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Preface  
 
Climate change will bring about significant changes to the capacity of, and the demand on, 
water resources. The resulting changes include increasing climate variability that is expected 
to affect hydrologic conditions. The effects of climate variability on various meteorological 
variables have been extensively observed in many regions around the world. Atmospheric 
circulation, topography, land use and other regional features modify global changes to 
produce unique patterns of change at the regional scale. As the future changes to these water 
resources cannot be measured in the present, hydrological models are critical in the planning 
required to adapt our water resource management strategies to future climate conditions. 
Such models include catchment runoff models, reservoir management models, flood 
prediction models, groundwater recharge and flow models, and crop water balance models. In 
water-scarce regions such as Australia, urban water systems are particularly vulnerable to 
rapid population growth and climate change. In the presence of climate change induced 
uncertainty, urban water systems need to be more resilient and multi-sourced. Decreasing 
volumetric rainfall trends have an effect on reservoir yield and operation practices. Severe 
intensity rainfall events can cause failure of drainage system capacity and subsequent urban 
flood inundation problems. Policy makers, end users and leading researchers need to work 
together to develop a consistent approach to interpreting the effects of climate variability and 
change on water resources.   
 
This Special Edition includes papers by international experts who have investigated climate 
change impacts on a variety of systems including irrigation and water markets, land use 
changes and vegetation growth, lake water levels and quality and sea level rises.  These 
investigations have been conducted in many regions of the world including the USA, China, 
East Africa, Australia, Taiwan and the Sultanate of Oman. 
 

Simon Beecham and Julia Piantadosi 
Guest Editors 
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Assessment of Short Term Rainfall and Stream Flows in  
South Australia 

Mohammad Kamruzzaman, Md Sumon Shahriar and Simon Beecham 

Abstract: The aim of this study is to assess the relationship between rainfall and stream flow at 
Broughton River in Mooroola, Torrance River in Mount Pleasant, and Wakefield River near 
Rhyine, in South Australia, from 1990 to 2010. Initially, we present a short term relationship 
between rainfall and stream flow, in terms of correlations, lagged correlations, and estimated 
variability between wavelet coefficients at each level. A deterministic regression based response 
model is used to detect linear, quadratic and polynomial trends, while allowing for seasonality 
effects. Antecedent rainfall data were considered to predict stream flow. The best fitting model was 
selected based on maximum adjusted R2 values ( 2

adjR ), minimum sigma square ( 2), and a 

minimum Akaike Information Criterion (AIC). The best performance in the response model is lag 
rainfall, which indicates at least one day and up to 7 days (past) difference in rainfall, including 
offset cross products of lag rainfall. With the inclusion of antecedent stream flow as an input with 
one day time lag, the result shows a significant improvement of the 2

adjR  values from 0.18, 0.26 and 

0.14 to 0.35, 0.42 and 0.21 at Broughton River, Torrance River and Wakefield River, respectively. 
A benchmark comparison was made with an Artificial Neural Network analysis. The optimization 
strategy involved adopting a minimum mean absolute error (MAE).  

Reprinted from Water. Cite as: Kamruzzaman, M.; Shahriar, M.S.; Beecham, S. Assessment of 
Short Term Rainfall and Stream Flows in South Australia. Water 2014, 6, 3528-3544. 

1. Introduction 

A review of rainfall-runoff modeling has been given by [1]. Rainfall and stream flow models 
can be applied to a diverse range of purposes including daily control of reservoirs, projecting future 
stream flows and flood management. Rainfall and stream-flow models can be classified as 
physically based, conceptual and empirical. Physically-based models include the Système 
Hydrologique Européan with sediment and solute transport [2] and Gridded Surface Subsurface 
Hydrologic Analysis [3] both of which require extensive spatial and temporal data and typically are 
used for small catchments. An example of a conceptual based model is the Modèle du Génie Rural 
à 4 paramètres Journalier (GR4J), which has been developed for understanding catchment 
hydrological behavior [4]. Other examples of conceptual rainfall-runoff models are the Sacramento 
Soil Moisture Accounting Model [5] and the SIMulation and HYDrologic model (SIMHYD) [6], 
which can be applied either as a lumped or gridded application. SIMHYD estimates daily stream 
flows from daily rainfall and areal potential evapotranspiration data. The class of empirical models 
includes time series models [7–13]. An advantage of an empirical model is that it can be fitted to 
situations where the hydrological data are restricted to rainfall and stream flow time series. A 
further advantage is that in a parametric test, a distribution can be fitted for assessing the 
hydrological behavior for any time period in any region. In addition, they can represent either 
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linear or non-linear relationships. Time series models perform as well as physically-based 
alternatives [14]. Combined a conceptual model with an artificial neural network (ANN) for 
forecasting inflow into the Daecheong Dam in Korea [15]. Compared the wavelet decompositions 
of rainfall and runoff at four sites in the Tianshan Mountains [16]. They aimed to distinguish 
between errors in timing and errors in magnitude of hydrograph peaks. They used a  
cross-wavelet technique to quantify timing errors and hence provided an empirical adjustment to 
model predictions of stream flow.  

In this study, we have proposed a novel method for assessing short-term rainfall and stream  
flow models. The travel time between rainfall and stream flow gauges using cross-correlation  
functions [10,17]. They reported that the travel time was less than one day for the Onkaparinga 
catchment in South Australia. In this paper, we presume that there is a higher order relationship 
between rainfall gauge and stream flow data. It is, therefore, important in this study to construct the 
correlation structure. Linear regression models are commonly used for time series analysis [18], 
particularly for assessing evidence of trends, higher order changes and variability, including 
allowing for seasonality. We developed deseasonalized and detrended time series rainfall and 
stream flow models from deterministic regression models including linear, quadratic and cubic 
terms. These models take account of both lag rainfall and the influence of stream flow. The results 
of this study will be useful for water managers and policy makers involved in sustainable water 
resource management and climate change adaptation for the catchments used in this study. The 
approach is capable of modeling the non-linear relationships between inputs and outputs using 
ANNs [19]. The first advantage of ANN is that it only requires a small number of parameters and 
learns through a number of training iterations involving adjusting the parameters (weights) of the 
network [20]. A second advantage is that it is useful in situations where it is complex to build a physical 
or conceptual model, such as hydrological modeling of rainfall- stream flow processes [21–25]. 
ANN models were useful to find the relationships between rainfall and river flow data in a river 
basin in India [26]. We present a statistical approach that uses the deterministic features of a 
regression model to build many neural networks with a combination of different lagged input 
patterns. A wavelet based regression model for stream flow using the discrete wavelet transform 
(DWT) of the entire time series [27]. They also provided a comparison of their model performance 
with ANN. A chaotic stream flow model using an ensemble wavelet network [28]. Used wavelet 
analyses of rainfall and runoff and wavelet rainfall–runoff cross-analyses to investigate the 
temporal variability of the rainfall-runoff relationship [17,29]. They found that wavelet transforms 
provide a physical explanation of the temporal structure of the catchment response.  

2. Data Collection and Preparation 

The analysis is based on data from three rainfall and stream flow stations in South Australia,  
as presented in Figure 1. The Broughton River (BR) station is at Mooroola, which is located 
approximately 40 km north of Port Broughton and 20 km south west of Port Pirie. Torrance River 
(TR) station is located at Mount Pleasant, and its rivers and tributaries are highly variable in flow 
and together drain an area of 508 km2. Wakefield River (WR) is an ephemeral river near Rhynie, 
with a catchment area of approximately 1913 km2. 
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Figure 1. Location of Broughton River (BR), Torrance River (TR), and Wakefield River (WR). 

 

The elevation of the river may indicate the hydrological feature, presented in Table 1, Column 4. 
These stations were selected because they had long records of rainfall and stream flow and the  
highest quality control in terms of Australian Bureau of Meteorology, [30] and the Department for 
Environment, Water and Natural Resources [31] quality designations for rainfall and stream flow 
records. Information on these stations and data quality are presented in Table 1. 

Table 1. Weather stations information, data quality and observations. 

Stations name ID 
Location 

Elevation Variables 
Data period % of 

Missing Latitude Longitude Start End 

Broughton River  

at Mooroola 
A5070503 –33.53 138.51 196 m 

Rainfall Jun. 1989 Dec. 2011 0.1 

Stream flow Jun. 1972 Dec. 2011 0.7 

Torrance at  

Mount Pleasant 
A5040512 –34.78 139.02 414.7 m 

Rainfall Jun. 1989 Dec. 2011 0.6 

Stream flow May 1973 Dec. 2011 0.1 

Wakefield river  

near Rhyine 
A5060500 –34.13 138.63 202 m 

Rainfall Sep. 1985 Dec. 2011 0.9 

Stream flow Jun. 1971 Dec. 2011 0.2 

In this paper, there was less than 1% missing data and these were replaced by the mean of the 
series of rainfall and stream flow, to give an unbroken time series for analysis. Methods for 
replacing periods of missing values are discussed [18,32]. In this paper, we propose a dyadic signal 
time period (i.e., 2n where n is an integer and n  0, for assessing the relationship between daily 
rainfall and stream flow during the period 1990–2012. We observe the discrete sequence of time 
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series {yt} where {yt} is an integer ranging in length. We extract multi-level information of 
observed rainfall and stream flow series in three catchments in South Australia using the Haar 
wavelet decomposition. We split {yt} into 10 sub-time series of length power two i.e., 2n, where n 
is the level of the time series, starting from 0. We also investigate the correlation between rainfall 
and stream flow patterns for each sub-series from levels 0 to 8.  

3. Statistical Analysis 

3.1. Assessing the Relationship between Rainfall and Stream Flow 

The open source software R [33] was used for the analyses in this paper. We calculate 10 subseries 
of rainfall and stream flow from 1990 to 2012 using the “wavethresh” R routine packages [34,35] 
for assessing the relationship between rainfall and stream flow. The length of time taken into 
account in 10 subseries for rainfall and stream flow is a period of 512 days. 

The relationship between rainfall and stream flow within 10 subseries is presented in Figure 2. 
The maximum correlation coefficients are 0.08, 0.23 and 0.31 at Broughton River, Torrance River 
and Wakefield River, respectively. These values are between 1 and +1 in all cases, indicating the 
degree of linear dependence between rainfall and stream flow. For assessing short term spatial 
variability, a correlation coefficient of the sub-series of rainfall and stream flow less than 0.4 indicates a 
significant difference from 0 at each station. For example, in sub-series 2, the correlation 
coefficient was 0.04, 0.15 and 0.28 which indicates the independence of rainfall and stream flow at 
Broughton River, Torrance River and Wakefield River, respectively.  

Figure 2. Correlation pattern subseries of rainfall and stream flow time series. 
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In order to understand stream flow availability under the climatic conditions in South Australia, 
we investigated the characteristics of rainfall and stream flow patterns, as categorized by climatic 
phenomena. A statistical measure of the dispersion of rainfall and stream flow patterns around the 
mean is defined as follows: 

x

xSCV  (1)

where CV is defined as the coefficient of variation and is represented by the ratio of the standard 
deviation (Sx) to the mean (μx). Table 2 shows the degree of variation in rainfall and stream  
flow patterns. 

Table 2. Rainfall and stream flow variability at Broughton River, Torrance River and 
Wakefield River in South Australia (SA) from 1990 to 2011. 

Statistics 
Broughton River Torrance River Wakefield River 

Rainfall Stream flow Rainfall Stream flow Rainfall Stream flow 
Mean 1.653 9.817 1.530 5.396 1.282 25.333 

Estimated standard deviation 0.385 4.075 0.296 4.201 0.223 21.300 
Coefficient of variation (CV) 23.31% 41.51% 19.36% 77.85% 17.40% 84.07% 

In Table 2, the CV for stream flow patterns indicates higher variability than for the rainfall series. 
Figure 3 shows the variability of the wavelet coefficients from levels 0 to 8. The evidence of 

association between the rainfall and stream flow coefficient is strongly correlated at the 5% 
significance level in Table 1. 

Figure 3. Standard deviations of wavelet coefficients of rainfall and stream flow from 
level 0 to 8. (a) Rainfall; (b) Stream flow. 
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3.2. Correlation Structures between Rainfall and Stream Flow 

In the previous sections, we calculated wavelet coefficients for each subset of the rainfall and 
stream flow series. In order to filter each of those series, we applied Haar wavelets. 

The constructed correlation pattern for each rainfall and stream flow sub-series for levels 0 to 8 
is given by: 

8

0

10

1
,, ))((

k ywdxwd

j
kwdkwdkwdkwd

k SS

YYXX
r

jj

 (2)

and 

,10/
10

1j
wdwd

j
XX ,10/

10

1j
wdwd

j
YY  (j = 1, 2, 3,…10, and k = 0, 1, 2,…8) (3)

where rk is the constructed correlation with level n from 0 to 8 and 
jj wdwd YX , is the jth sub-series of 

the rainfall and stream flow wavelet decomposed with the Haar procedure. The results are 
presented in Table 3. 

Table 3. Constructed correlation pattern for different levels between (a) adjusted 
rainfall and adjusted stream flow; (b) squared adjusted rainfall and adjusted stream 
flow; (c) adjusted rainfall and squared adjusted stream flow; (d) squared adjusted 
rainfall and squared adjusted stream flow. 

Day

s 

Broughton River Torrance River Wakefield River 

a b c d a b c d a b c d 

1 
0.71 

** 

0.89 

*** 

0.70 

** 

0.86 

*** 

0.76 

** 
0.184 0.513 0.447 

0.76 

** 

0.53 

* 

0.59 

* 

0.86 

*** 

2 0.65 * 0.264 0.469 0.449 
0.72 

** 
0.57 0.158 0.265 0.384 0.413 0.201 0.038 

4 0.56 * 0.189 0.257 0.146 0.63 * 0.061 0.27 0.125 0.324 0.28 0.341 0.115 

8 0.087 0.369 0.296 0.103 0.032 0.55 * 0.173 0.51 * 0.369 0.483 0.191 0.418 

16 0.233 0.08 0.009 0.326 0.275 0.15 0.009 0.311 0.306 0.652 0.081 0.393 

32 0.094 0.055 0.059 0.248 0.68 * 
0.84 

** 

0.81 

*** 

0.97 

*** 
0.116 0.002 0.382 0.121 

64 0.411 0.036 0.292 0.238 0.488 0.67 * 0.456 0.71 ** 0.091 0.166 0.005 0.301 

128 0.423 0.409 
0.604 

* 
0.68 * 0.299 0.162 0.186 0.223 0.279 0.575 0.128 0.51 * 

512 0.456 0.354 0.292 0.343 0.218 0.405 0.007 0.405 0.094 0.117 0.098 0.163 

Notes: * Coefficients are statistically significant at 5%; ** Coefficients are statistically significant at 1%; *** Coefficients 

are statistically significant at 0.1% 

The evidence of significant correlation (r  0.50) between rainfall and stream flow wavelet 
coefficient series with at least a 5% significance level is shown in Table 3. Furthermore, to avoid  
co-linearity problems, the squared rainfall and stream flow wavelet coefficient series are also 
included. We found that a correlation structure (r = 0.56) such as stream flow is determined by 
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rainfall on at least 4 days with 5% level at the Broughton River Basin and Torrance River Basin, as 
shown in Table 3. The adjusted squared stream flow and rainfall has a little evidence of correlations 
(i.e., at 5% level) up to 64 days at Torrance River at, also a marginal correlation (r = 0.51) up to 128 
days within squared adjusted rainfall and adjusted stream flow at Wakefield River. The rainfall and 
stream flow relationship was used to develop a response model for predicting stream flow. 

3.3. Rainfall-Stream Flow Response Modeling 

The constructed correlations described in the previous section may be partly due to common 
seasonal variations and trends, so a first step is to estimate these deterministic features with 
regression models for entire period from 1990 to 2010. The residuals from these regressions are 
reformed to the deseasonalized and detrended (dsdt) time series. For all three stations, a cubic trend 
gave a statistically improved fit over a linear or quadratic trend over the study period. The seasonal 
variation was reasonably modelled by a sinusoidal curve. Therefore, the regression models are of 
the form: 

ti SCtimetimetimeT 54
3

3
2

210  (4)

where, Ti represents either rainfall or stream flow; time is the mean adjusted time, that is )( tt  
where t is the number of days from the start of the record and t  is the mean of t, time2 and time3, 
which allows for possible quadratic and cubic trends; C is cos(2 t/365.25) and S is sin(2 t/365.25) 
and together these allow for seasonal variation of period one cycle per year; j are the unknown 
coefficients to be estimated; and t are random variations with mean 0 and constant standard derivation. 

For the estimated coefficients, only a few values are significantly different from 0 even at the 
5% significance level, as shown in Table 4. There is evidence of significantly different trends in 
rainfall at Wakefield River, which may have corresponded to increased stream flows if rainfall is 
increased. We have predicted the stream flow (Yt) on day t from rainfall (Xt) with corresponding 
lags k. This is referred to as a Response Model (RM). The regression is defined as: 

tt XXXY 12812822110 ..............  (5)

We assess stream flow in response to rainfall at lags 0 to 128. The best fitted model is selected 
based on the adjusted coefficient of determination; )( 2

adjR ; minimum sigma squared ( 2) and the 

Akaike Criterion Information (AIC); The AIC is defined as: 
AIC = 2 × number of parameters  2 Log(L) (6)

where L is the maximized value of the likelihood function for the estimated model. Comparisons of 
the AIC for different model is as shown in Table 5. The 2

adjR value significantly reduces and the 

estimated stream flow influence is close to zero after the exogenous rainfall at lag 7. Therefore, we 
reduced the exogenous rainfall at lags from 128 to 7 in the response model; referred to as RM0 in 
Table 5. This strategy is sub-optimal inasmuch as rejected terms might meet the retention criterion 
if added back individually. However; any small improvement in 2

adjR  would be balanced by 

increased complexity in the model; which is undesirable if interaction and squared terms are added. 
The regression model is defined as RM: 



8 
 

 

776655443322110 XXXXXXXYt  (7)

In the second model, we add deterministic features to the regression model including linear, 
quadratic and cubic terms of t, allowing for seasonality effects. This model is defined as RM_D:  

7

1
50

l
llt XLY  (8)

where tSCtimetimetimeL 54
3

3
2

21 . 

The third model is defined as RMD_AR[1] and is an autoregressive model of order 1 (AR[1]) 
with RM_D. It can be written in the form: 

113

7

1
50 t

l
llt YXLY  (9)

The fourth model is defined as RMD_AR[2], and is an autoregressive model of order 2 (AR[2]) 
with RMD_AR[1]. It can be written in the form: 

214113

7

1
50 tt

l
llt YYXLY  (10)

Table 4. Estimated coefficients of rainfall and stream flow variability from 1990 to 2012. 

Station Statistical Summary Intercept ( 0) Linear Term t Quadratic Term t Cubic Term t 

Broughton 
River 

Estimated rainfall 1.58 0.000042 0.000000001 0.000000000003 
Variability of rainfall 0.106 0.00008 0.000000017 0.000000000008 
Estimated stream flow 52.08 0.01244 * 0.0000031 * 0.000000000258 

Variability of stream flow 6.18 0.004661 0.0000009 0.000000000485 

Torrance 
River 

Estimated rainfall 1.424 0.00007 0.000000019 0.000000000004 
Variability of rainfall 0.077 0.00006 0.000000012 0.000000000006 
Estimated stream flow 3.47 0.00174 * 0.0000003 * 0.000000000149 * 

Variability of stream flow 0.607 0.0004573 0.000000092 0.000000000048 

Wakefield 
River 

Estimated rainfall 1.226 0.000123 * 0.0000000037 0.00000000001 * 
Variability of rainfall 0.067 0.000051 0.00000001 0.000000000005 
Estimated stream flow 15.95 0.01144 * 0.0000007 0.0000000008 * 

Variability of stream flow 3.576 0.002694 0.0000005 0.000000000280 

Note: * statistical significance at 5%. 

Table 5. Fitted regression model for Broughton River, Torrance River and Wakefield River. 

Model 
Broughton River Torrance River Wakefield River 

2
adjR  Std. Error AIC RMSE * 2

adjR Std. Error AIC RMSE * 2
adjR Std. Error AIC RMSE * 

RMO 0.16 333.6 1104.9 3.5107 0.24 31.19 742.77 5.074 0.13 195.8 1023.53 1.1777 

RM_D 0.18 331.3 1103.9 3.1507 0.26 31.02 741.9 5.012 0.14 195.3 1023.1 1.1777 

RMD_AR[1] 0.35 292.9 1085.1 0.0353 0.42 27.35 722.7 0.052 0.21 187.4 1016.9 0.11777 

RMD_AR[2] 0.36 291.7 1084.5 0.0313 0.43 27.35 722.5 0.0452 0.22 187.4 1016.8 0.10777 

RMD_tau 0.39 285.8 1081.4 0.0035 0.42 27.32 722.1 0.0411 0.23 187.3 1016.1 0.10178 

Note: Asterisk (*) units are in m3s 1. 
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Finally, we develop a model for a benchmark comparison of stream flow on day t based on the 
entire previous period of stream flow and their influence ( ) adding with model RM_D. This model 
is defined as RMD_tau. Tau ( ) is 0 if there is no stream flow influence from the previous day’s 
rainfall. We have demonstrated an example of count stream flow influence in Table 6. 

Table 6. An example of count tau and stream flow influence rainfall over time. 

Stream flow 
y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 
8 9 0 0 0 2 9 22 3 5 8 8 6 

Rainfall 
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 
3 2 5 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 

In the Table 6, when the day t = 6, Y6 = 2, then we count tau = 3 (number of 0), and Y6-3-1 = 9, 
can be applied in the referred model RMD_tau. 

The model RMD_tau can be written in the form: 

11413

7

1
50 t

l
llt YXLY  (11)

The fitted model for predicted stream flow in response to exogenous rainfall, deterministic 
features of the regression model, and previous stream flow influence, is presented in Table 5. The 
best fitting model selection was based on minimum AIC and minimum root mean square Error 
(RMSE). The RMSE is defined as: 

2)ˆ( tt YYERMSE  (12)

where, tŶ  is defined as the estimated stream flow and Yt is the observed stream flow, respectively. 

The response model RM0 has 128 predictor variables namely the rainfall lags at 0 to 128. 
Therefore, there are 129 parameters to estimate including the intercept. The estimated rainfall 
effects belong to 0 up to 7 days lag, therefore we reduced the rainfall lags from 128 to 7 days and 
the optimized 2

adjR  values for this model are 0.16, 0.24 and 0.13 for Broughton River, Torrance 

River and Wakefield River, respectively, as presented in Table 5. We also offset the cross product 
term of lags to further reduce the complexity of this model. The second model included linear 
quadratic and cubic terms, and this model is denoted as RM_D. The number of parameters to be 
estimated is therefore 8 + 3 = 11 and the 2

adjR  increased to 0.18, 0.26 and 0.14 for Broughton River, 

Torrance River and Wakefield River, respectively, which is a practical and statistically significant 
improvement. We then added a first order autoregressive term, referred to as a RMD_AR[1] model, 
and a second order autoregressive term referred to as a RMD_AR[2] model. We also made a 
benchmark comparison by using the entire stream flow record and this model is denoted RMD_tau, 
as presented in Table 5. 

In Table 5, there is evidence of improvement of 2
adjR  values, RMSE in m3s 1 from RM to 

RM_D. Adding autoregressive order 1 (AR[1]) with RM_D results in substantially improved 2
adjR  

values (from 0.18, 0.26, and 0.14 to 0.35, 0.42 and 0.21 for Broughton River, Torrance River and 
Wakefield River, respectively. Furthermore, when adding autoregressive order 1 (AR[1]) with 
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RM_D, there is evidence of improvement but this may be offset by the increasing number of 
parameters that affect the complexity of the model. In addition, the RMD_tau model represents a 
small improvement for two of the three river basins. The best fitted models are RMD_tau for 
Broughton River, RMD_AR[2] for Torrance River and RMD_tau for Wakefield River, were 
selected based on the minimum Akaike Information Criterion (AIC) and minimum root mean 
square error (RMSE) in m3s 1. The residuals from the best fitted models were transformed to 
normalized form by factor multiplication. A factor was calculated, which allows for the fact that 
the mean of a non-linear function of a random variable is not equal to that function of the mean. 
The transform series follow an identically normalized form with mean ( ) of zero, standard 
deviation ( 2) of 1 and a random disturbance term ( t) which is uncorrelated. The transformed series 
were used to predict the stream flow on day t based on the predicted stream flow influence over the 
short term, as shown in Figure 4. 

Figure 4. Predicted stream flow based on dsdt rainfall for (a) Broughton River;  
(b) Torrance River; and (c) Wakefield River from 1990 to 2010. 
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In Figure 4, we demonstrate the versatility of stream flow prediction. It can be seen that this is 
a non-linear relationship when expressed in terms of the physical interpretation of stream flow 
based on rainfall. 

3.4. Modeling Stream Flow Using an Artificial Neural Network 

Artificial neural network (ANN) techniques are motivated by the principles of biological  
nervous systems [36]. Although there are different types of ANN, the multilayer feed forward 
network is the most commonly used technique. For example, a common approaches of training 
using back-propagation in a multi-layer feed forward network [23]. The network consists of input, 
hidden and output layers. Each layer is fully connected with the proceeding layer with weights in 
each connection, as shown in Figure 5. 
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Figure 5. A schematic ANN including input, hidden and output layers. 

 

In Figure 5, the number of nodes in the input layer is p, the number of nodes in the hidden layer 
is q and the number of nodes in the output layer is r. The initial assigned random weights are 
updated during the training process by comparing the predicted output and the known output for 
errors. Errors are then back-propagated to adjust the weights. The dsdt of daily rainfall and stream 
flow data from the regression model developed in the previous section are considered for 
developing a prediction model for each of the three river basins for the years 1990 to 2010. A 
certain methods proposed such as input selection, model architecture selection, model calibration 
(training) and validation (testing) [37]. In addition, we emphasize the fact that ANN set-up has to 
be carefully achieved and described to get the reliable results. This study described the steps in 
building the prediction models for stream flow. We consider the prediction function as: St+1 = f(St, 
St-1, St-2, ….., St-m, Rt, Rt-1, Rt-2,...,Rt-n) where S represents stream flow, R represents rainfall, t is the 
current day, m = {3,...,8}, n = {3,...,8} and f represents the ANN as a regression function. We 
investigate necessary lagged inputs of rainfall and river flow for modeling the river flows at three 
locations in South Australia. We apply an artificial neural network (ANN) technique for modeling 
river flow. ANN models are developed with all combinations of rainfall and river flow input 
ranges. In addition, a standard range of nodes in the hidden layer are also considered. Among all 
models based on inputs and hidden nodes, the best model is selected based on mean absolute error 
criteria. This entire process is applied to all three locations. ANN models capture the non-linear 
relationships of rainfall and river flow patterns in modeling river flows from large time series 
data. For example, if we consider 3 days lag of stream flow and 5 days lag of rainfall, then the 
total number of input nodes in the ANN structure will be 8 and we consider the number of nodes 
in the hidden layers ranging from 1 to 10. To achieve the best model using ANN for each 
location, all inputs not only apply in combination, but we also consider setting a range of 
parameters, such as different number of nodes in the hidden layer, for each combination  
of inputs. 
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In predicting stream flow one day ahead as output, we consider stream flow and rainfall with 
combinations of consecutive lags where the minimum lag is 3 days and the maximum lag is 8 days. 
Thus, for each location, the total number of models to be trained becomes 36. As the data set is 
large, one year of data is considered initially for testing. For training ANN models at each location, 
we consider stream flow and rainfall data for the period 1990 to 2009. The remaining data for the 
year 2010 is used for testing the best model found in the training phase.  

For the Multilayer Perceptron (MLP) function, the ANN stream flow prediction model was built 
using the RWeka package in R Language [38]. One of the important parameters to specify is the 
number of nodes in the hidden layer, which may vary for time series modeling in different 
locations. Using trial and error, the number of nodes in the hidden layer is considered from 1 to 10. 
This range is widely used in hydrological time series modeling [21]. We consider the learning rate 
(the amount the weights are updated) to be 0.3, momentum is 0.2 and the number of epochs to train 
is 500.  

Application of back propagation in ANN with a sigmoidal function was used to set the 
normalized data in the MLP function. Furthermore, the mean absolute error (MAE) in m3s 1 was 
minimized through an iteration process that varied the number of nodes in the hidden layer. 

The best lag combination at each location is presented in Figure 6. 

Figure 6. MAE for training data (1990–2009) using ANN with best lag combinations at 
each location, units in m3s 1. 

 

We find that both input lags and nodes in the hidden layer are different for each location. The 
best model based on correlation coefficient )( 2

adjR  and the lowest root mean square error (RMSE) 
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and mean absolute error (MAE) for each location is presented in Table 7. For Broughton River, 3 
days rainfall and 6 days stream flow as lagged inputs with 9 nodes in the hidden layers produces 
the lowest MSE. At Torrance River, 3 days rainfall and 8 days stream flow as lagged inputs with 2 
nodes in the hidden layers produces the lowest MSE. For Wakefield River, 4 days rainfall and 5 
days stream flow as lagged inputs with only one node in the hidden layer produces the lowest MSE. 
This indicates the variability in the ANN models for different locations. 

When the best model is identified based on the training data for each location, we use this model 
on testing data prediction. This study show the prediction results for the testing data for each 
location. Figure 7 shows the predicted and observed stream flows using testing data for the 
locations Broughton River, Torrance River and Wakefield River, respectively.  

Table 7. Best prediction model based on 2
adjR , lowest RMSE and MAE are in m3s 1 on 

the training data. 

Location Input Lags Nodes in Hidden Layer in ANN(H) 2
adjR  RMSE * MAE *

Broughton River  3 days rain, 6 days stream flow 9 0.68 270.33 45.53 
Torrance River  3 days rain, 8 days stream flow 2 0.71 24.54 4.89 

Wakefield River  4 days rain, 5 days stream flow 1 0.45 179.42 19.28 
Note: Asterisk (*) units are in m3s 1. 

Figure 7. Observed and predicted stream flow for (a) Broughton River; (b) Torrance 
River; and (c) Wakefield River for the year 2010. 
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The MAE for training and testing data is shown in Figure 8 for all three locations. We observed 
that the MAE for the training and testing data at Broughton and Torrance Rivers do not  
vary significantly. 

For Broughton, in training, the best ANN model structure includes 3 days lagged rainfall and  
6 days lagged stream flow as inputs with 9 nodes in the hidden layer. This model has the lowest 
MAE, at 45.53 m3s 1. We further use this best model for testing and we find the MAE of 32.43 
m3s 1. For Torrance, the ANN best model in training has 3 days lagged rainfall and 8 days lagged 
stream flow as inputs with 2 nodes in the hidden layer achieving the MAE of 4.89 m3s 1. For 
testing data, this model gives a MAE of 9.27 m3s 1. In case of Wakefield, the best ANN model has 
4 days lagged rainfall and 5 days lagged stream flow as inputs with 1 node in the hidden layer 



14 
 

 

achieving the MAE of 19.28 m3s 1. For the testing data, this model achieves an MAE of 42.88 m3 s 1. 
The reason for the difference in MAE between the training and testing phases could be due to this 
river’s ephemeral nature, and its substantial dependence on rainfall. 

Figure 8. Comparison of MAE for training and testing data, units are in m3s 1. 
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4. Conclusions 

Initially, we split the whole series with a dyadic signal process for assessing the short term 
relationship between rainfall and stream flow including correlation using Haar wavelets. We have 
presented an innovative idea for the hydrological community for assessing stream flow for any 
catchment. In particular, the end user could assess the variability of changes and construct higher 
order correlations from 2 days up to as long as required. In addition, this study would be helpful  
for predicting stream flows using deterministic regression techniques, particularly where there is 
evidence of changes of statistical distribution characteristics, which is important for Water 
Sensitive Urban Design, as clearly demonstrated [39]. Using a deterministic regression based 
response model we found an increasing trend in stream flow when rainfall increased significantly. 
Predicted stream flow was more influenced by the previous few days’ stream flows than when 
considering the entire previous period of stream flow. We also developed artificial neural network 
models for three locations. The results show that the influence of lagged rainfall and stream flow 
lies within a short temporal window. The results demonstrate that the ANN models perform better 
for Broughton and Torrance River in capturing the rainfall and stream flow relationships. 
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Understanding Irrigator Bidding Behavior in Australian 
Water Markets in Response to Uncertainty 

Alec Zuo, Robert Brooks, Sarah Ann Wheeler, Edwyna Harris and Henning Bjornlund 

Abstract: Water markets have been used by Australian irrigators as a way to reduce risk and 
uncertainty in times of low water allocations and rainfall. However, little is known about how 
irrigators’ bidding trading behavior in water markets compares to other markets, nor is it known what 
role uncertainty and a lack of water in a variable and changing climate plays in influencing behavior. 
This paper studies irrigator behavior in Victorian water markets over a decade (a time period that 
included a severe drought). In particular, it studies the evidence for price clustering (when water 
bids/offers end mostly around particular numbers), a common phenomenon present in other 
established markets. We found that clustering in bid/offer prices in Victorian water allocation 
markets was influenced by uncertainty and strategic behavior. Water traders evaluate the costs and 
benefits of clustering and act according to their risk aversion levels. Water market buyer clustering 
behavior was mostly explained by increased market uncertainty (in particular, hotter and drier 
conditions), while seller-clustering behavior is mostly explained by strategic behavioral factors 
which evaluate the costs and benefits of clustering. 

Reprinted from Water. Cite as: Zuo, A.; Brooks, R.; Wheeler, S.A.; Harris, E.; Bjornlund, H. 
Understanding Irrigator Bidding Behavior in Australian Water Markets in Response to Uncertainty. 
Water 2014, 6, 3457-3477. 

1. Introduction 

Water scarcity has emerged in many semi-arid regions of the world. This requires the development 
of mechanisms to efficiently reallocate available resources between competing extractive as well as  
in-stream uses. Water markets have been promoted as an efficient way of facilitating this process in 
a number of jurisdictions, such as Australia, USA and Chile [1–3] and more recently in Canada [4] 
and Spain [5]. As scarcity intensifies, demand for, and participation in, water markets is likely to 
increase. A continual review of market mechanisms will help to improve and facilitate greater market 
efficiency, through reducing transaction costs, improving product choice or reducing barriers to 
trade. Adoption of water market trading (where available) will represent one potential adaptation 
strategy for many irrigators in the face of climate change. Modeling by Adamson, Mallawaarachchi 
and Quiggin [6] demonstrates that adaptation will partially offset the adverse impact of climate 
change and suggests that improvements in the function of water markets could support adaptation. 

In order to provide greater insights into how to best improve water market mechanisms and water 
management in general, a better understanding of irrigators’ behavior in such markets and how this 
compares to behavior in other financial markets is necessary. In the Murray-Darling Basin (MDB) 
of Australia, irrigators’ participation in the water market has been growing over the past two decades 
and this provides a unique opportunity to study irrigators’ water market behavior. Two major forms 
of water markets exist in the MDB: the water allocation market (also known as temporary water 
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markets, which involve the short-term right to use of water) and the water entitlement market  
(also known as permanent water markets involving the long-term right to access water—see  

Wheeler et al. [7] for more detail). This paper focuses on the water allocation market. 
Since the Council of Australian Governments water reform agenda in 1994, water markets have 

played a central role in allowing farmers to deal with increased volatility, risk and adjustment 
pressures by permitting them to alter their short and long-term access to water resources as well as 
allowing them to exit out of irrigation while realizing their water assets [8,9]. In 2011, the  
Murray-Darling Basin Authority (MDBA) released the MDB Plan, with a target of 2750 GL to be 
returned from consumptive to environmental use [10]. Water entitlements are to be sourced from 
willing sellers, and are bought by the Commonwealth of Australia. Increasingly, there are arguments 
that governments should also consider buying water from the allocation market (otherwise known as 
temporary water available in one season) to provide environmental flows [11]. The rationale for 
government utilizing the water allocation market is that benefits of carry-over, lower water allocation 
prices, and temporal demand can provide a more efficient and flexible supply of water to meet 
stochastic environmental flow requirements since the timing of entitlement releases does not 
correspond well with the volume and timing of water applications required to achieve environmental 
objectives [3,12]. 

In light of these policy arguments regarding government intervention in the allocation market, a 
more thorough understanding of irrigators’ trading behavior in that market, particularly how they bid 
and offer for water, is needed. In particular, we need to understand how variability in climate 
conditions impacts on water market trading behavior. One way of analyzing water market trader 
behavior is to analyze the extent to which irrigator bids or offers exhibit price clustering (that is, the 
extent they cluster around particular numbers). The existence of clustering is important as it identifies 
a possible dead-weight loss that exists in water allocation markets. Utilizing bid and offer data also 
allows us to understand how differently buyers and sellers act in the water market, something that is 
difficult to do in other water market analysis. It also offers continuing insights into how irrigators 
behave in water markets, and how similar (or dissimilar) their behavior is to participation in financial 
markets. Understanding the similarity between irrigator bidding and offering behavior in a water 
market and a trader in a stock market may also offer insights into how well introducing other water 
market products (for example: option trading) will be received. For instance, Heaney et al. [13] 
discuss how missing options markets in storage and delivery might impact water trading. Addressing 
these issues is a function of market design. Hence, undertaking analysis on price clustering is 
informative for water management policies aiming to improve the efficiency and flexibility of 
resource allocation. 

Price clustering in financial markets has been well documented in the literature (e.g., Chung and 
Chiang [14]). Clustering is found when indicative quotes for currencies end mostly around particular 
numbers, for example, those with either “zero” or “five”. Round numbers are disproportionately 
represented in bid-ask spreads for major currencies. Typically, the economics and psychological 
literature identify different reasons for clustering. In economics, clustering is considered a rational 
response to trading impediments. In psychology, clustering is thought to occur due to a human bias 
for prominent numbers, such as zero and one. There have been very few studies that have analyzed 
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clustering in other non-financial product markets. There are a number of similarities between 
financial markets and water markets, but there are also fundamental differences because water 
markets are dealing with common property resource issues. In addition there is an issue as to whether 
recent events in financial markets during the global financial crisis make such markets an appropriate 
benchmark for comparison of resource markets. The issue of the efficient markets hypothesis (EMH) 
and the global financial crisis (GFC) is discussed by Ball [15] and Brown [16] who suggests that the 
failure to predict the bursting of the real estate bubble-that lead to the GFC-is in fact consistent with 
the central idea in the EMH. This paper analyzes clustering in the water allocation market over the 
past decade. In doing so, we will be able to determine (a) the extent of price clustering in this  
market and (b) given the constraints that prevent traders having a precise valuation of water,  
whether clustering behavior is a response to uncertainty (either weather or policy changes) or a 
strategic behavior. 

The only other paper that has examined price clustering in water markets [17] found robust 
evidence of clustering in the water market in northern Victoria from 2002 to 2007. Its’ econometric 
modeling suggested uncertainty faced by irrigators is a major reason for clustering. This paper 
extends the work by Brooks, Harris and Joymungul [17] in four ways. First, a longer time span is 
used covering 10 trading seasons in the northern Victorian water market. Much of this data is not 
publicly available. Second, alternative price clustering definitions are employed to check the 
robustness of the findings. Third, a variety of other data are included to identify specific factors 
associated with irrigators’ risk awareness that in turn influence the extent of price clustering. In 
particular, we are interested in assessing how government water policy changes, rainfall and 
evaporation influence bid and offer behavior in the water market. Finally, the extent to which price 
clustering is a result of traders’ response to uncertainty and/or strategic behavior is examined. 

2. Study Area 

The Goulburn Murray Irrigation District (GMID) is Australia’s largest irrigation district, located 
in northern Victoria, along the River Murray. It has one of Australia’s longest running water markets 
with the bulk of trading taking place in three trading zones. The most active trading zone is Greater 
Goulburn, which provides the data source for this paper. Water allocations and entitlements have 
been traded since the early 1990s and irrigators are increasingly adopting water trading (in particular 
water allocation trading) over time [18]. Given that the majority of trades, especially bids and offers 
for water, are in the water allocations market, this is the market we chose to focus on for a study on 
price clustering in water markets. Dairy, fruit and, grape producers are the most significant buyers in 
the allocation market, whereas cereal, grazing and mixed farmers are the main sellers [19]. Over the 
past decade, MDB irrigators have faced considerable changes to their water allocation levels (which 
conversely influence the amount of land irrigated). An allocation level refers to the percentage of 
water entitlements that is available for the entitlement holder to use throughout a season. The resource 
manager manages seasonal allocation levels on behalf of all entitlement holders and regularly 
reviews the water budget calculations in the GMID. For example, Goulburn water allocation levels 
dropped from a consistently secure 200% in the early 1990s to around 30% in the mid 2000s. As a 
result, uncertainty for irrigators has increased considerably with opening allocations of 0% in eight 
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consecutive years from 2002 and below 100% since 1998 and with closing allocations below 100% 
for five out of eight years from 2002 to 2010 [18]. In 2010 and 2011 higher than expected rainfall 
increased water allocations, this in turn increased the amount of land irrigated. Furthermore, water 
policy changes add to the climate uncertainties experienced by irrigators. There have been many 
government and institutional changes that impact on water markets in Australia over the time-period 
studied. This paper considers three of the most major ones that occurred, namely: (a) the lifting of 
the Cap (in 1994 the Victorian Government restricted the volume of water access entitlements that 
could be traded out of each irrigation district in Northern Victoria to no more than 2% annually of 
the volume of entitlement held in the district at the start of the irrigation season. On 1 July 2006 this 
was increased to 4%); (b) introduction of unbundling (this occurred on 1 July 2007 in northern 
Victoria and it is the legal separation of rights to land and rights to access water,  
have water delivered, use water on land or operate water infrastructure, all of which can be traded 
separately) and (c) the times when the Australian Government is conducting a tender in buying  
back water entitlements (the Federal government began a decade long policy of buying back water 
entitlements from willing sellers in February 2008 in order to return water from a consumptive to an 
environmental use—see [7,8] for more detail). 

3. Price Clustering Literature and Applications to Water Markets 

3.1. Price Clustering Theories 

Empirical studies in the finance literature find that the degree of clustering in any market is a 
function of market structure, uncertainty, resolution costs and human preferences [14]. Several 
hypotheses have been developed to better understand why clustering occurs. These include: the 
negotiation hypothesis; the price resolution hypothesis (uncertainty); the attraction hypothesis and 
strategic behavior. We discuss briefly each of these hypotheses and their relevance in the context of 
the Australian water market. 

A market’s structure may bring about clustering and Harris [20] developed the negotiation 
hypothesis to explain these effects, arguing that regulatory restrictions can reduce negotiation costs 
for traders. These restrictions require quotes and transaction prices to be stated as some multiple of 
a minimum price variation, or trading tick. Negotiation costs fall because restrictions create a discrete 
price set around which traders bid and offer. In the absence of these restrictions, the number of 
possible offers and counter-offers widens so that negotiation time also increases, creating higher 
price risks for participants [21]. A discrete price set reduces the amount of information exchanged, 
leading price to converge more quickly than would otherwise occur. As a result, transactions costs 
are reduced. The bid prices in the Australian water market analyzed are not required to be some 
multiple of a trading tick greater than one cent. Therefore, the degree of clustering is expected to be 
small because irrigators bid on a continuous price set. 

The method of trading can also influence the degree of clustering observed. For example, the use 
of electronic trade compared with floor trade (in person) alters the costs associated with precise 
valuation and, therefore, clustering. Chung and Chiang [14] found extreme clustering occurred on 
floor-traded futures compared with those traded electronically. Floor trade made precise valuation 



22 
 

 

more costly because it takes more time to call out information to the accuracy of several digits and 
there is a wider margin for error in doing so [21]. The mechanism for water trading in the GMID 
creates a pool price that tends to decrease the costs associated with precise valuation, so a finer grid 
of numbers may be expected. However, a uniform pool price each trading week may also decrease 
the benefits of a precise valuation and the weekly trading frequency may be too long for traders to 
place more precise bids. Nevertheless, Brooks, Harris and Joymungul [17] found evidence of 
clustering on bid prices in the GMID water market. 

The price resolution hypothesis contends that prices may be evenly clustered at particular points 
if valuation is indecisive [22]. Loomes [23] and Butler and Loomes [24] argued that economic 
decision makers do not measure utilities exactly but act in a sphere of haziness, which represents the 
degree of difficulty in precise valuation. In other words, the risk of taking certain actions increases 
with uncertainty. A greater sphere of haziness implies a higher clustering propensity due to people’s 
risk aversion behavior. When uncertainty and volatility are high, precision valuation is costly, leading 
to greater clustering [25]. 

In the case of the water market, water availability uncertainty can be brought about by several  
factors, including rainfall variation, water allocations, demand fluctuations, government policy 
changes, and climate change [7,19,26]. Variable and unpredictable rainfall in the MDB system can 
be on a range of time scales and intra-season variations, making it difficult to forecast final closing 
allocations. Allocations are announced fortnightly during the water season, and as discussed often 
have started at 0%. Uncertainty in allocations can lead to miscalculations regarding seasonal 
allocations by irrigators at the time of planting decisions. If an irrigator overestimates what their 
expected allocations will be at the time of planting a crop, they may have to buy additional water 
later. Alternatively, if an irrigator underestimates the final allocations they will receive, they may 
have surplus temporary water available that can be sold in the market at a later point in the season or 
be carried forward into the next season (depending on storage availability). Climate information only 
becomes available as the season progresses, so depending on how accurate irrigators were in their 
water expectations and the watering requirements of their permanent or annual crops, changes (or 
lack of changes) in monthly seasonal allocations may cause relatively high price volatility in the 
market. Government intervention in water markets has increased considerably over the first decade of 
the 21st century [27]. Government intervention affects short- and medium-term price expectations, 
thereby increasing costs of precise valuations. 

Ikenberry and Weston [28] demonstrate that clustering of U.S. stock price also stems from the 
psychological preferences of market participants. This is broadly referred to as the attraction 
hypothesis and it suggests that clustering is the result of behavioral idiosyncrasies (heuristics). 
Tversky and Kahneman [29] argued that individuals often rely on a number of heuristic principles 
that reduce complex tasks, such as valuation to simpler or even non-optimal judgment operations. 

Brooks, Harris and Joymungul [17] use variables representing the price resolution hypothesis to 
explain price clustering in the GMID water market. Their results indicate a large proportion of the 
variation in price clustering cannot be explained by the price resolution hypothesis (the largest 
adjusted R2 in their regression models is 0.61). Therefore, the attraction hypothesis is very likely to 
be able to explain some of the variation in price clustering that cannot be explained by the models of 
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Brooks, Harris and Joymungul [17]. Unfortunately, it is almost impossible to collect data on testable 
variables representing the attraction hypothesis. 

An alternative explanation for clustering is that its existence is the result of strategic  
behavior—where people estimate the net benefits of their action [30]. Specifically, they weigh the 
benefits of increasing the precision of their bid/offer relative to the loss of value resulting from an 
imprecise estimate. In Victoria, the benefits of precise valuation are not obvious for individual traders 
on the water market because the water exchange Watermove used a pool price. Watermove was a 
trading organization in the GMID that conducted water exchanges within MDB trading zones, it 
operated by telephone and online. It closed down in August 2012, but still remains a valuable source 
of historical data, especially bid and offer data, and is used in the analysis here. Table 1 presents an 
example of how the Watermove exchange worked. For example, in the week of 8 September 2011, 
there were 35 sale offers with the offering price ranging from $14 to $100 and a total volume for sale 
of 4724.8 ML; and 21 buy bids ranging from $10 to $26.38 with a total volume for purchase of  
5841 ML. A pool price of $21.15 (the average price of the last fulfilled sale offer, $20, and buy bid, 
$22.3—which is calculated after all bids and offers are received for the week) was found for the week 
in order to maximize the volume traded, namely 1441.5 ML. As a result, the last fulfilled buy bid 
had bought only 80.5 ML, instead of the full amount, 200 ML. This exchange mechanism results in 
the potential for price clustering to create a deadweight loss. The size of the deadweight loss depends 
on the pool price, the last fulfilled sale offer and buy bid prices and the amount of unsatisfied volume 
to sell or buy. It can be evident that the pool price could be quite different from their offer prices, 
which is likely to be caused by the weekly trading frequency. In this setting, the cost of rounding will 
be the lower likelihood of their orders being executed and the cost of not rounding will be the  
extra expenditure paid by buyers or the reduced revenue for sellers. A strategic bidder, therefore, 
would evaluate whether the cost of rounding outweighs the cost of not rounding in order to decide 
the bid price. 

Traders who expect natural clustering can easily change their offer prices by a cent (penny) to 
avoid cluster points thereby increasing the probability of their offers being executed, described as the 
“pennying behavior” by Jennings [31] and also documented in Edwards and Harris [32]. This 
behavior is evident in the water market as demonstrated in Section 4.2. First, price clustering would 
decrease when traders seek a higher probability of their orders being executed. On the buyers’ side, 
traders would require a higher probability of their orders being filled if they had overestimated 
seasonal allocations and therefore have experienced a deficit in available water. Assuming crop loss 
is a distinct possibility in this case; traders would avoid clustering to increase the likelihood that they 
will obtain water. On the sellers’ side, greater precision could be used if surplus water could be sold 
at a premium price; for example, during times of protracted drought. The high returns available 
during these periods would encourage a greater determination for offers to be executed. Second, 
when buyers (sellers) consider the extra dollar expenditure (revenue) as more significant, that is, the 
costs of not rounding as considerable, price clustering is expected to increase. It is difficult to identify 
which of these effects will dominate strategic behavior in the water market, as this will depend on 
the market and biophysical conditions at specific times. The analysis here will investigate the effects 
of those conditions on the potential for strategic clustering. 
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Table 1. An example of Watermove weekly exchange bids and offers. 

Seller Offer 
Price ($/ML) 

Volume 
for Sale 

Total Volume in 
Exchange 

Buyer Bid 
Price ($/ML) 

Volume for 
Purchase 

Total Volume in 
Exchange 

14.00 200 200 26.38 200 200 
15.00 103 303 25.50 200 400 
15.00 18.2 321.2 25.00 400 800 
15.00 60 381.2 25.00 11 811 
17.00 80 461.2 25.00 200 1011 
18.00 55 516.2 25.00 150 1161 
19.00 320 836.2 23.38 200 1361 
19.90 100 936.2 22.30 200 1561 
20.00 100 1036.2 22.00 20 1581 
20.00 150 1186.2 20.38 200 1781 
20.00 120 1306.2 20.00 100 1881 
20.00 59 1365.2 20.00 100 1981 
20.00 24.3 1389.5 19.85 1500 3481 
20.00 52 1441.5 18.00 500 3981 
28.00 50 1491.5 18.00 200 4181 
28.00 210 1701.5 15.88 200 4381 
29.00 92 1793.5 15.00 200 4581 
30.00 379 2172.5 15.00 10 4591 
30.00 150 2322.5 14.22 500 5091 
30.00 150 2472.5 12.88 500 5591 
30.00 60 2532.5 10.00 250 5841 
30.99 300 2832.5 

Date: 8 September 2011  
Pool price: $21.15/ML  

Total volume traded: 1441.5 ML (The shaded bids 
and offer orders were executed, with the buy order 

indicated by asterisk only fulfilled by 80.5 ML) 

30.99 140 2972.5 
35.00 500 3472.5 
42.38 490.7 3963.2 
42.38 192.6 4155.8 
45.00 68 4223.8 
45.00 20 4243.8 
45.00 100 4343.8 
50.00 20 4363.8 
50.00 70 4433.8 
58.00 100 4533.8 
60.00 50 4583.8 
60.25 46 4629.8 

100.00 95 4724.8 

3.2. Overall Water Market Clustering Hypothesis 

In summary, we propose the reasons for price-clustering behavior in the water allocation market 
as: (1) attraction; (2) price resolution (or uncertainty); and (3) strategic behavior. Attraction suggests 
traders prefer certain price points to others for psychological reasons, which is discussed in  
Section 3.1. Price resolution proposes that traders are more likely to cluster when they perceive 
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uncertainty in water markets is higher. We expect the following variables will be important 
influences on uncertainty: trading volume, water allocation price, water entitlement price, bid-ask 
spreads, water allocation level, climate conditions, seasonal factors, and government policy changes. 
Strategic behavior explanations for price clustering (where water traders will evaluate the cost and 
benefits of clustering, or the costs of rounding and not rounding) would also be influenced by many 
of these same factors. Farmers decide to trade one more unit of water allocations if the cost (revenue) 
from the trade is smaller (greater) than the value of the marginal product of their additional water 
using activities. Hence, the bid and offer prices are likely to reflect the farming enterprises and the 
associated risk levels for the farming enterprises if there is water scarcity. Since price clustering is 
measured for the whole Greater Goulburn region, we cannot consider farming enterprise variables. 
This question is left for future research that needs access to data across a variety of regions or access 
to bid and offer individual survey records (either entitlement or allocation records). 

The following sections identify evidence that support the attraction hypothesis, as well as  
determining the extent to which price resolution and strategic behavior can explain price clustering 
in the water market. 

4. Price Clustering Evidence in the Greater Goulburn Water Allocation Market 

Before analyzing the drivers of clustering behavior in the water market, we first determined if 
there was evidence of clustering. We collected weekly data from Watermove on all individual buy 
and sell bids, including the volumes and prices of each bid for the period August 2001 to May 2011 
for Greater Goulburn in Victoria—the most active trading zone. Most of these time series data are 
not publicly available. The data include quite a few weeks where the total number of orders is less 
than 20. In order to have a sufficiently large base of bids, we calculated price clustering at monthly 
intervals. Orders are fewer both at the start and toward the end of each season. The analysis covers 
ten years, and our monthly clustering series includes 100 observations, sufficient for the subsequent 
regression analyses. June and July are not included as there is usually no, or very scarce, trading in 
those two months. For the whole dollar amount clustering series of sell offers within the 10% range 
of the pool price, the number of sell offers is smaller than 30 for most of the months in the 2010/2011 
season. This small number of observations makes the clustering calculation unreliable. Therefore, 
there are 90 months instead of 100 for this clustering series. 

4.1. Evidence of Price Clustering 

Table 2 provides an overview of the existence of price clustering in the Greater Goulburn water 
allocation market. We first examined the extent of clustering at whole dollar amounts, versus 
amounts at particular cents. Over the time period being considered, 80% of all water allocation buy 
bids and 96% of all sell bids were placed at whole dollar amounts. Moreover, Table 2 also illustrates 
that if percentages are weighted by the volume associated with each order, whole dollar clustering 
decreases to 73% and 92% for the buy and sell orders respectively. 
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Table 2. Water allocation price clustering (%) at whole dollars. 

Water Trade 
Type 

All Within 10% of Pool Price Within 5% of Pool Price 
Number ML Number ML Number ML 

Buy bids 79.59 72.74 78.39 70.77 78.43 71.11 
Sell offers 96.47 91.69 95.92 91.08 95.84 91.20 

By including orders where prices are too distant from the pool price the extent of price clustering 
may be biased upward because it is less costly to be precise if a price offering is likely to be far away 
from the pool price. As a result, it is possible for an irrigator to be acting in a greater sphere of 
haziness. Therefore, we calculate the clustering at whole dollar amounts again but use only those 
orders whose prices are within 10% of the pool price range and then only within 5% of the pool price 
range. As expected, Table 2 indicates the extent of price clustering decreases when orders are 
constrained in a narrower range around the pool price. However, the decrease appears to be small 
and insignificant. 

Table 3 explores the extent of clustering at specific whole dollar digits of the buy and sell offers.  
For buy offers that are whole dollar amounts, Table 3 shows more than half of them ended in zero, 
while about a fifth end in five. Results are similar if the percentages are weighted by the order 
volumes or if only those orders within 10% or 5% of the pool price range are used. 

Table 3. Water allocation price clustering at whole dollar digits (%). 

Whole 
Dollar Digits 

All Within 10% of Pool Price Within 5% of Pool Price 
Number ML Number ML Number ML 

Buy offers 
0 54.17 44.82 52.14 44.53 51.61 42.99 
1 9.87 11.21 10.63 11.86 11.24 11.66 
2 4.58 8.64 5.32 5.39 5.83 6.60 
3 1.89 2.42 2.16 2.57 2.09 2.59 
4 0.76 0.88 0.94 1.20 0.83 1.19 
5 20.01 20.64 18.94 20.65 17.97 20.61 
6 3.99 5.08 4.27 5.61 4.22 4.88 
7 2.13 2.78 2.06 2.88 2.11 3.24 
8 1.74 2.62 2.39 3.97 2.92 4.94 
9 0.87 0.91 1.14 1.34 1.18 1.29 

Sell offers 
0 71.38 59.16 67.28 56.02 67.02 55.00 
1 0.48 0.84 0.53 0.86 0.49 0.74 
2 0.87 1.81 0.96 1.78 1.01 1.80 
3 0.66 1.32 0.87 1.36 1.05 1.78 
4 1.36 2.63 1.75 2.66 1.60 2.48 
5 14.52  19.76 16.54 21.00 15.86 20.31 
6 0.57 1.07 0.76 1.29 0.84 1.30 
7 1.04 1.67 1.16 1.68 1.27 1.77 
8 3.12 4.77 3.54 4.91 4.36 6.36 
9 6.01 6.96 6.62 8.44 6.50 8.46 
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The extent of clustering at whole dollar amounts and at specific whole dollar digits is similar to 
what is found for the Greater Goulburn trading zone in Brooks, Harris and Joymungul [17], where 
the authors use data from 2002 to 2007. Similar to Brooks, Harris and Joymungul [16], we used  
Chi-squared and HHI (Herfindahl-Hirschman Index) to test the significance of price clustering in our 
data. The results, which are available upon request, indicate the presence of significant price clustering. 
To further investigate price clustering over time, we present the buy and sell offer series for clustering 
at whole dollar amounts in Figure 1 and for clustering at the specific whole dollar digit zero in  
Figure 2. Figure 1 demonstrates that neither series exhibits a clear time trend but the buy offer series 
appears to have a greater variation over time. An augmented Dickey-Fuller unit root test indicates 
the absence of a unit root for both series. In Figure 2, both series appear to vary within a wider range, 
especially for the sell offers, compared to the results in Figure 1. The time series of clustering at the 
specific whole dollar digit zero also exhibits no clear time trend and does not have a unit root. 

Figure 1. Water allocation price clustering at whole dollar amounts (all offers). 

 

Figure 2. Water allocation price clustering at whole dollar digit ending in zero (all offers). 
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4.2. Evidence of Strategic Price Clustering Behavior 

Niederhoffer [33] argues that asymmetry between ask and bid quotes around integer prices could 
exist because of strategic behavior where the intention is to exploit opportunities resulting from price 
clustering. A ç o lu, Comerton-Forde and McInish [34] show that investors submit orders with one 
tick better than zero and five to avoid queuing orders at prices ending in these digits. Given prices 
cluster on round numbers, a water trader who places a bid and wants a higher probability of execution 
than a bid at the clustered price will tend to place the bid one cent away from the clustered price. 
Figures 3 and 4 investigate the evidence of strategic price-clustering behavior. 

Figure 3. Distribution of buy offers not ending in whole or half dollar amounts. 

 

Figure 4. Distribution of sell offers not ending in whole or half dollar amounts. 
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The figures respectively show the distribution of buy and sell offers that are not ended in whole 
or half dollar amounts. Clustering at half dollar amounts is also evident and much greater than its 
expected clustering. It is evident that the non-whole and half-dollar buy bids are most likely to be 
slightly greater than the price cluster, while the non-whole and half-dollar sell offers are mostly 
present slightly less than the price cluster. For those offers of whole-dollar, ending in other than zero 
or five, Figures 5 and 6 display the distribution across the remaining eight digits. If expecting 
clustering happens at zero, a buyer is most likely to place a bid with just one extra dollar. In fact, the 
probability of a buy bid ended in one is about 0.38 well above the probability of any other seven 
digits. On the sell side, a seller expecting clustering at zero is most likely to place a bid ended in nine. 
The probability of a sell bid ended in nine is about 0.43, well above the probability of any other  
seven digits. 

Figure 5. Distribution of buy offers across eight digits. 

 

Figure 6. Distribution of sell offers across eight digits. 
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5. Methodology 

Having observed substantial price clustering in the water allocation market, especially on the sell 
side, we now investigate the extent to which price clustering is driven by uncertainty and/or strategic 
behavior and if buyers and sellers’ price-clustering behavior are influenced in the same way.  
The dependent variable, observed price clustering in a month, is defined as a proportion, which is 
bounded between 0 and 1. A linear probability model may not be appropriate as it can generate 
predictions outside the 0 and 1 interval. One way to take account of the bounded nature is the logit 
transformation and thus the fractional logit model, first used by Papke and Wooldridge [35].  
The regression equation used was: 

=log( )= Xt·  + t (1)

where yt is the observed price clustering in month t, Xt is a vector of regressors that potentially 
influence the dependent variable, and t is the disturbance. The logit transformation of yt results in a 
latent variable *, as a linear function of a set of regressors, Xt. The fractional logit model was 
executed by Stata 13’s generalized linear model (GLM) command with the logit link function. We 
also used the type of standard error option that is heteroskedasticity- and autocorrelation-consistent 
to account for any heteroskedasticity and autocorrelation in the disturbance term t. 

yt adopts two types of clustering weighted by order volume, namely: (1) clustering at whole dollar 
amounts versus fractions; and (2) clustering at whole dollar amounts ending in zero versus the 
remaining nine digits. For the first definition, the calculation is based on all offers and offers within 
the 10% range of the pool price. The clustering calculation based on offers within the 5% range of 
the pool price is not modeled as there is no significant difference in clustering between the 5% and 
10% pool price range. For the second definition, the calculation is based on all offers since offers 
within the 10% range of the pool price in some months do not have enough observations to calculate 
a reliable clustering percentage. 

Independent Variables 

Table 4 lists the detailed definitions of the independent and dependent variables that were used in 
the price clustering models. 
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Table 4. Variable definitions. 

Variable Name Variable Definition 
WholeBuy Percentages of buy offers that are whole dollars in each month 

WholeBuy_10 
Percentage of buy offers that are whole dollars out of those within the plus and minus 10% range 
of pool price in each month 

WholeSell Percentages of sell offers that are whole dollars in each month 

WholeSell_10 
Percentage of sell offers that are whole dollars out of those within the plus and minus 10% range 
of pool price in each month 

ZeroBuy Percentage of buy offers that end in zero out of buy offers in whole dollars in each month 
ZeroSell Percentage of sell offers that end in zero out of sell offers in whole dollars in each month 

Watervolume Natural logarithm of volume traded for water allocations in Greater Goulburn in each month 
Waterallocprice Natural logarithm of average monthly price ($/ML) for water allocations in Greater Goulburn 
Waterentprice Natural logarithm of average monthly price ($/ML) for water entitlements in Greater Goulburn 

Ln_spread 
Natural logarithm of the spread between the last outstanding buyer and seller offering water 
allocation prices 

Allocationlevel Allocation level for Goulburn at the beginning of each month (%) 
Evapminusrainfall Monthly evaporation minus rainfall at Kerang station (mm) 

Feedbarley Natural logarithm of export price for feed barley ($/ton) 
Wholemilkprice Natural logarithm of export price for whole milk powder ($/kg) 

Cattleprice Natural logarithm of export price for cattle ($cent/kg) 

Carryover % 
Percentage of water entitlement allowed for carryover (note for 2010/11 season all the allocation 
in linked Allocation Bank Account on 30 June 2011 is eligible for carryover—there is no maximum) 

Govpolicy 

1 for the months when major water market policies were introduced/ongoing in the GMID 
(namely the lifting of the Cap, introduction of unbundling and the times when the Government 
is conducting a tender in buying back water). For Cap and unbundling introduction, the dummy 
is coded for the first three months after policy introduction 

Govpolicy10/11 Interaction variable between Govpolicy variable and season 2010/11 
Monthindex Monthly index from 1 to 10 for August to May, respectively 

Monthindexsqrd Monthly index squared  
Note: The first six variables are the respective dependent variables for the six regression models presented 
in Table 5. 

Our final choice of independent variables was influenced by other studies that have studied 
influences on water market trade (e.g., Wheeler et al. [19] and Brooks et al. [17]). It was also 
determined by statistical issues, such as serious multicollinearity (discussed in Section 6). There are 
a number of potential relationships our independent variables could have with price clustering, and 
these impacts will vary depending on whether we are looking at buyer or seller behavior. For 
example, weather, measured by net evaporation in millimeters, may be positively related to price 
clustering according to the price resolution (uncertainty) hypothesis. Net evaporation is calculated as 
total evaporation minus total rainfall for the month in question. Ceteris paribus, drier weather 
increases water prices and, in turn, increases the uncertainty perceived by irrigators who are trying 
to buy water, resulting in a higher level of price-clustering behavior in the water market. However, 
drier weather presents a greater need for water in general. In turn, at the margin some buyers will 
have a greater need to have their orders executed, and therefore act more strategically in the market. 
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This will reduce price clustering overall. Alternatively, as water prices increase sellers’ risk decreases 
so there is less need for strategic behavior to sell their water. As a result, the overall effect of weather 
on price clustering depends on whether water buyers or sellers are behaving more risk aversely or 
strategically. Other independent variables that may be influenced by the price resolution (uncertainty) 
hypothesis for both buyers and sellers include water allocation and water entitlement prices, trading 
volume, the spread between the offer prices, feed barley prices, carryover level and government 
policy. Our government policy variable represents either (a) a time of uncertainty, namely three 
months after major policy changes, such as unbundling of land and water and the changing water 
trade restriction policies; and/or (b) a time when the government is purchasing water entitlements in 
the market. Victoria has had annual restrictions on the amount of entitlement trade allowed out of a 
district for years. In January 2006, the cap on entitlement trade was eased from 2% to 4%. The 
unbundling of land and water occurred in the GMID on 1 July 2007. Unbundling reduced the 
transaction costs associated with trading water, and allowed irrigators to own shares in different 
rivers (reducing risks). The unbundling aimed to facilitate trading in water entitlement and allocation 
and make trading more efficient. 

Variables that may be influenced primarily by the strategic behavior hypothesis include  
whole-milk powder prices, cattle prices and water allocations received by irrigators, but risk averse 
behavior may also play a part in influencing price clustering. Whole-milk powder represents a 
production output of dairy farmers, feed barley represents an input substitute for watering pasture for 
dairy production, and cattle represents an alternative output production substitute. The overall 
influence of each variable will be determined by the strength of each hypothesis in determining 
behavior. Wherever model statistics allow, we have included all the same independent variables in 
every model to examine whether there are any differences between the influences on buying and 
selling clustering behavior. 

6. Results and Discussion 

Results for our buy and sell price clustering models in the Greater Goulburn water allocation 
market are presented in Table 5. Since the coefficient results produced by the fractional logit model 
are not practically meaningful, we report the marginal effect estimates. Multicollinearity was an issue 
in some of the models, with the variance inflation factors (VIFs) of water allocation price, water 
entitlement price, spread, allocation level and government policy variables being greater than five. 
The potential consequence is to make the variables involved insignificant where they should be 
significant. In order to verify whether collinearity caused this problem, we dropped the variables with 
insignificant coefficients one by one and checked whether the coefficients of the remaining variables 
became significant. If this was the case, the involved insignificant variables were dropped. However, 
if it was not the case they were kept in order to minimize omitted variable bias. 
  



33 
 

 

Table 5. Buy and sell offer monthly water allocation price clustering. 

Variable WholeBuy WholeBuy_10 ZeroBuy WholeSell WholeSell_10 ZeroSell 
Watervolume 0.003 0.034 0.035 *** 0.016 *** 0.026 0.032 * 

Waterallocprice 0.016 0.033 - 0.005 - 0.045 
Waterentprice 0.067 0.079 - 0.165 *** - - 

Ln_spread 0.015 0.096 *** 0.050 *** 0.046 *** - 0.063 *** 
Allocationlevel 0.001 0.002 - 0.0002 - - 

Evapminusrainfall 0.001 *** 0.001 *** 0.0003 0.00004 0.0001 0.00002 
Feedbarley 0.240 *** 0.377 *** 0.090 0.010 0.052 0.020 

Wholemilkprice 0.122 0.225 * 0.130 ** 0.094 *** 0.026 0.179 ** 
Cattleprice 0.059 0.011 0.039 0.363 *** 0.478 *** 0.389 * 
Monthindex 0.055 ** 0.128 *** 0.016 *** 0.009 *** - 0.015 *** 

Monthindexsqrd 0.005 ** 0.011 *** - - - - 
Carryover 0.001 0.000 0.0002 0.0003 0.001 0.001 ** 
Govpolicy 0.076 * 0.135 ** 0.008 0.028 0.070 ** 0.090 

Govpolicy10/11 0.255 *** 0.248 *** 0.277 *** 0.029 - 0.075 
Observations 100 94 100 100 90 100 

Log likelihood 35.80 32.66 44.52 19.34 18.89 42.65 
BIC 386.85 356.94 405.79 393.45 360.68 401.31 
Note: Marginal effects are reported. * p < 0.1; ** p < 0.05; *** p < 0.01 indicate significance at the 10%, 
5% and 1% levels, respectively. 

6.1. Buy Offer Price Clustering 

Positive coefficients for net evaporation, feed barley price and the government policy dummy 
suggest that uncertainty (from the price resolution hypothesis) is able to explain clustering by buyers 
in the water market. Higher net evaporation loss increases water uncertainty and increases clustering. 
Higher feed barley prices augment water demand because it is an input substitute for on-farm feed 
production. In turn, as feed barley prices rise dairy farmers will find it more costly to replace water 
to grow their own pasture with purchased feed. This increases water market demand, and the costs 
of precise bids thereby causing greater clustering in buy offers. 

The government policy dummy represented periods of uncertainty and significant government 
intervention in the market (e.g., the first three months following significant government changes) and 
is associated with greater uncertainty in water prices; especially in the short-term after the policy 
introduction. For two of three buy models; periods of policy uncertainty were positively and 
significantly associated with price clustering. This implies that water allocation buyers are using 
price clustering as a response to policies that add to market uncertainty. In times of change; irrigators 
will be operating in a greater sphere of haziness; with higher levels of uncertainty and volatility being 
experienced; so buyers exhibit a higher clustering propensity. 

A surprising finding regarding the government policy variable is the result of its interaction with 
season 2010/11, when water was plentiful due to the record rainfall during the season, when prices 
dropped accordingly. Contrary to the positive impact of government policy on price clustering 
observed for previous seasons, government policy had a significantly negative impact in 2010/2011. 
Two influences (government intervention and rainfall) may explain this result. The Commonwealth 
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was in the market buying entitlement water from November 2010 to May 2011, which was a time of 
flooding and falling water prices. The flooding reduced irrigator buyers’ risk and their water demand, 
thereby reducing their clustering. 

The price resolution hypothesis also predicts that the trade volume is negatively associated with 
price clustering, while price is positively related to price clustering. Our results, however, only offer 
a very weak support for this. The volume of trade has a significantly negative impact on clustering 
in the zero buy model, while a negative but insignificant impact on clustering at whole dollar. Neither 
water allocation nor entitlement prices have significant impact on clustering although their impacts 
are estimated as positive. 

The coefficients of our time variable—months in the year (and its squared term)—suggests buyer 
price clustering generally decreases from the start of the season (August) until the month of January 
and then increases until the end of the season. Brennan [27] argued irrigators are generally risk averse 
and will hold more water than required at the start of a season when climate and allocation 
information is yet to be revealed, creating price premiums. As a result, some buyers may be more 
concerned with having their orders executed, increasing the costs of rounding. If, in the aggregate, 
all buyers behave this way, clustering will fall over the season. This result could also be explained 
by buyers’ aversion to the sequential resolution of uncertainty suggesting a preference for uncertainty 
to be resolved all at one time rather than sequentially [36]. Hence, facing limited and uncertain 
climate information at the beginning of the season, buyers intend to secure the water they need at one 
time rather than through multiple orders as the season progresses. Later in the season (e.g., January 
onwards in our results) when climate and allocation information are revealed, uncertainty will 
diminish, the costs of rounding will decrease and therefore, clustering will increase again. The results 
presented in Table 5 demonstrate this outcome for most of the buy models, whereas in the sell models 
the opposite is true: clustering tends to increase throughout the water season. 

The results that suggest strategic behavior as a reason for clustering by water buyers include the 
negative coefficient for whole milk powder price. When the milk powder price increases, irrigators 
have greater incentive to produce milk to take advantage of the higher returns. In turn, they are more 
determined to have their buy offers executed, so the costs of rounding increases thereby decreasing 
price clustering. We would expect to see the opposite effect on clustering if the price resolution 
hypothesis applied in this case. 

But overall, it appears that buyer bid behavior in water markets is most influenced by price 
resolution (uncertainty) rather than strategic behavior. In light of the fact that our data-set includes 
years during which irrigators were learning how to use the new water market, it is not surprising that, 
on balance, uncertainty would create costs associated with precision thereby leading to greater 
clustering. The continuing tendency for clustering on the buyers’ side of the market may well reflect 
the ongoing uncertainty caused by the combined effects of Australia’s highly variable climate and 
changes in government policy. 

