83* 2,99 * 437+ 0.07 0.12 —410*%  —594%  —052
nter v 455* 2,59 * 540 * 0.85 0.64 —494*  —455*  —151
\% 413* 1.20 5.81* 0.42 —049  —430* —592% —223*
VI 4.40* 246* 5.60 * ~116  —085  —393* —627* —1.78

* Trends statistically significant at the 95% confidence level.

Table 4. Climate tendency rates of the meteorological elements per sub-region from 1961 to 2010.

Time Sub- Tinean Tinax Tmin Pinean RHyean SDmean Usnean Epan
regions (°C/10a) (°C/10a) (°C/10a) (mm/10a) (%/10a) (h/10a) (m/s/10a) (mm/10a)
I 03 02 0.4 —2250 0.20 —027  —0.16 —552
i 0.4 03 0.5 —5.02  —035 —0.13 —0.15 —11.7
I 04 03 0.5 —407  —030  -017  —028 244
Interannual 1, 0.3 0.3 0.3 —2349  —071 —~0.29 —0.05 —30.7
\Y 03 0.1 0.4 -535  —056  —031 ~017  -826
VI 03 02 0.5 ~1971  —078  —032 ~0.16 —65.7
I 03 03 0.4 3.84 —0.10 —0.24 —021 218
i 04 03 0.6 403 —0.31 ~0.13 ~0.19 ~142
. I 03 0.2 0.4 2.40 —0.40 —017  —036 ~18.1
Spring
v 03 03 0.3 1.66 -138  —017  —0.06 127
\% 03 0.1 0.5 3.65 —034  —017  —0.19 -327
VI 0.4 03 0.6 5.50 —0.90 021 —0.23 —27.7
I 0.1 0.1 0.2 —3314  —025  —039 —0.08 ~-137
il 0.3 0.3 0.4 ~13.95  —0.82 —0.14 —0.04 05
11 03 0.2 03 —960  —079  —0.20 —0.17 14
Summer v 0.1 0.1 0.2 ~13.00  —0.34 045 0.02 ~17.9
\% 0.0 —0.1 0.2 1.07 0.05 —0.52 ~0.13 —40.0
VI 0.1 0.1 0.3 —2622  —080  —0.50 ~0.10 247
I 0.1 0.1 0.2 245 0.17 —027  —0.12 -8.7
i 03 0.2 0.5 2.89 —050  —0.11 ~0.10 03
I 03 02 0.4 281 —003  —0.16 ~0.25 -28
Autumn v 0.2 0.3 0.2 —6.67 —1.09 —0.26 —0.03 —0.8
\% 02 0.2 0.4 —948  —142  —0.28 —0.14 ~59
VI 0.2 0.2 0.4 1.67 —1.11 ~031 —0.12 —9.0
I 05 0.4 0.6 0.16 0.81 —0.20 ~0.19 —45
hii 06 0.4 08 0.28 0.08 —0.09 ~-023 38
) 11 0.6 05 0.7 0.04 0.10 —017 035 -1.0
Winter v 05 0.4 0.6 0.71 0.41 —0.32 —0.12 —42
\% 05 0.2 0.7 0.45 035 —-0.35 ~0.19 -8.0
VI 0.6 03 0.7 —087  —049  —026 ~0.19 -36
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3.2. Sensitivity Analysis

Changes in meteorological variables led to temporal and spatial fluctuations in Eps,, and their
roles appeared to be different in different sub-regions. The influence of each meteorological element
on changes in Ep; depended on two factors: the sensitivity of the meteorological elements toward Epan
and the change trend and corresponding significance level of the meteorological element. Therefore,
it was necessary to analyze the meteorological elements that drive changes in Epan for each sub-region,
to qualitatively evaluate the contribution of each meteorological element on the changes of Ejg.
The Spearman correlation coefficient was applied to qualitatively analyze the effects of Tyax, Trean,
Tins Prean, RHmean, SDmean, and Upean on Epgn. The results are shown in Table 5.

The sensitivity factors that caused changes in Epy; in the HRB were different. It can be seen from
Table 5 that there were significant correlations between Epay and Ty, Prean, RHiean, SDmean, and Unpean
in sub-region I. Although the correlations between Eyz; and Piueqn and RHypesn were significant,
the trends of Pyean and RH,ean Were not significant. Therefore, the meteorological elements that
affected the interannual changes in Ep,;, of sub-region I were T,,;,, SDyean, and Upean- Epan Was found
to have a negative correlation with T,,;,, which does not align with what is commonly expected.
Epan and SDyyeqn and Uyean Were positively correlated. The significant decline in SDyeqn and Ujean
directly led to the significant decline of Eps,. Based on the above analysis, the significant decrease in
Epan in sub-region I was mainly due to the significant reduction in the SDyeqn and Ujyean. The Spearman
correlation coefficient between Epa; and SDyean was 0.75, indicating that the correlation is strong
(see Table 2). The Spearman correlation coefficient between Epqy and Ujpeqn was 0.46, indicating a
moderate correlation. Thus, the primary factor affecting Ey; decline in sub-region I was SDyeqn,
followed by Uyean. According to the same analysis method, the factors responsible for Ej,; decline in
each sub-region were also analyzed. The primary factor affecting the decline of Ep,, in sub-regions I, 111,
IV, V, and VI was SDyean, followed by Uyeqn, while the reasons for the changes in Epan in sub-regions 11
was the significant reduction in the SDyeq1.

In addition, the contributing factors to Eps, in sub-regions I to VI for each season were also
analyzed. In spring, the decrease in Epg, in sub-regions I to VI was primarily caused by a significant
decrease in SDjeqn, followed by a decline in Ujeq,. In summer, significant decreases in SDyyeq, and
Unean were the primary and secondary driving factors of E;;, in sub-regions I, V, and VI, respectively;
the decrease in Ej,;, for sub-regions Il and IV was mainly due to the significant decrease in SDyeqn-
Moreover, the change trend of Eps; in sub-region I was found to be the opposite to that for other
sub-regions, which could be due to a significant increase in temperature, as well as a significant drop
in Pyean and RHyeqn- In fall, the decline in Ejyy in sub-regions I, 111, V, and VI was attributed to a
significant reduction in SDyeqn and Ujyean, while the decline in Ep,y, in sub-region IV was caused by a
significant reduction in SDyes,. In addition, the change trend of Epan in sub-region Il was the opposite
of that for other sub-regions, which was mainly caused by a significant increase in Tjqx and Tyean-
In winter, apart from sub-region II, where a significant increase in temperature resulted in an upward
trend in Ejp, the reduction of Ejyy, in all sub-regions was caused by a significant reduction in SDyeqn
and Ujeqn.

In summary, the primary factor responsible for the decline in Ey,y in the HRB was a reduction in
sunshine duration, followed by a reduction in wind speed. The factors responsible for the reduction
in Epapn in each sub-region were consistent with the overall reduction in Ej,, of the HRB. However,
the correlation between Ujyeqn and Epqny was not significant in sub-region II, where the only influential
factor was the decrease of sunshine duration.
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Table 5. The Spearman correlation coefficients between Meteorological Elements and Epan
per Sub-Region.

Time SUb'RegionS Tinean Tiax Tinin Pinean RHjean SDinean Usnean
I 0.01 022  —035* —046*  —0.68* 0.75 * 0.46*
i 0.26 0.40* 0.00 —0.64*  —057* 0.51* 0.12
I 0.05 0.15 —0.11  —052*  —055* 0.44* 043 *
Interannual v 0.14 029*  —013  —031*% —047* 0.61* 0.59 *
% —0.06 037* —048* —038*  —033* 0.83* 0.73*
VI —0.16 019  —045* —040* —022 0.76 * 0.62*
I 0.18 033* —020 —0.68*  —071% 0.84* 0.55 *
il 0.13 030* —019  —069*  —0.66* 0.68* 0.48*
Spring I 0.09 0.27 —020  —050*  —0.67* 0.62* 0.61*
v 045*  0.65* 0.09 —0.73*  —0.73* 0.86 * 0.68 *
\% 046*  072*  —005  —066*  —072* 0.84* 0.60 *
VI 0.22 046*  —0.18  —078*  —0.63* 0.84* 0.65 *
I 0.63*  071*% 0.12 —042*  —081* 0.72* 043 *
I 068*  079*  030*  —0.64*  —0.83* 0.64* 0.34*
I 059*  0.74* 0.15 —066*  —0.89* 0.58 * 0.12
Summer v 061*  071*% 0.08 —0.48* —0.78* 0.59 * 0.33*
\% 052*  076*  —009  —050*  —0.69* 0.82* 0.71*
VI 048*  0.66*  —003 —036*  —058* 0.78 * 0.53 *
I 0.02 017  —032* —053*  —070* 0.70 * 0.53
Il 040*  049* 0.16 —0.60*  —0.61* 0.43* 0.09
III 0.19 037*  —009  —056*  —081* 0.62* 0.30 *
Autumn v 0.14 059* —035* —0.65%  —0.83% 0.76 * 0.59 *
\% 0.11 053* —039* —054*  —0.68* 0.81* 0.35*
VI —0.10 024  —044* —049*  —053* 0.77* 0.55 *
I 0.16 040*  —001  —060*  —0.62* 0.68 * 0.36 *
il 068*  072*  0.62*  —036*  —046* 0.35* —0.01
) I 049*  055*  044*  —037*  —074* 0.31* 0.29*
Winter v 0.26 0.57* 0.01 —0.51* —0.71* 0.70 * 0.57 *
\% 0.25 0.63*  —011  —054%  —072*% 0.75 * 047 *
VI 0.21 047 * 0.00 —038*  —0.61* 0.66 * 043 *

* Trends statistically significant at the 95% confidence level.

4. Discussion

As noted above, when global temperature increases, the overall temperature of the HRB increases.
However, there are differences in the spatial and temporal distribution. From 1961 to 2010, the lowest
temperature increased approximately two times faster than the highest temperature, and approximately
1.5 times faster than the average temperature. This result is consistent with the results from an analysis
of variations in annual temperatures by Zheng et al. [49] in the HRB for 1957 to 2001, but it is
different from the results obtained by Salinger and Griffiths [76], which indicated that the lowest
temperature rose approximately three times faster than the highest temperature globally from 1951 to
1998. Meanwhile, the average temperature, highest temperature, and lowest temperature in spring
and winter increased much more quickly than the corresponding values in summer and autumn,
for both the HRB and every sub-region. The temperatures in winter increased most significantly,
three times faster than those in summer, and two times faster than those in autumn. Additionally,
temperatures decreased to some extent in some areas of the HRB. For example, unlike the highest
temperature in other sub-regions, which increased, the highest temperature in area V decreased.

The “evaporation paradox” also exists in the HRB. With respect to both the whole area and the
sub-regions in the HRB, except for the slight increase in Ej;y in sub-region II in autumn and winter,
Epan decreased, and this decline mostly occurred in spring and summer. This result agrees with
the conclusions of Zheng et al. [49] and Liu et al. [77]. However, it contradicts with the findings in
Liu et. al. [78] that from 1992 to 2007, Epay significantly increased in North China, including the
HRB. The correlation between the general decrease in E,.; and the temperature variation was
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weak, suggesting that the increase in temperature was not directly related to the decrease in Epg.
The main factors responsible for the decline in Epg in the HRB included decreases in sunshine
duration, which was the main factor, and in wind speed. This result differed from the conclusions of
Zheng et al. [49], which stated that the decrease in wind speed is the main factor responsible for the
decrease in Epg;. In addition, this result does not agree with the conclusions from Liu et al. [79] that
in the semi-humid/semi-arid region of China (including the HRB), decreases in diurnal temperature
range, sunshine duration and wind speed were found to be the main factors contributing to the pan
evaporation declines. Liu et al. [78] concluded that wind speed and solar radiation are the main factors
that led to the decline in pan evaporation in North China, which differs from our findings. However,
it is generally accepted that wind speed is one of the main driving factors of the decrease in Ejqy, in
the HRB. This statement is consistent with the conclusion that wind speed is one of the main factors
driving the decrease in Ep,y in areas such as the Canadian Prairies [31], the Cape Floristic Region in
South Africa [32], and Australia [26].

The factors attributed to the decrease in sunshine duration and wind speed also vary among
studies [36,80-82]. For sunshine duration, multiple studies have concluded that this decrease may
be related to the increase in aerosols and other air pollutants [3,83]. In other studies, it is argued
that the decrease may be related to the increase in cloud cover. In addition, several studies have
reported a correlation between a decrease in sunshine duration and urbanization [84]. Recently,
Wei Pan [85] reported that the number of haze days significantly increased in North China (including
in the HRB). Therefore, a decrease in sunshine duration may be related to the increase in haze
days in the HRB. Regarding the decrease in wind speed, conclusions of various areas also differ;
however, the main consensus is that the decrease in wind speed may be related to variations in global
circulation [86,87], as well as the increase in surface roughness caused by afforestation and urbanization
near the observation sites [88]. Based on the present studies, it is difficult to determine the reasons for
the decrease in wind speed, and further studies are required.

5. Conclusions

In this study, the Canopy and k-means clustering method was employed to categorize the
HRB into six sub-regions. Then, 44 out of the 55 meteorological stations in the surrounding area
that had relatively complete data were selected, and the trends and significance of the interannual
and seasonal variations of the pan evaporation, temperature, precipitation, relative humidity,
sunshine duration, and wind speed for 1961 to 2010 were analyzed using TFPW-MK. Based on
this analysis, the sensitivities of the average, maximum, and minimum temperatures, and precipitation,
relative humidity, sunshine duration, and average wind speed to Ep,, were qualitatively analyzed
using the Spearman correlation coefficient. In the whole basin, the primary cause of declining Epa
was a significant reduction in sunshine duration, followed by a significant reduction in wind speed.
In sub-regions, Eps, showed a downward trend; however, the influential factors on Ej,,; reduction per
sub-region were slightly different from those of the entire region. Except for sub-region II, which was
only affected by sunshine duration, reductions in Ep, in other sub-regions were due to the joint
influence of decreasing sunshine duration and wind speed.

In this paper, only a qualitative analysis was performed on the reduction of sunshine duration
and wind speed in the HRB, and an explanation for this reduction is still lacking, and thus further
research is needed.

Author Contributions: This paper is a joint effort by several authors. S.W. conceived and designed the paper’s
structure; B.L. performed the Canopy-Kmeans clustering; Z.Y. compiled the code for the Mann-Kendall Test;
Z.Y. and D.M. analyzed the data; H.L. and S.L. drew the figures; and Z.Y. wrote the paper.

Funding: This work was supported by the National Natural Science Foundation of China (Grant No. 71573274;
grant No. 51879066), the National Water Pollution Control and Management Science and Technology Major
Project of China (20142X07203-008), the Science and Technology Project of Hebei Province (Grant No. 15227005D),
and the Science and Technology Research and Development Program of Handan (1723209055-4).

188



Water 2019, 11, 317

Acknowledgments: The authors are very grateful to the editor and the anonymous reviewers whose suggestions
significantly contributed to improving this work. The authors are also thankful for support from the Hebei
University of Engineering, and Editage [www.editage.cn] for English language editing.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

IPCC. Climate Change 2001: The Science Basis, Contribution of Working Group I to the Third Assessment Report
of Inter-Government Panel on Climate Change; The Press Syndicate of University of Cambridge: Cambridge,
UK, 2001.

IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment
Report of the Intergovernmental Panel on Climate Change; The Intergovernmental Panel on Climate Change:
Geneva, Switzerland, 2007.

Roderick, M.L.; Farquhar, G.D. The cause of decreased pan evaporation over the past 50 years. Science 2002,
298, 1410-1411. [PubMed]

Kang, S.Z. Towards water and food security in China. Chin. J. Eco Agric. 2014, 22, 880-885. (In Chinese)
Gleick, PH. Climate change, hydrology, and water resource. Rev. Geophys. 1989, 27, 329-344. [CrossRef]
Limjirakan, B.S.; Limsakul, A. Trends in Thailand pan evaporation from 1970 to 2007. Atmos. Res. 2012, 108,
122-127. [CrossRef]

Liu, X.M.; Zheng, H.X,; Liu, C.M.; Cao, Y.J. Sensitivity of the potential evapotranspiration to key climatic
variables in the Haihe River Basin. Res. Sci. 2009, 31, 1470-1476. (In Chinese)

Thornthwaite, C.W. An approach toward a rational classification of climate. Geogr. Rev. 1948, 38, 55-94.
[CrossRef]

Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.;
Chen, J.; De Jou, R; et al. Recent decline in the global land evapotranspiration trend due to limited moisture
supply. Nature 2010, 467, 951-954. [CrossRef]

Eagleman, J.R. Pan evaporation, potential and actual evapotranspiration. J. Appl. Meteorol. 1967, 6, 482-488.
[CrossRef]

Wang, S.Q.; Chen, N.X. Water Resources Evaluation and Management, 1st ed.; Water Resources and Electric
Power Press: Beijing, China, 1996; ISBN 7-120-01998-8. (In Chinese)

Jhajharia, D.; Shrivastava, S.K.; Sarkar, D.; Sarkar, S. Temporal characteristics of pan evaporation trends
under the humid conditions of northeast India. Agric. For. Meteorol. 2009, 149, 763-770. [CrossRef]
Azorin-Molina, C.; Vicente-Serrano, S.M.; Sanchez-Lorenzo, A.; McVicar, T.R.; Moran-Tejeda, E.; Revuelto, J.;
Kenawy, A.E.; Martin-Hernandez, N.; Tomas-Burguera, M. Atmospheric evaporative demand observations,
estimates and driving factors in Spain (1961-2011). J. Hydrol. 2015, 523, 262-277. [CrossRef]

Tabari, H.; Marofi, S. Changes of pan evaporation in the west of Iran. Water Resour. Manag. 2011, 25, 97-111.
[CrossRef]

Cohen, S; Ilanetz, A, Stanhill, G. Evaporative climate changes at Bet Dagan, Israel, 1964-1998.
Agric. For. Meteorol. 2002, 111, 83-91. [CrossRef]

Silva, V.D.PR.D. On climate variability in Northeast of Brazil. |. Arid Environ. 2004, 58, 575-596. [CrossRef]
Peterson, T.C.; Golubev, V.S.; Groisman, P.Y. Evaporation losing its strength. Nature 1995, 377, 687-688.
[CrossRef]

Golubev, VS.; Lawrimore, ].H.; Groisman, PY.; Speranskaya, N.A.; Zhuravin, S.A.; Menne, M.].;
Peterson, T.C.; Malone, R.W. Evaporation changes over the contiguous United States and the former USSR:
A reassessment. Geophys. Res. Lett. 2001, 28, 2665-2668. [CrossRef]

Roderick, M.L.; Farquhar, G.D. Changes in New Zealand pan evaporation since the 1970s. Int. ]. Climatol.
2005, 25, 2031-2039. [CrossRef]

Zuo, H.C,; Li, D.L;; Hu, Y.Q.; Bao, Y.; Lv, S.H. The relationship between climate change trends and its changes
in evaporation observed by evaporating dishes in the past 40 years in China. Chin. Sci. Bull. 2005, 11,
1125-1130. (In Chinese)

Sheng, Q. The Variation and Causes of Small Pan Evaporation over the Past 45 Years in China. Master’s Thesis,
Nanjing University of Information Science & Technology, Nanjing, China, May 2006. (In Chinese)

189



Water 2019, 11, 317

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Liu, M.; Shen, YJ; Ceng, Y.; Liu, C.M. Changing trend of pan evaporation and its cause over the past 50 years
in China. Acta Geogr. Sin. 2009, 64, 259-269. (In Chinese)

Ren, G.Y.; Guo, J. Change in pan evaporation and the influential factors over China: 1956-2000. ]. Nat. Res.
2006, 1, 31-44. (In Chinese)

Tebakari, T.; Yoshitani, J.; Suvanpimol, C. Time-space trend analysis in pan evaporation over Kingdom of
Thailand. J. Hydrol. Eng. 2005, 10, 205-215. [CrossRef]

Oguntunde, P.G.; Abiodun, B.J.; Olukunle, O.].; Olufayoa, A.A. Trends and variability in pan evaporation
and other climatic variables at Ibadan, Nigeria, 1973-2008. Meteorol. Appl. 2012, 19, 464-472. [CrossRef]
Roderick, M.L.; Farquhar, G.D. Changes in Australian pan evaporation from 1970-2002. Int. J. Climatol. 2004,
24,1077-1090. [CrossRef]

Jovanovic, B.; Jones, D.A.; Collins, D. A high-quality monthly pan evaporation data set for Australia.
Clim. Chang. 2008, 87, 517-535. [CrossRef]

Brutsaert, W.; Parlange, M.B. Hydrologic cycle explains the evaporation paradox. Nature 1998, 396, 30.
[CrossRef]

Lawrimore, J.; Peterson, T.C. Pan evaporation in dry and humid regions of the United States. ]. Hydrometeorol.
2000, 1, 543-546. [CrossRef]

Jaswal, A.K.; Rao, G.S.P; De, U.S. Spatial and temporal characteristics of evaporation trends over India
during 1971-2000. Mausam 2008, 59, 149-158.

Burn, D.H.; Hesch, N.M. Trends in evaporation for the Canadian prairies. ]. Hydrol. 2007, 336, 61-73.
[CrossRef]

Hoffman, M.T.; Cramer, M.D.; Gillson, L.; Wallace, M. Pan evaporation and wind run decline in the Cape
Floristic Region of South Africa (1974-2005): Implications for vegetation responses to climate change.
Clim. Chang. 2011, 109, 437-452. [CrossRef]

Yang, H.; Yang, D. Climatic factors influencing changing pan evaporation across china from 1961 to 2001.
J. Hydrol. 2012, 414, 184-193. [CrossRef]

Cao, Y.Q.; Zhang, T.T.; Xu, D.; Yang, C.X. Analysis of evapotranspiration of temporal-space evolution in the
Haihe Basin. Res. Sci. 2014, 36, 1489-1500. (In Chinese)

Bao, Z.X.; Yan, X.L.; Wang, G.Q.; Liu, C.S.; He, R M. Mechanism of effect of meteorological factors in paradox
theory of pan evaporation of Haihe River basin. |. Water Res. Water Eng. 2014, 25, 1-7. (In Chinese)

Li, X.C. Spatio-Temporal Variation of Actual Evapotranspiration in the Pearl, Haihe and Tarim River Basins
of China. Ph.D. Thesis, Nanjing University of Information Science & Technology, Nanjing, China, May 2013.
(In Chinese)

Liu, M,; Shen, Y.J. Change trend of hydrological elements in Haihe River Basin over the last 50 years. ]. China
Hydrol. 2010, 30, 74-77. (In Chinese)

Rong, Y.S.; Zhang, X.N.; Jiang, H.Y.; Bai, L.Y. Pan evaporation change and its impact on water cycle over the
upper reach of the Yangtze River. Chin. ]. Geophys. 2012, 55, 2889-2897. (In Chinese) [CrossRef]

Zhao, EN.; Zhao, M.; Wang, Y.; Zhang, P.F. Variation characteristics of reference evapotranspiration and pan
evaporation during 1960-2009 in Shiyang River Basin. J. Arid Meteorol. 2014, 32, 560-568. (In Chinese)

Li, L.P; Li, Y.Y;; Liu, M.C. Change trend of pan evaporation and its causes in Shiyang River Basin during
1961-2005. J. Desert Res. 2012, 32, 832-841. (In Chinese)

Zhang, T.T. Analysis on Pan Evaporation Trend And Its Impacted Factors in Xiangjiang River Basin.
Master’s Thesis, Hunan Normal University, Changsha, China, May 2013. (In Chinese)

Rong, Y.S.; Zhou, Y.; Wang, W. Analysis of pan evaporation changes in the Huaihe River basin. Adv. Water
Sci. 2011, 22, 15-22. (In Chinese)

Xie, P; Chen, X.H.; Wang, Z.L.; Xie, Y.W. Comparison of actual evapotranspiration and pan evaporation.
Acta Geogr. Sin. 2009, 64, 270-277. (In Chinese)

Wang, Z.L.; Qin, J.X.; Chen, X.H. Variation characteristics and impact factors of pan evaporation in Pearl
River Basin. Trans. CSAE 2010, 26, 73-77. (In Chinese)

Qiu, X.E; Liu, C.M.; Zeng, Y. Changes of evaporation in the recent 40 years over the Yellow River Basin.
J. Nat. Res. 2003, 18, 437-441. (In Chinese)

Huang, Y.; Wang, Y. Analysis on temporal spatial distribution and inter-annual change of the evaporation
capacity in Yunnan Province. Hydrology 2003, 23, 36—40. (In Chinese)

190



Water 2019, 11, 317

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

Xu, Z.X.; He, W.L. Analysis on the long-term trend of pan evaporation in the Yellow River Basin over the
past 40 years. Hydrology 2005, 06, 6-11. (In Chinese)

Song, M.B.; Chen, ].Q.; Zhang, X.J.; Zhang, W.J. Pan evaporation trend in Yangtze River Basin from 1951 to
2000. Water Res. Prot. 2011, 27, 24-27. (In Chinese)

Zheng, H.; Liu, X.; Liu, C,; Dai, X.; Zhu, R. Assessing contributions to pan evaporation trends in Haihe River
Basin, China. J. Geophys. Res. Atmos. 2009, 114, D24105. [CrossRef]

Hao, Z.C; Yan, L.Z.; Ju, Q.; Dunzhu, J.C. Spatiotemporal characteristics of climate variation in different
kinds of landforms of Haihe River Basin. Res. Soil Water Conserv. 2014, 21, 56—-60. (In Chinese)

Guo, J.; Ren, G.Y. Recent change of pan evaporation and possible climate factors over the Huang-Huai-Hai
watershed, China. Adv. Water Sci. 2005, 16, 666—672. (In Chinese)

Mac Queen, J.B. Some methods for classification and analysis of multivariate observations. In Proceedings of
the 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, CA, USA, 21 June-18 July
1965 and 27 December 1965-7 January 1966; Volume 1, pp. 281-297.

Guha, S.; Rastogi, R.; Shim, K. Cure: An efficient clustering algorithm for large databases. Inf. Syst. 2001, 26,
35-58. [CrossRef]

Zhang, T.; Ramakrishnan, R.; Livny, M. BIRCH: An efficient data clustering method for very large database.
In Proceedings of the 1996 ACM SIGMOD International Conference on Management of data, Montreal, QC,
Canada, 4-6 June 1996; Volume 25, pp. 103-114.

Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245-259. [CrossRef]

Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975.

Kottegoda, N.T. Stochastic Water Resources Technology; Wiley: New York, NY, USA, 1980;
ISBN 978-1-349-03467-3.

Burn, D.H.; Elnur, M.A.H. Detection of hydrologic trends and variability. J. Hydrol. 2002, 55, 107-122.
[CrossRef]

Abdul Aziz, O.1; Burn, D.H. Trends and variability in the hydrological regime of the Mackenzie River Basin.
J. Hydrol. 2006, 319, 282-294. [CrossRef]

Mishra, A.K.; Singh, V.P. Changes in extreme precipitation in Texas. . Geophys. Res. Atmos. 2010, 115, D14.
[CrossRef]

Von Storch, H. Misuses of statistical analysis in climate research. In Analysis of Climate Variability:
Applications of Statistical Techniques; Von Storch, H., Navarra, A., Eds.; Springer: New York, NY, USA,
1995; pp. 11-26.

Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detect trend in
hydrological series. Hydrol. Process. 2002, 16, 1807-1829. [CrossRef]

Theil, H. A rank-invariant method of linear and polynomial regression analysis, 1. Nederlands Akad.
Wetensch. Proc. 1950, 53, 386-392.

Theil, H. A rank-invariant method of linear and polynomial regression analysis, II. Nederlands Akad.
Wetensch. Proc. 1950, 53, 52-525.

Theil, H. A rank-invariant method of linear and polynomial regression analysis, III. Nederlands Akad.
Wetensch. Proc. 1950, 53, 1397-1412.

Sen, PK. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379-1389.
[CrossRef]

Hirsch, RM.; Slack, J.R.; Smith, R.A. Techniques of trend analysis for monthly water quality data.
Water Resour. Res. 1982, 18, 107-121. [CrossRef]

Demaree, G.R.; Nicolis, C. Onset of Sahelian drought viewed as a fluctuation-induced transition. Q. J. R.
Meteorol. Soc. 1990, 116, 221-238. [CrossRef]

Burn, D.H. Hydrologic effects of climatic change in west-central Canada. ]. Hydrol. 1994, 160, 53-70.
[CrossRef]

Gan, T.Y. Hydroclimatic trends and possible climatic warming in the Canadian Prairies. Water Resour. Res.
1998, 34, 3009-3015. [CrossRef]

Spearman’s Rank Correlation Coefficient. Available online: https://en.wikipedia.org/wiki/Spearman%
27s_rank_correlation_coefficient (accessed on 20 January 2019).

Myers, J.L.; Well, A.D. Research Design and Statistical Analysis, 2nd ed.; Lawrence Erlbaum Associates:
Mahwah, NJ, USA, 2003; ISBN 0-8058-4037-0.

191



Water 2019, 11, 317

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Maritz, J.S. Distribution-Free Statistical Methods, 1st ed.; Chapman & Hall: New York, NY, USA, 1981;
ISBN 978-0-412-15940-4.

Spearman’s correlation. Available online: http://www.statstutor.ac.uk/resources/uploaded /spearmans.pdf
(accessed on 20 January 2019).

