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Preface to ”Dynamics Days Latin America and the

Caribbean 2018”

This book is devoted to present articles dealing with an exciting field of dynamical systems,

nonlinear dynamics, and its wide spectrum of cross-disciplinary applications, such as in topics

ranging from epidemiology or ecology to engineering and neural systems. These works were

presented as communications at the conference “Dynamics Days Latin America and the Caribbean

2018” held in Punta del Este, Uruguay, from December 26th to 30th of 2018. The focus of the

conference was the wide spectra of cross-disciplinary applications of nonlinear dynamics and the

most useful and novel techniques for dealing with these problems. It was a great opportunity to

gather a group of scientists within multidisciplinary fields with these common interests and objectives

and to create the synergy necessary for effectively implementing the most diverse applications.

In the first article of this book (https://www.mdpi.com/2297-8747/24/2/37), Santiago Boari

and his collaborators introduce a ground-breaking model (following the seminal work by Ott and

Antonsen) to describe the global synaptic activation in large coupled excitable systems. The model

reproduces realistic features of the synaptic coupling in real neural systems and, in particular,

allows them to calculate macroscopic quantities (order parameters), which they show to be related

to the local field potentials of experimentally recorded nervous systems.

In the second article, Roberto C. Budzinsk et al. (https://www.mdpi.com/2297-8747/24/2/

42) uses recurrence analysis to study the transition to synchronization in complex networks of

bursting oscillators. Focusing on small-world and scale-free networks, they report the emergence

of non-stationary states and intermittency in the transition region of coupled Rulkov neuron maps;

namely, as the coupling strength between the maps is increased and before the system achieves

complete synchrony.

Thirdly, Bruno Rafael R. Boaretto et al. (https://www.mdpi.com/2297-8747/24/2/46) presents

two methods for suppressing the anomalous phase synchronization emerging in scale-free neural

network models. These methods are related to the deep-brain stimulation and delayed-feedback

control and could potentially help controlling neurological disorders—such as epilepsy or

Parkinson’s neuropathies.

The article by Rodrigo Simile Barone et al. (https://www.mdpi.com/2297-8747/24/2/50) is

devoted to the analysis of an eccentric annular billiard using time recurrence analysis. Billiards

have been paradigmatic examples of rich dynamical behaviors—typically emerging in Hamiltonian

systems—and with broad applications, such as in Plasma Physics.

Entering directly into the Biophysics of cell signaling, the fifth article by Estefanı́a Piegari

and Silvina Ponce Dawson (https://www.mdpi.com/2297-8747/24/2/61) shows the specificity

and universality of intracellular calcium signals by presenting a quantitative comparison between

experiments and an innovative model based on excitable systems.

In the field of Fluid Dynamics, the contribution by Johan Llamoza and Desiderio A. Vasquez

(https://www.mdpi.com/2297-8747/24/2/51) reviews interesting aspects of wave propagation in

reaction-diffusion fronts, where they study the interaction between density-driven convection and

fronts with diffusive instabilities. They report that the presence of density gradients in fronts

governed by the Kuramoto–Sivashinsky equation could enhance or suppress complex behavior

emerging in these reaction-diffusion systems.
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The seventh article in the book, by Gilberto M. Nakumara et al. (https://www.mdpi.com/

2297-8747/24/2/66), deals with Bose–Einstein condensates. In particular, with the superradiance, i.e.,

the coherent collective radiation caused by the interaction between many emitters that is mediated

by a shared electromagnetic field. The novelty stems from a simplification of the model that explains

superradiance, allowing the authors to calculate the statistical moments of the phenomenon.

Next, Brenno Cabel and collaborators (https://www.mdpi.com/2297-8747/24/2/48) show how

important it is to adequately choose the sampling rates in population dynamics observations. This is

particularly relevant in order to avoid undermining the reliable estimation of ecological interaction. In

particular, they show that by choosing slow acquisition rates, the collected data can produce deceptive

patterns, such as the prey becoming the predator.

An application of how stochastic processes, agent-based modeling, and symmetries can be used

to the analysis of epidemic spreading is presented by Gilberto M. Nakamura et al. (https://www.

mdpi.com/2297-8747/24/2/44) in the ninth article of this book. The authors present an algorithm

that explores permutation symmetries to enhance the computational performance of agent-based

epidemic models and show the statistical properties of propagation.

The book finishes with the work by Marı́a S. Torre et al. (https://www.mdpi.com/2297-8747/

24/3/68), who propose an ecological model describing the temporal evolution of the infection of mice

due to hantavirus and, therefore, with clear implications to public health.

We would like to acknowledge the help of Luisa Parodi and Sociedad Uruguaya de Fı́sica,

who provide us with the photograph of the cover.

Nicolás Rubido, Arturo C. Martı́

Special Issue Editors
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Abstract: The study of large arrays of coupled excitable systems has largely benefited from a technique
proposed by Ott and Antonsen, which results in a low dimensional system of equations for the
system’s order parameter. In this work, we show how to explicitly introduce a variable describing
the global synaptic activation of the network into these family of models. This global variable
is built by adding realistic synaptic time traces. We propose that this variable can, under certain
conditions, be a good proxy for the local field potential of the network. We report experimental,
in vivo, electrophysiology data supporting this claim.

Keywords: local field potential; mean field models; coupled oscillators; theta neuron; synchrony;
out of equilibrium system

1. Introduction

The behavior of large ensembles of out of equilibrium units is far from being completely
understood. Recently, some bridges have been built to connect the dynamics of individual units
with the collective state of a network (see, for example, [1–4]). This line of work has a long and rich
history that includes the pioneering work of Art Winfree, who presented the first mathematical models
built to describe the synchronization between biological oscillators [5,6]. Yoshiki Kuramoto also made
important advances in this line of work. He proposed a simple model for the behavior of a large set of
coupled oscillators, interacting pairwise through a sinusoidal function of their phase differences [7,8].
In this approach, the collective behavior of the system is described in terms of a single complex number:
its amplitude accounts for the phase-coherence of the population of oscillators, and its phase stands
for the average phase. In a typical statistical approach, the assumption is that this problem can be well
approximated by a continuous system, described in terms of a density function of phase and time.
This density represents the distribution of oscillators that, at a given time, present a given phase θ.

Ott and Antonsen proposed an approach to this problem that turned out to be a breakthrough in
the field [9,10]. In that work, the authors studied the dynamics of a network of coupled oscillators.
Each oscillator was described in terms of its phase. The continuity equation satisfied by the
density describing the state of the network was decomposed in modes, and under a specific set
of hypotheses, the amplitudes of the modes were found to be linked by a simple function. In this way,
knowing the dynamics of the first mode was enough to reconstruct the behavior of the infinite set of
modes. Moreover, with this approach, it is possible to show that an order parameter describing the
synchronicity of the network might obey a low dimensional system of ordinary differential equations
(the order dependent on the complexity of the network).

This reduction in the dimensionality of the system of equations for the mode amplitudes was only
a good approach if the interaction between the units could be written in terms of specific functional
forms, such us the Kuramoto coupling term (a sinusoidal function of the difference between the

www.mdpi.com/journal/mcaMath. Comput. Appl. 2019, 24, 37; doi:10.3390/mca240200371
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interacting phases). It also worked if the units presented excitable dynamics before coupling and if
the coupling was modeled in terms of “pulse” functions [11]. Due to the similarity in their dynamics,
this framework is generally used to model neural networks. The coupling describes the input current
into the excitable units I as:

I =
1
N ∑

j

(
1 − cos

(
θj
))

, (1)

which will account for the contributions to the current I by the j units, as their phases pass the
value θj ∼ π (defined as the phase in which the neurons “spike”). Even if the dynamics of the
individual units before the coupling was excitable, the couplings previously described are not the
most natural ones to model synapses. In order to overcome this difficulty, Montbrió and collaborators
derived independently exact equations to describe macroscopically networks of spiking units [12,13].
They were interested in the mechanisms of individual spike generation, and how they introduce an
effective coupling between the mean membrane potential and the spiking rate, two biophysically
relevant macroscopic quantities. In this approach, the firing rate is a good approximation of the global
synaptic current for fast synapses. Moreover, to account for slower synapses, they proposed that the
global synaptic activation S would be ruled by:

τ
dS
dt

= −S + R, (2)

where R stands for the spiking rate (the number of spikes occurring per unit of time) [12]. This approach
led the authors to show that inhibitory, all-to-all coupled excitable units can display oscillations. This is
a result that a Wilson-Cowan-like phenomenological model cannot reproduce [14].

In the first part of this work (Section 2), we build on these previous efforts by modeling the
global synaptic activation as the sum of synaptic currents which present a maximum that is delayed
with respect to the spike responsible for its occurrence. This is an important feature of the synaptic
interaction that is not reproduced by previous models. Biophysical models of the synaptic interaction
(nonlinear kinetic models [15]) have solutions that display this delay. Nevertheless, it is not known
how to achieve an analytical macroscopic description of the system with these nonlinear equations
describing the synaptic interactions. In this work, we present a model capable of reproducing this
realistic feature of the synaptic coupling, but which is also compatible with the analytic calculation of
macroscopic quantities for the network.

The ideas proposed by Ott and Antonsen were successfully applied to study the N→∞ limit in
different kinds of networks of coupled units [16–21]. In cases where the composing elements of the
system are excitable, such as neurons, an order parameter describing the synchrony of the network
can indicate a highly synchronous state either because the units are spiking in phase, or because the
units are quiescent near each other [22]. To account not only for its synchrony but also for its level of
activity, different quantities have been proposed to describe the global state of a network. Yet, these
quantities are not unrelated. In recent work, it has been shown that the spiking rate of the network can
be analytically expressed as a function of its synchrony [11]. A different approach was followed by
Montbrió et al., who formulated a model for a network of quadratic integrate-and-fire units (QIF) in
terms of its average voltage and its firing rate [23]. Both approaches (a network of phase oscillators
and a network of QIF neurons) have been proven to be equivalent. Yet, despite the clear interpretation
of the firing rate as a variable describing the state of a network, its direct measurement constitutes a
challenge, as it requires recording the individual activity of every neuron in the network. In the second
part of this work (Sections 3 and 4), we discuss how the macroscopic variable defined in Section 2
compares to the local field potential (LFP), and we test this relationship using measurements in an
actual nervous system.
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2. Macroscopic Evolution of a Set of Excitable Units

Let us assume a network of N excitable units whose dynamics are described in terms of the phases
θi, i = 1 . . . N, obeying:

dθi
dt

= (1 − cos(θi)) + (1 + cos(θi))(ηi + J S), (3)

where ηi defines the degree of excitability of the ith unit, J the coupling strength between the units,
and S stands for the average synaptic current between the units. This model is known as the theta
neuron model, and it is a simple one-dimensional model for the spiking of a neuron [24]. The variable
θ lies on the unit circle and ranges between 0 and 2π. When θ = π the neuron “spikes”, that is,
it produces an action potential.

As we show in Appendix A, when taking the continuous limit, the order parameter z = ∑i eiθi ,
obeys the following dynamical rule:

dz
dt

= iz(1 + η0 + JS)− zΔ +
i
2
(1 + η0 + JS)

(
1 + z2

)
− Δ

2

(
1 + z2

)
(4)

with S = ∑i si, where each si describes the synaptic current contributed by a neuron spiking at t = ti
and η0 and Δ are the mean and width of a Lorentzian distribution for g(η), the excitability distribution
function of the population (see details in Appendix A). If we assume that each synaptic current can be
represented by a function:

si ∝

{
(t − ti)e−

t−ti
τ , if t > ti

0, if t ≤ ti
(5)

we can write a two-dimensional linear dynamical system having this function as a solution [25],
which reads:

τ
dsi
dt

= −si + xi (6)

τ
dxi
dt

= −xi + δ(t − ti). (7)

Since these equations are linear, the global variable S will satisfy the same equations, with the
activity φ(t) (the total number of spikes taking place per unit of time) as the forcing term. This can be
expressed in terms of the order parameter as (see detailed calculation in Appendix A):

φ(t) =
2
π

(
1 + Re z

|1 + z|2 − 1
2

)
. (8)

In this way, the network of coupled units can be macroscopically described by the
following system:

dz
dt

= iz(1 + η0 + JS)− zΔ +
i
2
(1 + η0 + JS)

(
1 + z2

)
− Δ

2

(
1 + z2

)
(9)

τ
dS
dt

= −S + x (10)

τ
dx
dt

= −x +
2
π

(
1 + Re z

|1 + z|2 − 1
2

)
. (11)

In this calculation, we have assumed a unique population of neurons (for example all excitatory
ones), with parameters distributed in a Lorentzian way (mean excitability parameter η0), and with all
the units coupled among each other with a unique strength described by J. For this simple architecture,
we illustrate the different solutions of the problem in Figure 1. The calculations used to write these
equations are presented in Appendix A.

3
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Figure 1. Solutions of the proposed model for the case of a unique excitatory population. (a) Bifurcation
diagram of the system in the (η0, J) plane for a case with τ = 2 ms and Δ = 0.1. The curves denote
saddle node bifurcations. Three regions corresponding to the different types of solutions can be
identified. (b–d) Simulations for different initial conditions. Regions I and III present a unique
stationary attracting solution, while region II of parameter space presents bi-stability. Insets show the
evolution of the order parameter of the system, with black dots representing the attractive fixed points.
(e) Agreement between the reduced model and a simulation of a system of oscillators (15,000 units,
using a time step of Δt = 0.001 s)). The rate used to drive the system was computed as the number of
oscillators crossing the value θ = π, divided by the total number of oscillators and the time step Δt.
(f) Evolution of the order parameter for the model and the simulation.

4
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The panel (a) in Figure 1 displays three different regions of the parameter space (η0, J), for a
problem in which τ = 2 ms and Δ = 0.1. The three panels displayed in b–d correspond to simulations
for different initial conditions, showing that regions I and III present a unique stationary attracting
solution. Region II presents bi-stability. This result is consistent with what is expected from simple
additive models [26]. Panels (e) and (f) in Figure 1, show the agreement between this macroscopic
description of the system, and a simulation of 15,000 oscillators, whose dynamics are ruled by our
original set of equations. The rate used to drive the system was computed as the number of oscillators
crossing the value θ = π, divided by the total number of oscillators and the time step Δt.

Notice that in our description, the variable z describes the system´s synchronicity, and the variable
S represents the global synaptic activation of the network. The individual synaptic currents are in fact

the result of nonlinear processes. But since the functional form si ∼ (t − ti)e−
t−ti

τ is a most successful fit
for a synaptic current [15], we use a linear model for its generation. This allows us to add the equations
for each synaptic component in order to come up with an equation of the global synaptic activation.
Remarkably, synaptic activity is often acknowledged as the most important source of extracellular
current flow [27]. In the next sections, we will show that it is possible to use electrophysiological
measurements as a starting point to compute a variable that can be a proxy for the synaptic activation.

3. An Experimental System

Synaptic currents are conjectured to contribute in a substantial way to the LFP since extracellular
currents from many individual compartments must overlap in time to induce a measurable signal.
This requires pertinent events to be slow [27]. In general, complex neural architectures involve both
excitatory and inhibitory neurons. This poses a problem for reconstructing the origin of any given
fluctuation in the LFP. However, synchronous action potentials from many neurons can contribute
substantially at specific temporal instances, particularly in the cases where the structure of the network
allows us to have inhibitory and excitatory neurons spiking out of phase. Songbirds have been shown
to present this out-of-phase spiking between excitatory and inhibitory neurons [28]. We will thus
investigate a system with complex neural architecture but for which, during some time intervals,
mostly one class of neurons are active. We will then concentrate on those time intervals and investigate
whether a reconstructed global synaptic activity can approximate the recorded LFP.

Songbirds have highly specialized brain regions to generate and process the signals that are
involved in song production and perception. In a specific region of the telencephalon (known as the
nucleus HVC, an old acronism at present used as a proper name), some neurons are active during
song production. Interestingly, those neurons also spike when the bird is asleep or anesthetized if
it is exposed to a recording of its own song (e.g., [29]). Moreover, a neuron that spikes at a specific
temporal instance when producing song will spike at about the same temporal instance when the
anesthetized or sleeping bird listens to the song recording [30]. This paradigm motivates the study of
auditory-elicited responses in the HVC and its link to the coding of vocal production.

For the data presented in this work, extracellular recordings of neural activity were conducted
on urethane-anesthetized canaries (Serinus canaria). Surgery was performed to access the neural
nuclei HVC and insert a multi-electrode array (A1 × 32, Neuronexus Technologies, Inc.). This array
contained 32 aligned electrodes, separated 25 μm from each other. Neural activity was monitored
online using proprietary INTAN software to control an Intan RHD2000 acquisition board. To study
auditory responses in HVC, the experimental protocol consisted of presenting three different auditory
stimuli (BOS, bird’s own song; CON, the song of an adult male conspecific; REV, its own song in
reverse). Each protocol consisted of twenty randomized presentations of each stimulus (for more
detailed methods, see [31]). These methods are the standard paradigm to study selectivity in the
neuronal nucleus HVC. Signals were sampled at 20 kHz and the hardware filtering was set between
0.1 Hz and 5000 Hz.

Recordings were analyzed using custom-built software. Low-frequency components due to
synaptic currents were isolated from the high-frequency spiking activity due to action potentials

5
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elicited by neurons near each recording site. The slow signals commonly referred to as LFP were
obtained using a low-pass zero-phase Butterworth IIR digital filter on the raw data (4th order, cutoff
frequency: 300 Hz). For spiking activity, the filter used was a high-pass zero-phase Butterworth IIR
digital filter (4th order, cutoff frequency: 500 Hz).

Figure 2 shows examples of the high-pass filtered data from one protocol. These traces represent
the neural response to auditory presentations of the bird’s own song. In Figure 2a, we show the
sound signal from a single canary syllable (part of the auditory stimulus that was presented to the
anesthetized bird). In Figure 2b, we show a segment from 10 traces of high-pass filtered data. These
traces correspond to the recorded activity in one channel of the neural probe for 10 presentations of
the bird’s own song. In Figure 2c, we show a magnified example of presentation 1 in Figure 2b and the
threshold used for spike detection. As can be seen from the different traces in Figure 2b,c, there are
multiple spikes of different amplitudes. This is an indicator that the electrode is registering multiunit
activity (i.e., spikes from different neurons located at different positions from the electrode). As we
are registering extracellular spikes, the amplitude registered by the electrode decays with distance.
For additional details on the recording of neural ensembles, see [32]. A simple characterization of the
overall neural response to the stimulus is given by the multiunit activity histogram, which is computed
by thresholding the signal, detecting the times at which each spike occurred and binning the activity
in 15 ms windows.

Figure 2. Raw data thresholding and multiunit activity (MUA). (a) BOS sound segment (single canary
song syllable). (b) High-pass filtered raw data traces of the neural response to auditory presentations of
BOS in anesthetized birds (see Section 3). Traces correspond to 10 trials from one protocol. Each trace
consists of background electrical noise and sharp spikes corresponding to the extracellular recording of
an action potential. The threshold allows the detection of spikes of multiple amplitudes. Differences in
spike shape and amplitudes correspond to the electric activity generated by different neurons. Thus,
the activity obtained by thresholding is multiunit in nature. After thresholding, the spikes are treated as
a series of timestamps of where spiking occurred. (c) Zoomed-in trace for trial 1, showing the threshold
level for detection.

6
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Figure 3 illustrates the results from the protocol from which the segment shown in Figure 2 was
extracted. The top panel in Figure 3a shows the BOS recording presented to the anesthetized bird.
The average LFP trace (trial-averaged for 20 trials and channel-averaged for the 32 channels) is shown
in the second panel. This average was computed to consider all the synaptic currents in the recording,
which is required for comparison with the global synaptic activation S that we will reconstruct from
these data. Since this signal represents the average, note that peaks arise both from the robustness in
the response (trial-average) and from the synchronization of multiple channels (channel-average).

Figure 3. Single unit activity is synchronized in multiple recording sites. (a) Activity profiles of
spike-sorted clusters from a recording. From top to bottom: BOS sound signal, trial- and channel-
averaged LFP, PSTHs for each neuron and summed single unit activity (ADD). PSTHs are histograms
(15 ms bins) of the activity elicited in each isolated neuron during 20 auditory presentations of the
BOS. Lastly, the bottom panel shows the multiunit activity profile (MUA), obtained by thresholding
the recorded neural data (see Section 3 and Figure 2). (b) Each action potential is recorded by several
channels in the multielectrode array (a diagram is shown on the right). Spikes from individual,
well-isolated neurons are shown with different colors. Spikes from the same neuron are simultaneously
recorded as spikes of different shapes in different channels (see yellow cluster inset). The channels
where each cluster was detected are shown to the right of each spike group. Color outlines indicate the
maximum amplitude channel for each cluster, which corresponds with the spike shapes shown. Each
cluster presents a robust response across trials (sharp peaks present in the PSTHs in (a)). Additionally,
these results show that registered neurons are synchronized. The sharp peaks in the ADD profile in (a)
result from the combination of response robustness across trials and from the synchronous firing of
isolated neurons.

Single neuron activity was also recovered from the recordings. A spike-sorting algorithm
(Phy, [33]) identifies the temporal instances where different neurons are spiking by conducting a
principal component analysis (PCA) on detected spike shapes. For the data shown in Figure 3,
identified neurons are plotted with different colors (see Figure 3b). The same neuron could be
registered simultaneously in more than one channel (as an example, we show in Figure 3b the yellow
spike shape registered in several channels of the multi-electrode). The circles to the right of each set of
spike shapes indicate the channels where that neuron was registered. We have also color-outlined the
circles representing the maximum amplitude channel, which correspond to the spike shapes shown.
Binning the spike times for each neuron with 15 ms bins, we get the time traces displayed in the insets
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3–8 in Figure 3a (post-stimulus time histograms or PSTH). Peaks within each of these signals account
for the response robustness at a given temporal instance and the presence of higher activation levels in
response to the song. Notice that, additionally, whenever these time traces show peaks, their positions
coincide, meaning that there is a degree of synchronization among units in the part of the neural
network that is being sampled in these recordings.

Only neurons that respond mostly to the bird´s own song (BOS) were taken into account in our
analysis. Some neurons present brief bursts of activity at a few instances during the production of a
specific syllable type. Other neurons spike in a tonic-like fashion. Comparison between these firing
patterns [34], and results from another species (zebra finches, Taeniopygia guttata [35]), suggests that
the first type might be projection neurons, while the second class might correspond to inhibitory
interneurons. Projection neurons are excitatory neurons [36]. Neurons shown in Figure 3 are putative
projection neurons, since they present bursts of activity at specific instances within the song.

4. Reconstructing the Dynamics for S from the Data

The single-channel multiunit activity recorded when the anesthetized bird is exposed to its own
song, summed over the different repetitions, presents clear peaks at specific temporal instances (see
Figure 3). We have also found that at least close to the peaks, this MUA is similar to the summed
activity of several different neurons detected by the multi-electrode at different depths of the nucleus
HVC (compare MUA and ADD in Figure 3a). All these neurons spiking at the same temporal instances
are of the same kind (either excitatory or inhibitory), and therefore will contribute additively to the
average synaptic current. In this way, we can define a threshold for the multiunit activity, and identify
the times ti where spikes are detected (as was shown in Figure 2c). With that sequence of times
ti, i = 1 . . . N, we can add the functions for each synaptic event si:

si ∝

{
(t − ti)e−

t−ti
τ , if t > ti

0, if t ≤ ti,
(12)

and build a proxy for the average synaptic current, at least close to the instances where the multiunit
activity has peaks. Using a parsimonious estimation for excitatory synapses of τ = 10 ms, [15] we
generate this synthetic activation S, and compare the signal with the local field potential. The result
is shown in Figure 4. In blue (top panel), the trace shows S as reconstructed from the spiking times
and the red trace (bottom panel) is the LFP obtained from the recordings (also shown in Figure 3a).
These two traces share some temporal features: the instances where S presents peaks correspond to
the peaks found in the LFP. However, the LFP presents additional variations that S does not capture.
Most probably, this is because S is reconstructed with a binned version of the high-passed data, where
only the instances of the supra-threshold spiking activity were considered. This, in turn, yields a time
trace for S that presents small fluctuations, while the measured LFP presents additional variations
arising from the background electrical activity. Finally, to measure the similarity between the two,
we computed the average Pearson correlation between the two signals in shifting windows of 1.0 s,
and we got cmean ∼ 0.47, with correlation values reaching cmax ∼ 0.86 in the regions with the peaks.
This informs that the reconstructed S is more reliable in the case where synchronous firing has occurred,
such that an emerging pattern can be observed from the data.
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Figure 4. The reconstructed global synaptic activation captures prominent LFP features. Time traces
for the global synaptic activation S (top panel, blue) and the trial- and channel- averaged LFP (bottom
panel, red). The trace obtained for S approximates the measured LFP, especially where large peaks
occur. The similarity between the two signals was measured using Pearson’s correlation coefficient,
which yields a maximum value of cmax ∼ 0.86 by taking the regions with the peaks and cmean ∼ 0.47
for the whole timespan. The difference in correlation strength means that the reconstructed S better
approximates the LFP near signal events that correspond to the synchronous firing of multiple neurons
(see Figure 3).

5. Discussion

In recent years, it has been shown that, in the infinite size limit, certain systems of globally
coupled phase oscillators can display macroscopic features that obey low dimensional dynamics.
That class of systems includes excitable systems, and therefore it is natural to inquire about its
consequences in neuroscience, studying how large sets of neurons synchronize to generate behavior.
Different functional forms describing the interaction between the units were studied in order to
achieve an analytic macroscopic description of a network. In this work, we built a model for the
global synaptic activation of a neural network, by adding functions that represented realistic synaptic
currents. In particular, each synaptic current had a maximum that was delayed with respect to the
maximum of the spike responsible for its occurrence. This led us to propose a two-dimensional linear
model for each current, and therefore a two-dimensional model for the global activation, with the
firing rate as its driving force. We computed and integrated the differential equations satisfied by
quantities that describe the network macroscopically. Then, we simulated the networks directly and
computed the same observables, finding a remarkable agreement.

It has been pointed out that in physiological situations, synaptic activity is often the most
important source of extracellular current flow. This is because many events need to contribute to
induce a measurable signal, which privileges slow events as synaptic currents. The effect is amplified
if large synchrony exists. We tested the hypothesis that a global synaptic activation, reconstructed from
the spikes detected by a multi-electrode assuming an excitatory nature, could approximate the LFP at
some temporal instances. We did it for a system which presents an architecture far more complex than
the one used to introduce our model. Nevertheless, we restrained our analysis to temporal intervals
where large synchronic events of neurons of a single type are expected and found that, for those time
intervals, the LFP data and the computed synaptic activation were highly correlated.

It is possible to obtain a significant amount of information from a dynamical system by measuring
some or even one of its variables. For example, it has been shown that it is possible to reconstruct
the topology of a dynamical system that displays chaotic behavior by building an embedding from
one of the system´s variables [37]. Moreover, for some systems, it is possible to reconstruct their
ruling equations by operating on one measured variable [38]. In this way, the similarity between LFP
(measurable) and the synaptic global activation (used in our macroscopic models) suggests a path to
build bridges between macroscopic models for large sets of excitable units and experimental data.
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Appendix A

In this Appendix, we will first derive the expression of the spiking rate of the network as a
function of its order parameter. Secondly, we will derive the equation ruling the dynamics of the
order parameter.

Let us assume a very large network of units described in terms of their phases θi, i = 1 . . . N,
obeying the following dynamical system:

dθi
dt

= (1 − cos(θi)) + (1 + cos(θi))
(
ηi + I

({
θj
}))

, (A1)

where I
({

θj
})

represents the coupling function between the units. Let us assume that this term can be
written in terms of the order parameter z of the population. Assuming an infinitely large number of
oscillators, we propose a continuous description of the population, described in terms of a probability
density f (θ, η, t) of the oscillators with parameter η being phase θ at time t. The spiking rate of the
network can be computed as:

φ(t) =
∞∫

−∞

f (θ, η, t)
dθ

dt
(θ, η, t)|θ=π dη. (A2)

Notice that out of the two terms in the integral; the second one gets a very simple form:

dθ

dt
|θ=π = 2 + 0(ηi + I(z)) = 2. (A3)

Concerning the probability density, we can write it as in [9]:

f (θ, η, t) =
g(η)
2π

[
1 +

∞

∑
n=1

α(η, t)neinθ + α∗(η, t)ne−inθ

]
. (A4)

In this way, since einπ = e−inπ = (−1)n, we can write:

∞

∑
n=1

α(η, t)n(−1)n =
1

1 + α
− 1, (A5)

and
∞

∑
n=1

α∗(η, t)n(−1)n =
1

1 + α∗ − 1, (A6)

which leads to:

f (π, η, t) =
g(η)
2π

[
1

1 + α
+

1
1 + α∗ − 1

]
, (A7)
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and therefore

φ(t) =
∞∫

−∞

2
g(η)
2π

[
1

1 + α
+

1
1 + α∗ − 1

]
dη ≡ φ1(t) + φ2(t) + φ3(t) (A8)

The three terms, assuming a Lorentzian distribution for g(η) with maximum at η0 and width Δ,
give (by using the Residue theorem to evaluate the integrals):

φ1(t) =
∞∫

−∞

g(η)
(1 + α(η, t))

dη =
1
π

(
1

1 + α(η0 − iΔ, t)

)
(A9)

φ2(t) =
∞∫

−∞

g(η)
(1 + α∗(η, t))

dη =
1
π

(
1

1 + α∗(η0 + iΔ, t)

)
(A10)

φ3(t) = −
∞∫

−∞

g(η)
π

dη = − 1
π

. (A11)

On the other hand, the definition of the order parameter is:

z(t) =
∞∫

−∞

f (θ, η, t)eiθdη =

∞∫
−∞

g(η)
2π

α∗(η, t)dη = α∗(η0 + iΔ, t), (A12)

and therefore

φ(t) =
1
π

(
1

1 + z(t)
+

1
1 + z∗ − 1

)
=

2
π

(
1 + Re z

|1 + z|2 − 1
2

)
. (A13)

In order to derive the equation of the order parameter, we start with the continuity equation satisfies
by the probability density f :

∂ f
∂t

+
∂

∂θ

( .
θ f
)
= 0. (A14)

We can expand the probability density in terms of the angular modes:

fn(η, θ, t) =
g(η)
2π

(
1 + αneinθ + α∗ne−inθ

)
, (A15)

where the distribution:
Γ(η) =

Δ/π(
(η − η0)

2 + Δ2
) (A16)

describes the distribution of the units’ parameters. Replacing the expansion in the continuity equation,
we get the following equation for the mode amplitudes:

.
α = −i

[
α(1 + η + JS) +

(
α2 + 1

)(η + JS − 1
2

)]
. (A17)

Finally, this mode can be related to the order parameter. The reason is that

z =

∞∫
−∞

f
(
η′, θ′, t

)
eiθ′dθ′dη′ =

∞∫
−∞

α∗
(
η′, t
)
Γ
(
η′)dη′ (A18)
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and therefore, using the theorem of the residues,

.
z = i α(1 + η0 + JS)− zΔ + i

(
1 + z2

)(η0 + JS − 1
2

)
− Δ

2

(
1 + z2

)
. (A19)
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Abstract: The study of synchronization in complex networks is useful for understanding a variety
of systems, including neural systems. However, the properties of the transition to synchronization
are still not well known. In this work, we analyze the details of the transition to synchronization
in complex networks composed of bursting oscillators under small-world and scale-free topologies
using recurrence quantification analysis, specifically the determinism. We demonstrate the existence
of non-stationarity states in the transition region. In the small-world network, the transition region
denounces the existence of two-state intermittency.

Keywords: neural network; synchronization; nonlinear dynamics

1. Introduction

Many natural phenomena can be modeled and studied through a mathematical approach.
Especially, complex networks are useful for analyzing problems involving physical, biological,
chemical, engineering, and even social perspectives [1,2]. In this way, coupled oscillators are able to
investigate a large class of dynamical systems in a theoretical, computational or even experimental
field [3–6]. As an example, neural networks can be understood as coupled oscillators where it is
possible to associate the bursting neuron to a phase oscillator [7].

In the scenario of complex networks, the neural system can be modeled on two scales. In the
internal connection scheme, each network node can be understood as a neuron and their connections
as the edges [8], which are able to simulate a single network, as used in many works [9–13]. On the
other hand, considering the inter-networks connection scheme, it is possible to consider a neural
system composed of different sub-areas, so each sub-network can be understood as a node and their
connections as the edges, building a network of networks [14–18].

The connection architecture of complex networks is very important in the dynamical properties
observed at a global level of behavior. Regarding neural networks, many topologies are considered,
such as small-world, scale-free, and random ones [9,16,19] where a transition from unsynchronized to
synchronized states is observed. The role of connection architecture is very important to the paths to
synchronization, where different phenomena can be observed as a function of topology [20–22]. In real
neural systems, the characteristics of these topology schemes are observed [23–25], which motivates
the investigation of the influence of topology on the dynamical properties of the networks.

Regarding complex networks, it is known that this kind of system can show emergent behavior,
where the global behavior observed is richer than the sum of the individual element behaviors. In this
way, the existence of non-monotonic transitions to synchronization as a function of coupling strength in
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neural networks [26–30], where non-stationary states can be noticed, has been reported in the literature.
In some cases, in the transition region, on–off intermittency in the two states has been observed, where
the network displays the existence of two locally stable states but globally unstable ones [18,26], as
defined in [31]. In [9], the dynamical properties regarding synchronization and transition characteristics
are studied as a function of the connection architecture, with both small-world and random topologies
being considered. In the present paper, we extend the analysis and consider the scale-free topology,
since there are topological differences between the connection schema. In the small-world network,
there is a local connection structure plus a non-local one. On the other hand, in the random network,
there is homogeneity in the connectivity distribution, which consists of an assortative network and
composes a very different scenario in comparison to the scale-free network, which generally consists of
hubs of connections and forms a disassortative network [32,33]. In fact, these differences may influence
the dynamical properties of systems regarding synchronization, as observed in [20–22,33].