6.2. Sell Offers Price Clustering 

Both the price resolution hypothesis and strategic behavior can also be identified from significant 
variables in our seller price clustering models. The results for volume could support either hypothesis 
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with positive coefficients in the WholeSell models and negative coefficients for the ZeroSell model. 
An increase in clustering in the whole sell models reflects strategic behavior where the costs of 
rounding are low because sellers may be less determined to have their trades executed. The price 
resolution hypothesis better explains the decrease in clustering in the ZeroSell model because greater 
trade intensity creates higher liquidity levels and produces more information with regard to value, 
allowing for greater precision. In combination, these factors reduce volatility and clustering. 
Alternatively, these mixed signs could suggest that the attraction hypothesis better explains the 
effects of volume on clustering for water sellers and that these traders are simply drawn to  
particular numbers. 

The positive significant coefficients for spread lend support to the price resolution hypothesis 
because a wider bid-ask spread indicates precise valuations are more difficult. This adds to market 
volatility, so clustering will increase. The negative and significant coefficient on cattle prices is also 
consistent with the price resolution hypothesis. An increase in cattle prices (which is a dryland output 
substitute for irrigated production) would lead to a reduction in water demand and price. Falling 
water prices increase the costs of rounding thereby causing the clustering levels to fall also. 

Water entitlement price is significantly negative in the WholeSell model, which suggests that 
strategic behavior, rather than the price resolution hypothesis, explains price clustering at whole 
dollars. When some buyers replace water entitlements with water allocations due to increasing water 
entitlement prices, the demand for water allocations increases and this pushes up water allocation 
prices. Water allocation sellers may consider the loss in revenue from pennying behavior is 
compensated by the higher allocation price and a greater chance of offer execution. Hence price 
clustering decreases and pennying behavior increases. 

A positive impact of whole milk powder price, or a negative impact of carry-over level on price 
clustering, would suggest that strategic behavior may be playing a role in seller behavior. Our results 
support these hypotheses. Whole milk powder price has a positive estimate in all sell models and 
significant in the WholeSell and ZeroSell models, while carry-over level has a negative estimate in 
all sell models but is only significant in the ZeroSell model. As whole milk powder price rises, 
demand for water also increases so that higher returns from selling water accrue and sellers  
may expect to trade a higher volume. This magnifies the extra dollar per megaliter from clustering  
at whole dollars ending in zero, indicating strategic behavior may be utilized by sellers in  
these situations. 

A higher carry-over percentage potentially increases the demand for water allocations in the 
market, especially later in the season, as risk-averse farmers can carry-over water that they have not 
used, and buy extra supplies to cover potential shortfalls the following season. This is a more dynamic 
explanation of the impact of carry-over in the water market, where irrigators are adjusting their 
practices over seasons. Water allocation prices are therefore higher than otherwise and price 
clustering decreases. 

The government policy variable had a significant negative impact on price clustering in the 
WholeSell_10 model. In general, periods of policy uncertainty decrease price-clustering behavior by 
sellers, indicating that perhaps price increases are expected, there is a lower risk of entering the 
market for sellers and hence price-clustering behavior falls. 
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The relationship between most of the variables and clustering outcomes on the sellers’ side of the 
market runs in the opposite direction to that which would be expected under the price resolution 
hypothesis. Therefore, it appears that strategic behavior influences seller bid behavior more than 
buyer bid behavior. 

7. Conclusions 

This paper has provided evidence to show there are a range of influences impacting buyer and  
sellers’ water allocation market behavior in the Greater Goulburn trading zone in Victoria. While 
there are similarities between irrigators’ behavior in the water market and general investors’ behavior  
in the financial product markets, such as strong evidence of price clustering present in both markets, 
differences between two markets exist in terms of the explanations for price clustering, which we 
have investigated in the current study. Understanding irrigators’ water market clustering behavior 
allows us to gain a range of possible insights about how buyers and sellers may respond to uncertainty 
and policy changes in the market. These insights are useful for achieving more efficient resource 
allocation. Our analyses indicate that buyer-clustering behavior is for the most part explained by the 
price resolution hypothesis—where uncertainty tends to increase risks and decrease the costs of 
rounding. The cost of precision valuation increases when water allocation prices are difficult to 
predict and are volatile. For buyers, times of severe climate conditions (e.g., hotter and drier 
conditions), commodity price volatility, and government policy introduction increases the risk 
associated with trading and, thereby, their price-clustering behavior. 

Conversely, the models’ results seem to reflect that sellers’ clustering behavior is more reflective 
of strategic behavior than uncertainty. Strategic behavior in water markets prevails when the benefit 
of clustering does not outweigh its cost. These costs may include a reduction in the chance of order 
execution; an increase in the purchase cost for buyers; or an associated loss of sale revenue for water 
sellers. Correspondingly, the cost of unsuccessful sale offers is high if buyers are in greater need of 
water or if sellers keenly anticipate the revenue from water sales. Under such circumstances of high 
costs, traders are likely to consider carefully the cost of clustering and bid/offer strategically, which 
our results suggested happened the most in the seller clustering models. Hence, our results suggest 
sellers are acting in a more sophisticated manner in water markets than water buyers, and most of the 
costs of clustering are therefore borne by buyers. 

In terms of policy implications from this research, it is clear that there is a need, wherever possible, 
for governments to attempt to reduce irrigator uncertainty. This will be of most importance for 
buyers. More effective farmer adaptation to external impacts, such as water variability is driven by 
timely and useful information. Water price, climate, commodity forecasts, allocation information and 
certainty in government policy are all important influences of water market strategies. Incomplete 
and fragmented information, as well as uncertain policy, decreases farmers’ ability to manage their 
water needs. 
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Impact of Climate Change on the Irrigation Water 
Requirement in Northern Taiwan 

Jyun-Long Lee and Wen-Cheng Huang 

Abstract: The requirement for irrigation water would be affected by the variation of 
meteorological effects under the conditions of climate change, and irrigation water will always be 
the major portion of the water consumption in Taiwan. This study tries to assess the impact on 
irrigation water by climate change in Taoyuan in northern Taiwan. Projected rainfall and 
temperature during 2046–2065 are adopted from five downscaled general circulation models. The 
future evapotranspiration is derived from the Hamon method and corrected with the quadrant 
transformation method. Based on the projections and a water balance model in paddy fields, the 
future crop water requirement, effective rainfall and the demand for water for irrigation can be 
calculated. A comparison between the present (2004–2011) and the future (2046–2065) clearly 
shows that climate change would lead both rainfall and the temperature to rise; this would cause 
effective rainfall and crop water requirement to increase during cropping seasons in the future. 
Overall, growing effective rainfall neutralizes increasing crop water requirement, the difference of 
average irrigation water requirement between the present and future is insignificant (<2.5%). 
However, based on a five year return period, the future irrigation requirement is 7.1% more than 
the present in the first cropping season, but it is insignificantly less (2.1%) than the present in the 
second cropping season. 

Reprinted from Water. Cite as: Lee, J.-L.; Huang, W.-C. Impact of Climate Change on the Irrigation 
Water Requirement in Northern Taiwan. Water 2014, 6, 3339-3361. 

1. Introduction 

The fourth assessment report of the Intergovernmental Panel on Climate Change indicates that 
the observations of global average temperature during 1995–2006 have increased, and heavy 
rainfall events have become much frequent. This report also predicts the global average surface 
temperature during 2080–2099 may rise between 1.1 °C and 6.4 °C more than the period during 
1980–1999, and cause crop productivity to increase [1]. It clearly shows the affection of climate change. 

General circulation models (GCMs) are the most advanced tools available to simulate the 
response of the global climate system to increasing greenhouse gas concentrations. With the 
models, an assessment of the future climate would be possible [2,3], and the problem of uncertainty 
may be mitigated by considering multiple models [4,5]. According to the results of the cited 
researches, the rainfall distribution would be different and temperature would rise under climate 
change. It would make challenges for water resources management. 

Taiwan is a small island in the north-west Pacific. Analyzing the historical meteorological data 
in Taiwan over the past hundred years, the annual rainfall increased in the northern regions, decreased 
in central and southern regions, and exhibited no clear tendency in the eastern regions [6]; 
moreover, the surface temperature rose 0.8–1.6 °C in each region [7]. There is 22.7% of the area 
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that has been cultivated in Taiwan in recent years. The annual water consumption in Taiwan is 
17,064 million m3, of which is 11,088 million m3 consumed by irrigation. The proportion of 
irrigation water is about 65% of the total consumption; in other words, the irrigation requirement is 
the main demand factor. 

Under climate change, the variation of rainfall and temperature would also impact the irrigation 
water demand. There are many methods to determine the irrigation water requirement, for example: 
the Erosion Productivity Impact Calculator [8,9], the Global Irrigation Model [10,11], the 
CROPWAT model [12,13], and the Stochastic Crop Water Production Functions [14]. The basis of 
these models is to capture the characteristics of crop water consumption in different periods. 
Therefore, in the given growth characteristic of crops, rainfall and temperature distribution, and 
geology of a region, according to the water balance model, the irrigation water requirement would 
be determined by simulation. 

Although the average annual rainfall is about 2500 mm in Taiwan, high rainfall intensity along 
with a steep slope of river makes water resource storage difficult. Since the supply of irrigation 
water is one of the most significant tasks for water management, an impact evaluation on irrigation 
water under climate change in Taiwan is essential. That is the purpose of this study. 

2. Materials and Method 

First of all, daily meteorological data such as rainfall and temperature either from observation or 
projection are needed for estimating the evapotranspiration of crops. Second, the effective rainfall 
and irrigation water on paddy fields could be estimated by simulation method based on the water 
balance. In addition, data concerning the crop coefficient, percolation rate, conveyance loss rate, 
and farming area are collected. In this study, the present and future are represented by the periods 
2004–2011 and 2046–2065, respectively. The flowchart is shown in Figure 1. 

2.1. Study Area 

In this study, the irrigation district in northern Taiwan, governed by the Taoyuan Irrigation 
Association (TIA), is chosen as the study area (see Figure 2). In addition, Shihmen reservoir in the 
upper reach supplies TIA’s irrigation water. The meteorological station adopted here is located in 
the middle of the irrigation district and operated by the Agricultural Engineering Research Center. 
The meteorological data include air temperature, dewpoint temperature, solar radiation, sunshine 
duration, wind speed and rainfall. On average, the air temperature is 22.49 °C, solar radiation equals 
10.07 MJ/m2·day, sunshine duration lasts for 7.12 h, wind speed is 2.25 m/s and the annual rainfall is 
1876 mm. 

According to the irrigation plan, the area available for farming in TIA is 24,233 ha. There are 
four types of soil: clayey loam, sandy loam, sand clay loam and light clay. The percentages of each 
soil are about 41%, 22%, 18% and 19% respectively. In the area, average percolation rate on paddy 
fields is 8.14 mm/day, and average water conveyance loss is 12.6% [15]. 

Paddy is the main crop in Taiwan, the proportion of paddy fields to total farming area of TIA is 
about 95%. The subtropical climate makes two harvests of paddy rice in a year in Taiwan possible. 
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This study assumes the first and second cropping season start between 1 March to 28 June (from 
the 7th to 18th day) and 1 August to 28 November (from the 22th to 33th day), respectively. That 
is, a 120 day period for paddy growth is required in each cropping season. 

Figure 1. Flow chart of this study. 

 

2.2. Projected Rainfall and Temperature 

The projected rainfall and temperature under climate change in the period of 2046–2065 came 
from five GCMs: CGCm3 from the Canadian Center for Climate Modeling and Analysis (CCCma), 
Cm3 from the Center National de Recherches Meteorologiques (CNRM), Mk3.0 from Australia’s 
Commonwealth Scientific and Industrial Research Organization (CSIRO), Cm2.0 from the Geophysical 
Fluid Dynamics Laboratory (GFDL) and FGOALS-g1.0 from the State Key Laboratory of 
Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), which 
are based on SRES A1B scenarios. The A1B scenario describes a future world of very rapid 
economic growth, global population that peaks in mid-century and declines thereafter, and the rapid 
introduction of new and more efficient technologies. Moreover, the A1B scenario is distinguished 
by its technological emphasis: a balance between fossil and other energy sources [16]. 
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Figure 2. Location of study area and meteorological station. 

 

Because of coarse resolution from GCM projection, statistical downscaling of GCM scenario-run 
outputs to local climate stations were needed and applied. All of the data have been downscaled by 
the Global Change Research Center of National Taiwan University. Briefly, the process of the 
downscaling technique would be done in three stages [17]: first, the GCM outputs near Taiwan 
were adjusted with respect to the NCEP reanalysis data [18] during the training period by linking 
the normalized probability distribution functions of the mean climate parameters; second, a transfer 
function (i.e., a multiple-variant linear regression) was established to link NCEP reanalysis variants 
with local climatic observations during the training period; third, the projected temperature and 
precipitation data at each station during the verification period were adjusted with respect to the 
local observation data by the procedure in the first stage. The linkage established was then 
extended to adjust outputs for the years of projections. If more details about the downscaling 
technique are needed, please refer to [17,19]. 

2.3. Paddy Water Requirement 

The paddy evapotranspiration in this study is assumed under standard conditions, which means  
the paddy is grown in large fields with disease-free and well-fertilized conditions. The crop water 
requirement equals crop evapotranspiration under standard conditions, and it is expressed as [20]: 

occ ETKET  (1)

where ETc is crop evapotranspiration under standard conditions (mm/day); Kc is crop coefficient 
(dimensionless); ETo is reference evapotranspiration (mm/day). 
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Notice that Kc varies during the cropping season and depends also on the type of crops. The Kc 
value that is commonly used in Taiwan at different growth stages for the first and second cropping 
seasons is shown in Figure 3 [21]. 

Figure 3. Crop coefficient (Kc) of paddy at each day during cropping season. 

 

2.3.1. FAO Penman-Monteith Equation 

The FAO Penman-Monteith (PM) equation is adopted here for estimating the reference 
evapotranspiration. The use of the PM equation is recommended as a standard for reference 
evapotranspiration to provide more consistent values with actual crop water use data worldwide [20]. 
The equation is expressed as: 
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where  is slope vapor pressure curve (kPa/°C); Rn is net radiation at the crop surface (MJ/m2·day);  
G is soil heat flux density (MJ/m2·day);  is psychrometric constant (kPa/°C); T is mean daily air 
temperature at 2 m height (°C); es is saturation vapor pressure (kPa); ea is actual vapor pressure 
(kPa); u2 is wind speed at 2 m height (m/s). A detailed explanation of this equation can be found in 
the literature [20]. 
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2.3.2. Hamon Method 

Since only projected temperature and rainfall are available from the output of GCMs in this 
study, the PM equation could not be used for estimating evapotranspiration in the future. In order to 
solve this problem, the Hamon method, a temperature-based equation, is adopted. Hamon 
considered temperature and vapor pressure are the important factors that affect evapotranspiration [22]. 
The modified Hamon equation is expressed as [23]: 

2.273
8.29

T
e

NPE s

 
(3)

where PE is potential evapotranspiration by Hamon (mm/day); N is sunshine duration (h). 
Daily sunshine duration N can be calculated through the sunset hour angle ( s) in theoretically [20]: 

sN 24
(4)

2.3.3. Bias Correction 

As mentioned above, the PM equation and Hamon method are adopted for estimating the 
evapotranspiration of the present and projected respectively. The basic assumption of these method 
are different; hence, there would be a mismatch between ETo and PE. In addition, the 
evapotranspiration of PE may need correction. A conversion method, the quadrant transformation 
method [5,24], is applied here for bias correction. The concept of quadrant transformation method is 
shown in Figure 4. Here the difference between the 1st and 4th quadrants is estimated either by ETo 
or by PE, while the difference between the 3rd and 4th quadrants is due to climate change. The 
duration curve for the corrected PE of the future (2046–2065) in the 2nd quadrant is built by the 
other three quadrants’ conversion. 

The procedure for correction would be expressed by following steps: (1) constructing the daily 
duration curves, a cumulative frequency curve that show the percent of time specified rainfall were 
equaled or exceeded during a given period [25], for the 1st, 3rd and 4th quadrant by the 
evapotranspiration of PM in the present, Hamon in the future and Hamon in the present, 
respectively; (2) confirming the corresponding percentile of evapotranspiration at the specific day 
for the duration curve of the 3rd quadrant; (3) finding the corresponding percentile for the 4th 
quadrant by the evapotranspiration for the 3rd quadrant; (4) using the percentile by above to find a 
new corresponding evapotranspiration for the 1st quadrant, and which would be the corrected  
daily value. 

By repeating steps (2) to (4) we would obtain the duration curve for the corrected data in 2nd 
quadrant. Considering the seasonal variation, this correction method is based on monthly duration 
curves of evapotranspiration. 
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Figure 4. Bias correction of evapotranspiration through quadrant transformation. 

 

2.4. Calculation of Irrigation Water Requirement 

Since the rainfall, paddy water requirement and geology are understood, the irrigation water 
requirement can be calculated with a water balance model of the paddy fields. Figure 5 shows the 
factors affecting water balance in the paddy fields. Irrigation should supply the deficiency of water 
that paddy growth needs. Considering different soil types on paddy fields and water conveyance 
loss of irrigation canals, the continuity equation in paddy fields is expressed as: 
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(5)

where St, Pt, ETct, IRt, respectively, indicate the daily water storage, rainfall, crop 
evapotranspiration, and irrigation water requirement in the paddy fields at time t (mm/day); ƒj is the 
percolation rate for jth soil type (mm/day), Aj  is the percentage of jth soil type area (%); Ai* gives 
the percentage of total farming area controlled by the ith canal (%), and CLi shows the average 
water conveyance loss for the area controlled by ith canal (%). 
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The irrigation water requirement must be externally supplied to fill the deficit for paddy growth 
when rainfall and storage do not satisfy the water consumption in paddy fields; in contrast, the 
irrigation water requirement will be 0 while the consumption has been satisfied. Therefore, it could 
be rewritten as: 

minmin )()1( t
j

j
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ctttttt
j

j
j

ct
i

i
it SAfETPSifPSSAfETCLAIR  (6)

The rainfall stored in paddy fields for growth is called effective rainfall (Pt*), and it used in the 
paddy fields at time t equals: 

t
j

jjctttt PAfETSSP ,min max  (7)

where, Stmax and Stmin, respectively, are the maximum and minimum ponding storage in the paddy 
fields during different growth stages (mm). Here, we assume the water is abundant for a continued 
irrigation to keep the fields in an appropriate state of water depth. The maximum and minimum 
storage during different growth stages for paddy are shown in Figure 6 [26,27]. Please note that 
emptying out the storage would be recommended for root growth at the specific time. Therefore, 
the minimum ponding storage in some days would be 0. 

Figure 5. Concept of water balance in paddy field. 
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Figure 6. Suggested water depth in paddy field during cropping season. 

 

3. Result and Discussion 

For the A1B emissions scenario in the period of 2046–2065, five GCMs produce different 
patterns of change on temperature and rainfall. In this study, the mean value of models is used to 
show the result for the following. It represents the average of the results by five GCMs, instead of 
the result of average temperature and rainfall by these GCMs. 

3.1. Result of Bias Correction 

As seen in Figure 7, ETo values in the 1st quadrant are inconsistent with PE values in the 4th 
quadrant. PE assessed by the Hamon method seems underestimated as evapotranspiration exceeds  
2.9 mm/day, and vice versa. Apparently, the biases between the 1st/4th quadrants in the present  
(2004–2011) and the 2nd/3rd quadrants in the future (2046–2065) are similar. It shows the LASG-
based PE projections in 3rd in March quadrant can be appropriately adjusted in the 2nd quadrant by 
the quadrant transformation method. 
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Figure 7. Comparison of duration curve for evapotranspiration at each quadrant in 
March (LASG GCM). 

 

Here, Figure 8 shows the comparison with before/after bias correction for these GCMs. While 
focusing on the different between ETo and PE in the present, we would find the PE calculated by 
Hamon method is always overestimated during January to September, especially June to August. 
After bias correction, most of the month will be adjusted to be lower, except some months for 
GCMs. The bias correction does not seem to work during June/July/August/September for some 
GCMs. The main reason is that the extreme high ETo always happened in summer. If the extreme 
value of ETo in the present is more than the value of PE in the future, and the future PE is always 
more than the present PE. Then, the adjusted evapotranspiration would be more than the non-
adjusted probably. 

3.2. Comparison of Model Estimation and Actual Investigation 

Meteorological factors like temperature, wind speed and net radiation during 2004–2011 have 
been adopted for estimating irrigation demand by the model. Before starting the process to estimate 
future irrigation requirements, the methods mentioned in Section 2 have to be compared with the 
actual irrigation consumption, as shown in Table 1. For each year, the difference of model 
estimation and actual investigation is always over 20%, except for the first cropping season in 
2005. The result seems to show that the model has failed. Why has this happened? It would be 
summarized by the following two reasons:  
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Figure 8. Comparison with before/after bias correction: (a) CCCma GCM; (b) CNRM 
GCM; (c) CSIRO GCM; (d) GFDL GCM; (e) LASG GCM. 
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First, the actual investigation of irrigation consumption is according to the water received by 
canals, and it there would be interference from the discharge of the river, storage of reservoir, 
operation of canals, etc. However, the model estimation depends on the meteorology and the 
growth stages of paddy. There is a difference in the foundation between the actual investigation and 
model estimation. 

Second, the strategies of the government would also influence the supply of irrigation water 
significantly. In January 2002, Taiwan became a member of the World Trade Organization. 
According to the membership commitment, Taiwan has to import 144,720 metric tons of rice per 
year. To achieve this goal, the cultivation area in TIA was reduced significantly (probably reduced 
from 20,000 to 6000 ha). After 2002, the amount of agricultural water consumption is not only for 
irrigation, it involves multi-purpose uses like water resources scheduling, groundwater recharge 
and environmental conservation. 

Since comparing the difference between model estimation and actual investigation in the same 
years is not proper for evaluating the model, we try to use the data before 2002 for model 
validation. In this study, the two-sample t test is adopted because the data of validation is not the 
same as the period. 

At the 0.01 level of significance, the absolute value of threshold value t for 16 sample size is 
2.98 (a double-tailed test). The result of two-sample t test is shown in Table 2. In the comparison of 
the actual investigation between 1994–2001 and 2004–2011, the absolute values of t of the first and 
second seasons are 2.05 and 3.71, respectively. The t of the second season is greater than 2.98, and 
it implies that the difference in two means of 2nd season between 1994–2001 and 2004–2011 is 
significant, it proves the inference that irrigation consumption during 2004–2011 is not only for 
farming paddy and not proper for evaluating the model. In the comparison of actual investigation 
during 1994–2001 and model estimation during 2004–2011, the absolute value of t of 1st and 2nd 
seasons are 1.57 and 2.43 respectively, they are both smaller than 2.98. It implies that the difference 
in two means is insignificant between actual investigation and model estimation. That is, the 
proposed process could be accepted and applied to evaluating the impact on irrigation in the future. 

Table 1. Comparison of irrigation water requirement between model estimation and 
actual investigation. (Unit: mm). 

Actual Investigation Model Estimation 

Year First 
Season 

Second 
Season Year First 

Season 
Second 
Season Year First 

Season 
Second 
Season 

1994 907 1145 2004 1512 1512 2004 1169 1204 
1995 1191 1136 2005 995 1967 2005 983 1358 
1996 839 1046 2006 1260 2672 2006 985 1457 
1997 1242 1128 2007 840 828 2007 1029 1229 
1998 1294 1108 2008 1762 2201 2008 1099 1362 
1999 1343 1361 2009 1977 2219 2009 1130 1172 
2000 1245 1218 2010 1741 1867 2010 867 1158 
2001 1253 1152 2011 1949 1859 2011 1114 1337 
Mean 1164 1162  1505 1891  1047 1285 

Standard deviation 186 94  432 547  100 108 
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Table 2. The absolute value of tow sample t test for different periods. 

Title Actual Investigation (2004–2011) Model Estimation (2004–2011) 
Actual investigation  

(1994–2001) 
2.05 3.71 * 
1.57 2.43 

Note: *: Exceed the threshold value t = 2.98. 

3.3. Projected Evapotranspiration Analysis 

According to the projections of temperature from the five GCMs, the average increments of 
temperature during the first and second cropping seasons over TIA are 2.2 °C and 1.1 °C, 
respectively. This will cause evapotranspiration, ETo, to increase in the future. As Table 3 shows, 
no matter whether the first or second season, evapotranspiration grows by all selected GCMs. The 
GFDL model yields higher projections of evapotranspiration, as LASG model gives lower ones. 
The average increments during the first and second are 133 mm and 95 mm, respectively, about 
35.8% and 16.8% more than the present period (2004–2011). 

Table 3. The assessment of water consumption and supply for paddy field in the present and future. 

Assessment 
Factors 

Cropping 
Seasons 

Present 
Future 

CCCma CNRM CSIRO GFDL LASG Average 
Evapotranspiration 

(mm) 
First season 372 504 506 511 532 472 505 

Second season 564 665 662 654 677 635 659 
Crop water 

requirement (mm) 
First season 383 521 523 525 549 487 521 

Second season 547 638 632 625 648 607 630 

Rainfall (mm) 
First season 793 1262 762 904 1105 1344 1075 

Second season 637 629 480 670 658 527 593 
Effective rainfall 

(mm) 
First season 465 769 503 579 659 788 660 

Second season 308 533 433 580 567 507 524 

Effectiveness (%) 
First season 62.6 64.2 70.7 67.7 61.0 62.0 65.1 

Second season 50.8 85.9 91.2 87.0 88.0 96.5 89.5 
Irrigation water 

requirement (mm) 
First season 923 803 1087 1000 945 742 915 

Second season 1,208 1179 1285 1110 1152 1172 1180 

Furthermore, Figures 9 and 10 show the exceedance probability distribution of evapotranspiration 
distribution over time for the present and future (ensemble of GCMs). Since evapotranspiration is a 
cost factor in paddy fields, both figures give the representative values from an optimistic 90% to a 
pessimistic 10% for the first and second cropping seasons. Obviously, evapotranspiration increases 
in May and June of the plum period (first cropping season) and gradually decreases within the 
typhoon period from August through October (second cropping season). The comparison between 
2004–2011 and 2046–2065 indicates the temporal distribution of the future is similar to the present, 
but the variance of the future is much lower than the present. 
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Figure 9. Exceedance probability distribution of evapotranspiration at each ten-day 
during the first cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

Figure 10. Exceedance probability distribution of evapotranspiration at each ten-day 
during the second cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

3.4. Crop Water Requirement Analysis 

With evapotranspiration multiplied by the time-varying crop coefficient (Kc), as shown in Figure 3, 
the crop water requirement for rice cultivation could be obtained. Because of rising evapotranspiration 
in the future, it will result in an increase in the crop water requirement during the first and second 
cropping seasons. Table 3 shows the comparison of paddy water requirement between the present 
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and future. Clearly, the second cropping season needs more water than the first season. Future also 
requests more water than the present, based on the GCMs’ outputs. On average, 138 mm and 83 
mm more water would be needed in the future during the first and second seasons, an increment of 
nearly 36.0% and 15.2%, respectively. This is due to the increase of temperature in the future, and 
would increase the possibility of water deficit if rainfall could not supply essential crop water 
requirement in the future. In addition, as illustrated in Figures 11 and 12, the patterns of 
exceedance probability distribution of crop water requirement seems to be a great difference 
between the present and the future in the second cropping season (ensemble of GCMs). The periods 
with maximum water requirements occur in May during the first cropping season and in September 
during the second cropping season. Notice that the representative values of exceedance probability 
distribution are from an optimistic 90% to a pessimistic 10%. 

3.5. Projected Rainfall Analysis 

Table 3 presents the comparison of the rainfall between observation (2004–2011) and projected 
(2046–2065). It shows, except for the CNRM model, that the GCMs project much more rainfall 
than the present in the first cropping season. The average rainfall increases 282 mm (35.6%) in the 
future. However, in the second cropping season, the average decreases 44 mm (6.9%). In particular, 
CNRM and LASG models produce much less rainfall than the present. Plus, Figures 13 and 14 give 
the representative values of rainfall exceedance probability distribution from a pessimistic 90% to 
an optimistic 10% for the first and second cropping seasons, because rainfall is a benefit factor in 
paddy fields. The figures show that the period in May and June in the first cropping season has 
more rainfall in the future (see Figure 13). However, a lower quantity of rainfall occurs in July to 
October in the second cropping season (see Figure 14).  

Figure 11. Exceedance probability distribution of crop water requirement at each ten-
day during the first cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 
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Figure 12. Exceedance probability distribution of crop water requirement at each ten-day 
during the second cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

Figure 13. Exceedance probability distribution of rainfall at each ten-day during the 
first cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 
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Figure 14. Exceedance probability distribution of rainfall at each ten-day during the 
second cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

3.6. Effective Rainfall Analysis 

As shown in Figures 13 and 14, rainfall distribution of the future at each ten-day period seems 
more even than the present. This may increase the occurrence of effective rainfall in the future. As 
a benefit factor in paddy fields, Figures 15 and 16 show representative values of exceedance 
probability distribution of effective rainfall from a pessimistic 90% to an optimistic 10% for the 
first and second cropping seasons. In the future, more effective rainfall is obtained in May–June 
during the first cropping season, and in August-September within the second cropping season. 
Moreover, from Table 3, we can find that all the five GCMs project more effective rainfall than the 
present during the cropping seasons. The average increments are 195 mm (41.9%) and 216 mm 
(70.1%), respectively, in the first and second cropping season. Certainly, this is helpful to paddy 
cultivation and reduces the irrigation requirement. 

Effectiveness is defined by this study as a ratio of effective rainfall to total rainfall during 
cropping season. The difference of effectiveness between the observation and the projection is 
insignificant in the first cropping season. In contrast, although the projected rainfall is smaller in 
the second cropping season in the future, the effectiveness appears much better than the present 
because rainfall distribution become more even. Rainfall effectiveness in the future increases 2.6% 
and 38.7%, respectively, during the first and second cropping seasons. Apparently, rainfall is more 
effectively utilized during the second cropping season. 
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Figure 15. Exceedance probability distribution of effective rainfall at each ten-day 
during the first cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

Figure 16. Exceedance probability distribution of effective rainfall at each ten-day 
during the second cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

3.7. Irrigation Water Requirement Analysis 

Linking a higher crop water requirement with more effective rainfall in the future, the impact on 
irrigation water requirement would probably be neutralized. The process for estimating irrigation 
requirement can be done by Equations (6). As seen in Figures 17 and 18, the pattern of exceedance 
probability distribution on irrigation water requirement, by comparing the present with the future, 
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is similar. Notice that the exceedance probability distribution from 90% to 10% represents 
optimistic to pessimistic, because irrigation requirement is a cost factor. Overall, in the present, the 
agricultural sector needs to supply 923 mm and 1208 mm water, respectively, for irrigation. That 
is, 9230 m3/ha and 12,080 m3/ha during the first and second cropping seasons. In fact, the 
estimation of the future irrigation requirement depends on a chosen GCM. For example, in the first 
cropping season, CCCma and LASG produce less requirement, but CNRM, CSIRO and GFDL 
models request more irrigation water (see Table 3). On average, future requirements, respectively, reach 
915 mm and 1180 mm in the first and second cropping seasons. In contrast to the present, future 
needs less irrigation water, though the difference is not significant. 

Figure 17. Exceedance probability distribution of irrigation water requirement at each 
ten-day during the first cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 

Figure 18. Exceedance probability distribution of irrigation water requirement at each  
ten-day during the second cropping season. (a) present (2004–2011); (b) future (2046–2065). 

 
(a)      (b) 
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Generally, the threshold value for the water requirement of an irrigation plan can be determined 
on the basis of a 5-year deficit, a deficit event that has a 20% probability of occurring in any given 
year. That is, the exceedance probability of greater than the threshold value is 20%. By using  
Log-Pearson Type III frequency analysis [28,29], Table 4 shows the required irrigation water in 
accordance with a different return period. For the first cropping season, with the exception of  
a 2-year event, the future would need more irrigation water. In contrast, the required irrigation 
water at the second cropping season is less in the future. By choosing a 5-year return period event 
as the standard for the irrigation plan, future planning irrigation water requirement in the first 
cropping season would increase 73 mm (730 m3/ha), and decrease 28 mm (280 m3/ha) in the 
second cropping season. Multiplying the planned farming area 24,236.93 ha, extra 17.7 million m3 
of water would be needed in the first cropping season. In contrast, water would be 6.8 million m3 
less than the present in the second cropping season. 

Table 4. Frequency analysis of irrigation water requirement in the present and future. 

Irrigation Water 
Requirement (mm) 

Return 
Period (year) 

Present 
Future 

CCCma CNRM CSIRO GFDL LASG Average 

First season 

2 933 824 1072 1000 931 721 910 
5 1021 1004 1220 1153 1146 946 1094 

10 1060 1078 1308 1231 1266 1076 1192 
20 1089 1127 1386 1295 1369 1189 1273 

Second season 

2 1199 1215 1299 1109 1134 1161 1183 
5 1307 1296 1373 1192 1277 1260 1279 

10 1371 1319 1404 1236 1365 1318 1328 
20 1426 1330 1426 1272 1445 1371 1369 

4. Conclusions 

This study investigates the impact on the irrigation water requirement under climate change 
between the present (2004–2011) and future (2046–2065). Impacts in terms of five selected GCMs 
under the SRES A1B scenario were assessed for the paddy fields of the Taoyuan Irrigation 
Association (TIA) in northern Taiwan. Projected meteorology in the future would be different 
because of GCM features and downscaling methods; therefore, considering several GCMs to 
reduce the uncertainty of models is necessary. 

The FAO-PM equation is mostly used for evapotranspiration assessment, but it would not be 
suitable for evaluating the projection of evapotranspiration. This paper tries to combine the Hamon 
method and the Quadrant transformation method for assessing evapotranspiration in the future, and 
it is a possible and effective way to solve the problem. 

Due to the rising temperature, the estimated evapotranspiration will increase in both cropping 
seasons in the future. Meanwhile, estimated crop water requirement would increase 36.0% and 
15.2% in the 1st and 2nd seasons respectively. On the other hand, projected rainfall increases 
35.6% in the 1st cropping season, but decreases 6.9% in the 2nd cropping season. 

The impact of irrigation water requirement under climate change would not be easily assessed 
by crop water requirement and rainfall, although they play an important role. In the paddy field, 
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storage, percolation and conveyance loss also influence the magnitude of irrigation water 
requirement. For evaluating the impact, this study simulates the water balance in paddy fields day 
by day. 

As mentioned above, the projected rainfall decreases in the second cropping season, but 
estimated effective rainfall augments by 41.9% and 70.1% during the first and second seasons, 
respectively. This is because of the rainfall distribution, which becomes more even in the future. 

Increased effective rainfall neutralizes the augmented crop water requirement, and causes the 
difference of irrigation requirement between the future and present to be insignificant. Estimated 
irrigation water requirements decrease 0.9% and 2.3% in the 1st and 2nd seasons, respectively. The 
decrements are equal to 1.9 million m3 and 6.8 million m3 by multiplying the planned farming area 
24,236.93 ha. 

In addition, this study uses frequency analysis to analyze the change of irrigation requirement. 
Based on the 5-yr threshold value, the estimated irrigation water requirement would increase by 
7.1% in the first cropping season, and decrease by 2.1% in the second cropping season. By 
multiplying the planned farming area, the difference of irrigation requirement based on 5-yr return 
period between the future and present would increase by 17.7 million m3 in the first cropping 
season but decrease by 6.8 million m3 in the second cropping season. 

The variation of the irrigation water requirement of TIA in the future would be insignificant. 
Nevertheless, since the projected meteorology of the basin of Shihmen reservoir would probably 
change [2,5,30], which is the main facility to supply the irrigation water for the TIA. This could be 
crucial for water resource planning of the Taoyuan area. The risk of water shortage for future 
irrigation demand needs further study. In addition, some possible adaptations to changing 
conditions either on the supply side or demand side is worthy of concern. 
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Assessing Climate Change Impacts on Water Resources and 
Colorado Agriculture Using an Equilibrium Displacement 
Mathematical Programming Model 

Eihab Fathelrahman, Amalia Davies, Stephen Davies and James Pritchett 

Abstract: This research models selected impacts of climate change on Colorado agriculture several 
decades in the future, using an Economic Displacement Mathematical Programming model. The 
agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total 
receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is 
based on irrigated production, which depends on both groundwater, especially from the Ogallala 
aquifer, and surface water that comes from runoff derived from snowpack in the Rocky Mountains. 
The analysis is composed of a Base simulation, designed to represent selected features of the 
agricultural economy several decades in the future, and then three alternative climatic scenarios are 
run. The Base starts with a reduction in agricultural water by 10.3% from increased municipal and 
industrial water demand, and assumes a 75% increase in corn extracted-ethanol production. From 
this, the first simulation (S1) reduces agricultural water availability by a further 14.0%, for a 
combined decrease of 24.3%, due to climatic factors and related groundwater depletion. The 
second simulation (S2-WET) describes wet year conditions, which negatively affect yields of 
irrigated corn and milking cows, but improves yields for important crops such as non-irrigated 
wheat and forages. In contrast, the third simulation (S3-DRY) describes a drought year, which leads 
to reduced dairy output and reduced corn and wheat. Consumer and producer surplus losses are 
approximately $10 million in this simulation. The simulation results also demonstrate the 
importance of the modeling trade when studying climate change in a small open economy, and of 
linking crop and livestock activities to quantify overall sector effects. This model has not taken into 
account farmers’ adaptation strategies, which would reduce the climate impact on yields, nor has it 
reflected climate-induced shifts in planting decisions and production practices that have 
environmental impacts or higher costs. It also focuses on a comparative statics approach to the 
analysis in order to identify several key effects of changes in water availability and yields, without 
having a large number of perhaps confounding assumptions. 

Reprinted from Water. Cite as: Fathelrahman, E.; Davies, A.; Davies, S.; Pritchett, J. Assessing 
Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium 
Displacement Mathematical Programming Model. Water 2014, 6, 1745-1770. 

1. Introduction 

The agricultural economy in Colorado is dominated by livestock production and sales, which 
account for 67% of total receipts. Crops, including feed grains and forages, account for the 
remainder. Most cropping receipts are based on irrigated production, which is sourced from 
groundwater, especially from the Ogallala aquifer, and surface water, which comes from runoff of 
snowpack in the Rocky Mountains. Currently, about 86% of water resources are in agriculture, but 
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this is projected to decline due to demographic factors that lead to increased Municipal and 
Industrial (M&I) water demand, economic factors related to higher costs of irrigation, increased 
water demand for oil shale mining, and geographic factors such as climatic changes and 
groundwater depletion. Moreover, hydrologic studies point to an expected decline in runoff from 
6% to 20% by 2050, and also a shift in the timing of that runoff to earlier in the spring. These 
studies also showed that late-summer flows may be reduced [1–4]. 

Colorado agriculture has blossomed with the development of water resources used for growing 
crops, which, in turn, spurs value-added production in the meat and dairy subsectors. Yet, 
increasing urban development is expected to create a reallocation of 740 million m3 (hereafter 
million = M) of agricultural water to new municipal and industrial demands by 2030 [5]. Another 
challenge to the agricultural sector is a possible expansion of ethanol production in Colorado. 
Shifting corn to ethanol use rather than animal feed could place livestock production, Colorado’s 
dominant agriculture industry, at a disadvantage as the key input becomes more expensive, even 
though dry distillers’ grains mitigate some of the constraint. These pressures on agriculture may be 
exacerbated by the presence of climate change, particularly its effect on water availability and 
yields. Stakeholders thus seek ways to better understand the implications of climate change on 
statewide water availability and requirements for crops and livestock, in the presence of a larger 
population and other new demands such as ethanol production. This research evaluates these issues 
with illustrations on how resources might be reallocated and how prices respond in the future.  

The research uses a positive mathematical programming model specified to represent the 
Colorado agricultural sector, which is simulated to examine impacts of selected future constraints 
on water and yields resulting from climate change. First, this model was calibrated to 2007 
quantities and prices. Then, a “Base” scenario was constructed, which reflects several future drivers 
of change affecting the state’s agriculture: (1) increasing competition for water due to population 
growth, especially shifts in the resource from agricultural to municipal uses in the South Platte and 
Arkansas River basins; and (2) we also add two ethanol plants into the South Platte River Basin, 
which leads to a 75% increase in corn extracted-ethanol production there, and provides competition 
to the cattle feeding industry’s use of a key input, corn for grain. 

The changes incorporated into the Base scenario are related to the anticipated growth in the local 
economy, but to do not include effects of climate change. With this Base established, we run three 
simulations to explore the implications of climate change. The first one further reduces water 
availability based on forecasts of reduced runoff, while the second and third simulations introduce 
yield changes that might arise due to higher temperatures and increased variability of rainfall. 
Results for these scenarios are reported in terms of acreage changes, total value of production, 
exports and imports from the state, and prices. The overall changes in consumer and producer 
surpluses across the simulations are also reported. This modeling effort does not attempt to capture 
the full set of dynamic effects that will in fact occur, because for a small region, the range of 
possible outcomes over the next several decades is high, and is dependent on an equally extensive 
set of possibilities. Our approach is thus to focus on important outcomes with regard to climate 
change using a comparative statics method. 
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The document is organized into a series of sections. The current status of Colorado agriculture 
and its dependence on irrigation water supplies is reviewed in Section 2. This section also includes 
a review of expected climate change impacts on the availability of water and effects on 
commodities. Section 3 provides a literature review with regard mathematical programming 
methodology, while Section 4 lays out our particular model. Section 5 provides a discussion of the 
simulations and results, and Section 6 gives conclusions and thoughts for further research. 

2. Colorado Agriculture and Water Use: Current and Projected Changes 

This section contains two parts: the first covers the current size and structure of Colorado 
agriculture and describes key changes that might occur over the next decades; the second looks at 
the current pattern of water use and reviews forecasts of water reallocation. 

2.1. Agriculture in Colorado 

The agricultural economy in Colorado is dominated by livestock (almost $5.8 billion in sales 
during 2007, the year used to calibrate our model), which accounts for 67% of total receipts from 
the sector. The 2007 commodity balances are contained in Table 1. Colorado agriculture is 
heavily traded outside the state and abroad, as we learned when building commodity balance 
sheets used in the model. Fed beef, the largest economic sector, produced $3.4 billion in 2007 
and traded 82% of its production out of state. The cattle feeding industry creates a substantial 
derived demand for corn production ($463 Million hereafter M) and corn imports, which reached 
$703 M in the same year. In 2007, 75% of the total value of Colorado’s crops came from irrigated 
acreage, as most of hay, corn, and pasture for livestock were produced on irrigated land [6].  

Table 1. Production, in-state sales, exports, and imports of key Colorado agricultural commodities. 

Crop or 

Commodity 

Production  

(M $)—Co1umn 1 

In State Sales  

(M $)—Co1umn 2 

Exports  

(M $)—Co1umn 3 

Imports  

(M $)—Co1umn 4 

% Exports/ 

production  

% of column 3 

/column 1 

% Imports/ 

production 

% of column 4

/column 1 

Corn* 462.8 1051.7 113.7 702.6 24.6 151.8 

Wheat 483.5 61.0 474.8 52.3 98.2 10.8 

Barley 185.3 67.2 163.9 45.9 88.5 24.7 

Sorghum 383.7 400.3 0.0 16.6 0.0 4.3 

Dry beans 24.7 7.2 17.6 0.0 71.0 0.0 

Beef 3382.5 905.6 2748.4 0.0 81.3 0.0 

Cow calf 135.8 278.2 0.0 142.4 0.0 1.0 

Hogs 170.9 204.0 0.0 33.1 0.0 19.3 

Dairy 522.3 566.4 0.0 44.1 0.0 8.5 

Sheep 488.5 27.1 461.4 0.0 94.5 0.0 

Broilers 145.7 205.4 0.0 59.6 0.0 40.9 

Eggs 74.1 85.6 0.0 11.5 0.0 15.5 

Note: * Corn sales includes ethanol production. 
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It is not possible to say how much imported corn went into ethanol production, but ethanol used 
the equivalent of 23% of the state’s production, while 67% of corn was imported. The value of 
wheat production equaled that of corn output, but 98% was exported across state boundaries. The 
sheep and lamb industry is also heavily export-oriented, with slightly less than $500 M in revenues 
during 2007, and 94% exported. Sorghum was the largest feed grain produced after corn, with 
revenues in excess of $380 M and imports totaling about $17 M. Instate sales of corn, excluding 
the ethanol industry, exceeded $800 M, while sorghum was $400 M. Colorado’s dairy and hog 
sectors sold output within the state and required imports to meet demand, totaling 8.4% and 19% of 
production respectively. Imports of cows and calves were 50% of instate calf sales ($278 M) with 
buyers almost exclusively being feedlots. Barley and dry beans were relatively small agricultural 
subsectors and produced mostly for exports (88% and 71% of their production respectively). At the 
other end, 30% of broilers’ sales in Colorado (about $60 M) and 13% of egg sales were imports. 

Ethanol production may play a key role in Colorado’s energy future and plans therefore exist to 
expand production capacity. Yet, Colorado is a small producer of ethanol, with just three plants 
located in the South Platte River Basin. The average plant capacity in Colorado is 215 M liters per 
year, or about 1.3% of the nation’s ethanol capacity. The “corn footprint,” or demand by these  
plants, is approximately 1.6 M tons each year, which requires about 130,000 hectares of irrigated 
corn production. 

Expected Climate Change Effects on Colorado Agriculture. A consensus of climate change 
models suggest temperature in Colorado is expected to increase by up to 9–11 degrees Fahrenheit 
in the worst case scenario. The timing of seasons is likely to shift as well, with an earlier spring and 
longer fall. Midwinter precipitation should occur later in the calendar year, while less rain is 
expected to fall in late-spring and summer. As temperatures rise, runoff will peak earlier in the 
spring and be reduced significantly in late summer. Earlier run off could result in an 8.5% 
reduction of in-stream flows by midcentury in the Colorado River basin and a 5%–10% possible 
reduction in the Arkansas and Rio Grande basins. Little work has been done for the South Platte in 
terms of the impact of climate change on winter snow runoff [7]. The variability year to year is also 
likely to grow.  

Climate change will have effects on crop yield and water requirements. The main climate factors 
affecting agriculture are temperature, availability of water, and the concentration of atmospheric 
CO2. Soil water availability depends on the above three factors as they interact with soil properties, 
while field humidity, clouds and solar radiation also influence plant water requirements. The major 
commodities in Colorado agriculture are affected variously by these climate factors. For corn, the 
yield loss associated with increased temperature exceeds the positive effects of increasing carbon 
dioxide levels, so yields are expected to decline [8]. Also, high temperatures earlier in the season 
lead to less pollen germination and lower yields [9]. The changing precipitation patterns suggest 
increased yields for non-irrigated wheat in Colorado given the increase rainfall in winter and  
early spring. 

High temperatures also extend the number of growing degree days in the crop season, which has 
a positive effect on yields and overall production for hay. However, few studies exist on the effects 
of climate change for this crop. In a review of three studies, depending on the assumed increase of 
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CO2 concentration, alfalfa yields were estimated to change from a 16.7% increase to a decrease of 
19.4%. However, this added growth and length of season may lead to lower nutritional content, 
depending on soil quality constraints [10,11]. On the other hand, productivity may be higher than 
previously expected in semi-arid grasslands, and thus additional forage may become available [12]. 

Warmer temperatures increase plant evapotranspiration, while CO2 concentration partially 
offsets this process by increasing plant water-use efficiency. Wheat and hay are more sensitive to 
CO2 than corn [8,13]). Although there is great uncertainty about the future CO2 concentration, it is 
unlikely to neutralize the effect of anticipated, protracted droughts on crop production. 

Increasing heat also affects livestock growth and performance. Higher temperatures reduce 
livestock production in the summer but increase it in winter. Under heat stress, animals reduce 
grazing to stay in the shade, thus reducing their feed intake and suffering from weight loss. 
Reduced quality of forage and digestibility leads to reduced dairy productivity. The greater the 
stress, the easier is the spread of parasites and disease pathogens. For dairy cows, heat stress 
reduces the milk fat and protein content in milk, and the quantity of milk produced is reduced up to 
10%; moreover, other factors may also lead to lower yields as high-producing dairy cows are the 
most susceptible to heat stress due to breeding selection for high productivity, and reproduction 
rates are also adversely impacted [3,14–16]. 

2.2. Colorado’s Outlook for Water Resources 

Competition for water is increasing in the West. Colorado is a headwater state, supplying water 
through river systems to eighteen downstream states. Interstate compacts mean that Colorado is not 
entitled to all surface water flows, and may only retain six billion m3 in an average year. This water 
is allocated among users according to the Prior Appropriation Doctrine, and, as nearly all of 
Colorado’s rights have been appropriated, new users must obtain rights from others through 
voluntary transactions. Agriculture is the largest diverter and consumptive user of these surface 
flows. Agriculture also makes use of groundwater resources so that, on average, 1.0 M hectares of 
cropland are irrigated via groundwater or surface water. As noted earlier, irrigated crops comprise 
three-quarters of cropping receipts in Colorado, with two-thirds of these receipts bound for 
Colorado’s livestock feeding industry [17]. 

Irrigation water depends on both groundwater, especially from the Ogallala aquifer, and surface 
water, which comes from runoff due to snowpack in the Rocky Mountains. Currently, about 86% 
of the state’s water resource is used in agriculture, but this amount is projected to decrease. Causes 
for decline include demographic factors, such as increased Municipal and Industrial (M&I) water 
demand, economic factors related to higher costs of irrigation, increased water demand for oil shale 
mining, and geographic factors such as climatic changes and groundwater depletion. 

While agriculture holds the majority of water rights, new demands for water resources come 
from a growing population and environmental uses. Population forecasts are for an increase of 
more than 50% in the next twenty years, so a gap between existing municipal water supplies and 
demand from the larger population is anticipated. The Colorado Water Conservation Board’s 
Statewide Water Supply Initiative (SWSI) predicts that Colorado’s South Platte Basin will 
experience a 61.9% increase in water demand, or about 505 M m3, by 2030, which will continue to 



68 
 

 

rise thereafter. With water already appropriated in the South Platte, an estimated 73,000 irrigated 
hectares will need to be permanently fallowed to supply these increasing demands. The plans for 
nearly all South Platte water providers include significant water rights transfers [1,18]. 

Great variation exists among findings of hydrologic studies regarding expected decline in 
runoff, from 6% to 20% by 2050, although there is consensus on the persistence of the shift of 
runoff to earlier in the spring, and a change in precipitation to a greater intensity during winter and 
lesser in spring and summer [1–3]. The topography of the state and other factors make projections 
particularly complex [19]. 

3. Literature Review 

The model used in this research is an optimization model using mathematical programming in a 
manner that has a long history in economics and engineering. The approach chooses activity levels 
that maximize an objective function in the face of physical constraints on resources. Positive 
Mathematical Programming (PMP) improves on earlier techniques by allowing perfect calibration 
to a base and additions of more realistic behavior into such models [20,21]. As an activity based 
approach, PMP simplifies communication across disciplines and is particularly suited to study  
bio-physical and environmental features of agricultural systems. 

Over the last 10 years, the PMP approach has been object of extensive review, critique and 
extensions [22–25], as policy makers increased their reliance on quantitative economic models to 
understand effects of agricultural policies. As such, the method has been widely used in sectoral and 
regional analysis. In the European Union (EU), several models analyzed policy instruments within the 
EU’s Common Agricultural Policy (CAP), especially the effects of the CAP reform starting in  
2003–2004, where a switch to decoupled payments to farmers was made. Some examples of these 
models include the FAL, Parma and Madrid models, which use PMP to calibrate to observed 
values, and also apply the maximum entropy approach to estimate total variable costs [26–36]. 

The PMP method is thus versatile enough to model policy scenarios in a straightforward 
fashion, and has been adopted as especially well-suited to examine animal feed requirements and 
land constraints [25], and to study jointly agricultural outputs and environmental externalities [31].  
Howitt et al. [32] applied the methodology to estimate effects of climate change on irrigated 
agriculture in California using the State Water and Agricultural Production model (SWAP). SWAP 
improves on traditional PMP models by allowing for large policy shocks and enhanced flexibility 
in handling input substitutions. These models are often linked to hydrological network models and 
other biophysical system models. 

The equilibrium displacement modeling approach [33,34] represents an economic system of 
demand and supply relationships, and can show the effects of exogenously determined shifts of 
supply and demand from an initial equilibrium (a displacement). Changes in market prices and 
quantities resulting from the displacement determine changes in consumer and producer surpluses. 
This follows originally from Samuelson [35], who shows that maximizing profits is equivalent to 
maximizing the total surplus when markets are competitive. 

The Equilibrium Displacement Mathematical Programming (EDMP) model originally developed 
by the USDA Economic Research Service Harrington and Dubman [36] is a sector-wide, comparative 
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statics model of the U.S. agricultural sector, applying a mathematical programming approach to the 
equilibrium displacement methodology, with specific farm sector relationships and policies 
reflected. They used values estimated by econometric studies and applied the asset-fixity theory of 
Johnson and Quance [37] to estimate slopes of supply functions. The Harrington and Dubman 
model is similar to the general PMP approach, but the supply and demand curves are explicit, and 
the base calibration is achieved by shifting intercepts until they match initial values with as much 
precision as is needed. Thus this approach is termed an “equilibrium displacement mathematical 
programming” model. 

Regional and Climate Change Studies. Connor et al. [38] noted that an increasing number of 
analyses assess the impacts of climate change on irrigated agriculture in arid and semi-arid regions 
of the world, especially those that face a projection of drier weather. The objective function of their 
irrigation sector model maximizes profits across three sub-regions in the Murray-Darling River 
basin, Australia, subject to land and water constraints. The scenarios included a base case, a water 
scarcity model, a water variability model, and full effects model. The latter model includes both 
water variability and implications for changes in salinity. They concluded that ignoring the 
combined water-climate effects, along with salinity, leads to results that understate costs and 
impacts on output. Moreover, using the analysis of salinity, they identify various thresholds of 
climate change that create structural change in productivity and costs related to levels of salinity. 

Henseler et al. [39] studied global change in the Upper Danube basin using an agro-economic 
production model, with two climate change scenarios. The first scenario assumed a significant 
increase in temperature, while the second one showed effects of a moderate increase. This study’s 
results showed large differences in agricultural income and land use between the two scenarios and 
shifts that lead to increases in cereal production and extensive grassland farming due to the 
increased temperature in the first scenario. Qureshi et al. [40], Whitney and van Kooten [41], and 
Wolfram et al. [42], studied climate change impacts on agriculture at the regional levels in 
Canberra Australia, Western Canada, and California respectively. These studies reached 
conclusions that are similar to the studies discussed above. Whitney and van Kooten [41] expanded 
the model to include impacts on pasture and wet-land. 

Finally, with regard to previous Colorado analyses, Bauman et al. [43] estimated the economic 
impacts of the drought in 2011 using an Input–Output (I/O) model and a variant of the current 
Colorado Equilibrium Displacement Model. The authors found that the 2011 Colorado accounted 
for $83 to $100 M in economic impact, when all economic sectors of the state economy were 
included. Schaible et al. [44] argued that the gradual warming in the Western United States is 
expected to shift the precipitation pattern and alter the quantity and timing of associated stream 
flows. In addition, the effects of climate change will move bio-energy growth to the Ogallala 
aquifer in the Western States, which demand that careful optimization of water use is needed to 
choose irrigation technologies. They underline the importance of further research to understand 
economic implications of climate change at the regional level. 

Thus, previous studies agreed that there are likely to be significant shifts in land use and crop 
mix due to climate changes at the regional level. These studies also agreed on the importance of 
understanding possible structural changes, and noted that there will be significant income and price 
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effects due to climate change. Furthermore, the above review suggests that a lack of studies 
investigating the impact of climate change at the regional level exist, in particular those that trace 
out impacts in a small, open economy via trade with the Rest of the World (ROW) and include 
livestock and crop interactions. Previous studies also agree that positive mathematical modeling fits 
the research problem and unveils opportunity to simulate possible production and cost changes due 
to climate change, which should enable a better understanding of welfare implications at the 
regional level. 

4. Structure of the Colorado Equilibrium Displacement Positive Mathematical Programming 
(Colorado EDMP) Model 

The Colorado Equilibrium Displacement Positive Mathematical Programming model (Colorado 
EDMP) is a variant of the EDMP model by Harrington and Dubman, which the authors adapted for 
Colorado’s agricultural sector [45]. This model maximizes the sum of producer and consumer 
surpluses across most major products in Colorado’s agricultural sector, subject to a number of 
spatial market and resource constraints. The Colorado EDMP is calibrated to Colorado’s 
agricultural economy, and adds other natural resource dimensions (i.e., Colorado agricultural sector 
demand for water). Spatial constraints consist of three regions with separate water availability for 
irrigation in each basin (South Platte River basin, Arkansas Basin, and other Colorado basins) 
along with differing crop water requirements in each basin. These requirements were developed 
using irrigation water requirement (IWR) coefficients per crop per region from the Colorado 
Decision Support System (CDSS) weather and soil characteristics databases [46]. The optimization 
model selects food and feed crops, water supplies, and other inputs to maximize the sum of producer 
and consumer surpluses, subject to constraints on water and land, and subject to economic conditions 
regarding prices, yields, and variable costs. In the following paragraphs, we describe the Colorado 
EDMP and its basic dimensions. 

The particular function given below is a second order Taylor series expansion as first 
introduced by Takayama and Judge [47], which permits an approximation of an unknown 
functional form for the cost function: 

Max: Z = F'x  1/2 x' H x (1)

with x > 0, where x is a vector of endogenous variables that relate to sector demand and production 
processes. In the following expanded form of the Equation (1), the vectors x are divided into five 
groups. In the notation below the vectors of variables are written in lower case, while the vectors of 
parameters are in upper case, and indices under the summation operators are simplified as: 

Z = j(F"  .5H qj)qj  i b(F" + .5Hcli)cli  n u + g(F"  .5Heg)eg  s(F"  .5HMs)Ms (2)

where, qj = domestic sales of j agricultural commodities (in M tons) and livestock products (M 
head, tons, or dozens of eggs); cli = feed and food crop activities i identified by river basin (for 
selected crop activities, in M hectares) and livestock activities (head counts, live weight, milk tons 
and dozens); u = dollar value of n inputs (in M dollars); eg = exports of t agricultural commodities 
(in M tons) and livestock products (M tons, dozens of eggs); Ms = imports of s agricultural 
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commodities (in M tons) and livestock products (M tons, dozens of eggs); F" = a vector of 
intercepts indexed under each set above, which are determined in the calibration phase; H = the 
diagonal elements of the Hessian matrix flowing from the First Order Conditions. H is assumed to 
be negative semi-definite.  

In Equation (2), the first term is the function of total revenue, where (F"  .5H qj  = p is the 
vector of price dependent domestic demand functions, and p is the vector of output prices. The Hj 
elements are derived from predetermined elasticities of demand for j commodities and livestock 
products. The second element is a non-linear total variable cost function, where Hib are elements of 
the Hessian of supply functions; they are calculated as the ratios of capital replacement costs over 
excess capacity for i activities in  river basins. The term (F" + .5Hcli) = Marginal Cost provides 
the supply side equivalent to a price dependent demand function in the first term. The third element 
is the sector’s sum of inputs used in the sector, entered in value terms. The last two elements 
represent the export and import functions (these include out-of-state trade as well as international 
trade), which are included in the sector’s the objective function (see also Helming [48]). Ht and Hs 
are also exogenously calculated. Examples of the constraints included in the mathematical program 
are presented in Appendix. 

The agricultural activities in the model cover 91% of total agricultural production in 
Colorado, including thirteen crop and nine livestock commodities, which are sold to local 
consumers or out-of-state exports. Imports for nine products are present and compete with local 
production. The nine livestock sectors are cow calf, fed beef, hogs, dairy, sheep, broilers and 
layers, turkeys, and horses. Some of these livestock activities produce multiple products, including 
meat, milk, and/or eggs. Demand for feed crops and forages are derived from livestock activities 
through demand for rations. Food crops are wheat, potatoes, sunflower, and dry beans. Calf imports 
go directly into the cattle feeding industry. The commodities included, their acreage and production 
values, and a comparison of how our calibrated model compares to historical 2007 values is given in 
Appendix Table A1. 

The model also includes accounting costs for all activities. Inputs are categorized in the 
following categories: genetic inputs, such as seed or calves; specialized technology; mineral 
fertilizers (without manure applications); other chemicals; fuel and lube; electricity; irrigation 
energy and other irrigation costs; other variable purchased inputs; fixed cash costs; and capital 
replacement costs. Farm production costs reflect various yields and cost structures in different 
basins. Irrigated and non-irrigated crop costs are derived from enterprise budgets created by 
extension professionals in Colorado and the High Plains. Currently, the relationship between inputs 
and outputs is fixed, with no substitution, so that corn production, for example, has a fixed yield of 
8.3 tons per hectare and each hectare uses a certain quantity of fertilizer, other chemicals, and 
irrigation energy (when irrigated). 

Demand elasticities from the literature provide the values for the Hessian’s elements related to 
demand, which help the model, provide reasonable responses when used in scenario analyses. The 
F values, or intercept terms, are estimated by repeated adjustments until the prices and quantities 
are calibrated to a desired level of accuracy. 
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It is possible, with enough time, to exactly calibrate prices and quantities by shifting demand 
and supply intercepts. While this can be a tedious process, it provides an examination of the 
relationships and tendencies in the model, which cannot be achieved as intuitively when using a 
large set of cross price elasticities that, in any case, cannot be reliably identified for a small region 
like Colorado. We show the results of our efforts at calibration in Appendix Table A1, where the 
table shows the calibrated quantities versus actual values for selected products. It also provides 
estimates of the intercepts and slopes (Hessian elements) of the associated supply curves.  

5. Base Scenario and Climate Change Simulations 

This research includes three climate change simulations that are compared to the Base 
simulation, where the “Base” is designed to represent selected features of the sector several 
decades in the future. The two main features included are reduced water availability in the South 
Platte and Arkansas River basins, and added demand for ethanol, which represents a competing 
demand for corn. Three simulations then are created to show incremental effects of climate change 
on the Base model. The first simulation (hereafter S1) reduces agricultural water availability by a 
further 14.0% across all basins, for a combined decrease of 24.3%. This reduction comes from 
climatic factors and related groundwater depletion, as detailed in the Colorado Water Conservation 
Board’s Statewide Water Supply Initiative study (CWCB) [2]. There are no changes in yields or 
other factors.  

In addition to the direct water reduction, the effects of increased heat and an extreme dry  
year are reflected in the second and third simulations. First, climate change models suggest up to  
a 9–11 degree Fahrenheit increase in temperature, as a high end case [23]. The average rise in 
temperature also affects the variability and likelihood of years with more extreme weather, as 
illustrated in Figure 1. This figure illustrates how the increase in average temperature leads to a 
greater likelihood of extreme weather events, such as droughts, but also to years with higher 
precipitation. Simulation two represents a warm and wet year (hereafter S2-WET), with shifts in the 
pattern of precipitation, but with an increase in average temperature included as well. The third 
simulation reflects a drought year (S3-DRY) with dry conditions, in addition to the temperature 
increase and shifts in precipitation found in S2-WET. 

Table 2 summarizes the percentage changes in crop yields and dairy productivity from those 
used in S1. The irrigated corn yield in S3-DRY decreases due to higher July temperatures, and from 
lack of rain and cloud cover, which hampers pollination [8]. Yields for non-irrigated wheat increase 
as sufficient winter rainfall is present s during the critical growing period in S2-WET, and decline 
by an equal amount in S3-DRY to reflect the effect of less rainfall and higher temperatures [13].  

Both irrigated hay and corn silage yields surge with higher temperatures, which result in a 
longer growing season and more cuttings, in the case of hay, and help biomass growth in silage. 
Because both are grown on irrigated land, decreased rainfall does not have an effect, and yields are 
kept high in both scenarios. Yields in rangeland and pasture increase in S2-WET year, as sufficient 
rainfall supports germination and growth, but like other non-irrigated crops, these sources of feed 
see reduced yields in S3-DRY. Dairy sector productivity plummets in both the second and third 
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simulations, reflecting animal stress from high temperatures in absence of mitigating strategies. 
(These impacts of climate change are presented in more detail in Section 2).  

Table 2. Percent yield and productivity changes in S2-WET and S3-DRY, relative to 
S1. Sources: [13] (pp. 34–48, 56–61, 77–82). 

Simulation Irrigated corn Dryland wheat Irrigated hay Silage Pasture Rangelands Dairy 
S2-WET 0% 13% 18% 13% 8% 8% 18% 
S3-DRY  15% 13% 18% 13% 13% 13% 18% 

In summary, the following conditions are analyzed in the next sections: 

Base: This scenario examines the economic impacts of shifting water resources from agricultural 
to municipal uses in the South Platte and Arkansas River basins by 22% and 18% respectively; 

S1: This simulation alters the Base scenario by reducing agricultural water availability by a 
further 14.0% across all basins for a combined decrease of 24.3% based on expected climate 
change effects; 

S2-WET: This simulation represents a warm and wet year, with shifts in the pattern of 
precipitation and an increase in average temperature; 

S3-DRY: A drought year is simulated in the third example, using dry conditions along with the 
temperature increase and shifts in precipitation found in S2-WET. 

Figure 1. Climate change scenarios in Colorado Economic Displacement Mathematical 
Programming (EDMP). 

 
Note: Relatively small shift in the average climate can substantially increase risk of extreme 
events such as drought [4]. 

Base Scenario. The Base scenario reflects selected supply and demand factors for agricultural 
inputs and outputs in the future. First, it includes expected implications of competition between the 
agricultural sector and other sectors (e.g., M&I) for water at the basin level. In particular, this 
scenario shifts water resources from agricultural to municipal uses in the South Platte and Arkansas 
River basins by reducing water availability to agriculture by 22% and 18% respectively, with 
respect to calibrated values for 2007. This reduction follows estimates by the Colorado River Water 
Availability Study—CRWAS-report [49], and results in the fallowing of a proportional amount of 
irrigated land in each basin, although individual crops can vary without constraint aside from the 
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overall reduction in irrigated acreage. Overall a net decrease of 10.3% in total water availability 
occurs because nearly 50% of annual volume is in river systems outside of these two basins.  

Additionally, this simulation adds two ethanol plants in the South Platte River Basin, thereby 
increasing Colorado ethanol production from 175 M gallons annually to 308 M gallons. The Base 
scenario values are found in Tables 3 and 4. 

Base Scenario Results. Due to an anticipated reallocation of water from agriculture to municipal 
uses in the South Platte and Arkansas basins in the Base scenario, crop acreage shifts relative to the 
calibrated values of 2007, particularly for those commodities that are produced on irrigated land. 
Also, adding two ethanol plants raises annual production from 662 M liters annually to 1165 M 
liters. This increase raises demand for corn by about 1168 k tons (hereafter thousand = k), which 
must be supplied from various sources. On the one hand, other uses of corn can decrease, which in 
this model are feed, final consumption and exports. Also, supplies can come from added production 
or greater imports. 

Table 3. Area harvested in Base scenario and Climate Change Simulations. 

Crop/Livestock product Base 
Simulation Percentage change from Base 

S1 S2-WET S3-DRY S1 S2-WET S3-DRY 
South platte dry corn 0.07 0.07 0.06 0.1 0.0% 14.3% 42.9% 

South platte irrigated corn 0.27 0.26 0.25 0.17 3.7% 7.4% 37.0% 
Arkansas irrigated corn 0.07 0.07 0.07 0.04 0.0% 0.0% 42.9% 

Arkansas dry corn 0.16 0.17 0.15 0.04 6.3% 6.3% 75.0% 
All corn 0.58 0.57 0.53 0.36 1.7% 8.6% 37.9% 

South platte dry wheat 0.62 0.65 0.65 0.33 4.8% 4.8% 46.8% 
South platte irrigated wheat 0.03 0.03 0.04 0.16 0.0% 33.3% 433.3% 

Arkansas dry wheat 0.29 0.29 0.3 0 0.0% 3.4% 100.0%
All wheat 0.94 0.96 0.99 0.49 2.1% 5.3% 47.9% 

Other crops 0.17 0.17 0.17 0.17 0.0% 0.0% 0.0% 
Colorado basin hay 0.35 0.28 0.28 0.28 20.0% 20.0% 20.0% 
South platte dry hay 0 0 0 0.08 0.0% 0.0% 0.0% 

South platte irrigated hay 0.03 0 0 0 100.0% 100.0% 100.0%
Arkansas irrigated hay 0.04 0.03 0.03 0.05 25.0% 25.0% 25.0% 

All hay 0.41 0.31 0.31 0.41 24.4% 24.4% 0.0% 
Notes: All values are in M hectares. Source: Model Runs from Colorado Economic Displacement 
Mathematical Programming (CEDMP) Model. 

Sales of the main user of feed, fed beef, do not change much from the calibration to the base, 
even though water supplies have dropped by 10.3%. Significant and numerous changes in the feed 
sources, however, do occur. Corn sales to local users other than for livestock feeding decline by 
about 101 k tons from 2007, while a 3% reduction occurs in corn used for feed, or nearly 177 k 
tons arises, mainly in a shift to other, smaller grains that use less water. Exports decline by about 
25 k tons as well. These shifts together release corn from other uses for a quarter of the increased 
ethanol demand. However, imports decrease by about 355 k tons, so overall supply is lower from 
these shifts and cannot fully support growth in corn demand for ethanol, as the variation in exports 
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and imports just offset each other. Thus, production growth is the main source of supply for the 
increased demand for corn. 

Table 4. Production, sales, exports, imports, and prices in the base and simulation scenarios. 

Commodity Variable Base 
Simulation Percentage change from Base 

S1 S2-WET S3-DRY S1 S2-WET S3-DRY 
Corn Production 4567 4468 4265 2428 2.2% 6.6% 46.8% 

Sales in Colorado 84 84 84 79 0.0% 0.0% 6.1% 
Exports 699 693 678 549 0.7% 2.9% 21.5% 
Imports 4128 4194 4326 5532 1.6% 4.8% 34.0% 
Prices a 145 145 145 160 0.0% 0.0% 10.0% 

Wheat Production 2251 2294 2722 1402 1.9% 20.9% 37.7% 
Sales in Colorado 269 269 278 253 0.0% 3.0% 6.1% 

Exports 2243 2281 2675 1461 1.7% 19.3% 34.8% 
Imports 261 259 231 313 1.0% 11.5% 19.8% 
Prices a 220 228 220 243 3.3% 0.0% 10.0% 

Fed Beef Production 1389 1384 1375 1285 0.3% 1.0% 7.5% 
Sales in Colorado 340 340 340 336 0.0% 0.0% 1.3% 

Exports 1049 1044 1035 949 0.4% 1.3% 9.5% 
Prices a 2644 2724 2729 2773 3.0% 3.2% 4.9% 

Dairy Production 1244 1244 1030 1030 0.0% 17.2% 17.2% 
Sales in Colorado 1357 1357 1266 1262 0.0% 6.7% 7.0% 

Imports 113 113 232 232 0.0% 104.0% 104.0% 
Prices a 429 402 500 500 6.2% 16.6% 16.6% 

Hay Production 3053 2255 2273 3038 26.1% 25.5% 0.5% 
Sales in Colorado 3830 4967 4032 4312 29.7% 5.3% 12.6% 

Imports 777 2712 1759 1274 249.0% 126.4% 64.0% 
Notes: a Units of Prices are in $/ton; All other values are in k tons. Source: Model Runs from Colorado 
Equilibrium Displacement Mathematical Programming (CEDMP) Model. 

The growth in production is nearly 1041 k tons, which comes from an increase of close to 152 k 
hectares in corn. This increase is generally in irrigated land in the Arkansas and South Platte basins, 
but in the Arkansas basin, a significant proportion of the production growth comes on non-irrigated 
land. Given that irrigated land is withdrawn from production in the Base scenario, growth in corn 
production must come from a shift out of other crops. This includes a reduction of area harvested 
for alfalfa hay by nearly one third, or about 223 k hectares, and a reduction of fallow land in the 
Arkansas basin. This occurred even though hay area in Other Colorado outside the two basins 
under consideration remained at about 315 k hectares. 

The reduction in hay acreage is logical, based on its high water demand, significant use of 
irrigated land, and the possibility of using imports as a substitute. The irrigated corn area harvested 
in the South Platte basin increases by about 17.4% (or about 40.5 k hectares) from the calibrated 
value of 234 k hectares. Another 40.5 k hectares of alfalfa hay, or about 75% of its total area, is lost 
in the South Platte basin in response to limited water availability. The decline in irrigated corn and 
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hay production negatively influences fed beef operations because locally produced feeds become 
more expensive. 

Several general comments about the Base scenario are worth noting. First, given that most 
changes in the Base assumptions affect irrigated land, little reallocation occurs in non-irrigated 
products, such as wheat. While some shifts are found in wheat location, in the aggregate, its area 
drops by just under 2.0%. Despite the drop in acreage and production, exports, the main use of 
wheat, rise by about 2.0% or 35 k tons. This is possible mainly because of a shift of local sales of 
wheat into exports (71 k tons), a small increase in imports (17 k tons), which together permit a 
growth in exports despite the reduced production. 

A second point is that changes in sales, production and consumption of other crops and livestock 
products occur relative to the calibrated model representing 2007, but for the remainder of this 
paper, these are not considered in depth. Our focus will be on cattle feeding and dairy, and their 
inputs, primarily corn and hay, and on wheat as the major non-irrigated product. These 
commodities account for 75% of area harvested and in-state sales, and about 85% of exports in the 
2007 calibration. 