Wei, EY. Modern Climate Statistical Diagnosis and Prediction Technology, 2nd ed.; China Meteorological Press:
Beijing, China, 2007; ISBN 9787502942991. (In Chinese)

Salinger, M.].; Griffiths, G.M. Trends in New Zealand daily temperature and rainfall extremes. Int. |. Climatol.
2001, 21, 1437-1452. [CrossRef]

Liu, B.H.; Xu, M.; Henderson, M.; Gong, W.G. A spatial analysis of pan evaporation trends in China,
1955-2000. J. Geophys. Res. Atmos. 2004, 109, D15102. [CrossRef]

Liu, XM.; Luo, Y.Z.; Zhang, D.; Zhang, M.H.; Liu, C.M. Recent changes in pan-evaporation dynamics in
China. Geophys. Res. Lett. 2011, 38, 142-154. [CrossRef]

Liu, M.; Shen, YJ.; Zeng, Y.; Liu, C.M. Trend in pan evaporation and its attribution over the past 50 years in
China. J. Geogr. Sci. 2010, 20, 557-568. [CrossRef]

Kaiser, D.P.,; Qian, Y. Decreasing trends in sunshine duration over China for 1954-1998: Indication of
increased haze pollution? Geophys. Res. Lett. 2002, 29, 38-1-38-4. [CrossRef]

Yildirim, U.; Yilmaz, I.O.; Akinoglu, B.G. Trend analysis of 41 years of sunshine duration data for Turkey.
Turk. J. Eng. Environ. Sci. 2013, 37, 286-305. [CrossRef]

Niroula, N.; Kobayashi, K.; Xu, J. Sunshine duration is declining in Nepal across the period from 1987 to
2010. J. Agric. Meteorol. 2015, 71, 15-23. [CrossRef]

Ren, J.; Lei, X.; Zhang, Y.; Wang, M.; Xiang, L. Sunshine duration variability in Haihe River Basin, China,
during 1966-2015. Water 2017, 9, 770. [CrossRef]

Wang, Y.; Wild, M.; Sanchez-Lorenzo, A.; Manara, V. Urbanization effect on trends in sunshine duration in
china. Ann. Geophys. 2017, 35, 839-851. [CrossRef]

Pan, W. Interdecadal Variation of Haze Days over China and the Atmospheric Causes in Recent 50 Years.
Master’s Thesis, Chinese Academy of Meteorological Sciences, Beijing, China, April 2017. (In Chinese)
Liu, X.M.; Zheng, H.X.; Zhang, M.H.; Liu, C.M. Identification of dominant climate factor for pan evaporation
trend in the Tibetan Plateau. J. Geogr. Sci. 2011, 21, 594-608. [CrossRef]

Wang, Z.Y.; Ding, Y.H.; He, ].H.; Yu, ]. An updating analysis of the climate change in China in recent 50 years.
Acta Meteorol. Sin. 2004, 62, 228-236. (In Chinese)

Shen, Y.J.; Liu, CM,; Liu, M.; Zeng, Y.; Tian, C.Y. Change in pan evaporation over the past 50 years in the
arid region of China. Hydrol. Process. 2010, 24, 225-231. [CrossRef]

® © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution
BY

(CC BY) license (http:/ /creativecommons.org/licenses/by/4.0/).

192



. water ﬁw\n\l’y

Atrticle

Effects of the Three Gorges Project on Runoff and
Related Benefits of the Key Regions along Main
Branches of the Yangtze River

Yanjun Gao ! and Yongqiang Zhang %*

1 School of Economics, Henan University of Science and Technology, Kaiyuan Ave. 263, Luoyang 471023,

Henan, China; yanjungao@sohu.com

Institute of Geographic Sciences and Natural Resources Research, the Chinese Academy of Science,
Beijing 10010, China

Correspondence: yongqiang.zhang2014@gmail.com

check for
Received: 8 January 2019; Accepted: 31 January 2019; Published: 4 February 2019 updates

Abstract: The Three Gorges Project (TGP) is the largest hydroelectric project in the world. It is crucial
to understand the relationship between runoff regime changes and TGP’s full operation after 2009 in
the Yangtze River Basin (YRB). This paper defines core, extended and buffer areas of YRB, analyzes
the effects of TGP on runoff anomaly (RA), runoff variation (RV) and change of coefficient of variation
(CCV) between two periods (2003-2008 and 2009-2016), takes percentage of runoff anomaly (PRA)
as the evaluation standard, assures alleviation effect on severe dry and wet years of the research
area, and finally summarizes related benefits of flood control from TGP. Our results indicate the
inter-annual fluctuation of runoff in the core and extended areas expanded, but reduced in the buffer
areas, and the frequencies of severe dry and wet years alleviated in the buffer, core and extended
areas. Generally, the extended and core areas become less wet, and the buffer areas become less dry.
The RV and CCV are both strengthened in the extended and core areas, but are weakened in the
buffer areas, and RV is well positively correlated (R? = 0.80) to CCV. Furthermore, the main benefits
of TGP on flood control are remarkable in the reduction of disaster affected population, the decrease
of agricultural disaster-damaged area, and the decline of direct economic loss. However, due to
torrentially seasonal and non-seasonal precipitation, the sharp rebounds of three standards for Hubei
and Anhui occurred in 2010 and 2016, and the percentage of agricultural damage area of five regions
in the core and extended areas did not decline synchronously and performed irregularly. Our results
suggest that the five key regions along the main branches of the Yangtze River should establish a
flood control system and promote the connectivity of infrastructures at different levels to meet the
significant functions of TGP. It is a great challenge for TGP operation to balance the benefits and
conflicts among flood control, power generation and water resources supply in the future.

Keywords: Three Gorges Project; dam; runoff changes; flood control; Yangtze River; benefits

1. Introduction

Water is one of the most significant resources for a country’s social, economic and environmental
development, and most nations are facing different degrees of floods and drought threats caused by
the imbalance of water distribution in the world [1]. In order to rebalance, redistribute and make
full use of potential water resources, many countries made great efforts to construct dams to control
floods, generate electricity, improve shipping capacity, and supply water, including Egypt, Japan,
U.S., Canada, Australia, China, and so on. By the year 2000, about 45,000 large dams and 800,000
small ones have been built worldwide. Globally, discussions and arguments on large dams have
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increasingly emerged because of the potential and comprehensive impacts. They basically include
enormous environmental changes of habitats inundation and fragmentation, extinction of local species
of plants and fishes, ugly landscapes of water level fluctuation zone, sedimentation accumulation
and capacity decrease of reseRVoir and regional climate changes, the apparent economic impacts of
loss of old industries and enterprises and shortages of new ones, depressed livelihood of involuntary
resettlement, high unemployment rates, infertile farmland located far away from economic centers,
and the continuous social uncertainties of loss of unique historical and cultural heritage, spiritual
sustenance and cultural integration of migration [2-7]. Among the changes, coastal erosion, caused
by sediments reduction at river outlet, is a serious environmental problem in many nations. For
example, the case study of Nestos River (Greece) indicated the sedimentation effect of construction
and operation of two reseRVoirs (Thisavros and Platanovrysi) to coastal erosion, the sharp sediments
decrease impacted sediments supply to basin outlet of river delta, the neighboring coast and the coastal
morphology, which even inversed the erosion/accretion balance in the deltaic as well as the adjacent
shorelines, from accretion predominated erosion to erosion predominates accretion, just within five
years after the reseRVoirs’ construction [8,9].

China’s geographical and climatic location within monsoon zones determines its large difference
in precipitation and potential evapotranspiration among the 31 provinces, municipalities and
autonomous regions. The main spatial pattern is that more water exists in its southern parts than in
its northern parts, and so ‘too much water to control in Southern China’ is one of the key issues for
water resources management. Flooding has resulted in major disasters in both the midstream and
downstream parts of YRB. For example, three big recorded floods occurred in YRB in 1934, 1954 and
1998, respectively [10]. The 1998 flood, called the 1998 Great Flood in China, caused significant losses
in human lives and properties. Flooding threats became unpredictable under climate change and
high intensities of human activities, which have resulted in large changes in hydrological processes,
precipitation, runoff and groundwater in YRB.

To solve the flooding issue, China started large-scale dam construction from the 1950s. For
instance, Sanmenxia Dam was built in the midstream of the Yellow River in 1954, and was aimed at
flood control, irrigation, electric power generation, and shipping improvement; Gezhou Dam built
in the downstream of the Yangtze River (YR) in 1971, aiming to provide hydropower generation and
shipping improvement; Xiaolangdi Dam built in the downstream of the Yellow River in 1991, intended
not only to provide flood and ice control, sedimentation reduction, and electric power generation, but
for water supply and irrigation; the Three Gorges Project (TGP) was launched in the midstream of YR
in 1994, aiming to provide flood control, shipping improvement, electric power generation, and so on.

Among the dams, TGP is well-known worldwide for its scale, cost, range, migration, ecological
and environmental impact, and even for its controversial impacts on sustainability. It achieved primary
impoundment in 2003 and the full operation in 2009. Afterwards many ecological and environmental
problems emerged. One particular example was more frequent severe droughts that have occurred
since its operation [11-16], which have impacted on Sichuan Province and Chongqing Municipality.
This resulted in serious hydrological, ecological, and socioeconomic consequences in spatial pattern
and temporal process [17-19], and also initiated controversial debates on TGP.

There were three research issues on the hydrological consequences of TGP. The first is the drought
frequency of the Three Gorges ReseRVoir (TGR) and the relationship between TGP and the drought
trends of YRB [20]. In the last two decades, YRB displayed significant vacillation between droughts
and floods of TGR, indicated by the increasing drought trend in the upper reaches of YRB and TGP,
with the drought evolution being inseparable from the background of the whole basin level. The
second area has been water regulation and storage capacity between the lakes and YR and the response
to TGP [21-24]. YR discharges into Dongting Lake in Hubei Province, Poyang Lake in Jiangxi Province,
but receives inflow from the lakes from January to March. After the full operation of TGP under
different dispatching modes, the weakened water from YR resulted in enhancing of the compensation
ability of the lakes into YR in the neighboring provinces. The third research area is the impact of
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TGP’s impoundment on the flood and low stage adjustment in the midstream of YRB [25-27]. After
the impoundment of TGP, the water storage capacities of provinces have experienced no change
because the flood stage did not significantly decrease, although the flow discharge compensation
of TGR improved the low flow stage, and the wharf change in the water stages was harmful to the
improvement of the channel depth and the water storage of TGP. Meanwhile, the flow of YR decreased
after flood season, increased in the dry season, and benefited from the peak shaving and flood control
of TGP. Flow also decreased from July to August, and the annual runoff allocation also changed, which
benefited flood control and water resources use in the midstream and downstream of YRB.

The rest of this paper is organized as follows: Section 2 reviews the basic conditions of TGP;
Section 3 introduces the definition of the research area, data sources and methods; Referring to the
hierarchy framework of Environmental Impact Assessment of Impacts on TGP [28], Section 4 presents
TGP’s effects on runoff changes between two periods of 2003-2008 and 2009-2016, including runoff
anomaly, percentage of runoff anomaly, runoff variation, change of coefficient of variation, and then
sums the related benefits of flood control of TGP from disaster affected populations, direct economic
loss, agricultural disaster-damaged areas and the percentage of the agricultural disaster-damaged area;
Section 5 proposes the discussions; Section 6 draws the main conclusions.

2. Basic Conditions of TGP

As the largest water generation project in the world, TGP located in the main stream of YR between
Chongqing Municipality and Yichang City of Hubei Province (Figure 1), with a general storage capacity
of 39.3 x 10 m3 and a controllable storage capacity of 22.1 x 10° m3 water, aimed at controlling
effectively floods of the upstream of YR, with a general generation electricity of 84.7 x 10° kWh per
year, aimed at alleviating the shortage of electricity in East, Central and South China, an amount equal
to that produced by burning 50 million tons of coal, with a water depth improvement from 2.9 m for
Chaotian Gate of Chongqing Municipality to 3.5-4.5 m for Yichang City, aimed at improving transport
capacity from 3000 tons to 10,000 tons, and the transport capacity of the channels of YR with a length
of 660 km, from Shanghai Port to Chongqing Port, was promoted from 1000 tons to 5000 tons.

The formal construction of TGP started on 14th December 1994, in Sandouping Town of Yichang
City, Hubei Province. Then, TGP was implemented in three stages, 1993-1997 was the first stage,
mainly for the construction preparation and damming up of YR, with the water level up to 90 m;
1998-2003 was the second one, mainly for primary impoundment, operation of first generator unit,
and perpetual navigation of ship lock, with the water level up to 135 m; 2004—2009 was the third one,
mainly for operation of all generator units and the accomplishment of whole project, with the water
level up to 156 m (2006) and 175 m (2009).

Qinghai Buffer areas

Tibet

0 120 240 481(3 Yunnan
— — 1

Figure 1. Locations of TGP, the Jing River (red), the Yangtze River (blue), and the definition of the
research area, the buffer (yellow), core (green) and extended areas (pink).
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3. Research Area, Data Sources and Methods

3.1. Research Area

According to the flow direction of main YRB branches (Qinghai to Shanghai), there are 5 regions in
the upstream, which are Qinghai, Tibet, Sichuan, Yunnan and Chonggqing, 3 regions in the midstream,
which are Hubei, Hunan and Jiangxi, and 3 regions in the downstream, which are Anhui, Jiangsu
and Shanghai. Meanwhile, according to China’s traditional geographical regionalization of YR, the
branches upward of Yichang City belong to the upstream; the branches between Yichang and Hukou
County in Jiangxi Province belong to the midstream; and the branches below Hukou belong to the
downstream. The major originally scheduled flood control of TGP mainly focused on the Jing River in
Hubei Province (Figure 1), which cultivated two Plains of Jiang-Han and Dongting Lake, an important
basis for commodity grain and aquatic products for China. In addition to the effect of extending back
tail-waters of the Three Gorges Dam wall with 181 m height to the upstream after the full impoundment
of 175 m, especially to Chongqing and Sichuan, the 7 key regions impacted by TGP regarding effects
of runoff changes of YRB are defined as follows (Figure 1): the core areas including Hubei, Hunan
and Jiangxi, the extended areas including Anhui and Jiangsu, and the buffer areas including Sichuan
and Chongqing.

3.2. Data Sources

The information on TGP was obtained from the website of TGP (www.3g.gov.cn). The annual
runoff data of the 7 regions and YRB were obtained from Changjiang and Southeast Rivers Water
Resources Bulletin (2003-2016), the website of Changjiang Water Resources Commission, Ministry of
Water Resources of China (www.cjw.gov.cn). The annual disaster data of the 5 regions were obtained
from Bulletin of Flood and Drought Disasters in China (2006-2016), the website of Ministry of Water
Resources of China (www.mwr.gov.cn).

3.3. Methods

This study compares and evaluates four runoff indices between two periods (2003-2008 and
2009-2016) for the 7 key regions in YRB, including runoff anomaly (RA), percentage of runoff anomaly
(PRA), runoff variation (RV), and change of coefficient of variation (CCV).

The classic model on runoff (R) is calculated by Equation (1):

R=P—E— AW @)

where R, P, E and AW is the annual runoff, precipitation, evaporation, and storage change of
groundwater of the typical year of regions, respectively, and here the value of surface water is regarded
as runoff [29].