In order to simulate the neural behavior, we consider the coupled map developed by Rulkov [34].
Using this model, it is possible to reproduce bursting behavior, which is characterized by a sequence
of chaotic spikes followed by a period of resting [35]. This kind of neural activity is observed
in real neural systems, as reported in [36–38]. The building of networks involves two different
topologies: small-world, obtained through the Newman–Watts route [39], and scale-free (power
law distribution of connectivity), obtained through the Barabasi–Albert approach [40], since these
topologies characteristics are observed in real neural systems.

To perform the numerical analyses of dynamical properties regarding phase synchronization
and (non-)stationarity of the transition region, the Kuramoto order parameter [3] and recurrence
quantification analysis (RQA) [41,42] are used. In RQA, the determinism is used, which evaluates the
ratio of recurrent points that belong to diagonal structures. To use the Kuramoto order parameter,
data from each neuron that composes the network is necessary since a phase is associated with the
bursting behavior of all neurons. The use of recurrence quantification only requires a time series that
characterizes the dynamical systems. In the case of networks, the determinism is evaluated from the
mean field time series. It is known that the mean field of a phase synchronized network has a “periodic”
oscillation where the amplitude is bigger than in an unsynhcronized case, as observed in [11,26]. This
approach makes an experimental validation possible since the recurrence quantification analysis is
able to analyze experimental time series [43–46].

In this paper, we investigate a network composed of 1024 chaotic bursting neurons simulated
through the Rulkov map in terms of phase synchronization and transition region characteristics as
a function of coupling strength. Here, we focus on the small-world and scale-free topologies and
their influence on the dynamical properties of the neural networks. We show that the transition to
phase synchronization depicts non-stationary characteristics; however, the transition occurs for smaller
values of coupling strength in the scale-free network. On the other hand, the existence of two-state
on–off intermittency is observed for the small-world network.

The paper is divided as follows. In Section 2, the Rulkov map and the bursting behavior are
described. In Section 3, the connection architectures are shown, and the small-world and scale-free
building approaches are described. In Section 4, the synchronization and intermittency quantifiers are
presented. In Section 5, the results and a discussion are presented, which support the conclusions in
Section 6.

2. Rulkov Map

The Rulkov map is able to reproduce different dynamical behaviors, such as chaotic spikes and a
set of chaotic bursts [47]. The bi-dimensional Rulkov map can be described as

xt+1,i =
α

1 + x2
t,i

+ yt,i + It,i, (1)

yt+1,i = yt,i − βxt,i + γ, (2)
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where xi and yi are the fast and slow variables of the ith neuron. The set of parameters (α = 4.1,
β = γ = 0.001) is chosen in order to obtain the bursting behavior, following [34]. The coupling term Ii
represents the influence of the other neurons in the ith neuron and is given by

It,i =
ε

χ

N

∑
j=1

ai,jxt,j, (3)

where ε is the coupling strength, χ is the normalization factor given by the average number of
connections in the network [48], and ai,j is the adjacency matrix element where

aij =

{
1, if i and j are connected,

0, if i and j are not connected.

Here, we consider a small-world and a scale-free networks.
Figure 1 depicts an example of the dynamical behavior of the fast and slow variables of the Rulkov

map. Panel (a) represents x where bursting behavior can be observed, which is characterized by a
sequence of chaotic spikes followed by a resting time. Panel (b) depicts y as a function of t, where each
time that a burst starts, the slow variable assumes a maximum. For the interval of coupling strength (ε)
used, the bursting behavior is maintained.

Figure 1. Dynamical behavior of an oscillator obtained through a Rulkov map. Here, panel (a) depicts
the fast variable of the system (x), which can be understood as the membrane potential of the neuron.
Panel (b) depicts the slow variable of the system (y) and is useful for evaluating the oscillator phase
since y assumes a maximum at every burst start.

Since the fast variable x reproduces the bursting behavior, it is possible to understand x as the
neuron membrane potential, and the mean field potential can be described as [9]

Vt =
1
N

N

∑
i=1

xt,i, (4)

where N = 1024 is the number of oscillators (neurons) in the network.
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3. Connection Architecture

The topology is very important to the dynamical properties of the networks. In fact, in neural
networks, the connection scheme can be even more important than the structural variants of the
neurons [49]. In this way, many results show that neural systems can display different topological
properties, with small-world and scale-free characteristics being observed in real systems [50–53].

To build the scale-free network, we used the Barabasi–Albert approach [54], which can be
described by two processes:

• the network is expanded by the addition of new nodes;
• the nodes added preferentially build connections to nodes that are already well-connected.

This approach is able to build a network where the distribution of the connectivity probability
follows a power law: P(k) ∼ k−ν with ν > 1.

Regarding real neural systems, experimental evidence indicates that some brain activities may
depict scale-free properties where the average number of connections is ≈ 4 [52,53]. Moreover, it
is known that the human functional network may present scale-free characteristics where there is a
power-law connectivity distribution following an exponent 2.0 ≤ ν ≤ 2.2 [52].

The scale-free network used in this paper has N = 1024 nodes with n = 4088 connections and
ν = 2.20, which gives an average number of connections of χsf = 4, which is used as the normalization
factor in Equation (3).

In order to obtain the small-world connection matrix, the Newman–Watts route is used [39],
where non-local connections are added in a second neighborhood regular network with a probability
of p. The network is composed of N = 1024 nodes, and the total number of connections is given by

n = 4N︸︷︷︸
local

+ N(N − 5)p︸ ︷︷ ︸
nonlocal

, (5)

where p = 1 leads to a globally connected network. Here, the number of local connection is 4096, and
by using p = 5.3 × 10−4, 554 non-local connections are obtained, which leads to n = 4650 connections.
For this network, the average number of connections is given by χsw = 4.53.

It is possible to evaluate the average path length (L) and the clustering coefficient (C) [50] of the
small-world network. For the matrix used in this paper, Csw = 0.3585 ∼ 10−1 and Lsw = 6.012 ∼ 1
are obtained using the NetworkX library [55]. However, it is possible to evaluate these quantifiers
for an equivalent (with a similar number of connections) random network using the expressions
Lrandom ∼ ln (N)/ ln (n/N) and Crandom ∼ n/N2 [56].

Defining the merit variable Γ = λC/λL where λL = Lsw/Lrandom and λC = Csw/Crandom [57,58]
is possible to analyze the small-world existence condition. If Γ > 1, then the network considered has a
small-world topology. For the network used here, Crandom ∼ 10−3 and Lrandom ∼ 1, which leads to
Γ ∼ 102, confirming that the networks used have a small-world topology.

Figure 2 depicts the graph representation of the networks used in this paper. Panel (a) shows
the small-world network, and panel (b) represents the scale-free one. One difference between the
networks consists of the degree of connectivity, since in the small-world network the most connected
neuron has 9 connections, while in the scale-free case this number is bigger than 140. Besides this, in
the scale-free case is observed the formation of hubs characterized by larger connected neurons, which
leads to non-homogeneity in the connectivity degree, while in the small-world network a different
scenario is noticed, and the degree of neurons connectivity is similar.
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Figure 2. Representation of the networks used in this paper. Panel (a) depicts the small-world network
with 1024 nodes and 4650 connections, and panel (b) the scale-free network with 1024 nodes and 4088
connections. The existence of hubs of connections is observed in the scale-free network, and the degree
of connectivity decays in a power-law form, while in the small-world one the degree of connectivity is
similar between nodes.

4. Quantifiers

The synchronization of chaotic systems has been extensively studied since the last
century [50,59–61]. Here, we focus on the phase synchronization of networks composed of bursting
neurons. There are different approaches to obtain the phase of chaotic oscillators; however, we have
used the slow variable y to identify every time a burst starts. In this way, the phase is increased by 2π

every maximum of y, and a continuous variation of the phase is obtained through [60,62]

θ(t) = 2πk + 2π
t − tk

tk+1 − tk
, tk < t < tk+1, (6)

where tk,i is the time when the kth burst of the ith neuron starts. It is important to emphasize that the
bursting behavior is maintained for the entire interval of coupling strength used (ε), which means
that phase can be obtained from the time series of the maximum of y without reconstruction of the
dynamics in the higher dimensional phase space [60].

To evaluate phase synchronization based on phase θ, the Kuramoto order parameter is used [3].
Considering the phase of all neurons, it is possible to define

R(t) =

∣∣∣∣∣ 1
N

N

∑
j=1

eiθj(t)

∣∣∣∣∣ . (7)

If the system is (not) in a phase synchronized state, then R → 1 (R → 0).
To obtain the synchronization level as a function of the coupling strength, the time average of R(t)

can be computed for each value of ε. The mean value of the Kuramoto order parameter is given by

〈R〉 = 1
tf − t0

tf

∑
t=t0

R(t), (8)

where tf is the total simulation time, and t0 is the transient time.
Recurrence quantification analyses are useful for analyzing the synchronization characteristics of

dynamical systems [9,26,42,63,64]. The original work about recurrence analyses is based on a visual
approach to identifying dynamical properties [65]. On the other hand, it is known that the mathematical
structure of recurrence plots (RP) offers information about the dynamics of a system [41,42].
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Here, we perform recurrence analyses based on the time series of the mean field of the network,
described by Equation (4). In this case, the recurrence matrix is defined as

Rab(δ) = Θ(δ − ||xa − xb||), xa ∈ R, a, b = 1, 2, · · · , S, (9)

where Θ is the Heaviside function, δ is the recurrence threshold, and S is the size of time series analyzed.
Based on a time series of size S, of the mean field potential of the network described by Equation (4), it
is possible to obtain the recurrence matrix through the use of Equation (9). The procedure consists
in analyzing whether each point of the time series is close enough to another point (the difference
between them must be smaller or equal to δ). After considering the entire time series, a matrix (S × S)
is obtained where if a state xa is (not) recurrent to another xb, Rab assumes one (zero). The visual
approach to analyzing the system consists of relating the recurrent (not recurrent) point to a black
(white) dot [65]. In order to fix δ ∈ [0, 1], the time series of the mean field must be normalized.

In order to analyze the synchronization of the network, the diagonal lines in the recurrence matrix
are very important since their distributions are related to the regularity of the trajectories. A diagonal
line of length � is understood as a segment of the trajectory rather close to another segment of the
trajectory during � time steps in a different time [41].

In this way, the better quantifier for the synchronization analysis is the determinism, which gives
the ratio of recurrent points that belong to diagonal lines over all recurrent points in the recurrence
matrix defined by Equation (9). This method is useful since the mean field of a phase synchronized
network, depicted by Equation (4), has “periodic” oscillations, as observed in [26,30].The determinism
is defined as

Δ(�min, δ, V) =

S
∑

�=�min

�P(�, δ)

S
∑
�=1

�P(�, δ)

, (10)

where �min is the minimum length to consider a diagonal line. P(�, δ) is the probability distribution
function (PDF) of the diagonal lines.

In a similar approach that uses the Kuramoto order parameter, it is possible to evaluate the mean
value of the determinism using

〈Δ〉 = 1
tf − t0

tf

∑
t=t0

Δ(t). (11)

5. Results and Discussions

The numerical results have been obtained from initial conditions that follow a random distribution
in the intervals described by the fast and slow variables (see Figure 1), which avoid any initial trend.
The transient time is given by t0 = 100,000.

An important point to note is the dependence of the recurrence quantification analyses (RQA)
on the recurrence parameters, an particularly, the recurrence threshold (δ) and minimum diagonal
length (�min). If δ → 1, all points will be considered recurrent, and the determinism becomes
saturated [41]. Similar behavior is obtained if �min → 1, since all points will be considered as
diagonal structures [41]. In order to use RQA to investigate dynamical properties regarding phase
synchronization and/or non-stationarity, it is necessary to optimize the quantifiers through the choice
of recurrence parameters [9,43]. The choice of recurrence threshold parameter follows [43],where
the condition is described by d[Δ(δ)]/dδ = “a maximum” leading to δ = 0.11, which results in the
highest sensitivity of the quantifier determinism(Δ). The minimum diagonal length (�min = 35) is
chosen in order avoid small diagonals, and the determinism (Δ) is better able to distinguish the phase
synchronized states [9]. The determinism is evaluated using a moving window of 10,000 points.

The phase synchronization main scenario is depicted in Figure 3, where the synchronization
characteristics are studied as a function of the coupling strength. Here, the total time of simulation is
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given by tf = 250,000. Panels (a) and (b) depict the mean value of the Kuramoto order parameter (〈R〉)
and the mean value of the determinism (〈Δ〉) for the scale-free network. Panels (c) and (d) depict the
same analysis for the small-world network. Here, 20 different seeds for the initialization of the system
are considered, and the vertical magenta bars indicate the dispersion (standard deviation) over initial
conditions. For both networks, a clear transition from unsynchronized to phase synchronized state
is observed; however, in the scale-free network, the transition occurs for smaller values of coupling
strength in comparison to the small-world network. The dispersion over initial conditions is bigger at
the transition region for both cases; however, for the small-world network, the phenomenon is more
visible. A similar scenario is observed in [9].

Figure 3. Panels (a) and (c) depict the mean value of the Kuramoto order parameter (〈R〉) as a function
of the coupling strength (ε) for the scale-free and small-world networks, respectively. Panels (b) and (d)
depict the mean value of the determinism (〈Δ〉) for the same scale-free and small-world networks. A
clear transition to phase synchronized states is observed in both networks.

In the scale-free network, the transition occurs where 0.0025 < ε < 0.012, where the increase
in the coupling strength makes the system reach the phase synchronized state. In the small-world
network, the transition region is characterized by 0.005 < ε < 0.017, and phase synchronization
is observed for higher values of ε. This fact indicates that the scale-free network reaches the phase
synchronized states for smaller values of ε in comparison to the small-world network. A similar
scenario is observed in [66], where small-world networks reach synchronous behavior slower than
other topologies. However, it is important to emphasize that the coupling term given by Equation (3)
depends on the coupling strength (ε) and normalization factor χ. In this case, the normalization factor
for each network is given by χsf = 4 (scale-free) and χsw = 4.53 (small-world), which leads to a
relative factor of 1.13 between them. On the other hand, the difference in the coupling strength regime
for the occurrence of the transition and phase synchronization is bigger than 1.13, so it is possible
to conclude that the scale-free network reaches the phase synchronized state for a smaller coupling
strength than the small-world one. Considering the small-world and random networks, it is possible
to observe a higher level of synchronization in the random case [9,16]. Here, a similar scenario to the
small-world and scale-free case is obtained; however, a new phenomenon regarding the critical value
of ε is observed, as previously mentioned. In fact, the scale-free network presents a smaller value
of ε to reach synchronization in comparison to the small-world and random cases, as studied in [9].
A similar scenario is observed in [20].

In order to investigate the details regarding synchronization characteristics, Figure 4 depicts the
fast variable x for all neurons in the network as a function of t. Panel (a) represents the scale-free
network with ε = 0.002, panel (b) ε = 0.005, and panel (c) ε = 0.040. Panel (d) represents the
small-world network with ε = 0.002, panel (e) ε = 0.011, and panel (f) ε = 0.040. In the unsynchronized
states (panels (a) and (d)), the neurons start their bursts without any coherence; however, in the
transition region (panels (b) and (e)), the formation of horizontal structures is noticed. Finally, in panels
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(c) and (f), the phase synchronization where the horizontal structures denounce the spatial–temporal
coherence of their bursts can be noticed.

Figure 4. Spatial–temporal pattern of the membrane potential represented by the fast variable x for
the scale-free network in panel (a) (ε = 0.002), panel (b) (ε = 0.005), and panel (c) (ε = 0.040) and
for the small-world network in panel (d) (ε = 0.002), panel (e) (ε = 0.011), and panel (f) (ε = 0.040).
In the phase synchronized states, horizontal lines, which are related to the bursting synchronization,
are observed.

The mean field of the networks (Equation (4)) is depicted in Figure 5. It is important to note
that the mean field consists of more easily experimentally accessible data than the individual signal.
As observed in [12,30,67], the amplitude of the mean field of the network is related to the phase
synchronization. Here, the scale-free (panels (a), (b), and (c)) and small-world networks (panels (d), (e),
and (f)) are considered. In the unsynchronized cases (panels (a) and (d)) where ε = 0.002, the amplitude
of the mean field V is vanishing. However, increases in the coupling strength (panel (b)—ε = 0.005
and panel (e)—ε = 0.011) lead the network to the transition region, where a small amplitude of V is
observed. Importantly, the amplitude of the mean field varies as a function of t, as observed in [26],
which indicates the possible existence of intermittency. Finally, for higher values of coupling ε = 0.040
(panels (c), and (f)), the mean field depicts an oscillatory behavior with a higher amplitude, and the
frequencies are related to the bursting activity, which indicates phase synchronization behavior.

The “periodic” behavior of the mean field time series makes possible the use of RQA to evaluate
the synchronization characteristics of the networks [9,26,67]. As depicted in Figure 3, the mean value
of the determinism (〈Δ〉) is able to distinguish the level of phase synchronization. Figure 6 depicts the
recurrence plot obtained from the recurrence matrix described by Equation (9), where the black dots
are related to the recurrent points and the white dots to the non-recurrent ones. Here, the recurrence
matrix is obtained from the mean field time series described by Equation (4) and depicted in Figure 5.
Panel (a) of Figure 6 depicts the recurrence plot of an unsynchronized state, while panel (b) depicts
the recurrence plot of a phase synchronized one. It is noticed that in the phase synchronized case, the
diagonal structures are much clearer, which leads to a higher value of determinism (Δ) and makes its
use possible for analyzing the synchronization characteristics of networks.
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Figure 5. Mean field of the network described by Equation (4) for the scale-free network in panels (a),
(b), and (c) and the small-world network in panels (d), (e), and (f). Here, the coupling values considered
are the same as in Figure 4, where (a) and (d)—ε = 0.002, (b)—ε = 0.005, (c), and (f)—ε = 0.040 and
(e)—ε = 0.011. The phase synchronized states (c) and (f) depict the higher amplitude of oscillations
related to the bursting frequency.

Figure 6. Recurrence plot obtained from the mean field of the network through Equation (9) for an
unsynchronized case (panel (a)) and a synchronized one (panel (b)) where diagonal structures on the
RP are observed, which leads to a higher value of determinism (Δ) in panel (b) than in panel (a).

The determinism is able to distinguish between more (less) synchronized states with just the use of
the mean field time series [26]. In this way, it is possible to analyze the time series of the determinism in
order to obtain information about synchronization characteristics as a function of t. Following [9], the
temporal standard deviation of the determinism time series for different values of coupling strength
(ε) offers information about the intermittency between states with different synchronization levels.

σ(A) =

√√√√ 1
T

T

∑
t=1

(A(t)− 〈A〉)2, (12)

where A represents the Kuramoto order parameter (R) or the determinism (Δ), and T is the length
of the time series considered. Here, a stationary time series of R or Δ leads to a vanishing value of σ.
On the other hand, if the time series of R or Δ display an intermittent behavior, where the network
assumes different synchronization level states as a function of t, then σ assumes higher values [18].

Figure 7 depicts the temporal standard deviation of the Kuramoto order parameter and the
determinism time series as a function of the coupling strength (ε). Here, panels (a) and (b) depict σ(R)
and σ(Δ) for the scale-free network, while panels (c) and (d) depict σ(R) and σ(Δ) for the small-world
network, where σ is normalized by its maximum value. For all cases, it is observed that increases in
the coupling strength lead to σ increases, until a maximum. After reaching the maximum, increases in
ε lead to σ decreases until it reaches a vanishing value. Similar behavior is observed in [9] , where the
maximum of σ is located at the transition region of the coupling value.Here, the observed behavior is
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the same since the transition region depicted in Figure 3 is related to the region where σ depicts higher
values. This is indicative of intermittent behavior [18]. Again, for the scale-free network, the transition
region, and consequently the intermittent region, occur at smaller values of coupling strength in
comparison to the small-world network (see discussion about Figure 3). In particular, the maximum
occurs at ε ≈ 0.0045 in the scale-free network, and for the small-world network, the maximum is
observed at ε ≈ 0.010.

Figure 7. Normalized temporal standard deviation (σ), described by Equation (12), as a function of
coupling strength for the scale-free network (panels (a) and (b)) and the small-world network (panels (c)
and (d)). Here the time series of the Kuramoto order parameter (panels (a) and (c)) and the determinism
time series (panels (b) and (d)) are considered. A higher value of σ indicates an intermittent behavior.
The local maximum is observed in the transition region, indicating non-stationary transitions.

The determinism time series (Δ) is depicted in Figure 8 in order to obtain more details regarding
the network dynamical properties in the different situations, as depicted in Figures 3–5. As previously
mentioned, the recurrence matrix (Equation (9)) is evaluated from the mean field time series. In this
way, the diagonal structures observed in Figure 6b are related to trajectories that are close enough
(smaller or equal to δ) at different times. Through the optimization of δ following [43] , it is possible
to use the determinism to quantify the synchronization level of the network as a function of time.
In Figure 8, scale-free (panels (a), (b), (c), and (d)) and small-world networks (panels (e), (f), (g), and
(h)) are considered, where panels (a) and (e) represent the unsynchronized states with ε = 0.002. It is
observed that the determinism assumes small values, which correspond to a unsynchronized states [9].
Panels (b) and (c) represent the states at the transition region for the scale-free network (ε = 0.0045
and ε = 0.0050), where it is observed that the determinism shifts between different values. This fact
indicates that the network assumes different synchronization states as a function of t, characterizing
an intermittent behavior. Similarly, panels (f) and (g) represent the states at the transition region of the
small-world network (ε = 0.0105 and ε = 0.0110). Again, an intermittent behavior is observed, where
the determinism shifts between different values; however, in this case, two plateaus of synchronization
are observed, indicating the possible existence of two-state on–off synchronization [18,26,68]. In [9],
a similar system is considered under small-world and random topologies. Despite the random case not
showing the intermittence between two states, it is possible to observe differences in comparison to the
scale-free case, since in the scale-free case, the existence of the higher state is less pronounced. Finally,
panels (d) and (g) represent phase synchronized states for the scale-free and small-world networks
(ε = 0.040), respectively,where a stationary signal is observed for high values of Δ in both cases.
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Figure 8. Examples of the determinism time series (Δ) evaluated from the mean field of the network for
the scale-free network (panels (a), (b), (c), and (d)) and the small-world network (panels (e), (f), (g), and
(h)). Here, panels (a) and (c) are representative of unsynchronized states (ε = 0.002), and panels (b), (c),
(f), and (g) are representative of states at the transition region (ε = 0.0045, ε = 0.0050, ε = 0.0105 and
ε = 0.011, respectively). At the transition region, it is observed that the system assumes different states
of synchronization (different values of Δ).

Figure 9 depicts the probability distribution functions (PDFs) of the determinism time series
with a length of 107 points, since long-term data is necessary to evaluate the temporal behavior of
the networks [26]. The first row, panels (a), (b), (c), and (d) represent the scale-free network while the
second row, panels (e), (f), (g), and (h) represent the small-world one. Panels (a) and (e) represent the
unsynchronized state of scale-free and small-world networks, respectively, where ε = 0.002. In this
case, a uni-modal distribution with a small dispersion over the mean value of Δ is observed, indicating
the unsynchronized state [26].

Figure 9. Probability distribution functions (PDFs) from the determinism time series (Δ) depicted
in Figure 8. The panels follow the same scheme as in Figure 8, where the first row refers to the
scale-free network, and the second row refers to the small-world network. In the transition region, the
distribution is not symmetric and indicates a non-stationary behavior; however, only in the small-world
case is the existence of two states observed.

If the coupling strength is increased, the networks assume the transition states, where the temporal
standard deviations (σ) of the determinism time series are higher for both topologies considered, thus
an intermittent behavior is expected. In this way, panels (b), (c), (f), and (g) represent the states at the
transition region for the scale-free and small-world networks. Here, in panel (b) ε = 0.0045 and in
panel (c) ε = 0.0050, a non-symmetric distribution of Δ(t) is observed, which indicates a non-stationary
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situation. In panels (f) and (g), the PDFs of Δ(t) at the transition state of the small-world network
is depicted, where ε = 0.0105 and ε = 0.0110, respectively. Here, a non-stationary behavior is again
observed since there is a non-symmetric distribution. However, for these cases, the existence of two
states with similar occurrence probabilities is observed in the presence of two peaks in the PDFs.
A similar scenario is observed in [9,18,26]. In fact, in [9] , the distribution of Δ with two peaks is
observed in the small-world case. In the random case, a main peak and a shoulder in the distribution
of Δ is observed. A comparison between the random and scale-free topologies makes it possible to
notice that in both cases, there is no two-state intermittence; however, the random case presents a more
unsymmetric PDF of Δ, which indicates a higher level of non-stationarity.

Finally, panels (d) and (h) of Figure 9 are representative of phase synchronized global stable states
for scale-free and small-world networks where ε = 0.040. The PDFs are uni-modal with a very small
dispersion over the mean value, which indicates that the state is stationary and globally stable [26].
It is important to emphasize that for the scale-free case (panel (d)), the mean value of the PDF of Δ is
higher than in the small-world case (panel (g)), which suggest a higher level of phase synchronization.

6. Conclusions

The characteristics of synchronization in complex networks are very interesting and can be
used for application in many nature phenomena [1,2,42,60]. Recently, studies have identified a
non-stationary transition in bursting neurons networks [11,18,26] where, in some cases, the existence
of two-state on–off intermittency is observed.

In order to analyze neural networks, we have used the Kuramoto order parameter [3], which uses
the individual signal of all neurons in the network through the association of a phase based on the
bursting activity. Moreover, we used recurrence quantification analysis [41,42,65], which is based on a
time series that characterize the dynamical system. To analyze the mean field time series, we used the
determinism, which is the ratio of recurrent points that belong to a diagonal structure.

Here, we have focused on a scale-free network composed of 1024 bursting neurons (oscillators)
with 4088 connections and a small-world network composed of 1024 bursting neurons coupled trough
4096 local connections and 554 non-local ones. We noted a clear transition from unsynchronized to
phase synchronized states where non-stationary behavior was observed in both cases. A similar
scenario has been observed in [9,11,26,27,69]. Despite the higher number of connections in the
small-world case, the transition region and the phase synchronized states were observed for smaller
values of coupling strength in the scale–free case.

We have based our analyses in methodology proposed in [9], but here, we extended the study to
a scale-free connection architecture since topology plays an important role in the dynamics of systems.
It is important to emphasize that there are significant differences between small-world, random, and
scale-free topologies. The small-world connection architecture is characterized by a regular local
connections scheme with the addition of non-local ones. The random connection architecture is
characterized by a more homogeneity in the connectivity, while the scale-free one is the opposite, since
there are hubs of connections. The results have shown that the small-world case demonstrates the
existence of two-state intermittence, as explored in [68]. Regarding the scale-free network, despite
the non-stationary transition, this phenomenon is not observed. Similar results are obtained in [9] for
random networks; however, it is also possible to observe differences between scale-free and random
networks, as the random ones present a more non-stationary transition.

The study of complex networks has many application fields and is of great theoretical interest.
Here, we have demonstrated that small-world and scale-free networks composed of bursting neurons
can show non-stationary behavior at the transition to phase synchronization. These kinds of topologies
find support in real neural systems, besides a large class of dynamical systems [1,23,50,52]. Thus,
the present paper offers a theoretical/computational approach to understanding neural phenomena,
since synchronization and intermittent behavior may be related to neural diseases [70,71] such as
Parkinson’s disease, autism, and Alzheimer’s [72–75].
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Abstract: The synchronization of neurons is fundamental for the functioning of the brain since its lack
or excess may be related to neurological disorders, such as autism, Parkinson’s and neuropathies such
as epilepsy. In this way, the study of synchronization, as well as its suppression in coupled neurons
systems, consists of an important multidisciplinary research field where there are still questions to be
answered. Here, through mathematical modeling and numerical approach, we simulated a neural
network composed of 5000 bursting neurons in a scale-free connection scheme where non-trivial
synchronization phenomenon is observed. We proposed two different protocols to the suppression
of phase synchronization, which is related to deep brain stimulation and delayed feedback control.
Through an optimization process, it is possible to suppression the abnormal synchronization in the
neural network.

Keywords: neural network; synchronization; suppression of synchronization

1. Introduction

For years, the study of synchronization has been important since this phenomenon has been
observed in many different biological systems, e.g., firefly communities, pacemaker cells of the
heart, and crickets that chirp in unison [1–5]. In addition, the complexity seen in the brain is
directly related to the distinct activation patterns of the neurons, which can be understood as
a synchronization phenomenon. Particularly, the synchronization of neurons is important since
anomalous synchronization can disrupt the brain functioning, generating disorders, such as
Parkinson’s disease (PD) and autism [6–10].

A possible neurosurgical treatment for PD is called deep brain stimulation (DBS), which consists
of the insertion of an electric probe that emits electromagnetic signals in a target brain area [9,11,12].
A more recently developed technique is the noninvasive DBS, which consists of temporally interfering
electric fields [12] generated outside of the cranium. Despite its long history of use, it is still unclear how
DBS works [9,10]. Some studies indicate that high-frequency DBS replaces pathological low-frequency
network oscillations in the rat model of Parkinson’s disease with a regularized pattern of neuronal
firing [13], and there is evidence that the DBS releases the activity patterns of groups of cells in the
subthalamic nucleus that present abnormal synchronization due to PD, which destroys neurons in
basal ganglia [14]. Depending on the frequency of the signal, it allows suppressing the symptoms of
Parkinson’s disease [13,15].

A healthy human brain consists of ∼ 1011 interconnected neurons through ∼ 1015 synapses [16,17].
In the theoretical point of view, a possible way to study coupled neurons is given by the computational
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simulation of complex networks, where each site of the network corresponds to a neuron and its
connections are represented by the edges of the network [18]. In this scenario, distinct topologies or
connection architectures have been successfully used to simulate the interconnections of the human
brain, such as small-world, scale-free and random topologies [18–23].

In this study, we simulated a neural network composed of N = 5000 neurons in a scale-free
topology, where each neuron was modeled by a Hodgkin–Huxley-type model [24–26]. This model is
characterized by the insertion of two temperature sensitive parameters, and two additional slow ionic
currents to the original ideas of Hodgkin and Huxley [27], which can be understood as the contribution
of calcium ion channels [28].

It is observed in the literature that a neural network under a small-world topology can display
abnormal phase synchronization for weak coupling regime since the phase synchronization regime in
this region is characterized by a non-monotonic evolution of synchronization levels as a function of the
coupling between neurons [29–31]. In fact, this kind of behavior has also been observed in non-identical
coupled Rösller oscillators [32]. Recently, the mechanism behind the abnormal synchronization in
a neural network composed of bursting neurons is explored and the relationship between the individual
neuron behavior and the network synchronization helps to understand the phenomenon [33,34]. In [33],
it is shown that the occurring of abnormal synchronization is related to the periodic inter-burst interval
of the uncoupled neuron. Besides that, in [34], it is observed that the abnormal synchronization
occurs due to an interplay between the periodic individual behavior and the influence of coupling
strength, which is strong enough to induce the network to phase synchronization without destroying
the influence of individual periodic behavior.

Here, we extend the study of abnormal synchronization to the scale-free connection architecture,
since the topology plays an important role in the dynamics of systems [35–37]. Scale-free topology is
different from the small-world one since the scale-free scheme presents a high degree of heterogeneity
where neurons with a high connectivity degree are connected with neurons with low connectivity
degree [37,38]. Thus, we study the existence of abnormal synchronization in a scale-free neural network
and its suppression by the application of a disturbance in the network neurons. This perturbation is
characterized by the application of a pulsed external current, which can be described as a theoretical
interpretation of the DBS treatment.

We considered another suppression strategy that consists of the reapplication of a fraction of the
signal generated by the neurons, which is called delayed-feedback-control (DFC). It was first applied
experimentally in vitro in a spontaneously bursting neural network [39,40] and is frequently used in
neural stimulation treatments [41,42].

To quantify synchronization of the network, we used the order parameter proposed by
Kuramoto [43], which is able to capture information about phase synchronization of the system
using data of each neuron. In this sense, we show that the suppression methods proposed are able
to suppress the anomalous synchronization without affecting the regular synchronized states, which
occur for large values of the coupling.

The paper is organized as follows. In Section 2, we introduce the details of the connection scheme
and the used neuronal model. In Section 3, we introduce the quantification of PS by using of the
Kuramoto order parameter. In Section 4, details of the perturbation methods imposed into the system,
as well as the results obtained with each perturbation are discussed. Our conclusions are in the
last section.

2. Neural Model and Connection Scheme

We studied the dynamical behavior of a neural network composed of 5000 neurons connected in
a scale-free topology. In this case, the number of connections per node presents a statistical power-law
dependence P(n) ∼ n−κ [44,45]. The values of the scaling exponent are within 2 ≤ κ ≤ 2.2 and the
average connection 〈n〉 ≈ 4 [21,41,46], where P(n)dn is the probability to find a node with a degree in
the interval from n to n + dn.
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Scale-free networks can be obtained by the Barabasi–Albert procedure through a sequence of
steps starting from an initial lattice with a small number N0 of nodes randomly connected [44,45].
At each step, a new node is inserted in the network, which is randomly connected to n ≥ 2 nodes.
The process is repeated until the network reaches the desired number of nodes. In this work, we used
N = 5000 nodes. To generate a scale-free network, we used the Python library NetworkX [47], which
have us κ ≈ 2.2.