The above scenario is created only by withdrawals of water from agriculture due to greater 
municipal and industrial uses, along with the presence of a larger ethanol industry. This clearly 
leaves out many possible changes that will occur in the next several decades, with the main ones 
being technological change and greater population. To reflect these changes, which some models 
attempt to do, we would need to make assumptions of a wide range of yields and productivity of 
livestock and dairy, and the increase in consumption of all products from the larger population. 
This seems to us to be a relatively non-productive effort for a small region like Colorado. Thus our 
Base is a mixture of the 2007 setting, with selected future effects made to key variables. The 
proportions of imports and exports stay roughly the same, even though they are not fixed, because 
the balance between demand and supply is not forecasted into the future. While it is certainly not 
an exact representation, the Base case permits us to examine important effects of climate change on 
yields and water availability, without being confounded by added, perhaps unsupportable, changes. 
Thus, the following results show additional effects due to water and yield changes coming from 
climate change. 

6. Climate Change Scenario Results 

As described earlier, three climate change simulations are included in this study. The following 
discussion of results is split into two sections, where the first summarizes and explains shifts in 
area within each simulation, which are presented in Table 3. These area shifts are related to a series 
of price effects that lead to additional variation in feed use, production levels, and exports and 
imports. These added effects of climate change are found in Table 4. 

Simulated Area Effects. Relative to the Base, the area harvested of Colorado corn (about 600 k 
hectares) only changes slightly in S1. In S2-WET, overall area harvested declines by nearly 8%, but 
the change is not distributed equally across basins. The largest change in cultivated area occurs in  
S3-DRY, as total harvested area drops by 38%. This decrease is similar across both regions and for 
irrigated land, as the percentage decline is nearly identical in both the South Platte and Arkansas 
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basins. The greatest impact in S3-DRY occurs in the Arkansas basin’s non-irrigated land ( 75%), 
which drops to only 45 from 151 k hectares. Conversely, South Platte non-irrigated corn expands by 
11.8% over S2-WET, responding to higher prices coming from the large reduction in irrigated corn 
area harvested. The drought-like conditions in S3-DRY with high heat cause a large reduction in 
irrigated corn harvested as yields decrease by 8% from the Base. These results indicate the high 
sensitivity of corn area to variations created by climate change. 

The total area harvested of wheat in Colorado (with a baseline of 0.94 M hectares) changes little 
between S1 and S2-WET, as the wet year leads to a just 4% increase in non-irrigated wheat in both 
the South Platte and Arkansas River basins. Similar to corn, the largest changes occur in S3-DRY. 
Due to the dry year’s conditions, nearly a 43% reduction of South Platte non-irrigated wheat area 
occurs, while the Arkansas River basin non-irrigated wheat disappears completely. The latter basin 
loses over 283 k hectares of cultivated area. Such large changes in non-irrigated wheat represent 
expected responses to the drought-like conditions, where yields decline by 26% from the wet year 
conditions in S2-WET. Therefore, a crop that is dependent on rainfall but not on water via 
irrigation derived from snowpack and storage will see greater variability in total production as 
climate changes. 

Hay is the third commodity examined in Table 3. The initial decrease in irrigation water in S1 
causes a 70 k hectare decline in hay acreage outside the two main basins. After that initial decrease, 
the hay cultivated in Other Colorado remains constant in S2-WET and S-3-DRY, as that region has 
sufficient irrigation water, compared to its land resource, and cannot produce other crops 
competitively. In S3-DRY, irrigated hay increases by 20 k hectares in the Arkansas basin. Overall, 
the reduction in corn area, due to a substitution into imports, leaves irrigated land available for hay 
in Arkansas and hence some expansion in hay acreage occurs. In the South Platte, non-irrigated 
corn and hay, to a lesser extent become competitive on land previously in wheat. 

Evaluating production, price and trade effects across climate change simulations. In this 
section, several important market effects are explained, including the scenarios’ effects on total 
production, trade revenues and prices for major commodities produced in the state. The focus is on 
climate change effects in S2-WET and S3-DRY, but we consider uncertainties in outcomes and 
possible alternative scenarios as well. 

Wheat. Wheat consists primarily of non-irrigated production, and is generally exported, with 
local use equivalent to the level of imports. Production increases in S2-WET by about 436 k tons, 
or 21%, as more rainfall reaches the crop during its early spring growing season and yields improve 
by 13%. In S3-DRY, with lower rainfall, non-irrigated wheat area is cut nearly in half, with about 
485 k hectares going out of production. The shift towards irrigated corn in the South Platte River 
basin, noted above, occurs because of a price increase of 10% in S3-DRY. However, the same 
percentage price increase in wheat does not lead to an increase in non-irrigated production in the 
Arkansas Valley. 

These differing responses between corn and wheat come from varying dependence on imports 
and the fact that there is no irrigated wheat for the Arkansas River basin in the calibrated model, so 
that commodity cannot enter even with higher prices. 
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Thus, the wheat crop is extremely sensitive to how climate change affects rainfall, with the 
variation in exports between S2-WET and S3-DRY being nearly 1.2 M tons. The actual outcomes 
will also be affected by the performance of other regions, and, indeed, international supply and 
demand, as much of Colorado’s wheat crop leaves the country. As the Northern Plains outside of 
Colorado should see greater production of wheat with climate change, downward pressure may be 
exerted on prices in Colorado, although rising international demand could offset that effect [6]. 
Higher national and international prices, of course, would reverse some of the decline, as Colorado 
wheat would remain more competitive than in the scenarios presented here. 

In sum, this crop’s potential outcomes depend importantly on rainfall variation, as well as the 
international setting, which affects wheat to a greater degree than other crops. The variability in 
outlook, however, does not affect other commodities critically, such as corn, hay or cattle, as those 
are more dependent on irrigation from snowpack and statewide precipitation to a greater extent 
than the timing and amount of local rainfall. 

Cattle Feeding. Cattle feeding is the largest industry in Colorado agriculture and is dependent 
on selling fattened cattle for slaughter out of the state, although little goes to the international 
market. In simulations S1 and S2-WET, production declines only slightly from the Base, which is 
related to an increased cost of feed. However, a higher price exists in the output market, which 
leads to sales revenues nearly the same as in S1, even though water declines and feed becomes 
more expensive. On the other hand, in S3-DRY, fed beef production declines by nearly 90 k tons, 
or 8.4%, due to the significantly higher prices of feed and thus fed beef, which is great enough to 
dampen demand. The small effect in S2-WET is related to the fact that a quarter of fed beef is sold 
to consumers in Colorado, where a lower own price elasticity is assumed. Thus, the industry can 
benefit from increased prices in certain ranges, but higher cost feed eventually makes fed beef less 
competitive with producers outside the state, particularly in S3-DRY.  

Several conflicting trends are not modeled in this research. The first is that increased costs might 
be incurred for feedlots to adapt to higher temperatures, such as adding sheds and mechanical 
spraying to protect cattle from heat. Also, the lower quality of hay may require increased quantity 
in rations. On the other hand, temperatures may increase more in other cattle feeding states, such as 
Texas, giving Colorado a cost advantage over time. Without knowing which effect will dominate, 
these variations are left for future work. 

Feed sources. Examining changes in feed production highlights overall linkages between 
products and variations across simulations. From Table 5, it is apparent that corn comprises 85% of 
overall feed use in the state. That source stays roughly the same until S3-DRY, when irrigated 
hectares drop due to water shortages, but with high temperatures, yields decline from high  
heat during pollination. Thus, the quantity of corn used as feed drops by nearly 9% compared  
to S2-WET. 

The use of hay grows from the Base in all three simulations, but source of the forage varies 
considerably between local production and imports, as is shown in Table 4. The use of hay 
increases in S1 the most, where the overall water reduction occurs from municipal and industrial 
uses, rather than due to climatic factors. This is because hay can be imported most easily among the 
forages, and so there is a swell in imports (which grow by nearly 2.5 times over the Base value). 
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Production drops by 26.1% at the same time, to release irrigation water to be used in other, higher 
valued crops. In S2-WET, water is less scarce, and yields of non-irrigated pasture and range 
increase, as do yields of irrigated hay, so less hay is imported and produced. 

Table 5. Feed consumed in Base and Climate Change Simulations. Source: Model 
Runs from Colorado EDMP. 

Feed Base 
Simulation Percentage Change from Base 

S1 (K tons) 
S2-WET 
(K tons) 

S3-DRY 
(K tons) 

S1 
(% Change)

S2-WET 
(% Change) 

S3-DRY 
(% Change)

Hay 3.8 5.0 4.0 4.3 29.7% 5.3% 12.6% 
Corn 202.6 201.7 199.8 182.1 0.5% 1.4% 10.1% 

Barley 13.8 13.9 14.2 16.7 1.0% 3.0% 20.8% 
Oats 2.9 2.9 2.9 2.9 0.0% 0.1% 0.9% 

Sorghum 10.4 10.4 10.4 10.4 0.0% 0.0% 0.0% 

Production of hay recovers in the third simulation because yield growth of 18% above the Base 
makes it a profitable user of water. Imports decline because of the general drop in both dairy and 
cattle feeding seen in S3-DRY. As noted earlier, area is reallocated between the Arkansas and 
South Platte basins, and the growth occurs due to Colorado feed prices rising in general. In that 
simulation, corn acreage declines, so irrigated land can shift into hay production. Notably, 283 k 
hectares are produced in Other Colorado throughout all simulations because there is excess water 
relative to land in that part of the state. 

Corn is the main feed crop that is provided through imports but also has exports. Table 4 
showed before that corn is in a net import position, and the internal price does not rise 
substantially in the first three simulations due to the significance of the import market, where 
external prices are governed by demand and supply conditions outside Colorado. However, the 
corn for grain price rises by 10% in S3-DRY due to the general shortage of feed and lower yields 
of corn in hot and dry conditions. The combination of a water shortage and reduced yields is 
enough to raise prices to levels where sales of fed beef are affected. This is especially so for 
exports, which dropped by 9.5% as the industry becomes less competitive. This change leads to 
lower demand and thus production of corn. Moreover, the ratio of fed beef prices to corn prices 
declines from about 30 in the first two simulations to 28.7 in S3-DRY, suggesting this change in 
competitive position. 

Effects of Climate Change and Induced Water Loss on Colorado Agricultural Trade. Exports of 
corn decline by about 22% in S3-DRY relative to the Base scenario, while exports of wheat 
increase about 19% in S2-WET, due to favorable rainfall and temperature conditions, but decline 
about 35% in S3-DRY. This leads to a 1.2 M ton swing in exports, which is nearly 60% of average 
production of wheat in the climate change affected simulations. Beef exports decline about 1.3%  
and 9.5% in S2-WET and S3-DRY respectively. S2-WET shows 11% decline in wheat imports, 
while S3-DRY results show that imports of corn, wheat, and dairy increase by 34%, 20% and 
104% respectively.  
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The above changes are all associated with increases in prices, which alter the competitive 
position of Colorado relative to out of state producers. So, for example, in S3-DRY, wheat prices 
rise by 10.2% and corn prices increase similarly. For both commodities, exports drop and imports 
climb as Colorado production becomes more expensive relative to outside sources. Imports of Hay 
increase in the simulations, with hay imports more than tripling in value in S1 relative to the Base. 
In S3-DRY, less corn is grown with the reduction in cattle feeding, and thus irrigated land becomes 
available for hay, which expands from higher prices. This latter outcome is related to the 
assumption that yields increase for hay from the longer growing season, but decrease in corn from 
heat and rainfall variation. 

Table 6 gives an important perspective on model outcomes provided above. The import and 
export elasticities for major commodities are first presented, which were constructed to reflect 
differing external positions. These are key assumptions, of course, because they have a large effect 
on quantity and price changes in a given simulation. The values are all high, so a “5”, for example, 
indicates that a 1% change in price will lead to a 5% change in quantity, implying quite a large 
response. Thus, the exports of wheat and fed beef are very responsive to how the internal price 
changes with respect to the import or export price, which is consistent with a small open economy 
where local industries face much competition from external sources of supply. 

Table 6. Export and import elasticities in the Colorado EDMP, and trade proportions 
for key commodities. 

Commodity Elasticities Export or import percent of production 
Corn exports 2 15.40% 

Wheat exports 5 99.60% 
Fed beef exports 5 75.50% 

Corn imports 3 90.80% 
Hay imports 2 62.70% 

Wheat imports 3 11.60% 

Corn and wheat’s import and export elasticities are worthy of specific mention. The wheat 
export elasticities exceed its import elasticities, capturing the reality that marketing and distribution 
systems are export oriented, and there will be a tendency to export wheat output. Wheat production 
is less likely to develop domestic uses that require more imports, and thus that elasticity is 
somewhat lower. The reverse is true for corn, where imports support a large feeding industry and a 
projected ethanol industry, so the import elasticity is higher than the export elasticity. 

The wheat import elasticity is lower than the export elasticity to take into account the fact that 
Colorado is a surplus producer, and, therefore, most infrastructure and institutional relationships 
focus on exports rather than increasing imports. However, both wheat and corn imports are still 
elastic relations, as many users of corn and wheat in the Eastern Plains, especially, can purchase 
needed quantities from nearby locations in Kansas and Nebraska, so it is easy to obtain imports and 
thus these relationships should be elastic. 

The hay elasticity for imports is lower due to an assumption of significant transport costs and 
therefore tighter regional markets. To bring in more imports to Colorado, therefore, prices must rise 
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faster than in the more widely traded corn and wheat markets. This has a fairly large effect on the 
local market in S3-DRY, where prices rise internally, forage use is cut, and dairy production 
decreases. The higher internal prices, driven partly by this elasticity assumption, leads to growth in 
hay production on irrigated hectares in Arkansas in S3-DRY, especially as corn production declines 
due to lower demand. 

Imports and exports play an important role in describing climate change impacts on Colorado. 
Exports of wheat and beef, and imports of corn, are all greater than 90% of domestic production, so 
these products are clearly dependent on external economic performance and trends. We noted 
earlier that almost all wheat produced in Colorado leaves the state, often for international 
destinations. The large beef feeding industry is export-oriented, with about three quarters of 
production leaving the state. Hay is also a commodity where the import market is used quite 
variably across the simulations. 

Welfare Effects. Because the model captures changes in prices and quantities, and has demand 
and supply functions embedded in the objective function, it is possible to determine changes in 
producer and consumer surpluses under the different simulations. In this fashion, the model shows 
how costs of climate change are borne, and could be employed to assess the value of various 
mitigation strategies in a future study. These results are presented in Figure 2. The measures of 
economic surplus show approximately a $10.7 M reduction in the S3-DRY scenario, compared to 
about $2.7 M in the wet year in S2-WET. In other words, the agricultural economy in Colorado 
loses nearly five times as much in a dry year climate relative to a wet year. The S1 climate scenario 
is predicted to produce economic net welfare impact that fits in the middle between S2-WET and 
S3-DRY (at about $6.2 M). 

Figure 2. Changes in Producer Surplus (PS) and Consumer Surplus (CS), Million of Dollars. 

 

In S1, most impacts fall on producers through reduced hay area, which has the greatest effect 
due to its water use, and which is made up by added imports and reduced dairy production. The 
largest effects naturally come in the dry year simulation, where cultivated area is reduced by up to 
60% for some crops and yields can decline by over 10%. The total losses in S3 of more than $10 M 
are split about evenly between consumers and producers. Even though prices for livestock and 
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major crops often increase by up to 10%, the decline in quantities offsets those better prices, and 
there is a net loss in producer surplus, which occurs because of the openness of the agricultural 
economy. The consumers lose in S3-DRY due to the higher overall prices. 

Conclusions 

Using an Economic Displacement Mathematical Programming (EDMP) model, derived from 
Harrington and Dubman [34] of the USDA’s Economic Research Service. This study examines the 
effects of climate change on agriculture in Colorado taking into account of selected features 
projected several decades into the future. Initially, an overview of agriculture in the state and its 
dependence on water, a critical input, is described. The overview shows that the agricultural 
economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, 
including feed grains and forages, account for 33% of production. Most of agriculture is based on 
irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and 
surface water that comes from runoff derived from snowpack in the Rocky Mountains. Climate 
studies point to decline in runoff from 6% to 20% by 2050. The timing of runoff is projected to 
begin and peak earlier in the spring and late-summer, and overall flows may be reduced. 

The climate change scenarios evaluated in this paper include three simulations relative to a Base 
scenario that reflects some key characteristics with regard to future water and yield effects of climate 
change. Following SWSI projections, the base reflects demographics and economic changes from the 
calibrated model for 2007. The Base scenario models a 10.3% reduction in agricultural water from 
increased municipal and industrial water demand, and assumes a 75% increase in corn extracted-ethanol 
production. The first simulation reduces agricultural water availability by a further 14.0%, for a 
combined decrease of 24.3%, due to climatic factors and related groundwater depletion. The 
second simulation describes a year with warmer than historical average temperatures and wetter 
conditions, which negatively affect yields of irrigated corn and milking cows, but it improves yields 
for non-irrigated wheat, corn silage, irrigated hay, rangeland and pasture. In contrast, the last 
simulation describes a drought year, which leads to reduced harvested hectares for corn and wheat, 
and negatively affects yields for dry land wheat, irrigated corn, pasture and rangeland, while 
irrigated corn silage and hay output increase. 

Three commodities examined in this paper account for a large percent of production in the 
Colorado agricultural sector: fed beef, wheat and dairy; two others are major sources of feed, 
including hay and corn. All are strongly affected by the S3-DRY scenario. Cattle feeding is 
dependent on exports out of the state, and in S3-DRY, fed beef production declines by 7.5% due to 
the significantly higher prices of feed and the resulting effect on output price. For corn, the hectares 
decrease by about 38% on irrigated land in both regions, while in the Arkansas basin, non-irrigated 
land declines by 75%. Due to the dry year’s conditions, nearly a 50% reduction of South Platte 
non-irrigated wheat area occurs, while the Arkansas River basin non-irrigated wheat disappears 
completely. The wheat crop is extremely sensitive to how rainfall is affected by climate change, 
with the variation in exports being nearly 1.5 M tons. 

The dairy sector reacts strongly to climate variation, given that production decreases by 18% in 
both warmer scenarios. Dairy is the second largest user of hay, after cow calf producers, and it is 
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the second largest user of grain, after cattle feeding, as its rations require more of each basic 
feedstuff. Therefore, as feed shortages develop, dairy declines first and frees up significant 
proportions of grain and forage. The reduction in corn area leaves irrigated land available for hay 
production in the Arkansas basin, and expansion in irrigated hay occurs in the same basin in 
drought scenario. In the South Platte, non-irrigated corn becomes competitive on the land that was 
previously in wheat. Notably, 280 k hectares are in hay production in other parts of Colorado 
throughout all simulations because excess water relative to land exists in that part of the state. 

This model has not taken into account farmers’ adaptation strategies, which would reduce the 
climate impact on yields. Such strategies might include changing planting schedules, production 
practices or technologies, and the introduction of drought-tolerant varieties. Also, the model has not 
reflected climate-induced shifts in planting decisions and production practices that lead to various 
environmental impacts and higher costs. There could be soil and water quality effects through 
nutrient loss and soil erosion, and a greater use of pesticides to combat a higher prevalence of pests. 

These environmental dimensions can be fruitful areas to examine in future research, as would be 
the development of a wider range of conditions in the analysis of climate change effects in the 
future. Some of the latter areas could be to look at various productivity growth scenarios before 
adding the effects of climate change, and also broader alternatives in performance of different 
commodities. This paper assumes certain large effects, such as the increase in yields for hay and 
the decrease in dairy output, but others, such as using the current set of relative prices and import 
and export positions as starting points, may seem to understate the climate change impacts on the 
agricultural economy of Colorado. A more extensive examination of these settings could provide 
additional insights. 
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Appendix 

Positive Mathematical Programming 

Returning to the matrix notation of Equation (1), Z is subject to the following constraints:  

A11x  free Indicator accounts, necessary for analytical purposes, not shown in the Tableau; 
A21x  b Resource constraints; 
A31x  0 Commodity balance equations; 
I31x = c Calibration constraints, dropped after calibration; 
U11  0 Input accounts. 

The additional notation is: 

A is the matrix of technical coefficients; 
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I is an identity matrix of calibration constraints; 
U is the matrix of inputs in dollar value to sector’s activities; 
b is a vector of right hand sides of resource constraints; 
c is a vector of calibration quantity targets used only in calibration phase. 

The resource constraints involve land and water for crop activities. Cropland, pasture, range 
land and land in the conservation reserve programs are quantified and include land fallowed as part 
of crop rotations including wheat-fallow. The supply of water available to agriculture is fixed, 
while the demand for water is exogenously determined for each crop by the State of Colorado’s 
Consumptive Use Model (StateCU) component of the CDSS, which is based on a modified Blaney-
Criddle method. (Other constraints include livestock facilities for livestock and labor for both crop and 
livestock activities).  

The block of commodity balance equations runs across the production, demand and trade 
sections of the model. These are accounting constraints that distribute production across its uses. 
Corn, wheat and hay production are separated by location for the South Platte, Arkansas, and St. 
Luis Valley, and the Upper Colorado basins, and are identified by whether they are irrigated or 
non-irrigated production. Within this block, the two rows for corn and ethanol/distilled grain are 
highlighted. The corn balance equation allocates crop production from each basin and type of farming 
activity (irrigated versus non-irrigated) across basins and imports to ethanol production, domestic non-
farm sales, and exports. In addition feed use of corn is calculated as a residual and transferred to the 
grain ration equation.  

For example, the following is the corn commodity balance equation with the variable acronyms: 

60.818 SPCRND  176.868 IRSPCRN  179.625 ARCRNIR  45.75 DCRNAR 134.134 
CORNCO + CRNTUS + 0.357 ETHCO + SELCRNCO + EXPCRNCO – IMPCRNCO  0

(A1)

where, SPCRND, IRSPCRN, ARCRNIR, DCRNAR and CORNCO are corn production activities 
(harvested hectares) in South Platte non-irrigated, irrigated land, Arkansas non-irrigated, Arkansas 
irrigated land and the rest of Colorado; CRNTUS is the production allocated to feed; ETHCO is the 
ethanol production in M gallons; SELCRNCO, EXPCRNCO and IMPCRNCO are the levels of non-
farm domestic sales, exports and imports in tons. The coefficients on the hectares are yields 
(tons/hectare), while the coefficient with ethanol production is the conversion ratio (liters of 
ethanol/ton of corn). 

The feed requirements are calculated as intermediate inputs and are not priced in CDEMP. The 
model includes two rations. The grain ration equation is formulated as follows: 

i b " g  .064 eth +  "K  0 (A2)

where,  is the vector of coefficients converting crops into feed ration components; and g is the 
vector of grain feed crops (corn, barley, oat and sorghum); eth is the level of ethanol production; 
and  is the vector of ration requirements in as fed form by livestock types; and k is the vector of 
livestock activity levels. Note that both g and K are subsets of clib, and  and  are subsets of A31, 
the matrix of technical coefficients. 

The forage ration equation has similar structure: 
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i b "'h +  "'k  0 (A3)

where,  is the vector of coefficients converting hay and pasture forage into feed ration components 
and h is the vector of forage activities (silage, cropped hay and pastures, permanent pastures and 
rangeland),  is the vector of ration requirements in as fed form identified by livestock types k. 
Here h and k are both subsets of clib, and  and  are subsets of A31. 

Harrington and Dubman [35] suggested changing one or more of the following EDMP model’s 
parameter(s) to calibrate a base scenario: 

1- Modify the scenario intercept for parallel shift of supply or demand function; 
2- Modify the Hessian for rotation of the supply or demand function; 
3- Modify the Right Hand Side (RHS) coefficients to change the resource availability; 
4- Change the crop’s yield, livestock productivity, or change the transfer from primary to semi 

or finished product coefficients. 

Table A1. Area and production of crops and livestock activities, actual, and calibrated 
values for the Colorado EDMP. 

Crop or Commodity Units 
Historical 

2007 quantity 
Calibrated 
quantity 

Hessian 
element 

Intercept 

Ethanol Million Liters 648.97 660.96 0.00 1.51 
South platte dry corn Million Hectares 0.10 0.11 76.73 909.07 

South platte irrigated corn Million Hectares 0.21 0.23 38.93 1173.13 
Arkansas dry corn Million Hectares 0.04 0.13 81.46 436.30 

Total corn Million Hectares 0.36 0.47 
South Platte dry wheat Million Hectares 0.04 0.00 183.25 1160.79 

South Platte irrigated wheat Million Hectares 0.55 0.63 11.25 1549.58 
Arkansas dry wheat Million Hectares 0.33 0.31 22.30 703.28 

Wheat, other a Million Hectares 0.04 0.00 157.75 2262.93 
Total wheat Million Hectares 0.87 0.93 

Sorghum Million Hectares 0.07 0.07 44.27 1683.21 
Potatoes Million Hectares 0.02 0.03 13871.39 4041.04 

South Platte irrigated. hay, all Million Hectares 0.15 0.12 10.04 1077.62 
Arkansas dry hay, all Million Hectares 0.09 0.11 121.73 1082.96 

Hay all, other Million Hectares 0.31 0.34 9.71 3251.96 
Hay all, total Million Hectares 0.55 0.57 

Fed beef Thousand Ton 1235.6 1241.9 0.2 182.1 
Hogs, Thousand Ton 161.6 165.7 57.3 76.4 
Dairy Thousand Ton 1228.3 1236.5 1.1 42.3 

Broiler Thousand Ton 157.5 173.4 6.1 92.8 
Eggs, independent Million dozens 8.83 9.72 0 1.9 
Eggs, contracted Million dozens 79.5 87.45 0 2.5 

Turkey, independent Thousand Ton 13.6 16.8 108.3 108 
Turkey, contracted Thousand Ton 20.9 21.3 141.3 135.4 

Note: a Other basins include San Luis Valley and Colorado River basin. 
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Rainfall Enhances Vegetation Growth but Does the
Reverse Hold?
John Boland

Abstract: In the literature, there is substantial evidence presented of enhancement of vegetation

growth and regrowth with rainfall. There is also much research presented on the decline in rainfall

with land clearance. This article deals with the well documented decline in rainfall in southwest

Western Australia and discusses the literature that has been presented as to the rationale for the

decline. The original view was that it was the result of climate change. More recent research

points to the compounding effect of land use change. In particular, one study estimated, through

simulation work with atmospheric models, that up to 50% of the decline could be attributed to

land use change. For South Australia, there is an examination the pattern of rainfall decline in

one particular region, using Cummins on the Eyre Peninsula as an example location. There is a

statistically significant decrease in annual rainfall over time in that location. This is mirrored for the

vast majority of locations studied in South Australia, most probably having the dual drivers of climate

and land use change. Conversely, it is found that for two locations, Murray Bridge and Callington,

southeast of Adelaide, there is marginal evidence for an increase in annual rainfall over the last

two decades, during which, incidentally, Australia experienced the most severe drought in recorded

history. The one feature common to these two locations is the proximity to the Monarto plateau,

which lies between them. It was the site of extensive revegetation in the 1970s. It is conjectured

that there could be a connection between the increase in rainfall and the revegetation, and there is

evidence presented from a number of studies for such a connection, though not specifically relating

to this location.

Reprinted from Water. Cite as: Boland, J. Rainfall Enhances Vegetation Growth but Does the

Reverse Hold? Water 2014, 6, 2127–2143.

1. Introduction

There have been numerous studies detailing the deleterious effects of vegetation clearance on

rainfall totals. Junkermann et al. [1] report on trends in rainfall in Western Australia. They state

that the western tip of the continent has experienced a reduction of precipitation by about 30% (from

an average of 325 mm/a) since the 1970s, attributed to a change in the large scale surface pressure

patterns of the southern ocean ([2,3]) with a concurrent reduction in surface water fluxes [4].

This article discusses this reduction and focusses also on two areas in South Australia, starting

first with details of an investigation of rainfall trends in Cummins, on Eyre Peninsula, 34.26◦S,

135.73◦E. Despite some perceptions of increased rainfall in the region, a significant decrease in

rainfall is found if you compared before and after 1975, roughly mirroring the Western Australian

experience, even if not as extreme. Noteworthy is the fact that the land clearance in this area took

place principally from the 1950s [5], substantially later than in some other parts of South Australia.
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The perception is that extensive plantings on the Monarto plateau in the 1970s has led to increased

rainfall on the plateau and close by. Unfortunately, the only official weather station on the plateau is

at the Monarto Zoo, and has only been in operation in recent times and even then only sporadically.

However there are official stations at Murray Bridge (35.12◦ S, 139.27◦ E) and Callington (35.12◦

S, 139.04◦ E) adjacent. Gallant et al. [6] studied rainfall trends from 1910-2005 in six regions of

Australia. In their Southeast region, which includes this study area, their conclusion was that there

has been a significant decrease in annual total rainfall of 20 mm per decade since 1950 (that) stems
mainly from decreases during autumn. It is in this context that results from rainfall trend analysis

are presented for these stations and two further from the Monarto plateau. It would appear that these

two locations at the edge of the plateau are going against the trend, with increasing rainfall if one

compares the period pre 1989 with that after, though not at a significant level. The year 1989 was

chosen as this is one decade after the end of the Monarto plantings. On the other hand, the trends

at Mt Barker and Tailem Bend are consistent with the findings of Gallant et al. [6] of diminishing

rainfall in this area of the country, though not at as great a rate as they report.

Thus, there appears to be some evidence in Australia of the influence of introducing vegetation on

rainfall as well as the more easily supported evidence of lowering of rainfall with land clearance. One

must be guarded in this conclusion as there are always confounding factors, for instance changing

weather patterns with climate change being one. But it does influence us to conduct more research

into the topic.

2. Rainfall Trends in Southwest Western Australia

To illustrate the change in rainfall over time in Western Australia, see Figure 1. The mean annual

rainfall for Perth Airport up to 1975 was 836 mm. and from 1975 on was 721 mm. A two sample

t-test was run to see if the mean before 1975 was significantly higher than after. To perform such a

test, the null hypothesis, H0, is the one that is tested, since it is an exact statement-that the means

before and after are equal. The alternative hypothesis, Ha is that the mean before is greater than the

mean after 1975. One selects a level of significance, normally α = 0.05. One calculates what is

called the p-value. This is essentially the probability of the test data being consistent with the null

hypothesis. If the p-value is less than α, then the probability of the test data being consistent with the

H0 is low and H0 is rejected. The test was performed and it was found to be significant at a p-value of

<0.01. Thus, one rejects the H0, and concludes that the mean rainfall before 1975 was significantly

higher than after.

While this large scale phenomenon has been going on, there would seem to have been more

local changes as well. It is necessary to give some background on land use changes in the region.

Note that early research [7] concluded that the demonstrable rainfall decline was most likely due

to a combination of climate change and climate variability. Increasingly, though, the more the

phenomenon was investigated, the greater the case for the influence of land use change as well.

Pitman et al. [8] found that up to 50% of the reduction in rainfall can be explained through land use

change. One pertinent piece of evidence from their atmospheric circulation model simulations is that
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the reduction of rainfall on the coast and the increase inland (matching different land use patterns as

shall be seen below) match the observations.

Figure 1. Annual rainfall totals for Perth Airport from 1944 to 2011 with

smoothed trend.
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At essentially the state boundary between Western Australia and South Australia, there is the

approximately 1500 km Vermin Proof Fence (formerly referred to as the Rabbit Proof Fence) erected

in the early part of the 20th century. On the western side the land was predominantly cleared for

agriculture, whereas the eastern side is natural vegetation. Sadler [7] found that there has been a shift

in precipitation from the agricultural regions to the regions of natural vegetation with an increase of

about 20%. Junkermann et al. [1] conducted atmospheric experiments above both the agricultural

regions and the area of natural vegetation, attempting to understand the mechanisms behind the

differential changes in rainfall. They concluded that extra cloud condensation nuclei (CCN) were

generated over the agricultural areas due to salt lake geochemistry. The extra aerosols mean that

there is an increase in cloud droplets competing for condensable water, thus depressing precipitation.

This phenomenon does not occur over the areas of natural vegetation, resulting in a decoupling of

the water cycle on a regional basis. Similarly, Pielke et al. [9] discussed the possible mechanisms

for such a phenomenon. They give results from the Bunny Fence Experiments of 2005–2007 where

they compare the latent heat fluxes (low and not very variable for the forested areas and for the

agricultural areas low after harvest but high during the growing season) and also that the sensible

heat flux is higher over the native vegetation during August to December. This, they say, results

in vigorous boundary layer development and higher planetary boundary layer over the vegetated

area. Figure 2 gives an illustration of the effects of this in a satellite photograph in which there is
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substantial cloud formation over the native vegetation and none over the agricultural land. The edge

of the cloud formation appears to coincide very well with the western edge of the native vegetation.

The deforestation is thus linked to a reduction in rainfall. This significant result gives credence

to the premise that land use change in the form of clearance reduces rainfall, but can afforestation

enhance rainfall?

Figure 2. Cloud formation over Western Australia-Satellite image originally processed

by the Bureau of Meteorology from the geostationary meteorological satellite MTSAT-

1R operated by the Japan Meteorological Agency.

Chikoore and Jury [10] present an interesting discussion of this topic. They focus on

understanding the role of vegetation in the African climate system. They quote studies that show

that vegetation growth and distribution are largely determined by climate [11,12]. They also refer to

vegetation and land use feedbacks on climate [11,13]. Their specific tasks were twofold. One was

to determine if greening caused by one rainfall event produced evapotranspiration that affects the

next wet spell. The second was to understand if vegetation could help, in their terms, “anchor" cloud

bands regardless of external forcing by large scale circulation and heating anomalies. They found

positive answers using means such as principal component analysis to support their conjectures in

both cases. Sprack et al. [14] observed that there is an enhancement of rainfall in tropical regions

when the rain bearing clouds passed over forested areas.
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Other recent research supports the conjecture that there is a connection between vegetation and

maintenance or even enhancement of precipitation. Makarieva et al. [15] provides interesting

evidence to support this theory. They state that the dependence of annual precipitation on distance

from the ocean differs markedly between the world’s forested and non-forested continent-scale

regions. In the non-forested regions, precipitation declines exponentially with distance from the

ocean. In contrast, in the forest-covered regions precipitation does not decrease or even grows along

several thousand kilometers inland.

The implication is that there may even be an increase in rainfall in forested areas as one progresses

inland. Beltran-Przekurat et al. [16] performed some interesting simulations based on South America

with their scenarios of land use, agriculture, grasslands and afforested areas. They were performed for

three separate sets of El Nino - Southern Oscillation conditions. The general result vis-a-vis rainfall

was that while there was insignificant difference between the grassland and agricultural settings, there

was an increase in rainfall with afforestation.

Thus, both observational evidence and also simulations using atmospheric models lends support

to the concept that there can be enhancement of rainfall because of afforestation. Our task is to

examine the interplay between vegetation and rainfall in South Australia, evidence will be given

to support the depletion of rainfall through land use change, and also that increased vegetation can

enhance rainfall, if placed advantageously.

3. Rainfall Trends on Eyre Peninsula

In this section, details are given of an investigation of rainfall trends in a particular region of

South Australia, Cummins, on Eyre Peninsula, 34.26◦ S, 135.73◦ E. A subsequent section will deal

with trends in and around the Monarto region, 35.08◦ S, 139.13◦ E, of South Australia. Note that in

all the analysis in this paper, annual rainfall totals are used. Seasonal analysis was also performed

and the results by season did not show any significant difference from the annual analysis. Also, in

this study, no account was taken of any extraneous variables such as temperature trends or ENSO for

example and their possible connection with rainfall. This will be examined in future work.

There is a history of land clearance on Eyre Peninsula, primarily for agricultural activities. In

the Cummins-Wanilla Basin Catchment Management Plan [5], the authors point out that native

vegetation covers only 6% or 50 km2 of the Basin with the majority of the land utilised for various

agricultural purposes. The Cummins-Wanilla Basin, as is the Eyre Peninsula as a whole, is of

high botanical significance. There occur a number of species and associations of species of high

conservation significance. South of Cummins was once dominated by Low Open Forest, including

Eucalyptus cladocalyx (sugar gum) with an understorey of Xanthorrhoea sp. (yacca), and various

Acacia sp. (wattle). Closer to Cummins the community was predominantly Open Scrub with various

Mallee type Eucalyptus sp. as well as Melaleuca lanceolata (dryland tea tree) [5].

As part of an Australian Research Council Discovery Indigenous Researcher Development grant,

one of the prime areas of activity has been to identify specific locations where revegetation projects

may be able to enhance rainfall, particularly where there is evidence of rainfall decline. Interestingly,

two members of the project team interviewed some people in the Cummins region as to their views
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on the project and what they would think about attempting to increase the rainfall in the region. The

reaction of two of the people interviewed are described below:

One chap said, “We have lots of water lying on the ground so we don’t need any more rain.”
Another woman said, “We don’t need any more rain, we have enough now”

The question arises then as to whether, as these statements seem to imply, the rainfall has actually

increased in the Cummins region over time. To begin the analysis, Figure 3 shows the annual rainfall

totals for Cummins from 1915 to 2004. Later years were excluded because of missing months of

data. Coincidentally, many of the latter years coincided with a severe drought and they may have

only increased the idea of decline. Superimposed on the figure is the exponentially smoothed version

of the rainfall totals constructed using

Yt = αXt + (1− α)Yt, Y0 = X0, 0 < α < 1 (1)

Xt is the original data series and if α = 1 we get the original series. So, higher values of α

decrease the level of smoothing. From the figure it appears that there may be a downward trend to

the totals. To determine whether there is, comparison of the annual totals before and after 1975 is

performed, consistent with the analysis for Western Australia, with the mean rainfall before being

440 mm. and after being 395 mm. This does not seem as dramatic a shift as in Western Australia, but

still may be a significant change. A two sample t-test was performed with the following hypotheses:

H0 : μ1 = μ2

H1 : μ1 > μ2

α = 0.05

In this case, H0 was rejected with a p-value of 0.014. Thus, evidence of a statistically significant

reduction in rainfall exists. This appears at odds with the views expressed above by the two people

interviewed. How can we have such a contradiction-an appearance of too much, or at least sufficient,

rain and scientific evidence of depletion in rainfall? One can hypothesize that, as in the Western

Australian example given in the Introduction, there is a link between the rainfall decline and land

clearance. Even more significantly, conjectures can be formed as to the disjunction between the

reality of depletion of rainfall and the perception of waterlogging.

It is easy to imagine that with the clearance of land there will be less interception of the rain

that falls, that is more runoff [17]. This runoff can tend to pool in regions where the soil structure

is such that there is little soakage, that is where you have clay soils or indeed, silting up over time

because of runoff of material as well as the rainfall. What is happening is that the people who believe

there is sufficient or even an increase in rainfall may be seeing only the superficial markers, the

pooling. They are not seeing the decline in rainfall as it is happening at longer time scales than their

levels of perception allow for. If they were truly perceptive, they would notice the decline in rainfall

and then ask the truly pertinent question, why is there more pooling with less rain! Common sense

perceptions that are couched within cultural understandings don’t necessarily include an analysis

of environmental change. Noteworthy is the fact that the land clearance in this area took place

principally from the 1950s [5], substantially later than in some other parts of South Australia.
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Figure 3. Annual rainfall totals for Cummins for 1945–2004 with smoothed trend.
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3.1. Evidence of Beneficial Effects of Upland Plantings

When driving around the countryside near Cummins in springtime, the pooling of water on the

ground was noticed, but there was also the lack of vegetation on nearby hilltops, invoking the question

of is it sensible to draw some conclusions about connections. Recently, George Monbiot wrote an

article in The Guardian [17] about the vagaries of agricultural subsidies in England and how they are

geared to promote flooding because they promote the clearing of upland vegetation. He referred to

an opposite approach taken by a group of farmers in Wales, by the Pontbren River. The Pontbren

Project [18] is an innovative approach to using woodland management and tree planting to improve
the efficiency of upland livestock farming, led by a group of neighbouring farmers in mid-Wales. They

found that not only had they been able to develop markets for some of the wooden products derived

from their new plantings, but also they noticed less runoff into lowland areas in regions where they

were revegetating. They then invited scientists to investigate. Supported by government funding,
this internationally important research has revealed why strategically located belts of trees are so
effective at reducing the amount of water running off improved upland grasslands [18]. This research

team [19] set up three experimentation sites where surface runoff was measured, supplemented by

measurements of soil infiltration rates and soil and vegetation physical properties. On one site they

excluded sheep, at another they both excluded sheep and planted native broadleaf tree species, and

the third was used as a control. Five years after planting, they found that median soil infiltration rates

were 67 times greater in plots planted with trees compared to grazed pasture.
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As well as the general results of greatly aiding retention of the rain that falls in the places where

it is needed rather than having it run off and cause flooding elsewhere, there is a key point they

emphasize. They stress that it is the strategic location of belts of vegetation that is important,

not just the random plantings that tend to happen with some revegetation schemes. In [20], there

is a comprehensive discussion of the many benefits of integrating bands of native vegetation in

agricultural practice. They give specific details on the mechanisms whereby a cleared landscape

creates a hotter and drier landscape and how the integrated bands of native vegetation restore

water recycling into the landscape, through making it cooler and returning more water to the lower

atmosphere through turbulent exchanges with wind and centres of forced convection. Additionally,

they describe, referring to [21], how vegetation bands increase the retention of overland flow and leak

this water to hillslopes and adjacent streams slowly over time, therefore, helping to buffer streams

from large peak runoff rates. One can see from this latter point how the strategic planting of hilltops

can be beneficial in minimising flooding and waterlogging. Let’s now pass on to another potentially

good result not from strategic placement but from happenstance.

4. Rainfall Trends at Monarto and Surrounding Areas

In the 1970s, the then government of South Australia decided to build a satellite city at Monarto,

70 km to the south east of Adelaide. They were concerned that the burgeoning urban sprawl of the

city of Adelaide would be at the expense of highly productive agricultural land. To circumvent this,

it was decided that a new development on marginal land at Monarto, linked to Adelaide by high

speed rail, would prove a better option. As part of beautifying this site, heavily cleared previously

for grazing and cropping, millions of seedlings of Australian native plant species were planted from

1973 to 1979. Many years on, local anecdotal “evidence” infers an increase in rainfall on the plateau

on which Monarto lies. This conjecture is tested.

The perception is that the extensive plantings on the Monarto plateau in the 1970s has led to

increased rainfall on the plateau and close by. The only official weather station on the plateau is at

the Monarto Zoo, and has only been in operation in recent times and even then only sporadically.

However there are official stations at Murray Bridge (35.12◦ S, 139.27◦ E) and Callington (35.12◦ S,

139.04◦ E) adjacent to the plateau. The structure of the analysis in this section will be to examine the

annual trend in rainfall before and after the intervention, that is the planting of the vegetation. This

is not precisely what will be done, since some time after the plantings is allowed for establishment.

Since the last of the organised plantings was in 1979, the analysis uses 1989 as the change year, the

year it is assumed that there has been sufficient establishment. A comparison is made of what is

happening at these two stations with two others, one further away to the East (Tailem Bend 35.26◦

S, 139.46◦ E) and one to the West (Mt. Barker 35.07◦ S, 138.86◦ E). These are in areas where there

wasn’t the same level of interference during this time. It should be noted that all of the area in which

these four stations are located underwent substantial clearing in the century prior to the 1970s.

Gallant et al. [6] studied rainfall trends from 1910–2005 in six regions of Australia. In their

Southeast region, which includes this study area, their conclusion was that there has been a significant

decrease in annual total rainfall of 20 mm per decade since 1950 (that) stems mainly from decreases
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during autumn. It is in this context that results are presented from rainfall trend analysis for these

four stations.

Let’s examine Murray Bridge rainfall over the whole period of record first. This is displayed in

Figure 4. From this diagram, it appears that contrary to the conclusions in [6], the rainfall in latter

years at Murray Bridge has either maintained the same level or indeed slightly risen. To test this

premise divide the data into two sets, pre 1989 and from 1989 onwards. The mean rainfall before

1989 was 341 mm and 373 after. Then test the hypotheses.

H0 : μ1 = μ2

H1 : μ1 < μ2

α = 0.05

For this test, the p-value = 0.073. In essence the null hypothesis of equal rainfall before and

after 1989 cannot be rejected, but the p-value is quite close to the level of significance, and so the

conclusion can be regarded as tentative. Indeed, if one changed the hypothesis test where one were

evaluating the conjecture from [6], that the annual rainfall was 20 mm greater before 1989 versus the

rainfall difference was less than that, the p-value for that test is 0.01. In any case, one can conclude

that the rainfall is either similar before and after 1989 or greater after, rather than the expectation of

diminishing rainfall.

Figure 4. Annual rainfall totals for Murray Bridge from 1886 to 2011.
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Let’s now turn to the other station in close proximity to the Monarto plateau, that of Callington.

A similar set of tests shows not disparate results, with there being little statistical likelihood that the

rainfall could have decreased after 1989 and a not significant but indicative chance of an increase, at

least when compared to the previous few decades. See Figure 5 for an illustration of this. One might

surmise that after land clearance the rainfall decreased and that it is now being restored to historical

levels. The mean rainfall before 1989 was 369 mm and 400 after.
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Figure 5. Annual rainfall totals for Callington from 1900 to 2011.
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It would appear that these two locations at the edge of the plateau are going against the trend

identified by [6]. It still could be that the entire region is following the same trend over time. In this

case, there would be no argument for the conjecture that the increase in vegetation has aided the total

rainfall. To check on this, examine the trends over time for the two locations more removed from the

plateau. First, let’s look at the time series of annual rainfall at Mt Barker, as shown in Figure 6. An

hypothesis test for equal rainfall before 1989 versus less after has a p-value of 0.103. So there is a

lower average rainfall after of 727 mm versus 775 before but it is not significantly lower.

Figure 6. Annual rainfall totals for Mt Barker from 1861 to 2006.
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Now move to examining a town east of the plateau, Tailem Bend, for rainfall trends. The mean

rainfall before 1989 was 380 mm and after was 348, as illustrated in Figure 7. An hypothesis test

of the mean rainfall being the same before and after 1989 versus being less after was not rejected

with a p-value of 0.069. This was in a way similar to the test for Murray Bridge but with opposite

alternate hypothesis, being greater after 1989 at Murray Bridge and less after 1989 at Tailem Bend,

even though the two locations are only 20 km apart.

Figure 7. Annual rainfall totals for Tailem Bend from 1908 to 1998.
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To summarise the rainfall analysis at the four locations, there is insufficient statistical evidence to

conclude any difference in the mean rainfall before and after 1989 at any station. There is however,

a definite pattern in the results. The trends at Mt Barker and Tailem Bend are consistent with the

findings of Gallant et al. [6] of a diminishing rainfall in this area of the country, though not at as

great a rate. Estimates of the change per decade in rainfall at the four stations are Murray Bridge

(+9.5), Callington (+9.6), Mt Barker (−6.8) and Tailem Bend (−8.2). Note that, as expected, the

slopes are not statistically significant, but are on the other hand actual estimates of change. Also,

the changes are positive near the plateau and negative further away, consistent with an influence

there. And, as has been emphasized, if one tests that the changes are consistent with the findings of

Gallant et al. [6] for the stations near the plateau, this hypothesis is rejected.

5. Cross Checking with Other Locations in South Australia

It is important to make sure that the analysis has not been selective. Thus, yearly rainfall totals

were accessed from a number of other sites across southern South Australia and examined whether

one could reasonably infer that there was any trend upwards or downwards in any of them. From

Figures 8–13, it can be reliably concluded that in none of these locations is there any evidence of any
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long term increase in rainfall. Nor can one conclude that there is any evidence of recent increases

as in Murray Bridge and Callington. It appears to be some evidence of recent decrease in four cases

(Tumby Bay, Minlaton, Glen Osmond and Keith) and essentially level over time in Port Wakefield

and Loxton. These inferences will have to be monitored as more data comes to hand. It will be part

of a future exercise to use satellite images, aerial maps and so on to try an understand the land use

and land cover changes over time in these areas and see how they may relate to the rainfall trends.

Figure 8. Annual rainfall totals for Tumby Bay, 34.38◦ S, 136.10◦ E, for 1906–2011.
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Figure 9. Annual rainfall totals for Minlaton, 34.77◦ S, 137.60◦ E, for 1880–2013. Note

that exponential smoothing was not done for this location as there are some missing data.
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Figure 10. Annual rainfall totals for Port Wakefield, 34.18◦ S, 138.15◦ E, 1874–2013.
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Figure 11. Annual rainfall totals for Glen Osmond, 34.95◦ S, 138.65◦ E, for

1884–2013. Note that exponential smoothing was not done for this location as there

are some missing data.
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Figure 12. Annual rainfall totals for Loxton, 34.44◦ S, 140.50◦ E, for 1897–2002.
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Figure 13. Annual rainfall totals for Keith, 36.10◦ S, 140.36◦ E, for 1907–2013.
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6. Possible Complicating Factors

There are some issues that must be considered in this study that may affect the conclusions:

• It may be surmised by some that when one sees rainfall trending down in any of the locations,

it is due to the impacts of climate change on rainfall - see cf. Gallant et al. [6]. That may well
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be, but in fact if that were the case, then to actually have rainfall trending up, it is even easier

to accredit land use change as a factor.

• Similarly, if one can attribute changes in rainfall to climate change plus land use change, the

conclusion can still be made that what is happening at Murray Bridge and Callington is most

probably due to positive land use change.

• What if one has differing things happening in different seasons, and it must be noted that often

this type of analysis is performed season by season? Any investigations done on seasonal totals

mirror in general what has been reported on an annual basis. This has not been checked for

every location, but where it is, this has been the result.

7. Conclusions

This has been an investigation to add some knowledge to the interplay between vegetation and

rainfall. As was stated, there has been a significant amount of work on how rainfall can diminish after

clearance of large areas of vegetation. This continues to be substantiated. In a recent comprehensive

analysis of the depletion of rainfall in Western Australia, Andrich and Imberger [22] state that the

reduction of native vegetation from 60% to 30% of the land area in the wheatbelt, between 1950

and 1970, coincided with an average 21% reduction in inland rainfall relative to coastal rainfall.

The coastal part did not experience land-use change and the rainfall remained stationary over the

same period. It was found that for the forested coastal strip region south of Perth, land clearing that

removed 50% of the native forests between 1960 and 1980 coincided with a 16% reduction in rainfall

relative to stationary coastal rainfall.

There has been less work reported on how rainfall might be enhanced by strategic planting

schemes. What is meant by strategic is selection of sites that will aid in interference with weather

patterns in order to add to the rainfall totals where they are needed. Interestingly, Andrich and

Imberger [22] go on in their conclusions to state that there is a pressing need to undertake large scale

reforestation with native trees to mitigate the long term changes in climate. They even coin the phrase

reforestation for water production, which should be taken up as a catchcry.

Fortuitously, the plantings that were made in the Monarto area in the 1970s seem to have been

by chance of great enough extent and in a sensible area to be able to enhance the rainfall in the

surrounding towns of Murray Bridge and Callington. In August, 2013 strategic planting schemes

near Cummins on Eyre Peninsula have begun. It is hoped that benefits of this will accrue in the future.
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Climatic Characteristics of Reference Evapotranspiration in 
the Hai River Basin and Their Attribution 

Lingling Zhao, Jun Xia, Leszek Sobkowiak and Zongli Li 

Abstract: Based on the meteorological data from 46 stations in the Hai River Basin (HRB) from 
1961–2010, the annual and seasonal variation of reference evapotranspiration was analyzed. The 
sensitivity coefficients combined with the detrend method were used to discuss the dominant factor 
affecting the reference evapotranspiration (ETo). The obtained results indicate that the annual 
reference evapotranspiration is dominated by the decreasing trends at the confidence level of 95% 
in the southern and eastern parts of the HRB. The sensitivity order of climatic variables to ETo 
from strong to weak is: relativity humidity, temperature, shortwave radiation and wind speed, 
respectively. However, comprehensively considering the sensitivity and its variation strength, the 
detrend analysis indicates that the decreasing trends of ETo in eastern and southern HRB may be 
caused mainly by the decreasing wind speed and shortwave radiation. As for the relationship 
between human activity and the trend of ETo, we found that ETo decreased more significantly on 
the plains than in the mountains. By contrast, the population density increased more considerably 
from 2000 to 2010 on the plains than in the mountains. Therefore, in this paper, the correlation of 
the spatial variation pattern between ETo and population was further analyzed. The spatial 
correlation coefficient between population and the trend of ETo is 0.132, while the spatial 
correlation coefficient between the trend of ETo and elevation, temperature, shortwave radiation 
and wind speed is 0.667, 0.668, 0.749 and 0.416, respectively. This suggests that human activity 
has a certain influence on the spatial variation of ETo, while natural factors play a decisive role in 
the spatial variation of reference evapotranspiration in this area. 

Reprinted from Water. Cite as: Zhao, L.; Xia, J.; Sobkowiak, L.; Li, Z. Climatic Characteristics of 
Reference Evapotranspiration in the Hai River Basin and Their Attribution. Water 2014, 6,  
1482-1499. 

1. Introduction 

Hydrologists have found that climate change has resulted in some changes in the water  
cycle [1–3]. One major challenge of recent hydrological modeling activities is the assessment of 
the effects of climate change on the terrestrial water cycle [4]. Hydrological models are usually 
based on the calculation of reference evapotranspiration and reducing it to the actual evapotranspiration 
by considering the soil moisture status [5] or the number of days since the last rainfall event [6]. 
Therefore, analyzing how climate change affects reference evapotranspiration (ETo) is critical for 
understanding the impact of climate change on the hydrological cycle. According to Allen et al. [7], 
ETo is the evapotranspiration from the reference surface, which is a hypothetical grass reference 
crop with an assumed crop height of 0.12 m, a fixed surface resistance of 70 s m 1 and an albedo  
of 0.23. 
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The Hai River Basin (HRB) is one of seven largest river basins and also one of the most 
developed areas in China, with the population accounting for about 10% of the nation’s total. The 
middle and lower reaches of the basin are important wheat production regions in China. This region 
has a semi-humid and semi-arid climate and has been strongly influenced by human activities. The 
annual precipitation is 539 mm, while the annual pan evaporation is 1100 mm, making the basin 
vulnerable to climatic variations [7]. In recent decades, several eco-environmental problems in that 
area have come to the fore under the combined impacts of climate change and intensified human 
activities. Water resources in the HRB are currently used for irrigation, aquaculture and industries. 
Due to the very limited available water resources in the basin, water has been diverted from other 
basins to supply it for agriculture and to maintain essential ecosystem functions [8]. 

In order to understand how climatic variables affect ETo, some studies have been carried out to 
evaluate evapotranspiration in the context of climate change. Zheng et al. [9] analyzed the cause of 
the decreased pan evaporation during 1957–2001 in the HRB, and found the reason to be the 
declining wind speed. Xu et al. [10] proved that the decreasing wind speed and net radiation were 
responsible for the ETo changes in the Changjiang River Basin of China. Liu [11], who analyzed 
the pan evaporation from 1955 to 2000 in China, found that the decrease in solar radiance was most 
likely the driving force of the reduced pan evaporation in China. Furthermore, sensitivity analysis 
has also been performed on the impacts of climate change [12–18]. However, the temporal  
pattern of ETo is not only influenced by the sensitivity of climatic variables, but also by their 
variation patterns. 

The spatial pattern of ETo in HRB has not been addressed in the literature, yet. In this study, we 
calculated ETo using the FAO-56 Penman–Monteith equation and analyzed the temporal-spatial 
pattern in ETo and its driving variables. Attribution analysis was then performed to quantify the 
contribution of each input variable to ETo variation. The objective of this paper is to exhibit the 
temporal-spatial variation pattern of ETo over the past 50 years in the HRB, then to detect the 
reason for these characteristics and to quantify the contribution of the climatic variation to ETo. 

2. Study Area and Data 

The Hai River Basin is located in north China and is one of seven largest river basins in the 
country. The basin is bounded in the north by Mount Tangshan, in the west by Mount Taihang and 
in the east by the Bohai Sea. Land surface elevation in the mountainous north and west of the study 
area is generally above 2000 m a.s.l. On the floodplains, however, surface elevation hardly exceeds  
100 m a.s.l. The basin occupies an area of 3.2 × 105 km2 (34.9–42.8° N, 112.0–119.8° E) and 
includes five provinces and the two megacities of Beijing and Tianjin (Figure 1). Climatically, the 
HRB belongs to the East Asian monsoon region. The annual mean temperature varies from 8 °C to 
12 °C, while annual precipitation is about 539 mm; relative humidity varies from 50% to 70%. 

Data from 46 National Meteorological Observatory stations included daily observations of the 
maximum, minimum and mean air temperatures (Tmax, Tmin, Ta), wind speed (U), relative humidity 
(Rh) and sunshine duration (n) for the period from 1960 to 2010 and pan evaporation (Epan) for 
1960–2001. Epan was measured using a metal pan, 20 cm in diameter and 10 cm high, installed  
70 cm above the ground. The data have been provided by the National Climatic Center of China 
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Meteorological Administration. The locations of the stations are shown in Figure 1, while the 
details of the stations are listed in Table 1. In Table 1, the annual ETo is the average value from 
1960 to 2010 calculated using the FAO-56 Penman–Monteith method. 

Figure 1. The location of the Hai River Basin (HRB). 

 

Table 1. Basic data on the investigated stations in HRB. 

Name No. Longitude (°) Latitude (°) Elevation (m) Name No. Longitude (°) Latitude (°) Elevation (m) 

Wutaishan 53588 113.53 39.03 2896 Changzhou 54616 116.83 38.33 10 

Weixian 53593 114.57 39.83 910 Tanggu 54623 117.72 39.00 3 

Yuanping 53673 112.72 38.73 828 Huanghua 54624 117.35 38.37 7 

Shijiazhuang 53698 114.42 38.03 81 Nangong 54705 115.38 37.37 27 

Yangquan 53782 113.55 37.85 742 Dezhou 54714 116.32 37.43 21 

Yushe 53787 112.98 37.07 1041 Huiminxian 54725 117.53 37.50 12 

Anyang 53898 114.37 36.12 76 Chaoyang 54808 115.58 36.03 43 

Xinxiang 53986 113.88 35.32 73 Huade 53391 114.00 41.90 1483 

Duolun 54208 116.47 42.18 1245 Shiyu 53478 112.45 40.00 1346 

Fengning 54308 116.63 41.22 660 Jiying 53480 113.07 41.03 1419 

Weichang 54311 117.75 41.93 843 Hequ 53564 111.15 39.38 862 

Zhuangjiakou 54401 114.88 40.78 724 Wuzhai 53663 111.82 38.92 1401 

Huailai 54405 115.50 40.40 537 Taiyuan 53772 112.55 37.78 778 

Zunhua 54429 117.95 40.20 55 Jiexiu 53863 111.92 37.03 744 

Qinglong 54436 118.95 40.40 227 Yangcheng 53975 112.40 35.48 660 

Qinhuangdao 54449 119.60 39.93 2 Chifeng 54218 118.97 42.27 568 

Beijing 54511 116.28 39.93 54 Yeboshou 54326 119.70 41.38 662 

Langfang 54518 116.38 39.12 9 Yangjiaogou 54736 118.85 37.27 6 

Tianjin 54527 117.17 39.10 3 Jinan 54823 116.98 36.68 52 

Tangshan 54534 118.15 39.67 28 Heze 54906 115.43 35.25 50 

Leting 54539 118.90 39.42 11 Zhengzhou 57083 113.65 34.72 110 

Baoding 54602 115.52 38.85 17 Kaifeng 57091 114.38 34.77 73 

Raoyang 54606 115.73 38.23 19 Datong 53487 113.33 40.10 1067 
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3. Methodologies 

3.1. Penman–Monteith Method 

The Penman–Monteith method recommended by FAO (Food and Agriculture Organization) [19] 
as the standard method for determining reference evapotranspiration was used in this study. The 
method was selected because it is physically based and explicitly incorporates both physiological 
and aerodynamic parameters.  

n 2 s a

2

9000.408 R G U (e e )
T 273

ETo
(1 0.34U )

 (1)

where, ETo is the reference evapotranspiration (mm/day); Rn is net radiation at the crop surface 
(MJ/m2/day); G is soil heat flux density (MJ/m2/day); T is mean daily air temperature (°C), U2 is 
wind speed at 2 m height (m/s); es is saturation vapor pressure (kPa); (es – ea) is the saturation 
vapor pressure deficit (kPa);  is the slope of vapor pressure (kPa/°C) and  is the psychometric 
constant (kPa/°C). The computation of all data required for the calculation and relevant procedures 
are given in Chapter 3 of the FAO Paper 56 [19]. 

3.2. Trend Detection and Sensitivity Analysis Method 

The rank-based nonparametric Mann–Kendall statistical test [20,21] is commonly used for trend 
detection, because of its robustness for non-normally distributed and censored data, which are 
frequently encountered in hydroclimatic time series. In this method, the test statistic, Z, is as follows: 
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1    if x > 0
sgn( ) 0    if x = 0

1   if x < 0
x  (5)

Equation (2) gives the standard deviation of S with correction for ties in the data, with ei 
denoting the number of ties of extent i. The upward or downward trend in the data is statistically 
significant if 1 /2 1 /2,  where  is the (1 / 2)Z quantity of the standard normal distribution 
and when 1 /20.05, 1.96u . Positive Z indicates an increasing trend in the time series, while 

negative Z, a decreasing one. 
Original measurements of air temperature (Ta), wind speed (U) and relative humidity (Rh) were 

chosen for the sensitivity analyses. The fourth applied variable is shortwave radiation (Rs). This is because 
shortwave radiation is one of the input variables in a number of semi-physical and semi-empirical 
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equations that are used to derive the net energy flux required by the Penman method [22]. 
Following the procedure described by Allen [19], Rs can be estimated with the following formula 
that relates surface shortwave radiation to extraterrestrial radiation and daily sunshine duration: 

 
(6)

where Rs is shortwave radiation, n is daily sunshine duration (h); N is maximum possible duration 
of sunshine or daylight hours (h); n/N is relative sunshine duration; Ra is extraterrestrial radiation 
and as and bs are the regression constants. The recommended values as = 0.25 and bs = 0.75 were 
used in this study. 

In multivariate models, different variables have different dimensions and different ranges of 
values, which make it difficult to compare the sensitivity by partial derivatives. Consequently, the 
partial derivative is transformed into a non-dimensional form: 

x/x

ETo
ETo xEToSx lim .x x ETo

x

 (7)

Basically, a positive/negative sensitivity coefficient of a variable indicates that ETo 
increases/decreases as the variable increases; the larger the sensitivity coefficient, the larger the 
effect a given variable has on ETo. 

3.3. Spatial Correlation Coefficient 

Correlation coefficients depict the spatial relationship between two datasets. The correlation 
between two variables is a measure of dependency between these variables. It is the ratio of the 
covariance between the two datasets divided by the product of their standard deviations. Because it 
is a ratio, it is a unit-less number. The equation to calculate the correlation is [23]: 

 
(8)

where, Covij is the covariance;  are the standard deviations of dataset i and j, respectively. 

The calculated covariance matrix in this paper contains values of variances and covariances. The 
variance is a statistical measure showing how much variance there is from the mean. The remaining 
entries within the covariance matrix are the covariances between all pairs of the input datasets. The 
following formula is used to determine the covariance between datasets i and j: 

 
(9)

where, Zik, Zjk are the values of dataset i and dataset j, respectively in location k; i, j are the 
average values of datasets i and j, respectively; i, j is the order of dataset; N is the number of 
dataset; K denotes a particular location. 
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Correlation ranges from +1 to 1. A positive correlation indicates a direct relationship between 
two datasets, such as when the cell values of one datasets increase, the cell values of another 
datasets are also likely to increase. A negative correlation means that one variable changes 
inversely to the other. A correlation of zero means that two datasets are independent of one another. 

3.4. Detrend Method 

The variation pattern of ETo is determined by multi-climatic variables, including their 
sensitivity to ETo and variation fluctuations. The detrend method is a combination method that 
considers both the sensitivity coefficient and the fluctuation of the climatic variables. 

The detrend method is a way of quantifying the contribution of climatic variables to the annual 
variation of ETo. This method shows the contribution in graphs and vividly describes how the 
climatic variables influence ETo. In this study, the following steps were performed: (1) use of the 
simple linear regression method to detect the changing slope of the main climatic variables; (2) 
detection of the significance of the slope by the t-test; (3) removal of the significant slope of main 
climatic variables to make them stationary time series; (4) recalculation of reference evapotranspiration 
using each time the original series of three variables and the detrend data of one variable; (5) 
comparison of the results with the original reference evapotranspiration; the observed difference is 
considered as the influence of those variables on the trend [22]. 

4. Results and Discussion 

4.1. Correlation between ETo and Epan 

Figure 2 shows the monthly correlation coefficients (R2) between ETo and Epan in HRB. As can 
be seen, the lowest correlation coefficient is 0.93, while the highest is 0.97. Spatially, mountain 
areas in the northwest and coastal areas in the southeast have higher correlation coefficients than 
plains in the central part of the study area. Mountain and coastal areas are more humid than plains, 
which is consistent with the research conclusion of Brutsaert [24] that in humid areas, reference 
evaporation has a better relationship with pan evaporation. 

4.2. Spatial-Temporal Variation of ETo in HRB 

To study the spatial distribution of the trend of ETo from 1960 to 2010 in the HRB, the  
Mann–Kendall test was used for each station to establish the ETo trends. The trends of annual and 
seasonal ETo were tested at the 95% confidence level. Decreasing trends in annual ETo were 
observed at 28 stations located mostly on the eastern and southern plains of the HRB. However, 
increasing trends in the annual ETo were observed at three sites (Datong, Wutaishan, Weixian) 
located in the western mountain region of the HRB (Figure 3). 
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Figure 2. Correlation between ETo and Epan in the HRB. 

 

Figure 3. The annual trend of ETo in the HRB. 
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As for the variation pattern of seasonal ETo, Figure 4 shows large differences in the spatial 
distribution of trends in seasonal ETo in the HRB. As can be seen, stations with decreasing trends 
in spring are mainly distributed in the southeastern plain region of the study area. The significantly 
increasing trend of ETo was found only at Wutaishan station in the western mountain region of the 
HRB. Twenty-nine stations characterized by decreasing trends of ETo in summer are concentrated 
mainly in the eastern and southern regions of the HRB. Only one station is dominated by the 
increasing trend of ETo in summer. In autumn, only nine out of 46 stations show a trend in ETo. 
Among them, eight stations present decreasing trends, while one station shows an increasing trend. 
The changing trend patterns in winter are similar to those in autumn: 16 out of 46 stations are 
dominated by the decreasing winter ETo, while two stations in the western plateau region display 
the increasing trend. 

4.3. Variation Pattern of Climatic Variables  

Shortwave radiation decreases in the whole basin, and most trends are significant at the 0.05 
significance level (Figure 5). The maximum and minimum temperatures increased in the whole 
HRB (Figure 5). The maximum temperatures in the southern mountain area increase more 
significantly than on the northern plains; the average p-value of the Mann–Kendall test for the 
whole basin is 2.9 (Table 2). The minimum temperatures increase more obviously than the 
maximum ones; the average p-value of the Mann–Kendall test for the whole basin is five. Relative 
humidity decreases in most of the basin, and this trend is significant in most sites of the mountain 
areas. As to the wind speed, the decreasing trends are significant in most parts of the basin at the 
0.05 significance level. 

Figure 4. The seasonal trend of ETo in the HRB. (a) Spring; (b) Summer; (c) Winter; (d) Autumn. 

 
(a) (b) 
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Figure 4. Cont. 

 
(c) (d) 

Figure 5. The trend of main climatic variables in the HRB. (a) The trend of Ta; (b) The 
trend of Rs; (c) The trend of U; (d) The trend of Rh. 

 

(a) (b) 
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Figure 5. Cont. 

 

(c) (d) 

Table 2. The Mann–Kendall test value of the main climate variables at the three stations. 

Station name Ta U Rh Rs 
Datong 4.78 1.55 1.81 2.54 

Wutaishan 4.30 5.21 3.57 0.54 
Weixian 4.87 0.92 3.07 2.04 

Mean value of the HRB 4.16 4.12 1.41 3.94 

The increasing temperature and decreasing relative humidity will make ETo increase, while the 
decreasing short wave radiation and wind speed will make ETo decrease. Therefore, the decreasing 
trends of ETo in the HRB suggest that the increasing temperature and decreasing relative humidity 
slightly discount the decreasing trend, but do not change its direction; the decreasing shortwave 
radiation and wind speed commonly result in the decreasing ETo in the southeastern coastal area of 
the HRB. 

In order to detect the reasons for the increasing trend of ETo in Datong, Wutaishan and Weixian 
stations, this paper analyzed the climate variables at these three locations. We found a Mann–Kendall 
test value of temperature as large as at the other investigated stations. However, relative humidity 
decreased faster, while shortwave radiation and wind speed (except Wutaishan) were slower 
compared to the mean value calculated for the whole HRB. Therefore, it can be concluded that the 
increasing temperature, decreasing faster relative humidity and decreasing slower shortwave 
radiation and wind speed result in the increasing trend of ETo at these three stations. 
  



117 
 

 

4.4. Sensitivity of Climatic Variables 

Since ETo is an important indicator of climatic changes, the sensitivity coefficient was used in 
this study to analyze how climatic variables affect ETo. The non-dimensional form of the 
sensitivity coefficient was employed to estimate the sensitivity of climatic variables in the HRB. 
Figure 6 gives the annual sensitivity coefficient of four climatic variables (Ta, Rh, Rs and U) to ETo 
from 1960 to 2010 estimated by the FAO-56 Penman–Monteith method. Figure 6 suggests that 
temperature, wind speed and short wave radiation are less sensitive in the mountain areas than on 
the coastal plains, while relative humidity is less sensitive in the area closest to the coast than on 
the plains and in the mountains. 

As for the trend of sensitivity to the climatic variables, the decreasing trends are found in 
temperature, short wave radiation and relative humidity, while the increasing trend is in wind 
speed. As variations in sensitivity coefficients to main climatic variables are detected before and 
after 1990, so the data series of sensitivity coefficients were divided into two groups of 1960–1990 
and 1991–2010, respectively, to calculate mean sensitivity coefficients to climatic variables. The 
obtained results show that before 1990, the sensitivity coefficients to Ta, Rh, U and Rs were 0.500, 

0.641, 0.205 and 0.357, respectively, while after 1990, they were 0.477, 0.586, 0.221 and 
0.349, respectively. 

Figure 6. The sensitivity coefficients of climatic variables in the HRB. (a) The 
sensitivity coefficients of Ta; (b) The sensitivity coefficients of Rh; (c) The sensitivity 
coefficients of U; (d) The sensitivity coefficients of Rs. 

 
(a) (b) 
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Figure 6. Cont.  

 
(c) (d) 

4.5. ETo with Detrend Climatic Variables 

Figure 7 gives the trend of ETo estimated with the detrend data series. The trends of ETo with 
detrend temperature are decreasing, except one station, while the variation pattern of ETo with 
detrend relative humidity is similar to the original ETo. This shows that there are larger differences 
between the original ETo and the recalculated one with detrend wind speed or detrend shortwave 
radiation than that with the detrend temperature or relative humidity. This suggests that the 
decreasing wind speed and shortwave radiation may be the main causes of the decreasing ETo in 
the HRB. As for the decreasing trend of shortwave radiation, previous studies have shown that the 
decrease in global radiation is the most likely the cause, which is a regional phenomenon. By 
examining the regional total radiation in eastern China, Zhang [25] concluded that the regional total 
radiation is decreasing due to the increased air pollution in that area. Another study by Liu [26] also 
proved that air pollution may result in the decrease of Rs in HRB. Therefore, they speculate that 
aerosols may play a critical role in the decrease of solar radiation in China. 
  



119 
 

 

Figure 7. The annual trend of ETo with detrend climatic variables in the HRB. (a) The 
annual trend of ETo in the HRB; (b) The trend of ETo with detrend U; (c) The trend of 
ETo with detrend Ta; (d) The trend of ETo with detrend Rs; (e) The trend of ETo with 
detrend Rh. 

 
(a) 

 
(b) (c) 

 
(d) (e) 
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4.6. Relationship between ETo and Human Activity 

The relationship between the variation pattern of ETo and human activity refers to how human 
activity affects climatic variables. In order to detect the relationship between human activity and 
the variation of climatic variables, the investigated sites were divided into two groups; elevation 
was taken as the sole criterion of that division. Areas with an elevation higher than 500 m a.s.l. are 
usually defined as mountains, while below 500 m a.s.l. as plains. In general, the population density 
is higher and human activity is more intense on the plains than in the mountain areas. Figure 8 
gives the GDP (Gross Domestic Product) increase from 2000 to 2010 and the distribution of plains 
in the HRB, respectively. As can be seen, the GDP increased noticeably from 2000 to 2010 on the 
plains of the HRB. This may suggest that human activity is concentrated on the plains. At the same 
time, the decrease of ETo is more visible on the plains than in the mountains. 

Figure 8. The GDP variation and distribution of plain areas in the HRB. (a) GDP 
variation during 2010 to 2000 in HRB; (b) DEM below 500 m a.s.l. in HRB. 