The runoff anomaly (RA) is calculated by Equation (2). Then, to judge the dry or wet state of
typical year, the percentage of runoff anomaly (PRA) is defined and categorized according to the
standard of Equation (3) [30]:

RA =Ry —Ry )

PRA = (Ry — Ry) /Ry x 100 3)

where Ry and Ry, is the runoff of typical year and the mean annual runoff during the period, respectively.
The standards and the categories are as follows: the year with PRA < —20% belongs to a dry year; the
year with —20% < PRA < —10% belongs to a less dry year; the year with —10% < PRA < 10% belongs

to a normal year; the year with 10% < PRA < 20% belongs to a less wet year; the year with 20% < PRA
belongs to a wet year.
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The runoff variation (RV) is calculated by Equation (4):
RV = (Ry2 — Ry1)/Ry,1 x 100 @

where R;;1 and R;;7 is the mean annual runoff of two periods of 2003-2008 and 20092016, respectively.
The coefficient of variation (CV) and the change of CV (CCV) are calculated by Equations (5) and

(6), respectively:
CV=o/pn 5)

CCV = CVyp —CVpy (6)

here ¢ and p is the standard deviation and the mean annual runoff during the period, and CV;; and
CVy1p is CV of two periods of 2003-2008 and 2009-2016, respectively.

Three indices are used to present the benefits of TGP on flood control, the disaster-affected
population (DAP), the direct economic loss (DEL), the agricultural disaster-affected area (ADAA),
the agricultural disaster-damaged area (ADDA), and one index, the percentage of agricultural
disaster-damaged area (PADDA), is used to evaluate the flood control effect, which is calculated
by Equation (7):

PADDA = ADDA/ADAA x 100 (7)

where ADDA and ADAA represent the agricultural area with yield reduction including and over 30%
and 10% affected by flood and waterlogging, respectively.

4. Results

After the full operation of TGP with 175 m height impoundment in 2009, an enormous flowing
reseRVoir of the river-channel type crossing Chongqing and Hubei was formed with a general area
of 1084 km?. Considered the potential influence of water adjustment of TGR between wet and dry
season, the runoff changes, including RA, PRA, RV and CCV, are compared between two periods of
2003-2008 and 2009-2016 among the core, extended and buffer areas.

4.1. Impacts of TGP on RA and PRA

4.1.1. Inter-Annual Fluctuation of RA Expanded in the Core and Extended Areas but Reduced in the
Buffer Areas

When comparing 2003-2008 to 2009-2016, RA expanded in the core and extended areas but
converged in the buffer areas, and the amplification extent was higher in the extended areas than that
in the core areas. In the core areas (Figure 2a), RA for Hubei, Hunan and Jiangxi kept a remarkable
increase trend, with an amplification of the fluctuation range of 0.25, 1.4 and 1.2 times, respectively.
Similarly in extended areas (Figure 2b), RA also amplified, and the increased trend for Jiangsu
(2.2 times) was stronger than that for Anhui (1.6 times). In contrast, the buffer areas differed (Figure 2c),
Sichuan and Chongqing both converged on 1/3 of the fluctuation range of RA. The results indicate
that TGP’s effects were diversified among the core, extended and buffer areas [31]. Generally, the
inter-annual fluctuation of RA expanded in the extended and core areas but reduced in the buffer
areas, compared to pre-2009.
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Figure 2. Change trends of the runoff anomaly (RA) among the core (a), extended (b) and buffer

areas (c).
4.1.2. Alleviation on the Frequencies of Dry and Wet Years in the Buffer, Core and Extended Areas

YRB went into a drier phase with sharp fluctuations in 2009-2016 (Figure 3a and Table 1), with
62.5% dry and 37.5% wet years. Under the extreme drought, the alleviation effect of TGP at the whole
basin scale was remarkable among the core, extended and buffer areas [32]. First, the core areas (Hubei,
Hunan and Jiangxi) showed different patterns in PRA (Figure 3b and Table 1). Hubei became drier
from 2003-2008 to 2009-2016. In comparison, Hunan and Jiangxi became wetter in 2009-2016. Second,
the extended areas (Anhui and Jiangsu) shifted from dry to wet (Figure 3c and Table 1). For Anhui,
dry and less dry years both decreased and correspondingly normal and wet years increased by 58%.
Then for Jiangsu, the proportions of dry and less dry years decreased and those of normal, less wet
and wet years increased by 62%, respectively. Third, the buffer areas (Sichuan and Chongqing) had
a drying tendency, but with the majority of years remaining under the normal condition (Figure 3d
and Table 1). Chongqing had a drying tendency, with less dry years increasing by 50%. In summary,
Hubei, Sichuan and Chongging went into a less dry or dry period after the full operation of TGP in
2009. Meanwhile, Hunan, Jiangxi, Anhui and Jiangsu went into a less wet or wet period.

198



Water 2019, 11, 269

(a) YRB

(b) core areas

—&— Hubei ~—&— Hunan ~—o— Jiangxi

Year
(c) extended areas

—&— Anhui —o—Jiangsu

Year

(d) buffer areas
30 ~e—Sichuan ~ ~#—Chongqing

Figure 3. Change trends of the percentage of runoff anomaly (PRA) among YRB (a), the core (b),
extended (c) and buffer areas (d).
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Table 1. Frequencies of dry or wet years of YRB and the 7 regions based on PRA.

Dry Years Less Dry Years Normal Years Less Wet Years Wet Years
Proportion (%) Proportion (%) Proportion (%) Proportion (%) Proportion (%)
2003-2008 2009-2016 2003-2008 2009-2016 2003-2008 2009-2016 2003-2008 2009-2016 2003-2008 2009-2016

YRB 33.33 62.50 66.67 37.50
Sichuan 16.67 12.50 66.67 75.00 16.67 1250

Chongging 16.67 50.00 33.33 25.00 33.33 12.50 16.67 12.50

Hubei 16.67 25.00 25.00 66.67 25.00 16.67 25.00

Hunan 16.67 25.00 16.67 12.50 50.00 16.67 12.50 50.00

Jiangxi 33.33 25.00 33.33 12.50 33.33 12.50 50.00

Anhui 66.67 25.00 16.67 16.67 37.50 37.50

Jiangsu 83.33 25.00 16.67 12.50 12.50 12.50 37.50

The occurrence of these droughts in YRB was related to drought and flood transformation at
a large scale and the characteristics of precipitation evolution, and according to statistical data [33],
YRB experienced a wet period around the 1980s, and went into a less wet period after 1999. During
the last decade or so, the annual precipitation in YRB decreased by 10-12%. YRB’s drought occurred
just at this background of less wet climate. Our results are consistent with the findings that severe
droughts occurred inevitably in the southwestern parts and the midstream and downstream of YRB,
including the great drought in Sichuan and Chonggqing in 2006, the severe drought in the southwestern
China from 2009 to 2010, and the serious drought in midstream and downstream of YRB during
2010-2011. They indicate that there is no direct relationship between the drought disasters in YRB
and TGP operation, and the drought in the 7 key regions in the past two decades was mainly driven
by climate conditions. The TGP operation alleviated drought severity among the core, extended and
buffer areas after 2009.

4.2. RV and CCV Both Strengthened in the Extended and Core Areas but Weakened in the Buffer Areas

The RV and CCV both apparently increased from 2003-2008 to 2009-2016 in all three areas
(Figure 4a). The RV kept almost stable in Sichuan, decreased in Chonggqing, increased slightly in Hubei
and Hunan, but increased sharply in Jiangxi, Anhui and Jiangsu, with RV increasing by 31.4%, 43.1%
and 78.5%, respectively. The RV mean in the extended areas is almost 4 and 20 times higher than that
in the core and buffer areas, respectively. A similar situation occurred for CCV, which increased by
29.6% in Jiangsu, followed by Anhui, Hunan and Jiangxi, with their increased mean of 11~12%, then
followed by Hubei with an increase of 7.0%, but instead decreased by —4.8% and —2.7% in Sichuan
and Chonggqing, respectively. The results indicate that RV and CCV were strengthened in the extended
and core areas, but weakened in the buffer areas. Moreover, RV was strongly correlated (R? = 0.80) to
CCV (Figure 4b), indicating that there existed coherence between the effects of TGP on runoff increase
and the period fluctuation among the 7 regions.
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Figure 4. Change trends of RV and CCV (a) and their relationships (b) among the core, extended and
buffer areas.
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4.3. Related Benefits of Flood Control of TGP

As mentioned above, the originally scheduled function of flood control of TGP was mainly on the
midstream and downstream of YRB, especially the Jing River (Figure 1). The benefits of flood control of
TGP started in 2003, and were remarkably exhibited after TGP fully operated with 175m impoundment
in 2010. Based on the available disasters data from 2006 to 2016, we analyzed the benefits of flood
control in the core and extended areas, including DAP, DEL, ADDA, and PADDA.

4.3.1. Reduction of the Disaster-Affected Population (DAP)

DAP in the core and extended areas decreased sharply in the latter phase, especially after 2010. In
the core areas (Figure 5a,b), DAP of the 3 regions remained higher and fluctuated remarkably during
2006-2008. DAP for Hubei declined remarkably from 2010 to 2014, but rebounded to the maximum in
2016; DAP for Hunan declined gradually with fluctuations until 2016, and DAP for Jiangxi declined
sharply and became stable until 2016. The mean DAP for Hubei and Hunan decreased by 16% and
34% from 20062008 to 20092016, respectively. Similarly in the extended areas (Figure 5c), Anhui had
a peak in 2007, then kept decreasing from 2010 to 2014, but rebounded during 2015-2016, and Jiangsu
went into a steady period during in 2008-2014 after a sharp fall in 2007, then rebounded more than
10 times during 20152016, and the corresponding mean for Anhui and Jiangsu decreased by 25% and
67% during 2009-2016, respectively, compared to 2006-2008.
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Figure 5. Change trends of DAP for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas (c).
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DAP for Hubei had a sharp rebound in 2016, and those of Anhui also emerged during 2015-2016.
From the records of Bulletin of Flood and Drought Disasters in China (2015-2016), during the flood
season (May—September), the mean precipitation of Hubei in 2016 increased by 19%, compared to the
normal year. As a result, three big floods occurred in Yichang and other cities along YR. The mean
precipitation of Anhui also increased by 14% and 27% in 2015 and 2016, resulting in three and two
floods, respectively, which led to DAP rebounding in Hubei and Anhui.

4.3.2. Decline of the Direct Economic Loss (DEL)

In the core areas (Figure 6a,b), except for 2016, the mean DEL remained stable with little
fluctuations, after the 2010 rebounds. The 2011-2015 mean DEL for Hubei, Hunan and Jiangxi
accounted for 24%, 40% and 14% of the 2010 DEL, respectively. This is mainly caused by the abnormal
conditions of 2010 (Bulletin of Flood and Drought Disasters in China, 2010). There were four heavily
intensified precipitations that occurred in YRB in 2010, the first occurred in the southern parts of YRB
in 13-28 June, the second and third occurred in the upstream of YRB in 15-25 July and 10-26 August,
the fourth occurred in the Han River Basin in 10-26 August. These led to four big floods and the higher
DEL in in Hubei, Hunan and Jiangxi, and the second and third precipitations even caused the biggest
flooding events in the main branches of YRB since 1987, and the highest floods peak to TGR since TGP
was constructed. Moreover, except for Anhui in 2016, the extended areas kept stable (Figure 6¢), the
DEL mean for Anhui and Jiangsu during 20092015 accounted for 56% and 29% of the peak in 2015,
respectively. The DAP also illustrated the sharp rebound of DEL for Hubei and Anhui in 2016.
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Figure 6. Change trends of DEL for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas (c).
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4.3.3. Decrease of the Agricultural Disaster-Damaged Area (ADDA) and Irregularities of the
Percentage of Agricultural Disaster-Damaged Area (PADDA)

The ADDA of Hubei, Jiangxi and Hunan fluctuated remarkably in the core areas from 2006 to
2009 (Figure 7a,b). The ADDA for the three regions declined sharply and remained stable from 2011 to
2014 after the high rebound of 2010. The ADDA mean of Hubei decreased by 31% during 20092016,
compared to 2006-2008; Hunan remained flat; Jiangxi increased by 27%. Nevertheless, in the extended
areas (Figure 7c), the ADDA mean of Anhui and Jiangsu both decreased by 42% and 73% in 2009-2016,
compared to 2006-2008, respectively. The reason why the ADDA of Hubei (2016) and Anhui (2015 and
2016) rebounded sharply was the same as that for DAP and DEL.
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Figure 7. Change trends of ADDA for Hubei (a), Hunan and Jiangxi (b) in the core and extended
areas (c).

Except for 2015 and 2016, the ADDA in the core areas after 2009 and in the extended areas
after 2007 both showed a descending trend, respectively. However, the PADDA did not decline
synchronously. In the core areas (Figure 8a,b), the PADDA of Hubei, Hunan and Jiangxi fluctuated
sharply during 2006-2008, and during 2009-2016 Hubei went into a fluctuating period with a difference
of 33% between the peak (62%, 2016) and the trough (28%, 2011), and Hunan and Jiangxi both went
into a smooth period. The extended areas, however, performed differently (Figure 8c), the PADDA of
Anhui and Jiangsu both showed an ascending trend from 2009 to 2016 with an increase of 32% and
18%, respectively. In summary, the TGP operation did not work for the middle and lower basin of YRB,
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since the PADDA among the five regions showed various trends: one (Hubei) fluctuated sharply, two
(Hunan and Jiangxi) remained steady, two (Anhui and Jiangsu) increased.
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Figure 8. Change trend of PADDA for Hubei (a), Hunan and Jiangxi (b) in the core and extended areas
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5. Discussions

Based on the definition of research area and the analysis of four runoff indices, and by comparing
the period of 2003-2008 with 2009-2016, we find that: (1) TGP operation after 2009 intensified the
inter-annual fluctuation of RA in the extended and core areas, but reduced the fluctuation in the buffer
areas. Based on the effective flood control of the upstream and water adjustment between the dry
and wet seasons, TGP alleviated the frequencies of severe dry and wet years in the buffer, core and
extended areas; (2) TGP strengthened RV and CCV in the extended and core areas but weakened them
in the buffer areas, the RV was strongly correlated to CCV in the 7 regions, the runoff of the extended
and core areas increased, and the corresponding inter-period of CCV was also amplified, especially
in Jiangsu, Anhui and Jiangxi; (3) the benefits of TGP’s flood control were mainly reflected by the
reduction of DAP, the decline of DEL, and the decrease of ADDA in the core and extended areas.

Our results indicate some preliminary trends regarding TGP’s effects on runoff regime changes.
The following three aspects should be further considered and strengthened in the future. The first is
the operating years of TGP. From 2009 to 2016, TGP was fully operated for only 7 years, while the
comprehensive impacts and benefits need a long period of time to demonstrate. The second is the
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climate condition of YRB. YRB went into a drier period during 2009-2016, with sharp fluctuations.
The capacity of water storage and reallocation of TGP between the dry and wet periods results in
either drier or wetter influence in the core and extended areas. The third is the influence of seasonal
and non-seasonal precipitation. One main function of TGP is flood controlling for the upstream of
YRB. Nevertheless, besides the upstream, local precipitation is another flood source for the core and
extended areas. Therefore, DAP, DEL, and ADDA for Hubei and Anhui rebounded sharply in 2010,
2015 and 2016, respectively, and the three indices presented a higher consistence when they faced the
severe seasonal and non-seasonal precipitations than they would during a normal year, and big floods
caused by regional heavy precipitations become a major disaster for Provincial Governments to solve.
To cope with the extreme weather conditions under climate change of YRB, the standard for flood
control of water conseRVancy infrastructures and projects in Hubei and Anhui need to improve.

