
Dynamical Models 
of Biology 
and Medicine

Yang Kuang, Meng Fan, Shengqiang Liu and Wanbiao Ma

www.mdpi.com/journal/applsci

Edited by

Printed Edition of the Special Issue Published in Applied Sciences

applied sciences



Dynamical Models of Biology and
Medicine





Dynamical Models of Biology and
Medicine

Special Issue Editors

Yang Kuang

Meng Fan

Shengqiang Liu

Wanbiao Ma

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Meng Fan

Northeast Normal University

China

Special Issue Editors
Yang Kuang
Arizona State University 
USA

Shengqiang Liu

Tianjin Polytechnic University 
China

Editorial Office

MDPI
St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) in 2016 (available at: https://www.mdpi.com/journal/applsci/

special issues/dynamical models)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-217-0 (Pbk)

ISBN 978-3-03921-218-7 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Wanbiao Ma
University of Science and 
Technology Beijing
China



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Yang Kuang, Meng Fan, Shengqiang Liu and Wanbiao Ma

Preface for the Special Issue on Dynamical Models of Biology and Medicine
Reprinted from: Appl. Sci. 2019, 9, 2380, doi:10.3390/app9112380 . . . . . . . . . . . . . . . . . . . 1

Javier Baez and Yang Kuang

Mathematical Models of Androgen Resistance in Prostate Cancer Patients under Intermittent
Androgen Suppression Therapy
Reprinted from: Appl. Sci. 2016, 6, 352, doi:10.3390/app6110352 . . . . . . . . . . . . . . . . . . . 4

Urszula Ledzewicz and Helen Moore

Dynamical Systems Properties of a Mathematical Model for the Treatment of CML
Reprinted from: Appl. Sci. 2016, 6, 291, doi:10.3390/app6100291 . . . . . . . . . . . . . . . . . . . 20

Shinji Nakaoka, Sota Kuwahara, Chang Hyeong Lee, Hyejin Jeon, Junho Lee, Yasuhiro

Takeuchi and Yangjin Kim

Chronic Inflammation in the Epidermis: A Mathematical Model
Reprinted from: Appl. Sci. 2016, 6, 252, doi:10.3390/app6090252 . . . . . . . . . . . . . . . . . . . 42

Wei Wang, Wanbiao Ma and Hai Yan

Global Dynamics of Modeling Flocculation of Microorganism
Reprinted from: Appl. Sci. 2016, 6, 221, doi:10.3390/app6080221 . . . . . . . . . . . . . . . . . . . 77

Jonathan E. Forde, Stanca M. Ciupe, Ariel Cintron-Arias and Suzanne Lenhart

Optimal Control of Drug Therapy in a Hepatitis B Model
Reprinted from: Appl. Sci. 2016, 6, 219, doi:10.3390/app6080219 . . . . . . . . . . . . . . . . . . . 101

Sara Manzano, Manuel Doblaré and Mohamed Hamdy Doweidar
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Mathematical and computational modeling approaches in biological and medical research are
experiencing rapid growth globally. This special issue intends to catch a glimpse of this exciting
phenomenon. Areas covered include general mathematical methods and their applications in biology
and medicine, with an emphasis on work related to mathematical and computational modeling of
the complex dynamics observed in biological and medical research. Specifically, there are fourteen
rigorously reviewed papers included in this special issue. These papers cover several timely topics in
classical population biology, fundamental biology and modern medicine.

There are four papers in the general area of computational biology dealing with modeling
liquid-solid-porous media seepage coupling, bacterial cell-to-cell communication, representation and
characterization of DNA sequences and protein sequences, respectively. The work of Bai Li and
Xiaoyang Li [1] demonstrates the importance of microcirculation load in a hemodynamic model and
their model offers a possibility for the simulation of the dynamic adjustment process of the human
circulation system, which may also generate clinical applications. The work of Chun Li et al. [2]
presented a cell-based descriptor vector based on the idea of “piecewise function” to numerically
characterize the DNA sequence. The utility of their approach was fully illustrated by the examination
of phylogenetic analysis on four datasets. In another paper by Chun Li et al. [3], the authors constructed
a high dimensional vector to characterize protein sequences. The application of their method on two
datasets and the identification of DNA-binding proteins suggested the potential for their user-friendly
method. Most noteworthy is the data-validated delay differential equation modeling work of Maria
Barbarossa and Christina Kuttler [4] on bacteria communication in continuous cultures. They observed
that for a certain choice of parameter values, the model system presented stability switches with respect
to the delay. On the other hand, when the delay was set to zero, a Hopf bifurcation might occur with
respect to one of the negative feedback parameters. This delay differential model system is capable of
explaining and predicting the biological observations.

There are also four papers in the general area of mathematical ecology. The work of
Zejing Xing et al. [5] deals with the coexistence of multiple populations species in the context of
intraguild predation (IPG). IPG is an ecological phenomenon, which occurs when one predator species
attacks another predator species with which it competes for a shared prey species. Their study shows
that it is possible for the coexistence of three species aided by the influence of environmental noise.
The other three papers involve deterministic differential equation models. The paper by Bing Li et al. [6]
studies a simple but non-smooth switched harvest model. The authors established that when the net
reproductive number for the predator was greater than unity, the system was capable of generating

Appl. Sci. 2019, 9, 2380; doi:10.3390/app9112380 www.mdpi.com/journal/applsci1
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rich dynamics. In addition to positive equilibrium due to the effects of the switched harvest, the model
generated a saddle-node bifurcation, a limit cycle, and the coexistence of a stable equilibrium and an
unstable circled inside limit cycle and a stable circled outside limit cycle. When the net reproductive
number was less than unity, a backward bifurcation from a positive equilibrium occurred. In another
paper, Wei Wang et al. [7] proposed a dynamic model describing the cultivation and flocculation of a
microorganism that used two distinct nutrients (carbon and nitrogen). Their model also exhibited rich
dynamics, including the existence of possibly five positive equilibria and the possibility of backward
and forward bifurcations. In addition, the authors obtained some interesting global stability results
of the positive equilibrium. While the aforementioned ecological modeling papers are theoretical,
the paper by Michael Stemkovski et al. [8] focused on the validation of a model for green algae
(Raphidocelis Subcapitata) growth and the implications for a coupled dynamical system with Daphnia
Magna. They collected longitudinal data from three replicate population experiments of R. subcapitata.
These data together with statistical model comparison tests and uncertainty quantification techniques
allowed the authors to compare the performance of four models: The Logistic model, the Bernoulli
model, the Gompertz model, and a discretization of the Logistic model.

There are five papers in the general area of mathematical medicine. In the paper by Urszula
Ledzewicz and Helen Moore [9], a mathematical model for the treatment of chronic myeloid leukemia
(CML) through a combination of tyrosine kinase inhibitors and immunomodulatory therapies was
analyzed as a dynamical system for the case of constant drug concentrations. The model exhibited a
variety of behaviors which resembled the chronic, accelerated and blast phases typical of the disease.
This work provided qualitative insights into the system which should be useful for understanding the
interaction between CML and the therapies considered here. In the paper by Sara Manzano et al. [10],
the authors extended an existing mechano-electrochemical computational model and employed
the extended model to analyze and quantify the effects of obesity on the articular cartilage of the
femoral hip. Their results suggested that people with obesity should undergo preventive treatments
for osteoarthritis to avoid homeostatic alterations and, subsequent, tissue deterioration. Combination
antiviral drug therapy improves the survival rates of patients chronically infected with hepatitis B virus
by controlling viral replication and enhancing immune responses. To address the trade-off between
the positive and negative effects of the combination therapy, Jonathan Forde et al. [11] investigated
an optimal control problem for a delay differential equation model of immune responses to hepatitis
virus B infection. Their results indicated that the high drug levels that induced immune modulation
rather than suppression of virological factors were essential for the clearance of hepatitis B virus. In
the paper by Shinji Nakaoka et al. [12], the authors developed some mathematical models for the
inflammation process using ordinary differential equations and delay differential equations. They
investigated the complex microbial community dynamics via transcription factors, protease and
extracellular cytokines. They found that large time delays in the activation of immune responses on
the dynamics of those bacterial populations led to the onset of oscillations in harmful bacteria and
immune activities. The mathematical model suggested the possible annihilation of time-delay-driven
oscillations by therapeutic drugs. The paper by Javier Baez and Yang Kuang [13] was motivated and
based on clinical data. They proposed and validated a novel type of mathematical model of androgen
resistance development in prostate cancer patients under intermittent androgen suppression therapy.
More specifically, they formulated and analyzed two mathematical models that aimed to forecast future
levels of prostate-specific antigen (PSA). While these models were simplifications of an existing model,
they fit data with similar accuracy and improved forecasting results. Their findings suggested that
including more realistic mechanisms of androgen dynamics in a two-population model may improve
androgen resistance timing prediction.

Last but not the least; this special issue also included a paper on modeling the distribution of
wildfires by Jonathan Martin and Thomas Hillen [14]. Their model was based on detailed physical
processes. They systematically discussed the use and measurement of their model in fire spread, fire
management and fire breaching.
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While authors of these papers deal with very different modeling questions, they are all well
motivated by specific applications in biology and medicine and employ innovative mathematical and
computational methods to study their complex model dynamics. We hope that these papers provide
timely case studies that will inspire many more additional mathematical modeling efforts in biology
and medicine.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.
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Abstract: Predicting the timing of a castrate resistant prostate cancer is critical to lowering
medical costs and improving the quality of life of advanced prostate cancer patients. We formulate,
compare and analyze two mathematical models that aim to forecast future levels of prostate-specific
antigen (PSA). We accomplish these tasks by employing clinical data of locally advanced prostate cancer
patients undergoing androgen deprivation therapy (ADT). While these models are simplifications of
a previously published model, they fit data with similar accuracy and improve forecasting results.
Both models describe the progression of androgen resistance. Although Model 1 is simpler than
the more realistic Model 2, it can fit clinical data to a greater precision. However, we found that
Model 2 can forecast future PSA levels more accurately. These findings suggest that including more
realistic mechanisms of androgen dynamics in a two population model may help androgen resistance
timing prediction.

Keywords: mathematical modeling; prostate cancer; androgen deprivation therapy; data fitting

1. Introduction

Ever since the discovery of androgen dependency of prostate cells, androgen deprivation therapy
(ADT) has played a vital role in the treatment of metastatic and locally advanced prostate cancer [1–3].
However, controversy remains regarding its best application. Although this treatment will regress
tumors in over 90% of patients [4], after prolonged androgen depletion, patients will eventually
develop castration-resistant prostate cancer (CRPC) [5]. The development of CRPC can take from
a few months to more than ten years [3,6], after which there is a very limited number of effective
treatments and patients suffer high mortality [7]. ADT is expensive and its side effects include sexual
dysfunction, hot flashes, and fatigue [8]. Based on some preclinical studies, intermittent androgen
suppression (IAS) is suggested as a sensible alternative to ADT [9]. During off-treatment periods,
patients enjoy a “vacation” from the severe side effects of ADT [8], and studies have suggested that
IAS may not negatively affect the time to resistance progression or survival in comparison to ADT [10].
Consequently, IAS is selected by some patients to improve the quality of life and also hopefully to
delay the progression to CRPC [4].

Many mathematical models have studied the dynamics of prostate cancer during ADT or
IAS [11–18]. A detailed review of some of these models are presented in the recent book of
Kuang et al. [19]. Ideta et al. are pioneers of mathematically modeling and analyzing the dynamics
of IAS [12]. They formulated a system of ordinary differential equations to study the mechanics of
ADT and IAS. They considered castrate-resistant (CR) and castrate-sensitive (CS) cell populations as
well as androgen levels. Their model included mutations from CS to CR cells, and their focus was on

Appl. Sci. 2016, 6, 352; doi:10.3390/app6110352 www.mdpi.com/journal/applsci4
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comparing continuous and intermittent therapy and the development of resistance. Hirata et al. [14]
introduced a piece-wise linear model of three cancer cell populations. Their model included CS cells,
CR cells that may mutate into CS cells, and CR cells that will not mutate. Several investigators using
Hirata et al.’s model [14] have studied estimation of parameters [20,21], optimal switching times and
control in IAS [20,22,23], and forecasting CRPC progression [24,25].

Built on the works of Ideta et al. [12] and Jackson [26], Portz, Kuang, and Nagy (PKN) [13] developed
a novel mathematical model to study the dynamics of IAS by using the cell quota model [27] from
mathematical ecology, which relates growth rate to an intracellular nutrient, to modeling the growth
of both the CS and CR cell populations. The cell quota in [13] is defined as the intracellular androgen
concentrations for each cell population. This model is carefully fitted with clinical prostate-specific
antigen (PSA) data, where androgen data was used to model the cell quota and other growth
parameters. Everett et al. [28] compared the models of Hirata et al. [14] and PKN [13] regarding
their accuracy of fitting clinical data and predicting future PSA levels. They concluded that while
a biologically-based model is important to reveal the underlying processes and my present more robust
and better predictions, a simpler model such as that of Hirata et al. might also be practical for fitting
clinical data and predicting future PSA outcomes of individual patients.

In this paper, we present a simplified model to the final model in PKN [13]. Several key terms in
our model will be mechanistically formulated. This model is concise and amenable to systematical
mathematical analysis of its dynamics. For simplicity, we shall use serum androgen concentration to
approximate intracellular androgen. This is reasonable since androgen passively and quickly diffuses
through the prostate membrane via concentration gradient [29]. This approach is practical for a typical
clinical setting, where the data collected can be applied directly to the model. Most importantly,
our model can fit PSA and androgen values simultaneously, which enables us to be more accurate in
making future PSA value predictions.

2. Clinical Trial Data

We use data from Bruchovsky et al. [9] in our analysis and model calibration. This clinical trial
admitted patients who demonstrated a rising serum PSA level after they received radiotherapy and
had no evidence of metastasis [9]. The treatment in each cycle consisted of administering cyproterone
acetate for four weeks, followed by a combination of leuprolide acetate and cyproterone acetate,
for an average of 36 weeks. If serum PSA is less than 4 μg

L by the end of this period, the androgen
suppression therapy is stopped. If a patient’s serum PSA stays above the threshold, the patient will
be taken off of the study. After treatment is interrupted, PSA and androgen are monitored every
four weeks. The therapy is restarted when patient’s serum PSA increases to ≥10 μg/L [9]. The data set
is available at [30]. Figure 1 shows a typical patient that undergoes IAS.
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Figure 1. Sample data for prostate-specific antigen (PSA) and androgen data for a patient in a clinical trial.
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3. Formulation of Mathematical Models

We develop two plausible mathematical models to study the temporal dynamics of prostate cancer
progression to CRPR. In Model 1, we do not distinguish CS from CR cells. In this model, tumor cells’
death rate is assumed to be a monotonically decreasing exponential function to implicitly account for
the resistance development in cancer cells. Then, we propose a two cell population model where we
separate CS from CR cells explicitly. To be more biologically relevant and consistent with the PKN
model formulation, we assume in Model 2 that the development of cancer cell resistance to IAS is
a decreasing function of androgen levels.

In both models, the cell growth rate is determined by the androgen cell quota. Specifically, as in
the PKN model [13], we model the growth rate by a two parameter function of androgen cell quota,

G(Q) = μ(1 −
q

Q
), (1)

where Q is the androgen cell quota. Equation (1) is known as Droop equation or a Droop growth rate
model [19]. It assumes that Q is the concentration of the most limiting resource or nutrient, and q is the
minimum level of Q required to prevent cell death [27].

To be biologically relevant, for both models, we assume that the initial values for all variables
are positive. This shall ensure that all components of their solutions are positive. Accordingly,
we are only interested in studying the stabilities of nonnegative steady states and their biological and
clinical implications.

3.1. Model 1: Single Population Model

In the following model, tumor cell volume is denoted by x (mm3), and we assume that the
total volume is a combination of CS and CR cells. Intracellular androgen cell levels are denoted by
Q (nM), and PSA levels by P (

μg
L ). Droop’s equations govern the growth rate of cancer cells [27],

where μ represents the maximum cell growth rate and q the minimum concentration of androgen to
sustain the tumor. Similar to [28], we assume an androgen-dependent death rate, where R denotes
the half saturation level. However, we also assume a time dependent maximum baseline death rate ν ,
which decreases exponentially at rate d to reflect the cell castration-resistance development due to the
decreasing death rate. We also include a density-independent death rate δ that constrains the total
volume of cancer cells to be within realistic ranges [31]:

dx

dt
= μ(1 −

q

Q
)x︸������︷︷������︸

growth

− (ν
R

Q + R
+ δx)x︸��������������︷︷��������������︸

death

, (2)

dν

dt
= −dν , (3)

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸�����︷︷�����︸
diffusion

− μ(Q − q)︸���︷︷���︸
uptake

, (4)

dP

dt
= bQ︸︷︷︸

baseline

+ σxQ︸︷︷︸
tumor production

− ϵP︸︷︷︸
clearance

, (5)

γ = γ1u(t) +γ2, u(t) =

{
1, on treatment,
0, off treatment.

(6)

In this model, androgen is assumed to be the most limiting nutrient. We assume that the androgen
concentration in cancer cells is approximately the same as the androgen concentration in serum [29].
Parameter γ1 denotes the constant production of androgen by the testes, and γ2 denotes the production
of androgen by the adrenal gland and kidneys. As over 95% of androgen is produced in the testes,
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we have that γ1 >> γ2. Parameter u(t) is a switch between on and off treatment cycles. Luteinizing
hormone releasing hormone agonists only stop testes production of androgen during treatment.
During treatment, γ2 will be the only production of androgen. Qm > q denotes the maximum androgen
level in serum. The androgen uptake by prostate cells is assumed to be proportional to the difference
of the maximum possible and the current androgen levels in serum. Androgen in cells is depleted for
growth at a rate of μ(Q − q). PSA is produced by both the regular cells in the prostate at the rate bQ

and by the cancer cells at the rate σxQ . Notice that we have assumed that cell production of PSA is
assumed to be dependent on levels of androgen. Finally, PSA is cleared from serum at rate ϵ .

3.2. Model 2: Two Population Model

Now, we present a two cell population model. In this model, we explicitly differentiate between
CS and CR cells. x1 (mm3) and x2 (mm3) denote the CS and CR cell populations, respectively.
The proliferation of each cancer cell population is denoted by

Gi (Q) = μ(1 −
qi
Q
), i = 1, 2,

for x1 and x2 respectively. Since CR cell populations proliferate at lower levels of androgen, we assume
that q2 < q1. Death rates are denoted by:

Di (Q) = di
Ri

Q + Ri
, i = 1, 2,

for their respective cell populations. We shall assume that d1 > d2, as CR cells are less susceptible to
apoptosis by androgen deprivation than CS cells. Parameters δi , i = 1, 2 denote the density dependent
death rates, and we use these parameters to keep the maximum tumor volume in biological ranges.

Mutation between cell populations is assumed to take the form of a Hill equation of coefficient 1,
given by:

λ(Q) = c
K

Q +K︸�������������︷︷�������������︸
CS to CR

.

The CS to CR rate, λ(Q), is a decreasing function of the androgen levels. We assume that when
cells are experiencing androgen depletion, they have higher selective pressure to develop resistance.
Likewise, in an androgen rich environment, CS cells are more likely to stay sensitive. IAS started under
this assumption, with the intention to delay resistance [10]. c is the maximum rate of mutation between
cells and K is the cell concentration for achieving half of the maximum rate of mutation. In this model,
dis are held constant and are not time dependent, as the mechanism of the development of resistance
is due to mutations from x1 to x2 via λ(Q) and not by a decreasing androgen dependent death rate.
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The increase of intracellular androgen levels by diffusion from the serum level is modeled by
γ (Qm −Q). For simplicity, and in contrast to the PKN model [13] and the model in Morken et al. [32],
we assume the same PSA production rate σ for both cell populations:

dx1

dt
= μ(1 −

q1

Q
)x1︸��������︷︷��������︸

growth

− (D1(Q) + δ1x1)x1︸���������������︷︷���������������︸
death

− λ(Q)x1︸�︷︷�︸
CS to CR

, (7)

dx2

dt
= μ(1 −

q2

Q
)x2︸��������︷︷��������︸

growth

− (D2(Q) + δ2x2)x2︸���������������︷︷���������������︸
death

+ λ(Q)x1︸�︷︷�︸
CS to CR

, (8)

dQ

dt
= γ︸︷︷︸

production

(Qm −Q)︸�����︷︷�����︸
diffusion

−
μ(Q − q1)x1 + μ(Q − q2)x2

x1 + x2︸�����������������������������︷︷�����������������������������︸
uptake

, (9)

dP

dt
= bQ︸︷︷︸

baseline

+ σ (Qx1 +Qx2)︸�����������︷︷�����������︸
tumor production

− ϵP .︸︷︷︸
clearence

. (10)

In a biologically realistic situation, one expects that Qm > max{q1,q2}.

3.3. Derivation of dQ/dt

Now, we provide a conservation law based derivation for the cell quota Q Equations (4) and (9).
Specifically, we derive Equation (4) in detail and leave to the readers the straightforward task of its
extension to (9). Our formulation comes from the conservation of androgen as it moves in and out of
the tumor. Let Qx be the total androgen inside tumor x (mm3). We assume that Q (nM)is uniformly
distributed in x , and

Qx = Q(t)x(t) nmol.

The inflow of androgen to the tumor comes from the serum which can be approximated by

γ (Qm −Q(t))x(t).

The outflow of androgen from the tumor is due to death, which is

(ν
R

Q + R
+ δx(t))Q(t)x(t).

Then, the rate of change of androgen inside the tumor is:

(Q(t)x(t))′ = γ (Qm −Q(t))x(t) − (ν
R

Q(t) + R
+ δx(t))Q(t)x(t).

However,

(Q(t)x(t))′ = Q ′(t)x(t) +Q(t)x ′(t)

= Q ′(t)x(t) + μ(Q(t) − q)x(t) − (ν
R

Q(t) + R
+ δx(t))Q(t)x(t),

which implies that
Q ′(t) = γ (Qm −Q(t)) − μ(Q(t) − q).

A similar approach can be applied to derive Q ′(t) for Model 2.
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3.4. Portz, Kuang, and Nagy (PKN) Model

In this section, we briefly review the PKN model. For a more detailed explanation of this
model, the reader is referred to [13]. The PKN model assumes constant death rates for cancer cells
(d1,d2). CS and CR cells have androgen cell quota Q1,Q2 respectively. A denotes the serum androgen
concentration, which is interpolated and used in the model:

dx1

dt
= μm(1 −

q1

Q1
)x1︸�����������︷︷�����������︸

growth

− d1x1︸︷︷︸
death

− λ1(Q1)x1︸����︷︷����︸
CS to CR

+ λ2(Q2)x2︸����︷︷����︸
CR to CS

, (11)

dx2

dt
= μm(1 −

q2

Q2
)x2︸�����������︷︷�����������︸

growth

− d2x2︸︷︷︸
death

− λ2(Q2)x2︸����︷︷����︸
CR to CS

+ λ1(Q1)x1︸����︷︷����︸
CS to CR

, (12)

dQ1

dt
= vm

qm −Q1

qm − q1

A

A+vh︸������������������︷︷������������������︸
Androgen influx to CS cells

− μ(Q1 − q1)︸������︷︷������︸
uptake

− bQ1︸︷︷︸
degradation

, (13)

dQ2

dt
= vm

qm −Q2

qm − q2

A

A+vh︸������������������︷︷������������������︸
Androgen influx to CR cells

− μ(Q2 − q2)︸������︷︷������︸
uptake

− bQ2︸︷︷︸
degradation

, (14)

dP

dt
= σ0(x1 + x2)︸�������︷︷�������︸

baseline production

+ σ1x1
Qm

1

Qm
1 + ρ

m
1︸������������︷︷������������︸

tumor production

+ σ2x2
Qm

2

Qm
2 + ρ

m
2︸������������︷︷������������︸

tumor production

− δP .︸︷︷︸
clearence

. (15)

4. Model Dynamics

Now, we study the mathematical properties and dynamics of our two models. For Model 1,
we shall state the results without providing proofs as they are routine. The detailed mathematical
analysis for Model 2 will be presented. Proposition 1 summarizes the mathematical dynamics of
Model 1. Since P is decoupled from the system, we shall refer only to the dynamics of Equations (2)–(4).
This proposition reveals that there is no cure for cancer. Since ADT is non-curative, this property is
biologically reasonable.

Proposition 1. Solutions of the system Equations (2)–(4) are positive and bounded. The system Equations (2)–(4)
has a cancer free steady state E0 = (0, 0, γQm+μq

μ+γ
) that is unstable, and a steady state E1 = (

μγ

δ

Qm−q

γQm+μq
, 0, γQm+μq

μ+γ
)

that is globally stable.

Next, we do a thorough mathematical analysis of Model 2. First, we study boundedness and
positivity of the system. Followed by the number and existence of steady states. Finally, we analyze
the local stability of the steady states. Observe that P is also decoupled from Equations (2)–(4) and we
do not include it in the analysis.

Proposition 2. Assume q2 ≤ q1 < Qm and δ1 ≥ δ2. Then, solutions of Equations (7)–(9) with initial conditions
x1(0) > 0, x2(0) > 0, and q2 ≤ Q(0) ≤ Qm stay in the region {(x1,x2,Q) : x1 ≥ 0,x2 ≥ 0,x1 + x2 ≤
G2(Qm )−Dm (q2)

δ2
,q2 ≤ Q ≤ Qm}, where Dm = min{D1(q2),D2(q2)}.

Proof. We note that in Equation (7), x1 appears in every term ensuring its positivity. Since x2 appears
in the first two terms of (8) and x1 appears in the last term, the positivity of x2 is also guaranteed.

9



Appl. Sci. 2016, 6, 352

In addition, q2 ≤ q1 < Qm , and

Q ′ = γ (Qm −Q) −
μ(Q − q1)x1 + μ(Q − q2)x2

x1 + x2
.

We see that Q ′(q2) > 0 and Q ′(Qm) < 0. It is thus easy to see that q2 ≤ Q(t) ≤ Qm for t > 0 with
initial conditions q2 ≤ Q(0) ≤ Qm .

For boundedness of x1 and x2, we let N = x1 + x2. Since we have that δ1 ≥ δ2, and the growth rate
Gi (Q), i = 1, 2 are increasing functions of Q , we have

N ′ ≤ (G2(Q) −Dm)N − δ2N
2, (16)

≤ (G2(Qm) −Dm)N − δ2N
2, (17)

which implies that lim sup
t→∞

N (t) ≤
G2(Qm) −Dm

δ2
. �

Now, we study the steady states of Model 2. We seek to understand the conditions under which
one population will overtake the other, and the circumstances under which they may coexist.

Proposition 3. Assume q2 ≤ q1 < Qm and δ1 ≥ δ2. The system Equations (7)–(9) have a CR cell only
steady state E1 = (0, G2(Q

1)−D2(Q
1)

δ2
,Q1), and a coexistence steady state E2 = (

G1(Q
∗)−D1(Q

∗)−λ1(Q
∗)

δ1
,x∗2,Q∗),

where Q1 =
γQm+μq2

γ+μ
and Q∗ > Q1.

Proof. Let E = (x∗1,x∗2,Q∗) be a steady state of the system Equations (7)–(9). We have two mutually
exclusive cases: x∗1 = 0 and x∗1 > 0.

If x∗1 = 0, then we have two possibilities: (i) x∗2 = 0 or (ii) x∗2 > 0. In the case of (i), we see that
E = E0. In the case of (ii), we see that E = E1.

If x∗1 > 0, we see that x∗2 > 0 from the equation of dx2/dt . In this case, E = E2. In addition, we have
the following:

0 = γ (Qm −Q∗) −
μ(Q∗ − q1)x

∗
1 + μ(Q

∗ − q2)x
∗
2

x∗1 + x
∗
2

(18)

≥ γ (Qm −Q∗) − μ(Q∗ − q2)

Q∗ ≥
γQm + μq2

γ + μ
= Q1.

This proves the proposition. �

Proposition 3 demonstrates that if the CS cell population survives, then the CR must also survive.
Biologically, this makes sense, as the CR will always receive new mutated CR cells as ADT continues.

Next, we study the extinction of cancer cell populations and stability conditions for each of these
steady states when feasible. Observe that we can not linearize at the steady state E0 since the last term
of dQ/dt is not differentiable at E0. This prevents us from carrying out a routine local stability analysis
of E0.

Proposition 4 below simply confirms the intuition that if both cancer cell populations growth
rates are too low, they will die out eventually. For ease of computations in the following propositions,
we shall define S1(Q) = G1(Q) −D1(Q) − λ(Q) and S2(Q) = G2(Q) −D2(Q) .

Proposition 4. Assume that S1(Qm) < 0, then CS population will die out. If, in addition, S2(Qm) < 0, then both
cancer populations will die out.

10
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Proof. Observe that both S1(Q) and S2(Q) are strictly increasing with respect to positive values
of Q . Since,

x ′
1(t)

x1(t)
= G1(Q) −D1(Q) − λ(Q) − δ2x1,

and S1(Qm) < 0, we know that G1(Q) − D1(Q) − λ(Q) ≤ S1(Qm) < 0 for any Q . Let m = −S1(Qm), and,
since x1(t) > 0, we have that

x ′
1(t)

x1(t)
≤ −m

x1(t) ≤ ce−mt .

Therefore limt→∞ x1(t) = 0. Applying a similar but slightly more delicate comparison argument to
x2(t) with limt→∞ x1(t) = 0 yields limt→∞ x2(t) = 0. This completes the proof of this proposition. �

The following proposition provides a simple set of conditions that yields the biologically realistic
final outcome when sensitive cells are overtaken by resistant cells.

Proposition 5. The CR only steady state E1 is locally asymptotically stable when S1(Q
1) < 0 and S2(Q

1) > 0.

Proof. The Jacobian matrix evaluated at E1 is given by:

J (E1) =

����	
S1(Q

1) 0 0

λ(Q1) −S2(Q
1) (

μq2
Q2 +

d2
(R2+Q )2

)
G2(Q

1)−D2(Q
1)

δ2
μδ2(q1−q2)

G2(Q1)−D2(Q1)
0 −γ − μ


����
.

The eigenvalues are the diagonal elements. We see that when G1(Q
1) −D1(Q

1) − λ1(Q
1) < 0 and

G2(Q
1) −D2(Q

1) > 0, all diagonal elements are negative. Hence, E1 is locally asymptotically stable. �

If both CS and CI cells can proliferate under treatment, then the coexistence equilibrium may be
stable. Figure 2 displays the regions where this could happen. If CS cells have a high growth rate μ,
they may survive under relatively low levels of androgen. Alternatively, if these cells have a very low
death rate d1, they may persist as well.
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Figure 2. Bifurcation diagram displaying x1 cell population vs. parameters μ and γ (left) and γ and d1
(right). This figure depicts the regions in which x1 can go extinct. This happens when androgen levels
γ are very low, or cancer cells’ proliferation rate μ is very low, or cancer cells’ death rate d1 is very high.
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5. Parameter Estimation

In order to perform realistic model simulations, we need to obtain reasonable parameter values
and their ranges. We start by estimating the realistic ranges for each of them. Parameters μ, d1,d2 are
taken from [33], where they assess the growth and death rates of prostate cells under different
concentrations of androgen. In [12], it was shown that, under continuous treatment, the fastest
resistance rate is c ≈ 0.0001. The approximate levels at which sensitive and resistant cells proliferate
was studied in [34], from which we approximated q,q1, and q2.

In patients with no prostate cancer, PSA levels are usually less than 5 μg
L , accounting for benign

tumor hyperplasia [8]. This implies that when tumor volume is near zero, the steady state of PSA
given by: bQ

ϵ
shall be approximately 5 μg

L . Prostate tumor volumes are normally bounded by 80 mm
in length and, on average, they are about 13.4 mm [31]. Since all of our patients have advanced
prostate cancer, we assumed a maximum length of 40 mm, and we compute the corresponding tumor
volume assuming that tumors are spherical. Under complete androgen independence, tumor volume
should not exceed 700 (mm3). Thus, μ

δ
≈

μ

δ2
+

μ

δ2
≈ 700 (mm3). Parameter Qm is patient specific and

is taken from the maximum androgen serum concentration of each patient during the first 1.5 cycles
of treatment. Parameter γ1 is held constant among every patient and γ2 has a range of 0–0.01 nmol

Lday
.

The half-saturation variables K ,R,R1, and R2 are estimated from [28]. Table 1 shows definitions, ranges,
units, and sources for each of the parameters in our models.

Table 1. Parameter definitions, units, and ranges.

Parameters Definition Range Units Source

μ Maximum proliferation rate 0.001–0.09 day−1 [33]
q Minimum cell quota 0.1–0.5 nM [34]
q1 Minimum CS cell quota 0.1–0.5 nM [34]
q2 Minimum CR cell quota 0.1–0.3 nM [34]
b Prostate baseline PSA 0.1–2.5 10−3 μg/L/nM/day [9]
σ Tumor PSA production rate 0.001–0.9 μg/L/nM/mm3/day [28]
ϵ PSA clearance rate 0.001–0.01 day−1 [28]
d Maximum cell death rate 0.0001–0.09 day−1 [33]
d1 Maximum CS cell death rate 0.001–0.09 day−1 [33]
d2 Maximum CR cell death rate 0.0001–0.001 day−1 [33]
δ1 Density death rate 0.1–9 × 10−5 1/day/mm3 [31]
δ2 Density death rate 0.01–4.5 × 10−4 1/day/mm3 [31]
R Cell death rate half-saturation level 0–3 nM [28]
R1 CS cell death rate half-saturation level 0–3 nM [28]
R2 CR cell death rate half-saturation level 0–3 nM [28]
c1 Maximum CS to CR rate 10−5–10−4 day−1 [12]
K CS to CR half-saturation level 0–1 nM [28]
γ1 Testes androgen production 20 day−1 ad hoc
γ2 Secondary androgen production 0.001–0.01 day−1 ad hoc
Qm Maximum androgen 15–30 nM [9]
ν death rate decay rate 0.01 unitless ad hoc

5.1. Sensitivity Analysis

Sensitivity analysis can be used to show which parameters play a bigger role in a model.
The normalized sensitivity, Sp , for parameter p and state variable x is given by:

Sp =
∂x

∂p

p

x
.

Figure 3 shows the sensitivities of every parameter and state variable for Model 1. We observe
that, with the exception of d, no parameter has a much larger sensitivity than the rest. d is the only
parameter that can dramatically affect cancer cell death rate, and we see a spike in the sensitivity
figures. Cancer cell growth rate μ has the greatest effect on androgen and cancer cells, whereas σ and ϵ

play the greatest roles in PSA production. Figure 4 shows the sensitivity of each parameter in Model 2.
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We see similarities with Model 1 in that μ affects the production androgen and CR cells the most.
In addition, PSA production is affected by the same parameters as in Model 1. Notice that CS cells are
affected by d1 the most since they are the most susceptible to changes in the androgen concentration.
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Figure 3. Normalized sensitivities of Model 1.
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Figure 4. Normalized sensitivities of Model 2.

6. Comparison of Models

We use data from the Vancouver Prostate Center (Vancouver, BC, Canada) to validate and compare
the accuracy of each model. From the 109 patients registered, 103 were eligible for interruption of
treatment, with a PSA response rate of 95% [9]. Using the criteria of having at least 20 data points for
both androgen and PSA in the initial 1.5 cycles, we select 62 from those 109 patients. The individual
PSA and androgen mean square error (MSE) are provided in Table 2 from these 62 selected patients.
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Notice that the PKN model did not include an androgen equation, and thus we cannot compare the
fittings of androgen with the PKN model.

For the PKN model, we interpolated androgen serum data using a cubic spline interpolation
between every androgen data point. This created a function in terms of time that was utilized as A in
(13) and (14). We implemented the method used by Portz et al. [13] for generating future androgen
levels by generating a rectangular function based on the average off and on-treatment serum androgen
values. Parameter ranges were taken from PKN [13] and Everett et al. [28], and the reader is referred to
these papers for more details on forecasting serum PSA levels and parameter values of the PKN model.
For every patient selected, we fitted 1.5 cycles of treatment and performed parameter estimation. Then,
to measure the forecasting ability of every model, we ran the models for one more cycle of data using
the parameters estimated from the initial 1.5 cycles.

Table 2. Comparison of Mean Squared Error (MSE) for Androgen and prostate-specific antigen (PSA)
for the first 1.5 cycles.

Model
PSA Androgen

Min Mean Max Min Mean Max

PKN Model 0.5119 9.4463 93.1587 N/A N/A N/A
Model 1 0.9735 8.6763 71.8471 5.0351 100.1071 710.2604
Model 2 0.2461 10.3993 137.4345 5.1283 101.4763 710.4412

To compare models, we conduct simulations with MATLAB’s (MATLAB 9.1, The MathWorks,
Inc., Natick, MA, USA) built in function fmincon, which uses the Interior Point Algorithm, to find the
optimum parameters for each patient. The algorithm searches for a minimum value in a range
of pre-specified parameter ranges, which we estimated from various literature sources. We use
this algorithm to minimize the MSE for PSA and androgen data. The MSE is calculated with the
following equations:

Perror =

∑N
i=1(Pi − P̂i )

2

N
,

Qerror =

∑N
i=1(Qi − Q̂i )

2

N
,

where N represents the total number of data points, Pi represents the PSA data value, and P̂i the
value from the model. Likewise, Qi represents the androgen data value, and Q̂i the value from the
model. We then use an equally weighted combination of both errors

error = Perror +Qerror ,

as our objective function, which is then minimized with fmincon.
Figure 5 shows PSA fitting and forecasting simulations for patients 1, 15, 17, and 63. We selected

these patients to display the typical behavior shown in all 62 patients. Patient 1 shows that Models 1, 2,
and PKN fit data with about the same accuracy. However, PKN overshoots in forecasting and Model 2
outperforms Model 1 in forecasting. Patient 17 shows that PKN underestimates future PSA levels,
but Models 1 and 2 both perform well. Patients 15 and 63 provide the cases where PKN does a better
forecast while Models 1 and 2 still do better. The rest of the patients can be classified similarly.

Table 2 documents the error of fitting 1.5 cycles of treatment and Table 3 displays the errors in
forecasting one more cycle of treatment. On average, PKN and Model 1 perform prediction at the same
level of accuracy. However, Model 2 performs prediction on average about three times better than the
PKN model and Model 1.

14



Appl. Sci. 2016, 6, 352

t (days)
0 200 400 600 800 1000 1200

μ
g/

L

0

10

20

30

40
Patient 1

Data
Model1
Model2
PKN

t (days)
0 200 400 600 800 1000 1200 1400

μ
g/

L

0

10

20

30

40
Patient 15

Data
Model1
Model2
PKN

t (days)
0 500 1000 1500 2000

μ
g/

L

0

10

20

30

40
Patient 17

Data
Model1
Model2
PKN

t (days)
0 200 400 600 800 1000 1200 1400

μ
g/

L

0

5

10

15

20
Patient 63

Data
Model1
Model2
PKN

Figure 5. Simulations of fittings for every model for 1.5 cycles of treatment (left of gray line),
and one cycle of forecast (right of gray line). For these four patients, we can see that models fit
data at comparable accuracy but Model 2 perform much better in PSA forecasting.

Table 3. Comparison of forecast Mean Square Error for PSA.

Model Min Mean Max

PKN Model 12.234 162.5494 1868.6394
Model 1 11.3935 141.9280 1663.0218
Model 2 2.2727 56.3478 278.4050

7. Conclusions

The main goal of this research is to produce a basic model capable of describing prostate cancer
cell growth subject to IAS. Such a model may be amendable to detailed and systematical mathematical
and computational study aimed at revealing the near term and intermediate term growth dynamics,
including cancer cells treatment resistance development. Ultimately, such models may be helpful in
establishing user-friendly treatment tools for both patients and physicians. To this end, we presented
two models that can accurately fit clinical PSA and androgen data simultaneously. Existing models
can only fit the PSA data. While these models are simplifications of PKN, they are just as accurate
in data fitting and even better at forecasting future PSA levels. Model 1 had the lowest mean MSE
for data fitting of all the models, followed by PKN and Model 2—not surprisingly, due to its more
biologically realistic model assumptions, Model 2 had the lowest forecast MSE, with PKN doing the
worst. The unreliability of PKN’s forecasts stems from its dependence on androgen data and hence
lacks the ability to predict androgen dynamics. Androgen cell quota values, which are not directly
measurable from data, represent a significant source of uncertainty for the PKN model. Figure 6,
shows how the new models can fit clinical androgen data and reduce uncertainty. For Models 1 and 2,
Q is directly computable from clinical data.

Predicting the timing of resistance is a highly desirable objective of this modeling work. Mathematical
models alone can not make practical predictions. However, we can use these models and apply
statistical methods to produce reliable forecasts with confidence intervals [35,36]. In Pell et al. [35] and
Chowell et al. [36], the authors have used these methods successfully in an epidemiological setting
to make predictions. In a future paper, the authors plan to use the models presented in this paper
to produce predictions using such statistical methods. Therefore, the main biological contribution
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of this work is the development of a clear and basic androgen cell-quota based model to aid our
understanding of the resistance development dynamics of prostate cancer cells.

The dynamics of Model 1 is characterized by globally stable steady states. The mathematical
analysis of Model 2 is only partially tractable. In fact, the stability and global stability of the cancer
cell coexistence steady state remain unsettled. However, with our bifurcation analysis, we observe
that under ADT or IAS, x2 cells may drive x1 cells to extinction. In Figure 2, we see that with lower
and realistic levels of androgen production when the patient is under ADT, x1 cells will eventually
become extinct even at a higher level of proliferation compared to x2 cells. Thus, we concluded that,
under continuous treatment, almost all patients will eventually become androgen resistant. However,
it is still not clear if IAS delays the speed at which this occurs. With the models presented in this work,
we have moved closer to the ultimate goal of modeling the androgen resistance of prostate cancer.

Our work is limited by the small number of patients considered. We selected 62 patients that had
at least 20 data points in the first 1.5 cycles of treatment. Using a larger time interval and more patients
to calibrate models might reveal more subtle differences in the models’ ability to fit data. Additionally,
tumor volume data will allow us to validate the model more naturally. Figures 7 and 8 show the cancer
populations for Models 1 and 2 in resistant and non-resistant patients. Tumor volume data will allow
us to verify the results in these figures even if only a few data points are available.

In addition, identifiability analysis to determine if our parameter values can be represented
uniquely by clinical data is essential if these models are to be used in a clinical setting to reliably and
accurately predict PSA dynamics for individual patients. Allowing parameters to vary as treatment
progresses and studying the changes in key parameter values such as proliferation and death rates as
functions of time might be useful to describe and predict resistance mechanisms as suggested in the
work of Morken et al. [32].
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Figure 6. Simulations of fittings of androgen levels for Models 1 and 2. These two models have
comparable goodness in fitting androgen data as their derivations are very similar.
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Figure 7. Cancer cells in resistant and non-resistant patient for Model 1. For the non-resistant patient
we see a slight increase in volume over the course of several cycles. In the resistant patient we see that
cancer volume has grown substantially.
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Figure 8. Cancer cells in resistant and non-resistant patients for Model 2. For the non-resistant patient,
we see an increase in the volume of CR cells, but the original volume is about the same. In the
resistant patient, we see that cancer volume has grown to double the volume compared to the non
resistant patient.
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Abstract: A mathematical model for the treatment of chronic myeloid leukemia (CML) through
a combination of tyrosine kinase inhibitors and immunomodulatory therapies is analyzed as a
dynamical system for the case of constant drug concentrations. Equilibria and their stability are
determined and it is shown that, depending on the parameter values, the model exhibits a variety of
behaviors which resemble the chronic, accelerated and blast phases typical of the disease. This work
provides qualitative insights into the system which should be useful for understanding the interaction
between CML and the therapies considered here.
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1. Introduction

Chronic myeloid leukemia (CML) is a hematologic cancer that accounts for about 15% of all
leukemias in adults and is characterized by uncontrolled expansion of myeloid cells in the bone
marrow and their accumulation in the blood [1]. The progression of the disease can be divided into
three phases denoted chronic, accelerated and blast [1]. The chronic phase can last several years with
levels of immature white blood cells (blasts) growing steadily but at a low rate. Once the disease
enters the accelerated or blast phase, cells proliferate rapidly and the disease can be lethal within a
few months if not treated. Current standard of care includes targeted tyrosine kinase inhibitors (TKIs),
which have significantly improved long-term survival rates [2].

Responses to certain treatments have offered evidence of an immune component in the
disease [3]. Early indications were provided by a correlation between incidence of graft-vs-host
disease and improved leukemia-free survival in CML patients who had received allogeneic stem cell
transplants [4]. Additionally, treatment with interferons (which are known to be immunomodulatory)
has led to complete or partial responses in some fraction of CML patients [5]. More recently, studies
that include immunomodulatory therapies such as nivolumab have been initiated [6].

Mathematical modeling of CML dynamics has a history dating back to the late 1960s with early
work of Rubinow and Lebowitz [7,8]. Models by Fokas et al. [9] in the 1990s focused on maturation
and proliferation of T-cell precursors. In 2004, Moore and Li [10] published a model of CML dynamics,
which accounts for the actions of naive and effector T-cells separately. In [11], this model was analyzed
as an optimal control problem. The model presented here first appeared in [12] and models the immune
system effects with one compartment, and separates the CML cells into quiescent and proliferating
classes. The rationale behind this new model is the ability to represent certain types of therapies for use
in combination treatment. These therapies are: a BCR-ABL1 tyrosine kinase inhibitor (e.g., a therapy
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such as imatinib), an immunomodulatory therapy (e.g., a therapy such as nivolumab), and a therapy
that combines both actions (e.g., a therapy such as dasatinib).

The model introduced in [12] is reviewed in Section 2 and then analyzed as a dynamical system
with constant drug concentrations in Section 3. The analysis is carried out theoretically for values of
parameters covering a range of dynamic possibilities. As will be seen, there are parameter values for
which the model can have an asymptotically stable equilibrium point in which all the state variables
are positive. This could be interpreted as disease control through continuous therapy. As parameters
change, the system can become unstable and undergo exponential growth, representing the accelerated
or blast phases of the disease. Our analysis incorporates constant drug concentrations, and thus
provide insights into the dynamics both without and with treatment. In particular, we analyze how
an increase in the levels of each of the three treatments affects the values of all three populations, the
two types of leukemia cells and the strength of the immune effect. The combination of theoretical
analysis and simulations is intended to shed some light on understanding the long-term dynamics of
this disease under treatment.

2. A Mathematical Model for the Treatment of CML with BCR-ABL1-Targeted and
Immunomodulatory Drugs

The mathematical model below was originally published in [12] in 2015.

2.1. A Brief Review of the Mathematical Model

Let Q be the concentration of quiescent leukemic cells, P the concentration of proliferating
leukemic cells, and E the strength of immune system effects. We will consider E to represent effector
T cell concentration levels, and will refer to E in the remainder as a concentration of effector T cells.
The model contains three controls u1, u2 and u3 that all denote normalized levels of different therapies.
The roles of the specific drugs are illustrated in Figure 1 taken from [12] with arrows indicating
amplification of effects and vertical bars indicating inhibition. The control u1 represents the normalized
concentration of a BCR-ABL1 inhibitor (such as imatinib) that mainly has an inhibitory effect on
the highly-proliferating leukemic cells; u2 is a BCR-ABL1 inhibitor that inhibits BCR-ABL1 that
also has immune effects (such as dasatinib); while u3 represents an immunomodulatory compound
(such as nivolumab).

Q = quiescent leukemic cells
P = proliferating leukemic cells
E = immune effect

P E

Q
u1 = general BCR-ABL1 inhibitor
u2 = BCR-ABL1 inhib.+immuno-onc. 
u3 = immuno-oncology therapy

Figure 1. Diagram of the dynamical system. The green circular areas represent the “populations"
included in the model. Solid arrows extending from or to the populations represent changes in numbers,
with inward-pointing arrows representing increases and outward-pointing arrows decreases. Dashed
arrows indicate indirect effects on those increases or decreases. Bars represent inhibition of a production
or an indirect effect, due to the represented treatment; arrows represent amplification of a rate or an
indirect effect. The effects of the general BCR-ABL1 inhibitor u1 are shown using orange dashed bars
and arrows, the effects of the BCR-ABL1 inhibitor u2 which also has immune effects are shown using
wide red solid bars and arrows and the effects of the immunomodulatory compound u3 are shown
using blue solid bars and arrows.
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Representing the pharmacodynamic effects of the drugs using Michaelis-Menten terms results in
the following equations:

dQ
dt

= rQQ − δQ

[
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)(
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]
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In this system, all parameters are non-negative. For P = 0 or E = 0, we extend the system
by defining it using the limits as P → 0 or E → 0, respectively. The cell count numbers for Q are
relatively small and are therefore modeled by an exponential function with growth coefficient rQ.
For the proliferating cells P we model growth with a Gompertz function, as Afenya and Calderón
state that this is best for describing CML growth [13]. The immune effect E (effector T cells) also has its
rate of increase modeled by a Gompertz function, so as to have approximately exponential growth
when numbers are very small, but still be bounded above. In the populations P and E, replication
rate constants are represented by rP and sE, and carrying capacities (or steady states) by Pss and Ess,
respectively. The natural death rate constants of the respective populations are denoted by δQ, δP and
δE. The population Q consists of leukemic cells that are quiescent. Some or all of quiescent leukemic
cells may be stem cells [14]. When quiescent cells divide, one copy is assumed to be the same kind
as the original cell while the second copy may differentiate further into a proliferating type. For this
reason, the transition term kPQ is not subtracted from the quiescent cell population in (1). This term
represents the rate at which quiescent cells produce differentiated proliferating cancer cells, with the
population Q the source for the population P.

The control variables represent the concentrations of the respective drugs, and their effects
(pharmacodynamics) are modeled by Michaelis-Menten terms with different maximum effectiveness
on the various populations. In modeling the combined drug actions it is assumed that any two drugs
act independently of each other. Thus the term(

1 − U1max,1u1

U1C50 + u1

)(
1 − U2max,2u2

U2C50 + u2

) [
kPQ + rPP ln

(
Pss

P

)]
represents the effects that drugs 1 and 2 have on decreasing the proliferation of the population P.
A term of the type

−δQ

(
1 +

U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1E

EC50 + E
Q

represents the enhancement of the actions of the effector T cells E on the quiescent cells Q as a
consequence of the activities of drugs 2 and 3. In each of the equations, the enhancement and inhibition
effects of the drugs by means of the immune system are modeled additively.

The “C50" parameters U1C50, U2C50, and U3C50 represent the concentrations required to achieve
half of the maximal effects of u1, u2, and u3, respectively. These and EC50 and PC50 are assumed to be
fixed across effects being modeled. These represent “potency” levels depending intrinsically on the
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particular therapy or population, and not on the setting of the effect. The maximum possible effect size
is allowed to depend on the setting.

The equations above represent a semi-mechanistic, fit-for-purpose, minimal model. It is minimal
in the sense that it only includes the levels of cell interactions needed to allow the controls to have
their expected effects. Some of the terms are based on models validated with data, but other terms
take forms that are more heuristic. For example, all of the control effect terms take a Michaelis-Menten
or “Emax” form. This is because we wish to model very small effect at low levels of drug, as well as a
limiting or asymptotic maximal effect at high levels of drugs. We chose the simplest among the models
with this behavior that are typically used in drug development [15].

The states, controls, and related parameters are listed in Tables 1 and 2. Table 1 gives those
parameters that are unrelated to the drug actions and make up the untreated, or uncontrolled, system;
Table 2 lists the treatment-specific parameters in the model. In this paper, we do not fit or fix specific
parameter values, and instead analyze the dynamic properties of the system (1)–(3) for large ranges
of possible values. We include in the tables below two different sets of numerical values that we use
to illustrate the dynamic properties of the system. These parameter values are purely for numerical
illustration and do not reflect specific model fits or therapies. The focus of this paper is the mathematical
analysis of the entire system rather than an analysis for particular parameter values.

Table 1. States and parameters for the dynamical system.

Symbol Interpretation Units
Values Used Values Used
in Figure 2 in Figures 3 and 4

Q concentration of quiescent leukemic cells 102 cells/mL

P concentration of proliferating leukemic cells 107 cells/mL

Pss
carrying capacity of proliferating

107 cells/mL 10 15leukemic cells

E effector T cells 2 × 103 cells/mL

Ess carrying capacity of effector T cells 2 × 103 cells/mL 1.75 2.25

rQ replication rate constant of quiescent cells 1/day 0.02

δQ natural death rate constant of quiescent cells 1/day 0.005

kP
rate constant for quiescent cells Q 1/day 0.10differentiating into proliferating cells P

rP
replication rate constant of proliferating 1/day 8 0.30leukemic cells

δP
natural death rate constant of proliferating 1/day 0.75 0.02leukemic cells

sE growth rate constant for effector T cells 1/day 0.25 0.01

δE natural death rate constant of effector T cells 1/day 0.25 0.005

Pmax,1
maximum stimulation effect of proliferating 2 0.50leukemic cells P on effector T cells E

Pmax,2
maximum inhibition effect of proliferating 5 0.20leukemic cells P on effector T cells E

PC50 size of P with half the maximum effect 1/mL 107 107

Emax,1
maximum effect of effector T cells E on 5quiescent leukemic cells Q

Emax,2
maximum effect of effector T cells E on 1 5proliferating leukemic cells P

EC50 size of E with half the maximum effect 1/mL 2000 2000
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Table 2. Controls and pharmacodynamic parameters.

Symbol Interpretation
Values Used Values Used
in Figure 2 in Figures 3 and 4

u1
normalized concentration of a general BCR-ABL1
inhibitor (e.g., imatinib)

U1max,1

maximum possible effect of u1 on slowing 0.8 0.8
transfer of quiescent cells Q into P and
inhibiting growth of proliferating cells P

U1max,2
maximum possible effect of u1 on death of 10 2
proliferating cells P

U1C50 concentration of u1 that gives half the maximum effect 1 1

u2

normalized concentration of a BCR-ABL1 inhibitor
which also has immunomodulatory effects
(e.g., dasatinib)

U2max,1
maximum possible effect of u2 on death of leukemic 2 0.01cells (the same for P and Q)

U2max,2
maximum possible effect of u2 slowing new P from 0.6 0.03Q and inhibiting growth of proliferating cells P

U2max,3
maximum possible effect of u2 on 10 0.01death of proliferating cells P

U2max,4
maximum possible effect of u2 on 10 0.025stimulating proliferation of effector T cells

U2max,5
maximum possible effect of u2 on 0.4 0.02prevention of the death of effector T cells

U2C50 concentration of u2 that gives half the maximum effect 0.6 0.8

u3
normalized concentration of an immunomodulatory
d agent (e.g., nivolumab)

U3max,1
maximum possible effect of u3 on death of leukemic 5 0.02cells (the same for P and Q)

U3max,2
maximum possible effect of u3 on 5 0.05stimulating proliferation of effector T cells

U3max,3
maximum possible effect of u3 on 0.7 0.07prevention of the death of effector T cells

U3C50 concentration of u3 that gives half the maximum effect 0.7 0.7

2.2. Scaling of Parameters

We note that the dynamical system has various groups of symmetries that can be used to scale
the variables and controls. Here we normalize all the “C50” parameter values to 1 by rescaling the
corresponding variables in terms of these quantities. This simply minimizes the number of parameters
to be considered in the analysis of the system. For example, let Qref be a constant to be determined
later, and define

Q̃ =
Q

Qref
, P̃ =

P
PC50

, Ẽ =
E

EC50
,

and
ũ1 =

u1

U1C50
, ũ2 =

u2

U2C50
, ũ3 =

u3

U3C50
.

Then we have that
E

EC50 + E
=

Ẽ
1 + Ẽ

and analogously for the other terms.
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For the differential equations, we obtain

dQ̃
dt

=
1

Qref

dQ
dt

=
1

Qref

{
rQQ − δQ

[
1 +
(

1 +
U2max,1ũ2

1 + ũ2

)(
1 +

U3max,1ũ3

1 + ũ3

)
Emax,1Ẽ
1 + Ẽ

]
Q

}

= rQQ̃ − δQ

[
1 +
(

1 +
U2max,1ũ2

1 + ũ2

)(
1 +

U3max,1ũ3

1 + ũ3

)
Emax,1Ẽ
1 + Ẽ

]
Q̃.

Under this scaling all remaining parameters in this equation are invariant and need not be
changed. Similarly,

dP̃
dt

=
1

PC50

dP
dt

=
1

PC50

{(
1 − U1max,1ũ1

1 + ũ1

)(
1 − U2max,2ũ2

1 + ũ2

) [
kPQ + rPP ln

(
Pss

P

)]
− δP

(
1 +

U1max,2ũ1

1 + ũ1

)(
1 +

U2max,3ũ2

1 + ũ2

)
P

−δP

(
1 +

U2max,1ũ2

1 + ũ2

)(
1 +

U3max,1ũ3

1 + ũ3

)
Emax,2Ẽ
1 + Ẽ

P

}

=

(
1 − U1max,1ũ1

1 + ũ1

)(
1 − U2max,2ũ2

1 + ũ2

) [(
kP

Qref
PC50

)
Q̃ + rPP̃ ln

(
Pss

P̃ · PC50

)]
− δP

(
1 +

U1max,2ũ1

1 + ũ1

)(
1 +

U2max,3ũ2

1 + ũ2

)
P̃

− δP

(
1 +

U2max,1ũ2

1 + ũ2

)(
1 +

U3max,1ũ3

1 + ũ3

)
Emax,2Ẽ
1 + Ẽ

P̃,

and

dẼ
dt

=
1

EC50

dE
dt

= sE

[
1 +
(

1 +
U2max,4ũ2

1 + ũ2

)(
1 +

U3max,2ũ3

1 + ũ3

)
Pmax,1P̃
1 + P̃

]
Ẽ ln

(
Ess

Ẽ · EC50

)

− δE

[
1 +
(

1 − U2max,5ũ2

1 + ũ2

)(
1 − U3max,3ũ3

1 + ũ3

)
Pmax,2P̃
1 + P̃

]
Ẽ.

Thus, if we re-scale kP as

k̃P =
Qref
PC50

kP (4)

and the steady-state values as

P̃ss =
Pss

PC50
and Ẽss =

Ess

EC50
, (5)

then formally the equations are the same as before with all “C50” values in the Michaelis-Menten
expressions normalized to 1. All other parameters remain unchanged and even their interpretation
is the same as before. For the theoretical analysis and numerical computations this eliminates five
parameters and introduces a favorable scaling to the variables. Naturally, the original parameters are
still calculated for an interpretation of the results.
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3. System Properties for Constant Concentrations

CML has three distinct phases, a chronic one that can last from three to five years, during which
leukemic cell counts are low but may grow steadily, and accelerated and blast phases that may last for
a only a few months and are characterized by higher cell counts or a rapid increase in cell counts
followed by death of the patient [10]. Here we analyze the dynamical system to determine if it can
capture such features.

3.1. Reduction to the Uncontrolled System and Basic Dynamical System Properties

We carry out the dynamical systems analysis for constant controls, i.e., concentrations.
We do not explicitly include pharmacokinetics (fluctuations in concentrations that depend on doses).
The treatments considered are either administered daily or have long half-lives, and such
pharmacokinetics are not expected to be significant for the treatment periods we consider here
(five years or longer). We also mention the 2009 paper by Shudo et al. [16] that supports this
assumption in the setting of hepatitis C.

Keeping the “C50” parameters in their original formulation in the controls, we define new
drug-dependent parameters as

k̂P =

(
1 − U1max,1u1

U1C50 + u1

)(
1 − U2max,2u2

U2C50 + u2

)
kP,

r̂P =

(
1 − U1max,1u1

U1C50 + u1

)(
1 − U2max,2u2

U2C50 + u2

)
rP,

δ̂P =

(
1 +

U1max,2u1

U1C50 + u1

)(
1 +

U2max,3u2

U2C50 + u2

)
δP,

Êmax,1 =

(
1 +

U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1,

Êmax,2 =

(
1 + U2max,1u2

U2C50+u2

) (
1 + U3max,1u3

U3C50+u3

)
(

1 + U1max,2u1
U1C50+u1

) (
1 + U2max,3u2

U2C50+u2

) Emax,2,

P̂max,1 =

(
1 +

U2max,4u2

U2C50 + u2

)(
1 +

U3max,2u3

U3C50 + u3

)
Pmax,1,

P̂max,2 =

(
1 − U2max,5u2

U2C50 + u2

)(
1 − U3max,3u3

U3C50 + u3

)
Pmax,2.

With these identifications, the dynamical system with constant controls is identical with the
uncontrolled system and therefore, without loss of generality, the analysis can be done on the
uncontrolled system. Returning to the original notation without the carets, we thus consider the
following equations:

dQ
dt

=

[
rQ − δQ

(
1 +

Emax,1E
1 + E

)]
Q, (6)

dP
dt

= kPQ +

[
rP ln

(
Pss

P

)
− δP

(
1 +

Emax,2E
1 + E

)]
P, (7)

dE
dt

=

[
sE

(
1 +

Pmax,1P
1 + P

)
ln
(

Ess

E

)
− δE

(
1 +

Pmax,2P
1 + P

)]
E. (8)

The model with an exponential growth term on Q has various long-term behaviors. These include
the extremes in which Q decays exponentially to zero or grows exponentially beyond limits,
but there also is the possibility that nontrivial equilibrium points (Q∗, P∗, E∗) exist for which all three
populations are positive. The first case corresponds to a scenario in which the patient goes into a stable
deep molecular response. For the uncontrolled system, this may not seem to be of interest, but since

26



Appl. Sci. 2016, 6, 291

the model includes the case with controls, this gives us information about which combinations of
constant concentrations of the drugs would lead to an eradication of Q. The case of exponential
growth may characterize the accelerated or blast phase as these phases have short doubling times [17].
The conditions under which this is the long-term behavior of the system give information about what
controls are needed for successful treatment. An asymptotically stable equilibrium point (Q∗, P∗, E∗)
with positive values could be interpreted as describing a subset of the chronic phase where net growth
rate is zero, controlled by therapy or immune effects. Depending on the values of the parameters,
this equilibrium point may be stable or unstable. Since in real life parameters may not be constant,
bifurcation phenomena would be a mathematical description of the transition from chronic to the
accelerated or blast phases. Knowing the parameter values when this may occur would be of interest.
Our aim in the following is thus to determine the asymptotic behavior of the trajectories of the system.

We start with some basic properties. The positive orthant

P = {(Q, P, E) : Q > 0, P > 0, E > 0}

is positively invariant for the dynamics. This is because the planes Q = 0 and E = 0 are invariant
under Equations (6) and (8) and Ṗ ≥ kPQ whenever P = 0. Thus, starting at a positive initial condition
(Q0, P0, E0), it follows that the solutions remain positive for all times. For the long-term behavior of the
system, the equilibrium solutions in the closure of P, P̄ = clos(P), also matter. Recall that the system is
defined and continuous on P̄ due to the use of the limits as P → 0 and E → 0 in place of P = 0 and
E = 0, respectively. The vector field defining the P and E dynamics is not continuously differentiable
at P = 0 or E = 0, but these values are repelling and thus this does not become an issue.

Lemma 1. The equilibrium solution E∗ = 0 is repelling: there exists a positive threshold EΔ < Ess such that
dE
dt is positive on (0, EΔ]. In particular, once Ess > E(τ) ≥ EΔ, then E(t) ≥ EΔ for all t ≥ τ. Furthermore,
for E(0) < Ess, E will remain below Ess.

Proof. The terms in the last parentheses in Equation (8) are bounded between 1 and 1 + Pmax,2 and
thus, as E → 0, the Gompertzian growth dominates the dynamics. Specifically, let

EΔ = Ess exp
(
− δE

sE
(1 + Pmax,2)

)
;

then EΔ ≤ Ess and for E < EΔ we have that dE
dt > 0. Furthermore, for E = Ess, Equation (8) reduces

to dE
dt = −δE

(
1 + Pmax,2P

1+P

)
E < 0 and thus the values of E cannot reach the value Ess if they start

below Ess.

Lemma 2. The equilibrium solution P∗ ≡ 0 is repelling: there exists a positive threshold PΔ < Pss such that
dP
dt is positive on (0, PΔ]. In particular, once Pss > P(τ) ≥ PΔ, we have P(t) ≥ PΔ for all t ≥ τ.

Proof. For values of E less than Ess, we have that

δP

(
1 +

Emax,2E
1 + E

)
< δP

(
1 +

Emax,2Ess

1 + Ess

)
for all times. Choosing PΔ as

PΔ = Pss exp
(
− δP

rP

(
1 +

Emax,2Ess

1 + Ess

))
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the result follows: for P < PΔ we have that

rP ln
(

Pss

P

)
− δP

(
1 +

Emax,2E
1 + E

)
> rP ln

(
Pss

PΔ

)
− δP

(
1 +

Emax,2Ess

1 + Ess

)
= 0.

This proves the result.

Corollary 1. The equilibrium solutions E∗ ≡ 0 and P∗ ≡ 0 are unstable.

Note, however, that P is not necessarily bounded. For, with P = Pss, Equation (7) becomes

dP
dt

= kPQ − δP

(
1 +

Emax,2E
1 + E

)
Pss

and thus, if Q is large enough, this term will be positive. Hence, if Q grows exponentially, P will
diverge to +∞.

Lemma 3. If Q increases exponentially with time, then limt→∞ P(t) = +∞.

Proof. We need to show that for every positive value P̂ there exists a time T̂ so that P(t) ≥ P̂ for all
t ≥ T̂.

We first remark that P is unbounded. For, if there exists a value P̄ with Pss < P̄ < ∞
so that P(t) ≤ P̄ for all times t, then the term

[
rP ln

(
Pss
P

)
− δP

(
1 + Emax,2E

1+E

)]
P is bounded below.

By assumption, there exist positive constants α and β so that Q(t) ≥ αeβt for all t. Hence, for t
sufficiently large we have that

dP
dt

(t) =
[

rP ln
(

Pss

P(t)

)
− δP

(
1 +

Emax,2E(t)
1 + E(t)

)]
P(t) + kPQ(t) > 1.

Contradiction.
Given P̂ ≥ Pss, choose Ť so that

αeβŤ =
1

kP

[
δP

(
1 +

Emax,2Ess

1 + Ess

)
− rP ln

(
Pss

P̂

)]
P̂.