To simulate the individual neuron dynamics, we used a Hodgkin–Huxley-type model [25,26],
where the adaptation takes into account the addition of two slow ionic fluxes. Mathematically,
the neuronal model used in this work describes the temporal dynamics of the neuron membrane
potential as a function of the ionic fluxes. This adaptation also includes temperature sensitive
parameters. The temporal evolution of the membrane potential Vi is described by

C dVi
dt

= −Ji,Na − Ji,K − Ji,sd − Ji,sa − Ji,L + Ji,coup, (1)

where C is the specific membrane capacitance of neurons measured in μF/cm2; Vi is measured in
mV; Ji,Na, Ji,K, and Ji,L are the sodium, potassium and non-gated channels fluxes of the original
Hodgkin–Huxley model [27], respectively, which are measured in μA/cm2; and Ji,sd and Ji,sa are the
two slow ionic fluxes added by Braun et al. to this model and the are associate to calcium flux [28].

The electrical fluxes related to the ion and leak channels are given by conductance-based
expressions [25]

Ji,Na = ρgNaαi,Na(Vi − ENa), (2)

Ji,K = ρgKαi,K(Vi − EK), (3)

Ji,sd = ρgsdαi,sd(Vi − Esd), (4)

Ji,sa = ρgsaαi,sa(Vi − Esa), (5)

Ji,L = gL(Vi − EL), (6)

where gNa, gK, gsd, gsa, and gL are the maximum (specific) conductances measured in mS/cm2,
and ENa, EK, Esd, Esa, and EL denote the reversal Nernst potentials for each ionic current measured in
mV. The term ρ refers to a temperature dependence of the model and it is described by

ρ = ρ
(T−T0)/τ0
0 , (7)

where T, T0 and τ0 and ρ0 are constants of the model.
The temporal evolution of the activation functions αi,Na, αi,K,αi,sd, and αi,sa are described by

dαi,Na

dt
=

φ

τNa
(αi,Na,∞ − αi,Na), (8)

dαi,K

dt
=

φ

τK
(αi,K,∞ − αi,K), (9)

dαi,sd

dt
=

φ

τsd
(αi,sd,∞ − αi,sd), (10)

dαi,sa

dt
=

φ

τsa
(−η Ji,sd − γαi,sa), (11)

where τNa, τK, τsd, and τsa are constants [25]. The parameter η works to increase calcium ion
concentration following Ji,sa, while γ accounts for active the elimination of intracellular calcium [28].
φ is another temperature dependence of the model, given by

φ = φ
(T−T0)/τ0
0 . (12)
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The functions αi,Na,∞, αi,K,∞, and αi,sd,∞ are described by

αi,Na,∞ =
1

1 + exp[−sNa(Vi − V0Na)]
, (13)

αi,K,∞ =
1

1 + exp[−sK(Vi − V0K)]
, (14)

αi,sd,∞ =
1

1 + exp[−ssd(Vi − V0sd)]
, (15)

where sNa, sK, ssd, V0Na, V0K, and V0sd are constants whose values are given in Table 1 following
Braun et al. [25].

The coupling term Ji,coup, in Equation (1), is an excitatory chemical synapse, since the synapse does
not occur directly. In this way, the ith postsynaptic neuron receives signals from presynaptic ones [48]

Ji,coup =
ε

〈n〉
N

∑
j=1

ei,jrj(Vsyn − Vi), (16)

where ε is the coupling parameter that controls the coupling intensity. 〈n〉 is the normalization factor,
defined as the average of connections number, which is 〈n〉 ≈ 4. Vsyn is the synaptic reversal potential,
set here as 20 mV, which assures that the contribution coming from the coupling is positive for all
instant of time, characterizing an excitatory synapse. ei,j represents the elements of the adjacency
matrix, which is a scale-free type. In this case, if the ith and jth neurons are connected, ei,j = 1;
otherwise, ei,j = 0.

Added to the kinetic variable of the model, ri refers to the fraction of bound receptors available to
receive a connection. We used the equation of ri proposed by Destexhe et al. [48],

dri
dt

=

(
1
τr

− 1
τd

)
1 − ri

1 + exp[−s0(Vi − V0)]
− ri

τd
, (17)

where s0 is a unitary constant measured in (1/mV), V0 = −20 mV, and τr = 0.5 ms and τd = 8 ms are
constants associated to the rises and decays of the synaptic transition, respectively.

To integrate the set of coupled equations composing the model, we used Adams’
predictor-corrector method [49] with an absolute tolerance less than 10−8. Figure 1a depicts the
typical membrane potential for a neuron, using the fixed set of parameter values shown in Table 1.
As observed, the neuron depicts bursting dynamics characterized by a sequence of spikes followed by
a resting time [50]. We refer to this dynamics as bursting regime and, throughout the coupling interval
used here, the suppression process ensured that this regime is not lost, which makes possible the phase
association and synchronization evaluation for all interval of coupling and suppression strength.

Figure 1. (a) Evolution of the dynamic behavior of the membrane potential Vi for the
Hodgkin–Huxley-type model using the constants defined in Table 1. (b) The recovery variable Ui ≡ 1/αi,sa

computed for each neuron, where the maximum of Ui corresponds to the beginning of each burst.
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Table 1. Parameter values of the neuronal model according to Braun et al. [25].

Membrane Capacitance C = 1.0 μF/cm2

Characteristic Times (ms) τNa = 0.05 τK = 2.0 τsd = 10 τsa = 20

Maximum Conductances (mS/cm2)
gNa = 1.5 gK = 2.0 gsd = 0.25 gsa = 0.4
gL = 0.1

Reversal Potentials (mV) ENa = 50 EK = −90 Esd = 50 Esa = −90
EL = −60 V0Na = −25 V0K = −25 V0sd = −40

Other Parameters
ρ0 = 1.3 φ0 = 3.0 T0 = 25 ◦C τ0 = 10 ◦C

sNa = 0.25 (1/mV) η = 0.012 μA γ = 0.17 sK = 0.25 (1/mV)
ssd = 0.09 (1/mV) T = 13 ◦C

3. Phase Synchronization Quantifier

To quantify phase synchronization in the bursting regime, we associated a geometric phase to
the sequence of bursts for each neuron. Figure 1b shows the auxiliary variable Ui ≡ 1/αi,sa computed
using Equation (11), where each maximum of Ui corresponds to the beginning of a burst of the ith
neuron [51]. If tk,i is the beginning time of the kth burst of the ith neuron, the duration of the burst
would be tk+1,i − tk,i, with k = 0, 1, 2 . . . and i = 1, 2, . . . , N, consequently the phase would vary from
2πk to 2π(k + 1), and it is defined for specific time t as [52]

θi(t) = 2πki + 2π
t − tk,i

tk+1,i − tk,i
, tk,i ≤ t < tk+1,i. (18)

Considering the geometric phase variable θi as defined in Equation (18), to quantify PS, we used
the modulus of the Kuramoto order parameter R(t) [53]

R(t) =

∣∣∣∣∣ 1
N

N

∑
i=1

eiθi(t)

∣∣∣∣∣ , (19)

where R(t) gives us a number between 0 (completely unsynchronized) and 1 (completely
phase synchronized).

The order parameter oscillates in time for not fully synchronized neurons [43] and its temporal
mean value is defined as

〈R〉 = 1
M

M

∑
j=1

R(t′j), (20)

being t′1 = ti, t′2 = ti + h, · · · , t′M = t f , where h = 0.01, and ti and t f are initial and final times of the
computation of R(t).

To show the synchronization behavior of the network, Figure 2 depicts 〈R〉 as a function of the
coupling parameter ε of a neural network given by Equations (1)–(17). To avoid any trend in the result,
we used random initial conditions in the following intervals: Vi ∈ [−65.0; 0.0]; αNa,i, αK,i, αsd,i, αsa,i,
ri ∈ [0.1; 1.0]. Observe that, for ε > ε∗ = 0.007 (mS/cm2), the network followed a route of globally
stable phase synchronized state, since 〈R〉 approached 1 as the coupling strength was increased. For the
interval of coupling strength 0.002 < ε < 0.007, the network exhibited a local maximum of phase
synchronization (ε ≈ 0.004). This behavior was also observed in small-world network [30,31,51], which
characterized a non-monotonic evolution of the synchronization level as a function of the coupling that
could be understood as an abnormal synchronization since PS occurred for a coupling ε < ε∗. In this
way, it is known that several brain disorders, such as Parkinson’s disease and autism, are related to
abnormal neuronal synchronization [6–9], thus it is expected that the application of synchronization
suppression methods may be useful to vanish the anomalous synchronization, as observed in Figure 2.
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Figure 2. The mean order parameter 〈R〉 as a function of the coupling parameter ε for a scale-free
neural network with 5000 identical neurons with randomly distributed initial conditions. The dashed
vertical line represents the critical coupling ε∗.

4. Results and Discussions

Considering a scale-free neural network composed of N = 5000 identical neurons, we used
the mean value of the Kuramoto order parameter 〈R〉 to evaluate the PS for different suppression
synchronization protocols. Here, we used a transient time given by ti = 150 s and the total simulation
time was set to t f = 250 s.

Motivated by experimental results [12,15], we made a perturbation in the network by applying
an external pulsed current λ(t) in Equation (1) of the neuronal model. Mathematically, the suppression
method can be described as

λ(t) =
λ0

2
+

∞

∑
m=1,3,···

2λ0

mπ
sin
(

2mπt
τ

)
, (21)

where λ0 is the amplitude of each pulse measured in μA/cm2, and τ is the period for which the current
is successively turned on and off and measured in seconds. Figure 3 shows the evolution of λ(t)/λ0 as
a function of t/τ.

Figure 3. The on-off pulse evolution of λ(t)/λ0 given by Equation (21).

Figure 4 depicts 〈R〉 as a function of the coupling ε for different values of amplitude λ0.
For amplitudes lower than λ0 < 0.05 (μA/cm2), the network still presented PS for small values
of ε. However, for λ0 ≥ 0.05, the anomalous PS was suppressed without altering the globally stable
state of synchronization for coupling value higher than the critical value ε∗ (which remains constant in
ε∗ ≈ 0.007 for λ0 < 0.2). The frequency ν = 1/τ was fixed at 140 Hz (which means τ ≈ 0.0071 s), since
experimental results show that only a high frequency currents (ν > 100 Hz [9,10,54]) could restore
normal neural behavior in Parkinson’s Disease (PD) [13].

35



Math. Comput. Appl. 2019, 24, 46

Figure 4. 〈R〉 as functions of ε and the amplitude of the external pulsed current λ0, for a high
frequency ν = 140 Hz. For amplitudes λ0 ≥ 0.05, the method successfully suppressed the anomalous
synchronization occurring for coupling strength ε � 0.007..

The next step consisted of the study of the heterogeneity of the scale-free network because one
of the characteristics of the scale-free topology is the existence of hubs, which are characterized by
neurons with high connectivity in the network [41,44,45]. Intuitively, it is believed that the perturbation
presents greater influence when applied in the hubs since they have high connectivity in the network.
We made a change in the applied current to apply the current in select groups of neurons

λ(t, λ0, τ) → λi(t, λ0,i, τ)

where λ0,i = λ0 if i ⊂ G or λ0,i = 0, otherwise G is a subset of neurons in the network. Here, it was
studied how the PS varied for three different subsets G. Firstly, we applied the current in the neurons
with higher connectivity degree of the network, in this case, the order of G was |G| = Nhubs. In the
second case, the pulsed current was applied in random neurons of the network, and then |G| = Nrand.
In the latter case, a neuron in the network was randomly chosen and the current was applied in that
neuron and its neighbors, which formed a package of neurons that received the application with
|G| = Npackage. Figure 5 depicts an example of a subset G with λ0,i/λ0 = 1, in this case |G| = 1000.
The Figure 5a shows a subset of random neurons and Figure 5b a subset of a package of neurons.

Figure 5. Amplitude of the external current λ0,i for: (a) random subset of neurons; and (b) package
subset of neurons.

Figure 6 depicts the mean value of Kuramoto order parameter 〈R〉 × ε as a function of the order
of the subset |G| with λ0 = 0.1. In Figure 6a a subset of the neurons with higher connectivity in the
network with |G| = Nhubs is chosen, Figure 6b a subset of random neurons with |G| = Nrand and
Figure 6b a package of neurons with |G| = Npackage. Note that the three surfaces have the same shape.
In this case, when the order of |G| � 2000, the PS was suppressed, that is, now the network depicted
a monotonic evolution of the synchronization as ε increased.

36



Math. Comput. Appl. 2019, 24, 46

Another strategy consisted in the application of a delayed mean field signal V̄ over the network

ξ(t) = ξ0V̄(t − tdelay), (22)

where ξ0 (similarly to λ0) is the current amplitude given by 10−4 μA/cm2, and tdelay (ms) is the delay
time between the generation of the mean field and the re-application of the signal. V̄ is the mean field
potential of the network, which is defined by

V̄(t) =
1
N

N

∑
i=1

Vi(t). (23)

(a) (b)

(c)

Figure 6. 〈R〉 as functions of ε and the order of the subset |G| which is applied an external pulsed current
with λ0 (i ⊂ G) for three different subsets G: (a) G consists of the neurons with higher connectivity of
the network (hubs); (b) G consists of random neurons; and (c) G consists of packages of neurons.

Figure 7 depicts the V̄(t) for three different values of coupling ε. In Figure 7a, ε = 0.001, the mean
field display a small amplitude variation since the network presents an unsynchronized behavior.
In Figure 7b, ε = 0.007 and, in Figure 7c, ε = 0.020, the mean field display an oscillatory behavior, since
in this regime the neurons of the network presents a signal of partial synchronization.

In this approach, V̄ < 0, ξ0 > 0 (ξ0 < 0) characterizes an inhibitory (excitatory) current which
decreases (increases) the membrane potential Vi. The natural period of the Hodgkin–Huxley-type
neuron with the parameters in Table 1 is t0 ≈ 1, 250 ms. In Figure 8, we show how the PS varies with the
application of ξ(t) in all the neurons as a function of the amplitude ξ0 and the coupling parameter ε for
three different delay time tdelay, in panel Figure 8a, tdelay = 0, that is, the mean field affects the network
instantaneously; when −15 < ξ0 < −5, the network is characterized by a monotonic evolution of the
synchronization the anomalous PS is suppressed; when ξ0 > −5, the anomalous regime still occurs;
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and, particularly, when ξ0 > 5 the synchronization for coupling ε < ε∗ is amplified with 〈R〉 ≈ 0.95.
In Figure 8b, tdelay = 500, which is tdelay ≈ t0/2, and the mean field with delay V̄(t − t0/2) is in
anti-phase with the V̄(t), for ξ0 < −7.5 the anomalous PS is suppressed, otherwise the network
still depicts a non-monotonic evolution of the 〈R〉 which characterizes abnormal synchronization.
In Figure 8c, tdelay = 1000 ≈ t0, as expected; the result is similar to Figure 8a because of the oscillatory
behavior of the mean field, that is V̄(t − t0) ≈ V̄(t), the numerical value of ξ(t) is the same in
both cases.

Figure 7. The evolution of the mean field V̄ in time for: (a) ε = 0.001 (unsynchronized); (b) ε = 0.007
(≈ ε∗); and (c) ε = 0.020 (synchronized).

(a) (b)

(c)

Figure 8. 〈R〉 as functions of ε and the amplitude of the current ξ0 for different delay times tdelay:
(a) tdelay = 0; (b) tdelay = 500 ms; and (c) tdelay = 1000 ms.
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5. Conclusions

In this paper, we model a neural network composed of N = 5000 Hodgkin–Huxley-type
neurons to study the synchronization phenomena. A similar approach have been used to analyze
small-world neural networks [31,33,55]. However, the influence of topology plays an important
role in the synchronization characteristics [22,35,38]. In this way, we simulated a scale-free network
since there are great differences regarding the heterogeneity of the network in comparison to the
small-world one [37,38]. It was shown that the scale-free network displays a non-monotonic evolution
of the phase synchronization as the coupling between neurons increases. A similar scenario has been
observed in small-world networks, which is called “anomalous phase synchronization” [30,31,55],
since the traditional behavior should monotonically transition to PS [33]. Especially, Parkinson’s
disease and some episodes of seizure behavior generated by epilepsy may be associated to
anomalous synchronization.

We have proposed two methods of suppression of the anomalous synchronization behavior, both
based on treatment for neurological disorders, which consist in the application of an external current
in the neurons of the network [9,10].

The first method consists of electrical pulses imposed all over the network. It was shown
that, for an amplitude higher than a critical value λ0 > 0.05, the anomalous synchronization was
suppressed. As a second approach, we studied how the heterogeneity of the scale-free network
affects the anomalous PS. We used three different protocols applying the pulsed current in subsets of
hubs,; random neurons, and a selected package of neurons. We showed the existence of a threshold,
2000 neurons (40% of the network), which must be disturbed to reach the suppression of anomalous PS
in all cases. Such a conclusion implies that the synchronization is related to the individual dynamics of
each neuron rather than the network topology [33].

In the second method, only a small fraction ξ0 > −0.0005 μA/cm2 (with tdelay = 0) of the delayed
signal of the mean field was applied to all neurons and the abnormal synchronization was suppressed.

Finally, we showed that the delayed signal of the mean field potential had a greater contribution
in the region where the suppression was not reached. When tdelay ≈ t0/2, it was observed that the
anomalous synchronization still persisted but with a lower intensity (〈R〉 ≈ 0.6) compared to the
non-delayed scenario (tdelay = 0).
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Abstract: Billiards exhibit rich dynamical behavior, typical of Hamiltonian systems. In the present
study, we investigate the classical dynamics of particles in the eccentric annular billiard, which has a
mixed phase space, in the limit that the scatterer is point-like. We call this configuration the near
singular, in which a single initial condition (IC) densely fills the phase space with straight lines.
To characterize the orbits, two techniques were applied: (i) Finite-time Lyapunov exponent (FTLE)
and (ii) time recurrence. The largest Lyapunov exponent λ was calculated using the FTLE method,
which for conservative systems, λ > 0 indicates chaotic behavior and λ = 0 indicates regularity. The
recurrence of orbits in the phase space was investigated through recurrence plots. Chaotic orbits
show many different return times and, according to Slater’s theorem, quasi-periodic orbits have
at most three different return times, the bigger one being the sum of the other two. We show that
during the transition to the near singular limit, a typical orbit in the billiard exhibits a sharp drop
in the value of λ, suggesting some change in the dynamical behavior of the system. Many different
recurrence times are observed in the near singular limit, also indicating that the orbit is chaotic. The
patterns in the recurrence plot reveal that this chaotic orbit is composed of quasi-periodic segments.
We also conclude that reducing the magnitude of the nonlinear part of the system did not prevent
chaotic behavior.

Keywords: recurrence time; Slater’s theorem; Lyapunov exponent; point scatterer; annular billiard

1. Introduction

The problem of a one-point particle, or an ensemble of non-interacting point particles, moving
with constant velocity inside a bounded region, subject to elastic collisions with the boundaries, is
generically known as a billiard. Such dynamical systems are described by nonlinear mappings and
have great interest in several branches of physics [1–6]. Even billiards with simple geometry exhibit
rich dynamical behaviors, typical of Hamiltonian systems, and depending on the geometry of the
boundaries and the control parameters, the associated phase space can be: I—regular, consisting
of quasi-periodic or periodic orbits lying on Kolmogorov–Arnold–Moser (KAM) tori; II—chaotic,
with orbits that densely fill the whole phase space; or III—mixed, in which regular motion coexists
with chaotic motion. This is the case with most non-integrable Hamiltonian systems, wherein the
characterization of orbits as regular or chaotic is of great interest [7].

As a consequence of mixed phase space, some chaotic orbits that come sufficiently close to a KAM
island tend to spend a long time around that region, almost behaving as regular orbits. Following this
transient time, these orbits return to the chaotic sea. This phenomenon is known as stickiness and it
influences the transport properties of the system [6,8–10].

To distinguish chaotic orbits from regular ones, a standard approach that has been frequently
employed is the estimation of Lyapunov exponents [6,11]. For conservative systems, regular orbits
have null Lyapunov exponents, while chaotic orbits have at least one positive Lyapunov exponent. For
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Hamiltonian systems, the sum of the exponents must be zero in order to satisfy Liouville’s theorem.
In numerical applications, finite-time Lyapunov exponents (FTLEs) [6,11–13] can be calculated, and
although they are suitable to investigate systems with a mixed phase space, the existence of stable
islands delays the convergence of chaotic orbits, wherein simulations of high computational effort
are required to calculate the exponents. The distribution of the FTLEs over initial conditions carries
information about the system dynamics. For completely chaotic systems, a Gaussian distribution is
expected. If a small amount of regular structures are present in the phase space, the orbits affected by
stickiness will have smaller FTLE values, which induces a tail in the distribution, making it asymmetric.
If a large amount of regular structures are present, the system has strong sticky motion and the
distribution of the FTLEs is multimodal [14,15].

In the late 1960s, an interesting and not well-known theorem was proposed by Slater [16], whose
nonlinear version was well adapted in [6,17]. It states that it is possible to distinguish quasi-periodic
dynamics from chaotic dynamics by analyzing the Poincaré return times, also called recurrence times,
and that for any connected interval of size ε, there are no more than three different return times, the
largest of them being the sum of the other two.

The technique of recurrence plots (RPs) [18,19] has been applied for the visualization and analysis
of nonlinear experimental data in many different fields, from biological sciences [20–22] to complex
systems [23–25]. This tool was first introduced in the context of dynamical systems to visualize the
recurrence of trajectories in the phase space [19]. As chaotic and quasi-periodic orbits have different
recurrence properties, RPs allow us to distinguish the behavior of these orbits, identify the interval
of time that a chaotic orbit has been trapped by stickiness, and even quantify stickiness by using
recurrence quantification analysis [26].

Quantum mechanical versions of billiards provide useful models to investigate the quantum
properties of certain systems, as it is possible to identify signatures of the structures present in the
phase space of their classical analogue in the quantum wave functions [27–29]. The distribution of
spacings between the neighbor energy levels of a quantum billiard obeys a Poisson distribution for
classically integrable systems and a Wigner distribution (or GOE distribution) for classically chaotic
systems. In the early 1990s, a billiard with a point-like scatterer was first proposed to investigate the
quantum aspects of systems whose corresponding classical limit was between integrable and chaotic.
This class of systems is known as singular (or Šeba) billiards [27] and the distance between its neighbor
energy levels obeys a Poisson distribution.

A zero-size scatterer is an idealized limit of a small obstacle [29]. In this work, we investigate
the classical dynamics of a billiard with a very small scatterer through its recurrence properties and
estimations of the largest Lyapunov exponent (LLE). The chosen model is the annular billiard, which
has been the subject of many analytical and numerical studies [28,30–35]. It consists of a particle
confined in the region between two circumscribed circumferences of radii R and r, with r < R. When
the circumferences are concentric, the energy and angular momentum are both conserved and therefore
the system is integrable, since the plane billiard has two degrees of freedom. If the circumferences
are eccentric, the angular momentum is altered with the collisions with the inner circle and chaotic
behavior may be observed. The limit of the very small scatterer is obtained by choosing r� R and we
have called this limit to be a near-singular billiard.

It has been postulated in [36] that it is not possible to remove the chaotic behavior of chaotic
nonlinear systems by reducing the magnitude of the nonlinear part. The author has arrived at this
conclusion by examining a few cases of chaotic systems, described by one-dimensional mappings,
when the nonlinear part is reduced. This work also aims to verify the validity of this proposition for
our model, which is described by a two-dimensional nonlinear mapping.

2. Materials and Methods

In this section we will discuss the annular billiard model, the numerical method applied to
estimate the largest Lyapunov exponent and the technique of RPs.
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The system of interest consists of a classical particle confined in the annular region limited by two
circumscribed circumferences. The geometry may be concentric or eccentric. The radius of the outer
circle is defined as R = 1, the radius of the inner circle (the scatterer) as r, and the eccentricity as d. See
Figure 1 for an example of the annular billiard geometry.

 
(a) (b) 

Figure 1. Geometric scheme of a particle in the annular billiard. (a) Type A movement, where the
particle does not collide with the scatterer between two successive collisions with the outer boundary.
(b) Type B movement, in which a collision with the scatterer occurs (adapted from [31]).

On the billiard, a particle moves freely in a straight line with constant velocity until it elastically
collides with a boundary. Succeeding a collision, the particle´s trajectory is specularly reflected, i.e.,
the angle of reflection is equal to the angle of incidence. From Figure 1, we can see that the position
at a collision with the outer boundary is determined by the angle of incidence α and the arc-angle θ,
for θ ∈ [−π,π] and α ∈ [−π/2,π/2]. The map that describes the dynamics projects the coordinates
(θn,αn) of a collision with the outer boundary in the coordinates (θn+1,αn+1) of the next collision.

There are two kinds of motion which are distinguished by the tangency condition, which reads
as follows: ∣∣∣sin (αn) − d sin (θn − αn)

∣∣∣ ≤ r. (1)

If the combination of (θn,αn) does not satisfy Condition (1), the dynamics is described by the map MA
and therefore the movement is of type A.

Type A: Between two successive collisions with the outer boundary, the particle does not collide
with the scatterer, and so the map MA reads as follows:

MA :
{

αn+1 = αn

θn+1 = π+ θn − 2αn
. (2)

On the other hand, if Condition (1) is satisfied, the dynamics is described by the map MB and therefore
the movement is of type B.

Type B: Between two successive collisions with the external circle, the particle collides with the
internal circle, and the dynamics is given by

MB :
{
αn+1 = sin−1 (r sin β− d sinθa)

θn+1 = −αn+1 + θa
, (3)

where
θa = 2β+ θn − αn

β = sin−1
{1

r
[sin (αn) − d sin (θn − αn)]

}
.

(4)
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The mapping equations have been obtained via geometrical considerations and a more detailed
discussion can be found in [28].

The trajectories that will never cross the caustic (an auxiliary circle centered at the origin, with a
radius of r + d) or never hit the scatterer are the so-called whispering gallery orbits (WGO). In order to
keep the phase space area filled by the WGO constant, when varying the eccentricity, the radius of
the caustic in the simulations was fixed as r + d = 0.7005. The canonically conjugate pair of variables
used to determine the Poincaré section were S = sinα, with |S| ≤ 1, and L = (θ/2π), with |L| ≤ (1/2),
collected at every collision with the outer boundary. It is worth emphasizing that S is the angular
momentum of the particle with respect to the origin of the outer boundary at the moment of collision.

The conditions to generate periodic orbits in the concentric annular billiard are well-known. For
trajectories that do not hit the scatterer, the dynamical behavior is the same as in the circular billiard,
and the initial condition (θ0,α0) generates a periodic orbit if

α0 =
(1

2
− K

N

)
π, (5)

where N is the period of the orbit and K is the number of turns made by the particle around the billiard.
Due to the billiard’s symmetry, any value of θ0 generates an orbit with the same period.

For trajectories that hit the inner boundary, the periodic orbit condition is

α0 = arctan
[

sin (π/N)

1/r− cos (π/N)

]
. (6)

The Lyapunov exponents quantify the average expansion or contraction of a small volume of
initial conditions. Given a dynamical system represented by the orbit {→vi}, with i = 0, . . . , n being
the number of the iteration, in a phase space of arbitrary dimension, the stability of the orbit may be
verified through the evolution of a satellite orbit named {→vi

′}. Initially, both orbits are separated by an
infinitesimal distance δv0, with δv0 = ||→v0 − →v0

′||, where the zero index indicates the initial iteration.
For chaotic orbits, this distance grows exponentially with time, according to

δvn ∝ δv0eλn, (7)

where λ is the exponential expansion rate. This allows us to define the Lyapunov exponent as

λ = lim
n→∞ lim

δv0→0

1
n

ln
(
δvn

δv0

)
. (8)

This equation estimates the average exponential separation rate between the original orbit and its
satellite one. If λ is greater than zero, the orbit is chaotic. Otherwise, it is periodic or quasi-periodic.

The numerical procedure to estimate the largest Lyapunov exponent in the annular billiard with
the FTLE method can be described as follows: First, we truncate the time evolution at a finite, but
long, time. Then, given an initial orbit (L0, S0) and a satellite orbit (L′0, S′0), initially separated by the
distance δ0, set as δ0 = 10−10, we evolve both orbits according to the mapping dynamics. After a
defined rescaling time 	, we measure the distance between them as

δ	 =

√
(ΔL)2 + (ΔS)2, (9)

where ΔL = L	 − L′	 and ΔS = S	 − S′	. The distance between orbits δ	 is used to rescale the satellite
orbit in the same direction of the original orbit and then the procedure is restarted with

L′0 = L	 +
[
δ0(L′	 − L	)

]
/δ	

S′0 = S	 +
[
δ0(S′	 − S	)

]
/δ	.

(10)
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The FTLE is computed considering k’s successive 	 time intervals, until the predetermined finite
time is reached, with the expression

λ =
1
k	

k∑
j=1

ln (
δ j

δ0
). (11)

We will now discuss in a general way the technique of RPs. Once again, given the orbit {→vi}, with
i = 0, . . . , n being the number of the iteration, we can compute the recurrence matrix,

Ri, j = Θ(ε− ||→vi − →vj||), (12)

where ε is a predefined threshold, Θ(·) is the Heaviside function, and ||·|| is a norm defining the distance
between two points, such that Ri, j = 0 if ε − ||→vi − →vj|| < 0 and Ri, j = 1 if ε − ||→vi − →vj|| > 0. Ri, j is a
binary square matrix, with elements of ‘zeros’ and ‘ones’, and its graphical representation is called a
‘recurrence plot’. The value ‘one’ is encoded by a black point, i.e., the distance between the respective
phase space points is smaller than ε, which means that at the i-th iteration the orbit returned to the
region of the phase space where it was at the j-th iteration, after i− j iterations. The value of ‘zero’ is
encoded by a white point, i.e., the distance between the phase space points at the j-th and i-th iteration
is larger than ε, and therefore the orbit had not yet returned to the previously visited reference region
of the phase space. A white vertical line between two points provides the recurrence time or Poincaré
return time (i.e., the time that takes for the orbit to return to a previous state).

To illustrate the procedure, let us discuss the computation of the first column of the matrix
Ri, j, i.e., consider j = 0, so that the returns to the neighborhood of the phase space point

→
v0 will be

evaluated. The n + 1 elements of the first column of the matrix are given by Ri,0 = Θ(ε− ||→vi − →v0||),
with i = 0, . . . , n. The first one is R0,0 = Θ(ε− ||→v0 − →v0||) = Θ(ε) = 1, generating a black point in the
RP. Let us say that for i = 1, 2, 3, 4 the orbit has not returned to the neighborhood of

→
v0, which means

that the distance between the points
→
vi and

→
v0 is greater than ε, and so Ri,0 = Θ(ε− ||→vi − →v0||) = 0,

generating a white point in the RP. Assuming that at the fifth iteration the orbit has returned to the
neighborhood of

→
v0, the distance between

→
v5 and

→
v0 is smaller than ε, so R5,0 = Θ(ε− ||→v5 − →v0||) = 1

and a black point is shown in the RP. The number of iterations that are needed for the orbit to return
to the neighborhood of the reference point

→
v0 was 5, which is equivalent to the distance between

the two consecutive black points in the first column of the RP. The procedure continues until all the
elements of the first column of the recurrence matrix are computed, which is then is repeated for all the
other columns.

In an RP, a white vertical line between two points provides the recurrence time or Poincaré return
time (i.e., the time that it takes for the orbit to return to a previous state). A periodic orbit of period T
generates an RP with parallel diagonal lines, all of which are separated by the vertical distance T, as the
recurrence occurs at a fixed time interval (Figure 2). On the other hand, a quasiperiodic orbit provides
an RP with parallel diagonal lines, with different distances between them. These distances can be, at
most, three different ones, and the largest must be the sum of the other two, in accordance with Slater’s
theorem [16]. RPs of chaotic orbits are quite different however: They show a large number of patterns
formed by short diagonal lines and dashed lines and many different return times can be found.
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Figure 2. Recurrence plot (RP) of a periodic orbit of period T. This is a graphical representation of
the (binary) recurrence matrix R, where the value ‘one’ is encoded by a black dot and the value ‘zero’
is encoded by a white dot. In the graph, time refers to the countable parameter that represents the
evolution of an orbit of the given dynamical system, and the line with arrowheads on both sides denotes
the white vertical line of length T, which is equivalent to a recurrence time.

3. Results

This section is organized as follows. In Section 3.1, we present the phase space of the annular
billiard for an ensemble of initial conditions, illustrating the role of the eccentricity d as a control
parameter that introduces chaos into the system. We also present plots of a single orbit to illustrate
the dynamics of the singular billiard in the limit r� R. In Section 3.2, we present the estimations of
the largest Lyapunov exponent for some initial conditions for increasing eccentricity d and, therefore,
decreasing inner radius r. In this section we present the distribution of the LLEs in the near singular
limit as well. Finally, in Section 3.3, we present RPs of periodic, quasi-periodic and chaotic orbits in
the annular billiard and of a typical orbit in the near singular limit. We also discuss the question of
sensitive dependence on initial conditions in this limit.

3.1. Phase Space

All simulations presented in this section were carried out with r + d = 0.7005 in order to keep the
regions occupied by the WGO in the Poincaré section constant, i.e., the regions |S| ≥ 0.7005. These
regions correspond to straight lines and are omitted in the plots.

The set of plots in Figure 3 shows the phase space of the annular billiard for different values of
eccentricity d. When the boundaries are concentric, i.e., d = 0, the angular momentum, with respect
to the origin of the outer boundary, is preserved, the system is integrable, and the phase space is
filled with straight lines parallel to the L-axis. In the eccentric case, i.e., d > 0, the system is no longer
integrable once the angular momentum is no longer a constant of motion, and consequently, structures
of resonances and chaos arise. By increasing the value of d the region occupied by the chaotic sea
also increases.