Beyond for the climate change and the disasters of YRB from heavy precipitations, runoff variation
and water reallocation, two significant problems highly influence the development of TGP. One is the
resettlement displacement and economic development of TGR. The regulations developed by the State
Council of China to guide the resettlement were the Regulations on Resettlement for the Construction of
TGP on YR in 1993 (henceforth the 1993 regulations), which required rural resettlements were to move
up the inundation line and draw back to the feasible farmlands in higher altitude mountainous areas,
named exploration-oriented migration (kaifa yimin in Chinese), which meant rural households lived near
their old houses and made a living on the reclaimed farmland, and resettled populations in urban areas
were to employed in State-owned Enterprises [34]. However, due to the Great 1998 Flood, the impact
of intensive land reclamation, deforestation and environmental degradation on TGR [35], the pressure
of a resettlements arrangement increase from 1993 to 1998 of 20% beyond the scheduled 1.13 million
registered in 1992, and the ceaseless problems in exploration resettlement, the State Council of China
announced the adjustment to the 1993 regulations at a working meeting on TGP resettlement in May
1999 (henceforth the 2001 regulations), and resettled 190,000 rural residents (about 15% of the total) to
11 provinces outside TGR, including Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong,
Hunan, Guangdong, Hubei and Sichuan. Meanwhile, with China’s environmental protection policy
being reformed and becoming increasingly strict since the beginning of the 1990s, lots of State-owned
Enterprises were closed or restructured [36]. To make matters worse, substandard infrastructure, steep
terrain and an unskilled workforce didn’t attract investors, so few new enterprises set up in TGR,
which led to the economic growth failing to keep pace with non-TGR regions in Chonggqing and Hubei.
Therefore the State Council of China initiated the Partner-ship Support Program (PSP) in 1992 and
2014, respectively. Another is sedimentation of TGR. In October 2002, in order to solve the problem
of sedimentation from the upstream of YR, the State Council of China approved the Three Gorges
Corporation building four hydropower stations along the Jinsha River, Wudongde, Baihetan, Xiluodu
and Xiangjia Dam, to share the accumulation and decrease the velocity of sedimentation in TGR.

6. Conclusions

This study conducted a comprehensive analysis on TPG operation impacts by comparing the
period of 20092016 with 2003-2008. Our results indicated the primary effects of TGP operation
after 2009 on runoff changes of the 7 regions in the following three aspects. Firstly, the inter-annual
fluctuation of the runoff anomaly in the extended (Anhui and Jiangsu) and core areas (Hubei, Hunan
and Jiangxi) expanded and the buffer areas (Sichuan and Chongqing) converged, while the decrease
trend was remarkable from the extended, core to buffer areas. With a macro-background of climate
change, YRB went into a drier period with sharp fluctuations, while TGP alleviated the frequencies
of dry or wet years in the research area. The core (except for Hubei) and extended areas both had
a tendency of becoming less wet, however, Hubei and the buffer areas went into a less dry period.
Secondly, the runoff variation and the change of CV both strengthened in the extended and core
areas but weakened in the buffer areas, and the RV presented a highly positive correlation to CCV.
The inter-period increase of runoff was sharp in Jiangsu, Anhui and Hunan, but the corresponding
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CCV also amplified sharply, which benefited drought alleviation but intensified the flood control
risk of the inter-period. Thirdly, the general benefits of flood control of TGP mainly exhibited in the
reduction of the DAP, the decline of DEL and the decrease of ADDA in the core and extended areas.
Nevertheless, the PADDA of the 5 regions performed in irregularities after 2009, as Hubei went into a
sharp fluctuating period, Hunan and Jiangxi both went into a smooth period, Anhui and Jiangsu both
showed an ascending trend, respectively, instead of keeping descending trends during 2006-2008.

Moreover, due to big floods caused by heavy precipitations, the sharp rebounds occurred in the
DAP, DEL and ADDA for Hubei and Anhui in 2010 and 2016, respectively. So flood control and disaster
mitigation capacity within the core and extended areas not only depend on TGP but also rely on the
intra system. TGP aims to control the big floods from the upstream of YR, and the intra-system focuses
on controlling the seasonal and non-seasonal heavy precipitations. Regional flood control and disaster
alleviation is comprehensive and systemic, e.g., agricultural flood control in YRB, one guarantee comes
from the regulation and storage of water conseRVancy projects of main branches, tributaries and
rivers, while another comes from the storage and reallocation capacity of lakes, reseRVoirs, and ponds
connecting with the farmlands.

After experiencing the stages of argument, construction and operation, the Chinese Central
Government became cautious towards large dam construction for hydropower exploration [37,38], and
the management countermeasures on TGP and YR also became more scientific, including resettlement
support [39], sediment sharing in the upstream, securities management, economic supports to TGR,
and TGP going into a stage of rehabilitation and improvement. In the future, in order to match and
promote the scheduled functions of TGP on flood control, the key regions along the main branches of
YR need to build a system and strengthen the connectivity between projects and infrastructure from
the county, city, and provincial levels, to the regional level, and even to the national level. Under the
drought intensification of YRB in recent years, it is a great challenge for TGP operation to balance the
benefits and conflicts among flood control, power generation and water resources distribution in the
key regions of the research area.
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Abstract: The changes in climatic variables in Ethiopia are not entirely understood. This paper
investigated the recent trends of precipitation and temperature on two eco-regions of Ethiopia.
This study used the observed historical meteorological data from 1980 to 2016 to analyze the trends.
Trend detection was done by using the non-parametric Mann-Kendall (MK), Sen’s slope estimator
test, and Innovative Trend Analysis Method (ITAM). The results showed that a significant increasing
trend was observed in the Gondar, Bahir Dar, Gewane, Dembi-Dolo, and Negele stations. However,
a slightly decreasing trend was observed in the Sekoru, Degahabur, and Maichew stations regarding
precipitation trends. As far as the trend of temperature was concerned, an increasing trend was
detected in the Gondar, Bahir Dar, Gewane, Degahabur, Negele, Dembi-Dolo, and Maichew stations.
However, the temperature trend in Sekoru station showed a sharp decreasing trend. The effects of
precipitation and temperature changes on water resources are significant after 1998. The consistency
in the precipitation and temperature trends over the two eco-regions confirms the robustness of
the changes. The findings of this study will serve as a reference for climate researchers, policy and
decision makers.

Keywords: trend analysis; precipitation; temperature; eco-region; Ethiopia

1. Introduction

Extreme climatic and weather events in recent decades have been a critical global issue due to the
severity of the impacts on natural environments, economy, and on human life [1-3]. These extreme
events are unpredictable and destructive, especially, on agriculture production. The likelihood of fewer
cool days and nights, increasing heavy precipitation events, and droughts has increased since the
1970s [4]. This indicates that the global climate is undergoing a significant change which is manifested
by rising temperature, droughts, rainstorms, and flooding. Scientific studies showed that the mean
global temperature could rise by 1.4 to 5.8 °C in 2100 with a mean sea level rise of 10 cm over the same
period as reported by Intergovernmental Panel for Climate Change in 2008 [5]. However, considerable
regional and seasonal changes in the climate are expected, affecting climatic variables differently
depending on the regions with great impact on environments and human systems [6]. The recent
increasing frequency of heavy rainfall and severe droughts in many parts of the world is an indication
of these situations [7]. Any change of mean global and regional temperature will impact the spatial and
temporal distribution of rainfall [8]. This, in turn, affects the hydrological cycles and the availability
of water resources [9]. The probability of the frequency of extreme events in the near future is very
likely to increase and thus understanding the recent trends is crucial in order to predict the future
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climate changes. Hence, climate change is perceived through extreme events which tend to alter the
magnitude of the predicted climate impacts and this may also be supported by severe flood events.
The impacts of climate change on different regions are very different. In this regard, different studies
have been conducted in many regions of the world such as in China [10-12], Iran [13], Senegal [14],
and India [15,16].

Ethiopia is the most vulnerable country with regard to climate change due to its climatic,
hydrology, and low economic conditions [17]. Annual rainfall is highly variable, ranging from less than
200 mm in the southeast, east, and northeast borders to 1200 mm in the central and western highlands
of the country [18]. Notably, the country mainly depends on rainfed agriculture and available water
resources in the highlands, while large parts of its southern and eastern regions are extremely arid and
prone to drought and desertification [5]. Hence, the rainfall is determined by seasonal and interannual
variability in the country. Changes in precipitation have a direct impact on floods, droughts, and water
resources [19].

Climate change threatens to increase temperature and evapotranspiration; and hence, increasing
the risks of heat waves associated with drought [20]. Thus, the change in climate is expected to increase
vulnerability in all eco-regions through the increased temperature and more erratic rainfall, which will
impact food security and economic growth. Some regional analysis was undertaken to understand the
extreme climate and trends. However, the trend indices showed significant increases and decreases
in seasonal and annual precipitation, for example, Asfaw et al. [21] reported a decreased rainfall
in annual, Belg, and Kiremt in the Woleka sub-basin of Ethiopia. On the other hand, Bewket and
Conway [22] reported variations in daily rainfall with no consistent trends. Mekasha et al. [23] also
reported increasing warm extremes in temperature and increasing precipitation in different stations
across Ethiopia.

Thus, extreme climate indices should be tested for future studies on the perception of climate
change with a wide coverage within the country. Therefore, it is essential to analyze the recent trends
of climatic variables as these show the climate-related adaptation and mitigation strategies employed
by different entities to improve the agrarian economy of the country at large. Furthermore, trend
analysis of climatic variables is very important to understand the climate system of the country and has
become a vital research area for other researchers. The objective of this study was to assess the recent
trends of precipitation and temperature between 1980 and 2016. Therefore, the output of this paper
will provide insights for concerned body with ecological and sustainable economic development.

2. Materials and Methods

2.1. Study Area Description

Ethiopia lies between 3°-15° N and 33°—48° E. The total area of the country is about 1.13 million
km? [18], see Figure 1. The country is characterized by a diversified climate due to its equatorial
positioning and topography. Its climate is controlled by atmospheric circulations, complex
physiography, and the marked contrast in elevation [18]. The country is mainly divided into two
eco-regions, namely lowlands and highlands, where the lowest point is at Danakil Depression and
the highest point (4543 m) is at Ras Dejen, above sea level [24]. This classification is mainly based on
altitudinal classes, precipitation, and temperature variations. We mainly focused on precipitation and
temperature variations for this paper. The lowest mean minimum temperature and high precipitation
mostly occur in the highland regions of the country. The highest mean temperature and low
precipitation occur in lowland parts of the country. The rainfall also showed seasonal and interannual
variability [25].
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Figure 1. Location map of the study area.

2.2. Data Sources

The raw climatic data were collected from the National Meteorological Services Agency of
Ethiopia [26]. As the data series from 1980 to 2016 are complete, the observed precipitation and
temperature data were selected as the basic analysis data in this study. All the necessary data
for this manuscript were provided after quality control. The stations were also selected based on
the completeness of the data during the study periods. We have selected eight stations from two
eco-regions (four from highland and four from lowland eco-regions to represent the entire study
regions) for this study, see Table 1.

Table 1. Meteorological information’s of stations.

Station’s Name Elevation (m) Latitude (N) Longitude (E) Eco-Regions

Dembi-Dolo 1850 34.8° 8.5167° Highland

Gondar 1973 37.4319° 12.5212° Highland

Bahir Dar 1827 37.322° 11.6027° Highland

Sekoru 1928 37.4167° 7.9167° Highland

Gewane 568 40.633° 10.15° Lowland

Maichew 2432 39.5337 12.7841° Lowland

Degahabur 1070 43.55° 8.2167° Lowland

Negele 1544 39.5667° 5.4167° Lowland

2.3. Methods

This paper used various methods to detect trends in the precipitation and temperature.
The methods are either Parametric or non-parametric which are essential to detect the trends of
hydrometeorological observations [27]. Following, are the lists of trend detection non-parametric tests
used in this paper, see Figure 2.
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Figure 2. Flow diagram to detect trends of precipitation and temperature.
2.3.1. Mann-Kendall (MK) Test

The Mann-Kendall (MK) test is suited for hydrometeorological observations where the data
points are not necessarily uniform [13,28-31]. It is used to detect the presence of either increasing or
decreasing monotonic trends in the study area and to see whether the trend is statistically significant
or not. Since the test statistics of the MK test are based on plus or minus signs, the determined trends
are less affected by the outliers. It is given by:

n—-1 n
S=3 Y sgn(X;—X) (1)
i=1 j=i+1
where, X; (i=1,2,...,n—1) and Xj(G=i+1,2,...,n). The observations of each X; and X; are
calculated as:
+1if (X] — X,‘) >0
sgn(Xj— X;) = 0if (X;—X;) =0 )
—1if (X] — Xl‘) <0
where X; and X; are the data points in i and j years. The variance is calculated with the following
equations when the data points (7 > 10) and the mean E(S) = 0 [32]:

nx (n—1) x (2n+5) =TI tg x (tg — 1) x (2t +5)
18

Var(S) = ®)

where p is tied groups in data points, and £, is the time series in the gth tied groups. The Z,) is given as:

5Lifs>0
Zmpy =9y 0ifS=0 )
2Lifs <0

When Z,) > 10, it shows an upward trend and when Z,) < 10, it shows a downward trend.
In a time series data sequence, the test statistics are defined separately:

_ de—E(dp)

UF
var(dy)

(K=1,2,3,...,n) ©)

If UF; > UFw/2, it shows that the trend is significant.
UB; = —UF; (6)

K=n+1—k @)

Finally, UBy, and UF; are drawn as UB and UF curves. The intersection is the beginning of mutation
between the two curves [33].
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2.3.2. Sen’s Slope Estimator Test
This test is used to estimate the magnitude of trends in time series data [9]. The slope (Q;) between
two time series data is given as:
Xy — Xi
p—t

Qi— = , fori=1,2,...,N 8)

where X, and X are time series at period p and t (p > t), respectively. If there is single datum in
each time, then N = "("2_1) ; nis number of time series. Whereas, if there are many data points, N is
computed as N < "("Tfn ; n total number of observations. The N values of the slope estimator are

arranged from smallest to biggest.

A positive value of Q; indicates an upward trend and a negative value of Q; represents a
downward trend in the time series data. The median of these N values of Q; is represented as
Sen’s slope estimator. The median of slope (f) is given:

B Qx[(N+1)/2] when N is odd ©)
] @Qx[(N/2)+Qx (N+2)/(2)/(2)] when Niseven

When g is positive, it indicates the trend is increasing. However, a negative value of j represents
a decreasing trend.

2.3.3. Trend Analysis by Innovative Method (ITAM)

Trend Analysis through Innovative Method (ITAM) is also used for trend detection and its
reliability was checked with the MK test [9,34]. The observational time series data were classified
into two classes and then the data points were arranged independently in ascending order. The mean
difference between X; and X; would give the magnitude of the trend of the data series. The first
observed time series data in this paper were not considered since the total time series data are odd.
The test is multiplied by 10 to make the scale similar to MK and Sen'’s slope estimator tests [9]:

1410 (X — X))

®=_3

i—1 H

(10)

where, @ = slope estimator, 7 = number of time series in the subseries, X; = observations in the first
half subseries, X; = observations in the second half subseries and = mean of data series X; subseries.