Since P is not bounded, there exists a first time T̂ > Ť so that P(T̂) = P̂ + 1. We claim that
P(t) > P̂ for all t ≥ T̂. For, if there exists a time τ > T̂ such that P(τ) = P̂, then

dP
dt

(τ) =

[
rP ln

(
Pss

P̂

)
− δP

(
1 +

Emax,2E(τ)
1 + E(τ)

)]
P̂ + kPQ(τ)

>

[
rP ln

(
Pss

P̂

)
− δP

(
1 +

Emax,2Ess

1 + Ess

)]
P̂ + kPQ(τ)

≥ kPα
(

eβτ − eβŤ
)
> 0.

Contradiction. Thus P diverges to +∞.

3.2. Dynamics on the Plane Q = 0

The plane Q = 0 is invariant under the dynamics and can have regions that are repelling or
attractive. We first analyze the reduced dynamical system in this boundary stratum of P, i.e., consider
the equations

28



Appl. Sci. 2016, 6, 291

dP
dt

=

[
rP ln

(
Pss

P

)
− δP

(
1 +

Emax,2E
1 + E

)]
P, (9)

dE
dt

=

[
sE

(
1 +

Pmax,1P
1 + P

)
ln
(

Ess

E

)
− δE

(
1 +

Pmax,2P
1 + P

)]
E (10)

=

[
sE ln

(
Ess

E

)
− δE

1 + P + Pmax,2P
1 + P + Pmax,1P

] (
1 +

Pmax,1P
1 + P

)
E. (11)

Let P0 denote the open rectangle

P0 = {(P, E) : 0 < P < Pss, 0 < E < Ess}

and denote by P̄0 its closure, P̄0 = {(P, E) : 0 ≤ P ≤ Pss, 0 ≤ E ≤ Ess}. For Q ≡ 0 the variable
P is bounded above by Pss and therefore the compact set P̄0 is positively invariant under
Equations (9) and (11). The dynamical system has the following trivial equilibrium solutions in the
boundary of P̄0: (0, 0), (P∗, 0) with

P∗ = Pss exp
(
− δP

rP

)
< Pss

and (0, E∗) with E∗ given by

E∗ = Ess exp
(
− δE

sE

)
< Ess.

In view of Lemmas 1 and 2 these solutions are unstable. While the origin has two unstable
modes, the equilibrium points (P∗, 0) and (0, E∗) are saddles with the respective axes forming the
stable manifolds and the unstable modes entering the interior of P0. It is clear from this that there
needs to exist at least one more equilibrium point (P∗, E∗) in P0.

Lemma 4. There are no periodic orbits in P0.

Proof. Changing variables to P̃ = ln P and Ẽ = ln E, the dynamics transforms into

dP̃
dt

= rP
(
ln Pss − P̃

)− δP

(
1 + Emax,2

eẼ

1 + eẼ

)
,

dẼ
dt

= sE

(
1 + Pmax,1

eP̃

1 + eP̃

) (
ln Ess − Ẽ

)− δE

(
1 + Pmax,2

eP̃

1 + eP̃

)
.

The divergence of this vector field is given by

−rP − sE

(
1 + Pmax,1

eP̃

1 + eP̃

)
< 0

and thus the result follows from Bendixson’s negative criterion because of the monotonicity of the
logarithm function.

The relations defining equilibrium points inside P0 are

P∗ = Pss exp
(
− δP

rP

(
1 + Emax,2

E∗
1 + E∗

))
(12)

and
sE
δE

ln
(

Ess

E∗

)
=

1 + P∗ + Pmax,2P∗
1 + P∗ + Pmax,1P∗
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or, equivalently,

E∗ = Ess exp
(
− δE

sE
× 1 + P∗ + Pmax,2P∗

1 + P∗ + Pmax,1P∗

)
. (13)

Define

Ξ(P) =
1 + P + Pmax,2P
1 + P + Pmax,1P

, Ψ(Ξ) =
Ess exp

(
− δE

sE
Ξ
)

1 + Ess exp
(
− δE

sE
Ξ
) ,

and

Φ(P) = Pss exp
(
− δP

rP
(1 + Emax,2Ψ(Ξ(P)))

)
.

Then equilibrium values P∗ are fixed points of the function Φ, P = Φ(P), in the interval [0, Pss].
Since Φ(0) > 0, Φ(Pss) < Pss, and Φ is continuous in P, it follows that there exists at least one solution.
The derivative Φ′ of Φ is given by

Φ′(P) = Φ(P)
(
− δP

rP
Emax,2

) Ess exp
(
− δE

sE
Ξ(P)

)
(

1 + Ess exp
(
− δE

sE
Ξ(P)

))2

(
− δE

sE

)
Ξ′(P)

and thus has the same sign as Ξ′(P). Now

Ξ′(P) =
Pmax,2 − Pmax,1

(1 + P + Pmax,1P)2 .

Thus Φ is strictly increasing for Pmax,2 > Pmax,1 and strictly decreasing for Pmax,2 < Pmax,1.
If Pmax,2 = Pmax,1, then

Φ(P) = Pss exp

⎛⎝− δP
rP

⎛⎝1 + Emax,2

Ess exp
(
− δE

sE

)
1 + Ess exp

(
− δE

sE

)
⎞⎠⎞⎠ = const.

Equilibria are intersections of the graph of Φ with the diagonal and thus there exists a unique
equilibrium point (P∗, E∗) ∈ P0 if Pmax,1 ≥ Pmax,2, but multiple solutions are possible if Pmax,1 < Pmax,2.

We determine the stability of (P∗, E∗) for the reduced system, i.e., within the invariant plane
Q = 0. The Jacobian matrix at the equilibrium point is given by⎛⎜⎝ −rP −δP

Emax,2

(1+E∗)2 P∗
sEPmax,1 ln( Ess

E∗ )−δEPmax,2

(1+P∗)2 E∗ −sE

(
1 + Pmax,1P∗

1+P∗

)
⎞⎟⎠ .

Using the equilibrium relations we can write the (2, 1)-term as

∂

∂P |(P∗ ,E∗)

(
dE
dt

)
=

δEPmax,1E∗
(1 + P∗)2

{
sE
δE

ln
(

Ess

E∗

)
− Pmax,2

Pmax,1

}
=

δEPmax,1E∗
(1 + P∗)2

{
1 + P∗ + Pmax,2P∗
1 + P∗ + Pmax,1P∗

− Pmax,2

Pmax,1

}
= δEE∗

Pmax,1 − Pmax,2

(1 + P∗) (1 + P∗ + Pmax,1P∗)
.
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The characteristic polynomial of this 2 × 2 matrix is given by

χ(t) =

∣∣∣∣∣∣
t + rP δP

Emax,2

(1+E∗)2 P∗

− (Pmax,1−Pmax,2)δEE∗
(1+P∗)(1+P∗+Pmax,1P∗) t + sE

(
1 + Pmax,1P∗

1+P∗

)
∣∣∣∣∣∣

= t2 +

(
rP + sE

(
1 +

Pmax,1P∗
1 + P∗

))
t + rPsE

(
1 +

Pmax,1P∗
1 + P∗

)
+ δEδP

Emax,2E∗
(1 + E∗)2

(Pmax,1 − Pmax,2) P∗
(1 + P∗) (1 + P∗ + Pmax,1P∗)

.

If we write χ(t) = t2 + a1t + a0, then a1 is positive and thus the equilibrium point is locally
asymptotically stable if a0 is positive while it is unstable if a0 is negative. A saddle node bifurcation
occurs as a0 = 0. It immediately follows that (P∗, E∗) is locally asymptotically stable if Pmax,1 ≥ Pmax,2,
i.e., if the stimulating effect of the tumor on the effector cells is larger than the inhibiting effect of the
tumor on the effector cells. We have the following result:

Proposition 1. If Pmax,1 ≥ Pmax,2, then there exists a unique equilibrium point (P∗, E∗) in P0 and it is globally
asymptotically stable in the sense that its region of attraction is the full rectangle P0.

Proof. The set P0 is positively invariant and every trajectory γ starting in P0 has a non-empty ω-limit
set Ω(γ). Because of the stability properties of the equilibria in the boundary of P0, this ω-limit set
Ω(γ) lies in P0. Since there exist no periodic orbits and since (P∗, E∗) is the only equilibrium point,
it follows from Poincaré-Bendixson theory that Ω(γ) = {(P∗, E∗)}, i.e., all trajectories starting in P0

converge to (P∗, E∗) as t → ∞. �
It is clear from Poincaré-Bendixson theory that even if Pmax,1 < Pmax,2, the equilibrium point

(P∗, E∗) is globally asymptotically stable (in the sense that its region of attraction contains the set
P0, and only this region is relevant for the problem) as long as it is the only equilibrium point in P0.
This is shown in the phase portraits for the uncontrolled system in Figure 2; Figure 3 shows a case
where Pmax,1 > Pmax,2. (The values of the parameters are given in Tables 1 and 2.) We also show the
phase-portraits for the systems when one of the controls is set to be equal to 1 and all others are zero.
The two sets of figures illustrate two different scenarios, one where the control parameters are such that
the equilibrium can be effectively controlled by all the drugs (Figure 2), the other where it is essentially
only the control u1 that is able to move the equilibrium point. However, this behavior depends on the
fact that Q = 0.
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Figure 2. Cont.
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Figure 2. Phase portraits of the reduced dynamics for Q = 0 and Pmax,1 < Pmax,2 for the uncontrolled
system (top, left) and for constant controls u1 ≡ 1 (top, right), u2 ≡ 1 (bottom, left) and u3 ≡ 1
(bottom, right). The numerical values for these phase portraits are given in Tables 1 and 2.
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Figure 3. Phase portraits of the reduced dynamics for Q = 0 and Pmax,1 > Pmax,2 for the uncontrolled
system (top, left) and for constant controls u1 ≡ 1 (top, right), u2 ≡ 1 (bottom, left) and u3 ≡ 1
(bottom, right). The numerical values for these phase portraits are given in Tables 1 and 2.

Since the coefficient a1 is always positive, as a0 vanishes the Jacobian matrix has the eigenvalue
0 and the other eigenvalue is negative. At such a point saddle-node bifurcations arise and two new
equilibria, one stable, the other unstable, are born.

Proposition 2. If Pmax,2 > Pmax,1, then multiple equilibria (P∗, E∗) inside P0 can exist. At points
(P∗, E∗) where

δP
rP

(Pmax,2 − Pmax,1) P∗
(1 + P∗ + Pmax,1P∗)2

δE
sE

Emax,2E∗
(1 + E∗)2 = 1 (14)
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saddle-node bifurcations occur in which a stable and an unstable equilibrium point merge.

Proof. The coefficient a0 vanishes if and only if

rPsE
1 + P∗ + Pmax,1P∗

1 + P∗
= δP

Emax,2P∗
(1 + E∗)2

(Pmax,2 − Pmax,1) δEE∗
(1 + P∗) (1 + P∗ + Pmax,1P∗)

.

This condition is equivalent to (14).
For the underlying biological problem it is natural that an inhibition effect would be smaller than

a stimulation effect. Also, the denominators are quadratic in the respective variables E and P, but these
variables are scaled. In principle it is possible to satisfy (14), but we did not come across this in our
simulations.

3.3. Dynamic Behavior for Positive Q-Values

For the behavior of the overall system, the Q dynamics are essential. If one considers the above
equilibria in the plane Q = 0 now in the full three-dimensional space, then the first row of the Jacobian
matrix at (0, P∗, E∗) takes the form(

rQ − δQ

(
1 +

Emax,1E∗
1 + E∗

)
, 0, 0

)

and thus (0, P∗, E∗) is unstable if rQ > δQ

(
1 + Emax,1E∗

1+E∗

)
while the local stability properties for the

overall system are the same as in the (P, E)-plane if rQ < δQ

(
1 + Emax,1E∗

1+E∗

)
. If rQ = δQ

(
1 + Emax,1E∗

1+E∗

)
,

then there exists a 1-dimensional center manifold (corresponding to the 0 eigenvalue). In this case we
have Q̇ = 0 and there exists a curve of equilibria emerging from (0, P∗, E∗) parameterized by Q or P
(also see below).

Generally, (1)–(3) is a time-varying linear system dominated by exponential growth and decay,
depending on the parameter values. If

rQ ≥ δQ

(
1 + Emax,1

Ess

1 + Ess

)
,

then Q grows exponentially and no steady state exists. In this case, the influx kPQ eventually becomes
the dominant term in Equation (2) and P also grows beyond limits (Lemma 3). This represents the
malignant scenario in the model which corresponds to a highly-aggressive form of the disease or the
accelerated or blast phase. The other extreme arises if rQ < δQ. In this case Q exponentially decays to 0
for the uncontrolled system and overall trajectories converge to one of the equilibria (0, P∗, E∗) in the
plane Q = 0. If there exist multiple such equilibria, there exists a stable manifold for the unstable one
that separates the regions of attraction for the stable equilibria. This would reflect a scenario when Q
initiates the disease, but eventually dies off and the remaining P population determines the outcome of
the disease. This could be benign if P∗ is small (a form of successful immune surveillance) or malignant
if this value is larger. In such a case, however, one only needs to deal with the proliferating cells as far
as treatment is concerned. This appears less likely (unless it could be induced by the drugs) and in the
uncontrolled case of the disease we would have rQ > δQ.

The interesting and most difficult case arises when the uncontrolled system has a chronic steady
state or undergoes exponential growth without treatment, but has a negative net growth rate for Q
with treatment. This is the case if the parameters satisfy the following condition (A):

Emax,1
Ess

1 + Ess
>

rQ

δQ
− 1 > 0, (15)
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or, with the controls in the original form,

Emax,1
Ess

1 + Ess

(
1 +

U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
>

rQ

δQ
− 1 > 0.

Thus the replication rate constant rQ needs to be greater than the death rate constant δQ
(this naturally will be satisfied for parameters in a disease state), but at the same time, the drugs need
to be able to raise the maximum effectiveness Êmax,1 = Emax,1

(
1 + U2max,1u2

U2C50+u2

) (
1 + U3max,1u3

U3C50+u3

)
high

enough that the magnitude of the immune system effect can overcome the difference. These appear to
be natural conditions. Assuming that (15) holds, there exists a unique value E∗ ∈ (0, Ess) for which
Q̇ = 0, namely

rQ = δQ

(
1 + Emax,1

E∗
1 + E∗

)
⇐⇒ E∗ =

rQ
δQ

− 1

Emax,1 −
(

rQ
δQ

− 1
) (16)

with Q increasing for E < E∗ and decreasing for E > E∗. In this case, the interplay between the
variables allows for a steady state (Q∗, P∗, E∗) to exist with all values positive. We call such an
equilibrium point (Q∗, P∗, E∗) positive.

3.4. Special Case: Pmax,1 = Pmax,2

We first discuss the dynamical behavior of the system for the case Pmax,1 = Pmax,2 which is quite
different from the cases Pmax,1 �= Pmax,2. If these effective rates are equal, we have that

dE
dt

=

(
sE ln

(
Ess

E

)
− δE

)(
1 +

Pmax,1P
1 + P

)
E

and it follows that E is strictly increasing for E < E∗ = Ess exp
(
− δE

sE

)
and strictly decreasing for

E > E∗. Therefore, as t → ∞, the E-dynamics approach E∗, monotonically increasing if the initial
condition is smaller, monotonically decreasing if it is higher. Consequently also the Q-dynamics
approach the steady-state behavior

dQ
dt

=

[
rQ − δQ

(
1 +

Emax,1E∗
1 + E∗

)]
Q

and Q will increase exponentially if

rQ > δQ

(
1 +

Emax,1E∗
1 + E∗

)
and decrease exponentially if

rQ < δQ

(
1 +

Emax,1E∗
1 + E∗

)
.

In the first case this also generates unbounded growth in P (Lemma 3) leading to behavior
consistent with the blast phase of the system. In the second case, Q decays exponentially to 0 and P
converges to the unique and asymptotically stable equilibrium point P∗ on Q = 0. Overall, and writing
in the constant controls (the respective concentrations ui) we have the following result:

Proposition 3. Suppose Pmax,1 = Pmax,2 and let

Ê = Ess exp
(
− δE

sE

)
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and

P̂ = Pss exp
(
− δP

rP

(
1 + Emax,2

Ê
1 + Ê

))
.

If

rQ < δQ

(
1 +
(

1 +
U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1Ê
1 + Ê

)
,

then all trajectories (Q(t), P(t), E(t)) converge to the unique and asymptotically stable equilibrium point
(0, P̂, Ê) in the boundary of P0, whereas if

rQ > δQ

(
1 +
(

1 +
U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1Ê
1 + Ê

)
,

then Q grows exponentially and limt→∞ P(t) = +∞ and limt→∞ E(t) = Ê.
If

rQ = δQ

(
1 +
(

1 +
U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1Ê
1 + Ê

)
,

then a positive equilibrium point (Q∗, P∗, E∗) exists, but this relation is non-generic and generally will not be
satisfied for a given set of parameters.

3.5. Existence and Stability of a Positive Equilibrium Point (Q∗, P∗, E∗) for Pmax,1 �= Pmax,2

We analyze whether positive equilibrium points (Q∗, P∗, E∗) exist. Throughout this section we
assume that condition (15) is satisfied, i.e., that

Emax,1
Ess

1 + Ess
>

rQ

δQ
− 1 > 0,

since otherwise Q grows exponentially.

Lemma 5. For Pmax,1 �= Pmax,2, there exists at most one positive equilibrium point (Q∗, P∗, E∗).

Proof. The equilibrium relation for Equation (6) uniquely determines E∗:

rQ = δQ

(
1 + Emax,1

E∗
1 + E∗

)
⇐⇒ E∗ =

rQ
δQ

− 1

Emax,1 −
(

rQ
δQ

− 1
) > 0.

Given E∗, the equilibrium condition on the effector cells, Ė = 0, is equivalent to

sE
δE

ln
(

Ess

E∗

)
=

1 + P∗ + Pmax,2P∗
1 + P∗ + Pmax,1P∗

. (17)

The quantity sE
δE

ln
(

Ess
E∗

)
is already determined. If sE

δE
ln
(

Ess
E∗

)
= 1, then (17) only has the solution

P∗ = 0; otherwise there exists a unique solution P∗ = P∗(E∗) given by

P∗ =
1

1 + Pmax,1
×

1 − sE
δE

ln
(

Ess
E∗

)
sE
δE

ln
(

Ess
E∗

)
− 1+Pmax,2

1+Pmax,1

. (18)

If Pmax,1 < Pmax,2, this solution is positive if and only if

1 <
sE
δE

ln
(

Ess

E∗

)
<

1 + Pmax,2

1 + Pmax,1
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and if Pmax,1 > Pmax,2, the solution is positive if and only if

1 >
sE
δE

ln
(

Ess

E∗

)
>

1 + Pmax,2

1 + Pmax,1
.

If one of these inequalities is violated, no positive equilibrium solution P∗ = P∗(E∗) exists and the
overall dynamics are determined either by exponential growth or decay of Q. If P∗ = P∗(E∗) exists
and is positive, then Equation (7) defines Q∗ as

kPQ∗ =
[

δP

(
1 + Emax,2

E∗
1 + E∗

)
− rP ln

(
Pss

P∗

)]
P∗. (19)

Using the equilibrium relation for E∗, this can equivalently be expressed in the form

kPQ∗ =
[

1 +
Emax,2

Emax,1

(
rQ

δQ
− 1
)
− rP

δP
ln
(

Pss

P∗

)]
δPP∗. (20)

Note that Q∗ is positive if P∗ ≥ Pss while otherwise this becomes a requirement on the equilibrium
value P∗ = P∗(E∗), namely

P∗ > Pss exp
(
− δP

rP

[
1 +

Emax,2

Emax,1

(
rQ

δQ
− 1
)])

.

If Emax,2 = Emax,1, then this simply becomes P∗ > Pss exp
(
− δP

rP

rQ
δQ

)
. In either case, there exists at

most one positive equilibrium point given by Equations (16), (18) and (20).

Remark 1. As Pmax,1 → Pmax,2, condition (15) implies that along a positive solution P∗(E∗) we must have

sE
δE

ln
(

Ess

E∗

)
→ 1

and thus the limit taken along these positive solutions only exists if E∗ → Ê = Ess exp
(
− δE

sE

)
and if

rQ = δQ

(
1 + Emax,1

Ê
1 + Ê

)
.

In this degenerate case, the equilibrium conditions Q̇ = 0 and Ė = 0 are automatically satisfied and
there exists a one-dimensional equilibrium manifold, namely M =

{(
Q∗(P), P, Ê

)
: P > 0

}
with the P value

arbitrary and Q∗(P) given by

Q∗(P) =
1

kP

[
δP

(
1 + Emax,2

Ê
1 + Ê

)
− rP ln

(
Pss

P

)]
P.

We now investigate the stability of the positive equilibrium point. The partial derivatives of the
equations defining the dynamics at the equilibrium point are given by
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∂ f1

∂Q |(Q∗ ,P∗ ,E∗)
= 0,

∂ f1

∂P |(Q∗ ,P∗ ,E∗)
= 0,

∂ f1

∂E |(Q∗ ,P∗ ,E∗)
= −δQQ∗

Emax,1

(1 + E∗)2 ,

∂ f2

∂Q |(Q∗ ,P∗ ,E∗)
= kP,

∂ f2

∂P |(Q∗ ,P∗ ,E∗)
= −kP

Q∗
P∗

− rP,
∂ f2

∂E |(Q∗ ,P∗ ,E∗)
= −δPP∗

Emax,2

(1 + E∗)2 ,

∂ f3

∂Q |(Q∗ ,P∗ ,E∗)
= 0,

∂ f2

∂E |(Q∗ ,P∗ ,E∗)
= −sE

(
1 +

Pmax,1P∗
1 + P∗

)
∂ f3

∂P |(Q∗ ,P∗ ,E∗)
=

sEPmax,1 ln
(

Ess
E∗

)
− δEPmax,2

(1 + P∗)2 E∗ = δEE∗
(Pmax,1 − Pmax,2)

(1 + P∗) (1 + P∗ + Pmax,1P∗)
.

Note that the equilibrium condition for P brings in Q∗ in ∂ f2
∂P |(Q∗ ,P∗ ,E∗). The characteristic

polynomial for the Jacobian matrix is given by

χ(t) =

∣∣∣∣∣∣∣∣∣
t 0 δQQ∗

Emax,1

(1+E∗)2

−kP t + kP
Q∗
P∗ + rP δPP∗

Emax,2

(1+E∗)2

0 δEE∗
Pmax,2−Pmax,1

(1+P∗)(1+P∗+Pmax,1P∗) t + sE

(
1 + Pmax,1P∗

1+P∗

)
∣∣∣∣∣∣∣∣∣

= t3 + a2t2 + a1t + a0.

By the Routh-Hurwitz criterion, all eigenvalues have negative real parts if and only if a0 > 0,
a1 > 0 and a1a2 > a0. These coefficients are given by

a2 =

(
kP

Q∗
P∗

+ rP

)
+ sE

(
1 +

Pmax,1P∗
1 + P∗

)
> 0,

a1 =

(
kP

Q∗
P∗

+ rP

)
sE

(
1 +

Pmax,1P∗
1 + P∗

)
+

Emax,2δEE∗
(1 + E∗)2

(Pmax,1 − Pmax,2) δPP∗
(1 + P∗) (1 + P∗ + Pmax,1P∗)

a0 = δQQ∗
Emax,1δEE∗
(1 + E∗)2 kP

Pmax,1 − Pmax,2

(1 + P∗) (1 + P∗ + Pmax,1P∗)
.

If Pmax,1 < Pmax,2, then a0 is negative and the positive equilibrium point is unstable, i.e., once the
maximal inhibiting effect of the tumor on the effector cells is larger than the maximal stimulating effect,
no steady-state positive solution exists. Note further that for a0 < 0 the characteristic polynomial
χ(t) = t3 + a2t2 + a1t + a0 has exactly one change of sign in its coefficients and thus there exists a
unique positive root. So the equilibrium point has a two-dimensional stable manifold that separates
the regions where Q and P diverge to infinity from the region where Q converges to 0. Thus we have
the following result:

Theorem 1. If Pmax,1 < Pmax,2, then the positive equilibrium point (Q∗, P∗, E∗) is unstable with a
two-dimensional stable manifold in parameter space.

If Pmax,1 = Pmax,2, then the equilibrium point has the eigenvalue 0 and two negative eigenvalues.
Thus there exists a one-dimensional center manifold which in this case consists of all equilibria, namely
the equilibrium manifold M defined earlier.
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For Pmax,1 > Pmax,2, the coefficients a0, a1 and a2 are all positive. Furthermore

a1a2 − a0 =

[(
kP

Q∗
P∗

+ rP

)
+ sE

(
1 +

Pmax,1P∗
1 + P∗

)]
×

×
[(

kP
Q∗
P∗

+ rP

)
sE

(
1 +

Pmax,1P∗
1 + P∗

)
+

Emax,2δEE∗
(1 + E∗)2

(Pmax,1 − Pmax,2) δPP∗
(1 + P∗) (1 + P∗ + Pmax,1P∗)

]

− δQQ∗
Emax,1δEE∗
(1 + E∗)2

kP (Pmax,1 − Pmax,2)

(1 + P∗) (1 + P∗ + Pmax,1P∗)

>
δEE∗

(1 + E∗)2
Pmax,1 − Pmax,2

(1 + P∗) (1 + P∗ + Pmax,1P∗)
kPQ∗

(
δPEmax,2 − δQEmax,1

)
.

This expression is positive if we make the following assumption (B):

δPEmax,2 ≥ δQEmax,1. (21)

Note from Equations (2) and (3) that δPEmax,2 represents the maximal size of the immune effect E
on P while δQEmax,1 represents the maximal size of the immune effect E on Q. This effect is assumed to
be stronger on the proliferating class of cells than on the quiescent class of cells. Thus assumption (21)
is a natural one to make. This assumption is invariant under the actions of the drugs:

δ̂PÊmax,2 =

(
1 +

U1max,2u1

U1C50 + u1

)(
1 +

U2max,3u2

U2C50 + u2

)
δP ·

(
1 + U2max,1u2

U2C50+u2

) (
1 + U3max,1u3

U3C50+u3

)
(

1 + U1max,2u1
U1C50+u1

) (
1 + U2max,3u2

U2C50+u2

)Emax,2

=

(
1 +

U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
δPEmax,2

while, letting δ̂Q = δQ,

δ̂QÊmax,1 = δQ ·
(

1 +
U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
Emax,1

=

(
1 +

U2max,1u2

U2C50 + u2

)(
1 +

U3max,1u3

U3C50 + u3

)
δQEmax,1

so that these terms are multiplied by the same coefficients. Hence we also have the following result:

Theorem 2. If Pmax,1 > Pmax,2 and δPEmax,2 ≥ δQEmax,1, then the positive equilibrium point (Q∗, P∗, E∗) is
locally asymptotically stable.

The limiting case Pmax,1 = Pmax,2 represents a degenerate scenario. In many cases no positive

equilibrium exists. For example, if sE
δE

ln
(

Ess
E∗

)
�= 1, then it follows from (18) that

lim
Pmax,1→Pmax,2

P∗ = − 1
1 + Pmax,1

< 0.

In such a case equilibria will cease to exist, as Pmax,1 ↘ Pmax,2, once the parameter values satisfy

1 >
sE
δE

ln
(

Ess

E∗

)
=

1 + Pmax,2

1 + Pmax,1
, E∗ =

rQ
δQ

− 1

Emax,1 −
(

rQ
δQ

− 1
) .
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Also, although the positive equilibrium point in Theorem 2 is stable, the value can be very high.
In fact, P∗ diverges to +∞ as these parameter relations are reached (c.f. (18)):

P∗ =
1

1 + Pmax,1

1 − sE
δE

ln
(

Ess
E∗

)
sE
δE

ln
(

Ess
E∗

)
− 1+Pmax,2

1+Pmax,1

.

For the equilibrium values to be relatively small (‘chronic’), we see that Pmax,1 must be significantly
larger than Pmax,2. In terms of the parameter values with drug actions, this can be achieved using the
drugs u2 and u3 which increase P̂max,1 and decrease P̂max,2, c.f.,

P̂max,1 =

(
1 +

U2max,4u2

U2C50 + u2

)(
1 +

U3max,2u3

U3C50 + u3

)
Pmax,1,

P̂max,2 =

(
1 − U2max,5u2

U2C50 + u2

)(
1 − U3max,3u3

U3C50 + u3

)
Pmax,2.

So drug administration shifts the balance towards Pmax,1 and this creates an asymptotically stable
positive equilibrium point (Q∗, P∗, E∗), hopefully with low values for P∗ and Q∗.

Figure 4 shows how the positive equilibrium values change as (only) one of the controls is varied.
Note that the equilibrium values for Q and E do not change if only the control u1 is varied. Also
for changes in the controls u2 and u3 these equilibrium values change little and in the graphs the
corresponding curves are almost constant. However, in these cases the equilibrium values for Q and P
are well-controlled by the therapies. Contrary to the case when Q = 0, the u2 and u3 controls have
strong effects by cutting down the influx of cells from the Q into the P compartment. All equilibria
shown in these graphs satisfy the conditions of Theorem 2 and are locally asymptotically stable.

control u
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eq
ui

lib
riu

m
 v

al
ue

s 
fo

r 
Q

,P
 a

nd
 E

0

2

4

6

8

10

12

Q

P

E

control u
2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eq
ui

lib
riu

m
 v

al
ue

s 
fo

r 
Q

,P
 a

nd
 E

0

2

4

6

8

10

12

Q

P

E

control u
3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

eq
ui

lib
riu

m
 v

al
ue

s 
fo

r 
Q

,P
 a

nd
 E

0

2

4

6

8

10

12

level 0

Q

P

E

Figure 4. The values of the positive equilibrium point (Q∗, P∗, E∗) as the values for a single control are
varied from 0 to 1. The parameter values used in the computations are given in Tables 1 and 2.
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4. Discussion and Conclusions

We considered the dynamical behavior of a mathematical model for CML that incorporated
three types of therapies defined by targeted effects on proliferating cells and immunomodulatory
properties. We analyzed the long-term dynamical behavior of quiescent and proliferating leukemic
cells and immune effects (represented by effector T cells). General parameter values were considered
to capture a range of possible scenarios. Some thresholds in the parameter space have been determined
analytically that separate different types of dynamical behavior that may correspond to the chronic
and the accelerated/blast phases of the disease. It has been illustrated how increasing levels of the
therapies affect the equilibrium solutions and their stability. As Q becomes small, the analysis of
the dynamics in the plane Q = 0 indicates that a tyrosine kinase inhibitor can effectively control
the disease. However, for larger values of Q, the behavior of the equilibrium solutions shown in
Figure 4 suggests that the immunomodulatory properties of the controls u2 and/or u3 are essential in
controlling the disease, since u1 alone cannot move the equilibrium value P∗ if Q∗ slowly increases.
Thus this analysis for constant controls already gives some interesting insights into the roles of the
various therapies. Indeed, this analysis for constant parameters and controls is a natural first step
towards formulating the model as an optimal control problem where treatment constraints and an
objective functional incorporating leukemic cell populations and toxicity for the therapeutic agents
will be introduced. Although optimal control solutions such as those computed in [11] can provide
insight, optimization of the system under clinical dosing constraints (such as only allowing certain
dose levels, and only allowing them to change at certain intervals) would be useful [18].
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Abstract: The epidermal tissue is the outmost component of the skin that plays an important
role as a first barrier system in preventing the invasion of various environmental agents, such
as bacteria. Recent studies have identified the importance of microbial competition between harmful
and beneficial bacteria and the diversity of the skin surface on our health. We develop mathematical
models (M1 and M2 models) for the inflammation process using ordinary differential equations
and delay differential equations. In this paper, we study microbial community dynamics via
transcription factors, protease and extracellular cytokines. We investigate possible mechanisms
to induce community composition shift and analyze the vigorous competition dynamics between
harmful and beneficial bacteria through immune activities. We found that the activation of proteases
from the transcription factor within a cell plays a significant role in the regulation of bacterial
persistence in the M1 model. The competition model (M2) predicts that different cytokine clearance
levels may lead to a harmful bacteria persisting system, a bad bacteria-free state and the co-existence
of harmful and good bacterial populations in Type I dynamics, while a bi-stable system without
co-existence is illustrated in the Type II dynamics. This illustrates a possible phenotypic switch
among harmful and good bacterial populations in a microenvironment. We also found that large
time delays in the activation of immune responses on the dynamics of those bacterial populations
lead to the onset of oscillations in harmful bacteria and immune activities. The mathematical model
suggests possible annihilation of time-delay-driven oscillations by therapeutic drugs.
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1. Introduction

The skin is the largest tissue, which is composed of several different layers. The epidermis is located at
the outmost part of the skin tissue, which acts as a first barrier for the invasion of physical (water), chemical
(proteins) and biological (virus and bacteria) agents. A population of keratinocytes is the major cell type
in the epidermis, which constitutes stratum basale, stratum spinosum, stratum granulosum and stratum
corneum. Keratinocytes release anti-microbial peptides or pro-inflammatory cytokines to prevent bacterial
or viral infection [1]. The second outmost layer, the dermis, is situated between the epidermis and
subcutaneous tissues, which are composed of fibroblasts, macrophages and adipocytes [2]. The dermis
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contains extracellular matrix components, including collagen and elastin, as well as lymph, blood
vessels and many skin-resident immune cell types. The homeostasis of the skin tissue is maintained by
appropriate elimination of invading agents and tight regulation of cellular activities. On the other hand,
the breakdown of the homeostasis of the skin tissue induces numerous diseases, including cancer,
complications after an injury and inflammatory symptoms. Atopic dermatitis (AD) is one of the major
skin inflammatory diseases, which are characterized by the elevated level of serum IgE and chronic
allergic immune responses [3]. Incidence of AD has been increasing in developed countries. Notably,
recent genetic studies have revealed that barrier dysfunction of the epidermis due to filaggrin mutation
is a major triggering factor of disease progression [4,5]. Filaggrin is synthesized in keratinocytes at
the stratum granulosum, which is degraded to become a major component of natural moisturizing factor
(NMF). Lack of NMFs is associated with water loss skin dryness, leading to the progression of AD and
ichthyosis vulgaris [4]. Not only dry condition, but also excessive proteolytic activities of the epidermis are
implicated as causal factors of AD. Patients with Netherton syndrome who exhibit atopic dermatitis-like
chronic inflammation indicate a genetic defect causing excessive serine proteases [6].

The inference of bacteria as an environmental factor has been implicated as a possible factor for
the progression of skin inflammatory diseases. Two major pathogenic bacteria species for skin diseases
are Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes). Importantly, S. aureus is a
major virulent species, which is implicated to be associated with the progression of atopic dermatitis [7].
S. aureus also induces impetigo and another serious symptoms. Methicillin-resistant S. aureus (MRSA)
is an antibiotic-resistant strain of S. aureus, the incidence of which is often reported as a nosocomial
infection [8]. On the other hand, some commensal bacteria can exhibit mutualistic behaviors through
the suppression of potentially pathogenic bacterial species via direct and indirect interactions, known as
probiotic effects. For instance, Staphylococcus epidermititis(S. epidermititis), a major commensal bacterial
species in the skin, can support the host defense by releasing antimicrobial peptides [9,10]. The other
beneficial microbial species include species belonging to the Lactobacillus genus. Lactobacillus reuteri
helps keratinocyte survival from S. aureus-induced cell death by outcompeting S. aureus [11].

The immune system plays a major role in preventing the invasion of numerous agents, including
bacteria, fungi, virus and foreign proteins [12]. Not only foreign antigens, but also antigens presented
by commensal bacteria can be an antigenic stimulation for the host immune system [13]. In fact,
the number of bacteria in abundance is controlled by the host immune system under normal
conditions [14]. The pathogenicity of S. aureus can be conferred by numerous immune evasion
strategies. In fact, several virulent factors of S. aureus have been reported in [15–17]. On the contrary,
several beneficial roles of S. epidermititis have been reported, although S. epidermititis can be virulent as
a nosocomial pathogen for immunocompromised patients [18]. S. epidermititis triggers innate immune
responses via toll-like receptor (TLR)-2, which mediate the killing of pathogenic bacteria, such as
S. aureus [19]. Lactobacillus plantarum can utilize the host innate immune system mediated by epithelial
cells by modulating the IL-17, IL-23 and TLR-2/4 expressions [20].

Regardless of the fact that many causal and preventive factors for the progression of AD and
other skin inflammatory diseases have been identified, each experimental and clinical research only
focuses on a specific aspect of the skin biology. The integration of knowledge in each sub-domain is
needed in order to achieve a comprehensive understanding of the progression of AD. As described
above, the detection of the manifestation of atopic dermatitis requires the integration of weakened
barrier function due to a genetic defect or excessive proteolytic activity, the inflammatory response
triggered by some of commensal bacteria and abnormal recruitment of immune cells via irregular
cellular communication with respect to cytokine signaling. Mathematical modeling and simulation
study enable integration and provide some basic insights into the maintenance mechanism underlying
the skin homeostasis and disease development as a defect of the homeostatic condition.

We focus on competitive bacterial interactions among S. epidermatitis as good bacteria and
S. aureus as bad bacteria that occur at the skin tissue to specifically reflect experimental and empirical
observations, such as [19]. Although our primary focus is to investigate the effects of bacterial
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competition on the dynamics of inflammatory responses in the epidermis, the mathematical models
presented here can be useful as a general scheme to describe the interactions among bacterial species
as an environmental factor with host immune responses on the surface of the body, such as the
epidermis and gastro-intestinal (GI) tract. See [21,22] for the diverse roles of proteases in the GI tract in
the maintenance of intestinal homeostasis. Hence, we focus on constructing mathematical models to
represent a less detailed, but the general manner of interactions among inflammation-related molecules,
such as protease, transcription factors and extracellular cytokines with bacterial species in epidermis.

In the present paper, we investigate how chronic inflammation can occur at the skin tissue.
Simple mathematical models are employed to describe the invasion of bacteria, the proteolytic
activity of keratinocytes, the activation of innate immune response and the release of antimicrobial
peptide and cytokines. The organization of the present paper is as follows. In Section 2, two
mathematical models (M1 and M2) are formulated. The M1 model is formulated to model the
dynamics of inflammation in response to bacterial infection via a transcription factor and extracellular
cytokines, as well as active proteases. Time delays may play a central role in the regulation of the
bacterial-immune system in this study due to possible delays in the regulation of the intracellular
transcription factors, protease induction and secretion of extracellular cytokines from bi-directional
communication between a cell in the tissue and the microenvironment. Artificial manipulation
(inhibition or enhancement of molecular players) of signaling pathways by therapeutic drugs typically
induces time delays [23,24] in generating the final production of immune responses, i.e., extracellular
cytokines, such as IL-4, IL-12, TNF-α and IFN-γ [25,26]. To explicitly describe the competition between
harmful and good bacteria, a formulation via an ordinary differential equation (ODE) and a delay
differential equation (DDE) is employed in the M2 model. Mathematical analyses on these models,
including the existence and stability of equilibria, are discussed in Section 3. In Section 3.1, numerical
simulations are performed to investigate how prominently the chronic inflammatory state is established
and maintained. Moreover, we investigate how bacterial competition can lead to a high chronic
inflammation state as an imbalanced state (dysbiosis). In Section 3.2, we analyze the competition
dynamics of harmful and good bacteria in the absence and presence of time delays and immune
boosting drugs. We also perform several in silico experiments, which include the investigation
of: (i) the effect of the clearance speed of cytokines on generating three regimes (harmful bacteria
persistence, good bacteria persistence and co-existence) in Type I dynamics and a bi-stability system
as a possible phenotypic switch in Type II dynamics; (ii) the effect of time delays on generating the
oscillatory behaviors of bacterial populations; (iii) the impact of different drug injection regimes on
the bacterial populations. In Section 4, we provide a discussion on the fundamental mechanism of
the bacterial attacks and immune response, as well as the survival schemes of harmful bacteria in
competition with good bacteria and future work in detail. Nondimensionalization and sensitivity
analysis of the model are given in the Appendix.

2. Materials and Methods

In this paper, we present two kinds of mathematical models, the M1 basic model in Section 2.1
and the M2 competition model in Section 2.2.

2.1. M1 Model

In this section, we develop a mathematical model based on the schematic diagram in Figure 1.
As indicated in Section 1, the key main players of the bacterial infection network in absence of
competition with other bacteria are the following variables:
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B = density of harmful bacteria,

P = concentration of protease,

AI = concentration of the intracellular transcription factor,

AE = concentration of extracellular cytokines,

Figure 1A illustrates the dynamical regulation of immune activities in response to bacterial
infection. Bacteria grow in the system with a carrying capacity and induce the secretion of proteases
for enhanced bacterial invasion. These proteolytic activities are suppressed by protease inhibitors
under normal conditions, but the perturbed balances between a protease and its inhibitors induce
the activation of transcriptional factors, causing skin troubles, such as atopy. The upregulated
transcriptional factors induce immune activities (extracellular cytokines), which in turn try to
kill bacteria. In order to incorporate the biological interactions shown in Figure 1A into our model of
bacteria-immune dynamics, we began by simplifying this network. Figure 1B shows a representation of
Figure 1A. The kinetic interpretation of the arrows and hammerheads in the given network represents
induction (arrow) and inhibition (hammerhead). We merged all complex networks between proteases
and their inhibitors into one component (blue dotted box in Figure 1A), while we kept the components
of bacteria, transcriptional factor and external allergic immune responses (cytokines) in one module
(red dotted boxes in Figure 1A), respectively. The scheme includes bacterial growth, the secretion
of proteases from bacterial invasion and stimulated transcriptional factors, the activation of the
intracellular transcription factor from upregulated proteases and secreted cytokines, the activation of
extracellular cytokines from the transcription factor, protein degradation of those key molecules and
eradication of those bacteria by cytokines.
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Figure 1. A schematic of the M1 model. (A) A schematic of immune responses to bacterial infection;
(B) the final network model that abstracts the key structure of the interaction network in (A). By merging
a multi-species compartment (blue dashed box in (A) including proteases and their inhibitors) into a
compartment (‘P’ in (B)), we get a simpler model in (B). Densities of bacteria, proteases, intracellular
transcription factor and extracellular cytokines are represented by ‘B’, ‘P’, ‘AI ’ and ‘AE’, respectively.
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Activation of transcription factors that are associated with immune responses, such as a member
of the interferon regulatory factor (IRF) family, is often mediated by positive feedbacks among these
transcription factors [27]. It is also known that activation of protease is mediated by molecular
interactions among the members of the kallikrein family [28]. Production of the cytokines is also
facilitated by a positive feedback, which is often referred to as a cytokine storm [29]. These activations
with positive feedbacks can be modeled by Hill functions.

In this work, we consider the following specific type of functional response known as the
Hill function:

σ◦(X) :=
m◦Xn

an◦ + (s◦X)n , (1)

where ◦ ∈ {IP, BP, PI, BI, EI, IE}. Assume that the activation of protease is mediated by transcription
factor AI and bacteria B. Based on these observations, we write the phenomenological equations for
the rate change of those key players (B, P, AI , AE) as follows:

dB
dt

=λ + rBB
(

1 − B
K

)
− γAEB,

dP
dt

=σIP(AI) + σBP(B)− δPP,

dAI
dt

=σPI(P) + σBI(B) + σEI(AE)− δI AI ,

dAE
dt

=σIE(AI)− δE AE.

(2)

where λ is the source of bacterial populations in the tissue from the air, rB is the growth rate of bacteria,
K is the carrying capacity of the bacterial population, γ is the killing rate of bacteria by immune
cytokines and, finally, δP, δI , δE are the decay/clearance rates of proteases, transcriptional factors
and cytokines, respectively.

A list of parameters is summarized in Table 1.

Table 1. Dimensionless parameter values in the M1 model. TF = transcription factor.

Parameter Description Value

mIP Maximum activation rate of proteases by TFs 8–100
aIP Half saturation constant of proteases by TFs 3.0
sIP Inhibitory strength of proteases activation by TFs 1
n Hill cooperativity coefficient 2

mBP Maximum activation rate of proteases by bacteria 8
aBP Half saturation constant of proteases by bacteria 3.0
sBP Inhibitory strength of proteases activation by bacteria 1

mPI Maximum activation rate of TFs by proteases 8
aPI Half saturation constant of TFs by proteases 3.0
sPI Inhibitory strength of TF activation by proteases by 1

mBI Maximum activation rate of TFs by bacteria 8
aBI Half saturation constant of TFs by bacteria 3.0
sBI Inhibitory strength of TFs by bacteria 1

mEI Maximum activation rate of TFs by cytokines 8
aEI Half saturation constant of TFs by cytokines 3.0
sEI Inhibitory strength of TFs by cytokines 1

mIE Maximum activation rate of cytokines by TFs 8
aIE Half saturation constant of cytokines by TFs 3.0
sIE Inhibitory strength of cytokines by TFs 1
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Table 1. Cont.

Parameter Description Value

δP Degradation rate of protease 3.0
δI Degradation rate of transcription factor 3.0
δE Degradation rate of extracellular cytokines 3.0

λ Migration rate of bacteria 0.1
rB Population growth rate of bacteria 0.1
K Carrying capacity of bacteria 10.0
γ Per capita elimination rate of bacteria 1.0

2.2. M2 Model

In this section, we consider two different bacterial strains. Figure 2A illustrates the dynamical
regulation of bacterial infection and immune responses. There exists competition between harmful
and good bacteria for bacterial growth. Bacterial infection induces upregulation of the transcriptional
factor within the cell for immune activity and the secretion of proteases for enhanced bacterial invasion.
Induced extracellular cytokines from the transcription factor then suppress both of those bacteria.
In order to incorporate the interaction network shown in Figure 2B into our model of bacterial
competition and inflammation, we began by simplifying this network. As indicated in Section 1,
five main players of the bacterial infection network are harmful bacteria, good bacteria, protease,
intracellular transcription factors and extracellular cytokines. Let the variables B1, B2, P, AI and AE
be the densities or concentrations of harmful bacteria, good bacteria, protease, transcription factor
and cytokines, respectively. Figure 2B shows a representation of Figure 2A. The kinetic interpretation
of the arrows and hammerheads in the given network represents induction (arrow) and inhibition
(hammerhead). The scheme includes bacterial growth of both harmful and good bacteria, mutual
inhibition between harmful bacteria and good bacteria, secretion of proteases from those bacterial
invasions, activation of the intracellular transcription factor from these bacterial infections, activation
of extracellular cytokines via the transcription factor, protein degradation of those key molecules and
eradication of those bacteria by cytokines.

It has been known that: (i) the half-life of proteases (P) is short, which indicates the large decay
rate of P and that protease reactions occur quickly; and (ii) typical chemical reactions among proteins
and genes at a fast time scale lead to the fast internal dynamics. This allows us to use quasi-steady
state approximation (QSSA) to simplify the complex models (or interaction networks in Figure 2B).
Based on the topological structure and uni-directional activation flows in the immune reaction module
(transcription factor activities (AI), proteolytic activities (P), cytotoxic levels (AE); gray box in Figure 2B)
and the corresponding QSSA, we merged all complex networks between transcriptional factors (AI),
proteases (P) and extracellular cytokines (AE) into one component (gray box in Figure 2B,C), while
we kept the harmful (B1) and bad (B2) bacterial components in one module (yellow dotted boxes in
Figure 2B), respectively. Based on these observations, we write the phenomenological equations for
the rate change of those key players (B1, B2, AE) as follows:

dB1

dt
= r1B1 (1 − α11B1 − α12B2)− γAEB1, (3)

dB2

dt
= r2B2 (1 − α21B1 − α22B2)− γAEB2, (4)

dAE
dt

= β1B1 + β2B2 − δAE. (5)

where r1 and r2 are the growth rate of harmful and good bacteria, respectively, αii (i = 1, 2) and αij
(i �= j, i, j = 1, 2) represent intra-specific and inter-specific competition coefficients between harmful
and good bacteria, respectively, γ is the killing rate of those bacteria by the extracellular cytokines, β1

and β2 are the activation of immune responses (level of cytokines) from harmful and good bacteria,
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respectively, and δ is the clearance rate of the immune cytokines. In many cases, measured values
of these parameter values (r1, r2, αii, γ, β1, β2, δ) are not available due to technical reasons. In order
to determine appropriate ranges of parameter values for correct dynamical behavior reflecting a real
biological system and to investigate the sensitivity of the bacterial populations and immune responses
to these parameters, we have performed sensitivity analysis for a mathematical model (3)–(5) in
Appendix B. Some of the parameter values (α11, r2, γ, β1) are very sensitive, but others (α22) are not
sensitive to these changes. See the Appendix for more details.

For computational purposes, we nondimensionalize the variables and parameters of the M1
(Equation (2)) and M2 models (Equations (3)–(5)) in Appendix A.
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Figure 2. A schematic of the M2 model. (A) A schematic of the biological system for the competition
between harmful and good bacteria and immune responses. There exists mutual antagonism
between harmful and good bacteria. On the other hand, bacterial infection induces upregulation
of the transcriptional factor (blue diamond) within the cell for immune activity and secretion of
proteases (red quarter pie) for enhanced bacterial invasion. Induced extracellular cytokines (green)
from transcription factor (blue) then suppress both harmful (red star) and good (blue star) bacteria.
All arrows refer to the induction of gene expression or proteins. The hammerheads from and to
bacteria (B1, B2) refer to the inhibition or suppression of bacterial growth. (B) Topological networks
representing the biological observations in (A). Densities of harmful bacteria, good bacteria, proteases,
intracellular transcription factor and extracellular cytokines are represented by ‘B1’, ‘B2’, ‘P’, ‘AI ’ and
‘AE’, respectively. (C) The final network model that abstracts the key structure of the network in
(B). By merging a multi-species compartment (gray box in (B) including ‘AI ’, ‘P’ and ‘AE’) into a
compartment ‘AE’ (gray box in (C)), we get a simpler model in (C).

3. Results

In this section, we analyze the dynamics of two models (M1 and M2). In the next section, we first
investigate the dynamics of M1 model for bacterial infection and its implications on immune responses.
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3.1. Dynamics of the M1 Model

The M1 model deals with immune responses to bacterial infection via the regulation of
proteases (P), internal allergic immune responses (AI) and the external allergic immune response in
terms of cytokines (AE). We first classify the steady states of the M1 model (2) in the next section.

3.1.1. Classification of Steady States

There exist three types of equilibria for System (2). Let EB := (B̄, 0, 0, 0) denote a steady state
representing no protease and immune responses under bacterial persistence, where B̄ > K is a
positive root of B̄2 − KB̄ − Kλ/r = 0. Let E∗ := (B∗, P∗, A∗

I , A∗
E) denote an inflammatory state that is

maintained by additional external stimuli from bacteria. The components of E∗ are determined by the
solution of the following system of equations:

λ + rBB∗
(

1 − B∗

K

)
− γA∗

EB∗ = 0,

σIP(A∗
I ) + σBP(B∗)− δPP∗ = 0,

σBI(B∗) + σPI(P∗) + σEI(A∗
E)− δI A∗

I = 0,

σIE(A∗
I )− δE A∗

E = 0.

(6)

By substituting the first and third equations into the second equation of (6), we obtain the
following equation with respect to A∗

I :

δI A∗
I = σPI((σIP(A∗

I ) + σBP(B∗))/δP) + σEI(σIE(A∗
I )/δE) + σBI(B∗). (7)

It follows from the first and fourth equations of (6) that B∗ is explicitly written as a positive root
of the following quadratic equation with respect to B:

B2 − K
{

1 − γ

rBδE
σIE(A∗

I )

}
B − Kλ

rB
= 0. (8)

Note that B∗ > 0. A∗
I must satisfy:

σIE(A∗
I ) <

rBδE
γ

. (9)

Then, there exists a unique positive root of (8), denoted by B = B∗ > 0. Since σIE(AI) is
continuous and monotonically increasing with respect to AI , (9) is rewritten as:

A∗
I < σ−1

IE

(
rBδE

γ

)
. (10)

Then, (7) is rewritten as:

δI A∗
I =σPI((σIP(A∗

I ) + σBP(K − γKσIE(A∗
I )/rBδE))/δP)

+ σEI(σIE(A∗
I )/δE) + σBI(K − γKσIE(A∗

I )/rBδE).
(11)

The existence of positive equilibrium E∗ is determined by the root of (11) with Constraint (10).
Let E∗

L, E∗
U and E∗

H denote three equilibria of (2) ordered by the value of AIs: A∗
I,L < A∗

I,U < A∗
I,H .

From the biological point of view, A∗
I,· represents the strength of inflammation triggered by bacterial

antigenic stimuli.
Figure 3 indicates that there are two possible cases: the existence of a unique equilibrium for

weak activation of proteases (mIP = 8; Figure 3A) or multiple equilibria for enhanced activation of
proteolytic activation (mIP = 50; Figure 3B). Here, mIP is the activation rate of proteases from the
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transcription factor in the cell. In the upper panels of Figure 3, the straight solid line (blue) and the
dotted curve (green) show the left- and right-hand sides of (11) as a function of (A∗

I ), respectively. The
intersection of those two curves represents the equilibria (E∗

L, E∗
U and E∗

H). Stability analysis indicates
that: (i) when mIP is small (mIP = 8.0, the upper panel of Figure 3A), E∗

L (black filled circle) is stable;
(ii) when mIP is relatively large (mIP = 50.0, the upper panel of Figure 3B), two steady states (E∗

L and
E∗

U ; empty circles) are unstable, but one steady state (E∗
H ; black filled circle) is stable. Figure 3A shows

the emergence of the bacterial persistence phenotype in response to the weak activation of proteases
(mIP = 8.0). The unique positive stable equilibrium E∗

L resides in the region (pink box) where the
transcription factor activities are suppressed and bacterial growth is active. On the other hand, when
protease activation is enhanced more than six-fold (mIP = 50), there exist three positive equilibria
(E∗

L (unstable), E∗
U (unstable) and E∗

H (stable)) simultaneously (Figure 3B). The stable steady state
E∗

H resides in the region (blue box in Figure 3B) where bacterial activities are inhibited by persistent
internal immune responses. These results predict the dynamical changes for various levels of protease
activation and illustrate the importance of protease activation in the regulation of bacterial growth
under the surveillance of the immune system in the tissue.

EH
*

EU
*

EL
*EL

*

E

mIP = 8
mIP

E

mIP = 50

*

EL
* EU

*

EH
*

EL
*

Figure 3. Characterization of the protease activation and immune response in the M1 model. Circles in
the lower panels represent the steady state solutions of (11) for high and low values of a control
parameter mIP, the activation rate of proteases from the transcription factor in the cell. The intersection
(black circles) of the straight line (left-hand side of (11); blue solid line) and curve (right-hand side
of (11); green dotted curve) corresponds to the numerical value of A∗

I in the upper panel. * Black
filled circle = stable, empty circle = unstable. (A) The bacterial persistence phenotype in response to
the weak activation of proteases (mIP = 8.0). There exists a unique positive stable equilibrium E∗

L
in the region (pink box) where transcription factor activities are reduced and bacterial persistence is
observed. (B) Suppression of bacterial growth by immune activities in response to enhanced activation
of proteases (mIP = 50). There exist three positive equilibria E∗

L, E∗
U and E∗

H simultaneously. While
two equilibria E∗

L and E∗
U are unstable, the equilibrium E∗

H is stable. The equilibrium E∗
H resides in the

region (blue box) where bacterial activities are reduced and high internal immune responses persist.
All other parameters are fixed as in Table 1.
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In the next section, we analyze the dynamics of the M1 model and discuss the implication of the
internal and external immune responses on the regulation of the harmful bacteria population.

3.1.2. Dynamics of the M1 Model System

When the M1 model system (2) is in equilibrium, we can solve bacteria density (B) as a function of
the activation rate of proteases from the transcription factor (mIP) for any set of parameters. Figure 4A
shows the graph B = B(mIP) as the S-shaped curves when other parameter values are fixed as in
Table 1. While a portion of the upper branch in the lower protease activation range is stable, the
remainder of the upper branch corresponding to the intermediate range of the protease activation
rate is unstable. On the other hand, the lower branch is stable, and the middle branch is unstable.
If mIP is small, then the system (2) is in the upper branch, B is high and the bacterial persistence
phenotype emerges. This situation continues to hold as mIP is increased until it reaches criticality. At
this point, the system jumps down to the low branch, with a suppressed level of bacterial activities,
and the bacterial growth is inhibited (while immune activities are increased). As mIP is decreased from
a high level of protease activation, the bacterial growth remains suppressed, until mIP is decreased
to the left knee point (red arrow; ∼42), at which time, the bacterial population jumps to the upper
branch, and the bacteria return to the growth phase. Figure 4B–D also shows the graphs AI = AI(mIP),
P = P(mIP) and AE = AE(mIP) as the hysteresis loops, as well. One notes that the bifurcation curves
for those variables in immune responses (intracellular transcription factors (AI), protease level (P)
and extracellular cytokines (AE)) show the flipped images of the B − mIP hysteresis loop in Figure 4A,
reflecting the bacteria-immune competition system. In other words, the immune activities (levels of
AI , P and AE) are suppressed compared to bacterial persistence in response to the weak protease
activation, while high levels of immune responses are shown compared to inhibited bacterial growth
in response to strong protease activation.

Based on the dynamics of the bacterial activities and cytokine levels observed above, we shall
define two adaptive types of the bacterial infection system (bacterial persist (TB) and immune boosting
(TI) systems) as follows:

TB = {(B, AE) ∈ R
2 : B > thB, 0 ≤ AE < thAE},

TI = {(B, AE) ∈ R
2 : 0 ≤ B < thB, AE > thAE}

(12)

where thB and thAE are the threshold values of bacterial activities and cytokine level, respectively.
With this definition (12), the unique stable equilibrium E∗

L in Figure 3A belongs to the region TB in the
case of low mIP, while the stable steady state E∗

H in Figure 3B resides in the region TI in the case of
high mIP.

In Figure 5, we show how the system adapts to the changes in the parameter mIP as predicted
in the analysis above (Figure 4). Figure 5A–C illustrates two distinct patterns of the steady state
(SS; red filled circles) of the dynamical system in response to a low (mIP = 30, Figure 5A), intermediate
(mIP= 50, Figure 5B) and high (mIP= 80, Figure 5C) activation rate of protease (mIP) in the B-AE phase
diagram. A low level of protease activation from the transcription factor (mIP = 30) induces low
cytokine levels and high bacterial infection (Figure 5A), while the intermediate or high activation level
(mIP = 50, 80) leads to significant immune response and suppressed bacterial activities (Figure 5B,C,
respectively) regardless of initial conditions. Figure 5D illustrates two distinct modes in the B-AE plane
as described in (12): (i) the bacterial persist region (TB) where bacterial growth is enhanced and
cytokine levels are suppressed; (ii) the immune boosting zone (TI where the extracellular cytokine
levels are increased and bacterial activities are inhibited. In Figure 5E–G, we show the time courses
of bacteria density (B; red) and the concentrations of protease (P, pink), transcription factor (AI ;
green) and cytokines (AE, blue) in response to three protease activation rates from the transcription
factor (mIP = 30, 50, 80) corresponding to Figure 5A–C, respectively, with the initial condition
B(0) = 1.7, P(0) = 0.1, AI(0) = 0.1, AE(0) = 0.1.
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In the next section, we investigate the dynamics of the competition M2 model.
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Figure 4. Bifurcation curves on the M1 model (2). (A) The B-mIP hysteresis loop: bacterial growth is
active when mIP varies in the upper stable branch and suppressed when mIP varies in the lower
stable branch. We define the bacterial persistence types by B > thB and the immune boosting
region by B < thB and take thB = 0.7. As mIP is increased from a low value (black arrow) in the
upper branch, the system loses stability at a Hopf bifurcation point (black arrowhead, marked with ‘H’).
(B–D) The corresponding hysteresis loops for intracellular transcription factors (AI), protease level (P)
and extracellular cytokines (AE). Other parameters are fixed as in Table 1. Black = stable, blue = unstable,
red dots = Hopf bifurcation point.
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Figure 5. Dynamics of the M1 model (2). (A–C) Dynamics of the M1 system in the B-AE phase plane to
a low (mIP = 30; (A)), intermediate (mIP = 50; (B)) and high (mIP = 80; (C)) activation rate (mIP) of
protease by the transcription factor. * Filled red circles in (A–C) = stable steady state (S.S.), empty black
circle in (B) = unstable S.S. (D) A schematic of two adaptive types of bacterial infection systems (bacteria
persist (TB) and immune boosting (TI) systems): TB = {(B, AE) ∈ R2 : B > thB, 0 ≤ AE < thAE},
TI = {(B, AE) ∈ R2 : 0 ≤ B < thB, AE > thAE}. All other parameters are fixed as in Table 1.
(E–G) Time courses of the main variables (B, P, AI , AE) for various activation rates (mIP = 30, 50, 80)
with the initial condition: B(0) = 1.7, P(0) = 0.1, AI(0) = 0.1, AE(0) = 0.1. All other parameters are
fixed as in Table 1.

3.2. Dynamics of Two Bacterial Strains Model (M2 Model)

We first investigate the existence of the equilibria of the M2 model (3)–(5).

3.2.1. Existence of Equilibria

By replacing the variable AE with I for notational purposes, the M2 model system is given by:

dB1

dt
= r1B1

(
1 − B1

K1
− α12B2

)
− γB1 I,

dB2

dt
= r2B2

(
1 − B2

K2
− α21B1

)
− γB2 I,

d
dt

I(t) = β1B1 + β2B2 − δI.

(13)
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where α11 = 1
K1

, α22 = 1
K2

. There are four types of equilibria of System (13). E0 = (0, 0, 0) is a trivial
equilibrium representing that neither bacteria nor the immune response exist. Let E1 = (B̄1, 0, Ī1) and
E2 = (0, B̄2, Ī2) denote dominant equilibria in which either B1 or B2 exists. The explicit values of each
component of E1 and E2 are given as follows, respectively.

E1 =

(
K1r1δ

δr1 + γβ1K1
, 0,

K1r1β1

δr1 + γβ1K1

)
,

E2 =

(
0,

K2r2δ

δr2 + γβ2K2
,

K2r2β2

δr2 + γβ2K2

)
.

(14)

Let E+ := (B∗
1 , B2

2, I∗) denote a positive equilibrium representing the coexistence of two bacterial
species under the pressure of the immune response. It follows from the third equation of (13) that I∗ is
given by:

I∗ = β1

δ
B∗

1 +
β2

δ
B∗

2 . (15)

By substituting the explicit value of I∗ into the first and second equations of (13), we obtain the
following linear system of equations with respect to B∗

1 and B∗
2 :(

r1δ + γβ1K1 K1(r1α12δ + γβ2)

K2(r2α21δ + γβ1) r2δ + γβ2K2

)(
B1

B2

)
=

(
r1K1δ

r2K2δ

)
(16)

Hence, the explicit values of each component of E+ are given by:

B∗
1 =

K1δ{r1r2(1 − K2α12)δ + γβ2K2(r1 − r2)}
D0

,

B∗
2 =

K2δ{r1r2(1 − K1α21)δ + γβ1K1(r2 − r1)}
D0

,

I∗ = r1r2δ{β1K1(1 − α12K2) + β2K2(1 − α21K1)}
D0

,

(17)

where D0 is given by:
D0 :=(r1δ + γβ1K1)(r2δ + γβ2K2)

−K1K2(r1α12δ + γβ2)(r2α21δ + γβ1).
(18)

For equilibrium E+ to be a positive equilibrium requires B∗
1 > 0 and B∗

2 > 0. Define matrix
A = {aij} and vector b = (b1, b2)

T (i, j = 1, 2), such that:

A

(
B1

B2

)
= b. (19)

Then, a11 = r1δ + γβ1K1, a12 = K1(r1α12δ + γβ2), a21 = K2(r2α21δ + γβ1), a22 = r2δ + γβ2K2,
b1 = r1K1δ and b2 = r2K2δ. An internal equilibrium exists if and only if:

b2

a22
<

b1

a12
and

b1

a11
<

b2

a21
(20)

or:
b2

a22
>

b1

a12
and

b1

a11
>

b2

a21
(21)

Note that (20) and (21) are equivalent to:

r1r2(K2α12 − 1)δ − γβ2K2(r1 − r2) < 0 and

r1r2(K1α21 − 1)δ − γβ1K1(r2 − r1) < 0
(22)
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and:
r1r2(K2α12 − 1)δ − γβ2K2(r1 − r2) > 0 and

r1r2(K1α21 − 1)δ − γβ1K1(r2 − r1) > 0,
(23)

respectively. Define D1, D2, w1 and w2 by:

D1 := K1α21 − 1, D2 := K2α12 − 1. (24)

w1 =
γβ1K1(r2 − r1)

r1r2D1
, w2 :=

γβ2K2(r1 − r2)

r1r2D2
. (25)

Finally, we consider the conditions for the existence of E+. It follows from (22) and (23) that
E+ ∈ R3

+ if and only if:

r1r2D1δ + γβ1K1(r1 − r2) < 0 and r1r2D2δ + γβ2K2(r2 − r1) < 0 (26)

or:
r1r2D1δ + γβ1K1(r1 − r2) > 0 and r1r2D2δ + γβ2K2(r2 − r1) > 0. (27)

Note that the stability conditions of E1 and E2 are given by (34) and (37), respectively (see
the next subsection for details). Conditions (34) and (37) are mutually exclusive with (26), but are
identical to (27). In other words, coexistent equilibrium E+ exists only if both E1 and E2 are unstable
or locally stable. In the later case, the system would be expected to exhibit bistability between
E1 and E2.

In summary, the existence conditions of internal equilibrium E+ are classified in Tables 2 and 3
according to the sign of r1 − r2 and w1 − w2.

Table 2. Existence condition of E+ when r1 > r2.

Case w1 < w2 w2 < w1

D1 > 0 & D2 > 0 w2 < δ nonexistence
D1 < 0 & D2 > 0 w1 < δ < w2 w2 < δ < w1
D1 > 0 & D2 < 0 nonexistence nonexistence
D1 < 0 & D2 < 0 nonexistence w1 < δ

Table 3. Existence condition of E+ when r1 < r2.

Case w1 < w2 w2 < w1

D1 > 0 & D2 > 0 nonexistence w1 < δ
D1 < 0 & D2 > 0 nonexistence nonexistence
D1 > 0 & D2 < 0 w1 < δ < w2 w2 < δ < w1
D1 < 0 & D2 < 0 w2 < δ nonexistence

In the next section, we check the stability of the equilibria of the M2 model (13).