In order to illustrate the dynamics in the singular billiard limit, we will now look at only one orbit
in the phase space. Figure 4 shows the plots of a single orbit, chosen to be in the chaotic sea for the
most values of eccentricity, for different values of increasing eccentricity d and, therefore, decreasing
inner radius r. In Figure 4a, we have d = 0, so the system is integrable and the orbit fills a straight line.
In Figure 4b,c, the orbit is chaotic and densely fills the accessible region of the phase space, where the
white regions correspond to KAM islands. In Figure 4d, we have r = 5× 10−4, so that the radius of the
scatterer is four orders of magnitude smaller than the radius of the outer boundary R = 1.
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(a) (b) 

(c) (d) 

Figure 3. Phase space of the annular billiard with r + d = 0.7005. The number of iterations used was
n = 500. L = (θ/2π) and S = sinα are the action-angle variables used to determine the Poincaré
section. (a) d = 0.00; (b) d = 0.15; (c) d = 0.41; (d) d = 0.55.

(a) (b) 

(c) (d) 

Figure 4. Plots of a single initial condition (L0, S0) = (0.41, 0.42) in the phase space of the annular
billiard and number of iterations n = 105. (a) d = 0.00, r = 0.7005; (b) d = 0.15, r = 0.5505; (c) d = 0.41,
r = 0.2905; (d) d = 0.70, r = 5× 10−4.
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In the near singular limit, a single initial condition fills the phase space with straight lines. This
happens because for a given initial condition (L0, S0) the angular momentum of the particle remains
constant and equal to S0, filling the corresponding straight line (or torus) in the phase space until a
collision with the scatterer takes place. When this happens, the angular momentum of the particle is
changed, as governed by Equation (3), and another line in the phase space starts to be filled, i.e., another
torus is visited. However, once the scatterer is so small, these collisions are rare and the particle spends
a long time in the same torus. This process goes on, and by succeeding a sufficiently large number of
iterations, the single initial condition densely fills the phase space with straight lines (Figure 4d).

3.2. Lyapunov Exponent

The largest Lyapunov exponent λwas calculated with the FTLE method. The finite time chosen
was n = 105, the interval between rescaling 	 = 1000, and the initial distance between the original and
the satellite orbits δ0 = 10−10.

The set of plots in Figure 5 exhibits values of λ as function of the eccentricity d and, therefore, the
radius of the scatterer r. For d = 0.7 we have r = 5× 10−4, corresponding to the near singular limit.

 
(a) (b) 

Figure 5. Largest value of Lyapunov exponent versus eccentricity. As the value of d increases, the radius
of the inner circle r decreases so that r+ d = 0.7005. (a) (L0, S0) = (0.41, 0.42); (b) (L0, S0) = (0.20, 0.30).

In Figure 5a, the chosen initial condition was the same as what was used for the plots of Figure 4,
which densely fills the phase space with straight lines in the near singular limit. Initially we have λ = 0,
and as the eccentricity increases and chaos begins to appear in the system, the Lyapunov exponent
becomes positive. The oscillations observed in λ are presumably due to stickiness, as KAM islands
are created and destroyed as d changes, influencing the behavior of the chaotic orbits. In the near
singular limit, λ sharply drops for the initial conditions (ICs) in both panels of Figure 5, evidencing a
change in the dynamics of the system. Different initial conditions have been used and this scenario is
representative of the near singular case.

In Figure 5b, we have the IC (L0, S0) = (0.20, 0.30), which is not always located in the chaotic
sea as the parameter d is varied. There are values of d that give λ = 0 and this is because the IC is
placed at a KAM island for those configurations. Figure 6 exhibits the phase space for two values of
eccentricity, where d = 0.2 in panel (a), for which both ICs of Figure 5 fall in the chaotic sea and the
Lyapunov exponent is positive. In panel (b), d = 0.378, for which the Lyapunov exponent calculated
for the IC of Figure 5a is positive and for the IC of Figure 5b, it drops to zero. In both images, the green
dot corresponds to the IC of Figure 5a and the red dot corresponds to the IC of Figure 5b.
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(a) (b) 

Figure 6. Phase space of the annular billiard with r + d = 0.7005. The number of iterations used
is n = 1000. L = (θ/2π) and S = sinα are the action-angle variables used to determine the
Poincaré section. The red dot corresponds to (L, S) = (0.20, 0.30) and the green dot corresponds to
(L, S) = (0.41, 0.42). (a) d = 0.2; (b) d = 0.378.

In Figure 7 we have the distribution of the Lyapunov exponent for 106 initial conditions, in the
near singular limit, distributed over the (L, S) plane region limited by |S| ≤ 0.7005 and |L| ≤ (1/2). The
Gaussian-like distribution with a tail to the left indicates chaotic dynamics with stickiness. The peak of
the distribution is close to the values of λ obtained for the ICs of Figure 5 in the near singular limit,
confirming that these ICs are representative of the dynamics in this limit.

Figure 7. Distribution of the largest value of the Lyapunov exponent over the ICs in the near singular
limit (d = 0.7). Here, 106 ICs were considered. N(λ) stands for the number of times that the value λ
was calculated.

3.3. Recurrence Plots

Each RP presented here was obtained with different values of the threshold ε, which is the size of
the recurrence region. This size has to be evaluated in order to be sure that there are not too few or too
many lines in the plots. Although different values of ε provide different return times for a same orbit,
Slater’s theorem is always obeyed in the case of quasi-periodicity.

In Figure 8a, we have the RP of a periodic orbit of period 5 in the concentric annular billiard,
obtained with Equation (6), and in Figure 8b, the same orbit in the phase space. The vertical distance
between the lines in the RP of Figure 8a is always the same and exactly 5, i.e., after five collisions
with the outer boundary, the orbit will always return to a previously visited reference state. Figure 8b
shows the same orbit in the phase space, given in the (L, S) plane. For the concentric configuration, the
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angular momentum S of the particle is preserved, so that the orbit remains on the same line (torus) of
the (L, S) plane. Given the initial condition (L(n = 0), S(n = 0)) = (L0, S0), the mapping equations
always provide the same five points, as L(n) = L(n + 5).

 
(a) (b) 

Figure 8. Periodic orbit of period 5 in the concentric annular billiard, the number of iterations is
n = 25. (L0, S0) = (0.00, 0.688858633). (a) Recurrence plot, ε = 0.1. The distance between two
consecutive black points in a column is always 5. (b) The corresponding orbit in the phase space. At
every 5 iterations, it is back to (L0, S0).

Figure 9a shows an RP of a quasi-periodic orbit and Figure 9b shows the respective orbit in the
phase space. In contrast to the RP of the periodic orbit presented in Figure 8a, the distances between
the diagonal lines of Figure 9a are not constant, revealing different recurrence times for this orbit.

 
(a) 

(b) 

Figure 9. Quasi-periodic orbit for d = 0.00, (L0, S0) = (0.0, 0.6), and number of iterations n = 103.
(a) Recurrence plot, ε = 0.004. (b) The corresponding orbit in the phase space, filling a straight line.

To visualize the recurrence times implicitly shown in the RP, the following numerical procedure
was applied to obtain a histogram of vertical white lines. From the recurrence matrix Ri, j, we first
choose j = 1, taking the first column of the matrix. Then, we identify the first and second non-zero
elements of that column, Rk,1 and Rl,1, and compute the return time l− k. The next non-zero element,
Rm,1, is found and another return time, k−m, is computed. This process goes on until all the non-zero
elements of the first column are considered. The procedure is then repeated for all columns of the
matrix. The result can be plotted in a 2D histogram that shows the possible recurrence times as peaks
in their respective frequencies of observation.
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The histogram in Figure 10 shows three peaks that correspond to return times equal to 49, 155 and
204 iterations, and, in accordance with Slater’s theorem, 49 + 155 = 204.

Figure 10. Histogram of vertical white lines in the RP of the quasi-periodic orbit of Figure 9. A vertical
white line stands for a computed recurrence time, and the number of lines indicates how many times
this recurrence time was observed.

A chaotic orbit of the annular billiard is analyzed in Figure 10. Differently from the periodic and
quasi-periodic cases, the RP of the chaotic orbit (Figure 11a) shows complex patterns rather than parallel
lines. It is possible to observe structures in the diagonal of the RP, as the one found for 112 ≤ n ≤ 154.
These structures correspond to times when the orbit was trapped by stickiness. Figure 11b shows the
respective orbit in the phase space, where the red dots correspond to the iterations from n = 112 to
n = 154, when the orbit was suffering stickiness.

 
(a) 

(b) 

Figure 11. Chaotic orbit in the annular billiard, d = 0.5, (L0, S0) = (0.3, 0.3), and number of iterations
n = 500. (a) Recurrence plot, ε = 0.1, the structure between n = 112 and n = 154 suggests that the
particle was trapped by stickiness phenomena. (b) Chaotic orbit filling the phase space. Red dots
correspond to iterations that the particle was trapped by stickiness.

The histogram of vertical white lines in Figure 12 shows that a chaotic orbit has many different
return times.
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Figure 12. Histogram of vertical white lines in the RP of the chaotic orbit of Figure 11. A vertical
white line denotes a computed recurrence time and the number of lines indicates how many times this
recurrence time was observed.

We now analyze the RP of an orbit in the near singular billiard. Figure 13 shows the RP
corresponding to the orbit of Figure 4d, which densely fills the phase space with straight lines and the
corresponding histogram of vertical white lines. The fact that many different return times are observed
states that the orbit is chaotic.

 
(a)  

(b) 

Figure 13. Typical orbit in the near singular billiard, (L0, S0) = (0.41, 0.42) and number of iterations
n = 5 × 103. (a) Recurrence plot, ε = 0.006, showing a junction of many quasi-periodic orbits;
(b) Corresponding histogram of vertical white lines in the RP, a vertical white line stands for a computed
recurrence time, and the number of lines indicates how many times this recurrence time was observed.

The RP in Figure 13a is notably different from that of the chaotic orbit in Figure 11a. The orbit in
the near singular billiard generates an RP with block-like structures, of straight lines, in a diagonal
direction. Separating this RP according to each block (Figure 14a,c), three return times are observed for
each of them and they satisfy Slater’s theorem. It is important to notice that the number of diagonal
lines in the RP depends only on the chosen value of ε, which is why the RPs of Figure 14a,c look
different than the respective block-like structures of Figure 13a.
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(a)  

(b) 

 
(c)  

(d) 

Figure 14. Two first block-like structures observed in the RP of Figure 8a. (a,c) Recurrence plots,
ε = 0.01 and ε = 0.003, respectively. (b,d) Corresponding histograms of vertical white lines in the RP.
A vertical white line denotes a calculated recurrence time. The number of lines is the number of times
that such a recurrence time was observed.

The particle in the near singular billiard behaves quasi-periodically, filling a straight line in the
phase space and possessing three return times, until it collides with the scatterer. When this happens,
the angular momentum of the particle is changed, another line in the space starts to be filled, and the
other three return times are measured on the new torus. The whole phase space is ergodically filled by
one single trajectory which has a constant angular momentum between the two collisions with the
scatterer. This explains the structures observed in the RP, where the bigger the structure, the longer the
time the particle has spent in a given torus.

Sensitivity dependence on initial conditions was also verified for orbits of the near singular billiard.
To exemplify this behavior, we set an initial condition in a very close neighborhood of the one used for
Figure 13, in such a way that a distance δ0 = 10−10 initially separates each orbit in the phase space,
i.e., (L0, S0) = (0.41 + δ0/

√
2, 0.42 + δ0/

√
2). Figure 15a shows the corresponding RP and Figure 15b

shows a histogram of vertical white lines.
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(a)  

(b) 

Figure 15. Orbit in the near singular billiard neighbor to (L0, S0) = (0.41, 0.42), separated by a distance
δ0 = 10−10, and number of iterations n = 5× 103. (a) Recurrence plot, ε = 0.006, showing a junction of
two quasi-periodic orbits. (b) Corresponding histogram of vertical white lines in the RP. A vertical
white line stands for a calculated recurrence time and the number of lines is the number of times that
such recurrence time was observed.

The RPs of Figures 13a and 15a show the same qualitative properties. Both indicate a chaotic orbit
composed of quasi-periodic segments. The difference is in the size of the block-like structures in the
diagonals. This is because a small change in the initial condition makes the particle interact with the
scatterer at a different time and go to a different torus. The bigger the size of the block-like structure in
the RP, the longer the particle has spent in the corresponding torus. Both initial conditions densely fill
the phase space with straight lines, but the tori are visited in a different order. Evidently the recurrence
times calculated for these two cases also differ, as seen in Figures 13b and 15b.

4. Discussion

We have shown that a typical orbit in the near singular limit of the annular billiard, described by
a two-dimensional mapping, densely fills the phase space with straight lines. In order to characterize
the dynamics as regular or chaotic, two different methods were applied: The traditional estimation
of the largest Lyapunov exponent with the FTLE method and an analysis of recurrence properties
through the recurrence plots.

The results obtained with the Lyapunov exponent analysis indicate that the dynamical behavior
of the system changes when the near singular limit is reached, since a sharp drop in the value of
λ occurs. The RPs provide more information for a better characterization of the dynamics at this
limit, where they show that the orbit is chaotic but composed of quasi-periodic segments. This agrees
with [36], which postulates on one-dimensional chaotic systems, and here, we have verified for a
two-dimensional chaotic system: it is not possible to remove the chaotic behavior of chaotic nonlinear
systems by reducing the magnitude of the nonlinear part.

Quantitative results on this, and possibly in other models, can be obtained through recurrence
quantification analysis. It is also of interest to verify if a breathing version of this near singular billiard
will hold true for the Fermi acceleration mechanism. Other billiards with scatterers can also be analyzed
in the near singular limit.
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Abstract: The specificity and universality of intracellular Ca2+ signals rely on the variety of
spatio-temporal patterns that the Ca2+ concentration can display. Ca2+ release into the cytosol
through inositol 1,4,5-trisphosphate receptors (IP3Rs) is key for this variety. The opening probability
of IP3Rs depends on the cytosolic Ca2+ concentration. All of the dynamics are then well described
by an excitable system in which the signal propagation depends on the ability of the Ca2+ released
through one IP3R to induce the opening of other IP3Rs. In most cell types, IP3Rs are organized in
clusters, i.e., the cytosol is a "patchy" excitable system in which the signals can remain localized (i.e.,
involving the release through one or more IP3Rs in a cluster), or become global depending on the
efficiency of the Ca2+-mediated coupling between clusters. The spatial range over which the signals
propagate determines the responses that the cell eventually produces. This points to the importance
of understanding the mechanisms that make the propagation possible. Our previous qualitative
comparison between experiments and numerical simulations seemed to indicate that Ca2+ release
not only occurs within the close vicinity of the clearly identifiable release sites (IP3R clusters) but that
there are also functional IP3Rs in between them. In this paper, we present a quantitative comparison
between experiments and models that corroborate this preliminary conclusion. This result has
implications on how the Ca2+-mediated coupling between clusters works and how it can eventually
be disrupted by the different Ca2+ trapping mechanisms.

Keywords: calcium signals; IP3Rs dsitribution; puffs; waves

1. Introduction

Calcium (Ca2+) signals are ubiquitous across cell types [1,2]. In many cases, they involve Ca2+

release from the endoplasmic reticulum (ER) into the cytosol through Inositol 1,4,5-trisphosphate
receptors (IP3Rs), which are Ca2+ channels [3]. The opening probability of IP3Rs increases with the
cytosolic Ca2+ concentration [4], provided that this concentration is not too high. Thus, the very
same Ca2+ that is released through an open IP3R can induce the opening of neighboring IP3Rs.
The combination of this Calcium Induced Calcium Release (CICR) [5] with the diffusion of Ca2+ between
its channels gives rise to propagating signals that can even embrace the whole cell [6–8]. IP3Rs become
inhibited in the presence of high cytosolic Ca2+ concentrations. From a physical/mathematical point,
the dynamics that underlie these propagating Ca2+ signals are well described by an excitable system.
Now, in most cell types, IP3Rs are organized in clusters. Waves can then fail to propagate if the
amount of Ca2+ that reaches one cluster is not high enough to “cross” the excitability threshold [9].
We have recently studied the Ca2+-mediated coupling between neighboring IP3R-clusters by means of
experiments in which we used two single-wavelength Ca2+-dyes [10]. Single-wavelength Ca2+-dyes
are Ca2+ indicators that increase their fluorescence enormously upon Ca2+ binding, without changing
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their emission wavelength [11]. The presence of the dyes affects the elicited signals because they “trap”
Ca2+ and, in this way, can disrupt CICR. How the presence of different Ca2+ trapping mechanisms
(particularly, Ca2+-binding buffers) affects Ca2+ signals had been studied with experiments in which
varying quantities of exogenous Ca2+ buffers had been introduced in the cells [12,13]. The experiments
of [10] allowed us to make visible the invisible: by observing the signals simultaneously with a slow
(Rhod-2) and a fast (Fluo-4) dye, we could infer directly the different ways in which slow and fast
buffers affect the signals. Furthermore, performing experiments for various concentrations of the dyes
and comparing qualitatively the spatio-temporal distributions of the Ca2+-bound to both dyes with
those derived from numerical simulations, we inferred that there should be functional IP3Rs between
the IP3R-clusters to explain the observations. This implied that Ca2+ release not only occurred within
the close vicinity of the centers of the clearly identifiable release sites (the clusters) but also in between.

In this paper, we present a more quantitative analysis of the experimental observations. To this
end, we compute, from the experiments, the change with the slow dye concentration, Rhod-2, of the
probability, P(� | nc) that, given that there are nc simultaneously open channels in a primary cluster,
the event does not induce the opening of IP3Rs in other (secondary) clusters (i.e., the event remains
localized). We then use a simple model to compute numerically the probability that one IP3R located
at a distance, d, from a primary IP3R-cluster becomes open (after a certain time) given that there are
nc simultaneously open channels at the primary cluster. Changing the parameters of the simulation
we conclude that the changes observed experimentally can only be explained if d ∼ 0.6 μm (i.e., it is
smaller than the typical inter-cluster distance, d ∼ 1.4 μm) and that the basal Ca2+ concentration,
[Ca]b, is reduced when the slow dye concentration, [R]T , is increased.

We present in what follows the experimental results that we use to estimate the changes in P(� | nc)

as [R]T is varied. We introduce in Section 2.2 the probabilistic model that we will then use to analyze
the experimental data. In Section 2.3, we show the results of the numerical simulations with which we
estimate some of the probabilities that enter the probabilistic model. In Section 2.4, we combine the
experimental and numerical results and determine for what parameters of the simulations they are
compatible within the framework probabilistic model. A discussion is included at the end.

2. Results

2.1. Experimental Results

The experiments analyzed here were presented and described in detail in [10]. A description of
how they were performed is included in Materials and Methods. In brief, we elicited IP3-mediated Ca2+

release events in Xenopus laevis oocytes that were previously injected with caged IP3, the Ca2+ buffer,
EGTA, and a fast, Fluo-4, and a slow, Rhod-2, Ca2+ dye. The signals were elicited by uncaging the
caged IP3 with an UV flash. In the current paper, we analyze the changes observed in the distribution
of localized Ca2+ release events (puffs) elicited in this way as the concentration of the slow dye,
[R]T = [Rhod−2], is varied but all other experimental parameters are kept fixed ([EGTA] = 90 μM;
[Fluo−4] = [F]T = 36 μM, duration of the UV flash to uncage the IP3 = (100 − 200) ms; see Table 1).
In particular, we are interested in studying the changes in the “size” of the elicited release events that
remain localized (Ca2+ puffs), where by size we mean the number of IP3Rs that are simultaneously
open at the release site (the cluster) during the release event. In order to compare the localized event
size distributions obtained in experiments performed for different values of [R]T , we introduced
in [10] a quantity, Alib−F, that is an increasing function of the Ca2+ current that underlies the observed
release event regardless of the value of [R]T . We describe in Section 4.3 how we compute Alib−F from
the fluorescence emitted by the Ca2+-bound Fluo-4 molecules. We show in Figure 1 the cumulative
distribution functions (CDFs) of Alib−F derived from the experiments performed for the conditions of
Set III (dashed line), Set II (dotted line) and Set I (solid line). These CDFs were computed including
only localized events, i.e., Ca2+ puffs.
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Table 1. Combinations of the dyes and EGTA concentrations used in the different experiments.

Experiment [Fluo-4] (μM) [Rhod-2] (μM) [EGTA] (μM)

Set I 36 90 90
Set II 36 36 90
Set III 36 0 90
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Figure 1. CDF of event sizes (as measured by Alib−F) for experiments performed with [F]T = 36 μM
and [EGTA] = 90 μM and different values of [R]T (the solid line corresponds to Set I, the dotted line to
Set II and the dashed line to Set III (see Table 1).

The Kolmogorov–Smirnov test rejects the null hypothesis that Alib−F from sets III and II and sets
III and I come from the same continuous distribution with a 99% significance level (pvalue = 2.1× 10−4

and pvalue = 4.6 × 10−5, respectively), but cannot reject that the data points from Set II and Set I come
from the same distribution (pvalue = 0.96). In any case, there is a tail in the CDF of Alib−F for Set I that
is unobservable in that of Set II which is consistent with having more events with relatively larger
underlying Ca2+ currents in the former than in the latter (〈Alib−F〉 = 2.2 for Set III 〈Alib−F〉 = 2.7
for Set II and 〈Alib−F〉 = 2.9 for Set I). These comparisons indicate that puffs with relatively larger
underlying Ca2+ currents can be elicited as the concentration of the slow dye, Rhod-2, is increased.
Although the transformation from puff amplitude to Alib−F involves certain uncertainties, the changes
observed in the fluorescence rise time as [R]T is varied [10] support this conclusion.

2.2. Probabilistic Model to Analyze the Differences Observed in the Experimental Event Size Distributions for
Different Values of [R]T

As analyzed in [14], being able to observe localized Ca2+ release events (puffs) with larger Ca2+

currents as a slow buffer concentration (in this case, Rhod-2) is increased can be due to a more efficient
uncoupling between IP3R clusters due to the presence of the slow buffer. Namely, we have the
hypothesis that the differences in the CDFs of localized release event sizes illustrated in Figure 1
occur because, as [R]T decreases, Ca2+ release events with too many simultaneously open IP3Rs at the
primary site can no longer remain localized, induce the opening of IP3Rs in neighboring (secondary)
clusters and, thus, are not included to compute the CDF. We hereby introduce a way to analyze the
experimental data to quantify what fraction of events that are localized for a given [R]T turn into
waves as [R]T is decreased.

We define P(nc) as the probability that there are nc simultaneously open IP3Rs in a cluster for a
given set of experimental conditions. Here, we will assume that all conditions remain the same except
for the total slow dye concentration, [R]T . Thus, we will analyze the change of P(nc) with [R]T . Given
that there are nc simultaneously open IP3Rs we want to distinguish whether this situation induces the
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opening of at least one IP3R in a neighboring (secondary) cluster (i.e., it initiates a wave) or it does not
(i.e., the Ca2+ release event due to the nc simultaneously open IP3Rs remains localized). We then write:

P(nc) = P(nc & � | [R]T) + P(nc & w | [R]T). (1)

In Equation (1), P(nc & � | [R]T) is the joint probability that nc channels are simultaneously open in
a cluster and the event stays localized for a given value of [R]T . P(nc & w | [R]T) is the joint probability
that nc channels are simultaneously open in a cluster and the event induces the opening of at least one
IP3R in another cluster for a given value of [R]T . The symbol | means that these are two conditional
probabilities for a given value of the slow dye concentration, [R]T . All the probabilities we work with
here are defined over the set of events, i.e., for nc ≥ 1. The aim of this calculation is to assess how
the two joint probabilities of Equation (1) change with [R]T . Under the assumption that Rhod-2 is a
slow buffer and, as such, does not affect CICR within the cluster [14], we consider that P(nc) does not
depend on [R]T . What may change when varying Rhod-2 is whether the event with nc open channels
in a cluster remains localized (stays as a puff) or elicits the opening of channels in a neighboring cluster
(becomes a wave). We rewrite the two joint probabilities of interest as:

P(nc & � | [R]T) = P(nc | �, [R]T)P(� | [R]T)
= P(nc | �, [R]T) (1 − P(w | [R]T)) , (2)

P(nc & w | [R]T) = P(w| nc, [R]T)P(nc). (3)

In these equations, P(nc | �, [R]T) is the probability that a Ca2+ release event that remains localized
for a given [R]T corresponds to a situation with nc simultaneously open channels at the release site;
P(w | nc, [R]T) is the probability that, for nc open channels in a cluster and a given [R]T , the resulting
event induces the release of Ca2+ from a neighboring cluster (i.e., generates a wave). P(�| nc, [R]T) and
P(w| nc, [R]T), on the other hand, are the probabilities that a Ca2+ release event obtained for given [R]T
remains localized or initiates a wave, respectively. They satisfy: P(�| nc, [R]T) + P(w| nc, [R]T) = 1.
We rewrite the latter as:

P(w | [R]T) = ∑
nc≥1

P(w | nc, [R]T)P(nc). (4)

Combining Equations (1)–(3), we arrive at:

P(nc) = P(nc | �, [R]T) (1 − P(w | [R]T))
+ P(w | nc, [R]T)P(nc). (5)

Assuming that the Ca2+ current through an open IP3R is approximately the same for all IP3Rs,
we conclude that nc is proportional to the Ca2+ current that underlies a Ca2+ release event. The quantity
Alib−F that we derive from the experimental data, on the other hand, is an increasing function of the
underlying Ca2+ current. We must point out that, if nc is large enough, puff amplitudes increase
sublinearly with nc [15]. Assuming that nc and Alib−F are approximately linearly related, we can
then use the experimental CDF of Alib−F, which we compute for the localized Ca2+ release events,
to estimate the CDF, F that can be computed from P(nc | �, [R]T):

F(n, | �, [R]T) =
n

∑
nc=1

P(nc | �, [R]T). (6)

The aim is to compare the distribution functions, F(n, | �, [R]T), for different values of [R]T using
the corresponding experimental CDFs of Alib−F. In particular, we will compare the CDFs that are
sufficiently different according to the K–S test: the ones with [R]T = 0 and with [R]T = 90 μM. In what
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follows, we will drop the concentration units (μM) from the expressions of the probabilities to simplify
the notation. Defining ΔPw(nc) ≡ P(w | nc, 0) − P(w | nc, 90) and ΔPw ≡ ∑nc≥1 ΔPw(nc)P(nc) and
using Equations (4) and (5), we obtain:

ΔPw(nc)P(nc) = (P(nc | �, 90)− P(nc | �, 0)) (1 − P(w | 90)) + P(nc | �, 0)ΔPw. (7)

As illustrated in Figure 1, the experiments show that the difference between the two CDFs is more
noticeable in the region of the largest size events, i.e., for the largest values of nc. We then compute:

∑
nc≥nM

ΔPw(nc)P(nc) = (F(nM | �, 0)− F(nM | �, 90)) (1 − P(w | 90)) + ΔPw(1 − F(nM | �, 0)), (8)

where nM is the event size beyond which the CDFs start to differ more noticeably. As described later,
the CDFs in the r.h.s. of Equation (8) can be estimated from the experimental CDFs. On the other hand,
we estimate P(w | nc, [R]T) using the numerical simulations that we describe in the following section.
Varying the parameters of the simulation, we determine the values for which we obtain estimates of
the l.h.s. of this equation that are consistent with those of the r.h.s.

2.3. Numerical Simulations to Estimate the Probability That a Release Event from One (Primary) Cluster
Induces the Release of Ca2+ from Another (Secondary) Cluster

We compute the probability, P0(t, d, nc, ns, [R]T), that ns IP3R located at a distance, d, from a
(primary) cluster with nc IP3Rs that are simultaneously open at t = 0, becomes open by a time, t.
We want to compare how P0 varies as [R]T is changed. We thus write explicitly its dependence on
this variable. To compute P0(t, d, nc, ns, [R]T), we proceed as explained in Materials and Methods (see
also [10]) and the parameter values used are listed in Table 2. We show in Figure 2 the results obtained
with ns = 1. We show in Figure 2a–c the results obtained using the basal Ca2+ concentration, [Ca]b=
0.1 μM, for the conditions of Sets I, II and III. We show the results obtained at d = 0.6 μm in Figure 2a
and at d = 1.4 μm (a typical inter-cluster distance) in Figure 2b,c. The number of simultaneously open
channels is nc = 10 in Figure 2a,b and nc = 50 in Figure 2c. The change of P0 with varying [R]T is
unobservable for nc = 10 at d = 1.4 μm (the difference is ≤ 0.004 for the times displayed in the figure)
while it can be ∼ 0.085 at d = 0.6 μm. Furthermore, it is ΔP0(t) = P0(t, d = 0.6 μm, nc = 10, [R]T =

90 μM)− P0(t, d = 0.6 μm, nc = 10, [R]T = 0 μM) ≈ 0.065 at t = d/V with V ∼ 10 μms−1, a typical
wave velocity. The maximum difference maxt ΔP0(t) increases with nc. This is shown in Figure 2c
where nc = 50, d = 1.4 μm and maxt ΔP0(t) ∼ 0.026. In Figure 2d, we show what happens when
[Ca]b decreases. In this case, we compare P0 at a distance d = 1.4 μm from the source obtained for
simulations performed with the concentrations of Set III (dashed line) and Set I (solid line) but with a
different value of [Ca]b in each one (100 nM and 50 nM, respectively). A similar behaviour is obtained
with ns = 5 (data not shown).

Table 2. Value of the parameters varied to compute P0.

Parameter Abbreviature Values

Number of IP3Rs in the source nc 1, 10, 50
Distance to the Ca2+ source d (0.4-1.5) μm

Number of sensing IP3Rs ns 1, 5
Rhod-2 concentration [R]T 0, 90 μM

Velocity of propagation V 10, 20 μm/s
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Figure 2. P0 dependence with distance d from the source and [Ca]b. (a) performed at d = 0.6 μm with
nc = 10; (b) at d = 1.4 μm with nc = 10; (c) at d = 1.4 μm and nc = 50 and (d) d = 1.4 μm with nc = 10
while varying [Ca]b from 100 nM (Set III) to 50 nM (Set I). The dashed line corresponds to Set III,
the dotted line corresponds to Set II, and the solid line corresponds to Set I.

We interpret the [R]T-dependent changes of P0 that are illustrated in Figure 2 as a sign of the
change in the level of inter-cluster coupling (or, equivalently, disruption) that can be reached as the
slow dye concentration is varied.

We further studied how sensitive is P0 to changes in the distance to the source d. The results of
Figure 3 are obtained using the basal Ca2+ concentration, [Ca]b= 0.1 μM. To illustrate the disruption
when [R]T is increased, we show in Figure 3a ΔP0 = P0([R]T = 0)− P0([R]T = 90 μM) computed with
nc = 10 and ns = 1 as a function of the distance d for each time t = d/V (with V = 10 μm/s) and it
can be observed that the probability of opening one IP3R in-between clusters decreases (from 0.4 μm
to 1.5 μm). When observing the probability of opening one IP3R as a function of d without adding
the slow buffer (RT = 0, Set III) (solid line in Figure 3b), as d increases, this probability approximates
to the basal probability (dotted line, P0 computed as in Equation (14) but with no calcium dyes),
almost no coupling can occur at the typical inter-cluster distance (d = 1.4 μm). Thus, to explain the
inter-cluster coupling, it is necessary to add a non-cluster IP3R in-between them. The optimal value
of the parameter d should be on the order of 0.4–0.8 μm (approximately the half distance between
clusters). Not even adding ns = 5 sensing channels at the second cluster, the probability differs from
the basal (dashed and dotted lines in Figure 3c, respectively). We choose d = 0.6 μm to add an isolated
IP3R in-between clusters (solid line in Figure 3c) and now the signal can propagate.

We now study whether the variations of Figure 2 can explain the changes in the distributions of
Ca2+ release during localized events observed in the experiments that are apparent in Figure 1.
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Figure 3. Existence of IP3Rs in-between clusters is necessary to explain the observations. (a) ΔP0 =

P0([R]T = 0)− P0([R]T = 90 μM) with nc = 10 and ns = 1 as a function of the distance d for each time
t = d/V (with V = 10 μm/s); (b) P0 computed as in (a) for the Set III (solid line) and basal (dotted line)
conditions; (c) P0 computed in the condition of Set III with nc = 10 and ns = 5 at a distance d = 1.4 μm
from the Ca2+ point source as a function of time when an IP3R is added in-between cluster (solid line),
with no additional IP3R (dashed line) and at the basal condition (dotted lined).

2.4. Combining the Estimates Derived from the Experiments and from the Numerical Simulations to Interpret
the Changes Observed Experimentally

We first estimate the r.h.s. of Equation (8) assuming that F(n, | �, [R]T) is given by the experimental
CDF of Alib−F for the same [R]T and some unknown factor between n and Alib−F. We recall here that
the experimental CDF corresponds only to localized events (i.e., events at a primary cluster that do not
induce the opening of IP3Rs at another secondary IP3R cluster). In order to estimate this unknown
factor, we associate, nM, (the value after which the differences in the CDFs become more noticeable)
to a value, Alib−F, for which F(nM | �, 0) is sufficiently close to 1. The basic assumption here is that,
for [R]T = 0, almost all primary events with n ≤ nM simultaneously open IP3Rs initiate waves in
which case they do not remain localized and are, therefore, not included in the computation of the CDF.
We choose Alib−F = 4.8 for which, according to the experimental data, it is F(nM | �, 0) ≈ 0.98 (see
Figure 1). For this value, it is F (nM | �, 90)) ≈ 0.90. Thus, we estimate F(nM | �, 0)− F(nM | �, 90) ≈
0.08. We do not have a direct estimation of P(w | [R]T). Assuming that nc = 10 is the most probable
value for the number of simultaneously open IP3Rs in a cluster, we approximate P(w | [R]T) =

∑nc≥1 P(w | nc, [R]T)P(nc) ≈ P(w | nc = 10, [R]T) ≈ P0(t = d/V, d, nc = 10, [R]T) with P0 the open
probability computed numerically that we introduced in the previous section and V a typical Ca2+

wave velocity. For V, we try two values, V = 20 μm/s and V = 10 μm/s. For d, we try the typical
inter-cluster distance, d = 1.4 μm and the closer distance, d = 0.6 μm that was probed in the previous
section. Using d = 1.4 μm and V = 20 μm/s, the simulations give P(w | 90) ≈ 0.14 and ΔPw ≈ 0.
The estimate of the r.h.s. of Equation (8) then results equal to 0.07. This value changes to 0.06 if we
use V = 10 μm/s. Using d = 0.6 μm and V = 20 μm/s the simulations give P(w | 90) ≈ 0.12 and
ΔPw = 0.028. The estimate of the r.h.s. of Equation (8) then results as 0.07. This value changes to 0.06 if
we use V = 10 μm/s.