When @ is positive, it indicates the trend is increasing. However, a negative value of ® represents
a decreasing trend.

3. Results

3.1. Analysis of Mean Annual Precipitation

From 1980 to 2016, the mean annual precipitation of the study area was found to be 834.97 mm,
with a CV (coefficient of variation) of 15% and a standard deviation of 122.27 mm. Quantities of 509.93
and 1015.90 mm were the minimum and maximum precipitation per annum, respectively. An increase
in the precipitation levels was observed in 2000, 2005, 2007, 2010, and 2013 (R2 = 0.01), with a sharp
decreasing trend in 1992. The highest annual precipitation was recorded at the highland eco-region
stations (Gondar, Bahir Dar, Sekoru, and Dembi-Dolo), which accounts for approximately 20.3% of
lowland eco-regions (Gewane, Degahabur, Negele, and Maichew). The annual precipitation was
mainly contributed by the Kiremt months of June-August (47.58%), especially in July and August.
These two months contributed 56% of the total annual rainfall.

As far as the seasonal rainfall was concerned, the values varied from 133.82 to 2018.24 mm (Kiremt),
from 1176.13 to 1219.32 mm (Meher), from 59.73 to 80.80 mm (Bega), and 551.63 to 1144.75 mm (Belg).
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3.2. Trend Analysis of Precipitation

The MK curve annual precipitation (UF and UB = Changing Parameters) shows the trends of
precipitation in highland and lowland eco-environments of the study area. The result showed that the
trend in Gondar (Z = 1.69), Dembi-Dolo (Z = 0.28) and Bahir Dar (Z = 0.72) was increasing and the
trend in Sekoru (Z = 0.45) was decreasing. On the other hand, in lowland eco-regions, a significant
increasing trend was observed in the Gewane (Z = 0.80) and Negele (Z = 0.72) stations, respectively.
However, the trend in Degahabur (Z = 0.30) and Maichew (Z = 0.51) was a decreasing one, see Figure 3.
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Figure 3. Mean annual precipitation trends of (a) Gondar, (b) Bahir Dar, (c) Sekoru, (d) Dembi-Dolo,
(e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

The trend results of precipitation by three trend detection tests are presented in Table 2 with a
level of significance « = 5%, & = 10%.
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Table 2. Statistical trend results of precipitation.

No. Stations Z (o] B

1 Gondar 1.69 ** 0.54 1.84 **
2 Bahir Dar —0.07 * —23.51 1.80 *
3 Sekoru 1.37 0.21 0.01
4 Dembi-Dolo  —0.28 —0.07 —11.55
5 Gewane 5.59 ** 0.69 0.10 **
6 Degahabur 0.30 —0.56 413
7 Negele 0.72** —0.03 23.40 **
8 Maichew 0.51* —0.05 18.49*

Note: * « = 0.1; ** o = 0.05.

3.3. Analysis of Mean Annual Temperature

The mean annual temperature of the study area was found to be 29.16 °C during the study
period. The minimum and maximum recorded temperature were 27.92 and 30.35 °C, respectively.
An increasing temperature was recorded in 2010 and 2015 with (R? = 0.67), and a decreasing trend
in the temperature was recorded in 1989. The highest temperature was recorded in the lowland
eco-regions (Gewane, Degahabur, Negele, and Maichew). Whereas, a slightly lower temperature was
observed in highland eco-regions (Gondar, Bahir Dar, Sekoru, and Dembi-Dolo).

3.4. Trend Analysis of Temperature

The statistical test result of this study showed that the trends of temperature in the Gondar
(Z = 5.68), Bahir Dar (Z = 7.59), Dembi-Dolo (Z = 3.88), Maichew (Z = 6.45), Gewane (Z = 5.59),
Degahabur (Z = 4.78), and Negele (Z = 8.01) stations are significantly increasing. However, a statistically
significant decreasing trend was observed in Sekoru (Z = 1.37) station, as shown in Figure 4. The trend
results of the temperature by three trend detection tests are presented in Table 3.

Table 3. Statistical trend results of temperature.

No. Stations Z (o] B
1 Gondar 5.68 ** 0.35 0.04 **
2 Bahir Dar 7.59 ** 0.62 0.08 **
3 Sekoru 1.37 ** 0.21 0.01 **
4 Dembi-Dolo  3.88 * 0.22 0.02*
5 Gewane 5.59 ** 0.69 0.10 **
6 Degahabur 478* 0.18 0.03 *
7 Negele 8.01* 0.48 0.07 *
8 Maichew 6.388 ** 0.42 0.06 **

Note: * « = 0.1; ** a = 0.05.
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Figure 4. Average annual temperature trends of (a) Gondar, (b) Bahir Dar, (c) Sekoru, (d) Dembi-Dolo,
(e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

3.5. Temporal Patterns of Precipitation and Temperature in Individual Stations

The temporal pattern (1980-2016) of precipitation and temperature is illustrated in Figure 5.
It is observed that precipitation shows a sharply increasing trend in the Bahir-Dar station, though
other stations showed a non-uniform pattern. However, all stations showed an increasing trend in
the temperature.
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Figure 5. Temporal patterns of precipitation and temperature: (a) Gondar, (b) Bahir Dar, (c) Sekoru,
(d) Dembi-Dolo, (e) Gewane, (f) Degahabur, (g) Negele and (h) Maichew.

4. Discussion

The trends in the precipitation and temperature were analyzed in two eco-regions of Ethiopia.
The findings of the study indicated that there is a general tendency towards increasing temperature
and a non-uniform pattern of precipitation trends across the stations. Increasing precipitation has
been reported in the Gondar, Bahir Dar, Dembi-Dolo, Gewane, and Negele stations. However, slightly
decreasing trends were detected in the Sekoru, Maichew, and Degahabur stations. As far as trends of
temperature are concerned, almost all stations exhibit a general tendency of increasing temperature.
The observed trends have an implication, particularly, on agriculture production of the two eco-regions
which are unable to mitigate the impacts of climate change. The observed warming trend may lead
to a high energy demand for cooling, high evapotranspiration rate, and weaken the economy at
large [35]. Increasing temperature also increases transpiration which increases the chance of rainfall
and may interfere with groundwater recharge triggered by reduction in Kiremt season. In the same
way, an increasing occurrence of extreme rainfall events impacts the production systems.

The change in trends of precipitation and temperature observed in each station could imply that
the variations are more pronounced for certain stations and less for others. It was confirmed that
precipitation is mainly caused by a cold summer, and thus correlates to a large extent with temperature
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in the study area. Therefore, the cause of these variations needs to be studied further to link them with
climate variability and change.

Our findings are consistent with previous studies concerning the variations of precipitation and
temperature trends [3,7,23,36-41]. However, the causes of such changes of climatic trends across the
stations during the study period (1980-2016) will require another detailed investigation.

5. Conclusions

This study analyzed recent changes in precipitation and temperature trends in Ethiopia for the
study period from 1980 to 2016. The temporal variability of precipitation and temperature were
analyzed. A Mann-Kendall test, Sen’s slope estimator test, and Innovative Trend Analysis Methods
were used to analyze the trends. Our results showed that five out of eight stations showed increasing
trends of precipitation. On the other hand, the Sekoru, Degahabur, and Maichew stations showed
decreasing trends of precipitation.

The study eco-regions are characterized by maximum precipitation in Kiremt (June to August)
season. The trend is positive in Kiremt season and negative in Bega season which may lead to shifting
of the annual cycles of the hydrologic regime. Furthermore, this paper would suggest other studies
are conducted to confirm the changing climatic trends over two eco-regions by increasing the sample
meteorological stations and, additionally, to investigate the rainfall intensity and frequency of wet
and hot days. This finding thus provides insights for policy and decision makers to take proactive
measures for climate change mitigation.
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Abstract: Frequent flooding events in recent years have been linked with the changing climate.
Comprehending flooding events and their risks is the first step in flood defense and can help to
mitigate flood risk. Floodplain mapping is the first step towards flood risk analysis and management.
Additionally, understanding the changing pattern of flooding events would help us to develop flood
mitigation strategies for the future. This study analyzes the change in streamflow under different
future carbon emission scenarios and evaluates the spatial extent of floodplain for future streamflow.
The study will help facility managers, design engineers, and stakeholders to mitigate future flood risks.
Variable Infiltration Capacity (VIC) forcing-generated Coupled Model Intercomparison Project phase
5 (CMIP5) streamflow data were utilized for the future streamflow analysis. The study was done on
the Carson River near Carson City, an agricultural area in the desert of Nevada. Kolmogorov-Smirnov
and Pearson Chi-square tests were utilized to obtain the best statistical distribution that represents the
routed streamflow of the Carson River near Carson City. Altogether, 97 projections from 31 models
with four emission scenarios were used to predict the future flood flow over 100 years using a best
fit distribution. A delta change factor was used to predict future flows, and the flow routing was
done with the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) model to obtain
a flood inundation map. A majority of the climate projections indicated an increase in the flood
level 100 years into the future. The developed floodplain map for the future streamflow indicated a
larger inundation area compared with the current Federal Emergency Management Agency’s flood
inundation map, highlighting the importance of climate data in floodplain management studies.

Keywords: flood; streamflow; CMIP5; climate change; HEC-RAS

1. Introduction

A rise in the mean surface temperature around the globe has been observed in recent climatic
records with some warming hole exceptions. The global mean surface temperature in the past three
decades has been higher than that of previous decades [1]. This global warming has induced a rise
in the evaporation of surface water and evapotranspiration over the land surface, which in turn has
increased the average global amount of precipitation. Additionally, the wind and ocean current pattern
affects local precipitation trends, which eventually causes fluctuations in the streamflow. Different
regions around the globe have already shown signs of adverse effects on water availability due to
climate change. The peak streamflow is expected to increase in some parts of the globe [2-7]. At the
same time, low flow is also expected to decrease with a greater number of drought days across the
globe [8-10]. The occurrence of both high and low flows as a result of climate change is generally
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placed on the same footing. However, there might be differences in the statistical significance at which
low and high flows show variability resulting from climate change [11]. Overall, extreme weather
phenomena occur more frequently these days, and this is anticipated to continue in the future.

Flooding is one of the major natural hazards in the U.S., along with tropical cyclones and
drought/heatwaves [12]. A reduction in carbon emissions could result in a huge monetary benefit
in the long term, as the difference in future flow by the end of the 21st century from a higher
emissions pathway to a lower emissions pathway will be billions of dollars per year [13]. Despite these
benefits, climate change and its impact on the community have intensified in recent years [14,15].
Flood prevention practice along with a proper understanding of a flooding event can mitigate the risks
of this hazard, and floodplain mapping is one of the widely used techniques to quantify the severity of
flooding [16].

The Coupled Model Intercomparison Project (CMIP), which is a framework for analyzing and
quantifying the results of the Atmosphere—Ocean Coupled General Circulation Model (AOGCM),
was first started in 1995. World Climate Research Programme (WCRP) projections through CMIP5
represent future climate projections from new-generation global climate models and advancements
in recent climate science [17]. These CMIP5 projections are based on updated global greenhouse gas
emission scenarios represented as representative concentration pathways (RCPs). The CMIP5 model,
which is large in scale and comprises major climate models from different groups, incorporates a
simulation of the 20th century’s climate for projecting the climatic scenario of the 21st century [18].
Recently, earth system models have combined conventional Earth system models (ESM) and the
AOGCM under an experimental design, where ESM and AOGCM observations were compared.
Recent decades were initialized based on the observations and its use for future climate prediction
provides the CMIP5 models with enhanced capability [18].

The CMIP5 hydrology projection was released in 2015, and was based on a total of 234
CMIP5 climate projections. These projections were downscaled to the contiguous U.S. utilizing
the Bias-Corrected Statistically Downscaled (BCSD) technique [19]. The results of the BCSD projection
from phase 3 and phase 5 are known as BCSD3 and BCSD5, respectively. The model results from the
BCSD5 hydrology projections were based on a common gridded daily historical meteorology forced
simulation [20]. The Constructed Analog (CA) method was applied to spatially downscale a General
Circulation Model (GCM) day by matching the same grid-coarsened set of observed days [21]. Projected
precipitation changes at spatial and temporal scales show the climate’s impact on peak streamflow.
The projections from the GCMs need to be translated into similar locally relevant precipitation data
before any further use at local scales. This includes, but is not limited to, the selection of an appropriate
GCM for a given study area [22], removing biases, and downscaling the GCM to a local resolution [23].
Gangopadhyay et al. [24] translated a downscaled projection into hydrologic projections over a portion
of the western U.S., making the projections consistent and making more easy an analysis of climate
change’s hydrologic impact. Due to the practical limitation on the scope of the hydrologic modeling,
only 97 BCSD5 climate projections from 31 CMIP5 climate models with four emission scenarios
were available.

Over a long period of time, runoff is equivalent to the tradeoff between precipitation and
evapotranspiration. Hence, it is equal to the horizontal water flux that converges at a particular
location [25]. For the simulation of hydrology in the future, the Variable Infiltration Capacity (VIC) [26]
hydrologic model was utilized. The VIC model is a semi-distributed model in which key aspects
of large-scale land surface models are coupled with GCMs [27]. A VIC forcing modeling code and
generation process were evaluated before obtaining the VIC forcing results through the modeling code.
During the production of the VIC results, we ensured that the forcing generation and VIC simulation
process were error-free. For more details on the VIC model, readers are referred to Liang et al. [28]
and Nijssen et al. [29]. The correct size and number of output files were produced. After obtaining the
output files, BCSD climate monthly data were compared with monthly derived data by aggregating
the daily forcing data to check whether any error occurred during the VIC forcing generation process.
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There was exact matching in most of the cases [30]. BCSD5 features a larger range compared to BCSD3,
as CMIP5 uses a variety of scenarios that mimic the larger range of future greenhouse emissions as
compared to CMIP3 [31]. The main difference between BCSD3 and BCSD5 climate projections is in
the driving emission scenarios and climate model change, making the projections of temperature
and precipitation somewhat different. However, other differences were from model updates on VIC
to generate projections with BCSD5 that provide a complete representation of the range of possible
future climate and hydrology scenarios. CMIP5 meteorological parameters along with soil parameters,
land cover, and vegetation root depth are the main input parameters for the VIC model. Thus,
CMIP5 model output from AOGCM was used in a prebuild VIC model to obtain the streamflow data.
VIC-generated streamflow is utilized in the current study to predict future streamflow at different
recurrence intervals.