3.2.2. Stability of Equilibria

Mathematical conditions for local stability of equilibria are derived based on the linearized
equations around any of the equilibria E◦ = (B◦

1 , B◦
2 , I◦). The Jacobian matrix for E◦ is given by:

J(E◦) =

⎛⎜⎝ r1 − 2r1B◦
1

K1
− r1α12B◦

2 − γI◦ −r1α12B◦
1 −γB◦

1

−r2α21B◦
2 r2 − 2B◦

2 r2
K2

− r2α21B◦
1 − γI◦ −γB◦

2
β1 β2 −δ

⎞⎟⎠ . (28)
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The Jacobi matrix for E0 is given by:

J(E0) =

⎛⎜⎝ r1 0 0
0 r2 0
β1 β2 −δ

⎞⎟⎠ . (29)

Since r1 > 0 and r2 > 0, E0 is always unstable.
The Jacobi matrix for E1 is given by:

J(E1) =

⎛⎜⎜⎝
− r1

2δ
r1δ+γβ1K1

− r1
2α12K1δ

r1δ+γβ1K1
− γK1r1δ

r1δ+γβ1K1

0 r1r2(1−α21K1)δ+γβ1K1(r2−r1)
r1δ+γβ1K1

0
β1 β2 −δ

⎞⎟⎟⎠ . (30)

Characteristic equation P1(λ) = 0 defined for J(E1) is given by:

P1(λ) =

{
λ − r1r2(1 − α21K1)δ + γβ1K1(r2 − r1)

r1δ + γβ1K1

} ∣∣∣∣∣ λ + r1
2δ

r1δ+γβ1K1

γK1r1δ
r1δ+γβ1K1

−β1 λ + δ

∣∣∣∣∣ . (31)

Let A1(λ) be defined by:

A1 =

∣∣∣∣∣ − r1
2δ

r1δ+γβ1K1
− γK1r1δ

r1δ+γβ1K1

β1 −δ

∣∣∣∣∣ . (32)

Note that the trace and determinant of A1 satisfy tr(A1) < 0 and det(A1) > 0. Hence, E1 is locally
asymptotically stable if:

r1r2(1 − α21K1)δ + γβ1K1(r2 − r1) < 0. (33)

Note that (33) is rewritten as:

r1r2D1δ + γβ1K1(r1 − r2) > 0. (34)

In other words, (34) is equivalent to one of the following two conditions:

(E1S1) r1 > r2 and D1 > 0,
(E1S2) r2 > r1, D1 > 0 and 0 < w1 < δ.

Stability conditions of E2 are derived from the Jacobi matrix for E2:

J(E2) =

⎛⎜⎜⎝
r1r2(1−α12K2)δ+γβ2K2(r1−r2)

r2δ+γβ2K2
0 0

− r2
2α21K2δ

r2δ+γβ2K2
− r2

2δ
r2δ+γβ2K2

− γK2r2δ
r2δ+γβ2K2

β1 β2 −δ

⎞⎟⎟⎠ . (35)

In a similar way to E1, E2 is locally asymptotically stable if:

r1r2(1 − α12K2)δ + γβ2K2(r1 − r2) < 0. (36)

Note that (36) is rewritten as:

r1r2D2δ + γβ2K2(r2 − r1) > 0. (37)

In other words, (37) is equivalent to one of the following two conditions:

(E2S1) r2 > r1 and D2 > 0,
(E2S2) r1 > r2, D2 > 0 and 0 < w2 < δ.
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We note that the system of differential equations for bacterial strains without any anti-microbial
killing and recruitment and with the same growth rates of bacteria (r1 = r2 = rB):

dB1

dt
=rBB1 (1 − α11B1 − α12B2)

dB2

dt
=rBB2 (1 − α21B1 − α22B2)

(38)

reduces to the classical two-dimensional Lotka–Volterra competition model. If we assume that the
magnitude of inter-specific competition is stronger than intra-specific competition, i.e.,

α11 < α21 and α22 < α12, (39)

then a unique positive equilibrium of (38) exists, and it is unstable. It can be shown that solutions
converge to either (1/α11, 0) or (0, 1/α22) depending on the choice of the initial state.

In the next section, we investigate the dynamics of the competition model (M2) and
immune system.

3.2.3. Dynamics of the Competition Model M2 in Response to the Immune System

We shall define three adaptive types of the competition system (harmful bacteria-persist (TB),
harmful bacteria-free (TF) and co-existence (Tc)) corresponding to regions in the B1-B2 plane, including
equilibria points (E1, E2, E+) discussed in the previous section:

TB := {(B1, B2) ∈ R
2 : B1 > 0, B2 = 0}, (corresponding to E1)

TF = {(B1, B2) ∈ R
2 : B1 = 0, B2 > 0}, (corresponding to E2)

Tc = {(B1, B2) ∈ R
2 : B1 > 0, B2 > 0}, (corresponding to E+)

(40)

The basic parameter set for the M2 model is given in Table 4.

Table 4. Parameters used in the M2 model.

Parameter Description Type I Type II

Inter- and intra-competition

a11 Inter-specific competition coefficient 1/a11 = K1 = 0.5 K1 = 2.0
a22 Inter-specific competition coefficient 1/a22 = K2 = 2.0 K2 = 1.5
a12 Intra-specific competition coefficient 1.0 1.0
a21 Intra-specific competition coefficient 1.0 1.0

Activation/production rates

r1 Growth rate of harmful bacteria 1.5 1.5
r2 Growth rate of good bacteria 1.0 1.0
β1 activation of cytokines by harmful bacteria 0.1 1.0
β2 activation of cytokines by good bacteria 1.0 0.1

Inhibition/decay Rates

γ Per capita elimination rate of bacteria 1.0 1.0
δ Decay rate of cytokines 0.35 0.25

In Figure 6, we investigate the dynamics of the two-species model (3)–(5) in the presence of
the immune response for a base parameter set (Type I). r1 = 1.5, r2 = 1.0, K1 = 0.5, K2 = 2.0,
α12 = 1.0, α21 = 1.0, β1 = 0.1, β2 = 1.0, γ = 1.0. Analysis in Section 3.2.2 indicates that: (i) E2

is stable if δ > 0.66666, whereas E1 is stable if δ < 0.03333; and (ii) E+ is expected to be stable if
0.03333 < δ < 0.66666. Figure 6A–C shows the trajectories (B1(t), B2(t)) of harmful and good
bacteria populations for various decay rates of cytokines (δ = 0.033 (Figure 6A), 0.35 (Figure 6B) and
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0.7 (Figure 6C)) with four initial conditions: B1(0) = 0.07, B2(0) = 0.45 (yellow curve); B1(0) = 0.38,
B2(0) = 0.58 (green curve); B1(0) = 0.05, B2(0) = 0.1 (blue curve); B1(0) = 0.35, B2(0) = 0.02 (purple
curve). The initial condition of the immune response was set to be zero (AE(0) = 0) for all cases.
Figure 6E–F shows the trajectories of (B1(t), AE(t)) corresponding to Figure 6A–C, respectively. When
the decay rate of cytokines is small (δ = 0.033), the system converges to E1 equilibrium where good
bacteria are cleared out and harmful bacteria survive in a battle via the immune system (Figure 6A).
Initial strong immune responses (black arrow in Figure 6E) due to the weak clearance rate (δ � 1)
significantly eliminate both harmful and good bacterial populations (black arrowhead in Figure 6A).
While the good bacteria are totally eradicated by this strong immune response due to the relatively low
growth rate, the harmful bacteria survive due to the higher growth rate and winning the competition
battle with the good ones (blue arrow in Figure 6A). The system adapts a harmful bacteria-free
equilibrium when δ is large (δ = 0.7 in Figure 6C). The strong clearance of immune activities in the
system leads to relatively weak immune responses (black arrow in Figure 6G). This increases the
chances of winning the competition for good bacteria and decreases the harmful bacteria population,
pushing the system (B1(t), B2(t)) in the upper left corner (black arrowhead in Figure 6C). Then, the
system converges to the E2 equilibrium, the attractor (red filled circle in Figure 6C), where harmful
bacteria are eradicated by the immune system and the helpful bacteria persist. On the other hand, an
intermediate immune response (δ = 0.3 in Figure 6B) leads to the co-existence of good and harmful
bacteria populations. The immune system initially successfully attacks and decreases the number
of both harmful and good bacteria, but this also reduces the activation of the immune system (cf.
Equation (5)). The reduced immune activity also increases the chance of the regrowth of both bacterial
types (arrowhead in Figure 6B), leading to the coexistence of those two bacterial populations (red filled
circle in Figure 6B), corresponding to E+ equilibrium. In response to small (δ = 0.0033), intermediate
(δ = 0.35) and large (δ = 0.7) decay rates of cytokines, the system transits from harmful bacteria-persist
region (TB) to the co-existence zone (Tc) and then to the harmful bacteria-free (TF) region (yellow
curved arrow). Dysbiosis, or bacterial imbalance, represents a state of reduced species diversity with
the emergence of a few extraordinary highly abundant species. Dysbiosis is broadly observed for
several microbial ecologies, including in aquatic systems or intestinal systems. It has been shown
to be associated with illnesses, such as cancer [30,31], bacterial vaginosis [32], inflammatory bowel
disease [33,34], chronic fatigue syndrome [35], obesity [36,37] and colitis [38]. Dysbiosis in the gut is
known to be associated with major chronic inflammation states [39]. Dysbiosis caused by the imbalance
of the skin commensal bacterial species composition has been reported [40,41]. Importantly, dysbiosis
characterized by the increase of S. aureus has been shown to be associated with atopic dermatitis, one
of the major skin inflammatory diseases [7]. It is suggested that dysbiosis and Staphylococcus aureus
colonization drive inflammation in atopic dermatitis [7]. In our model, different immune reactions
from the weak, intermediate and strong clearance strength (δ) of extracellular cytokines, such as IL-4,
IL-12 and IFN-γ, result in the imbalance between harmful and good bacteria, co-existence or healthy
tissue homeostasis (Figure 6D). In particular, increased levels of harmful bacteria and reduced levels of
the beneficial bacteria, i.e., dysbiosis, may be induced when the clearance of the immune reactions is
weak (δ = 0.033; Figure 6A). The tipping point of the balance between beneficial and harmful bacteria
is the vigorous and subtle competition between those different kinds of bacteria.

Figure 7A shows the steady state of harmful bacteria (B∗
1 ) at three equilibria (E1 red; E2 blue; E+

black) as a function of δ. Solid and dotted curves illustrate the stable and unstable branches at E1, E2, E+

for the continuous spectrum of δ. Small, intermediate and large values of δ lead to harmful bacteria
persisting, co-existence and good bacteria persisting regimes, respectively, as shown in Figure 6A–C.
Figure 7B illustrates how the system transits from TB to Tc and then to TF in response to an increase in
δ by following the stable branches of B∗

1 at E1, E+ and E2, respectively, in Figure 7A. This illustrates
how phase transitions (TB → Tc → TF) in Figure 6D can be induced by the continuous increase in the
clearance rate of the immune system.
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Figure 6. Co-existence and dynamics of harmful and good bacteria in response to various cytokine
clearance levels (δ) in the competition M2 model (3)–(5). (A–C) Trajectories (B1(t), B2(t)) of
bacterial populations for various decay rates of cytokines (δ = 0.033 (A), 0.35 (B), 0.7 (C)) with four
initial conditions; (D) characterization of the dynamical system in the B1-B2 plane. There exist three
phenotypic regions: harmful bacteria-persist (TB, lower pink box near x-axis), harmful bacteria-free
(TF, left blue box near y-axis) and co-existence (Tc, gray box in the center) regions. As δ is increased
(δ = 0.0033 → 0.35 → 0.7), the system undergoes the transition from TB to Tc and then to TF.
(E–G) Trajectories of (B1(t), AE(t)) corresponding to (A–C), respectively. All other parameters are fixed
as in Table 4 (Type I).

In Figure 8, we investigate the dynamics of the bi-stable competition system with the parameter
set (Type II): r1 = 1.5, r2 = 1.0, K1 = 2.0, K2 = 1.5, α12 = 1.0, α21 = 1.0, β1 = 1.0, β2 = 0.1, γ = 1.0.
Analysis in Section 3.2.2 indicates that E1 is stable if δ > 0.1, whereas E2 is stable if δ > 0. In
comparison to the previous case in Figure 6, the system does not present the co-existence region
(Tc). Figure 8A shows the regions of harmful bacteria-persist (TB) and bacteria-free (TF) in the
B1 − B2 phase-plane. While initial states (B1, B2) in the region RB (red) converge to the harmful
bacteria-persist equilibrium (TB, red circle), the initial states in the upper-left region (RF; blue) converge
to the harmful bacteria-free equilibrium (TF; red circle). For example, curves indicate the trajectories
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(B1(t), B2(t)) for two very close initial conditions: B1(0) = 0.15, B2(0) = 0.713 (blue curve) and
B1(0) = 0.15, B2(0) = 0.71 (red curve) near the boundary (green dotted curve) between RB and RF.
The initial condition of cytokines was set to be zero (AE(0) = 0). E1 = (0.9375, 0), E2 = (0, 0.3158).
Figure 8B,C shows the trajectories in the B1 − AE plane (Figure 8B) and time courses (Figure 8C) of
bacterial populations (B1, B2) and cytokine level (AE) for two very close initial conditions in Figure 8A:
B1(0) = 0.15, B2(0) = 0.713 (dotted curves) and B1(0) = 0.15, B2(0) = 0.71 (solid curves). Figure 8D
shows the bi-stable nature of the dynamical system where one kind of the harmful or beneficial bacteria
dies out and the other kind survives depending on the initial state B1(0), B2(0). Therefore, the initial
status of exposure to both harmful and beneficial bacteria determines the dysbiosis or healthy tissue.

In the next section, we investigate the effect of time delays in immune responses on the dynamics
of the system.
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Figure 7. (A) Steady state solutions of bad bacteria (B∗
1 ) as a function of δ corresponding to E1

(red), E2 (blue) and E+ (black) equilibria, respectively. Solid curve = stable, dotted curve = unstable.
Green arrows indicate the points δ = 0.0033, 0.35, 0.7 corresponding to Figure 6A–C, respectively.
(B) Trajectories of B1(t) in a B1 − δ plane when δ is a monotonic increasing function of time, satisfying
dδ
dt = 0.00002 with the initial condition B1(0) = 0.12, B2(0) = 0.01, AE(0) = 0, δ(0) = 0.01 near the
stable equilibrium point E1 = E1(δ = 0.01). As δ is increased, the system sequentially follows the
stable branches in (A), leading to the transition from stable E1 branch (red solid curve in (A)) to stable
E+ branch (black solid curve in (A)) and then to stable E2 branch (blue solid curve in (A)). All other
parameters are fixed as in Table 4 (Type I).
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Figure 8. Bi-stability dynamics of harmful and beneficial bacteria in response to the immune system
in the two-species M2 model (3)–(5). (A) Dynamics of harmful bacteria-persist (TB) and bacteria-free
(TF) in the B1-B2 phase-plane. While initial states (B1, B2) in the region RB (red) converge to
the harmful bacteria-persist equilibrium (TB), the initial states in the upper-left region (RF; blue)
converge to the harmful bacteria-free equilibrium (TF). Blue and red curves indicate the trajectories
(B1(t), B2(t)) for two very close initial conditions: B1(0) = 0.15, B2(0) = 0.713 (blue curve) and
B1(0) = 0.15, B2(0) = 0.71 (red curve) near the asterisk on the boundary (green dotted curve) between
RB and RF. AE(0) = 0. * Filled red circle in (A,B) = stable S.S.: E1 = (0.9375, 0), E2 = (0, 0.3158).
(B,C) Trajectories (B1(t), AE(t)) and time courses (C) of bacterial populations (B1, B2) and cytokine
level (AE) for two very close initial conditions in (A): B1(0) = 0.15, B2(0) = 0.713 (dotted curves)
and B1(0) = 0.15, B2(0) = 0.71 (solid curves). (D) Characterization of the system: the dynamics
adapts to the bi-stability system where the dynamical system chooses either harmful or good bacteria
persisting tissue based on the initial exposure to those bacterial kinds. All other parameters are fixed as
in Table 4 (Type II).

3.2.4. Effect of Time Delays in Immune Response on the Competition System

In this section, we introduce time delays in the immune response for the reduced competition
system (3)–(5). The governing equations for the simple model with time delays (τ1, τ2) are given by:

d
dt

B1(t) = r1B1(t)(1 − α11B1(t)− α12B2(t))− γAE(t)B1(t), (41)

d
dt

B2(t) = r2B2(t)(1 − α21B1(t)− α22B2(t))− γAE(t)B2(t), (42)

d
dt

AE(t) = β1B1(t − τ1) + β2B2(t − τ2)− δAE(t), (43)

where τ1, τ2 are time delays in the immune response for harmful and beneficial bacteria
attacks, respectively.
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In Figure 9, we investigate the effect of small time delays (τ1 = τ2 = 1.5). In the absence of time
delays (τ1 = τ2 = 0), the population of bad bacteria (B1) converges to zero (Bs,2

1 = 0; blue solid line
in Figure 9A), while the population of good bacteria (B2) and the immune system (AE) converge to
positive equilibria Bs,2

2 (blue solid line in Figure 9B) and As,2
E (blue solid line in Figure 9C), respectively.

On the other hand, in the presence of time delays (τ1 = τ2 = 1.5), the population of good bacteria (B2)
converges to zero (Bs,1

2 = 0; red dashed line in Figure 9C), while the population of bad bacteria (B1) and
the immune system (AE) persists with positive equilibria Bs,1

1 (red dashed line in Figure 9B) and As,1
E (red

dashed line in Figure 9C), respectively. Therefore, an introduction of weak time delays in the system
induces a switch from the B2-dominant equilibrium (0, Bs,2

2 , As,2
E ) to the B1-dominant equilibrium

(Bs,1
1 , 0, As,1

E ). See Figure 9D,E. The initial condition was B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0.
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Figure 9. Effect of small time delays (τ1 = τ2 = 1.5) in the competition M2 model (41)–(43). (A–C) Time
courses of the populations of bad bacteria (B1 in (A)) and good bacteria (B2 in (B)) and immune response
(AE in (C)) in the absence (blue solid lines) and presence (red dashed lines) of time delays; (D) the
corresponding trajectories of B1 and B2 in (A,B) in the phase plane; (E) the corresponding trajectories
of B1 and AE in (B,C) in the phase plane. The introduction of weak time delays in the system induces a
switch from the B2-dominant equilibrium (0, Bs,2

2 , As,2
E ) to the B1-dominant equilibrium (Bs,1

1 , 0, As,1
E ).

Initial condition: B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0. All other parameters are fixed as in Table 4
(Type II).

However, for larger time delays, the DDE system completely changes the dynamics. The system
induces oscillations in both the population of bad bacteria (B1; Figure 10A) and the levels of immune
cytokines (AE; Figure 10C) in the presence of larger time delays (τ1 = τ2 = 3.5). The system maintains
the extinction of the good bacterial population under this condition (Figure 10B) as in the small time
delays in Figure 9. The dynamics of the ODE case is shown in the blue solid curves in Figure 10 and is
the same as in Figure 9. This oscillatory behavior of the in vivo pathogens and specific/non-specific
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immunity was observed in experiments [42,43], and the time delay may have existed in the specific
bacterial kinds.
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Figure 10. Effect of large time delays (τ1 = τ2 = 3.5) in the competition M2 model (41)–(43). The
introduction of time delays in the system induces oscillatory behaviors of both bad bacteria (B1) and
immune cytokines (AE) and the extinction of good bacteria. (A–C) Time courses of the populations
of bad bacteria (B1 in (A)) and good bacteria (B2 in (B)) and the immune response (AE in (C)) in
the absence (blue solid lines) and presence (red dashed lines) of time delays; (D) the corresponding
trajectories of B1 and B2 in (A,B) in the phase plane; (E) the corresponding trajectories of B1 and AE

in (B,C) in the phase plane; Initial condition: B1(0) = 0.15, B2(0) = 0.72, AE(0) = 0.0. All other
parameters are fixed as in Table 4 (Type II).

Our investigation illustrates that the system undergoes dynamical changes as the time delays
(τ = τ1 + τ2) are increased. In the absence (τ = 0) or small values of time delays, the bi-stable system
induces either the imbalance state (Bs,1

1 , 0, As,1
E ) or disease-free state (0, Bs,2

2 , As,2
E ). As the time delays

are further increased, the system induces the oscillatory behaviors of harmful bacteria and immune
activities for some initial conditions (B1, B2, 0). This indicates that the strength of time delays in either
the induction of extracellular cytokines or the manipulation of intracellular signaling pathways may be
enough to perturb the bistable pathogen-immune dynamics and leads to the recurrence of the harmful
bacteria population.

In the next section, we investigate the local stability of the reduced system of DDEs (41)–(43) and
present the onset of Hopf bifurcation.
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3.2.5. Local Stability Analysis of Delay Differential Equations

For simplicity, we consider the simplified version of the model for analysis by ignoring the good
bacterial dynamics: ⎧⎪⎨⎪⎩

d
dt

B1(t) = rB1(t)(1 − α11B1(t))− γAE(t)B1(t),

d
dt

AE(t) = βB1(t − τ)− δAE(t),
(44)

Assume that δ � 1. Quasi steady state approximation is applied to (44) to obtain
two-dimensional system:

d
dt

B1(t) = rB1(t)(1 − α11B1(t)− β11B1(t − τ)) (45)

where β11 is explicitly given by:

β11 =
γβ

rδ
. (46)

The linearized system of (45), which is defined for E1 = (B̄1, 0), is given by:{
d
dt

x(t) = −rB̄1(α11x(t) + β11x(t − τ)) (47)

Characteristic equation P(z) = 0 defined for (47) is explicitly given by:

P(z) = z + rB̄1α11 + rB̄1β11e−zτ = 0. (48)

Let us investigate whether P(z) = 0 has a pair of pure imaginary roots z = ±iω, where without
loss of generality, we can assume that ω > 0. Then, the real and imaginary parts of P(+iω) = 0 are
given by:

rB̄1α11 + rB̄1β11 cos ωτ = 0,

rB̄1β11 sin ωτ = ω
(49)

By adding the square of real and imaginary parts, we obtain that:

ω2 = (rB̄1)
2(β2

11 − α2
11). (50)

The equality in (50) holds if and only if β11 > α11. It follows from the first equation of (49) that:

τ =
1
ω

cos−1
(
− α11

β11

)
. (51)

By numerical computations, critical time delay τ∗ at which a system undergoes Hopf bifurcation is
determined for the parameter set in Figure 11. More precisely, τ∗ � 1.418. Figure 11 illustrates the
dynamic changes of stability at a steady state in Equation (45) as the time delay (τ) passes through the
critical Hopf bifurcation point τ∗ � 1.418. The stable state of the equilibrium for smaller τ’s (τ = 0.0
(Figure 11A), 1.0 (Figure 11B) and 1.417 (Figure 11C)) becomes the unstable state around τ∗ (τ = 1.4181
in Figure 11C).

3.2.6. Therapeutic Approaches

Results in the previous section indicate that harmful bacteria may not be completely removed by
typical immune responses due to recurrence in the presence of time delays, and one has to introduce
a drug that enhances the immune system for the eradication of harmful bacteria. We introduce a
drug (D) under the following assumptions: (i) drugs enhance the immune activities of extracellular
cytokines by inhibiting signaling networks involving the intracellular transcription factors and protease
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activation; (ii) the drug is administrated with either a constant rate or periodic injection of drug; (iii)
drug compounds have a natural decay. The governing equations then are given by:

d
dt

B1(t) = r1B1(t)(1 − α11B1(t)− α12B2(t))− γAE(t)B1(t), (52)

d
dt

B2(t) = r2B2(t)(1 − α21B1(t)− α22B2(t))− γAE(t)B2(t), (53)

d
dt

AE(t) = D(t) + β1B1(t − τ1) + β2B2(t − τ2)− δAE(t), (54)

d
dt

D(t) = λD − δDD(t). (55)

where τ1, τ2 are time delays in the immune response for harmful and beneficial bacteria, respectively,
as in the previous section, λD is the injection rate of drugs and δD is the decay rate of the drug.
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Figure 11. Characterization of the simpler delay differential equation (DDE) immune system (45).
(A–D) Time courses of harmful bacteria population (B1) in the absence (τ = 0.0 in (A)) and presence of
different time delays (τ = 1.0 in (B); τ = 1.417 in (C), and τ = 1.4181 in (D)). The stable equilibrium
becomes unstable as τ passes through the Hopf bifurcation point τ∗ � 1.418.

In Figure 12, we investigate the effect of constant drug injection on the dynamics of the DDE
system (52)–(55) in the presence of large time delays (τ1 = τ2 = 3.5). Figure 12A–C shows populations
of harmful (B1, red curve) and beneficial (B2, blue curve) bacteria in the upper panels and the levels
of cytokines (AE, solid black curve) and drugs (D, dotted green curve) in the lower panels for low
(λD = 0.01), intermediate (λD = 0.03) and large (λD = 0.1) injection rates, respectively. A small
injection (λD = 0.01) of drugs is not so effective to remove the harmful bacteria and still maintain
the oscillatory patterns of both harmful bacteria (B1) and immune cytokines (AE). This still leads
to the extinction of beneficial bacteria (B2(t) → 0 as t → ∞). See Figure 12A. For an intermediate
level of injection (λD = 0.03; Figure 12B), drugs annihilate the oscillations of the harmful bacteria
population and immune responses, leading to the infection-persist state (Bs

2 = 0, Bs
1 > 0). On the other

hand, a large amount of drug injection (λD = 0.1; Figure 12C) significantly enhances the immune
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activity and eliminates both harmful and beneficial pathogens (Bs
1 = 0, Bs

2 = 0). Figure 12D–E
shows the trajectories in the B1-B2 (Figure 12D) and B1-AE (Figures 12E) planes, respectively, for the
corresponding λD’s (λD = 0.01 (red), 0.03 (blue) and 0.1 (black)).
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Figure 12. Dynamics of system in response to constant drug injection in the presence of time delays
(τ1 = τ2 = 3.5) on immune response in the two-species model (52)–(55). (A) Small amount of
drug injection (λD = 0.01) still results in the oscillatory behaviors of both harmful bacteria (B1)
and immune cytokines (AE) and the extinction of good bacteria; (B) for an intermediate level of
injection (λD = 0.03), this oscillation disappears, and the system leads to the infection-persist state
(Bs

2 = 0, Bs
1 > 0); (C) large amount of injection (λD = 0.1) significantly enhances the immune activity

and removes both good and bad pathogens (Bs
1 = 0, Bs

2 = 0); (D) trajectories of bad (B1) and good
(B2) bacteria for various drug injection rates (λD = 0.01, 0.03, 0.1); (E) trajectories of bad bacteria (B1)
and immune activity (AE) for various drug injection rates (λD = 0.01, 0.03, 0.1). Initial condition:
B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0. All other parameters are fixed as in Table 4
(Type II).

In real intravenous injection, the drug is administrated in a periodic infusion; we investigate the
effect of drugs in a more realistic situation in the clinical setting. For this, we replace Equation (55)
with the following:

d
dt

D(t) =
ND

∑
i=1

λD I[ti ,ti+td ]
(t)− δDD(t). (56)

where λD is the injection rate, δD is the decay rate of drugs, ND is the number of drug injections and
I[ti ,ti+td ]

(·) is the characteristic equations that give one over the time interval [tj, ti + td] with duration
td and zero otherwise. Here, the injection period is fixed: τD = tj+1 − tj, ∀j = 1, . . . , ND.

In Figure 13, we investigate the dynamics of the system in response to the periodic injection
of the high and low doses of drugs that boost patients’ immunity. For a low dose of drugs
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(λD = 0.2, td = 1 h, ND = 10), the system still maintains the oscillatory behaviors of bad bacteria,
and the immune-boosting effect from drugs is not significant enough to eradicate the bad bacteria
(red curve (B1) in Figure 13A). See the relatively low immune responses during IV injection periods in
Figure 13D (blue curve (AE) for t < 240). However, the promoted immune activity in response to a
higher dose of drugs (λD = 1.0, td = 1 h, ND = 10) results in bacterial extinction (red curve (B1) in
Figure 13C) due to elevated levels of initial immune response (blue curve (AE) in Figure 13D).
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Figure 13. Dynamics of the system in response to low and high doses of drugs in the two-species
M2 model (52)–(56). Immune activity was enhanced by the injection of drugs in a periodic fashion with
an injection period 24 h (τD = 24 h). (A) Time courses of populations of bad (B1) and good bacteria (B2)
in response to periodic injection of drugs with a lower infusion rate λD = 0.2 (duration td = 1 h fixed);
(B) time courses of immune response (AE) and drug levels (D) corresponding to (A); (C) time courses
of populations of bad (B1) and good bacteria (B2) in response to periodic injection of drugs with higher
infusion rate λD = 1.0 (duration td = 1 h); (D) time courses of immune response (AE) and drug
levels (D) corresponding to (C). Initial condition: B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0.
Parameter values: ND = 10, δD = 0.1, τ1 = τ2 = 3.5; all other parameters are fixed as in Table 4
(Type II).

In Figure 14, we investigate the effect of therapeutic drugs on the regulation of the eradication or
recurrence of harmful bacteria in response to various combinations of infusion rates (λD) and injection
periods (τD). For a fixed value of injection period (τD), the system switches from the recurrence phase
to the eradication phase for harmful bacteria as the injection rate (λD) is increased. For a fixed λD,
the larger interval length between drug injections tends to increase the chance of the recurrence of
harmful bacteria. The model predicts that the larger infusion rate (λD) and shorter injection interval
would lead to the elimination of harmful bacteria.
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Figure 14. Therapeutic strategies of eradicating harmful bacteria by the injection of immune-boosting
drugs for various infusion rates (λD) and injection periods (τD) in a two-species M2 model (52)–(56).
Eradication (blue asterisk) and recurrence (red asterisk) of harmful bacteria in the λD-τD parameter
space (td = 1.0 fixed) at t = 300. Initial condition: B1(0) = 0.2, B2(0) = 0.95, AE(0) = 0.0, D(0) = 0.
Parameter values: ND = 60, δD = 0.1, τ1 = τ2 = 3.5; all other parameters are fixed as in Table 4
(Type II).

4. Conclusions and Discussion

This paper investigates the progression of skin inflammatory disease by mathematical modeling
and simulation. Three mathematical models were built to investigate how bacterial antigenic stimuli
initiate and maintain the inflammatory response of keratinocytes. First, the effect of positive feedback
regulation among protease and the transcription factor was incorporated, where we consider a
single bacterial species as the source of antigenic stimuli (model M1). The existence of multiple
positive equilibria indicated by equilibrium analysis implies that feedback switch occurs for model
M1. To investigate how high inflammatory response is maintained, parameter mIP representing the
activation rate of proteases from the transcription factor was varied. Model M1 exhibits qualitatively
different types of behaviors: one is the persistence of bacteria under a low inflammatory state;
another is a high inflammatory state. Numerical computations indicate that the transition from low
to high inflammatory states can occur when parameter mIP varies (Figures 3–5). From the biological
point of view, these computational results suggest that excessive protease activity can lead to a high
inflammatory response. A general scheme presented in this paper applies to at least two different types
of chronic inflammatory diseases. The first one is atopic dermatitis, which is often caused by primarily
defection of the barrier function at the epidermis via excessive protease activity. In the previous study,
the switch-like behavior was extensively investigated, which qualitatively explains the progression
of atopic dermatitis [44]. The second one is an inflammatory bowel disease, which is recognized as
a major inflammatory disease in the gut. Several research works imply the association of excessive
protease activity with the progression of chronic inflammation [21].

To investigate the effect of species competition among bacterial species, model M1 was extended
to include commensal or beneficial bacteria, which compete with a harmful bacterial species.
Mathematical model M2 was constructed to investigate the bacterial competition under immune
suppression. Model M2 consists of a classical Lotka–Volterra competition model with immune
suppression as a negative feedback effect on both species. Numerical simulations were implemented
extensively to understand the qualitative behavior of two bacteria under immune suppression
(Figures 6 and 8). The outcomes of competition among two species were classified by means of
the existence and stability conditions of equilibria (Section 3.2). The mathematical condition for
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the stability of the dominant equilibrium in which only a single bacteria species exists was derived.
Condition (E1S1) represents a situation in which harmful bacteria outcompete beneficial bacteria when
the growth rate of harmful bacteria is faster than that of beneficial bacteria (r2 > r1). Moreover, the
second condition D1 = α21K1 − 1 > 0 represents the transversal eigenvalue of equilibrium E1 in
the B2-direction. D1 > 0 implies that the direction of the transversal eigenvalue is negative. Hence,
beneficial bacteria cannot invade and grow when the harmful bacteria exist and have reached their
carrying capacity. Hence, the condition (E1S1) implies the non-invasibility of beneficial bacteria. On
the other hand, the condition (E1S2) represents an interesting situation. Despite the fact that harmful
bacteria have a slower growth rate than beneficial bacteria, this can prevent the invasion of beneficial
bacteria (D1 > 0) and, importantly, suppress the growth rates of both bacteria by utilizing the boosting
of immune suppression. In other words, harmful bacteria take advantage of growth inhibition by
immune suppression, which leads to the dominance of harmful bacteria. From the biological point
of view, there exists a possibility that some of the bacteria favor the inflammatory condition that
suppresses potential competitors. In [7], it is shown that S. aureus increases in abundance during
the process of dysbiosis, which can drive the inflammatory response, leading to atopic dermatitis
progression. Hence, the implication derived from the mathematical computation and analysis results
can partly explain how S. aureus grows in abundance while suppressing potential competitors.

Finally, time delays were introduced to represent the time required to activate an immune response.
In the skin tissue, this is generally mediated by innate immune cell types, such as neutrophils, which
have to be recruited from peripheral blood to an infection site. Hence, a time delay is inevitable
to consider the process of immune activation. By the introduction of a time delay, interestingly,
beneficial bacteria can outcompete harmful bacteria even though having a disadvantage in competition
(Figures 9–11). These numerical computation results indicate the possibility that the time delay
in immune cell recruitment can affect the outcome when two species are competitively bistable.
A case study on Francisella tularensis infection, which may causes hypercytokinemia, reported at least
a one-day delay in neutrophil recruitment post infection [45]. The introduction of a time delay in
the recruitment of activated innate immune cells to the infection site in the skin exhibits interesting
behaviors. Bacterial antigenic stimuli trigger the immune response via TLR4, antigen recognition
receptors, which specifically detect lipopolysaccharide (LPS) expressed on the surface of Gram-negative
bacteria. If we assume that good and bad bacteria are both Gram-negative bacteria, then it would be
reasonable to assume that the time required to activate immune responses in response to bacterial
stimuli would be the same. Hence, the same value was utilized for the two delays in this work. We
also investigated the effects of the immune-boosting drugs on the selection of harmful or beneficial
bacteria and developed strategies to prevent the cycles or recurrence of harmful bacteria populations
(Figures 12–14).

The results of this work can serve as a starting point for better comprehensive modeling and
experimentation. Some problems and extensions of the model that can be addressed in the future are
as follows.

• In the present model, we concentrated on two major pathogenic and commensal bacterial
species to obtain basic insight into how microbial interactions mediated chronic inflammation.
However, more than hundreds of bacterial species have been demonstrated to coexist in
the skin tissue. Metagenomic analysis targeting the gut- and skin-resident microbiome has
revealed that numerous uncultured species exist and potentially affect the maintenance of skin
homeostasis, as well as the progression of skin inflammatory disease [46]. The existence of spatial
compartmentalization by forming heterogeneous clusters of colonies across the epidermis and
dermis has been shown [47,48]. Although a few numbers of dominant species exist in terms
of population abundance, bacterial diversity in the skin is highly maintained [49]. Complex
interactions among commensal bacteria, the host immune system and different sources of
environmental fluctuations should be essential factors for the maintenance of species diversity.
Therefore, the incorporation of more than two bacterial species into the model would be more
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realistic. Colonization of harmful bacteria would be prevented by community-level resistance
by a bacterial community. The incorporation of multiple species interactions will provide new
insights on how the loss of bacterial diversity would lead to high inflammatory states.

• We considered the same time delays in the M2 model in this work. There exists the possibility of
an immune escape mechanism, which might justify the use of different time delays. For instance,
certain types of bacteria downregulate antigenicity when they invade tissue in order to escape
from immune surveillance [50]. This would lead to a time delay in the activation of the immune
system. Major extensions of the current model to include different time delays are warranted.

• The mathematical models presented here do not distinguish immune cell types, which are crucial
to determine the difference between the epidermis and the GI tract. For instance, Langerhans
cells are the major resident immune cell type that stays below the second layer of the stratum
granulosum (below the tight junction) and captures the antigen. After capturing the antigen,
Langerhans cells move to a draining lymph node to present the antigen to lymphocytes, known
as homing. In the intestine, invading bacteria that attach to the gut epithelial cells trigger
inflammatory responses, and finally, these bacteria are eliminated by immune cells recruited
from the Payer’s patch or gastric mucosal lymphoid follicles.

• Explicit incorporation of spatial structure is essential to represent specific and unique information
to the epidermis or the GI tract. In the present paper, however, we focused on the role of bacterial
species to induce inflammatory responses rather than spatial structure, which forms specific
and unique interactions among invading bacteria and immune cells. The ongoing project aims
to incorporate spatial structure and heterogeneity in immune cell subtypes, but it is currently
under investigation.

• The major signaling networks that control the intracellular regulation of transcriptional factor,
proteases and protease inhibitors need to be addressed.

• The microenvironment also plays an important role in the regulation of epidermis and stem cell
dynamics [51]. These include other immune cells, endothelial cells and stromal cells, such as
fibroblasts, as well as growth factors secreted by these cells.

• Cell-mechanical regulations, such as actin and serum response factor, were also shown to
transduce bio-physical cues from the microenvironment to control epidermal stem cell fate [52].

Our understanding of the complex biochemical interactions between the epidermal cells and
the microenvironment is very limited. Hybrid approaches may be used to take into account
these intracellular signaling pathways in addition to the mechanical interactions of cells with
microenvironment for detailed proteolytic activities, growth and invasion at the cellular level and
viscoelastic response of the whole tissue [23,53–57]. Yet a more comprehensive understanding of
the role of the microenvironment in epidermal homeostasis may lead to the development of new
therapeutic agents. We will discuss these in future work.
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Appendix A. Nondimensionalization

For the M1 model, we nondimensionalize the variables and parameters in the governing
Equation (2) as follows:
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t̄ =
t
T

, B̄ =
B
B∗ , P̄ =

P
P∗ , ĀI =

AI
A∗

I
, ĀE =

AE
A∗

E
, λ̄ =

Tλ

B∗ , r̄B = T rB, K̄ =
K
B∗ ,

γ̄ = TγA∗
E, δ̄P = TδP, δ̄I = TδI , δ̄E = TδE, m̄◦ =

Tm◦
Y∗ , ā◦ =

a◦
X∗ , s̄◦ = s◦.

(A1)

where ◦ ∈ {IP, BP, PI, BI, EI, IE} and Y ∈ {P, P, AI , AI , AI , AE} for X ∈ {AI , B, P, B, AE, AI}.
For the two-species M2 model, we nondimensionalize the variables and parameters in the

governing Equations (3)–(5) as follows:

t̄ =
t
T

, B̄1 =
B1

B∗
1

, B̄2 =
B2

B∗
2

, ĀE =
AE
A∗

E
, r̄1 = T r1, r̄2 = T r2, ᾱ11 = α11B∗

1 ,

ᾱ12 = α12B∗
2 , ᾱ21 = α21B∗

1 , ᾱ22 = α22B∗
2 , γ̄ = TγA∗

E, β̄1 =
Tβ1B∗

1
A∗

E
, (A2)

β̄2 =
Tβ2B∗

2
A∗

E
, δ̄ = Tδ.

Table A1 lists the reference values in the model.

Table A1. Reference value. tw = estimated in this work.

Var Description Dimensional Value Reference

T Time scale 3.5 h tw
B∗ Bacteria density (=B1, B2) 2.4 × 109 CFU/mL [58]
P∗ Protease concentration 50 mU/mL [59–62]
A∗

I Transcriptional factor concentration 10 nM [63]
A∗

E Cytokine concentration 2.0 × 101 pg/cm3 [64,65]

Appendix B. Sensitivity Analysis

In the mathematical model developed in this paper, there are a few parameters for which no
experimental data are known due to abstract mathematical terms or that may affect significantly the
computational results and predictions. In order to determine the sensitivity of the bacterial populations
and the concentration of cytokines for these parameters, we have performed sensitivity analysis for
a mathematical model (3)–(5). We have chosen a range for each of these parameters and divided
each range into 10,000 intervals of uniform length. The base values and the ranges of the perturbed
parameters are as in Table B1. For each of the ten parameters, a partial rank correlation coefficient
(PRCC) value is calculated [66]. The calculated PRCC values range between −1 and 1 with the sign
indicating whether an increase in the parameter value will decrease (−) or increase (+) the bacterial
populations (B1 and B2) and cytokine concentration (AE) at a given time [66].

Figure B1 shows sensitivity analysis of all variables for ten key parameters
(r1, K1, α12, r2, α21, K2, γ, β1, β2, δ) in the mathematical model (3)–(5) at the selected time (t = 1, 40, 80).
For example, we show the sensitivity of bacterial populations in response to the changes of parameter
values in Figure B1. It is natural to predict the positive correlation of the bad bacterial population (B1)
with the growth rate (r1) and carrying capacity (K1 = 1/α11). Indeed, the bad bacterial population
is very sensitive to the changes in the growth rate and the carrying capacity, i.e., strong positive
correlations with r1 and K1. The initial strong correlations of the bad bacterial population with γ, β1 at
t = 1 turn into weak correlations at later times (t = 40, 80). On the other hand, the good bacterial
population is positively correlated with r2, but is negatively correlated with K1, γ. The initial strong
correlations of good bacterial population with α21, β1 at t = 1 turn into weak correlations at later
times (t = 40, 80). On the contrary, the weak initial correlation of populations of bad and good
bacteria with the decay rate of cytokines (δ) turns into a strong positive correlation. This indirectly
indicates the role of suppressed immune response in boosting the bacterial growth. In our model,
the immune response plays a key role in the regulation of bacterial dynamics. The strength of the
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immune response is positively correlated with K1, β1, β2, but is negatively correlated with the decay
rate (δ). In particular, the immune response is strongly negatively correlated with the killing rate (γ)
of both bad and good bacteria at later times (t = 40, 80) due to decreased bacterial populations in
response to increased immune response. The parameters α12, β2, K2(= 1/α22) have little correlation
with all variables (B1, B2, AE). Table B1 summarizes the results of the sensitivity analysis in terms of
the populations of bad (B1) and good (B2) bacteria and cytokine concentration (AE), at t = 1, 40, 80.

Table B1. Sensitivity analysis for the local ODE system (3)–(5) at time t = 1, 40, 80. Parameters used
in sensitivity analysis and PRCC values of populations of bad bacteria (B1) and good bacteria (B2)
and the concentration of the immune system (AE) at various time points (t = 1, 40, 80) are shown
for 10 perturbed parameters r1, K1, α12, r2, α21, K2, γ, β1, β2, δ. A range (minimum/maximum) of
these ten perturbed (non-dimensional) parameters ([rmin

1 , rmax
1 ], [Kmin

1 , Kmax
1 ], [αmin

12 , αmax
12 ], [rmin

2 , rmax
2 ],

[αmin
21 , αmax

21 ], [Kmin
2 , Kmax

2 ], [γmin, γmax], [βmin
1 , βmax

1 ], [βmin
2 , βmax

2 ], [δmin, δmax]) and their baseline (rbase
1 ,

Kbase
1 , αbase

12 , rbase
2 , αbase

21 , Kbase
2 , γbase, βbase

1 , βbase
2 , δbase) are given in the lower section. Sample size =

10,000. * Significant (p-value < 0.01).

Par r1 K1 α12 r2 α21 K2 γ β1 β2 δ
PRCC

B1(1) −0.469
*

0.9802
*

−0.206
*

−0.048
*

0.0397
*

−0.0018 −0.448
*

−0.464
*

−0.050
*

0.0694
*

B2(1) 0.1245
*

−0.567
*

0.0294
*

0.6956 −0.693
*

0.0289
*

−0.399
*

−0.410
*

−0.060
*

0.0541
*

AE(1) −0.237
*

0.8100
*

−0.033
*

0.1185
*

−0.114
*

0.0091 −0.093
*

0.9596
*

0.6476
*

−0.393
*

B1(40) 0.4098
*

0.5636
*

−0.295
*

−0.500
*

0.1479
*

−0.088
*

−0.248
*

−0.291
*

0.0100 0.3772
*

B2(40) −0.264
*

−0.574
*

0.0706
*

0.6627
*

−0.292
*

0.0687
*

−0.512
*

−0.384
*

−0.308
*

0.6232
*

AE(40) 0.3034
*

0.3626
*

−0.033
*

0.4340
*

−0.082
*

0.0782
*

−0.739
*

0.4905
*

0.3453
*

−0.743
*

B1(80) 0.4035
*

0.5614
*

−0.292
*

−0.509
*

0.1360
*

−0.085
*

−0.232
*

−0.284
*

0.0212 0.3412
*

B2(80) −0.204
*

−0.478
*

0.0704
*

0.6061
*

−0.241
*

0.0592
*

−0.406
*

−0.283
*

−0.247
*

0.5178
*

AE(80) 0.3059
*

0.3551
*

−0.031
*

0.4312
*

−0.069
*

0.0715
*

−0.728
*

0.4730
*

0.3195
*

−0.730
*

Min 0.5 0.1 0.1 0.1 0.1 1.0 0.1 0.05 0.05 0.01
Base 1.5 0.5 1.0 1.0 1.0 2.0 1.0 0.1 1.0 0.35
Max 2.5 2.5 2.0 2.0 2.0 2.5 2.0 2.0 2.0 1.0
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Figure B1. Sensitivity analysis of a mathematical model, Equations (3)–(5). General Latin hypercube
sampling (LHS) scheme and partial rank correlation coefficient (PRCC) performed on the model.
The reference outputs are the densities of bad bacteria (B1) and good bacteria (B2) and the
concentration of inflammatory cytokines (AE) at time t = 1, 40, 80. The colors indicate PRCC
values of all variables (B1, B2, AE) in the simple model (Equations (3)–(5)) for ten model parameters
(r1, K1, α12, r2, α21, K2, γ, β1, β2, δ). Red color indicates positive correlations, and blue color indicates
negative correlations between the main variable and each parameter at the given time. The analysis
was carried out using the method of Marino et al. (2008) [66] with a sample size of 10,000.

The sensitivity analysis described above was carried out using the method from [66] and MATLAB
files available from the website of Denise Kirschner’s Lab [67].
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Abstract: From a biological perspective, a dynamic model describing the cultivation and flocculation
of a microorganism that uses two different kinds of nutrients (carbon source and nitrogen
source) is proposed. For the proposed model, there always exists a boundary equilibrium, i.e.,
Rhodopseudomonas palustris -free equilibrium. Furthermore, under additional conditions, the model
also has five positive equilibria at most, i.e., the equilibria for which carbon source, nitrogen source,
Rhodopseudomonas palustris and flocculants are coexistent. The phenomena of backward and
forward bifurcations are extensively discussed by using center manifold theory. The global stability
of the boundary equilibrium of the proposed model is deeply investigated. Moreover, the local
stability of the positive equilibrium and the uniform persistence of the proposed model are discussed.
Under additional conditions, the global stability of the positive equilibrium is studied. Some control
strategies are given by the theoretical analysis. Finally, some numerical simulations are performed to
confirm the correctness of the theoretical results.

Keywords: dynamic model; flocculation; global stability; uniform persistence

1. Introduction

Photosynthetic bacteria, which are common microorganisms in the natural environment,
have been applied in the field of environmental protection, such as in the treatment of sewage,
domestic wastewater and the bioremediation of sediment mud polluted with organic matter (see, for
example, [1–4]). On the other hand, photosynthetic bacteria can produce relatively large amounts of
physiologically-active substances, such as vitamin B12 , ubiquinone (coenzyme Q10 ), 5-aminolevulinic
acid (ALA) and RNA (see, for example [5]). In particular, vitamin B12 has been used in treating
anemia and as an eye lotion. Recently, applications as health food supplements have received
considerable attention. Coenzyme Q10 has been used in treating heart diseases for many years.
Further, coenzyme Q10 has been used not only as a medicine, but also as some food supplements,
because of its physiological activities. One of the developments of ALA applications is in the area of
photodynamic diagnosis. RNA is an attractive source of 5′-ribonucleotides for use as a flavor enhancer
in the food industry. In recent years, the production of RNA has been used as a dietary source of
pyrimidine for human immune functions (see, for example [6,7]).

Some photosynthetic bacteria, such as Rhodopseudomonas palustris, are extensively used in
the production of lycopene, aquaculture, and so on [8]. It can use sunlight, inorganic and organic
compounds for energy. Further, Rhodopseudomonas palustris can have practical value for removing
microcystin from the water body during algal blooms [9]. It can also degrade 2,4,6-trinitrotoluene
(TNT), which has negative effects on the human body and aquatic life, resulting in a major
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threat to drinking and irrigation water supplies, as well as the recreational use of surface waters
worldwide. Moreover, Rhodopseudomonas palustris is regarded as the most promising microbial
system for the biological production of hydrogen, which has been extensively developed because
of its high-energy content and clean product after combustion [10]. However, the concentration
of Rhodopseudomonas palustris is very low under anaerobic light culture conditions (see, for
example, [11,12]). Therefore, cost-efficient harvesting of Rhodopseudomonas palustris is a new
challenge. In order to harvest Rhodopseudomonas palustris from the liquid, it is necessary to flocculate
the single cells into large cell aggregates. Flocculation is a chemically-based separation process that
requires less energy than centrifugation and ultrafiltration and, thus, is regarded as the most promising
means for degrading microorganisms. Since algal toxins of blooms have happened occasionally
in recent years, the problems of degrading microorganisms have received wide attentions (see, for
example, [13–16]).

Flocculants are a kind of important water treatment reagent, which can be divided into organic
flocculants and inorganic flocculants according to the chemical compositions [17]. Although organic
flocculants, such as polyacrylamide, are frequently used in wastewater treatment and industrial
downstream processes because of their high efficiency, some of them are not easily degraded in
nature [18,19], and some of the monomers derived from synthetic polymers are harmful to the human
body (see, for example, [20,21]). To solve these environmental problems, inorganic flocculants are
increasingly being seen as an alternative in the settlement of microorganisms, more specifically
in wastewater treatment owing to their inexpensive and nontoxic characteristics. Thus, inorganic
flocculants may be used as nontoxic, cost-effective and widely-available flocculants for harvesting
Rhodopseudomonas palustris (see, for example, [22–27] and the references therein).

Mathematical models have played an important role in better understanding microbiology and
population biology (see, for example, [28,29]). In recent years, the dynamics of the chemostat models
has received considerable attentions (see, for example, [29]). The article of Smith and Waltman has
played an important role in the development of the chemostat models [30]. From then on, much
research on the chemostat models has been extensively studied by many authors. A model describing
two populations of microorganisms competing for one single limiting nutrients was proposed in [31].
Later, the model was extended to an arbitrary number of populations in [32,33]. These models, which
were studied in articles [31–33], have proven that they all include a competitive exclusion effect. In the
articles [34–39], some further developments have been performed on the chemostat models to place
the relevant models in a naturally more sensible manner.

Let S(t) and X(t) denote the concentration of the nutrients and Rhodopseudomonas palustris,
respectively, in the culture vessel at time t. P(t) denotes the concentration of inorganic flocculants,
which are used for harvesting Rhodopseudomonas palustris (see Figure 1). The constants S0 > 0 and
P0 > 0 denote the input concentration of the nutrients and flocculants, respectively. For simplicity, it
is assumed that the input of the nutrients and flocculants is continuous. The constant D > 0 is the
dilution rate of the chemostat.

Figure 1. The device for collecting Rhodopseudomonas palustris in the chemostat by inputting
inorganic flocculants.
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The constant τ ≥ 0 denotes the time delay involved in the conversion of nutrients to
Rhodopseudomonas palustris. The flocculation rate of microorganisms is assumed to be a bilinear
mass-action function response m1X(t)P(t), where m1 ≥ 0 is the per capita contact rate. At the same
time, flocculants produce loss or consumption [17], and the loss rate of flocculants is also assumed to
be a bilinear mass-action function response m2X(t)P(t), where m2 ≥ 0 is constant. Thus, in [40], the
following dynamic model has been proposed:⎧⎪⎨⎪⎩

dS(t)
dt =

(
S0 − S(t)

)
D − r1S(t)X(t),

dX(t)
dt = rS(t − τ)X(t − τ)− DX(t)− m1X(t)P(t),

dP(t)
dt =

(
P0 − P(t)

)
D − m2X(t)P(t).

(1)

In Model (1), r ≥ 0 and r1 ≥ 0 are constants, and the bilinear mass-action uptake function S(t)X(t)
has been used.

It should be mentioned here that, the analysis reveals that Model (1) proposed in [40] exhibits
the phenomenon of backward bifurcation for the existence of positive equilibria. Moreover, the local
stability properties of the equilibria have been dealt with in detail.

People found that the influence of different nutrients has played an important role in the culture
of microorganisms. In order to take this into consideration, appropriate combinations of nutrients
are considered in chemostat models. Models with two competitors and two perfectly-complemented
growth-limiting nutrients are studied in [41,42]. Local asymptotic conditions for the equilibria
are derived.

When there is a microorganism to compete for two or more resources, it may become necessary
to consider how the resources, once consumed, interact to promote growth. In [41], the authors
employ consumer needs to provide a criterion to classify resources and classify resources as
perfectly complementary, perfectly substitutable or imperfectly substitutable. Perfectly-complementary
resources are different essential substances that must be taken together. In this case, each substance
fulfills different functions with respect to the growth of microorganisms. For example, carbon source
and nitrogen source may be complementary for the growth of bacterium.

Motivated by the papers mentioned above, in this paper, we further consider a dynamic model
describing the cultivation and flocculation of Rhodopseudomonas palustris, and the nutrients presented
in [40] will be divided into carbon source and nitrogen source, which are perfectly complementary in
the culture of Rhodopseudomonas palustris (see, for example, [5,41–44]). We assume that the growth
of Rhodopseudomonas palustris is always co-limited by carbon and nitrogen for all possible nutrient
conditions. We do not consider the case where only one of these nutrients limits growth, for example,
in environmental scenarios of high carbon, but very low nitrogen loads, the growth of bacteria may be
purely nitrogen limited.

Let C(t) and N(t) denote the concentration of carbon source and nitrogen source, respectively, in
the culture vessel at time t. The constants C0 > 0 and N0 > 0 denote the input concentration of carbon
source and nitrogen source, respectively. We assume that the conversion of nutrients to microorganism
biomass occurs instantly. That is, the time delay τ in Model (1) equals zero. Hence, we have the
following dynamic model describing the cultivation and flocculation of a microorganism:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dC(t)
dt =

(
C0 − C(t)

)
D − X(t)

δ1
r1μ1(C(t))μ2(N(t)),

dN(t)
dt =

(
N0 − N(t)

)
D − X(t)

δ2
r2μ1(C(t))μ2(N(t)),

dX(t)
dt = rμ1(C(t))μ2(N(t))X(t)− DX(t)− m1X(t)P(t),

dP(t)
dt =

(
P0 − P(t)

)
D − m2X(t)P(t).

(2)

In Model (2), the parameters D, r, m1, m2 and P0 are the same as Model (1). The term
rμ1(C(t))μ2(N(t)) is the growth rate of Rhodopseudomonas palustris, and the terms r1μ1(C(t))μ2(N(t))
and r2μ1(C(t))μ2(N(t)) represent the quantity of the decreasing of the carbon source and nitrogen
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source, respectively, where r1 and r2 are non-negative constants; the functions μ1(C(t)) and μ2(N(t))
are nonnegative and continuous for C(t) ≥ 0, N(t) ≥ 0. For the simplicity of the theoretical analysis, in
this paper, the functions μ1(C(t)) and μ2(N(t)) are chosen as Monod-type functions, i.e.,

μ1(C(t)) =
C(t)

K1 + C(t)
, μ2(N(t)) =

N(t)
K2 + N(t)

,

where K1 > 0 and K2 > 0 are the half-saturation constants with respect to the carbon source and
nitrogen source, respectively. δi (i = 1, 2) are yield coefficients (see, for example, [29]), which are
defined as:

δi =
mass o f organism f ormed

mass o f substrate consumed
, (i = 1, 2).

Therefore, the dynamic Model (2) can be rewritten in the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dC(t)
dt =

(
C0 − C(t)

)
D − r1C(t)N(t)X(t)

δ1(K1+C(t))(K2+N(t)) ,
dN(t)

dt =
(

N0 − N(t)
)

D − r2C(t)N(t)X(t)
δ2(K1+C(t))(K2+N(t)) ,

dX(t)
dt = rC(t)N(t)X(t)

(K1+C(t))(K2+N(t)) − DX(t)− m1X(t)P(t),
dP(t)

dt =
(

P0 − P(t)
)

D − m2X(t)P(t).

(3)

It is convenient to introduce dimensionless variables. In particular, we define:

C =
C
C0 , N =

N
N0 , X = X, P =

P
P0 , K1 =

K1

C0 , K2 =
K2

N0 , t = tD,

r1 =
r1

δ1DC0 , r2 =
r2

δ2DN0 , r =
r
D

, m1 =
m1P0

D
, m2 =

m2

D
,

and still denote C, N, X, P, K1, K2, t, r1, r2, r, m1 and m2 with C, N, X, P, K1, K2, t, r1, r2, r, m1 and
m2, then Model (3) becomes:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dC(t)
dt = 1 − C(t)− r1C(t)N(t)X(t)

(K1+C(t))(K2+N(t)) ,
dN(t)

dt = 1 − N(t)− r2C(t)N(t)X(t)
(K1+C(t))(K2+N(t)) ,

dX(t)
dt = rC(t)N(t)X(t)

(K1+C(t))(K2+N(t)) − X(t)− m1X(t)P(t),
dP(t)

dt = 1 − P(t)− m2X(t)P(t).

(4)

According to the biological considerations, the initial condition of Model (4) is given as:

C(0) = C0 ≥ 0, N(0) = N0 ≥ 0, X(0) = X0 ≥ 0, P(0) = P0 ≥ 0, (5)

where the constants C0, N0, X0 and P0 represent the initial concentration of the carbon source, nitrogen
source, Rhodopseudomonas palustris and flocculants respectively.

The purpose of this paper is to tackle the existence of backward and forward bifurcations by using
center manifold theory and to investigate the global stability properties of the two classes of equilibria
by constructing the suitable Lyapunov functions.

The organization of the paper is as follows. The global existence, nonnegativity and boundedness
of the solutions of Model (4) are investigated in Section 2. In Section 3, the existence of the equilibria
and the phenomena of backward and forward bifurcations are extensively discussed. In Section 4,
the global stability of the boundary equilibrium of Model (4) is discussed by the stability theory of
ordinary differential equations. Furthermore, we consider the local stability of positive equilibrium,
the uniform persistence of Model (4) and the global asymptotic stability of the positive equilibrium in
Section 5. In Section 6, some control strategies are given by the theoretical analysis. Some discussions
are given in Section 7.
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2. The Global Existence, Nonnegativity and Boundedness of Solutions

From the biological considerations, it is necessary to show that all of the solutions of Model (4) are
nonnegative and bounded for all t ≥ 0. By using the basic theory of ordinary differential equations [45]
and some simple calculations, it is not difficult to show the following result.

Theorem 1. The solution (C(t), N(t), X(t), P(t)) of Model (4) with the initial Condition (5) is existent, unique
and nonnegative for all t ≥ 0 and satisfies:

lim supt→∞ C(t) ≤ 1, lim supt→∞ N(t) ≤ 1, lim supt→∞ M(t) ≤ α,

lim supt→∞ P(t) ≤ 1, lim inft→∞ C(t) ≥ C, lim inft→∞ N(t) ≥ N, lim inft→∞ P(t) ≥ P,

where M(t) = r
2r1

C(t) + r
2r2

N(t) + X(t), α = r
2r1

+ r
2r2

, C = K1(K2+1)
K1(K2+1)+r1α

, N = K2(K1+1)
K2(K1+1)+r2α

, P = 1
1+m2α .

Proof. From the theory of the local existence of solutions for ordinary differential equations, it
can be obtained that the solution (C(t), N(t), X(t), P(t)) of Model (4) is existent and unique for
t ∈ [0, δ). Here, δ is some positive constant [29,45,46]. Furthermore, we also have that the solution
(C(t), N(t), X(t), P(t)) is nonnegative for t ∈ [0, δ).

We can easily show that C(t), N(t) and P(t) are bounded on t ∈ [0, δ). Let us further show that
X(t) is also bounded on t ∈ [0, δ). For t ≥ 0, define:

M(t) = r
2r1

C(t) + r
2r2

N(t) + X(t).

From Model (4), we obtain that, for t ≥ 0,

M(t) ≤ r
2r1

+ r
2r2

− M(t). (6)

From (6) and the well-known comparison principle, we have that M(t) is also bounded for
t ∈ [0, δ). Hence, by employing the continuation theorems of the solutions [29,45,46], the solution
(C(t), N(t), X(t), P(t)) is existent and unique for any t ≥ 0. Similarly, the solution is nonnegative for
any t ≥ 0.

Thus, from the comparison principle, we have that:

lim supt→∞ C(t) ≤ 1, lim supt→∞ N(t) ≤ 1, lim supt→∞ M(t) ≤ r
2r1

+ r
2r2

= α, lim supt→∞ P(t) ≤ 1.

By the first equation of Model (4), we obtain that, for t ≥ 0,

C(t)= 1 − C(t)− r1C(t)N(t)X(t)
(K1 + C(t))(K2 + N(t))

≥ 1 −
(

1 +
r1α

K1(K2 + 1)

)
C(t).

Again, we can conclude that lim inft→∞ C(t) ≥ C. By using the technique similar above, we can
show that lim inft→∞ N(t) ≥ N, lim inft→∞ P(t) ≥ P. We complete the proof of Theorem 1. �

Theorem 2. The compact set:

Ω =
{
(C, N, X, P) ∈ R4

+

∣∣ C ≤ C ≤ 1, N ≤ N ≤ 1, 0 ≤ M ≤ α, P ≤ P ≤ 1
}

attracts all of the solutions of Model (4) and is positively invariant with respect to Model (4).

Proof. According to Theorem 1, it only needs to be proven that Ω is positively invariant with respect to
Model (4). That is, it needs to be shown that C ≤ C(t) ≤ 1, N ≤ N(t) ≤ 1, M(t) ≤ α, P ≤ P(t) ≤ 1
for any t ≥ 0 if (C(0), N(0), X(0), P(0)) ∈ Ω. Let us show M(t) ≤ α for any t ≥ 0.

81



Appl. Sci. 2016, 6, 221

In fact, if there exists some t1 > 0, such that M(t1) > α, then t∗1 = sup{t|M(t) = α, t ∈ [0, t1]} is
existent and t∗1 ≥ 0. Hence, we obtain that M

(
t∗1
)
= α, M(t1) > α and M(t) > α for t ∈ (t∗1, t1

)
. By the

Lagrange mean-value theorem, there exists some t2 ∈ (t∗1, t1
)
, such that M(t2) =

M(t1)−M(t∗1)
t1−t∗1

> 0.

On the other hand, from (6), we have that M(t2) ≤ α − M(t2) < α − α = 0, which is a
contradiction. Thus, M(t) ≤ α for any t ≥ 0. Therefore, from Model (4), we have that for any
t ≥ 0, C(t) ≤ 1 − C(t), N(t) ≤ 1 − N(t), P(t) ≤ 1 − P(t), from which we easily have that C(t) ≤ 1,
N(t) ≤ 1, P(t) ≤ 1 for any t ≥ 0.

Next, we prove that C ≥ C for any t ≥ 0 if (C(0) , N(0), X(0), P(0)) ∈ Ω.
In fact, if there exists some t3 > 0, such that C(t3) < C, then t∗2 = sup{t|C(t) = C, t ∈ [0, t3]} is

existent and t∗2 ≥ 0. Hence, we have that C(t∗2) = C, C(t3) < C and C(t) < C for t ∈ (t∗2, t3). By the

Lagrange mean-value theorem, there exists some t4 ∈ (t∗2, t3), such that C(t4) =
C(t3)−C(t∗2)

t3−t∗2
< 0.

On the other hand, from Model (4), we obtain that:

C(t4)≥ 1 − C(t4)− r1C(t4)α

K1(K2 + 1)
> 1 −

(
1 +

r1α

K1(K2 + 1)

)
C = 0,

which is a contradiction. Thus, C(t) ≥ C for any t ≥ 0. Therefore, from Model (4), we obtain that, for
any t ≥ 0,

N(t)≥ 1 −
(

1 +
r2α

K2(K1 + 1)

)
N(t), P(t) ≥ 1 − (1 + m2α)P(t),

from which we easily obtain that N ≤ N(t), P ≤ P(t), for any t ≥ 0. This completes the proof of
Theorem 2. �

3. The Existence of the Equilibria and Its Classification

Let (C, N, X, P) be any equilibrium of Model (4). Then, (C, N, X, P) satisfies the following
nonlinear algebraic equations, ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − C − r1CNX
(K1+C)(K2+N)

= 0,

1 − N − r2CNX
(K1+C)(K2+N)

= 0,
rCNX

(K1+C)(K2+N)
− X − m1XP = 0,

1 − P − m2XP = 0.

(7)

Model (4) always has the boundary equilibrium E0(1, 1, 0, 1). The existence of E0 indicates
that, if there is no Rhodopseudomonas palustris to be added into the culture vessel at the beginning
of the culture, the concentrations of the carbon source, nitrogen source and flocculants always
maintain the constant values 1, 1 and 1, respectively. The equilibrium E0(1, 1, 0, 1) is also called
Rhodopseudomonas palustris-free equilibrium.

Define the basic bifurcation parameter as:

R0 =
r

(K1 + 1)(K2 + 1)(m1 + 1)
.

Let (C∗, N∗, X∗, P∗) be any positive equilibrium of Model (4). From (7), we have that:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(K1 + C∗)(K2 + N∗)
(

1 + m1
1+m2X∗

)
− rC∗N∗ = 0,

P∗ = 1
1+m2X∗ ,

C∗ = −r1m2(X∗)2+(m2r−r1(m1+1))X∗+r
r(1+m2X∗) ,

N∗ = −r2m2(X∗)2+(m2r−r2(m1+1))X∗+r
r(1+m2X∗) .

(8)
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Clearly, X∗ should satisfy the following conditions:

−r1m2(X∗)2 + (m2r − r1(m1 + 1))X∗ + r > 0,
−r2m2(X∗)2 + (m2r − r2(m1 + 1))X∗ + r > 0.