 
(a) 

 
(b) 

Table 2 gives the trend of the investigated climatic variables in these two elevation groups. It 
can be seen that the trend of the shortwave radiation, wind speed and minimum temperature on the 
plains is more obvious than that in the mountain areas. The detrend results show that the decreasing 
shortwave radiation and wind speed are the main causes of the decreasing ETo on the plains of the 
HRB. Therefore, we deduce that there is a relationship between the human activity and the 
decreasing shortwave radiation and wind speed. Liu et al. [26] found that during the period from 
1957 to 2008, the solar radiation decreased significantly in the HRB and that the trend was more 
significant in the densely populated areas than in the sparsely populated ones. The spatial 
distribution of the aerosol index increase is consistent with the solar radiation decrease. The aerosol 
increase resulting from human activities was an important reason for the decrease in solar radiation. 
This phenomenon was also found by some other studies [27–29]. As for the wind speed,  
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Jiang et al. [30] analyzed the change of wind speed over China from 1956 to 2004. They found that 
the effect of urbanization on annual MWS (Mean Wind Speed) is more and more obvious with 
time, especially in the 1980s. It corresponds with the substantial development of urbanization. At the 
same time, the declining trend of mean wind speed at the urban stations is more serious than that at 
the rural ones over the last 50 years. This is coincident with the results given in Table 3. 

Table 3. The trend of climatic variables in different elevation groups. 

Elevation Rs Tmax Tmin Rh U 
>500 m a.s.l. 3.689 3.698 4.727 1.157 3.773 
<500 m a.s.l. 4.601 2.170 5.198 1.348 4.739 

Furthermore, in order to determine the relationship between ETo and human activities, this paper 
analyzed with the use of the spatial correlation coefficient method the spatial correlation between 
ETo, population and meteorological factors, which have a definite effect on ETo. The results show 
that the spatial correlation coefficient between population and ETo is 0.132, while the spatial 
correlation coefficients between population, Rs and Rh are 0.307 and 0.144, respectively. 
Moreover, the spatial correlation coefficients between elevation and ETo is 0.667, while the spatial 
correlation coefficients between ETo, Rs, U and Ta are 0.749, 0.416 and 0.668, respectively. This 
proves that human activity has a certain influence on the spatial variation of ETo, while natural 
factors play a decisive role in the spatial variation character of reference evapotranspiration  
(Table 4). 

Table 4. The spatial correlation coefficients between ETo and different factors. 

Rs U Ta Rh Population Elevation 
0.749 0.416 0.668 0.267 0.132 0.667 

With increasing altitude and decreasing pressure, the atmosphere is getting thinner and the heat 
radiation losses become faster. Therefore, the temperature decreases with increasing altitude. At the 
same time, when the sunlight scattering and reflection decrease, the solar radiation increases. While 
the proportion of water vapor in the air is relatively large, it is usually concentrated in the lower 
parts of the atmosphere. Relatively small air moisture content at high altitudes results in low 
relative humidity there. Friction caused by the uneven Earth surface retards the air flow, so that the 
wind speed is relatively smaller near the ground. With higher elevation (up to 6000 m a.s.l.), the 
wind speed becomes less impacted by the uneven ground. 

5. Conclusions 

In this paper, the spatial and temporal characteristics of annual and seasonal ETo (1960–2010) in 
the Hai River Basin (HRB) were examined, and the possible causes of changes in ETo were 
detected. The following conclusions may be drawn from the study: 
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(1) Most stations in the HRB have decreasing trends in the annual ETo at a confidence level of 
95%. These stations are distributed mainly in the southern and eastern coastal areas of 
HRB. Three stations (Datong, Wutaishan and Weixian) in the western area of HRB show 
significant increasing trends in the annual ETo. As for the seasonal changes, similar 
characteristics with respect to the annual ETo were identified only in summer, while during 
the other three seasons (spring, autumn and winter), the trends were less obvious.  

(2) The spatial patterns of the Mann–Kendall trends of the annual meteorological variables 
show that the maximum and minimum temperatures increase significantly at the  
0.05 significance level. However, the increase of the minimum temperature is more 
apparent than that of the maximum ones all over the basin. Wind speed and shortwave 
radiation show decreasing trends in the whole basin, and the trends are significant in the 
eastern and southern parts of the HRB. The sensitivity analysis shows that relativity 
humidity is the most sensitive variable to ETo, followed by temperature, shortwave 
radiation and wind speed as the least sensitive to ETo in the whole HRB. 

(3) Comprehensively considering the sensitivity and variation strength of the meteorological 
variables, the detrend analysis indicates the decreasing trends in ETo dominant in the eastern 
and southern area of HRB. These may be caused mainly by the behavior of wind speed and 
shortwave radiation. Meanwhile, the obtained detrend results suggest that the increasing 
temperature is the main cause of the increasing trend of ETo in Datong, Wutaishan and 
Weixian stations. 

(4) The spatial correlation coefficient between population and the trend of ETo is 0.132, and 
the correlation coefficient between the trend of ETo and natural factors is even higher. This 
suggests that human activity has a certain influence on the spatial variation of ETo, while 
natural factors play a decisive role in the spatial variation character of reference 
evapotranspiration in this area. 
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Scenario-Based Impacts of Land Use and Climate Change  
on Land and Water Degradation from the Meso to  
Regional Scale 

Aymar Y. Bossa, Bernd Diekkrüger and Euloge K. Agbossou 

Abstract: Scale-dependent parameter models were developed and nested to the Soil and Water 
Assessment Tool-SWAT to simulate climate and land use change impacts on water-sediment-
nutrient yields in Benin at a regional scale (49,256 km²). Weighted contributions of relevant 
landscape attributes characterizing the spatial pattern of ongoing hydrological processes were used 
to constrain the model parameters to acceptable physical meanings. Climate change projections 
(describing a rainfall reduction of up to 25%) simulated throughout the Regional Model-REMO, 
very sensitive to a prescribed degradation of land cover, were considered. Land use change 
scenarios in which the population growth was translated into a specific demand for settlements and 
croplands (cropland increase of up to 40%) according to the development of the national 
framework, were also considered. The results were consistent with simulations performed at the 
meso-scale (586 km2) where local management operations were incorporated. Surface runoff, 
groundwater flow, sediment and organic N and P yields were affected by land use change (as major 
effects) of 8% to +50%, while water yield and evapotranspiration were dominantly affected by 
climate change of 31% to +2%. This tendency was more marked at the regional scale as response 
to higher scale-dependent rates of natural vegetations with higher conversions to croplands.  

Reprinted from Water. Cite as: Bossa, A.Y.; Diekkrüger, B.; Agbossou, E.K. Scenario-Based 
Impacts of Land Use and Climate Change on Land and Water Degradation from the Meso to 
Regional Scale. Water 2014, 6, 3152–3181. 

1. Introduction 

Unsustainable land use is driving land degradation, which in the form of soil erosion, nutrient 
depletion, water scarcity, salinity and disruption of biological cycles is a fundamental and persistent 
problem, diminishing productivity, biodiversity, other ecosystem services, and contributing to 
climate change [1]. A global survey suggests that 40% of agricultural land is already degraded to 
the point that yields are greatly reduced, and a further 9% is degraded to the point that it cannot be 
reclaimed for productive use by farm level measures [2]. According to the Global Assessment of 
Human-induced Soil Degradation (GLASOD) [1,3,4] estimates, degradation of cropland appears to 
be most prevalent in Africa, affecting already in the 1990s 65% of cropland areas, compared with 
51% in Latin America and 38% in Asia. Many studies have been conducted in parts of Africa to 
understand the processes as well as determinant and promoting causes, related to the specific 
climatological, meteorological and soil conditions [5–16], and have been capitalized into this 
current work. 

Vulnerability to change, whether climate-induced or related to anthropogenic-induced changes 
in land use/land cover, is a major threat, consisting at the same time of a water dimension (reduced 
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water availability), an agrarian dimension (falling yields) and an environmental dimension 
(weakening of the soil and increasing erosion) [7]. Several investigations on the global change 
processes and its impact on the hydrological cycle [9,17–26] have shown that global climate 
change has a significant influence on the regional water and soil resources. Neumann et al. [23] 
investigated climate trends of temperature, precipitation and river discharge in the Volta Basin 
(West Africa) and have concluded on weak trends towards a decrease in rainfall with no clear trend 
on discharge as the anthropogenic influences (e.g., building of dams, intensified irrigation) were 
not quantified. Legesse et al. [21] evaluated the hydrological response of a catchment to climate 
and land use changes in Tropical Africa and found that a 10% decrease in rainfall produced a 30% 
reduction on the simulated hydrologic response of the catchment, while a 1.5 °C increase in air 
temperature would result in a decrease in the simulated discharge of about 15%. Moreover, they 
indicated that a conversion of the present day dominantly cultivated/grazing land by woodland 
would decrease the discharge at the outlet by about 8%. Chaplot [20] examined the effects of 
increasing CO2 concentrations and rainfall changes associated with changes in average daily 
rainfall intensity, and surface air temperature on loads of water, NO3-N and sediments from 
watersheds exhibiting different environmental conditions. He found over a 100-year simulated 
period: (1) flow and sediment discharges affected by precipitation changes while temperature and 
changes in atmospheric CO2 concentration had a smaller effect; (2) CO2 concentration was the 
main controlling factor of NO3-N loads; and (3) global changes in the humid watershed had a 
greater effect on the water and soil resources. Ward et al. [25] evaluated the impact of land use and 
climate change on future suspended sediment yields and found an increase in all simulations due to 
conversion of forest to agricultural land. Conjoint sensitivity analyses have shown that although 
land use change acts as the primary control on long-term changes in sediment yield, the sensitivity 
of sediment yield to changes in climate increases as the percentage of deforested land increases.  
Mahe et al. [24] modeled the impact of land use change on soil water holding capacity and river 
flow in West Africa and found that the total reduction in water holding capacity is estimated to 
range from 33% to 62% between 1965 and 1995. This was explained by the decline in the extent of 
natural vegetation from 43% to 13% of the total basin area, whilst the cultivated areas increased 
from 53% to 76% and the area of bare soil nearly tripled from 4% to 11%. Li et al. [22] modeled 
the hydrological impact of land use change (West Africa) and pointed out that total deforestation 
(clearcutting) increases the simulated runoff ratio from 0.15 to 0.44, and the annual streamflow by 
35%–65%, depending on location in the basin, although forests occupy only a small portion (<5%) 
of the total basin area. They mentioned that there is no significant impact on the water yield and 
river discharge when the deforestation (thinning) percentage is below 50% or the overgrazing 
percentage below 70% for savanna and 80% for grassland areas; however, the water yield is 
increased dramatically when land cover change exceeds these thresholds. Faramarzi et al. [19] 
modeled the impacts of climate change on freshwater availability in Africa and the results indicated 
that the mean total quantity of water resources is likely to increase, but for individual catchments 
and countries, variations are substantial. Cornelissen et al. [18] assessed the suitability of different 
hydrological model types for simulating scenarios of future discharge behavior in West Africa in 
the context of climate and land use change. They found that all models simulate an increase in 
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surface runoff due to land use change. The application of climate change scenarios resulted in 
considerable variation between the models and points not only to uncertainties in climate change 
scenarios. The conclusions drawn out from the above-presented studies are concordant with the 
different methodologies rolled out. They demonstrated significant sensitivities of soil and water 
resources to increase CO2, temperature, rainfall and land use depending on the study locations, the 
catchment characteristics, the modeling approaches, the land use change drivers, the structure of 
the atmosphere-ocean global climate models as well as the regional climate models behind the 
climate projections used. None of them has addressed the chemical dimension of soil degradation, 
notably the soil organic N and P loads and delivered together with sediment at catchment outlet. 
Organic N and P loads highly depend on landscape heterogeneity and spatial patterns of 
hydrological processes which are well known to smooth out with increasing catchment size 
resulting in more uncertain model parameters (without physical meaning) and more uncertain 
impact calculations at large scale, but almost none of the available impact studies have addressed 
this scaling problem, what is also offered in the present study. 

It is widely accepted that the complexity of hydrological processes as well as land and water 
degradation depend on the environmental heterogeneity such as soil pattern, topography, geology, 
vegetation and anthropogenic impacts. Thus, the process-dependent hierarchization of landscape 
elements from local to regional scales [27] is recently reflected in the development of several 
computationally efficient conceptual and distributed physical-based models (e.g., SWAT), 
attempting to quantify the hydrological variability occurring at a range of scales. Therefore, 
catchments may be subdivided into a number of smaller units such as sub-catchments, hillslopes, 
hydrological response units, contour-based elements, and square grid elements [6,28–31], but 
opened discussions on the modeling uncertainty issue, including scaling-effects in model internal 
aggregation [32,33] for large scale applications. This often affects the magnitudes of model parameters 
which may finally have no consistent physical meanings, carrying too poor information [33]. A 
scale dependent parameterization approach may significantly reduce these sources of uncertainty 
and the problem of lack or non-accurate measurement data (e.g., stream water-sediment-nutrient 
measurements) at large catchment scale. This is crucial and of high interest for impact assessment of 
climate and land use change at large-scale in a data-poor environment like Benin. 

Previous integrated modeling works in West Africa and in the upper Ouémé catchment of 
roughly 15,000 km2 in size in Benin [9,16], have largely contributed to improving knowledge of 
recent land degradation processes from local to regional scales. The results have shown that 
amongst others silt and clay particle loads totaling 0.5 ton ha 1 a 1 with an associated organic 
nitrogen load of 0.8 kg·ha 1 a 1 [16]. These results clearly indicate that the study area is impacted 
by land and water degradation processes, primary seen as human-induced or natural processes  
that negatively affect ecosystem as for resources storing and recycling. Scenario-based land use  
and climate change [34–37] may impact the degradation process to a level of +50% of the 
observations [15,16]. The current work attempts to expand all above-mentioned dimensions of 
erosion-related degradation under different land use and climate scenarios to large catchment scales 
(up to 49,256 km2), while minimizing biases due to scaling-up processes such as model internal 
aggregation processes in the SWAT model. These thorough modeling exercises are still 
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challenging the world scientific community and have never been parts of previous studies in Benin, 
as transferability of results through spatial scales stays an important underlying question. 

This study aims to investigate how global change impacts on water/land degradation at different 
spatial scales in Benin. It specifically means to investigate the degradation trends at different 
catchment scales: (1) a meso-scale catchment (586 km²) investigation incorporating local-scale farming 
practices [16]; and (2) a large-scale (49,256 km²) investigation based on a regionalized model 
parameterization [38] based on scale-dependent model parameters for simulating water-sediment-nutrient 
fluxes. This latter approach makes use of physical catchment properties depending on the spatial 
scale as explanatory variables for model parameters using regression techniques. 

2. Materials and Methods 

2.1. Study Area 

Located at about 90% in the Republic of Benin between 6°48' and 10°12' N of latitude and as 
part of the stable margin of the West African Craton, the Ouémé catchment (49,256 km2, cf. Figure 1) 
is mainly characterized by a Precambrian basement, consists predominantly of complex migmatites 
granulites and gneisses, including less abundant mica shists, quarzites and amphibolites [9].  
Syn-and post-tectonic intrusions of mainly granites, diorites, gabbros and volcanic rocks are 
present [39]. With a topographic relief generally low (highest elevation point of 617 meter) the land 
surface is slightly ondulating (granitic-gneissic plateau), strongly fractured (granitic peneplain) 
with typical seasonally waterlogged linear depressions (inland valleys) [9]. 

At a regional scale, fersialitic soils (ferruginous tropical sols) are predominant, characterized by 
clay translocation and iron segregation (ferruginous tropical sols with iron segregation), which lead 
to a clear horizon differentiation [40]. A local scale description has shown a typical catena with 
lixisols/acrisols on the upper and middle slopes, following by plinthosols on the downslopes, 
gleysols in the inland valleys and fluvisols on the fluvial plain [41]. 

Situated in a wet (Guinean coast) and a dry (Northern Soudanian zone) tropical climate, the 
Ouémé catchment records annual mean temperatures of 26 °C to 30 °C, annual mean rainfalls of 
1280 mm (from 1950 to 1969) and 1150 mm (from 1970 to 2004) at a climatic station close to 9° N 
latitude [9]. As shown in the Figure 1, the Soudanian zone has a unimodal rainfall season that 
peaks in August whereas the Guinean zone exhibits a bimodal rainfall season that peaks in June 
and October. 

The catchment landscape is characterized by forest islands, gallery forest, savannah, woodlands, 
agricultural lands and pastures. Agriculture and other human activities have led to large-scale 
deforestation and fragmentations leaving only small relicts of the natural vegetation types within a 
matrix of degraded secondary habitats [9]. 

With a length of about 510 km and with two most important tributaries, Zou (150 km) and 
Okpara (200 km), the Ouémé river drains into Lake Nokoué (150 km2) and flows through the 
coastal lagoon system into the sea. Rainfall-runoff variability is high in the catchment, leading to 
runoff coefficients varying from 0.10 to 0.26 (of the total annual rainfall), with the lowest values 
for the savannahs and forest landscapes [9]. 
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Figure 1. Location and climate condition of the study area, after Speth et al. [9]. The 
investigated catchments are Donga-Pont (586 km2), Vossa (1935 km2), Térou-Igbomakoro 
(2344 km2), Zou-Atchérigbé (6978 km2), Kaboua (9459 km2), Bétérou (10,072 km2), 
Savè (23,488 km2), Ouémé-Bonou (49,256 km2). 

 

2.2. Modeling Approach 

The SWAT (Soil and Water Assessment Tool) model is an eco-hydrological model developed 
by the United States Department of Agricultural-Research-Service (USDA-ARS) [31]. It is a 
continuous-time model that operates at a daily time-step. It allows the assessment of various 
subsurface flows and storages and related sediment and nutrient loads, taking into account the 
feedback between plant growth, water, and nutrient cycle, and helps to understand land 
management practice effects on water, sediment, and nutrient dynamics. It is a catchment scale 
model which can be applied from small (km²) to regional (100,000 km²) scale. SWAT subdivides 
the catchment into sub-catchments based on a Digital Elevation Model (DEM). Each sub-catchment 
consists of a number of Hydrological Response Units (HRUs) which are homogeneous concerning 
soil, relief, and vegetation. The HRUs are not georeferenced and not linked to each other within  
the sub-catchment. 

In SWAT surface runoff is simulated using a modified version of the SCS CN method [42]. 
Lateral flow is simulated using the kinematic method of Sloan and Moore [43]. Percolation occurs 
when the soil field capacity is exceeded, recharging two aquifer systems: an unconfined aquifer 
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generating base flow to the catchment streams, and a confined (deep) aquifer generating base flow 
to streams outside the catchment. The mass of nitrate lost from the soil horizons is determined 
using the nitrate concentration in the mobile water multiplied by the water volume flowing in each 
pathway. Rainfall-runoff erosion is estimated using the Modified Universal Soil Loss Equation 
(MUSLE) [44]. Organic N attached to sediments is estimated based on the loading function of 
McElroy et al. [45] and modified by Williams and Hann [46] to consider each runoff events. The 
model computes evaporation from soils according to Ritchie [47]. Actual soil water evaporation is 
estimated using exponential functions of soil depth and water content. Plant transpiration is 
computed as a linear function of potential evapotranspiration and leaf area index. 

The overall modeling approach is summarized in Figure 2, showing the nature and source of the 
different data layers, their scales and types of parameters and investigations [48,49], in the structure 
as required for applying the SWAT model. A 90 m resolution Digital Elevation Model from the 
Shuttle Radar Topography Mission-SRTM was used. A SOil and TERrain (SOTER) digital 
database established at the scale 1:200.000 for the whole Ouémé catchment, in corporation with 
INRAB (Institut National de la Recherche Agricole du Bénin) is considered in this study  
(cf. Bossa et al. [50] for more details and an overview of the map and soil properties). This 
database includes different soil properties that were determinant for the model setup and 
parameterization: saturated hydraulic conductivity, organic CNP, bulk density, texture, erodibility 
factor, available water content, hydrology group, etc. The land use/cover map considered in this 
study has been established at 250 m resolution from 3 scenes satellite images LANDSAT ETM+ of 
2003 [37] with an overall accuracy of 87%. More than 650 observation points were checked during 
the ground checks and 17 land use/cover classes were defined. Agricultural calendars depending on 
rainy season onsets, rainfall rhythms, and crop growth cycles/management over the period  
2004–2009 (activity reports from the Regional Center of Agricultural Promotion-CeRPA and 
Ministry of Agriculture, Livestock and Fisheries-MAEP) have been used for the baseline 
agricultural practices introduced in SWAT (cf. Tables 1 and 2 for an example). Climate data 
(rainfall, temperature, solar radiation, wind speed and air humidity) were collected from 35 stations 
managed by the German Research Project IMPETUS, IRD (Institut de Recherche pour le 
Développement, France), and DMN (Direction de la Météorologie Nationale). 

Besides discharge data continuously available for more or less 10 years (1998–2008) at 8 
gauging stations, water samples (9 liters per day) were collected in 2004, 2005, 2008, 2009 and 
2010 at 4 gauging stations (Donga-Pont, Bétérou, Térou and Zou-Atchérigbé, cf. Figure 1) and 
filtered in order to calculate daily suspended sediment concentration. Multi-parameter probes YSI 
600 OMS (including one turbidity-broom sensor YSI 6136) were installed at the same stations to 
register turbidity at a high temporal resolution (used to calculate continuous time series of 
suspended sediment concentrations) to consider the hysteresis effects on the relationship between 
sediment and discharge. After filtration the obtained sediments were analyzed in the laboratory for 
organic Nitrogen and non-soluble/organic Phosphorus content. Weekly water samples were 
collected (2008–2010) for analyzing Nitrate and soluble Phosphorus. 
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Figure 2. Schematization of the modeling approach. Soil and land use data are from 
IMPETUS [48] and INRAB (Institut National de la Recherche Agricole du Bénin [49]), 
Climate data are from IMPETUS, IRD (Institut de Recherche pour le Développement, 
France), and DMN (Direction de la Météorologie Nationale), Geology data is from 
OBEMINES (Office Béninoise des MINES). CountryStat: Benin National Statistics (Food 
and Agriculture data network). CeRPA: Regional Center of Agricultural Promotion. 
MAEP: Ministry of Agriculture, Livestock and Fisheries. SSC means suspended  
sediment concentration. 

 

Table 1. Management operations considered for croplands in the Donga-Pont 
catchment. T1, T2 and T3: Tillage operation; F1 and F2: Fertilization.  

Croplands T1 F1 T2 T3 F2 
Elemental N-P (kg ha 1) 10.5–6 
Elemental N (kg ha 1) 10.5 

Tillage depth (cm) 25 10 10 
Mixing efficiency 0.5 0.25 0.25 

Table 2. Management operations considered for pastures in the Donga-Pont catchment. 
NH3N is the dissolved nitrogen, easily convertible into nitrate. 

Pastures Grazing 
Grazing days 300 
Biomass eaten: beef/dairy-sheep-goat (kg ha 1 d 1) 76-24-28 
Biomass trampled: beef/dairy-sheep-goat (kg ha 1 d 1) 15-5-6 
Manure beef (1%N-0.4%P-3%ORGN-0.7%ORGP-95%NH3N) (kg ha 1 d 1) 38 
Manure sheep (1%N-0.4%P-3%ORGN-0.7%ORGP-95%NH3N) (kg ha 1 d 1) 12 
Manure goat (1%N-0.4%P-3%ORGN-0.7%ORGP-95%NH3N) (kg ha 1 d 1) 64 

Data (data sources ) Sca le Parameters and types of investigation

Terrain & Geology (DEM
SRTM & OBEMINES BENIN)

90 m
resolution

Elevation, overland, channel lengths ,
channel s lopes , sub bas ins

del ineation, sub bas ins s lopes , etc.

Soi l data (SOTER INRAB &
IMPETUS)

1 : 200,000

Saturated conductivity, Organic carbon,
Bulk dens i ty, Texture, sol erodibi l i ty
factor, soi l ava i lable water content,

pH, OrgN, etc.

Land use (Class i fi cation
Satel l i te data RIVERTWIN)

250 m
resolution

Biomass , HU, LAI, CN2, etc.

Management (CountryStat,
MAEP, CeRPA)

HRU scale
Ti l lages , crop systems, conservation

measures , fertl i zation, etc.
SWAT implementation at
di fferent catchment sca les

Multi regress ion
analys i s (SPSS)

Weather (DMN, IRD,
IMPETUS)

35 stations
Dai ly wind speed, precipi tation,
temperature, solar radiation, etc.

Surface water 8 stations Dai ly discharges

Water qual i ty 4 stations SSC, turbidi ty, N & P concentration

Phys ical catchment properties (Archydro):
catchment area, length of longest flow path,

hypsometric integra l , average al ti tude, average
s lope of catchment, dra inage dens i ty, bas in shape,

land cover (%), soi l (%), geology (%).

Multi scale catchment model ing (SWAT CUP):
sens i tivi ty, autoca l ibration & uncerta inty

Analys is (tools used)
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The general input data were used to compute selected physical catchment attributes and beyond 
six individual Ouémé sub-catchments (Donga-Pont, Térou, Bétérou, Zou-Atchérigbé, Vossa and 
Kaboua, cf. Figure 1) were considered for SWAT calibration. Multi-scale auto-calibration and 
uncertainty analysis were performed applying the SUFI-2 procedure (Sequential Uncertainty 
Fitting version 2, SWAT-CUP interface [51]) so discharge, sediment, nitrate and organic N and P 
were simultaneously calibrated. SPSS software was used to statistically analyze two different 
matrixes of calibrated parameter sets and computed catchment attributes. A correlation analysis 
was performed to identify physical catchment attributes meaningful for each calibrated model 
parameter. Multiple regression analyses were later on performed to establish the regionalization 
rules which are in fact assumed to highly capture the catchment heterogeneity as well as the spatial 
pattern of the hydrological processes. Table 3 shows the calibration and validation periods as well 
as quality measures of the simulations for the different sub-catchments investigated. 

Table 3. Model goodness of fit to measurements for the different sub-catchments 
involved in the multiple regression analysis, for model calibration. Information 
concerning validation are provided in brackets. 

Donga Vossa Térou Atchérigbé Kaboua Bétérou 

Discharge 

Period 
2006–2008 1998–2000 2002–2005 2007–2008 2004–2006 2006–2009 

(1998–2005) (1995) (1998–2001, 2006) (2001–2006, 2009) (1995–1998) (1998–2005) 

R² 0.72 (0.58) 0.75 (0.63) 0.75 (0.61) 0.89 (0.71) 0.73 (0.55) 0.75 (0.64) 

NS 0.72 (0.51) 0.75 (0.34) 0.74 (0.51) 0.82 (0.62) 0.67 (0.40) 0.60 (0.59) 

Sediment 

Period 
2008 – 2004–2005 2008 – 2008–2009 

(2005) – (2006) (2009) – (2004–2005) 

R² 0.69 (0.58) – 0.44 (0.33) 0.66 (0.67) – 0.43 (0.27) 

NS 0.67 (0.55) – 0.41 (0.32) 0.64 (0.67) – 0.30 (0.14) 

Nitrate 

Period 
2008 – – 2008 – 2008–2009 

(2008–2009) – – (2009) – (2008) 

R² 0.99 (0.95) – – 0.86 (0.62) – 0.73 (0.52) 

NS 0.99 (0.78) – – 0.81 (0.54) – (0.46) 

Regarding discharge simulations, poor model efficiency were obtained for validation in Vossa 
and Kaboua sub-catchments (0.34 and 0.40 respectively) due mainly to peak overestimation caused 
partly by land use map derived from 2003 Landsat images, which considered more agricultural 
areas than the reality of the validation period (1995–1998). Critical model performances were 
obtained for sediment simulation in the Bétérou sub-catchments, where the model efficiency 
decreased even to 0.14. This may be mainly caused by strong hysteresis effects observed at this 
station, which was not equipped of turbidity probe as used at the Donga-Pont and Atchérigbé 
gauging stations to minimize this effect. Nitrate load was in general well represented in the model 
with coefficients of determination ranging from 0.62 to 0.99 and model efficiencies ranging from 
0.54 to 0.99. Higher performances were observed for smaller sub-catchments. Calibrated model 
parameters are presented in Table 4 for all investigated sub-catchments. 
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Table 4. Calibrated model parameter matrix involved in the multiple regression 
analysis. The letters v, r and a mean values, relative change and absolute change, 
respectively. CN2: SCS Curve Number, ALPHA_BF: base flow recession constant; 
SOL_K: soil hydraulic conductivity, RCHRG_DP: aquifer percolation coefficient, 
GWQMN: minimum water level for base flow generation, REVAPMN: threshold water 
level in a shallow aquifer for capillary rise, ESCO: Soil evaporation compensation 
factor, GW_DELAY: groundwater delay, Ch_K2: Effective channel hydraulic 
conductivity, USLE_P: Practice factor, USLE_K: Soil erodibility factor, SPEXP: 
Exponent for calculating max sediment retrained, SURLAG: Surface runoff lag 
coefficient, NPERCO: Nitrate percolation coefficient. 

Parameter Description Donga Vossa Térou Atchérigbé Kaboua Bétérou 

ESCO (v) Soil evaporation compensation factor (–) 0.38 0.28 0.49 0.35 0.28 0.43 

SOL_Z (r) Soil depth (mm) 0.27 0.01 0.37 0.16 0.06 0.03 

CN2 (r) Curve Number (–) 6.65 3.86 5.55 6.24 3.97 2.51 

GWQMN (v) 

Threshold depth for ground water flow to occur 

(mm) 38.75 7.50 47.50 28.50 30.50 43.50 

REVAPMN (v) 

Threshold water level in shallow aquifer for revap 

(mm) 15.25 6.50 45.50 18.50 26.50 26.50 

Ch_K2 (v) Effective channel hydraulic conductivity (mm/hr) 3.95 1.00 12.77 10.65 1.00 12.52 

Sol_K (r) Saturated hydraulic conductivity (mm/hr) 0.78 0.65 0.73 0.35 0.82 0.66 

GW_DELAY (v) Ground water delay ( day) 15.08 17.12 23.25 10.87 16.04 24.80 

USLE_P (v) Practice factor (–) 0.13 0.10 0.07 0.15 0.18 0.00 

USLE_K (r) Soil erodibility factor (0.013 t m2h/(m3 t cm)) 0.03 0.16 0.08 0.14 0.25 0.57 

SPEXP (v) Exponent for calculating max sediment retrained (–) 1.35 1.07 1.21 1.20 1.28 1.38 

SURLAG (v) Surface runoff lag coefficient (–) 0.19 0.35 0.24 0.25 0.17 0.10 

ALPHA_BF (v) Base flow recession factor ( day) 0.06 0.17 0.07 0.12 0.11 0.15 

NPERCO (v) Nitrate percolation coefficient (–) 0.49 0.88 0.74 0.71 0.32 0.67 

RCHRG_DP (v) Fraction of deep aquifer percolation (–) 0.25 0.20 0.17 0.22 0.15 0.29 

In the following paragraphs of this section, details of the calibration and validation issues are 
presented as follows for the Atchérigbé sub-catchment (6978 km2) to provide a complete overview 
on the measurements involved into the multi-scale modeling step. The validation of the 
regionalization rules is presented for the Savè sub-catchment (23,488 km2) in this same section 
and we should highlight that orders of magnitude of impacts of climate and land use change 
scenarios are presented and compared for the two targeted spatial scales (Donga-Pont: 586 km2 and 
Ouémé-Bonou: 49,256 km2) in the result section. 

Simulated versus observed daily water discharge and sediment yield are shown in Figures 3 and 
4 for the Atchérigbé sub-catchment (cf. Figure 1). Recession periods were generally well 
represented. Less accurate predictions of single peaks are also shown in some years, partly due to 
the measurement errors during exceptional flooding years (2003 and 2007) in which over bank full 
discharge was observed at the gauging station. Differences are also usually caused by the SWAT 
structure, since it is a continuous time model with a daily time step and sub-scale processes such as 
single-event flood routing cannot be efficiently predicted. In addition, the daily measured 
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precipitation for 24 h starts at 6:00 am and may not well match to the daily average discharge 
values, which were measured for 24 h from midnight on [52]. As it can be seen from the figures in 
the year 2008, discharge measurement gaps of even more than 10 days can happen due mainly to 
technical problems. 

Figure 3. Simulated vs. observed daily discharge for the Atchérigbé sub-catchment  
(6978 km2). Calibration period was 2007 to 2008 (R2 = 0.89 and ME = 0.83), validation 
period was 2001–2006, and 2009 (R2 = 0.71 and ME = 0.62). 

 

Simulated versus observed daily stream water nitrate load are shown in Figure 5 for the same 
Atchérigbé sub-catchment. Similarly to the sediment yield, nitrate peaks accompanied discharge 
peaks mainly caused by combined effects of increase nitrate loading and increase in water volume.  
Due to the sampling time scale (one time a week) several peaks were missed, but did not affect the 
model calibration. 

According to FAO [53], water degradation by sediment has a chemical dimension—the silt and 
clay fraction, primary carrier of adsorbed chemicals, like nitrogen and phosphorus, which are 
transported by sediment into the aquatic system. Figure 6 shows weekly simulated versus observed 
organic N and P delivery at the Atchérigbé gauging station. Organic N and P were not calibrated. 
Since it was assumed that a good adjustment of soil nutrient pools, nitrate and sediment loads 
would be reflected in their simulations, only a validation was performed. Model goodness-of-fit 
were acceptable: 0.58 (R2) and 0.78 (NS) for organic Nitrogen and 0.89 (R2) and 0.96 (NS) for 
organic Phosphorus. 

Table 5 shows the computed regionalization rules and derived parameter sets for the Savè  
(23,488 km², cf. Figure 1) sub-catchment and Ouémé-Bonou (49,256 km², cf. Figure 1) catchment. 
Physical catchment attributes depending on spatial scale were used as explanatory variables of 
SWAT model parameters. With respect to discharge, validation was performed for the Savè  
sub-catchment with a goodness-of-fit around 0.7 for model efficiency and R2 (Figure 7). 
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Figure 4. Simulated vs. Observed daily sediment yield for Atchérigbé sub-catchment  
(6978 km2). Calibration period was 2008 (R2 = 0.66 and ME = 0.64), validation period 
was 2009 (R2 = 0.67 and ME = 0.67). SSC = suspended sediment. 

 

Figure 5. Simulated vs. observed daily nitrate load for Atchérigbé sub-catchment  
(6978 km2). Calibration period was 2008 (R2 = 0.86 and ME = 0.81), validation period 
was 2009 (R2 = 0.62 and ME = 0.54). 
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Figure 6. Simulated vs. observed weekly organic N and P load for the Atchérigbé  
sub-catchment (6978 km2). Only validation was performed from 2008 to 2009 with  
R2 = 0.58 and ME = 0.78 for organic Nitrogen and R2 = 0.89 and ME = 0.96 for  
organic Phosphorus. 

 

Table 5. Best regression-based parameter model and resulting values for three 
independent catchments (Savè: 23,488 km², Ouémé-Bonou: 49,256 km2). CN2: SCS 
Curve Number, ALPHA_BF: base flow recession constant; SOL_K: soil hydraulic 
conductivity, RCHRG_DP: aquifer percolation coefficient, GWQMN: minimum water 
level for base flow generation, REVAPMN: threshold water level in a shallow aquifer 
for capillary rise, ESCO: Soil evaporation compensation factor, GW_DELAY: 
groundwater delay, Ch_K2: Effective channel hydraulic conductivity (mm/h), 
USLE_P: Practice factor (–), USLE_K: Soil erodibility factor [0.013 t m2h/(m3 t cm)], 
SPEXP: Exponent for calculating max sediment retrained (–), SURLAG: Surface 
runoff lag coefficient (–), NPERCO: Nitrate percolation coefficient (–). 

Parameters Equations R2 Savè Ouémé-Bonou 

ESCO = 0.935  0.217 (Average slope of catchment) + 0.00327 (% Alterites) 0.92 0.34 0.37 

SOL_Z = 0.758  0.01 (% Migmatites) 0.81 0.02 0.08 

SOL_K = 26.991  0.278 (% Percentage of level) 0.92 0.58 0.76 

CN2 = 10.0  0.0824 Migmatites (%) 0.49 3.94 4.4 

GWQMN = 185  49.2 (Average slope of catchment)  0.255 (% Migmatites) 0.85 26.89 37.28 

REVAPMN = 16.5 + 0.769 (% Alterites) 0.6 20.37 18.56 

Ch_K2 = 56.1  16.0 (Average slope of the catchment)  0.461 (% Granites) 0.98 8.12 11.53 

ALPHA_BF =  0.0794 + 0.00300 (% Migmatites) 0.87 0.14 0.12 

GW_DELAY = 19.0  0.248 (% Crop land) + 0.165 (% Savannah) 0.98 22.17 16.82 

USLE_P = 0.129  0.0143 (% Lateritic consolidated soil layer) 0.51 0.06 0.07 

USLE_K = 0.162  0.0848 (% Lateritic consolidated soil lay) 0.85 0.24 0.18 

NPERCO = 1.72  3.80 (% Hypsometric integral) + 0.00779 (% Circularity Index)  0.033 (% Elongation ratio) 0.85 0.08 0.47 

RCHRG_DP =  0.758 + 0.462 (Drainage density (km/ km2)) 0.55 0.24 0.99 

SPEXP = 1.47  0.00454 Lixisol (%) + 0.00011 Migmatites (%) 0.7 1.22 1.47 

SURLAG = 0.109 + 0.003 Lixisol (%)  0.016 Lateritic consolidated soil layers (%) 0.93 0.19 0.22 
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2.3. Climate and Land Use Change Scenarios 

The climate scenarios used in this study were computed by Paeth et al. [36] for a part of Africa 
from 15° S to 45° N latitude using the regional climate model REMO driven by the IPCC 
(Intergovernmental Panel on Climate Change) SRES (Special Report on Emission Scenarios) 
scenarios A1B and B1. The IPCC SRES scenario A1B characterizes a globalized world of rapid 
economic growth and comparatively low population growth. The SRES scenario B1 also 
characterizes a future globalized world with a low population growth. REMO is a regional climate 
model that is nested in the global circulation model ECHAM5/MPI-OM Paeth et al. [54]. REMO 
was forced on a grid of 50 km resolution throughout the first half of the 21st century over  
West Africa. 

Figure 7. Observed vs. simulated total discharge (validation) using the regression-based 
parameters for the Savè catchment (23,488 km2), with 0.71 for R2 and 0.67 for model 
efficiency (ME). Savè was chosen for the validation because measurements at Ouémé-
Bonou are not reliable. 

 

Initial runs of REMO over West Africa have shown systematically underestimated rainfall 
amounts and variability with a shift in the pattern towards more weak events and fewer extremes. 
This was addressed by applying the Model Output Statistics—MOS to correct monthly bias using 
other near-surface parameters such as temperature, sea level pressure and wind. Since the  
regional-mean (precipitation) strongly differed from the observed spatial patterns of daily rainfall 
events, a conversion of the MOS-corrected regional-mean from REMO to local rainfall event 
patterns has been done. Virtual station data, matching the rainfall stations in Benin, were useful to 
adjust the results to the statistical characteristics of observed daily precipitation at the rainfall 
stations by probability matching. 

Figure 8a shows mean monthly REMO rainfall amounts over 1960–2000 compared with 
measurements over 1998–2005 for the upper Ouémé catchment (14,500 km2 including Donga-Pont 
(586 km2), Térou-Igbomakoro (2344 km2) and Bétérou (10,072 km2)), while Figure 8b presents 
mean monthly water discharges simulated with SWAT using REMO outputs over 1960–2000 
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compared with measurements over 1998–2005. These figures suggested that REMO and SWAT 
represent correctly the observations. 

Figure 8. (a) Mean monthly rainfall from REMO output (period 1960–2000) compared 
with measurements (period 1998–2005) for the upper Ouémé catchment [15]; (b) 
Simulated mean monthly water discharge with SWAT using REMO output (period 
1960–2000) compared measurements (period 1998–2005) for the upper Ouémé 
catchment [15]. 

 

Climate change projections as simulated throughout REMO are very sensitive to a prescribed 
degradation of land cover. This sensitivity in addition to an increasing greenhouse gases 
concentrations have resulted in distinctly warmer and drier climates (with frequent droughts) for 
the investigated period 2000–2050 over West Africa, reductions in annual rainfall amounts of about 
20%–25% of the 20th century annual amounts. 

For the Ouémé-Bonou catchment REMO projects a decrease of annual rainfall between 9% and 
12% for the scenario B1 and for the period 2010–2030. It increases of up to 4% for the scenario 
A1B over the period 2010–2014, before decreasing of up to 14% between 2015 and 2029. 
Maximum and minimum temperatures are expected to increase of up to 2.5 °C over the next  
40 years (Figure 9). 

Many recent research studies attempted to simulate West African future rainfall and climate 
parameters throughout the 21st century using atmosphere-ocean global climate models and relying 
on greenhouse gas emissions scenarios as outlined in the Intergovernmental Panel on Climate 
Change archives for Assessment Reports (AR3 & 4). The recent Coordinated Regional Climate 
Downscaling Experiment-CORDEX initiative from the World Climate Research Program promotes 
running multiple RCM simulations at 50 km resolution for multiple regions including West Africa, 
highly expected to bring clarifications and improve the projections [56]. The CORDEX initiative 
includes the study of uncertainty due to structural errors of different GCMs and/or RCMs. Beyond 
CORDEX and apart from Paeth et al. [36,54], who nested REMO in the global circulation model 
ECHAM5/MPI-OM as described above, Patricola and Cook [57] also attempt to overcome the 
limitations of global models by nesting a higher resolution regional model, the Weather Research 
and Forecasting (WRF) model on a grid of 90 km resolution, over West Africa and for the second 
half of the 21st century. They found a very mixed rainfall change signal characterized by June–July 
drought, followed by copious rainfall towards the end of the summer [58]. Although focused on 
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different time periods, both studies [36,54,57] favor desiccation, albeit with caveats regarding 
intraseasonal and spatial variability.  

Figure 9. Projected changes in annual precipitation and near-surface temperatures until 
2050 over tropical and northern Africa due to increasing greenhouse gas concentrations 
and man-made land cover changes [55]. The scenario A1B describes a globalized world 
of rapid economic growth and comparatively low population growth. The scenario B1 
also characterizes a future globalized world with a low population growth. 

 

As an alternative to the above-described studies using relatively high-resolution regional climate 
models, many other studies [59–61] used atmosphere-ocean global climate models to run climate 
change experiments and have rather concluded a wetter climate for the first half of the 21st 
century in reference to the 20th century contrary to REMO-based projections presented in  
Paeth et al. [36]. Cook and Vizy [62] have concluded no impact of climate change on projected 
West Africa rainfall, while Biasutti et al. [63] have argued towards uncertain rainfall projections. 

The land use/cover classification used, considers 17 land use/cover types (Table 6 and Figure 10). 
A subsequent accuracy check shows that the overall accuracy is high (87%) [64]. The land 
use/cover scenarios were computed in the framework of the European Union funded project 
RIVERTWIN [37]. The major driver for land use change is population growth and subsequent 
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conversion of the natural savannah vegetation into settlements, roads, and a mosaic of fields by 
slash and burn clearance [65]. Two socio-economic scenarios have been set up: (1) La, stronger 
economic development, controlled urbanization, 3.2% population growth per year; and (2) Lb, 
weak national economy, uncontrolled settlement and farmland development, 3.5% population 
growth per year. For each scenario, the population growth has been translated into a specific 
demand for settlements and agricultural area according to the development of the national 
framework. This demand has been satisfied according to the proximity to roads and existing 
villages, new settlements and agricultural areas have been created leading to the land use 
distribution. The General Directorate for Water has selected several potential sites for future 
construction of multi-purpose reservoirs for large scale irrigation. Therefore, large areas of natural 
vegetation were also accordingly converted to croplands. With respect to the scenarios La and Lb, 
change in the Ouémé land use/cover is expressed by the conversion of the natural vegetation 
including savannah into agricultural lands and pastures: 10% to 20% for the scenario La and 20% 
to 40% for the scenario Lb. 

Table 6. Land use/cover categories, their area and percentage of total area for the  
Ouémé-Bonou catchment (49,256 km2). Values displayed in brackets are related to the 
Donga-Pont catchment (586 km²) [64]. SWAT model was adapted to consider almost 
all land use classes mentioned in the table. 

Land Use Categories Land Use Code Area (km2) Percentage of Total Area 
Galery forest GF 1759 (8.6) 3.98 (1.47) 

Humid and dry dense forest FD 1220 (0.4) 2.76 (0.06) 
Swamp formations FM 17 (0) 0.04 (0) 
Riverine formations FR 107 (0) 0.24 (0) 

Woodland and woodland savannah FCSB 6716 (8.6) 15.2 (1.47) 
Flooding savannah SM 222 (0) 0.5 (0) 

Tree and shrub savannah SA 17231 (285.8) 38.99 (48.74) 
Saxicolous savannah SS 313 (0) 0.71 (0) 

Grassland PH 14 (0) 0.03 (0) 
Mosaic of cropland and bush fallow CJ 13713 (280.1) 31.03 (47.77) 

Mosaic of cultivation with Parkia and Cashew trees CJNA 32 (0) 0.07 (0) 
Mosaic of cultivation with palm trees CJP 1189 (0) 2.69 (0) 

Industrial plantations PI 127 (0) 0.29 (0) 
Village plantations PV 1209 (0.5) 2.74 (0.08) 

Barren lands/area without vegetation BAR 5 (0) 0.01 (0) 
Urban and built-up AG 277 (2.4) 0.63 (0.4) 

Water bodies PE 47 (0) 0.11 (0) 
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Figure 10. Land use/cover of the Ouémé-Bonou (49,256 km2) and the Donga-Pont 
catchments (586 km2). The legend is fully explained in Table 3. (a) reference map 
(2003); (b) La 2015–2019; (c) La 2025–2029; (d) Lb 2015–2019; (e) Lb 2025–2029 [37]. 

 

3. Results and Discussion 

3.1. Impacts of Climate Change 

Climate change impacts on key water balance components and sediment-organic N yield over 
time windows of 10 to 20 years for the Donga-Pont sub-catchment (Table 7 and Figure 11a) were 
computed to be consistent with other climate change impact studies. The Table and Figure show a 
decrease in rainfall all over the 10-year and 20-year time windows, resulting in a reduction of up to 
22% of the simulated water-nutrient components for all scenarios except the scenario A1B over the 
time window 2010–2019. These results suggest significant impacts of year-to-year climate 
variability. To be consistent with the used land use scenarios 5-year time windows (Tables 8 and 9, 
Figure 11b,c) will be considered in the discussion as provided in the following paragraphs. 

As shown in Tables 8 and 9, the simulated absolute surface runoff ranges from 100 to 140 mm 
per year for the Donga-Pont catchment (586 km²), while varying from 60 to 80 mm per year for the  
Ouémé-Bonou catchment (49,256 km²), due to the significantly different catchment sizes with a 
likely slight effect of the higher rate of agricultural lands in the Donga-Pont catchment compared to 
the Ouémé-Bonou catchment (cf. Table 6). In fact, due to unsustainable agriculture practices over 
the region, higher surface runoff may be associated to larger rate of agricultural lands. 
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Table 7. Simulated SWAT components under climate scenarios (with unchanged land 
use map derived from 2003 Landsat image). Deviation (in %) from the reference 
scenario (2000–2009) are shown in brackets. 

Donga-Pont (586 km²) 
Reference  

(2000–2009) 

A1B  

(2010–2019) 

A1B  

(2020–2029) 

A1B  

(2010–2029) 

B1  

(2010–2019) 

B1  

(2020–2029) 

B1  

(2010–2029) 

Rainfall (mm a 1) 1233.4 1196.6 ( 3) 1107.2 ( 10) 1151.9 ( 7) 1145.5 ( 7) 1126.2 ( 9) 1135.8 ( 8) 

Water yield (mm a 1) 254.7 282.8 (11) 206.6 ( 19) 244.7 ( 4) 238.2 ( 6) 219.4 ( 14) 228.8 ( 10)

Groundwater flow (mm a 1) 117.6 122.7 (4) 91.4 ( 22) 107.0 ( 9) 105.3 ( 10) 99.5 ( 15) 102.4 ( 13)

Surface runoff (mm a 1) 137.2 158.8 (16) 113.8 ( 17) 136.3 ( 1) 131.5 ( 4) 118.5 ( 14) 125.0 ( 9) 

Act. Evapotranspiration (mm a 1) 923.7 840.9 ( 9) 849.4 ( 8) 845.1 ( 9) 848.6 ( 8) 846.7 ( 8) 847.6 ( 8) 

Sediment yield (ton ha 1 a 1) 0.4 0.5 (17) 0.4 ( 5) 0.4 (6) 0.4 ( 2) 0.4 ( 8) 0.4 ( 5) 

Organic N load (kg ha 1 a 1) 0.7 0.8 (11) 0.6 ( 10) 0.7 (0) 0.7 ( 5) 0.6 ( 9) 0.7 ( 7) 

Sediment yield was more important at the Donga-Pont catchment scale, ranging from 0.3 to  
0.4 ton·ha 1·a 1 against 0.3 ton·ha 1·a 1 for the Ouémé-Bonou catchment. This can be explained by 
the higher rate of agricultural lands in the Donga-Pont catchment compared to the Ouémé-Bonou 
catchment (cf. Table 6). Thus, due to inadequate tillage and unsustainable practices, sediments are 
very susceptible to loading. Conversely, the simulated organic nitrogen yields for the Ouémé-Bonou 
catchment (roughly 1.2 ton·ha 1·a 1) were twice the computed amount for the Donga-Pont catchment 
(0.6 to 0.7 ton·ha 1·a 1). This can be easily understood since due to the higher rate of agricultural 
lands in the Donga-Pont catchment, the topsoils are more degraded and very poor humus and 
organic matters are available for loading. 

In both investigated scales, annual sediment yield and actual evapotranspiration have 
significantly decreased (of up to 20%) over the simulated years (2000 to 2029). Groundwater flow 
decreased significantly from 15% to 22% for the Donga-Pont catchment and from 4% to 17% for 
the Ouémé-Bonou catchment. Figure 11b,c shows a decreasing trend for all the simulated 
components (of up to 20%), regardless the different scenarios, but more pronounced for the  
Donga-Pont catchment. 

One may conclude that differences in water balance components as well as nutrient load rate 
while moving between different catchment scales are functions of rate of agricultural lands, which 
are more sensitive than natural vegetations. Similar results were found in the upper Ouémé 
catchment (about 15,000 km²) using the SWAT model and the same IPCC SRES scenarios A1B 
and B1 [9,15]. 
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Figure 11. Simulated trends under climate scenarios with land use from the year 2003.  
(a) Donga-Pont: trend over 20 years; (b) Donga-Pont: trend over a 5-year time window;  
(c) Ouémé-Bonou: trend over a 5-year time window. 

 

Table 8. Simulated SWAT components under climate scenarios (with unchanged land 
use map derived from 2003 Landsat image). Deviation (in %) from the reference 
scenario (2000–2009) are shown in brackets. 

Donga-Pont (586 km²) 
Reference  

(2000–2009) 

A1B  

(2015–2019) 

B1  

(2015–2019) 

A1B  

(2025–2029) 

B1  

(2025–2029) 

Rainfall (mm a 1) 1233.4 1096.7 ( 11) 1113.9 ( 10) 1116.0 ( 10) 1138.0 ( 8) 

Water yield (mm a 1) 254.7 206.9 ( 19) 215.5 ( 15) 205.6 ( 19) 225.3 ( 12) 

Groundwater flow (mm a 1) 117.6 98.9 ( 16) 100.3 ( 15) 91.6 ( 22) 100.5 ( 15) 

Surface runoff (mm a 1) 137.2 106.7 ( 22) 113.7 ( 17) 112.6 ( 18) 123.4 ( 10) 

Act. Evapotranspiration (mm a 1) 923.7 839.1 ( 9) 849.2 ( 8) 863.6 ( 7) 854.1 ( 8) 

Sediment yield (ton ha 1 a 1) 0.4 0.3 ( 25) 0.3 ( 25) 0.4 (0) 0.4 (0) 

Organic N load (kg ha 1 a 1) 0.7 0.6 ( 14) 0.6 ( 14) 0.6 ( 14) 0.7 (0) 
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Table 9. Simulated SWAT components under climate scenarios (with unchanged land 
use map derived from 2003 Landsat image). Deviation (in %) from the reference 
scenario (2000–2009) are shown in brackets. 

Ouémé-Bonou (49,256 km²) 
Reference  

(2000–2009) 

A1B  

(2015–2019) 

B1  

(2015–2019) 

A1B  

(2025–2029) 

B1  

(2025–2029) 

Rainfall (mm a 1) 1138.9 1035.2 ( 9) 1045.2 ( 8) 1041.5 ( 9) 1074.9 ( 6) 

Water yield (mm a 1) 224.6 191.4 ( 15) 189.0 ( 16) 186.2 ( 17) 218.0 ( 3) 

Groundwater flow (mm a 1) 147.6 127.5 ( 14) 123.7 ( 16) 122.8 ( 17) 142.2 ( 4) 

Surface runoff (mm a 1) 77.0 63.9 ( 17) 65.3 ( 15) 63.4 ( 18) 75.8 ( 2) 

Act. Evapotranspiration (mm a 1) 794.8 734.3 ( 8) 747.5 ( 6) 745.8 ( 6) 740.2 ( 7) 

Sediment yield (ton ha 1 a 1) 0.3 0.3 (0) 0.3 (0) 0.3 (0) 0.3 (0) 

Organic N load (kg ha 1 a 1) 1.2 1.1 ( 8) 1.1 ( 8) 1.1 ( 8) 1.2 (0) 

3.2. Impacts of Land Use Change 

As indicated in the Section 2.3, changes in the Ouémé land use according to the scenarios La 
and Lb are mainly expressed by the conversion of savannah into croplands and pastures in a range 
of 10% to 20% of the agricultural lands for the scenario La (stronger economic development, 
controlled urbanization, 3.2% population growth per year) and 20% to 40% for the scenario Lb 
(weak national economy, uncontrolled settlement and farmland development, 3.5% population 
growth per year). Accordingly, an increasing surface runoff was simulated (from 2000 to 2029) 
for both scenarios La and Lb, but in a pronounced way for the scenario Lb (Table 10 and 
Figure 12). These increases range from 9% to 27% for the Donga-Pont catchment and between 
22% and 57% for the Ouémé-Bonou catchment. 

In spite of this simulated increase for the surface runoff, water yield has change in a very low 
rate (roughly ±5%), forcing a decrease of the groundwater flow (between 3% and 33% for the 
Donga-Pont catchment and between 7% and 18% for the Ouémé-Bonou). This reveals the proof 
of decrease of the infiltration rate over the study area, and a severe threat to its groundwater 
systems. Sediment yield has increased from 25% to 75% for the Donga-Pont catchment and from 
33% to 66% for the Ouémé-Bonou catchment. Organic nitrogen load has increased from 14% to 
43% for the Donga-Pont catchment and from 17% to 58% for the Ouémé-Bonou due to conversion 
of natural vegetation to new cropland, which are more important at the Ouémé-Bonou scale. 

Actual evapotranspiration has decreased slightly from 0.5% to 1.1% for the Donga-Pont 
catchment and 0.8% to 2% for the Ouémé-Bonou catchment. For this trend the land use scenario 
Lb differs from the other by showing the highest underlying simulated rates, as already discussed 
above for the other components. 
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Table 10. Simulated SWAT components under land use scenarios (with unchanged 
climate condition of the period 2000 to 2009). Deviation (in %) from the reference 
scenario (2000–2009) are shown in brackets. 

Donga-Pont (586 km²) 
Reference 

(2000–2009)
La  

(2015–2019) 
Lb  

(2015–2019) 
La  

(2025–2029) 
Lb  

(2025–2029) 
Rainfall (mm a 1) 1233.4 1233.4 (0) 1233.4 (0) 1233.4 (0) 1233.4 (0) 

Water yield (mm a 1) 254.7 228.7 ( 10) 236.7 ( 7) 267.0 (5) 263.4 (3) 
Groundwater flow (mm a 1) 117.6 78.8 ( 33) 79.0 ( 33) 113.6 ( 3) 88.8 ( 24) 

Surface runoff (mm a 1) 137.2 149.1 (9) 157.0 (14) 152.4 (11) 174.3 (27) 
Act. Evapotranspiration (mm a 1) 923.7 913.7 ( 1) 918.0 ( 1) 915.3 ( 1) 919.1 (0) 

Sediment yield (ton ha 1 a 1) 0.4 0.5 (25) 0.6 (50) 0.5 (25) 0.7 (75) 
Organic N load (kg ha 1 a 1) 0.7 0.8 (14) 0.9 (29) 0.8 (14) 1.0 (43) 

Ouémé-Bonou (49,256 km²)      

Rainfall (mm a 1) 1138.9 1138.9 (0) 1138.9 (0) 1138.9 (0) 1138.9 (0) 
Water yield (mm a 1) 224.6 231.5 (3) 238.8 (6) 233.6 (4) 243.0 (8) 

Groundwater flow (mm a 1) 147.6 137.9 ( 7) 128.8 ( 13) 133.9 ( 9) 121.7 ( 18) 
Surface runoff (mm a 1) 77.0 93.7 (22) 110.0 (43) 99.7 (29) 121.3 (58) 

Act. Evapotranspiration (mm a 1) 794.8 788.9 ( 1) 782.1 ( 2) 787.4 ( 1) 778.8 ( 2) 
Sediment yield (ton ha 1 a 1) 0.3 0.4 (33) 0.4 (33) 0.4 (33) 0.5 (67) 
Organic N load (kg ha 1 a 1) 1.2 1.4 (17) 1.7 (42) 1.5 (25) 1.9 (58) 

Figure 12. Simulated trends under land use scenarios (with unchanged climate: 2000–
2009). (a) Donga-Pont; (b) Ouémé-Bonou. 

 

 

In summary (combining the Sections 3.1 and 3.2), surface runoff was found more sensitive to 
land use change (+22% to +75% of changes) than climate change ( 5% to 20% of changes), 
evapotranspiration was more sensitive to climate change ( 8 to 12% of changes) than land use 
change ( 0.5% to 2% of changes) and groundwater flow was less sensitive to climate change 
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( 4% to 22%) than land use change ( 9% to 57%). Sediment yield was more sensitive to land 
use (+25% to +75%) than climate change ( 25% to 0%). Organic nitrogen load was more sensitive 
to land use change (+14% to +58%) than climate change ( 8% to 14%). 

At the large catchment scale (Ouémé-Bonou), sediment yield has decreased ( 25% for the 
climate scenarios and 57% for the land use scenarios) and organic nitrogen load has increased 
(100% for the climate scenarios and 175% for the land use scenarios) in reference to the meso scale 
catchment (Donga-Pont). 

Li et al. [22] modeled the hydrological impact of land use change in the Niger and the Lake 
Chad basins (West Africa) and found that a deforestation percentage below 50% has no significant 
impact on the stream flow, but a total deforestation increases the annual stream runoff by 35%–
65%. This finding is very contrasting the results obtained here, where a progressive conversion of 
natural vegetation to cropland to a maximum of 40% over 30 years has increased the surface runoff 
by 22%–57% and decreased the groundwater flow by 7%–18%. 

3.3. Impacts of Combined Climate and Land Use Scenarios 

In reference to the results discussed in the Sections 3.1 and 3.2, an overview of combined land 
use and climate change scenario effects on the degradation trend presented in Table 11 and Figure 
13 identified climate change as the major driver of the changes in water yield and actual 
evapotranspiration. In the meantime, land use changes raises as the major driver affecting surface 
runoff, groundwater flow, sediment yield and organic nitrogen load. Stronger effects of climate 
change were computed for the time period 2015–2019 in the Donga-Pont catchment scale, which 
have been significantly but not completely compensated by the land use change effects over the 
time period 2025–2029. 

At the Donga-Pont scale (Table 12 and Figure 14, time period 2025–2029), annual surface 
runoff may change from 8% to +17%. The decrease ( 8%) (scenarios La + A1B) was mainly 
driven by climate change, while land use change effects have mainly resulted in an increase 
(+17%) (scenarios La + B1, Lb + A1B and Lb + B1). Sediment yield increased for all the scenarios 
from 12.5% to 50%, and organic nitrogen load also has increased from 1.4% to 46% (driven by 
land use changes). Under climate change effects, water yield has changed from 9% to +1.6%, 
groundwater flow from 29% to 1% and evapotranspiration from 9% to 7.5%. 

At the Ouémé-Bonou scale (Table 12 and Figure 14, time period 2025–2029), annual surface 
runoff may change from +5.7% to +42% for all the scenarios, driven by land use change. Sediment 
yield increased for all the scenarios from 15.6% to 41%, and organic nitrogen load also has 
increased from 15% to 47% (driven by land use changes). Under climate change effects, water 
yield has changed from 14% to +0.6%, groundwater flow from 30.5% to 16% and 
evapotranspiration from 8.4% to 7%. 
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Table 11. Simulated SWAT components under land use and climate scenarios (2015 to 
2019). Deviation (in %) from the reference scenario (2000–2009) are shown in brackets. 

Donga-Pont (586 km²) 
Reference La & A1B La & B1 Lb & A1B Lb & B1 

(2000–2009) (2015–2019) (2015–2019) (2015–2019) (2015–2019) 
Rainfall (mm a 1) 1233.4 1096.7 ( 11) 1113.9 ( 10) 1096.7 ( 11) 1113.9 ( 10)

Water yield (mm a 1) 254.7 191.7 ( 21) 201.1 ( 17) 199.1 ( 18) 206.8 ( 15)
Groundwater flow (mm a 1) 117.6 74.1 ( 30) 76.6 ( 28) 74.5 ( 30) 75.1 ( 29)

Surface runoff (mm a 1) 137.2 116.4 ( 14) 123.1 ( 9) 123.5 ( 9) 130.4 ( 4) 
Act. Evapotranspiration (mm a 1) 923.7 831.7 ( 10) 841.5 ( 9) 833.6 ( 10) 843.7 ( 9) 

Sediment yield (ton ha 1 a 1) 0.4 0.5 (20) 0.4 ( 8) 0.5 (15) 0.4 (7) 
Organic N load (kg ha 1 a 1) 0.7 0.5 ( 29) 0.6 ( 10) 0.7 (0) 0.7 (3) 
Ouémé-Bonou (49,256 km²)  

Rainfall (mm a 1) 1138.9 1035.2 ( 9) 1045.2 ( 8) 1035.2 ( 9) 1045.2 ( 8) 
Water yield (mm a 1) 224.6 195.9 ( 13) 194.1 ( 14) 201.1 ( 10) 200.1 ( 11)

Groundwater flow (mm a 1) 147.6 120.2 ( 19) 116.0 ( 21) 113.9 ( 23) 109.5 ( 26)
Surface runoff (mm a 1) 77.0 75.7 ( 2) 78.1 (1) 87.3 (13) 90.6 (18) 

Act. Evapotranspiration (mm a 1) 794.8 730.8 ( 8) 743.4 ( 6) 726.2 ( 9) 738.1 ( 7) 
Sediment yield (ton ha 1 a 1) 0.3 0.4 (9) 0.3 (6) 0.4 (25) 0.4 (22) 
Organic N load (kg ha 1 a 1) 1.2 1.3 (13) 1.3 (9) 1.5 (29) 1.5 (26) 

Figure 13. Simulated trends under land use and climate scenarios (2015 to 2019).  
(a) Donga-Pont; (b) Ouémé-Bonou. 

 
(a) 

 
(b) 

Regardless the modeling scale, the simulated impacts for the land use and climate change 
scenarios, over the simulated period 2000 to 2029 (30 years) may be summarized as follow: (1) 
surface runoff, groundwater flow, sediment and organic nitrogen load are found mainly sensitive to 
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land use change with roughly 8% to 50% of changes; and (2) water yield and evapotranspiration 
are found more sensitive to climate change with roughly 31% to +2% of changes as consequence 
of rainfall reduction (cf. Section 2.3). 

Table 12. Simulated SWAT components under land use and climate scenarios (2025 to 
2029). Deviation (in %) from the reference scenario (2000–2009) are shown in brackets. 

 

Donga-Pont (586 km²) 
Reference La & A1B La & B1 Lb & A1B Lb & B1 

(2000–2009) (2025–2029) (2025–2029) (2025–2029) (2025–2029) 
Rainfall (mm a 1) 1233.4 1116.0 ( 10) 1138.0 ( 8) 1116.0 ( 10) 1138.0 ( 8) 

Water yield (mm a 1) 254.7 221.9 ( 9) 244.9 (1) 221.8 ( 9) 246.7 (2) 
Groundwater flow (mm a 1) 117.6 95.5 ( 10) 107.0 (1) 75.0 ( 29) 87.4 ( 18)

Surface runoff (mm a 1) 137.2 125.1 ( 8) 136.5 (1) 145.9 (7) 158.4 (17) 
Act. Evapotranspiration (mm a 1) 923.7 857.4 ( 8) 847.3 ( 9) 854.7 ( 8) 845.2 ( 9) 

Sediment yield (ton ha 1 a 1) 0.4 0.5 (13) 0.5 (15) 0.6 (45) 0.6 (50) 
Organic N load (kg ha 1 a 1) 0.7 0.7 (1) 0.8 (9) 1.0 (36) 1.0 (46) 
Ouémé-Bonou (49,256 km²)  

Rainfall (mm a 1) 1138.9 1041.5 ( 9) 1060.9 ( 7) 1041.5 ( 9) 1060.9 ( 7) 
Water yield (mm a 1) 224.6 193.3 ( 14) 215.8 ( 4) 201.6 ( 10) 223.3 ( 1) 

Groundwater flow (mm a 1) 147.6 111.9 ( 24) 124.1 ( 16) 102.6 ( 30) 113.8 ( 23)
Surface runoff (mm a 1) 77.0 81.4 (6) 91.7 (19) 99.0 (29) 109.6 (42) 

Act. Evapotranspiration (mm a 1) 794.8 740.4 ( 7) 734.6 ( 8) 733.0 ( 8) 728.3 ( 8) 
Sediment yield (ton ha 1 a 1) 0.3 0.4 (16) 0.4 (22) 0.4 (34) 0.5 (41) 
Organic N load (kg ha 1 a 1) 1.2 1.4 (15) 1.5 (25) 1.6 (37) 1.7 (47) 

Figure 14. Simulated trends under land use and climate scenarios (2025 to 2029).  
(a) Donga-Pont; (b) Ouémé-Bonou. 

 
(a) 

 
(b) 
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In addition, the results suggest that variables such as surface runoff, groundwater flow, sediment 
and transported nutrients, mainly sensitive to land use change are significantly affected by scale-
dependent rate of agricultural lands, while variables such as water yield and evapotranspiration, 
mainly sensitive to climate change, have changed almost similarly at both scales. An application of 
the conceptual semi-distributed model UHP-HRU (Universal Hydrological Program-Hydrological 
Response Unit) in the same study area, using the physical-based model SIMULAT-H as  
benchmark [9], has led to a similar conclusion that water yield is more influenced by climate than 
land use, which more affects runoff components (surface runoff vs. interflow and base flow). 
Results of scenario analysis from the same work [9] revealed that the amount of renewable water 
decreases during the period 2001–2049 in both climate IPCC SRES scenarios A1B and B1, which 
were also used in the present study. 

Sediment yield was more important at the Donga-Pont catchment scale, ranging from 0.4 to  
0.6 ton·ha 1·a 1 against 0.32 to 0.45 ton·ha 1·a 1 at the Ouémé-Bonou catchment scale. This may 
be explained by decreases of retrained eroded particles at large scale, due to sequestration in 
the inland valleys, which are important at large scales [9]. According to Vanmaercke et al. [66] 
and de Vente et al. [67], high erosion rates are often observed at the local scale, but sediment 
yield, which is the net transport out of the catchment, decreases with increasing size of the 
catchment. This is consistent with the results obtained. 

The simulated organic nitrogen yield for the Ouémé-Bonou catchment (roughly 1.2 to 1.7 
ton·ha 1·a 1) was almost twice the computed amount for the Donga-Pont catchment (roughly 0.5 to 
1 ton·ha 1·a 1). This may be the consequence of the higher rate of agricultural lands in the  
Donga-Pont catchment, resulting in poorer topsoils in terms of humus and organic matters  
rates available. 

Figure 15. Impacts of land use and climate change on Organic Nitrogen patterns in the 
Ouémé-Bonou catchment (49,256 km2). 

 

Figure 15 shows organic nitrogen load patterns for the combined scenarios (La & A1B), (La & B1), 
(Lb & A1B) and (Lb & B1) from 2000 to 2030 within the Ouémé-Bonou catchment. In accordance 
with the land use dynamic, the simulated pattern reflects higher and increasing degradation in the 
agricultural land. Surface runoff varies from 0 to 350 mm·a 1, sediment yield varies from 0 to  
10 ton·ha 1·a 1, and lost soil organic nitrogen varies from 0 to 20 kg·ha 1·a 1. Lost soil organic 
nitrogen shows higher dynamic and more threatened areas compared to sediment yield. This is 
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completely consistent with the findings in section 3.3. As land use change was identified as the 
major driver of the ongoing land degradation, the scenario Lb (pessimistic, weak national economy, 
uncontrolled settlement and farmland development, 3.5% population growth per year) must be 
avoided in order to exclude the effects simulated by the combinations (Lb & A1B) and (Lb & B1) 
for which larger threatened areas are shown in the figures. 

In another study, SWAT was applied in the upper Ouémé catchment to evaluate the effects of 
climate change and land use change on soil erosion [9,15]. In their combined land use and climate 
scenarios, the soil erosion rates increases with a large variability within the study area, which 
shows the high impact of land use change. The study has concluded that in areas with a high 
potential of cropland expansion, future sediment yield will be driven by land use change and may 
therefore strongly increase. Conversely, in the areas with a low potential for cropland expansion 
and strong reductions in rainfall, future sediment yield may decrease.  

These findings are consistent with the results presented in this study, which furthermore 
discussed aspects of soil organic nutrients. 

4. Conclusions 

Soil and water are essential natural resources, available in limited quantities, but are nowadays 
dangerously exposed to climate and land use change [33]. Balancing the future degradation 
requires a sufficient understanding of processes behind at different scales [33], a task that may not 
be possible without an overriding of difficulties related to data availability in a data-poor 
environment such as Benin. 

In this work, a regionalization methodology is used to overcome two difficulties in model setup 
in the Ouémé catchment: parameter scale-effects and associated uncertainty issues for large scale 
model application [32] and the lack and non-accurateness of boundary condition data (e.g., stream  
water-sediment-nutrient measurements). The SWAT model was applied using scale dependent and 
regression-based parameter models to simulate climate and land use change impacts on water yield, 
sediment and nutrient loads in Benin at the meso and the regional scale (49,256 km²). 

The results revealed significant and increasing impacts over years. Surface runoff, groundwater 
flow, sediment and organic nitrogen load were affected by land use change (as dominant effects) of 

8% to +50%, while water yield and evapotranspiration were affected by climate change (as 
dominant effects) of 31% to +2%. These rates may be reached gradually over years and according 
to the scenario data used. It was found that variables such as sediment and soil nutrients, mainly 
sensitive to land use change were likely functions of scale-dependent cropland rates. Furthermore, 
higher sediment yields were associated with higher scale-dependent rate of croplands, while higher 
organic nitrogen loads were associated with higher scale-dependent rate of natural vegetations. 
Partly the effect of climate change (decrease in surface runoff) and land use change (increase in 
surface runoff) balance out, resulting in a complex reaction of the system to Global Change. These 
results are consistent with findings of Hiepe [15] and Speth et al. [9]. Nevertheless, it is clear that 
land use change acts on shorter time scales than climate change causing a higher impact of land use 
change in the next years. 
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This work is a significant contribution for supporting sustainable management strategies to drive 
stronger economic development that considers controlled settlements, controlled farmland 
extension, less pressures on natural vegetations, and sustainable farming system managements. The 
study reveals the relevancy and the efficiency of the modeling strategy used for bridging the data 
gap, since the results are consistent with previous findings within the study area. Future works 
should focus on the interaction between uncertainties associated with the scenario data and the 
model structural errors. This will help to clearly quantify the uncertainties in the simulated impacts 
which are not investigated in this work. 
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Vulnerability Assessment of Environmental and Climate 
Change Impacts on Water Resources in Al Jabal Al Akhdar, 
Sultanate of Oman 
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Timothy O’Higgins 

Abstract: Climate change and its consequences present one of the most important threats to water 
resources systems which are vulnerable to such changes due to their limited adaptive capacity. 
Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, 
are vulnerable to the potential adverse impacts of environmental and climate change. Besides 
climatic change, current demographic trends, economic development and related land use changes 
are exerting pressures and have direct impacts on increasing demands for water resources and their 
vulnerability. In this study, vulnerability assessment was carried out using guidelines prepared by 
United Nations Environment Programme (UNEP) and Peking University to evaluate four components 
of the water resource system: water resources stress, water development pressure, ecological 
health, and management capacity. The calculated vulnerability index (VI) was high, indicating that 
the water resources are experiencing levels of stress. Ecosystem deterioration was the dominant 
parameter and management capacity was the dominant category driving the vulnerability on water 
resources. The vulnerability assessment will support policy and decision makers in evaluating 
options to modify existing policies. It will also help in developing long-term strategic plans for 
climate change mitigation and adaptation measures and implement effective policies for sustainable 
water resources management, and therefore the sustenance of human wellbeing in the region. 

Reprinted from Water. Cite as: Al-Kalbani, M.S.; Price, M.F.; Abahussain, A.; Ahmed, M.;  
O’Higgins, T. Vulnerability Assessment of Environmental and Climate Change Impacts on Water 
Resources in Al Jabal Al Akhdar, Sultanate of Oman. Water 2014, 6, 3118-3135. 