The occurrence of extreme events can be estimated from historical flow records by fitting different
probability distribution functions [32-36]. Using only the historic flow may not truly reflect the
probable future scenario due to climate change. Since, in the stationary approach, the conventional
way to predict extreme events in the future is to use historical data only, it is not the best way to
deal with the nonstationary climate. To overcome the shortcomings in the design based on the
nonstationarity of the climate, climate models and projections are useful. Various climate models
based on the Intergovernmental Panel on Climate Change (IPCC)’s fifth assessment report and Special
Report on Emission Scenarios (SRES) representing future climate scenarios are available for research
and use. Besides the available data, the selection of the distribution method significantly impacts
the design value. In most cases, governmental agencies select Generalized Extreme Value (GEV)
distribution along with Gumbel and log-Pearson type III distribution. The GEV is mostly used to fit
the streamflow distribution and has been shown to be efficient [37]. Further, the streamflow of dry,
arid, and semi-arid regions follows the GEV distribution [33,34,38,39]. However, the GEV does not
always best fit the annual peak flood. Similarly, studies have utilized other distributions to define
a streamflow’s behavior [35,36]. Thus, it is worth examining the given sets of yearly flood data and
choosing those distributions that produce reliable estimates. Twenty-seven prospective statistical
distributions for a semi-arid region are tested in the current study to evaluate which distribution best
fits the streamflow. An empirical goodness of fit is one of the criteria for the selection of appropriate
distributions. At the same time, the theoretical assumptions associated with all statistical distributions
should be taken into account [40]. The selection of the distribution that best fits the peak annual
streamflow of Carson River is one of the objectives of this study.

Climate change, which alters the magnitude and frequency of precipitation, ultimately changes
the design flood. The comprehension of the changing pattern of the design flood is necessary for
flood risk management in the current scenario of a changing climate. This paper uses the VIC-forced
CMIP5 streamflow to find the underlying best-fit probability distribution of an area among 27 different
statistical distributions. The best-fit distribution was then employed to predict the future streamflow.
Finally, a comparison among the existing design parameters was made and the change in hydraulic
parameters, such as velocity, top width, and flow area of the river, was estimated. This study will
add to the current literature by answering the following research questions regarding variability in
streamflow. (1) Is it valid to assume stationarity in streamflow data and to design future structures
based on this assumption? (2) What type of statistical distribution does the streamflow follow? (3) By
what factor should the occurrence of future flooding events be anticipated to be lesser/greater than
that of current flooding events? This paper further presents floodplain mapping for the future design
flood that was identified assuming nonstationarity in the climate. The study also evaluates whether,
under the changing and nonstationary nature of the climate, the extent of future flooding will be
greater than that of the past at the study area. The floodplain map will help us to understand the extent
of inundation for the evaluated future flooding events corresponding to different return periods.
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1.1. Study Area

The southwestern United States not only experiences extreme heat but is also vulnerable to
extreme flooding due to climate change [41]. Carson City, NV has had, since 1852, a historical record of
flood, and is currently experiencing some flooding due to extreme storm events. Carson Valley, which
lies 4700-5000 feet above the mean sea level, is the rain shadow of the Sierra Nevada. The highest point
of the catchment lies on the Sierra Nevada, and is 11,462 feet above the mean sea level. The climate of
the area ranges from semi-arid over the valley plain to humid or super humid over the peaks of the
catchment. The catchment receives precipitation mostly as rain at the lower altitude and as snow at the
higher altitude. Runoff reaches its yearly peak mainly in May. In this study, the downstream end of
Carson River at Carson City is examined for future floods. The selected reach was flooded in 2007, and
is susceptible to similar events in the future. The spatial location of the Carson River reach at Carson
City selected for the current study is shown in Figure 1. Figure 1 also shows the digital elevation map
(DEM) that represents the altitude along the river reach that was considered for hydraulic modeling.
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Figure 1. Carson River flowing through Carson City in Nevada.
1.2. Data

The latest daily average runoff from 31 AOGCMs participating in the CMIP5 was used to analyze
the change in the extreme runoff for Carson River. These CMIP5-AOGCMs have produced the
Bias-Corrected Spatially Downscaled (BCSD) streamflow for different streams in the United States
from 1950 to 2099. The data produced by these AOGCMs were routed over a historic period of 1950
to 1999. Thus, in this study, the same period of 1950-1999 is considered to be the historic period.
The farthest 50-year period i.e., 2050-2099, is considered to be the future period. The VIC-enforced
streamflow for 195 different locations is available, among which 152 locations are co-located with the
United States Geological Survey (USGS)’s Hydroclimatic Data Network (HCDN), and 43 locations
are co-located with West Wide Climate Risk Assessment spatially downscaled locations. Streamflow
data for East Fork Carson River near Gardnerville from total 97 projections that were derived through
31 models and four RCPs were used to estimate the change in streamflow due to climate change.
The location of the streamflow is at Latitude 38.844° N and Longitude 119.702° W, which is co-located
with the "East Fork Carson River near Gardnerville’ HCDN station (station ID 0071). The projections
were used for the future streamflow analysis, while the HCDN station was used for the historic record.
The details of the climate model and the relevant institutions are summarized in Table 1.
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Table 1. The Coupled Model Intercomparison Project phase 5 (CMIP5) Atmosphere-Ocean Coupled
General Circulation Models (AOGCMs) adopted in the study (a total of 31 models with 97 projections).

Used Concentration

Modeling Center Institution Model Path (RCP)
26 45 60 85
CSIRO (Commonwealth Scientific and Industrial Research
CSIRO-BOM Organisation, Australia) and BOM (Bureau of Meteorology, ACCESS1.0 Vv Vv
Australia)
BCC Beijing Climate Center, China Meteorological Administration B gg—cc-gls[l\l/li(;) v é v é
CCCma Canadian Centre for Climate Modelling and Analysis CanESM2 Vv Vv Vv
NCAR National Center for Atmospheric Research CCSM4 Vv Vv Vv 4
National Science Foundation, Department of Energy, and CESM1(BGC) Vv Vv
NSF-DOE-NCAR National Center for Atmospheric Research CESM1(CAMS) Vv Vv v Vv
CMCC Centro Euro-Mediterraneo per I Cambiamenti Climatici CMCC-CM 4 Vv
Centre National de Recherches Meteorologiques/Centre
CNRM-CERFACS Europeen de Recherche et Formation Avancees en Calcul CNRM-CM5 Vv Vv
Scientifique
Commonwealth Scientific and Industrial Research
CSIRO-QCCCE Organisation in collaboration with the Queensland Climate CSIRO-Mk3.6.0 Vv 4 Vv Vv
Change Centre of Excellence
LASG, Institute of Atmospheric Physics, Chinese Academy
LASG-CESS of Sciences; and CESS, Tsinghua University FGOALS-g2 v v v
The First Institute of Oceanography, State Oceanic
FIO Administration, Beijing, China FIO-ESM v v v v
GFDL-CM3 v v v Y
NOAA GFDL Geophysical Fluid Dynamics Laboratory GFDL-ESM2G Vv v Vv 4
GFDL-ESM2M Vv Vv Vv Vv
GISS-E2-H-CC Vv
NASA GISS NASA Goddard Institute for Space Studies GISS-E2-R Vv v 4 Vv
GISS-E2-R-CC Vv
MOHC (additional Met_Ofﬁce Ha.dley Centre (a.ddiﬁonal.HadCEMZ-ES_ HadGEM2-A Vv 4 v Vv
realizations by INPE) realizations contributed by Ins‘tlt.uto Nacional de Pesquisas HadGEM2-CC v Vv
Espaciais) HadGEM2-ES v Vv v Vv
INM Institute for Numerical Mathematics INM-CM4 Vv Vv
IPSL Institute Pierre-Simon Laplace III;’%IE—CCI\IG/ISS%:EJIS v y v \\?
Atmosphere and Ocean Research Institute (The University of
MIROC Tokyo), National Institute for Environmental Studies, and MIROC5 Vv N4 Vv Vv
Japan Agency for Marine-Earth Science and Technology
Japan Agency for Marine-Earth Science and Technology, MIROC-ESM Vv Vv v Vv
MIROC Atmosphere and Ocean Research Institute (The University of  MIROC-ESM-CHEM Vv Vv Vv v
Tokyo), and National Institute for Environmental Studies MPI-ESM-LR v N N
MPI-M Max Planck Institute for Meteorology (MPI-M) MPI-ESM-MR v N N
MRI Meteorological Research Institute MRI-CGCM3 v Vv Vv
NCC Norwegian Climate Centre NorESM1-M v Vv v Vv

The DEM required for the river terrain was obtained from the USGS National Map viewer. Models
using fine-resolution DEM products are more stable and accurate as compared to models that use
DEM products of a coarser resolution. Additionally, it is recommended to adopt Light Detecting
and Ranging using Remote-Sensing-based products to model a riverine system of higher depths.
Due to the limitations of data availability in the study area, the current study utilizes a 1/3 arc-second
DEM product for producing the river profile and cross-sections. The river cross-section locations
were considered at and in between the Federal Emergency Management Agency (FEMA)’s adopted
cross-sections for a comparison purpose. The levee and other existing structures were not adopted
in the prepared model as the details of the structures are not readily available. Manning’s roughness
values were adopted from the Flood Insurance Study (FIS) for the area [42]. Figure 2 represents
the Hydrologic Engineering Center’s River Analysis System (HEC-RAS) geometric model with the
river sections. Eighteen of these cross-sections match with the cross-sections in the FEMA-developed
flood map.
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Figure 2. Carson River with the intermediate cross sections and the Federal Emergency Management
Agency (FEMA) cross-sections. Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC,

® OpenStreetMap contributors, and the GIS User Community.

2. Method

The method section is subdivided into three subsections: (i) Frequency analysis and best fit,
(ii) Future flow prediction, and (iii) flow routing.

(i) Frequency analysis and best fit: The streamflow projections, along with the nearby real gauge
station, were analyzed with a frequency distribution to find the best-fit frequency distribution for
the study area. From the 97 streamflow projections for the historic and future periods, a total of
194 projection datasets, each containing 50 years of yearly peak flow, were prepared. These datasets,
along with one Carson River gauge dataset, for a total of 195 datasets, were fitted with 27 different
distribution methods to obtain the best-fit distribution. The 27 different distributions that were applied
to the datasets are listed in Table 2. The data were tested for goodness of fit with Kolmogorov—Smirnov
and Pearson Chi-square tests. The tests were implemented over the 195 datasets for the historic
and future periods of the model and the historic gauge data. Each best-fit test returns a significance
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level as an attained value, which is represented as otagained [43]- The significant level for the Pearson
Chi-square test and the Kolmogorov-Smirnov test is given, respectively, by

Kattained = 1 — XZ (m =k-r-1, q) ¢y

Cattained = 1 — XZ (m/ Q) (2)

where, m is the degree of freedom, k is the class interval, r is the number of parameters of the
distribution, and q is the computed Pearson parameter, which is given by

k k
q:,zn]?,n 3)

n =1

where n is the size of the sample.

These analyses were performed utilizing the statistical Hydrognomon software developed by the
National Technical University of Athens [43]. Hydrognomon is a robust tool for performing different
time-series analyses: regularization of data, interpolation, regression, fitting a distribution function
to a time series, statistical predictions, and homogeneity testing. This tool can handle time-series
data at different time scales: daily, monthly, and annual. The current study only uses the capabilities
of the Hydrognomon tool to fit a distribution function to a hydrologic time series. Hydrognomon
includes 27 different functions that were utilized in the current study to fit the historical records
with the help of the Pearson Chi-square and Kolmogorov-Smirnov tests. Hydrognomon utilizes
the Monte-Carlo algorithm to determine the confidence interval of any fitted distribution function.
The best-fit distribution based on the Hydrognomon tool was selected to generate the future streamflow.
All 27 distribution functions included in the Hydrognomon tool are summarized in Table 2.

Table 2. The 27 different distributions used in the best-fit analysis.

Distribution Methods

Normal, Normal(L-Moments), Log Normal, Galton, Exponential, Exponential (L-Moments), Gamma, Pearson
III, Log Pearson III, EV1-Max (Gumbel), EV2-Max, EV1-Min (Gumbel), EV3-Min (Weibull), GEV-Max,
GEV-Min, Pareto, GEV-Max (L-Moments), GEV-Min (L-Moments), EV2-Max (L-Moments), EV1-Min (Gumbel,
L-Moments), EV3-Min (Weibull, L-Moments), Pareto (L-Moments), GEV-Max (Kappa Specified), GEV-Min
(Kappa Specified), GEV-Max (Kappa Specified, L-Moments), GEV-Min (Kappa Specified, L-Moments)

(ii) Future flow prediction: Based on the best-fitted distribution method, 100-year flood (the
design flood) was calculated for the historic and projected streamflow datasets. The Delta Change
Factor (DCF) was used to calculate the future flow at the stream station. The future flow that was
estimated using the FEMA and delta change methods depicts a flood under a stationary condition
and a flood under climate change conditions in the future, respectively. Among the range of delta
change factor future flows, the peak one was selected to represent the maximum increase in the future
design flood’s condition. In this study, it was assumed that the ratio of the downstream peak flow to
the upstream peak flow remains same in the future.

Future model daily peak

©)

Delta change factor = Historic model daily peak

(iii) Flow routing: A HEC-RAS model was prepared from the available DEM model. Eighteen
cross-sections from the Flood Insurance Rate Map (FIRM) and 58 intermediate cross-sections were
prepared for the HEC-RAS model using ArcGIS (Version 10.4, Environmental Systems Research
Institute (Esri), Redlands, CA, USA). A total of 76 cross-sections were assigned using the FIS-suggested
Manning’s roughness coefficient. The existing 100-year return period’s flow (the design flow) was
routed to the prepared model and compared with the existing FIRM map. Finally, the prepared model
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was routed to the future peak flood, and the hydraulic parameters were compared with the existing
design condition of the FEMA map. The aforementioned steps involved in flow routing and flood
plain delineation is summarized as the flowchart in Figure 3.

VIC forced CMIP5
daily streamflow
Yearly peak for historic (1950-1999) and

future (2050-2099) period

-

Best Fit Analysis for probability
distribution on peak flow

FEMA adopted
100yt streamflow

oughness
from NLCD

_Frequency analysis and best fit

L4
N
Future Floodplain

Figure 3. The best fit analysis, future design flow prediction, and future design flow routing using
HEC-RAS. VIC, Variable Infiltration Capacity; DCF, Delta Change Factor; DEM, digital elevation mode;
HEC-RAS, Hydrologic Engineering Center’s River Analysis System; NLCD, National Land Cover Data.
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3. Results

The daily streamflow series that was derived from the climate model projections shows a clear
trend of an increasing future peak streamflow in Carson River and, at the same time, a decreasing
yearly peak minimum, as shown in Figure 4. This signifies the occurrence of both more intense
high flows and low flows as shown by the spread time series in Figure 4, which increases along the
positive abscissa. The maximum and minimum yearly flow plotted in Figure 4 were obtained from
97 streamflow projections of 31 models and four RCPs. In this study, only the probable maximum
flow was analyzed, as the study area is subject to a greater flood risk as a result of the high flows as
compared to the low flows.
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Figure 4. The spread of the band of yearly peak flow from the 97 climate projections, indicating the
variability in the future streamflow.