(9)

Substituting the second, third and forth equations of (8) into the first equation gives a fifth order
algebraic equation,

f (X∗) =a(X∗)5 + b(X∗)4 + c(X∗)3 + d(X∗)2 + eX∗ + f = 0,

where:

a = r1r2m3
2(1 − r),

b = r1m3
2r
(

r − (K2 + 1)− r2(m1+2)
m2

)
+ 3r1r2m2

2(m1 + 1)

+r2m3
2r
(

r − (K1 + 1)− r1(m1+1)
m2

)
,

c = m3
2r2
(
(K1 + 1)(K2 + 1) + (r1+r2)(m1+3)

m2
− r
)
+ q,

d = m2
2rR0(K1 + 1)2(K2 + 1)2(m1 + 1)2(1 − R0) + d1,

e = r1r(m1 + 1)(r − (K2 + 1)(m1 + 1)) + r2r(m1 + 1)(r − (K1 + 1)(m1 + 1))
+m2r2((K1 + 1)(K2 + 1)(2m1 + 3)− 3r),

f = rR0(K1 + 1)2(K2 + 1)2(m1 + 1)2(1 − R0),
q = r1r2m2(3 − r)(1 + m1)

2 − 2q1r(1 + m1)− rm2
2(K1r2 + K2r1),

q1 = r1m2
2 + r1r2m2 + r2m2

2 + K1r2m2
2 + K2r1m2

2,

d1 = m2
2r2
(

2(K1 + 1)(K2 + 1) + (r1+r2)(2m1+3)
m2

− 2r
)
+ h,

h = −m2
2r(2(m1 + 1) + 1)(r2K1 + r1K2) + 2r1r2m2(1 + m1)

2

−r1m2
2r − r2m2

2r − h1r(1 + m1),
h1 = 2r1m2

2 + 3r1r2m2 + r2m2
2 + r2m2

2 + K2m2
2.

Let us consider the necessary condition for the existence of the positive equilibria of Model (4).
From the first equation in (8), we obtain the following function:

F(X∗)=
m1(K1 + C∗)(K2 + N∗)

1 + m2X∗ + K1K2 + K1N∗ + K2C∗ + (1 − r)C∗N∗,

which implies that r > 1 is a necessary condition for a positive equilibrium to exist.
Using the methods similar to [47], we can give the sufficient conditions of the existence of the

positive equilibria of Model (4). The following results (Theorem 3) follow from the various possibilities
enumerated in Table A1 (see Appendix A):

Theorem 3.

(i) Model (4) has a unique positive equilibrium if R0 < 1 and Conditions (9) hold and whenever Cases 1, 9,
13, 15 and 16 in Table A1 are satisfied;

(ii) Model (4) could have more than one positive equilibrium if R0 < 1 and Conditions (9) hold and whenever
Cases 2–8, 10–12 and 14 in Table A1 are satisfied;

(iii) Model (4) could have five positive equilibria at most if R0 > 1 and Conditions (9) hold and whenever
Cases 1–16 in Table A1 are satisfied.

Hence, under suitable conditions, there may be at most five different positive roots for the fifth
order algebraic equation. Let X = X∗ be any such positive root, which also satisfies Conditions (9).
Thus, from (8), C = C∗ > 0, N = N∗ > 0 and P = P∗ > 0 can be obtained. Therefore, Model (4) at
most has five positive equilibria of the type of E∗(C∗, N∗, X∗, P∗). The equilibrium E∗(C∗, N∗, X∗, P∗)
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indicates that the carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants may be
coexistent for any time t ≥ 0.

Remark 1. The existence of multiple positive equilibria of Model (4) when R0 < 1 (shown in Table A1; see
Appendix A) indicates the possibility of the existence of backward bifurcation (see, for example, [40,47,48]),
where the stable boundary equilibrium co-exists with a stable positive equilibrium. This can be explored below
via numerical simulations (see Figure 2a,b). A rigorous result can be obtained using center manifold theory [49].
The detailed proof is given in Appendix B.

Figure 2. (a) Simulations of backward bifurcation for Model (4) with K1 = 0.36, K2 = 0.3, m1 =

0.0001, m2 = 4, r1 = 0.96, r2 = 1.0001; (b) simulations of forward bifurcation for Model (4) with
K1 = 0.36, K2 = 0.3, m1 = 0.0001, m2 = 4, r1 = 0.96, r2 = 1.0001. Solid curves represent stable
equilibrium and dashed curves represent unstable equilibrium.

From the analysis given in Appendix B, we have established the following result.

Theorem 4.

(i) If:
m1m2 > rr1K1

(K1+1)3(K2+1)2 +
rr2K2

(K1+1)2(K2+1)3 ,

then Model (4) undergoes a backward bifurcation at R0 = 1.
(ii) If:

m1m2 < rr1K1
(K1+1)3(K2+1)2 +

rr2K2
(K1+1)2(K2+1)3 ,

then Model (4) undergoes a forward bifurcation at R0 = 1.

The existence of backward bifurcation implies that stable boundary equilibrium and stable positive
equilibrium may be coexistent. In biology, this means that the basic bifurcation parameter R0 is not the
threshold value, which is used to determine whether Rhodopseudomonas palustris can be harvested
successfully or not. In this case, more complicated dynamic properties may occur. There may exist a
new threshold value, which is less than R0 and used to determine whether Rhodopseudomonas palustris
can be harvested successfully or not.

4. The Global Stability of the Boundary Equilibrium

Global stability properties of the equilibria E0 or E∗ imply that the asymptotic properties of
the carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants in the culture vessel
are not dependent on the initial values C0, N0, X0 and P0. For the global stability property of the
boundary equilibrium E0 of Model (4), we have the following result.
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Theorem 5. If R0 < 1, then the boundary equilibrium E0(1, 1, 0, 1) of Model (4) is locally asymptotically
stable. Further, if:

R0 ≤ m1P+1
m1+1 < 1, (10)

then the boundary equilibrium E0 of Model (4) is globally asymptotically stable.

Proof. It is easy to show that the boundary equilibrium E0(1, 1, 0, 1) of Model (4) is locally
asymptotically stable by the characteristic equation of the linearization of Model (4). Next, we prove
the global asymptotic stability of the boundary equilibrium E0 of Model (4).

Since Ω is attractive and positively forward invariant for Model (4), hence it just considers Model
(4) in Ω. Define:

V1 =X.

Apparently, V1(1, 1, 0, 1) = 0 and V1 is continuous on Ω. If R0 ≤ m1P+1
m1+1 < 1, then the derivative

of V1 along the solutions of Model (4) is:

V1 =
rC(t)N(t)X(t)

(K1 + C(t))(K2 + N(t))
− X(t)− m1X(t)P(t)

≤
(

rC(t)N(t)
(K1 + C(t))(K2 + N(t))

− 1 − m1P
)

X(t)

≤(m1 + 1)
(

rC(t)N(t)
(K1 + C(t))(K2 + N(t))

1
m1 + 1

− R0

)
X(t)

≤(m1 + 1)
(

r
(K1 + 1)(K2 + 1)

1
m1 + 1

− R0

)
X(t) = 0

for any t ≥ 0. Hence, V1 is a Lyapunov function of Model (4) on Ω.
Define E =

{
(C, N, X, P)

∣∣∣(C, N, X, P) ∈ Ω, V1 = 0
}

. We have that:

E ⊂ {(C, N, X, P)|(C, N, X, P) ∈ Ω, X = 0, or C = 1 and N = 1}.

Let M̂ be the largest set in E, which is invariant with respect to Model (4). Clearly, M̂ is not empty,
since (1, 1, 0, 1) ∈ M̂. For any (C0, N0, X0, P0) ∈ M̂, let (C(t), N(t), X(t), P(t)) be the solution of Model
(4) with the initial Condition (5). From the invariance of M̂, we get (C(t), N(t), X(t), P(t)) ∈ M̂ ⊆ E
for any t ∈ R. Thus, we get, for each t, X(t) = 0, or C(t) = 1, and N(t) = 1.

If for some t̃, C
(
t̃
)
= 1 and N

(
t̃
)
= 1, then we have that C

(
t̃
)
= N

(
t̃
)
= 0. Hence, from the first

or second equation of Model (4), we obtain that X
(
t̃
)
= 0. Thus, for any t ∈ R, we have that X(t) ≡ 0.

Subsequently, from the first, second and forth equations of Model (4), we have that, for any t ∈ R,

C(t) = 1 − C(t), N(t) = 1 − N(t), P(t) = 1 − P(t).

Furthermore, for any t ∈ R, we have that:

C(t) = 1 − (1 − C(0))e−t, N(t) = 1 − (1 − N(0))e−t, P(t) = 1 − (1 − P(0))e−t.

If C(0) < 1 or N(0) < 1 or P(0) < 1, then C(t), N(t) and P(t) become negative values (t → −∞).
Then, we obtain that C(0) = 1, N(0) = 1 and P(0) = 1. Hence, we obtain that, for any t ∈ R,
C(t) = N(t) = P(t) ≡ 1. Therefore, we obtain M̂ = {(1, 1, 0, 1)}. The classical Lyapunov–LaSalle
invariance principle shows that E0 is globally attractive. Since it has been shown that, if R0 ≤ m1P+1

m1+1 <

1, the boundary equilibrium E0 of Model (4) is locally asymptotically stable. Hence, the boundary
equilibrium E0 of Model (4) is globally asymptotically stable. �
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Remark 2. Let us use some numerical simulations to check the correctness of the theoretical analyses. We set

r = 1.5, K1 = 0.36, K2 = 0.3, m1 = 1.5, m2 = 4, r1 = 0.96, r2 = 1.0001.

By the analysis of Theorem 5, we obtain that the boundary equilibrium E0 of Model (4) is globally asymptotically
stable (see Figure 3a).

Figure 3. (a) Simulations of the global stability of the boundary equilibrium with r = 1.5, K1 = 0.36,
K2 = 0.3, m1 = 1.5, m2 = 4, r1 = 0.96, r2 = 1.0001; (b) simulations of the global stability of
the positive equilibrium E∗ ≈ (0.6709, 0.4515, 0.3181, 0.7587) with r = 5.8, K1 = 1, K2 = 0.6,
m1 = 0.0001, m2 = 1, r1 = 6, r2 = 10. The initial conditions are C0 = 2, N0 = 4, X0 = 1, P0 = 3.

Furthermore, if the parameters are chosen as follows, r = 3.5, K1 = 0.36, K2 = 0.3, m1 =

1.5, m2 = 4, r1 = 0.96, r2 = 1.0001, it is easy to check that the condition R0 < 1 holds, but there
are two positive equilibria, E∗

1 (C
∗, N∗, X∗, P∗) ≈ (0.4783, 0.4565, 1.5782, 0.1376) and E∗

2 (C
∗, N∗, X∗, P∗)

≈ (0.9100, 0.9063, 0.1741, 0.5895). Then, the backward bifurcation phenomenon is illustrated. Therefore,
sufficient Condition (10) is reasonable.

5. Stability and Uniform Persistence

In this section, we give the local asymptotic stability of the positive equilibrium and uniform
persistence of Model (4). Further, under additional conditions, the global asymptotic stability of the
positive equilibrium is obtained by using some techniques of constructing Lyapunov functions.

5.1. The Local Asymptotic Stability of the Positive Equilibrium

For the local asymptotic stability of the positive equilibrium of Model (4), we have the
following result.

Theorem 6. If the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) exists and the condition:

m1 < K1(1−C∗)
P∗C∗(K1+C∗) +

K2(1−N∗)
P∗N∗(K2+N∗) (11)

holds, then the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is locally asymptotically stable.

Proof. For convenience, we assume that:

Δ =
K1r1N∗X∗

(K1 + C∗)2(K2 + N∗)
+

K2r2C∗X∗

(K1 + C∗)(K2 + N∗)2 .
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For the linearized system, the corresponding characteristic equation of Model (4) can be expressed
as follows:

λ4 + A1λ3 + A2λ2 + A3λ + A4 = 0,

where:
A1 =3 + m2X∗ + Δ,

A2 =Δ(m1P∗ + 2 + m2X∗) + 1 + Δ + 2(1 + m2X∗)− m1m2P∗X∗,

A3 =Δ(2m1P∗ + 3 + 2m2X∗)− 2m1m2P∗X∗ + 1 + m2X∗,

A4 =m2X∗(Δ − m1P∗) + (1 + m1P∗)Δ.

According to the Routh-Hurwitz criterion, we need to show that:

A1 A2 − A3 > 0, A3(A1 A2 − A3)− A2
1 A4 > 0, A4 > 0.

For the sake of simplicity, we define:

Δ1 =A1, Δ2 = A1 A2 − A3, Δ3 = A3(A1 A2 − A3)− A2
1 A4, Δ4 = A4Δ3.

By computation, it can be obtained that:

Δ1 = A1 > 0,
Δ2 = m2X∗(1 + Δ + m2X∗)(Δ − m1P∗) + (2 + 2m2X∗ + Δ)(3 + m2X∗)

+Δ(6 + m1P∗) + Δ(m2X∗ + Δ)(3 + m1P∗),
Δ3 = P1(Δ − m1P∗) + Q,
P1 = 2m2X∗Δ(1 + Δ)(3 + m1P∗ + m2X∗) + 4m2X∗(1 + Δ(1 + m2X∗))

+4m2X∗(1 + m2X∗)(m2X∗ + 3) + 2(m2X∗)2Δ(1 + m2X∗)
+m2X∗Δ(1 + m2X∗)(2m1P∗ + 3 + 2m2X∗),

Q = a1(1 + m1P∗) + a2(3 + m1P∗ + m2X∗) + a3(1 + m2X∗) + a4m1P∗m2X∗Δ
+2a5m1P∗m2X∗ + a6m2X∗Δ + Δ2(2 + 3m2X∗)(3 + 2m2X∗) + 14Δ + 4Δ2,

a1 = 2Δ3 + 8Δ2 + 7Δ + m2X∗Δ(m2X∗ + 7) + m1P∗Δ2(Δ + 2),
a2 = Δ(1 + Δ)(1 + m2X∗) + Δ3(2 + m1P∗) + Δ2,
a3 = 2(1 + (1 + m2X∗)(3 + m2X∗)),
a4 = 2(m2X∗)2 + (1 + Δ)2,
a5 = 4 + (m2X∗)2 + m1P∗m2X∗ + 2m2X∗,
a6 = 4m2X∗ + 4Δ + 13,
Δ4 = A4Δ3.

If:
Δ =

K1r1N∗X∗

(K1 + C∗)2(K2 + N∗)
+

K2r2C∗X∗

(K1 + C∗)(K2 + N∗)2 > m1P∗,

that is,
m1 < K1(1−C∗)

P∗C∗(K1+C∗) +
K2(1−N∗)

P∗N∗(K2+N∗) ,

we obtain that Δ1 > 0, Δ2 > 0, Δ3 > 0, and Δ4 > 0. Hence, from the Routh-Hurwitz criterion, we
obtain that the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is locally asymptotically stable.
This completes the proof of Theorem 6. �

5.2. Uniform Persistence

As pointed out in [29,45,50], uniform persistence is an important concept in the cultivation of
microorganisms. From a biological perspective, one basic question about biological models involves
the long-time survival of the species. To this end, we may want to know whether the constructed
model is uniformly persistent with respect to one or more species. That is, the number of the species
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will keep positive and bounded away from zero for any positive time. In recent years, this kind of
research has been particularly common in microorganisms (see, for example, [45]), especially in the
simulation of harmful algae growth, where we usually want to predict if the harmful algae will go
towards extinction or if blooms of the harmful algae will remain, which directly impacts human health
and food webs in aquatic ecosystems. From a mathematical point of view, uniform persistence can
give sufficient criteria for the existence of a positive equilibrium for the dissipative system [51].

Model (4) is said to be uniformly persistent if there are positive constants n1, n2, n3,
n4, N1, N2, N3, N4, such that each positive solution (C(t), N(t), X(t), P(t)) of Model (4) satisfies:

n1 ≤ lim inft→∞ C(t) ≤ lim supt→∞ C(t) ≤ N1,
n2 ≤ lim inft→∞ N(t) ≤ lim supt→∞ N(t) ≤ N2,
n3 ≤ lim inft→∞ X(t) ≤ lim supt→∞ X(t) ≤ N3,
n4 ≤ lim inft→∞ P(t) ≤ lim supt→∞ P(t) ≤ N4.

Now, we give a result on the uniform persistence of Model (4). To proceed, we introduce
the following notation and terminology. Denote by R(t) (t ≥ 0) the family of solution operators
corresponding to Model (4). The ω-limit set ω(x) of x consists of y , such that there exists a sequence
tn → ∞ as n → ∞ with R(tn)x → y as n → ∞ . Define:

G =
{
(C, N, X, P) ∈ R4

+ | C ≤ C ≤ 1, N ≤ N ≤ 1, X ≥ 0, P ≤ P ≤ 1
}

,

G0 = {(C, N, X, P) ∈ G | C ≤ C ≤ 1, N ≤ N ≤ 1, X > 0, P ≤ P ≤ 1},

∂G0 = G\G0,

M∂= {(C, N, X, P) ∈ ∂ G0 | R(t)(C, N, X, P) satisfies Model (4) and R(t)(C, N, X, P) ∈
∂G0 , ∀t ≥ 0},

Ω(M∂) = ∪x∈M∂
ω(x).

From Theorem 2, we obtain that G is positively invariant corresponding to R(t). It is easy to see
that G0 is also positively invariant.

Clearly, ∂G0 is relatively compact in G. Now, we show that Ω(M∂) = {(1, 1, 0, 1)}.
In fact, {(1, 1, 0, 1)} ⊆ Ω(M∂). For any (C(0), N(0), X(0), P(0)) ∈ M∂, it has that, for all t ≥ 0,

X(t) ≡ 0 and limt→+∞ C(t) = limt→+∞ N(t) = limt→+∞ P(t) = 1. Thus, Ω(M∂) = {(1, 1, 0, 1)}.

Theorem 7. If R0 > 1, then Model (4) is uniformly persistent.

Proof. By Theorem 1, it can be obtained that nonnegative solutions of Model (4) are point dissipative.
According to the definitions above, it suffices to show that ∂G0 repels uniformly nonnegative solutions
of Model (4). It is obvious that there is only one equilibrium E0 in M∂.

We now show that Ws(E0) ∩ G0 = ∅. Assume Ws(E0) ∩ G0 �= ∅, then there exists a positive
solution of Model (4), such that lim

t→∞
(C(t), N(t), X(t), P(t)) = (1, 1, 0, 1). Assume:

U(C(t), N(t), P(t)) = rC(t)N(t)
(K1+C(t))(K2+N(t)) − 1 − m1P(t),

then:
U(1, 1, 1) = r

(K1+1)(K2+1) − 1 − m1.

Then, r > (K1 + 1)(K2 + 1)(1 + m1) is equivalent to U(1, 1, 1) > 0.
Since lim

t→∞
U(C(t), N(t), P(t)) = U(1, 1, 1) > 0, there exists T > 0, such that, for any t ≥ T,

U(C(t), N(t), P(t)) > 1
2 U(1, 1, 1) > 0.
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By the third equation of Model (4), we obtain that, for any t ≥ T,

X(t) = rC(t)N(t)X(t)
(K1+C(t))(K2+N(t)) − X(t)− m1P(t)X(t)

= U(C(t), N(t), P(t))X(t)
> 1

2 U(1, 1, 1)X(t).

This implies that X(t) → +∞ as t → +∞ , which leads to a contradiction. Thus, Ws(E0)∩ G0 = ∅.
In the following, let us show that E0 is factually isolated. That is, there exists some neighborhood

U of E0, such that E0 is the largest invariant set in U. In fact, for sufficiently small positive constant ε,
let us choose:

U = U(E0) = {(C, N, X, P) ∈ G|1 − C < ε, 1 − N < ε, X < ε, 1 − P < ε}.

We show that E0 is the largest invariant set of U for some ε.
If not, for any sufficiently small ε, there exists some invariant set W(W ⊂ U), such that W\E0 is

not empty. Let (C0, N0, X0, P0)∈ W\E0 and (C(t), N(t), X(t), P(t)) be the solution of Model (4) with
the initial function (5). Then, we have that (C(t), N(t), X(t), P(t)) ∈ U, t ∈ (−∞, +∞). From the third
equation of Model (4), we obtain that, for t ∈ (−∞,+∞),

X(t)≥ r(1 − ε)(1 − ε)X(t)
(K1 + 1 − ε)(K2 + 1 − ε)

− X(t)− m1X(t).

Since r > (K1 + 1)(K2 + 1)(m1 + 1), we can choose sufficiently small ε, such that:

r(1 − ε)(1 − ε) > (K1 + 1 − ε)(K2 + 1 − ε)(1 + m1).

If X0 > 0, then we have X(t) → +∞ (t → +∞), which contracts the boundedness of X(t).
Hence, we get X0 = 0. From the third equation of Model (4), we obtain that X(t) ≡ 0. From the
first, second and forth equations of Model (4), for t ∈ (−∞,+∞), we obtain that C(t) = 1 − C(t),
N(t) = 1 − N(t) and P(t) = 1 − P(t). Hence, we must have that C0 = N0 = P0 = 1. Therefore,
(C0, N0, X0, P0) = (1, 1, 0, 1), which is a contradiction. Thus, we obtain that E0 is factually isolated.

Clearly, E0 is acyclic in M∂. By paper [52], ∂G0 repels uniformly nonnegative solutions of Model
(4). It then follows that Model (4) is persistent.

Define p : X → R+ by p(C, N, X, P) = X, (C, N, X, P) ∈ G. Obviously, we obtain that G0 = p−1

(0,+∞) and ∂G0 = p−1(0). Thus, by ([53], Theorem 3), we have lim inft→∞(C(t), N(t), X(t), P(t)) ≥
(η, η, η, η). It then follows that Model (4) is uniformly persistent. The proof of Theorem 7 is completed.
�

According to [51,53], we easily obtain the following result.

Corollary 8. If R0 > 1, then Model (4) has one global attractor A0 and also has at least one positive equilibrium
E∗(C∗, N∗, X∗, P∗) ∈ A0.

5.3. The Global Asymptotic Stability of the Positive Equilibrium

In this subsection, the global asymptotic stability of the positive equilibrium E∗(C∗, N∗, X∗, P∗)
of Model (4) is studied.
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Theorem 9. Assume that R0 > 1 and Model (4) has a unique positive equilibrium E∗(C∗, N∗, X∗, P∗). Let:

D1= r1(2 + m1P∗)(K1 + C∗)(K2 + N∗)− r2N∗,

D2= r2(2 + m1P∗)(K1 + C∗)(K2 + N∗)− r2,

D3= b2
13 + b2

23 + 4b33,

D4= 4b33b44 +
(

b2
23 + b2

13

)
b44 +

(
b2

14 + b2
24

)
b33 − b2

34 + b23b24b34 + b13b14b34.

If D1 ≥ 0, D2 ≥ 0, D3 < 0 and D4 > 0 hold, then the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model
(4) is globally asymptotically stable. Here:

b13=
2r1 + r1m1P∗

r
+

r
(K1 + 1)(K2 + 1)(K1 + C∗)

− rN∗

(K1 + C∗)(K2 + N∗)
,

b14=
r1m1α

r
, b23 =

2r2 + r2m1P∗

r
, b24 =

r2m1α

r
, b33 = −

(
r2

1 + r2
2
)
(1 + m1P∗)
r2 ,

b34=

(
r2

1 + r2
2
)
m1α

r2 + m1 + m2, b44 = −(1 + m2X∗).

Proof. Let us consider the following Lyapunov function on A0,

V2 = 1
2
(
C − C∗ + r1

r (X − X∗)
)2

+ 1
2
(

N − N∗ + r2
r (X − X∗)

)2

+X − X∗ − X∗ ln X
X∗ + P − P∗ − P∗ ln P

P∗ .

Clearly, V2(C∗, N∗, X∗, P∗) = 0, and V2 is positive definite with respect to E∗(C∗, N∗ , X∗, P∗). The
derivative of V2 along the solutions of Model (4) is:

V2 =
(
C(t)− C∗ + r1

r (X(t)− X∗)
)(

C(t) + r1
r X(t)

)
+
(

N(t)− N∗ + r2
r (X(t)− X∗)

)(
N(t) + r2

r X(t)
)

+X(t)−X∗
X(t) X(t) + P(t)−P∗

P(t) P(t)

=
(
C(t)− C∗ + r1

r (X(t)− X∗)
)(

1 − C(t)− r1
r X(t)− r1m1X(t)P(t)

r

)
+
(

N(t)− N∗ + r2
r (X(t)− X∗)

)(
1 − N(t)− r2

r X(t)− r2m1X(t)P(t)
r

)
+(X(t)− X∗)

(
rC(t)N(t)

(K1+C(t))(K2+N(t)) − 1 − m1P(t)
)

+ P(t)−P∗
P(t) (1 − P(t)− m2X(t)P(t))

for any t ≥ 0.
Noting that: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − C∗ − r1C∗N∗X∗
(K1+C∗)(K2+N∗) = 0,

1 − N∗ − r2C∗N∗X∗
(K1+C∗)(K2+N∗) = 0,

rC∗N∗X∗
(K1+C∗)(K2+N∗) − X∗ − m1X∗P∗ = 0,

1 − P∗ − m2X∗P∗ = 0.

Thus, we have that:

V2 =
(
C(t)− C∗ + r1

r (X(t)− X∗)
)(

C∗ − C(t) + r1
r (X∗ − X(t)) + r1m1

r (X∗P∗ − X(t)P(t))
)

+
(

N(t)− N∗ + r2
r (X(t)− X∗)

)(
N∗ − N(t) + r2

r (X∗ − X(t)) + r2m1
r (X∗P∗ − X(t)P(t))

)
+(X(t)− X∗)

(
rC(t)N(t)

(K1+C(t))(K2+N(t)) − rC∗N∗
(K1+C∗)(K2+N∗)

)
+m1(X(t)− X∗)(P∗ − P(t)) + P(t)−P∗

P(t) (P∗ − P(t) + m2(X∗P∗ − X(t)P(t)))

for any t ≥ 0.
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For any t ≥ 0, we have that:

rC(t)N(t)
(K1+C(t))(K2+N(t)) − rC∗N∗

(K1+C∗)(K2+N∗)
= − rC∗N∗

(K1+C∗)(K2+N∗) +
rC(t)N∗

(K1+C∗)(K2+N∗) −
rC(t)N∗

(K1+C∗)(K2+N∗)
+ rC(t)N(t)

(K1+C∗)(K2+N∗) −
rC(t)N(t)

(K1+C∗)(K2+N∗) +
rC(t)N(t)

(K1+C∗)(K2+N(t))

− rC(t)N(t)
(K1+C∗)(K2+N(t)) +

rC(t)N(t)
(K1+C(t))(K2+N(t)) .

Hence, it can be obtained that, for any t ≥ 0,

V2 =
(
C(t)− C∗ + r1

r (X(t)− X∗)
)(

C∗ − C(t) + r1
r (X∗ − X(t))

+ r1m1P∗
r (X∗ − X(t)) + r1m1X(t)

r (P∗ − P(t))
)

+
(

N(t)− N∗ + r2
r (X(t)− X∗)

)(
N∗ − N(t) + r2

r (X∗ − X(t))
+ r2m1P∗

r (X∗ − X(t)) + r2m1X(t)
r (P∗ − P(t))

)
+(X(t)− X∗)

(
− rC∗N∗

(K1+C∗)(K2+N∗) +
rC(t)N∗

(K1+C∗)(K2+N∗)
− rC(t)N∗

(K1+C∗)(K2+N∗) +
rC(t)N(t)

(K1+C∗)(K2+N∗) −
rC(t)N(t)

(K1+C∗)(K2+N∗)
+ rC(t)N(t)

(K1+C∗)(K2+N(t)) −
rC(t)N(t)

(K1+C∗)(K2+N(t)) +
rC(t)N(t)

(K1+C(t))(K2+N(t))

)
− (P(t)−P∗)2

P(t) + m2(P(t)−P∗)
P(t) (X∗(P∗ − P(t)) + P(t)(X∗ − X(t)))

+m1(X(t)− X∗)(P∗ − P(t)).

Motivated by the papers mentioned in [50,54], the derivative of V2 along the solutions of Model
(4) is represented in quadratic form. Then, we obtain that:

V2 = −(C(t)− C∗)2 − (N(t)− N∗)2 +
(

2r1+r1m1P∗
r + rC(t)N(t)

(K1+C(t))(K2+N(t))(K1+C∗)

− rN∗
(K1+C∗)(K2+N∗)

)
(C(t)− C∗)(X∗ − X(t)) +

(
2r2+r2m1P∗

r

+ rC(t)N(t)
(K2+N(t))(K2+N∗)(K1+C∗) −

rC(t)
(K1+C∗)(K2+N∗)

)
(N(t)− N∗)(X∗ − X(t))

− 1+m2X∗
P(t) (P(t)− P∗)2 + r1m1X

r (C(t)− C∗)(P∗ − P(t))

− (r2
1+r2

2)(1+m1P∗)
r2 (X(t)− X∗)2 +

(
(r2

1+r2
2)m1X(t)
r2 + m1 + m2

)
(X∗ − X(t))(P∗ − P(t))

+ r2m1X(t)
r (N(t)− N∗)(P∗ − P(t))

for any t ≥ 0.
If the condition D1 ≥ 0 holds, we obtain that, for any t ≥ 0,

2r1+r1m1P∗
r + rC(t)N(t)

(K1+C(t))(K2+N(t))(K1+C∗) − rN∗
(K1+C∗)(K2+N∗) ≥ 0.

Furthermore, from the condition D2 ≥ 0 and C(t) ≤ 1 for any t ≥ 0, we obtain that:

2r2 + r2m1P∗

r
+

rC(t)N(t)
(K2 + N(t))(K2 + N∗)(K1 + C∗)

− rC(t)
(K1 + C∗)(K2 + N∗)

≥ 0.
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These conditions ensure that the coefficients of (C(t)−C∗)(X(t)− X∗) and (N(t)− N∗)(X(t)− X∗)
are nonnegative. Thus, we obtain that, for any t ≥ 0,

V2 ≤ −(C(t)− C∗)2 − (N(t)− N∗)2 +
(

2r1+r1m1P∗
r + r

(K1+1)(K2+1)(K1+C∗)

− rN∗
(K1+C∗)(K2+N∗)

)
|C(t)− C∗||X∗ − X(t)|

+
(

2r2+r2m1P∗
r

)
|N(t)− N∗||X∗ − X(t)| − (1 + m2X∗)(P(t)− P∗)2

+ r1m1α
r |C(t)− C∗||P∗ − P(t)| − (r2

1+r2
2)(1+m1P∗)

r2 (X(t)− X∗)2

+

(
(r2

1+r2
2)m1α

r2 + m1 + m2

)
|X∗ − X(t)||P∗ − P(t)|+ r2m1α

r |N(t)− N∗||P∗ − P(t)|
= YT(t)WY(t),

where Y(t) = (|C(t)− C∗|, |N(t)− N∗|, |X(t)− X∗|, |P(t)− P∗|). W is a symmetric 4 × 4 matrix and
W =

{
bij
}

1≤i,j≤4 with:

W =

⎛⎜⎜⎜⎝
b11

1
2 b12

1
2 b13

1
2 b14

1
2 b12 b22

1
2 b23

1
2 b24

1
2 b13

1
2 b23 b33

1
2 b34

1
2 b14

1
2 b24

1
2 b34 b44

⎞⎟⎟⎟⎠.

Here, b11 = −1, b12 = 0, b22 = −1. The other parameters have the same definitions as in Theorem
9. Then, W is negative definite. By Lemma 6.2 provided in [50], we can obtain that the real quadratic
form YT(t)WY(t) is negative definite. Then, by using some classical analysis techniques of differential
equations, the positive equilibrium E∗(C∗, N∗, X∗, P∗) of Model (4) is globally asymptotically stable. �

Remark 3. Obviously, it is easy to obtain that b11 = −1 < 0, and:∣∣∣∣∣ b11
1
2 b12

1
2 b12 b22

∣∣∣∣∣ = 1 > 0.

If the conditions D3 < 0 and D4 > 0 hold, we obtain that:∣∣∣∣∣∣∣
b11

1
2 b12

1
2 b13

1
2 b12 b22

1
2 b23

1
2 b13

1
2 b23 b33

∣∣∣∣∣∣∣ < 0,

and: ∣∣∣∣∣∣∣∣∣
b11

1
2 b12

1
2 b13

1
2 b14

1
2 b12 b22

1
2 b23

1
2 b24

1
2 b13

1
2 b23 b33

1
2 b34

1
2 b14

1
2 b24

1
2 b34 b44

∣∣∣∣∣∣∣∣∣
> 0.

Next, we illustrate that the conditions given in Theorem 9 are reasonable. We set r = 5.8, K1 = 1, K2 =

0.6, m1 = 0.0001, m2 = 1, r1 = 6, r2 = 10. It is easy to see that there exists a unique positive equilibrium
E∗(C∗, N∗, X∗, P∗) ≈ (0.6709, 0.4515, 0.3181, 0.7587), and the conditions D1–D4 hold. By Theorem 9, the
positive equilibrium of Model (4) is globally asymptotically stable (see Figure 3b).

In general, it is very difficult to obtain the global stability properties of the positive equilibrium of Model (4).
In this paper, we have obtained the sufficient conditions to ensure the global stability properties of the positive
equilibrium by constructing a suitable Lyapunov function. Because of the complexity of the conditions, it is
difficult to grasp biological intuition. However, from the numerical simulations, we have found some interesting
biological phenomena. The conditions D1–D4 can be satisfied if the flocculation rate of microorganisms (m1) is
small enough (see, Figure 3b). From a biological point of view, these conditions are reasonable. For more detailed
biological considerations, we will leave it for further investigation.
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6. Control Strategies

In this section, some control strategies are provided by suitable theoretical analysis. If R0 < 1
holds, then, we have from Theorem 5 that the boundary equilibrium E0 of Model (4) is locally
asymptotically stable. We note that the condition R0 < 1 is equivalent to the following inequality,

R0 = r
(K1+1)(K2+1)(m1+1) < 1. (12)

All of the parameters r, K1, K2 and m1 in (12) are defined as in Model (4). (12) can be further
written as the following form,

r(
K1
C0 +1

)(
K2
N0 +1

)
(m1P0+D)

< 1. (13)

Here, all of the parameters r, K1, K2, m1, C0, N0, P0 and D in (13) are defined as in Model (3).
In view of the biological meanings of the parameters in Model (3) and Condition (13), Theorem 5

indicates that the concentration of Rhodopseudomonas palustris in the chemostat tends to zero, and the
concentration of the carbon source, nitrogen source and flocculants may tend to the constant values C0,
N0 and P0, respectively, as time t increases, if one of the following two cases occurs: (a) reducing the
absorption of Rhodopseudomonas palustris or the carbon input concentration, or the nitrogen input
concentration; (b) improving the velocity or the flocculation effect or flocculant input concentration.
These cases are reasonable, since they imply the insufficient sources for Rhodopseudomonas palustris
to grow. Hence, in the environmental science field, it can be used to remove algae and heavy metals.

From Theorem 7, we have that Model (3) is uniformly persistent if R0 > 1. This means that the
concentrations of the carbon source, nitrogen source, Rhodopseudomonas palustris and flocculants in
the chemostat may be ultimately maintained at some positive constant values, as time t increases, if
one of the following two cases occurs: (a) improving the absorption of Rhodopseudomonas palustris,
or the carbon input concentration, or the nitrogen input concentration; (b) reducing the velocity or the
flocculation effect or flocculant input concentration.

These control strategies can be performed by numerical simulations.
In the following, for convenience, we simulate the extinction or persistence of microorganism

(X(t)) numerically by using (12) and Model (4).
If the parameters are chosen as in Table A2 (see Appendix A), Rhodopseudomonas palustris in the

chemostat will tend to extinction (see Figure 4a).

Figure 4. (a) Rhodopseudomonas palustris in the chemostat will tend to extinction with the parameters
in Table A1. (b) Rhodopseudomonas palustris in the chemostat will tend to be constant if the absorption
of Rhodopseudomonas palustris (r) is improved. The initial conditions are C0 = 2, N0 = 4, X0 = 1,
P0 = 3.

If the absorption of Rhodopseudomonas palustris (r) is improved from r = 5.8 to r = 8 and the
other parameters are the same as Table A2, Rhodopseudomonas palustris in the chemostat will tend to
be constant (see Figure 4b).
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If the flocculation effect (m1) is reduced from m1 = 1 to m1 = 0.1, Rhodopseudomonas palustris in
the chemostat will tend to be constant (see Figure 5a).

Figure 5. (a) Rhodopseudomonas palustris in the chemostat will tend to be constant if the flocculation
effect (m1) is reduced. (b) Rhodopseudomonas palustris in the chemostat will tend to be constant if the
Michaelis–Menten constant of carbon (K1) is reduced. The initial conditions are C0 = 2, N0 = 4, X0 = 1,
P0 = 3.

If Michaelis–Menten constant of carbon (K1) is reduced from K1 = 1 to K1 = 0.5,
Rhodopseudomonas palustris in the chemostat will tend to be constant (see Figure 5b).

If Michaelis–Menten constant of nitrogen (K2) is reduced from K2 = 1 to K2 = 0.25,
Rhodopseudomonas palustris in the chemostat will tend to be constant (see Figure 6).

Figure 6. Rhodopseudomonas palustris in the chemostat will tend to be constant if the Michaelis–Menten
constant of nitrogen (K2) is reduced. The initial conditions are C0 = 2, N0 = 4, X0 = 1, P0 = 3.

7. Discussion and Conclusions

In the paper, based on some biological considerations and chemostat models, a dynamic model
governed by ordinary differential equations with four variables (carbon source, nitrogen source,
Rhodopseudomonas palustris and flocculants) is presented. There is a boundary equilibrium and at
most five positive equilibria for the proposed model. To give a theoretical analysis for the existence of
all of the positive equilibria of Model (4), the method of the Descartes rule of signs is applied to the
classifications of the positive roots of a fifth order algebraic equation.

The local and global stability properties of the boundary equilibrium of Model (4) have been
studied in detail. An interesting phenomenon of backward and forward bifurcations is observed.
That is, there may exist two positive equilibria even if the condition R0 < 1 holds. Hence, sufficient
Condition (10) to ensure the global stability of the boundary equilibrium is reasonable in mathematics.

The local stability of the positive equilibrium of Model (4) is also carried out. From Condition (11),
we have that the positive equilibrium is locally asymptotically stable when the flocculation coefficient
m1 is small enough. Hence, Condition (11) is also reasonable in biology.
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Uniform persistence of Model (4) has also been completely studied under the condition R0 >

1. Uniform persistence has very important significance both in mathematics and biology, and it
characterizes the long-term survival of some microorganisms [45].

Finally, some control strategies are provided by simple theoretical analysis. From Theorem 5,
we have that Rhodopseudomonas palustris in the chemostat will tend to extinction if R0 < 1. In
this case, these control strategies can be applied to remove Cyanobacteria, which are well known to
produce a variety of toxins and have serious harm on human health. From Theorem 7, we have that
Rhodopseudomonas palustris in the chemostat will tend to be positive constant if R0 > 1. In this case,
these control strategies can be widely used for the collection of useful microorganisms.

It is well-known that the existence of time delays is inevitable in biology. For example, in the
cultivation of microorganisms, there are always time delays in the process of transferring nutrients and
the uptake of nutrients. Hence, chemostat models with time delays that account for the time lapsing
between the uptake of nutrients by cells and the incorporation of these nutrients as biomass have been
given much attention [40,55–57]. Based on Model (3), it may have the following more general form
with time delays,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dC(t)
dt =

(
C0 − C(t)

)
D − r1C(t)N(t)X(t)

δ1(K1+C(t))(K2+N(t)) + ρ1X(t − σ),
dN(t)

dt =
(

N0 − N(t)
)

D − r2C(t)N(t)X(t)
δ2(K1+C(t))(K2+N(t)) + ρ2X(t − σ),

dX(t)
dt = re−d1τC(t−τ)N(t−τ)X(t−τ)

(K1+C(t−τ))(K2+N(t−τ))
− DX(t)− d1X(t)− m1X(t)P(t),

dP(t)
dt =

(
P0 − P(t)

)
D − m2X(t)P(t).

(14)

In Model (14), the constants ρ1 ≥ 0 and ρ2 ≥ 0 are the rate constants at which the carbon source
and nitrogen source are recycled because of the death of Rhodopseudomonas palustris. The constant
σ ≥ 0 is a fixed time during which the carbon source and nitrogen source are released completely
from dead Rhodopseudomonas palustris. The constant τ ≥ 0 denotes the time delay involved in the
conversion of nutrients to Rhodopseudomonas palustris. The factor e−d1τ is the probability constant at
which Rhodopseudomonas palustris remains in the culture vessel during the conversion process. The
theoretical analysis of Model (14) will be studied separately.
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Appendix

In this section, let us apply the Descartes rule of signs to the classifications of the positive roots of
f (X∗) [47]. Let m represent the number of sign changes of the coefficients a, b, c, d, e, f of f (X∗) and n
represent the number of the positive roots.
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Table A1. The number of the positive roots of f (X∗) for R0 < 1 and R0 > 1.

Cases a b c d e f R0 m n

1 − + + + + + R0 < 1 1 1
− + + + + − R0 > 1 2 0, 2

2 − + + + − + R0 < 1 3 1, 3
− + + + − − R0 > 1 2 0, 2

3 − + + − + + R0 < 1 3 1, 3
− + + − + − R0 > 1 4 0, 2, 4

4 − + + − − + R0 < 1 3 1, 3
− + + − − − R0 > 1 2 0, 2

5 − + − + + + R0 < 1 3 1, 3
− + − + + − R0 > 1 4 0, 2, 4

6 − + − + − + R0 < 1 5 1, 3, 5
− + − + − − R0 > 1 4 0, 2, 4

7 − + − − + + R0 < 1 3 1, 3
− + − − + − R0 > 1 4 0, 2, 4

8 − + − − − + R0 < 1 3 1, 3
− + − − − − R0 > 1 2 0, 2

9 − − + + + + R0 < 1 1 1
− − + + + − R0 > 1 2 0, 2

10 − − + + − + R0 < 1 3 1, 3
− − + + − − R0 > 1 2 0, 2

11 − − + − + + R0 < 1 3 1, 3
− − + − + − R0 > 1 4 0, 2, 4

12 − − + − − + R0 < 1 3 1, 3
− − + − − − R0 > 1 2 0, 2

13 − − − + + + R0 < 1 1 1
− − − + + − R0 > 1 2 0, 2

14 − − − + − + R0 < 1 3 1, 3
− − − + − − R0 > 1 2 0, 2

15 − − − − + + R0 < 1 1 1
− − − − + − R0 > 1 2 0, 2

16 − − − − − + R0 < 1 1 1
− − − − − − R0 > 1 0 0

Table A2. Parameter values used in the simulations of control strategies shown in Figures 3–6.

Description Parameter Value

the growth rate of Rhodopseudomonas palustris r 5.8
the quantity of decreasing of carbon source r1 6

the quantity of decreasing of nitrogen source r2 10
the flocculation effect m1 1
the flocculation ratio m2 1

Michaelis–Menten constant of carbon K1 1
Michaelis–Menten constant of nitrogen K2 0.6

Appendix

In Section 3, we have discussed the phenomena of backward and forward bifurcations by
numerical simulations. In this section, the center manifold theory is used on Model (4) to obtain
the rigorous result (see, for example, [40,47,48]).
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Let C = x1, N = x2, X = x3, P = x4, so that Model (4) can be re-written in the following form:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dx1(t)
dt = 1 − x1 − r1x1x2x3

(K1+x1)(K2+x2)
= g1,

dx2(t)
dt = 1 − x2 − r2x1x2x3

(K1+x1)(K2+x2)
= g2,

dx3(t)
dt = rx1x2x3

(K1+x1)(K2+x2)
− x3 − m1x3x4 = g3,

dx4(t)
dt = 1 − x4 − m2x3x4 = g4.

(B1)

The Jacobian matrix of Model (15) at E0(1, 1, 0, 1) is given by:

J(E0) =

⎛⎜⎜⎜⎜⎝
−1 0 −r1

(K1+1)(K2+1) 0

0 −1 −r2
(K1+1)(K2+1) 0

0 0 r
(K1+1)(K2+1) − 1 − m1 0

0 0 −m2 −1

⎞⎟⎟⎟⎟⎠.

Suppose r is chosen as a bifurcation parameter. Solving R0 = 1 gives:

r = r∗ = (K1 + 1)(K2 + 1)(m1 + 1).

Eigenvectors of J(E0)|r=r∗

It can be shown that the Jacobian matrix of Model (15) at r = r∗ has a right eigenvector
(corresponding to the zero eigenvalue) given by ω = (ω1, ω2, ω3, ω4)

T , where:

ω1 = −r1
(K1+1)(K2+1)ω3, ω2 = −r2

(K1+1)(K2+1)ω3, ω3 = ω3 > 0, ω4 = −m2ω3.

Further, the Jacobian matrix of Model (15) at r = r∗ has a left eigenvector (associated with the
zero eigenvalue) given by v = (v1, v2, v3, v4)

T , where:

v1 = 0, v2 = 0, v3 = v3 > 0, v4 = 0.

Computations of â and b̂
For Model (15), the associated non-zero partial derivatives of g = (g1, g2, g3, g4)

T (at E0) are
given by:

∂2g3

∂x1∂x3
=

rK1

(K1 + 1)2(K2 + 1)
,

∂2g3

∂x2∂x3
=

rK2

(K1 + 1)(K2 + 1)2 ,

∂2g3

∂x3∂x4
=−m1,

∂2g3

∂x3∂r∗ =
1

(K1 + 1)(K2 + 1)
.

It follows from the above expressions that:

â =v3

4

∑
i=1,j=1

ωiωj∂
2g3

∂xi∂xj

=2v3

(
ω1ω3

rK1

(K1 + 1)2(K2 + 1)
+ ω2ω3

rK2

(K1 + 1)(K2 + 1)2 − ω3ω4m1

)

=2v3ω2
3

(
m1m2 − rr1K1

(K1 + 1)3(K2 + 1)2 − rr2K2

(K1 + 1)2(K2 + 1)3

)
,

from which it can be shown that â > 0 if:

m1m2 >
rr1K1

(K1 + 1)3(K2 + 1)2 +
rr2K2

(K1 + 1)2(K2 + 1)3 .
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For the sign of b̂, it can be shown that the associated non-vanishing partial derivatives of g are:

b̂ =v3

4

∑
i=1

ωi∂
2g3

∂xi∂r∗ =
2v3ω3

(K1 + 1)(K2 + 1)
> 0.

Thus, we have established Theorem 4 in view of [48]. The proof is completed.
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Abstract: Combination antiviral drug therapy improves the survival rates of patients chronically
infected with hepatitis B virus by controlling viral replication and enhancing immune responses.
Some of these drugs have side effects that make them unsuitable for long-term administration.
To address the trade-off between the positive and negative effects of the combination therapy,
we investigated an optimal control problem for a delay differential equation model of immune
responses to hepatitis virus B infection. Our optimal control problem investigates the interplay
between virological and immunomodulatory effects of therapy, the control of viremia and the
administration of the minimal dosage over a short period of time. Our numerical results show that
the high drug levels that induce immune modulation rather than suppression of virological factors
are essential for the clearance of hepatitis B virus.

Keywords: optimal control; hepatitis B; delay differential equations (DDE); immune response;
drug therapy

1. Introduction

Hepatitis B virus (HBV) is the leading viral cause of liver disease, affecting 250–350 million
people worldwide. Chronic HBV leads to the development of liver cirrhosis and liver cancer [1].
Despite the availability of effective HBV vaccination [2], the prevalence of chronic HBV has only
marginally declined [3,4]. The natural course of chronic HBV includes an immune-tolerant phase,
hepatitis B e-antigen positive immuno-active and -inactive phases and a hepatitis B e-antigen negative
immuno-active phase [5]. Understanding the virological and immunological characteristics of each of
these stages can provide a useful framework for the management of chronic HBV [6,7].

Currently, seven drugs have been approved for treating chronic HBV disease: standard and
PEGylated interferon (IFN-α) and five nucleo(t)side analogs (NAs) [8]. These medications suppress
HBV replication and liver inflammation, but do not lead to cure. The interferon-α treatments modulate
immune responses that may lower viral levels. It is given for a finite time (usually 12 months) due to
its toxic side effects [8,9]. The nucleo(t)side analogues are administrated for many years and sometimes
for life and are responsible for viral suppression. However, life-long therapy is difficult due to costs,
side effects, compliance and, most importantly, the development of antiviral drug resistance [10].
Combination therapy has not shown an increased effect on treatment response (but has reduced the
rate of drug resistance) [11]. This has made it difficult to establish a universal guideline for treatment
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start, duration, which type or combinations of drugs to use [7] and how to define the success of therapy
(virologically, serologically and/or immunologically) [7,12].

To provide insight into the optimal combination therapy and, in particular, into the
immune-mediated effects of interferon-α, we design an optimal control study for a mathematical
model of hepatitis B infection. Mathematical models have been used to address transition from acute
to chronic HBV infections [13–16] and to study the effects of drug therapy [17–19]. Optimal control
theory was developed by Pontryagin et al. for obtaining necessary conditions to characterize optimal
controls for systems of ordinary differential equations (ODEs) [20]. Optimal control models have been
used previously to design treatment strategies for disease models described by systems of ordinary
differential equations with no delays [21–25] and systems of delay differential equations (DDEs) [26].
Kharatishvili [27] developed the extension of the Pontryagin’s maximum principle for systems of DDEs
with constant time delays. For approximation and numerical methods for such problems, see [28,29].

In this paper, we modify an in-host DDE model of immune responses to hepatitis B infection
introduced in [14] by adding the effects of combination drug therapy. In particular, we consider the
drug effects in blocking viral production, reducing viral infection, enhancing the killing of infected
cells by immune responses and removing immune cell exhaustion. We will use this as a starting
model for designing an optimal control problem that advises what is the best combination therapy
to ensure viral clearance, immune activation and the least amount of liver damage. Time-varying
rates for therapies will be the controls in the system. Optimal control has been applied to the study of
hepatitis B therapy using ODE [30,31] and DDE [32] models that did not consider an immune system
component and using an ODE model that considers the enhancement of immune responses following
administration of traditional Chinese medicine [33].

Here, we introduce the DDE system with constant time delay from [14], derive its corresponding
control formulation and use it to determine the temporal, quantitative and qualitative effects of the
drugs that lead to hepatitis B virus control, balancing the goals of reducing viral load and minimizing
the negative side effects of therapy. Our results indicate that early drug therapy that mainly modulates
and restores the immune responses against the virus is mandatory for the success of the therapy.

2. Mathematical Model and Analysis

2.1. Model of Hepatitis B Virus (HBV) Drug Therapy

To understand the various modes of action of antiviral therapy, we modify the model of
acute infection published in [14] by considering the combined effects of NAs and interferon-α
drugs. As in [14], we consider five state variables, corresponding to uninfected hepatocytes (T),
productively-infected hepatocytes (I), free virus (V), immune effector cells (E) and a population of
refractory hepatocytes (R).

All hepatocyte populations, uninfected, infected and refractory to reinfection, are maintained
by homeostasis described by a logistic equation, with carrying capacity K and maximal per capita
growth rate r. Virus infects target cells at rate β. Infected cells are killed by the immune responses at
rate μ. As in [14], we assume that infected cells can be lost due to the non-cytolytic response at rate
ρ, dependent on the effector cell population E [34], and move into a refractory class R. Refractory
cells will still be assayed as infected, since surface antigens persist for some time [35]. We assume that
they have lost their viral replicates and do not produce virus, which also makes them poor targets
for cytotoxic T lymphocyte (CTL) responses. Therefore, the refractory population will be killed at
a smaller rate, ν < μ. The refractory state is not permanent, and the R population may eventually
become susceptible to reinfection. We model this by allowing R cells to move into the uninfected
population at rate q. Free virus is produced at rate π and cleared at rate c.

In the absence of infection, we assume the immune effector cells E are at equilibrium value s/d,
where s corresponds to a source of effector cells specific for HBV and 1/d is their average life-span.
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Upon encountering antigen (on the surface of infected liver cells), these cells expand at rate α, with
a constant time delay τ accounting for the lag between antigen encounter and effector cell expansion.

We model drug therapy as interference with virus production and infection and as immune
modulation, as follows. The contributions of interferon-α are complex, with both direct antiviral and
immunomodulatory effects. Here, we consider three effects of IFN-α: enhancement of effector cell
killing rates, reduction of viral production rate and the delay of effector cell programmed death [36,37].
We model this by changing rates μ, π and d to μ1 = μ(1 + a1ε), π0

1 = π(1 − a2ε) and d1 = d(1 − a3ε),
respectively. In each case, 0 ≤ ε ≤ 1 represents the efficacy of IFN-α, and ai ≥ 0 are scalar parameters
representing the strength of the corresponding effect of interferon. a1 can be any nonnegative number,
while a2 and a3 are between 0 and 1.

The nucleos(t)ide analogues, on the other hand, interfere with both the ability of virus to infect
a cell and with the generation of HBV DNA by an infected cell [38]. We model this by assuming that
the infectivity rate in the presence of NAs becomes β1 = β(1 − b1η), and the viral production rate
becomes π1 = π(1 − f a2ε − (1 − f )b2η). Here, 0 ≤ η ≤ 1 represents NAs’ efficacy; bi ≥ 0 are scalar
parameters representing the relative strength of the corresponding effect of NAs; and f and 1 − f
represent the relative contribution of interferon-α and NAs, respectively, to reducing viral production,
for 0 ≤ f ≤ 1.

For t > td, where td represents the time of therapy onset, the dynamics of these populations is
governed by the following differential equations

dT
dt

= rT
(

1 − T + I + R
K

)
− (1 − b1η)βTV + qR

dI
dt

= rI
(

1 − T + I + R
K

)
+ (1 − b1η)βTV − ((1 + a1ε)μ + ρ)IE

dV
dt

= π(1 − f a2ε − (1 − f )b2η)I − cV

dE
dt

= s + αI(t − τ)E(t − τ)− d(1 − a3ε)E

dR
dt

= ρIE + rR
(

1 − T + I + R
K

)
− qR − νRE

(1)

As this is a system of delay differential equations with fixed delay τ, the initial conditions for the
system are defined on the interval [td − τ, td] by functions:

T(t) > 0, V(t) ≥ 0, R(t) ≥ 0, I(t) ≥ 0 and E(t) ≥ 0 (2)

In many cases, these will be assumed to be constant and equal to the value of the state variables
at t = td.

2.2. Model Analysis

We will consider that therapy leads to viral removal and only investigate the long-term behavior
of the equilibrium where V = 0. Model (1) has such a disease free steady state, S0 = (K, 0, 0, s/d1, 0).
In the absence of delay (τ = 0), the Jacobian matrix associated with (1) is:⎡⎢⎢⎢⎢⎢⎣

r(1 − 2T+I+R
K )− β1V − rT

K −β1T 0 q − rT
K

− rI
K + β1V r(1 − T+2I+R

K )− (ρ + μ1)E β1T −ρI − μ1 I − rI
K

0 π1 −c 0 0
0 αE 0 αI − d1 0

− rR
K − rR

K + ρE 0 ρI − νR r(1 − T+I+2R
K )− q − νE

⎤⎥⎥⎥⎥⎥⎦
We evaluate J(S0) and obtain the Jacobian matrix:
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J(S0) =

⎡⎢⎢⎢⎢⎢⎣
−r −r −β1K 0 q − r
0 −(ρ + μ1)s/d1 β1K 0 0
0 π1 −c 0 0
0 αs/d1 0 −d1 0
0 ρs/d1 0 0 −q − νs/d1

⎤⎥⎥⎥⎥⎥⎦
and the characteristic equation:

(r + λ)(λ4 + A1λ3 + A2λ2 + A3λ + A4) = 0

where

A1 = c + d1 + q + (ρ + μ1 + η)
s

d1

A2 =
s

d1

(
ν(c + d1) + (μ1 + ρ)(d1 + q + η

s
d1

)

)
+ qd1 + cd1 + qc +

(
c(μ1 + ρ)

s
d1

− π1β1K
)

A3 =
s

d1
(bd1q + cd1ν + ρd1q + νs(ρ + μ1)) + cd1q +

(
d1 + q + ν

s
d1

)(
c(μ1 + ρ)

s
d1

− π1β1K
)

A4 = d1(q + ν
s

d1
)

(
c(μ1 + ρ)

s
d1

− π1β1K
)

(3)

By the Routh–Hurwitz criteria, the characteristic equation has roots with negative real parts if
and only if Ai > 0, A1 A2 − A3 > 0 and A1 A2 A3 − A2

3 − A2
1 A4 > 0. We can show that these conditions

are satisfied when A4 > 0.

Therefore, when τ = 0, S0 is locally asymptotically stable when:

π1β1Kd1

c(μ1 + ρ)s
=

(1 − b1η)(1 − f a2ε − (1 − f )b2η)(1 − a3ε)πβKd
(a1εμ + μ + ρ)cs

< 1 (4)

and is unstable otherwise. This condition gives us a minimal drug efficacy for viral clearance in the
absence of delay in immune activation.

When τ > 0, the characteristic equation at state S0 is:

det(B + e−λτC−λI5) = 0 (5)

where:

B =

⎡⎢⎢⎢⎢⎢⎣
−r −r −β1K 0 q − r
0 −(ρ + μ1)s/d1 β1K 0 0
0 π1 −c 0 0
0 0 0 −d1 0
0 ρs/d1 0 0 −q − νs/d1

⎤⎥⎥⎥⎥⎥⎦
and:

C =

⎡⎢⎢⎢⎢⎢⎣
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 αs/d1 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
We see that the transcendental Equation (5) reduces to polynomial:

(r + λ)(λ4 + A1λ3 + A2λ2 + A3λ + A4) = 0
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as in the τ = 0 case. Therefore, the infection-free equilibrium S0 is locally asymptotically stable for all
τ when (4) holds.

2.3. Numerical Results

We assume that in the absence of drug therapy, the virus will persist, and the patient will
experience chronic infection. We therefore set all parameters values and initial conditions to the values
for the chronically-infected Patient 7 in [14] (see Table 1). The dynamics of the five variables in the
absence of drug therapy, ε = η = 0, throughout acute infection and transition to chronic disease is
presented in Figure 1.

Table 1. Variables, parameters and values used in simulations with mililiter (mL) and day (d).

Variables

T Target cells T0 = 13.6 × 106 per mL
I Infected cells I0 = 0 per mL
V Free virus V0 = 0.33 per mL
E Effector cells E0 = 60 per mL
R Refractory cells R0 = 0 per mL

Parameters
r Hepatocyte maximum proliferation rate 1 day−1

β Infectivity rate constant 1.22 × 10−10 mL (virion × day)−1

K Hepatocyte carrying capacity 13.6 × 106 cells per mL
μ Infected cell killing rate 1.2 × 10−4 mL (cell × day)−1

ν Refractory cell killing rate 1.27 × 10−5 mL (cell × day)−1

ρ Cure rate 3.38 × 10−4 mL (cell × day)−1

α Effector cell expansion rate 2 × 10−7 mL (cell × day)−1

τ Delay 33.4 days
π Virus production rate 164 virion (cell × day)−1

c Virus clearance rate 0.67 day−1

s Effector cell production 10 day−1

d Effector cell clearance rate 0.5 day−1

q Waning of refractory cell immunity 2 × 10−5 day−1

We next investigate the change in the model dynamics in the presence of treatment. Initially, we set
time-constant drug efficacy, η = 0.5 and ε = 0.9 as in [17]; assume scalars ai and bi to be either 1 or 0,
representing an effect or lack of effect in therapy; and set f = 0.5. We define HBV DNA clearance
as the presence of less than one HBV DNA in the host serum. Since we assume that HBV DNA can
distribute throughout the 3 liters of serum in an average 70-kg person, the viral extinction becomes
V ≤ Vext = 3 × 10−4 copies per mL. We notice that the speed of viral extinction is dependent on both
the timing of therapy initiation and on the type of effects considered.

Indeed, when the therapy is started at td = Tpeak = 96 days post-infection (corresponding to the
peak HBV DNA), our model predicts HBV DNA clearance 145 days after the start of therapy when
a1 = a2 = a3 = b1 = b2 = 1 and f = 0.5 (see Figure 2a, dashed line) and 2226 days (6.1 years) after
the start of therapy when a1 = a2 = b1 = b2 = 1, a3 = 0 and f = 0.5 (see Figure 2a, dotted line).
This suggests that the immune modulation effect of interferon is important in clearing the HBV DNA
in a short amount of time.

Similar immune-mediated effects of interferon are observed when drug therapy is started
at the chronic state of Model (1), td = Tss = 20 years post-infection. Indeed, viremia clearance
occurs faster when a1 = a2 = a3 = b1 = b2 = 1 and f = 0.5 (see Figure 3a, dashed line) than
when a1 = a2 = b1 = b2 = 1, a3 = 0 and f = 0.5 (see Figure 3a, dotted lines). However, viral clearance
is delayed by 12 days compared to the case in which therapy is initiated at peak HBV DNA.
The rapidity of clearance during peak therapy is due to the transient effects of immune cells, which are
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activated and expanding at the peak HBV DNA (see Figure 2b, solid lines) and tolerant at the chronic
HBV infection (see Figure 3b, solid lines).
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Figure 1. Temporal evolution for the variables in Model (1) without drug therapy, i.e., ε = η = 0,
and the parameters in Table 1. The circles represent patient data.
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Figure 2. (a) Virus V per mL and (b) effector cells E per mL given by Model (1) and the parameters
in Table 1 for: η = ε = 0 (solid lines); η = 0.5, ε = 0.9, a1 = a2 = a3 = b1 = b2 = 1, f = 0.5
(dashed lines); and η = 0.5, ε = 0.9, a1 = a2 = b1 = b2 = 1, a3 = 0, f = 0.5 (dotted lines). Here,
time t = 0 corresponds to both the start of therapy and the peak viral load, i.e., the initial conditions
are T(0) = 1.32 × 105 cells per mL, I(0) = 1.23 × 105 cells per mL, V(0) = 3 × 109 HBV DNA per mL,
E(0) = 20.23 cells per mL and R(0) = 1.23 × 106 cells per mL.
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Figure 3. (a) Virus V per mL and (b) Effector cells E per mL given by model (1) and parameters
in Table 1 for η = ε = 0 (solid lines); η = 0.5, ε = 0.9, a1 = a2 = a3 = b1 = b2 = 1, f = 0.5
(dashed lines); and η = 0.5, ε = 0.9, a1 = a2 = b1 = b2 = 1, a3 = 0, f = 0.5 (dotted lines). Here, t = 0
corresponds to both the start of therapy and the steady state of the viral load, i.e., the initial conditions
are T(0) = 3 × 105 cells per mL, I(0) = 3.8 × 104 cells per mL, V(0) = 9.33 × 106 HBV DNA per mL,
E(0) = 20.3 cells per mL and R(0) = 1.33 × 107 cells per mL.

These results are supported by relative sensitivity curves. Briefly, sensitivity functions are
numerical solutions of the following system:

dx
dt

= g(x(t, ξ), z(t, ξ), ξ) (6)

d
dt

∂x
∂ξ

=
∂g
∂x

∂x
∂ξ

+
∂g
∂z

∂z
∂ξ

+
∂g
∂ξ

(7)

where x(t, ξ) = (T(t, ξ), I(t, ξ), V(t, ξ), E(t, ξ), R(t, ξ)), z(t, ξ) = x(t − τ, ξ) ∈ R5, the function g
represents the right-hand side of Model (1) and:

ξ = (r, K, β, q, ρ, π, c, s, α, d, η, ν, μ, ε, a1, a2, a3, b1, b2, f )

The partial derivatives ∂xi/∂ξ j, for i = 1, . . . , 5 and j = 1, . . . , 20, are time functions denoting
the rate of change in a state variable with respect to variations in model parameters (see [39] and
the references therein). The functions ξ j/xi × ∂xi/∂ξ j are the relative sensitivity curves (similar to
relative error), which allow for the comparison between the sensitivity of two variables x1

i and x2
i

with respect to the same parameter ξ j. Here, we are interested in the sensitivity of V(t, ξ) and E(t, ξ)

with respect to model parameters ξ = {a2, a3, b2}. As the numerical solutions displayed in Figure 4
show, the a3 effect is the most important drug effect in both reducing virus load and increasing
immune response.
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Figure 4. Relative sensitivity curves ξ
V

∂V
∂ξ (top row) and ξ

E
∂E
∂ξ (bottom row) for ξ = a3 (left) and ξ = a2

(solid line), ξ = b2 (dashed line) (right). The parameters and initial conditions are as in Figure 3.

Our model suggests that the timing and the type of interferon effects are important in the success
of the treatment. In the next sections, we will consider a time-dependent effect of both interferon and
nucleo(s)tide analogues, and we will formulate an optimal control problem for our model to determine
the connection between successful therapy and the optimal temporal efficacy of the effects considered.

3. Optimal Control Problem

To better understand the interactions between drug therapy and the host immune reaction,
we allow the effects of the two drug types (NAs and IFN-α) to vary with time. We replace the NAs’
efficacy parameter η with u1(t) to represent the time-varying effective drug dosage needed for optimal
therapy. Similarly, u2(t) will replace the parameter ε to represent the time-varying dosage of IFN-α.
As before, a1, a2 and a3 indicate the relative strength of the three effects of IFN-α under consideration;
b1 and b2 represent the relative strengths of the two effects of the NA; and f and 1 − f are the relative
contribution of interferon and NAs, respectively, in reducing viral production.

For computational convenience and consistency of notation, we will relabel the state variables as
in Table 2. With these adjustments, our model becomes as follows.