We now use the simulations of the previous section to put an upper bound, ΔPw,max, on ΔPw(nc)

in the l.h.s of Equation (8). With such an upper bound, we can write ∑nc≥nM
ΔPw(nc)P(nc) ≤

ΔPw,max ∑nc≥nM
P(nc) = ΔPw,max(1 − F(nM)) where F(nM) = ∑nc≤nM

P(nc). Similarly to the way we
have followed estimating P(w | [R]T), we compute P(w | nc, [R]T) ≈ P0(t = d/V, d, nc, [R]T), with P0

the open probability of the previous section illustrated in Figure 2. In particular, using the results
of these simulations, we conclude that ΔPw(nc) ≡ P(w | nc, 0)− P(w | nc, 90 μM) is larger the larger
the value of nc. Thus, we obtain the upper bound, ΔPw,max, using similar simulations to those of
Figure 2 but for nc = 50 (a very large number of simultaneously open IP3Rs). Namely, we estimate
ΔPw,max ≈ P0(t = d/V, d, nc = 50, 0)− P0(t = d/V, d, nc = 50, 90). In order to put an upper bound
on the l.h.s. of Equation (8), we need a bound for F(nM), the CDF of all the (primary) event sizes
at n = nM. As already explained, we assume that F(n) = ∑nc≤n P(nc) does not depend on [R]T .
Given our interpretation of the results, we assume that the difference between the CDF of all the
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(primary) event sizes, F(n), and the CDF of the primary event sizes that remain localized for a given
value of [R]T , F (n | �, [R]T), is due to the existence of primary events (of large enough size) that initiate
waves for that value of [R]T . Assuming that the fraction of primary events that initiate waves for
[R]T = 90 μM is negligible, we can approximate F(nM) ≈ F (nM | �, 90) ≈ 0.90. If we do not want to
use this approximation, then we can use the bound F(nM) < 0.90. In what follows, we mostly use
F(nM) = 0.90, but we repeat some computations changing it to 0.80 to see how much the estimates
could change. Proceeding as just explained, for d = 1.4 μm, we obtain ΔPw(nc) ≤ ΔPw,max ≈ 0.003 for
V = 20 μm/s and ΔPw,max ≈ 0.026 for V = 10 μm/s. Using F(nM) = 0.9, we then obtain ∼ 0.0003 and
0.0026 as upper bounds of the l.h.s. of Equation (8) for V = 20 μm/s and V = 10 μm/s, respectively.
These two upper bounds are at least one order of magnitude smaller than the values obtained for the
r.h.s. of Equation (8). If we use F(nM) = 0.8 to compute the l.h.s. of this equation, the latter estimate
doubles with respect to the previous one. Thus, the order of magnitude difference between the left
and right estimates for d = 1.4 μm remains the same. Repeating the computations for d = 0.6 μm,
we obtain ΔPw(nc) ≤ ΔPw,max ≈ 0.19 for V = 20 μm/s and ΔPw,max ≈ 0.15 for V = 10 μm/s.
Using F(nM) = 0.9, we then get ∼ 0.019 and 0.015 as upper bounds of the l.h.s. of Equation (8) for
V = 20 μm/s and V = 10 μm/s, respectively. In this case, the values of the left- and right-hand sides
are of the same order of magnitude. These estimates come closer together if we use F(nM) = 0.8 in
the l.h.s. of the equation. In such a case, we obtain ∼ 0.04 and ∼ 0.03 for the l.h.s. estimate using
V = 20 μm/s and V = 10 μm/s, respectively, two values that are pretty similar to the r.h.s. estimates,
0.07 and 0.06.

2.5. Changes in Basal Calcium Concentration, [Ca]b

As illustrated in Figure 2d, decreasing basal [Ca] with increasing [R]T changes the open probability
at the distance, d = 1.4 μm, in the direction that is needed to explain the observed changes in the event
size distributions. We analyze here whether there is any evidence of a decreasing basal Ca2+ with
increasing [R]T in the experimental data. We show in Figure 4 the cumulative density functions of the
mean basal fluorescence emitted by the Ca2+-bound Fluo-4 molecules, 〈 f0,F〉, in (a) and of the mean
basal fluorescence emitted by the Ca2+-bound Rhod-2 molecules, 〈 f0,R〉 in (b) for the experiments
with [R]T = 36 μM (dotted line) and with [R]T = 90 μM (solid line). In Figure 4b, we rescaled
〈 f0R〉 by 90/36 = 2.5 in the case of Set I to make the distributions of experiments of Set I (which
has [R]T = 90 μM) and II (which has [R]T = 36 μM) readily comparable. The values of 〈 f0,F〉
and 〈 f0,R〉were derived from the fluorescence observations as explained in Materials and Methods.
We observe that the CDFs move to smaller values of their arguments with increasing [R]T . As the mean
basal fluorescence is an increasing function of [Ca]b (see Equation (12)), this observation supports the
idea that, on average, [Ca]b decreases with increasing Rhod-2.

In order to estimate the variation in [Ca]b with increasing [R]T , we compare 〈 f0,D〉 for sets I and
II. In particular, we obtain 〈 f0,F〉 = 6.1 a.u., 〈 f0,R〉 = 13.2 a.u. and 〈 f0,F〉 = 7.2 a.u., 〈 f0,R〉 = 6.4 a.u. for
sets I and II, respectively. Inserting these values into Equation (13), using that 〈NR〉 = 32 for set II and
〈NR〉 = 80 for set I, and assuming that [Ca]b = 100 nM for set II, we obtain [Ca]b = 60–80 nM for set I,
depending on whether we use the mean Rhod-2 or mean Fluo-4 basal fluorescence values.

We now repeat the calculations of the previous section but using the values of P0 prescribed by the
simulations with [Ca]b = 100 nM for set II and [Ca]b = 50 nM for set I (Figure 2d). In this case, the r.h.s.
estimates do not change much from the previous calculations. The l.h.s. estimates, on the other hand,
change slightly coming closer together with the r.h.s. estimates. For example, using V = 20 μm/s,
we obtain l.h.s.≈ 0.023 for d = 0.6 μm and l.h.s. ≈ 0.007 for d = 1.4 μm. If we use V = 10 μm/s,
we obtain l.h.s.≈ 0.019 for d = 0.6 μm and l.h.s. ≈ 0.013 for d = 1.4 μm.
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Figure 4. CDF of basal fluorescence. 〈 f0,D〉 for experiments with [EGTA] = 90 μM are shown in the
Fluo-4 (D = F, (a)) and Rhod-2 (D = R, (b)) channels. In both cases, Set II is depicted with dotted lines
and Set I with solid lines. In (b), the values, 〈 f0,R〉, of Set I are divided by 90/36 = 2.5 to make both
distributions comparable.

3. Discussion

Intracellular Ca2+ signals are ubiquitous across cell types. The spatial range over which
they spread is key to determining the eventual end responses. This points to the importance of
understanding how intracellular Ca2+ signals propagate inside the cells. To this end, Ca2+ release from
the endoplasmic reticulum into the cytosol through IP3Rs plays a major role. IP3Rs are Ca2+ channels
whose open probability depends on the cytosolic Ca2+ concentration. Therefore, the Ca2+ released
through an open IP3R can induce the opening of nearby IP3Rs. High Ca2+ concentrations, on the
other hand, lead to the inhibition of the channels. This dynamic is clearly excitable. In this regard,
however, the excitability of the cytosol is “patchy”: IP3Rs tend to be organized in clusters separated by
∼ 1.4 μm. This may lead to propagation failure when the Ca2+ released from one IP3R reaches the
vicinity of another one at a concentration that is not enough to induce its opening. The inter-cluster
Ca2+-mediated coupling can be interfered by means of Ca2+ buffers. This is used as an experimental
tool, but the cells can do it as well.

In [10], we presented experimental results in which we studied how the presence of competing
Ca2+ trapping mechanisms of different kinetics altered the resulting intracellular signals. Differently
from previous studies [12], in [10], we made visible the invisible by using two dyes of different kinetics
as the Ca2+ trapping mechanisms. The work of [10] not only allowed us to draw conclusions on how
the signals were reshaped by the presence of the different buffers but also gave some indications
on the spatial distribution of the IP3Rs involved in the signals. In particular, based on a qualitative
comparison between experiments and numerical simulations, we concluded in [10] that Ca2+ release
seemed to occur not only from the clearly identifiable release sites (IP3R clusters), but also from some
functional, probably isolated, IP3Rs in between them. In this paper, we have presented a quantitative
analysis of the experiments of [10] that corroborated this conclusion.

For the quantitative comparison between experiments and models, in this paper, we have focused
on the size distribution of the localized Ca2+ release events (puffs) that were obtained with the
experiments of [10] for [EGTA] = 90 μM, [F]T = 36 μM and two concentrations of the slow dye
Rhod-2, [R]T = 36 μM and 90 μM. Given that the fluorescence amplitude observed for a given release
event could change with varying [R]T even if the underlying Ca2+ current remained the same, we
characterized the observed puffs by the quantity, Alib−F (Equation (11)) that we introduced in [10] to
overcome this problem. The Alib−F distributions obtained for the analyzed experiments showed a shift
towards larger values of Alib−F as [R]T was increased (see Figure 1). This shift agrees with previous
observations and analyses according to which the increase of a slow Ca2+ buffer concentration (in
this case, Rhod-2) disrupts the Ca2+-mediated coupling between clusters (Figure 3a) [10,12,14,16].
Namely, we interpret this shift as reflecting the fact that events that are characterized by a certain
number of simultaneously open IP3Rs at a primary cluster and remain localized for a given value of
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[R]T can induce the opening of IP3Rs at other (secondary) clusters for smaller values of [R]T . While the
former events are puffs and would then be considered for the computation of the localized event size
distribution, the latter would not because they correspond to waves.

We observed that clusters can become coupled when adding an IP3R in-between them (Figure 3c).
We introduced a probabilistic model in order to analyze quantitatively whether the differences observed
for the experiments performed for [R]T = 0 and [R]T = 90 μM could be explained if Ca2+ release only
occurred through IP3R-clusters separated by 1.4 μm or not. Within the framework of the probabilistic
model, we then combined the analysis of the experimental data with some probability estimates
derived from numerical simulations similar to those presented in [10]. We determined in this way that
the numerically estimated values were not compatible with the differences observed experimentally
if the only Ca2+ release sites involved were ∼ 1.4 μm apart from one another. The experimental
and numerical results were more compatible if we assumed that there was Ca2+ release from at least
one IP3R at a distance ∼ 0.6 μm from the primary Ca2+ release cluster. The presence of the slow
dye, on the other hand, could reduce the basal Ca2+ concentration. We analyzed that possibility in
the experimental data (Figure 4) and estimated that [Ca]b could have been reduced by half when
[R]T was changed from 0 to 90 μM. The numerical simulations, on the other hand, showed that a
decreasing value of [Ca]b with increasing [R]T gave better results for d = 1.4 μm (Figure 2d) in terms
of their compatibility with their experiments. We then re-analyzed the experimental data but using
numerical simulations that included this change in [Ca]b with varying [R]T . The best situation to
explain Figure 1 was obtained with simulations that combined a change in [Ca]b with [R]T and the
presence of a functional IP3R at a shorter distance (d ∼ 0.6 μm) than the typical inter-cluster one.

Our quantitative analysis of the experiments of [10] presented in this paper confirms that the
spatial landscape over which intracellular Ca2+ signals propagate do not consist solely of patches of
excitability that are 1.4–2 μm apart from one another but that there are also "relay stations" (isolated
functional IP3Rs) in between. Probably, the existence of these in-between IP3Rs is necessary for the
propagation of Ca2+ waves.

4. Materials and Methods

4.1. Oocyte Preparation

Experiments were performed on Xenopus laevis immature oocytes previously treated with
collagenase. Oocytes were loaded by intracellular microinjection with different compounds.
Two calcium dyes Fluo-4 dextran high affinity (Kd = 0.8 μM) and Rhod-2 (Kd = 2 μM) were used to
probe cytosolic [Ca]. Caged InsP3 (D-Myo-Inositol 1,4,5-Triphosphate,P4(5)-(1-(2-Nitrophenyl)ethyl)
Ester) was used to induce IP3R opening. The exogenous Ca2+ buffer EGTA was also used.
Final intracellular concentrations of the different compounds were calculated assuming a 1 μl cytosolic
volume. Final intracellular concentration of InsP3 was 9 μM in all of the experiments. The different
concentrations used in each experiment are detailed in Table 1 where we classify the experiments in
three sets. Fluo-4, Rhod-2 and InsP3 were from Molecular Probes Inc.; EGTA was from Sigma Aldrich.
Recordings were made at room temperature.

4.2. Confocal Microscopy

Confocal imaging was performed using a spectral confocal scanning microscope Olympus
FluoView1000 that has a spectral scan unit connected to an inverted microscope IX81. The caged
compound was photolyzed with the UV part of the spectrum of a mercury lamp that comes with the
microscope using the modification introduced in [17]. Fluo-4 was excited with the 488 nm line of a
multiline Argon laser, Rhod-2 was excited using the 543 nm line of a He–Ne laser. Both lasers were
focused on the oocyte with a 60× oil immersion objective (NA 1.35). The Fluo-4 and Rhod-2 emitted
fluorescences were simultaneously detected in the 500–600 nm and the 600–630 ranges, respectively,
with PMT detectors. All the experiments were performed in the linescan imaging mode to improve
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the temporal resolution. Linescan images were obtained by scanning along a fixed line (250 px) within
the oocyte. The acquisition rate was fixed at 10 μs per pixel resulting in a scan rate of 3.26 ms per line.
The caged compound was photo-released approximately 3 s after the linescan acquisition started.

4.3. Image Analysis

All images were analyzed using routines written in MATLAB. In the experiments where we
simultaneously acquired the fluorescence coming from two channels (around 510 nm for Fluo-4 and
570 nm for Rhod-2), we used a linear unmmixing method to minimize the effect of the spectral
bleed-through (R = 0.1626 was the linear unmixing coefficient used). The images were also smoothed
by averaging over the eight nearest pixels.

The events were identified and the images were processed as explained in [10]. From the
fluorescence distribution, fD(xi, tj), collected in each of the channels (D = R for Rhod-2 and D = F
for Fluo-4) at each pixel, (xi, tj), and the relative increase in fluorescence at the peak of the signal,
Δ fr,D = maxxi ,tj(( fr,D(xi, tj) − f0,D(xi))/ f0,D(xi)), with f0,D(xi) the mean basal fluorescence at xi
observed with D before the UV flash, we computed the corresponding Ca2+-bound dye and (maximum)
relative Ca2+ bound dye concentrations ([CaD] and Δ[CaD]r ≡ max([CaD] − [CaD]b)/[CaD]b,
respectively, with [CaD]b the basal Ca2+-bound dye concentration). To estimate the Ca2+-bound
dye concentration, we followed [18] neglecting fluctuations in the number of dye molecules that
contribute to the fluorescence at each pixel, ND, (for more details, see [10]):

[CaD] =
[D]T

q1,D − q2,D

(
fD

γ〈ND〉 − q2,D

)
, D = R, F, (9)

Δ[CaD]r = Δ fr,D

⎛
⎝1 +

q2,D/q1,D

(1 − q2,D
q1,D

) [Ca]b
[Ca]b+Kd,D

⎞
⎠ , D = R, F. (10)

To compute these quantities we followed [18] and used 〈NF〉 = 32, 〈NR〉 = 32 for [R]T = 36 μM,
〈NR〉 = 80 for [R]T = 90 μM, [Ca]b= 100 nM, q1,F = 0.45, q2,F = 0.01, Kd,F = 0.8 μM, q1,R = 0.36,
q2,R = 0.02 and Kd,R = 2 μM.

In this paper, we only analyzed the events observed in the Fluo-4 channel, i.e., for D = F.
The event size of each analyzed puff was then characterized by the maximum value of the relative
increase in the Ca2+-bound Fluo-4 concentration, Δ[CaF]r that we derived from the observed
fluorescence. As done in [10], we then used the total Rhod-2 concentration, [R]T , of the experiment
to obtain estimates of the maximum values, Δ[CaF]r([R] = 0), that would have been attained for the
same release event if only the dye, Fluo-4, had been present. As discussed in [10], this estimate that
we call Alib−F is an increasing function of the Ca2+ current that underlies the release event regardless
of the value of [R]T used if the Ca2+ current arises from a very localized spatial region (the cluster).
As done in [10], we computed it as:

Alib−F ≈ Δ[CaF]r + αF,R[R]T ,

(11)

with αF,R = 4.58 × 10−3.

4.4. Basal Calcium Estimation

In order to study the behavior of the mean basal Ca2+ concentration, [Ca]b, for each experiment
type probed in the paper, we follow some of the steps of the method introduced in [18]. We work with
linescan images obtained before any UV flash has been applied, i.e., we analyze basal fluorescence.

68



Math. Comput. Appl. 2019, 24, 61

On these images, we get rid of the horizontal lines that are persistently dark, which correspond to the
cortical granules. We then compute the mean basal fluorescence for each linescan image as:

〈 f0,D〉 = 1
N ∑

i∈b f

jUV

∑
j=1

fD(xi, tj), D = R, F , (12)

where the sum over i runs over the horizontal lines that are not persistently dark and the subscript,
D, denotes whether the fluorescence comes from the Fluo-4 (D = F) or Rhod-2 (D = R) molecules.
Using the values, 〈 f0,D〉, obtained for each experiment type, we compute the corresponding cumulative
distribution functions of the mean basal fluorescence. To transform from basal fluorescence to basal
Ca2+ , we use the following expression derived from [18]:

〈 f0,D〉 = γD

[
(q1,D − q2,D)

[Ca]b
[Ca]b + Kd,D

+ q2,D

]
〈ND〉, (13)

which takes into account the contributions to the fluorescence from the free and the Ca2+-bound dye
molecules with brightness q2,D and q1,D, respectively. In Equation (13) Kd,D is the dissociation constant
of the Ca2+-dye reaction, 〈ND〉 is the mean number of dye molecules that contribute to the fluorescence
collected at a pixel and γD is a multiplying factor introduced by the detector (γR = 6 and γF = 5 [18]).

4.5. Numerical Simulations

To assess the rate of CICR-mediated coupling between neighboring clusters, we compute the
probability that an IP3R that ns IP3R located at a distance, d, from a Ca2+ point source becomes open
during a time interval, Δt, since the start of the release by means of:

P0(Δt, d, nc, [R]T) = 1 − exp
(
−
∫ Δt

0
konns[Ca2+](d, t)dt

)
(14)

with kon = 20 μM−1s−1 the rate of Ca2+ binding to the activating site of an IP3R of the DeYoung–Keizer
model [19]. We compute [Ca2+](d, t) simulating a set of reaction-diffusion equations in a spherical
volume (assuming spherical symmetry with r the radial coordinate) for: Ca2+, an immobile
endogenous buffer (S), two cytosolic indicators (F and R) and an exogenous mobile buffer (EGTA).
A point source located at the origin and pumps (P) that remove Ca2+ uniformly in space are also
included. For the source, we assume that it consists of nc channels that open simultaneously at t = 0,
each of which becomes close after a time that is drawn from an exponential distribution of mean
topen = 20 ms [19]. For the Ca2+-buffer or dye reactions we consider that a single Ca2+ ion binds to a
single buffer or dye molecule (X) according to:

Ca2+ + X
ko f f−X←−−→
kon−X

[CaX], (15)

where X represents F, R, EGTA, or S and kon−X and ko f f−X are the forward and backward binding
rate constants of the corresponding reaction, respectively. We assume that the total concentrations
of dyes and buffers ([F]T ,[R]T , [EGTA]T , and [S]T) are spatially uniform at t = 0 so that they remain
uniform and constant for all times. We also assume that [Ca2+] is initially uniform, equal to its basal
value and in equilibrium with the buffers and dyes. The parameter values used are listed in Table 3.
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Table 3. Parameter values used to solve the simulations.

Parameter Value Units

Free Calcium
DCa 220 μm2s−1

[Ca]b 0.05–0.1 μM

Calcium dye Fluo-4-dextran
DF 15 μm2s−1

kon−F 240 μM−1s−1

ko f f−F 180 s−1

[F]T 36 μM

Calcium dye Rhod-2-dextran
DR 15 μm2s−1

kon−R 70 μM−1s−1

ko f f−R 130 s−1

[R]T 0, 36, 90 μM

Exogenous buffer EGTA
DEGTA 80 μm2s−1

kon−EGTA 5 μM−1s−1

ko f f−EGTA 0,75 s−1

[D]T 90 μM

Endogenous immobile buffer
DS 0 μm2s−1

kon−S 400 μM−1s−1

ko f f−S 800 s−1

[S]T 300 μM

Pump
kp 0.1 s−1

vp 0.9 μMs−1

Source
nc 1, 10, 50 -

topen 20 ms
ICa 0.1 pA
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Abstract: Density gradients across reaction fronts propagating vertically can lead to Rayleigh–Taylor
instabilities. Reaction fronts can also become unstable due to diffusive instabilities, regardless the
presence of a mass density gradient. In this paper, we study the interaction between density driven
convection and fronts with diffusive instabilities. We focus in fluids confined in Hele–Shaw cells or
porous media, with the hydrodynamics modeled by Brinkman’s equation. The time evolution of the
front is described with a Kuramoto–Sivashinsky (KS) equation coupled to the fluid velocity. A linear
stability analysis shows a transition to convection that depends on the density differences between reacted
and unreacted fluids. A stabilizing density gradient can surpress the effects of diffusive instabilities.
The two-dimensional numerical solutions of the nonlinear equations show an increase of speed due to
convection. Brinkman’s equation lead to the same results as Darcy’s laws for narrow gap Hele–Shaw
cells. For large gaps, modeling the hydrodynamics using Stokes’ flow lead to the same results.

Keywords: reaction fronts; convection; diffusive instabilities

1. Introduction

Reaction fronts propagate in different media separating reactants and products. We find them in
systems such as combustion [1,2], directional solidification [3], and waves of chemical activity [4]. In the
latter case, a front develops due to the interaction between molecular diffusion and an autocatalytic
chemical reaction [5]. Solutions of the reaction-diffusion equations correspond to fronts propagating in
a given medium. For thin reaction fronts, these solutions can be approximated by an eikonal relation
between the curvature and the normal component of the velocity [6]. The eikonal relation helped to
explain the transition to convection for fronts in the iodate-arsenous relation, as well as the change of
speed for propagating fronts in a Poiseuille flow [7,8] . Thin fronts showing diffusive instabilities can
be modeled using the Kuramoto–Sivashinsky equation, which allows long wavelength instabilities for
flat reaction fronts [9]. Experiments taken place in liquids require to take into account fluid motion as
an additional component of the front dynamics. Fluid flow can be generated by mass density or surface
tension gradients accross the front [10–12]. These convective flows will modify the shape of the front, and
change its velocity [13,14].

Fronts propagating in the vertical direction can develop diffusive and Rayleigh–Taylor (RT)
instabilities in liquids [15–17]. While diffusive instabilities are caused by differences in diffusivities,
the Rayleigh–Taylor instability will take place if a fluid is placed under another fluid of larger density.
Previous work using a reaction-diffusion model coupled to Darcy’s law showed that diffusional
instabilities enhance the RT instability, while buoyantly stable configurations can diminish the effects of
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diffusion-driven instabilities [15,16]. Using the KS equation coupled to Darcy’s law showed the existence
of stable cellular structures that involve convection [17]. For fronts propagating in viscous fluids, the KS
equation coupled to the Navier–Stokes equation showed oscillatory instabilities depending on the viscosity
reflected in a dimensionless Schmidt number [18].

In this paper, we explore the interaction between buoyancy driven flows and diffusive instabilities.
Here differences in diffusivities may result in front instabilities even without fluid flow, making it a
separate problem from double diffusion convection where buoyancy forces acting on different substances
lead to fluid flow. The Kuramoto–Sivashinky equation will model diffusive instabilities in flat reaction
fronts when coupled to fluid flow. We consider fluid flows inside Hele–Shaw cells or porous media
described by Brinkman’s equation. In a Hele–Shaw cell the fluid is confined between two vertical walls,
Brinkmans equation considers the flow only in the direction parallel to the wall, thus becoming in a
two-dimensional system. This approximation considers a new term that includes the dimensions of the
gap. In the case of narrow gaps, Brinkmans equation can be approximated by Darcy’s law, while for larger
gaps the equations become the Navier–Stokes equations. We will carry out a linear stability analysis of the
flat convectionless front for perturbations of fixed wavelength. We will also solve numerically the front
evolution equations to obtain the patterns appearing in the nonlinear regime.

2. Equations of Motion

Reaction fronts that exhibit diffusive instabilities obey a system of reaction-diffusion equations that
allow different diffusion coefficients for each substance. The resulting reaction fronts can be approximated
by a front evolution equation, with the position of the front determined by a surface that separates reacted
from unreacted species. In a two-dimensional cartesian coordinates (XZ) the front can be described
by a height function Z = H(X, t), with the time evolution of the height function H determined by a
Kuramoto–Sivashinsky (KS) equation coupled to the fluid velocity �V:

∂H
∂T

= V0 + V ∂2H
∂X2 +

V0

2

(
∂H
∂X

)2
−K ∂4H

∂X4 + Vz|H . (1)

The parameters V and K depend on the diffusion coefficients for the different species. For zero
fluid motion, there is a flat front solution that propagates with velocity V0. The stability of this front is
determined by the sign of the parameter V . Small perturbations to the flat front of fixed wavelength can
growth exponentially if the coefficient V is negative. This takes place if the wavelength is larger that a
critical wavelength, perturbations of smaller wavelenghts will decay. In the opposite case (V positive),
the front is stable regardless the wavelength of the perturbation. In the particular case of a system formed
by two species with identical diffusivities involving cubic autocatalysis, the coefficients become K = 0 and
V = D. In other systems, such as exothermic chemical reactions, the parameters V = 0 and K will depend
on the corresponding thermal diffusion coefficient [19,20]. The fluid flow appears as an addition to the
normal front velocity of the propagating front [21]. The KS equation involves values up to second order
in H, therefore near the onset of convection the normal component of the fluid flow corresponds to the
addition of the vertical component of the fluid velocity Vz.

In this paper, we consider fluids inside Hele–Shaw cells or porous media, this flow can be described
using Brinkman’s equation:

∂�V
∂T

+ (�V · ∇)�V = − 1
ρ0

∇P − 12
ν

d2
�V + ν∇2�V − ρ

ρ0
gẑ . (2)

In this equation P is the pressure, �V is the fluid velocity, g is the acceleration of gravity, ẑ is a unit
vector pointing upward in the vertical Z-direction, ν is the coefficient of kinematic viscosity, ρ0 is the
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density of the unreacted fluid, while ρ corresponds to the fluid density that depends on composition of the
fluid. In a Hele–Shaw cell, the fluid is confined between two vertical walls separated by a gap width equal
to d. For small gap widths, the fluid motion can be modeled with Darcy’s law:

�V = − κ

ρ0ν
(∇P + ρgẑ)P (3)

Here κ is the coefficient of permeability for a porous media, which correponds to d2/12 for flows
in Hele–Shaw cells. Considering the density differences only in the large gravity term (Bousinesque
approximation), the continuity equation is equal to

�∇ · �V = 0 . (4)

The continuity equation in two-dimensions allows to derive the fluid velocity from a stream function
Ψ(X, Z, t) using the equations Vx = ∂Ψ/∂Z and Vz = −∂Ψ/∂X. With these relations we can eliminate the
pressure term in Brinkman’s equation to yield

∂Ω
∂t

=
∂(Ψ, Ω)

∂(X, Z)
+ ν∇2Ω − 12

ν

d2 Ω +
g
ρ0

∂ρ

∂X
. (5)

The variable Ω in the last equation is the defined as the vorticity from

Ω = ∇2Ψ . (6)

We also define the following operator on two given functions F and G:

∂(F, G)

∂(X, Z)
=

∂F
∂X

∂G
∂Z

− ∂F
∂Z

∂G
∂X

(7)

The thin reaction front separates fluids of different densities, therefore fluid density can be written as

ρ = ρ0 + ΔρΘ(Z − H) . (8)

Here Θ corresponds to the theta function which takes the value of one if the argument is positive,
and zero otherwise.

We can reduce the number of parameters under consideration defining appropriate dimensionless
units. We introduce time and length scales defined by LT = K/V2, and Lx =

√
(K/|V|). We define |V|

as unit of the stream function, and |V|/L2
x as unit of the vorticity. The variables in these units will be

represented with lower case letters. The dynamic equations become

∂ω

∂t
=

∂(ψ, ω)

∂(x, z)
+ Sc∇2ω − αScω − RaSc

∂h
∂x

δ(z − h) . (9)

This equation involves a dimensionless Rayleigh number

Ra =
gδρL3

ν|V| , (10)

a dimensionless Schmidt number
Sc =

ν

|V| , (11)
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and a parameter

α =
12K
d2|V| . (12)

In this system of units, the KS equation coupled to fluid flow becomes:

∂h
∂t

= c0 − ∂2h
∂x2 +

c0

2

(
∂h
∂x

)2
− ∂4h

∂x4 − ∂ψ

∂x

∣∣∣∣
h

, (13)

which involves a dimensionless front speed c0 using the corresponding time and length scales. Reactions
taking place in aqueous solutions have a large Schmidt number, therefore we will consider this limiting
case where Equation (9) becomes

∇2ω − αω − Ra
∂h
∂x

δ(z − h) = 0 . (14)

2.1. Linear Stability Analysis

The equations describing the evolution of the system (Equations (1) and (2)) allow a flat front solution
moving with constant velocity c0. We introduce perturbations of wavenumber q to this solution of the form

ψ = ψ̂(z)eσt sin(qx) (15)

and
h = h1eσt cos(qx) (16)

leading to

(
d2

dz2 − q2)2ψ̂ − αω + Raqh1δ(z) = 0 (17)

and
σh1 = (q2 − q4)h1 − qψ̂(0) . (18)

The strategy for solving this system consists in first solving the linear equation Equation (17) in terms
of h1 and then substituting into Equation (18). The delta function leads to the following jump conditions at
z = 0:

[ψ̂] = [
dψ̂

dz
] = [

d2ψ̂

dz2 ] = 0 and [
d3ψ̂

dz3 ] = −Raqh1 . (19)

(k2 − q2)(k2 − α − q2) = 0 . (20)

From here we obtain four values for k, namely ±q, and ±kα, where kα =
√

q2 + α. Considering that
the stream function should vanish as the absolute value of the coordinate z becomes large, it lead us
to write

ψ1(z) =

{
Ae−qz + Be−kα ifz ≥ 0

Ceqz + Dekα if z < 0
, (21)
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Applying this for the stream function on the jump conditions across the front, we find a system of
linear equations

A + B − C − D = 0 (22)

qA + kαB + qC + kαD = 0 (23)

q2 A + k2
αB − q2C − k2

αD = 0 (24)

q3 A + k3
αB + q3C + k3

αD = Raqh1 (25)

The solution of this system determines the stream function given a particular value of h1, therefore

ψ̂(0) = A + B = − Rah1q
2kαq(q + kα)

Thus we obtain a dispersion relation between the growth rate σ and the wavenumber q which depends
on the Rayleigh number and the parameter α which incorporates the gap width d on the model.

σ = q2 − q4 +
Raq2

2kαq(q + kα)
. (26)

2.2. Numerical Solutions

We use numerial methods to look for complex solutions of the nonlinear KS equation coupled to
convective fluid motion. This solutions can be found in regimes where the flat front is unstable. Since
the fluid flow is considered near the onset of convection, only linear terms for the velocity field are kept.
To simplify further the problem allowing a direct comparison with Darcy’s law limit, fluid boundary
conditions are taken as slip-free boundaries. Therefore we can use a Fourier expansion on the front and
stream function:

ψ = ∑
n=1

ψn(z, t) sin(nqx) , (27)

and
h = ∑

n=0
Hn(t) cos(nqx) . (28)

Here the domain varies from x = 0 to x = L with the parameter q being equal to π/L. This expansion
also incorporates the appropriate boundary conditions for h, which corresponds to vanishing first and
third derivatives at the walls. Substituting into the linearized equation for the stream function allows to
solve each Fourier coefficient in terms of the functions Hn(t). This solution is similar to the one carried out
in the linear stability analysis, therefore the KS equation with this solution becomes:

∂h
∂t

= c0 − ∂2h
∂x2 +

c0

2

(
∂h
∂x

)2
− ∂4h

∂x4 + ∑
n

RanqHn

2nqkn(nq + kn)
(29)

The value of variable kn is defined by kn =
√
(nq)2 + α. Introducing the expansion on the nonlinear

KS equation results in a set of coupled ordinary differential equations for the coefficients Hn

dH0

dt
= c0 + c0

q2

4 ∑
p

p2H2
p (30)

dHn
dt = [(nq)2 − (nq)4 + Ra(nq)2

2knnq(nq+kn)
]Hn+

c0
q2

4 ∑l,p lpHpHl × (δn,|l−p| − δn,l+p) , for n ≥ 1 .
(31)
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In this work, we study the stability of convectionless flat front solutions (determined by Equation (26)),
and steady curved fronts involving convection. To this end, we only consider the first 16 terms of
Equation (31) setting the time derivatives equal to zero. The resulting nonlinear system was solved
numerically using the scipy library from python through the module optimize.fsolve. Higher order
truncations did not change the front solutions significantly. Each steady front solution has a constant
velocity c = dH0/dt calculated using Equation (30). To address the issue of convergence, we displayed in
Figure 1 the front speed relative to the flat front speed using an 8, 16, 24, and 32 terms truncation showing
that the last three are indistinguishable from each other.
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Figure 1. The front speed relative to the flat front speed as a function of domain size for series truncations
of 8, 16, 24, and 32 terms. The last three lines are indistinguishable from each other.