1. Introduction 

Freshwater resources are key ecosystem services which sustain life and all social and economic 
processes. Their disruption threatens the health of ecological systems, people’s livelihoods and 
general human wellbeing. However, water resources are being degraded as a result of multiple 
interacting pressures [1], particularly environmental and climate changes. The Fourth and Fifth 
Assessment Reports of the Intergovernmental Panel on Climate Change (IPCC) played a major role 
in framing understanding of likely impacts of climate change on human society and natural 
systems, making it clear that “water is in the eye of the climate management storm” [2–4]. 
Different possible threats resulting from anthropogenic climate change include temperature increases, 
shifts of climate zones, sea level rise, droughts, floods, and other extreme weather events [5]. The 
Earth’s surface temperature has increased by about 0.5 °C during the last two decades, and a rise 
with similar amplitude is expected up to 2025, with direct effects on the global hydrological cycle, 
impacting water availability and demand [2–4]. Negative impacts on water availability and on the 
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health of freshwater ecosystems will have negative consequences for social and ecological systems 
and their processes [6]. For example, with an approximately 2 °C global-mean temperature rise, 
around 59% of the world’s population would be exposed to irrigation water shortage [7]. 

Besides climate change impacts, other drivers of environmental changes such as demographic 
trends, economic development and urbanization and related land-use changes are exerting pressures 
and increase demand for water resources [8]. Together, these drivers are stressing water resources 
far beyond the changes caused by natural global climatic changes in the recent evolutionary past. 
As a result of rapid population growth and economic development, and mismanagement of water 
resources, these drivers exert pressures on water resources, changing them both spatially and 
temporally and causing imbalances between supply and demand in hydrological systems [9]. The 
net effects can be translated into increases in the vulnerability of water resources systems. These 
systems are especially vulnerable to such changes because of their limited adaptive capacity, which 
can create major challenges for future management of water resources for human and ecosystem 
needs [10]. Therefore, there is a need to assess the vulnerability of water resources in order to 
enhance management capacity and adapt measures to cope with these changes for sustainable water 
resources use and management. 

Vulnerability is a term commonly used to describe a weakness or flaw in a system; its 
susceptibility to a specific threat and harmful event. There have been many efforts to use the 
concept across different fields which are often location or sector specific. A variety of definitions 
of vulnerability have been proposed in the climate change literature, e.g., [11–18]. Common to 
most is the concept that vulnerability is a function of the exposure and sensitivity of a system to a 
climate hazard, and the ability to adapt to the effects of the hazard [15,19]. From a social point of 
view, vulnerability is defined as the exposure of individuals or collective groups to livelihood stress 
as a result of the impacts of such environmental change or climate extremes [17,20]. In this 
context, vulnerability can be explained by a combination of social factors and environmental risk, 
where risk derives from physical aspects of climate-related hazards exogenous to the social  
system [21–24]. Vulnerability to climate change is generally understood to be a function of a range 
of biophysical and socioeconomic factors. It is considered a function of wealth, technology, 
education, information, skills, infrastructure, access to resources, and stability and management 
capabilities [14,25]. The IPCC has defined vulnerability to climate change as the degree to which a 
system is susceptible to, and unable to cope with, adverse effects of climate change, including 
climate variability and extremes [26,27]. Vulnerability is also a function of the character, 
magnitude, and rate of climate change and variation to which a system is exposed, its sensitivity, 
and its adaptive capacity [28,29]. It is widely seen as an integrative concept that can link the social 
and biophysical dimensions of environmental change [30,31]. 

Nevertheless, “vulnerability” means different things to different researchers. From a water 
resources perspective, vulnerability has been defined as “the characteristics of water resources 
system’s weakness and flaws that make the system difficult to be functional in the face of 
socioeconomic and environmental change” [10] (p. 2). Thus, water resources vulnerability assessment 
is an investigative and analytical process to evaluate the sensitivity of a water system to potential 
threats and identify challenges in mitigating the risks associated with negative impacts, in order to 
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support water resources conservation and management under climate and environmental  
changes [10]. It is a tool to identify potential risks, helping to analyse specific aspects that 
contribute to overall risk. It therefore provides useful information to the manager about which 
components should receive more focus, in order to improve water management capacity towards 
sustainability in adapting to the changing climate and environmental factors. 

Most water-stressed arid countries are vulnerable to the potential adverse impacts of climate 
change; particularly increases in temperatures, less and more erratic precipitation, drought and 
desertification. This is especially true in arid mountain regions, particularly Al Jabal Al Akhdar 
where a unique set of water management practices has enabled the development and survival, over 
centuries, of an agro-pastoral oasis social-ecological system. This study was conducted to assess 
the environmental and climate change impacts on water resources of Al Jabal Al Akhdar since no 
vulnerability assessments have been previously conducted in Oman or in this fragile mountain ecosystem. 

The overall aim of this study was to estimate the vulnerability index of water resources of Al 
Jabal Al Akhdar to climate and environmental changes, to establish to what extent these resources 
are vulnerable and identify the major risks and levels of stress it faces with regard to water stress, 
development pressure, ecological health and management capacity. These are essential components 
for computing vulnerability index and assessing water resources in the region. The results should 
provide decision-makers with options to evaluate the current situation, modify existing policies, 
and implement adaptation and mitigation measures for sustainable water resources management in 
the study area. 

2. The Study Area 

Al Jabal Al Akhdar (Green Mountain) is located in the central part of the northern western  
Al-Hajar Mountains of the Sultanate of Oman (Figure 1), in the highest portion of 1500 to 3000 m 
above sea level [32]. It is a long-established agro-pastoral oasis ecosystem which has supported 
communities for centuries [32]. Until the late 20th century, this social ecological system has been 
geographically isolated and, compared to many places, relatively closed to the outside world. 
Historically, water availability has connected the agro-pastoral system and dictated the bounds of 
agricultural development and the human development. The area is also of particular cultural 
significance for Omani people for its location, topography, agricultural terraces, biodiversity  
and climate. 

Al Jabal Al Akhdar has a Mediterranean climate. Because of its altitude, temperatures are some 
10 to 12 °C lower than in the coastal plains. In general, mean monthly temperatures drop during 
winter to below 0 °C and rise in summer to around 22 °C. Temperature records from Saiq 
Meteorology Station (the only one in the area, part of Oman’s national climate monitoring 
network), from 1979 to 2012 show mean monthly air temperatures from February to April from 
12.1 to 18.7 °C and around 25 °C during summer (July and August). Minimum temperatures 
ranged from 0.6 °C in January to 15.9 °C in July, and maximum temperatures from 20.3 °C in 
January to 33.5 °C in July [33]. Rainfall is highly variable and irregular with an annual mean of 
about 250–400 mm [33] and is the main source of fresh water. There are two distinct rainfall 
seasons: the winter season from mid-November through March, and the summer season from  
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mid-June through mid-September. From 1979 to 2012, the average annual rainfall was 295.3 mm, 
with the highest monthly averages of 45.8 and 42 mm during August and July; and the lowest of 
8.8 and 8.2 mm during October and November, respectively [33]. 

Figure 1. Oman map showing the location of Al Jabal Al Akhdar (in blue rectangle). 

 

Agriculture is the main economic activity, providing the basis of livelihoods for around 70% of 
the inhabitants [34]. Although the sector does not contribute much to the national economy (only 
3.7% of the total Oman GDP), it is the main dominant water consumer in Oman including the study 
area (more than 92% of the total available water) [35]. The area produces a variety of fruits, 
particularly pomegranates and roses (grown for the extraction of rose water), which are sold in the 
local markets as the major sources of income for farmers. Annual crops such as garlic, onion, 
maize, barley, oats and alfalfa are sometimes planted in the terraces depending on the availability 
of water. The area also has several endangered or vulnerable species of flora and fauna that are not 
found elsewhere in Oman [36]. 
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Livestock husbandry is also an important part of the agriculture in the area, for food and income 
through the sale of fibre (goat and sheep hair), and provides a source of manure for the cultivation 
of crops. Goats are the main livestock in local communities, representing more than 80% of the 
total animal units [37]. 

Due to its relatively cool weather, especially during summer, and the construction of asphalted 
access road up to the mountain in 2006, followed by the construction of hotels, many tourists visit 
the area, mainly to see natural landscapes and agricultural terraces and to camp. There has been an 
increase in the number of hotels in the study area, from one in 2006 to four in 2014, plus other 
holiday apartments and rest houses. The number of tourists has increased by 58% from 85,000 in 
2006 to 134,000 in 2013 [37]. 

Natural freshwater resources in Al Jabal Al Akhdar are of three types: groundwater (wells), lotic 
resources (natural springs and aflaj) and lentic resources (man-made dams) [38]. Groundwater is 
accessed via wells established by a government agency which supplies the water to the 
communities through networks or water trucks. These wells are the main local source of water for 
drinking and domestic purposes (municipal, commercial) in the area. Aflaj are surface and/or 
underground channels fed by groundwater or a spring, or streams, built to provide water to the 
farming communities. The aflaj water is managed and distributed to farming areas by local people 
with no involvement of government in their organizational structure. Dams are artificial structures 
which are constructed by the government to harvest rainy water. Aflaj and dam water are mainly 
used for agriculture and livestock. 

Al Jabal Al Akhdar has limited and highly variable water supplies: the most significant 
parameters influencing freshwater availability and causing environmental stress are the amount and 
frequency of rainfall. According to the climate change projection for the country [39], the 
variability of rainfall is expected to further increase, adding more uncertainty and complication to 
the planning and management of water resources. Furthermore, the population of the area has 
grown rapidly, from less than 2000 in 1970 to over 7000 in 2010 [40]. Socioeconomic development 
and related land-use changes due to the expansion of infrastructure and services, construction and 
commercial activities and urbanization have direct impacts in terms of increasing demand for water 
resources [37]. The establishment of settlements has been influenced strongly by the availability of 
water for drinking and domestic uses; all people have access to safe and good quality drinking 
water [37]. Together, the anthropogenic activities and climate change have affected the availability 
of water resources, and if these trends continue, the area’s ecosystems and residence’s households 
will be further affected. Vulnerability assessment of the environmental and climate change impacts 
on water resources is therefore essential to inform sustainable water resources management in  
the area. 

3. Methodology 

The methodological guidelines for “Vulnerability Assessment of Freshwater Resources to 
Environmental Change”, developed by United Nations Environment Programme (UNEP) and 
Peking University [10] were used to assess the vulnerability of water resources of Al Jabal Al 
Akhdar to environmental change and climate impacts. According to the guidelines, the vulnerability 
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of water resources can be assessed from two perspectives: the main threats to water resources and 
their development and utilization dynamics; and the region’s challenges in coping with these 
threats. The threats can be assessed in terms of resource stresses (RS), development pressure (DP), 
ecological health (EH) and management capacity (MC). Thus, the vulnerability index (VI) of the 
water resources can be expressed as: VI = f (RS, DP, EH, MC) [10]. 

Each component of VI has several parameters: RS = f [water stress (RSs) and water variation 
(RSv)]; DP = f [water exploitation (DPs) and safe drinking water inaccessibility (DPd)]; EH = f 
[water pollution (EHp) and ecosystem deterioration (EHe)]; MC = f [water use inefficiency (MCe), 
improved sanitation inaccessibility (MCs), and conflict management capacity (MCg)]. In 
accordance with the vulnerability assessment guidelines, a number of governing equations were 
applied to estimate these parameters and VI (Table 1). 

RS determines the water resources availability to meet the pressure of water demands for the 
growing population taking into consideration the rainfall variability. Therefore, it is influenced by 
the renewable water resources stress (RSs) and water variation parameter resulting from long-term 
rainfall variability (RSv). RSs is expressed as per capita water resources and usually compared to 
the internationally agreed water poverty index of per capita water resources (1700 m3/person/year) [10]. 
As Oman is part of West Asia, characterized by scarce water resources, the more appropriate and 
realistic value of 1000 m3/person/year [9] was used. RSv was estimated by the coefficient of 
variation (CV) of the rainfall record from 1979 to 2012, obtained from Saiq Meteorology Station. 
The CV was estimated by the ratio of the standard deviation of the rainfall record to the average 
rainfall (Table 1). 

DP was estimated in terms of the overexploitation of water resources (DPs) and the provision 
and accessibility of safe drinking water supply (DPd). DPs was estimated by the ratio of the total 
water demands (domestic, commercial, agriculture) to the total renewable water resources  
(Table 1). DPd is defined here as the provision of adequate drinking water supplies to meet the 
basic needs for the society, in regard to how the water development facilities address the population 
needs [9]. The lack of safe water accessibility was estimated by the ratio of the percentage of 
population lacking accessibility to the size of the population (Table 1). 

EH was measured in terms of the water quality/water pollution parameter (EHp) and the 
ecosystem deterioration parameter (EHe). EHp was estimated by the ratio of the total untreated 
wastewater discharge in water receiving systems to the total available renewable water resources 
(Table 1). The amount of untreated wastewater is estimated as the difference between the generated 
wastewater collected by the system and amount of wastewater that received treatment. EHe is 
defined in this study as the ratio of land area without vegetation coverage (i.e., total land area 
except that covered with pastures and cultivated areas) to the total land area of Oman (309,500 km2) 
(Table 1). 
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Table 1. Equations used for calculation of all categories and parameters of 
vulnerability index of water resources in the study area. 

Category Parameter Equation Description 

Resource Stress (RS) 
RSs RSs = (1000  R)/1000 

R: Total renewable water resources per capita 
(m3/person/year) 

RSv 
RSv = CV/0.3  

CV = S/  
CV: Coefficient of variation  

: Mean rainfall (mm) S: Standard deviation 

Development 
Pressures (DP) 

DPs DPs = WRs/WR 
WRs: Total water demands  
WR: Total renewable water resources 

DPd DPd = Pd/P 
Pd: Population without access to improved 
drinking water sources  
P: Total population of the area 

Ecological Health 
(EH) 

EHp EHp = (WW/WR)/0.1 
WW: Total untreated wastewater  
WR: Total renewable water resources 

EHe EHe = Ad/A 
Ad: Land area without vegetation coverage  
A: Total area of the country 

Management Capacity 
(MC) 

MCe 
MCe = (WEwm  WE)/ 

WEwm 
WE: GDP value produced from 1 m3 of water  
WEwm: Mean WE of West Asia countries 

MCs MCs =Pd/P 
Pd: Population without access to improved 
sanitation P: Total population of the area 

MCg MCg = parameter matrix Matrix scoring criteria (Table 2) 

 

n: number of parameter category  
mi: number of parameters in ith category  
Xij: value of jth parameter in ith category  
Wij: Weight given to jth parameter in ith category 
Wi: Weight given to ith category 

MC assesses the vulnerability of water resources by evaluating the current management capacity 
to cope with three critical issues: efficiency of water resources use; human health in relation to 
accessibility to adequate and safe sanitation services; and overall conflict management capacity. 
Thus, MC was measured with Water use inefficiency parameter (MCe), Improved Sanitation 
inaccessibility parameter (MCs), and Conflict Management Capacity Parameter (MCg). MCe was 
estimated in terms of the financial contribution to gross domestic product (GDP) of one cubic 
meter of water in any of the water consuming sectors compared to the world average for a selection 
of countries [10]. Since the agriculture sector is the major consumer of water in Oman, including 
the study area, it was used to indicate the financial return from the water use. Therefore, MCe was 
calculated using US $40 as the mean GDP value produced from 1 m3 of water for the countries of 
West Asia [9] (Table 1). MCs was used as a typical value to measure the capacity of the 
management system to deal with livelihood improvement in reducing pollution levels. Improved 
sanitation was defined here as facilities that hygienically separate human excreta from human, 
animal and insect contact, including sewers, septic tanks, flush toilets, latrines and simple pits [10]. 
MCs was estimated as the ratio of proportion of the population without accessibility to improved 
sanitation facilities to the total population of the area (Table 1). MCg demonstrates the capacity of a 
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water resources management system to deal with conflicts. A good management system can be 
assessed by its effectiveness in institutional arrangements, policy formulation, communication 
mechanisms, and implementation efficiency [10]. The parameter was defined here as the capacity 
of the area to manage competition over water utilization among different consuming sectors. MCg 
was determined based on water assessment survey [37] and expert consultation [41] using conflict 
management capacity scoring criteria ranging from 0.0 to 0.25 (Table 2), taking into consideration 
the interrelation of all variables in this table. These aspects were assigned scoring criteria ranging 
from 0 to 1 giving weights to each parameter. 

Table 2. Conflict management capacity parameter assessment matrix (Source: [10]). 

Category of 

Capacity 
Description 

Scoring Criteria 

0.0 0.125 0.25 

Institutional 

capacity 

Trans-boundary institutional 

arrangement for coordinated 

water resources management 

Solid institutional 

arrangements 

Loose institutional 

arrangements 

No existing 

institutions 

Agreement 

capacity 

Writing/signed policy/ agreement 

for water resources management 
Concrete/detailed agreement General agreement only No agreement 

Communication 

capacity 

Routine communication 

mechanism for water resources 

management (annual  

conferences, etc.) 

Communications at policy 

and operational levels 

Communications only at 

policy level or  

operational level 

No communication 

mechanism 

Implementation 

capacity 

Water resources management 

cooperation actions 

Effective implementation of 

basin-wide river 

projects/programs 

With joint project/ program, 

but poor management 

No joint project 

program 

Because the process of determining relative weights can be biased, making it difficult to 
compare the final results, equal weights were assigned among the parameters in the same category, 
and also among different categories. According to the guidelines [10], the weight of 0.25 was 
assigned across all categories (RS, DP, EH, and MC). For parameters RSs, RSv, DPs, DPd, EHp and 
EHe, the weight of 0.5 was applied, and for parameters MCe, MCs, and MCg, the weight of 0.33 
was assigned. The total weights given to all parameters in each category should be equal to 1, and 
the total weights given to all categories should be also equal to 1 [10]. 

The vulnerability index (VI) was finally estimated based on the four categories using the 
equation in Table 1. VI provides an estimated value ranging from zero (non-vulnerable) to one 
(most vulnerable) to determine the severity of the stress being experienced by the water resources 
of the study area. A high VI value shows high resource stresses, development pressures and 
ecological health, and low management capacities. 
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4. Results and Discussion 

4.1. Resource Stresses 

4.1.1. Water Stress Parameter 

The calculation of water stress for Oman, including the study area, shows a critical water stress  
(RSs = 0.58) (Table 3) based on the estimated total renewable water resources per capita of  
422.5 m3/person/year [42]. The increase in population and rapid socioeconomic development in Al 
Jabal Al Akhdar exert pressures on water resources: domestic water consumption increased from 
150,000 m3 in 2001 to 580,000 m3 in 2012; an annual increase of 35% per year [37]. Much of this 
increase may be due to the burgeoning tourist industry. For 1985, 1995, and 2005, the calculated 
RSs for Oman were 0.0, 0.30, and 0.36 based on the estimated per capita renewable water resources 
of 1029.35, 697.76 and 635.84 m3/person/year, respectively [9]. 

Table 3. Calculated Vulnerability Index with various categories and parameters for the 
water resources of the study area. 

Category Resource Stress Development Pressure Ecological Health Management Capacity 
Parameter RSs RSv DPs DPd EHp EHe MCe MCs MCg 
Calculated 0.580 0.330 0.210 0.000 0.140 0.940 1.000 0.000 0.950 

Weight in Category 0.50 0.50 0.50 0.50 0.50 0.50 0.33 0.33 0.33 
Weighted 0.290 0.165 0.105 0.000 0.070 0.470 0.330 0.000 0.314 

Component Total 0.4550 0.1050 0.5400 0.6435 
Weight for Category 0.25 0.25 0.25 0.25 

Weighted 0.1138 0.0263 0.1350 0.1609 
Overall Score 0.436 (High) 

Notes: Water Stress (RSs); Water Variation (RSv); Water Exploitation (DPs); Safe Drinking Water 
Inaccessibility (DPd); Water Pollution (EHp); Ecosystem Deterioration (EHe); Water Use Inefficiency (MCe); 
Improved Sanitation Inaccessibility (MCs); Conflict Management Capacity (MCg). 

4.1.2. Water Variation Parameter 

Rainfall amount and availability are the dominant factors in the supply of water resources in the 
study area. Analysis of rainfall data records from 1979 to 2012 resulted in a water variation 
parameter (RSv) of 0.33, based on the estimated CV of 0.10, indicating low rainfall variability. The 
methodology guidelines [9] designate a set of rainfall variation values for the coefficient of 
variation as CV = 0.3 or as a CV > 0.3. When CV is > 0.3, RSv is assigned a highest value of 1, 
indicating large rainfall variation in time and space; a CV less than 0.3 reflects low variability. 
However, the study area experienced increasing temperatures over the same period (Figure 2). 
Minimum, mean and maximum temperatures increased at rates of 0.79, 0.27 and 0.15 °C per 
decade, respectively. Analysis of rainfall data showed a reduction in water availability, with a 
general decrease in total rainfall from 1979 to 2012 (Figure 2). Over this period, the average 
rainfall was 296.7 mm; the highest total was in 1997 (901 mm) and annual rainfall decreased 
subsequently to 202.8 mm in 2012, with an overall decrease in total rainfall at a rate of 9.42 mm 
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per decade; indicating that the area is vulnerable to climate change as it is an arid mountain region. 
Projection of future climate in Oman using the IPCC A1B scenario shows an increase in 
temperature and a decrease in rainfall over the coming decades [39]. 

Figure 2. Trends in mean air temperature (Tmean) and annual rainfall in Saiq 
Meteorology Station (World Meteorological Organization (WMO) Index: 41254, 
Universal Transverse Mercator (UTM) coordinates Latitude: 23°04'28.33" N, 
Longitude: 57°38'46.63" E, Elevation: 1986 m) from 1979 to 2012 (Data source: [33]). 

 

4.2. Water Development Pressures 

4.2.1. Water Exploitation Parameter 

The assessment of water development pressures indicated that the study area suffers from 
critical conditions in the development of water resources as determined by the water exploitation 
parameter (DPs = 0.21) based on total water demands of 14 million m3/year and the available total 
water resources of 66 million m3/year [35] (Table 3), resulting in water shortages for domestic and 
agricultural purposes. There have been increases in the total population and socioeconomic 
development as well as increases in construction and commercial activities including hotels, and 
therefore water consumption by different sectors, causing an imbalance between supply and 
demand in the absence of the implementation of any conservation and management practices. 
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4.2.2. Safe Drinking Water Inaccessibility Parameter 

The calculated safe drinking water inaccessibility parameter (DPd) was zero since the 
fundamental needs of the population for water to live are met. There is sufficient infrastructure for 
providing drinking water throughout the study area; all people have access to safe drinking water. 
The government supplies drinking water to all households via groundwater wells, and a piped 
desalinated water project is in progress, to increase the availability of drinking water in the area. 

4.3. Ecological Health 

4.3.1. Water Pollution Parameter 

The estimated water pollution parameter value was (EHp = 0.14) (Table 3) based on the total 
untreated wastewater of 945,250 m3/year [43] and the total available water resources of 66 million 
m3/year, given that the urban water usage is 1.1 million m3/year [35]. The analysis indicates low 
water pollution risks, which may be attributed to investments in wastewater treatment facilities: the 
government has established three wastewater treatment plants in the area with tertiary treatment 
levels and some sewerage systems, and all modern houses and other establishments have septic 
tanks. However, more investments are needed to increase the proportion of sewer networks 
connected with the treatment plants. Moreover, some septic tanks in old houses have unlined 
foundations [43], and need to be reconstructed to avoid pollution to groundwater aquifers. 

4.3.2. Ecosystem Deterioration Parameter 

Ecosystem deterioration due to the absence of adequate vegetation cover and modified natural 
landscape is a critical parameter in Oman including the study area, causing severe problems in 
supporting the functioning of ecosystems. EHe was calculated as 0.94, based on the evaluation 
report of the land degradation and desertification in Arab Region [44] including Oman, as there is 
no available data on ecosystem deterioration for Al Jabal Al Akhdar. There are some indications of 
ecosystem deterioration in the study area due to decreased rainfall over the last three decades and 
therefore a decline of groundwater levels and the drying up of most aflaj [37]. The population 
growth, associated with anthropogenic activities and socioeconomic development, and overgrazing, 
as well as water overconsumption and expansion of land uses through sustained urbanization, have 
contributed directly or indirectly to the vulnerability of the water resources. The world map of the 
status of human-induced soil degradation [45] shows that the primary factor contributing to soil 
degradation in the Al-Hajar Mountains is loss of topsoil through water erosion, with 25%–50% of 
the area affected by a moderate degree of degradation. According to the study of desertification in 
the Arab Region by ACSAD (1997) as reported by [46], 89% of Oman was considered as 
desertified and 7.67% as vulnerable to desertification. 
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4.4. Management Capacity 

4.4.1. Water Use Inefficiency Parameter 

Based on the 2013 GDP of Oman (US$80.6 billion) [47] and the total water withdrawal of  
1321 million m3/year [42], the calculated water use inefficiency (MCe) was zero. This is in agreement 
with [9] which concluded that Oman showed the greatest efficiency gains (decreasing inefficiency) 
in the West Asia region between 1985 and 2005 (decrease of 25.37%). This was attributed to the 
uptake of more modern and efficient irrigation infrastructure systems. 

However, this parameter was not calculated for the study area since it is based on the country 
scale and cannot be estimated at a regional scale. In Al Jabal Al Akhdar, farmers still use a 
traditional method of irrigation by flooding, with no application of modern irrigation technology or 
investments in improving irrigation infrastructure systems. Based on water assessment survey [37] 
and personal communication [41] with the author of the UNEP report [9] on this situation, MCe for 
the study area was estimated as 1, representing high water use inefficiency. This indicates 
unsustainable water resources management practices in the absence of a comprehensive water 
sector plan and strategy, leading to reduced water availability and increased vulnerability. 

4.4.2. Improved Sanitation Inaccessibility Parameter 

The entire population of the study area has access to sanitation facilities, such as sewer systems, 
septic tanks and wastewater treatment plants (MCs = 0) (Table 3), indicating adequate management 
regarding livelihood improvement through government investment in sanitation infrastructure. The 
availability of this infrastructure reduces pollution levels and preserves water resources, 
complemented by the implementation of policies and measures which may reduce the vulnerability 
of water resources to environmental and climate changes. However, more investments to expand 
the sewerage systems, connecting all households and other establishments to the wastewater 
treatment plants, are needed. 

4.4.3. Conflict Management Capacity Parameter 

The study area has no competition over water utilization with the neighboring regions. However, 
there is competition over water utilization between different sectors (agriculture and domestic). 
Agriculture is the dominant water consumer, with no application of conservation mechanisms and 
proper management capacity. There is also an increase in the domestic water consumption from 
groundwater wells, due to an increase in population and number of hotels and commercial 
activities, and there is no clear strategy for the development of the area [37]. Therefore, the 
assessment of MCg showed a high vulnerability situation in regard to conflict management capacity 
(MCg = 0.95) since this parameter takes into consideration the interrelation of different categories 
including institutional, agreement, communication and implementation capacity. 
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4.5. Vulnerability Index 

Based on the available data, the calculated VI is 0.436, in the range of 0.4–0.7 which is 
classified as high based on the reference sheet for the interpretation of VI [10], indicating that the 
water resources of Al Jabal Al Akhdar are highly vulnerable and experiencing high stresses. 
Ecosystem deterioration is the dominant parameter, contributing 27% (Figure 3a). The area has 
also been experiencing a high degree of water use inefficiency, conflict management capacity and 
water stress representing 19%, 18% and 17%, respectively (Figure 3a), influencing the overall 
vulnerability on water resources. Comparison of the share of the different category groups to the 
final VI showed that the management capacity contributes most to the water resources vulnerability 
and is the dominant category (37%), followed by ecological health with 31% and water resources 
stress with 26% (Figure 3b). 

Figure 3. (a) Percentage of the weighted parameters for Vulnerability Index; (b) Share  
of the percentage of the weighted categories to the final Vulnerability Index for the  
study area. 

Notes: Water Stress (RSs); Water Variation (RSv); Water Exploitation (DPs); Safe Drinking Water 
Inaccessibility (DPd); Water Pollution (EHp); Ecosystem Deterioration (EHe); Water Use Inefficiency 
(MCe); Improved Sanitation Inaccessibility (MCs); Conflict Management Capacity (MCg). 

5. Conclusions and Recommendations 

This is the first comprehensive vulnerability assessment of water resources in Al Jabal Al 
Akhdar, or Oman. The results have served to highlight which aspects of water management 
(resources stress, development pressure, ecological health, and management capacity) contribute 
most to the vulnerability of water resources and to understand the various risks and thus to suggest 
potential areas to best focus management efforts. The vulnerability assessment indicated high VI 
(0.436). Ecosystem deterioration is the dominant parameter contributing 27% to the vulnerability 
index. The water resources of the area have also been experiencing a high degree of water use 
inefficiency, conflict management capacity and water stress, influencing the overall vulnerability 
index by 19%, 18% and 17%, respectively. Management capacity is the dominant category, 
representing 37% of the category groups, driving the vulnerability of the water resources, which are 
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also highly influenced by the ecological health (31%) and water resources stress (26%). These 
could be used as indicators for the vulnerability of water resources to environmental and climate 
changes in the study area. Nevertheless, it must be recognized that due to the lack of availability of 
local data, some of the inputs to the assessment are at national scale. 

There is a clear need for policies and technical solutions to mitigate the pressures (water over 
consumption and inefficient use, ecosystem deterioration, climate change) which make the water 
resources more vulnerable. A longer term strategic development plan should be made, with a focus 
on management capacity to deal with the main threats of conflicts between water consuming 
sectors, as well as implementation of effective management practices in line with the integrated 
water resources management approach. Additional effort is needed to improve irrigation water use 
efficiency, conservation technologies, rainwater harvesting, and reuse of treated wastewater and 
grey water to relieve some of the agricultural pressures on water resources. There is also an urgent 
need for mitigation and adaptation to climate change impacts since the region is expected to face 
further increases in temperatures and decreases in rainfall over the coming decades. 

The major contribution of ecosystem deterioration to the overall index suggests that, in order to 
sustain the ecological health of the area, more efforts are needed to conserve and rehabilitate 
vegetation cover and implement best practices for land use management and strategic development. 
More investments are also required to expand sewer networks along with the effective use of 
wastewater treatment facilities to protect freshwater from pollution. Full coordination, integration 
and awareness on climate change adaptation should be strongly connected to planning, policies and 
water management programs at all levels and across all sectors. Further research is needed to 
provide local, rather than national, input data particularly on the deterioration of ecosystem and 
vegetation cover, long-term climatic data, and socioeconomic trends, to identify the main driving 
forces that increase the vulnerability of the water resources, in order to define the optimal 
approaches for climate change adaptation, to be implemented into operational and sustainable 
water resources management for the green mountain. 
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Water Resources Response to Changes in Temperature, 
Rainfall and CO2 Concentration: A First Approach in  
NW Spain 

Ricardo Arias, M. Luz Rodríguez-Blanco, M. Mercedes Taboada-Castro, Joao Pedro Nunes, 
Jan Jacob Keizer and M. Teresa Taboada-Castro 

Abstract: Assessment of the diverse responses of water resources to climate change and high 
concentrations of CO2 is crucial for the appropriate management of natural ecosystems. Despite 
numerous studies on the impact of climate change on different regions, it is still necessary to 
evaluate the impact of these changes at the local scale. In this study, the Soil and Water Assessment 
Tool (SWAT) model was used to evaluate the potential impact of changes in temperature, rainfall 
and CO2 concentration on water resources in a rural catchment in NW Spain for the periods  
2031–2060 and 2069–2098, using 1981–2010 as a reference period. For the simulations we used 
compiled regional climate models of the ENSEMBLES project for future climate input data and 
two CO2 concentration scenarios (550 and 660 ppm). The results showed that changes in the 
concentration of CO2 and climate had a significant effect on water resources. Overall, the results 
suggest a decrease in streamflow of 16% for the period 2031–2060 (intermediate future) and  
35% by the end of the 21st century as a consequence of decreasing rainfall (2031–2060: 6%; 
2069–2098: 15%) and increasing temperature (2031–2060: 1.1 °C; 2069–2098: 2.2 °C).  

Reprinted from Water. Cite as: Arias, R.; Luz Rodríguez-Blanco, M.; Taboada-Castro, M.M.; 
Nunes, J.P.; Keizer, J.J.; Taboada-Castro, M.T. Water Resources Response to Changes in 
Temperature, Rainfall and CO2 Concentration: A First Approach in NW Spain. Water 2014, 6, 
3049-3067. 

1. Introduction 

The study of the effects of climate change on the quantity and quality of water resources has 
attracted a great deal of attention in recent years, particularly at a regional and global scale [1]. 
There is a general consensus that the Earth will be subject to warming, leading to changes in global 
climate patterns [1]. Different responses to global warming are expected from different regions of 
the world. For Europe, predictions on the evolution of temperature and rainfall, based on models of 
varying resolution and uncertainty, warn of the possibility of increased aridity in the coming 
decades. This effect is particularly evident for the southern regions where future climate change is 
projected to worsen conditions in a region already vulnerable to climate variability as well as lower 
water availability [1]. In general, the models (e.g., ENSEMBLES) predict a rise in mean 
temperature and a reduction in rainfall for Spain, with an increase in the number of extreme years 
in terms of maximum temperature, flood and droughts [2,3], although there are divergences 
depending on the model and the greenhouse gas emission scenario used. Moreover, projections of 
the future evolution of rainfall are more speculative than those for temperature, especially for 
smaller regions, but rainfall patterns are expected to alter in intensity and amount [1,2]. Changes in 
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the temporal and spatial distribution of rainfall can also increase inter-annual rainfall variability as 
well as the risk of heavy rainfall events and droughts. These changes in temperature and rainfall are 
expected to impact on the hydrological cycle and alter the different processes occurring at 
catchment scale, including changes in surface runoff, evapotranspiration rates, nutrient enrichment, 
erosion and sediment transport [4,5], with concomitant effects on human activities and welfare. 
Human welfare would be impacted by changes in water supplies and demand; changes in 
opportunities for non-consumptive uses of the environment for recreation and tourism; changes in 
loss of property and lives from extreme climate phenomena; and changes in human health [1]. An 
assessment of the vulnerability of water resources to climate change allows anticipating potential 
negative impacts, and thus planning and establishing preventive actions with time.  

Various approaches to assess the effects of climate change on water resources have been used [5–8]. 
In general, studies have reported that an increase in CO2, as long as temperature and rainfall remain 
constant, will cause increases in water yield due to the marked decrease of the stomatal 
conductance of plants, thus decreasing evapotranspiration [8,9]. On the contrary, others have 
shown that higher temperatures lead to increased evaporation rates, reductions in streamflow and 
more frequent droughts [4,5,10]. All these studies indicate that catchment processes may be very 
sensitive to changes in temperature, rainfall and higher concentrations of CO2 in the atmosphere. In 
Europe, most of the investigations on climate change impact on water resources have predicted a 
general reduction in the annual streamflow (more intense in the dry season) in southern Europe due 
to lower rainfall amount and higher temperatures [4].  

The Iberian Peninsula is located in an area particularly vulnerable to climate change, where 
climate projections indicate an increase in arid conditions [1]. Several researches have evaluated 
the effects of climate change on river regimes in the Iberian Peninsula [10–12], but few studies 
have been conducted in North-Western Spain [13]. In this area, especially in Galicia, most rivers 
have little or no flow data available for such analyses. Records of river discharges are relatively 
recent in the region where water resources have been little considered, since Galicia has been 
considered to have these in abundance and water availability is not a limiting factor for economic 
and social development. This is undoubtedly the main reason why the research carried out in the 
Iberian Peninsula in this field has been focused primarily on Mediterranean, semi-arid 
environments where the scarcity of water gives rise to serious problems [14]. However, the recent 
floods in autumn 2006 and winter 2013–14 or the extended drought of summer 2007 occurred in 
Galicia caused significant ecological, economic and social impacts, highlighting the vulnerability 
of aquatic ecosystems and the resources that depend on them, e.g., aquaculture. This underlines the 
need to improve the knowledge of river dynamics as a basis for developing watershed management 
models in the region in order to prevent the risks associated with these natural phenomena, which 
seem to have increased in intensity recently [15].  

In view of the above, this study has attempted to provide an initial estimate of the effects of 
potential changes in temperature, rainfall and CO2 concentration on water resources in the Corbeira 
catchment, a minimally disturbed area located in Galicia (NW Spain). The analysis was performed 
using the Soil and Water Assessment Tool (SWAT) hydrological model. The SWAT model is 
widely used for different purposes (modelling runoff, sediment transport, nutrient, pesticides cycle, 
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etc.) around the world and has been applied to many different size catchments and under 
considerably different conditions, usually with satisfactory results [16]. Among its multiple 
applications, SWAT has been extensively used to evaluate climate change effects on hydrological 
processes at catchment scale [9,11,16,17] because of its capability to incorporate future climate 
predictions from climatic models as inputs to the model, and to account for the effects of increased 
CO2 on plant development and evapotranspiration. The interest of the study area is due to its 
location upstream from the Cecebre reservoir, which is an ecosystem of great ecological interest, 
being a EU Natura 2000 site, as well as the only source of water supply for the city of A Coruña 
and the surrounding municipalities (450,000 inhabitants). This fact gives special relevance to the 
findings of this study, from which a trend can be extracted for policy design purposes for the 
Cecebre reservoir.  

2. Materials and Methods  

2.1. Description of the Study Area 

The study site for this research is the Corbeira catchment, a headwater catchment of the Mero 
River Basin, the most important water source for the city of A Coruña, NW Spain (Figure 1a). This 
catchment has an area of 16 km2. The altitude ranges from 60 to 474 m (Figure 1b). The slopes are 
generally steep, with a mean value of 19%. The most common soils (Figure 1c) are Umbrisol  
and Cambisols [18] with silt and silt-loam texture settled on basic schists of the “Órdenes 
Complex” [19]. 

Figure 1. (a) Location of the study area; (b) Digital elevation map; (c) Soil types map;  
(d) Land use map.  
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The dominant land uses in this catchment are forestry (65%) and agriculture (30%) (Figure 1d). 
The forest area mainly consists of commercial eucalyptus plantations, whereas the agriculture area 
is a patchwork of croplands (4% of total area), growing maize and winter cereal mostly 
interspersed with grassland (26% of total area). Impervious built-up areas and roads cover about 
5% of the whole catchment area and are mainly distributed in the agriculture zone. 

The climate is temperate humid, with a mean annual temperature of 13 °C and approximately  
1050 mm mean annual rainfall (1983–2009), of which more than 67% falls from October to March. 

2.2. Data and Model Setup 

2.2.1. The SWAT Hydrological Model 

The SWAT model (Soil and Water Assessment Tool) is a process-based and spatially semi-
distributed model developed by Agricultural Research Service of the United States Department of 
Agriculture (USDA) to assess the impact of agricultural management practices on water, sediment 
and chemical yields in large complex catchments [20], but it is also able to predict water, sediment 
and nutrient fluxes under different climate change scenarios [8,13,16]. SWAT is a basin-scale, 
continuous time model operating on a daily step, but it is not designed to simulate detailed,  
single-event flood routing [21]. The model was selected because it is a dynamic simulation model 
able to simulate streamflow response to climate change, it is in the public domain, and the 
generation of input files is eased by GIS-based tools. Although it is frequently applied to medium 
and large catchments with reasonably good results, it has also been calibrated for small forest 
catchments with good results [7,22], i.e., with semi-natural land use. So, the SWAT model can be 
applied for hydrologic simulation in small catchments under different climatic conditions. 

In SWAT, the watershed is divided into sub-basins, which are further separated into 
hydrological response units (HRUs), i.e., areas with a specific combination of soil type, land use 
and management. Most of the calculations are done at HRU scale and the results integrated at  
sub-basin scale. SWAT model simulations are divided into two parts: (i) the land phase and (ii) the 
routing through the river network. The land phase controls the amount of water, sediment and 
nutrients reaching the main channel, while the second phase defines the movement of water and 
other elements through the channel to the catchment outlet. The underlying theory detailing 
transport processes included in the model is available in the SWAT documentation [21]. 

The simulation of the hydrological cycle is based on the water balance, which is carried out 
taking into account precipitation, evapotranspiration, surface, lateral and base flow and deep 
aquifer recharge. The evapotranspiration can be calculated using one of these three methods: 
Penman-Monteith, Hargreaves and Priestley-Taylor. The Pemman-Monteith method was selected 
in this case because it uses more physical parameters (daily maximum and minimum temperature, 
wind speed, humidity and solar radiation). In addition, the Penman-Monteith option in SWAT 
incorporates the effects of increased CO2 concentration on plant growth and evapotranspiration. 
The effect of CO2 concentration change on plant stomatal conductance is computed by SWAT 
model using the equation developed by Easterling et al. [23], in which increased CO2 
concentrations lead to decreased leaf conductance (doubled CO2 concentration leads to general 
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decrease of stomatal conductance by 40%) which in turn results in a decrease in the potential 
evapotranspiration calculation. The change in radiation use efficiency of plants is simulated as a 
function of CO2 concentration using the method developed by Stockle et al. [24]. Surface flow is 
estimated using a modification of the Soil Conservation Service Curve Number (SCC CN) method; 
the lateral flow is calculated based on the kinematic storage model, and the peak runoff rate is 
estimated by a modified rational method (the peak runoff rate is a function of the fraction of daily 
rainfall falling in the time of concentration for the sub-basin, the daily surface runoff volume, the 
sub-basin area and the time of concentration for the sub-basin). The water reaching the river 
network is then routed to the downstream sub-basin of the catchment. Water is routed through the 
channel using either the variable storage routing method or the Muskingum river routing method, 
both of which are variations of the kinematic wave model. In this research, the Muskingum method 
was used. 

2.2.2. Model Inputs  

The model required an extensive dataset of meteorological data, topography, soil types and land 
use and management practices. The meteorological data were acquired from the Galicia 
Meteorological Service (MeteoGalicia), selecting the closest station to the study area (coordinates: 
560019 UTMX-29T ED-50, 4788103 UTMY-29T ED-50). The data included daily rainfall, 
maximum and minimum temperatures, relative humidity, solar radiation and wind speed. The 
SWAT model includes the weather generator (WXGEN) model to generate climatic data or to fill 
in gaps in the measured records. To implement this weather generator, SWAT requires long-term 
monthly statistical information (e.g., mean and standard deviation) for rainfall, maximum and 
minimum temperature, dew point temperature, solar radiation, and wind speed. Due to the reduced 
length of the data series of wind speed, relative humidity and solar radiation, for which consistent 
30-year time series are not available, SWAT weather generator used in this study was generated on 
the basis of the climatic data from a meteorological station (1387E) belonging to the Spanish 
Meteorological Agency (AEMET) located at about 20 km from the study area whose data keep 
good correspondence with climatic data acquired from the station of MeteoGalicia (R2 of 0.82, 
0.94, 0.91, 0.72, 0.76 and 0.83 for rainfall, maximum temperature, minimum temperature, wind 
velocity, solar radiation and relative humidity, respectively). The digital elevation map (DEM) was 
created from the digital level curves (5 m) provided by the Territorial Information System of 
Galicia and used to provide elevation details for the SWAT and to delineate catchment boundaries. 
HRUs were delineated from (i) soil maps (1: 50,000) published by the Environment Department of 
the Xunta de Galicia, based on the FAO classification [18]; (ii) land use map was obtained from the 
digital processing (using ER Mapper software) of satellite images Landsat (resolution of 25 m) and 
aerial photographs (flight from summer 2004, with a resolution of 1 m), provided by the Territorial 
Information System of Galicia (Xunta of Galicia), and their subsequent field validation, which 
allowed distinguishing 4 classes of land uses (cropland, grassland, forest and impervious areas); 
and (iii) three classes of slopes (0%–13%; 13%–25%; >25%). Thresholds of 3% for land use and 
20% for soil type were used to limit the number of HRUs in the catchment. This resulted in 12 
HRUs. Only one sub-basin was defined in the Corbeira catchment. 
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The input data of physical soil properties were obtained from experimental works conducted in 
the catchment, whereas hydrological characterization of soils was built from literature data [25,26] 
or by estimating the parameters from data of texture and organic matter using pedo-transference  
functions [27,28]. 

The characteristics of the grasslands and croplands (maize) were taken from the SWAT database 
(SWAT plant codes used to represent grasslands and maize land covers were meadow bromegrass 
and corn, respectively), while eucalyptus characteristics, not included in the SWAT database, were 
derived from literature [11,29]. Information on agricultural management, such as dates for planting 
(maize: 1–10 May) and harvesting (grassland: May, August, November; maize: 20–30 September), 
was compiled from notes recorded during field research after interviewing farmers. Irrigation is 
rarely carried out in the catchment; hence, it was not modelled.  

2.2.3. Calibration, Validation and Evaluation of the Model 

The SWAT model was calibrated using daily stream discharge data measured at the Corbeira 
catchment outlet. Streamflow was separated into two components (baseflow and direct runoff) 
using a digital filter [30]. The model was set up from March 2001 to October 2010; the first 3 years 
were treated as the warm-up period for the model. The period from October 2005 to September 
2008 was used for calibration and the period from October 2008 to September 2010 for validation.  

The most sensitive model parameters were chosen in the calibration procedure based on 
preliminary sensitivity analysis using the Latin Hypercube One-factor-At-a-Time approach 
provided in the SWAT sensitivity analysis interface and SWAT model documentation [21]. The 
performance of the model presented in Table 1 shows that the simulations generated good results in 
comparison with observed streamflow data according to the evaluation criteria set by  
Motovilov et al. [31] and Moriasi et al. [32], who consider that model performance is satisfactory 
when the regression coefficient (R2) is higher than 0.75 and Nash-Sutcliffe efficiency (NSE) is 
higher than 0.5, and if percentage of bias (PBIAS) is between 25% and +25%. Furthermore, the 
statistical values for the validation period slightly exceeded those of the calibration period, 
indicating a low over-parameterization. These differences can be due to the different hydrological 
conditions of the years used in the study, since hydrological models generally reproduce better 
normal than extreme hydrological conditions and, in our case, the calibration period comprises 
more extreme conditions than the validation period. 

Table 1. Calibration and validation statistics for daily streamflow. R2: regression 
coefficient; PBIAS: percentage of bias; NSE: Nash-Sutcliffe efficiency. 

Parameter Calibration Validation 
R2 0.80 0.84 

PBIAS 1.8 3.3 
NSE 0.80 0.83 

Observed mean and range (m3 s 1) 0.18 (0.02–1.42) 0.24 (0.02–1.20) 
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The model successfully reproduces the measured streamflow and its trend over time (Figure 2). 
However, there are some cases in which the model does not agree well with measured streamflow, 
since it underestimates some peak flows during high-flow periods, e.g., in late March 2006 and in 
middle December 2006, both coinciding with a flood period. This could be attributed to the 
inability to simulate the soil moisture conditions during heavy rainfall periods. Curve Number only 
defines three antecedent moisture conditions: I-dry (wilting point), II-mean moisture, and III-wet 
(field capacity), and for each of them it assumes a unique relationship between rainfall and runoff, 
despite one same condition comprises different soil moisture contents. However, in this catchment, 
the relationship between rainfall and runoff increases as the antecedent soil moisture content rises, 
and consequently, the hydrological behaviour differs depending on the amount of water stored in 
the soil [33,34]. It could also be because the method used for simulation of runoff in SWAT (Curve 
Number) does not account for saturation near-stream zones and is not sensitive to rainfall intensity, 
so given a same amount of rainfall, SWAT computes the same amount of runoff regardless of 
intensity and duration of rainfall. The model also overestimates some peak discharge during some 
rainfall events (e.g., October 2006). This effect has been attributed to different causes, such as the 
short warm-up period of the model, the underestimation of evapotranspiration and overestimation 
of soil water content [35]. 

Figure 2. Rainfall, observed and predicted daily streamflow during the calibration  
(October 2005–Septmber 2008) and validation period (October 2008–September 2010).  
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The above results indicate that SWAT is a suitable model to estimate streamflow in the study 
area; therefore, the calibrated model was used to assess the response of streamflow to future 
climate change. Several studies have highlighted the degree of uncertainty associated with the 
evaluation of climate change impacts on hydrology, pointing out that model calibration with 
present data may result in a bias when applying the model in the future [36,37]. The fact that the 
model adequately estimates the streamflow either during wet (July 2006) or dry years (August 
2007) is a good indicator of its suitability for evaluating the impact of climate change; therefore, it 
can be used to assess the effects of climate change on streamflow with a reasonable degree of 
confidence. Anyway, it is appropriate to interpret the effects of climate change in terms of trends, 
not specific situations.  
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2.3. Scenarios of Temperature, Rainfall and CO2 Concentration Changes 

In this study, the analysis of climate change impact on water resources has been focused on 
predicting the potential effects that changes in temperature, rainfall and CO2 concentration will 
cause on streamflow. For this purpose, two simulation sets were performed. The first evaluates the 
effect caused in streamflow by changes in each of the variables, i.e., temperature, rainfall or CO2 
concentration. The second analyses the response of streamflow to simultaneous changes in the  
three variables.  

At present, various methods are used for generating future climate scenarios. These methods 
include downscaling, change factor method, etc. A common procedure to downscale monthly 
temperature and precipitation of global climate model (GCM) projections to daily time series is 
stochastic downscaling using a weather generator [38]. Stochastic weather generators can be 
modified to generate future daily values of climate variables by adjusting historical weather 
patterns based on predicted future alterations from GCMs or RCMs [39]. In this study, the weather 
generator included in SWAT [21] was used to create 30-year climate series with changes in input 
variables. WXGEN uses a first-order Markov chain model to define the day as dry or wet. The 
daily rainfall amount is estimated based on a skewed or exponential distribution. Daily maximum 
and minimum temperatures, solar radiation and relative humidity are then generated based on the 
presence or absence of rain for the day [40]. WXGEN stochastic weather generator is widely used 
for climate change studies [11,41,42].  

To accomplish the analysis of climate change impact on water resources the following steps  
were performed: 

- Once calibrated the SWAT to represent the control conditions (control scenario), the model 
was run using climate series produced by the weather generator for reference period 1981-2010. 
Then, the degree of correspondence between simulated streamflow using the stochastic weather 
generator and simulated streamflow using observed meteorological data were verified, all with the 
purpose of checking the performance of the SWAT model using a stochastic weather generator to 
estimate streamflow in the study area. The results of statistical indicators (r2 = 0.86 and NSE = 0.76), 
interpreted according to the criteria proposed by Motovilov et al. [31] and Moriasi et al. [32], 
suggest that model performance is satisfactory, indicating that the SWAT weather generator model 
can be used with a reasonable degree of confidence to analyze climate change scenarios. 

- Subsequently, the different climate scenarios were created from the information provided by 
regional models of the ENSEMBLES project, using the change factors to modify the values of the 
parameters of the weather generator in a monthly-specific manner. 

- Finally, the results for the control scenario were compared with the results of the climate 
change scenarios in order to quantify the changes on water resources. 

The data for the reference period (1981–2001) were obtained from the 1387E meteorological 
station (AEMET). The different scenarios selected for this study are based on the information 
provided by the regional models of the ENSEMBLES project [2] for this station (Table 2), for the 
periods 2031–2060 (intermediate future) and 2069–2098 (distant future). Specifically, the selected 
scenarios for temperature and rainfall represent the mean and maximum forecasts of the 
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ENSEMBLES project models (socio-economic A1B scenario) for these variables in the study area. 
These change factors were used to modify the rainfall and temperature parameters of the weather 
generator. Other climate variables, such as wind speed, solar radiation, relative humidity and dew 
point were assumed to be constant throughout future simulation periods. Climate modifications are 
given as a percentage change in rainfall (rainfall is multiplied by a given factor). Change factors for 
rainfall were used to alter the frequency and intensity of rainfall. This modification was performed 
by adjusting the probability of a rainy day followed by another rainy day in the month, and the 
probability of a rainy day followed by a dry day. These probabilities were obtained by multiplying 
the baseline probabilities by fifty percent of change factor for rainfall [adjusted probability = baseline 
probability + (baseline probability × 1/2 of change factor for rainfall)]. Temperature modifications 
were applied by adding the prescribed change to the weather generator temperature parameters 
derived from baseline data. 

Table 2. Summary of characteristics of the selected RCMs of the ENSEMBLES project. 

Name Institute GCM RCM Time Period 
C4IRCA3  C4I (1) HadCM3Q16 RCA3 1951–2099 

CNRM/RM5.1 CNRM (2) ARPEGE RM5.1 Aladin  1950–2100 
DMI/ARPEGE DMI (3) ARPEGE HIRHAM 1951–2100 

DMI/BCM DMI  DMI (3) BCM DMI-HIRHAM5 1961–2098 
DMI/ECHAM5-r3 DMI (3) ECHAM5-r3 DMI-HIRHAM5 1951–2099 

ETHZ/CLM ETHZ (4) HadCM3Q0 CLM 1951–2099 
ICTP/RegCM3  ICTP (5)  ECHAM5-r3  RegCM3  1951–2100 

KNMI/RACMO2  KNMI (6)  ECHAM5-r3  RACMO  1950–2100 
MPIM/REMO  MPI (7)  ECHAM5-r3 REMO  1951–2100 
SMHI/BCM  SMHI (8)  BCM  RCA  1961–2100 

SMHI/ECHAM5-r3  SMHI (8) ECHAM5-r3  RCA  1951–2100 
SMHI/HadCM3Q3  SMHI (8) HadCM3Q3  RCA  1951–2100 
Notes: GCM: global climate models; RCM: regional climate models; (1) Rossby Centre, Swedish 
Meteorological and Hydrological Institute; (2) National Center of Meteorological. Research, France; (3) 
Danish Meteorological Institute; (4) Swiss Federal Institute of Technology Zürich; (5) Abdus Salam 
International Centre for Theoretical Physics, Italy; (6) Royal Netherlands Meteorological Institute; (7) Max 
Planck Institute for Meteorology, Germany; (8) Swedish Meteorological and Hydrological Institute. 

Projected changes in temperature and rainfall in the study area are presented in Figure 3 for the  
two-time periods (2031–2060 and 2069–2098). All projections show an increase in annual mean 
temperature and a decrease in rainfall for the two periods, although there is a wide variability 
among projections, indicating highly uncertain results. The projected temperature changes vary 
from 0.4–1.8 °C in 2031–2060 to 1.6–3.9 °C in 2069–2098, depending on the climate models. With 
regard to rainfall, the projections indicate a decrease between 2%–14% in 2031–2060 and 6%–27% 
in 2069–2098. The mean values of all the projections used predict that temperature will rise by  
1.1 °C during 2031–2060 and by 2.2 °C in 2069–2098, while rainfall will decrease by 6% and 27% 
at the mid and end of the 21st century. CO2 scenarios change by an increase of 1.5 and 2 times the 
current CO2 concentration (330 ppm). It is thought that the selected CO2 concentrations (550 and 
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660 ppm) give a reasonable representation of future CO2 conditions for the middle and end of the 
21st century under the A1B scenario [3]. Table 3 shows all climate change scenarios used in the 
SWAT simulations. All climate change scenarios were run for a 30-year period. Land use/land 
cover was assumed to remain unchanged throughout the simulation. 

Figure 3. Climate change scenarios for annual mean temperature and rainfall for:  
(a) 2031–2060 and (b) 2069–2098 (ENSEMBLES project). 
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Table 3. Climate change scenarios used for SWAT simulations. 

Scenario Temperature (°C) Rainfall (%) CO2 Concentration (ppm) 
1 1.1 (mean 2031–2060) 0 330 
2 1.7 (maximum 2031–2060) 0 330 
3 2.2 (mean 2069–2098) 0 330 
4 3.9 (maximum 2069–2098) 0 330 
5 0 6 (mean 2031–2060) 330 
6 0 14 (maximum 2031–2060) 330 
7 0 15 (mean 2069–2098) 330 
8 0 27 (maximum 2069–2098) 330 
9 0 0 550 
10 0 0 660 
11 1.1 6 550 
12 1.7 14 550 
13 2.2 15 660 
14 3.9 27 660 
15 1.1 6 330 
16 2.2 15 330 

Note: 0: means no change in the variable.  

T-tests were performed to assess if the streamflow estimated from the climate change scenarios 
and the reference scenario are statistically different from each other. The significance of statistical 
test was set at p < 0.01. 
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3. Results and Discussion 

3.1. Vulnerability of Streamflow to Change in Temperature, Rainfall or CO2 Concentration  

Figure 4 shows the responses of evapotranspiration and streamflow to climate parameter 
changes. Streamflow will be significantly altered as a result of changes in temperature, rainfall or 
CO2 concentration. Streamflow significantly (p < 0.01) decreased with the increase in temperature 
(a larger amount of water is lost through evapotranspiration) and lower rainfall. In both cases, the 
impact was more pronounced in the period 2069–2098, which showed strong deviation of the 
climate variables compared to the current conditions (Table 2).  

Increasing temperature by 1.1 and 2.2 °C (scenarios 1 and 3) decreased streamflow rates by 13% 
and 29%, respectively; while 6% and 15% drops in rainfall (scenarios 5 and 7) resulted in a 
streamflow decrease of 9% and 25%. These results suggest that streamflow in the Corbeira 
catchment will be more sensitive to the average increase in temperature than to the average 
decrease in rainfall, highlighting the role of evapotranspiration in the water cycle. However, when 
compared with the worst case scenarios (scenario 4: Tª + 3.9 °C, scenario 8: P  27%), streamflow 
is more sensitive to a reduction in rainfall (Figure 4), which is in accordance with earlier findings in 
the literature that underline the major role played by rainfall on streamflow changes [5].  

Figure 4. Response of evapotranspiration and streamflow to changes in temperature, 
rainfall and CO2 concentration based on the scenarios defined in Table 3. 

 

Increase in temperature led to increase in biomass production in some cases and decrease in 
others, depending on the crop type [6]. This behaviour depends on the temperature reached 
regarding the optimum, minimum and maximum temperatures associated with plant growth, 
because temperature is one of the most important factors governing plant growth. For the Corbeira 
catchment, forest biomass production (forest: 65% of the study area) increased with increasing 
temperature; however, in grassland and crops, biomass production decreased with temperature 
increases (Figure 5). This could explain the increase in evapotranspiration (2031–2060: 14%, 21%; 
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2069–2098: 27%, 46%) and consequently the decrease of streamflow with temperature rise  
(Figure 4). At present, the main limitations for eucalyptus cultivation in Galicia, the main forest 
specie in the Corbeira catchment, are low temperatures and frost. The temperature rise and 
consequent decreased risk of frost increase forest productivity, especially in spring. In summer, the 
biomass growth rate is lower than in other seasons, which may be associated with water or nutrient 
limitations. However, the model, under these scenarios, estimated only a slight increase in the 
number of days with water stress. 

Figure 5. Response of vegetation biomass to changes in temperature, rainfall and CO2 
concentration based on the scenarios defined in Table 3. 

 

Flow components are affected differently by changes in temperature and rainfall (Figure 6). 
Thus, a temperature increase had greater impact on subsurface flow (groundwater + lateral flow) 
because of soil water loss by evapotranspiration, while rainfall decrease had a greater impact on 
surface runoff. This explains a higher sensitivity of soil water content to temperature changes 
(Figure 6). These results differ from those of Nunes et al. [11] for the Guadiana Basin (southwest 
Iberian Peninsula) where subsurface flow was mostly affected by reduced rainfall due to the 
extremely shallow soils in the basin. The soils of the Corbeira catchment, however, are deep and 
favour the diversion of soil water to evapotranspiration, hence temperature increases mainly affect 
the subsurface flow.  

The streamflow decrease is more significant than that of rainfall (Figures 4 and 6), showing it  
is not a linear process. It is estimated that for every 1% decrease in rainfall, streamflow falls by 
approximately 1.5%. These results are close to those obtained by Pruski and Nearing [43], who 
analysed the effect of rainfall changes on agricultural slopes in different regions of the United 
States, using the WEPP model. These authors predicted a fall in runoff of 1.97% for every 1% 
decrease in rainfall. Similarly, Nunes et al. [11] reported a fall in runoff of 1.9% and 2.1% for the 
Guadiana and Tejo basins, respectively.  
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Figure 6. Response of different flow components and soil water content to changes in 
temperature, rainfall and CO2 concentration based on the scenarios defined in Table 3. 

 

Increasing CO2 concentration in the atmosphere led to increases in streamflow (10%–15%,  
Figure 4). The rise in CO2 concentration could increase vegetation biomass production and 
evapotranspiration [44]. However, in this study no effect on the vegetation biomass was observed 
(Figure 5), although a decrease was found in the evapotranspiration (2 × CO2: 11% 
evapotranspiration, Figure 4), resulting in higher soil water content and, in turn, higher streamflow 
(Figure 4). This reduction in the evapotranspiration could be related to stomatal closure of plant 
leaves in response to increasing CO2 concentration, as in SWAT a doubled CO2 concentration leads 
to a 40% reduction in leaf conductance for all plant species. According to the stomatal conductance 
optimization hypothesis, the plant stomas are simultaneously maximizing the carbon gain rate 
while minimizing the rate of water loss [45], i.e., as adaptation mechanism, plants tend to reduce 
stomatal conductance and suppress transpiration under a high concentration of CO2. This would lead 
to greater water-use efficiency by plants (ratios of CO2 molecules fixed by the plant in relation to 
the number of water molecules lost by transpiration) allowing a larger amount of water to be 
available for runoff and recharge.  

Moreover, higher CO2 concentrations can enhance the photosynthesis rate and consequently the 
vegetation biomass, although it was not observed in this study (Figure 5). This effect, known as the 
CO2 fertilization effect, leads to a higher leaf area index (LAI) in the vegetation, which can reduce 
the radiation reaching the soil surface, thereby reducing soil evaporation, and increasing the 
streamflow. However, Bunce [46] in a review work concludes that an increase in CO2 
concentrations rarely leads to higher LAI, unless ventilation is artificial, such as it occurs in 
chambers and greenhouses. In addition, the author indicates that LAI increases above 3–4 m2 m 2 
have a minimal effect on evapotranspiration as a result of shade and higher canopy humidity. This 
conclusion is based on studies of crops in which nutrients are not a limiting factor and, therefore, 
an even lower response can be expected in natural ecosystems, because nutrients frequently limit 
plant productivity, thus their responsiveness to CO2 concentrations.  
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3.2. Vulnerability of Streamflow to Simultaneous Changes in Climate Parameters 

Figure 7 shows the response of evapotranspiration and streamflow to combined simultaneous 
changes in temperature, rainfall and CO2 concentration. In comparison with the results obtained 
when changing climate parameters singly (temperature or rainfall or CO2 concentration), coupled 
climate parameter changes had a synergistic effect on streamflow, causing an increase in the 
vulnerability to change. For scenarios 11 and 13 (mean values), a streamflow decrease of 16% and 
35% for the periods 2031–2060 and 2069–2098, respectively is forecasted. For scenarios 12 and 14 
(maximum values, unlikely) decreases of 46% and 51% for the same horizons are predicted. 
Although these results are indicative and should be taken as trend indicators, they show the high 
vulnerability of the Corbeira stream to climate change, even though climatic variations are 
relatively low (Table 3). This is consistent with most of the studies on the impact of climate change 
carried out in the Iberian Peninsula, which have predicted a decline in water resources [7,11,12]. 
The expected decrease in streamflow in the Corbeira catchment is higher than that estimated for 
other catchments in NW Spain [12,13], reflecting a greater vulnerability of small catchments to 
changes in climatic variables, as noted by Beguería et al. [47] in other regions of Spain. However, 
these results should be interpreted with caution. Although the trend seems to be clear, the change 
percent will vary according to the climate change scenarios considered and the catchment characteristics.  

Figure 7. Response of evapotranspiration and streamflow to simultaneous changes in 
temperature, rainfall and CO2 concentration based on the scenarios defined in Table 3. 
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It is generally recognized that the positive effects exerted by an increase in CO2 concentration 
on water-plant relationships would be offset by a greater evaporative demand at higher 
temperatures. Numerous studies indicate that changes in temperature and rainfall alter and, in many 
cases, limit the effects of CO2 on plants [11,13]. For example, high temperatures during the 
flowering period could mitigate the effects of high CO2 concentration, since they could limit the 
number, size and grain quality [48]. In order to confirm the effect of a CO2 increase on streamflow, 
the model was run using two new scenarios, Sc15, Sc16, (Table 3) with the same rainfall and 
temperature changes as scenarios 11 and 13, respectively; but with no changes in CO2 
concentration, and both results (with and without increased CO2) were compared. Not taking into 
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account the effects of CO2 on plants, there was a decrease in streamflow of 24% (2031–2060, 
Sc15) and 46% (2069–2098, Sc16) compared to 16% (2031–2060, Sc11) and 35% (2069–2098, 
Sc13) respectively when enhanced plant photosynthetic water use efficiency (greater stomatal 
efficiency of plants in response to increased CO2 concentration) was considered, as for 
evapotranspiration calculation SWAT takes into account variation of radiation-use efficiency, plant 
growth, and plant transpiration due to changes in atmospheric CO2 concentrations. Given the 
importance exerted by an increase of CO2 concentration on water resources, this parameter should 
be considered in any assessment of climate change impact. However, it should be noted that the 
effects of CO2 on streamflow might be overestimated, because the SWAT does not assume that leaf 
area increases with CO2 concentrations. 

4. Conclusions 

This work demonstrated the high vulnerability of streamflow to changes in temperature and 
rainfall in the Corbeira catchment. Furthermore, it was found that an increase in the concentration 
of CO2 in the atmosphere could slightly attenuate the effects of climatic variables on water 
resources. Similarly, both medium and long-term effects of climate change on streamflow can be 
significant if the forecast temperature and rainfall changes included in this study are met. Overall, 
the decrease in rainfall was accompanied by a large increase in the evapotranspiration. The 
combination of these two trends is likely to result in decreased availability of water for crops and 
natural vegetation. A moderate decrease in streamflow of 16% and 35% is expected for the periods 
2031–2060 and 2069–2098, respectively.  

In general, it may indicate that this study provides an example of the possible effects of climate 
change on water resources in the NW Spain, so it can be used as a starting point to improve the 
understanding of how climate change will impact water resources in this area and provide some 
data to decision makers. Hydrology and distribution of land uses in the Corbeira catchment are 
similar to those of the upper and middle Mero River Basin. Therefore, if climate change scenarios 
adopted in this work occur in the future, significant changes may also occur in the Mero River, 
affecting the Cecebre reservoir. With increasingly limited water resources and water consumption 
increasing annually, all the facts point to a situation of greater water unsustainability and therefore 
to greater environmental unsustainability. This implies that measures, able to solve this situation, 
should be taken in order to avoid the consequences of a decrease of water resources against an 
increased demand. 
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Potential Impacts of Climate Change on Precipitation over 
Lake Victoria, East Africa, in the 21st Century 

Mary Akurut, Patrick Willems and Charles B. Niwagaba 

Abstract: Precipitation over Lake Victoria in East Africa greatly influences its water balance. Over 
30 million people rely on Lake Victoria for food, potable water, hydropower and transport. 
Projecting precipitation changes over the lake is vital in dealing with climate change impacts. The 
past and future precipitation over the lake were assessed using 42 model runs obtained from  
26 General Circulation Models (GCMs) of the newest generation in the Coupled Model Intercomparison 
Project (CMIP5). Two CMIP5 scenarios defined by Representative Concentration Pathways (RCP), 
namely RCP4.5 and RCP8.5, were used to explore climate change impacts. The daily precipitation 
over Lake Victoria for the period 1962–2002 was compared with future projections for the 2040s 
and 2075s. The ability of GCMs to project daily, monthly and annual precipitation over the lake 
was evaluated based on the mean error, root mean square error and the frequency of occurrence of 
extreme precipitation. Higher resolution models (grid size <1.5 ) simulated monthly variations 
better than low resolution models (grid size >2.5 ). The total annual precipitation is expected to 
increase by less than 10% for the RCP4.5 scenario and less than 20% for the RCP8.5 scenario over 
the 21st century, despite the higher (up to 40%) increase in extreme daily intensities. 

Reprinted from Water. Cite as: Akurut, M.; Willems, P.; Niwagaba, C.B. Potential Impacts of 
Climate Change on Precipitation over Lake Victoria, East Africa, in the 21st Century. Water 2014, 
6, 2634-2659. 

1. Introduction 

Lake Victoria, Africa’s largest fresh water lake covers a surface area of about 68,800 km2  
shared across three East African countries: Uganda (45%), Kenya (6%), and Tanzania (49%). Over 
30 million inhabitants depend on Lake Victoria for their livelihoods. Therefore, precipitation 
changes over the lake are likely to affect the quality of life of many within the East Africa region. 
Lake Victoria has a complex shoreline structure comprising gulfs and bays that provide potable 
water abstraction points and also receive municipal and industrial waste from adjacent urban centers. 

Due to the vast size of the Lake Victoria basin, it is considered that the average annual lake 
precipitation almost balances the annual evapotranspiration. Therefore, precipitation variations 
significantly influence water levels in Lake Victoria. This notion has been applied by several 
authors to study the water balance of the lake, often translated as changes in the lake levels or 
outflow regimes—with most variations in the water balance being attributed to the different 
calculation periods and methods used in estimation of the different balance components i.e., 
evapotranspiration, inflows, outflows and precipitation [1–5]. About 80% of the Lake Victoria 
refill is predominantly precipitation compared to the 20% from basin discharge [6]. Satellite remote 
sensing data was applied in [7] to monitor the water balance of Lake Victoria in comparison to 
other water bodies in the vicinity—climate forcing explained half of the lake level trends while the 
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outflow patterns were responsible for the other half. Climate forcing is generally affected by the 
amount of aerosols and greenhouse gases (GHG) in the atmosphere. GHGs absorb and re-emit energy 
radiated from the Earth's surface, leading to a warming or cooling effect and changes in the Earth’s 
energy balance with time. Increasing greenhouse gas concentrations in the atmosphere leads to 
warming which in turn causes global atmospheric water vapor and precipitation to increase. 
Aerosols directly absorb and scatter incoming solar radiation leading to cooling at the surface and 
a reduction in precipitation. They can also affect precipitation through complex interactions with 
clouds [8]. At regional scales, changes in precipitation can also be influenced by anthropogenic 
activities that affect atmospheric transport of water vapor and circulation changes.  

The importance of global precipitation changes as addresssed in [8] by the Intergovernmental 
Panel on climate Change (IPCC) fifth Assessment Report (AR5) suggests a need to understand and 
project effects of extreme climate conditions. This paper evaluates the newest generation models 
used in the CMIP5 project with the purpose of studying impact of climate change on the quantity 
and quality of water in Lake Victoria. Precipitation was aggregated at different temporal scales; 
daily, monthly and annually. Model evaluation was based on a range of statistical measures and 
visual graphical comparison for the same aggregation periods in order to postulate possible 
precipitation changes over Lake Victoria.  

2. Data and Methods 

2.1. Description of the Study Area 

Lake Victoria is located in the upper Nile basin in East Africa within latitudes 00 30 00  N to 
03 00 00  S and longitudes 31 30 00  E to 35 00 00  E. The Lake surface is at an average 
elevation of about 1135 m.a.s.l (Figure 1). Lake Victoria covers a total catchment area of about 
258,000 km2. The lake itself contributes about 27% of the total catchment area. Generally, the Lake 
Victoria basin climate is characterized by substantial precipitation occurring throughout the year; 
however, there are two distinct rainy seasons in which monthly precipitation is generally greater 
than 10% of the average monthly precipitation. Heavier precipitation occurs in the March-April-
May (MAM) season, while the longer rainy season occurs in October-November-December 
(OND). Climate variability for the lake basin region is influenced by both large-scale and meso-
scale circulations resulting from complex interactions of the Inter-Tropical Convergence Zone (ITCZ) 
and El Nino Southern Oscillation (ENSO), Quasi-biennial Oscillations, large-scale monsoonal 
winds, and extra-tropical weather systems [9–12]. 

2.2. Precipitation and Lake Levels 

Precipitation over Lake Victoria experienced a predominantly positive trend over the 20th  
century [12]. A sharp increase in water levels occurred in 1962—it was mainly attributed to the 
high precipitation in that year and the related high tributary inflows [3,13]. Precipitation occurrence  
had the largest effect on the lake levels and flow exiting the basin at the Victoria Nile river, while 
irrigation and hydropower developments had modest effects on these levels and flows [14]. 
However, commissioning of the Owen Falls Dam, located on the White Nile in 1954 (just prior to 
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the lake rise in 1962) could also have had an impact on the water levels as the lake regained its 
level as noted by [13,15]. Figure 2 shows the cumulative precipitation and discharge trends from 
the Lake Victoria catchments compared to the water levels in the lake. It can be deduced that 
tributary inflows were more significant in increasing lake levels in 1962 and 1998, which years 
coincided with the El Nino years [9,10] as depicted by the jumps in the cumulative tributary 
inflows. In conclusion, both human management roles and natural factors affected the lake levels, 
but precipitation clearly is the major factor. Climate change impact investigations on the Lake 
Victoria water levels therefore should focus on the future changes in precipitation. 

Figure 1. (a) Location of Lake Victoria within Africa; (b) Coordinates where general 
circulation model (GCM) precipitation output for Lake Victoria was extracted. 