Table 2. Correspondence between labeling of the state variables in Models (1) and (8).

x1(t) = T(t)
x2(t) = I(t) z2(t) = I(t − τ)
x3(t) = V(t)
x4(t) = E(t) z4(t) = E(t − τ)
x5(t) = R(t)
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dx1

dt
= rx1

(
1 − x1 + x2 + x5

K

)
− β(1 − b1u1)x1x3 + qx5

dx2

dt
= rx2

(
1 − x1 + x2 + x5

K

)
+ β(1 − b1u1)x1x3 − ((1 + a1u2)μ + ρ)x2x4

dx3

dt
= (1 − f a2u2 − (1 − f )b2u1)πx2 − cx3

dx4

dt
= s + αz2z4 − d(1 − a3u2)x4

dx5

dt
= ρx2x4 + rx5

(
1 − x1 + x2 + x5

K

)
− qx5 − νx4x5

(8)

Our goal is to find the regime of drug therapy that minimizes the objective functional:

J(u1, u2) =
∫ T

0

(
c1x3 + c2x2 + c3u1 + c4u2 + ε1u2

1 + ε2u2
2

)
dt + c5x3(T) (9)

subject to the system of delay differential Equation (8) with initial conditions (2). Here, T represents
the duration of therapy. We will study two different scenarios for drug treatment by considering
two different sets of initial conditions. For the case of chronic HBV infection, the initial values of
the state variables xi will be constant and equal to their chronic infection equilibrium values for the
entire interval [td − τ, td]. We will also study the case of drug therapy initiation at the peak of viral
load, during acute infection. In this case, the initial functions for the state variables xi will be set by
their trajectories during acute infection in the absence of treatment. This is described in more detail
in Section 3.3.

Given upper bounds Mi on ui (for i = 1, 2), we seek to find an optimal pair in the control set:

U = {(u1, u2) ∈ L∞(0, T) | 0 ≤ ui ≤ Mi, i = 1, 2}

such that
J(u∗

1, u∗
2) = inf

(u1,u2)∈U
J(u1, u2)

The integral portion of the objective functional encapsulates the goal of minimizing total virus
concentration (x3), infected cell concentration (x2) and the amount of drug used (u1 and u2 terms)
over the entire treatment period. The final term c5x3(T) represents the goal of minimizing the final
viral concentrations at time T, which ideally would be below clearance levels. The parameters ci > 0
and ε j > 0 give the relative weight of each of these factors.

3.1. Analysis of the Optimal Control Problem

Pontryagin’s key idea was to use adjoint functions to attach the state dynamics to the objective
functional. This converts the problem into minimizing the Hamiltonian and generates the adjoint
differential equations and final-time transversality conditions. In this paper, we use a generalization of
Pontryagin’s maximum principle to systems of delay differential equations (developed by [27]).

Letting f denote the integrand of the objective functional (9) and g1, . . . , g5 be the right-hand sides
of System (8), the Hamiltonian for our optimal control problem is:

H = f + λ1g1 + λ2g2 + λ3g3 + λ4g4 + λ5g5 (10)

where the adjoint functions λi correspond to the states xi, for i ∈ {1, . . . , 5}.
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From the Hamiltonian, we derive the adjoint equations. For i = 1, 3 and 5, we have:

dλi
dt

= −∂H
∂xi

(11)

on [0, T]. For i = 2 and 4, on the interval [0, T − τ] we have

dλ2

dt
= − ∂H

∂x2
− ∂H

∂z2

∣∣∣∣
t+τ

dλ4

dt
= − ∂H

∂x4
− ∂H

∂z4

∣∣∣∣
t+τ

(12)

where zi(t) = xi(t − τ) represent the delayed state variables, while on the interval [T − τ, T], we have:

dλ2

dt
= − ∂H

∂x2
dλ4

dt
= − ∂H

∂x4

(13)

just as in [11].
The equations containing delayed state variables produce adjoint equations with a “forward”

delay, due to the opposite time orientation of the adjoint differential equation. The adjoint equations
are subject to the final condition that λ3(T) = c5, λi(T) = 0 and i ∈ {1, 2, 4, 5}. On the interior of the
control set, minimizing the Hamiltonian gives:

∂H
∂ui

= 0

at (u∗
1, u∗

2), and then, the optimal control pair becomes:

u∗
1 =

−c3 + βx1x3(−λ1 + λ2)+λ3(1 − f )b2πx2

2ε1

u∗
2 =

−c4 + λ2a1μx2x4 + λ3 f a2πx2 − λ4da3x4

2ε2

(14)

Using the bounds on the controls, we obtain the following characterization of the optimal control:

u∗
1 = min

{
M1, max

{
0,

−c3 + βx1x3(−λ1 + λ2)+λ3(1 − f )b2πx2

2ε1

}}
u∗

2 = min
{

M2, max
{−c4 + λ2a1μx2x4 + λ3 f a2πx2 − λ4da3x4

2ε2

}} (15)

3.2. Implementation of the Optimal Control Problem

We wish to find optimal controls numerically by applying a forward-backward iterative
method [25]. Initially, a constant control is assumed, and the state equations are solved in the
forward-time direction from our standard set of initial conditions. Given this solution to the state
equations, the adjoint equations are then solved in the backwards-time direction, beginning with the
final time T and final condition λ3(T) = c5 and λi(T) = 0 for i ∈ {1, 2, 4, 5}. The controls to be used
for the next forward run are then updated using the characterization of the optimal control given
in (15), and the forward-backward solution process is repeated with the updated control functions.
This process is iterated until the controls and the solutions to all of the differential equations converge
to within acceptable numerical tolerances. See [28,29,40] for the background on this procedure and the
approximation of delay equations.

To use the forward-backward sweep, we rewrite the adjoint equations for our system as:
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dλ1

dt
=− λ1

(
r
(

1 − 2x1 + x2 + x5

K

)
− (1 − b1u1)βx3

)
− λ2

(
− r

K
x2 + (1 − b1u1)βx3

)
+ λ5

r
K

x5,

dλ2

dt
=− c2 + λ1

r
K

x1 − λ2

(
r
(

1 − x1 + 2x2 + x5

K

)
− (1 + a1u2)μx4 − ρx4

)
− λ3(1 − (1 − f )b2u1 − f a2u2)π − λ5

(
ρx4 − r

K
x5

)
− λ4(t + τ)αx4χ[0,T−τ]

dλ3

dt
=− c1 + λ1(1 − b1u1)βx1 − λ2(1 − b1u1)βx1 + λ3c

dλ4

dt
=− λ2 (−(1 + a1u2)μx2 − ρx2) + λ4d(1 − a3u2)− λ5(ρx2 − νx5)− λ4(t + τ)αx2χ[0,T−τ]

dλ5

dt
=− λ1

(
− r

K
x1 + q

)
+ λ2

r
K

x2 − λ5

(
r
(

1 − x1 + x2 + 2x5

K

)
− q − νx4

)

(16)

Notice that in the time interval [T − τ, T], the advance terms (those with argument t + τ, found in
the second and fourth equations) drop out, so we have five ordinary differential equations. On the
interval [0, T − τ], we once again have advance equations, but the solutions to the ODEs on [T − τ, T]
provide the required initial data to solve these equations. Thus, the adjoint equations are advance
differential equations on [0, T − τ] and ordinary differential equations on [T − τ, T], subject to the final
condition λ3(T) = c5 and λi(T) = 0 for i ∈ {1, 2, 4, 5}.

For our numerical simulations, we used the built-in MATLAB numerical delay differential
equation solver, dde23. This tool is not capable of solving advance equations directly, so we made
a change of variables to convert the advance differential equations to a system of delay differential
equations. Specifically, we define a new reversed-time variable σ = T − t and new adjoint variables
Li(σ) = λi(T − σ) = λi(t). In terms of these new variables, adjoint equations for Li(σ) are ordinary
differential equations on [0, τ] and delay differential equations on [τ, T], subject to the initial condition
L3(0) = c5 and Li(0) = 0 for i ∈ {1, 2, 4, 5}. The new system was solved numerically using dde23 as
part of the implementation of the forward-backward method to find the optimal control.

3.3. Numerical Results with Optimal Controls

For optimal therapy during chronic HBV infection, we assume that at the time of treatment initiation,
the patient has reached chronic steady state values x̄1 = 3 × 105 cells per mL, x̄2 = 3.8 × 104 cells
per mL, x̄3 = 9.33 × 106 HBV DNA per mL, x̄4 = 20.3 cells per mL and x̄5 = 1.33 × 107 cells per mL.
The terms in the objective functional (9) have different scales. In order to weigh each term equally,
we choose parameters ci, such that cixi (for i = 1, 2) and ciui (for i = 3, 4) are one at the start of the
optimal control. When the optimal control is started at the viral steady state, we normalize variables
x1 and x2 by c1 = 1

x̄3
and c2 = 1

x̄2
= π

cx̄3
. As a result, the factors c1x1 and c2x2 are one at the beginning

of treatment and between zero and one from there on. Since we assume 0 ≤ u1(t), u2(t) ≤ 0.9 for all t,
their corresponding weights are c3 = c4 = 1. Lastly, we choose the effects for the convex terms to be
ε1 = ε2 = 0.1. The treatment will be given for T1 = 400 days, which is sufficient for virus clearance
and is still within the timeline of the HBV therapy guidelines [7].

The ideal clinical outcome of HBV drug therapy is to achieve viral suppression, such that
x3 ≤ Vext = 3 × 10−4 HBV DNA per mL, corresponding to one HBV DNA in the body (as in
Section 2.3). To account for this final condition, we set c5 = 3 × 103 so that the final time condition is
normalized to one. Under these assumptions, we run the optimal control problem over T1 = 400 days
with the aim of finding the best temporal drug usage at each time point that ensures viral clearance
while minimizing the drug levels.

We will be considering several scenarios by varying the levels of control effects, described by
constants ai and bi. Our simulations show that for high virus levels (above extinction), the optimal
control will always be the maximal drug dosage for the scenario considered. For example, for a case
with any ai > 0 and b1 = b2 = 0, the optimal control is u1(t) = 0 and u2(t) = 0.9 for all time points.
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Similarly, if ai > 0 and bj > 0, then the optimal control is u1(t) = u2(t) = 0.9 for all time points.
Therefore, for the first 325 days, we assume the maximal drug dosage for a given scenario and only
run the optimal control with variable u1(t) and u2(t) for the final 75 of the 400 days of treatment.

Initially, we include all effects of nucleos(t)ide analogues u1 and interferon u2, i.e., a1 = a2 = a3 =

b1 = b2 = 1 and f = 0.5. For this choice of parameters, optimal control requires: (i) maximal NA drug
dosage u1 = 0.9 for 0 ≤ t ≤ 347 days and zero drug dosage for t ≥ 347 days; and (ii) maximal u2 = 0.9
interferon dosage for 0 ≤ t ≤ 366.5 days, zero dosage for 366.5 ≤ t ≤ 399 days and maximal dosage
after that (see Figure 5a, top row). Under these drug regimes, HBV DNA is cleared 331 days after the
start of treatment (see Figure 5b, top row).
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Figure 5. (a) Optimal evolution for controls u1 (dashed lines) and u2 (solid lines) as given by (15);
(b) virus V per mL (solid lines) and infected cells I per mL (dashed lines) over time; (c) effector
cells E per mL over time when drugs are introduced at equilibrium virus concentration and:
a1 = a2 = a3 = b1 = b2 = 1, f = 0.5 (top row); a1 = a2 = a3 = 1, b1 = b2 = 0, f = 1 (second row);
a1 = a2 = 0, a3 = b1 = b2 = 1, f = 0 (third row); a1 = a2 = a3 = 0, b1 = b2 = 1, f = 0 (bottom row).

We next assume monotherapy with interferon-α. We set b1 = b2 = 0, a1 = a2 = a3 = 1 and
change the anti-viral production effect to f = 1. The optimal control problem predicts that the
virus is cleared 338 days after the start of therapy, seven days later than under combination therapy
(see Figure 5b, second row). Another downside of this monotherapy is the need for interferon dosage
to be maximal (u2 = 0.9) for 0 ≤ t ≤ 377 and for t ≥ 396.5 in order to compensate for the lack of NAs
(see Figure 5a, second row).

In combination therapy, when u2 neither increases CTLkilling abilities nor reduces virus
production, i.e., a1 = a2 = 0, and all other effects are maximal a3 = b1 = b2 = 1, f = 0
(so that NAs have maximal effect in blocking viral production), the HBV DNA will clear 341 days
after the start of treatment (see Figure 5b, third row). The controls are: (i) u1 = 0.9 for 0 ≤ t ≤ 358
and t ≥ 396, and zero otherwise; and (ii) u2 = 0.9 for 0 ≤ t ≤ 369.5, and zero otherwise (see Figure 5a,
third row).
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Lastly, we consider monotherapy with NAs alone. We set a1 = a2 = a3 = 0, b1 = b2 = 1 and
f = 0. The optimal control model does not result in viral clearance even when u1 = 0.9 throughout the
duration of the treatment (see Figure 5a,b, bottom row).

For the first three cases, we find that an increase in the effector cells’ lifespan is needed for viral
suppression. Indeed, when a3 = 1 and u2 > 0, the increase of CTL lifespan to 1/d(1 − a3u2) leads
to elevated CTL concentrations (see Figure 5c, top three rows) and subsequent HBV DNA removal
(see Figure 5b, top three rows). By contrast, when a3 = 0, HBV DNA does not reach extinction during
the T1 = 400 days of therapy (see Figure 5b, bottom row) due to low HBV-tolerant CTL concentrations,
E = s/d1 = s/d, which do not expand in the presence of HBV (see Figure 5c, bottom row).

For optimal therapy during acute HBV infection, to further determine the relationship between
CTL activation and the possible success of short-term anti-HBV therapy, we run the optimal control
problem during acute HBV disease, where CTL activation has been reported [41]. We start by running
the DDE system mainly to the peak virus concentration occurring at time Tpeak, record the values of
all variables for the times −τ + Tpeak ≤ t ≤ Tpeak and start the optimal control problem at td = Tpeak.
The treatment will be given for T2 = 95 days and, as before, we include the following weights
c1 = 1

x3(Tpeak)
, c2 = π

cx3(Tpeak)
, c3 = c4 = 1, ε1 = ε2 = 0.1 and c5 = 3 × 103, so that all factors are

normalized to one.
As in the chronic HBV case, we consider four scenarios. If we include all effects of nucleos(t)ide

analogues u1 and all effects of interferon u2, i.e., a1 = a2 = b1 = b2 = 1, f = 0.5 and a3 = 0.9,
we predict that HBV DNA is cleared 90 days after the start of treatment when interferon dosage
is maximal at each time step and NAs are zero for 0 ≤ t ≤ 90 days and maximal from t ≥ 90
(see Figure 6a,b, top row). This result implies that NAs do not have a role in viral clearance. This is
corroborated by the optimal control solution for interferon monotherapy. Indeed, when we set
a1 = a2 = 1, a3 = 0.9, b1 = b2 = 0 and f = 1, virus is cleared even faster, 87 days after the
start of therapy (see Figure 6b, second row) when u2 dosage is maximal u2 = 0.9 at each time
step (see Figure 6a, second row). This is due to the higher efficacy of interferon-α at blocking viral
production assumed in this scenario. The results in both of these cases are due to fast expansion and
transient maintenance of CTLs to high levels of 2500 cells per mL (see Figure 6c, top two rows).

To further determine which of the interferon effects are the most influential, we remove the first
two interferon effects a1 = a2 = 0, keep a3 = 0.9, b1 = b2 = 1 and set f = 0. Under these conditions,
virus is cleared 91 days after the start of therapy, one and four days later than the previous two cases
(see Figure 6b, third row) when: (i) NA dosage (u1) is zero for 0 ≤ t ≤ 87 and maximal (u1 = 0.9)
afterwards; and (ii) interferon dosage is maximal (u2 = 0.9) for 0 ≤ t ≤ 91 and zero afterwards (see
Figure 6a, third row). This result implies, again, that interferon is needed for virus clearance.

Lastly, when we consider monotherapy with NAs, i.e., b1 = b2 = 1, a1 = a2 = a3 = 0 and f = 0,
the HBV DNA will not clear (see Figure 6b, bottom row) in spite of CTL levels being higher than the
base of E = s/d1 = s/d (see Figure 6c, bottom row). Interestingly, our numerical results show that the
optimal NA dosage for the first 42 days is zero (see Figure 6a, bottom row).

Our study has used a delay of τ = 33.4 days, since that represented the delay in the CTL activation
in the only patient that developed chronic disease in [14]. To check whether the size of the delay affects
the results, we have investigated the optimal control problem for a shorter delay of τ = 15.2 days,
which is the smallest delay among the patients in [14]. We found that the length of the delay does
not influence the results when the therapy is started at the viral steady state (not shown). When the
therapy is started at the peak viral load, we find, not surprisingly, that a shorter time lag speeds viral
decay and CTL expansion (see Figure 7b,c). Moreover, the optimal control problem for the shorter
delay of τ = 15.2 days suggests no therapy (u1 = u2 = 0) for the first three days post-peak, maximal
interferon therapy for 3 ≤ t ≤ 75 and t ≥ 90 and no interferon u2 = 0 otherwise. The role of NAs is
transient, with maximal dosages u1 = 0.9 for 20 ≤ t ≤ 27, 38 ≤ t ≤ 51 and t > 90 days and u1 = 0
elsewhere (see Figure 7a, bottom row).
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Together, these results suggest that the immunomodulatory effects of interferon are needed for
HBV DNA control and that immune modulation rather than suppression of virological factors is
essential for inducing HBV clearance.

4. Discussion

The management of chronic hepatitis B is based on guidelines regarding screening, diagnosis,
duration of treatment, adherence and monitoring of immune and virological markers [12].
Combined antiviral therapy improves the survival rates of patients chronically infected with hepatitis B
virus [42]. While the first goal of therapy is to reduce HBV replication, the ultimate goal is the removal
of hepatitis B surface and e-antigens and of covalently-closed circular DNA (cccDNA). The removal
of the hepatitis B e-antigen is associated with immunological factors, such as removal of the tolerant
status of the hepatitis B-specific T cells [36]. Such effects have been demonstrated by interferon therapy,
which leads to improved immune function, sustained response rates with combination therapy and
improved overall prognosis [37]. These drugs have limitations, such as side effects, the use of injection
and poor response in patients with compromised liver function. That makes them unsuitable for
long-term administration [43].

To address the positive effects of interferon therapy and to account for its limitations due to
adverse effects and limited time usage, we developed a control problem that accounts for: (i) three
interferon functions: increased CTL life-span, reduced viremia and increased CTL killing of infected
hepatocytes; (ii) two nucleos(t)ide analogue effects: blocking of viral infection and of viral production;
(iii) hepatitis B DNA decay below the limits of detection; and (iv) minimal dosage administration over
a short time period.

The presence of significant side effects and the need for lengthy treatment make the question
of the optimal therapy strategy relevant for the case of chronic hepatitis B. Little work has been
previously done on the optimal control of HBV treatment, and the existing models do not include
immune system involvement [30]. Ciupe et al. demonstrated that consideration of delayed cytotoxic
and non-cytotoxic immune reactions and the presence of cells refractory to infection was necessary
to properly understand the dynamics of HBV acute infection and progression to chronic disease [14].
In this study, we derived an optimality system associated with this model, and we constructed the
corresponding adjoint equations, which differed from the construction of adjoint equations for systems
of ODE [44]. In particular, we found that for a delay τ and a control period [0, T], the adjoint equations
are ODEs on [T − τ, T] and advance differential equations on [0, T − τ], meaning that there are terms
with time argument t+ τ. After deriving the proper form of the adjoint equations, we have investigated
the optimal control system numerically using a forward-backward sweep method, as in [25].

The control problem indicates the need for high immunomodulatory effects of IFN-α until HBV
DNA is cleared. Most importantly, the immunomodulatory effects that increase the survival of effector
cells are essential for timely reduction in viremia, which is needed to limit the IFN-α-induced side
effects [43]. We predict that starting interferon therapy at the peak viral load, rather than at viral
equilibrium, shortens the time to HBV DNA removal. This is due to enhancement of an already
activated T cell response. Most interestingly, monotherapy with interferon-α is sufficient for virus
control, while the effects of nucleos(t)ide analogues emerge only at the end stages of combination
therapy. This result suggests that sequential single therapy (interferon followed by nucleos(t)ide
analogues) may be the optimal course of action for both viral suppression and the limitation of
drug effects.

Our results imply that an increase in T cell response (in acute infections) and reversal of T cell
inactivation (in chronic infections) are essential for fast control of viremia. However, experimental
studies have shown that only a small percentage of patients on INF-α therapy experience loss of
surface-antigen, e-antigen loss and reduction in virus replication [45]. Moreover, interferon-α is
responsible for only partial reversal of T cell inactivation in chronic hepatitis B infections [37] and is
not induced naturally during acute hepatitis B infections [46]. However, interferon-α therapy induces
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cccDNA degradation in cell culture [47] and enhances the innate immune response mediated by
natural killer (NK) cells in e-antigen negative patients [45]. Our optimal control study predicts that
enhanced cccDNA degradation, which can be incorporated in our model as an effect on the term ρ, has
limited effect on the timing of HBV DNA removal (not shown). The NK activation would increase
infected cell removal in a complementary fashion to the CTL effect we consider now. Similar to our
current results, increased survival of NK cells would be needed for fast HBV DNA removal.

Our study has considered a linear combination effect of interferon and nucleos(t)ide analogues
on the blocking of viral production f a2u2 + (1 − f )b2u1 with f = 0.5. To determine the effect of f
on the results, we investigated two control therapies, (i) strong interferon influence on blocking viral
production f = 0.9 and (ii) strong NA influence on blocking viral production f = 0.1, and found that
the size of f has little influence one the timing of viral clearance for both peak and equilibrium therapy
(not shown).

One limitation in our research comes from ignoring the consequences that prolonged treatment
exerts on the evolution of the viral population. Studies have shown that life-long therapy and lack
of compliance leads to the development of antiviral drug resistance [10], even though combination
therapy helps reduce drug resistance [11]. Our model has not considered the emergence of HBV
variants or mutation in the presence of combination therapy. Further work is needed to address the
optimal therapy in the presence of these events.

In conclusion, we have designed an optimal control study that shows that a successful short-term
anti-HBV therapy requires the modulation of strong innate and/or adaptive immune responses, rather
than induction of anti-virological effects. Such therapy needs to be active and elevated for the entire
period of viremia.
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Abstract: Obesity, one of the major problems in modern society, adversely affects people’s health and
increases the risk of suffering degeneration in supportive tissues such as cartilage, which loses its
ability to support and distribute loads. However, no specific research regarding obesity-associated
alterations in the mechano-electrochemical cartilage environment has been developed. Such studies
could help us to understand the first signs of cartilage degeneration when body weight increases
and to establish preventive treatments to avoid cartilage deterioration. In this work, a previous
mechano-electrochemical computational model has been further developed and employed to analyze
and quantify the effects of obesity on the articular cartilage of the femoral hip. A comparison between
the obtained results of the healthy and osteoarthritic cartilage has been made. It shows that behavioral
patterns of cartilage, such as ion fluxes and cation distribution, have considerable similarities with
those obtained for the early stages of osteoarthritis. Thus, an increment in the outgoing ion fluxes is
produced, resulting in lower cation concentrations in all the cartilage layers. These results suggest
that people with obesity, i.e. a body mass index greater than 30 kg/m2, should undergo preventive
treatments for osteoarthritis to avoid homeostatic alterations and, subsequent, tissue deterioration.

Keywords: obesity; mechano-electrochemical model; articular cartilage; cartilage degeneration;
cartilage loading

1. Introduction

In the last decade, obesity has become one of the most serious socioeconomic concerns in
developed countries [1,2]. This medical problem is produced by a combination of several factors such
as excessive food energy intake, lack of physical activity and/or genetic susceptibility [3–5]. As a result,
an increase in the probability of suffering diseases such as osteoarthritis and bone degeneration has
been reported [6–8]. In particular, overload on joints generates imbalance in tissue homeostasis [9,10].
This is mainly due to the increment of the force applied on articulations. In the case of normal weight,
the applied force is three times the body weight. This force can reach six to ten times the body weight
when performing activities such as climbing or running [11]. However, the transmitted force to joints in
the case of people with obesity is doubled, generating excessive wear and leading to osteoarthritis [12].

Since articular cartilage is an avascular tissue, the transport of nutrients from synovial fluid to
chondrocytes occurs by diffusion and convection when loading or when chemical conditions are
changing [13–15]. In this sense, cartilage counts on biomolecules also called proteoglycans. They are
responsible for the turgid nature of the tissue and provide the osmotic properties needed to resist
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compressive loads [16,17]. This occurs mainly as a consequence of the negative charges attached
to them, fixed charge density. These negative charges provide a repulsive force that enhances the
compressive stiffness of the cartilage [18].

Compression cycle due to body weight generates incoming and outgoing fluxes that helps in
nutrients and wastes products exchange [11]. In the case of people with obesity, significant alterations
are produced in water and ion fluxes as well as in tissue deformation. These fluxes are considered as
essential biomarkers that indicate the degree of cartilage degeneration [19,20]. Therefore, the study of
ion fluxes and tissue deformation may reveal alterations in the cartilage tissue.

Despite the great incidence of obesity, there are no exhaustive studies analyzing the correlation
between alterations in the biological processes of cartilage and an increase in body weight. Only
Travascio et al. [11] have addressed this issue. In their recent work, they describe several changes
in protein synthesis and the subsequent reduction in extracellular matrix (ECM) production in hip
articular cartilage. They studied these phenomena by means of a self-developed 1D model. However,
important questions remain. How does obesity affect water and ion fluxes? Are these alterations a
catalyst for osteoarthritis? Is the ion concentration in the tissue similar to that observed in people of
normal weight? All these questions need to be addressed.

To analyze and elucidate tissue behavior under these conditions, a previously described 3D
computational model of cartilage behavior [19–21] is here extended and employed to study the effects
of overweight on the articular joints (Figure 1). The present model considers the influence of ions on
electrochemical events as well as proteoglycan repulsion in a loaded 3D environment. The main goals
of this study are: (i) to analyze the role of proteoglycan repulsion in the cartilage loading problem;
(ii) to study the effect of metabolic alterations (fluxes of water and ions) due to obesity on the
homeostasis of femoral hip cartilage; and (iii) to quantify and compare cation and water flux in
cartilage of both healthy people and those suffering from obesity when a maximal load is applied on
the joint.

Figure 1. Schematic representation of the simulation process: (a) the mechanical load during human
gait for people with obesity and with normal weight based on the work of Travascio et al. [11];
(b) incorporation of a hip cartilage sample into the computational model; and (c) list of the main
model outputs.

2. Material and Methods

The main mathematical formulation of the present model is based on the triphasic theory for
charged and hydrated soft tissues. This theory has been applied to simulate the behavior of articular
cartilage [22,23]). As in our previous works and other related studies in the literature [19,20,24,25],
the tissue is considered as a mixture in which four phases are distinguished: A negatively charged
poroelastic solid phase including proteoglycans (s), an interstitial fluid phase which includes water (w),
cations (+) and anions (´). The tissue behavior depends on the mechano-electrochemical interaction of
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these phases for cartilage maintenance (for more details see [10,20,26]. The four basic unknowns in
this physico-mathematical model correspond to the displacement of the solid matrix, us, the chemical
potential of the water, εw, and the electrochemical potential of the cations and anions, ε` and ε´
respectively. The main model equations are summarized below.

2.1. Flow Equations

Outgoing and/or incoming water and ion fluxes are considered in the mathematical formulation
through the mass balance equation for the total mixture and the charge balance for each ion. The main
fluxes present in the model are water flux (Jw), cation flux (J`) and anion flux (J´). The flux equations
are detailed below.

Mass balance of the mixture:
∇¨ vs ` ∇¨ Jw “ 0 (1)

Charge balance of ions:

B `
Φwc`˘

Bt
` ∇¨ J`loomoon

diffusion

` ∇¨ `
Φwc`vs˘looooomooooon

convection

“ 0, (2)

B `
Φwc´˘

Bt
` ∇¨ J´loomoon

diffusion

` ∇¨ `
Φwc´vs˘looooomooooon

convection

“ 0, (3)

where vs “ Bus

Bt is the velocity of each point of the solid matrix; c` and c´ are cation and anion
concentrations, respectively; and Φw is the porosity of the tissue [26]. Hereafter, the fluxes can be
mathematically expressed as a function of the electrochemical potentials:

Jw “ ´ R TΦw

α

ˆ
∇εw ` c`

ε` ∇ε` ` c´
ε´ ∇ε´

˙
(4)

J` “ ´ R TΦwc`
α

∇εw ´
«

Φwc`D`
ε` ` R TΦw `

c`˘2

αε`

ff
∇ε` ´ R TΦwc`c´

αε` ∇ε´, (5)

J´ “ ´ R TΦwc´
α

∇εw ´
«

Φwc´D´
ε´ ` R TΦw `

c´˘2

αε´

ff
∇ε´ ´ R TΦwc`c´

αε` ∇ε`, (6)

where α is the drag coefficient between the solid and the water phases; R is the universal gas constant;
T is the absolute temperature; and D` and D´ are the cation and anion diffusivities, respectively [27].
The electrochemical potentials are defined as follows:

εw “ P
R T

´ Φ
`
c` ` c´˘ ` Bw

R T
θ, (7)

ε` “ γ`c`exp
ˆ

Fcψ

R T

˙
, (8)

ε´ “ γ´c´exp
ˆ

´ Fcψ

R T

˙
(9)

where Φ represents the osmotic coefficient, Bw is the fluid-solid coupling coefficient, P is the fluid
pressure, θ “ div us is the expansion of the solid matrix related to the infinitesimal strain tensor of the
solid matrix, Fc is the Faraday constant and ψ the electrical potential. γ` and γ´ refer to the cation
and anion activity coefficients, respectively.
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2.2. Momentum Balance Equation of the Mixture

In contrast to our previous studies [19,20], the external force applied to the cartilage sample, fext,
is incorporated into the momentum balance equation to analyze the effect of maximal load on the joint
as follows:

∇¨ σloomoon
σf`σc`σs

“ fext , (10)

where σf corresponds to the stress exerted by the fluid, σc is the stress due to chemical factors such as
proteoglycan repulsion and σs is the stress of the solid matrix.

In cartilage tissue, the total stress, σ, can be mathematically formulated as a combination of the
osmotic pressure and the elastic stress of the matrix:

σ “ ´PIloomoon
σfloomoon

osmotic pressure

´λsθI ` 2μsεlooooooomooooooon
σsloomoon

elastic stress

´TcIloomoon
σcloomoon

chemical expansion

, (11)

where I is the identity tensor. Tc is the chemical expansion due to the proteoglycan repulsion
phenomenon [20]. λs and us are the Lame constants and ε is the solid matrix deformation. Note that
to accurately simulate obesity-associated alterations in cartilage behavior, the volumetric expansion
due to proteoglycan-attached negative charges were introduced into the model formulation. Thus, Tc

can be expressed as a combination of: the proteoglycan repulsion coefficients, a0 and k; the ion activity
coefficients during the process and at the reference estate, γ¯ and γ¯˚

, respectively; and the neutral
salt concentration, c.

TC “ a0cFexp
ˆ

´k
γ¯

γ¯˚

˙ b
c

`
c ` cF

˘
(12)

For more details, see [20,21].
This phenomenon is demonstrated to be essential for the swelling process when ion concentration

variations are generated within the tissue [20,21].

2.3. Simulation of the Articular Cartilage Behavior for People with Obesity

To study the effect of the variation of mechano-electrochemical parameters on cartilage behavior,
the experimental design described by Lai et al. [21] is computationally reproduced. Thus, a cartilage
specimen of 1.5 mm diameter and 0.5 mm depth is placed inside a circular impermeable confining
ring and a loading permeable pattern is located at the top of the sample. Tissue samples are hydrated
in NaCl solution of 0.15 M similar to the physiological state. Under these conditions, maximal
compression loads relating to healthy people and people with obesity are applied on top of the sample.
The applied pressure is that corresponding to the maximal pressure observed after 0.44 seconds of the
human gait cycle. For the sake of simplicity, it is considered that, in later cycles, the tissue will exhibit
similar behavior to that taken as a reference. The experimental data are extracted from [11]. Note
that, for this study, they developed specific measurements in a total of 20 male subjects (10 normal
and 10 obese) aged between eighteen and thirty-five volunteered for this study. Prior to experiments,
anthropometric and body measurements were collected and recorded.
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Clinical guidelines are established to evaluate the grade of obesity in adults by considering the
Body Mass Index (BMI). This measure correlates the weight with the height of an adult to assess
obesity. Thus, values of BMI between 18.5 and 24.9 kg/m2 represent a suitable weight for adults,
whereas a BMI higher than 30 kg/m2 indicates obesity. In the model calculations, the applied force
and subsequent pressure are extracted from [11] who consider two groups of study: people of normal
weight, BMI = 22.262 ¯ 1.172 kg/m2, and people with obesity, BMI = 33.978 ¯ 3.629 kg/m2. The other
cartilage properties introduced into the computational model are listed in Table 1.

Table 1. Model parameters used in the computational model.

Description Symbol Range or Studied Value Reference

Young’s modulus E 0.6 MPa [19]
Poisson coefficient ν 0.28 [19]

Drag coefficient between the solid
and the water phase α 7 ˆ 1014 N¨ s¨ m´4 [22]

Diffusivity of the cations D+ 5 ˆ 10´1 m¨ s´1 [22]
Diffusivity of the anions D´ 8 ˆ 10´1 m¨ s´1 [22]

Initial FCD - 0.2 mEq¨ mL´1 [22]
Activity coefficient of cations γ` 0.86 [21]
Activity coefficient of anions γ´ 0.85 [21]

Gas constant R 8.314 J¨ mol´1¨ K´1 [22]
Absolute temperature T 298 K [22]

Osmotic coefficient Φ 0.8 [21]
Initial amount of water in the

tissue Φw
0 0.75 [22]

Accurate quantifications of cation fluxes and distributions within the samples have been
performed. Besides, monitoring of tissue changes during the loading processes was also carried
out. Note that this model can be employed to study the cartilage behavior in function of the degree of
obesity, how long an individual has been obese, co-morbidities, and sex of subjects. Besides, it can be
a good tool to study specific cases such as normal and obese rats or rabbits. For all of these studies,
experimental data are required to be carried out.

Three linear 8-node hexahedral elements with 2 ˆ 2 ˆ 2 Gaussian integration points are used.
The selected average mesh has a total number of 1680 elements. Small-deformation finite element
formulation, similar to previous articular cartilage models [11,22,28], has been implemented in a user
defined element subroutine (UEL subroutine following Abaqus standard names) of the commercial
software package Abaqus 6.11 (Dassault Systemes, Paris, France, 2016). The implementation scheme
of the 3D mechano-electrochemical model used for the loading problem is shown in Figure 2.
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Figure 2. Schematic diagram describing the process of the numerical simulation and the steps of
its implementation.

2.3.1. Initial Conditions

Initially, the cartilage sample is equilibrated within a single salt (NaCl) solution with a
concentration c˚. The initial conditions for the computational model are,

t “ 0 : u “ 0; εw “ εw˚
; ε` “ ε`˚

; ε´ “ ε´˚
. (13)

The initial equilibrium state of the tissue corresponds to the unloaded undeformed tissue. This
has been selected as a reference configuration for strain (time zero seconds, undeformed configuration).

2.3.2. Boundary Conditions

The boundary conditions of the sample in confined configuration (Figure 3) are the following.
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Free upper surface:

σz “ Pz, ext; εw “ εw˚
; ε` “ ε`˚

; ε´ “ ε´˚
. (14)

Lateral surface:
ux “ uy “ 0; Jw

x,y “ Jx̀,y “ Jx́,y “ 0. (15)

Lower surface:
u “ 0; Jw

z “ Jz̀ “ Jź “ 0. (16)

Note that, at t “ 0 seconds, the sample is unloaded and the concentration of the external solution,
c˚, is equal to 0.15 M. When external pressure (Pz,ext) is applied, the transient response of the solid
displacement is solved using the extended 3D model. A comparison between simulations of cartilage
of people with obesity and cartilage affected by osteoarthritic has been made. For simplicity, and due
to the lack of experimental data, the cartilage is considered as an isotropic material.

Figure 3. Schematic representation of the experiment simulated by the computational model and the
boundary conditions.

3. Results and Discussion

First, the repulsion of negative charges attached to proteoglycans has been studied. This
phenomenon, which was neglected in previous models, has been demonstrated to be essential in
cartilage free-swelling [20].

Second, water and ion fluxes together with morphological changes in the tissue have been
simulated for a critical situation of the human gait (when higher values of forces are experienced
by the tissue) in healthy and obesity conditions. The corresponding simulation results of each
component (water, cation and ions) are presented after 0.44 s of simulated time, corresponding
to the above-mentioned critical phase where maximal cartilage deformation, outgoing water and ion
fluxes are observed.

Finally, z-displacement, water and ion flux patterns obtained for people with obesity are compared
not only to those relating to people of normal weight but also to degenerated tissue [20].

3.1. Proteoglycan Repulsion

To verify the role of the repulsion phenomenon of the negative charges attached to proteoglycans,
the experimental test developed by Chen et al. [29] is here reproduced. They applied 8% of deformation
to study the distribution of the Fixed Charge Density (FCD) within the sample. Note that the same
confined conditions detailed in the previous section are here considered and the 8% of deformation is
applied in the computational model.

Under these conditions, it is observed that when taking into account the proteoglycan repulsion
phenomenon, the model gives values closer to those obtained experimentally for the FCD distribution
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(Figure 4). In contrast, when this phenomenon is neglected, the results are higher than those
obtained experimentally.

Figure 4. Fixed Charge Density (FCD) distribution along the thickness of a cartilage sample with 8%
sample deformation due to compressive loads.

Biologically, this can be explained by the balance of forces that takes place in the sample. When the
repulsion phenomenon is not taken into account, the compressive force exerted by loads is balanced
with the water contained in the sample. Thus, a higher amount of FCD is observed in all cartilage
layers and, subsequently, a higher water content in the sample. However, when the repulsion of
proteoglycans is considered, both the water in the sample and the repulsive forces of the attached
proteoglycans resist the applied compression load.

3.2. Alterations of Cartilage Tissue in People with Obesity

3.2.1. Displacement and Water Flux

Under normal weight (BMI = 22.262 kg/m2), the model displays a maximum surface displacement
of ´1.38 ˆ 10´4 m (Figure 5a.1) after 0.44 s of simulated time, significantly lower than that observed
in cases of obesity (BMI = 33.978 kg/m2), uz = ´2.4 ˆ 10´4 m (Figure 5b.1). This reduction in tissue
deformation results in a lower outgoing water flux from the cartilage sample. Thus, simulated cartilage
of people with a normal BMI generates a maximum value of Jw = 1.31 ˆ 10´8 m3/s (Figure 5a.2,)
whereas in people with obesity, the water flux is increased to 1.58 ˆ 10´8 m3/s (Figure 5b.2).

Biologically, this increase in the outgoing water flux produces pathological dehydration,
commonly associated with the joints of obese people and with the majority of cartilage pathologies
such as osteoarthritis. These results are consistent with the study of Travascio et al. [11] who found a
reduction in cartilage water content in people with obesity. Similarly, they suggested this aspect as an
essential promoting agent of cartilage osteoarthritis.
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Figure 5. (1) z-displacement (uz); (2) water (Jw); (3) cation (J`); and (4) anion (J´) fluxes obtained with
the 3D computational model after 0.44 s of simulated human gait cycle for (a) healthy and (b) people
with obesity. Note that BMI = 22.262 kg/m2 corresponds to normal weight and BMI = 33.978 kg/m2

to obesity. Positive fluxes refer to the emergence of the component from the cartilage sample to the
external solution.

3.2.2. Cation Fluxes

To fully understand the alteration in the mechano-electrochemical events occurring in overloaded
cartilage, ion fluxes have also been studied. A similar trend to that of water outflow is observed for
cation fluxes. Cartilage samples with a weight corresponding to BMI = 22.262 kg/m2 show a maximum
cation flux of 8.19 ˆ 10´4 mol/s in the upper surface. This flux is reduced to 6.06 ˆ 10´4 mol/s in
the bottom surface (Figure 5a.3). In obese cartilage simulations, these values are increased reaching a
maximum value of 8.9 ˆ 10´4 mol/s (Figure 5b.3).

Cartilage degeneration due to osteoarthritis has been widely studied [6–8]. A maximum outgoing
cation flux of J` = 2 ˆ 10´4 mol/s was obtained for the early stage of osteoarthritis [20]. Interestingly,
the cartilage of the population with obesity exhibits similar values to those obtained for early stages
of osteoarthritis.

These findings suggest that people with obesity have an increased risk of suffering cartilage
degenerative diseases such as osteoarthritis. The use of preventive treatments to avoid cartilage
degradation is thus recommended.
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3.2.3. Anion Fluxes

The results obtained for anion fluxes show high similarities with cation fluxes. Anions show
the maximum value at the upper surface, J´ = 7.35 ˆ 10´4 mol/s, while the minimum is located
at the bottom surface, J´ = 2.57 ˆ 10´4 mol/s after 0.44 s of simulated time for normal weight
(BMI = 22.262 kg/m2) (Figure 5a.4). Under obesity conditions, the maximum outgoing anion flux
increases significantly to J´ = 8.55 ˆ 10´4 mol/s (Figure 5b.4). Both cation and anion fluxes directly
depend on the applied pressure, thus their increase is directly related to excess in body weight.

3.2.4. Cation Distribution

The gradient of cations was also monitored after 0.44 s of obese loading and compared with
results obtained for normal weight and those previously obtained for osteoarthritic conditions [20].

At this phase, the model showed a significant reduction in cation concentration from the lower
to the upper surface within the cartilage sample for both obesity and normal weight conditions. In
the normal weight case, it ranged from 372 mol/m3 at z = 0 mm to 302 mol/m3 at 0 mm depth to
372 mol/m3 at z = 0.5 mm. However, in the obesity case, an important reduction in the cation
concentration is observed. The cation concentration at the lower surface (z “ 0 mm) had a value of
273 mol/m3 while a value of 190 mol/m3 was reached at the upper surface (z “ 0.5 mm).

Figure 6 shows how the concentration of cations within the cartilage under obese-loading
conditions undergoes alterations, being significantly reduced within the sample.

Figure 6. Distribution of cation concentration for people with obesity and of normal weight during
human gait. The shaded area represents the range of cation distribution in cartilage of a person of
normal weight.

In addition, the obesity results were compared to those obtained for osteoarthritic cartilage in its
primary stages of degeneration. Similar alterations were observed in both obese and osteoarthritic
tissue. In both cases, there was an increase in the cation concentration in the medium layer and an
irregular cation distribution within the sample. These observations open the door to future research to
establish and quantify a specific relationship between obesity and an increase in the risk of suffering
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cartilage diseases such as osteoarthritis. This suggests the necessity of adopting preventive treatments
to avoid the progression of cartilage degeneration.

4. Conclusions

In this work, a previously presented three-dimensional mechano-electrochemical model [19,20]
has been extended and employed to analyze and quantify the effect of obesity on cartilage behavior.
This model can be considered the first 3D computational model for use in the study of the effects of
obesity on articular cartilage. This study shows, for the first time, the relation between obesity and
cartilage degeneration. It presents the first step when performing a more accurate and sophisticated
model to provide patterns that indicate clinician when obesity is starting to affect tissues of the joints.
This will let them prevent and treat, at a very early stage, tissue degradation.

The model incorporates important biological and physical aspects of articular cartilage such as
proteoglycan repulsion due to attached negative charges, diffusive-convective phenomena and the
combined mechano-electrochemical events that occur in healthy as well as pathological tissue. Despite
the promising use of the model, it does have some several limitations. First, anisotropic properties
should be included in the model in order to analyze the influence of heterogeneity in tissue behavior
under loading. Second, in the case of obesity, there is a lack of experimental parameters in the literature.
Thus, for future advances, accurate experiments to measure specific cartilage properties are required.

Several interesting insights into cartilage behavior in people with obesity have been evidenced.
The results demonstrate that water and ion fluxes within the considered samples present significant
alterations, showing a general increase in their values. The simulations also show how the cation
concentration is reduced within the sample. Interestingly, these results closely resemble those
previously obtained for the early stages of osteoarthritis.

In light of these simulations, it is suggested that people with obesity, i.e., with a BMI greater
than 30 kg/m2, should undergo preventive osteoarthritis treatments to avoid homeostatic cartilage
alteration and subsequent tissue deterioration. Besides, as expected, the deformation of the cartilage
sample from obese patients is higher than that obtained from people of normal weight. These findings
support the hypothesis of Travascio et al. [11] that there is a strong correlation between obesity and an
increase in the risk of suffering osteoarthritis.

The present model can be considered as a pioneer 3D computational model for simulating cartilage
behavior in people with obesity. It could be a valuable tool for analyzing the effects of several cartilage
pathologies taking into consideration mechano-electrochemical tissue behavior. Due to the complexity
of in vivo experimental measurements of cartilage behavior in specific loading conditions, such as
obesity, this model is presented as a predictive instrument to study the subsequent physiological and
pathological processes. This, together with the capacity of the model to display the results in clinically
interpretable three-dimensional images, make it an interesting novel tool for the diagnosis, monitoring
and efficacy evaluation of potential cartilage therapies.
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Abstract: In wildfire science, spotting refers to non-local creation of new fires, due to downwind
ignition of brands launched from a primary fire. Spotting is often mentioned as being one of the most
difficult problems for wildfire management, because of its unpredictable nature. Since spotting is
a stochastic process, it makes sense to talk about a probability distribution for spotting, which we
call the spotting distribution. Given a location ahead of the fire front, we would like to know how
likely is it to observe a spot fire at that location in the next few minutes. The aim of this paper is to
introduce a detailed procedure to find the spotting distribution. Most prior modelling has focused on
the maximum spotting distance, or on physical subprocesses. We will use mathematical modelling,
which is based on detailed physical processes, to derive a spotting distribution. We discuss the use
and measurement of this spotting distribution in fire spread, fire management and fire breaching.
The appendix of this paper contains a comprehensive review of the relevant underlying physical
sub-processes of fire plumes, launching fire brands, wind transport, falling and terminal velocity,
combustion during transport, and ignition upon landing.

Keywords: spotting; wildfire; transport equations; spotting distribution

1. Introduction

Wildfires are capable of creating powerful updrafts, called convection columns, which launch
burning plant materials—referred to as firebrands—into the atmosphere [1]. Generally one speaks
of coupled fire-atmosphere interactions [2], in which heat and moisture exchanges occur between
the fire, the convection column and the atmosphere, resulting in the birth of new fire-driven wind
and convective updrafts. Firebrands are then transported by the ambient windflow, simultaneously
combusting and decreasing in mass, until they reach the ground. Upon landing, depending on the
local fuel and weather conditions at the landing site, a firebrand may ignite the local fuel and start a
new fire. Such a fire is called a spot fire, and the process is called spotting (see Figure 1a for a sketch of
the spotting process). Spotting occurs in many ecosystems spanning the Earth, from the Americas to
Europe, Africa and Australia.

Spotting can play an important role in wildfire spread, and while many of the subprocesses
outlined in Figure 1 have been studied in detail, many remain poorly understood. One thing is
certain: where spotting is important, it is a very diffficult spread mechanism to understand and
therefore control.

The model framework we present here has the potential to produce realistic spotting distributions:
spatial maps describing the probability of spot fires downwind of an existing fire. We will show how it
is possible to incorporate the vast, but disparate literature on spotting, with some new ideas, to create
a very robust modelling framework. We hope to draw the interest of researchers, in particular those
working in fire management and experimental or statistical modelling of spotting subprocesses, by
highlighting the lesser known subprocesses and demonstrating some potential uses of our approach.
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While fully realistic distributions are still some time away, a major advantage of our approach is that
as subprocesses become better understood, our spotting distributions will become more accurate.

(a) (b)

Figure 1. (a) Caricature of the spotting process. A cohort of firebrands are launched to various
heights z above a spreading ambient forest fire. The x-direction denotes the mean ambient wind
direction. The firebrands are then released and transported in the ambient windfield: combusting,
falling downward due to gravity, experiencing drag and possibly buoyancy, until they finally come
to rest downwind of the main fire. Depending on the local conditions for fuel and weather at the
landing site, a new fire may be ignited if the firebrand is still combusting. Such a fire is called a spot
fire, and the process is called spotting; (b) Determining the “flight and burning” distribution L from the
vertical launch distribution φ. The term “flight and burning” refers to the physical details of firebrand
flight and combustion, which we will discuss in detail in the Appendix. Shown in the vertical is a
cross-section of the launching distribution φ(z, m) for some fixed m > 0. A possible asymptotic landing
distribution L(x, m) is plotted here in the horizontal.

1.1. The Havoc Caused by Spotting

Spotting is not important in all fire contexts, but in a variety of ecosystems worldwide its
importance varies from a minor concern, to the primary front spread mechanism or the primary
breaching mechanism from wildland to urban structures. The type of fire, classified according to the
structure of the fire’s convection column, is also very important, and we will discuss this in detail in
Section 1.4.

In Boreal forests of North America, for example, there are vast continuous stretches of coniferous
forests, which can create incredibly intense fires, called crown fires [3,4]. These crown fires are capable
of prolific spotting, and highly variable rates of spread. In the most extreme tinder-dry burning
conditions, spotting may occur with sufficient frequency beyond a minimum distance, such that it
influences the rate of spread. In addition, the prolific release of flaming needles [5] presents another
mechanism, which might speed up a fire’s local progression. Either of these mechanisms may describe
the high variability in observed rates of spread for Boreal crown fires as outlined in [3]. While writing
this article, a huge crown fire of high intensity is unfolding in Fort McMurray in Alberta, Canada.
Spotting has allowed the fire to enter the city and more than 1600 homes were destroyed.

As another example, in the chapparal brush of California, spotting from brushfires annually
threatens property in the wildland-urban interface [6,7]. The warm, dry foehn winds which pass
through the great basin in Southern California [8], lead to extreme fire spreading scenarios in which
spotting can play an important role. In fact, examples of foehn winds are found in many other regions,
such as the Chinook winds East of the Rocky Mountains, or the Viento del Sur winds in Spain.

In Australia, spotting is a major issue for fires in Eucalyptus-grassland forests [9–11]. In certain
instances, severe burning conditions have led to the observation that the fire’s boundary “appears
to be moving as a continual coalescence of spot fires” [9]. In these cases, spotting seems to drive
the fire front; such situations will be globally described as spotting dominated cases. An example of a
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spotting dominated case are conflagrations, where fire spreads rapidly in an urban setting, as with
post-earthquake fires which occurred in San Francisco (1906) or Tokyo (1923) [12].

Spotting is often the cause of a fire breaching across an extended obstacle to local spread, such
as roads, rivers, or man-made fuel breaks [13]. Naturally, then, spotting is also the most frequent
mechanism for the escape of prescribed fires, the latter used by fire ecologists and management, to
promote ecological diversity and mitigate potential large fires through fuel management [14]. Spotting
can also cause an increased rate of spread across a region which might otherwise slow the fire’s
progress, as might happen if a crown fire front encounters an extended slash region, across which local
spread would be much slower. On the other hand, slash is notorious for spotting, which in this case
could allow the fire to reach the slash boundary faster relative to local spread alone.

When conditions aloft are favorable for strong convection column development [15], or large-scale
fire-induced vortices (fire whirls) exist [16], spotting may contribute significantly to a fire’s spread. A
spot fire 29 km downwind of an existing fire in Victoria, Australia appears to be the longest recorded
spot fire event [11]. As reported by Ellis [9], the Ash Wednesday fires in Australia, which occurred on
the 16th of February 1983, produced spotting distances of between 5 and 12 km, with the most extreme
incident measured being 25 km from the primary fire.

While these extreme long-distance dispersal events cannot be seen to drive a front’s rate of spread,
they dramatically increase fire danger. It may take fire suppression crews a long time to reach such
fires, increasing their likelihood of growing to a full blaze. Accurate wind-transport models for
combusting firebrands, operational in real time and with access to accurate wind information, are
in demand to help improve spotting forecasts in such situations. As mentioned above, coupled
fire-atmosphere models [2,17,18] may provide an improvement to static fluid dynamic computations
currently employed in operational front prediction software (for North American examples see [19,20]).
Indeed, Large Eddy Simulations (LES) coupled with firebrand dispersal have shown that the fire
plume may be quite different from the plume used in standard models like the Baum and McCaffery
plume [21], leading to different firebrand trajectories [22–24]. In addition, there is an extensive literature
covering empirical measurement of plume characteristics; extensive measurement of plume heights
and characteristics in [25] compared a variety of plume models (different from Baum and McCaffery)
against measurements for approximately 2000 wildfire plumes. The results showed an unexpected
importance of the lower limit of the atmospheric boundary layer, as well as a perplexing independence
of plume injection heights on wind, but also a non-neglibible fraction of plumes whose structure
could not be determined by the models employed. Comparison of model output versus experimental
observation, coupled with the development of increasingly sophisticated plume models, provides
a promising paradigm involving experiment and modelling which must be further employed in
addressing the challenging processes which drive wildfire spread.

As a final, very important note, there are examples in the literature, which indicate that spotting
can at times lead to the acceleration of a fire’s rate of advance. During the Beerburrum Fire No. 48,
which occurred in Queensland Australia in 1994, the firefighters observed “Spotting ... accelerated its
rate of spread and its advance was halted only by Pumecestone Passage” [9]. The issue of acceleration
in local spread caused by the addition of a non-local spread mechanism is not new in for invasion
ecology since the seminal paper by Kot et al., [26], but the possibility of acceleration is an important
open, unaddressed question in the context of wildfire spreading with spotting.

1.2. The Primary Questions of This Article

Motivated by all the problems which spotting causes, the central questions which we address
here or in future work are:

1. What is the spotting distribution, or the probability of spot fire ignition, at each location downwind
of an existing fire front?
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In this paper we will focus primarily on a mechanistic approach to the derivation of the spotting
distribution. Of equal importance is the development of experimental approaches to measure the
spotting distribution; we discuss this problem in Section 4.2. As soon as the spotting distribution is
found, we can ask important follow-up questions, such as:

2. What is the probability that a fire will breach an obstacle?
3. What role does spotting play on the rate of spread of a fire front? Can spotting cause a wildfire to

quickly traverse a region across which it would spread slower with purely local spread?
4. Can spotting accelerate a fire’s advance?

In this paper we will address Question 1 in Sections 1.4 and 2. Here we will borrow heavily from
methodologies proposed in plant, insect and animal dispersal [27,28]. Questions 2, 3 and 4 have been
discussed in detail in the PhD thesis of J. Martin [29], while Problem 3 has been further discussed in
the more general mathematical framework of birth-jump processes in [30]. The problem of connecting
theory to experimental measurement is taken up in the Discussion.

Our approach is based on existing physical principles and experimental results, summarized in
Table A1 from the Appendix, to derive the spotting distribution. In Section 2 we present a new transport
model for firebrand transport and combustion. We model the time-mean behaviour of trajectories
and combustion, since turbulence creates high variability in the atmospheric paths of individual
firebrands. The authors have not been able to find published quantitative spotting distributions from
more complicated physics-based models (e.g., fire-atmosphere models, or the extensive physics-based
model by Sardoy [31]). In fact, the only known article presenting a spotting distribution is that
of Wang [32], though our methodology is much more general. Our ability to provide spotting
distributions, incorporating realistic sub-processes as discussed in the Appendix, is the greatest
strength of the present article.

We also introduce, in Section 2, a transport and combustion model in the form of a hyperbolic
partial differential equation (PDE), based on the launching distribution, the horizontal wind profile, the
terminal falling velocity, the burning rate of the flying brands, ending with a discussion of the ignition
probability for a landed firebrand to generate a spot fire.

In Section 3 we discuss how the models of Section 2 can be used to determine the spotting
distribution. We provide analytical solutions of the transport PDE from Section 2, and employ these
to generate examples of the spotting distribution. The analytical solutions are used to illustrate how
the characteristic components of the model, such as horizontal wind, terminal falling velocity or
combustion model may influence the spotting distribution.

In our discussion of measuring the spotting distribution in Section 4 and in the Appendix,
we describe a number of successes which have been achieved in describing some of the above
subprocesses. Most of these are fairly recent, as the wildfire research community has become
increasingly interested in understanding spotting. We also draw attention to components of the
spotting process which are relatively poorly understood, taking the lead from experimentalists in
Dispersal Ecology [27]. We suggest potential methodologies which may be employed in experimentally
measuring spotting distributions.

1.3. Prior and Concurrent Models Coupling Spotting with Local Spread

A recent cellular automata model [33] was the first of its kind to incorporate spotting. The authors
assumed a simple two-dimensional normal distribution for the spotting distribution, where the spotting
distribution represents the probability of ignition occurring in a non-burning cell in a given time step.
This model was considered first separate from local spread, in which non-burning cells can be ignited
by their burning neighbours, with some probability related to the rate of spread indicated by the
empirically-based Fire Behaviour Prediction system [34]. In addition, burning cells become burnt-out
in each time step with some probability. The authors of the paper then used distributions to describe
the spotfire distribution in the plane, neglecting topographical variation. The room for improvement of
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the normal distributions from [33] provided some of the initial motivation for examining more realistic
spotting kernels, as in this paper.

The cellular automata model was unique in that it provided a coherent mathematical model
in which spotting and local spread were simultaneously present. Since then other stochastic
models have been developed, such as the augmentation of Discrete Event System Specification
models (which employ novel Lagrangian point-advancement techniques), to include spotting [35].
This particular reference improved on the spotting distribution of [33], employing the more realistic
log-normal distribution.

It must be mentioned that computer implementations of spotting have been employed in
computer-based local spread simulators (like PROMETHEUS[20], or FARSITE [19]). Spotting models,
such as those developed by Albini [1], have been incorporated in an ad-hoc way [36], focussing on the
maximum spotting distance, rather than the downwind spotting distribution. Most of the Albini models
deal with torching, where ladder fuels allow at most a few isolated trees to crown and spot at the same
time, and with line thermals [13], which are well-mixed rising columns of air which lift firebrands—this
framework is more appropriate for a large, very intense forest fire, as we consider here.

The above computational models provide fire front prediction through explicit curve tracking.
The level-set method is an alternative and very powerful method for front tracking. Consequently,
several authors use level set methods for the propagation of wild fires [37–39]. Our approach for the
spotting distribution studied here differs from the level-set approach, as we are not only interested in
the location of the fire front, but we also like to understand the distribution of spot fires in a continuous
region ahead of the fire. While here we focus on the spotting process, a detailed probabilistic model for
wildfire spread including spotting and local effects has been developed in the thesis of J. Martin [29].
We briefly discuss these models in the Discussion Section 4.1, though we emphasize that the present
work is devoted to the spotting model.

1.4. The Types of Spotting Considered in This Paper

It should be stressed that the model we develop corresponds to a line fire spreading in a flat,
homogeneous medium. This means the fire front represents a division between burned and unburned
regions. We consider spotting only in the direction perpendicular to the fire front. This is an idealization,
since the vortex structure of the convection column releases fire brands in any direction.

With respect to wind, we do not account for the fire-atmosphere interaction. Describing this
analytically is beyond the scope of our current discussion, but poses an interesting challenge for future
research. It is perhaps best left to coupled fire-atmosphere models, many of which are outlined in the
Appendix.

In general, the convection column from a wildfire will be bent in the wind’s direction.
Many formulae have been considered in the literature to characterize the bending angle as a function
of fire characteristics. For illustrative purposes we will consider the model of Van Wagner (1973), as
discussed in the doctoral thesis by Alexander [40], which built on earlier work by Taylor (1961) and
Thomas (1962, 1964). This model proposes a burning angle θ, measured relative to the horizontal axis,
given by

tan (θ) =

(
bI
w3

) 1
2

, (1)

where I is the fire intensity (in kiloWatts per second) and w is the ambient windspeed (in metres per
second). Here b is a ‘buoyancy term’, b = g

ρcpT , where g is acceleration due to gravity, ρ is the fuel

density, cp is the specific heat at constant pressure, and T is temperature. Hence the term ( bI
w3 )

1/2 is
dimensionless, since for linefires we measure intensity I in terms of (J/(m·s)).

The more intense the fire and the weaker the windspeed respectively, the more upright the
convection column. Hence our approximation, that our convection column is vertical, is more accurate
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the more intense the fire. In fact, it is mentioned in the thesis by Alexander [40], that with ambient
windspeeds not exceeding one metre per second, the convection column is essentially vertical.

Depending on the convection column, and the fire’s surroundings [8], one can consider seven
types of spotting, as suggested by S. Ryu [41]. We want to be clear about the types of spotting, which
our impulse-release model might describe, as well as, how our models might be modified to account
for other spotting scenarios.

A type one fire consists of a very powerful convection column, with light surface winds, which
rises vertically into the atmosphere.

A type two fire is similar, but the distinction is the presence of strong surface winds, which can
lead to spotting. We would expect the spotting distribution to be highly concentrated along the front,
and here the influence of local spread mechanisms may be comparable to the influence of spotting on
rates of spread. The Canadian Fire Behavior Prediction System (FBP) [34] accounts for spotting up to
about thirty metres downwind in its rate of spread computation, so spotting from a fire insufficient to
sustain ignition beyond thirty metres has already been accounted for in terms of the rate of spread
computation. On the other hand, there may be a “blocking effect”, where the convection column
allows a relatively fast and vertically uniform atmospheric flow in the near-field; since we assume
firebrands are carried passively by the atmosphere, as the windspeed is comparatively large. Since we
model a vertical release, type two fires are of specific interest in this paper.

Fires of type three (as well as type seven) consist of spotting over mountainous topography, so
our models as they stand would be inadequate to model this type of situation. Discussing mountainous
topography is the subject of future research.

Another extreme spotting situation is a type four fire, where strong winds aloft cause the shearing
off of the top of the convection column. The result is a nearly horizontal column aloft, which rains
firebrands down well ahead of the main fire. These conditions can be incorporated into our model
framework by suitable choice of lofting distributions and wind profiles.

For spotting type five, where the convection column leans towards the strong winds but does
not break off, both short and long-range spotting is possible. The more intense the fire, the straighter
the convection column and the more intense the wind, the more horizontal the convection column.
Empirical relationships have been developed to quantify the angle which the column makes with
the vertical [34]; in particular, in the case of an extremely intense fire, the column is nearly vertical,
corresponding to the idealized launching distributions considered in this work. In future work we
could consider initial conditions along a slanted line, as in the work of Wang [32].

Spotting type six situations occur where there are very strong winds above the ground, so
that no convection column forms. In this case, spotting could play an important role, and diffusion
and non-local dispersal might occur over similar spatial scales. For example, in coniferous forests,
chapparal brush, slash, Eucalyptus-grassland forests, or even conflagration fires in cities, enormous
amounts of firebrands are generated. In all these cases, the firebrands are literally swept along by the
wind. Our launching model L3 from the Appendix covers this situation.

1.5. Ignition of Fuel Beds by Firebrands

One of the most challenging problems in modelling the spotting process, is to determine the
ignition probability E, which is the probability for ignition to occur once a firebrand has made contact
with a given fuel bed. Since the fire landscape is very heterogeneous, the ignition probability E may
vary spatially, and can depend on a variety of factors, like:

• The species of plants emitting firebrands.
• Landed firebrand characteristics like diameter, length, and mass.
• The travel time t∗ from launch to landing.
• The moisture content of the fuel bed and local weather.
• The surface area, and thermal conductivity between firebrand and fuel.
• Whether the firebrand is in a “glowing” or “flaming” state upon landing.
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• Variability of firebrand type within the launching stand (e.g., a coniferous tree might emit both
small brands or cones).

• Whether there is a “re-settling” after landing due to slope or wind.
• Whether there is a shading effect from the sun due to the presence of the convection column.

An ideal model for ignition would account explicitly for all factors just mentioned. Several
physics-based models have attempted to do just that (e.g., [31]), but necessarily include many equations
whose analysis is mostly limited to computer simulation. Since we are interested in fire fronts, which
occur at the macroscopic scale, we can ignore some of the smaller-scale details in our development of
ignition models.

Prior to 2006 the experimental investigation of this topic was limited to qualitative descriptions
of ignition. The experiments show that fuel bed moisture, firebrand mass and geometry are the
most important characteristics determining ignition probability [5,9,42]. The Fine Fuel Moisture Code
(FFMC) used by the FBP system [34], which provides a numerical measure for the moisture contained
in forest litter, has been a useful standard for determining ignition probabilities. It is determined in
turn by the Fire Weather Index, another component of the FBP system [34]. The lower the FFMC,
the higher the fine fuel moisture content. Experiments by the Aerospace Corporation [16,43] found
that for high fine moisture contents only large flaming brands cause ignition, while for low fine fuel
moisture content glowing embers may easily ignite a fuel bed. Albini [13] reports that spotting can
be significant when fine fuel moisture content is below ten percent, and confirmed the earlier results
by [43] that glowing embers can be sources of ignition.

Following these experiments, in about 2006, Manzello [44] began qualitative experiments on
firebrand ignition, for brands emitted during controlled laboratory burning of pine and fir trees.
This work is a collaboration between the National Institute of Standards and Technology in the USA,
and the Building Research Institute in Japan [45], where ongoing experiments may help further
quantify the ignition process.

One important result following from the combustion experiments of Manzello, is that firebrands
are not produced if the dead fuel moisture content exceeds thirty percent. One can further postulate
that there will always be a maximum moisture above which spotting does not occur. Together these
results suggest, as is common knowledge, that lower fine fuel moisture content (high FFMC) can
correspond to greater spotfire risk.

A still more recent paper [46], is the first to describe ignition probabilities using regression analysis
on systematic experimental data. The authors performed a number of controlled lab experiments to
determine the time of ignition, rate of spread, rate of combustion, maximum and mean flame heights,
and ignition frequency of fuel beds for a variety of fuel beds, representative of the Mediterranean.
Examples of fuel beds include a variety of pine, eucalyptus, and grass beds, which could also be
representative of fine fuels from forests in North America and Australia. These fuels were ignited
under varying values for fuel moisture, ambient windflow, bulk density, and fuel arrangement (or
loading). In terms of firebrands, the authors examined pine cones, Eucalyptus bark, acorns and twigs,
and assessed their likelihood to cause ignition in terms of the fuel bed properties just mentioned.
The general results of [46] are that grasses present higher flammability risk compared to tree and bush
litters, pine litter is more ignitable than hardwood litter, and an increase of the fine fuel moisture and
bulk density decreases the time, but not necessarily the likelihood of ignition. Finally, firebrand type
and state (i.e., glowing or flaming) are the most important determinants of ignition.

The glowing or flaming state of a firebrand had already been qualitatively discussed in a number
of investigations (e.g., [5,7,9]). A rigorous analysis of Eucalyptus firebrands by Ellis [9], and pine or fir
firebrands by Manzello [44], confirms the results of [46] that flaming firebrands present greater risk
of ignition. The time-to-burnout of flaming was investigated from a theoretical perspective in [31].
Flaming ignition most likely plays a more important role in short-range spotting, where “re”-flaming
is possible upon landing, and is important to consider [9].
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The results of [47] suggested that there are three firebrand groups which are important for spotting.
These include: heavy firebrands with the ability to sustain flames, which are efficient for long-distance
spotting (e.g., pine cones, cylindrical brands); light firebrands with high surface area-volume ratios
are effective for short-range spotting (e.g., Eucalyptus or pine bark plates). Light firebrands with low
surface-volume ratios fall somewhere in the middle of the other two classes.