Yearly maximum streamflow data from the 97 climate projections from 1950 to 2099 were selected
and analyzed using Pearson Chi-square and Kolmogorov-Smirnov tests. The best fit from both models
is presented in Figure 5. The bars in Figure 5 represent the number of projections that was best-fitted
with a specific distribution method from the two different tests. From Figure 5, GEV-Max (L-Moments)
was selected as the best-fit distribution from the Pearson Chi-square and Kolmogorov-Smirnov tests,
with a count of 24 and 53, respectively, out of 97 total projections. Thus, GEV-Max (L-moments) was
found to be the best distribution method and selected to analyze future floods in the study area.
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Figure 5. The best fit analysis for the 27 different distributions using Pearson Chi-square and

Kolmogorov-Smirnov tests.
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The best-fit distribution method, GEV-Max (L-Moments), was used to calculate the peak flow
over 100 years (the design flow) for the historic and future period. The selected distribution method
was used to calculate the Delta Change Factor. The delta change factor is the ratio of the future to the
historic design flow. It was calculated from each climate model, and the values of the delta change
factor are summarized in Figure 6a. The inclined lines DCF1, DCF2, and DCF4 represent the delta
change factors 1, 2, and 4, respectively, which represent that the future design flood would be the
same, two times, and four times the historic period, respectively. In the figure, each emission scenario
projection is represented with a different color so that they can be easily distinguished. Figure 6b
represents the boxplot of the DCFs corresponding to each RCP. The red-colored horizontal lines in the
boxplots represent the median and horizontal edges of the boxes, which represent the 25th and 75th
percentiles, respectively, of the DCFs corresponding to each RCP. Similarly, the whiskers in the boxplots
represent the 5th and 95th percentiles, and the red data point corresponding to RCP2.6 boxplot is the
outlier. From Figure 6a, RCP2.6 has the lowest delta change factor, and RCP8.5 has the highest delta
change factor. Figure 6b represents that, with an increase in greenhouse gases, the future extremes of
streamflow are expected to increase. Although the two lower RCPs have only a few models with a
delta change factor of less than one, the higher RCPs have a DCF that is greater than one. For the flood
mapping, the maximum delta change factor of 5.086, which was obtained from the CNRM-CM5 model
with RCP8.5, is considered.

1400 .
(@) R
#12007 . " s RCP26|”
“g 7 ® RCP45
g RCP6.0
51000 .« * RCPES
& - DCF1
800 —— DCF2
E - ° DCF4
o L] _
g 600 oL
3 .
400 - _
* L
200 ! ! !
100 400 . 500 600 700
Historic Peak Flood, m”/s
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b
8
g 4 ' - i
& o
= 3F ; PR i
=
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g of f -
oJ
2 i:‘
1F ; : - — :
i | | |
RCP2.6 RCP4.5 RCP6.0 RCP8.5

Figure 6. A comparison of the delta change factors from the 97 climate projections. (a) Historic versus
future design flow (the peak flow over 100 years), (b) box plots comparing the delta change factor for
different RCPs.

Table 3 shows a hydrological summary of USGS gauge site 1031000 in Carson City, for which
a flood analysis has been carried out that developed estimates of flood chance for different return
periods. For this study’s purpose, only the 1% chance and the 0.2% chance of an annual occurrence, i.e.,
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the 100-year and 500-year return periods, were used. FEMA has developed estimates of the 100-year
and 500-year return period flows for the selected study area. A FIRM map with the panel numbers
3200010227E, 3200010112E, and 3200010114F covers the study area.

Table 3. A hydrological summary of flow at USGS gauge site 1031000 (flow in m>/s) as per the FEMA
Flood Insurance Study (FIS).

Flooding . Drainage Area  10% Annual 2% Annual 1% Annual 0:2%
Location . Annual
Source (Square Miles) Chance Chance Chance
Chance
5 km Upstream of
Carson River Lloyds Bridge 2269 238 674 1020 2560
(USGS 1031000)

The calibration of the HEC-RAS two-dimensional (2D) model was performed with 100 years
of historic streamflow data that was obtained from the gauge site. The calibration was done by
comparing the HEC-RAS-generated floodplain map for the past 100 years with FEMA’s 100-year flood
boundary estimation. A perfect model would result in the same HEC-RAS-generated floodplain map
as compared to the FEMA 100-year flood boundary estimation. This result is shown in Figure 7a.
Some discrepancy may be attributed to the errors associated with the Manning’s roughness coefficient
of the reach, which is a function of how a river meanders and channel bed roughness. The robustness
of the HEC-RAS model was established with its conformity to the simulated water surface elevation
and the observed gauge height at USGS gage station 10311400, which is located downstream of the
selected river reach. The Nash-Sutcliffe efficiency coefficient (NSE), the correlation coefficient (R?), and
the percent bias (P-Bias) were computed with the simulated water surface elevation resulting from the
observed streamflow that was recorded at USGS gauge station 10311400 corresponding to the observed
gauge height. Based on the observed and simulated data, the NSE, R?, and P-Bias were evaluated as
0.79, 0.98, and —0.008, respectively. These statistical parameters demonstrate the robustness of the
calibrated HEC-RAS model, and the water surface elevation predicted by the model can be utilized to
generate a future floodplain map with the estimated future streamflow.

The delta change factor that was calculated for the study was used to calculate the future design
flood (the flood flow over 100 years). The future design flood flow comes to be 5185 m®/s, which
is more than the current 500-year flood flow. Thus, the climate-generated future design flood flow
may be greater than the recent 500-year flood flow. The developed HEC-RAS model routed for the
three different flood flows, that is, the existing 100-year, the existing 500-year, and the future 100-year
flows, a discharge of 1020 m?/s, 2560 m® /s, and 5185 m®/s, respectively. The flood area developed
using HEC-RAS and ArcGIS is presented in Figure 7b. The floodplain for the present design flood
flow, the present 500-year flood flow, and the future design flood flow was plotted. The area covered
by these three conditions is 3,915,290 m?2, 4,762,168 m2, and 5,947,893 m?2, respectively, while the
FEMA 100-year flood flow covers 4,882,183 m2. The floodplain for each of these three conditions was
compared, and it was observed that the extreme future 100-year floodplain could cover more than
1.5 times the area covered by the present 100-year floodplain.
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Figure 7. (a) A comparison of the Flood Insurance Rate Map (FIRM)’s 100-year flood area versus
the baseline scenario (the 100-year flood area obtained from the HEC-RAS model). (b) The three
layers of flood area for the 100-year historic, 500-year historic, and 100-year future floodplains (from a
smaller to a larger area, respectively). Sources: Esri, HERE, DeLorme, USGS, Intermap, INCREMENT P,
NRCan, Esri Japan, METI, Esri China (Hong Kong), Esri Korea, Esri (Thailand), MapmyIndia, NGCC,
® OpenStreetMap contributors, and the GIS User Community.

Further, the channel velocity, flow area, and top width were compared between the historic
100-year, the historic 500-year, and the future 100-year floods. The FIRM map has 18 cross-sections
within the reach length. Hydraulic parameters, such as channel velocity, flow area, and top width, were
compared within this reach length and the FIRM map cross sections, and are presented in Figure 8.
The calibration of the HEC-RAS model can also be verified from Figure 7a, which shows a similar
floodplain for 100-year event as compared to the 100-year event from the FIRM map. The generated
floodplain maps shows that there will be more flooding on the left bank of the river than the right due
to its topography. In addition, the city nearby the river might be affected due to this change in future
flow. The low-lying agricultural land on the Carson floodplain will be vulnerable to flooding events in
the future, as our results suggest that these events will be more intense than in the past.

232



Water 2018, 10, 1866 13 of 18

I Hisloric 100y Flood MM Hisloric 500yr Flood BB Fulure 100yr Flood

Channel Velocity (m/s)
S} = (=) oo

10,000

Flow area (m
[ I N e )
S S 2 S
o 9 9
o o O O

0
] K L M N O P Q R S T U v W X Y Z AA
2000 ()\ T T T T T T T T
—_ C
E 1500 E
5
2 1000 - A
z
=N
== il L Wil i ’
2
N il W
] K L M N O P Q R S T U V W X Y Z AA

FEMA cross sections

Figure 8. A comparison of the (a) channel velocity, (b) flow area, and (c) top width for different

flood scenarios.

Channel velocity, flow area, and top width are the key hydraulic parameters of floods, and were
compared under different flow conditions. The future 100-year flood has the highest channel velocity
(around 8 m/s). The channel flow area will more than double at most of the cross-sections, and there
will be a significant increase in the top width along sections N, O, and P.

4. Discussion

Floodplain management should reduce flood damage in the future with efficient mitigation
measures at minimal expense. A flood protection decision can endure for more than a century; thus,
it is worth considering long-term changes in environmental conditions. A decision on floodplain
management would likely affect the long-term performance of infrastructure [44]. As human beings
have evolved, societies have started to inhabit places close to freshwater to ensure water for drinking
and agricultural and livestock use. Major civilizations of the past settled very close to rivers with an
adequate supply of fresh water. More than half of the total global population resides within 3 km
from freshwater bodies, mostly near a river [45]. This population is more vulnerable to changes in
streamflow in the future. In this study, such a case is analyzed using CMIP5 hydrologic projections.
The CMIP5 data helped to predict the nature of future streamflow without assuming stationarity in the
hydro-climatic data. Further, CMIP5 models consider different carbon emission scenarios, allowing us
to comprehend a wide range of future streamflow conditions.

As different probability distributions result in different flood frequencies, selecting an appropriate
flood distribution method is crucial in flood frequency analysis. To select the best-fit distribution,
two different tests—the Pearson Chi-Square and the Kolmogorov-Smirnov—were implemented.
The selected distribution was used to predict the design flood for present and future datasets of
climate projections. Further, the performance of different distribution methods varies spatially. Thus,
one distribution that performs well for a given dataset of an area may not represent another distribution.
Thus, it is always recommended to analyze the results that are obtained with different distributions,
and the best distribution should be selected with a different approach. It is good to test a variety
of statistical distributions; however, at the same time, it is impractical to test all of the possible
distributions. In the current study, the selected distributions were based on a previous study that was
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pertinent to the climatic conditions of the selected study region. Testing other distributions over a
wide variety of watersheds is recommended for future studies. Both the Pearson Chi-Square test and
the Kolmogorov—Smirnov test showed that GEV-max (L-moment) was the best distribution. Previous
studies suggest that GEV is to likely to fit the streamflow across semi-arid regions, which was also
established in the current findings [32-34,38,39].

From the 97 total models/selections, the Pearson Chi-square test and the Kolmogorov-Smirnov
test selected GEV-max (L-moment) 24 and 53 times, respectively. GEV-max (L-moment) was then used
to calculate the design flow for the present and future periods. Among the 97 models, 86 models had a
DCF greater than one, suggesting that the design flow for the future period should be more than that
for the present period. This suggests that there is a higher possibility that the design flow on the river
would be higher in the future. Among the 97 models, 39 (more than 40% of the models) indicated that
the design flow in the future will be more than 2 times the present design flow. The DCF results also
show that the higher the emission or RCP, the higher the delta change factor will be, which represents
an increase in the design flow in the future. The delta change method was adopted to predict the
flow of future floods, which was routed on a HEC-RAS one-dimensional (1D) model to compare the
floodplain and hydraulic parameters.

The maximum increase in future design flow resulted from the CNRM-CM5 model with the
RCP8.5 scenario and the maximum DCE. The CNRM-CM5 model with RCP8.5 scenario was also
considered for the flood mapping of the Carson River near Carson City, Nevada as it would represent
the most extreme flooding scenario. The model indicates that a 5.086-fold increase in the design flow
of the river will occur. This suggests that the future 100-year flood flow will be more than that of the
current 500-year flow, while the future 100-year flood flow will be more than 1.5 times the current
100-year flood flow. The floodplain map showed an increase in the extent of the flooding in the future
as compared to that of current flooding events. Most of the GCMs suggested an increase in the future
design flow when compared to present conditions, which can be attributed to the nonstationary nature
of the climate. Further, the floodplain variability in the future may also be affected by other factors,
such as a change in land use [46]. An increase in the streamflow in a semi-arid region as a result of
climate change has also been documented by previous studies. For example, an increase in streamflow
has been projected for the city of Las Vegas [47], and a positive streamflow trend has been documented
in the Colorado River basin [48].

The population of Carson City is settled on the left bank of the Carson River. The topography of
the river shows that the river has more floodplain on left side than on the right side. The floodplain
contains fertile agricultural land that is crucial, as Carson City lies in the desert of Nevada. Due to
the predicted increase in the design flood flow in the future, more area than expected might be
flooded. Future flooding will not only affect the agricultural supply but also people residing near the
river. Thus, a proper analysis of future streamflow will help to minimize the flood risk. The current
study’s evaluation of the best-fit distribution, and use of a climate distribution, to evaluate the future
streamflow frequency suggested that the streamflow data has a nonstationary nature as a result of
climate variability and change. Thus, future design streamflow may not be same as the current design
streamflow. This should be considered by planners and engineers when planning and building new
hydraulic structures to minimize the flood risks associated with the changing climate.

5. Conclusions

The risk of hydrologic extremes as a result of the changing climate is one of the main global
challenges of the 21st century. This risk has been increasing in recent years, as limited effort has
been made to curb the emission of greenhouse gases. Most governmental agencies apply stationary
approaches to flood management. Due to this, the effect of climate change cannot be incorporated into
flood flow predictions. Thus, this study suggests the possible approach of applying a nonstationary
approach to future streamflow prediction in those regions vulnerable to flooding events. As most
flood management structures are constructed for a lifespan of several decades to more than a
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century, forecasting streamflow while considering the effects of climate change can contribute to
the optimization of hydraulic structures. Hence, this study’s contribution is to present guidelines to
planners, designers, engineers, and policy-makers for incorporating climate change into flood risk
management. The current study was focused on the Carson River at Carson City at a regional scale; so,
the results may not be similar to those obtained from other watersheds, whilst the proposed algorithm
can be utilized elsewhere.

The key findings of the current study are as follows:

1.  The best-fit distribution was evaluated utilizing both Pearson Chi-square and Kolmogorov
Smirnov tests for the considered study area.

2. A majority of the climate models indicated an increase in the future streamflow in the study
region, while 40 percent of the models suggested that the future 100-year streamflow would be
more than 2 times the present 100-year streamflow in the selected study area.

3. Ahigher increase in the future 100-year streamflow was observed for a higher RCP, suggesting
that the streamflow in the study region will increase as carbon emissions increase.

4. A majority of climate models depicted DCFs higher than 1, suggesting that the streamflow in the
Carson River exhibits nonstationary behavior and that the future streamflow is likely to exceed
that of the past.

5. The CNRM-CM5 model with the RCP8.5 scenario showed the maximum increase in future runoff
for the Carson River.

6.  The future flow, depth of flow, and inundation comparison gave an explicit image of the extent of
future flooding due to climate change for the Carson River at Carson City.

7. The extent of flooding of the future 100-year streamflow for the Carson River at Carson City was
evaluated to be higher than that of the past 500-year streamflow, highlighting the likelihood of an
increase in the extent of future flooding.

To summarize, hydraulic structures are conventionally designed for different return periods
assuming the stationarity in the streamflow. The current research highlights the utilization of climate
information for evaluating the future streamflow in different recurrence intervals. This future
streamflow is then used to evaluate future floodplain maps and design the streamflow. We also
recommend testing the application of other statistical distributions to a variety of watersheds with a
higher resolution dataset in the future to extend the current study.
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DEM Digital Elevation Model

FEMA Federal Emergency Management Agency
FIRM Flood Insurance Rate Map

FIS Flood Insurance Study

GCM General Circulation Model
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