(a) (b) 

Figure 2. Lake level variations over time compared to cumulative average precipitation 
over the lake and cumulative total inflow into the lake. The calculated lake level 
variations are based on the precipitation and inflow [16]. 
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2.3. Climate Model Simulations 

General circulation models (GCMs) are numerical models that describe physical processes of the 
global climate system in the atmosphere, ocean, cryosphere and land surface in response to changing 
GHG and aerosol concentrations. GCMs provide geographical and physical estimates of regional 
climate and climate change using three dimensional grids over the globe. The newest generation 
GCMs are used in the CMIP5 to understand the past and future climate changes. These are the 
models upon which the recent Fifth Assessment Report (AR5) of the IPCC is based [8]. The CMIPs 
attempt to address major priorities and incorporate ideas from a wide range of climate modelling 
communities. The climate change modelling experiments are integrated using atmosphere-ocean 
global climate models (AOGCMs). These models respond to specified, time-varying concentrations 
of various atmospheric constituents e.g., GHGs and include interactive representation of the 
atmosphere, ocean, land and sea ice. CMIP5 also introduces coupling of biogeochemical 
components to account for closing of carbon fluxes between the oceans, atmosphere and terrestrial 
biosphere carbon reservoirs for long term simulations in the earth system models. They are capable 
of using time-evolving emissions of constituents to interactively compute concentrations. 

The main difference between these CMIP5 projections and the previous CMIP projections is 
that their climate change projections include policy intervention and mitigation measures [17]. 
CMIP5 provides a large set of runs that enable systematic model inter-comparison within each type of 
experiment and credible multi-model analysis. The core experiments include the historical runs 
covering much of the industrial period (mid-19th century to the near-present) and future projection 
simulations forced with specific GHG concentrations and anthropogenic aerosols emissions dubbed 
“Representative Concentration Pathways” (RCPs) e.g., RCP4.5 and RCP8.5. RCP8.5 is consistent 
with the high emissions scenario in which the radiative forcing increases throughout the 21st 
century before reaching 8.5 Wm 2 at the end of the century, while RCP4.5 signifies a mid-range 
mitigations emissions scenario where GHG valuation policies are applied to stabilize atmospheric 
radiative forcing to 4.5 Wm 2 in 2100 (Figure 3). These two CMIP5 scenarios were considered in 
this study as a basis of exploring climate change impacts and policy issues. RCPs enable 
investigations of uncertainties related to carbon cycle and atmospheric chemistry. They span a wide 
range of total forcing values though they do not cover the full range of emissions in the literature, 
particularly for aerosols [8]. 

According to [17], a realistic climate model should exhibit internal variability with spatial and 
temporal structure like the observed. However, in the long-term simulations, timing of individual 
unforced climate events like El Nino years in the historical runs will rarely (and only by chance) 
coincide with years of actual occurrence, since historical runs are initiated from an arbitrary point 
of quasi-equilibrium control run. Hence, the results should be analyzed in probabilistic terms in a 
similar manner as [18–20]. 
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Figure 3. Representative concentration pathways. (a) Changes in radiative forcing 
relative to pre-industrial conditions; (b) Energy and industry CO2 emissions for the 
different representative concentration pathway (RCP) candidates. The range of 
emissions in the recent (post 2001) literature is presented as a thick dashed curve for 
the maximum and minimum while the shaded area represents the 10th to 90th 
percentiles [17]. 

 

GCMs that were used for both RCP8.5 and RCP4.5 simulations were applied to project the 
precipitation patterns over Lake Victoria for the 2040s (2020–2060) and 2075s (2055–2095). The 
historical and future precipitation for the 2040s and 2075s was obtained by simply averaging the 
simulations from the different GCMs. This method is opposed to applying weighting factors 
described in [21] and was applied to avoid introducing extra uncertainties as tested by [22]. A total 
of 42 GCM runs obtained from 26 models simulated by 16 different modeling centers of the 
CMIP5 archive were used. GCM simulations for the historical period were obtained for the 
different quarters of Lake Victoria (Figure 1) and averaged to obtain the areal precipitation over  
the lake. 

The performance of GCMs was evaluated based on the historical outputs using the absolute 
observed precipitation series over the lake for the 41-year period 1962–2002 provided by [12]. 
Precipitation measurements over the lake are sparse and of low quality. Kizza [16] compared 
satellite measurements to the lake surrounding observations—TRMM 3B43 product improved the 
quality of precipitation over the lake by 33% while the PERSIANN product improved the 
precipitation series by 76%. Kizza et al. [12] improved the spatial precipitation input using gridded 
monthly precipitation with a spatial resolution of 2 km for both ground based and satellite data for 
the period 1960–2004 providing a plausible lake balance model (Figure 2).  

Due to the variation in GCM outputs and for clearer analysis of results, the precipitation 
simulations by the GCMs were further classified according to the GCM grid sizes. The spatial 
resolution of the CMIP5 coupled models range from 0.5  to 4  for the atmospheric component and 
0.2  to 2  for the ocean component [17]. Table 1 shows an overview of the 26 GCMs used in this 
study. The model resolutions are classified as follows: Low Resolution (LR) models: grid size >2 , 
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Medium Resolution (MR) models: 1.5  to 2 , High Resolution (HR) models: <1.5  based on their 
seasonal performance.  

Table 1. Coupled Model Intercomparison Project (CMIP5) general circulation models 
(GCMs) considered in this study; blue (b), green (g) and red (r). 

Modeling Center Country Model Lat. Lon. Res. Color 

i. Commonwealth Scientific and Industrial Research 
Organization/ Bureau of Meteorology (CSIRO-BOM) 

Australia ACCESS1.0 1.87 1.25 MR g 

ii. College of Global Change and Earth System Science, 
Beijing Normal University 

China BNU-ESM 2.81 2.79 LR r 

iii. Centro Euro-Mediterraneo per I Cambiamenti 
Climatici 

Italy CMCC-CESM 3.75 3.71 LR r 

 Italy CMCC-CMS 1.87 1.87 MR g 
iv. Centre National de Recherches Meteorologiques / 

Centre Europeen de Recherche et Formation 
Avancees en Calcul Scientifique (CNRM/CERFACS) 

France CNRM-CM5 1.41 1.40 HR b 

v. Commonwealth Scientific and Industrial Research 
Organization/ Queensland Climate Change Centre of 
Excellence (CSIRO-QCCCE) 

Australia CSIRO-Mk3.6 1.87 1.87 MR g 

vi. Canadian Centre for Climate Modelling and Analysis Canada CanESM2 2.81 2.79 LR r 

vii. Geophysical Fluid Dynamics Laboratory US-NJ GFDL-ESM2G 2.5 2.0 LR r 

 US-NJ GFDL-ESM2M 2.5 2.0 LR r 

viii. NASA Goddard Institute for Space Studies US-NY GISS-E2-H 2.5 2.0 LR r 

 US-NY GISS-E2-R 2.5 2.0 LR r 

ix. Met Office Hadley Centre UK-Exeter HadCM3 3.75 2.5 LR r 

 UK-Exeter HadGEM2-CC 1.87 1.25 MR g 

 UK-Exeter HadGEM2-ES 1.75 1.25 MR g 

x. Institut Pierre-Simon Laplace France IPSL-CM5A-LR 3.75 1.89 LR r 

 France IPSL-CM5A-MR 2.50 1.26 LR r 

 France IPSL-CM5B-LR 3.75 1.89 LR r 
xi. Atmosphere and Ocean Research Institute  

(The University of Tokyo), National Institute for 
Environmental Studies, and Japan Agency for  
Marine-Earth Science and Technology 

Japan MIROC-ESM 2.81 2.79 LR r 

 Japan MIROC5 1.40 1.40 HR b 

xii. Max Planck Institute for Meteorology (MPI-M) Germany MPI-ESM-LR 1.87 1.87 MR g 

 Germany MPI-ESM-MR 1.87 1.87 MR g 

xiii. Meteorological Research Institute Japan MRI-CGCM3 1.12 1.12 HR b 

xiv. Norwegian Climate Centre (NCC) Norway NorESM1-M 2.50 1.89 LR r 
xv. Beijing Climate Center, China Meteorological 

Administration 
China BCC-CSM1.1m 1.12 1.12 HR b 

 China BCC-CSM1.1 2.81 2.79 LR r 

xvi. Institute for Numerical Mathematics Russia INM-CM4 2.0 1.5 MR g 

2.4. Model Performance Evaluation 

Probabilistic analyses were performed to evaluate the effect of climate change on absolute 
precipitation for different aggregation scales i.e., yearly, monthly, daily; and to investigate reasons 
for the precipitation changes. The GCM performance was analyzed for the different seasons i.e.,  
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January-February (JF), March-May (MAM), June-September (JJAS) and October-December 
(OND) based on the Normalized Mean Error (NME) and the covariance between the observed and 
historical GCM output. The NME is defined as the ratio of mean error to sample mean of the 
observations, while covariance is a measure of how two variables change together—positive 
covariance implies variables increase or decrease together. Evaluation of GCM performance for 
annual precipitation was based on the Coefficient of Variation of the Root Mean Square Error 
(CV(RMSE)) as well. The CV(RMSE) was computed as the ratio of the RMSE to the mean of the 
observations. The ability of the GCMs to simulate high and extreme precipitation was checked for 
daily, monthly and annual time scales. For that purpose, precipitation amounts were ranked and 
plotted against the empirical return period to determine how well the GCMs perform in extreme 
precipitation distributions. This analysis is useful from a water engineering point of view: If the 
GCM results would be used for obtaining water engineering design or planning values in terms of 
precipitation amount for given return periods, the analysis shows the deviations that can be found 
in these design or planning values. 

One important remark should be made about this GCM performance evaluation based on 
historical precipitation observations: model performance for the historical period, as evaluated 
here, is not equivalent to future model performance. The latter obviously cannot be validated; that 
is why the historical analysis is used instead as indicative for future performance. 

To determine the influence of future climate change on precipitation, the ratios of potential 
future simulated precipitation to historical precipitation simulations—hereafter referred to as 
perturbation factors, were used to project impacts of climate change in the Lake Victoria basin. 
This approach has been applied to study climate change by several authors e.g., [19,23]. The source 
of future changes in precipitation reflected in the perturbation factors was further analyzed in the 
different seasons to understand the influence of individual effects like changes in intensities or 
number of wet days in each season on the global annual change using Box plots. This analysis  
aims to provide plausible quantifiable measures of precipitation changes over Lake Victoria in the 
21st century. 

3. Results and Discussion 

3.1. GCM Performance Evaluation 

3.1.1. Monthly, Seasonal and Annual Precipitation 

The GCM historical and observed series for the period 1962–2002 were aggregated over 
monthly time scales to evaluate the seasonal variations in the model based precipitation amounts 
and how much they deviate from the absolute observed values. This was done for the different 
resolution GCMs (Figure 4a). LR GCMs with grid sizes greater than 2  (>220 km) generally fail to 
simulate the wetter MAM rainy season depicted by the observed series while the HR GCMs  
(<165 km) show an acceptable seasonal pattern (Figure 4a). Based on the precipitation results only, 
the performance of the GCMs improved with the increase in resolution of the GCMs (Figure 4a). 
The different runs within the same GCMs did not necessarily produce a discrepancy as large as that 
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between the different GCMs (Figure 4a) implying that model parameterization is probably more 
vital in determining GCM output compared to GCM initializations. For example, CanESM2.1, 
CanESM2.2, CanESM2.3 have different initializations but not different parameters compared to 
another model e.g., HadGEM2-CC.1 and HadGEM2-CC.2. From Figure 4a, we can see that 
differences between HadGEM-CC and CanESM2 models are larger than those arising between 
different runs within the same model. 

Earlier research by [19] reported that there was no strong evidence to suggest that GCM 
performance improved with higher spatial resolution for the previous generation GCMs (4th 
Assessment Report of the IPCC based on CMIP3). Of the 18 GCMs of CMIP3 used by [19], only 
CCSM3.0 can be categorized as HR, based on the definition used in the present manuscript. The 
three other CMIP3 GCMs (MK3.0, MK3.5, and ECHAM5) similar to CSIRO-Mk3.6 and MPI-
ESM-LR in CMIP5 are categorized as MR while the rest fall under LR models. HR and MR GCMs 
such as CCSM3.0, MK3.0, MK3.5 and ECHAM5 were ranked in the top five performing GCMs 
while most other GCMs performed poorly for the Katonga and Ruizi catchments, which are located 
within the Lake Victoria basin [19]. This study conforms to our hypothesis even though the areal 
extent of these catchments was in the order of 1000–3000 km2 [19] compared to the 68,800 km2 
expanse of the lake. The improvement in the CMIP5 simulations in which higher spatial resolution 
coupled models were used to obtain a richer set of outputs cannot be neglected—however, IPCC [8] 
recognizes an undisputed similarity between CMIP3 and CMIP5 model simulations. This implies 
that model resolution was vital in determining the GCM performance. 

Underestimation of monthly precipitation totals for the LR GCMs can be attributed to the large 
grid sizes that do not allow simulating different precipitation patterns over the northern and 
southern parts of the lake since rainfall patterns vary across the Lake Victoria basin. The universal 
kriging and inverse distance weighting methods used by [16] to obtain the spatial distribution of 
precipitation over the Lake Victoria basin show influence of the seasonal migration of the ITCZ on 
the rainy seasons such that the north eastern region generally receives more precipitation compared 
to the south eastern region. The GCMs underestimate precipitation in the rainy MAM season and 
the dry JJAS season, but overestimate the variable OND rainy season (Figure 4a,b). With the 
exception of the HadCM3 model, most GCMs simulate well the variable OND rainy season, which 
is highly influenced by complex interactions between the Indian and Pacific Oceans, a phenomenon 
that is well captured by the GCMs. HadCM3, HadGEM2-CC and HadGEM2-ES are developed by 
the same modeling center using similar radiative forcing. Although these models are essentially 
different, improved seasonal patterns are noticed in the finer HadGEM2-CC and HadGEM2-ES 
models compared to the coarser HadCM3 model (Figure 4a). 
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Figure 4. (a) Average monthly precipitation for the different GCMs compared to the 
observed series, red: Low resolution (LR) GCMs; blue: High resolution (HR) GCMs; 
green: Medium resolution (MR) GCMs; (b) Difference between modeled and observed 
precipitation for the different classifications of GCMs. 

 

 

There is a one month lag in the rainy seasons simulated by the GCMs as compared to the 
observed precipitation (Figure 4a). The monthly precipitation anomalies were calculated to account 
for the climatology simulated by the different GCMs as a difference between average monthly 
simulated precipitation, and the average monthly observed precipitation (Figure 4b). Most GCMs 
simulate the June-February precipitation well (lower monthly anomaly values) while the LR GCMs 
generally underestimate the MAM season even though there are more LR models compared to HR 
and MR models (Figure 4b). A more general seasonal check was applied in the JF, MAM, JJAS 
and OND seasons—to even out effects of the time lag exposed in Figure 4a, as shown in Figure 5a. 
The LR GCMs generally show lower (often negative) NME and covariance closer to zero or more 
negative implying that the observed and simulated historical seasonal precipitations did not change 
together for the LR models. From the covariance results (Figure 5b), it can be concluded that on 
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average the tendency of a linear relationship between the observed and simulated seasonal 
precipitation decreased with increase in the grid size of the model. Most LR models showed 
negative covariance, while most HR models showed positive covariance for the average  
seasonal precipitation. 

Figure 5. (a) Average seasonal precipitation for the different GCMs compared to the 
observed series for January-February (JF), March-May (MAM), June-September (JJAS) 
and October-December (OND) aggregations; (b) Covariance vs. normalized mean error 
(NME) for seasonal averages, red: LR GCMs; blue: HR GCMs; green: MR GCMs. 

 

 

Figure 6 shows the NME and its statistical significance compared to the uncertainty bounds 
approximated by twice the normalized standard deviation to approximate a 95% confidence 
interval. The best performing GCMs are again the higher resolution GCMs: CNRM-CM5, 
ACCESS1.0 and MRI-CGCM3, which lay within plotted uncertainty bounds. Figure 6 also shows 
the CV(RMSE) on the annual precipitation amounts. The GCMs: GFDL-ESM2G, GFDL-ESM2M, 
IPSL-CM5A-LR and IPSL-CM5B-LR (all of which are LR models) produce the highest 
CV(RMSE) and NME, henceforth are considered to be poorly performing. Generally, the GCMs 
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perform better with the annual precipitation simulations compared to seasonal and monthly 
aggregations based on the NME ( 1 to 2.5 for monthly; and 0.7 to 0.5 for annual aggregations in 
Figure 6). 

Figure 6. NME and coefficient of variation of the root mean square error (CV(RMSE)) 
of average annual precipitation for the GCM simulations compared to the observed 
series, red: LR GCMs; blue: HR GCMs; green: MR GCMs. 

 

The GCMs show acceptable annual precipitation patterns (observed values located within the 
interval defined by the standard deviation of the GCM ensemble) but fail to simulate the peak 
precipitation (Figure 7a,b). The peak precipitation seasons are not well simulated in the GCMs; due 
to the inability of the GCMs to capture the heavy MAM precipitation even though model representation 
improves with increased model resolution. Although the peak annual precipitation is not well 
captured, the general annual variability trend is typically reproduced as it depends on the well 
simulated OND rainy season rather than the heavy MAM season. The OND and MAM seasons 
account for more than 65% of the total annual precipitation over the lake, however the variability 
of precipitation in the OND period has a greater influence on the annual precipitation compared to 
that in the MAM period [16]. The correlation coefficients between seasonal and annual 
precipitation totals for the OND and MAM periods were 0.71 and 0.5 respectively, i.e., peaks in 
annual precipitation totals tended to coincide with peaks in OND rather than MAM seasonal 
precipitation [24]. 
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Figure 7. Annual variation of observed, and GCM output for (a) RCP4.5; (b) RCP8.5, 
GCM output bounds are based on twice the standard deviation. 

3.1.2. Precipitation Extremes 

The LR GCMs underestimate the monthly and annual precipitation amount for given return 
periods (Figure 8). The underestimation of the precipitation amounts for the higher return periods is 
probably due to the large variations in topographical and areal properties that are evened out over 
wider areas while HR GCMs generally provide better simulations for monthly extremes. Some LR 
GCMs provide satisfactory monthly precipitation extremes, notably BCC-CSM1.1, IPSL-CM5A-MR, 
GISS-E2-H GISS-E2-R and NorESM-1 (Figure 8a)—this is misleading as monthly precipitation 
extremes are selected throughout the year yet the observed precipitation peaks in the MAM season 
may coincide with those in the OND season (Figure 4a). It is not surprising that the LR GCMs 
consistently simulated lower annual precipitation (Figure 8b). For this reason, monthly 
precipitation extremes are further classified in the different seasons in Section 3.1.2. CNRM-CM5 
and MIROC5 gave the best estimations for both extreme monthly and annual precipitation as 
shown in Figure 8b. 

The GCM performance was evaluated in the wet and dry months i.e., November and July 
respectively (Figure 9). For the rainy November, the uncertainty in simulating daily precipitation 
extremes with return periods higher than 4 years is very large, irrespective of the model resolution. 
The HR models overestimate the extreme precipitation amounts in the wet month of November. 
Many of these extreme events in the observed series are related to occurrence of El-Niño years as 
precipitation in the region is strongly quasi-periodic with a dominant ENSO timescale of variability 
of 5–6 years [9]. The monthly shift in the seasonal variations for the BCC-CSM1.1m,  
MRI-CGCM3 and BCC-CSM1.1 models was depicted in the daily extreme plots (Figure 9). These 
HR models overestimate extreme daily precipitation; yet in reality it is due to the one month time 
lag (Figure 4a). However, in July (the driest month), the GCM performance is very erratic with 
most LR GCMs underestimating the daily extremes. The uncertainty is higher in the driest month 
of July which experiences largely varying precipitation (Figure 9b). 
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Figure 8. (a) Return period of average monthly precipitation; (b) Average annual 
precipitation for the different GCM simulations as compared to the observed series; red: 
LR GCMs; blue: HR GCMs; green: MR GCMs. 

 

Figure 9. Return period of average daily precipitation for the different GCM 
simulations for November and July, red: LR GCMs; blue: HR GCMs; green: MR GCMs. 

 

The GCM evaluation showed that GCM outputs provide better results in terms of annual and 
seasonal precipitation compared to the daily scale analyses (Figures 8,9). Even if model 
performance cannot be evaluated based on a single index, an array of measures, such as those 
described in this section provide a good indication of the model overall performance. Higher 
resolution models provide better estimates of annual, seasonal and monthly precipitation; and 
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precipitation variation (Figures 4,5,8). Table 2 provides a ranking of the good and poor performing 
GCMs based on annual, seasonal and monthly performance. Differences in latitudes are more 
significant in GCM precipitation performance than the differences in longitudes. CNRM-CM5 
provides the best estimate for annual precipitation and seasonal variation with a minimum time 
shift in monthly simulations while HadCM3 fails to describe even the basic seasonal variation. As 
shown by Shaffrey et al. [25], reduction of the horizontal resolution e.g., in the HadGEM1 model, 
may result in reduced SST errors and more realistic approximations of small scale processes, 
especially the ENSO phenomenon leading to improvement of results simulated by the finer 
HiGEM model. 

Table 2. Ranking of CMIP5 GCMs based on simulation of precipitation over Lake Victoria. 

Good Performing GCMs Long. Lat. Resolution 
Poor Performing 

GCMs 
Long. Lat. Resolution 

CNRM-CM5 1.41 1.40 High HadCM3 3.75 2.5 Low 
MIROC5 1.40 1.40 High IPSL-CM5A-LR 3.75 1.89 Low 

BCC-CSM1.1m 1.12 1.12 High IPSL-CM5B-LR 3.75 1.89 Low 
ACCESS1.0 1.87 1.25 Medium GFDL-ESM2G 2.5 2.0 Low 

HadGEM2-CC 1.87 1.25 Medium GFDL-ESM2M 2.5 2.0 Low 
HadGEM2-ES 1.75 1.25 Medium     

3.2. Analysis of Projected Future Precipitation by GCMs 

3.2.1. Monthly, Seasonal and Annual Precipitation 

The analysis of projected future changes in rainfall shows no significant change for the average 
monthly precipitation in the 2040s, but a slight increase for the 2075s especially towards the end of 
the shorter OND rainy season (Figure 10). The historical analysis described earlier in Section 3.1 
showed that the precipitation in the OND season is well captured by the GCMs. The magnitude of 
change is slightly higher for RCP8.5 under which the temperature increase is higher, leading to 
higher evapotranspiration and precipitation. The effect of GCM uncertainty is found to be far 
greater than that due to precipitation simulations between the RCP8.5 and RCP4.5 scenarios 
(Figure 10). Uncertainties in the future simulations are higher for the 2075s than for the 2040s as 
scenario uncertainty attributed to the uncertainty in emissions of greenhouse gases—hence 
radiative forcing increases exponentially especially after the 2060s [26]. 

Perturbation factors for annual precipitation due to climate change are shown in Figure 11. 
Generally annual precipitation changes converge to the same level for precipitation of return 
periods greater than two years. For that reason and to simplify the presentation of results, the mean 
change is computed for the precipitation extremes and plotted for all GCMs in box plots (Figure 11a). 
Precipitation extremes are defined as events that are larger or equal to those that occur at least  
once a year. The lower resolution GCMs like IPSL-CM5A-LR, IPSL-CM5B-LR, BNU-ESM, 
GFDL-ESM2G and GFDL-ESM2M show higher precipitation changes and mostly positive, while 
the higher resolution GCMs like CNRM-CM5, BCC-CSM1.1m and MIROC5 show precipitation 
crowding around the unchanged mean climate.  
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Figure 10. Seasonal variation of average monthly precipitation for observed and GCM 
historical, RCP4.5 and RCP8.5 series for (a) 2040s; (b) 2075s. The colored dotted lines 
indicate the extent of twice the historical standard deviation. 

(a) (b) 

Figure 11 shows an increase in annual precipitation over Lake Victoria in the 21st century for 
both RCP4.5 and RCP8.5 scenarios (only RCP8.5 shown). For the 2040s, annual precipitation is 
projected to increase by about 7% for both scenarios, while for the 2075s it is expected to increase 
by about 10% for the RCP4.5 scenario, and more than 15% for the RCP8.5 scenario. Next to this 
analysis of annual precipitation, summations of precipitation in the MAM, OND and JJAS seasons 
were analyzed to determine the perturbation factors for the 2040s and 2075s in order to understand 
the effect of seasonal precipitation on annual precipitation over the Lake Victoria basin. Figure 12 
shows the seasonal change factors for RCP8.5 scenario. Most GCMs generally agree well in the 
OND rainy season as depicted by the lower divergence and narrower box limits for all resolutions 
(Figure 12a). Precipitation amounts generally increase in all the seasons for the mitigation RCP4.5 
scenario. However, for the RCP8.5 scenario, the seasonal amounts increase only in the rainy 
seasons (Figure12a). For the dry JJAS season in RCP8.5 scenario, the total seasonal precipitation 
amount is expected to decrease by about 10% in the 2040s, and increase by about 20% in the 2075s. 
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Figure 11. (a) Perturbation factors for annual precipitation using events with return 
periods greater than two years for the different GCMs, for the 2040s (notched) and 
2075s for RCP8.5; (b) Perturbation factors vs. return period for annual precipitation for 
the different GCM simulations for the 2075s under RCP8.5 scenario: Red = LR GCMs, 
Blue = HR GCMs and Green = MR GCMs. 
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Figure 12. (a) Perturbation factors for total seasonal precipitation simulated by the 
different GCMs for the 2040s (notched) and 2075s, for RCP8.5; (b) Perturbation factors 
vs. return period for total seasonal precipitation simulated by the different GCMs in the 
2075s for RCP8.5, Red = LR GCMs, Blue = HR GCMs and Green = MR GCMs. 
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3.2.2. Precipitation Extremes 

Changes in Number of Wet Days 

A wet day is defined as that having intensity greater than 0.1 mm/day. Precipitation volumes are 
affected by both the number of wet days and the intensity of precipitation. The number of wet days 
in the historical and future scenarios was obtained for the different seasons to determine the relative 
changes in the wet day frequency (Figure 13). 

Figure 13. (a) Perturbation factors for number of wet days simulated by GCMs in the 
different seasons for the 2040s (notched) and 2075s, for RCP8.5; (b) Perturbation factors 
vs. return period for number of wet days simulated by the GCMs in the 2075s for RCP8.5 
in different seasons, Red = LR GCMs, Blue = HR GCMs and Green = MR GCMs. 
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Figure 13. Cont. 

 

(a) (b) 

The number of wet days decreases in the MAM and JJAS seasons but slightly increases in the 
OND rainy season for both RCP4.5 and RCP8.5 scenarios (Figure 13). The LR GCMs project 
greater changes in the number of wet days for the rainy MAM and OND seasons but simulate 
lower number of wet days in the dry JJAS season probably because larger areas even out localized 
low precipitation intensities. Annual precipitation over Lake Victoria is estimated to be about 26% 
higher than over land. This is expected to be associated with 20%–30% more occurrences of cold 
cloud tops over the lake [27]. It implies that averaging over large areas including land is bound to 
reduce the precipitation over the lake and sometimes the number of wet days especially in the dry 
seasons. This again confirms that GCM parameterization and resolution have an important effect 
on GCM outputs. 

Changes in Wet Day Intensities 

The daily precipitation intensities in the MAM, OND and JJAS seasons were analyzed to 
determine the change factors in the 2040s and 2075s under the different scenarios. Figure 14a 
shows the changes in daily precipitation intensities for the different seasons for events with return 
periods greater than two years. When changes in wet day intensities vs. return periods are analyzed, 
the intensities are generally seen to increase in the rainy seasons for both RCP4.5 and RCP8.5 
scenarios. The daily precipitation extremes increase more towards the 2075s compared to the 2040s 
especially for RCP8.5 (Figure 14). However, for the dry JJAS season in the RCP8.5 scenario, daily 
precipitation is generally expected to remain constant in the 2040s and increase by more than 20% 
in the 2075s explaining the reason for the decrease in the JJAS seasonal precipitation in the 2040s, 
and increase in the 2075s (Figure 12). The number of wet days slightly decreases in the dry seasons 
for both decades yet daily precipitation intensities seem to increase more in the late century than 
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the mid-century. In the 2040s, the RCP8.5 and RCP4.5 projections anticipate similar changes in 
daily extreme precipitation. The difference in relative forcing for the two scenarios in the 2040s is 
1 Wm 2 compared to 3 Wm 2 in the 2075s (Figure 3). This relative difference is consistent with 
higher temperatures in the 2075s that encourage formation of heavier intense convective storms in 
the dry season as more moisture is stored in the atmosphere. Therefore, RCP8.5 suggests fewer but 
heavier intense storms in the 2075s if carbon emissions are not controlled. 

Figure 14. (a) Perturbation factors for daily precipitation simulated by GCMs in 
different seasons for the 2040s (notched) and 2075s, for RCP8.5; (b) Perturbation factors 
vs. return period for daily precipitation simulated by the GCMs in the 2075s for RCP8.5 
in the different seasons, Red = LR GCMs, Blue = HR GCMs and Green = MR GCMs. 
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Figure 14. Cont. 

(a) (b) 

Most models show an increase in daily precipitation intensities for the dry JJAS season with 
some LR GCMs like GFDL-ESM2G, GFDL-ESM2M and IPSL-CM5A-LR strongly deviating 
from the mean change (Figure 14b). The difference in GCM performance are larger in the JJAS 
and MAM seasons—which were not well captured by the GCMs. Daily precipitation intensities are 
expected to increase by about 10%–25% in the OND season, which is consistent with the 10%–20% 
increase in total precipitation for that season (Figure 12). Despite the 10%–15% increase in MAM 
daily extremes, seasonal volumes increase by less than 10% in the same season since the number of 
wet days generally decreases in this season (Figure 13). Notwithstanding, in reality this increment 
is not expected to have any significant influence on the annual precipitation volumes especially 
since precipitation in the MAM season is generally underestimated by the GCMs as explained in 
Section 3.1. 

Daily precipitation intensities were also checked in the wettest months (April and November) 
and dry July month (Figure 15). The large spread of the perturbation factor quartiles in the dry 
month of July is attributed to division by very low historical rainfall amounts especially for LR 
GCMs that provide precipitation results averaged over larger areas (Figure 15). The resolutions of 
the GCMs affect the GCM output so care ought to be taken when choosing GCMs for climate 
change impact projections. LR GCMs show very large variations from the mean change while the 
HR GCMs values are crowded around the mean. The large variations are even more pronounced 
for the RCP8.5 scenario. The large uncertainty in the GCM output for LR models is carried into the 
computed value for the mean change especially visible in the dry month of July (Figure 15), even 
when mean change often coincides with the results from the HR GCMs suggesting that finer 
resolution GCMs are favorable in predicting climate change scenarios. 
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Figure 15. Perturbation factors for daily precipitation simulated by GCMs in the 
months of April, November and July for the 2040s (notched) and 2075s, including 
outliers represented by (+) (a) RCP4.5; (b) RCP8.5.  

(a) (b) 

0.8

1

1.2

1.4

1.6

1.8

2

April
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]

0.8

1

1.2

1.4

1.6

1.8

2

April
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]

0.8

1

1.2

1.4

1.6

1.8

2

November
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]

0.8

1

1.2

1.4

1.6

1.8

2

November
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]

0.5

1

1.5

2

2.5

3

3.5

4

July
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]

0.5

1

1.5

2

2.5

3

3.5

4

July
LR: MR: HR: ALL

P
er

tu
rb

at
io

n 
Fa

ct
or

 P
F 

[-]



216 
 

 

3.3. RCP4.5 vs. RCP8.5 and 2040s vs. 2075s Comparison 

Figures 16 and 17 summarize the differences in GCM results for the different scenarios and 
periods based on their resolutions. Precipitation will generally increase in the 21st century for both 
RCP4.5 and RCP8.5 scenarios—higher increase is generally anticipated for RCP8.5 compared to 
RCP4.5 (Figure 16). For RCP4.5, annual precipitation is expected to increase by about 7% for both 
2040s and 2075s, while RCP8.5 projects about 10% increase in the 2040s and about 18% in the 
2075s. This increase is generally attributed to increased precipitation intensities rather than the total 
number of wet days, as heavier intense storms are expected in the late 21st century according to 
Section 3.2. The results are consistent with the positive shift in precipitation distribution expected 
in other parts of East Africa under global warming for the CMIP3 climate models [28]. Generally, the 
increase in precipitation is more for the 2075s than for 2040s; and this effect is even greater than 
that arising from differences between RCP8.5 and RCP4.5 scenarios (Figure 17). A high level of 
uncertainty is presented by the LR GCMs (grid size >2 ) compared to the HR and MR GCMs 
(Figure 17a,b). 

Figure 16. Comparison of mean perturbation factors for annual precipitation based on 
GCM resolutions for the 2040s (notched) and 2075s, (a) RCP4.5; (b) RCP8.5. 

 

Figure 17. Annual precipitation perturbation factors, (a) RCP8.5 vs. RCP4.5, for the 
2040s (o) and 2075s (+); (b) 2075s vs. 2040s for RCP4.5 ( ) and RCP8.5(x), Red = LR 
GCMs, Blue = HR GCMs and Green = MR GCMs. 
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4. Conclusions 

The GCM performance over Lake Victoria is highly dependent on the resolution of the GCM, 
especially the latitudinal scale. High resolution GCMs, namely CNRM-CM5, MIROC5, HadGEM2-CC, 
HadGEM2-ES and BCC-CSM1.1m gave the best performance in modeling past absolute precipitation 
over Lake Victoria. Lower resolution GCMs (grid size >2.5 ) e.g., GFDL-ESM2G, GFDL-ESM2M, 
IPSL-CM5A-LR, IPSL-CM5B-LR and HadCM3 produced larger uncertainties in precipitation 
simulations. Therefore, for future projections of precipitation, high resolution GCMs are favored to 
provide reliable seasonal results. However, there is need to use a wide range of GCMs, irrespective 
of their resolution in order to sufficiently capture the uncertainty in climate modeling physics. This 
uncertainty may be large as also shown in this paper; hence needs to be taken into account in 
hydrological impact investigations of climate change. 

The total annual precipitation is expected to increase by about 6%–8% for the RCP4.5 scenario 
and about 10%–18% for the RCP8.5 scenario over the 21st century, despite the higher (up to 40%) 
increase in extreme daily intensities since the number of wet days does not significantly change. 
This increase is expected to be higher in the late 21st century (2075s) than in the 2040s. 

To study future lake level changes, next to precipitation over the lake, also discharges of main 
inflowing rivers need to be studied. This requires future projections of precipitation and potential 
evapotranspiration over the Lake Victoria Basin river subcatchments, and impact modeling by 
means of catchment runoff models. This research provided the baseline for such study by conducting 
GCM evaluations in precipitation simulation and analysis of future projections. 
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Attribution of Decadal-Scale Lake-Level Trends in the 
Michigan-Huron System 

Janel Hanrahan, Paul Roebber and Sergey Kravtsov 

Abstract: This study disentangles causes of the Michigan-Huron system lake-level variability. 
Regional precipitation is identified as the primary driver of lake levels with sub-monthly time lag, 
implying that the lake-level time series can be used as a proxy for regional precipitation throughout 
most of the 1865–present instrumental record. Aside from secular variations associated with the 
Atlantic Multidecadal Oscillation, the lake-level time series is dominated by two near-decadal cycles 
with periods of 8 and 12 years. A combination of correlation analysis and compositing suggests that the 
8-y cycle stems from changes in daily wintertime precipitation amounts associated with individual 
storms, possibly due to large-scale atmospheric flow anomalies that affect moisture availability. In 
contrast, the 12-y cycle is caused by changes in the number of instances, or frequency, of summertime 
convective precipitation due to a preferred upper-air trough pattern situated over the Great Lakes. In 
recent decades, the lake-level budget exhibited an abnormal—relative to the remainder of the 
instrumental record—evaporation-driven trend, likely connected to regional signatures of 
anthropogenic climate change. The latter effect must be accounted for, along with the effects of 
precipitation, when assessing possible scenarios of future lake-level variability. 

Reprinted from Water. Cite as: Hanrahan, J.; Roebber, P.; Kravtsov, S. Attribution of Decadal-Scale 
Lake-Level Trends in the Michigan-Huron System. Water 2014, 6, 2278-2299. 

1. Introduction 

The Laurentian Great Lakes have over 10,000 miles of shoreline which is subject to submersion 
or drought depending on the water level of the lakes at any given time. Extremes in these levels 
affect shoreline erosion, cargo ship capacities, hydroelectric power supplies, and recreation for the 
basins’ inhabitants. While commonly considered two separate bodies of water, the second and third 
largest of the Great Lakes, Lake Michigan and Lake Huron, are connected by the deep Straits of 
Mackinac which ensures that the water levels of the separate reservoirs remain at equal elevations. 
Hence, they behave hydraulically like a single lake, and together, Lake Michigan-Huron has over 
117,000 km2 of surface water making it the world’s largest freshwater lake [1]. Given this vast 
surface area, it can reasonably be assumed that climate fluctuations should be well represented in 
the Michigan-Huron lake-level time series, and indeed several studies have indicated that 
precipitation is most likely the primary interannual lake-level driver [2–6]. Hence, in addition to 
addressing immediate socioeconomic impacts that the water levels have on surrounding 
communities, an understanding of the 1865–present lake-level time series also contributes to a 
better understanding of historic climate modes and regional precipitation behavior whose impacts 
extend to other area lakes and groundwater [7], river flows, and agriculture. While this extensive 
time series likely contains a great deal of information pertaining to past climate behavior, clear 
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illustrations linking interannual lake-level fluctuations to regional precipitation variability have 
been lacking. 

To better isolate climatic connections implicit in the lake-level time series, Hanrahan et al. [8] 
subtracted the outflow-related damping effects from the full lake-level record and determined that 
the resulting time series exhibits variability over a range of time scales. The longest time  
scale—secular variations are anti-correlated with North Atlantic sea-surface temperatures (SSTs). 
The climate mode associated with this SST signal has been dubbed the Atlantic Multidecadal 
Oscillation (AMO) and is associated with dynamics of the oceanic thermohaline circulation [9–11]. 
Previous studies have linked AMO phases to precipitation anomalies over large portions of the  
U.S. [12–15], and this signal is likely transmitted to the lake levels through precipitation changes [8]. 
In our previous work using Singular Spectrum Analysis (SSA: see Ghil et al. [16,17]), we also 
identified two near-decadal cycles in the Michigan-Huron water levels, namely the 8-y and 12-y 
cycles [6]. The latter signal is in agreement with Watras et al. [7] who identified a ~13-y cycle in 
lakes and aquifers across the upper Great Lakes’ region. The full lake-level time series can thus be 
decomposed as the sum of SSA reconstructed components associated with each decadal signal, and 
the residual variability is dominated by the AMO signal. 

In this study, we aim to further our understanding of lake-level drivers responsible for  
decadal-scale lake-level changes. Using regional precipitation datasets, Section 2 establishes a solid 
connection between precipitation anomalies and lake-level variability, and addresses the issue of a 
possible time lag between precipitation forcing and lake-level response. In Sections 3 and 4, we 
explore seasonality of near-decadal lake-level cycles and examine the large-scale atmospheric 
patterns associated with the corresponding lake-level changes. Section 5 summarizes our results on 
the connection between regional precipitation and historic lake-level changes, and addresses a 
recent evaporative trend which is becoming increasingly apparent in the previously  
precipitation-driven lake-level time series.  

2. Michigan-Huron Lake-Level Drivers  

The interannual Michigan-Huron lake levels fluctuate in response to the sum of five primary 
drivers (see Table 1 for a summary of variables used throughout the text): over-lake precipitation 

, runoff from tributary rivers and streams , evaporative losses , inflow through the St. 
Marys River from Lake Superior , and outflow to the Mississippi River through the Chicago 
Diversion and the lower Great Lakes through the St. Clair River ; the subscript y denotes the 
year under consideration. The estimated values for all these quantities were obtained online from 
the Great Lakes Environmental Research Laboratory (GLERL [18])). 
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Table 1. Descriptions of variables used throughout the text. 

Variable Description 
 Annual total over-lake precipitation 1

 Annual total runoff 1

 Annual total evaporative losses 1

 Annual total inflow (from Lake Superior for Lake Michigan-Huron) 1

 Annual total outflow (through the St. Marys River and the Chicago Diversion for Lake 
Michigan-Huron) 1

 Observed beginning-of-month lake-level as reported by GLERL (G) and monthly-average level 
by USACE (U) 

 Observed monthly lake-level change as estimated by 

 
Observed seasonal (3-month) lake-level change as estimated by , 
where m = 7 for summer (s) and m = 12 for winter (w)

 
Computed annual lake-level change associated with the precipitation-driven components 1  
and ; see Equation (1)

,  Daily (d) and annual (y) total regional precipitation depth 2

 Computed annual lake-level change associated with ; see Equation (2)
 Reconstructed lake-level components associated with the 8-y and 12-y cycles 3

 Annual change of each reconstructed component as estimated by 

 Average total precipitation 2 defined as 

 Average precipitation frequency 2, defined as 

 Average precipitation amount 2, defined as 

 
Precipitation frequency index , and amount , with multidecadal variability removed and 
averaged over 3 years 

Notes: 1 Lake fluxes are provided in linear units (depth) over the lakes surface from GLERL; 2 Computed 
from the NOAA NCEP CPC gridded precipitation data; 3 Generated from statistically significant spectral 
peaks identified by Multi-taper method (MTM) analysis in Hanrahan et al. [6]. 

2.1. Drivers of Lake-Level Changes 

Three of the lake-level drivers—precipitation, runoff, and inflow—can all be tied to changes in 
regional precipitation. The over-lake precipitation, along with the river and stream flows that make 
up the runoff component, all stem from precipitation that occurs within the Michigan-Huron 
catchment basin. The inflow for Michigan-Huron has been regulated since 1887 by way of 
navigation locks on the St. Marys River to keep Lake Superior within a specified range of historic 
water levels [19]. If precipitation is the primary lake-level driver of Lake Superior, long-term 
precipitation variability over the Superior basin will thus be correlated with the regulated 
Michigan-Huron inflow. 

The fourth lake-level driver, evaporation, is a major contributor to seasonal lake-level 
variability, but it has historically played a minor role in the behavior of the year-to-year lake level 
fluctuations. Between 1948 and 2005, annual evaporation totals exhibited a standard deviation of 
about 0.08 m, while the sum of the precipitation-driven components (precipitation, runoff, and 
inflow) had a standard deviation of 0.24 m over the same time period. Thus, the expected  
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year-to-year lake-level changes stemming from evaporation variability are considerably smaller 
than those which occur from precipitation changes. The final lake-level driver, outflow, is a 
function of the lake-level itself and does not directly respond to atmospheric processes. It instead 
tends to damp the climate-related lake-level fluctuations arising from the four remaining 
components [8].  

It follows that the historic annual lake-level changes can be largely described by the precipitation-
driven components alone. The annual precipitation-driven lake-level changes  (Figure 1, black 
line) can thus be estimated as 

 (1)

where , , and  values are all available for the period 1916–2005, while the historical averages 
of annual evaporative losses , and the outflow average  are computed from 1948–2005 values. 

Figure 1. Annual lake-level changes estimated from observed levels ( ; blue x’s) 
and as computed by Equation (1) ( ; black circles).  

 

The year-to-year lake-level variability associated with the precipitation-driven components 
alone (Figure 1; black line), as computed from Equation (1), accounts for about 87% (r = 0.93) of the 
1916–2005 lake-level behavior as estimated from the monthly-averaged levels obtained from the 
U.S. Army Corps of Engineers (USACE)  (Figure 1; blue line). This indicates that precipitation 
has indeed had the greatest impact on interannual lake-level changes as it accounts for most of the 
historic lake-level variability. This precipitation–lake-level relationship is the primary focus of the 
present study. 

2.2. Connecting Regional Precipitation to Lake-Level Fluctuations 

While the precipitation-driven components (precipitation, runoff, and inflow) alone can be used 
to describe much of the historic lake-level behavior, the determination of these individual values is 
still quite complex. For example, as discussed above, the inflow rates ultimately stem from annual 
precipitation over the Lake Superior basin, but there are additional factors that affect the amount of 
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water that actually runs into Lake Michigan-Huron. Furthermore, because of ground absorption, 
evaporation, and other factors, the amount of precipitation that falls onto the land which surrounds 
Lake Michigan-Huron, is not equal to the amount of water that runs into the lake as runoff. Both the 
inflow and runoff as reported by GLERL must therefore be directly measured as they flow into the 
lake, or estimated by nearby flows. Here, we simplify the precipitation–lake-level connection by 
estimating these fluxes from precipitation indices alone. 

We obtained NOAA NCEP Climate Prediction Center (CPC) daily precipitation data from the 
IRI/LDEO Climate Data Library [20]. This gridded data precipitation data product was based on 
raw data from NCDC daily co-op stations, the CPC dataset, and hourly precipitation datasets. The 
precipitation data for overlake gridpoints (Figure 2) were estimated from surrounding land-based 
stations via Cressman Scheme gridding onto a 0.25 degree grid. For the present analysis, seven of 
the resulting gridded locations over the Great Lakes’ basin were chosen as indicated by the red 
stars in Figure 2, for 1948–1997. Here, the over-Superior locations were selected to represent the 
Michigan-Huron inflow and the remaining locations represent the Michigan-Huron over-lake 
precipitation and runoff. Annual precipitation totals were computed from spatially averaged 
precipitation over the seven grid locations, resulting in a single 50-y time series of precipitation 
depths . In order to estimate lake-level changes from these regional precipitation values, we must 
consider that the resulting Michigan-Huron lake-level variations are a multiple of , because the 
surface area of Lakes Michigan and Huron makes up only a small fraction—about 1/5—of the total 
Michigan-Huron and Superior basin area A. For example, suppose that during a particular period 
there was an average rainfall of 3 mm in the region, and for simplicity, assume that all of it flowed 
directly into Lake Michigan-Huron. The total volume of water produced would be 3A mm3, which 
would equate to a lake-level increase of 3A × (1/5A) 1 = 15mm, therefore amplifying the lake-level 
response by a factor of 5. 

To compute lake-level changes given , we used the historic instrumental record of individual 
precipitation-related components as reported by GLERL. Over the 1948–1997 time period, the 
average annual over-lake precipitation was  m, runoff  m, and inflow 

 m, while the average annual regional precipitation depth from the gridded dataset was 
 m. The total annual Michigan-Huron over-lake precipitation, runoff, and inflow values, thus 

equate to about 2.96 times the regional precipitation depth. If this ratio remains relatively constant 
through our period of interest, lake-level change  can be computed given only , the historic 
average annual evaporative losses  m, and outflow  m (resulting in the subtraction 
of a constant value of 2.12 m). This results in the following simplified lake-level equation: 

 (2)

The lake-level changes estimated from Equation (2) are illustrated in Figure 3 (black line) in 
conjunction with the observed lake-level change  (blue line). To account for possible delays  
related to snowpack storage, the annual rainfall totals illustrated here are defined with August as 
the beginning month. 
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Figure 2. Grid locations considered for regional precipitation estimate using NCEP 
CPC daily gridded precipitation data. Original image obtained from NOAA/GLERL.  

 

Figure 3. Annual lake-level changes (July–August) estimated from observed levels  
( ; blue x’s) and as computed by Equation (2) ( ; black circles).  

 

While numerous difficult-to-measure processes are occurring which affect the lake-level water 
supply (i.e., over-lake and river evaporation, over-land evaporation, channel adjustments, vegetative 
consumption, groundwater intake, among several others), this simplified regional precipitation index 

 still accounts for the majority of lake-level variability (r = 0.81). This ability to connect the  
lake-level changes directly to a single atmospheric variable is ideal for furthering our understanding of 
underlying atmospheric behavior. In particular, one can use the lake-level time series, which begins at 
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1865, and Equation (2) to estimate regional precipitation prior to 1948, where the CPC gridded 
precipitation dataset is not available, thus providing a much extended period during which to study 
rainfall variability.  

2.3. Lag Time of Precipitation Effects on Lake-Level Changes 

To investigate the possibility of a sub-annual time lag between precipitation and lake-level 
changes, we compared monthly lake-level changes estimated from beginning-of-month lake level 
data provided by GLERL  to 30-day precipitation totals . Correlation coefficients were 
computed between the 50-year-long monthly time series of  and daily time series of . To 
account for potential end-of-year water-level lag times, the years were overlapped, so that correlations 
were computed for all months and days July 1948–December 1949 to July 1996–December 1997. 
The contour plot in Figure 4 illustrates the magnitude of these correlations where months along the 
horizontal axis refer to the first day of 30-day precipitation totals , and those along the vertical 
axis indicate the month of lake-level change . For example, the lake-level changes in June 
(from left axis), correlate most strongly with the 30-day precipitation totals that begin on about 
June 1 of the same year (bottom axis), where r  0.8; the points that correspond to this example are 
indicated by the white arrows. On average, statistically significant correlations (p < 0.5) occur 
where r > 0.45. Because the strongest correlations occur during concurrent times, we conclude that 
the lake levels primarily respond to regional precipitation with a sub-monthly time lag. Therefore, 
any season-specific variability in the water levels of Michigan-Huron should agree with the timing 
of regional precipitation drivers.  

Figure 4. Correlations between regional precipitation  that begin on the dates along 
the horizontal axis, and monthly lake-level changes  that occur during the months 
along the vertical axis. The shading indicates the strength of correlation (r), as indicate 
by the bar on the right. The average r-values which significantly exceed zero are 0.45 
(p < 0.05) and 0.55 (p < 0.01). See text for further explanation.  
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3. Timing of Lake-Level Changes and Precipitation Behavior 

3.1. Seasonality of Lake-Level Periodicities  

We now investigate potential seasonality in lake-level quasi-periodicities previously identified 
in Hanrahan et al. [6]. For this analysis, seasonal (3-month) lake-level changes  were 
compared to the derivatives  and  of the reconstructed lake-level components 
corresponding to the 8-y and 12-y signals identified by the SSA analysis of the 1865–1999  
lake-level time series; see Hanrahan et al. [6], and Ghil et al. [16,17] for details pertaining to the 
computation of reconstructed components. Correlations between 24 consecutive months of  
lake-level changes  and the reconstructions  are illustrated in Figure 5 for the lake-level 
change periods of October 1900–1998 to November 1901–1999. For example, the first November 
correlations (left) are between the November 1900–1998 lake-level changes and the 1901–1999 
reconstructions,  (thick green) and  (thin red), respectively. The second November 
correlations (right) are between the same reconstruction years, and the November 1901–1999  
lake-level changes. Because artificially-high correlations may be generated among time series exhibiting 
red-noise variability, a Monte Carlo test was used to establish significance of the co-variance 
between the reconstructions and seasonal lake-level behavior by generating 1000 surrogate  
lake-level time series using the same length and lag-1 autocorrelation as the actual lake-levels. 
Correlations were computed between the surrogate time series and the reconstructions, which were 
sorted and then compared to the observed values. The observed values exceeding the 99th 
percentile of the synthetic values were determined to be significant at the 1% level (black stars in 
Figure 5). 

Figure 5. Correlation between the 8-y ( ; thick green) and 12-y ( ; thin red) 
reconstructed lake-level changes, and the observed seasonal (3-month) lake-level 
changes . Black stars indicate correlations significant at the 1% level.  

 

The 8-y reconstruction best correlates with lake-level changes during the preceding winter 
months of November to January. Conversely, the 12-y cycle is dominant during the summer 
months, as the peak correlations occur during June to August. The smoothed (3-y average)  
lake-level change time series that correspond to these seasons (blue) are illustrated in Figure 6a for 
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the winter months  (November–January) and Figure 6b for the summer months   
(June–August), along with the derivatives  of the 8-y and 12-y cycles (Figure 6a,b, green and 
red dashed lines, respectively). We have thus established that the two near-decadal lake-level 
periodicities occur during different times of the year; the 8-y cycle during winter months, and the 
12-y cycle during summer months.  

Figure 6. (a) Detrended wintertime (November–January) lake-level changes  
(blue) and the derivative of the 8-y lake-level reconstruction  (green dashed); (b) 
Detrended summertime (June–August) lake-level changes  (blue) and the derivative 
of the 12-y lake-level reconstruction  (red dashed).  

 

3.2. Seasonality of Precipitation Characteristics 

Because regional precipitation drives lake-level changes with sub-monthly time lag (Section 2.3), 
it follows that the lake-level cycle seasonalities identified above (Section 3.1) should coincide 
temporally with those of precipitation. In this section, we examine potential seasonal precipitation 
periodicities by comparing the reconstructed lake-level cycles to two precipitation indices: 
frequency and amount. Both indices were computed from the daily gridded CPC precipitation data 
and are defined as follows:  

Precipitation frequency ( ) =  (3)

Precipitation amount ( ) =  (4)

where a “precipitation day” is defined as having measurable precipitation (at least 1 mm) in one or 
more of the seven grid locations, and the sum of precipitation is computed as the average 
precipitation depth over all grid locations summed up over a specified number of days. Hence,  
indicates the probability of precipitation occurring on any given day, irrespective of the intensity of 
the precipitation-producing system. Conversely,  is related to the intensity of precipitation 
during individual storm events, as it accounts for the average amount of precipitation that fell 
during a given precipitation day and location, not for the number of instances or spatial extent. 
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These metrics are similar to those used by other authors where daily “frequency” and “amount” are 
sometimes referred to as “relative number of wet days” and “intensity,” respectively [21].  

To encompass full seasons,  and  were computed over 120-day moving segments (total 
number of days = 120) over 1948–1997. As identified in Hanrahan [22], both of these indices exhibit 
significant multidecadal variability possibly associated with the AMO. To filter out this low-frequency 
variability, we subtracted 20-y moving averages from both indices. Next, to minimize the highest-
frequency variability for the purpose of concentrating on decadal time scales, we computed 3-y 
moving averages of the final time series. The resulting filtered indices  and  are illustrated in 
Figure 7a,b, respectively. 

To evaluate the existence of near-decadal cycles in precipitation frequency and amount, 
correlation coefficients were computed between the two indices and the reconstructed derivatives. 
That is, 365 50-year-long time series of  and  (vertical axes in Figure 7a,b) which correspond 
to each day of the year (defined in months on the horizontal axes), were compared to each  
50-year-long time series of the 8-y and 12-y reconstructed derivatives,  and . 
Precipitation frequency  best correlates with the 12-y cycle during the summer months (Figure 
7c, thin red; black stars indicate correlations significant at the 1% level), and the precipitation 
amount index  correlates best with the 8-y cycle during the winter months (Figure 7d, thick 
green). These results are consistent with the previously-discussed timing of periodicities, where the 
12-y and 8-y cycles were linked to the summertime and wintertime lake-level changes, respectively 
(Section 3.1). 

Figure 7. Identification of precipitation characteristics associated with the 8-y and 12-y 
lake-level cycles. Filtered 120-day moving averages of regional precipitation (a) 
frequency  and (b) amount ; (c,d) Correlations between the precipitation indices 
(from a and b) and the 8-y cycle  (thick green lines) and 12-y cycle  (thin 
red lines). Black stars indicate significant correlations at 1% level.  
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3.3. Verification of Seasonal Characteristics  

To further establish significance of these findings, we compared monthly precipitation indices 
from Equations (3) and (4) during opposing phases of the 8-y and 12-y cycles. The 1948–1997 
reconstruction derivatives  were divided into two categories: increasing and decreasing  
lake-level years, as illustrated in Figure 8 (blue circles and red squares, respectively). For the 12-y 
periodicity (Figure 8b, black line), summertime (June–August) monthly precipitation indices were 
categorized during 1948–1997, resulting in 25 years, or 75 individual months, per phase. For the  
8-y periodicity (Figure 8a, black line), wintertime (September–January) indices were categorized 
during 1949–1997 (the 1948 winter was not included because November–December data were not 
available for 1947), resulting in 24 years, or 72 months, per phase.  

Figure 8. (a) Derivatives of 8-y lake-level reconstruction  and (b) the 12-y 
reconstruction  (black lines), and categorization of phases: increasing lake-level 
years (blue circles) and decreasing lake-level years (red squares).  

 

In addition to the precipitation frequency  and amount  indices, we have also included a 
total precipitation index , for comparison. This index was defined as the total precipitation 
amount over the total number of days under consideration:  

Total precipitation ( ) =  (5)

where the denominator includes all days, both precipitating and non-precipitating. When summed 
up over a month, amounts to the expected total area-averaged precipitation, which can be 
translated to monthly lake-level changes with Equation (2). On the other hand, the precipitation 
frequency index , which represents the probability of precipitation occurring during any given day 
through the month, results in the number of days with some amount of precipitation within the 
Superior/Michigan-Huron region. The precipitation amount index  represents the average daily 
precipitation amount only during precipitation days. 

We computed each index value during years of increasing and decreasing lake levels, over 
winter ( , , ) and summer ( , , ) months. The means were tested for significant 
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differences with a one-sided t-test, between the phases of the 8-y cycle (Table 2) and the 12-y cycle 
(Table 3). We find that is significantly different between the phases of both periodicities—  
during the 8-y cycle, and  during the 12-y cycle—indicating that more precipitation fell during 
the increasing phases of these periodicities than during the decreasing phases. This is in agreement 
with our results from Section 3.1 that compared seasonal lake-level changes to the lake-level 
reconstructions. Furthermore, the wintertime precipitation amount index  is significantly 
different between the phases of the 8-y cycle, and the summertime precipitation frequency index 

 is significantly different between phases of the 12-y cycle. This is in agreement with our 
findings from Section 3.2 that examined correlations between rainfall indices and lake-level 
reconstructions. 

Table 2. Precipitation indices during winter months associated with the increasing and 
decreasing phases of the 8-y cycle*.  

Index Average Increasing Decreasing Significance 
Total precipitation  
(daily average in mm) 

1.58 1.67 1.49 p = 0.03 

Frequency   
(daily probability) 

0.72 0.73 0.72 p = 0.44 

Amount   
(daily average in mm) 

2.18 2.29 2.06 p = 0.01 

Note: * p-values in bold indicate significant differences between the increasing and decreasing phases of 
the 8-y cycle as determined by a one-sided t-test (p < 0.05). 

Table 3. Precipitation indices during summer months associated with the increasing 
and decreasing phases of the 12-y cycle*.  

Index Average Increasing Decreasing Significance 
Total precipitation  
(daily average in mm) 

2.38 2.50 2.26 p = 0.02 

Frequency   
(daily probability) 

0.72 0.75 0.70 p < 0.01 

Amount   
(daily average in mm) 

3.26 3.32 3.20 p = 0.20 

Note: * p-values in bold indicate significant differences between the increasing and decreasing phases of 
the 12-y cycle as determined by a one-sided t-test (p < 0.05). 

In summary, it is changes in seasonal precipitation totals  that are driving the near-decadal  
lake-level cycles, and these totals vary due to changes both in precipitation frequency  and 
precipitation amount . Consistent with our findings discussed in the previous section, we 
conclude that precipitation fluctuations associated with the 8-y wintertime cycle are largely 
stemming from changes in precipitation amounts during the winter months . Conversely, the 
summertime 12-y cycle is primarily being driven by changes in precipitation fluctuations through 
variations in summertime precipitation frequency . 
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4. Climate Connections 

To identify large-scale climate variability associated with the cyclic Michigan-Huron lake-level 
changes, we compared the winter and summer time series of lake-level tendencies  and  
(Figure 6, blue lines) to the evolution of various atmospheric fields and SSTs. We hypothesize that 
the actual lake-level changes serve as a more accurate proxy for seasonal precipitation totals due to 
the spatial restrictions and coarse temporal resolution of the actual precipitation data.  

We used monthly averaged 1949–1998 NOAA NCEP-NCAR reanalysis data for 850-mb air 
temperatures, sea-level pressures (SLPs), and 500-mb geopotential heights, and Kaplan et al. [23] 
gridded SSTs analyzed over the same time period. The climatological monthly means were 
removed from all indices, and 20-y moving averages were subtracted from each location’s time 
series to concentrate on decadal scales. The anomalous lake-level changes,  and , were 
sorted into years from the largest negative to the largest positive lake-level change, and the first and 
last 12 years—approximately the upper and lower 25% of all available years—were selected. Next, 
we generated composite plots to connect the behavior of seasonal lake-level fluctuations to 
atmospheric and SST variability. The differences between the composites over the years with the 
greatest positive and negative lake-level changes during winter  and summer , are 
illustrated in Figures 9 and 12, respectively, where  was compared to November–January, and 

 was compared to June–August anomalies of SSTs (°C), SLPs (mb), 850-mb air temperatures 
(°C), and 500-mb heights (m). The white lines encompass areas where the upper and lower means 
were determined to be significantly different at the 5% confidence level, as determined by a two-
sided t-test. 

4.1. The 8-y Wintertime Cycle 

We concluded in Section 3 that the 8-y lake-level cycle is active during November–January, and 
found variations in wintertime precipitation amounts  to be the primary driver. Hence, 
atmospheric connections to Michigan-Huron lake-level changes during these months can help to 
identify climate modes associated with this periodicity. 

4.1.1. Wintertime Anomalies 

Composite North Atlantic and North Pacific SST anomalies (Figure 9a) associated with the 
wintertime lake-level changes  have patterns similar to those of the 850-mb temperatures  
(Figure 9b) and upper-level heights (Figure 9d). The years of greatest wintertime lake-level 
increase correspond to a warm North Atlantic SST anomaly off the New England coast, which 
underlies a positive 850-mb temperature and 500-mb height anomaly, both extending back over 
part of the Great Lakes’ region. Also during these years, below-average 850-mb temperatures and 
500-mb heights are observed along the northwestern edge of the U.S. and western Canada. These 
climate patterns are characteristic of an increased precipitation-producing storm-track displacement, 
where the trough over the western U.S. indicates a southward displacement, and the ridge over 
northeastern U.S. indicates a northward displacement. Hence, it appears that wintertime cyclones 
that travel over the U.S. during increasing lake-level years tend to be of more southern origin, 
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allowing more moisture from the Gulf of Mexico to reach the Great Lakes’ region. Another way to 
interpret moisture transport is by examination of the SLP plot (Figure 9c). The anomalous cyclonic 
rotation of the low SLPs in the southwest (Colorado low), combined with the anomalous 
anticyclonic rotation of the anomalous high SLPs in the northeast, set up an anomalous 
northeastward flow (Panhandle hook) directly transporting moisture from the Gulf of Mexico toward 
the Great Lakes, resulting in greater precipitation amounts there. 

We additionally examined potential differences in precipitable water (kg/m2) associated with  
storm-track displacements (Figure 10; analogous to composite plots of Figure 9). A statistically 
significant positive anomaly in precipitable water includes most of the Great Lakes’ region and is 
consistent with that which would be expected from a northward storm track displacement over the 
eastern U.S, further substantiating our findings that the wintertime lake-level changes are 
associated with moisture anomalies stemming from variations in storm track.  

Figure 9. Composite differences between the 12 years with the greatest increase and  
12 years with the greatest decrease of wintertime (NDJ) lake-level, for high-pass 
filtered seasonal anomalies of (a) SSTs; (b) 850-mb temperatures; (c) SLPs; and (d) 
500-mb geopotential heights, for 1949–1998. Areas encompassed by white lines 
indicate significant differences at the 5% level. 
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Figure 10. Composite differences between the 12 years with the greatest increase and  
12 years with the greatest decrease of wintertime (NDJ) lake-level for high-pass filtered 
seasonal anomalies of precipitable water (kg/m2). Areas encompassed by white lines 
indicate significant differences at the p < 0.05 level. 

 

4.1.2. The Pacific/North American Index 

The negative height anomaly located over the western U.S. and positive anomaly over the  
east-central North Pacific during the years of greatest wintertime lake-level increase (Figure 9d), is 
a pattern consistent with the negative phase of the Pacific/North American (PNA) index. In 
contrast, the anomalous high over the northeastern U.S. is positioned further north than that which 
is typically characterized by the PNA pattern. However, it is the western North American 
component of this pattern that has previously been linked to increased precipitation amounts during 
the winter months [24]. The negative PNA phase is characterized by a storm track that is more 
zonal than its positive counterpart, resulting in a more southerly storm track and enhanced moisture 
advection into the Great Lakes’ region [4]. Indeed, the wintertime (November–January) Climate 
Prediction Center (CPC) PNA index [25] is well correlated with the lake-level changes (r = 0.50). 
In spite of this, the 8-y reconstructed lake-level time series  is not well correlated with the 
PNA index (r = 0.06), indicating that the PNA pattern is not associated with 8-y lake-level cycle.  

Another way to examine the PNA/lake-level connection is by computing the correlations 
between the 500-mb height anomalies and the wintertime lake-level changes . These 
correlations are illustrated in Figure 11a, where the white lines indicate areas that are significantly 
correlated at the 5% confidence level. The negative phase of the PNA pattern is indeed observed 
with a north-south dipole pattern in the North Pacific and an upper-level trough located in the 
northwest region of North America. 

Because the PNA index is not well correlated with the 8-y cycle, we evaluated the residual  
lake-level signal, or the lake-level signal that is not associated with the PNA. To achieve this, we 
used the CPC PNA index as a predictor I and computed the best fit  from the linear model: 

 (6)
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where  is the wintertime lake-level change. The residual lake-level change  is significantly 
correlated with the 8-y reconstruction  (r = 0.39), and the correlations between this residual 
signal  and the 500-mb heights are illustrated in Figure 11b. It appears that while part of the 
wintertime lake-level signal is stemming from the North Pacific region, the 8-y cycle is instead 
rooted in the North Atlantic region. Statistically significant correlations between  and SSTs were 
also identified in the North Atlantic (not shown).  

Figure 11. Correlations between 500-mb height anomalies and (a) the actual Michigan-
Huron wintertime lake-level changes (20-y moving average removed), and (b) the 
residual lake-level changes after accounting for the PNA signal. Statistically significant 
correlations (p < 0.05) are encompassed by the white lines.  

 

The North Atlantic SST’s north-south dipole pattern is similar in structure to spatial patterns 
identified by Moron et al. [26] (Figure 10) and Da Costa and De Verdiere [27] (Figure 2), who 
analyzed SSTs and SLP fields and found a 7.7-y oscillation possibly rooted in coupled dynamics; 
the time scale and pattern of this oscillation (not shown) is remarkably similar to the ones 
associated with the ~8-y oscillation in the Michigan-Huron water levels, thus further substantiating 
our findings that the 8-y wintertime lake-level cycle is driven by processes in the North Atlantic 
region as opposed to those associated with the PNA in the North Pacific. We thus conclude that the 
8-y cycle is initiated by temperature changes in the North Atlantic which modify long-wave 
synoptic patterns thus altering moisture transport and precipitation totals in the Great Lakes’ 
region, thereby producing quasi-periodic lake-level changes during the winter months. 

4.2. The 12-y Summertime Cycle 

We concluded in Section 3 that the second near-decadal cycle, with a period of about 12 years, 
is associated with changes in precipitation frequency during the summer months of June–August. 
We thus compared summertime lake-level changes  to summertime atmospheric fields and 
SSTs, analogous to the 8-y wintertime cycle analysis as described in Section 4.1. The resulting 
composite differences are illustrated in Figure 12, where the white lines again indicate significantly 
different means at the 5% level, between the years of most positive and most negative anomalous 
summertime lake-level changes. 
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Figure 12. Composite differences between the 12 years with the greatest increase and 
12 years with the greatest decrease of summertime (JJA) lake-level change, for high-
pass filtered seasonal anomalies of (a) SSTs; (b) 850-mb temperatures; (c) SLPs, and (d) 
500-mb geopotential heights, for 1949–1998. Areas encompassed by white lines indicate 
significant differences at the 5% level. 

 

The years of most-increasing summertime lake-levels correspond to a large area of below-average 
850-mb temperatures (Figure 12b) which underlie an upper-level trough over the Great Lakes 
region (Figure 12d). In agreement with Juckes and Smith [28], who examined the relationship 
between upper-level troughs and convective available potential energy (CAPE), Gold and  
Nielsen-Gammon [29] determined that the presence of an upper-level potential vorticity anomaly 
can increase CAPE in the region, thus triggering more frequent convection when conditions are 
favorable [30]. Thus, the existence of a quasi-periodic upper-level trough over the Great Lakes may 
alter the frequency of convective precipitation events during the summer months, producing  
lake-level changes which also exhibit this near-decadal cyclic behavior. 

As with the wintertime composite plots, the SST anomalies (Figure 12a) largely appear to 
extend up to the 850-mb level, which is evident from the cold temperatures encompassed by the 
warm anomaly over the North Pacific. The warm SST anomalies near the Tropical Pacific region 
during the greatest summertime lake-level increases also agree with the findings of Wang et al. [31] 
who used El Niño events to skillfully forecast increased summertime precipitation in the Midwest. 
The North Atlantic SST pattern is similar to that of an identified ~13-y cycle by Moron et al. [26] 
(their Figure 9); the 13-y cycle SST pattern they described exhibits alternating SST signs between 
the tropical Atlantic off of Africa’s western coast, and the eastern coast of the U.S. Hence, as with 
the 8-y lake-level cycle, it appears that the 12-y cycle can be associated with distinct differences in 
large-scale atmospheric and oceanic SST patterns. 

We determined in Section 2 that the interannual lake-level changes are primarily precipitation 
driven, therefore indicating that both of the near-decadal cycles are precipitation driven. An 
evaluation of evaporative losses during different phases of the 12-y cycle, however, reveals that 
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evaporation may also play a small role in the evolution of this periodicity through below-average 
evaporative losses when precipitation is high and above-average losses when precipitation is low 
(not shown). In Section 2.1, comparison of the interannual variability associated with both 
precipitation and evaporation indicated that the historic year-to-year changes in evaporation were 
too small to impact the lake levels in a significant way. While its historic impact may have been 
minimal, the existence of this cycle in the summertime evaporation time series substantiates our 
findings of differing atmospheric phases during increasing and decreasing years of this cycle. 

In conclusion, while the 8-y wintertime lake-level cycle is resulting from changes in 
precipitation amounts related to storm-track alterations linked to processes in the North Atlantic 
region, the summertime 12-y cycle is driven by changes in precipitation frequency associated with 
a preferred upper-air trough pattern over the Great Lakes’ region. The latter signature is also 
apparent in the historic time series of summertime evaporation.  

5. Summary and Conclusions 

The water levels of Lakes Michigan and Huron exhibit considerable variability over a wide range 
of time scales, and predicting their extremes for socioeconomic planning has proven problematic. 
Potentially predictable near-decadal lake-level cycles were identified by Hanrahan et al. [6] and 
were linked to changes in precipitation. However, while this and other studies [2–5] have suggested 
that regional precipitation changes are the primary interannual lake-level driver, no clear 
illustrations that connect precipitation variability to the lake-level time series have been made. 

In this study, we used daily gridded precipitation data product to explicitly illustrate the impact 
of precipitation on the lake levels. By weighting the annual precipitation totals according to the 
historic GLERL component data, we isolated a precipitation-driven fraction of the total lake-level 
time series which closely resembles the full observed lake-level time series, thus confirming that 
precipitation has indeed been the primary lake-level driver (Section 2). Furthermore, we determined 
that regional precipitation effects are translated to the water levels essentially instantaneously, with a 
sub-monthly time lag. 

Hanrahan [22] found that the AMO alters precipitation characteristics, and hence the lake levels, 
throughout the year. That is, lake levels tend to increase during the negative AMO phase and 
decrease during the positive AMO phase, during all seasons. In contrast, we concluded in Section 3 
that the near-decadal lake-level cycles occur with distinct seasonality. This was verified by 
comparing the lake-level reconstructions to precipitation indices and reanalysis variables. 

Our finding of two dominant, 8-y and 12-y signals in the lake-level and precipitation time  
series is consistent with previous observational studies based on the analysis of instrumental  
record [26,27]. Near-decadal spectral peaks were also found to be ubiquitous in tree-ring-based 
proxy reconstructions of the Great Lakes water levels [32–34], as well as in such reconstructions of 
the NAO index known to be correlated with temperature and precipitation conditions over the 
Eastern and Central U.S. [35–37].  

We found that the 8-y cycle is occurring during winter months and is linked to variations in 
precipitation amount (Section 3). During the years of greatest wintertime lake-level changes, 
anomalously cold SSTs near the Gulf of Alaska coincide with locations of cold 850-mb 
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temperatures, and below-average 500-mb heights, whereas anomalously warm SSTs off of the New 
England coast correspond to above average 850-mb temperatures and 500-mb heights (Section 4.1). 
This spatial pattern of an equatorward displaced storm track near the Rockies, and a poleward 
displaced track near the Great Lakes, is consistent with the timing of increased wintertime 
precipitation amounts. Rodionov [4] connected increased wintertime (December–February) Great 
Lakes’ regional precipitation to an increased number of cyclones that originated from the south, which 
was attributed to a weakened 700-mb PNA teleconnection pattern. It was found here that while the 
wintertime lake levels are well correlated with the PNA index, the 8-y reconstructed cycle is not. 
After accounting for the PNA influence on the Michigan-Huron lake levels, we attribute variability 
in the residual lake-level time series, which contains the identified 8-y cycle, to processes in the 
North Atlantic region, also in agreement with Moron et al. [26] and Da Costa and De Verdiere [27]. 
The details pertaining to this connection are not yet entirely clear and are thus left for future work.  