Finally, experiments using the Commonwealth Scientific and Industrial Research Organization’s
(CSIRO’s) Pyrotron combustion wind tunnel have further quantified the role of fuel moisture on
ignition probability [48]. Further quantitative work, as discussed in these final two paragraphs, is
underway and will soon be employed by fire management in assessing fire danger.

2. A Transport Model for Firebrand Transport and Combustion

The spotting mechanism can be divided into various physical processes that act in concert. Our
mathematical formulation allows us to consider each process separately, and then join them together to
get the spotting distribution. The main model ingredients, which we encourage the reader to visualize
in Figure 1a, are listed below. We discuss detailed physical models for each of these processes in the
Appendix, see also Table A1.

1. Launching: The launching distribution φ(z, m) describes how many fire brands of mass m are
launched into the convection column to the height z. We assume a maximal loftable mass of
m̄, such that 0 ≤ m ≤ m̄. We use H to denote the canopy height (in metres) such that lofting is
only considered for heights z ≥ H. The launching distribution is a true probability density on
[H, ∞]× [0, m̄], normalized and dimensionless. We measure heights z in metres, and masses m
in kilograms (though it will be noted that typical firebrand masses are on the order of grams).
Notice that one may be interested in many more characteristics of the firebrands launched: the
firebrand type, for example, could be important [46,47].

2. Horizontal wind profile: We describe the horizontal windspeed (in metres per second), parallel
to the downwind direction (or perpendicular to the front), by w(z) > 0, which, depending on
the physical model, might depend on the height z (in metres).

3. Terminal falling velocity: We assume that flying fire brands quickly reach their terminal
velocity v(t, m) (measured in metres per second), where falling through gravity and frictional
drag are in equilibrium. We make the strong assumption that v < 0 as soon as the ember leaves
the convection column; in reality, we would expect turbulent up-drafts in a neighbourhood
of the convection column. It is an interesting challenge to properly describe the vertical and
horizontal variation in the strength of such updrafts in a neighbourhood of the convection
column, though it is beyond the scope of this paper to do so. However, as discussed in the
Appendix, outside the region of significant updrafts, the assumption that the brand will rapidly
assume its terminal speed and falling orientation is well-justified, established through wind
tunnel experiments [5,9,17].

4. Burning rate: With f (t, z, m) we denote the combustion rate of a brand of mass m at height z
in a well oxygenated environment. The combustion rate f has units of kilograms per second.
While the burning rate depends on the relative firebrand velocity, in most models we will
assume this dependence is negligible.

5. Ignition probability: The ignition probability E(m) describes the probability that a landed
burning mass m starts a spot fire. As a probability density on the space [0, m̄] (with masses in
kilograms), it is normalized to take on values between zero and one, and is dimensionless.
Of course, ignition generally depends on the local fuel conditions, moisture content and
temperature amongst other variables, so we are making a simplifying assumption that ignition
is homogeneous in space. Notice further that we are implicitly assuming that thermal energy
transfer, proportional to firebrand mass, depends only on mass and not for example on firebrand
geometry (the latter being known to influence energy transfer).
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The asymptotic landing distribution L(x, m), determined in Equation (21) below, roughly
describes how much mass lands where (here x is downwind distance in metres and m is mass in
kilograms). The determination of the asymptotic landing distribution is illustrated in Figure 1b and is
captured in the following flow diagram:

φ(z, m)︸ ︷︷ ︸
Launching distribution

→︸︷︷︸
Transport and combustion

L(x, m)︸ ︷︷ ︸
Landing distribution

(2)

To determine the spotting distribution, we must be careful. If one examines too far downwind,
one will not find spotfires from an impulse release, since there is a finite combustion lifetime for
each firebrand.

It is useful at this point to introduce the combustion operator and its inverse, where the combustion
operator C(m, t) tells us how much mass (in kilograms) remains after t time units, starting from
mass = m. The inverse combustion operator C−1(m, t) is then defined as usual by

C−1(C(m, t), t) = m. (3)

Another important concept is the landing time, which we denote by t∗(x). The landing time has
units of seconds, and quantifies how long it took a firebrand released at x = 0 to reach the ground at
location x. Provided windspeeds vary monotonically with height, each downwind location will have a
unique landing time, hence this quantity is well defined. For example, if we have constant windspeed
w and falling speed v, then t∗(x) = x

w , as can easily be computed.
In order to apply the ignition operator, it is necessary to determine the total landed mass at given

location. This involves integrating the asymptotic landing distribution against m, incorporating the
inverse combustion operator evaluated at the landing time into the distribution for the integration.
We delay the presentation of this complicated term until Section 2.3.

Ignition, if it occurs, is extremely rapid in tinder-dry burning conditions (observed experimentally
for example in the Porter Lake experiments [42]), which corresponds to scenarios we are interested in
exploring. In this context we assume that masses ignite instantly upon landing. Hence to determine
the spotting distribution, we can apply the ignition operator to the total landed mass, where, as in the
previous paragraph, the landing distribution’s mass component is evaluated in terms of the inverse
combustion operator at the landing time. The exact formula is given in Equation (23).

One can then augment our earlier flow chart to include spotting,

φ(z, m)︸ ︷︷ ︸
Launching distribution

→︸︷︷︸
Transport and combustion

L(x, m)︸ ︷︷ ︸
Landing distribution

→︸︷︷︸
Ignition

S(x)︸︷︷︸
Spotting distribution

(4)

In turn, this flowchart defines a map T : φ → S. This is a map between distributions, which allows
for abstract mathematical explorations of the spotting process.

2.1. The Impulse Release IBVP

The distribution of firebrands at time t ≥ 0, location x, height z and mass m may be described by
p(t, x, z, m) ∈ R+. Since flying and burning are deterministic processes, we model the whole process
with a transport equation

∂p
∂t

+
∂(wp)

∂x
+

∂(vp)
∂z

+
∂( f p)

∂m
= 0 (5)

on the domain
(t, x, z, m) ∈ Ω := [0, ∞)× [0, ∞)× [H, ∞)× [0, m̄]. (6)

The functions w(z), v(t, m), f (t, z, m) describe the physical processes of wind transport, falling,
and burning, respectively. We will use the appendix to give detailed, physically based, description of
these terms.
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To obtain a well defined model, we need to specify boundary and initial conditions. The above
Model in Equation (5) is hyperbolic and the spatial characteristics are pointing downwards (falling)
and to the right (wind). Hence we only need boundary conditions on the left boundary at x = 0.
Like in a confetti problem, where you throw confetti into the wind and see where the pieces land, we
assume a one-time release of fire brands and we are interested to see where they land. When the fire
releases fire brands over a period of time, then a simple integration of our model will account for all
the landed brands. Hence we set an initial condition of

p(0, x, z, m) =

{
Nφ(z, m) for x = 0
0 else.

(7)

where N is the total number of launched brands, and a boundary condition as

p(t, 0, z, m) = 0, for t > 0. (8)

2.2. Solution of the Transport Model

The above transport model can be explicitly solved using the method of characteristics.
We reformulate the above model by using the product rule for the partial derivatives:

∂p(t, x, z, m)

∂t
+ w(z)

∂p(t, x, z, m)

∂x
+ v(t, m)

∂p(t, x, z, m)

∂z
+ f (t, z, m)

∂p(t, x, z, m)

∂m
(9)

= −∂ f (t, z, m)

∂m
p(t, x, z, m). (10)

The characteristic equations are

dx
dt

= w(z), (11)

dz
dt

= v(t, m), (12)

dm
dt

= f (t, z, m), (13)

where Equation (11) describes horizontal transport due to wind, Equation (12) describes vertical
movement due to gravity, buoyancy etc., and Equation (13) describes the combustion process of a
burning ember. Detailed physical models are given in the Appendix. Each of the above equations
needs to be equipped with an initial condition

x(0) = x0, z(0) = z0, m(0) = m0, (14)

which describes the initial location x0, the initial height z0 and the initial mass m0 of a fire brand.
We introduce Y := (x, z, m) and we assume that the functions on the right hand side are globally
Lipschitz continuous such that the IVP for the System (11)–(13), together with the initial conditions in
Equation (14) has a unique solution

Y(t, Y0) = (x(t; x0), v(t; v0), m(t; m0)), with Y0 = (x0, v0, m0), (15)

such that x(0; x0) = x0 etc., which we call the characteristics of the system. Along the characteristics,
p satisfies an ordinary differential equation

d
dt

p(t, Y(t, Y0)) =
∂p(t, Y(t, Y0))

∂t
+∇Y p(t, Y(t, Y0))

∂Y(t, Y0)

∂t
(16)

= −∂ f (t, Y(t, Y0))

∂m
p(t, Y(t, Y0)), (17)
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where we used Equation (10) in the last step. Equation (17) is solved by the exponential

p(t, Y(t, Y0)) = p(0, Y0) exp
(
−
∫ t

0

∂ f (s, Y(s, Y0))

∂m
ds
)

. (18)

This solution “lives” on the characteristics Y(t). To get a full solution to our problem, we
consider a given point Y(x(t; x0), z(t; z0), m(t; m0)) and we follow the characteristics backwards to
its origin. We denote the backwards solution of the characteristics equation as Y−1(t, Y), such that
Y−1(t, Y(t, Y0)) = Y0. Using this we can write the solution as

p(t, Y) = p
(

0, Y−1(t, Y)
)

exp
(∫ t

0

∂ f (σ, Y−1(σ, Y))
∂m

dσ

)
. (19)

A schematic for the use of the method of characteristics, in case of constant wind and constant
terminal falling velocity, is shown in Figure 2a.

(a) (b)

Figure 2. (a) Schematic of the method of characteristics. A typical characteristic Y(t, Y0) is shown as a
curved red line; (b) Spatial characteristics (solid lines) for the power-law wind profile, with constant
vertical velocity, described in Equation (34). The vertical-axis represents height in metres, while the
x-axis represents downwind distance in metres. Here wH = 5, β = 0.5, H = 0.5 and v = −1.

2.3. From Landed Firebrands to the Spotting Distribution

The “landed brands” are those that reach the canopy at height z = H (where we assume that they
fall straight to the ground—meaning we neglect within-stand winds and resettling, although both
effects can be considered [49]). We can track these explicitly according to the solution Equation (19) of
the impulse-release IBVP for the transport Model (5) described earlier in this Section. We recall from
the introduction to Section 2 the distribution keeping track of all brands that have landed before time t,
namely the landing distribution

L(t, x, m) :=
∫ t

0
p(s, x, H, m)ds (20)

and recall that the limit as t → ∞ the asymptotic landing distribution

L(x, m) = lim
t→∞

L(t, x, m). (21)
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To determine the spotting distribution, we must first integrate the asymptotic landing distribution
appropriately, to obtain the landed masses in kilograms. Employing the inverse combustion operator
C−1 and the landing time t∗(x), the mass in kilograms at location x is given by

∫ m̄

0
m L

(
x, C−1(m, t∗(x)

)
dm. (22)

Finally we can determine the spotting distribution in terms of the latter, by employing the ignition
operator E, which we recall maps mass in kilograms to values in [0, 1], as follows:

S(x) = E
(∫ m̄

0
m L

(
x, C−1(m, t∗(x))

)
dm
)

. (23)

Our use of the spotting distribution is similar to the Green’s-function approach that is used in
the study of linear partial differential equations [50]. The Green’s function describes the evolution of
an impulse release, and the full solution to a PDE can be found by integrating the Green’s function
against initial and boundary conditions.

In the examples in the next Section, we show some illustrative but simple spotting distributions.
We have seen that the spotting distribution depends on various physical submodels for firebrand
launching, flight, burning, landing and ignition. In the Appendix, we provide a detailed review of
the most commonly used submodels, which we summarize in Table A1. Each combination of these
submodels leads to a reasonable spotting distribution. This gives more than 500 cases, which we
cannot cover in this paper. Hence, in the next Section, we focus on some easy to understand examples,
which we identify by their corresponding model number as used in Table A1. We hope that the present
work will generate interest, especially in the experimental community, in order to determine the most
physically plausible spotting distributions for a variety of important spread scenarios.

3. Examples of the Spotting Distribution

3.1. Case (W1,V1): Constant Wind and Terminal Velocity

(Case (W1,V1) in Table A1). As explained in the Appendix, wind-tunnel experiments show that
firebrands quickly take on their terminal speed and configuration [9,51]. Of course, the firebrands are
combusting, so the speed and geometric properties will evolve with time. As a first approximation,
and in the interest of analytical tractability, we will assume firebrands fall with constant velocity v < 0
and constant wind w > 0. All combustion models studied here (F0–F6) have a combustion rate that is
independent of the mass. Hence here and throughout we assume ∂ f /∂m = 0.

The landing time t∗ will be important in what follows. To present a concrete example, if w = 1,
v = −1, then the landing time for firebrands launched initially at x = 0 to arrive at x = 2 is t∗ = 2.

As a starting point, fix a point (x, z) in the quarter plane {(x, z) | x > 0, z > H}, and assign a
time t > 0. If x > wt, then the firebrands which started at 0 have not yet reached location x, so we
can determine the firebrand density p(t, x, z, m) from the initial condition for p. However, if x < wt,
then we must determine the firebrand density by integrating backwards along characteristics to the
boundary at x = 0. The latter requires solving Equations (11) and (12) with negative signs in front of
the terms on the RHS. It is clear, then, that the firebrand density, provided N firebrands are released
above a canopy of height H, is given by

p(t, x(t; x0), z(t; z0), m(t; m0)) (24)

=

{
N δ(t − t∗)φ

(
z(t; z0)− vt, C−1(m(t; m0), t∗(x(t; x0))

)
, x ≤ wt;

p
(
0, x(t; x0)− wt, z(t; z0)− vt, m0

)
, x > wt,

(25)
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where φ is the vertical launch distribution, and C−1 is the inverse combustion operator. A schematic of
this solution is shown in Figure 2a. We remind the reader that at t = 0 we have p = 0 for x > 0, from
our initial condition for an impulse release, so we find p(t, x(t; x0), z(t; z0), m(t; m0)) = 0 for x > wt.
Recalling that the distribution of landed brands L(t, x, m) is given by

∫ t
0 p(s, x, 0, m) ds for t > 0, so

we find:

L(t, x(t; x0), m(t; m0)) =

{
N
∫ t

0 δ(s − x(s;x0)
w )φ(H − vs, C−1(m(t; m0), s)) ds, x ≤ wt;

0, x > wt.
(26)

= NH

(
t − x(t; x0)

w

)
φ

(
H + |v| x(t; x0)

w
, C−1

(
m,

x(t; x0)

w

))
, (27)

where H represents the Heaviside, or unit-step function, defined by H(x) = 0 for x < 0, and H(x) = 1
for x ≥ 0.

Taking the limit as t → ∞ in Equation (26), we obtain the asymptotic landing distribution L(x, m),

L(x, m) = N φ
(
|v| x

w
, C−1

(
m,

x
w

))
, (28)

This equation maps the launching distribution φ(z, m) to the asymptotic landing distribution
L(x, m), as depicted on the right of Figure 1. We will compute some explicit examples in Section 3.6.

We impose the assumption, that if:

C−1
(

m(t; m0),
x(t; x0)

w

)
< 0, we set L(x, m) = 0. (29)

This is to assure that we do not obtain any negative mass density.
We see that the asymptotic landing distribution in Equation (28) is simply the number of firebrands

released N, multiplied by the vertical launch distribution φ(z, m) with its arguments shifted. We employ
this remarkably simple result in the next subsections, for important vertically-varying horizontal
wind profiles.

3.2. Case (W3,V1): Power-Law for Wind, Constant Terminal Velocity

In the previous subsection we explored the case where w > 0 and v < 0 are constants,
corresponding to constant wind and constant falling terminal velocity. We also made no discussion of
the canopy; the approximation that the canopy height H ≈ 0, can be useful in describing long-distance
spotting events, as on this spatial scale the canopy height is negligible. Increasing slightly our model
complexity, in this subsection we consider a ‘power-law’ wind profile, first employed in the context
of spotting by Albini [1]. We model the horizontal windspeed as a function of height z above the
canopy by

w(z) = wH

( z
H

)β
, (30)

where H is the canopy height, wH is the windspeed at the canopy’s base, and β ∈ (0, 1). We are
interested solely in values of z ≥ H. Further, we will not consider resettling or within-canopy winds,
so we assume once a firebrand has reached z = H, it drops straight downward, and is immediately
capable of igniting a new fire. We will continue to assume v < 0.

With all this said, the spatial characteristics read:

dx
dt

= wH

( z
H

)β
, (31)

dz
dt

= v. (32)
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The solution to the first equation, given an initial condition z0, is z(t; z0) = z0 + vt, which we
then use to solve the equation for x. Notice that since v < 0, the heights z are decreasing with time.
The Equation (31) for x becomes:

dx
dt

=
wH

Hβ
(z0 + vt)β. (33)

Integrating both sides with respect to t, we obtain:

x(t) = x0 +
wH

v(β + 1)Hβ

(
(z0 + vt)β+1 − zβ+1

0

)
. (34)

Trajectories for Equation (34) are illustrated on the right of Figure 2.
Now consider a firebrand which reaches the canopy at (x, H). We wish to determine the landing

time t∗(x) which it took for the firebrand to travel from x = 0 at time t = 0 to the top of the canopy at
z = H. As in the preceding subsection, we will run the characteristics in reverse. To do this, we choose
x0 = x, z0 = H, t = t∗ and x(t∗) = 0, and insert these values into:

x(t) = x0 +
wH

|v|(β + 1)Hβ

(
(z0 + |v|t)β+1 − zβ+1

0

)
. (35)

We obtain:
0 = x +

wH

|v|(β + 1)Hβ

(
(H + |v|t∗)β+1 − Hβ+1

)
. (36)

Solving for t∗ in terms of x in Equation (36), we obtain:

t∗(x) =
1
|v|

⎡⎣(Hβ+1 − Hβ(β + 1)|v|
wH

x
) 1

β+1

− H

⎤⎦ . (37)

The reader will notice that in the case where β = 0, Equation (37) reduces to t∗(x) = x
w , which is

consistent with the constant w, constant v case in Section 3.1.
We find the exact solution p of our impulse IBVP for the transport and combustion process:

p(t, x(t; x0), z(t; z0), m(t; m0)) (38)

=

{
Nδ(t − t∗)φ

(
z(t; z0)− vt∗(x(t; x0)), C−1(m, t∗)

)
, x ≤ ∫ t

0 F(s) ds;

0, x >
∫ t

0 F(s) ds,
(39)

where

F(s) := w(z(s; z0)), (40)

so that the bounds on x appearing in Equation (38) can be written in explicit terms, through the
following expression:

∫ t

0
F(s) ds :=

wH

|v|(β + 1)Hβ

(
(z0 + |v|t)β+1 − zβ+1

0

)
. (41)

We can interpret the latter integral in Equation (41) as the location of the leading edge of
the expanding firebrand distribution p(t), since p(t) = 0 for x >

∫ t
0 F(s) ds, but p(t) ≥ 0 when

x ≤ ∫ t
0 F(s) ds.

In particular, from Equation (41) we see that limt→∞
∫ t

0 F(s) ds = ∞. So we can argue similar to
the preceding subsection, arriving at the asymptotic landing distribution (which appears very similar
to Equation (28)):

L(x, m) = Nφ
(

H + |v|t∗(x), C−1(m, t∗(x))
)

, (42)
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but here the landing time t∗ is given by Equation (37). Again, as shown in Figure 1 (b), we obtain a
map from launching φ to landing L. Notice that we set L(x, m) = 0 if C−1(m, t∗(x)) < 0 (i.e., we allow
only nonnegative masses).

3.3. Case (W2,V1): Logarithmic Profile for w, Constant Vertical Velocity

In this subsection, we again assume a constant vertical velocity v < 0, and we introduce the
logarithmic horizontal wind profile (first employed by Albini in spot fire modelling [1]):

w(z) =
u∗
κ

ln
(

z − d
z0

)
. (43)

where z ≥ H + d ≈ H, u∗ is the friction velocity, κ is von Karman’s constant, z0 is the zero-datum
displacement, where H is the canopy height and d is the distance above the canopy where horizontal
winds begin [49]. We will approximate d ≈ 0.

As in the preceding subsections, we may determine the landing time t∗(x). After some work
(see [29] for details), we arrive at an implicit expression for the landing time:

u∗
κ

H ln H − x +
t∗u∗

κ
(ln H − 1) =

u∗
vκ

((H + |v|t∗) ln (H + |v|t∗)) . (44)

For given values of the parameters (u∗, H, v) we can then use a numerical method, like Newton’s
iterative root-finding method, to compute the landing time as a function of x to any desired precision,
since we cannot obtain an explicit expression for the landing time. Because the landing time t∗ must
be increasing with x by uniqueness of firebrand trajectories, with some more work we obtain once
more a very similar expression for the the asymptotic landing distribution,

L(x, m) = Nφ
(

H + |v|t∗(x), C−1(m, t∗(x))
)

, (45)

though the formula is slightly less attractice since t∗ must be solved implicitly from Equation (44).

3.4. The Spotting Distribution S(x) Determined from L(x, m)

The uniqueness of firebrand trajectories for the constant wind, power law and logarithmic wind
profiles, and the assumption that the ignition probability E(m) depends only on the landed mass,
will allow us to use the asymptotic landing distributions L(x, m) obtained in the previous section, to
obtain the spotting distribution S(x). Recall our Formula (23) for the spotting distribution; having
computed several asymptotic landing distributions, we now have several examples of the spotting
distribution. Our assumption that the continuous ignition operator E(m) ∈ [0, 1] depends only on the
landed mass implies that the spotting distribution S(x) ∈ [0, 1], which characterizes the probability of a
spotfire igniting due to an impulse release from x = 0, is given by:

S(x) = E
[

N
∫ m̄

0
m φ
(

H + |v|t∗(x), C−1(m, t∗(x))
)

dm
]

. (46)

An explicit example for constant wind is given in Section 3.6.
We can extend this concept to firebrands released at location x − y, at time t − t∗(x − y),

to determine:

S(x − y) = E
[

N
∫ m̄

0
m φ
(

H + |v|t∗(x − y), C−1(m, t∗(x − y))
)

dm
]

. (47)

The Formula (47) describes the kernel for a firebrand release at x − y, at time t − t∗(x − y). Notice
that our expression is very general, in that we are free to employ a variety of ignition or combustion
models, through inclusion of specific functional forms for E(m) or C respectively.
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3.5. Case (W1,V1, F0, L3, I3): A Family of Simple Spotting Kernels

Let us consider the threshold ignition law (I3) presented in the Appendix, in the case where
m → 0 (see Equation (A35)). Then any firebrand landing on a location which is not burning, will
instantly generate a fire. We again have constant w and v, and further we will suppose that no mass is
lost during transport corresponding to the constant burning law f = const with zero rate of combustion
(the transport process being assumed very rapid).

Let’s assume that the firebrand vertical launching distribution φ(z, m) satisfies the assumption
(L3), so that

φ(z, m) = Z(z) μ(m). (48)

This says the lofting heights z are independent of the masses m. This may occur, for example, in
the case of well-mixed line thermals. We can choose the mass distribution μ(m) in accordance with
experiments such as in the experiments by Manzello [5], or out of mathematical curiosity we could
consider any other probability distribution. What is most important is to assume that Z(z) is not
exponentially bounded, in order to obtain a fat-tailed kernel. For example, one could assume:

Z(z) = e−zβ
, (49)

for β ∈ (0, 1). This kernel is of particular interest here, since it decays sub-exponentially, and has been
shown in integro-difference models [26] to give rise to accelerating propagation of the corresponding
solution in space [26]. Physically this could correspond to extreme spotting conditions like in the
presence of fire whirls.

From Equation (46), with the form Equation (49) appearing in the landed mass distribution M(x),
we find that for a release of N firebrands the landed distribution M(x) of masses at location x is:

M(x) = N
∫ m̄

0
m Z

(
|v| x

w

)
μ(m) dm (50)

= N
∫ m̄

0
m e−(|v| x

w )β
μ(m) dm (51)

= e−(|v| x
w )β

N
∫ m̄

0
m μ(m) dm (52)

= he−(|v| x
w )β

, (53)

where h > 0 is the total landed mass at x, namely

h: = N
∫ m̄

0
m μ(m) dm < ∞. (54)

Since we are assuming instant ignition, the spotting distribution is the same as the landed mass
distribution. Referring to Equation (50), we can then write the spotting kernel in this case:

S(x) = he−( |v|xw )β
. (55)

This whole procedure can be generalized. If instead of the kernel Equation (49) we use an
arbitrary kernel Z(z), fat-failed or not, repeating the steps leading to Equation (55), we obtain the
spotting distribution:

S(x) = hZ(|v| x
w
). (56)

We can also extend the latter formula to include our other combustion models, by altering h
defined in Equation (54) to read

h := N
∫ m̄

0
m μ

(
C−1(m,

x
w
)
)

dm, (57)
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however the resulting kernel Equation (56) will now have compact support, since we define C−1(m, x
w )

only for values of x where C−1(m, x
w ) ≥ 0.

3.6. Applications: Examples of the Spotting Distribution

In this subsection we show some explicit examples for the landed mass and for the spotting
distribution. First we consider an explicit version for the cases (L3, G1, W1, V1, F0, I2), which is a
special case of case (W1, V1) that was studied in Section 3.1. We consider

φ(z, m) = Z(z)μ(m), (58)

Z(z) = λe−λz, (59)

μ(m) = am−0.5, 0 ≤ m ≤ m̄, (60)
dm
dt

= −κ, (61)

C−1
(

m,
x
w

)
= m + κ

x
w

. (62)

According to Formula (28) we have a landing distribution of

L(x, m) = Nφ
(
|v| x

w
, C−1

(
m,

x
w

))
. (63)

Substituting the explicit forms from Equations (58)–(62) into the landing distribution, we get an
explicit formula for m ≥ 0:

L(x, m) =

{
Nλe−λ|v| x

w a
(
m + κ x

w
)−0.5 0 ≤ m + κ x

w ≤ m̄
0 m + κ x

w > m̄
, (64)

=

{
Nλe−λ|v| x

w a
(
m + κ x

w
)−0.5 0 ≤ m ≤ m̄ − κ x

w
0 m > m̄ − κ x

w
. (65)

The condition 0 ≤ m ≤ m̄ − κ x
w implies that

x ≤ xmax :=
m̄w

κ
, (66)

and
L(x, m) = 0 f or x > xmax. (67)

To obtain the total landed mass, we multiply L with m and integrate from 0 to m̄:

M(x) =
∫ m̄

0
mL(x, m)dm =

∫ m̄−κ x
w

0
mNλe−λ|v| x

w a
(

m + κ
x
w

)−0.5
. (68)

Now we use the integral

∫ m̄−A

0
m(m + A)−0.5dm =

2
3

m̄3/2 − 2A
√

m̄ +
4
3

A3/2 (69)

and we find and explicit formula for the landed mass

M(x) = Nλe−λ|v| x
w a

(
2
3

m̄3/2 − 2κx
√

m̄
w

+
4
3

(κx
w

)3/2
)

. (70)
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To obtain the spotting distribution, we need an ignition law. Here we use the piecewise linear
ignition function with lower ignition threshold m and we obtain

S(x) = E(M(x)) =

{
M(x)

m M(x) ≤ m
1 M(x) > m

(71)

with M(x) given by Equation (70). Hence we find an explicit formula for the spotting distribution. As
examples we chose the parameters as in Table 1 and we plot the landed mass M(x) and the spotting
distributions S(x) for these cases in Figure 3.

Table 1. Summary of the model parameters for the examples (in metric units).

Parameter w v m̄ m a κ N λ xmax

base case (thick solid) 2 −1 0.004 0.001 7.91 0.00005 1000 0.01 160
slow burner (dotted) 2 −1 0.004 0.001 7.91 0.00003 1000 0.01 266.66

lower release height (dashed) 2 −1 0.004 0.001 7.91 0.00005 1000 0.05 160

Parameter w v m̄ m a η N λ xmax

Tarifa’s case (thin blue) 2 −1 0.004 0.001 7.91 0.000286 1000 0.01 ∞

The parameters in Table 1 have been chosen to model realistic physical scenarios, at the lower
limit where spotting might begin to have an impact. The windspeed w of two metres per second is on
the low end of observed values [3]. Terminal speed of one metre per second is also low, but on the same
order of magnitude as firebrands with diameter, mass and length as described in Manzello’s study.
The upper and lower bounds on the mass, measured in kilograms, correspond to the values found
in Manzello’s combustion experiments [5]. The rate of combustion, chosen between 0.03 and 0.05 g
per second, results in flaming burnout in under two minutes. Choosing 1000 firebrands, corresponds
to combustion of about ten trees—a moderate estimate for the width of our front. The decay rates λ

were chosen so that firebrand launching would drop off appreciably beyond several hundred metres.
Finally the parameter a is a normalization constant for our mass distribution.

(a) (b)

Figure 3. (a) Examples of landed mass distributions, with mass in kilograms along the y-axis and
distance in metres along the x-axis; (b) Corresponding spotting distributions, dimensionless values
on the y-axis and distance in metres along the x-axis. The parameters are from Table 1, with the base
case in thick solid black, the slow burning case in dotted, the lower release height case in dashed and
Tarifa’s model in thin solid blue.
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Next we consider the effect of changing combustion model, choosing instead our modified version
of Tarifa’s model (F2), while keeping all other parameters fixed (see Table 1). It is thus important to
reconsider the inverse combustion operator. According to the model (F2), we have

C−1(m, t∗(x)) = m
(

1 + η
x2

w2

)
, (72)

since this is the initial mass, which travelled through the air after launching during a time of t∗ = x
w .

We can start with Equation (65) and replace the term m + κ x
w by m

(
1 + η x2

w2

)
. Then the landed mass

is computed to be

M(x) =
2
3

Nλe−λ|v| x
w a
(

1 + η
x2

w2

)−2

m̄
3
2 (73)

and the spotting distribution S(x) is again explicitly given by Equation (71). As an example we use
parameters as in Table 1 and plot the landed mass and the spotting distribution as thin blue lines in
Figure 3. Notice that the inverse combustion operator in Equation (72) is always positive for all x > 0.
Hence in this case we have no maximum spotting range and xmax = ∞, even though it is effectively
zero beyond 200 m.

It is important to determine the minimum spatial extent of the spotting distribution required for
spotting to be important. Below this extent, the main fire will outrun spot fires before they can develop
into a separate front. As a specific example, Alexander has estimated such an effective distance for
crown fires in North America to be approximately 300 m (in the most extreme ignition conditions [3]).
In Figure 3 we consider Alexander’s crown fire situation. In comparing the Tarifa-case with the dotted
curve (base case with slower burning), both distributions extend at least approximately to the 300 m
cutoff—though in the Tarifa-case the distribution is essentially zero there. We further note that, while
not shown, just halving the combustion rate in the base case pushes the distribution past the 300 m
mark. By changing the combustion model or parameters, we obtain very different outcomes for the
importance of spotting.

4. Discussion

4.1. Usage of the Spotting Distribution

One of our primary motives in determining the spotting distribution, is to employ the latter as a
redistribution kernel in fire spread models. For example, the model in [35] uses an indicator function
approach to describe the interface between burned and unburned regions. They include spotting in
the form of a log-normal distribution, but other spotting distributions, such as computed here, could
be included as well.

A somewhat different approach was taken in [29,30], where an integro-PDE equation approach
was used to model the probability of fire at a certain location. The time evolution of the likelihood
u(t, x) to observe a fire a time t at location x is given by the integro-PDE

ut = Duxx +
∫ ∞

−∞
S(x − g) u(g, t) dg + c(u)u − δ(u)u, (74)

where S(x) is the spotting distribution, c(u) describes combustion, δ(u) denotes the heat loss term and
the diffusion Duxx describes local fire spread. This model was used in [30] to investigate invading fire
fronts and their asymptotic invasion speeds. For example, we could there show that spotting is able to
increase the fire invasion speed. A model of the above type is quite versatile and it can include various
spotting distributions as well as different combustion and fuel dynamics.

A more standard approach starts from conservation laws for physical quantities like energy
of chemical species, leading to coupled reaction-diffusion systems for temperature and mass

150



Appl. Sci. 2016, 6, 177

evolution [31,52,53] and knowledge of the spotting distribution might be a useful addition to
these models.

Changing gears from our discussion of the “spread problem”, knowledge of the spotting
distribution is also important for the “breaching problem”—of great practical importance for wildfire
management, but poorly understood. For example, suppose a crowning forest fire reaches a wide river.
On the opposite side is a continuous stretch of dense coniferous forest. The likelihood of a spot fire
occurring on the non-burning side of the river equals the integral of the spotting distribution along the
opposing side of the river. It gives a direct quantitative measurement for fire risk beyond fuel breaks.
A similar problem arises at the wildland-urban interface and the spotting distribution can tell us how
far the spotting is likely to reach.

4.2. Measurements of Spotting Distributions

The primary challenge for the spotting experimentalist is the paucity of quantitative observations
from real fires. The landing fire brands could be visualized by visual recording or infrared recording.
In the paper “Monitoring Insect Dispersal”, by J.L. Osborne et al. in the collection [27], the authors
discuss “vertically looking radar” (VLR). Such radar has been used to study insect dispersal, and
consists of a series of gates capable of monitoring the skies from 100 m to a kilometre above ground.
In addition, the VLR system is capable of determining flying mass, direction and magnitude of the
velocity vector of a flying brand. One could imagine field experiments where such instrumentation
is employed, in order to count how many, to which height and with what mass are the firebrands
being released.

In field situations, the ignition probability can be estimated by the number of spot fires which result
per unit of landed firebrand mass, or ideally extrapolated from laboratory experiments. Satelite data,
or other forms of radar collection could be of use here as well; while individual spotting events may
only be observable through the appearance of a new fire, if we had detailed spotting information for a
particular fire situation, such information could help inform the likelihood of long-distance dispersal.

There are some field experiments, in particular from Australia’s Project Vesta [54,55], where
attempts have been made to directly measure the spotting distribution. In particular, in a series
of experimental fires, firebrand distributions were measured by catching brands on plastic sheets.
The goal was to validate earlier firebrand modelling employing the CSIRO wind tunnel by Ellis [9],
though the results were mostly qualitative and the need for model improvement was a primary finding.

In controlled lab experiments, several trees could be alighted in a wind stream and all landing
embers can be first put out, then counted and weighed, as has been done in experiments by
Manzello [44,45]. Both of these approaches (field and lab) give us the landing distribution L(x, m).
To get the spotting distribution S(x) we need a second ingredient, which is the probability of ignition
E(m). Several lab experiments have been done already, where burning material is thrown into various
fuel beds and the ignition probability has been measured using regression analysis in quite some
depth ([46,47]). In the very hetereogeneous natural spotting environment, understanding the variability
in spotting ignition probabilities over space and time is very important.

We believe that many of this data is already available in various fire management and research
centers, but, to our knowledge, they have not been systematically examined to estimate a spotting
distribution. Promising data are available for example for the 1961 Basin Fire in the Sierra National
Forest (USA) [56], the 1994 South Canyon Fire in Colorado [57], the 1994 Butte City Fire in Idaho [58]
and the Oakland/Berkeley Hills Fire [59], which in particular was described in the review paper by
Koo et al. [12]. We leave a detailed exploration of these data to future research and we write this paper
in the hope of generating increased interest in better quantifying the lesser known model components.

We have seen that the derivation of specific spotting distributions depends on many physical
details, which we outline in the Appendix. However, direct measurement might enable us to skip the
detailed physical modelling and rather use an empirically measured spotting distribution.
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4.3. Future Studies

The key idea behind the spotting distribution is a separation of time scales for the relevant
processes, namely the fast wind-distribution of firebrands versus the relatively slow crawling
combustion of the main front. In real wildfires, the total flight time of burning material is of the
order of seconds to minutes, while we may assume that the overall fire front progression is of the order
of minutes or hours. The maximum possible flight time of firebrands has been established through
wind-tunnel experiments, which confirm that combustion of firebrands results in extinction after at
most several minutes, and flaming combustion even prior to that, though there is the possibility for
re-flaming if travel is fast enough (e.g., [5,9,31]). Ignition is highly dependent on firebrand state upon
landing (e.g., flaming vs. glowing). For forest fires, the required separation of timescales between
spotting and local spread is valid—wind transport is much more rapid. For grass fires, however, the
time scale of local spread and spotting is comparable and our scaling argument is invalid for grassfires.

We only consider horizontal winds perpendicular to the main fire front. However, dispersal of
firebrands happens in all directions, often leading to a “V”-shaped spread downwind—similar to the
wake left by a boat travelling through water. In our case, any spread parallel to the front will not
change the front’s shape. However, increased travel times due to horizontal movement parallel to
the front’s axis may lead to decreased support for the downwind landing distribution, due to earlier
burnout. Further, there may be a greater net accumulation of firebrands than is described in our
distributions, due to cross-wind contributions from launches further down the front. The latter point
is less concerning, since there is already uncertainty in the number N of firebrands launched. Since our
idealized distributions will be translation-invariant parallel to the front, extra accumulation could be
accounted for by increasing N.

From a mathematical perspective, integro-differential equations, which employ redistribution
kernels to describe long-distance dispersal, such as Equation (74), have become of much greater
interest of late. There is considerable overlap with research on plant seed dispersal [26,28] and we
expect that analysis methods that are used in seed dispersal to become useful for fire spotting as well.
Employing our spotting distribution as such a redistribution kernel, we hope to be able to provide
more complete answers to the questions posed in Section 1.3. Including topography, spatial variation
in fuel and weather leads to heterogeneous and nonlinear mathematical models, which would be
further complicated—but made more realistic—by adding an additional spatial dimension.

Many avenues of research are opened by considering the analysis of such models, since such
models are mathematically complex and at the forefront of current applied analysis and numerical
modelling research. Hence another way our models could be improved is a better understanding of
the analytical aspects of nonlocal models in heterogeneous media, which is another avenue of research
underway by the authors and others [60].
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Appendix. Ember Release, Burning, Flying and Fuel Ignition

In this Appendix we will discuss the modelling of physical subprocesses that are involved in the
spotting problem. We will review the extensive literature in this area, and derive mathematical models
for the firebrand mass distribution, plume models and the vertical launch distribution, firebrand
combustion and temperature, vertical and horizontal transport speeds, and ignition probabilities.
We summarize all models and their references in Table A1.

Table A1. Physical and empirical models for spotting subprocesses.

Process Number, Description Reference

launching φ(z, m) L1, Unique launching height z(m) [1,21,22].
L2 , Normally distributed New.
L3, Heights and masses independent:

φ(z, m) = Z(z)μ(m) New.

launched mass G1, Power law New; [44]
μ(m) G2, Slash burning [32].

Wind transport W1, Constant horizontal wind New.
w W2, Logarithmic wind profile [1,15].

W3, Power-law wind profile [1,13].

Terminal vertical V1, Constant v [9,68].
velocity v. V2, Experiments on

cylindrical firebrands. [16].

Combustion models F0, Constant burn rate New.
f F1, Tarifa’s model [1]

F2, Simplified Tarifa’s model New.
F3, Negligible combustion New.
F4, Fernandez-Pello model [69].
F5, Refinements to

Fernandez-Pello model [22,70].
F6, Albini’s line

thermal model [3].

Ignition probability I1, Piecewise linear [32,46,47].
I(m) I2, Heaviside step function New.

I3, Smoothed step function New.

Temperature T(t) T1, Newton’s Law of Cooling,
T2, Stefan-Boltzmann law [22].

Appendix A.1. The Launching Distribution φ(z, m)

The greatest challenge in modelling spotting is to determine how many firebrands, distributed
according to their various characteristics, are both generated and subsequently launched into the
atmosphere. The latter process takes place in the fire plume, which is a high-velocity, buoyancy-driven
flow induced by the combustion at the surface [61]. The plume of a wildland fire is often called its
convection column [32]. Any fire plume is more turbulent than laminar, and our knowledge about
plumes is mostly experimental [61]. There is a complicated interaction between the atmosphere and
the fire, hereafter referred to as fire-atmosphere interactions, which has been extensively studied from
experiments, and physical modelling [1,2,17,18,22–24,31,62–67].

The most widely used fire plume model in spotfire modelling is the model developed by Baum
and McCaffery [18,21], as used for example in [1,7,13,19,20,22,67]. The model consists of three burning
regions, illustrated in Figure A1. Our discussion here closely follows that of the book [61] and
the paper [22]. Region I lies at the base, and is the continuous burning region. Here the flow is
pulsating and unsteady. Region II is an intermittent zone, in which flame patches break off from
the below-anchored flame, while at the top of Region II all combustion ceases. Finally we have

153



Appl. Sci. 2016, 6, 177

region III, the non-combusting plume, where we assume that the time-averaged upward velocity and
temperature drop off radially in a Gaussian manner.

Figure A1. Sketch of the Baum and McCaffery plume. Region I is the continuous (canopy) burning
region. Region II is a transition zone over which the plume velocity is constant. The buoyant upward
motion in region III is reinforced by large ambient eddies, which cause entrainment of air into the plume.

The relevant parameters are height z, plume velocity Up, and temperature T. These are made

dimensionless by the scaling z
zc

:= z∗, Up
Uc

:= U∗, T−Ta
Ta

:= T∗, where:

zc :=
(

Q
ρacpT0

√
g

)2/5
, Uc :=

√
gzc. (A1)

The parameters appearing in Equation (A1) are the heat release rate Q, the density of air
ρa = 1.2 kg·m−3, cp = 1 kg−1·K −1 is the specific heat capacity of air at constant pressure, Ta

is the temperature of the ambient air, and g is the gravitational constant.
The analysis in [71] then leads us to the mean plume-centerline velocity and temperature as a

function of the rescaled height z∗:

U∗ = 3.64(z∗)−1/3 and T∗ = 8.41(z∗)−4/3. (A2)

For a given height z in the plume region there is associated a unique mass m(z), such that this
mass attains terminal velocity exactly at height z. In other words, the drag induced by the upward
plume velocity Up is balanced by the weight of the mass at this height.

In the idealized case of a spherical particle, we have a direct connection between the cross-sectional
area A, the diameter d, the drag coefficient CD and the density ρs. Employing the relation Equation (A2),
we obtain the unique lofting height:

z =

(
40CDρa

4dρsg

)3/2
zc, (A3)

Employing Equation (A1) in the latter equation, we can re-write the lofting height as:

z =

(
40CDρa

4dρsg

)3/2 ( Q
ρacpT0

√
g

)2/5
. (A4)

We will introduce a constant γ = [40CDρa(4dρsg)−1(ρacpT0
√

g)−4/15]3/2 which absorbs all the
constants in Equation (A4), and re-write the Equation:

z(m, Q) = γm−3/2Q2/5. (A5)
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Recent work suggests that the fire-atmosphere interaction results in distinctly non-Gaussian
distributions [22]. In the physically realistic computer simulations of grass fire plumes of [22], which
employs a Large Eddy Simulator to model the atmospheric winds, the time-averaged velocity profiles
are not observed to be Gaussian and the Baum and McCaffery plume model needs to be extended.

Based on these observations, we study three launching models:

Model L1. We assume that each firebrand of mass m is lofted to a unique height z = z(m), as for
example in Equation (A5). We can then define

φ(z, m) = δ(z − z(m))μ(m), (A6)

where μ(m) is a given mass distribution, and δ represents the Dirac delta functional.

Model L2. Instead of assuming that each mass is lofted to a unique height, we might instead
suppose that it is launched randomly about the standard lofting height z(m). For example, if heights
are normally distributed about the lofting height z(m), we can write φ(z, m) = N(z(m), σ)μ(m), a
one-sided normal distribution where N has mean z(m) and variance σ, with

N(z(m), σ) :=
A

σ
√

2π
exp

(
− (z − z(m))2

2σ2

)
, (A7)

where the constant A is chosen so that the distribution is normalized. We allow values of z to lie in
[H, zmax), where H is the canopy height and zmax is the maximum lofting height predicted by the
Baum and McCaffery plume.

Model L3. Finally, we consider the case where the launching heights z, and masses m, are
independent of each other, so we can write

φ(z, m) = Z(z)μ(m), (A8)

where Z(z) is a probability distribution which describes how firebrands are distributed with height z,
and μ(m) is the mass distribution.

A similar sort of model was employed by Albini in the context of firebrand transport by line
thermals [13], where Z is a uniform distribution .

Z(z) = U[zmin, zmax]. (A9)

Appendix A.2. Distribution of Launched Masses

A recent series of studies by Manzello and colleagues [5,44,45] investigated firebrands emitted
from the controlled burning of either pine or fir trees. In the Manzello experiments, trees both 2.6 m
and 5.2 m tall were investigated. For each tree, more than 70 firebrands were collected. These were
all cylindrical in shape. The average firebrand length and diameter for the 2.6 m class was 40 mm in
length and 3 mm in diameter, while for the 5.2 m class the average was 53 mm in length and 4 mm in
diameter. The most recent of the experiments, on Korean pine [44], confirmed that the distribution was
approximately the same. The total number of firebrands collected numbered almost 1000.

With respect to mass, all three of Manzello’s studies indicate that between 60 and 80 percent of
the firebrands have masses less than 0.1 g. Further, for both pine and fir taller trees produce larger
firebrands, with the largest found at about 5 g. In addition, between 58 and 65 percent of the firebrand
mass is needles, which are insignificant in long-range spotting, but may be effective at igniting local
fuel only in short-range spotting [46]. We remove the needles from Manzello’s mass distribution, to
obtain an ‘effective mass’ distribution.
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Model G1: Regression analysis on Manzello’s data. In order to determine a functional form
for the effective mass distribution, we reproduced the histograms from [44,45], an example of which
is shown in Figure A2. Between 60 to 70 percent of the mass is needles which are negligible for
long-range spotting. Hence we first removed the needles lying in the 0.1 g mass class, to obtain an
effective firebrand distribution. We use non-linear regression of the functional form:

μ(m) = am−b, 0 ≤ m ≤ m̄, (A10)

where m̄ = 4, corresponding to the maximum firebrand mass. Regression analysis gives b = 1/2, and
a = 1/4, which gave a better fit than an exponential form.

Figure A2. The mass distribution for the 5.2 m Douglas fir firebrands plotted as histogram from
the data from [5]. The histograms for the other taller specimens for each species studied are similar.
Along the x-axis we plot firebrand mass in grams.

Model G2: Models obtained from burning slash. Another firebrand distribution was suggested
in [32], which relates the possible radius r of a firebrand to the mass consumption rate f , in the form:

p(r) =
α f

rσ
√

2π
exp
(−1

2σ2 log (r/r0)
2
)

, (A11)

where r0 and σ were parameters determined by regression analysis, and α represents the number of
firebrands generated per unit mass. If we assume a relationship of the form m = m(r) = ρV(r), where
ρ is the density and V(r) is the firebrand volume, then from Equation (A11) we find the mass density:

μ(m) =
∫ ∞

0
δ(m − m(r))p(r)dr, (A12)

where δ denotes the Dirac delta distribution.
From the experiments of Manzello described in this chapter, it was found that approximately

one percent of the total mass lost during combustion appeared as firebrands. This could inform our
parameter α, and in turn determine the total mass and total number of firebrands released when a
given number of trees begin to spot.

Appendix A.3. The Atmospheric Boundary Layer

The atmospheric boundary layer (ABM) is the lowest portion of the atmosphere, extending on
average about one kilometre, and ranging up to at most about three kilometres above the Earth’s
surface [72]. It consists of a number of distinct sublayers, and it is of utmost importance since the ABM
is where firebrand transport occurs. At the bottom is the laminar sublayer, which has a thickness of
only a few millimetres. This is a region where high viscosity, induced by the “roughness” of the surface,
results in molecular diffusion being the basis for transport of momentum and heat [73]. Above the
laminar layer is a transition region, leading into the Prandtl layer, in which turbulent convective
motion is the dominant transport process [73]. The lower boundary of the Prandtl layer is called the
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roughness height y0. At the top of the ABM is the Ekman layer, throughout which the effects of turbulent
convection lessen with height, decreasing to zero near the top of the Ekman layer [73].

Firebrands are transported by convection, and hence are subject to the turbulent fluctuations in
wind velocity present in the ABM. Turbulence is a dissipative process which converts kinetic energy in
a fluid into heat energy, and it is essentially three-dimensional and rotational [74].

Turbulent eddies, which may be envisioned as large sheets of wind rolling over one another, exist
on length scales from 10−3 m to 103 m. The largest eddies can therefore extend up to the height of the
ABM [74]. In the case of a fire’s convection column, the eddies swirling parallel to the column result in
the entrainment of ambient air into the column [22].

Because of the inherent variability in the transport process, we introduce the standard Reynolds
decomposition for the velocity components [74]. This means we decompose the horizontal velocity w
into a slowly-varying mean component w̄ and a rapidly-varying component w′, so that:

w := w̄ + w′. (A13)

In general the mean windspeed increases with height, though exactly how this happens is effected
by surface roughness and variable topography, to say nothing of the fire-ABM interactions. In our
transport model we will be interested in the time-mean behavior of the stochastic flight process, so we
will focus exclusively on the mean velocity w̄. We drop the bar in what follows for notational simplicity.

Model W1: Constant horizontal wind. The simplest assumption for the windspeed w is that it
does not vary with height z, so that

w(z) = w > 0. (A14)

Model W2: Logarithmic horizontal wind. Another commonly used wind model is the
logarithmic profile, introduced in the context of spotting first by Albini [1]:

w(z) =
u∗
κ

log (
z − d

y0
). (A15)

Appearing on the right hand side of Equation (A15) is the von Karman constant κ = 0.41, the
roughness height y0, the zero-datum displacement d, and the friction velocity u∗. The friction velocity
is generally defined by u∗ :=

√
T/ρ, where T is the time-mean flux of tangential momentum towards

the surface, borne by turbulence outside the lower ABM and by viscosity within it [15]. Typical values
for u∗ in a strongly upward-convective atmosphere are around u∗ = 2 m/s, while for a roll-dominated
atmosphere u∗ = 0.7 m/s [24]. The roughness height y0 corresponds to the lower boundary of
the Prandtl layer. At the upper end examples include y0 = 0.5 − 1.0 m for dense forest or shrubs,
y0 = 0.1 − 0.5 m for low crops or bushes, and flat grassland has y0 = 0.03 m. When there is significant
roughness or dense forests, the zero-datum displacement d is employed in Equation (A15) to offset the
height at which the windspeed aloft vanishes. The value of d is usually about 2/3 the average height
of the obstacles. We show velocity versus height for three different cases in Figure A3.

Model W3: Power-law wind profile. A third wind model was also first introduced in the context
of spotting by Albini [1]. It assumes a power-law profile for the horizontal velocity versus height,

w(z) = wH

( z
H

)β
, (A16)

where H is the canopy height, wH is the windspeed at the canopy’s base, and β ∈ [0, 1]. In Albini’s
work, he chose the constant β = 1/7 [13]. Model (A16) is a better approximation to the windflow
when it is over terrain which is not covered by tall vegetation. Further, this model may be seen as an
approximation to the logarithmic profile, and is consistent with the constant-wind model (to see this,
set β = 0 in Equation (A16)).

A comparison of our three functional forms is presented in Figure A3.
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Figure A3. A comparison of the wind profiles discussed in this Section. Shown are three power-law
models for different values of the parameter β, together with a logarithmic wind profile and a constant
wind profile. We have chosen wH = 5 m/s, and the canopy height to be 10 m.

Appendix A.4. Drag, Gravity and Terminal Velocity

In order to accurately model the falling of firebrands in the atmosphere, it is important to model
the drag experienced by the firebrand. Often, the drag is proportional to the object’s speed, or speed
squared, depending on the Reynolds number of the flow. For firebrands, it is more accurate to model
drag as proportional to the speed squared, since we have a relatively high Reynolds number flow [22].

Let us denote the drag force by D. Then the speed-squared assumption is generally written as:

D =
1
2

Cdρa Av2, (A17)

where ρa refers to the mass density of the ambient fluid, and the object is assumed to have constant
cross-sectional area A. The parameter Cd appearing in Equation (A17) is called the drag coefficient.
This is a dimensionless number, with values typically ranging between 0.001 and 2, assumed to vary
with shape. This constant is typically determined by experiment.

Newton’s Second Law then provides us with an expression for the terminal velocity. If we focus
on the vertical direction, the balancing of the drag force D with the weight W implies:

0 = Drag − Weight =
1
2

Cdρa Av2 − mg. (A18)

Solving for v in Equation (A18), we obtain an expression for the terminal velocity:

v =

√
2mg

CDρa A
. (A19)

Model V1: Constant terminal velocity. The simplest assumption (V1) is to assume the terminal
velocity does not change during transport.

Model V2: Experimentally determined model. Experimental analysis on the Aerospace
Corporation’s experiments, appearing in [16], revealed that for the cylindrical firebrands in the study
the mass m(t) is related to the terminal velocity v(t) according to:

v(t) = v(0)
(

m(t)
m(0)

)1/2

, v(0) < 0. (A20)
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Appendix A.5. Firebrand Combustion

Several combustion models have been proposed in the literature, and the interested reader is
invited to peruse the review in [7]. They are usually modeled as continuous-time processes, so we will
present functional forms for the density, effective radius, or simply the mass as functions of time.

Suppose the mass m(t; m0) is the unique solution of the initial value problem

dm
dt

= f , m(0) = m0. (A21)

where f is the rate of combustion. We introduce the combustion operator C as the unique solution

C(m0, t) := m(t; m0). (A22)

In our spotting problem, we need to compute backwards. If a fire brand of mass m lands, then
we like to know its initial mass m(−t). Hence we define the inverse combustion operator C−1(m, t),
which is the unique solution to the initial value problem dm

dt = − f , m(0) = m at time t ≥ 0. Before
continuing, it is important to note that the combustion process does not continue past the point where
the firebrands have masses less than or equal to zero. Hence the combustion operator is only defined
up to the burnout time tb, and similarly for its inverse.

Model F0: Constant burning rate. Suppose the burning rate is a constant f = −κ < 0, then we
have m(t) = m(0)− κt < m(0), and C(m0, t) = m0 − κt. The inverse satisfies C−1(m, s) = m + κs for
s > 0.

Model F1: Tarifa’s original experiments and models. The first experiments on the density and
shape changes in combusting firebrands were carried out by Tarifa and collaborators at the Aerospace
Corporation [1]. This data was fit by regression analysis obtained from windtunnel experiments, where
both spherical and cylindrical firebrands were examined under a variety of ambient windspeeds.

Suppose ρ(t) represents the density of a firebrand at time t, and ρ(0) is the initial density.
Then Tarifa found the density varied as:

ρ(t) =
ρ(0)

1 + ηt2 , (A23)

where the constant η = 2.86 × 10−4 was determined from regression analysis.

Models F2: Caricature of Tarifa’s model. We employ an analogue of Tarifa’s density evolution
for the mass m(t), namely

m(t) =
m(0)

1 + ηt2 . (A24)

Model F3: Constant mass. If we take case F2 to its extreme, sending η → 0, we get

m(t) = m(0). (A25)

Model F4: Tse and Fernandez-Pello’s improvements. Tse and Fernandez-Pello revisited Tarifa’s
data set [75], and determined the model which best fit the data for the effective radius evolution is:

r(t)4 = r(0)4 − χβ2t2

16
. (A26)

Clearly the latter is only defined while r(t) > 0, which implies a finite burnout time. Here the
parameter χ depends on the wood species and moisture content of the firebrand, and β is described
below in the derivation of Equation (A31). Based on Tarifa’s data, the parameter χ = 3.5 gave the best
fit [69].

To determine the mass m(t), we first employ the simple relation:
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m(t) = ρ(t)Vol(r(t)), (A27)

where Vol(r(t)) is the volume of the firebrand, and hence dependent on the radius r(t).
As a simple example, suppose the firebrand is approximately spherical, so that

Vol(r(t)) = 4
3 πr(t)3. Then we combine Equations (A24) and (A26), so that the mass evolution

Equation (A27) is given by

m(t) = ρ(t)
4
3

πr(t)3 =
4
3

ρ(0)
1 + ηt2

(
r(0)4 − χβ2

16
t2
)3/4

. (A28)

Taking for example cedar wood as representative of forest fuel, as did the authors in [22], the
initial density ρ(0) of the firebrands would be 513 kg/m3, while in the experiments of Manzello [44]
he found radii ranging from one half to five centimetres.

Another important result following the analysis in [69], is that one can reasonably approximate
extinction of the firebrand to occur once:

m(t)
m0

= mc, (A29)

where mc is a critical mass ratio which depends on the wood species. Beyond this point all that remains
is non-flaming char, whose temperature then decreases according to Equation (A42) described in the
next subsection. From regression analysis in [69], we find mc = 0.24 for maple and pine.

Model F5: Including more physical realism. Another model has been derived in [22], and is
based in part on experimental fitting of data by Tse and Fernandez-Pello [69]. It is based on Nusselt’s
physically-motivated combustion theory, known as ‘shrinking drop theory’ [22,70]. We include a
discussion of the model here because, as we will see later, the firebrand’s burning temperature may
influence its flight path significantly [22]. In Nusselt’s combustion theory, the firebrand’s surface is
assumed to be held at constant temperature, maintaining its geometrical shape while a pyrolysis wave
propagates inward. One employs the so-called Frossling relation, in which we define the effective mass
diameter deff, and an experimental constant β, such that:

d
dt

(deff)
2 = −β. (A30)

The constant β, introduced earlier in Equations (A26) and (A28), is determined physically from
the equation:

β = β0
(

1 + 0.276R1/2
e S1/3

c

)
, (A31)

where on the right hand side we have the Reynolds number Re, and the Schmidt number Sc, and an
experimentally determined constant β0. The Reynolds number Re =

2|v|r
νair

, where |v| is the firebrand’s
speed relative to the surrounding air, r is the firebrand radius, and νair is the kinematic viscosity of the
surrounding air [22]. Re is a dimensionless constant which measures the ratio of the effects of inertia
to viscosity for the firebrand. The Schmidt number Sc is a dimensionless constant which gives the
ratio for viscosity to mass density, for mass-transfer problems. For air Sc is approximately constant,
i.e., Sc ≈ 0.7 for a wide range of temperatures. Based on the data from [69], which was computed
experimentally for firebrands with temperatures at about 993 K, we find the constant β0 which appears
in Equation (A31) to be β0 = 4.8 × 10−7 m2/s.

Employing Tarifa’s model for the density evolution ρ Equation (A23), and the solution to the
differential equation for deff, the firebrand mass m is then approximated by:

m = ρπd3
eff/6. (A32)
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Model F6: Albini’s combustion model within line thermals. A final model was derived by
Albini [13] in the context of firebrand transport by line thermals. Line thermals are well-mixed
horizontal columns of warm air which rise above large forest fires, and are subsequently transported
in a coherent manner downwind. Albini modeled line thermals as well-mixed cylinders of air rising
above a fire.

If we assume that a firebrand has mass density ρ(t), and terminal velocity v relative to the line
thermal, Albini’s model reads:

d
dt

ρ(t) = −kρ(t)v, (A33)

where the constant k = 8.15 × 10−3 was chosen to match wind-tunnel data [13].

Appendix A.6. Ignition Models

Based on the observations of fuel bed ignition mentioned before, we assume that the ignition
probability depends on the flaming mass that lands in a given location, where a mass larger than m
will always ignite a spot fire. We consider three cases of a linear increase (I1), a step function (I2), and a
smoothed out step function (I3).

Model I1:

E(m) :=

{
m/m, m < m;
1, m ≥ m

(A34)

Model I2:

E(m) = H(m − m). (A35)

Model I3:

E(m) = (1 + erf(Am − 2))) /2. (A36)

Here the function erf(m) denotes the error function, related to the standard normal distribution.
The parameter A measures the steepness of the transition region; the larger A, the steeper the transition.

In the most extreme fire burning situations, where the fuel beds are so dry that almost any landed
mass will cause ignition, we can send m → 0 as an approximation.

Appendix A.7. Models for Firebrand Temperature

A model for firebrand temperature based on energy conservation is given in [22]. Let us define
the density ρ, volume V, specific heat capacity at constant pressure cp, and surface area A for a given
firebrand. Then the temperature T(t) appears in the energy conservation equation,

(ρVc)
DT
Dt

= −A(qconv + qrad) (A37)

where the terms qconv and qrad, appearing on the right hand side in the latter equation, represent the
heat loss due to convection and radiation; the notation DT

Dt represents the material derivative of T along
the firebrand’s trajectory. The convective heat flux can be modelled by Newton’s law of cooling [22],

qconv = h(T − Ta), (A38)

where h is an average heat-transfer coefficient, and Ta is the ambient temperature. To determine the
heat-transfer coefficient, we first introduce the average Nusselt number Nu,

Nu = 2 + 0.6Re1/2Pr1/3, (A39)

where Pr the Prandtl number for air, and Re is the Reynolds number as described following
Equation (A31) [22]. The Prandtl number is a dimensionless constant which measures the ratio
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of viscosity to thermal diffusivity. For example, when Pr << 1, heat diffuses quickly compared to
momentum. For air, we have Pr ≈ 0.70 [22]. Then the average heat transfer coefficient is given by:

h =
kairNu

2r
, (A40)

where kair ≈ 2.7 × 10−2 m2/s is the thermal conductivity of air, and r is the firebrand’s radius.
The radiative heat flux can be approximated by the Stefan-Boltzmann law, which states:

qrad = σε(T4 − T4
a ), (A41)

where σ is the Stefan-Boltzmann constant, and ε is the emissivity. From experiment, ε = 0.9.
It follows that the energy balance equation for the temperature evolution can be written:

dT
dt

= − 6
ρVc2 r(t)

[
h(T − Ta) + σε(T4 − T4

a )
]

. (A42)

This can be solved assuming the firebrand is initially at flaming temperature, e.g., T(0) = 993 K,
to determine the temperature evolution once flaming combustion has halted when m = mc.
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Abstract: Toxicity testing in populations probes for responses in demographic variables to
anthropogenic or natural chemical changes in the environment. Importantly, these tests are primarily
performed on species in isolation of adjacent tropic levels in their ecosystem. The development and
validation of coupled species models may aid in predicting adverse outcomes at the ecosystems
level. Here, we aim to validate a model for the population dynamics of the green algae Raphidocelis
subcapitata, a planktonic species that is often used as a primary food source in toxicity experiments
for the fresh water crustacean Daphnia magna. We collected longitudinal data from three replicate
population experiments of R. subcapitata. We used this data with statistical model comparison tests
and uncertainty quantification techniques to compare the performance of four models: the Logistic
model, the Bernoulli model, the Gompertz model, and a discretization of the Logistic model. Overall,
our results suggest that the logistic model is the most accurate continuous model for R. subcapitata
population growth. We then implement the numerical discretization showing how the continuous
logistic model for algae can be coupled to a previously validated discrete-time population model for
D. magna.

Keywords: algae growth models; uncertainty quantification; asymptotic theory; bootstrapping;
model comparison tests; Raphidocelis subcapitata; Daphnia magna

1. Introduction

Studies of the population dynamics of phytoplankton and their zooplankton predators in lentic
habitats have found a variety of patterns. Plankton communities have been observed to either oscillate
in low or high amplitude cycles or to remain relatively stable throughout the year [1]. The same lake
may exhibit stability on a given year but switch to oscillation during the following year, and vice versa.
A variety of explanations have been proposed for this behavior in the field, including predator-prey
interactions, temperature fluctuations, and external influences on nutrient content [2–4]. Fewer studies
have attempted to answer the question of what drives these population dynamics in the laboratory
setting. Of the predator-prey models that have been proposed for plankton communities, most do not
consider certain elements of zooplankton biology such as density-dependent mortality or age-specific
fecundity. These traits are crucial for describing the population growth of zooplankton such as Daphnia
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magna [5] and may be an important factor when modeling population dynamics that are observed in
lakes and other ecosystems.

The aim of the present study is to validate and parametrize continuous models for the growth
of green algae (Raphidocelis subcapitata) in the absence of predation by zooplankton. The broader
goal is to couple a validated green algae model with a validated discrete-time population model for
Daphnia magna [5], and ultimately with an analogous continuous-time model, in order to investigate the
possibility of oscillations in the laboratory setting similar to those found in lentic environments. In our
previous study of D. magna population dynamics [5], we carried out laboratory experiments in which
green algae were fed to D. magna populations on a daily basis, and populations were reared in media
optimized for daphnia survival, but not necessarily ideal for algae growth. In particular, it was not
known whether green algae could proliferate in daphnia media to an extent that would affect daphnia
population dynamics. Thus, it is of central importance to quantitate the rate at which green algae grow
in daphnia media and whether this growth has the potential to significantly alter the fecundity and
survival of daphnia. In theory, such changes would thereby affect the quantification of population
level risk assessments involving experimental exposure of daphnia populations to environmental
perturbations, e.g., toxins or temperature change.

We tested several commonly used growth models for organisms with a limiting nutrient: the
Gompertz, the Logistic (continuous and discretized), and the Bernoulli population models. We note
that the Bernoulli model is a generalization of the continuous Logistic model, which allows for nested
model comparison. Each model has been used to describe populations across many scenarios associated
with saturated growth processes in biology. We collected experimental data from three replicates
of green algae grown in isolation of predation. We describe goodness of fit of several mathematical
models for green algae growth in the context of asymptotic theory and bootstrapping techniques. We
provide estimated parameter values and computed confidence intervals for the model predictions.
Finally, we implement a numerical scheme that can be used to approximate the concentration of green
algae on a daily time scale in order to combine the continuous green algae model that we had the most
confidence in with a discrete time population model for Daphnia magna. We performed simulations
of an unvalidated coupled green algae and daphnia model in order to explore the possible effects of
green algae growth on daphnia population dynamics.