We obtained solutions for different values of the parameters α, Ra, and L analyzing their stability,
considering the flat front speed c0 = 1. To determine the front stability, we used Python routines to obtain
the eigenvalues of the Jacobian matrix derived from Equation (31). The sign of the largest real part of the
eigenvalues determines the stability of the steady front, a negative sign will indicate stability. We also
study solutions that evolve in time (such as oscillatory or chaotic solutions) using a simple Euler method
to evolve Equation (31) with a time step Δt = 10−3, and 18 term truncation.

3. Results

The density discontinuity accross the reaction front either enhances or inhibits the flat front instability
found in the KS equation. Without fluid flow (Ra = 0), the dispersion relation Equation (26) has positive
growth rates for perturbations of large wavelengths (small wavenumbers q) as shown in Figure 2. In this
case perturbations of wavenumbers smaller than a critical value qc = 1 have positive growth rates,
indicating a flat front instability. In the case of positive Rayleigh numbers, where the less dense fluid is
under a heavier fluid, the situation is similar. There is a critical wavenumber where perturbations with
smaller wavenumber will grow, however this value is greater than one, the critical value without fluid
flow. Therefore positive Rayleigh numbers will enhance the flat front instability. The opposite situation is
found for negative Rayleigh numbers. Here the range of wavenumbers that allow negative growth rates
diminishes. As we decrease the Rayleigh number from zero, the wavenumbers that lead to instabilities
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correspond to an interval that does not start in zero. That is near q = 0, the perturbations have negative
growth rate, turning into positive growth rates as we increase q, and then becoming negative once again
as we increase q further. This interval diminishes, and finally disappears, as we decrease the Rayleigh
number towards negative values. Therefore, for a given negative value of the Rayleigh number the flat
front becomes stable. A large enough density gradient is able to stabilize the flat fronts described by the
KS equation.

Figure 2. Growth rate for perturbations of wavenumber q. Negative Rayleigh numbers lead to negative
growth rates near q = 0. For Ra = −2 the flat front is stable.

Perturbations of fixed wavenumber can be stabilized with an appropriate Rayleigh number.
Figure 3 shows the Rayleigh number necessary for growth rate equal to zero for different values of
the wavenumber q.

In this figure, we compare three hydrodynamic models including Brinkman’s equation. The curve
for the Brinkman’s model has a minimum, therefore a stable flat front requires a Rayleigh number below
the minimum. This curve also shows that perturbations with wavenumber below 1 require a negative
Rayleigh number to avoid a growing perturbation. For Rayleigh numbers that are negative but above the
minimum, there is an interval in the values of q with positive growth rates. In these cases the front can
be stable for long wavelength perturbations (small values of q). In Figure 3 we also display the results
using two other hydrodynamic models: Darcy’s law and the Stokes equation. In a Hele–Shaw cell width a
narrow gap (as is the case for α = 40), the results of Darcy’s law are close to the results using Brinkman’s
equation. Flows in Hele–Shaw cells with narrow gaps can be described with Darcy’s law, which is the
limiting case of Brinkman’s equation. With a wider gap (α = 0.1), we find that the results using the Stokes
equation are closer to the results of Brinkman’s equation (Figure 4), approaching the correct wide gap limit.
Brinkman’s equation provide us the results between the two limits.
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Figure 3. Rayleigh number necessary for zero growth rate as a function of wavenumber q. For a given
wavenumber, higher Rayleigh numbers will result in growing perturbations. We compare the results for
three hydrodynamic models. In the case of small gap (α = 40) results using Brinkman’s equation are close
to results using Darcy’s law.

Figure 4. Rayleigh number necessary for zero growth rate as a function of wavenumber q. For a given
wavenumber, higher Rayleigh numbers will result in growing perturbations. We compare the results for
three hydrodynamic models. In the case of a large gap (α = 0.2) results using Brinkman’s equation are close
to results using Stokes equation.

Flat fronts propagating in two-dimensional rectangular domains (resembling vertical tubes), can be
stable depending on the value of the Rayleigh number. Figure 5 displays the largest growth rate as
a function of Rayleigh number and domain width. A solid curve separates the regions of positive
and negative growth rate, consequently values under the curve indicate a stable flat front. Narrow
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rectangular domains of width equal to L allow only perturbations of wavenumber greater than q = π/L.
Since perturbations of q < 1 require positive Rayleigh numbers to generate instabilities, domains with
L < π will require a less dense fluid is under a more dense fluid to trigger an instability. On the contrary,
if L > π, the flat front requires a negative Rayleigh number to be stable. We observe in Figure 5 that the
critical Rayleigh number for front instability fluctuates as a function of the domain width. This implies
that a flat front can be unstable for a certain width, but increasing the width could stabilize the flat front,
if the original Rayleigh number is now below the new critical value.
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Figure 5. Largest growth rate as a function of Rayleigh number and domain width. The broken line
indicates the value of growth rate zero.

Increasing the domain size beyond the critical value for the flat front instability leads to convective
fluid motion. Numerical solutions of the nonlinear equations just above criticality show that small random
perturbations to the flat front grow with time. After some time, they form a steady pattern with fluid
rising on one side of the domain and falling on the opposite side generating a single convective roll
as shown in Figure 6a. The mirrored solution is also a steady solution of the equation, that developes
from different initial conditions, and is also stable. The patterns propagate with constant shape and a
velocity higher than the velocity for the flat front. This shape also leads to steady front solutions for
rectangular domains of larger widths. For example, doubling the domain size we can accomodate two
single counterrotating convective rolls as shown in Figure 6b. These solutions have the same speed as
the single roll solution, but in this case the fluid rises at the center of the rectangular domain falling on
the sides. The resulting shape corresponds to a symmetric front with a maximum near the center of the
domain. We can continue this process for larger domains, finding structures formed by placing a one roll
solution, next to another counterrotating one roll solution. The first structures formed in this manner are
displayed in Figure 6. The solutions with an even number of convective rolls are symmetric with respect to
the center of the domain. The mirrored solution is also a solution, for the case of fronts with odd number
of rolls. This solution resemble the cellular solutions found in the Kuramoto–Sivashinky equation [20].
We will analyze later the conditions for stabily of the cellular solutions.
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Figure 6. Steady cellular structures. Each structure is build by using a one roll solution (a) next to
another one roll solution. Here we show structures with (b) two, (c) three, (d) four, (e) five, and (f) six
convective rolls.

Convection increases the speed of propagating fronts as they propagate upward in narrow vertical
rectangles. Progating fronts of steady shape develop when the width of the tube is larger than a critical
width. In Figure 7a we display the speed of fronts relative to the flat front speed (c − c0) as a function of
the domain width for a positive Rayleigh number (Ra = 1). Below the critical width, the only solution
corresponds to the flat front solution. As we increase the width above the critical width the solution with
one convective roll appears. The analytical linear stability analysis shows that the flat front is unstable
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beyond the critical width. The linear stability analysis of the curved fronts were carried out obtaining the
Jacobian matrix on the steady solutions of Equation (31) as described in Section 2.2.
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Figure 7. Increase of speed for different steady cellular structures as a function of domain width L. The solid
lines indicate that the structure is stable. A broken line corresponds to unstable structures. (a) Corresponds
to Ra = 1, while (b) corresponds to Ra = −1.

This linear stability analysis determines that the single roll solution is stable for widths above,
but close, to the critical width. Increasing the width further also increases the speed of the convective front
until it reaches a maximum value. After the maximum value is reached, the front speed decreases until the
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one roll solution is not available, at this point there is another solution containing two counterrotating
convective rolls. The linear stability analysis shows that the one-roll solution is always stable. There is a
small range of values that allows both the one-roll, and the two-roll solution, in this case one the one-roll
solution is stable. Once the one-roll solution is no longer available, the two-roll solution appears, increasing
the speed as the width is increased, reaching a maximum, and finally disappearing. However, contrary to
the one-roll solution, the two roll solution is not always stable, there are regions of instability. Figure 7
also displays the speed relative to the flat front speed of steady solutions with three, four, and five rolls.
In all these cases, the behavior is similar, the speed increases, reaches a maximum, after that decreases,
and then the solution is no longer available. However in all these cases, the solution is unstable for most
values, only for small ranges the solution is stable. For negative values of the Rayleigh number (Ra < 0),
the critical width for convective fronts decreases (Figure 7b). The speed of the cellular structures have a
similiar behavior as for positive Rayleigh numbers, that is they show width values where the solution exist,
achieving a maximum speed for certain widths. However, in this case the speeds are lower, but the width
values showing stable fronts is larger. Having the less dense fluid above the more dense fluid contributes
to stabilize structures, but with a corresponding decrease in velocity. Lowering the Rayleigh number to
Ra = −1.6 we find even lower convective front velocities relative to the flat front speed (Figure 8). In this
case increasing the width leads to a region where the convective solution is no longer possible, where the
flat front is stable once again. Increasing the width will lead to effectively stopping convection.
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Figure 8. Relative speed (speed minus the flat front speed) for different steady cellular structures as a
function of domain width L. The solid lines indicate that the structure is stable. A broken line corresponds
to unstable structures. For Ra = −1.6 we find widths with a stable cellular structure, but increasing the
width only allows stable flat fronts.

Fronts described by the KS equation exhibit complex spatio-temporal behavior, such as oscillations
and chaos. Fluid motion and confinement can help to enhance or surpress this behavior. In Figure 9 we
display a bifurcation diagram showing the relative maximum front speed relative to the flat front speed
as a function of the Rayleigh number. As the front evolves with time its propagating velocity changes,
reaching a maximum before slowing down. Oscillatory fronts will display a few maxima before repeating
the sequence again. For values of the Rayleigh number close to Ra = 0.1, Figure 9 displays three velocity
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maxima. As the Rayleigh number increases, we observe a sequence of bifurcations to oscillatory states with
higher periodicity. This period doubling cascade leading to chaotic states is the result of enhanced fluid
motion at higher Rayleigh numbers. Negative Rayleigh numbers inhibit the oscillatory motion resulting
in flat front thus surpressing complex fluid motion. Another parameter that has an impact on complex
behavior is the parameter α, which is inversely proportional to the square of the gap width. Figure 10
shows a similar period doubling cascade displaying the front velocity maxima relative to the flat front
speed versus the parameter α. We notice that for α close to 1.34 there is clearly periodic behavior. Reducing
α increases the number of maxima, eventually reaching a chaotic state. This implies that confining the
substances in a Hele–Shaw cell of small gap (large α) diminish the complex spatio-temporal behavior.
This implies that in experiments in a Hele–Shaw cell, the gap width can be an effective control parameter
for transitions between different spatio-temporal states.
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Figure 9. Bifurcation diagrams showing relative maxima for the velocity of the average front position
relative to the flat front speed. We observe a period doubling cascade to chaos as the Rayleigh number is
increased. The bottom panel is a detailed from the top panel.
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Figure 10. Bifurcation diagrams showing relative maximums for the velocity of the average front position
relative to the flat front speed. We observe a period doubling cascade to chaos as the parameter α is
decreased. This corresponds to reducing the gap between the plates in a Hele–Shaw cell. The bottom panel
is a detailed from the top panel.

4. Summary and Discussion

We found that the presence of density gradients in fronts governed by the KS equation could enhance
or supress complex behavior. Positive density gradients (Ra > 0) lowers the critical wavelength for onset
of convection, thus fronts propagating in rectangular domains would require smaller widths for flat front
stability. On the contrary, negative Rayleigh numbers provide a mechanism to diminish the instability
found in the KS equation. Fronts propagating with parameters just above the flat front instability evolve
into a curved front of constant shape involving a single convective roll. Placing this single roll solution
(or cell) next to each other results in cellular structures that are extended solutions on a larger domain.
We analyzed the stability of these structures as a function of the domain widths finding corresponding
regions of stability. A density gradient favorable to convection diminishes the widths for stability, on the
other hand, a gradient unfavorable to convection increases the stability of cellular structures. Decreasing
the negative Rayleigh number even further leads to a situation where unstable flat fronts can be stabilized
by increasing the width of the domain. We also found that complex behavior can be surpressed by either
reducing the Rayleigh number, or by controlling the gap width in Hele–Shaw cells. The latter being a
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mechanism that can useful to experiments. A connection with experiments will require knowledge of
the parameters V and K. An estimate can be obtained by using the wavelength for maximum growth
rate for purely diffusive instabilities, which in dimensioned units corresponds to λ = 2π/q = 2π

√
2K/V .

A second relation between V and V can be obtained from the experimental front speed V0, which in
dimensionlesss units correspond to c0 = V0LT/Lx = 1. Using these relations as a guide, we can compute
the value of the Rayleigh number using Ra = gδλ2/8π2νc0. We can use a typical wavelength of about 1
cm observed in experiments [22] together with parameters from chemical reaction fronts propagating in
aqueous solutions [7] obtaining a Rayleigh number of −45, where the more dense fluid is above the fluid of
smaller density. This Rayleigh number requires a value of α = 53.8 to inhibit the diffusive instability, which
leads to a distance between plates in a Hele–Shaw cell equal to 0.5 mm. This distance is small, but larger
gaps can be used if the absolute value of the Rayleigh number can be diminished. Therefore experiments
can be carried out for different gap values of Hele–Shaw cells to test how the density differences between
reacted and unreacted fluids can supress the diffusive instability. One of the advantage of using Brinkman’s
equation in the calculations is that it leads to the correct narrow and wide gap limits, which are governed
by Darcy’s law and the Navier–Stokes equations.
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Abstract: Superradiance describes the coherent collective radiation caused by the interaction
between many emitters, mediated by a shared electromagnetic field. Recent experiments involving
Bose–Einstein condensates coupled to high-finesse cavities and interacting quantum dots in
condensed-matter have attracted attention to the superradiant regime as a fundamental step to
create quantum technologies. Here, we consider a simplified description of superradiance that
allows the evaluation of statistical moments. A correspondence with the classical birthday problem
recovers the statistical moments for discrete time and an arbitrary number of emitters. In addition,
the correspondence provides a way to calculate the degeneracy of the problem.

Keywords: stochastic processes; complex systems; self-organization; Dicke model; birthday problem

1. Introduction

Superradiance describes the coherent collective radiation caused by the interaction between N
emitters, mediated by a shared electromagnetic field [1]. The phenomenon occurs when the average
distance between emitters is smaller than the emitted wavelength, producing an emission pattern
that differs markedly from the spontaneous emission of photons by isolated atoms. Supporting
experimental evidence shows that the electric dipole of atoms in the atomic cloud becomes strongly
correlated, producing coherent radiation less sensitive to thermal fluctuations of optical cavities [2–4],
which can be used to improve the precision of atomic clocks [5]. Dicke first predicted superradiance
after considerations on symmetries and conservation laws of total angular momentum in matter–light
interaction in cavities. Almost 70 years after its discovery, superradiance remains a topic of intense
experimental and theoretical research in quantum many-body physics [6,7].

Although its origins can be tracked down to the foundation of quantum optics, superradiance has
found applications in condensed-matter physics. More specifically, the experimental observation of
superradiance in ensembles of quantum dots suggests long-range electromagnetic interactions can be
fine-tuned for creating quantum technologies, by selecting an appropriate density of quantum dots,
their physical dimensions, and their atomic composition or the surrounding media [8]. The iconic
spontaneous mission of photons by emitters may not occur as N independent events, even for N = 2,
as verified in recent experiments [9]. Enhanced spontaneous emission can also occur due to strong
correlations between quantum dots immersed in confining potentials [10]. More broadly, theoretical
and experimental studies of superradiance in condensed-matter have led to reexamination of collective
effects in nanoscale systems [11,12], metallic nanoparticles and nanostructures [13,14], and magnetic
nanosystems, as well [15–18].

www.mdpi.com/journal/mcaMath. Comput. Appl. 2019, 24, 66; doi:10.3390/mca2402006688
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Meanwhile, experimental realizations of the superradiant regime in Bose–Einstein condensates
coupled with optical cavities have provided insights into quantum phase transition between normal
and superradiant phases [19,20]. In these experiments, the atomic condensate remains trapped inside
a high finesse optical cavity. A continuous wave with the frequency far detuned from relevant atomic
transition is pumped onto the condensate, transverse to the axis of the optical cavity. Because the
pump wave is detuned, the interaction is dispersive with negligible spontaneous emission. As a result,
waves are scattered into the cavity with resonant frequency ω, which self-organize the condensate in
a spatial lattice, with half-wavelength spacing. Even more, the resulting lattice acquires one out of
two possible orientations, suggesting a Z2 spontaneous symmetry-breaking at the quantum phase
transition [21]. Indeed, a phase transition in the Dicke model has been predicted by Hepp and Lieb [22].
The Hamiltonian of the Dicke model reads:

Ĥ = h̄ω â† â + h̄ω0 Ĵz +
γ√
N

(
â† + â

)
Ĵx, (1)

formed by N two-level emitters with energy h̄ω0 and a single bosonic mode with cavity frequency ω

and coupling γ. The collective pseudospin operators Ĵμ (μ = x, y, z) satisfy the usual relations [ Ĵα, Ĵβ] =

ih̄ ∑μ εαβμ Ĵμ. The light–matter interaction is described by the operator (â† + â) Ĵx = (1/2)(â† Ĵ− +

â Ĵ−) + (1/2)(â† Ĵ+ + â Ĵ−). This operator carries two familiar transitions, namely the emission of a
photon to the cavity and the photon absorption, as well as two apparently non-conservative energy
transitions: photon emission followed by atomic excitation and photon absorption followed by atomic
relaxation. They appear non-conservative because pump waves are not taken into account, resulting
in an open system. Finally, the intensity I produced by a superradiant system contains contributions
proportional to |〈j, mz ± 1| Ĵ±|j, mz〉|2 = j(j + 1)− m(m ± 1). For j = N/2, transitions starting from
quantum states with mz = 0 maximize the emission of radiation and produce I ∝ N2, which is one of
the hallmarks of superradiance. The intensity diminishes for other values of |mz|, becoming a linear
function of N for |mz| = j = N/2.

To date, Bose–Einstein experiments have offered the most flexibility to select couplings and explore
the superradiant phase transition and its critical properties in detail. Among them is the emergence
of long-range correlations among emitters, which can be further explored to create faster procedures
for information storage and retrieval in qubit networks [23]. The key aspect to understand the
underlying physics in the Dicke model is the proper comprehension of self-organizing phenomena [12].
The ordered collective behavior arises from small fluctuations and develops positive feedback [24–29].
These collective effects are observable and reveal the effect of higher order statistical moments and
correlation functions. In the Dicke model, several approaches have been proposed to capture the
minimal cooperative properties. In the thermodynamic limit (N � 1), the model has been studied
in the rotating wave approximation (RWA) [22,30]. More recently [31], without RWA and using the
Holstein–Primakoff transformations with N � 1, Emary and Brandes presented an exact solution,
where they verified the existence of quantum phase transitions and the emergence of a chaotic regime.
For finite N, the interference among confined emitters is enhanced by finite size effects, and the model
is non-integrable [32], while the available solutions are restricted to numerical ones [33,34].

More recently, semiclassical approximations have provided a far more concrete structure
of the density of states of the Dicke model, including evidence of excited-state quantum phase
transitions [7,35]. These advances also include microcanonical calculations and thermodynamic
properties [36]. However, a complete picture of the quantum problem is still lacking. Alternatively,
one can probe the properties of superradiant systems using inferences from stochastic processes.
While limited in scope, the purpose of simplified models is to produce insights into specific aspects
of the dynamics of superradiance in a more tractable manner [37]. Here, we address the evaluation
of statistical moments and degeneracy in superradiance by considering a correspondence between
a self-organizing process, which mimics the superradiance, and the well-known birthday problem.
This connection allows one to study the degeneracy in both a small and large number of emitters and,
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thus, the aspects of the superradiant dynamics. The outline of the paper is as follows. In Section 2, we
introduce a self-organizing process, in which a small initial fluctuation gives rise to the rapid growth
of photon numbers in the cavity. The existing symmetries are identified, and analytic expressions for
the �th statistical moments are derived. In Section 3, a correspondence between the self-organizing
process and the birthday problem is unveiled allowing the exact evaluation of the �th statistical moment
beyond the Poisson approximation (arbitrary time) and small N. We present a Monte Carlo example
and compare its results to our exact calculations. Our closing remarks are listed in Section 4.

2. Superradiance

At its core, a superradiant pulse mimics a cascade of photon emission from a population composed
of excited emitters. The complexity of the phenomenon arises from the coupling with a shared
radiation field: the ensemble of N emitters can only create a single photon per unit of time, according
to Equation (1). The constraint introduces temporal correlations among the emitters that dictate the
collective decay. Here, we consider a self-organizing system formed by N emitters in a resonant cavity.
Each emitter has two levels, and they are located close enough to each other to interfere through the
common radiating field. At a given time instant t, there are n(t) emitters in their respective ground
states and N − n(t) excited emitters. The self-organizing constraint is imposed by stating that no more
than one emission occurs during a time interval δt, i.e., photon emission events are not independent.
The emission process is composed by two stochastic events. A single emitter among N available is
selected with uniform probability p = 1/N. If the selected emitter is found in the excited state, the
subsequent emission occurs with conditional probability pe = 1, otherwise pe = 0. This stochastic
process ensures that the total number of excited states can only be decremented by one for successive
time steps. The assumption of uniform p implies that emitters are equally affected by the radiation
field. It oversimplifies the spatial distribution of emitters in atomic clouds, excluding superradiant
emission due to non-linear effects [37]. A naive analysis of the collective probability distribution,
ignoring the superradiant constraint and thus correlations among emitters, leads to a Poissonian
distribution. This is not the case, as we show in what follows.

Let |n〉 represent the configuration containing n emitters in the ground state in an ensemble with
N emitters. The stochastic process compromises the transitions that occur along time on the vectors
|n〉. The transitions are encoded by the transition matrix T̂, which reads:

T̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0
1 p 0 · · · 0 0
0 1 − p 2p 0 0

...
. . .

...
0 0 0 · · · 1 − p 0
0 0 0 p 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

as illustrated in Figure 1. The operator T̂ possesses some notable properties: Tr(T̂) = (1 + p)/2, and
∑N

μ=0 Tμν = 1 ensures probability conservation. In addition, T̂ is triangular with a clear pattern for
each occupation level n. The analogy with angular momentum algebras leads to:

T̂ ≡ p( Ĵz + j1̂) + Ĵ+, (3)

where 1̂ is the identity operator, n = mz + j (j = 0, 1, . . . , N/2 and mz = −j,−j + 1, . . . , j), Ĵ+|n〉 =

(1 − pn)|n + 1〉. Accordingly, [ Ĵ2, T̂] = 0, and j is a conserved quantity. The eigenvalue j is set by the
initial conditions: for N emitters in the excited state, j = N/2.

Once the transition matrix is defined, one writes the master equation:

∂t|P(t)〉 = −Ĥ|P(t)〉, (4)
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in which Ĥ ≡ (1̂ − T̂)/δt is the generator of temporal translations, with a role similar to the
Hamiltonian in quantum systems. The probability vector |P(t)〉 = P0(t)|0〉+ P1(t)|1〉+ · · ·+ PN(t)|N〉
is a linear combination of occupation vectors, and the coefficients Pn(t) describe the instantaneous
probability to measure n emitters in the ground state. The coefficients 0 � Pn(t) � 1 satisfy
∑N

n=0 Pn(t) = 1. The eigenvalues of Ĥ are readily available, En = (1− pn), with n = 0, 1, . . . , N, but the
Ĥ is not Hermitian. As a result, right and left eigenvectors, respectively |φk〉 and 〈χk|, are not related
by Hermitian conjugation. The eigenvectors obey the identity decomposition, ∑N

k=0 |φk〉〈χk| = 1̂, and
are orthogonal to each other. Using the spectral decomposition, the solution of the stochastic problem
reads |P(t)〉 = ∑N

n=0 cne−Ent|φn〉, with cn = 〈χn|P(0)〉. The mode with vanishing eigenvalue EN
describes the asymptotic solution or stationary state, corresponding to all emitters in their respective
ground states.

Figure 1. Superradiant stochastic process. The picture illustrates the transition |n〉 → |n + 1〉
(horizontal arrows), with conditional probability P(n + 1, t + δt|n, t) = 1 − np, and the transition
|n〉 → |n〉 (loops), P(n, t + δt|n, t) = np. States with higher occupancy rates n � 1 have lower chances
of radiating and spend more time in the same configuration. This process can be identified as the
classical coupon collector’s problem.

We propose an educated guess for left and right eigenvectors: there is a one-to-one correspondence
between the coefficients of 〈χn| and the coefficients of the Pascal triangle of order N. Note that it is
necessary to calculate only one set of eigenvectors, say {〈χn|}, because the remaining eigenvectors can
be calculated via ∑N

k=0 |φk〉〈χk| = 1̂. Surprisingly, the coefficients of |φn〉 are also related to the Pascal
triangle. For instance, the eigenvalues and respective right (left) eigenvectors are found in Table 1
(Table 2) with N = 4. The initial probability vector |P(0)〉 = |0〉 acquires the following decomposition:

|P(0)〉 =
N

∑
n=0

(
N
n

)
|φn〉. (5)

Using this result, we calculate the �th moment of the occupation number:

〈n�(t)〉 = e−t
N

∑
k=0

N

∑
n=k

e(k/N)t
(

N
k

)(
N − k
n − k

)
(−1)n+kn� . (6)

so that the first statistical moment is 〈n(t)〉 = N(1 − e−t/N). As expected, the system converges
exponentially to a stationary state with a characteristic time scale τ = N. Similarly, the second moment
is evaluated,

〈n2(t)〉
N2 = 1 −

(
2 − 1

N

)
e−t/N +

(
1 − 1

N

)
e−2t/N , (7)

while the standard deviation per emitter is:

σ

N
=

e−t/2N
√

N
+ o(e−3t/2N) . (8)
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Table 1. Right eigenvectors |φk〉 = ∑N
n=0 d(k)n |n〉 of Ĥ with N = 4. The first row displays the eigenvalues

Ek, while columns display the coefficients d(k)n in the basis |n〉. Observe the combinatorial pattern in

each column d(k)n = (−1)k+n(N − k)!/(n − k)!(N − n)! for n ≥ k, 0 otherwise.

E 1 3/4 2/4 1/4 0

d0 1
d1 −4 1
d2 6 −3 1
d3 −4 3 −2 1
d4 1 −1 1 −1 1

Table 2. Left eigenvectors 〈χk| = ∑N
n=0〈n|q(k)n of Ĥ with N = 4. The first column displays the

eigenvalues Ek, while rows display the coefficients q(k)n in the basis 〈n|.

E q0 q1 q2 q3 q4

1 1
3/4 4 1
2/4 6 3 1
1/4 4 3 2 1

0 1 1 1 1 1

The crucial step that leads to Equation (6) is counting degenerate states derived from ordered
permutations of N distinct objects. To do so, we consider the ordered time evolution (OTE) vector
|ψ(tκ)〉 ≡ |l1l2 · · · lκ〉, at discrete time tκ . For the sake of convenience, tκ = κδt. Here, lj = 1, 2, . . . , N
identifies a single emitter selected at time tj, with j = 1, 2, . . . , κ. In this way, |ψ(tκ)〉 is just a list
containing all emitters selected along the time evolution. The number of distinct emitters selected
during the interval κδt is extracted using the operator M, such that M|ψ(tκ)〉 = mκ |ψ(tκ)〉, with mκ =

∑N
n=1 θ

(
∑κ

j=1 δn,lj

)
, where θ(x) is the step function θ(x > 0) = 1, zero otherwise. Each eigenvalue

mκ is Ωκ,mκ degenerated. There are two discrete symmetries that leave M invariant: permutation of
κ elements along time and permutation of N distinct objects. Both symmetries are expressed using
the symmetric group Sκ ⊗ SN . Defining Ωκ = ∑N

m=0 Ωκ,m, the mean number of emitters in the ground
state at time tκ is:

〈mκ〉 = 1
Ωκ

N

∑
m=0

m Ωκ,m . (9)

We stress that the analytic calculations of the degeneracy Ωκ,m become increasingly harder as either
N or the time interval increases. Ultimately, the distribution Pn(t) is the main goal, from which one
can calculate or infer, for example, the instantaneous density of states or the instantaneous entropy
S(t) = −∑N

n=0 Pn(t) ln Pn(t). The values of Pn(t) can be obtained either from statistical moments
〈n�(t)〉 or from the instantaneous ratios Ωκ,n/Ωκ . However, it turns out that the calculation of Ωκ,m

can be simplified via a correspondence between the stochastic process and the classical birthday
problem.

3. The Birthday Problem

Despite the hardships mentioned above, it is possible to craft a general solution using an elegant
analogy with the classical process of drawing samples from an urn with N distinct emitters. One at a
time, an emitter is drawn from the urn; its label is recorded in a list, and then, it is replaced in the urn.
This process is repeated κ times. A sample is formed by the list of κ recorded labels. In each sample,
let n be the number of distinct labels. Thus, n = 1, . . . , min(κ, N). We call Ω′

κ,n the number of possible
samples with n different labels.
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This is precisely the formulation of the birthday problem, a set of κ elements and uniform
randomly-chosen tags are assigned out of a set of N tags, with replacement, to each element.
One concern is on the probability of having n distinct tags (out of N) assigned to the κ elements.
There is a clear correspondence between the OTE configuration vectors in the limit n → mκ and
Ω′

κ,n → Ωκ,mκ . The number of ways N distinct tags can be assigned to κ elements is Nκ . One can
group the κ elements according to the n distinct tags. This counting is given by the Stirling number of
the second kind, which is non-vanishing for n ≥ 1 and written as:

{
κ

n

}
=

1
n!

n

∑
j=0

(−1)j
(

n
j

)
(n − j)κ . (10)

Furthermore, the number of possible distinct N tags in each group of size n is given by the falling
factorial power, which we represent by the Pochhammer symbol (N)n = N(N − 1) . . . (N − n + 1).
The number of possible ways of grouping n distinct tags out of N in κ elements is precisely:

Ω′
κ,n = (N)n

{
κ

n

}
=

(
N
n

) n

∑
j=0

(−1)j
(

n
j

)
(n − j)κ . (11)

In addition, the total number of groupings reduces to a far simpler expression:

Ω′
κ =

min(κ,N)

∑
n=0

Ω′
κ,n =

κ

∑
n=0

(N)n

{
κ

n

}
= Nκ , (12)

the upper limit in the summation can be taken to be κ since {κ
n} vanishes for n > κ.

The interpretation using the finite permutation group is very appealing. For a fixed κ, the �th

statistical moment of n is:

〈n�(tκ)〉 = ∑
min(κ,N)
n=0 Ω′

κ,nn�

∑
min(κ,N)
n=0 Ω′

κ,n

=
1

Nκ

κ

∑
n=0

(N)n

{
κ

n

}
n� . (13)

The degeneracy Ω′
κ,n is required to evaluate higher statistical moments in both microscopic and OTE

approaches. However, the OTE results are valid for arbitrary time intervals between consecutive
events, whereas the microscopic approach requires the temporal differential equation. Thus, OTE can
properly describe the rapid fluctuations that would not be captured otherwise during the transient.
For � = 1, one calculates that:

〈n(t)〉 = N

[
1 −
(

1 − 1
N

)t
]
≈ N(1 − e−t/N) , (14)

and for � = 2,
〈n2(t)〉

N2 =
〈n(t)〉

N
−
(

1 − 1
N

)t+1 [
1 −
(

1 − 2/N
1 − 1/N

)]
. (15)

Direct comparison between Equations (6) and (13) shows that both provide the same asymptotic k = 1
statistical moment. However, there is a striking difference: the OTE description in Equation (13) is
based on the symmetries of finite groups, and it is also valid for arbitrary time intervals, whereas
Equation (6) requires constant and small time intervals δt.

Figure 2 shows the time evolution of scaled standard deviation σ(t)/
√

N, for N/32 =

100, 200, 500, 1000, where all ensembles collapse under a single curve, dominated by the decay
rate τ = 2N in discrete time. The standard deviation σ(t) exhibits a maximum at (t∗/N) ≈ 1.3,
characterizing the rapid population change associated with the superradiant emission. However, these
findings differ from the qualitative analysis of the Dicke model. In particular, 〈n(t∗)〉 ≈ 0.73N > N/2.
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Considering δt = 1/(Npe), since at most a single emission can occur within the time interval δt, the
average emitted power is Pavg = h̄ω〈n(t∗)〉/(t∗δt) ∝ h̄ωNpe, which fails to recover the N2 behavior
expected for superradiance. This can be explained by noting that the transitions in the Dicke model
increases approximately with nN until the maximum intensity is reached. Therefore, the simplification
embedded in our model, that pe remains constant along the process, slows downs the cascade of
emissions and reduces the power of emitted radiation.

0 1 2 3 4 5 6 7 8
t/N

0

0,05

0,1

0,15
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0,25
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σ
/Ν

1
/2
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0,01
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Figure 2. Time evolution of σ(t)/
√

N using Monte Carlo simulations (50, 000 runs). The natural time
scale t/N was employed so that the scaled standard deviation σ(t/N)/

√
N collapses under a single

shared curve, for small and large N. The inset (log scale) displays the long time dominant behavior,
which has a characteristic decay time τ = 2N.