The 12-y cycle is primarily exhibited during the summer months and is driven by alternating 
frequencies in precipitation events (Section 3). During the years of largest summertime lake-level 
increases, we identified a 500-mb trough which blankets the Great Lakes region resulting in an 
increased number of precipitation days (Section 4). We further identified an 850-mb cold 
temperature anomaly that underlies the upper-level trough associated with this cycle. Our finding 
of increased precipitation frequency, which is characteristic of increased convective activity during 
the summer, is further supported by previous studies which have concluded that warm-season 
precipitation in the U.S. is primarily convectively driven [38,39]. 

In spite of these findings that largely consider precipitation effects, changes possibly associated 
with anthropogenic climate change may further complicate the connections between atmospheric 
patterns, precipitation, and the lake levels. Several studies have indicated that under global 
warming, the climatology of Northern Hemisphere cyclones will be altered in terms of both 
average storm track and intensity [40–44]. Furthermore, warmer temperatures may produce higher 
precipitation totals along storm tracks [45,46]. We hypothesize that changes such as these will 
ultimately modify the dynamics that have historically contributed to the 8-y lake-level cycle. In 
addition, increasing air temperatures may alter both rainfall frequency and intensity [47–51], 
therefore also modifying the behavior of the 12-y cycle. Watras et al. [7] already identified a recent 
shift in the amplitude of a similar cycle in small lake and groundwater levels. Hence, more work 
needs to be done to assess how the precipitation-driven near-decadal lake-level cycles may be altered 
in the presence of a changing climate.  

While our findings indicate that precipitation has been the single most important variable when 
evaluating historical interannual lake-level fluctuations, recent research has identified changes in 
the way that the lake levels are responding to atmospheric processes. Specifically, some authors 
have found recent significant positive trends in evaporation [52,53], and although variability 
associated with evaporation has historically been too small to significantly affect the lake levels, a 
persistent positive decadal-scale evaporation anomaly is now resulting in significant cumulative 
lake-level changes [8]. As discussed in Section 2.1, the precipitation-driven lake-level components 
have explained a majority of the historic lake-level behavior; however, their time series are 
beginning to diverge, stemming from increasing evaporative losses over the past couple of decades. 



239 
 

 

Thus, not only the precipitation patterns themselves are likely to be altered under climate change, 
the nature of the lake-level response to climate variability is itself changing. Therefore, while the 
discussed periodicities may still be useful in statistical predictions schemes for future lake-level 
variations, one must be cautious in interpreting these predictions (as with any statistical forecast 
scheme), due to possible non-stationarity of lake–climate connections.  
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Tracking Inflows in Lake Wivenhoe during a Major Flood 
Using Optical Spectroscopy 

Rupak Aryal, Alistair Grinham and Simon Beecham 

Abstract: Lake Wivenhoe is the largest water storage reservoir in South-East Queensland and is 
the primary drinking water supply storage for over 600,000 people. The dam is dual purpose and 
was also designed to minimize flooding downstream in the city of Brisbane. In early January, 2011, 
record inflows were experienced, and during this period, a large number of catchment pollutants 
entered the lake and rapidly changed the water quality, both spatially and vertically. Due to the 
dendritic nature of the storage, as well as multiple inflow points, it was likely that pollutant loads 
differed greatly depending on the water depth and location within the storage. The aim of this study 
was to better understand this variability in catchment loading, as well as water quality changes 
during the flood event. Water samples were collected at five locations during the flood period at 
three different depths (surface, mid-depth and bottom), and the samples were analysed using UV 
and fluorescence spectroscopy. Primary inflows were identified to persist into the mid-storage 
zone; however, a strong lateral inflow signature was identified from the mid-storage zone, which 
persisted to the dam wall outflow. These results illustrate the heterogeneity of inflows in water 
storages of this type, and this paper discusses the implication this has for the modelling and 
management of such events. 

Reprinted from Water. Cite as: Aryal, R.; Grinham, A.; Beecham, S. Tracking Inflows in Lake 
Wivenhoe during a Major Flood Using Optical Spectroscopy. Water 2014, 6, 2339-2352. 

1. Introduction 

Lake Wivenhoe, situated 80 km west of Brisbane, is one of the largest dams in Australia. The 
lake has a capacity to store 1.15 million megalitres (ML) of water and is the major water supply to 
Brisbane, which is the fourth largest city in Australia. Being situated on the banks of the Brisbane 
River, the city frequently experiences flooding. Wivenhoe Dam lies on this river, approximately  
80 km upstream of the city of Brisbane. It was specifically designed to minimize the flood risk to 
Brisbane. During flood periods, the lake is capable of holding back a total of 1.45 million ML. 
After a long decade of drought, Brisbane experienced extreme rainfall between the end of 
December, 2010, and the first week of January, 2011. The resultant runoff rapidly filled Lake 
Wivenhoe to 190% of its designed storage capacity. The surrounding catchment is heavily 
modified with only 40% remnant vegetation, and this, combined with the record inflows, resulted 
in a significant pollutant loading, including sediment, dissolved organic matter and nutrients, over a 
very short period of time [1]. 

Dissolved organic matter (DOM) is of great concern, due to its role in the binding of nutrients, 
heavy meals and other pollutants from surrounding terrestrial environments. DOM influences the 
physical and chemical environment in lakes through light attenuation and metal complexion [2–4]. 
DOM is also important in trophic dynamics [5,6], which promote the growth of heterotrophic 
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microorganisms [7,8]. Furthermore, the incorporation of nitrogen and phosphorus into the DOM  
pool can influence nutrient cycling in lakes and reservoirs [9–12]. DOM can negatively impact  
water treatment directly through taste, odour and colour issues and during chlorination through the 
production of disinfection by-products. Finally, DOM can lead to bacterial proliferation within 
water distribution systems. 

DOM comprises a large number of organic molecules of varied composition, and their 
characterization can be both complicated and labour intensive. However, monitoring the spatial and 
vertical variation of DOM is useful for gaining a better understanding of aquatic environmental 
significance, particularly during periods of major catchment inflows. During major inflows, water 
quality can change significantly in short periods of time, and simple and sensitive tools are required 
to rapidly provide qualitative information regarding DOM changes. Optical spectroscopy 
techniques, such as UV and fluorescence spectroscopy, are both rapid and capable of providing 
useful characterization of a wide range of DOM. 

Optical spectroscopies, such as UV and fluorescence spectroscopy, have been extensively used 
to characterize organic matter that undergoes changes due to chemical, biological and physical 
processes in water and wastewater. Optical spectroscopies are popular, because they are reasonably 
sensitive, simple, rapid and economic. The UV technique can be used with absorption on single- or 
dual-wavelength procedures and can provide information on individual or representative organic 
chemical species. The specific wavelength can provide information on numerous chemicals present 
in the environmental samples [13–17]. The fluorescence spectroscopy method, commonly known 
as the excitation emission matrix (EEM), is a technique that can be used to obtain an optical 
fingerprint of dissolved organic matter in water and wastewater, and this can provide information 
on the nature of microbial, humic and fulvic organics and other pollutants, such as hydrocarbons. 
Its high sensitivity and its specificity to specific chemicals or groups of chemicals, such as amino 
acids, aromatic amino acids, mycosporine-like amino acids, humics, proteins and fulvic type 
substances, have made the application of fluorescence widely popular in the last few years in 
environmental monitoring [18–20]. Although UV and EEM have been used to monitor water and 
wastewater in the past, their application in tracking DOM and specific chemical constituents both 
spatially and vertically has not been reported so far. 

The main aim of this paper is to demonstrate how simple optical techniques can be used to track 
DOM inflows in a lake during flood periods where rapid mixing of water both spatially and 
vertically takes place. 

2. Materials and Methods 

Sampling was conducted on 21 January 2011, 10 days after the peak inflows occurred. In order 
to maximize the spatial representation of the lake, sites were selected from the dam wall, through 
the main body of the lake and at adjacent major inflow points (Figure 1). Water samples were taken 
from both the surface (20 cm below the water surface), mid (8 m water depth) and bottom (>15 m, 
1 m above the sediment surface) with a vertical, 4.2-L Niskin water sampler (Wildco, Wildlife 
Supply Company, Yulee, FL, USA). Water depth at each site was recorded from an on-board depth 
sounder (Lowrance Elite-7 HDI, Navico Inc., Ensenada, MX, USA). Prior to sample collection, the 
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Niskin and sampling bottles (glass) were cleaned with diluted nitric acid followed by Milli-Q water 
and twice flushed with water from the same sample depth to minimise contamination. Field 
personnel took care to not handle the inside of the Niskin or sample containers during sampling, 
and samples were placed on ice after collection for transport to the laboratory. 

Figure 1. Lake Wivenhoe and sampling stations. 

 

The laboratory samples were filtered through a 1.2-μm filter (Whatman GF/C, GE Healthcare, 
Little Chalfont, UK) to avoid the influence of turbidity due to suspended solids that cause light 
scattering, shading and, thus, influence the absorption over the entire spectrum. The filtrate was 
analysed for dissolved organic carbon (DOC), UV and fluorescence spectra. Details are  
described below. 

2.1. Dissolved Organic Carbon Analysis 

Dissolved organic carbon was measured by liquid chromatography with online organic carbon 
detection (LCOCD, Karlsruhe, Germany) [21]. No replicates were performed in this study. 

2.2. UV Analysis 

The water samples were analysed using a UV spectrometer (Varian 50 Bio, Victoria, Australia). 
The instrument was operated at a bandwidth of 1 nm, with a quartz cell of a 10-mm path length, a 
wavelength of 190 to 400 nm and at a scanning speed of 190 nm/min (slow) at room temperature,  
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22 ± 2 °C. Milli-Q water was recorded as blank at every set of experiments and subtracted from 
each sample’s UV record. 

2.3. Fluorescence Analysis 

Three-dimensional fluorescence spectra, also known as excitation emission matrix (EEM) 
spectra, were obtained using a spectrofluorometer (Perkin Elmer LS 55, Victoria, Australia) with a 
wavelength range of 200 nm to 500 nm (for excitation); and 280 nm to 500 nm (for emission). The 
spectra were taken at an incremental wavelength of 5 nm in excitation (Ex); and 2 nm in emission 
(Em). The EEM value of blank (MQ water) data was subtracted from the analysed samples for 
blank correction. The fluorescence intensity was corrected by blank subtraction and was expressed 
in quinine sulphate units (QSU) [22]. 

A 290-nm emission cut-off filter was used to eliminate the second order Rayleigh light 
scattering. To eliminate water Raman scatter peaks, Milli-Q water was recorded as the blank and 
subtracted from each sample. The inner filter effect of EEMs caused by possible higher 
concentrations of dissolved organic matter (DOM) in the samples was corrected for absorbance by 
the multiplication of each value in the EEM with a correction factor based on the idea that the 
average path length of the absorption of the excitation and emission light is 1/2 the cuvette length. 
For this purpose, the expression was used: 

 (1)

where Fcorr and Fobs are the corrected and observed fluorescence intensities and ex and em are the 
absorbances at the current excitation and emission wavelengths. 

The data obtained from EEM were analysed using an “R” program according to Chen et al.  
(2003) [23] and described below. 

 (2)

where i is the volume beneath region i; ( ex em) is the fluorescence intensity at each  
excitation-emission wavelength pair and ex and em are the excitation and emission wavelength 
intervals, respectively. 

 (3)

where is the cumulative volume. 
The EEM spectra was divided into five major regions (shown in Table 1 and Figure 2). The 

program could calculate area, as well as the contribution percentage of each area. 
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Table 1. Five major regions in excitation emission matrix (EEM) spectra according to  
Chen et al. (2003) [23]. SMP, soluble microbial by-product; FA, fulvic acid; HA, humic 
acid. (P1 and P2 = proteins, Ex = excitation, Em = emission, and BOD = biological  
oxygen demand.)  

Region Chemical composition of organic matter 
I (P1): Ex:Em 200–250:280–330 lower molecular weight tyrosine-like aromatic amino acids 

II (P2): Ex:Em 200–250:330–380 
low molecular weight aromatic proteins and BOD-type 
substances 

III (SMP): Ex:Em 250–340:280–380 
large molecular weight peptides and proteins (microorganism 
related by-products) 

IV (FA): Ex:Em 200–250:380–500 fulvic acid type substances 
V (HA): Ex:Em 250–500:380–500 humic acid type substances 

Figure 2. Five EEM regions selected for this study from the surface water of Site 
33137 (regions plotted according to Chen et al., 2003) [23]. 

 

3. Results and Discussion 

3.1. Spatial and Vertical Variation in DOM Concentration 

Table 2 shows dissolved organic carbon (DOC) across sampling sites and vertically within each 
site. The DOC concentration was 3–4-times lower than at stratified conditions (9.6–12.8 mg/L 
recorded almost one year after this study). The lower DOC concentrations indicate dilution by 
flooding waters. The DOC decreased from inflow sites in the upper lake downstream to the lower 
lake. Surface waters of upstream sites had relatively elevated DOC levels compared to deeper 
waters. However, at the middle and downstream sites, the bottom waters had elevated DOC relative 
to mid-depth and surface waters. Higher DOC concentrations adjacent to a major inflow point (Site 
30004) was assumed to be due to catchment inflows having relatively less dilution with lake water 
compared with sites further into the lake. Decreases in the surface DOC at sites further into the lake 
were possibly due to settling, microbial/photochemical decomposition and/or subsurface catchment 
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inflows tracking through the lake at deeper depths compared with shallower inflow points [24]. A 
higher rate of degradation of humic substances at the surface when exposed to UV is reported by 
Salonen and Vahatalo in a lake in Findland [25]. 

Table 2. Distribution of dissolved organic carbon (mg·L 1) and turbidity 
(nephelometric turbidity units—NTU) (in brackets) distribution spatially and vertically 
in Lake Wivenhoe post flood period. 

Site (location) Surface Mid-depth Bottom 
30004 (upstream) 2.782 (29.8) 2.498 (40.7) 2.622 (191.2) 
30017 (upstream) 2.624 (68.9) 2.312 (67.7) 2.248 (212.8) 
30053 (middle) 2.129 (77.4) 3.433 (128.2) 2.843 (229) 
33140 (middle) 2.244 (90.6) 1.748 (107.8) 2.218 (175.1) 

33137 (downstream) 2.373 (111.3) 2.188 (116.5) 2.929 (210.6) 

3.2. Optical Analysis 

In both UV and fluorescence spectroscopy, incident radiation causes the loosely bound electron 
present in double or triple bonds and/or in electronegative elements to excite. The absorption of incident 
radiation is recorded in UV spectroscopy against the wavelength according to the Beer–Lambert  
Law ( , where Io is the incident radiation and I is the radiation after passing through 
the length of solution. In fluorescence spectroscopy, the energy released by excited species to come 
to the ground state is also recorded. The specific excitation and emission wavelengths are unique for 
particular species. Two molecules may have similar excitation energies, but different emission energies. 

3.2.1. UV Spectra 

UV spectroscopy is rapid, simple and requires little sample preparation and small volume 
samples. Within the absorbance range between 190 and 400 nm, many specific absorbance 
values are related to a variety of properties, such as aromaticity, hydrophobic content, apparent 
molecular weight and size and biodegradability [26–28]. Table 3 summarises popular 
wavelengths widely used to measure chemical species in water and wastewater. 

Figure 3 shows a contour diagram of the UV spectral intensity of water recorded at various 
wavelengths (195, 215, 254 and 330 nm) in Lake Wivenhoe samples collected at the surface  
(Figure 3a), mid-depth (Figure 3b) and bottom (Figure 3c) during the flood period in January, 2011. 
Colour patterns in the contour diagram reflect the absorbance intensity at particular wavelengths. 
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Table 3. UV absorbance recorded at various wavelengths used to measure chemical 
species in water and wastewater. COD = chemical oxygen demand. 

Wavelength (nm) Property Reference 
195 Proteins [29] 
210 Amino acids [14,30] 
215 Peptides [30,31] 
230 Proteins [32] 
254 Aromaticity [33] 
260 Hydrophobic content/COD [16,34] 
265 Relative abundance of functional group [35] 
272 Aromaticity [36] 
280 Hydrophobic carbon index [37] 
285 Humification index [27] 
300 Characterisation of humic substances [38] 
310–360 Mycosporine-like amino acids [39–41] 
350 Apparent molecular size [15] 
365 Aromaticity, apparent molecular weight [42] 

For wavelengths of 195 nm (proteins), 215 nm (amino acids) and 254 nm (aromaticity), similar 
colour patterns in the contour diagram indicated that the DOM in the surface and bottom waters 
showed more homogeneity than in the mid-depth water. In the mid-depth region, UV 215 nm and 
UV 254 nm showed two distinct colour patterns separating the middle regions from the upstream 
inflows (surface) and downstream outflows (bottom). The middle region of the lake, where the 
inflows align, has similar organic characteristics, but at the edge of the lake, different organics are 
evident. Two possible reasons are proposed: turbid flood runoff being stored in the middle of the 
reservoir and preferential pathways of stormwater passing through the lake when flowing from 
upstream to downstream. This is supported by higher DOC and higher turbidity in the middle of the 
lake at Site 30053. Similar results (higher DOC and turbidity) have been observed by Kim et al. 
(2000) in a deep reservoir at Lake Soyang, Korea [43] when stormwater flooded into the reservoir. 

The UV 330 nm wavelength represents mycosporine-like amino acids (MAAs) [39,40]. MAAs 
are small colourless water soluble compounds composed of cyclohexane or cyclohexenimine 
chromophore conjugated with nitrogen substituents of amino acids or imino alcohol [44,45] and are 
very susceptible to photodegradation [41,46]. On the surface, various colour bands were observed 
in the contour diagram from the upstream inflows to the downstream outflows, but these were not 
evident in the mid-depth and bottom regions. The results indicate that for the inflows, 
photodegradation occurred over time in the surface region. 
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Figure 3. Contour diagram of the UV spectral intensity of flood water recorded at 
wavelengths 195, 215, 254 and 330 nm collected at the surface (a), mid-depth (b) and 
bottom (c) of Lake Wivenhoe (colours indicate the absorbance intensity). 

(a) (b) (c)  

3.2.2. Fluorescence Spectra 

Unlike UV, fluorescence spectra provide both excitation and emission information simultaneously, 
which can distinguish two chemical species from each other that have similar excitation energies. 
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The fluorescence spectra provide information on different types of organics [47]. There are a 
number of different methods for interpreting fluorescence data, from selective peak picking [48,49] 
to complex modelling, such as parallel factor analysis [50,51]. One of the commonly adopted 
methods is to calculate the area of peak of specific region of the spectrum proposed by (Chen et al., 
2003) [23]. In this paper, the EEM spectrum was divided into five regions, and the area of the peak 
was calculated using “R” software, following the equations described previously [23]. According to 
Chen et al. (2003) [23], Regions I (P1) and II (P2) represent aromatic proteins, Region III 
represents soluble microbial by-product-like (SMP) substances, Region IV represents fulvic  
acid-like (FA) substances and Region V represents humic acid-like (HA) substances. Table 1 
summarises the representative chemicals in the EEM spectra in the five excitation:emission regions 
selected for this study. 

Figure 4 shows a contour diagram of the five chemical species P1 to HA at three depths. The 
colour patterns represent fluorescence intensity (or relative concentration) of specific groups of 
chemicals in the lake, as shown in the legend (far right). Among the five groups of chemicals 
measured on the surface, P1, P2 and SMP seem to be influenced by the flow pattern, as shown by a 
preferential flow route for these species. In contrast, the spillover of FA and HA were not affected 
by the flow. At the mid-depth, we observed a relative decrease in the concentration of P1, P2 and 
SMP with flow from upstream, but this is not the case with FA and HA. This result indicates the 
removal of P1, P2 and SMP by sedimentation (binding with particles) and/or by chemical 
conversion to other organics. We also observed higher fluorescence intensities for P1, P2 and SMP 
substances in the middle region of the bottom of the lake. The increased microbial activity 
observed in the middle region of the surface of the water shows possible stagnation of the flow in 
this region. At the bottom of the lake, sediment particle settling provides increased surface area for 
microbial colonization, thus allowing increased rates of activity in these waters. According to  
Kim et al. (2000) [43] , the carbon and nutrients held in the middle region of turbid water become a 
good source of food for various bacteria. 

4. Conclusions 

Lake Wivenhoe is the primary supply water for the city of Brisbane, and it is essential to 
understand the impact of flood events on water quality in order to fully understand catchment 
loadings into the system, as well as possible implications for water treatment. The DOC 
concentration varied spatially and vertically, indicating that the inflow of DOM in the lake varied 
with space, as well as depth. The UV and fluorescence spectral techniques used in this study 
showed that organic species were distributed heterogeneously across the lake, both spatially and 
vertically, and information on specific chemicals or groups of chemicals can be obtained easily. 
These findings demonstrate the feasibility of optical spectroscopy techniques for understanding the 
impacts of catchment inflows on DOM species across the lake, and the findings will be highly 
beneficial for both water treatment and asset management. 
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Suitability of a Coupled Hydrodynamic Water Quality Model 
to Predict Changes in Water Quality from Altered 
Meteorological Boundary Conditions 

Leon van der Linden, Robert I. Daly and Mike D. Burch 

Abstract: Downscaled climate scenarios can be used to inform management decisions on 
investment in infrastructure or alternative water sources within water supply systems. Appropriate 
models of the system components, such as catchments, rivers, lakes and reservoirs, are required. 
The climatic sensitivity of the coupled hydrodynamic water quality model ELCOM-CAEDYM was 
investigated, by incrementally altering boundary conditions, to determine its suitability for 
evaluating climate change impacts. A series of simulations were run with altered boundary 
condition inputs for the reservoir. Air and inflowing water temperature (TEMP), wind speed 
(WIND) and reservoir inflow and outflow volumes (FLOW) were altered to investigate the 
sensitivity of these key drivers over relevant domains. The simulated water quality variables 
responded in broadly plausible ways to the altered boundary conditions; sensitivity of the simulated 
cyanobacteria population to increases in temperature was similar to published values. However the 
negative response of total chlorophyll-a suggested by the model was not supported by an empirical 
analysis of climatic sensitivity. This study demonstrated that ELCOM-CAEDYM is sensitive to 
climate drivers and may be suitable for use in climate impact studies. It is recommended that the 
influence of structural and parameter derived uncertainty on the results be evaluated. Important 
factors in determining phytoplankton growth were identified and the importance of inflowing water 
quality was emphasized. 

Reprinted from Water. Cite as: van der Linden, L.; Daly, R.I.; Burch, M.D. Suitability of a Coupled 
Hydrodynamic Water Quality Model to Predict Changes in Water Quality from Altered Meteorological 
Boundary Conditions. Water 2015, 7, 348-361. 

1. Introduction 

The Goyder Water Research Institute project C.1.1 was initiated to fill a gap in the current 
understanding of the potential impacts of climate change on South Australia. The project seeks to 
understand climate drivers, downscale global circulation (GCM) model projections of future 
climate and develop a suite of model applications for the evaluation of climate change impacts on 
society. Current global circulation model (GCM) projections suggest Australian average 
temperatures will increase by 1.0 to 5.0 degrees by 2070 (compared to 1980–1999), there will be a 
decrease in average annual rainfall over southern Australia and there will be an increase in the 
number of hot days and warm nights [1]. Decreases in winter and autumn wind speed and increases 
in spring and winter downward solar radiation are also projected, but these projections are subject 
to large uncertainties [2]. Recent efforts to downscale GCM outputs to the catchment scale have 
identified the potential for reduced catchment yields as the result of reduced precipitation, 
changes in rainfall seasonality and increased temperatures [3–5]. Besides issues of water 
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quantity, there are potential impacts of climate change on water quality [6,7]. Reservoirs play a 
major role in determining the water quality within a given water supply system, as they act as both 
barriers to (e.g., pathogens) and producers of (e.g., cyanobacteria (toxins, tastes and odors), iron 
and manganese) water quality hazards [8]. Reservoirs integrate the prevailing hydrology, 
meteorology, biology and biogeochemistry and the resulting quantity and quality of water is a 
valuable resource that requires sound management to ensure the utility and sustainability of the 
source water; water quality models are tools to this end. 

The potential impacts of climate change on water quality has been evaluated using integrated 
modeling schemes which include water quality models [9–13]. Such schemes use a combination of 
catchment and lake/reservoir models that use meteorological boundary conditions as inputs. The 
meteorological conditions are altered to represent projected future climate and the resulting 
simulations are taken to represent the potential impacts of those changed climatic conditions. Too 
few of these studies have been performed to make generalizations about the potential impacts; both 
positive and negative influences have been identified. Additionally, the differences in model 
structure and method make it difficult to compare the different studies directly. There are many 
sources of uncertainty within such a modeling scheme, including the choice of GCM, emissions 
scenario, downscaling methodology, and the selection of and rigor of application of the hydrological, 
constituent and lake/reservoir water quality models, including model structure selection and 
identification of parameters. Each step in the modeling scheme needs to be thoroughly evaluated to 
ensure the results can be useful. 

It is therefore appropriate to adequately test the response of the proposed reservoir water quality 
model to changes in the environmental variables expected to change in the future. Formalizing our 
understanding of the way that water quality variables respond to climate related model inputs is 
fundamentally important to understanding the outputs we generate from models [13]. As these 
models will be used to project the impacts of downscaled climate scenarios, it is important that the 
response of the water quality models to the boundary conditions is understood. Water quality 
models vary in their data input requirements and often contain options for the sub-model structures 
they contain, making it difficult to assume that they will be equally sensitive in any given 
application. Responses of chemical and biological processes to the changes in physical state 
generated by changes in meteorological inputs are dynamic and interactive and therefore difficult 
to resolve without resolving individual sensitivities in an explicit analysis. 

The outputs from any model are dependent on the inputs. It follows that uncertainty in the 
inputs, either the boundary conditions or the model parameters, contributes to the uncertainty of the 
model results. Quantification of the influence of the inputs on the model outputs is known as 
sensitivity analysis and has been extensively described in the literature. Complex models with 
many parameters, boundary conditions and long runtimes have particular challenges associated 
with the analysis of their sensitivity and uncertainty. Consequently a great deal of effort has gone 
towards developing screening methods to identify sensitive parameters and evaluate their influence 
on model output [14–17]. Less often the influence of boundary conditions or input data is 
evaluated. Generally, the error associated with these inputs is considered to be less than the 
uncertainty associated with model parameters as they are quantities that are generally measured at, 
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or proximal to, the lake or reservoir being modeled, using accurate instrumentation. However the 
range of meteorological boundary conditions are expected to change in the future [18] and given 
the non-linear and non-monotonic nature of ecosystem models, their behavior in these conditions is 
uncertain. As suitable observed validation data cannot exist for unobserved future conditions, 
model behavior under altered boundary conditions can only be validated against qualitative 
projected responses of ecosystems. These qualitative responses may be derived from space-for-time 
approaches, robust ecophysiological conceptual models and response data [19] and ensemble 
model predictions [20]. 

Therefore, the goal of this work is to answer the question: Does ELCOM-CAEDYM 
demonstrate appropriate climatic sensitivity to be used as part of a robust integrated modeling 
scheme? The responsiveness of the ELCOM-CAEDYM model [21,22] to changes in 
meteorological boundary conditions was analyzed. A previous application of the model to Happy 
Valley Reservoir (HVR) was used in conjunction with scenarios with altered environmental forcing 
of incremental changes in flow, air and water temperature, and wind speed. Responses in water 
quality variables of primary focus were cyanobacteria and soluble metals; further consideration was 
given to water temperature and water column stratification due to their important role in 
determining mixing and the rates of biogeochemical reactions. This work does not constitute a 
model sensitivity analysis, sensu stricto, but evaluates the climatic sensitivity or responsiveness of 
ELCOM-CAEDYM and compares it to other studies and an empirical climate sensitivity analysis 
of chlorophyll-a in Happy Valley Reservoir. 

2. Materials and Methods 

2.1. Happy Valley Reservoir 

Happy Valley Reservoir (35°04'12" S, 138°34'12" E) is situated to the south of Adelaide, the 
capital of South Australia (Figure 1). It was created by the construction of an earth wall dam 
between 1892 and 1897. Following a rehabilitation project from 2002 to 2004, it has a capacity of 
11,600 ML, a surface area of 178 hectares and average and maximum depths of 6.5 and 18 m, 
respectively. It is an off stream reservoir and supplies raw water to South Australia’s largest water 
treatment plant, which produces up to 400 ML of filtered water per day, resulting in a hydraulic 
retention time of 15–30 days. As HVR is isolated from its natural catchment, it is supplied with 
water from the Onkaparinga River system via an aqueduct from Clarendon Weir, which is in turn 
supplied from the much larger Mount Bold Reservoir (35°07'12" S, 138°42'00" E). Mount Bold 
Reservoir collects water from the Mount Lofty Ranges and is supplemented with water pumped 
from the River Murray, as are most of South Australia’s reservoirs. Happy Valley Reservoir has 
experienced a range of water quality challenges in the past, with blue-green algae (cyanobacteria) 
causing taste and odor problems in recent decades. The use of artificial destratification (mixing) 
and algaecides are used for management in the reservoir, while granular activated carbon used in 
the water treatment process to reduce taste and odor compound concentrations to acceptable levels 
in the product water. As HVR is supplied with water from an unprotected catchment (i.e., 
containing various farming activities and human habitation), vigilance against pathogens is required 
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and loads of nutrients are greater than is generally desirable. During the study period, nutrient 
concentrations were, total phosphorus, 0.05–0.1 mgL 1; total Kjeldahl nitrogen, 0.5–1.0 mgL 1; 
filterable reactive phosphorus, 0.005–0.03 mgL 1; ammonia, 0.005–0.05 mgL 1 and oxidized 
nitrogen, 0.05–0.5 mgL 1. The seasonal temperature range is generally between 8–10 °C and 25–27 
°C, strong persistent stratification is prevented from occurring by the operation of a bubble plume 
aerator. Due to the importance of Happy Valley Reservoir to Adelaide’s water supply, the South 
Australian Water Corporation has invested heavily in monitoring and research into the processes 
influencing water quality. 

 

Figure 1. Location of Happy Valley Reservoir. Inset shows 10 m contours of depth  
and inflow from the aqueduct and the location of the offtake to the water treatment  
plant (WTP). 

2.2. Model Description 

The Estuary and Lake Computer Model (ELCOM) is a hydrodynamic model that simulates the 
temporal behavior of stratified water bodies with environmental forcing. The model solves the 
unsteady, viscous Navier-Stokes equations for incompressible flow using the hydrostatic 
assumption for pressure. The simulated processes include baroclinic and barotropic responses, 
rotational effects, tidal forcing, wind stresses, surface thermal forcing, inflows, outflows, and 
transport of salt, heat and passive scalars [21]. When coupled with the Computational Aquatic 
Ecosystem DYnamics Model [22] water quality model, ELCOM can be used to simulate  
three-dimensional transport and interactions of flow physics, biology and chemistry. ELCOM uses 
the Euler-Lagrange method for advection of momentum with a conjugate-gradient solution for the 
free-surface height. Passive and active scalars (i.e., tracers, salinity and temperature) are advected 
using a conservative ULTIMATE QUICKEST discretization, see [21] and references within for 
further details. 
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The Centre for Water Research was previously engaged to apply ELCOM-CAEDYM to Happy 
Valley Reservoir [23]. Upon delivery, the model was considered appropriate for the simulation of 
water movement, contaminant transport, algal growth and biogeochemical cycling [23]. ELCOM 
was applied at three resolutions (25, 50 and 100 m grid sizes); the finest grid to be used for 
examining short-circuiting and inflow dilution, and the coarser grids for quicker runtimes and 
running scenarios relating to stratification, algal growth and soluble metal release from sediments 
(the 100 m grid was used in this study). The hydrodynamic model was validated against 
temperature sensor data over two periods, 29 June–6 October 2005 and 23 October 2005–8 
February 2006. The parameter set for CAEDYM was derived from applications to other Australian 
reservoirs and some minor calibration of parameters to suit Happy Valley Reservoir. The manual 
calibration focused on parameters that could not be derived from literature values and included, the 
density of particulate organic matter, the maximum rate for microbial decomposition of particulate 
organic phosphorus (nitrogen), the maximum rate of mineralization of dissolved organic phosphorus 
(nitrogen), the dissolved oxygen ½ saturation constant for nitrification, the rate of denitrification and 
the phosphorus ½ saturation constant for algal uptake. Some deficiencies in the calibration of the 
algal growth components of the model remained.  

Two algal groups were included in the model structure, representing chlorophytes (green algae) 
and cyanophytes (blue-green algae). The phytoplankton growth model was parameterized 
according to literature values, with only a single parameter being manually calibrated for Happy 
Valley Reservoir (Table 1). Parameters relating to light, temperature, phosphorus uptake and 
respiratory losses were different between the two phytoplankton groups. All other parameters were 
shared and derived from literature values. Notably, buoyancy regulation by cyanobacteria was not 
invoked in the model structure. 

Table 1. Phytoplankton group parameters that differentiate the response to 
ecophysiological drivers in the ELCOM-CAEDYM model set up. 

Parameter 
Cyanophyte 

Value 
Chlorophyte 

Value 
Description Reference

μGTH 0.8 1.2 Maximum growth rate (d 1) [24] 
Ag 1.09 1.07 Temperature multiplier for growth (-) [25,26] 

μRES 0.09 0.10 Respiration, mortality and excretion (d 1) [27] 
KP 0.009 0.008 P ½ saturation constant (mg L 1) Calibrated 
IK 130 100 Light ½ saturation constant (μE m 2 s 1) [28] 

TSTD 24 20 Standard temperature for algal growth (°C) [29] 
TOPT 30 22 Optimum temperature for algal growth (°C) [29,30] 
TMAX 39 35 Maximum temperature for algal growth (°C) [29] 

For this work, the model was not further calibrated or modified beyond the work of  
Romero et al. [23] and therefore no performance metrics are presented. The lack of extensive 
calibration to HVR water quality dynamics means the results of the study can be considered to be a 
general test of the response sensitivity of ELCOM-CAEDYM to climate drivers and not an 
investigation of the likely effects of climate change on water quality in Happy Valley Reservoir. 
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2.3. Scenarios for Analysis of ELCOM-CAEDYM Climatic Sensitivity 

A series of twenty four (24) scenarios were defined, synthetic input data files were generated 
and ELCOM-CAEDYM simulations were run. As stratification, algal growth and soluble metal 
concentrations were of key interest, the summer period simulation was used. The 100 m grid 
version of ELCOM was used to minimize the runtime required, as short-circuiting was not a 
primary concern of the water quality problems being investigated. The input boundary conditions 
analyzed were selected to represent the “climate drivers” of precipitation, air temperature and wind 
speed and are represented by the input files as changes in flow, air and water temperature, and wind 
speed, respectively (these will be referred to as INFLOW, WIND and TEMP in text). The synthetic 
input files were generated by applying a linear multiplier, for INFLOW and WIND, and an 
increment in the case of TEMP (Table 2). Temperature was modified in this fashion to facilitate 
comparison to potential temperature change magnitudes. For comparison, 5 and +5 degrees 
correspond to multipliers of 0.8 and 1.25, respectively, at 20 degrees Celsius, similar to the average 
temperature in the reservoir during the simulations. As ELCOM-CAEDYM will fail if changes to 
the water budget result in violations in the boundary conditions, changes in the inflow and outflow 
must be balanced, therefore the outflow (consumption at the offtake) was increased by a 
corresponding amount. The FLOW scenarios could therefore be considered to represent a change in 
the consumption of water by the water treatment plant (WTP), rather than changes in precipitation, 
strictly. This may initially seem artificial; however, as HVR is an offline storage and the inflow to the 
reservoir is fully regulated by a flume at Clarendon Weir, it can be interpreted as representing 
changes in demand, especially as a summer period was considered. 

Table 2. Boundary condition modifications applied in the sensitivity analysis. A 
scenario was generated for each change in meteorological variable, resulting in 24 
scenarios differing from the base scenario. 

Temperature (TEMP) 
[Increment] 

Precipitation (FLOW) 
[Multiplier] 

Wind Speed (WIND) 
[Multiplier] 

5.0 0.50 0.50 
2.0 0.75 0.75 
1.0 0.90 0.90 
0.5 0.95 0.95 

0.5 1.05 1.05 
1.0 1.10 1.10 
2.0 1.25 1.25 
5.0 1.50 1.50 

The scenarios were run using the same initial conditions; a “spin-up” period of 1 week was 
excluded from all summary calculations. As potable water production is the focus of the study, 
water quality (temperature, suspended solids, chlorophyll, iron and manganese) at the reservoir 
offtake was analyzed, along with “whole of reservoir” characteristics, such as water temperature and 
g' (the reduced gravity due to stratification, [21]). Changes in water quality were evaluated as 
changes in the mean concentration, the maximum concentration and the period of the simulation that 
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the concentration was above a threshold value (green algal and cyanobacterial chlorophyll only, 1 and 
10 μg/L, respectively). In order to facilitate the interpretation of the phytoplankton dynamics, 
summaries of the state variables governing the growth of the two species modeled were calculated 
as means of the time series values. 

2.4. An Empirical Analysis of the Climatic Sensitivity of Chlorophyll-a to Temperature 

Historical records of chlorophyll-a and water temperature were collated from the primary 
reservoir surface monitoring location for the period 1998 to 2013. Monthly medians and anomalies 
were calculated for water temperature and chlorophyll-a concentration. The monthly anomalies 
were normalized to unity, so as to be able to compare directly to modeling results summarized with 
a similar method. Linear regressions were fitted to the raw anomalies and normalized values, both 
for the entire year and for the summer months only.  

3. Results and Discussion 

3.1. Lake Physical Characteristics 

The (modeled) physical properties of the lake were altered by the changes in boundary 
conditions. The degree of stratification, as indicated by average g', was altered in all scenarios; 
changes in wind speed had a strong negative effect on lake stratification (Table 3). Increasing air 
and inflowing water temperature resulted in increased reservoir stratification, as did increased flow. 
Water temperature in the reservoir was not strongly influenced by the INFLOW scenarios, however 
the WIND and TEMP scenarios had strong effects on the mean of the average, minimum and 
maximum water temperatures observed over the simulations (Table 3). Only small impacts on 
reservoir volume and level were observed (not shown). 

3.2. Water Quality 

An increase in average modeled cyanobacterial chlorophyll was observed with elevated 
temperature (Figure 2a). The average concentration of reduced soluble iron (FeII) also increased 
with temperature while soluble manganese was less responsive (Figure 2). Sensitivity responses 
were close to linear near the origin (±10%), but some became non-linear at the extremes of the 
scenarios investigated. Exceedance of the threshold selected for cyanobacterial chlorophyll 
increased approximately linearly with increasing temperature above that of the original scenario, 
but had little effect below that level (data not shown). The FLOW scenarios had a consistently 
linear influence on reservoir water quality; increasing average concentrations of chlorophyte and 
cyanobacterial chlorophyll, MnII and FeII were observed in simulations with reduced flow;  
only the average concentration of suspended solids (SSOL1) decreased with decreasing flow 
(Figure 2b). Changes in maximum modeled values behaved similarly as did duration of exceedance 
for the chlorophyll variables (not shown). 
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Table 3. Summary of average physical properties for climatic sensitivity analysis of 
ELCOM-CAEDYM simulations of Happy Valley Reservoir. 

Factor 
Increment/  
Multiplier 

g' (/s2) 
Temperature 

Mean (°C) 
Temperature 

Max (°C) 
Temperature 

Min (°C) 
Original - 0.0502 20.5 21.8 16.5 

INFLOW 0.50 0.0481 20.9 22.2 16.6 
INFLOW 0.75 0.0490 20.8 22.0 16.6 
INFLOW 0.90 0.0496 20.6 21.9 16.5 
INFLOW 0.95 0.0498 20.6 21.9 16.5 
INFLOW 1.05 0.0503 20.5 21.8 16.5 
INFLOW 1.10 0.0505 20.5 21.8 16.6 
INFLOW 1.25 0.0510 20.3 21.7 16.6 
INFLOW 1.50 0.0513 20.2 21.5 16.6 
TEMP 5.0 0.0454 17.0 18.3 13.4 
TEMP 2.0 0.0481 19.1 20.4 15.9 
TEMP 1.0 0.0490 19.8 21.1 16.2 
TEMP 0.5 0.0495 20.2 21.5 16.4 
TEMP +0.5 0.0505 20.9 22.2 16.7 
TEMP +1.0 0.0511 21.3 22.5 17.0 
TEMP +2.0 0.0524 22.0 23.2 17.3 
TEMP +5.0 0.0571 24.1 25.4 17.5 
WIND 0.50 0.0984 22.7 25.9 17.0 
WIND 0.75 0.0681 21.5 23.4 17.0 
WIND 0.90 0.0560 20.9 22.4 16.7 
WIND 0.95 0.0528 20.7 22.1 16.6 
WIND 1.05 0.0474 20.4 21.6 16.6 
WIND 1.10 0.0452 20.2 21.4 17.2 
WIND 1.25 0.0397 19.8 20.8 17.4 
WIND 1.50 0.0334 19.3 20.1 17.3 

The relationship between WIND and algal growth was obviously non-linear with large increases 
in the average concentrations of both algal groups with decreasing wind speed (Figure 2c). 
Cyanobacteria were especially favored by low wind speeds. Reduction of wind speed from 90% to 
75% of today's averages resulted in a large increase in the duration of exceedance by cyanobacteria 
(not shown). The simulated phytoplankton production rates were low (~0.1 day 1) compared to 
what they can potentially be (~0.3–0.5 day 1) and probably are in HVR. This was also noted by 
Romero et al. [23]. The simulated whole lake averages of respiration exceeded that of production 
in cyanobacteria, indicating that they were limited to growing in a limited volume of the lake where 
sufficient light was available. Elevated temperatures increased cyanobacterial production rates but 
these increased production rates were kept in check by elevated respiration. There was very little 
change in the nutrient (N&P) limitation of phytoplankton, even under the INFLOW scenarios; 
simulated phytoplankton growth was more limited by light availability (Table 4). 
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Figure 2. Change in mean modeled water quality values over the summer period in the 
different sensitivity analysis scenarios where temperature (a); rate of inflow and outflow  
(b) or wind speed (c) were incrementally changed. 
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Table 4. Mean cyanobacterial growth characteristics in ELCOM-CAEDYM 
simulations. The “Limitation by” values indicate the degree of growth limitation by 
light, phosphorus and nitrogen. It takes a value from 0 to 1; where 1 is unlimited and 0 
is completely limited (no growth). 

Scenario 
Production Respiration Limitation by 

(day 1) (day 1) Light Phosphorus Nitrogen 
Original 0.080 0.093 0.099 0.915 0.890 

INFLOW by 0.5 0.079 0.096 0.095 0.916 0.883 
INFLOW by 1.5 0.081 0.091 0.102 0.916 0.890 

TEMP by 5 0.061 0.076 0.101 0.917 0.890 
TEMP by +5 0.108 0.115 0.106 0.909 0.884 
WIND by 0.5 0.083 0.106 0.086 0.923 0.899 
WIND by 1.5 0.075 0.087 0.103 0.917 0.889 

3.3. Implied Model Climatic Sensitivity 

These scenarios demonstrate that ELCOM-CAEDYM is responsive to changes in environmental 
drivers that are expected to change under future climate. The model tested was not heavily 
calibrated and therefore the results are able to be generalized. The observed sensitivities are 
consistent with qualitative expectations on the basis of contemporary understanding of reservoir 
processes; for example, that increased temperature and stratification may; increase the prevalence of 
cyanobacteria; and result in longer periods of decreased dissolved oxygen concentration and higher 
dissolved metal concentration. Other authors have observed model climatic sensitivities that resulted 
in increases in the proportion of cyanobacteria by 1%–7.8% per 1 °C increase in temperature (using 
the model PROTECH [31]). From a review of the literature of the potential impact of climate on 
phytoplankton communities, Elliott [13] concluded that projected future climate would result in 
increased relative abundance of cyanobacteria and changes in the phenology of phytoplankton 
dynamics but not necessarily an increase in the seasonal amount of phytoplankton biomass. These 
conclusions are consistent with the responses observed in this study. 

Important interactions with nutrient availability exist [32] but this was not investigated here. As 
an independent factor, nutrient addition (sensu INFLOW scenarios) did not have a large effect on 
the phytoplankton dynamics, presumably because of the lack of nutrient limitation (Table 4). The 
model tested in this study employed a relatively simple representation of phytoplankton community 
dynamics; only two main functional groups were represented. Furthermore some physiological 
mechanisms that facilitate cyanobacterial dominance, despite being available in CAEDYM, were 
not used in the model application of Romero et al. [23]. Greater sensitivity and/or more  
non-linearity may be expected if these mechanisms (e.g., buoyancy regulation) were implemented. 

The environmental drivers that were manipulated in the scenarios were not investigated 
factorially, however they are not completely independent; changes in mean and maximum water 
temperature occurred in the INFLOW and WIND scenarios (Table 3). This complicates the 
interpretation of model outputs without extensive comparison of individual simulations; an effort 
not warranted by the goals of this study. The scenarios were arbitrarily selected to quickly develop 
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a picture of the sensitivity of the model to changed boundary conditions. As such, the important 
environmental drivers of dilution and nutrient loading are confounded in the multiplication of 
inflow volumes. Inflow scenarios assumed the same constituent concentrations and therefore the 
higher flow scenarios had higher nutrient loads. However as chlorophyll concentrations decreased 
as flow increased; it is apparent that dilution was a more important driver of algal biomass than 
nutrient load and availability. Despite this, the prediction that phytoplankton growth is rarely 
limited by nutrient availability may suggest that reducing the external load may be an option for 
reducing algal growth. The internal load was not investigated as part of this study but given the 
short water retention time of the reservoir, it is probably of minor importance, compared to the 
external load. The reduction of nutrient availability represents a potential strategy for adaptation to 
climate change and the likely negative effects on water quality resulting from increased 
cyanobacterial growth. Water quality models, such as ELCOM-CAEDYM, have an important role 
to play in determining the potential benefit of a nutrient reduction program. 

3.4. Empirical Reservoir Climatic Sensitivity 

Linear regression between water temperature and chlorophyll median monthly anomalies did not 
resolve slope estimates significantly different from zero (0.105 ± 0.134, Pr(>|t|) = 0.43). The weak 
positive slope estimate combined with a poor predictive relationship (R2 = 0.0142) demonstrates 
that surface water temperature did not play an important role in determining total chlorophyll in 
this period (Figure 3b); it also demonstrates that total chlorophyll was not negatively correlated 
with water temperature, as implied by the water quality model (Figure 3a). This might suggest  
that deficiencies in definition of model structure or parameter identification have resulted in a  
non-behavioral model response (one not consistent with our expectations). These deficiencies could, for 
example, be found in the parameterization of the temperature response functions for growth, or be 
the product of the over-simplification of the phytoplankton community. This remains speculative, 
as this simple comparison cannot resolve the differences between the processes structuring algal 
growth in the model scenarios as compared to those operating over a longer period and in different 
years, within the reservoir. It must further be noted that the empirical analysis is limited to (monthly) 
anomalies less than +2 °C and so could not explore the full range of (annual) anomalies as defined by 
the model scenarios. 

 

Figure 3. Cont. 
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Figure 3. Comparison of (a) model derived climate sensitivity to (b) empirical reservoir 
climate sensitivity of chlorophyll-a to temperature in summer (December, January, 
February). In panel (b) each point represents the unity normalized anomaly from the 
monthly median value calculated over the period 1998–2013 and is labeled as yyyy-mm. 

4. Conclusions  

This study demonstrated that ELCOM-CAEDYM is sensitive to climate drivers and suitable for 
use in climate impact studies. Rigorous evaluation of the impact of selection of model structures 
and parameter values on the conclusions drawn from scenarios conducted with altered boundary 
conditions is advised. This study highlighted factors likely to be important in determining 
phytoplankton growth in Happy Valley Reservoir. Further it demonstrates that the water quality of 
the source waters will be of major importance to the reservoir water quality dynamics. 
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Trends in Levels of Allochthonous Dissolved Organic Carbon 
in Natural Water: A Review of Potential Mechanisms under a 
Changing Climate 

Todd Pagano, Morgan Bida and Jonathan E. Kenny 

Abstract: Over the past several decades, dissolved organic carbon (DOC) in inland natural water 
systems has been a popular research topic to a variety of scientific disciplines. Part of the attention 
has been due to observed changes in DOC concentrations in many of the water systems of the 
Northern Hemisphere. Shifts in DOC levels, and changes in its composition, are of concern due to 
its significance in aquatic ecosystem functioning and its potential and realized negative effects on 
waters that might be treated for drinking purposes. While it may not be possible to establish sound 
cause and effect relationships using a limited number of drivers, through long-term DOC monitoring 
studies and a variety of laboratory/field experiments, several explanations for increasing DOC trends 
have been proposed, including two key mechanisms: decreased atmospheric acid deposition and the 
increasing impact of climate change agents. The purpose of this review is three-fold: to outline 
frequently discussed conceptual mechanisms used to explain DOC increases (especially under a 
changing climate), to discuss the structure of DOC and the impact of higher levels of DOC on 
drinking water resources, and to provide renewed/sustained interest in DOC research that can 
encourage interdisciplinary collaboration. Understanding the cycling of carbon from terrestrial 
ecosystems into natural waters is necessary in the face of a variable and changing climate, as 
climate change-related mechanisms may become increasingly responsible for variations in the 
inputs of allochthonous DOC concentrations in water. 

Reprinted from Water. Cite as: Pagano, T.; Bida, M.; Kenny, J.E. Trends in Levels of Allochthonous 
Dissolved Organic Carbon in Natural Water: A Review of Potential Mechanisms under a Changing 
Climate. Water 2014, 6, 2862-2897. 

1. Introduction 

Dissolved organic carbon (DOC) is a complex mixture of aromatic and aliphatic carbon-rich 
compounds that are important natural components of aquatic ecosystems, modulating many basic 
biogeochemical and ecological processes [1]. Over the past few decades, several long-term studies 
have reported an apparent trend of increasing DOC concentrations in inland surface waters over  
large areas of the Northern Hemisphere. According to a comprehensive review, there remains some 
uncertainty as to the ubiquity of the trend in increasing DOC levels [2]. However, the review 
reports that it is clear that a number of studies purport to show an increasing trend in DOC levels 
over large regions located in the Northern Hemisphere [2], and under a changing climate, it is 
feasible that DOC changes may become more pronounced—making examination of the potential 
drivers worthy of attention. At sites where DOC has increased, waters have often become “colored” 
(brownish tint) or “darker” (more absorbing of radiant light) [3], resulting in changes in light 
penetration and availability to plants in aquatic ecosystems. DOC concentrations also impact the 
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transport of nutrients as well as pollutants, like heavy metals, in ecosystems. Further, since natural 
water supplies are sometimes treated and used for drinking water, higher levels of DOC have been 
shown to contribute to an increased formation of potentially dangerous chemical by-products (the 
most publicized being the trihalomethanes (THMs)) upon traditional chlorine disinfection 
treatment. High DOC can also dictate an increased demand for pretreatment steps in the water 
disinfection process, effectively making water more costly to treat [4,5]. 

Several factors have been considered to explain the observed increases in surface water DOC, 
including changes in soil and surface water acidity (e.g., [6,7]) as a result of declining sulfur 
deposition (e.g., [8,9]), continued nitrogen deposition (e.g., [10]), climate change (e.g., [11,12]), 
changes in hydrology and precipitation (e.g., [13,14]), changes in land-use patterns (e.g., [15]), as 
well as combinations of some of these factors. Despite intensive research over a few decades, much 
remains unknown in regard to our understanding of the terrestrial cycling of carbon. While many 
studies suggest that changes in DOC are occurring over large regional areas and the potential 
mechanisms discussed here have the capability to influence these changes to varying degrees, it 
should be recognized that it may not be possible to establish sound cause and effect relationships 
using a limited number of drivers. Many drivers, in fact, can work to produce a variety of effects on 
DOC release from the terrestrial landscape to natural waters and these effects can even work in 
opposition to each other. Further, many drivers may be covariate and it may, therefore, be difficult 
to isolate specific effects on DOC, especially in ecosystems where small changes in DOC or in a 
particular driver are observed. Nonetheless, the drivers outlined in this review are important to 
consider in areas experiencing changes in allochthonous DOC inputs, but further research should 
take a critical approach when attempting to ascribe significant statistical relationships between a 
reduced number of drivers and changes in DOC.  

It is also recognized that changes in DOC can vary significantly according to geographic  
region [16]. For example, arctic and subarctic regions will respond differently to the complex 
drivers of DOC change when compared to temperate and tropic regions. It is not within the scope 
of this review to cover in detail how each ecoregion will respond to changes in the carbon cycle 
and many of the published research articles we reviewed were performed in temperate and 
subarctic regions. To understand more about carbon cycling in the arctic and changes in arctic 
carbon stocks, the authors direct readers to a review by McGuire et al. [17]. A highly cited review 
in regard to carbon cycling in tropical forests is also available [18], as well as several articles 
highlighting organic-matter [19,20] and climate change [21] in the tropics. 

Despite the complexity of this issue, much of the attention devoted to explaining the observed  
long-term changes in DOC has sometimes been reduced to two key hypotheses. The first attributes 
the increases in DOC in surface waters to a reduction in acidic deposition as a result of tougher air 
standards internationally [8]. Proponents of this hypothesis argue that the changes in DOC are 
representative of a return to pre-industrial DOC levels, prior to the addition of sulfate pollution in 
the atmosphere [8]. There appears to be supporting evidence in the trends of reduced acidity in 
many surface waters in the U.K. in conjunction with an increase in DOC levels [22], but in some 
regions not subject to intense acid-deposition, such as northern, high latitude regions, the sulfate 
reduction hypotheses alone may not be able to completely explain increasing levels of DOC [23]. 
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The second hypothesis offered to explain the DOC increases in water observed in boreal regions 
and other regions with low acid-deposition, is climate change and all of its inherent consequences  
(e.g., increasing temperatures, unpredictable weather, increasing atmospheric CO2, etc.) as the main 
driver for increases in DOC [11]. Increasing temperature and atmospheric CO2 concentrations can 
result in greater primary production and the accumulation of degrading biomass to contribute to the 
ecosystem’s DOC pool. Researchers have indicated this observed increase in DOC may be a result 
of a change in the way in which soils and inland waters store and respire carbon [11,24], potentially 
representing a systemic environmental change; essentially a response in the carbon cycle to 
enhanced atmospheric CO2 concentrations. Other factors of climate change, like varied precipitation 
and associated droughts and hydrology changes can also affect DOC levels found in water, but their 
implications are complex and varied in the ways that they may impact DOC trends. 

A purpose of this review is to highlight the atmospheric deposition and climate change 
paradigms used to explain observations of increasing DOC and to briefly discuss other possible 
drivers discussed in the literature, such as land-use. The topic of DOC increases has garnered much 
research over the last few decades, perhaps due to the implication of increasing costs for treating 
water, but also as a means to better understand the processes governing the terrestrial transport of 
carbon to natural waters [24] and the associated ecological consequences of increasing DOC. 
Understanding the mechanisms that govern DOC release to natural waters is important, as it can 
enhance the ability to model future changes in the chemistry and ecosystem functioning of aquatic 
environments, especially in the face of impending climate change. 

2. Characterization of Natural Organic Matter in Water Systems 

2.1. Natural Organic Matter Definition and Composition 

There is a range of terminology that is used to describe organic matter found in water systems 
and the terms to discuss its different fractions are sometimes used ambiguously, while accounting 
for the variety of methods used in different studies to measure organic matter portions (for a quality 
review of this issue and a comprehensive study of terminology/methodology used in the literature, 
please see ref. [25]). For the purposes of this review, the following terminology will be used for the 
various forms of organic matter found in natural waters. The Venn diagram displayed in Figure 1 
can help to categorize and visualize the forms of organic matter and related terminology in a 
simplified way. 

Total (or Natural) Organic Matter (TOM) has approximately 50% carbon by weight, and the 
organic carbon species found in natural water are often referred to as Total Organic Carbon  
(TOC) [26]. TOC encompasses all molecular organic carbon species found in water (from small 
molecules like methane to macro-molecular structures such as lignins and proteins) [26]. Dissolved 
Organic Matter (DOM) is a term used generally when discussing dissolved organic substances, but 
the term is often used interchangeably with DOC in the literature, despite the fact that DOC makes 
up a fraction of the DOM profile. Physically, DOC is categorized as organic compounds that can 
pass through a 0.45 m filter, though this is merely an operational definition [27]. Any particulates 
that do not filter through are designated particulate organic carbon (POC) [27]. 
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DOC can be further divided, based on composition, into humic and non-humic fractions. Humic 
material contains both aromatic and aliphatic components with amide, carboxyl, ketone, and other 
functional groups [28]. The humic fraction can be further categorized into humic acids, fulvic 
acids, and humin. The criteria for inclusion into each of these three categories are based on 
solubility properties at specific pH levels [27]. Humic acids are soluble in water until pH < 2, and 
contain the highest molecular weight samples of the humics—in the range of 1500–5000 Da in 
natural waters [29]. Fulvic acids are soluble at all pH levels found in nature, and range in molecular 
weight between 600 and 1000 Da in natural waters [29], while humin is not soluble in water at any 
pH [27]. Further, fulvic acid characteristically has more carboxylic groups and oxygen atoms, 
while humic acid has more phenolic and aromatic groups with longer aliphatic chains [30]. 
Because humic acids have longer aliphatic chains, they tend to be more nonpolar than fulvic acids, 
making them less soluble in water [30]. Humics tend to have fairly broad absorption spectra, 
absorbing most intensely toward the blue region of the visible spectrum [31]. Though models of the 
molecular makeup of humic compounds are still debated, a representative model structure of a 
humic acid has been suggested in the literature (see ref. [32] for a representative image). More recent 
studies have increased the understanding of the composition of DOC beyond the classic categories of 
humic and fulvic acids using techniques such as nuclear magnetic resonance (NMR) [33], high 
performance liquid chromatography (HPLC) [34], and Fourier transform ion cyclotron resonance 
mass spectrometry (FTICRMS) [35]. FTICRMS, coupled with electrospray ionization (ESI), appears 
to be a promising method for resolving humic and fulvic acids at a molecular level. ESI-FTICRMS 
has been used, for example, to differentiate between autochthonous and allochthonous dissolved 
organic matter in marine environments [36], to assess changes in DOM brought about by its 
interaction with sunlight [37], and to compare and contrast humic and fulvic acids at nearly the 
molecular level [38,39]. 

DOC is a complex material containing many molecules with a variety of functional  
groups—including phenolic compounds (which are of particular interest in this review). The 
phenolic components of DOC tend to be more recalcitrant to biodegradation [40], especially when 
compared to aliphatic compounds, and only certain microorganisms, including specialized  
fungi [41], seem to be able to decompose them [42]. As such, phenolic compounds have the 
potential to remain in the environment longer and some suggest the breakdown of lignin phenolic 
compounds may be a rate limiting step in the terrestrial carbon cycle [42,43]. In contrast, lignin 
phenols can be highly susceptible to photodegradation, and in areas that receive high levels of solar 
radiation, phenolic compounds have been shown to have faster rates of degradation [40]. Humic 
material can arise from the microbial breakdown of plants and organisms during the process of 
humification. The exact molecular mechanism of the humification process, though not fully understood, 
has been explained by lignin-based and polymerization/condensation-based processes [27].  
Humic material can also be completely decomposed over time and ultimately returned to the 
atmosphere as CO2. 
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Figure 1. Simplified Venn representation of the various forms of organic matter found 
in natural waters. Total Organic Matter (TOM), Total Organic Carbon (TOC), 
Dissolved Organic Matter (DOM), Dissolved Organic Carbon (DOC), Particulate 
Organic Carbon (POC), Dissolved Organic Nitrogen (DON), and Dissolved Organic 
Phosphorus (DOP) are represented. DOC can be further broken down to its humic 
(humic acid, fulvic acid, and humin) and non-humic material, while new analytical 
methods continue to reveal more molecular-level detail. 

 

The varied sources of humic material give rise to different spectroscopic properties. As an 
example, researchers have noted that humics from microbial-derived sources have less aromaticity 
than humics from terrestrial origins [44–46]. McKnight et al., have proposed that samples with a 
Fluorescence index (FI) (fluorescence intensity at 450 nm/intensity at 500 nm, both measured at 
370 nm excitation) of ~1.9 can be attributed to fulvic acid components of microbial origin [45]. In 
fact, SanClements et al., showed that increasing DOC in U.S. lakes, which accompanied decreasing 
sulfate deposition, correlated with a decrease in FI [47]. Similar characteristic spectral responses 
are the basis for the classic fluorescence spectral classification schemes for DOC proposed by 
Coble [48,49]. Some studies have further used multidimensional fluorescence spectroscopy 
coupled with chemometric analyses to categorize modeled components with various types/origins 
of humic material [50–53]. 

2.2. DOC Sources and Production 

Sobek et al., report that DOC concentrations range from 0.1 to 322 mg/L, with a median 
concentration of 5.71 mg/L, for 7514 lakes studied in six continents [54]. A main source of DOC in 
natural waters is the leaching of degraded organic matter from the terrestrial landscape into 
freshwater systems. The breakdown of aquatic organisms and in-situ heterotrophic production can 
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also contribute to DOC concentrations (referred to as autochthonous), but this review focuses on 
DOC that is exported from terrestrial sources (allochthonous), which is largely influenced by 
hydrology, temperature, and land-use/cover [55–58]. In a Swedish lake system, it has been 
estimated that less than 5% of aquatic DOC is autochthonous [59], while in others, particularly 
systems located in temperate ecoregions and those subject to extensive anthropogenic modification, 
autochthonous DOC production can exceed allochthonous inputs [55,60,61]. In soils, due to 
solubility dynamics, an increase of 0.5 pH units can lead to about a 50% corresponding increase in 
DOC release (though acidity can have an impact on microbial mediated production of DOC as 
well) [62] and increases in pH have also been shown to enhance the mobilization of DOC as a 
result of increased enzyme activities [63]. DOC mobilization can be reduced with increased ionic 
strength of the soil environment, though anions like sulfate, can compete with DOC for soil adsorption 
sites, thus partially increasing DOC mobility [64] Acidity and ionic strength are important players 
in the atmospheric chemical deposition mechanism for explaining DOC increases. 

With terrestrial origins, allochthonous DOC production is principally described as the result of 
carbon assimilation via primary production in higher order plants, and is largely a function of the 
subsequent microbial degradation (or the leaching of plant litter in soils, which may be partially 
broken down) [64]. Greater amounts of primary production yield a higher accumulation of plant 
biomass that can become DOC. The plant material can introduce organic matter to its surroundings 
directly through root exudates, which can be further broken down to become DOC [64]. In addition 
to the mentioned biotic pathways (enzyme-catalyzed reactions), biomass can also be degraded 
abiotically (largely through photochemical processes), but often to a lesser extent than biotic 
processes [65], depending on regional climatic conditions. With plants, a portion of their biomass 
will be consumed by herbivores [66] whose subsequent death and degradation can be a secondary 
contribution to the net DOC. Another source of DOC production is through the release of organic 
matter via the breakdown of the microbial biomass itself [64]. The type of plant species producing 
the DOC is important in terms of the ultimate quantity that is produced; for example, coniferous 
dominated ecosystems produce about 50% more DOC than hardwood dominated ecosystems [64]. 
Likewise, the availability of inorganic nutrients during degradation, microbial environment acidity, 
and soil moisture (and its related conditions for dictating aerobic or anaerobic microbial 
degradation) can dictate the amount of DOC produced [67].  

It is worth noting the importance of high latitude ecoregions on the bulk production of DOC. 
The subarctic and boreal regions have been subject to much attention in regard to DOC 
mobility/runoff into waterways in part because they are responsible for an estimated one-third 
(390–455 Gt C) of global soil carbon [68], representing 10%–15% of global terrestrial carbon [69], 
and the arctic delivers 25–36 TgCyr 1 [70] to the Arctic Ocean, a quantity that is predicted to 
increase with a warmer climate. The subarctic is home to large stocks of peat, produced mainly by 
various species of Sphagnum, making it an important region for studies of global carbon 
sequestration and DOC production. Ultimately, peatlands can add to the global carbon budget in 
that they are areas where primary production can be greater than decomposition, resulting in a net 
carbon sink [68] and are therefore of particular significance in the broader context of climate change. 
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3. Changing DOC Concentrations in Natural Waters 

DOC has shown changes in measured concentrations in natural water systems over the past few 
decades, with a large number of reports coming from North America and northern Europe [22,31,47]. 
At these sites, over the monitored timeframe (typically one to three decades), the DOC levels have 
largely been shown to be increasing, and in some cases, may have more than doubled. While the 
ubiquity of the observed changes in DOC is still up for debate, the vast majority of sites claimed 
data that show an agreement with the stated trend, though a few geographical areas report no 
increase and sometimes even a decrease in DOC concentration. Below we will discuss several 
notable examples of DOC trends in the literature. For a critical review with comprehensive 
analyses of analytical and data treatment methods of long-term (>10 years) DOC monitoring 
studies in the literature, readers are encouraged to see ref. [2]. In this review, our intent is to 
highlight the primary drivers responsible for changes in DOC and to emphasize the complexity of 
these drivers as they relate to changes in DOC. 

A review of the literature indicates that the systematic monitoring of DOC in natural water 
systems was not pervasive much before the 1980s, though a few studies go back as far as the 
1970s—and even the 1960s. DOC in natural waters has been measured in several countries, 
including parts of Northern Europe, United States, Canada, Korea [71] and Africa [20] and almost 
all studies report DOC to be increasing [8,9,11,12,14,31,72–95]. Natural waters in the U.K. have 
been among the most thoroughly studied, in part because of the monitoring conducted by the U.K. 
Acid Waters Monitoring Network (UKAWMN), which has been measuring the chemical, physical, 
and biological traits of 11 streams and 11 lakes since 1988 [22,31]. All of the 22 UKAWMN sites 
showed DOC concentration increases, with an average increase of 91% over a 15 year period [9]. 
In the U.S., general increases in DOC levels have been reported in the waters of the Adirondack 
and Catskill Mountain regions of New York State [8,75,81,84,85,96]. Monitored sites in Vermont 
and Maine showed a few areas of small to moderate rises in DOC levels, while Pennsylvania did 
not show general increases [8,84]. A study in Canada showed DOC levels increasing 30%–80% in 
parts of that country during a 20 year period [97]. Areas of Central Europe [98,99] and  
Siberia [100–102] have also shown marked increases in DOC levels of their natural waters. Models 
have also predicted DOC level increases in the natural waters of Japan, New Zealand, and portions 
of China [82]. 

As one of the most comprehensive intergovernmental studies [84] of DOC, another report of 
natural waters over a dispersed area (studying 189 water sites in six regions of Europe and six 
regions of the U.S.) showed some interesting long term trends. All of the European, and all but one 
of the U.S., regions showed increasing DOC trends in monitored natural water over a twelve year 
period [84]. The one area that did not show the increasing DOC trend was the Blue Ridge 
Mountain region of the U.S. [84]. And in another significant study, 68% of 315 varying size natural 
water sites in the U.K. displayed significant increases in DOC levels over one to four decades [91]. 
In an even larger study of 522 streams and lakes in North American and Europe, 88% of the 
surveyed sites showed increases in DOC concentration between the years 1990 and 2004 [8]. 
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4. Mechanisms for Changing DOC Levels 

There are several mechanisms that have been used to explain variations in DOC availability and 
production in freshwaters. Readers are encouraged to see the reviews in refs. [64,103] for 
discussions of the biogeochemistry and mechanisms potentially responsible for DOC concentration 
variations in water. As stated, a focus of this review is to explore the widely discussed mechanisms 
of decreased atmospheric acid deposition and climate change agents, specifically elevated 
atmospheric CO2 and temperature, but related precipitation/hydrology and land-use will be 
introduced as well. Of particular interest here are the mechanisms that are, or will be, factors under 
a changing climate. Caution should be applied, however, when attempting to explain DOC changes 
using a reduced number of drivers as changes in DOC are controlled by a variety of complex, 
interrelated processes, many of which are not fully understood. Fitting schematic diagrams and 
tabulated information illustrating the complexity of these drivers at work in the terrestrial transport 
of carbon to inland waters can be found in two quality reviews [104,105]. 

4.1. Atmospheric Chemical Deposition-Related Increases in DOC 

Though the impact of climate change agents are intriguing and are a focus here in subsequent sections 
of this review, some researchers believe that the impacts of climate change cannot explain the magnitude 
of reported DOC increases [8] at their study sites. Atmospheric chemical deposition (often referred to 
as “acid deposition”) has been postulated as the main driver responsible for the observed increase in 
DOC concentrations in natural waters at specific study sites [8,9,31,73–75,83,84,88,94,106–108]. One 
of the more cited papers on the topic reports that the observed increase in DOC levels is the result 
of decreases in anthropogenic sulfate, sea salt, and other chemical species in the atmosphere that 
deposit in the soil [8]. This inverse relationship is believed potentially to be able to account for the 
magnitude of DOC increase that elevated temperatures and increased atmospheric CO2 levels alone 
are seemingly unable to approach, but due to the fact these drivers vary contemporaneously, it is 
difficult to rule out one driver over another.  

As previously highlighted, measurements from 522 lakes and streams in the U.S., Canada, and 
northern Europe were used to show how increases in DOC concentrations during the time span of 
1994–2004 correlate with reductions in atmospheric chemical deposition [8]. In fact, the argument 
could be made that the observed DOC increases are merely steps toward the DOC levels returning 
to pre-industrial levels, before anthropogenic sources began adding chemical pollutants to the 
atmosphere (beginning in about 1750, peaking in the 1970s, and decreasing ever since) [8]. The 
major chemical in the atmospheric chemical deposition model, sulfate deposition from air 
pollution, has decreased by about 50% between the years 1986 and 2001 in the U.K. [109] due to 
notably successful international air regulations. As a consequence, large-scale reductions in 
sulfate deposition have been observed in many countries. 

Simultaneously, increases in nitrogen emissions over the past 150 years have resulted in 
increases in deposited atmospheric nitrogen (N), which has resulted in an accumulation of N in 
soils and greater fluxes of N in rivers and streams (in addition to N from agricultural runoff) [110]. 
It has been hypothesized that increased soil N will stimulate the microbial processing of DOM, 
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resulting in a net decrease in DOC that is available for export to the fluvial network as it is 
potentially outgassed as CO2 [10], though experiments designed to test this hypothesis have 
produced conflicting results [111–114], possibly indicating that N deposition alone is not 
responsible for changes in DOC [103]. One study points to the significance of nitrogen deposition 
in bogs, because bogs receive their nutrient supply almost exclusively through atmospheric 
deposition [114]. The authors of this study show that increased N deposition may result in 
increased DOC release and an enhancement of phenol oxidase activity in Sphagnum litter, 
promoting peatland carbon release through DOC export and increased outgassing to CO2. More 
research into the interplay between C and N cycling is warranted, as much remains not fully 
understood, particularly the extent to which high N deposition rates will influence plant 
productivity and litter decomposition. Further, for the purposes of this review we chose to focus 
primarily on sulfur deposition as it is the more abundant atmospheric deposition chemical 
referenced in the literature for explaining DOC increases in freshwaters. 

It has been observed in the aforementioned studies that sulfate deposition has become 
significantly reduced [84], while coastal areas in northern Europe recorded reductions in sea salt (a 
proposed secondary contributor to DOC increases) [115]. And though most of the 522 studied sites 
showed the inverse relationship between DOC and sulfate concentrations, some coastal areas 
showed increasing DOC that was not accompanied by significant decreases in sulfate—but these 
areas showed significant decreases in chlorine concentrations [8]. Models showed that more than 
85% of the total anion effect on DOC was a function of anthropogenic sulfate reductions in most of 
the studied geographic sites [8]. In some areas, the total anion effect was dictated by chlorine to 
about the same extent as sulfate, and the two anions likely impact DOC concentrations in water by 
similar mechanisms [8]. 

The solubility of the bulk of humic matter in soils is largely dependent on acidity [116]  
and/or ionic strength [117], as increases in either will decrease DOC solubility in laboratory 
experiments [64]. Acid deposition, specifically by sulfuric acid will increase the acidity as well as 
increase the total anionic strength (predominantly, increased [SO42 ]) of the soil environment, 
while sea salt deposition also increases the total anionic strength (increased [Cl ]). A net result of 
the greater deposition of these chemical species is the decreased solubility of DOC in soils, 
yielding less mobility to water catchments and resulting in lower DOC levels. Conversely, the 
observed trends in the reduction of atmospheric chemical deposition should lower soil acidity and 
anionic strength, allowing for greater solubility of DOC and accounting for the observed increases 
in DOC concentration in natural waters. Indeed, in a recent study using U.K.-wide upland soil pH 
datasets, a correlated relationship between DOC and acidity changes was observed [118], lending 
further support to the chemical deposition paradigm for explaining DOC increases in these systems.  

Increasing DOC levels in natural waters can actually be accompanied by increasing organic 
acidity, as many of the components of DOC are acidic (like humic and fulvic acids). In fact, the 
presence of these organic acids may be counterbalancing the contributions of declining acidity due 
to acid deposition—slowing (buffering) recovery from the acidification of the natural waters [8]. 