2. Data and Methods

2.1. Data

To observe the growth of Raphidocelis subcapitata populations (previously known as
Pseudokirchneriella subcapitata and Selenastrum capricornutum), we seeded three beakers containing 1 L
of media reconstituted from deionized water for Daphnia magna culturing (previously described in [6])
and recorded the population density for eight days. Each population was kept in an incubator (Thermo
Fisher Scientific, Waltham, MA, USA) at 20 ◦C on a 16/8-h light/dark cycle (6 AM–10 PM light, 10
PM–6 AM dark). Media lost to evaporation was replaced daily with deionized water in order to retain
a 1 L volume and avoid replenishing nutrients. The 1 L algae cultures were uncovered and inspected
for contamination during measurements. We selected a seeding concentration of 7 × 107 cells based
on previous studies of algal growth in order to observe both the early (growth) and late (saturation)
stage dynamics of the population [7–9]. We measured the density of each population replicate twice
using a hemocytometer (Hausser Scientific, Horsham, PA, USA) at 9 AM, 3 PM, and 9 PM daily in
order to obtain sufficient data points for parameter estimation and uncertainty quantification. The
two measurements of density at each time point for each replicate were averaged to minimize human
measurement error. This yielded a total of 23 data points for each of the three replicates.
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2.2. Asymptotic Theory

The goal of this paper is to determine the most accurate model for algae growth in the absence of
consumption. The uncertainty in parameters for each model can be quantified via asymptotic theory.
In this section we provide the theory behind our asymptotic theory methodology. The estimation of
parameters using asymptotic theory requires mathematical models of the form

dy
dt

= g(t, y(t), q),

y(t0) = y0,
(1)

and the corresponding observation process

f (t, θ) = Cy(t, θ), (2)

where θ = (q, ỹ0) ∈ Rp+ p̃ is the vector of unknown parameters, q is a vector of p model parameters,
ỹ0 is the number p̃ of initial conditions that is unknown, and C maps the model solution y(t, θ) in Rl to
the observed states f (t, θ). We consider the initial condition to be unknown because of measurement
error. In this investigation, the observation operator will always produce a scalar, and thus C maps Rl

to R. In fact, in all our considerations we have p̃ = l = 1, i.e., the models are scalar and C = I.
Due to the discrete nature of our experimental data, the observations for our statistical error

model occur at n = 23 discrete times ti. Thus, the observations will be

f (ti, θ) = Cy(ti, θ), i = 1, . . . , n. (3)

To account for measurement error, we use the statistical model

Yi = f (ti, θ0) + Ei, i = 1, . . . , n (4)

for our observations, where Ei is a zero mean random variable representing identically, independently
distributed (i.i.d.) noise that causes our observed data to deviate from our model solution, and θ0

is the hypothesized “true” or “nominal” parameter vector that generates the observations {Yi}n
i=1.

The existence of this “true” parameter vector θ0 is a standard assumption in frequentist statistical
formulations. The i.i.d. nature of the error in our model implies that E(Ei) = 0 for each i, and that
Ei = 1, . . . , n, are identically distributed with variance σ2

0 .
Since Ei is a random variable, Yi is a random variable with corresponding realizations yi.

Asymptotic theory seeks to estimate θ0 by creating a random variable Θ whose realizations for a
given data set yi will be estimates θ̂ of θ0. These estimates θ̂ will approximate the true parameters θ0,
and are obtained by minimizing the ordinary least squares (OLS) cost functional [10,11]

S(Y; θ) =
n

∑
i=1

[Yi − f (ti, θ)]2, (5)

where Y = (Y1, Y2, . . . , Yn)T . Thus, with Ω being the space of admissible parameters and yi being the
realizations of the random variable Yi,

θ0 ≈ θ̂n
OLS = argmin

θ∈Ω

n

∑
i=1

[yi − f (ti, θ)]2 (6)

provides an estimate for θ0. The process of estimating parameters from data is known as an
inverse problem, and all inverse problems in this experiment are computed using fmincon in
MATLAB (Mathworks, 2015b, Natick, MA, USA, 2015) with function and step tolerances of 10−20 and
1000 iterations.
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Once we have an estimate θ̂n
OLS, we wish to ascertain the statistical properties of the estimator Θ.

Although we do not know the distribution of the estimator Θn
OLS, we can approximate it under

asymptotic theory (as n → ∞) by the multivariate Gaussian distribution [10–12]

Θn
OLS ∼ N(θ0, Σn

0 ) (7)

where, based on previous assumptions, the covariance matrix Σn
0 is approximated by

Σn
0 ≈ Σ̂n = σ̂2

OLS
[
χnT(θ̂)χn(θ̂)

]−1. (8)

Here χn is the sensitivity matrix

χn
jk(θ) =

∂ f (ti, θ)

∂θk
, i = 1, . . . , n; k = 1, . . . , p, (9)

where θk is the kth component of the vector θ ∈ R1×p. The unbiased estimator for σ2
0 is

σ̂2
OLS =

1
n − p

n

∑
i=1

[yi − f (ti, θ̂n
OLS)]

2 (10)

where, for our own examples, n = 23 and p = 3 or 4 is the number of model parameters. Both θ̂n
OLS

and σ̂2
OLS are then used in Equation (8) (i.e., θ̂ = θ̂OLS and σ̂2 = σ̂2

OLS).
In our calculations, the sensitivity equations are calculated analytically by solving the differential

equation at θ̂
d
dt

(
∂y
∂θ

)
=

∂g
∂y

∂y
∂θ

+
∂g
∂θ

. (11)

Note that
dy
dt

= g(t, y(t), θ̂) is the differential equation for the green algae model and

f (tj, θ̂) = y(tj, θ̂) is the forward solution of each model. Because we know analytical formulas that

provide solutions for
dy
dt

= g(t, y(t), θ̂), we can solve Equation (11) by setting up a differential equation
in terms of the sensitivity [11].

The χn matrix provides a measure for how sensitive the mathematical model is to each of its
parameters. This can be used to estimate the p × p covariance matrix, Σn

0 ,

Σn
0 ≈ Σ̂n = σ̂2[χnT(θ̂)χn(θ̂)]−1. (12)

In order to determine the confidence we have in the parameter estimates, we also compute the

asymptotic theory based standard error SE(θ̂k) =
√

Σ̂n
kk for the kth parameter.

2.3. Boostrapping

We implemented bootstrapping techniques to complement our asymptotic theory approach with
regards to estimating parameter uncertainty. We again assume that we are have experimental data
for a dynamical system from an underlying observation process in Equation (4) where Ẽi are i.i.d.
with mean zero and constant variance σ2

0 and θ0 is the “true value” hypothesized to exist in statistical
treatments of data [10]. The random variable also has realizations

yi = f (ti, θ0) + ε̃i. (13)

We use the following algorithm [10] to compute the bootstrapping estimate θ̂BOOT of θ0 and its
empirical distribution.
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1. First estimate θ̂0 from the entire sample {yi}n
i=1 using OLS.

2. Using this estimate, define the standardized residuals

r̄i =

√
n

n − p
(
yi − f (ti, θ̂0)

)
(14)

for i = 1, . . . , n, where n is the number of data points, and p are the number of model parameters.
Set m = 0, which will represent the total number of artificial samples we will create.

3. Create a bootstrapping sample of size n using random sampling with replacement from the data
(realizations) {r̄1, . . . , r̄n} to form a bootstrapping sample {r̄m

1 , . . . , r̄m
n }.

4. Create bootstrap sample points
ym

i = f (ti, θ̂0) + rm
i (15)

for i = 1, . . . , n.
5. Obtain a new estimate θ̂m+1 from the bootstrapping sample {ym

i } using OLS.
6. Set m = m + 1 and repeat steps 3–5 until m ≥ 1000 (this can be any large value, but for these

experiments we used M = 1000).

We then calculate mean, standard error, and confidence intervals using the formulas:

θ̂BOOT =
1
M

M

∑
m=1

θ̂m, (16)

Var(θBOOT) =
1

M − 1

M

∑
m=1

(θ̂m − θ̂BOOT)
T(θ̂m − θ̂BOOT), (17)

SEk(θ̂BOOT) =
√

Var(θBOOT)kk, (18)

where θBOOT denotes the bootstrapping estimator. We present the results of these techniques as
standard errors about the mean of the parameter estimates, as well as the parameter distributions
created. This procedure is performed for each replicate in our experiments.

2.4. Model Comparison: Nested Restraint Tests

We used nested model comparison tests to determine the loss in accuracy by constraining certain
models, i.e., holding some parameters constant. In general, we assume that we have an inverse problem
for the model observations f (t, θ) and are given n observations with the cost function described above
in Equation (5). We are interested in using data to question whether the “true” parameter θ0 can be
found in a subset ΩH ⊂ Ω, for which we make the same assumptions as Banks, Hu, and Thompson
[10]. Thus, we want to test the null hypothesis H0:θ0 ∈ ΩH , or that the constrained model provides an
adequate fit to the data. We then define

Θn
H(Y) = argmin

θ∈ΩH

Sn(Y; θ) (19)

and
θ̂n

H(y) = argmin
θ∈ΩH

Sn(y; θ), (20)

where y is a realization of Y. It is important to note that Sn(y; θ̂n
H) ≥ Sn(y; θ̂n). We define the

nonnegative test statistics and their realizations, respectively, by

Tn(Y) = Sn(Y; θ̂n
H)− Sn(Y; θ̂n) (21)

and
T̂n = Tn(y) = Sn(y; θ̂n

H)− Sn(y; θ̂n). (22)
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We refer to [10] for a description of asymptotic convergence as n → ∞, which yields the model
comparison result

Un(Y) =
nTn(Y)

Sn(Y; θn)
(23)

with the corresponding realizations
ûn = Un(y) (24)

which can be compared to a χ2 distribution with r degrees of freedom. In this project we use a χ2(1)
table when comparing the results from the Logistic model to those from the Bernoulli model.

2.5. Akaike Information Criterion

In some cases (such as comparison between the Logistic and the Gompertz), the models are not
nested (although they are related through a limiting process–see below) and hence we cannot use
the model comparison tests outlined above. However, we can use an alternative model evaluation
framework and implement the Akaike Information Criterion (AICc) with a small size sample correction
[10] in the context of an ordinary least squares framework

AICc = n[1 + ln(2π)] + n ln
(∑n

i=1(yi − f (ti, θ̂n
OLS))

2

n
)
+ 2(p + 1) +

2p(p + 1)
n − p − 1

(25)

where n is the sample size and p is the number of unknowns (parameters). This will allow us to
suggest which model provides a better fit for the data (models with smaller AICc values provide better
fits). While other goodness of fit tests may be useful for selecting models, we chose to use AICc, since
it is a widely adopted measure of model accuracy (see Sections 4.2, 4.3 of [10]).

3. Models

3.1. Logistic Model

The first model we consider is the widely used logistic model for bounded growth of a population
P(t), given by the differential equation

dP
dt

= RP(t)
(

1 − P(t)
K

)
(26)

where R is the intrinsic growth rate, and K is the carrying capacity for the population
under consideration.

3.2. Bernoulli Model

We also analyze the data within the context of a Bernoulli model due to Richards [13], given by
the differential equation

dP
dt

= RP(t)(1 − (
P(t)

K
)β). (27)

The Bernoulli model has three model parameters, R, K, and β. The parameter β extends the
logistic model to allow flexibility in the growth dynamics by allowing the inflection point to change
while keeping the carrying capacity approximately the same [13]. Setting β = 1 yields the logistic
model in Equation (26); hence, the logistic model is a special case of the Bernoulli model, thereby
enabling us to use nested model comparison tests described above.
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3.3. Gompertz Growth Model

The next model we consider is the Gompertz growth model, which is widely used for biological
and economic phenomena where population growth is not symmetric about the point of inflection, i.e.,
growth rates are time dependent. The differential equation form of this model is

dP
dt

= κP(t)(log(K)− log(P(t))) = κP(t) log(
K

P(t)
), (28)

where K is the carrying capacity and κ scales the time. For both the Logistic and Gompertz models, we
let X0 represent the initial condition, i.e., P(t0) = X0.

The Logistic and Gompertz models, while not nested, are related through a limiting process. Since

lim
ν→∞

ν(1 − (
P(t)

K
)

1
ν )) = − log(

P(t)
K

), (29)

we find that the Gompertz model is the limit as ν → ∞ of the generalized logistic model for ν > 0

dP
dt

= νκP(t)(1 − (
P(t)

K
)

1
ν ). (30)

3.4. Logistic Model: Numerical Discretization

Another model we consider is a discrete numerical approximation of the Logistic model. We
note that the continuous models described above were simulated using the ode45 algorithm in Matlab.
In order to ensure that the logistic model can be coupled to a discrete time model for a D. magna
population in which the population size is updated once per day [5], we investigated the logistic model
using a forward Euler scheme that was discretized on an hour basis. In this paper, we refer to this
discrete Euler-method logistic model as the DEL model. This numerically discretized logistic model is
given by the difference equation

Pt+1 = Pt + RPt

(
1 − Pt

K

)
(31)

where Pt is the population at time t hours and Pt+1 is the population at the next time step.
The parameters R and K are analogous to those of the continuous Logistic model and can be interpreted
as the intrinsic population growth rate and carrying capacity, respectively. We refer to the initial
population, Pt=0, as X0 in our results and data fitting procedure.

4. Results

4.1. Data fitting and Model Comparisons

Overall, we found that all models provide a reasonable fit to the data. Figures 1–4 show results
of the least squares estimation for the three different replicates of the Logistic, Bernoulli, DEL, and
Gompertz models. These figures contain 68% and 95% confidence bands around the fits to data. These
were constructed by generating 1000 random parameter sets from a normal distribution described by
the mean and standard error obtained by the asymptotic theory results, computing the model for each
of these parameter sets, and then calculating the respective confidence intervals from model generated
points f (ti, θk), where k = 1, . . . , 1000 [5]. One primary difference between the fits to data that we
found was that each model tends to underestimate the initial data and the Bernoulli model provided
the closest fit (Figure 4). We note that we chose to estimate the initial condition due to measurement
error associated with a low cell density as well as how much influence these discrepancies in error
would affect the outcome of the model.
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Figure 1. Plots of forward solutions for the Logistic curve for the three replicates of the data. Replicate
one is on top and three is on the bottom. The lighter and darker shades of grey represent the 95%
and 68% confidence bars on the model solution, respectively. The algae population is represented as
cells × 107/L. Data points are shown as “*”.
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Figure 2. Plots of forward solutions for the discrete Euler-method logistic (DEL) please confirm. model
for the three replicates of the data from left to right. Replicate one is on top and three is on the bottom.
The lighter and darker shades of grey represent the 95% and 68% confidence bars on the model solution,
respectively. The algae population is represented as cells × 107/L. Data points are shown as “*”.
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Figure 3. Plots of forward solutions for the Gompertz curve for the three replicates of the data. Replicate
one is on top and three is on the bottom. The lighter and darker shades of grey represent the 95%
and 68% confidence bars on the model solution, respectively. The algae population is represented as
cells × 107/L. Data points are shown as “*”.

175



Appl. Sci. 2016, 6, 155

Figure 4. Plots of forward solutions for the Bernoulli curve for the three replicates of the data. Replicate
one is on top and three is on the bottom.The lighter and darker shades of grey represent the 95%
and 68% confidence bars on the model solution, respectively. The algae population is represented as
cells × 107/L. Data points are shown as “*”.

The results in Table 1 show the small sample corrected Akaike Information Criterion (AICc) scores
based on Equation (25) for each replicate and each model. These results suggest that the discrete and
continuous logistic population models are better able to describe the green algae growth data than
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either the Gompertz or Bernoulli models, although the differences in AICc values were small between
all models. The results of the model comparison test performed between the continuous Logistic
model and the Bernoulli model are given in Table 2. In addition to fixing β to 1 to reduce the Bernoulli
model to the Logistic model, we also fixed the initial condition X0 at the seed value to enunciate
the model improvement with an unalterable initial condition. Of all comparisons, only the Logistic
model with X0 fixed on replicates 2 and 3 yielded a significant result at the α = 0.9 confidence level
(or χ2(1).9 = 2.706). This indicates that, in general, the OLS cost associated with the Bernoulli model
was significantly improved by fixing β and reducing it to the Logistic model. However, restricting
the Logistic model further by fixing X0 does not significantly affect the cost of the Bernoulli model.
The Logistic model also has benefits with regards to identifiability, which will be seen in subsequent
passages of this document.

Table 1. Corrected Akaike Information Criterion scores for each model and replicate.

Replicate Gompertz Logistic Bernoulli Discrete Euler-Method Logistic (DEL)

1 −69.4203 −71.5919 −69.2189 −72.6155
2 −84.2435 −89.0016 −89.3905 −90.4114
3 −71.3972 −74.2560 −72.4414 −75.3515

Table 2. Model comparison ûn scores for the continuous Logistic model compared to Bernoulli model
for each replicate. We also chose to fix the initial condition X0 at the seed population value to enunciate
model improvement if X0 was unalterable. Note that values less than 2.706 indicate the restricted
model is better.

Bernoulli Restricted to: Bernoulli Restricted to:

Replicate Logistic Logistic with X0 fixed

1 0.5935 0.7233
2 2.4718 3.6216
3 1.1733 3.4118

4.2. Uncertainty Analysis

We compared results of parameter estimation and multiple uncertainty quantification techniques
(asymptotic theory and bootstrapping) for the Logistic, Gompertz, and Bernoulli growth models,
as well as the numerically discretized version of the Logistic model (DEL model), since each of
them provided reasonable fits to the data. We first note that the usual assumption of i.i.d. residuals
required for uncertainty analysis held for all models investigated (Supplementary Figures S1–S4).
Although methods involving autocorrelation on residuals may be used to investigate the i.i.d.
assumption, we investigated this assumption by visually inspecting residual plots, since there were
not enough data to perform autocorrelation tests. Visual inspection of residual plots is a commonly
used procedure when not enough longitudinal data are available (see [10], Section 3.6). We also note
that the normality assumption for the parameter distributions in asymptotic theory was confirmed by
our bootstrapping results in all but the Bernoulli model (Supplementary Figures S5–S17). We divide
our analysis of the results from uncertainty quantification among the sets of parameters with similar
interpretations for each model. For example, each model has an initial condition, a growth rate, and a
parameter governing the saturation of growth due to population density.

4.2.1. Uncertainty Analysis: Initial Condition

The bootstrapping distribution results of X0 estimation are presented in Supplementary
Figures S5–S8. These appear to be approximately normally distributed, with some exceptions occurring
where the estimates are close to the zero boundary. Bootstrapping estimates of uncertainty for X0
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are compared to asymptotic theory in Supplementary Tables S1–S4. We observed that the parameter
estimates for X0 for all replicates were lowest in the Gompertz model and highest in the Bernoulli model.
The standard errors also varied between the asymptotic and bootstrapping techniques depending
on the model. For example, the order of magnitude for the standard errors from bootstrapping was
greater than asymptotic theory for the Gompertz model and the DEL model.

4.2.2. Uncertainty Analysis: Growth Rate

Each model that we investigated has a parameter that describes the population growth rate
(Logistic and DEL: R, Gompertz κ, Bernoulli R). Because numerical estimates for the growth rate
parameters will not be equal across models, we analyzed their consistency and uncertainty across
replicate data sets within the same model. The bootstrapping distributions for the growth rates for
each model were normally distributed except for the Bernoulli model, which was skewed to the
right (Supplementary Figures S9–S12). We postulate that one reason for this skewness may be that
the Bernoulli model is over-parameterized. Similarly, the standard errors computed for the growth
rate within each model were of reasonable size and of the same order of magnitude except for the
Bernoulli model (Supplementary Tables S5–S8). The growth rate estimates for the logsitic model
differed between the continuous version and its numerical discretization using the euler method (DEL
model). Specifically, the growth rate estimates for the DEL model were consistently higher. In addition,
the asymptotic standard errors for the DEL model were lower than for the continuous logistic model.

4.2.3. Uncertainty Analysis: Saturation Parameter

The saturation parameter K has the same interpretation for all models we investigated, it is the
carrying capacity of the green algae population. The estimates for K were remarkably similar across all
models (Supplementary Tables S9–S12). The standard errors were inconsistent between asymptotic
theory and bootstrapping for the Bernoulli and Gompertz models. For example, the asymptotic
standard error for the estimate of K in replicate 1 for the Bernoulli model was 0.1138, whereas the
bootstrapping error was 0.0158 (Supplementary Table S12). These results are important, because the
asymptotic standard error would result in a much wider confidence band around the model fit to
the data, which is indeed the case for replicate 1 of the Bernoulli model (Figure 4, Top). Since the
bootstrapping distributions for K for all of the models are normally distributed, this indicates that the
bootstrapping standard errors are accurate (Supplementary Figures S13–S16).

4.2.4. Uncertainty Analysis: Bernoulli Model Parameter β

The parameter β is unique to the Bernoulli model, and scales the rate at which the green algae
population reaches carrying capacity. In particular, when β = 1, the Bernoulli model reduces to
the logistic model. We found that the estimates for β with asymptotic theory and bootstrapping
were >1. We can not confidently say that these estimates are accurate, since the corresponding standard
errors are unreasonably high for both uncertainty techniques and for all three replicates (Table 3).
Moreover, the bootstrapping distributions for β were not normally distributed and heavily skewed
to the right for all three replicates (Supplementary Figure S17), indicating the possible presence of
correlations with other model parameters. We speculate that the parameters β and K may be correlated
for the Bernoulli model.
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Table 3. β estimate and standard error for the Bernoulli model.

Asymptotic Results: β Replicate Estimate SE

1 2.1646 2.5440
2 3.4574 2.8118
3 2.8188 2.8758

Bootstrapping Results: β Replicate Estimate SE
1 38.31 113.72
2 29.78 92.89
3 43.27 113.81

4.3. Coupling to the Discrete-Time Daphnia magna Population Model

Our uncertainty analysis results indicate that the Logistic model and its numerically discretized
counterpart, the DEL model, are the most accurate models among those we investigated. We forgo a
summary of the evidence for this conclusion until the discussion section. Our ultimate aim of validating
a model for green algae growth was to couple it to a model for D. magna population dynamics. In
this section, we couple two validated models for algae and Daphnia population growth to create a
theoretical, unvalidated model to explore potentially complex predator-prey dynamics.

The D. magna model we use is one that we recently validated with experimental population
data [5]. The validated D. magna model is a specification of the following discrete-time discrete-age
structured population model:⎡⎢⎢⎢⎢⎢⎢⎣

p(t + 1, 1)
p(t + 1, 2)
p(t + 1, 3)

...
p(t + 1, imax)

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
a(t, 1) a(t, 2) a(t, 3) . . . a(t, imax)

b(t, 1) 0 0 . . . 0
0 b(t, 2) 0 . . . 0
...

. . . . . .
...

0 0 0 . . . b(t, imax − 1)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
p(t, 1)
p(t, 2)
p(t, 3)

...
p(t, imax)

⎤⎥⎥⎥⎥⎥⎥⎦ . (32)

The population is divided into one-day age classes up to some maximum age imax and the
number of daphnids of age i at a time t is p(t, i). The average fecundity of each age class i is given by
a(t, i) and the survival rate for daphnids of age i is given by b(t, i). The validated functional forms
are a(t, i) = α(i)(1 − q)M(t−τ) and b(t, i) is defined piecewise as μ(1 − c)M(t) if i ≤ 4 and μ if i ≥ 5.
A summary of the parameters and variables in the model are listed in Table 4 (see [5] for further details).

We coupled the D. magna population model to the DEL green algae model by assuming that
D. magna consumes green algae and that the density-dependent survival and fecundity rates of
D. magna are influenced directly by the algae concentration. We modeled the algae population with
predation as

Pt+1 = Pt + RPt

(
1 − Pt

K

)
− δMtPt (33)

where δ is a predation coefficient, and Mt is the total Daphnia biomass at time t. We chose this functional
form based on the assumption that Daphnia consume aglae at a rate proportional to the density of
aglae and the total biomass of the Daphnia population, as adult daphnids consume food at a higher
rate than younger ones. We used a 24 h time discretization to model algae growth for our simulation
study and transformed parameters accordingly, setting δ = 0.001, K = 0.4559, R = 1.34, and the initial
algae population P0 = 0.0633. We modeled the algal influence on Daphnia fecundity and survivorship
by setting a(t, i) = α(i)(1 − q)1/Pt−τ and b(t, i) = μ(1 − c)1/Pt if i ≤ 4. In this model, we changed the
functional form of the Daphnia model based on the assumption that the negative density-dependent
fecundity and survivorship effects that daphnids experience are driven by a lack of food in the form of
algae, represented as 1

Pt
and its time-delayed analogue 1

Pt−τ
. The Daphnia matrix model is otherwise

unchanged.
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Table 4. Summary of Daphnia magna and algae model parameters and variables.

Parameter/Variable Description Units

p(t, i) Number of daphnids of age i # of daphnids
N(t) Total population size at time t := ∑imax

i=1 p(t, i) # of daphnids
q Density-dependent fecundity constant dimensionless

α(i) Density-independent fecundity rates # neonates·daphnid−1·day−1

μ Density-independent survival rate day−1

τ Delay for density-dependent fecundity days
c Density-dependent survival constant dimensionless

M(t) Total biomass at time t := ∑imax
i=1 p(t, i) kZ0eri

k+Z0(eri−1) mm
k Average maximum daphnid size (major axis) mm
r Average daphnid growth rate mm/hour

Z0 Average neonate size (major axis) mm
R Intrinsic growth rate of algae cells ·107·L−1·day−1

K Algal population carrying capacity cells ·107·L−1

δ Density dependent predation constant mm−1·cells·10−7

We found that a coupled model could result in both steady state dynamics as well as oscillatory
behavior for different choices of parameter values in the Daphnia model (Figure 5). The deterministic
simulations in Figure 5 left show steady state behavior with small deviations relative to the population
size. The seemingly random perturbations are due to the age-dependency of the density-indpendent
fecundity rate α(i). We found that lowering the density-dependent survival competition parameter c
yielded sustained oscillations, and increasing it led to both populations reaching a steady state. Other
parameter combinations may also yield similar dynamics, but detailing those values is not the aim of
the present study.

Figure 5. Simulations of the coupled daphnia and green algae dynamics model resulting in steady
state behavior (Left, c = 0.01) and sustained oscillations (Right, c = 0.04).

5. Discussion

Our results highlight the importance of performing uncertainty quantification in validated
biological models, even in the simple case of saturating growth dynamics encountered for green
algae. For example, the ordinary least squares regression seemed to indicate that each of the models we
investigated provide reasonable fits to the algae growth data. In addition, parameter estimates were
consistent between replicate data sets for each model. From this information alone, one might conclude
that the Bernoulli model was the best performing model, since it best fit the initial data X0 (Figure 4).
However, a deeper investigation with uncertainty analysis allowed us to generate confidence bands
around the fits to the data, showing that the Bernoulli model was the model for which we could have
the least confidence. This result was corroborated by a thorough examination of the standard errors
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for each of the parameters with similar interpretations across all models. For example, the growth
rates for the Bernoulli model had unreasonably high standard errors, while the uncertainty in the
corresponding growth rates for the other models were relatively low. Our results also indicated that
the Gompertz model had inconsistent standard errors between asymptotic theory and bootstrapping
for the initial condition and saturation parameter, emphasizing the importance of using multiple
uncertainty quantification techniques to ascertain the best validated model. We observed that the
logistic and DEL models have different confidence regions for the model solution in Figures 1 and 2.
We attribute the change in computed confidence regions to the differences in numerical discretization,
the time step for the DEL model was equal to one hour while the logistic model had a coarser mesh.

We collected replicate data and our results had strong agreement across the three replicates.
Although methodology exists to fit all three data sets simultaneously to the same model, we chose to
fit them separately to test whether the model validation results were consistent across several repeated
experiments. We noticed a slight trend in the residuals resulting from fits of the model to data for each
replicate: the fit sometimes either over- or under-estimates the data in groups of threes (Supplementary
Figures S1–S4). We surmise that this phenomenon may be explained by human measurement error;
some people tend to over or under count the algae when using a hemocytometer. Since all models were
confounded with this possibility for human error, we can assume that human error did not influence
the analysis by favoring one model over any other. In future work, more accurate and consistent cell
counts may be performed with a flow cytometer. Alternatively, a spectrophotometer may be used to
approximate algae concentrations.

Overall, we suggest that the population growth of Raphidocelis subcapitata is most accurately
modeled using the Logistic equation among the simple growth models we investigated. It is important
to note that our findings are limited to controlled laboratory settings with unchanging temperature,
constant photoperiod, and no change in nutrient availability. For example, we did not consider the
possible influence of photoperiod (light/dark) conditions on algae growth. We also did not consider
the affect of limiting nutrients such as carbon, nitrogen, phosphorous, or sulfur. The models we
investigated here represent our first approximation of algae growth and seemed to fit the data well
even without considering how light affects algae growth and that the affect of limiting nutrients could
be described by saturating algae growth. The simplifying assumption we made that growth parameters
are independent of light conditions may be investigated in future work to yield a closer fit to the data.
Our work here serves the purpose of coupling our green algae model with one of zooplankton (D.
magna) population growth in a laboratory setting, e.g., for toxicity testing, but should not be directly
extrapolated to populations in lakes. In order to develop an accurate model of community fluctuations
in the field, we will need to consider predation by various zooplankton and microbes, competition
with other algae, nutrient fluctuation, abiotic drivers, and habitat heterogeneity. This study is, however,
a useful step toward developing a more comprehensive model. In particular, our results showing that
a coupling a validated green algae model with a validated daphnia model are important because it
exemplifies the possibility of using a mathematical model to recapitulate the oscillatory dynamics seen
in nature. In contrast, the previously validated daphnia model that did not include algae dynamics
was not able to produce oscillations and only resulted in steady state behavior [5], a result that did
not account for the broader range of plankton dynamics seen in natural systems [1]. We note that
our ultimate goal is to validate a coupled continuous time daphnia/algae model since continuous
time models, such as the Sinko-Streifer model, are described by partial differential equations (PDEs)
with a continuously structured variable and can be more amenable to the estimation of age-dependent
parameters than a discretely structured model [14–17]. In this work, we investigated the dynamics of a
coupled algae/daphnia discrete-time model as a coarse approximation to understand the qualitative
impact of including a dynamic food source on daphnia populations. Our finding that increasing the
density-dependent survival constant (c) in a coupled predator-prey model yields oscillatory dynamics
compliments previous work that has predicted limit cycles based on increased mortality [18]. In an
ecological setting, changes in the parameter c could reflect differing nutrient (algae) requirements
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on the density-dependent survival of daphnia due to differences in species size (e.g., Daphnia pulex
vs. Daphnia magna) or other increased sources of density-dependent mortality such as predation on
daphnia. Changes in c may also be induced toxicologically. For example, endocrine toxins are known
to alter the molt cycle of adult daphnids through incomplete ecdysis [19], which may have an indirect
affect on density-dependent survival by lowering competition for algae. Together, these results suggest
that a structural change in the validated daphnia model, i.e., including predation, and not just a change
in parameter values is required to reproduce population oscillations observed in laboratory and natural
settings. This finding is important in the context of our previous and current ongoing efforts, since
oscillations were not observed in our previous daphnia population experiments [5]. Although the
experiments performed in this work did not involve toxins, the species investigated are commonly
used in toxicity assessments. Thus, our results can be used to provide a baseline to compare effects in
a toxicity setting in future work.

Supplementary Materials: The following are available online at www.mdpi.com/2076-3417/6/5/155/s1.
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Abstract: A non-smooth switched harvest on predators is introduced into a simple predator-prey
model with logistical growth of the prey and a bilinear functional response. If the density of the
predator is below a switched value, the harvesting rate is linear; otherwise, it is constant. The model
links the well studied predator-prey model with constant harvesting to that with a proportional
harvesting rate. It is shown that when the net reproductive number for the predator is greater than
unity, the system is permanent and there may exist multiple positive equilibria due to the effects
of the switched harvest, a saddle-node bifurcation, a limit cycle, and the coexistence of a stable
equilibrium and a unstable circled inside limit cycle and a stable circled outside limit cycle. When the
net reproductive number is less than unity, a backward bifurcation from a positive equilibrium occurs,
which implies that the stable predator-extinct equilibrium may coexist with two coexistence equilibria.
In this situation, reducing the net reproductive number to less than unity is not enough to enable
the predator to go extinct. Numerical simulations are provided to illustrate the theoretical results. It
seems that the model possesses new complex dynamics compared to the existing harvesting models.

Keywords: predator-prey model; switched harvest; limit cycle; rich dynamics
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1. Introduction

Mathematical modeling of predator-prey interactions have attracted wide attention since the
original work by Lotka and Volterra in 1920s, and there have been extensively studied for their rich
dynamics [1–3]. Since the rich and complex dynamics for interactive species are common in the real
world, many researchers have investigated the processes that affect the dynamics of prey-predator
models and wanted to know what models can best represent species interactions.

As a simplest form, the interaction between a predator and prey may be modeled by a pair of
differential equations [1,3–5],

dN
dt

= rN(1 − N
K
)− aNP

dP
dt

= caNP − dP
(1)

where N and P represent the prey and predator species, respectively; r, K, a, c, and d are positive
constants. In the absence of the predation, the prey grows logistically with intrinsic growth rate r and
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carrying capacity K. In the presence of the predator, the prey species decreases at a rate proportional to
the functional response aN, where a presents the rate of predation. The factor c denotes the efficiency
of predation which divides a maximum per capita birth rate of the predators into a maximum per
capita consumption rate. Without the prey, no predation occurs and the predator species decreases
exponentially with mortality rate d.

To consider the dynamics of model Equation (1), it is shown that the origin (0, 0) is a saddle
point. Define the net reproductive number of the predator population n0, i.e., the expected number
of a predator individual producing as the predator population is introduced into a stable prey
population [6,7], as

n0 =
caK

d
(2)

Then if n0 < 1, the boundary equilibrium (K, 0) with the predator going extinct is globally
asymptotically stable and there exists no positive equilibrium for the prey-predator interaction.
If n0 > 1, the boundary equilibrium (K, 0) is a saddle point and there exists a positive coexistence
equilibrium (N∗, P∗) =

(
K
n0

, r
a

(
1 − 1

n0

))
, which is globally asymptotically stable. The model dynamics

are relatively simple. Using n0 as bifurcation parameter, we have a transcritical bifurcation at n0 = 1
as (N∗, P∗) is bifurcated. Notice that model Equation (1) is a special case of the prey-predator model
in [8].

Apparently, model Equation (1) fails to show the complicated dynamics of the predator-prey
interactions in the real world. Later, many researchers improve and enrich model Equation (1) by
incorporating some other elements, for example, stage-structure [9–13], nonlinear functional response
function [14–18], dispersal among patchers [19], delays [9–11,20], or impulsive effects [18,21].

In the real world, from the point of view of predators’ needs, the exploitation of biological
resources and harvest are commonly practiced in fishery, forestry, and wildlife management. There is
an interest in the use of bioeconomic models to gain insight into the scientific management of renewable
resources [16]. Moreover, harvesting is an important and effective method to prevent and control the
explosive growth of predators or prey when they are enough. So, generally speaking, it is reasonable
and necessary for one to introduce the harvest of populations into models. Taking the above reasons
into a consideration, we focus on the predator-prey model with harvest [12,13,16,17,20–28].

Normally, harvesting has several forms in predator-prey models. The most common one of
these harvesting forms is a nonzero constant [16,17,20,22–24,26] or a linear harvesting rate [12,13,
22,25–28]. In Ref. [22], a two-prey-one-predator model with predator harvested was studied. The
authors are particularly interested in the stability properties of different harvest strategies. Two
types of harvest strategies are: with a nonzero constant and a linear harvesting rate. The choice
of idealized harvest strategies will contribute to a qualitative understanding of the properties of
different harvesting strategies. Xiao and Jennings [16] considered the dynamical properties of the
ratio-dependent predator-prey model with constant prey harvesting. There existed numerous kinds of
bifurcations, such as the saddle-node bifurcation, the subcritical and supercritical Hopf bifurcations.
There also existed a limit cycle, a homoclinic or heteroclinic orbit satisfying different parameter
values. In Ref. [17], the ratio-dependent predator-prey model with constant predator harvesting was
focused on. Philip et al. [26] also discussed two predator-prey models with linear or nonzero constant
predator harvesting.

The above two types of harvesting rates seemingly have their own advantages as well as
disadvantages in fitting the harvest in the real world. When the density of the predator or prey is rather
low, the nonzero constant harvesting rate is not as reasonable as of the proportional type [13,22,26];
while if the predator or prey is abundant, linear harvesting rate is less possible than the constant
harvesting rate [16]. In Ref. [22], to compare the stability properties of the system with two harvest
strategies, they applied linear or constant harvesting rate, respectively. In that comparative study,
the authors demonstrated that switching from linear to constant harvesting rate may turn a stable
stationary state to a periodic or chaotic oscillatory mode from a mathematical perspective. However,
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when deciding the constant level of harvesting, the instability of the constant harvest strategy calls for
great care. In Ref. [29], Beddington et al. introduced a more realistic smooth harvesting function in
which the fishing effort is limited upwards because the constant harvest cannot be achieved for small
populations of the fish. The adjustment of a harvesting function can prevent extinction and increase
the stability to some extent. Moreover, the dramatic increase of the predator or prey challenges the
normal ecological balance and capacity of harvest. Thus, it is interesting to construct a new kind of
harvesting rate that combines the advantages from both linear and constant harvesting rates.

Motivated by these ideas, in this paper, we consider a predator-prey model with a novel harvesting
rate. Our ideas to develop the harvesting rate are derived from the capacity of treatments of diseases
that had been well studied in the dynamical epidemic models [30–32].

Using model Equation (1) as our baseline model, we assume that harvesting takes place, but only
the predator population is under harvesting and introduce harvesting function H(P) of the predator
to prey-predator model Equation (1) for discussing its dynamical features. The interactive dynamics
are governed by the following system

dN
dt

= rN
(

1 − N
K

)
− aNP

dP
dt

= caNP − dP − H(P)
(3)

Following the methods in [14–17,30], we investigate the existence and stability of multiple
equilibria, bifurcations, and limit cycles, and study the effects of switched harvest on the dynamics of
the predator-prey model.

This paper is organized as follow. Sections 2 and 3.1 represent the boundedness of model
Equation (3) and existence of multiple equilibria. In Section 3.2, we study the stability of equilibria,
bifurcations, and the existence and stability of a limit cycle. In Section 4, we give numerical simulations
to verify our results. Brief discussions are presented finally in Section 5.

2. Model Formulation

Now, we consider model Equation (3). Firstly, we describe harvesting function H(P) of the
predators in model Equation (3), which has the following form

H(P) =

{
mP, 0 ≤ P ≤ P0

h, P0 < P
(4)

We assume that the harvesting rate is proportional to the predator population size until it reaches
a threshold value due to limited facilities of harvesting or resource protection. The harvesting rate will
then be kept as a constant. Denote the harvesting threshold value as h = mP0.

When 0 ≤ P ≤ P0, model Equation (3) is

dN
dt

= rN
(

1 − N
K

)
− aNP

dP
dt

= caNP − dP − mP
(5)

When P > P0, model Equation (3) becomes

dN
dt

= rN
(

1 − N
K

)
− aNP

dP
dt

= caNP − dP − h
(6)
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It is straightforward to verify that solutions of Equation (3) with positive initial conditions are all
positive for t ≥ 0 and ultimately bounded. Thus the following set

D =

{
(N, P) : N ≥ 0, P ≥ 0, cN + P ≤ ck(r + d)2

4rd

}
is positive invariant for system Equation (3).

3. Preliminary Results

3.1. Existence of Equilibria

In this section, we explore the existence of all nonnegative equilibria. First, the origin (0, 0) is
still a trivial equilibrium and the predator-free equilibrium (K, 0) exists. Moreover, it is easy to see
that there exists no positive equilibrium in region D if n0 ≤ 1. We thus assume n0 > 1 hereafter,
and present our results of the existence of positive equilibria as follows.

Theorem 1. System Equation (3) has a positive coexistence equilibrium E∗(N∗, P∗), in the subregion of D
with 0 < P ≤ P0,

N∗ = K
n̂

, P∗ = r
a

(
1 − 1

n̂

)
(7)

if and only if P0 ≥ r
a

and n̂ > 1, or P0 <
r
a

and 1 < n̂ ≤ r
r − aP0

, where
r
a

represents the maximum

predator density for which the prey population can establish itself from a small initial population and n̂ is the net
reproductive number of the predator under harvesting defined by

n̂ =
caK

d + m
(8)

Proof. In the subregion of D with 0 < P ≤ P0, a positive equilibrium of Equation (3) satisfies⎧⎨⎩rN∗
(

1 − N∗
K

)
− aN∗P∗ = 0

caN∗P∗ − (d + m)P∗ = 0
(9)

Then it follows that
N∗ = d + m

ca
=

K
n̂

and then

P∗ = r
a

(
1 − 1

n̂

)
> 0

if n̂ > 1. In the mean time, it follows from

P∗ = r
a

(
1 − 1

n̂

)
≤ P0

and then
1
n̂
≥ r − aP0

r
that there exists a positive equilibrium in this subregion if

r − aP0

r
≤ 0
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or if
r − aP0

r
> 0 and

n̂ ≤ 1

1 − aP0
r

=
r

r − aP0
(10)

To investigate the existence of positive equilibria in the subregion of D with P > P0, we first give
the relation of roots and coefficients for a quadratic equation.

Quadratic equation (x − A)(B − x) = C, with constants A, B, and C positive, has two
positive roots

x1 =
A + B −√(B − A)2 − 4C

2
< x2 =

A + B +
√
(A − B)2 − 4C
2

a unique positive root

x =
A + B

2
or no positive root, if

C <
(B − A)2

4
, C =

(B − A)2

4
, or C >

(B − A)2

4
respectively.

The results for the existence of positive equilibria of Equation (3) in the subregion of D with
P > P0 are provided as follows.

Theorem 2. We assume P0 <
r
a

and define

P̂ =
r(n0 − 1)

2an0
, h1 =

crK
4

(
1 − 1

n0

)2
, h2 =

rm
a

(
1 − 1

n̂

)
(11)

System Equation (3), in the subregion of D with P > P0, has

(a) No positive equilibrium if

h > h1, or

{
P0 > P̂

h2 ≤ h < h1

(b) A unique positive equilibrium with

N =
K(1 + n0)

2n0
, P =

r(K − N)

aK
=

r(n0 − 1)
2an0

(12)

if

h = h1,

{
P0 > P̂,

h < h1 and h < h2
or

{
P0 < P̂,

h < h1 and h ≤ h2

(c) Two positive equilibria Ei(Ni, Pi), i = 1, 2, where

N1 =
crK(1 + n0)− n0

√
4crK (h1 − h)

2crn0

<
crK(1 + n0) + n0

√
4crK (h1 − h)

2crn0
= N2

(13)

and

P2 =
r(K − N2)

aK
< P1 =

r(K − N1)

aK
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if h < h1 and {
P0 < P̂

n̂ < 1
or

{
P0 < P̂

h2 < h

Proof. In the subregion of D with P > P0, a positive equilibrium satisfies

rN(1 − N
K
)− aNP = 0 (14a)

caNP − dP − h = 0 (14b)

It follows from Equation (14a) that

P =
r(K − N)

aK

Substituting it into Equation (14b) yields(
N − K

n0

)
(K − N) =

K
cr

h (15)

It follows from the relation of roots and coefficients for the quadratic equation (x − A)(B − x) = c
shown above that equation Equation (15) has no, unique, or two positive solutions if h > h1, h = h1, or
h < h1.

To have Pi > P0, i = 1, 2, we need

Pi =
r(K − Ni)

aK
> P0

that is,

Ni < K − aK
r

P0 =
aK
r

( r
a
− P0

)
, i = 1, 2 (16)

Thus, if P0 ≥ r/a, there is no positive equilibrium of Equation (15) in the subregion of D with
P > P0. We assume P0 < r/a.

Suppose there are two positive solutions, N1 < N2, to Equation (15) and hence P2 < P1. Then P2 >

P0 if and only if

N2 < K − aK
r

P0 (17)

Substituting N2 in Equation (13) into Equation (17) yields

n0

√
4crK (h1 − h) < crK(n0 − 1)− 2caKn0P0

that is, √
4crK

2caK

√
(h1 − h) <

r(n0 − 1)
2an0

− P0 = P̂ − P0 (18)

Then if P0 ≥ P̂, we have P2 ≤ P0.
Assume P0 < P̂. Squaring both sides of Equation (18) yields

r
ca2K

(h1 − h) <
r2(n0 − 1)2

4a2n2
0

− r(n0 − 1)
an0

P0 + P2
0 (19)

It follows from the definition of h1 that

rh1

ca2K
=

r
ca2K

crK(n0 − 1)2

4n2
0

=
r2(n0 − 1)2

4a2n2
0
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Then Equation (19) becomes

0 < h2 − rm
a

(
n0 − 1

n0
− m

caK

)
h =

(
h − rm

a

(
1 − d + m

caK

))
h

=

(
h − rm

a

(
1 − 1

n̂

))
h

(20)

If n̂ < 1, we have P2 > P0. Otherwise, Equation (20) is equivalent to

0 < (h − h2)h

Thus, if h2 < h < h1, P2 > P0, and if h ≤ h2, P2 < P0.
We now consider P1 > P0, that is,

N1 <
aK
r

( r
a
− P0

)
(21)

Substituting N1 in Equation (13) into Equation (21), we have

√
4crK

2caK

√
(h1 − h) > P0 − P̂ (22)

If P0 ≤ P̂, inequality Equation (21) is satisfied which implies P1 > P0.
Suppose P0 > P̂. Similarly as above, inequality Equation (22) is equivalent to

0 > (h − h2)h

Thus, if h < h2, P1 > P0, and if h ≥ h2, P1 < P0.
By putting all together, the proof is completed.

Remark 1. System Equation (1) with linear predator harvest strategy leads to the predator extinct if the net
reproductive number n̂ < 1. However, by Theorem 2 (c), we find that for system Equation (1) with switched
predator harvest strategy; that is, when the density of predator is below harvest level P0, the linear harvesting
rate is applied to the system, whereas when the density of predators is higher than harvest level, the system
adopts nonzero constant harvesting rate, even if n̂ < 1, the prey and predator may coexist.

3.2. Stability of Equilibria

In this section, we discuss the stability of equilibria of model Equation (3).

Theorem 3. Equilibrium E0(K, 0) is locally asymptotically stable if n̂ < 1, and unstable if n̂ > 1.
Moreover, E0(K, 0) is globally asymptotically stable in D\{(0, 0)} if n̂ < 1 and h > h1. If n̂ > 1, system
Equation (3) is permanent.

Proof. It is easy to obtain that the characteristic roots to the linearized equation of system Equation (3)
at E0(K, 0) are λ1 = −r < 0 and λ2 = caK − d−m = (d+m)(n̂− 1). Thus, E0 is locally asymptotically
stable if n̂ < 1 and unstable if n̂ > 1.

Next, note that (0, 0) is always unstable. If n̂ < 1, by Theorems 1 and 2, there is not any other
equilibrium of system Equation (3) than E0 in D\{(0, 0)}. Since D is the invariant set of system
Equation (3) and E0 is locally asymptotically stable, it follows from the Bendixson Theorem that every
solution of system Equation (3) in D approaches E0 when t tends to positive infinity.

Since E0 is unstable as n̂ > 1, following the similar arguments to Cantrell and Cosner ([33]
Theorem 3.1) (see also ([34] Theorems 3,4)), which is based on the uniform persistence theory
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introduced by Hale and Waltman [35], we are able to conclude that system Equation (3) is permanent
if n̂ > 1.

The proof is complete.

Remark 2. It follows from Cantrell and Cosner ([33] Theorem 3.1) that system Equation (5) is permanent
if and only if n̂ > 1. Thus Theorem 3 suggests that if system Equation (5) is permanent, then so is system
Equation (3).

For the three positive equilibria E∗, E1, E2, we have the following results. Firstly, we consider the
stability of E∗.

Theorem 4. The positive equilibrium E∗(N∗, P∗) of system Equation (3) is globally asymptotically stable if
P0 <

r
a

and 1 < n̂ ≤ r
r − aP0

.

Proof. According to Theorem 1, positive equilibrium E∗(N∗, P∗) exists if and only if P0 <
r
a

and

1 < n̂ ≤ r
r − aP0

. The Jacobian matrix of system Equation (3) at E∗(N∗, P∗) is

J∗ =
(

r(1 − N∗
K ) + rN∗(− 1

K )− aP∗ −aN∗

caP∗ caN∗ − d − m

)
(23)

Because N∗ and P∗ satisfy Equation (9), by means of Equation (9), the trace and determinant of J∗

are simplified as

tr(J∗) = r − 2rN∗

K
− aP∗ + caN∗ − d − m = − rN∗

K
< 0

det(J∗) = (r − 2rN∗

K
− aP∗)(caN∗ − d − m) + ca2N∗P∗ = ca2N∗P∗ > 0

(24)

Therefore, all eigenvalues of matrix J∗ have negative real parts when P0 <
r
a

and 1 < n̂ ≤ r
r − aP0

.

It follows that E∗(N∗, P∗) is locally asymptotically stable.
Then, it suffices for us to prove the global attractiveness of E∗(N∗, P∗). Inspired by the work of

McCluskey [36], we define a Lyapunov function

M(t) = cN∗(N(t)
N∗ − ln

N(t)
N∗ − 1) + P∗(P(t)

P∗ − ln
P(t)
P∗ − 1)

where N∗ = K
n̂ , and P∗ = r

a (1 − 1
n̂ ).

We know that N(t)
N∗ − ln N(t)

N∗ − 1 and P(t)
P∗ − ln P(t)

P∗ − 1 ≥ 0 for all N(t), P(t) > 0. (The equality
holds if and only if N(t) = N∗, P(t) = P∗.) From the definition of M(t), we know that M(t) is
well-defined and M(t) ≥ 0. The equality holds if and only if N(t) = N∗ and P(t) = P∗.

Differentiating M(t) along the solutions of system Equation (3), we obtain

dM(t)
dt

= c(1 − N∗

N
)

dN
dt

+ (1 − P∗

P
)

dP
dt

.

= − cr
K

N2 +
2rN(d + m)

aK
− r(d + m)2

ca2K
.

= − cr
K
(N − d + m

ca
)2 ≤ 0
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It follows that M(t) is bounded and non-increasing. Thus limt→∞ M(t) exists. Note that dM
dt = 0

if and only if N = N∗. Substituting N = N∗ into the first equation of Equation (3), one can directly
get P = P∗. Therefore, the maximal compact invariant set in dM

dt = 0 is the singleton E∗. By the
LaSalle invariance principle (see, for example, Theorem 5.3.1 in Hale and Verduyn Lunel [37]), positive
equilibrium E∗ is globally attracting. Further, E∗ is globally asymptotically stable.

Now we concentrate on the stability of coexistence equilibria Ei(Ni, Pi), i = 1, 2. The Jacobian
matrix of system Equation (3), at Ei(Ni, Pi), is

Ji =

(
r − 2rNi

K − aPi −aNi
caPi caNi − d

)
, i = 1, 2 (25)

Theorem 5. If the coexistence equilibrium E2(N2, P2) of system Equation (3) exists, it is unstable.

Proof. For the coexistence equilibrium E2(N2, P2), N2 and P2 satisfy Equation (14).
By Equations (13)–(15), after direct calculations, the determinant of matrix J2 is

det(J2) = −2car
K

(N2 − d + caK
4ca

)2 +
2car(d + caK)2

16c2a2K
(26)

Because

N2 =
crK(1 + n0) + n0

√
4crK(h1 − h)

2crn0
>

crK(1 + n0)

2crn0
=

caK + d
2ca

we obtain that det(J2) < 0. Thus E2(N2, P2) is a saddle point and unstable.

For the coexistence equilibrium E1(N1, P1), similarly, the determinant of J1 is

det(J1) = −2car
K

(N1 − d + caK
4ca

)2 +
2car(d + caK)2

16c2a2K
(27)

but since

N1 =
crK(1 + n0)− n0

√
4crK(h1 − h)

2crn0
<

crK(1 + n0)

2crn0
=

caK + d
2ca

we obtain det(J1) > 0, and E1(N1, P1) may be node, focus or center.
By Equations (13)–(15), the sign of the trace of matrix J1 is determined by

ϕ = r2d(d − caK) + 2ca2K(caK − r)h − ard
√

4crK(h1 − h) (28)

According to Equation (28), we obtain

(a) If caK − r ≤ 0, then ϕ < 0.
(b) If caK − r > 0, and h ≤ r2d(caK−d)

2ca2K(caK−r) =
r2d2(n0−1)

2ca2K(caK−r) = h3, then ϕ < 0.

(c) If caK − r > 0, h > h3 and η = 4crK(h1 − h)− [2ca2K(caK−r)h−r2d2(n0−1)]2

a2r2d2 > 0, then ϕ < 0.

Summarizing the above discussions, we have the following results on the stability of
equilibrium E1(N1, P1).

Theorem 6. Suppose that the coexistence equilibrium E1(N1, P1) exists and if one of following conditions
is satisfied:

(a) caK ≤ r;
(b) caK > r and h ≤ h3;
(c) caK > r and h > h3 and η > 0,

then E1(N1, P1) is locally asymptotically stable. It is unstable if caK > r, h > h3, and η < 0.
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Combining the existence and stability results of equilibria of model Equation (3), by following
similar arguments to ([31] Corollary 2.3), we present the following corollary to give conditions
for bifurcation.

Corollary 1. If n̂ < 1 and h < min{h1, mP̂}, then system Equation (3) has a backward bifurcation of
positive equilibria.

Next, we give examples to demonstrate the bifurcation of multiple equilibria.
For various parameter values, model Equation (3) has a forward bifurcation from one positive

equilibrium to another positive equilibrium (see Example 3.1.) and a backward bifurcation with a
predator-extinct equilibrium and two positive equilibria (Example 3.2.). Note that the conditions in
Theorem 2 a) and Theorem 2 c) guarantee the existence of three positive equilibria E∗ and E1, E2

(Example 3.3.).

Example 3.1. Using the following parameter values r = 0.1, K = 0.5, a = 0.25, c = 0.8, d = 0.01,
and m = 0.03, we obtain n̂ = 2.5, and h2 = 0.0072. When h ≤ h2, a bifurcation diagram is shown in
Figure 1. When the parameter h decreases, the bifurcation at h = h2 is forward, and model Equation (3)
has a unique positive equilibrium for h > 0, which is similar to ([30] Example 2.4).

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

h

P

h
2

P*

P
2

Figure 1. The forward bifurcation diagram from P∗ to P1 versus u for Equation (3). The line with P1

indicates the curve of the predator with coexistent equilibrium E1, and the line with P∗ indicates the
curve of the predator with coexistent equilibrium E∗.

Example 3.2. Choosing r = 0.1, K = 0.4, a = 0.1, c = 0.8, d = 0.01, and m = 0.03, we obtain
n̂ = 0.8 < 1, h1 = 0.00378, and P̂ = 0.34367. A backward bifurcation diagram is given in Figure 2,
where the horizontal line denotes the curve of the predator with predator-extinct equilibrium E0.
Two positive equilibria E1 and E2 arise simultaneously at h = h1 when the parameter h decreases.
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Figure 2. The backward bifurcation diagram of P1 and P2 versus h for Equation (3). The solid line with
P1 and dotted line with P2 represent the curves of the predator with coexistent equilibrium E1 and
E2, respectively.

Remark 3. In Figure 2, we consider how to set up the harvesting threshold value h. We find that h1 is an
important harvesting amount. If the harvesting threshold value exceeds h1, the system does not have a positive
equilibrium; that is, the predator eventually tends to extinction. If the harvesting threshold value is less than h1,
the system has two positive equilibria among which one is unstable and the other may be stable, i.e., the predator
and prey may coexist.

Example 3.3. For model Equation (3), we choose r = 0.1, K = 0.25, a = 0.25, c = 0.8, d = 0.01,
m = 0.03 and P0 = 0.1. Thus we obtain n̂ = 1.25, h1 = 0.0032, h2 = 0.0024, and P̂ = 0.16.
A bifurcation diagram is illustrated in Figure 3, where the horizontal blue line presents the curve of
the predator with the positive equilibrium E∗. It displays that there is a bifurcation at h = h1 when the
parameter h reduces, which produces three equilibria E∗ ,E1 and E2.
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Figure 3. The bifurcation diagram with P1, P2 and P∗ versus h. The lines with P1 and P2 indicate the
curves of the predator with coexistent equilibria E1 and E2, respectively, and the line with P∗ indicates
the curve of the predator with coexistent equilibrium E∗.

The existence of limit cycles plays an important role in determining the dynamical behavior of
the system. For example, if there is no limit cycle in system Equation (3) and its positive equilibrium is
unique and locally asymptotically stable, then it must be globally stable. Now, we explore the existence
of limit cycles in system Equation (3).
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Theorem 7. Suppose n̂ > 1 and h < min{h1, h2}. If ϕ > 0, then system Equation (3) has at least a stable
limit cycle which encircles E1.

Proof. For n̂ > 1 and h < h2, it is known from Theorem 2 a) that the equilibrium E∗ of system
Equation (3) does not exist. Furthermore, because n̂ > 1, h < h1, and h < h2, it follows from Theorem 2
b) that the equilibrium E2 of system Equation (3) does not exist, but the equilibrium E1 exists.

It follows from ϕ > 0 that E1 is an unstable focus or node. It is easy to see that the unstable
manifold at the saddle point E0(K, 0) is in the first quadrant. As the set D is positively invariant for
system Equation (3), and system Equation (3) does not have any equilibrium in the interior of D \ {E1}.
It follows from the Poincaré-Bendixson theorem that system Equation (3) has at least a stable limit
cycle which encircles E1.

In general, Dulac functions are only applied to smooth vector fields in the study of nonexistence of
limit cycles. Since the right-hand sides of Equation (3), denoted by f1 and f2, are not smooth, following
the similar arguments as in Wang ([31] Lemma 3.2), which is based on Green′s Theorem, we are able to
obtain sufficient conditions for the nonexistence of limit cycles in system Equation (3).

Theorem 8. System Equation (3) does not have a limit cycle if caK < d + r.

Proof. By the first equation of Equation (3), it is easy to see that the positive solutions of Equation (3)
eventually enter and remain in the region

C = {(N, P) : N ≤ K}

Thus, if a limit cycle exists, it must lie in the region C. Take a Dulac function F = 1
N . Then we have

∂(F f1)

∂N
+

∂(F f2)

∂P
= − r

K
+ ca − d + m

N
≤ ca − d + m + r

K
< 0

if 0 < P < P0. If P > P0, it is easy to see that

∂(F f1)

∂N
+

∂(F f2)

∂P
= − r

K
+ ca − d

N
≤ ca − d + r

K
< 0

Hence, system Equation (3) does not have a limit cycle.

4. Numerical Simulation

In this section, we present numerical examples for system Equation (3).

Example 4.1. (Example 3.1. continued) The parameters values r, K, a, c, d and m are the same as in
Example 3.1. We obtain n̂ > 1, h1 = 0.0081, and h2 = 0.0072. A forward bifurcation diagram is given
in Figure 1.

Selecting P0 = 0.25, we get h = 0.0075 > h2. The equilibrium E∗(0.2, 0.24) exists, but E1 and E2 do
not exist (Theorem 2 b)). Its phase portrait is given in Figure 4, which shows that the unique positive
equilibrium E∗ is globally asymptotically stable.
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Figure 4. The phase portrait of model Equation (3) when E∗ is globally asymptotically stable and E0 is
unstable.

If we choose P0 = 0.2, then h = 0.006 < h2. Equilibrium E1(0.16044, 0.27165) exists, but E2 and E∗

do not exist (Theorem 2 b)). Its phase portrait is given in Figure 5. The unique positive equilibrium E1

is globally asymptotically stable in D.
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Figure 5. The phase portrait of model Equation (3) when E1 is locally asymptotically stable and E0

is unstable.

The equilibrium E∗ in Figure 4 corresponds to some point on the curve of P∗ in Figure 1 (h > h2),
and the equilibrium E1 in Figure 5 corresponds to some point on the curve of P1 in Figure 1 (h < h2).

Example 4.2. (Example 3.2. continued) Choosing the same parameters values as in Example 3.2,
we have h1 = 0.00378 and P̂ = 0.34367. A backward bifurcation diagram is given in Figure 2.

If we choose P0 = 0.1, then P0 < P̂. Equilibria E1(0.2, 0.5) and E2(0.325, 0.1875) exist,
but equilibrium E∗ does not exist. Its phase portrait is illustrated in Figure 6. It shows that equilibria
E0 and E1 are asymptotically stable.

The equilibria E1 and E2 in Figure 6 correspond to some points on the curves of P1 and P2 ,
respectively, in Figure 2 (h < h1).
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Figure 6. The phase portrait of model Equation (3) when E0 and E1 are locally asymptotically stable
and E2 is unstable.

Example 4.3 (I). (Example 3.3. continued) We identically select parameter values as in Example 3.3,
and set P0 = 0.1. Thus we have n̂ > 1, h1 = 0.0032, h2 = 0.0024, P̂ = 0.16, and h = 0.003. The above
parameter values satisfy conditions a) and c) in Theorem 2, and condition a) in Theorem 6.

Obviously, equilibria E0(0.25, 0), E∗(0.2, 0.08), E1(0.125, 0.2), and E2(0.175, 0.12) all exist.
The phase portrait of model Equation (3) is shown in Figure 7. Equilibria E∗ and E1 are asymptotically
stable, and E0 and E2 are unstable. So model Equation (3) has bistable positive equilibria E∗ and E1.
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Figure 7. The phase portrait of model Equation (3) with bistable positive equilibria E∗ and E1,
and unstable equilibria E0 and E2.

It follows from Figure 7 that the stable region Γs of the saddle point E2 divides the positive
invariant set into two regions. The attractive basin for the stable equilibrium E1 is the region above Γs

and the region below Γs is the basin of attraction for the stable equilibrium E∗.
The equilibria E1 and E2 in Figure 7 correspond to some points on the curves of P1 and P2,

respectively, and E∗ corresponds to some point on the curve of P∗ in Figure 3 (h2 < h < h1).

Example 4.3 (II). We set parameter values r = 0.03, K = 0.25, a = 0.5, c = 0.4, d = 0.01, m = 0.03,
and P0 = 0.0133. Thus we have n̂ = 1.25, uh1 = 0.00048, h2 = 0.00036, P̂ = 0.024, and h = 0.000399.
These parameter values satisfy conditions a) and c) in Theorem 2 and the condition c) in Theorem 6.
Thus, equilibria E0(0.25, 0), E∗(0.2, 0.012), E1(0.1092, 0.0338), and E2(0.1908, 0.0142) all exist. The phase
portrait of model Equation (3) is shown in Figure 8. Equilibria E∗ and E1 are stable, and E0 and E2 are
unstable. So model Equation (3) has bistable positive equilibria E∗ and E1.

197



Appl. Sci. 2016, 6, 151

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

N

P

E
0

E*

E
2

E
1

Figure 8. The phase portrait of model Equation (3) with positive stable equilibria E∗ and E1,
and unstable equilibria E0 and E2.

The model with the parameter values in Example 4.3 (II) has a similar bifurcation diagram as that
in Example 4.3 (I), and the stability of equilibria in Figure 8 is identical with that in Figure 7.

Example 4.4 (I). We select r = 0.004, K = 0.2, a = 0.1, c = 0.4, d = 0.001 and m = 0.005. Then n̂ = 1.333,
h1 = 6.125 ∗ 10−5, P̂ = 1.75 ∗ 10−2, and h2 = 5 ∗ 10−5.

Choosing P0 = 0.008, we have h = 2 ∗ 10−5. Thus, h < h2 < h1, P0 < P̂, caK > r, h > h3,
and η < 0. Equilibrium E1(0.04069, 0.03186) exists but is unstable, and E∗ and E2 do not exist.
The parameter values satisfy the conditions of Theorem 7. Its phase portrait is given in Figure 9, which
shows that model Equation (3) has a stable limit cycle which encircles E1.
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Figure 9. A stable limit cycle of model Equation (3) encircling the unstable equilibrium E1.
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Example 4.4 (II). Set r = 0.03, K = 0.264, a = 0.5, c = 0.4, d = 0.01, and m = 0.031. We obtain
n̂ = 1.2878, h1 = 5.2041 ∗ 10−4, P̂ = 2.4318 ∗ 10−2, and h2 = 4.1568 ∗ 10−4.

Choosing P0 = 0.0133, we obtain h = 4.123 ∗ 10−4. The parameter values satisfy Theorem 2 (b)
and Theorem 6 (c), but do not satisfy Theorem 2 (a). Thus, equilibria E∗ and E2 do not exist and
E1(0.1082, 0.0354) exists. The phase portrait of model Equation (3) is shown in Figure 10. In Figure 10,
equilibrium E1 is stable and two periodic orbits encircle E1. We can see that the outside periodic orbit is
stable. However, the inside periodic orbit is unstable. A trajectory (the dotted line) between the outside
and inside periodic orbits ultimately tends to the outside periodic orbit, but a trajectory (the thin black
line) starting from within the unstable periodic orbit finally tends to equilibrium E1. So the initial state
is important for ultimate trends of trajectories.
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Figure 10. The phase portrait of model Equation (3) when E1 is stable.

5. Conclusions

In this paper, we proposed and studied a new predator-prey model with non-smooth switched
harvest on the predator. If the density of the predator is below a switched value, the harvest has a
linear harvesting rate. Otherwise, the harvesting rate is constant. Our model exhibits new dynamical
features compared to those with a linear harvesting rate or a constant harvesting rate.

According to the Kolmogorov Theorem [38], under certain assumptions, the model with a linear
predator harvesting rate has either a stable equilibrium or a stable limit cycle, whereas the model
with a constant harvesting rate on the predator has richer dynamics [16,23,23]. For example, for a
class of predator-prey systems, Brauer and Soudack [23,23] obtained different types of dynamics
for which the harvesting was in prey or a predator; Xiao and Jennings [16] further studied a
ratio-dependent predator-prey model with a constant harvest on prey. They proved that the model
could exhibit complicated bifurcation phenomena, including the Bogdanov-Takens bifurcation of cusp
type, the heteroclinic bifurcation, or a separatrix connecting a saddle-node and a saddle bifurcation.

For the model studied in this paper, we showed that (see Theorem 2 and Corollary 1) a backward
bifurcation from the predator-prey coexistence equilibrium may occur, which shows that reducing
the net reproductive number of the predator to less than unity is not enough to eradicate the predator.
On the other hand, when the net reproductive number of the predator is greater than unity, we showed
that the predator always coexists with the prey permanently (Theorem 3), and the model may exhibit
the following dynamics: (i) a unique globally asymptotically stable coexistence equilibrium; (ii) the
coexistence of positive saddle equilibria connecting with either a locally asymptotically stable positive
equilibrium (biostable) or a limit cycle; (iii) two stable positive equilibria coexisting with a saddle point.
By numerical examples, we also showed that the model could exhibit more new dynamical features:
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(a) a limit cycle encircling a unique positive equilibrium (see Figure 9); (b) two cycles surround an
identical positive equilibrium, with one stable and one unstable (see Figure 10).