4. Conclusions

We have shown that the OTE approach can be used to compute high-order statistics in
self-organizing systems. The increased dimensional space permits the identification of finite
symmetries and novel recurrence relations, which are used to evaluate high-order statistics required
in superradiant systems. Despite these advances, we stress that the model considered in this study
oversimplifies the superradiant dynamics by assuming a fixed conditional probability of emission
pe = 1. An improved version of the model should contemplate pe as a function of n, or at least consider
an upper value pupper

e ∝ N, to address the N2 behavior of the radiation intensity in superradiance.
Finally, we also mention that the method can also be used in other stochastic problems such as the
disease spreading by aerial vectors. In vector-borne diseases, pathogens are transmitted between
humans or from animals to humans through bloodsucking insects. Examples of those diseases are:
Dengue fever, yellow fever, malaria, and leishmaniasis, just to cite a few. Analogous to the process of
drawing samples from an urn, each bite can be seen as drawn from an urn (population) with N distinct
balls (hosts). Therefore, assuming that insect bites are randomly distributed among hosts, our result
(Equation (6)) can be used to evaluate the statistical moments of this probabilistic system; where k is
the number of bites, N the number of host individuals, and n is the number infected hosts.
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Abstract: Cycles in population dynamics are abundant in nature and are understood as emerging
from the interaction among coupled species. When sampling is conducted at a slow rate compared to
the population cycle period (aliasing effect), one is prone to misinterpretations. However, aliasing
has been poorly addressed in coupled population dynamics. To illustrate the aliasing effect,
the Lotka–Volterra model oscillatory regime is numerically sampled, creating prey–predator cycles.
We show that inadequate sampling rates may produce inversions in the cause-effect relationship
among other artifacts. More generally, slow acquisition rates may distort data interpretation and
produce deceptive patterns and eventually leading to misinterpretations, as predators becoming
preys. Experiments in coupled population dynamics should be designed that address the eventual
aliasing effect.

Keywords: temporal aliasing effect; ecological methods; sampling rates; cyclic dynamics; predator–prey
system; population biology

1. Introduction

Quantitative sampling provides the most important information source for ecological modeling.
An important example, but not yet fully understood, is the periodic species abundance cycles in
population dynamics. These cycles may appear in coupled systems, in which two or more elements
(species or climate) interact in a cause-effect relationship. In Bulmer [1], lags between species cycles
(phase shifts) were used to infer the relationship between different species in Canada.

Also, the historic data series observed by trappers working for Hudson’s Bay Company,
MacLulich [2] and Elton and Nicholson [3] found regular cycles in the population of Snowshoe
Hares (Lepus americanus) and Canadian Lynx (Lynx canadensis). Their abundance have been matched,
and showed an overlap with a small delay. The system was interpreted from the perspective of trophic
interactions, as a regular predator-prey system, which was first labeled the Lotka–Volterra model
(LVM) [4]. Some years later, the model became more robust, considering finite limits in the oscillatory
predation rate [5]. Although predator–prey models are intuitively coherent and produce qualitative
patterns found in nature, such models provide poor adjustment to field data, so their empiricism is
still controversial [6].

There is a scientific consensus that better samples in field experiments lead to better interpretation
of the real pattern. Effects caused by inappropriate sampling have already been addressed in the
context of spatial influence on population dynamics or by the numerical insufficiency of samples [7,8].
However, period between samples are generally neglected and species interaction are especially
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prone to data misinterpretation when inappropriate sampling rates are used. The most common
problem associated with slow sample rates is the aliasing effect. The usual concern of this artifact is
the misidentification of a signal frequency [9–11]. However, aliasing may also occur in multivariate
signals and its effect goes beyond frequency changes. In a bivariate coupled system the lag between
prey and predators (phase shift) may also be compromised.

A thorough search in the scientific literature shows that the aliasing effect is poorly explored in
Ecology, and its consideration may have deep implications. For instance, delays in coupled systems
are ordinarily interpreted as competition effects in Ref. [12]. Also, Benicà and collaborators [13,14]
have studied a long time series of plankton communities, applying regular samples to measure several
species. The authors have found that the cause-effect relationship suggests a chaotic food web.

This manuscript is organized as follows: Firstly, we present the temporal aliasing effect and
the Lotka–Volterra model. Next, we numerically solve the model and sample it with different rates.
Finally, we present the results and artifacts due to poor sampling i.e., apparent inversion of cause-effect
relationship, increased cycle period and synchronism.

2. Aliasing the Lotka–Volterra Model

Temporal aliasing effect occurs when the sampling rate is not fast enough compared to the system
natural cycle period. For example, in movies, the spiked wheels on horse-drawn wagons sometimes
appear to turn backwards, the “wagon-wheel effect”, which is depicted in Figure 1. A wheel indeed
turns clockwise, but due to the slow sampling by the camera (number of frames per second), a filmed
wheel appears to turn counter-clockwise. This effect can be avoided considering the Nyquist–Shannon
sampling theorem [15], which states that given a time series with minimum period τ, the equally
spaced intervals between samples Ts must be smaller than half the minimum period, i.e., Ts < τ/2.

Figure 1. Aliasing wheel. Example of an aliasing effect in the clockwise rotation of a wheel.
The visualized behavior on film is a counter-clockwise rotation, known as the wagon-wheel effect.
The long time interval between samples explains this curiosity.

In Ecology, cycles are extensively found in systems in which species interact with each other
and with the environment [6]. To illustrate how the aliasing effect may mislead the interpretation
of population abundance cycles, consider a simple prey–predator interaction described by the LVM:
dx/dt = x(α − βy) and dy/dt = y(δx − γ), where x(t) and y(t) are the prey and predator population
densities at time t, respectively, α is the prey growth rate in the absence of predators, γ is the predator
death rate in the absence of prey, and β and δ are related to the interaction strength between both
species. The LVM equations have two fixed points: the mutual extinction, E1(x∗, y∗) = (0, 0), and the
neutral center, E2(x∗, y∗) = (γ/δ, α/β). Solutions around the singular point E2 are cycles with period
τ = 2π/

√
αγ. Although the LVM is not adequate to quantitatively describe real-world community

dynamics, here it is suitable because of its cause-effect relation: the number of predators increases
(decreases) after the prey abundance increases (decreases).
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To demonstrate how sampling rates can change the patterns in predator–prey systems, we have
numerically obtained the cyclic dynamic pattern using the LVM. The Lotka–Volterra differential
equations have been implemented in MatLab R© language, and their solutions have been obtained
using the Dormand–Prince method [16]. Dormand–Prince is currently the default method in the
ode45 solver for MatLab R©. The standard LV dynamics was obtained with the following parameters:
(x0, y0) = (1.01, 0.99), α = β = δ = γ = 2π and t ∈ [0, 1000] with resolution 10−3. The model
parameters have been set to produce a unitary oscillation period τ = 1 near the equilibrium point E2.

Figure 2a shows the prey (dashed line) and predator (full line) population cycles. Next, the prey
(empty circle) and predators (filled circle) were sampled within fixed time intervals, Ts. We repeated
the procedure, increasing Ts from τ/10 until 1.1τ. For each sampling rate, we interpolated the points
to build the respective time series to infer the original series. Based on the peaks of the time series, we
inferred the oscillation period and the dephasing of predator and prey abundances. In all the cases, we
considered all the individuals from both populations and sampling does not alter species interactions
nor population densities. Moreover, any spacial effect is considered negligle. In this way, individuals
are considered to be homogeneously spatially distributed (random mixing hypothesis), their number is
large enough therefore we may neglect deviations around their mean densities, leading to the isolation
of the sampling rate effect.

3. Sampling Effects

For Ts < τ/2, the system real cycle period is correctly retrieved as expected by the
Nyquist–Shannon theorem as displayed in Figure 2b, with Ts = τ/10. As Ts increases, the signal
becomes increasingly biased. Figure 2c,d depict different patterns even though the sample period is
the same Ts = 0.4. In Figure 2e, Ts = 0.48, interleaved synchrony and anti-synchrony occurs for the
same series. Even though the Nyquist–Shannon criteria is satisfied, i.e. the oscillation period of both
species can be properly retrieved, the phase relation between them is disrupted. For exact Ts = 0.5,
limiting value for the Nyquist–Shannon criteria, two possible behaviors emerge: In Figure 2f prey and
predators abundances are anti-correlated; or perfectly correlated as shown Figure 2g. Similarly to the
cases presented in Figure 2c,d, the observed series will depend on the initial sample, i.e., the phase
of the cycle where the first sample is obtained. A further increase in Ts causes an inversion of the
prey–predator cycle and also an enhancement of the population cycle period is observed. In Figure 2h,
Ts = 0.9, an increasing (decreasing) in prey population is followed by a decrease (increase) in predators,
which is the opposite expected from a prey–predator relationship.

The inverted cycle oscillations persist for even greater values of Ts as the oscillation period
increases to Ts → τ. When Ts = τ, there are no oscillations, as depicted in Figure 2i. For even greater
values for Ts, the original dynamics is retrieved but with extended cycle period, shown in Figure 2j,
Ts = 1.1. The patterns presented from Figure 2b–i repeat for kτ < Ts < (2k + 1)τ where k = 0, 1, 2, ....

The effect of cycle inversion and frequency change is summarized in Figure 3. When prey
and predator series are acquired with adequate sample rate, prey and predator abundances and lag
between them are properly retrieved, see Figure 3a. Figure 3b presents the phase portrait in prey vs.
predator plot where the cycle turns counterclockwise. However, when the sample rate is not adequate,
an inversion of the cycle occurs, as shown in Figure 3c and seen in the phase portrait of Figure 3d.
Figure 3e shows the changes in the observed frequency and prey–predator cycle direction as function
of sample period Ts. Note that as Ts increases, the original direction of the cycle may be retrieved
(counterclockwise) but the observed period (τo) will be always longer than the original.

99



Math. Comput. Appl. 2019, 24, 48

Figure 2. (a) Prey (dashed line) and predator (full line) population cycles obtained with the
Lotka–Volterra model (LVM), with oscillation period τ = 1. The LVM dynamics can generate different
patterns due only to sampling rate effects. In the above panels, prey and predator abundances are
represented by an empty and full circles, respectively. (b) Ts = 0.1, the time series correctly retrieve
the LVM behavior. (c) Ts = 0.4, peaks seems to synchronize every two cycles. (d) Ts = 0.4, same
sample period as in (c) but with different pattern. (e) Ts = 0.48, synchronous and anti-synchronous
patterns are present in the same series. With Ts = 0.5 (Nyquist limit), two possible behaviors appears:
(f) anti-synchronous cycles or (g) fully synchronized. (h) Ts = 0.9, an inversion and an extension of
cycle period may be interpreted as preys eating predators. (i) Ts = 1 no oscillations are observed.
(j) Ts = 1.1, the original dynamics is retrieved but with extended cycle period.
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Figure 3. (a) Prey and predator series with adequate sample rate (Ts = 0.1) and corresponding phase
portrait in (b). In a prey vs. predator plot, the cycle turns counterclockwise. (c) Prey and predator
series with inadequate sample rate (Ts = 0.9) and corresponding phase portrait in (d). In this case
the cycle turns clockwise. (e) changes in the observed frequency and prey–predator cycle direction as
function of sample period Ts. Each sample in (a) and (c) is represented in (b) and (d) respectively.
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A very simple and controlled oscillatory behavior, such the one LVM simulates, may produce
different patterns in time series due only to inappropriate sampling rates, as shown in Figure 2b–g.
Therefore, ecological interactions may be misinterpreted if data were collected with insufficiently
sampling rates. In real world systems, this difficulty is amplified because the populations’ periodicity
is not necessarily constant and/or many species interactions may tangle the dynamics even more.

Aliasing should also be better evaluated in many other circumstances, such as the coupled
aerosol-cloud-rain system, because the LVM is applied to modeling [17]. The influence of climate
anomalies has been investigated as a driver of periods in population dynamics, as in the hare-lynx
system [18,19]. Species abundance rates are the basis for evaluation of biological control success in
crops, and in such cases, aliasing may have great financial consequences [20]. Sampling effects also
have implications for biological conservation and species management, as in marine ecosystems, where
population levels are used as a criterion to regulate fishing [21]. Further, some theoretical approaches
about the trade-offs in Ecology and Evolution also concern predator-prey systems, trophic interactions
or population cycles interactions [22–25]. Aliasing effect should also be considered on decision-making
of public policies regarding national parks, fish stocks and hunting schedule, since the prediction of
population levels often relies on sampled data.

4. Conclusion

We have stressed the importance of the aliasing effect in retrieving the behavior of ecological interactions.
We have numerically demonstrated that slow sampling rates may lead to data misinterpretation. Aliasing
is an often neglected effect that should be carefully considered when real data is used to model systems
interaction. The aliasing hypothesis may provide new insights into old problems in Ecology and Biology.
This result also highlights the importance of the field researchers, that can provide with realistic estimates for
the population cycle periods, avoiding any circumstantial sampling with poor experimental designs.
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Abstract: Predictive analysis of epidemics often depends on the initial conditions of the outbreak, the
structure of the afflicted population, and population size. However, disease outbreaks are subjected
to fluctuations that may shape the spreading process. Agent-based epidemic models mitigate the
issue by using a transition matrix which replicates stochastic effects observed in real epidemics. They
have met considerable numerical success to simulate small scale epidemics. The problem grows
exponentially with population size, reducing the usability of agent-based models for large scale
epidemics. Here, we present an algorithm that explores permutation symmetries to enhance the
computational performance of agent-based epidemic models. Our findings bound the stochastic
process to a single eigenvalue sector, scaling down the dimension of the transition matrix to o(N2).

Keywords: Markov processes; computational methods; epidemic models; complex systems;
nonlinear dynamics

1. Introduction

In recent years, the emergence of Zika and Ebola viruses have attracted much attention from the
scientific community after reports of their aggressive effects, respectively, microcephaly in newborns [1]
and high mortality rate [2–4]. Despite their intrinsic differences concerning transmission mechanisms
and pathogen-host interaction, both viruses spread in a population starting from a few infected
individuals, based on their geographic location and network of contacts. Contact tracing and proper
clinical care planning are critical parts of the WHO strategic plan [5] to mitigate ongoing transmissions
and incidence cases, requiring the correct spatiotemporal dissemination of the disease. This assertion
has renewed the interest in agent-based epidemic models (ABEM).

ABEM are mathematical models that describe the evolution of infectious diseases among a finite
number N of agents over time (see Reference [6] for an extensive review). For that purpose, agents are
labeled using integer numbers k = 0, 1, . . . , N − 1, whereas contacts between agents are mapped via
an adjacency matrix A. The matrix elements are Aij = 1 if the j-th agent connects to the i-th agent and
otherwise vanishes. Accordingly, the set formed by agents and their interconnection is expressed as a
graph, as depicted in Figure 1. In this way, heterogeneity arises naturally since the individuality of
agents is taken into account, distinguishing ABEM from compartmental epidemic models [7–9].
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Figure 1. Agent network. Agents (vertices) and their interconnections (edges) are expressed as a graph.
The graph representation introduces heterogeneity among the agents, which must be accounted for
during disease spreading.

The susceptible-infected-susceptible model (SIS) is the simplest ABEM. It considers only two
health states for agents, infected |1〉 or susceptible |0〉, and the occurrence of the following events
during a time interval δt [10,11]. An infected agent may undergo a recovery event and return to
susceptible state with probability γ; an infected agent may infect a susceptible agent with transmission
probability β if and only if both agents are connected; or remains unchanged, as Figure 2 illustrates.
Therefore, the SIS ABEM is inherently a Markov process in discrete time. The time interval δt is often
chosen so that sequential recovery-recovery or transmission-recovery events are unlikely within the
available time window. This is the so-called Poissonian hypothesis [12–15].

Figure 2. Susceptible-infected-susceptible model (SIS) transition events. Infected agents (red dotted)
undergo recovery events with probability γ and change to susceptible (empty) health status. Infected
agents may also infect additional susceptible agents with probability β, as long they are connected.

Following Reference [16], any configuration of N agents is obtained by direct composition of
individual agent states. Let μ be an integer that labels the μ-th configuration so that:

|μ〉 ≡ |nN−1 · · · n1 n0〉 , (1)

with nk = 0, 1 and μ = nN−12N−1 + · · ·+ n020. A simple example for N = 4 is |8〉 ≡ |1000〉, which
represents the configuration where only the agent k = 3 is infected. From this scheme, it is already
clear that there exist 2N configurations in total since there are two available states for each agent.
In what follows, we employ the notation: Latin indices enumerate agents 0, 1, . . . , N − 1, while Greek
indices enumerate configuration states 0, 1, . . . , 2N − 1.

Let |π(t)〉 be the probability vector and πμ(t) = 〈μ|π(t)〉 the probability of observing the
configuration |μ〉 at time t [17,18]. The master equation for the general Markov process reads:

d
dt

πμ(t) = −∑
ν

Hμνπν(t), (2)

Ĥ = (�− T̂)/δt is the step operator, whereas T̂ stands for the transition matrix [19]. The transition
matrix T̂ encodes all transitions available between any two configuration vectors. Its matrix elements
Tμν are constructed from much simpler rules. These rules are model dependent and fully characterize
the stochastic model, as we shall see in details later. If a representation of T̂ is known, the solution
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of the master equation provides the instantaneous values of the probabilities πμ(t), i.e., the entire
probability distribution function. Therefore, it becomes possible to calculate any relevant statistics of
the problem at any instant of time, including those that may not be easily accessible or accurate by
other numerical methods, such as the instantaneous Shannon entropy or the characteristic function.

Luckily, for time independent T̂, the solution is well known:

|π(t)〉 = e−Ĥt|π(0)〉 . (3)

Despite the existence of this exact solution, the applicability of Equation (3) at this stage is limited to
small population sizes N ∼ O(20). The reason is the exponential growth of the underlying vector space
with N. Here, we present algorithms to generate the operators T̂ and Ĥ using finite symmetries or,
equivalently, permutation symmetries via Cayley’s theorem [20]. These algorithms are usually applied
to condensate matter physics [21,22], but they may also be employed in epidemiology studies, due to
recent developments in the disease spreading dynamics [16]. For pedagogical reasons, we first show
how to build the complete 2N vector space and the corresponding transition matrix. Next, we explore
cyclic permutations to construct the cyclic vector space, in which T̂ is broken down into N smaller
blocks. Lastly, we consider the most symmetric cases, which reduce the problem to O(N). These
instances correspond to the mean field or averaged networks. The iteration of sparse T̂ over |π(t)〉
produces the desired disease evolution among agents. Relevant steps are shown in Algorithm A1..

2. Transition Matrix

The transition matrix T̂ for an SIS model considering N two-state agents is [16]:

T̂ = �− β ∑
kj

[
Ajk(1 − n̂j − σ̂+

j ) + Γδkj(1 − σ̂−
j )
]

n̂k , (4)

where Γ = γ/β, δkl is the Kronecker delta, n̂k|nk〉 = nk|nk〉 , is the local number operator (nk =

0, 1), and σ̂+
k |nk〉 = δnk ,0|1k〉 , σ̂−

k |nk〉 = δnk ,1|0k〉 are the Pauli raising and lowering local operators,
respectively. Local algebraic relationships are [n̂k, σ̂±

k′ ] = ±δk′k and [σ̂+
k , σ̂−

k′ ] = δk′k(2n̂k −�). Inspection
of Equation (4) readily shows T̂ is not Hermitian. This means left- and right-eigenvectors are not related
by Hermitian conjugation. In this scenario, the correct time evolution of πμ(t) using Equation (3)
requires the complete eigendecomposition, i.e., 2N eigenvalues accompanied by 2N right-eigenvectors
and 2N left-eigenvectors. This is often the main criticism against ABEM [12].

However, the scenario described above is not entirely correct. The rationale behind it assumes all
eigenstates are equally relevant, which is incorrect whenever A exhibits invariance upon the action
of a particular group (sets of transformations). Symmetries allow the matrix representation of T̂
to be in block diagonal form, as depicted in Figure 3. Eigenvectors related to each block share the
same eigenvalue (degeneracy), as usual in quantum mechanics [23]. Therefore, the trick to simplify
problems involving the transition matrix lies in the selection of the appropriate basis in respect to a
given symmetry, creating matrix representations with smaller blocks. The computational performance
using this methodology surpasses that of working with the full matrix because each block can be
treated separately, reducing memory storage and access. In particular, if only a few blocks are relevant
to the analysis, the remaining blocks can be neglected. This property often produces massive reductions
in the typical dimensions of the problem, enhancing computation times.
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a) b)

Figure 3. Reduction of the transition matrix to block diagonal form. (a) In the configurational vector
space, {|μ〉}, the matrix representation of T̂ lacks an explicit mathematical pattern. (b) The emergence of
organizational patterns are observed whenever symmetries of T̂ are correctly addressed by employing
the eigenvectors {ψ} and eigenvalues {λ} corresponding to the symmetry group considered. Under
the invariant basis {ψ}, the matrix representation of T̂ is brought to a block diagonal form, with blocks
labeled by eigenvalues {λ}.

In the SIS model, recovery events result from actions of one-body operators, σ̂−
k n̂k ≡ σ̂−

k , on
configuration vectors. Infection events are two-body operators: one infected agent may transmit the
communicable disease to a susceptible agent after interaction between them, in the time interval δt.
Interestingly, the resulting interaction also depends on symmetries available to the adjacency matrix A.
The symmetries available to A may be further explored to assemble the initial vector space, reducing T̂
to its block diagonal form.

Group operations over A are always finite transformations. One may explore the isomorphism
between finite groups and the permutation group via Cayley theorem [20] to build permutation
invariant subspaces. To that end, one must select the finite group and the corresponding symmetry. For
graphs, the circular representation provides a convenient context to explore the existing symmetries,
as Figure 4a depicts. From Figure 4b, connections among agents remain unchanged after cyclic
permutation of agents, hence, A exhibits invariance under cyclic permutations. Cyclic permutations
form a subset of permutation group and often represent geometric transformations, such as rotations
and translations.

(a) (b)

Figure 4. Regular graph in circular representation for N = 8 and single infected agent (red dotted). (a)
The infected agent lies at node k = 0. (b) Graph obtained from cyclic permutation of nodes k → k + 1
and N − 1 → 0. Connections remain unchanged.
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Vectors with N agents and invariant by cyclic permutations are built as follows. Consider the
representative vector:

|μp〉 ≡ 1
Nμ

N−1

∑
k=0

(
e2iπp/N P̂

)k|μ〉 , (5)

where Nμ is the normalization and P̂ is the single step cyclic permutation with p = 0, 1, . . . , N − 1.
The eigenvalues e−2iπp/N are derived from P̂N = �. Eigenvalues can be associated with invariant
subspaces, or sectors, spanned by their corresponding eigenvectors. For the sake of convenience,
the integer p labels the eigenvalue sector. The representative vector |μp〉 describes the linear
combination of N-agent configurations related to |μ〉 by cyclic permutations. For instance, |30〉 =

(|011〉+ |110〉+ |101〉) /
√

3 corresponds to the representative vector for μ = 3, with N = 3 in the
p = 0 sector. By construction, the vectors |μp〉 satisfy the eigenvalue equation P̂|μp〉 = e−2iπp/N |μp〉.
They are also useful to identify symmetries, as they never change link distributions, only node labels.
If T̂ is symmetric under cyclic permutations, T̂ and P̂ commute with each other [T̂, P̂] = 0, meaning
they share a common set of eigenvectors. Thus, T̂ can be written using |μp〉 and, more importantly,
transitions between eigenvectors with distinct eigenvalues are prohibited. This feature leads to a block
diagonal form to the matrix representation of T̂.

3. Cyclic Vector Space

The complete picture of infection dynamics generated by the SIS model requires the utilization of
2N configuration vectors. For completeness sake, we discuss the algorithm to obtain the vector space
using both string and numeric representations. Matrix elements of T̂ in Equation (4) are calculated
from an adjacency matrix and user input dictionary (lookup table) based on off-diagonal transition
rules.

According to Equation (1), the configuration vector |μ〉 is obtained from the binary representations
of the labels μ, as exemplified in Figure 5. There are two common equivalent routes to implement the
configuration in computer codes. The first method employs string objects whereas the second method
makes use of discrete mathematics. The second approach tends to be more efficient for two-state
problems as optimized and native libraries for binary operations are widely available. For pedagogical
purposes and generalization for more than two-states, we avoid exclusive binary operations in favor
of usual discrete integer division and modulo operations.

Figure 5. Agent configurations using binary representation for μ = 3 and 5 with N = 4. For
|μ = 3〉 = |0011〉, whereas |μ = 5〉 = |0101〉. In both configurations, two agents are infected (red
dotted).
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In Python programming language, classes provide a convenient mechanism to enable both
formalisms for each instanced object (vector). Here, the custom class SymConf is used to encapsulate
two instance variables: label stores the string representation of N agents, while label_int stores the
corresponding integer number. In addition, the custom class also encapsulates three global class
variables, base, dimension, and basemax, whose default values are 2, N, and 2N . Base corresponds to
the number of available states per agent. The class main method generates the eigenvectors |μp〉 with
eigenvalue exp(−2iπp/N), relative to the cyclic permutation operator P̂ using Equation (5).

In what follows, we address four relevant points regarding the permutation eigenvectors |μp〉,
namely, the criteria used to label eigenvectors; normalization; number of infected agents; and the
permutation operation.

Labels. Equation (5) claims permutation eigenvectors are a linear combination of all configuration
vectors related by cyclic permutations. Here, we set the convention to adopt the smallest value μ

present in the linear combination to label the representative vector. As examples, consider the following
representatives of μ = 1, N = 4, and p = 0, 1, 2, 3:

|10〉 = |0001 = 1〉+ |0010 = 2〉+ |0100 = 4〉+ |1000 = 8〉√
4

. (6a)

|11〉 = |1〉+ i|2〉 − |4〉 − i|8〉√
4

. (6b)

|12〉 = |1〉 − |2〉+ |4〉 − |8〉√
4

. (6c)

|13〉 = |1〉 − i|2〉 − |4〉+ i|8〉√
4

. (6d)

The order convention is necessary to calculate the relative phase between configurations related
by permutations in non-trivial linear combinations. For instance, consider the vector |φ〉 =

P̂|μp〉 = (1/Nμ)∑k(e2iπp/N P̂)kP̂|μ〉. Since |μp〉 and |φ〉 are related by a single cyclic permutation,
they differ by a phase factor: |φ〉 = e−2iπp/N |μp〉. Note that the linear combination P̂|μp〉+ |μp〉 =
(1 + e−2iπp/N)|μp〉 vanishes for p = N/2. Despite the simplicity of the previous example, it already
illustrates the relevance of phase difference among cyclic vectors.

Normalization. According to Equation (5), the squared norm of representative vectors is:

〈μp|μp〉 = 1
Nμ

N−1

∑
k=0

e−2iπpk/N〈μ|P̂−k|μp〉 = N
Nμ

〈μ|μp〉 . (7)

The evaluation of the scalar product 〈μ|μp〉 follows directly from Equation (5). One notices the
configuration |μ〉 may appear only once for several linear combinations |μp〉, so that 〈μ|μp〉 = 1/Nμ.
For instance, this is the case of 〈1|1p〉. However, a given configuration |μ〉 may contribute more than
once if there exists an integer 1 ≤ r ≤ N such that P̂r|μ〉 = |μ〉, i.e., after r cyclic permutations the
configuration repeats itself. Since P̂N = �, it follows N/r is the number of times the configuration |μ〉
appears in |μp〉. Each contribution adds e2iπpm/N/Nμ (m = 0, 1, . . . , N/r − 1) in Equation (7). This
result is conveniently summarized using the repetition number:

Rμ,p =
N/r−1

∑′
m=0

(e2iπp r/N)m, (8)

where the primed sum indicates N/r in the upper limit is an integer number. Therefore, 〈μ|μp〉 =
Rμ,p/Nμ and one obtains Nμ =

√
NRμ,p from Equation (7).

We now show two examples to consolidate the discussion around Rμ,p and Nμ, for N = 4 and
two infected agents. The configuration state |3〉 = |0011〉 requires N cyclic permutations to repeat
itself, so that R3,p = 1 for any p and the corresponding normalization for |3p〉 is simply N3 =

√
N, as
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expected. The first non-trivial case arises for |5p〉 because the base configuration |5〉 = |0101〉 satisfies
P̂2|5〉 = |5〉. According to Equation (8), R5,p = 1 + e4iπp/N and assume only values: R5,0 = R5,2 = 2
and R5,1 = R5,3 = 0. Thus, depending on p, certain linear combinations are forbidden because they
produce vectors with null norm, ensuring the correct dimension of vector space. The remaining
non-null states for N = 4 are shown in Table 1 for further reference.

Table 1. Cyclic permutation eigenvectors with N = 4 agents. The first column shows the number of
infected agents in the eigenvector. Each remaining column corresponds to a permutation sector p,
and each row the corresponding state |μp〉. The cross symbol indicates null-normed vector and the
dimension of the vector space is d = 24.

n p = 0 p = 1 p = 2 p = 3

0 |00〉 × × ×
1 |10〉 |11〉 |12〉 |13〉
2 |30〉 |31〉 |32〉 |33〉
2 |50〉 × |52〉 ×
3 |70〉 |71〉 |72〉 |73〉
4 |150〉 × × ×

Number of Infected Agents. The number of infected agents using representative vectors is
calculated as:

〈n̂〉μ = ∑
k
〈μp|n̂k|μp〉. (9)

In the string representation, native string methods, such as count(’x’), count the number agents with
health state x = 0, 1, 2 . . .. If native methods are unavailable, one may always perform a comparative
loop over the string. Algorithm A2. explains the standard procedure to count bits in the integer
representation. It is worth mentioning that the operator ∑k n̂k commutes with P̂.

Permutation. Cyclic permutations are the core transformations here. In the string representation,
cyclic permutations consist of one copy and one concatenation call, as exemplified in Figure 6a.

(a) (b)

Figure 6. Cyclic permutation for configuration μ = 9 with N = 4. (a) String representation executes
one copy and one concatenation operation; (b) integer representation requires both integer division
and modulo operation by 2N .

Meanwhile, in the integer representation, cyclic permutations are obtained using modulo and
integer division: μ′ = (2μ % 2N) + (2μ//2N), the new configuration μ′ is obtained from configuration
μ taking the modulo of 2μ by 2N in addition to the result of the integer division 2μ by 2N . Multiplication
by the number of available states translates bit fields to the left. The modulo operation crops
contributions larger than those available to N-bit fields. Integer division 2μ/2N selects the bit associated
to largest binary position and shifts it to the lowest binary position (see Figure 6b).

Next, we focus our attention on the sector with p = 0, which plays an important role in epidemic
models (see Section 5 for further discussion). This invariant subspace holds only symmetric linear
combinations of configuration vectors. Incidentally, that also means that configurations with short
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cycles—or large repetition numbers—can only have representative vectors with non-vanishing norms
iff p = 0. The most important cases are: a) the all-infected configuration |111 · · · 1〉, and b) disease-free
configuration |000 · · · 0〉. This occurs because these two configurations are invariant by every cyclic
permutation available, including a single cyclic permutation (short cycle). As a direct consequence, the
probability of disease eradication, π0(t), and the probability that the disease has infected each element
of the population, π2N−1(t), can only be evaluated at p = 0. Moreover, this sector holds the largest
dimension being the worst scenario for numerical computations.

To construct the vectors for this particular sector, consider each integer μ in [0, 2N) as a potential
candidate to assemble the symmetric vector spaces for fixed p. By performing N − 1 cyclic permutations
over |μ〉, one determines the representative state |μp〉 in Equation (5), as well as the number of
repetitions Rμ,p, hence the norm Nμ. Algorithm A3. calculates the representative vector |μp〉 associated
with configuration |μ〉. Due to the order convention adopted here, the string representation must be
converted to the integer representation at the if -clause test. The representative configurations are then
stored either in a list or dictionary. As an additional benefit, since vector spaces are independent of the
problem at hand, the set of representatives may also be stored in a database for further use in different
problems, as long as they are subjected to the same symmetry.

4. Matrix Elements

The next step is the evaluation of the transition matrix in the sector p = 0. Infection and recovery
dynamics are the main actors in this context, as they inform the way representative vectors |μ0〉 interact
with each other, T̂|μ0〉 = ∑′

{ν} Tνμ|ν0〉. The prime indicates the sum runs over all eigenvectors in the
p = 0 sector, while cyclic permutation invariance implies:

T̂|μ0〉 = 1
Nμ

N−1

∑
k=0

P̂k T̂|μ〉 . (10)

Equation (10) tells us the action of T̂ on the linear combination |μ0〉 is calculated from the simpler
operation T̂|μ〉. The resulting vectors are then permuted, producing the corresponding matrix elements.
The practical advantages of this method come from the order of the operations: By doing the transitions
first and then finding the respective representatives, one divides the workload by a factor N. If the
normal ordering were used instead, one would evaluate the transitions for each element of the linear
combination and then find the corresponding representative, hence N times the number of operations
required with transition first. For instance, consider T̂|70〉 for N = 3:

T̂|70〉 = 1
N7

2

∑
k=0

P̂kT̂|7〉 = γ

N7

2

∑
k=0

P̂k (|3〉+ |5〉+ |6〉)

=
γ

N7

2

∑
k=0

P̂k
(
|3〉+ P̂|3〉+ P̂2|3〉

)
=

(
3γ

N3

N7

)
|30〉 (11)

=
√

3γ|30〉.

The relevant data structure for T̂ are the off-diagonal transitions, which are further subdivided
into two categories: one or two-body contributions. This is illustrated in Figure 7 for the SIS model.
The finite set of transition rules are passed as a lookup table or, if available, a dictionary. Data is
organized as follows: Each entry represents a one or two-body configuration whose value corresponds
to one tuple. Each tuple holds two immutable values: the configuration to which the entry transitions
to and the assigned coupling strength.
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Figure 7. Off-diagonal transitions in the SIS model. Data structure follows the income-outcome
convention. Data entries represent the current one-body (two-body) health state, whereas
the corresponding data values, organized as tuples, express the outcome one-body (two-body)
configuration and coupling strength.