Though the trend toward increases in DOC levels, and specifically the link with decreasing  
sulfate deposition, is compelling, there are a few datasets that show regional areas where DOC is 
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not increasing, despite declining sulfate deposition [76,90,91]. Some argue that DOC 
concentrations were increasing in the 1960s (or earlier) when sulfate deposition was still increasing 
and that laboratory studies on the quantitative role of acidification on the mobility of DOC can be 
ambiguous [119]. In all, it is apparent that a causal relationship between DOC levels and reduced 
acid deposition may be difficult to establish, especially in areas where the magnitude of DOC 
changes are small, and that the exact mechanism for changing DOC may include a more complex 
combination of drivers.  

4.2. Climate Change Driven Increases in DOC 

Due largely to anthropogenic contributions resulting from the combustion of fossil fuels, the 
atmospheric concentration of CO2 has increased by over 60 ppm since 1960 and could rise to about 
double its current concentration of about 400 ppm by the year 2050 according to IPCC estimates  
and interpretation of their various models [120,121]. Likewise, an average increase in the global 
temperature of 0.74 °C has been observed over the past 100 years, and the IPCC estimates that the 
global temperature could rise by about another 3 °C by the year 2100 (depending on the prediction 
model chosen) [121]. Many detrimental effects are predicted as a result of climate change, 
however, the impact of increasing levels of DOC in natural waters has not received as much 
attention in the IPCC report, perhaps in part because the complex dynamics of terrestrial carbon 
export are not yet fully understood [121] and available for prediction. Furthermore, net temperature 
increases are expected to be greatest and most rapid at mid and high latitudes, where the majority 
of the global peat stock is contained [122]. 

The various agents associated with climate change have been reported as possible causes for the 
observed increased DOC levels in several natural water systems [11,12,14,68,69,76,77,79,89,97,98, 
100,101,123–129]. As precipitation and its associated hydrology changes are functions of our 
natural climate, they too have been proposed as dynamics that will change with climate  
change [121]. Further, hydrologic changes have also been postulated as mechanisms for the 
observed increases in DOC [92,130,131].  

Much of the primary literature related to climate change and its presumed impact on DOC 
concentration in natural waters deals with increased levels of atmospheric CO2 and temperature 
warming. As will be discussed in relation to DOC increases, temperature can play a role in 
microbial degradation rates and atmospheric CO2 can increase primary production and root exudates. 
A secondary outcome of elevated levels of atmospheric CO2 can be the shift in the population of 
one plant species to another, where the species taking over the environmental area might assimilate 
and turnover biomass to DOC more readily. Other drivers are significant in terms of regional 
observations in DOC, including land-use change and modified hydraulic flow-paths, which will be 
discussed in subsequent sections. 

4.2.1. Increasing Atmospheric CO2 

Increases in plant biomass can accompany elevated atmospheric CO2 concentrations above 
ambient levels. This increase is largely due to enhanced levels of primary productivity by plants, 
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and related increases in root exudates [12,69]. In fact, CO2 “enrichment”/“fertilization” is a 
technique that has been used by farmers/gardeners in the U.S. to increase their crop yields 
(strategic biomass) since the mid-1960s [132]. Several controlled laboratory experiments have 
demonstrated increased biomass accumulation and increased primary productivity under increased 
atmospheric CO2. Since 1999, free-air CO2 enrichment (FACE) technology has been applied to a 
variety of ecosystem studies; including deciduous, alpine, and evergreen forests; deserts; 
grasslands; and bogs [133]. FACE experiments have been crucial to our understanding and defining 
of the ecological processes and responses that occur under elevated atmospheric CO2 
concentrations, especially as it pertains to refining quantitative modeling, but FACE experiments 
are not always conducive to application to global ecosystem processes [133]. One of the major 
advantages of FACE experimentation, over laboratory microcosm experimentation, has been the 
ability to experiment in a larger temporal and spatial context, allowing for the creation of improved 
models of real-world ecosystems.  

Through empirical studies, researchers have predicted an increase of about 20% DOC 
production when atmospheric CO2 levels are at twice their recent ambient levels [134]. During a 
three year experiment of peat monolith samples, the concentration of CO2 in solardomes was held 
constant at 372 ppm (matching that of the ambient air at the time) in control samples and at  
607 ppm (ambient + 235 ppm) in elevated CO2 samples [69]. At the end of the three year 
experiment, pulse isotope labeling studies were conducted on the control and elevated CO2 samples 
by exposing them to 13CO2 for five hours and monitoring the assimilation of the 13C at various time 
intervals using collected leachate and plant tissue for analyses [69]. Under conditions of elevated CO2 
levels, measurements of DOC in leachate collections resulted in a 66% increase in concentration 
over measurements taken from the control samples, while the above and below ground biomass 
increased by 115% and 96%, respectively [69]. Likewise, 13CO2 pulse labeling showed about a ten 
times increase in “new” (produced within 24 hours of the label exposure) labeled DOC (13DOC, in 
this case) [69]. The pulse labeling experiments indicate increased exudation (from the roots of 
increased biomass) as the dominant driver of DOC production under elevated atmospheric CO2, 
while microbial degradation still plays a role over the longer term of the isolated ecosystem. Also, 
the Sphagnum moss dominated peat samples shifted greatly toward vascular (lignified tissue) 
plants, which assimilated 49% more 13C during isotope pulse labeling and led to higher overall 
DOC production [69]. 

In terms of allochthonous DOC, some is further broken down and fractions are even returned to 
the environment as outgassed CO2, contributing to atmospheric CO2 concentrations. If further 
decomposition of organic matter is inhibited, greater quantities of DOC could be released to runoff. 
In the case of experiments under elevated CO2, a presence of greater amounts of phenolic 
compounds (which may further inhibit the breakdown of DOC) was found [89]. The phenolic 
content of DOC can be an important indicator in the climate change-related mechanisms and its 
presence is also of concern when water is chlorinated for drinking purposes (discussed in 
subsequent sections). 

One of the more cited articles on the subject of the role of elevated atmospheric CO2 levels 
reports increases in DOC concentrations of 14%, 49%, and 61% for bog, fen, and riparian 
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peatlands samples, respectively, at an elevated atmospheric CO2 concentration of (235 ppm + 
ambient = 607 ppm) over three years of the controlled study [12]. For clarification, this study [12] 
was conducted by the same researchers who performed the above experiment [69], and in a parallel 
timeframe, but on two additional peat types (one of the three peat samples discussed here was the 
sole sample type reported in the study above). Of course, variations in both estimated and measured 
DOC levels are expected with the different ecosystems that researchers might be studying (e.g., 
different forms of peatlands, pine vs. deciduous), nutrient availability needed to assist humification, 
soil moisture, and other variables. This study also showed the similar trend in the shifting of 
species composition of the isolated environment toward more vascular plants [12]. Fen and riparian 
peatland soils tend to be rich in the nutrients needed for humification, while bogs tend to be 
deficient in nutrients, including phosphorus and nitrogen [135]. This nutrient dependence points 
toward a mechanism of primary production enhancement accompanying elevated atmospheric CO2 
levels for the production of the DOC end product, as the nutrients are needed for primary 
production of biomass [12]. In soil types where nutrients are less available (like in bogs) [135], the 
amount of nutrients will be the limiting factor in primary production—showing less sensitivity to 
environmental stimuli (like increases in atmospheric CO2 levels) [136].  

To support the hypothesis that primary production is responsible for the DOC increases under 
increased atmospheric CO2 levels, 13CO2 was again used as a marker when it was exposed for five 
hours to the contained atmosphere of peat monoliths that had been under ambient and elevated  
(235 ppm + ambient) atmospheric CO2 levels for about three years [12]. Through photosynthesis 
and translocation processes, the 13C was traced to the DOC leachate from the monoliths [12]. Not 
only was more 13C translocated into the sample’s biomass (56% more in tissue studies) under 
elevated atmospheric CO2 conditions, but the amount of DOC in the soil that was attributed to the 
“newer” assimilated 13C throughput was an order of magnitude higher [12]. Again, the authors 
attributed this to the fact that primary production (and associated root exudates) appears to be more 
sensitive to elevated atmospheric CO2 levels than microbial degradation [12], which will be 
discussed further in relation to temperature sensitivity.  

Despite the presented data, some believe that elevated atmospheric CO2 levels cannot account 
for the magnitude of the observed global trend in DOC concentration increases. The elevated 
atmospheric CO2 level (about 607 ppm) used in the two related studies outlined above is much 
higher than the approximate 20 ppm in atmospheric CO2 increase that has been measured during 
the timeframe in which the observed global DOC concentrations were increasing. This poses a 
challenge to arguments surrounding elevated atmospheric CO2 levels being solely responsible for 
the magnitude of observed global DOC concentration increases in freshwaters. Opponents of the 
elevated atmospheric CO2 mechanism state that, assuming a linear relationship between DOC 
increases and elevated atmospheric CO2 levels, that the group’s [12] data for bog, fen, and riparian 
peat sample would represent only 1.2%, 4.2%, and 5.2% DOC concentration increases, 
respectively—at the approximate 20 ppm increase in CO2 concentration over the 20 years of the 
UKAWMN measurements [9]. It should be noted that bog, fen, and riparian peatlands dominate the 
U.K. ecosystems of the UKAWMN monitored waters [9]. This is perhaps one reason why the 
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atmospheric chemical deposition theory has been mentioned as an additional or alternative theory 
to this atmospheric CO2-controlled increase. 

Many FACE experiments have been conducted in a variety of ecosystems. For example, a group 
at Duke University’s Forest FACE experimental station has established an experiment that 
subjected an actual pine plantation (Pinus taeda) in North Carolina to elevated atmospheric CO2 
levels equal to some climate model projections for the year 2050 (about 550 ppm) for twelve  
years [127]. In a more recent example, a FACE study in the Swiss Alps looked at the effect of 
elevated atmospheric CO2 concentrations on a forest near the timberline consisting mainly of a pine 
species (Pinus uncinata) and a deciduous tree species (Larix decidua) [137]. More than eight 
different hypotheses were tested during the most intensive period of FACE experimentation at 
various sites (1999–2011) and many proved difficult to support [133]. The most well supported 
hypotheses appear to be in relation to (1) an observed increase in net primary production per unit of 
leaf-area index (LAI); (2) an apparent closure of leaf stoma in response to elevated CO2; (3) elevated 
CO2 can apparently alter intra- and inter-specific competition for soil resources amongst forest trees, 
potentially signifying a change in species composition with elevated atmospheric carbon; (4) a 
weak increase in soil microbial activity under elevated CO2; and (5) that elevated atmospheric CO2 
does not necessarily imply an increased ecosystem C storage [133], which may have implications 
for DOC levels within catchments. While FACE experiments have increased our understanding of 
some ecosystem responses to increased CO2, many questions remain, but FACE experimentation 
has demonstrated how complex the interactions of C in an ecosystem are, how they may vary 
regionally, and how a multidisciplinary approach to DOC research is further warranted to fully 
understand the dynamics of carbon through ecosystems [133].  

4.2.2. Increasing Temperature 

Temperature rises are believed to increase DOC levels in natural waters, though the increase has 
been primarily attributed to improved activity by microorganisms, and specifically by enzyme 
activity (especially by phenol oxidase) [11]. Phenol oxidase is an enzyme that catalyzes the 
oxidation of phenolic compounds to quinines [138]—which may occur by extracellular enzyme 
hydrolysis or by microbial metabolism [12]. Controlled studies on peat samples showed direct 
increases in DOC production with warmer temperatures [11,129]. In one study, a 10 °C increase in 
sample environment yielded a 36% increase in phenol oxidase activity, a 33% increase in DOC 
concentration found in leachate, and a 72% increase in phenolic compounds found in leachate [11]. 
The presence of higher levels of phenolic compounds is significant, as they are known to inhibit the 
further breakdown of DOC [139]—making them more available for transport to natural waters [140], 
including those used as drinking water sources. Additionally, in a study of peat porewater DOC 
concentrations, warming with infrared lamps (temperature increase of 1.9 °C) produced DOC 
concentrations about 15% higher than those in controlled, non-heated peatland plots [129]. Further, 
DOC from the warmed plots degraded faster in lability experiments than the control plots and 
showed a decreased aromaticity using “specific UV absorbance” (SUVA254 = Absorbance @ 254 
nm/[DOC]), which suggests an associated increase in microbial activity [129].  
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Despite the above preliminary findings, the effect on DOC levels using the net global 
temperature increase estimated by IPCC (0.5–0.7 °C) over the past several decades falls short of 
explaining the observed DOC trends that have been monitored globally—and a 10 °C increase 
would likely be a more reasonable temperature rise required to explain the observed global DOC 
trends [12]. It should be noted that a 10 °C increase in the next century is not projected by any of 
the current IPCC models. For clarification, the 10 °C rise in temperature chosen in the experimental 
method of the early study [11] was likely chosen to correlate with the common biological activity 
coefficient, Q10 (the measure of biological activity over an applied 10 °C increase), not to 
necessarily match IPCC climate change scenarios. Also, these earlier temperature increase studies 
were performed on very nutrient rich peat samples that might be expected to be more sensitive to 
warming (with sufficient nutrient availability to accommodate enhanced microbial activity), but 
might not be fully representative of all the geographical areas that are producing the observed DOC 
increases [9]. Nevertheless, other peat soil sample types have been found to be even more sensitive 
to DOC production due to warming, with even greater increases in aerobic microbial conditions [130]. 
Though water saturated peat samples are known to produce DOC largely by anaerobic means, there 
are layers that degrade aerobically due to seasonal drying in the soil [9]. Aerobic degradation and 
possible future droughts predicted by climate change scenarios could have a synergistic impact on 
increases in DOC production in soils.  

It is estimated that the global 0.5–0.7 °C temperature increase during the time when many DOC 
levels were actively being measured could potentially be responsible for a 10%–20% increase in 
DOC concentration in the areas and soil types that were monitored [9]. Still, researchers who make 
these estimates maintain that they measured a much larger average DOC increase (91%) over about 
20 years on a large and geographically diverse data set from the U.K. [9]. Another study cites 
temperature as potentially being responsible for about 12% of the 78% total DOC increase in a U.K. 
peat catchment [79]. So, even though rising temperatures appear to be a plausible player in 
explaining DOC increases, scientists are looking for other mechanisms to account for the larger 
magnitude of observed increases.  

4.2.3. Combined Effect of Increased Atmospheric CO2 Concentration and Temperature 

The combination of elevated CO2 and temperatures, in conjunction with longer growing 
seasons, might show additive or synergistic increases in the DOC levels found in natural waters. 
Experimental investigations on the separate roles of these climate change agents show that they can 
have at least a partial effect on DOC concentrations in natural waters. Inasmuch as climate change 
predicted scenarios strongly indicate increases in both atmospheric CO2 levels and temperature, the 
interaction of these two factors on natural water DOC concentrations is also of interest. Perhaps, 
the combined effect can account for both individual models’ shortcomings in regard to the 
magnitude of observed DOC levels that they appear to entail.  

In an extension of the studies discussed above (separate/isolated warming and elevated 
atmospheric CO2 experiments), the same research group performed a parallel study, again on peat 
monoliths of riparian peatlands in solardomes and over a three year period [89]. Their data showed 
a 119% increase in DOC concentration in collected leachate when under a combination of elevated 
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atmospheric CO2 (again, ambient + 235 ppm CO2) and temperature (ambient + 3 °C, for this 
experiment—as opposed to 10 °C discussed for the above experiments) conditions compared to 
samples kept under ambient (average 372 ppm CO2 and seasonal average temperatures)  
conditions [89]. Separate samples kept in elevated atmospheric CO2 and elevated temperature 
conditions alone produced 36% and 22% more DOC, respectively, than ambient control samples in 
collected leachate [89]. It is important to note that the additive effect of the isolated elevated 
conditions accounts for less than half of the DOC production under the combined condition. The 
synergistic increase in DOC concentrations for this study is indicative of the potential impact of 
climate change on DOC flux in natural waters worldwide.  

In this same study, both above and below ground DOC concentrations were shown to increase 
synergistically with the combined treatment conditions [89]; above ground biomass increased by  
284% and below ground biomass increased by 407% [89]. Peat Poly- -Hydroxyalkanoate (PHA) is 
a microbial nutrient stress indicator that is used to assess competition for inorganic nutrients 
between the plants and the decomposition microbial agents [128], and was shown to increase 30% 
under elevated CO2, 19% under elevated temperature, and 51% under the combined conditions [89]. 
This was suggestive of an approximate additive relationship in the combined conditions. Phenol 
oxidase is an enzyme often accredited with the storage and translocation of organic carbon [11]. In 
this experiment, phenol oxidase decreased by 58% under combined conditions in an apparent 
synergistic relationship [89]. -Glucosidase plays a role in the breaking down of general organic 
substances [89,141] and was shown to decrease by 27% in a slightly synergistic relationship 
between increased CO2 and temperature [89]. Similar to the rationale for monitoring PHA, 
phosphatase can be used to determine whether there has been competition for specific phosphorous 
nutrients [89]. Phosphatase was shown to increase by 24% under combined conditions, but 
decrease 9% under elevated temperature and increase 33% under increased CO2, suggesting neither 
an additive or synergistic relationship [89]. Phenolic compounds in collected leachate almost 
doubled in separate elevated atmospheric CO2 and temperature conditions, and nearly quadrupled 
in the combined conditions [89]. This finding again indicates that these compounds are more 
prevalent because of the synergistic reduction of phenol oxidase activity (which breaks down 
phenolic compounds like those found in lignins, humic acid, and fulvic acid) in the combined 
conditions [89]. The combined treatment also displayed an additive increase in general microbial 
nutrient stress, showing microbial competition with the plants, straining the microbes to find 
available inorganic nutrients—which can be a limiting factor to net DOC production [89]. The 
results of these chemical measurements led to the development of mechanisms that explain the 
increased DOC measurements in terms of additive and synergistic effects of elevated CO2 and 
elevated temperatures.  

The enzyme, phenol oxidase, is an interesting single molecule in the global carbon cycle and has 
been examined in the literature in detail in regard to its mechanism of carbon assimilation. Phenol 
oxidase has been labeled the delicate “enzyme latch to the global carbon stock” as it regulates the 
stability of some 455 Gt C supply in peatlands, and is largely responsible for preventing the release  
of large amounts of CO2 back into the environment and could have serious impacts on climate  
change [142]. Peatlands hold 20%–30% of the world’s soil carbon supply, and in anaerobic 
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conditions (true of most water saturated peatlands), the microbial breakdown of phenolic 
compounds is restrained [142,143]. Under these conditions, phenolic compounds remain in the soil 
and become available for transport, as part of the net DOC profile, to aquatic systems. 
Consequently, phenolic compounds are known to inhibit other enzymes from further breaking 
down organic matter, adding to the net availability of DOC for transport [142]. Some researchers 
believe that this “enzyme latch” mechanism could be responsible for a portion of observed DOC 
increases [42,79,142,143]. However, in the presence of droughts (that could accompany climate 
change), the microbial conditions could become more aerobic, increasing the activity of phenol 
oxidase, and encouraging the further breakdown of phenolic compounds (and subsequently, other 
organic compounds) [142,143]. Under these more aerobic conditions, total DOC available for 
transport may be diminished, but the process could release vast amounts of CO2 back into the 
atmosphere [143] with potentially harmful consequences. It is interesting to note that biosensors 
based on the enzyme interaction of phenol oxidase have been studied for use as phenol sensors in 
water treatment processes [144].  

Along with greater biomass production that is seen with the climate change agents, the 
suppression of the further breakdown of DOC by phenolic compounds might be a strong 
accelerator of DOC levels toward current trends. In the study detailed above, there were also 
changes in plant species composition of the peat samples in the elevated atmospheric CO2 (slight 
shift), temperature (moderate shift), and combined (extreme shift) conditions [89]. Some of these 
potential climate change induced shifts in species composition of an environmental area might also 
add to the observed global increases of DOC levels in natural waters, as some species exude DOC 
more readily [89].  

Even though it is still a point of debate, while warming and elevated atmospheric CO2 
mechanisms alone appear to fall short in explaining observed DOC level trends, it is conceivable 
that the synergistic effect of the two conditions combined might approach quantitative explanations 
of DOC trends. It is also noteworthy that the experimental conditions used in some studies—namely, 
combined elevated temperature and atmospheric CO2 levels—are within feasible ranges of IPCC 
estimates for climate change conditions that could be experienced within the next 50 years or so. 
Therefore, even opponents of this mechanism for explaining recently observed DOC concentration 
trends in natural waters should be cognizant of the notion that these could well be the factors 
driving DOC trends under a changing climate in the near future and beyond.  

4.2.4. Changing Hydrology and Its Effect on DOC Concentrations 

Many changes to the water cycle are predicted as global temperatures rise, as the water cycle is 
particularly sensitive to changes in the climate [24]. It is predicted that there will be alterations to 
precipitation (flooding and drought), discharge, modifications to terrestrial flow-paths of water, and 
transformations to the hydrologic connectively of the world’s water catchments with a warmer  
climate [121]. Variations in the hydrology of catchments will result in changes to the way DOC is 
transported, affecting the quantity and composition upon delivery to inland and marine waters. 
Tranvik and Jasson [145] discussed the significance of hydrology on the transport of DOC from 
streams to the ocean and stated the ways in which warming might have affected DOC export over a 
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decade ago. Here, we intend to provide several examples of how hydrology affects allochthonous 
DOC quantity and composition in natural waters. Readers seeking more information, particularly in 
regard to autochthonous DOC and hydrologic changes, should also consider the comprehensive 
review of hydrologic changes and DOC associated with climate change provided by  
Porcal et al. [103].  

Precipitation is expected to increase, decrease, and/or become more variable with climate 
change. Increases in the frequency and severity of droughts have been predicted in some 
geographic regions, while in others, increases in precipitation are likely, with more severe storm 
events and floods expected [121]. Changes in the amount, frequency, and seasonal timing of 
hydrologic events are significant considerations in the prediction of future DOC, as precipitation 
can increase terrestrial primary production and enhance the export of DOC to natural  
waters [104,146]. In a study with experimentally controlled drought and rainfall, drought was 
accompanied by decreases in DOC and its phenolic components, and increased precipitation was 
accompanied by significant increases in allochthonous DOC and an even more pronounced 
increase in the phenolic content of allochthonous DOC [42]. Similarly, DOC concentrations 
decreased in response to a simulated drought that was shown to impact the metabolic activity of 
biofilms in waters from an experimental wetland [147]. In a study of the effect of drought on litter 
and peat, drought was shown to be the dominant factor to explain decreases in DOC releases from 
both sources and the DOC that was released was less hydrophilic in character, suggesting more 
difficulty in its removal for water treatment purposes [148]. Additionally, in a study in Australia, a 
severe, decade-long drought was followed by extreme flood events that effected large areas and 
persisted for several months [149]. During the drought conditions of this study, organic material 
accumulated on land and in dry fluvial channels, but once this material was again inundated, DOC 
rapidly leached into the water column of a multitude of streams, rivers, and lakes, resulting in 
conditions favorable for rapid microbial metabolism and hypoxia [149]. These events, commonly 
referred to as blackwater events, have also been reported in Brazil [150] and the southern United 
States [151] and often result in large fish kills. Blackwater events provide insight into the potential 
water quality challenges under more variable precipitation conditions in the future [149].  

Soils that are well-drained, a characteristic of many upland watersheds, tend to have greater 
proportions of degraded, microbially-derived organic matter than soils located in lowland areas, 
such as swamps and marshes, where the soil is poorly-drained [152]. This suggests that 
microorganisms that breakdown DOC and phenolic compounds do so most efficiently in aerobic 
(water table drawdown) conditions. Under aerobic conditions, phenol oxidase activity increases 
and organic matter and its constituent phenolic compounds are more readily degraded [128,143]. 
This hypothesis has been further tested in peatlands, where drought was shown to increase phenol 
oxidase activity and bacterial growth in a series of in vitro and mesocosm experiments, as well as 
field observations [143]. Conversely, in high flow or flood conditions (anaerobic), not only might 
there be higher levels of phenolic compounds [63], but they could be more readily swept away by 
access to water flow. This was true in peatlands previously experiencing drought, where the effect 
of high flow conditions resulted in a re-wetting of the peat and carried markedly high 
concentrations of carbon away, in addition to re-establishing the anoxic pre-drought conditions [143].  
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The amount of water discharged from fluvial networks is an important consideration, as it can 
alter both vertical and lateral hydraulic flow-paths in catchments. Multiple studies have indicated 
that in temperate streams, for example, much of the DOC that is exported occurs during high-flow  
conditions [153–155] and is largely governed by intra-annual variation in hydrologic  
regimes [61,156]. Additionally, the composition of DOC exported during high-flow or low-flow 
conditions has been shown to change and is thought to represent alterations to the flow-path of 
water due to precipitation. For example, under high-flow conditions, stream waters were shown to 
contain DOM with large C-to-N ratios, increased aromaticity, and 14C values which indicated that 
DOM had a less degraded nature, all variables that suggest DOM originating from the upper soil 
horizons, indicative of a surficial flow-path [152,157]. In contrast, streams under low-flow 
conditions contained DOM with much older 14C ages, small C-to-N ratios, and a decrease in 
aromaticity—all indicative of a microbially-processed DOM from lower soil horizons, suggestive of 
a deeper, ground-water flow-path. Additionally, watersheds with mixed land-use, different land 
cover types, and anthropogenically modified hydraulic flow-paths can contribute to the DOC 
quantity and quality in rivers and streams (land-use will be discussed further in a subsequent section).  

Jencso et al., highlight the importance of hydrologic connectivity of a watershed in the transport 
of solutes [158] such as DOC. Hydrologic connectivity is subject to seasonal variation, for 
example, low connectivity occurs during the winter, when flows over land, to streams, and to rivers 
are often frozen or otherwise disconnected [158]. In the spring and summer seasons, DOC found in 
rivers shows signs of more terrestrial inputs (i.e., increased lignin phenols) [159], suggesting a 
more connected landscape where water carries solutes from all regions of a watershed. Further, the 
IPCC has predicted that runoff resulting from the thawing of permafrost in the arctic and subarctic 
areas and subsequent formation of new ponds and lakes will increase the availability of stored 
carbon stocks [121] through increased hydrologic connectivity [160]. As permafrost thaws, the 
hydrologic connectivity of arctic and subarctic regions will increase, resulting in greater export of 
allochthonous DOC to fluvial networks, and ultimately, to the ocean.  

Changes in the hydrology experienced by various watersheds will be an important predictor of 
DOC composition and quantity in the future, especially in areas of high and mid latitudes [161], on 
both regional and global spatial scales and short and long-term temporal scales. Additionally, 
increases or decreases in the abundance of ponds, lakes, and man-made reservoirs/impoundments 
are expected to change the way DOC is exported [104] and processed on land differently in 
different geographic regions, so additional studies to understand the effect of precipitation, 
discharge, hydraulic flow-path and the hydrologic connectivity of a catchment are warranted, 
especially under a changing climate. 

4.3. Land-Use and Its Effect on DOC Levels 

Analysis of satellite imagery reveals that human land-use activities, such as clearing of forested 
areas for agriculture and residential land-use, are transforming a large proportion of the earth’s  
surface [162]. Human land-use, including modifications to hydraulic flow-paths, alters 
biogeochemical cycling, directly affecting water quality, including DOC input to aquatic 
ecosystems [163–165]. For example, Yallop et al., found that land management may be the most 



289 
 

 

significant driver of humic DOC fluctuations for their study conducted in the U.K. [166] and 
Gough et al., showed that significant differences in DOC concentration, quality, and THM 
formation potential are all influenced by land cover type [165]. Further, nutrient enrichment of 
agricultural land is currently a leading cause of degraded water quality in U.S. coastal waters [167]. 
Waters with excess nitrogen and phosphorus are impaired by direct effects, like eutrophication, as 
well as indirect effects, such as changes in temperature, pH, and light attenuation [163,168]. But 
much less attention has been given to drivers of terrestrial carbon cycling in regard to land-use, 
especially in terms of land management decisions, where DOC is often overlooked [58]. Further, 
little is understood about the impact climate change will have on the drivers of DOC in varied land-
use catchments.  

Researchers have learned about the influence of land-use and land management on stream 
biochemistry in regard to carbon by analyzing the fluorescence characteristics of DOM [169]. In a 
recent study, the character of riverine DOM in 34 watersheds in south-central Ontario, Canada was 
examined in relation to catchment land-use, with findings showing a relationship between 
agricultural land cover and the composition of DOM in water draining these areas [170]. Values for 
FI and /  (a ratio used to estimate the contribution of recently produced DOC, , to its more 
degraded form, ) increased as the amount of continuous crop cover increased in the different 
watersheds [170]. The authors suggest that this indicates a more microbially-derived DOM 
character [170]. Additionally, they found that there was a strong correlation between total dissolved 
nitrogen and the DOM composition [170]. It seems that the relationship between DOM 
composition and the high nitrogen availability associated with agricultural land-use 
disproportionately increases microbial respiration and changes the composition of DOM, such that 
it is composed of more microbially-derived moieties. This implies that there may be decreased 
DOM availability in systems downstream from agriculturally dominated watersheds and that DOM 
transport distances are decreased [170].  

In a similar study, the hypothesis that the optical characteristics of DOM are influenced by 
microbial activity and land-use, specifically that increased agricultural land-use leads to higher 
microbial signature in the optical properties of DOM flowing downstream, was tested [55]. They 
found that the microbial activity increased for DOM in streams with a higher proportion of 
anthropogenic land-use and that the fluorescence characteristics associated with more labile 
components in DOM increased with more agricultural land-use [55]. The authors mentioned that 
their study period was particularly wet and that the increased soil moisture actually made their 
correlation between more labile, microbially derived DOM stronger [55], pointing, again, to the 
significance of hydrologic regimes in regional DOC studies. 

The main points from these spectroscopic studies are that land-use altered the quantity and 
quality of DOM exported from human-influenced streams when compared to more natural streams 
and that DOM from agriculturally dominated watersheds was more labile and supported higher 
microbial activity when compared to DOM from forested watersheds [55,170]. It is fairly unclear 
whether land-use will magnify or buffer changes to DOC concentrations and composition in regard 
to predicted climate change variables, but it is clear that land-use can contribute to changes in DOC 
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levels in natural waters. Therefore, continued studies from varied ecosystem types can contribute to 
the overall understanding of terrestrial carbon cycling and its prediction in the future.  

5. The Impact of Increased DOC on Drinking Water Supply and Treatment 

Regardless of the exact driver for the observed increases in water DOC levels, there are several 
environmental and health concerns associated with the trends, especially in regard to its impact on 
drinking water. Because increases in aquatic DOC concentration can intensify the “color” of 
natural waters, higher levels can block the sun’s radiation from penetrating to reach deeper 
ecosystems, even though some DOC is beneficial to blocking solar ultraviolet (UV) radiation from 
damaging aquatic life. DOC also plays a role in natural nutrient transport [171], which in the case 
of excessive concentrations of DOC, can also increase the bioavailability of pollutants like mercury 
in natural waters [172]. As discussed previously, higher levels of DOC, and thus, organic acidity, 
can also make natural waters more acidic. 

Higher concentrations of DOC in water systems that are used for drinking water supplies are a 
considerable concern for the treatment and disinfection of drinking water [107,173–179]. When 
treated by the most common chlorination practices, drinking water produced from sources with 
elevated levels of DOC can produce potentially dangerous by-products; including chloroform, 
haloacetonitriles, and chloral hydrate—along with the infamous trihalomethane by-products (U.S. 
EPA maximum drinking water level of THM = 80 ppb [176,180]). Alternatives to traditional 
chlorination disinfection techniques, like ozonation, and pretreatment strategies, like 
coagulation/flocculation or filtering, might be necessary for the treatment of natural water that is 
high in DOC concentration. Since 2006, the U.S. EPA has imposed more rigid regulations on water 
treatment disinfection by-products through “Stage 2” of their “Disinfection and Disinfection By-
product Rule” [181].  

In addition to the EPA, disinfection by-products are regulated by the World Health Organization 
and the European Union [176]. The problem of DOC levels and drinking water treatment have been 
reported in the U.S. [175,176] Norway [14,173,182], Sweden [178], Australia [173], and the  
U.K. [31,179], among other locations. In the Central Valley of California, where 23 million people 
receive their drinking water from the Sacramento-San Joaquin River watershed, DOC levels are a 
major concern for their drinking water supply [176]. As such, Sacramento’s drinking water 
treatment has been the source of much study [175–177,183]. 

Studies that are aimed at characterizing the chemical structure of DOC in different input water 
systems, in order to select the best treatment strategy, are important. In one study, natural water 
sources of drinking water supplies for Norwegian and Australian systems found differing potentials 
toward the formation of disinfection by-products upon chlorination related to the chemical 
characterization of their DOC profiles [173]. In particular, the phenolic/aromatic portion of some 
DOC profiles are believed to be reactive sites for by-product formation [173]. In fact, a phenolic 
component of natural DOC, meta-dihydroxybenzene (resorcinol), is thought to be one of the major 
precursors to the formation of THMs [4]. As well, -diketones found in DOC are also believed to 
be THM precursors [184]. Also, methoxyphenol is believed to be one of the most chlorine reactive 
components of DOC [185]. The phenolic content of DOC may increase under predicted climate 
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change conditions, making DOC levels an even greater concern for water resource managers and 
treatment facilities. 

Using multidimensional fluorescence with parallel factor analysis (PARAFAC) and 13C-NMR 
studies, quinones (diketones being oxidized-quinones), were shown to represent significant 
portions of the DOC fluorescence profile [33]. Likewise, phenolic portions of humic acids from the 
International Humic Substance Society (IHSS) were identified with fluorescence/PARAFAC and 
reagent-based phenol assays [53] and lignin phenols found in several large artic rivers have been 
attributed to a PARAFAC-derived component [160]. In kinetic studies of THM formation upon 
chlorination of natural waters, it was shown that resorcinol components make up 15%–30% of 
THM precursors in natural water and are likely fast reacting (formed within first hours) THM 
precursors [4], while other phenolic compounds are likely slow reacting (from hours to weeks) 
THM precursors [4]. A mechanism has been suggested that involves chlorination by electrophilic 
aromatic substitutions of phenol that causes ring cleavage, followed by an addition/elimination 
pathway [186]. 

Aromatic molecules absorb strongly at 254 nm, thus UV254 (observed absorbance at 254 nm)  
has been suggested as a standard for measuring DOC [20,187]. Specific UV254 (SUVA254), is the 
absorbance at 254 nm, measured in inverse meters, divided by an average DOC concentration in 
milligrams per liter. SUVA254 has been proposed as a predicting tool for the evaluation of the 
suitability of waters containing DOC for the different water treatment methods [188,189]. The 
variability in “color” of DOC-laden water from different sources is often linked to its aromatic/phenolic 
content [26]. In the disinfection study mentioned above, phenolic portions of DOC were correlated 
to THM formation—and the relationship between UV254 readings and measured THM 
concentrations were examined [4]. The relationship between phenolic components of DOC in 
natural waters and climate change agents has been discussed here in detail, and the inherent 
importance in monitoring drinking water sources for such components appears to be an area of 
importance for future studies.  

The different sources of natural waters within a system will contain different concentrations and 
compositions of DOC and inherent phenolic moieties. In effect, two different sampled locations 
could have the same net quantity of DOC, but because of differences in the composition of the 
native DOC, they will have different potentials for forming disinfection by-products. Hydrologic 
factors, including water flow, mixing, and transport, are crucial to understanding the fate of DOC 
(and its phenolic content) from its source location to its end water supply location. Land-use, 
anthropogenic sources, and seasonal variations can all impact the composition of DOC and 
phenolic compounds in water. Additionally, whether a result of climate change or a natural climate 
function, changes in the water table levels, including severe occurrences of droughts and floods, 
have an impact on DOC and inherent phenolic compound levels. 

In the presence of higher levels of DOC, water treatment facilities may be forced to pre-treat 
their water with filtration, carbon adsorption, coagulation, or chemical techniques prior to 
disinfection by chlorination. These costly pretreatment steps often remove much, but not all, of the 
THM precursors and one study suggests some pretreatment steps may even double the proportion 
of brominated THMs, a disinfection by-product that is considered to be more carcinogenic than 
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chlorine-derived THMs [179]. Furthermore, less time consuming and more cost effective methods 
will be required to assist water treatment plants and regulating agencies in monitoring drinking 
water in regard to potential for forming disinfection by-products. It has been reported that 
coagulation can reduce THM formation by 40%–50%, depending on the water source [190,191] 
and different portions of the DOC profile are removed more efficiently than others [50,192].  
Pre-oxidation with ozone or chlorine dioxide leads to lower yields of THM upon chlorination [4]. 
Some scientists suggest that controlling DOC at the geographic source may even be the most 
economical way to control disinfection by-product formation [176,193]. Sometimes, drinking water 
supplies, primarily from surface waters, are mixed with groundwater reserves in order to dilute 
DOC concentrations; however, this practice can be counterproductive if the groundwater also 
contains DOC (or even a high fraction of phenolic compounds). In groundwater mixing of water 
supplies, bromine can also be introduced to the system, thereby introducing the potential for 
formation of brominated disinfection by-products [191]. Readers are also encouraged to see the 
review by Ritson et al., in regard to changing DOM with climate change and the potential effects 
on water treatment processes [105]. 

6. Conclusions 

The intent here was to review the issues and research related to observed increases in 
allochthonous DOC concentrations in several natural water systems, with particular attention to the 
impact on water resources under a changing climate, in the hope of providing renewed/sustained 
interest in the study of carbon cycling across the terrestrial landscape and to encourage a 
multidisciplinary approach toward current research in regard to the drivers of increasing 
allochthonous DOC levels. Climate change agents such as increases in temperature, variations in 
precipitation, drought, and related hydrology issues are complex in the way that they impact DOC 
levels, and may lead to either increases or decreases in aquatic DOC. The experimental evidence 
that relates elevated CO2 and temperatures associated with climate change to allochthonous DOC 
increases in water provides the basis of a plausible mechanism for the increased production, and 
decreased net degradation, of DOC that is subsequently available for transport to area water 
catchments. Though it can be inferred that climate change has contributed to the observed increases 
in the DOC levels of natural water systems over the past few decades, the contribution might be 
less substantial thus far, as estimates show that elevated temperature and atmospheric CO2 levels 
could account for only 10%–20% and 1%–5% of the observed DOC concentration increases, 
respectively [9]. The experimental controls in the climate change-DOC studies [11,12,69,89,129] 
often exceed the levels of warming and atmospheric CO2 coinciding with the current increases in 
DOC, which makes it difficult to translate the results on a broader scale. In fact, the experimental 
conditions of most of these experiments exceed the IPCC predicted model for the next 50–100 years. 
Further, it is possible that climate change-related mechanisms might become increasingly responsible 
for continued variations in the net DOC concentrations in freshwaters—even before the climatic 
levels reach those of the experimental conditions. 

The atmospheric chemical deposition paradigm predicts that DOC levels might stabilize in  
the future as sulfate deposition trends reach a lowered steady-state. In short, the current trend of 
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increasing DOC potentially represents a return to DOC levels similar to those of the pre-industrial 
environment [8,118]. If atmospheric chemical deposition is a key driver responsible for the 
observed increased DOC levels over recent decades, the prevalence of its role will likely wane with 
decreasing deposition. Under these conditions, climate change agents may become a dominant 
mechanism in regulating DOC production and flux. Regardless, the role of DOC levels in selecting 
appropriate drinking water treatment techniques is an area of paramount importance. 

Though not as heavily examined in the primary literature, it is likely that a combination of the 
major conceptual mechanisms could be occurring. Such a combination has been cited as possible 
causes for the observed trends in DOC [79,98,130,182,194]. Some studies indirectly state that more 
than 85% of DOC increases in different geographical areas can be explained by decreases in 
anthropogenic sulfate deposition, leaving room for other factors (like those of climate change) to 
contribute [8]. At the core of differentiating the two key conceptual models (or accepting a 
combination of the two) is whether primary production of DOC and microbial activity (and perhaps 
the related role of phenolic compounds) or solubility dynamics are driving the observed DOC 
changes in natural waters. As stated in the introduction, we have simplified our interpretation of 
current research to a reduced number of drivers of changes in DOC concentration by placing 
emphasis on two main paradigms presented commonly in the literature. While these drivers may 
correlate well at specific study sites, the complexity of the processes that govern the release of 
allochthonous DOC to inland natural waters is immense and may not lend itself to the 
establishment of distinct cause and effect relationships between a specific driver and specific 
instances of changing DOC over the spatial and temporal scales included in this review. Future 
studies should take a critical approach when assigning causal relationships to correlations, 
especially to explain DOC changes of a lesser magnitude.  

It is proposed that future work on this topic should focus, in part, on the analysis of the phenolic 
composition of DOC. Not only could such a focus potentially assist in deciphering the two main 
mechanisms for DOC increases, but because of increasing projected climate change conditions (as 
well as trends of reducing atmospheric chemical deposition), the climate change model (and its 
inherent projected increases on the phenolic content of DOC) could become the primary driver of 
DOC levels in the future, especially in areas not subjected to historic acid deposition, areas 
undergoing land-use change, areas subject to a changing hydrologic regime, and areas situated in  
mid-high latitudes [118,161]. Studies of the phenolic composition would also be prudent due to concerns 
related to the role of phenolic compounds in the current and future treatment of drinking water.  

Understanding carbon transfer across the terrestrial landscape and into aquatic ecosystems is 
important, especially considering the unprecedented anthropogenic environmental changes we are 
experiencing in the biosphere, lithosphere, atmosphere, and hydrosphere and the threat to drinking 
water sources [152]. To understand the effect of a changing climate on DOC quantity and quality in 
natural waters and to be better able to predict future DOC changes, it is apparent that work from 
multiple scientific disciplines is required to unravel the complexity of this issue. The 
multidisciplinary approach requires a commitment of collaboration from different communities of 
scientific research that often operate in isolation from each other [152]. Training new scientists to 
think in a more multidisciplinary way toward the subject of carbon cycling across the terrestrial 
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environment will require exposure to a broad field of subjects in an educational setting. Ultimately, 
multidisciplinary collaboration will require effective communication of experimental findings and 
proposed paradigms, as well as an increased exchange between soil and aquatic disciplines [152]. 
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Assessing the Impacts of Sea Level Rise on Salinity Intrusion 
and Transport Time Scales in a Tidal Estuary, Taiwan 

Wen-Cheng Liu and Hong-Ming Liu 

Abstract: Global climate change has resulted in a gradual sea level rise. Sea level rise  
can cause saline water to migrate upstream in estuaries and rivers, thereby threatening freshwater 
habitat and drinking-water supplies. In the present study, a three-dimensional hydrodynamic model 
was established to simulate salinity distributions and transport time scales in the Wu River estuary 
of central Taiwan. The model was calibrated and verified using tidal amplitudes and phases,  
time-series water surface elevation and salinity distributions in 2011. The results show that the 
model simulation and measured data are in good agreement. The validated model was then applied 
to calculate the salinity distribution, flushing time and residence time in response to a sea level rise 
of 38.27 cm. We found that the flushing time for high flow under the present condition was lower 
compared to the sea level rise scenario and that the flushing time for low flow under the present 
condition was higher compared to the sea level rise scenario. The residence time for the present 
condition and the sea level rise scenario was between 10.51 and 34.23 h and between 17.11 and 
38.92 h, respectively. The simulated results reveal that the residence time of the Wu River estuary 
will increase when the sea level rises. The distance of salinity intrusion in the Wu River estuary 
will increase and move further upstream when the sea level rises, resulting in the limited 
availability of water of suitable quality for municipal and industrial uses. 

Reprinted from Water. Cite as: Liu, W.-C.; Liu, H.-M. Assessing the Impacts of Sea Level Rise on 
Salinity Intrusion and Transport Time Scales in a Tidal Estuary, Taiwan. Water 2014, 6, 324-344. 

1. Introduction 

Global warming is irrefutably causing sea level to rise. The global mean sea level raised by ~20 
cm, along with a rise in the regional mean sea level, as the global air temperature increased by 
~0.5–0.6 °C during the 20th century [1,2]. In Taiwan, the surface temperature has raised 
approximately 1.0–1.4 °C over the last 100 years [3]. Over the past 80 years, the annual 
precipitation has increased in northern Taiwan and declined in central and southern Taiwan [4]. 
The changing climate has also caused some impacts on river ecosystems in Taiwan; more-frequent 
habitat disturbances have caused both a shift in aquatic organism distributions and population 
decline [5].  

Sea level rise can cause saline water to migrate upstream to points where freshwater previously 
existed [6]. Several studies indicated that sea level rise would increase the salinity in estuaries [7,8], 
which would result in changes in stratification and estuarine circulation [9]. Salinity migration 
could cause shifts in salt-sensitive habitats and could thus affect the distribution of flora and fauna.  

Salinity intrusion may decrease the water quality in an estuary, so that its water becomes 
unsuitable for certain uses, such as agricultural, industrial and drinking purposes. Therefore, the 
determination of the salinity distribution along an estuary is a major interest for water managers in 
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estuaries and coastal regions. The evaluation of transport time scales is highly related to the water 
quality and ecological health of different aquatic systems [10].  

Several numerical modeling studies have shown that increases in sea level have impacts on 
estuarine salinity. Hull and Tortoriello [11] used a one-dimensional model to estimate the impacts 
of sea level rise and found that a sea level rise of 0.13 m would result in a salinity increase of 0.4 
psu (practical salinity unit) in the upper portion of the Delaware Bay during low-flow periods.  
Grabemann et al. [12] simulated a 2-km upstream advance of the brackish water zone for a sea 
level rise of 0.55 m in the Weser Estuary, Germany. Hilton et al. [7] found an average salinity 
increase of approximately 0.5 with a 0.2 m sea level rise based on model simulations in 
Chesapeake Bay. Chua et al. [13] found that the intrusion of salt water into San Francisco Bay and 
the flushing rate both increase as the sea level rises. Bhuiyan and Dutta [8] applied a one-
dimensional model to investigate the impact of sea level rise on river salinity in the Gorai River 
network and found that a sea level rise of 0.59 m increased salinity by 0.9 at a distance of 80 km 
upstream of the river mouth. Rice et al. [14] concluded that salinity in the James River would 
intrude about 10 km farther upstream for a sea level rise of 1.0 m using a three-dimensional 
hydrodynamic model.  

Numerous studies have reported the influences of sea level rise on estuarine salinity, 
stratification, exchange flow, residence time, material transport processes and other relevant 
processes in estuaries [8,9,14]. However, the reports regarding the impacts of sea level rise on 
salinity intrusion and transport time scales have not yet been studied in Taiwan’s estuaries. The 
objective of the present study is to examine the salinity intrusion, flushing time and residence time 
in response to sea level rise in the Wu River estuary of central Taiwan using a three-dimensional 
hydrodynamic and salinity transport model. The model was validated with observed amplitudes 
and phases, water levels and salinity to ascertain the model’s accuracy and capability. The model 
was then applied to the Wu River estuary to calculate the salinity distributions and transport time 
scales based on sea level rise projections. The model results were used to investigate how sea level 
rise affects salinity intrusion, flushing time and residence time in Taiwan’s Wu River estuary. 

2. Study Area 

The Wu River system is the most important river in central Taiwan (Figure 1a). The mean tidal 
range at the mouth of the Wu River is 3.8 m above mean sea level. Tidal propagation is the 
dominant mechanism controlling the water surface elevation. The M2 (principal lunar semi-diurnal) 
tide is the primary tidal constituent at the mouth of the Wu River [15]. The main tributaries are the 
Fazi River, Dali River, Han River and Maoluo River. The downstream reaches of the main Wu 
River are affected by tides, whereas the tributaries are not subject to tidal effects and are therefore 
not affected by salt water intrusion. The drainage basin of the Wu River, which is the fourth-largest 
river basin in Taiwan, covers approximately 2026 km2. The total channel length is 117 km, and the 
mean channel slope is 1/92. The morphology of the Wu River displays different features in each 
segment, molded by natural forces, as well as anthropogenic activities exerted upon the paleo-
riverbed built ages ago. The riverbed is composed of silt and sand in the estuary. The mean annual 
precipitation in this region is 2087 mm. The ample flow season is from May to September, 
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accounting for 70% of the river discharge, and the dry season is from January to February. The 
daily flow data from 1969 to 2011 at the Dadu Bridge, collected by the Water Resources Bureau of 
Taiwan, are analyzed in this study. The data analysis indicates that the Q75 low flow is 41.2 m3/s. 
The definition of Q75 is the flow that is equaled or exceeded for 75% of the time. The river, which 
flows into the Taiwan Strait, is located in a temperate area characterized by intense agricultural and 
industrial activities. The Wu River catchment is also an important water supply source for central 
Taiwan. Figure 1b shows the topography of the Wu River estuary and its adjacent coastal sea. This 
figure indicates that the greatest depth in the study area is 70 m (below mean sea level) near the 
corner of the coastal sea. 

Figure 1. (a) Map of the Wu River system and (b) bathymetry of the Wu River estuary 
and adjacent coastal sea. 

 

 

3. Materials and Methods 

3.1. Sea Level Rise Projection 

The existence of sea level rise is undeniable. Church and White [16] estimated the global mean  
sea level rise rates from tidal gauges and satellite altimetry as follows: 1.7 ± 0.2 mm year 1  
for 1900–2009 and 1.9 ± 0.4 mm year 1 for 1961–2009, both of which are comparable to the  
~1.8 mm year 1 rate obtained from GPS-derived crustal velocities and tidal gauges around North 
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America [17]. Global tide gauge records, satellite data and modeling provide mean historical rates  
of ~1.7–1.8 mm year 1 for the 20th century and ~3.3 mm year 1 for the last few decades [18].  

The purpose of this study is to identify the response of the Wu River estuary to potential future  
sea level rise based on the analyzed results of observed sea level. Tseng et al. [19] investigated  
the pattern and trends of sea level rise in the region seas around Taiwan through the analyses of 
long-term tide-gauge and satellite altimetry data. They found that consistent with the coastal  
tide-gauge records, satellite altimetry data showed similar increasing rates (+5.3 mm/year) around 
Taiwan. They did not include wave breaking around the river mouth and coastal seas, resulting in 
water level rise due to wave set-up. In this study, the wave set-up issue also did not take into 
account. The linear regression method was used to yield the sea level rise trend according to the 
monthly average water surface elevation collected from 1971 to 2011 at the Taichung Harbor 
station, which is shown in Figure 2. The equation of linear regression can be expressed as: 

8.59143.0 XY  (1)

where X  is the time (year) and Y  is the sea water level (cm). We found that the rate of sea level 
rise was 4.3 mm/year at the Taichung Harbor station. Huang et al. [20] estimated the sea level rise 
at the Taichung Harbor station using the data of tidal gauge and satellite altimetry and found that 
the rate of sea level rise was 3.7 mm/year. Their results are similar to our estimation on the rate of 
sea level rise. The sea level rise in 2011 was set up zero to project the sea level rise in 2010. The 
future projected sea level rise of 38.27 cm in 2100 was used in the simulation scenario.  

Figure 2. Linear regression for the sea level rise trend at the Taichung Harbor station. 

 

3.2. Three-Dimensional Hydrodynamic Model 

A three-dimensional, semi-implicit Euler-Lagrange finite-element model (SELFE) [21] was 
implemented to simulate the hydrodynamics and salinity transport in the Wu River estuary and its 
adjacent coastal sea. SELFE solves the Reynolds-stress averaged Navier-Stokes equations, which 
consist of the conservation laws for mass and momentum and the use of the hydrostatic and 
Boussinesq approximations, yielding the following free-surface elevation and three-dimensional 
water velocity equations: 
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where ( ,x y ) are the horizontal Cartesian coordinates; ( , )  are the latitude and longitude, 
respectively; z  is the vertical coordinate, positive upward; t  is time; RH  is the z-coordinate at the 
reference level (mean sea level); ( , , )x y t  is the free-surface elevation; ( , )h x y  is the bathymetric 
depth; ,u v  and w  are the velocities in the x, y and z  directions, respectively; f  is the Coriolis force; 
g  is the acceleration of gravity; ( , )  is the tidal potential;  is the effective earth elasticity factor 
(=0.69); ( , )x t

r
 is the water density, of which the default reference value; o , is set to 1,025 3/kg m ; 

( , , )aP x y t  is the atmospheric pressure at the free surface; p is the pressure;  is the vertical eddy 
viscosity; S  is the salinity; vK  is the vertical eddy diffusivity for salinity and sF  is the horizontal 

diffusion for the transport equation. 
The vertical boundary conditions for the momentum equation, especially the bottom boundary 

condition, play an important role in the SELFE numerical formulation, as it involves the unknown 
velocity. In fact, as a crucial step in solving the differential system, SELFE uses the bottom 
condition to decouple free-surface Equation (3) from momentum Equations (4) and (5). The 
vertical boundary conditions for the momentum equation are presented as below. 

At the water surface, the balance between the internal Reynolds stress and the applied shear  
stress yields: 

w
u
z

r uur
 at z  (8)

where the specific stress, w , can be parameterized using the approach [22]. 
The boundary condition at the bottom plays an important role in the SELFE formulation, as it 

involves unknown velocity. Specifically, at the bottom, the no-slip condition ( 0)U V is usually 
replaced by a balance between the internal Reynolds stress and the bottom frictional stress, i.e., 

b
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r
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where the bottom stress is b D b bC u u
uur uur

. 
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The velocity profile inside the bottom boundary layers obeys the logarithmic law: 

0
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which is subject to be smoothly matched to the exterior flow. In Equation (10), b  is the thickness 

of the bottom computational cell; 0z  is the bottom roughness, which is determined through model 
calibration and verification; and bu  is the bottom velocity, measured at the top of the bottom 
computational cell. The Reynolds stress inside the boundary layer is derived from Equation (11) as: 

0( ) ln( / ) b
b

u u
z z h z

r uur
 (11)

The SELFE model uses the Generic Length Scale (GLS) turbulence closure approach of Umlauf 
and Burchard [23], which has the advantage of incorporating most of the 2.5-equation closure 
model. The SELFE model treats advection in the momentum equation using a Euler–Lagrange 
methodology. A detailed description of the turbulence closure model, the vertical boundary 
conditions for the momentum equation and the numerical solution methods can be found in Zhang 
and Baptista [21]. 

3.3. Computation of Flushing Time 

The flushing time can be conveniently determined by the freshwater fraction approach [24–27], 
which can be determined from salinity distributions. This technique provides an estimation of the 
time scale over which contaminants and/or other material released in the estuary are removed  
from the system. Using the freshwater fraction method, the flushing time in an estuary can be 
expressed as: 

Q

Vdf

Q
FT vol

f

)(
 (12)

where F is the accumulated freshwater volume in the estuary, which can be calculated by 
integrating the freshwater volume; d(V), in all the sub-divided model grids over a period of time. In 
estuaries with unsteady river flow and tidal variations; F and Q are the approximate average 
freshwater volume and average freshwater input, respectively, over several tidal cycles for a period 
of time, such as a week or a month [20,21]. The term, f, is the freshwater content or the freshwater 
fraction, which is described by: 

0

0

S
SSf  (13)

where 0S  is the salinity in the ocean; and S  is the salinity at the study location.  

3.4. Computation of Residence Time 

The time scales associated with the residence time of water parcels and their associated 
dissolved and suspended materials in a specific water body due to different transport mechanisms 
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(i.e., advection and dispersion) are fundamental physical characteristics of that water body. 
Residence time is defined as the time required for a water parcel to leave the region of interest for 
the first time [28]. Several methodologies for the computation of residence time have been reported 
in the literature [29–34]. In the present study, the computational method follows the procedures 
outlined by Takeoka [30]. Consider that a region of interest contains a finite mass of tracer given 
by (0)M  at the initial time 0t t . If we define the remaining mass of tracer at a certain time, t , 
within the system as ( )M t , the distribution function of the residence time can be defined as: 

1 ( )
(0)r

dM tT
M dt  

(14)

where rT  is the distribution function of residence time. The total mass of the tracer will completely 
leave the system at a given moment when lim ( )t M t  is equal to zero. The average residence time 

of the tracer can be computed by: 

0 0

( )( )
(0)r rt t

M tT tT t dt dt
M  (15)

The fraction of mass ( ) ( ) / (0)r t M t M  is known as the remnant function. Note that ( )M t , the 
mass of the tracer that remains in the region of interest at a certain time; t, can be computed 
numerically based on the tracer concentration by: 

( ) ( , )M t C x t dV  (16)

where ( , )C x t  is the tracer concentration in a differential volume ; dV , at a given time; t, and 
position, x, within the system. It is expected that a mass of tracers injected close to the boundaries of a 
given region has a lower residence time than does the residence time of tracers injected at the center 
of such a region.  

3.5. Model Schematization  

An accurate representation of the bottom topography in the model grid is critical for successful 
estuarine, coastal and ocean modeling. In this study, the bottom topography data in the coastal seas 
and Wu River estuary were obtained from the databank of the National Science Council and the 
Water Resources Agency in Taiwan, respectively. The modeling domain in the horizontal plane 
covers an area of 60 km × 45 km at the coastal sea boundary. Because SELFE uses a combination 
of Eulerian–Lagrangian and implicit time stepping, it does not have to satisfy the usual  
Courant–Friedrich–Levy (CFL) constraint for numerical stability [21]. However, 120 s was chosen 
as the time step ( t ). Trial-and-error tests with other time steps demonstrated that the model results 
did not improve significantly with lower values. The model meshes for the Wu River estuary and 
the coastal sea consisted of 3541 polygons and 1974 grids, respectively (Figure 3). Because the 
model domain covers deep bathymetry in the coastal sea and shallow bathymetry near the 
coastline, ten levels, varying in thickness from 0.2 to 7 m, were adopted for vertical discretization 
in the SELFE model. 
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Figure 3. Unstructured grids in the modeling domain. 

 

4. Model Calibration and Verification  

To ascertain the model accuracy for applications on the assessment of sea level rise on salinity 
intrusion and transport time scales, a set of observational data collected in 2011 were used to 
calibrate and verify the model and to validate its capability to predict amplitudes and phases, water 
surface elevation and salinity distribution.  

4.1. Calibration with Amplitudes and Phases 

The local bottom roughness height (zo) is similar to the Manning coefficient, affecting the water 
level calculations for the coastal sea and estuary. The values of local bottom roughness height  
were iteratively adjusted by trial and error until the simulated and observed tidal levels were 
satisfactory [35]. In this study, the bottom roughness was adjusted to calibrate the amplitudes and 
phases at Taichung Harbor. The model calibration of the amplitudes and phases was conducted 
using measured data on the daily freshwater discharge at the Dadu Bridge in 2011. A five-constituent 
tide (i.e., M2, S2, N2, K1 and O1) was adopted in the model simulation as a forcing function at the 
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coastal sea boundaries (shown in Table 1). Because the amplitudes of fourth-diurnal, such as M4 
(first overtide of M2 constituent) and MS4 (a compound tide of M2 and S2), comparing to diurnal 
and semi-diurnal tides, were relatively small, a five-constituent tide was used to force the open 
boundaries only. The amplitudes and phases of these five tidal constituents were used to generate 
time-series water surface elevations along the open boundaries. The freshwater discharge inputs 
from Dadu Bridge in 2011 are shown in Figure 4. The maximum freshwater discharge reached  
690 m3/s during the typhoon event.  

The model simulation was run for one year in 2011. Harmonic analysis was performed on the 
time series of the model simulated water surface elevation at Taichung Harbor. The bottom 
roughness height was adjusted carefully, and the results are presented in Figure 5. The results show 
the comparison of the amplitudes and phases of harmonic constants between computed and 
observed tides. The differences between the computed and observed tidal constituents for 
amplitude and phase are in the range of 0.01–0.02 m and 0.45°–4.21°, respectively. The differences 
in amplitude and phase are quite small.  

Table 1. The amplitudes and phases used for the model simulation at the coastal sea boundaries. 

Constituent 
Boundary at Point A Boundary at Point B Boundary at Point C Boundary at Point D 
Amplitude 

(m) 
Phase 

(°) 
Amplitude 

(m) 
Phase 

(°) 
Amplitude 

(m) 
Phase 

(°) 
Amplitude 

(m) 
Phase 

(°) 
M2 1.82 266.06 1.88 266.91 1.60 272.39 1.57 267.23 
S2 0.51 14.45 0.53 16.34 0.44 26.29 0.43 20.55 
N2 0.25 28.89 0.26 29.77 0.22 36.02 0.21 31.15 
K1 0.27 161.62 0.29 160.20 0.29 167.21 0.28 167.16 
O1 0.21 279.53 0.22 277.24 0.23 283.55 0.22 284.03 
Notes: boundaries at Points A, B, C and D are shown in Figure 3; M2 is principal lunar semi-diurnal constituent; S2 is 

principal solar semi-diurnal constituent; N2 is larger lunar elliptic semi-diurnal constituent; K1 is luni-solar 

declinational diurnal constituent; and O1 is lunar declinational diurnal constituent.  

Figure 4. Freshwater discharge inputs at the Dadu Bridge in 2011. 
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Figure 5. Comparisons of amplitude and phase of five major tidal harmonics computed 
with a three-dimensional model and obtained from tide measurements (a) amplitude; 
(b) phase. 

 

4.2. Verification of Water Surface Elevation 

After calibrating the amplitudes and phases, the time-series data of observed water surface 
elevation were used to verify the model. Figure 6 presents the verified results for water surface 
elevations at Taichung Harbor station in May and July, 2011. The mean absolute errors of the 
differences between the measured hourly water levels and the computed water levels for 11–21 
May and 22–31 July were 0.147 m and 0.157 m, respectively. The corresponding root-mean-square 
errors were 0.183 m and 0.193 m, respectively. These results demonstrate that the model can 
accurately predict the water surface elevation for varying river discharge input and tidal forcing at 
coastal sea boundaries. A constant bottom roughness height (zo = 0.01 cm) was adopted in the 
model for calibration and verification. 

4.3. Calibration and Verification of Salinity Distribution  

Salinity distributions reflect the combined results of all processes, including density circulation 
and mixing processes [36]. In the present study, the salinity distributions were measured in situ 
using conductivity-temperature-depth equipment at six locations in the Wu River estuary during the 
flood tide surveys. The salinities at four vertical layers of each station in the water column were 
measured and were then used for model calibration and verification. The salinities of open 
boundaries in the coastal sea were set to a constant value (i.e., 35 psu). The upstream boundary at 
the Dadu Bridge was also specified with daily freshwater discharges, and the salinity was set to 0 
psu. Figures 7 and 8 present the comparisons of measured and simulated salinity distributions on 19 
May and 29 July, 2011, for model calibration and verification purposes, respectively. The 
freshwater discharges on 19 May and 29 July 2011, were 149.3 m3/s and 127.47 m3/s, respectively 
(shown in Figure 4). The results show that the model-computed salinity distributions agree well 
with the field observations. The root-mean-square errors for 19 May and 29 July, 2011, were 0.75 
psu and 0.53 psu, respectively.  
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Figure 6. Comparison of model results and observed water surface elevation during the 
periods of (a) 11–21 May 2011 and (b) 22–31 July 2011 at the Taichung Harbor station.  

 

 



319 
 

 

Figure 7. Comparison of salinity distribution along the Wu River estuary. (a) measurements 
and (b) model simulation on 19 May 2011, for model calibration.  

 

 

Figure 8. Comparison of salinity distribution along the Wu River estuary. (a) 
measurements and (b) model simulation on 29 July 2011 for model verification. 
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5. Results and Discussion 

The validated three-dimensional hydrodynamic model was used to calculate the salinity 
distribution and transport time scale response to different discharges with sea level rise scenarios 
and without sea level rise (i.e., the present condition) in the Wu River estuary. Figure 9 presents 
flow duration curves at the Dadu Bridge. The daily flow data from 1969 to 2011, collected by the 
Central Water Resources Bureau of Taiwan, were analyzed. The freshwater discharges with Q10 
(the flow that is equaled or exceeded 10% of time) to Q90 flow conditions are listed in Table 2. For 
the cases of Q10 and Q90 flows, the discharges at the Dadu Bridge are 229.0 and 26.0 m3/s, 
respectively. Five tidal constituents (M2, S2, N2, K1 and O1) were specified to generate a time-series 
of water surface elevation as the open boundary conditions at the coastal sea for model simulation. 
A constant salinity of 35 psu at the open boundaries was used for model simulation. A future sea 
level rise of 38.27 cm in 2100 was used for the model simulation scenario.  

Figure 9. Flow duration curve at Dadu Bridge. 

 

The influence of wind on estuarine circulation has been recognized for many years [37]. In a 
shallow estuary, the residence time can vary in response to variations in wind-induced flushing [38]. 
However, in the present study, the wind forcing was excluded in the model simulation for 
calculating transport time scales with sea level rise scenarios and without sea level rise (i.e., the 
present condition).  

Table 2. Freshwater discharge at upstream boundaries for the model simulation. 

Freshwater discharge Flow rate at Dadu Bridge (m3/s) 
Q10 229.0 
Q20 149.0 
Q30 108.7 
Q40 85.6 
Q50 67.5 
Q60 55.5 
Q70 46.5 
Q80 36.5 
Q90 26.0 
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5.1. Sea Level Rise Effects on Salinity Distribution  

To quantify the spatial and vertical variations in salinity, the vertical salinity profile along the 
Wu River estuary shows the detailed changes in the salinity structure with sea level rise. Figures 10 
and 11 present the distributions of tidal-averaged salinity along the Wu River estuary under the Q10 
and Q90 flows to represent the high and low flow conditions, respectively, for the present condition 
and the sea level rise scenario. It is clear that the salinity changes throughout the entire estuary. The 
limit of salt intrusion is represented by a 1 psu isohaline. The limits of salt intrusion are 3000 m and 
6500 m for the present condition and the sea level rise scenario under Q10 flow conditions (Figure 
10), while they are 5500 m and 8250 m for the present condition and the sea level rise scenario 
under Q90 flow conditions (Figure 11). These two figures indicate that sea level rise pushes the 
limit of salt intrusion farther upstream in the Wu River estuary. The intensified stratification results 
in stronger gravitation circulation, which raises the salt content by transporting more saline water 
into the estuary. However, the sea level rise did not change the tidal amplitude, but the water 
surface elevation increased in the sea level rise scenario. Moreover, the sea level rise extends to the 
tidal excursion farther upstream, 500 m and 900 m, respectively, under the Q10 and Q90 flow 
conditions (not shown in the figure).  

Figure 10. Distribution of the tidal-averaged salinity along the Wu River estuary under 
the Q10 flow condition for (a) the present condition and (b) the sea level rise scenario. 
Note that the unit of salinity is psu (practical salinity unit). 
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Figure 11. Distribution of the tidal-averaged salinity along the Wu River estuary under 
the Q90 flow condition for (a) the present condition and (b) the sea level rise scenario. 
Note that the unit of salinity is psu. 

 

 

Hong and Shen [9] demonstrated that the mean salinity at the mouth and the water depth within  
Chesapeake Bay would increase with sea level rise. Bhuiyan and Dutta [8] also described that  
the sea level rise impact on salinity intrusion would be highly significant. In this study, the limit of  
salt intrusion will increase 3000 m and 2750 m under high and low flow conditions, respectively,  
for a 38.27 cm sea level rise. The maximum increased salinity reached 14.2 psu under the Q90 low 
flow. The increased salinity could cause socio-economic problems; the saline water would be 
unsuitable for drinking and industrial purposes. Salinity intrusion due to sea level rise would 
constrain the supply of water resources in the river.  

5.2. Flushing Time in Response to Sea Level Rise 

To calculate the flushing time in the estuary, different freshwater discharges shown in Table 2 
were used to serve as the upstream boundary condition for the present condition and for the sea 
level rise scenario. The model simulated flushing time is plotted against river flow in Figure 12. 
The increase in river discharge is accompanied by a more rapid exchange of freshwater with the sea. 
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The volume of fresh water accumulated in the estuary increases to a lesser extent compared to the 
volume in the discharge. Thus, the flushing time decreases with increasing river discharge. Least 
squares regression fitting by the power law [39] was conducted to express the empirical function 
for the present condition and the sea level rise scenario: 

821.054.1030 QTf , 99.02R  for the present condition (17)
599.002.384 QTf , 98.02R  for the sea level rise scenario (18)

where Q  is the freshwater discharge. With a higher correlation value ( 2R ), the power law 
statistically fits the data better, especially in the low and the high flow ends. The power law 
reasonably shows physical characteristics between the freshwater fraction and freshwater flow.  

Figure 12. Regression between flushing time and freshwater input for the present 
condition and the sea level rise scenario. 

 

The flushing time is between 12.09 and 72.84 h under the present condition, while it is between 
16.04 and 58.57 h under the sea level rise scenario. The results also indicate that the flushing time 
for high flow under the present condition is lower compared to the sea level rise scenario, while the 
flushing time for low flow under the present condition is higher compared to the sea level rise 
scenario. The freshwater volume thus increases under the sea level rise during high flow, and it 
decreases during low flow. Huang [39] applied a three-dimensional model to estimate the 
distributions of salinity and the freshwater fractions for flushing time estimation. He found that for 
the seven-day averaged flow ranging from 10 m3/s to 50 m3/s for a small estuary of North Bay, 
Florida, corresponding flushing time varies from 3.7 days to 1.8 days. The flushing time in the 
estuary of North Bay was similar to that in the Wu River estuary. 
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5.3. Residence Time in Response to Sea Level Rise 

Passive tracers are used to simulate the material transport coming from the main river sources at 
the Dadu Bridge. Changing water levels and the propagation of tidal waves also result in changes 
in the residence time of water bodies and water constituents within the estuary and in changes in 
transport time through the estuary towards the sea.  

The validated model was applied to explore the impact of sea level rise on residence time in the 
estuary. We calculated the residence time of the entire Wu River estuary under different freshwater 
discharge scenarios. After instantly releasing tracers throughout the entire Wu River estuary, the 
residence time corresponded to the time when the average tracer concentration reached its e-folding 
value (i.e., e 1 value). Model results reveal that the residence time decreases as the freshwater input 
increases for the present condition and the sea level rise scenario (shown in Figure 13). Finding a 
general regression relationship between the residence time and the freshwater input would be 
helpful in understanding the physical and hydrological processes in the estuary. Huang et al. [40] 
conducted regression analyses between estuarine residence time and freshwater input using a 
power-law function in Little Manatee River, Florida. The authors found that regression by the 
power law provided a better fit compared to an exponential function. A regression of the residence 
time ( rT ) versus freshwater input (Q ) was performed and indicated an excellent correlation ( 2R ) 
through the power law function: 

541.018.207 QTr , 99.02R  for the present condition (19)
385.036.143 QTr , 99.02R  for the sea level rise scenario (20)

The residence time is between 10.51 and 34.23 h under the present condition, while it is between 
17.11 and 38.92 h under the sea level rise scenario. The residence time of the entire Wu River 
estuary increased 4.7 to 6.6 h based on different freshwater inputs due to sea level rise. The 
prolonged residence time will result in the deterioration of water quality and induce the limited 
application of water resources. 

Hong and Shen [9] estimated that the residence time could increase five to 20 days in response 
to different sea level rise scenarios in Chesapeake Bay. The increase of residence time response to 
sea level rise in the Wu River estuary is smaller than that in Chesapeake Bay, because the entire 
estuarine system in Chesapeake Bay is much larger than the Wu River estuary.  

If the sea level rise rate is changed, the salinity intrusion and transport time scales would be 
changed. The increase in the sea level rise rate may extend the limit of salt intrusion farther 
upstream and increase the residence time in the estuary. In a future study, the wind forcing and 
seasonal freshwater discharge input from the Dadu Bridge can be considered in the model simulations 
to comprehend how the salinity intrusion and transport time scales respond to these factors. 
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Figure 13. Regression between residence time and freshwater input for the present 
condition and the sea level rise scenario. 

 

6. Conclusions 

A three-dimensional hydrodynamic and salt transport model, SELFE, was established to 
simulate the hydrodynamics and salinity distributions in the Wu River estuary and adjacent coastal 
sea in northern Taiwan. The model was calibrated and verified using observational amplitudes and 
phases, water surface elevations and salinity distributions in 2011. The model simulation results 
agree well with the field observations.  

The validated model was used to perform a series of numerical experiments to identify the 
potential impacts of future sea level rise on salinity intrusion and transport time scales, including 
flushing time and residence time, in the Wu River estuary of central Taiwan. The model results 
indicate that salinity intrusion moves farther upstream by 2750 m and 3500 m under Q90 and Q10 
flow conditions, respectively, due to sea level rise. The flushing time is between 12.09 and 72.84 h 
for the present condition, and it is between 16.04 and 58.57 h for the sea level rise scenario. We 
found that the flushing time for high flow under the present condition is lower compared to the sea 
level rise scenario, while the flushing time for low flow under the present condition is higher 
compared to the sea level rise scenario. The residence time of the entire Wu River estuary increased 
by 23.7 h and 21.8 h for high and low flows, respectively, during the sea level rise scenario. We 
found that the climate change (i.e., sea level rise) scenario implies not only a change in salt 
intrusion, but also an increase in the residence time. Sea level rise would alter the location of the 
river estuary, thereby causing a greater change in fish habitat and breeding ground location. Fishes 
breed in estuarine systems and develop in brackish waters, which is where fresh water and salt 
water mix. Sea level rise would move this interface backward, changing the habitat of fishing 
communities in the estuarine system. The increases in transport time scales (i.e., residence time) 
due to sea level rise would prolong the transport of dissolved substances in the estuary, resulting in 
the deterioration of water quality.  
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