With off-diagonal transition rules in hand, one-body actions are evaluated by scanning each agent
and applying the corresponding transition rule in Algorithm A4.. The resulting one-body transitions
are stored in the outcome variable. Figure 8 depicts an example for N = 3 and one infected agent
at k = 1. Two-body operators differ from their one-body counterparts due to the fact they require
two agent loops and information from the adjacency matrix A, as seen in Algorithm A5.. Figure 9
exhibits an example for N = 3. After both one- and two-body transitions are computed, the diagonal
element is obtained via probability conservation: Tμμ = 1 − ∑′

μ �=ν Tμν. The process is iterated until all
eigenvectors and their respective transitions are accounted.

Figure 8. Recovery operator action on configuration vector |2〉, in the SIS model with N = 3.
Non-vanishing transition is observed only for agent k = 1, which is infected, producing |0〉.
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Figure 9. Infection operator action on configuration vector |2〉, in the SIS model with N = 3 and
mean field network. Disease transmission events are evaluated for each pair of agents. Whenever
the pair health state differs, and the pair also shares one connection expressed by the adjacency
matrix, the configuration changes to contemplate the recently infected individual. For |2〉, k = 1 agent
contaminates k = 0 (k = 2) agent, producing the configuration |3〉 ( |6〉 ).

5. Casimir Vector Space

The recent advances in the disease spreading dynamics in realistic populations are intimately
linked to network theory [12,24]. Networks are traditionally associated with graphs holding a large
number of nodes and links [25]. The graph must be large enough to produce a degree distribution,
which describes the probability distribution of links per node. The degree distribution, or alternatively
its statistical moments, characterizes the network type and its properties. However, some networks,
including random networks, require an ensemble of graphs to provide an accurate picture. Thus, a
graph becomes a sample or realization of the network. Statistical properties of networks are derived
for each graph, followed by ensemble average and deviation. In practice, when graphs in the ensemble
are large enough (N � 1) and representatives, statistics may also be evaluated for each graph and
extrapolated as those of the network.

Two cases hold particular importance for applications of network theory in epidemic models: the
mean field and random networks. In the first case, all agents are connected, meaning one infected
agent may potentially infect anyone. Hence, the disease tends to spread faster than in constrained
networks. Furthermore, all graphs in the mean field ensemble share the same adjacency AMF. In the
other case, the connection between agent i and j occurs with fixed probability ρ. However, graphs in
the random network ensemble differ from each other. Here, we only consider ensemble averages as a
way to extract statistical properties, which is equivalent to set Arandom

ij = ρ (1 − δij) = ρAMF
ij . Thus, all

relevant symmetries lie only in the mean field adjacency matrix AMF. Naturally, AMF remains invariant
under cyclic permutations, enabling the application of the algorithm explained in the previous sections.
However, AMF is also symmetric under the action of any permutation, which drastically reduces the
diagonal blocks of T̂ from O(2N/N) to O(N).

Here, our primary concern is to employ the cyclic permutation eigenvectors |μp〉 to generate the
eigenvectors of the complete permutation group, |s, m; p〉. The eigenvectors |s, m; p〉 reduce T̂ in mean
field or random networks to block diagonal form with dimension O(N). The indices s and m may
assume the following values s = N/2, N/2 − 1, . . . with s > 0 and m = −s,−s + 1, . . . , s, respectively.
The relationship between s and m are the same as those observed for quantum spin operators. The
explanation goes as follows. As shown in Reference [16], Equation (4), in either mean field or random
networks, contains operators Ŝ± ≡ ∑k σ̂±

k and n̂ ≡ ∑k n̂k. From the important relation n̂ = Ŝz + N/2,
one retains spin operators and the upper bound s = N/2, as expected from the combination of N
1/2-spin particles.
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In what follows, we only consider the p = 0 sector. First, let Ŝ2 = (Ŝz)2 + (Ŝ+Ŝ− + Ŝ−Ŝ+)/2
be the Casimir operator, so that [Ŝ2, Ŝα] = [P̂, Ŝα] = 0 for α = z,± and Ŝ2|s, m; 0〉 = s(s + 1)|s, m; 0〉.
Accordingly, [Ŝ2, T̂] = 0 and s and p are good quantum numbers. In general, the eigenvector |s, m; p〉
may always be expressed as:

|s, m; p〉 = ∑
μ

csmp
μ |μ〉 . (12)

Clearly, csmp
μ = 0 if the number of infected agents in the configuration μ, nμ = ∑k〈μ0|n̂k|μ0〉, fails to

satisfy the constraint nμ = m + N/2. The idea is to write Equation (12) as a linear combination of
representative vectors |μp〉 with m + N/2 infected agents, ensuring all available permutations are
accounted for. The implications for numerical codes is quite obvious: it allows the reuse of numerical
codes to obtain eigenvectors |μp〉.

The most relevant sector for epidemic models contains the configuration with all (none) infected
agents. According to previous sections, this implies p = 0 while m = ±N/2 requires s = N/2. In the
(s = N/2, p = 0) sector, the desired linear combination is:

|s = N/2, m, p = 0〉 = 1
N ∑′

{μ}
Rμ,0

−1/2|μ0〉 , (13)

with normalization |N |2 = ∑′
μ|Rμ,0|−1. The prime indicates the sum is subjected to the constraint

nμ = m + N/2 for m = −N/2, . . . , N/2. The result in Equation (13) agrees with the standard theory
of spin addition. Generalization for p and s is straightforward and omitted. It is worth mentioning the
formalism adopted here already accounted for forbidden states in p �= 0 sectors.

Examples are available to appreciate Equation (13) for increasing values of N. We begin
considering N = 4. This translates into s = 2 and m = −2, . . . , 2. The relevant representative
eigenvectors |μ0〉 are expressed in Table 2. The only non-trivial correspondence occurs for m = 0,

|2, 0; 0〉 =
√

2|30〉+ |50〉√
3

=
|0011〉+ |1001〉+ |1100〉+ |0110〉+ |0101〉+ |1010〉√

6
. (14)

Next, consider N = 6 which fixes s = 3 and m = −3, . . . , 3. The eigenvector |3, 0; 0〉 holds contributions
from four cyclic eigenvectors or, equivalently, 20 configurations:

|3, 0; 0〉 =
√

3|70〉+
√

3|110〉+
√

3|190〉+ |210〉√
10

(15)

=
|000111〉+ |100011〉+ |110001〉+ |111000〉+ |011100〉+ |001110〉√

20
.

+
|001011〉+ |100101〉+ |110010〉+ |011001〉+ |101100〉+ |010110〉√

20
.

+
|010011〉+ |101001〉+ |110100〉+ |011010〉+ |001101〉+ |100110〉√

20
.

+
|010101〉+ |101010〉√

20
.
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Table 2. Eigenvectors |μ0〉 with N = 4.

μ0 Rμ,0 m |μ〉
0 4 −2 |0000〉
1 1 −1 |0001〉
3 1 0 |0011〉
5 2 0 |0101〉
7 1 1 |0111〉

15 4 2 |1111〉

6. Discussion

The algorithms presented in this study assumed only two health states for each agent.
Generalization for q number of states is readily available by changing to the integer representation
μ = aN−1qN−1 + · · · + a0q0, with ak = 0, 1, . . . , q − 1, concomitant with additional off-diagonal
transitions. For instance, the susceptible-infected-recovered-susceptible (SIRS) ABEM generalizes the
SIS model as it introduces the removed (R) health state for agents. This additional state often means
the agent has recovered from the illness and developed immunity, has been vaccinated, or has passed
away. In any case, once removed, the agent takes no part in the dynamics of disease transmission,
hindering infection events [12]. As such, recovery with immunization or death events produce the
transition I → R, with probability γ while vaccination S → R occurs with probability ξ. If death
events are excluded, temporary immunization is achieved via R → S with probability η. Therefore,
the vectors |nN−1 · · · n0〉 with nk = 0, 1 or 2 describe configurations of the SIRS model. However,
the algorithm to explore cyclic permutations remains unchanged as it explores symmetries of the
underlying network. As a result, eigenvalues and number of sectors are the same, but degeneracy and
eigenvectors change to accommodate the increased number of health states.

Parallelism merits further discussion. The computation of representative vector space may be
performed in parallel by dividing the set of qN integers among Q processes. Each process runs one
local set of representative vectors which, posteriorly, is compared against the sets from the remaining
processes. The union of all Q sets produces the desired representative vector space. Parallelism is
also obtained at the evaluation of T̂: Columns ( |μp〉 ) are distributed among Q processes and the
corresponding matrix elements are calculated for each process. The union of all matrix elements
from each process produces the complete description of T̂ in the representative vector space. Lastly,
parallelism is also available for sparse products T̂|π(t)〉 necessary to execute the time evolution.

We also emphasize the algorithms explained here are most useful to evaluate quantities within a
single permutation sector of T̂. This is likely the case whenever the probability for disease eradication
or complete population contamination are concerned. Another relevant situation occurs when the
initial condition itself falls within a single sector. For instance, the initial probability vector |π(0)〉 =
(1/3)(|001〉+ |010〉+ |100〉) states only one among N = 3 agents is infected. However, the identity of
the infected agent is unknown a priori, so that configurations with one infected agent occurs with equal
probability 1/N. Now, the decomposition of |π(0)〉 in the |μp〉 basis results in |π(0)〉 = (1/

√
3)|10〉.

Thus, the time evolution of |π(0)〉 by the action of T̂ is again restricted to a single permutation sector.
Without loss of generality, the initial condition can always be written as |π(0)〉 =

∑′
{μ}

N−1
∑

k=0
πμkP̂k|μ〉, where the primed sum runs only over the indices μ, which also labels the

representative vectors. The cyclic permutation P̂k generates the remaining configurations related to |μ〉
whereas the coefficients πμk are the corresponding initial probabilities. Using the eigenvalue equation
for P̂, one calculates the scalar product:

〈νp|π(0)〉 = ∑′

{μ}

N−1

∑
k=0

πμk〈νp|P̂k|μ〉 = ∑′

{μ}

N−1

∑
k=0

πμke2iπpk/N〈νp|μ〉 =
√

Nπ̃νp
Rνp

Nμ
, (16)
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where π̃μp = N−1/2 ∑k πμke2iπpk/N is the discrete Fourier transform of πμk. Using the previous
example, with one infected among N = 3 agents, |π(0)〉 = ∑2

k=0 π0kP̂k|0〉 + ∑2
k=0 π1kP̂k|1〉 +

∑2
k=0 π3kP̂k|3〉+ ∑2

k=0 π7kP̂k|7〉, with πμk = δμ1/3 so that R1p = 1, π̃1p = δp0/
√

3, and the previous
result is recovered.

Now we address the case where the evaluation of the desired statistics requires several
permutation sectors. In the worst case scenario, every permutation sector contributes equally to the
computation. Therefore one must diagonalize each block in order to obtain the relevant eigenvalues
and eigenvectors. As a crude approximation, one may consider that the N blocks have the same
dimension d/N for a d-dimensional vector space. The complexity of diagonalization methods in the
LAPACK library range from O((d/N)2) up to O((d/N)3) for each block [26], whereas the complexity
range for full diagonalization is [O(d2), O(d3)]. Thus diagonalization of N blocks reduces the total
complexity from N−1 up to N−2. More importantly, blocks can be diagonalized in different processors
because they are disjointed.

The algorithms presented here are most suitable for networks with invariance by cyclic
permutations. However, they are also convenient whenever the algebraic commutator can be
approximated by [T̂, P̂] = Ô, where the operator Ô is symmetric under cyclic permutations, [Ô, P̂] = 0.
In particular, Ô = q0� + q1P̂y + ∑β=z,± qβŜβ, with constant qj (j = 0, 1, z,±) and y ∈ �, creates
interesting disease-spreading dynamics, such as a localized disease source for qβ = qδβ,0.

Finally, we compare performances of the SIS ABEM using the transition matrix method with and
without our algorithm. Numerical experiments were performed using Python on an Intel-PC i7-7700
3.8 GHz. The decision to pick up Python instead of a more performance-oriented language was based
on the ability to quickly disseminate the method. For data intensive research, we strongly recommend
performance-oriented languages, such as C or high-performance Fortran. The results are summarized
in Table 3. As expected, cyclic permutations greatly improve computation times, most noticeable for
large populations sizes. For N = 20, the improved numerical code runs two orders of magnitude
faster, while only consuming a fraction—about 6%—of the original memory. We reiterate methods
involving the transition matrix to compute the probabilities of each configuration available to the
system πμ(t), with μ = 0, 1, . . . , 2N − 1, up to numerical errors (floating point and rounding errors),
often around O(10−12). Because they include all configurations, they can provide accurate statistics
and data predictions along the evolution of the epidemics. However, direct Monte Carlo methods
(DMCM) are far more efficient if one is solely interested in a few statistical moments of relevant
variables, not in the entire joint pdf [27,28]. There are mainly two flavors of DMCM, depending on
whether the time interval is fixed or distributed according to a given PDF [29]. The latter case is
more commonly known as the Gillespie algorithm [30–32], and it has been successful to simulate
epidemics. In DMCMs, execution times are directly related to the number of independent runs m, with
error scaling as m−1/2. Usually, m ∼ O(106) produces errors around O(10−3). Smaller errors can be
obtained by increasing m. Regardless, DMCM are always more efficient if the joint PDF is not required,
as they probe the configurations that are more likely to occur. Indeed, computation times of DMCM
with N = 20, τ = 0.19 s, are far lower than the 41 s obtained previously. Furthermore, DMCM hold
small memory footprint and can simulate ABEM with N ∼ O(104).
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Table 3. Computation times and memory usage of time evolution of the SIS agent-based epidemic
models (ABEM) for various population sizes, with (block) and without (full matrix) cyclic permutations.

N Time (s) Memory (MB)

Block Full Matrix Block Full Matrix

10 0.02(9) 0.45(7) 23.3(0) 24.7(1)
12 0.10(0) 2.91(4) 23.9(8) 32.3(9)
14 0.41(1) 19.59(6) 26.5(2) 62.4(8)
16 1.76(6) 132.31(5) 34.8(1) 201.0(8)
18 8.38(4) 837.86(9) 66.4(5) 784.6(8)
20 41.93(1) 4529.09(7) 184.0(4) 3251.0(7)

7. Conclusions

ABEM describe the stochastic dynamics of disease-spreading processes in networks. Direct
investigation of epidemic Markov processes is often hindered due to the exponential increase of the
dimension of the vector space with the number of agents. By exploiting cyclic permutation symmetries,
relevant elements of the dynamics are confined to a single permutation sector, significantly reducing
computational efforts. In practical terms, by selecting a single cyclic permutation eigensector, one
selects only relevant information from the stochastic process. The p = 0 sector holds particular
importance, as it contains configurations where none or all agents are infected, with dimension
scaling as O(N) for highly connected networks. Our findings show that using symmetric basis
significantly improves computation times and reduces memory usage, providing a detailed picture of
the joint probability distribution function. This development allows for a more detailed investigation
of fluctuations and correlation functions in epidemics. For global statistics that describe the evolution
of the epidemic, DMCM provide much faster computation times subjected to a given statistical error.
In closing, the inclusion of finite symmetries brings down ABEM to the same footing of compartmental
models regarding the number of agents but does not neglect the role played by fluctuations.
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Appendix A. Algorithms

Appendix A.1. Time Evolution

Algorithm A1. Time Evolution

Require: p ∈ �, matrix A and off-diagonal transitions
S = { } � Basis
for μ = 0 to μ < 2N do

ψ,Nψ ← calculates eigenvector and norm from μ
Add ψ to S

end for � p invariant eigensector
for ψ in S do

for k = 0 to k < N do
ψ′ ← off-diagonal transitions from k-th component of ψ
Evaluate Tψ′ψ � Sparse storage

end for
end for
π ← initial condition
for t = 0 to t < tmax do

π ← T̂ × π
end for � End time evolution

Appendix A.2. Number of Infected Agents

Algorithm A2. Number of Infected Agents

1: function COUNT(μ,count)
2: c ← μ
3: count ← 0
4: for k = 0 to k < N do
5: count ← count + c % 2
6: c ← c // 2
7: end for
8: end function

Appendix A.3. Representative Vectors

Algorithm A3. Representative Vectors

1: function REPRESENTATIVE(μ, ψ, r)
2: ψ ← μ
3: r ← 1
4: for k = 0 to k < N − 1 do
5: μ ← P̂μ
6: if μ < ψ then
7: ψ ← μ
8: else if μ = ψ then
9: r ← r + 1

10: end if
11: end for
12: end function
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Appendix A.4. One-Body Off-Diagonal Transitions

Algorithm A4. One-Body Off-Diagonal Transitions

1: function ONEBODY(label,rules,output)
2: for k = 0 to k < N do � Loop over agents
3: if label[k] in rules then
4: new ← label with label[k] ← rule[label[k]][0]
5: output[new] ← coupling
6: end if
7: end for
8: end function

Appendix A.5. Two-Body Off-Diagonal Transitions

Algorithm A5. Two-Body Off-Diagonal Transitions

1: function TWOBODY(L,A,rules,outcome)
2: for j = 0 to j < N do
3: for i = 0 to i < N do
4: q ← (LjLi)
5: if q in rules then
6: x ← L
7: xj ← rules[q]00
8: xi ← rules[q]01
9: output[x] ← output[x] + Aji

10: end if
11: end for
12: end for
13: end function
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Abstract: We study the dynamical behavior of a model commonly used to describe the infection of
mice due to hantavirus (and, therefore, its possibility of propagation into human populations) when
a parameter is changed in time. In particular, we study the situation when the ecological conditions
(e.g., climate benignity, food availability, and so on) change periodically in time. We show that the density
of infected mice increases abruptly as the parameter crosses a critical value. We correlate such a situation
with the observed sudden outbreaks of hantavirus. Finally, we discuss the possibility of preventing a
hantavirus epidemic.
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1. Introduction

The mouse colilargo (Oligoryzomis longicaudatus), unlike the other group of rodents present in South
America since the arrival of Europeans, does not hibernate. Thus, it devotes all its leisure time to the
intensive proliferation of its species. The colilargo is indicated as a carrier of the Hanta “Andes” virus, the
strain of hantavirus that is found in the Andean–Patagonian zone. Numerous observations [1–3] carried
out in several areas have shown a marked increase in the population of this rodent when there are positive
ecological conditions (e.g., climate benignity and increased food availability). In this case, population
explosions of these so-called “rats” may occur. The population of rodents increases notoriously because
these sub-species respond quickly to the supply of food and to benevolent climate conditions. In some
cases, the population density of colilargo (with normal values of 10 to 100 individuals per hectare) can rise
to about 1000 to 1500 individuals per hectare [4,5]. This overpopulation generates stress among the mice,
due to agglomeration and competition for food, which makes them more aggressive, generating many
fights with bite wounds, which increases the propagation of the hantavirus. This behavior has been cited
as the reason explaining the significant correlation between the index of abundance and the number of
positive animals detected. The proportion of seropositivity can increase from 5% up to 10% of the total
population of the mice [5]. High population densities also lead them to propagate outwards in space,
looking for food or just better living conditions. Different types of rodents transmit the hantavirus in the
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different geographic areas of the world, and all must be considered potentially dangerous. Hantavirus,
although with a low probability of infection, is not unimpressive in terms of its mortality. The mortality
rate for humans is around 40% and it has not been possible to obtain a successful vaccine for this disease
thus far [5]. Therefore, a good knowledge on the dynamics of the colilargo population could help to predict
changes in the risks of human hantavirus infection and generate prevention policies. A mathematical
model has already been proposed to analyze the propagation of hantavirus [6,7]. The model was based on
the population dynamics of the mice and studied the evolution of the populations of healthy and infected
mice. in [6], a study of spatial effects through the diffusion of mice (i.e., diffusion mainly characterized
their movement through space) was carried out; additionally, a random variation of a parameter was
included. In [8], the authors showed that the inclusion of the movement of the mice with respect to space
(i.e., the diffusion term) affected additional features of the simulation in a physically understandable
manner, with higher diffusion constants leading to greater agreement with the mean field results. Here,
we show, instead, that diffusion is not necessary in order to explain a sudden increase in the density of
infected mice and, as a consequence, the appearance of an epidemic of hantavirus. As the influence of the
environmental conditions play a role in the evolution of the population, both at the seasonal level and at
the level of very long cycles, we propose a model taking into account a variable parameter to analyze the
population dynamics of the colilargo mice. We analyze the dynamical solutions and we show how the
number of infected mice increases abruptly when a threshold of the control parameter is crossed. Such an
increase may generate a large expansion in the transmission of the disease, even without the existence
of diffusion.

2. Model and Results

If we take into account only the temporal evolution of the susceptible Ms and infected Mi mice, the
corresponding differential equations (as introduced in [6,7]) are:{

dMs
dt = (b − c)Ms + bMi − (a + 1

K )Ms Mi − 1
K M2

s
dMi
dt = −cMi + (a − 1

K )Ms Mi − 1
K M2

i

, (1)

where the parameters b and c are the natural rates of birth and death of the susceptible and infected mice,
respectively; a is the infection rate of the susceptible mice that become infected due to an encounter with
an infected mouse; and the parameter K, in both equations, takes into account the limitations in the process
of population growth due to competition for shared resources, which called the carrying capacity and is
defined, for each biological species, as the maximum population size of the species that the environment
can sustain indefinitely, in accordance with their necessities. It is well-known that the infection is chronic:
Infected mice do not die of it, and they do not lose their infectiousness (probably for their whole life).
Therefore, the rate c is the same for both categories of mice. It is worthwhile to note that all mice are
born susceptible at a rate proportional to the total number of mice, since all mice contribute equally to
procreation. Even if these equations allow for a simple interpretation of each term, it is convenient to write
them in terms of the total number of mice M = Ms + Mi and the infected mice Mi. By just adding the two
differential equations above and replacing Ms in terms of M and Mi, we get:{

dM
dt = (b − c)M − 1

K M2 = F(M, Mi)
dMi
dt = −cMi + (a − 1

K )MMi − aM2
i = G(M, Mi)

. (2)

If the variable M is independent of Mi, then it is trivial to find the stationary solutions and
their stability.

122



Math. Comput. Appl. 2019, 24, 68

The total number of mice takes only two steady-state values:

M = 0

and M = K(b − c).

The first one indicates that such a type of mouse does not exist in the region and the second one is
proportional to the difference between birth and death rates, where the constant of proportionality is the
carrying capacity. In a phase space portrait, the two straight lines corresponding to the possible values of
M are two of the nullclines (zero-growth isoclines) of the dynamical system. The equation corresponding
to the infected mice immediately gives the following nullclines:

Mi = 0, and

Mi = (a − 1
K
)M − c.

The four nullclines are represented in Figure 1 in the space of Mi as a function of M. Their intersections
are the fixed points of the system:

(M, Mi)1 = (0, 0)

(M, Mi)2 = (0,
−c
a
)

(M, Mi)3 = (K(b − c), 0)

(M, Mi)4 = (K(b − c), K(b − c)− b
a
)

.

Figure 1. Nullclines in phase space. Their intersection defines the four fixed points of the system. The arrows
indicate the stable and unstable manifold corresponding to each fixed point. The parameters were chosen
such that the fixed point with a positive number of infected mice is stable. The fixed points (0, 0) and
[K(b − c), 0] are both saddle points.

The first steady-state solution is the trivial one, in which there are no mice in the region of interest.
The second steady-state solution, (M, Mi)2 = (0, −c

a ), is not compatible with the problem as the number of
infected mice is negative. The third and the fourth solutions are interesting solutions. The third solution
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corresponds to a situation in which all mice are healthy, and the number of infected mice vanishes. For the
solution (M, Mi)4 = (K(b − c), K(b − c)− b

a ) susceptible and infected mice co-exist, with Ms = b
a .

A very simple linear stability analysis gives the region in parameter space where one of the solutions
will prevail. The Jacobian Γ of the system is:

Γ =

[
∂MF(M, Mi) ∂Mi F(M, Mi)

∂MG(M, Mi) ∂Mi G(M, Mi)

]
=

[
(b − c)− 2 1

K M 0
(a − 1

K )M −c + (a − 1
K )M − 2aMi

]
.

Then, the eigenvalues of Γ corresponding to the (0, 0) solution are:

λ1 = b − c

and λ2 = −c
.

Thus, as expected, the trivial solution is stable if the death rate is bigger than the birth rate, which
causes the extinction of the mice. If the birth rate is greater than the death rate, the solution is clearly a
saddle point. The eigenvalues for the (K(b − c), 0) solution are:

λ1 = −(b − c)

and λ2 = Ka(b − c)− b
.

This solution will be stable if the birth rate b remains in the range:

c < b < c/(1 − (1/Ka)).

For values of the Ka product greater than one, there exists a range of the birth rates for which the
solution with all mice healthy is stable. It is important to notice that the upper limit depends on the value
of K, and that the range of stability is reduced for large values of K. Outside the range of stability, the
solution becomes a saddle point. Finally, the stationary solution (K(b − c), K(b − c)− b

a ), which predicts
the co-existence of healthy and infected mice, is stable if b > c/(1 − (1/Ka)). At a fixed value of the birth
rate b > c, there exists a critical value of K at which there is an exchange of stability between the last two
steady-state solutions. At that point, we have a transcritical bifurcation, leading to the appearance of
infected mice. The critical value of the carrying capacity Kc is given by:

Kc = b/[a(b − c)].

We show the two relevant stationary solutions as a function of K for a birth rate bigger than the death
rate in Figure 2. The bifurcation happens at the exact point where the number of infected mice becomes
positive. Above the bifurcation point, the number of infected mice is proportional to the carrying capacity.
The transcritical bifurcation is a smooth transformation and, therefore, it predicts a relatively slow increase
in the number of infected mice as the carrying capacity K is swept across the critical value. As stated
above, the mouse colilargo does not hibernate; thus, we can consider the birth rate, as well as the death
rate, to be almost constant in time. We will assume, also, that the the rate of infection per mouse (a) is
constant. If the capacity K is suddenly increased from an initial value Kinit below the threshold to a final
value K f in above the threshold, the total number of mice increases relatively fast, from the stationary
solution corresponding to Kinit towards the steady-state solution corresponding to the final value of K.
The number of infected mice will increase from 0 to the steady-state value with a well-marked lethargy,
as can be seen in Figure 3. The bifurcation delay is a well-known effect each time a parameter is swept
across a bifurcation point [9,10], which is a consequence of the critical slowing down at the bifurcation
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point [11]. The delay time measured when the parameter changes discontinuously corresponds to the
minimum delay. As long as the speed at which the parameter changes decreases, the delay time increases.

Figure 2. Steady-state values of susceptible mice (Ms) and infected mice (Mi) as a function of the carrying
capacity K. Note the transcritical bifurcation at K = Kc. The infected mice stationary solution switches
from 0 to a linear increase with K, while the number of susceptible mice switches from a linear growth
with K to become constant. Therefore, after the bifurcation, the increase in the carrying capacity has, as a
consequence, an increase of infected mice. The arrows in the figure show the evolution of both populations
as K is increased.

Figure 3. The total number of mice (M), infected mice (Mi), and carrying capacity K as a function of time
t for a = 0.8, b = 5, and c = 1. The carrying capacity changes discontinuosly from K = 1 (below the
threshold) to K = 2 (above the threshold) at t = 0. The total number of mice grows from M = 4 to M = 8
in a short time after t = 0. The number of infected mice, instead, begins to grow from a vanishing value
after a time t = 20 and, then, grows until the stationary value Mi = 1.75. This graph presents evidence for a
delay in the bifurcation of Mi. In fact, Mi begins to grow much later than the time at which M and K arrive
at their steady-state values.
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Here, we analyze the behavior of the dynamical system when the the carrying capacity K changes
relatively slowly, compared to the characteristic time of the variables. We introduce the following temporal
variation of the carrying capacity:

K = K0(1 + mcos(ωt)). (3)

Even if a periodic and smooth modulation of the carrying capacity does not strictly adhere to reality,
it allows us to understand the origins of the different possible dynamical behaviors and, therefore, to
correlate them to the real observations. In order to make the simulation realistic, we would need to
introduce a noise term on the temporal evolution of the carrying capacity, because it is affected by several
external factors which change from season to season. However, it is not the objective of this manuscript to
compare numerical results with quantitative data, but, instead, to understand the qualitative processes
in the dynamics of mouse populations. We analyze three different situations corresponding to different
values of K0 and m. In the first one, K0 is smaller than Kc and m is such that the maximum value of K is
still smaller than Kc. In the second one, K0 is greater than Kc and the minimum value of K is still larger
than Kc. Finally, the third is a situation in which K is swept across the critical value. In the first case, the
number of healthy mice is modulated while the number of infected mice vanishes independently of the
initial condition. During the whole modulation period, the solution with no infected mice remains stable.
In this case, a seed of infected mice will vanish independently of the value of K. In the second case, there is
always a positive number of infected mice, which becomes modulated as well as the total population of
mice. The modulation follows the modulation of the carrying capacity with a different phase. The last case
is the most interesting one, because the carrying capacity is swept across the bifurcation point and the
system has to switch between the two solutions (which are alternating their stabilities). In this paper, we
analyze the behavior of the number of mice when the frequency of the modulated parameter is smaller
than the response rate of the variables. It is worthwhile to note that the frequency of the modulation,
together with the amplitude of the modulation, will define the average speed at which the parameter is
changed; thus, they will determine the delay time in the bifurcation. The most noticeable result consists
of the fact that the number of infected mice will not increase continuously from 0 to a value that will
follow the modulation. In fact, by simple observation of Figure 4, it is clear that, at a certain value of K, the
number of infected mice will grow discontinuously. This behavior is more appropriate of a saddle-type
bifurcation than a transcritical bifurcation. As a consequence, the number of susceptible mice Ms decreases
abruptly while, at the same time, the number of infected mice Mi increases. It is evident that a graph of Mi
as a function of K will show a bistable behavior as K swept across the bifurcation up and down (Figure 5).
It is important to remark that the bistable behavior is a dynamical one. If the sweeping is stopped at any
moment, the system will evolve towards the corresponding stable steady-state solution.
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Figure 4. Number of infected mice (Mi), susceptible mice (Ms), and carrying capacity K as a function of
time for a = 0.8, b = 5, c = 1, K0 = 3, m = 0.8, and ω = 0.1571. The behavior of the system is periodic in
time. This graph presents evidence of a discontinuous increase in the number of infected mice and decrease
in the number of susceptible mice when K is increased.

Figure 5. Infected mice (Mi) as a function of carrying capacity K corresponding to the parameter values
used for Figure 4. The number of infected mice grows very fast as K increases, while it decreases slowly as
K decreases. This graph presents evidence for a delay in the bifurcation of Mi. In fact, Mi begins to grow
when K has already overcome the critical value corresponding to the transcritical bifurcation.
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It is important to notice that this type of dynamical behavior is general and is a simple consequence of
the critical slowing down at the bifurcation point. It happens by modulating every parameter and appears
in a very large range of frequencies and amplitudes of the modulation, because it is intrinsically associated
to the existence of a bifurcation point. The behavior will be different only if the modulation period is
smaller than the decay time of the variable. A simple analysis of Figure 4 allows us to conclude that, in
this simple model, a sudden increase in the infected mice is a consequence of the sweeping of a control
parameter across a bifurcation point. Thus, the variable Mi does not adiabatically follow the change of
the parameter, even if the rate of change of the parameter is slower than the response rate of the variable.
It is worthwhile to notice that, once the number of infected mice switches on, the number of susceptible
mice remains constant and the dynamical system adiabatically follows the increase of the capacity by
increasing the number of infected mice. During the time that K is decreasing, the system follows almost
adiabatically the evolution of the parameter, with a very small delay. The consequence of this delay is that
the number of infected mice vanishes at values of K slightly smaller than the one corresponding to the
bifurcation point.

3. Discussion

The results shown above suggest that the capacity K may control the appearance and disappearance
of hantavirus infection in rats. In fact, if K is always below Kc, only susceptible mice exist. If just a few
mice get infected, this perturbation will decay faster towards the situation where infected mice vanish. If
K is always above the critical value, then infected mice will always exist. If the capacity oscillates around
the Kc value, then the variables Mi and Ms do not adiabatically follow the change in K. The delayed
bifurcation generates an almost discontinuous increase of the infected mice and, therefore, this effect can
be understood as the origin of an outbreak of hantavirus infection among the mice with the consequence of
an epidemic among other living mammals and, in particular, humans beings. On the other hand, the delay
in the bifurcation justifies the infection disappearing for long periods of time, even if the carrying capacity
is already above the critical value Kc; however, a further increase in K will trigger a almost immediate
epidemic in the population of mice. Furthermore, it is necessary to reduce K below the critical value Kc in
order to be able to eradicate the disease again. Finally, we re-affirm the importance of the non-intuitive
concept that slow variations of some ecological parameters can trigger an outbreak of hantavirus infection.
This concept should be taken into account in the development of public health policies.

4. Conclusions

In conclusion, we propose that a typical ecological model representing the temporal evolution of
mouse population densities can explain several aspects of the propagation of hantavirus. A relatively fast
variation of the parameters controlling the carrier capacity K, or of any of the parameters of the system, will
produce continuous variations in their densities and a continuous, but predictable, increase in infection.
However, a changing parameter which varies much slower may cause a much faster increase in the
density of infected mice, generating an epidemic of hantavirus in mice. The ideal situation is represented
by the situation in which the environmental conditions maintain the system below the threshold of the
transcritical bifurcation. In this situation, the density of infected mice can not grow and it will always
decay to a vanishing quantity. In this paper, we studied the effects of a slow variation of the environmental
conditions for the mice. As a future work, it will be necessary to take into account the situations in which
the living conditions change very quickly, compared to the response time of the system, and also the
transmission of hantavirus among human beings.
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