We would like to point out that we have assumed the simple functional response of the
bilinear type in our current model Equation (3). We may also consider other types of functional
responses. The dynamics may be richer and more complex. Further investigations are planned in our
future studies.
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Abstract: Quorum sensing is a bacterial cell-to-cell communication mechanism and is based on
gene regulatory networks, which control and regulate the production of signaling molecules in
the environment. In the past years, mathematical modeling of quorum sensing has provided an
understanding of key components of such networks, including several feedback loops involved.
This paper presents a simple system of delay differential equations (DDEs) for quorum sensing of
Pseudomonas putida with one positive feedback plus one (delayed) negative feedback mechanism.
Results are shown concerning fundamental properties of solutions, such as existence, uniqueness,
and non-negativity; the last feature is crucial for mathematical models in biology and is often violated
when working with DDEs. The qualitative behavior of solutions is investigated, especially the
stationary states and their stability. It is shown that for a certain choice of parameter values, the
system presents stability switches with respect to the delay. On the other hand, when the delay is
set to zero, a Hopf bifurcation might occur with respect to one of the negative feedback parameters.
Model parameters are fitted to experimental data, indicating that the delay system is sufficient to
explain and predict the biological observations.
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1. Background

More than twenty years ago it was first discovered that even primitive single-celled organisms
such as bacteria are able to communicate with each other and coordinate their behavior [1,2]. Bacterial
communication is based on the exchange of signaling molecules, or autoinducers, which are produced
and released in the surrounding space. At the same time, bacteria are able to measure the autoinducer
concentration in the environment, and according to this, they can coordinate and even switch their
behavior, adapting to environmental changes. The term “quorum sensing” was coined to summarize
the cell-to-cell communication mechanism thanks to which single bacteria cells are able to measure
(“sense”) the whole population density [3]. Quorum sensing was first observed for the species
Vibrio fischeri [2], which uses such a mechanism to regulate its bioluminescence. Nowadays, it is known
that many bacterial species are able to use similar regulation systems, controlling biofilm formation,
swarming motility, and the production of antibiotics or virulence factors [4–6].

The basis for cell-to-cell communication is a gene regulatory network that not only controls certain
target genes, but often also their own production, resulting in a positive feedback loop. Gram-positive
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bacteria use so-called two-component systems (see e.g., [7]), whereas Gram-negative bacteria produce
autoinducers directly in the cells, release them to and take them up from the extracellular space without
any further modification or transformation.

In the following, we focus on the architecture of a quorum sensing system in Gram-negative
bacteria, which mainly communicate via N-Acyl homoserine lactones (AHLs) [3,8], typically produced
by a synthase. AHL molecules bind to receptors, which control the transcription of target genes. The
receptor–AHL complex usually induces the expression of AHL synthases in a positive feedback loop.

We restrict our considerations to the bacteria species Pseudomonas putida, a root colonizing, plant
growth-promoting organism [9]. Nevertheless, these basic principles may be easily transferred to
related bacterial species.

Mathematical modeling of quorum sensing systems has developed in the last decade. Basic
principles for a mathematical approach can be found, for example, in [10], where quasi-steady
state assumptions for mRNA and corresponding protein in Pseudomonas aeruginosa were introduced,
or in [11], which focuses on the basic feedback system of Vibrio fischeri and the resulting
bistability. Alternative approaches for Gram-negative bacteria can be found in [12] (focussing on
population dynamics) and [13] (including a further feedback loop). Classical mathematical models for
Gram-positive bacteria were introduced, for example, for Staphylococcus aureus in [7,14,15].

Several model approaches have also been proposed for Pseudomonas putida, in closed systems
(batch) as well as in continuous cultures (chemostat) [16–18]. The goal of this manuscript is to
review such models, investigating mathematical properties and principles underlying the equations.
The interesting component of quorum sensing models of Pseudomonas putida is that beside a positive
feedback for the autoinducer one also finds a negative feedback via an autoinducer-degrading enzyme,
a Lactonase. This is initialized with a certain time lag, leading to a system of delay differential equations
(DDEs).

The paper is organized as follows. In Section 2 we provide a short overview of previous modeling
approaches for quorum sensing of Pseudomonas putida. Starting from ordinary differential equations
(ODEs) for the regulatory network in one single cell, in a second step we extend to quorum sensing
in populations, including signal exchange among cells and Lactonase activity. The latter component
introduces delays into the system. The delay represents the activation time of the Lactonase-dependent
negative feedback. Bacteria population might be considered in batch as well as in continuous cultures.
It is our purpose to investigate the long term behavior of the presented dynamical systems, and this
can be achieved via a reduced model of two delay equations. We explain in great detail how to obtain
the two-equation system, maintaining key properties of the gene regulatory network.

In Section 3 we present results concerning the existence and uniqueness of solutions to the
reduced model. Moreover, we show that non-negative initial data yield non-negative solutions, a
fundamental property of models in biology that is often violated when working with delay differential
equations (cf. [19]). We compute stationary states of the dynamical system and investigate local
stability properties. To this purpose, we compare the DDE system (with a constant delay, τ > 0) to the
associated ODE system (τ = 0), studying delay-induced stability switches. In the last part of Section 3,
model parameters are fitted to experimental data from [18], indicating that in the long run the reduced
model is sufficient to explain and predict the general behavior of the system.

Everywhere in this manuscript, if not otherwise specified, we shall denote variables dependent
on time by x or x(t). First derivatives with respect to time are denoted by ẋ, respectively by ẋ(t).

2. Methods

2.1. Compartmental Models

We present in the following compartmental models for quorum sensing of bacteria in a continuous
culture. One compartment represents either bacterial population density, the nutrient concentration in
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the medium, or the concentration of a certain protein/enzyme/signaling substance in a single cell or
in the medium.

2.1.1. Regulatory Pathway in One Cell

Let us start to consider the gene regulatory system for a single Pseudomonas putida cell. We follow
a standard approach for modeling the quorum sensing system in Pseudomonas putida (ppu), analogous
to the lux system in Vibrio fischeri [11], where polymers of the receptor–AHL complex initiate a positive
feedback loop. The autoinducer concentration in Pseudomonas putida is regulated by a (self-induced)
positive feedback as well as by a negative feedback via the AHL-degrading enzyme Lactonase.
Transcriptional activators PpuR bind to AHLs, forming a PpuR-AHL complex which polymerizes.
PpuR-AHL n-mers bind to the AHL-dependent quorum sensing locus (ppu-box) and synthesize PpuI.
This protein is finally responsible for AHL synthesis. We neglect possible feedbacks (cf. [13,20]) on
the transcription of PpuR, as these seem to be of minor influence [16]. Thus, just a constant basic
production of the receptor PpuR is considered, as in [10,11,17]. Further, we assume as in [16–18]
that PpuR-AHL n-mers induce synthesis of Lactonase molecules. A schematic representation of this
regulatory pathway is given in Figure 1.

Figure 1. Model structure for the quorum sensing system in one Pseudomonas putida cell. N-Acyl
homoserine lactone (AHL) concentration is regulated by a (self-induced) positive feedback (+) as
well as by a negative feedback (−) via the AHL-degrading enzyme Lactonase. The transcriptional
activator PpuR binds to AHL forming a PpuR–AHL complex, which polymerizes. PpuR–AHL n-mers
bind to the AHL-dependent quorum sensing locus (ppu-box) and synthesize PpuI. This protein is
finally responsible for AHL synthesis. Similarly, PpuR-AHL n-mers induce synthesis of Lactonase
molecules. Feedbacks on the transcription of PpuR are neglected. Solid arrows represent activations
and inhibitions. Dashed arrows indicate reactions and processes which are partially assumed to be in
quasi-steady state. Dotted arrows represent the possible exchange of substances between intracellular
and extracellular space. The dashed green ellipse refers to the special case in model version (4), where it
is assumed that the total amount of PpuR in one cell (consisting of PpuR and the PpuR-AHL complex)
is constant whereas in the other models, PpuR and the PpuR-AHL complex follow their own dynamics.

Everywhere in this work, mRNA equations are assumed to be in quasi-steady state. This
assumption is justified by the evidence that many proteins are more stable than their own mRNA
code (cf. [10] and references thereof). Let us denote the intracellular concentrations of PpuI and
PpuR at time t by I(t) and R(t), respectively. The variables C and Ci indicate the concentration of the
PpuR–AHL complex and of its i-mer in one bacterial cell, respectively. It is assumed that the formation
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of complex i-mers takes place via the combination of an (i − 1)-mer with a single PpuR-AHL complex,
cf. [11]. AHL concentration will be denoted by x; in some cases, it might be convenient to distinguish
between intracellular (xint) and extracellular concentration (xext). The variable y denotes Lactonase
concentration.

To begin with, we consider only the positive feedback which regulates AHL. The Lactonase-degrading
activity shall be included in a separate step. The positive feedback loop of the regulatory pathway on the
protein level described in Figure 1 can be written in the form of an ODE system (cf. [21]):

İ = αI︸︷︷︸
basic

production

+ β I
Cn

Ith + Cn︸ ︷︷ ︸
feedback-regulated

production

− γI I︸︷︷︸
natural
decay

ẋint = α̂I︸︷︷︸
production

− γAxint︸ ︷︷ ︸
natural
decay

−π+
1 xintR︸ ︷︷ ︸

complex
formation

+ π−
1 C︸︷︷︸

complex
degradation

+ d(xext − xint)︸ ︷︷ ︸
exchange

with medium

ẋext = d(xint − xext)︸ ︷︷ ︸
exchange

with medium

− γAxext︸ ︷︷ ︸
natural
decay

Ṙ = αR︸︷︷︸
basic

production

−π+
1 xintR︸ ︷︷ ︸

complex
formation

+ π−
1 C︸︷︷︸

complex
degradation

− γRR︸︷︷︸
natural
decay

Ċ = π+
1 xintR︸ ︷︷ ︸

complex
formation

− π−
1 C︸︷︷︸

complex
degradation

+ 2π−
2 C2︸ ︷︷ ︸

dimer
degradation

− 2π+
2 C2︸ ︷︷ ︸

dimer
formation

+
n

∑
j=3

π−
j Cj︸ ︷︷ ︸

j-mer
degradation

−
n

∑
j=3

π+
j CCj−1︸ ︷︷ ︸

j-mer
formation

Ċi = π+
i CCi−1︸ ︷︷ ︸

i-mer
formation

− π−
i Ci︸ ︷︷ ︸

i-mer
degradation

+ π−
i+1Ci+1︸ ︷︷ ︸

(i+1)-mer
degradation

−π+
i+1CCi︸ ︷︷ ︸

(i+1)-mer
formation

for 2 ≤ i ≤ n − 1

Ċn = π+
n CCn−1︸ ︷︷ ︸

n-mer
formation

− π−
n Cn︸ ︷︷ ︸

n-mer
degradation

.

(1)

Although this regulatory pathway seems to be well understood, experimental settings cannot
provide information on the dynamics of all components described in system (1). Typically only data
for the time course of AHL (and for the population dynamics of the bacteria, which will be introduced
in the next step) are available. For this reason, one is interested in a model reduction, decreasing the
number of variables and parameters in the system of equations. In a first step, we assume the formation
of complexes and its polymers to take place on a fast time scale. Quasi steady state assumptions (ε → 0)
yield for the n-mer,

εĊn = π+
n CCn−1 − π−

n Cn →︸︷︷︸
ε→0

Cn =

(
π+

n

π−
n

)
CCn−1

Consider now the (n − 1)-mer for ε → 0 and substitute the last expression. We find

0 = π+
n−1CCn−2 − π−

n−1Cn−1 + π−
n Cn − π+

n CCn︸ ︷︷ ︸
=0

It follows that

Cn =

(
π+

n π+
n−1

π−
n π−

n−1

)
C2Cn−2

205



Appl. Sci. 2016, 6, 149

and, recursively,

Cn =

(
n

∏
j=2

π+
j

π−
j

)
Cn

We denote pI := ∏n
j=2

π+
j

π−
j

and substitute the result of the quasi-steady state assumption into the

I-equation in (1), obtaining

İ = αI + β I
pICn

Ith + pICn − γI I.

Observe that the Hill coefficient n covers the fact that polymers (n-mers) of the complex PpuR-AHL
are relevant for the positive feedback loop (see also [17]).

To reduce the system further, we also assume that PpuI is in quasi steady state, as in [11,13,17],
for example, resulting in

I =
αI
γI

+
β I
γI

Cn

Ith/pI + Cn

Let Cth := n
√

Ith/pI , then the modified equation for xint reads

ẋint = αA + βA
Cn

Cn
th + Cn − γAxint − π+

1 xintR + π−
1 C + d(xext − xint),

where αA := α̂αI/γI and βA := α̂β I/γI
Diffusion through the cell membrane plays an important role in regulation processes.

Nevertheless, AHL diffusion into and out of the cytoplasm does not require any transport mechanisms
and the whole diffusion process goes rather fast, compared to the time scale chosen for the experimental
measurements (1 h) [17,22]. This allows us to assume that xint and xext are in equilibrium. Via steady
state assumption, we get

xext =
dxint

d + γA
≈ xint

as d � γA. Taken together, the resulting AHL concentration (now simply denoted by x) follows

ẋ = αA + βA
Cn

Cn
th + Cn − γAx − π+

1 xR + π−
i C

and the simplified version of the single cell model (1) reads

ẋ = αA + βA
Cn

Cn
th + Cn − γAx − π+

1 xR + π−
i C

Ṙ = αR − π+
1 xR + π−

1 C − γRR

Ċ = π+
1 xR − π−

1 C

(2)

2.1.2. Population Dynamics

In the next step, the model is adapted for a bacterial population, including its growth in the
classical experimental situation of a batch culture [17]. We denote the bacteria density in the medium
at time t by N(t). The dynamics of the bacterial population is classically described by logistic growth,

Ṅ = rN
(

1 − N
K

)
where r is the bacterial growth rate and K the carrying capacity of the batch culture system.

Alternatively, one can consider the situation in a continuous culture, also called chemostat, with a
continuous inflow of water and nutrient substrate for the bacteria and an outflow for all extracellular
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players. In this setting, one introduces a separate variable (S) for the available substrate concentration,
which limits the bacterial growth. Consumption of nutrients is usually assumed to lead directly to
a proportional increase of the biomass (N). The consumption term includes a saturation with the
possibility of a further nonlinearity via the Hill coefficient ns. Standard equations for nutrient–bacteria
dynamics in a chemostat, with dilution rate D > 0, are given by [23]

Ṡ = DS0︸︷︷︸
inflow

− γSN
Sns

Kns
m + Sns︸ ︷︷ ︸

consumption

− DS︸︷︷︸
washout

Ṅ = aN
Sns

Kns
m + Sns︸ ︷︷ ︸

growth

− DN︸︷︷︸
washout

(3)

2.1.3. Lactonase Regulates AHL Degradation

It turned out by experimental observations [16,18] that a further process plays a major role in
the AHL dynamics. In both the batch [16] and the continuous culture experiments [18], maximum
concentrations of detected AHLs were followed by a rapid degradation of AHLs to Homoserines,
indicating the presence of extracellular enzymatic activity. It is reasonable to assume that the
AHL-degrading enzyme is a Lactonase [16], whose production or activation could also be initiated by
polymers of the PpuR–AHL complex. Experiments in [16] suggested that Lactonases are activated with
a certain delay (about 2 h) compared to the up-regulation of AHL production. From a mathematical
point of view, this time lag can be included in the model via a delay differential equation [17].

2.1.4. Full Model

Let us now see how the regulatory pathway model (1), respectively the simplified system (2), can
be adapted for a bacteria population. It can be convenient to distinguish between intracellular and
extracellular components, and different assumptions are reasonable. For example, whereas in [17]
the PpuR concentration was thought for the whole population, we consider here a system where the
intracellular components (like PpuR) are interpreted per single (typical) cell.

In [18], to keep the model simple and at the same time to cover some details in the dynamics,
equations for the concentrations of AHL (x) and Lactonase (y) in the medium, as well as one equation
for the intracellular concentration of PpuR–AHL (C) were added to (3). At the same time, the total
amount of PpuR (either free or in the PpuR–AHL complex) in one cell was assumed to be constant.

This does not correspond exactly to reality, but covers the idea that a cell typically maintains the
number of receptors within a certain range. This simplification is justified by the still realistic resulting
AHL-dynamics (see [18] for details).
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The result is the following system of equations:

Ṡ(t) = DS0 − γSN(t)
S(t)ns

Kns
m + S(t)ns

− DS(t)

Ṅ(t) = aN(t)
S(t)ns

Kns
m + S(t)ns

− DN(t)

ẋ(t) =
(

αA + βA
C(t)n

Cn
th + C(t)n

)
N(t)︸ ︷︷ ︸

total
AHL production

− γAx(t)︸ ︷︷ ︸
natural
decay

−π+
1 (Rconst − C(t))x(t)︸ ︷︷ ︸

complex
formation

+ π−
1 C(t)︸ ︷︷ ︸

complex
degradation

− Dx(t)︸ ︷︷ ︸
washout

− δx(t)y(t)︸ ︷︷ ︸
Lactonase-regulated

degradation

Ċ(t) = π+
1 (Rconst − C(t))x(t)− π−

1 C(t)

ẏ(t) = αL
C(t − τ)m

Cm
th2 + C(t − τ)m N(t)︸ ︷︷ ︸

total
Lactonase production

− γLy(t)︸ ︷︷ ︸
natural
decay

− Dy(t)︸ ︷︷ ︸
washout

(4)

where m, Cth2 are the Hill coefficient and the threshold for Lactonase activation, respectively, and δ

is the Lactonase-dependent degradation rate of AHLs. Observe that there is no outflow term in the
complex equation, as PpuR–AHL is considered to be intracellular.

The model (4) can be extended by adding one equation for PpuR dynamics in one cell, as in [17]
or in system (1). Then the system reads

Ṡ(t) = DS0 − γSN(t)
S(t)ns

Kns
m + S(t)ns

− DS(t)

Ṅ(t) = aN(t)
S(t)ns

Kns
m + S(t)ns

− DN(t)

ẋ(t) =
(

αA + βA
C(t)n

Cn
th + C(t)n

)
N(t)− γAx(t)− π+

1 R(t)x(t) + π−
1 C(t)− Dx(t)− δx(t)y(t)

Ċ(t) = π+
1 R(t)x(t)− π−

1 C(t)

Ṙ(t) = αR + π−
1 C(t)− π+

1 R(t)x(t)− γRR(t)

ẏ(t) = αL
C(t − τ)m

Cm
th2 + C(t − τ)m N(t)− γLy(t)− Dy(t)

(5)

2.1.5. Reduced Model

When being interested in the long term behavior of regulatory systems in the chemostat, one can
assume that substrate concentration and bacterial density have approximately assumed a stationary
state (N∗, S∗). We consider the system (5) for large values of t and impose quasi-steady state conditions
for PpuR and complex. In other words, we assume that when bacteria stay at their saturation level, the
dynamics of R and C is slow compared to those of AHL and Lactonase. The equilibrium conditions
are given by

R∗ = αR
γR

, C∗ =
π+

1 αR

π−
1 γR︸ ︷︷ ︸
=:γ̃

x = γ̃x (6)
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Define the parameters

α = αAN∗, β = βAN∗, xth = Cth/γ̃, ω = γL + D
γ = γA + D, ρ = αLN∗, yth = Cth2/γ̃

(7)

Substituting the equilibrium conditions (6) into (5), we obtain the system

ẋ(t) = α − γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

ẏ(t) = ρ
x(t − τ)m

ym
th + x(t − τ)m − ωy(t)

(8)

Observe that all parameter values are non-negative. Their meaning is summarized in Table 1.

2.2. Experimental Data

We report experimental data as published in the previous publication [18]. Pseudomonas putida
IsoF was cultivated and grown in a continuous culture with a working volume of 2 L, under controlled
conditions at 30 ◦C, enabling the reproducible establishment of defined environmental conditions.

AHL molecules and their degradation products were identified and quantified via two
different methods. The first one is the so-called ultra-high-performance liquid chromatography
(UHPLC), a technique used to separate different components in a mixture. The second method, the
enzyme-linked immunosorbent assay (ELISA), allows the rapid detection and quantification of AHLs
and Homoserines directly in biological samples with the help of antibodies.

2.3. Parameter Estimation

In [18], the model (4) was fitted to a first set of experimental data using a mean square error
algorithm and the simplex search algorithm in MATLAB R© (Version 2013b, The Mathworks, Natick,
MA, USA, 2013). Obtained parameter values were used to validate further data sets with minor
adaptations for some initial values, which increased the quality of the fit.

Starting from these estimated parameter values, we fit the reduced system (8) to the same
experimental data published in [18]. The fit was performed using curve fitting tools in MATLAB R©
and Wolfram Mathematica R© (Version 10, Wolfram Research, Champaign, IL, USA, 2014). The reduced
model (8) is obtained assuming the cell population to be in equilibrium; that is, it holds only for times
t > tec, where tec is the time at which the cell population has reached its saturation level.

3. Results

In this section we present analytical results concerning qualitative properties of the solution of
the reduced model (8), as well as numerical simulations and data fit.

3.1. Existence of Solutions

Theorem 1. Let the system (8) hold for t ≥ t0, and let initial data x(t) = x0(t), y(t) = y0(t) be given for
t ∈ [t0 − τ, t0], τ > 0, with x0, y0 Lipschitz continuous. Then there is a unique solution to (8) in [t0, ∞).
Moreover, if x0, y0 are non-negative, the solution is also non-negative.

Proof. The proof follows from basic principles of DDE theory, cf. [19,24,25]. We provide here a sketch
of the proof steps. For simplicity, we shall denote the right-hand side of the system (8) by f (u, v),
where u = (x(t), y(t)) and v = (x(t − τ), y(t − τ)).

Local existence. For the construction of a local (maximal) solution on an interval [t0, t0 + Δ), Δ > 0,
it is sufficient to guarantee Lipschitz continuity of the initial data, as well as of f with respect to both
arguments, cf. [25] (Thm. 2.2.1). It is easy to verify that the right-hand side of (8) is continuously
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differentiable with respect to the delayed, as well as to the non-delayed argument, and that the partial
derivatives are bounded (computation not shown).

Non-negativity. Preservation of positivity is due to the fact that the delay only appears in the
positive feedback term. Indeed, if for some t̄ > t0, x(t̄) = 0 then ẋ(t̄) = α > 0, and x(t) remains
non-negative. With this result it follows that also y stays non-negative. If for some t̄ > t0, y(t̄) = 0,
then ẏ(t̄) = ρ

x(t̄−τ)m

ym
th+x(t̄−τ)m ≥ 0.

Global existence. We show that the maximal solution is bounded. This follows with estimates
on the right-hand side. Observe that

ẏ(t) = ρ
x(t − τ)m

ym
th + x(t − τ)m − ωy(t)

≤ ρ − ωy(t)

hence for all t ≥ t0 we have 0 ≤ y(t) ≤ ŷ, where ŷ :=
(
y0(t0)− ρ

ω

)
e−ωt + ρ

ω .
Similarly,

ẋ(t) = α − γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

≤ (α + β)− (γ + δy(t))x(t)

≤ (α + β)− γx(t)

Thus for all t ≥ t0 we have 0 ≤ x(t) ≤ x̂, with x̂ :=
(

x0(t0)− α+β
γ

)
e−γt + α+β

γ . The maximal
solution is bounded, hence it exists on [t0, ∞), cf. [25] (Thm. 2.2.2).

3.2. Fixed Points

Fixed points of (8) are given by the solutions of⎧⎨⎩0 = α − γx̄ − δx̄ȳ + β x̄n

xn
th+x̄n

0 = ρ x̄m

ym
th+x̄m − ωȳ.

So we have
ȳ =

ρ

ω

x̄m

ym
th + x̄m

where x̄ is given by the solutions of

α − γx̄ − δρ

ω

x̄m+1

ym
th + x̄m + β

x̄n

xn
th + x̄n = 0 (9)

Recall that for the biological motivation of the model, we are only interested in non-negative x̄. In
the following, for simplicity of notation, we shall omit the bars from x̄.

In the general case n �= m and xth �= yth, solutions of (9) are the zeros of the polynomial

a0xn+m+1 + a1xn+m + a2xn+1 + a3xm+1 + a4xn + a5xm + a6x + a7 = 0
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where

a0 = −(γω + ρδ) < 0, a1 = ω(α + β) > 0,

a2 = −γym
thω < 0, a3 = −xn

th(γω + ρδ) < 0,

a4 = ym
thω(α + β) > 0, a5 = αωxn

th > 0,

a6 = −ωγxn
thym

th < 0, a7 = αωxn
thym

th < 0.

Let us consider a special case which is relevant for our application, and assume n = m = 2 and
xth = yth. Then, fixed points (x̄, ȳ) satisfy

ȳ =
ρ

ω

x̄2

x2
th + x̄2

(10)

with x̄ given by the solutions of a cubic equation

(δρ + ωγ)x̄3 − ω(β + α)x̄2 − ωγx2
th x̄ − αωx2

th = 0 (11)

which has either three real zeros, or one real and two complex solutions. Thus, we might have up to
three biologically-relevant fixed points.

3.3. The case τ = 0

Consider the ODE system obtained from (8) by setting τ = 0:

ẋ(t) = α − γx(t)− δx(t)y(t) + β
x(t)n

xn
th + x(t)n

ẏ(t) = ρ
x(t)m

ym
th + x(t)m − ωy(t),

(12)

It is important to know the dynamics of (12), because for small delays (τ > 0), the DDE system (8)
will very likely behave as the ODE system (12), cf. [24].

Observe that the ODE system (12) and the DDE system (8) have exactly the same equilibrium
points. In general, a DDE system and the associated ODE system have the same number of fixed
points, but if the delay appears in the coefficients, the fixed points of the DDE system could be shifted
with respect to those of the ODE system.

The presence of a negative feedback in (12) leads to the hypothesis that oscillatory solutions might
show up. We investigate local properties of the steady states, looking for Hopf-bifurcations. For linear
(local) stability analysis, we compute the Jacobian matrix of system (12),

J =

⎛⎜⎝−γ − δȳ + β
nxn

th x̄n−1

(xn
th+x̄n)2 −δx̄

ρ
mym

th x̄m−1

(ym
th+x̄m)2 −ω

⎞⎟⎠ .

In the special case n = m = 2 and xth = yth, we have

J =

⎛⎜⎝−γ − δȳ + β
2x2

th x̄
(x2

th+x̄2)2 −δx̄

ρ
2x2

th x̄
(x2

th+x̄2)2 −ω

⎞⎟⎠ (13)
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The trace and the determinant of (13) at a stationary point at (x̄, ȳ), with ȳ in (10), are given by

Tr(J) =
2βx2

th x̄
(x2

th + x̄2)2
− γ − δ

ρ

ω

x̄2

x2
th + x̄2

− ω

det(J) = −ω

(
2βx2

th x̄
(x2

th + x̄2)2
− γ − δ

ρ

ω

x̄2

x2
th + x̄2

)
+ δx̄

2ρx2
th x̄

(x2
th + x̄2)2

.

If there was only one stationary point and this one is a repellor, one can use the fact that all
solutions are bounded and stay positive, then the Poincare–Bendixson theorem yields the existence of
periodic solutions. For a Hopf-bifurcation, necessary conditions are Tr(J) = 0 and Δ(J) = Tr(J)2 −
4 det(J) < 0. We choose δ, the Lactonase activity, as bifurcation parameter. From the trace condition,
we get

δ
[ ρ

ω
x̄2(x2

th + x̄2)
]
− 2βx2

th x̄ + γ(x2
th + x̄2)2 + ω(x2

th + x̄2)2 = 0.

We solve for δ and obtain

δ = δ(x̄) =
2βx2

th x̄ − (γ + ω)(x2
th + x̄2)2

ρ
ω x̄2(x2

th + x̄2)

=
−ω(γ + ω)(x2

th + x̄2)

ρx̄2 +
2βx2

thω

ρx̄(x2
th + x̄2)

. (14)

Note that, in turn, x̄ also depends on δ, cf. Equation (11). Neglecting this for a minute, we observe
that lim

x̄→∞
δ(x̄) = −(γ + ω)ω

ρ < 0, whereas lim
x̄→0

δ(x̄) → +∞. Due to the intermediate value theorem,

there exists a x̃ > 0, such that δ(x̄) > 0 for x̄ > x̃. It is possible to choose x̃ as the smallest positive
solution of (γ + ω)(x2

th + x̄2)2 > 2βx2
th x̄. If a x̄ = x̄(δ) > 0 satisfies this condition, then Tr(J) = 0

at (x̄, ȳ).
In the next step, we check the discriminant condition (Δ(J) < 0), or equivalently, det(J) > 0, as

for the Hopf-bifurcation we need simultaneously Tr(J) = 0.

det(J) = −ω(Tr(J) + ω) + δ
2ρx2

th x̄2

(x2
th + x̄2)2

= −ω2 + δ
2ρx2

th x̄2

(x2
th + x̄2)2

= ...

= ω2

[
−3x2

th − x̄2

x2
th + x̄2

]
+ ω

2x̄2

(x2
th + x̄2)3

[
2βx̄x2

th − γ(x2
th + x̄2)2

]
.

We solve det(J) = 0 in dependence of the Lactonase decay rate ω > 0, and find the roots ω1 = 0
(which does not provide further information), and

ω2 =

2x2
th

(x2
th+x̄2)2

[
2βx̄x2

th − γ(x2
th + x̄2)2]

3x2
th + x̄2

.

Hence det(J) > 0 when ω2 > 0. We need to distinguish between two cases. If x̄ > xth, i.e.,
a stationary state with high AHL concentration and activated bacteria, then we get

2βx̄x2
th − γ(x2

th + x̄2)2 > 2βx3
th − γ(2x̄2)2 = 2βx3

th − 4γx̄4.

Thus, if 2βx3
th − 4γx̄4 > 0, then ω2 > 0. Analogously, we get ω2 > 0 if 2βx̄3 − 4γx4

th > 0, in case
of x̄ < xth, i.e., with bacteria in a non-activated quorum sensing state. All in all, if the model parameters
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and the resulting stationary point satisfy the last condition yielding ω2 > 0, and simultaneously δ > 0
according to (14), then a Hopf-bifurcation takes place.

3.4. The Case τ > 0

We are interested in stability switches due to the presence of a delay τ > 0 in (8). Consider the
case n = m = 2 and xth = yth, and let (x̄, ȳ) be one equilibrium point of (8). The linearized system
about (x̄, ȳ) is given by

Ż(t) = AZ(t) + BZ(t − τ), (15)

with

Z(t) =

(
z1(t)
z2(t)

)
, A =

(
a b
0 d

)
, B =

(
0 0
c 0

)
,

and
a = − γ − δȳ + 2βx2

th
x̄(

x2
th + x̄2

) ,

b = − δx̄ ≤ 0,

c = 2ρx2
th

x̄(
x2

th + x̄2
) ≥ 0

d = − ω < 0.

(16)

The characteristic equation corresponding to (15) is given by

det
(

λI− A − Be−λτ
)
= 0,

or equivalently,
λ2 − λ(a + d) + ad − bce−λτ = 0. (17)

Characteristic equations of this and more general type have been studied in [24]. In the following,
we report results from [24], adapting them to our specific example. We apply standard methods for the
analysis of characteristic equations and switches with respect to increasing delays, hence we consider
purely imaginary roots, λ = iϕ, ϕ > 0. Separating real and imaginary parts in (17) we obtain

ϕ2 − ad = −bc cos(ϕt)

ϕ(a + d) = bc sin(ϕt).

Now we square left- and right-hand sides and sum up the two equations, obtaining

ϕ4 + ϕ2(a2 + d2) + a2d2 = b2c2. (18)

Its roots are

ϕ2± =
1
2

(
−(a2 + d2)±

√
(a2 − d2)2 + 4b2c2

)
.

It can be seen from (18) that the parabola in ϕ2 is open upwards and it has:

• no positive intercept with the horizontal axis, if a2d2 − b2c2 > 0, i.e., if |ad| > −bc;
• one positive intercept (ϕ+) with the horizontal axis, if |ad| < −bc.

In the first case, there is no stability switch with respect to τ; that is, the stability of the equilibrium
point (x̄, ȳ) remains the same for any τ ≥ 0, and it is sufficient to study the ODE case (12). In the case
|ad| < −bc, there is one root (ϕ+) with positive imaginary part, hence one stability switch. In order
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to find out in which direction the stability switch occurs, we study the sign of the real part �λ(τ) in
λ = iϕ+, for τ > 0. From (17) we have

{
2λ − (a + d) + τbce−λτ

} dλ(τ)

dτ
= λbce−λτ .

It follows

sign
{

d�λ(τ)

dτ

}
λ=iϕ+

= sign

{
�
(

dλ

dτ

)−1
}

λ=iϕ+

= sign
{
�
(

2λ − (a + d)
λ(λ2 − (a + d)λ + ad)

)}
λ=iϕ+

= sign

{
2(ϕ2

+ − ad) + (a + d)2

(ϕ2
+(a + d)2 + (ad − ϕ2

+)
2

}
= sign

{
2(ϕ2

+ − ad) + (a + d)2
}

= sign
{

2ϕ2
+ + a2 + d2

}
= +1.

Roots cross the imaginary axis from the left to the right, indicating stability loss. If the solution
(x̄, ȳ) is asymptotically stable for τ = 0, then it is uniformly asymptotically stable for all τ < τc and
unstable for τ > τc, where

τc =
θc

ϕ+
, (19)

with θc implicitly defined by

arctan(θc) =
(a + d)ϕ+

ad − ϕ2
+

. (20)

All in all, we have shown the following result.

Theorem 2. Let (x̄, ȳ) be one equilibrium point of (8), with τ > 0, n = m = 2 and xth = yth. Assume that
|ad| < bc, with a, b, c, d given in (16). Then, the equilibrium point is uniformly asymptotically stable for all
0 < τ < τc and unstable for τ > τc, with τc defined by (19)–(20).

3.5. Numerical Simulations and Data Fitting

We consider experimental data published in [18] and perform numerical simulations in
MATLAB R© and Wolfram Mathematica R©. The reduced model (8) is obtained assuming the cell
population to be in equilibrium, that is, for times t > tec, where tec is the time at which bacteria have
reached the saturation level. In Figure 2, we read from experimental data that the cell population
reaches the equilibrium after ca. 20 h from the beginning of the experiment. Hence, we take tec = 20 as
the starting time point for numerical simulations of the reduced system (8), and define initial data on
the time interval [tec − τ, tec].

For simplicity, we assume that initial data are constant functions on the definition interval,
see also [17,18]. We fix the value of the delay, τ = 2 h, as in [18]. Then we take x(t) = x̂19, for
t ∈ [18, 20], x̂19 being the mean value of ELISA and UHPLC measurements at 19 h from the beginning
of the experiment. Initial data for the Lactonase are estimated from simulations of the full model (4)
in [18]. To date, there is no experimental data available for Lactonase concentration, thus parameters
associated with Lactonase production (ρ), decay (ω), and activity (δ) can be only estimated from AHL
experimental data. This means in turn that there are several plausible solutions for the estimation of
ρ, ω, and δ. We choose to maintain parameter values as estimated in [18].
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It can be seen from the model reduction assumptions, as well as from the simplified parameters (7)
that we lack information on the receptor production (αR) and decay (γR); indeed, there is no
equation for PpuR in (4). These parameters play a role for the critical threshold value, xth, in the
complex-regulated processes. We fit xth and y(t) = y0, t ∈ [18, 20], fixing all other parameter values
as in [18]. The results are summed up in Table 1, with parameter values as provided by the fitting
procedure, without rounding. In Figure 3 we show a comparison between the numerical solution of
model (4), that of the simplified model (8) and experimental data for AHL time series.

With the estimated parameter values in Table 1, we consider the analytical results in Section 3.2
and Section 3.4. The system has three equilibrium points x̄1, x̄2, x̄3, but we only consider the stability
properties of the largest one (x3, y3) = (1.593 × 10−7, 4.809 × 104), which corresponds to high AHL
level and to an activated state of the bacteria population. Parameter values satisfy a2d2 > b2c2, thus
there is no stability switch with respect to τ, and the system behaves as in the case τ = 0. We go back to
Section 3.3 and consider the Jacobian matrix (13), obtaining tr(J) = −7.4243 and det(J) = 0.7685.
Hence, with the estimated parameter values, the system (8) has a locally asymptotically stable
equilibrium (x3, y3) in which bacteria are activated.

Table 1. Variables and parameters in model (8), with values used for data fit in Figure 3.

Symbol Description Value (Unit) Comments/Source

N∗ Cell density at equilibrium 4.5929 × 1011 (cells/lit) [18]
α Basic AHL production rate 1.0564 × 10−7 (mol/(lit2· h)) = αA ∗ Nequi, [18]
γ AHL decay rate (includes washout) 0.105 (1/h) = γA + D, [18]
δ Lactonase-dependent degradation rate 1.5000 × 10−4 (lit/(mol · h)) [18]
β Feedback-regulated AHL production rate 1.0564 × 10−6 (mol/(lit2· h)) = βA ∗ Nequi, [18]
n Hill coefficient for x 2.3 (dimensionless) [18]

xth Critical threshold for positive-feedback in x 3.597 × 10−13 (mol/lit) estimated
ω Lactonase decay rate (includes washout) 0.105 (1/h) = γe + D, [18]
ρ Lactonase production rate 5.0521 × 103 (mol/(lit2· h)) = αe ∗ Nequi, [18]
τ Delay in the release of y 2 (h) [18]
m Hill coefficient for x 2.5 (dimensionless) [18]
yth Critical threshold for positive-feedback in y 3.597 × 10−13 (mol/lit) estimated

x0(t) AHL concentration (initial data) t ∈ [18, 20] 5.4044 × 10−7 (mol/lit) mean of exp. data
y0(t) Lactonase (initial data) t ∈ [18, 20] 5.2 × 103 (mol/lit) estimated
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Figure 2. Experimental data and numerical solution of the mathematical model (4). Picture adapted
from [18]. Copyright 2014, Springer-Verlag Berlin Heidelberg. The cell population reaches its
equilibrium after approximatively 20 h from the beginning of the experiment.
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Figure 3. Comparison between the numerical solution of the dynamical systems and experimental data.
Red curve: solution of the reduced system (8); Blue curve: solution of the full model (4) in [18]. Initial
data for the reduced system are x(t) = x0(t), y(t) = y0(t), t ∈ [18, 20], where y0(t) ≡ 5.2 × 10−13 was
fitted and x0(t) ≡ 5.4044 × 10−7 is the mean value of ELISA and UHPLC measurements at 19 h from
the beginning of the experiment. When the cell population has reached its stationary level, the reduced
model provides a good approximation of the dynamics. Parameter values used for the reduced model
are given in Table 1.

4. Discussion

In this paper we have introduced a system of two delay differential Equation (8) for quorum
sensing of Pseudomonas putida in a continuous culture. Motivated by experimental data, a more
detailed mathematical model (4) was previously proposed in [18]. Though the system (4) describes the
regulatory network in greater detail, in the long run, bacteria reach a saturation level and the model
can be reduced to two governing Equation (8), as we have shown in Section 2.1.

Surprisingly, even a simple model such as (8) can be used to explain experimental data (Figure 3),
maintaining parameter values from a previous fit [18] for almost all model parameters. However, one
should take into account that this is valid only from the moment the bacteria population has reached
its saturation level. If one is interested in understanding quorum sensing in the initial phases (lag and
exponential phase) of bacterial population, then it is convenient to use a more detailed model, such
as (4) or (5).

The advantage of system (8) is that it can be investigated thoroughly thanks to well-established
methods. We have shown existence and uniqueness of solutions and, more importantly, we could
guarantee preservation of positivity. This property is often violated in systems of delay differential
equations. We have studied linearized stability of non-negative equilibria and proved that the delay
system (8) might show stability switches as the delay increases. On the other side, the Lactonase
activity (δ) can induce Hopf-bifurcation in the associated ODE system (12).

For simplicity of computation in the analysis of the system, we have considered only the case of
small Hill coefficients (n = m = 2), which corresponds to a maximum of three biologically-relevant
stationary states. This assumption is, however, not as restrictive as it seems. Three stationary states,
with an intermediate unstable one, are the basis for the bistability situation already discovered in
analogous regulatory networks [11,17]. Moreover, similar small values for the Hill coefficients were
found to fit experimental data (Table 1) and correspond well to the biological assumption of a dimer
being relevant for the positive feedback in the quorum sensing system of Pseudomonas putida [16]. With
the fitted parameter values, we do not find delay-induced stability switches. This is not a hint of the
delay being not relevant. Though a positive time lag might not change the main qualitative behavior
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of the system, the DDE model still describes the experimentally-determined data and their time course
quantitatively better than the associated ODE system, in particular when the bacteria population is in
the lag or exponential phase. Stability switches and periodic oscillatory behavior might appear for
a different choice of the parameters in system (8). As the main focus of this work was to provide a
description for a real biological process, we decided to omit further numerical investigation on the
qualitative behavior of (8).

Delay equations have been previously used in mathematical models of continuous cultures.
Commonly, a time lag was included to describe the time necessary for the bacteria to convert
nutrients in new biomass [26,27]. Being interested in the long term dynamics with bacteria being at an
equilibrium, we have chosen not to consider such reproduction lags in our model. In our case, the time
lag arises from the dynamics of the regulatory network, in particular from the initialization processes
of the AHL-degrading enzyme.

Taken together, the presented simplified delay equation system is a good compromise between
refined modeling for a well-known gene regulatory network with several players, and a system of
equations which still allows explicit analysis of the basic qualitative behavior as well as parameter
determination from few experimental data.
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Abstract: Intraguild predation (IGP) is a widespread ecological phenomenon which occurs when
one predator species attacks another predator species with which it competes for a shared prey
species. The objective of this paper is to study the dynamical properties of a stochastic intraguild
predation model. We analyze stochastic persistence and extinction of the stochastic IGP model
containing five cases and establish the sufficient criteria for global asymptotic stability of the positive
solutions. This study shows that it is possible for the coexistence of three species under the influence
of environmental noise, and that the noise may have a positive effect for IGP species. A stationary
distribution of the stochastic IGP model is established and it has the ergodic property, suggesting
that the time average of population size with the development of time is equal to the stationary
distribution in space. Finally, we show that our results may be extended to two well-known biological
systems: food chains and exploitative competition.

Keywords: intraguild predation; random perturbations; persistence; stationary distribution; global
asymptotic stability

MSC: 60H10, 92D25, 60H30

1. Introduction

Interactions among species can structure biological communities by affecting the identity, number
and abundance of species present. Intraguild predation (IGP) has been playing an important role in
structuring ecological communities, strongly influencing the structure and function of food webs. IGP
describes an interaction in which one predator species consumes another predator species with whom
it also competes for shared prey [1,2]. This suggests that IGP combines two important structuring forces
in ecological communities: competition and predation. Accordingly, IGP is not only a taxonomically
widespread interaction within communities which can occur at different trophic levels, but also a
central force to forecast the stability of food webs and the maintenance of biodiversity.

The simplest form of IGP is depicted by a simple food web model in which IGP can occur:
a top predator (IG predator P), an intermediate consumer (IG prey N), and a shared prey (R).
The development of IGP model can be traced back to Holt and Polis [1] who initially introduce
a three species model with the Lotka–Volterra type to study the species coexistence of IGP and point
out that it is very difficult to achieve a stable three-species steady state. After that, there are some
articles to consider an IGP model with different structures and forms, such as, IGP model with the
Lotka–Volterra type [3–5], the IGP model with special forms of the functional and numerical responses
[6–8], the IGP model with prey switching or adaptive prey behavior [9,10], and the IGP model with
generalist predator or time delay [11–13].

Appl. Sci. 2016, 6, 118; doi:10.3390/app6040118 www.mdpi.com/journal/applsci219
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The effect of the random variation of environment is an integral part of any realistic ecosystem.
Stochastic models may be more important in characterizing population dynamics in contrast to the
deterministic models. In essence, random factors can lead to complete extinction of populations
even if the population size is relatively large. Previous studies have explored the dynamic properties
for stochastic single species models [14–16], stochastic predator–prey models [17–23], stochastic
competitive models [24–27], stochastic mutualism model [28–31]. Specially, Liu and Wang [32]
investigated a two-prey one-predator model with random perturbations. However, there are few
studies to investigate dynamics of a stochastic IGP model.

Motivated by the existing nice studies and the above considerations, we consider a following IGP
model with the Lotka–Volterra type

dR(t)
dt

= R(t)(r − arrR(t)− arnN(t)− arpP(t)),

dN(t)
dt

= N(t)(−dn + ernarnR(t)− annN(t)− anpP(t)),

dP(t)
dt

= P(t)(−dp + erparpR(t) + enpanpN(t)− appP(t)),

(1)

where R(t), N(t) and P(t) are the densities of the shared prey, IG prey and IG predator, respectively;
r is the per capita growth rate of the shared prey and di(i = n, p) is the death rate of species i;
aii(i = r, n, p) is the intraspecific competition rate of species i; arp and anp are the predation rates of
IG predator to the shared prey and IG prey; arn is the predation rate of IG prey to the shared prey;
eij(i = r, n, j = n, p) is the conversion rates of resource consumption into reproduction for IG prey
and IG predator. Here, arn, arp, anp is nonnegative constants and the remaining parameters are all
positive constants. In view of the fact that the per capita growth rate and the death rate exhibit random
fluctuation to a greater or lesser extent (see [33]), we assume that the environmental fluctuation mainly
affects the parameters r, dn and dp and model these fluctuations by means of independent Gaussian
white noises. Let (Br(t), Bn(t), Bp(t))T be a three-dimensional Brownian motion defined on a complete
probability space (Ω,F ,P) and

r → r + αr Ḃr(t), dn → dn − αnḂn(t), dp → dp − αpḂp(t), (2)

where α2
r , α2

n, α2
p are the intensity of the white noise. Thus we consider the Itô’s stochastic IGP model

as follows:

dR(t) = R(t)(r − arrR(t)− arnN(t)− arpP(t))dt + αrR(t)dBr(t),

dN(t) = N(t)(−dn + ernarnR(t)− annN(t)− anpP(t))dt + αnN(t)dBn(t),

dP(t) = P(t)(−dp + erparpR(t) + enpanpN(t)− appP(t))dt + αpP(t)dBp(t).

(3)

The main aim of this paper is to study the dynamics of the model (3). Theoretical studies have
suggested that it is very difficult to a achieve stable three-species steady state for the deterministic IGP
model. Hence, the first interesting topic of the present paper is whether we can establish a criterion for
three- species coexistence under the influence of environmental noise and give the sufficient conditions
for global asymptotic stability of the positive solution of model (3). Another important and interesting
problem is whether there is a stationary distribution of the stochastic IGP model (3) and if it has the
ergodic property.

The rest of the paper is organized as follows. In the next section, we do some necessary
preparations including some notations and several important lemmas. In Section 3, we explore
stochastic persistence and the extinction of model (3) for five different cases and compare them
with the corresponding results of the deterministic model (1).

Then, we establish global asymptotic stability of the positive solution of the model (3). In Section 4,
we prove that there is a stationary distribution of model (3), and it has the ergodic property by using
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the theory of Has’minskii [34]. In the final section, according to the conclusions of previous sections,
we first study dynamic properties of two well-known biological systems under random perturbations:
food chains and exploitative competition. We state biological implications of our mathematical findings
and present some figures to illustrate or complement our mathematical findings.

2. Preliminaries

In this section, we first introduce several important lemmas.

Lemma 1 (see [32]). Let z ∈ C(Ω × [0,+∞),R+), [z]∗ = lim sup
t→+∞

1
t

∫ t

0
z(s)ds and [z]∗ =

lim inf
t→+∞

1
t

∫ t

0
z(s)ds.

(i) If there exist two positive constants T and λ0 such that

ln z(t) ≤ λt − λ0

∫ t

0
z(s)ds +

n

∑
i=1

σiBi(t) (4)

for all t ≥ T, where Bi(t), 1 ≤ i ≤ n, are independent standard Brownian motions and σi, 1 ≤ i ≤ n, are
constants, then [z]∗ ≤ λ/λ0 a.s. if λ ≥ 0 or lim

t→+∞
z(t) = 0 a.s. if λ < 0.

(ii) If there exist three positive constants T, λ, and λ0 such that

ln z(t) ≥ λt − λ0

∫ t

0
z(s)ds +

n

∑
i=1

σiBi(t) (5)

for all t ≥ T, where Bi(t), 1 ≤ i ≤ n, are independent standard Browniam motions and σi, 1 ≤ i ≤ n, are

constants, then [z]∗ ≥ λ

λ0
a.s.

Similar to Theorem 2.1, Lemma 3.1 and Lemma 3.4 in [25], we have the following lemma:

Lemma 2. For any given initial value (R(0), N(0), P(0))T ∈ R3
+ and any p > 0, model (3) has a unique

solution (R(t), N(t), P(t))T on t ≥ 0 which will remain in R3
+ with probability 1 and there is a constant

K = K(p) such that

lim sup
t→+∞

E(R(t)p) ≤ K, lim sup
t→+∞

E(N(t)p) ≤ K, lim sup
t→+∞

E(P(t)p) ≤ K. (6)

Moreover, the solution (R(t), N(t), P(t))T of (3) has the properties that

lim sup
t→+∞

ln R(t)
ln t

≤ 1 a.s., lim sup
t→+∞

ln N(t)
ln t

≤ 1 a.s., lim sup
t→+∞

ln P(t)
ln t

≤ 1 a.s. (7)

In order to obtain the conditions of global asymptotic stability of solutions for the stochastic
model (3), we need the following two lemmas.

Lemma 3 (see [35]). If there exist positive constants ω1, ω2 and κ such that an n-dimensional stochastic
process Y(t), t ≥ 0 satisfies

E|Y(t)− Y(s)|ω1 ≤ κ|t − s|1+ω2 (8)
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for 0 ≤ t, s < +∞, then there exists a continuous modification Y(t) of Y(t) such that for every
ω ∈ (0, ω1/ω2) there is a positive random variable h(ω) such that

P

⎧⎪⎨⎪⎩ sup
0<|t−s|<h(ω)

0≤t,s<+∞

|Y(t, ω)− Y(s, ω)|
|t − s|ω ≤ 2

1 − 2−ω

⎫⎪⎬⎪⎭ = 1, (9)

which implies that almost every sample path of Y(t) is locally but uniformly Hölder continuous with exponent ω.

Lemma 4 (see [36]). If g is a non-negative function defined on [0,+∞) such that g is integrable and is
uniformly continuous, then lim

t→+∞
g(t) = 0.

To establish the existence of a stationary distribution of model (3) in Section 4, we introduce the
theory of Has’minskii [34] and let Y(t) be a homogeneous Markov process in El (El is an l-dimensional
Euclidean space) described by the stochastic equation

dY(t) = b(Y)dt +
k

∑
m=1

gm(Y)dBm(t). (10)

Let the diffusion matrix be Λ(x) = (aij(x)), aij(x) = ∑k
m=1 gi

m(x)gj
m(x).

Assumption 1. There is a bounded domain U ⊂ El with regular boundary Γ such that

(H1) In the domain U and some neighborhood thereof, the smallest eigenvalue of the diffusion matrix Λ(x) is
bounded away from zero;

(H2) If x ∈ El \ U, the mean time τ at which a path issuing from x reaches the set U is finite, and
supx∈K Exτ < +∞ for every compact subset K ⊂ El.

It is worth noting that we can use the following two stronger conditions to verify (H1) and (H2) in
Assumption 1:

(K1) To obtain (H1), we only need to show that T is uniformly elliptical in U, where Tu = b(x)ux +

tr(Λ(x)uxx)/2, that is, there exists a c > 0 such that ∑k
i,j=1 aij(x)ξiξ j ≥ c|ξ|2, x ∈ U, ξ ∈ Rl

(see [37,38]);
(K2) To obtain (H2), we only need to prove that there exist a neighborhood U and a nonnegative

C2-function V(x) such that for any x ∈ El \ U, LV(x) < 0 (see [39]).

Lemma 5 ([34]). If Assumption 1 holds, then the Markov process Y(t) has a stationary distribution μ(·).
Moreover, if f (·) is a function integrable with respect to the measure μ, then

P
{

lim
t→+∞

1
t

∫ t

0
f (Y(s))ds =

∫
El

f (x)μ(dx)
}
= 1. (11)

In order to study dynamic properties of model (3), we do the following notations:

[g(t)] =
1
t

∫ t

0
g(s)ds, [g]∗ = lim sup

t→+∞

1
t

∫ t

0
g(s)ds, [g]∗ = lim inf

t→+∞

1
t

∫ t

0
g(s)ds; (12)
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L =

∣∣∣∣∣∣∣
arr arn arp

−ernarn ann anp

−erparp −enpanp app

∣∣∣∣∣∣∣ , M =

∣∣∣∣∣∣∣
arr r α2

r /2
−ernarn −dn α2

n/2
−erparp −dp α2

p/2

∣∣∣∣∣∣∣ ;
L1 =

∣∣∣∣∣∣∣
r arn arp

−dn ann anp

−dp −enpanp app

∣∣∣∣∣∣∣ , M1 =

∣∣∣∣∣∣∣
α2

r /2 arn arp

α2
n/2 ann anp

α2
p/2 −enpanp app

∣∣∣∣∣∣∣ ;
L2 =

∣∣∣∣∣∣∣
arr r arp

−ernarn −dn anp

−erparp −dp app

∣∣∣∣∣∣∣ , M2 =

∣∣∣∣∣∣∣
arr α2

r /2 arp

−ernarn α2
n/2 anp

−erparp α2
p/2 app

∣∣∣∣∣∣∣ ;
L3 =

∣∣∣∣∣∣∣
arr arn r

−ernarn ann −dn

−erparp −enpanp −dp

∣∣∣∣∣∣∣ , M3 =

∣∣∣∣∣∣∣
arr arn α2

r /2
−ernarn ann α2

n/2
−erparp −enpanp α2

p/2

∣∣∣∣∣∣∣ .

(13)

3. Stochastic Persistence and Stochastic Extinction

To illuminate the effect of the stochastic perturbations for population and compare the stochastic
IGP model (3) with the deterministic IGP model (1), we first explore the existence and local stability of
boundary and positive equilibria for model (1). The summary of conditions for the existence and local
stability of equilibria are listed in Table 1.

Table 1. Existence and local stability of equilibria for model (1).

Equilibria Existence Local Stability

E0(0, 0, 0) Always Never
Er(r/arr, 0, 0) Always δ5 < 0, δ6 < 0

Ern(δ4/δ1, δ5/δ1, 0) δ5 > 0 L3 < 0
Erp(δ3/δ2, 0, δ6/δ2) δ6 > 0 L2 < 0

Ernp(L1/L, L2/L, L3/L) L > 0, Li > 0, i = 1, 2, 3 δ1δ2 + δ7δ8 > 0

Here, δ1 = arrann + erna2
rn; δ2 = arrapp + erpa2

rp; δ3 = rapp + arpdp; δ4 = rann + arndn;
δ5 = −arrdn + rernarn; δ6 = −arrdp + rerparp; δ7 = −arrenpanp + arnerparp; δ8 = arranp + arpernarn.

Now, we analyze stochastic persistence and stochastic extinction of model (3).

Definition 1 (see [32]). Species x(t) is said to be persistent in the mean if [x]∗ > 0.

Let

δ̄1 = α2
r ann/2 − α2

narn/2, δ̄2 = α2
r app/2 − α2

parp/2,

δ̄3 = α2
narr/2 + α2

r ernarn/2, δ̄4 = α2
parr/2 + α2

r erparp/2.
(14)

A direct calculation gives

2r/α2
r − δ5/δ̄3 = arr(rα2

n + dnα2
r )/(α

2
r δ̄3) > 0,

2r/α2
r − δ6/δ̄4 = arr(rα2

p + dpα2
r )/(α

2
r δ̄4) > 0,

δ4/δ̄1 − 2r/α2
r = arn(rα2

n + dnα2
r )/(δ̄1α2

r ) > 0,

δ3/δ̄2 − 2r/α2
r = arp(rα2

p + dpα2
p)/(δ̄2α2

r ) > 0.

(15)

Theorem 1. The following five cases hold:

(i) If 2r < α2
r , then all the populations are extinction a.s.
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(ii) If 2r/α2
r > 1 > max{δ5/δ̄3, δ6/δ̄4}, then N(t) and P(t) are extinction a.s. and

lim
t→+∞

1
t

∫ t

0
R(s)ds =

r − α2
r /2

arr
a.s. (16)

(iii) If L > 0, δ5/δ̄3 > 1 and L3 < M3, then P(t) is extinction a.s. and

lim
t→+∞

1
t

∫ t

0
R(s)ds =

δ4 − δ̄1

δ1
a.s.,

lim
t→+∞

1
t

∫ t

0
N(s)ds =

δ5 − δ̄3

δ1
a.s.

(17)

(iv) If L > 0, δ6/δ̄4 > 1 and L2 < M2, then N(t) is extinction a.s. and

lim
t→+∞

1
t

∫ t

0
R(s)ds =

δ3 − δ̄2

δ2
a.s.,

lim
t→+∞

1
t

∫ t

0
P(s)ds =

δ6 − δ̄4

δ2
a.s.

(18)

(v) If L > 0, Li > Mi, i = 1, 2, 3, then

lim
t→+∞

1
t

∫ t

0
R(s)ds =

L1 − M1

L
a.s.,

lim
t→+∞

1
t

∫ t

0
N(s)ds =

L2 − M2

L
a.s.,

lim
t→+∞

1
t

∫ t

0
P(s)ds =

L3 − M3

L
a.s.

(19)

Proof. It follows from Itô’s formula that

d ln R = (r − α2
r /2 − arrR(t)− arnN(t)− arpP(t))dt + αrdBr(t),

d ln N = (−dn − α2
n/2 + ernarnR(t)− annN(t)− anpP(t))dt + αndBn(t),

d ln P = (−dp − α2
p/2 + erparpR(t) + enpanpN(t)− appP(t))dt + αpdBp(t).

(20)

By integrating from 0 to t on both sides of the above equation and dividing by t, we have

1
t

ln
R(t)
R(0)

= r − α2
r

2
− arr[R(t)]− arn[N(t)]− arp[P(t)] +

αrBr(t)
t

,

1
t

ln
N(t)
N(0)

= −dn − α2
n

2
+ ernarn[R(t)]− ann[N(t)]− anp[P(t)] +

αnBn(t)
t

,

1
t

ln
P(t)
P(0)

= −dp −
α2

p

2
+ erparp[R(t)] + enpanp[N(t)]− app[P(t)] +

αpBp(t)
t

.

(21)

(i) It follows from the first equality of Equation (21) that

1
t

ln
R(t)
R(0)

≤ r − α2
r

2
− arr[R(t)] +

αrBr(t)
t

. (22)

By Lemma 1, we have
lim

t→+∞
R(t) = 0 a.s. (23)

since 2r < α2
r holds. Substituting Equation (23) into the second equality of Equation (21) yields

1
t

ln
N(t)
N(0)

≤ −dn − α2
n

2
+ ε − ann[N(t)] +

αnBn(t)
t

(24)
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for sufficiently large t and sufficiently small ε such that −dn − α2
n/2 + ε < 0. Applying Lemma 1 to

Equation (24), we get
lim

t→+∞
N(t) = 0 a.s. (25)

Similarly, in view of the third equality of Equations (21), (23), (25) and Lemma 1, we can conclude that
lim

t→+∞
P(t) = 0 a.s. This implies that (i) of Theorem 1 holds.

(ii) It follows from Equation (22) and Lemma 1 that

[R]∗ ≤ r − α2
r /2

arr
a.s. (26)

Combining the second equality of Equation (21) with Equation (26) gives

1
t

ln
N(t)
N(0)

≤ −dn − α2
n

2
+ ernarn[R]∗ + ε − ann[N(t)] +

αnBn(t)
t

≤ δ5 − δ̄3

arr
+ ε − ann[N(t)] +

αnBn(t)
t

(27)

for sufficiently large t. Then
lim

t→+∞
N(t) = 0 a.s. (28)

if δ5/δ̄3 < 1 and ε is sufficiently small such that δ5 − δ̄3 + arrε < 0. It follows from the third equality of
Equation (21), (26), (28) and Lemma 1 that

lim
t→+∞

P(t) = 0 a.s. (29)

since δ6/δ̄4 < 1. From Equation (28) and (29) and Lemma 1, we obtain

1
t

ln
R(t)
R(0)

≥ r − α2
r

2
− arr[R(t)]− ε +

αrBr(t)
t

for sufficiently large t and

[R]∗ ≥ r − α2
r /2

arr
a.s. (30)

Combining Equation (26) with Equation (30) implies that (ii) holds.
(iii) Let

μ1 = (arnapp + arpenpanp)/(annapp + enpa2
np), μ2 = −(arnanp − arpann)/(annapp + enpa2

np).

A direct calculation gives annμ1 − enpanpμ2 − arn = 0 and anpμ1 + appμ2 − arp = 0. Multiplying
both sides of three equalities of Equation (21) by −1, μ1 and μ2, respectively, and then adding these
three equalities, we have

1
t

ln
R(t)
R(0)

=
μ1

t
ln

N(t)
N(0)

+
μ2

t
ln

P(t)
P(0)

+
L1 − M1

annapp + enpa2
np

− L
annapp + enpa2

np
[R(t)]

+
αrB1(t)− μ1αnB2(t)− μ2αpB3(t)

t
.

(31)

We consider the following two cases:

Case 1: if lim sup
t→+∞

(ln P(t)/ ln t) < 0 a.s., then lim
t→+∞

P(t) = 0 a.s.
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Case 2: if lim sup
t→+∞

(ln P(t)/ ln t) ≥ 0 a.s., then by Equation (7), for sufficiently large t, we get

1
t

ln
R(t)
R(0)

≤ L1 − M1

annapp + enpa2
np

+ ε − L
annapp + enpa2

np
[R(t)]

+
αrBr(t)− μ1αnBn(t)− μ2αpBp(t)

t
.

(32)

It follows from Lemma 1 and the arbitrariness of ε that

[R]∗ ≤ (L1 − M1)/L. (33)

On the other hand, a direct calculation also shows that

arrδ9/δ2 + erparpδ8/δ2 − ernarn = 0, − arpδ9/δ2 + appδ8/δ2 − anp = 0,

where δ9 = arnanp − arpann. For sufficiently large t, multiplying both sides of three equalities
of Equation (21) by −δ9/δ2, −1 and δ8/δ2, respectively, and then adding these three equalities,
we obtain

1
t

ln
N(t)
N(0)

=− δ9

δ2t
ln

R(t)
R(0)

+
δ8

δ2t
ln

P(t)
P(0)

+
L2 − M2

δ2
− L

δ2
[N(t)]

+
αnBn(t) + δ10/δ2αrBr(t)− δ8/δ2αpBp(t)

t
.

(34)

Here, we have lim sup
t→+∞

(ln R(t)/ ln t) ≥ 0 a.s. In fact, if lim sup
t→+∞

(ln R(t)/ ln t) < 0 a.s., then

lim
t→+∞

R(t) = 0 a.s., which implies that lim
t→+∞

N(t) = 0 a.s. and lim
t→+∞

P(t) = 0 a.s. This is a

contradiction. By Equation (7), for sufficiently large t, we obtain

1
t

ln
N(t)
N(0)

≤ L2 − M2

δ2
+ ε − L

δ2
[N(t)]

+
αnBn(t) + δ10/δ2αrBr(t)− δ8/δ2αpBp(t)

t
.

(35)

From Lemma 1, we get

[N]∗ ≤ (L2 − M2)/L. (36)

since ε is arbitrary. For the third equality of Equation (21) and sufficiently large t, combining
Equation (33) with Equation (36) gives

1
t

ln
P(t)
P(0)

≤ −dp −
α2

p

2
+ ε + erparp[R]∗ + enpanp[N]∗ − app[P(t)] +

αpBp(t)
t

≤ app(L3 − M3)

L
+ ε − app[P(t)] +

αpBp(t)
t

.

(37)

Then, lim
t→+∞

P(t) = 0 a.s. if ε is sufficiently small.
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Combining case 1 with case 2 gives lim
t→+∞

P(t) = 0 a.s. The first equality of Equation (21)

multiplied by ernarn plus the second equality of Equation (21) multiplied by arr gives

arr

t
ln

N(t)
N(0)

= − ernarn

t
ln

R(t)
R(0)

+ δ5 − δ̄3 − δ1[N(t)]− (ernarnarp + arranp)[P(t)]

+
ernarnαrBr(t) + arrαnBn(t)

t

≥ δ5 − δ̄3 − 2ε − δ1[N(t)] +
ernarnαrBr(t) + arrαnBn(t)

t

(38)

for sufficiently large t and sufficiently small ε since Equation (7) and lim
t→+∞

P(t) = 0 a.s. hold. It follows

from Lemma 1 and the arbitrariness of ε that

[N]∗ ≥ (δ5 − δ̄3)/δ1 a.s. (39)

By applying the above inequality and lim
t→+∞

P(t) = 0 a.s. into the first equality of Equation (21), we get

1
t

ln
R(t)
R(0)

≤ r − α2
r

2
+ 2ε − arr[R(t)]− arn[N]∗ +

αrBr(t)
t

≤ r − α2
r

2
− arn(δ5 − δ̄3)

δ1
+ 2ε − arr[R(t)] +

αrBr(t)
t

=
arr(δ4 − δ̄1)

δ1
+ 2ε − arr[R(t)] +

αrBr(t)
t

.

(40)

Then,
[R]∗ ≤ (δ4 − δ̄1)/δ1 a.s. (41)

On the other hand, for sufficiently large t, substituting Equation (41) to the second equality of
Equation (21) gives

1
t

ln
N(t)
N(0)

≤ −dn − α2
n

2
+ 2ε + ernarn[R]∗ − ann[N(t)] +

αnBn(t)
t

≤ −dn − α2
n

2
+ 2ε +

ernarn(δ4 − δ̄1)

δ1
− ann[N(t)] +

αnBn(t)
t

=
ann(δ5 − δ̄3)

δ1
+ 2ε − ann[N(t)] +

αnBn(t)
t

,

(42)

which implies that
[N]∗ ≤ (δ5 − δ̄3)/δ1 a.s. (43)

Combining Equation (39) with Equation (43) gives

[N]∗ = (δ5 − δ̄3)/δ1 a.s. (44)

It follows from Equation (43) and lim
t→+∞

P(t) = 0 a.s. that

1
t

ln
R(t)
R(0)

≥ r − α2
r

2
− 2ε − arr[R(t)]− arn[N]∗ + αrBr(t)

t

≥ r − α2
r

2
− arn(δ5 − δ̄3)

δ1
− 2ε − arr[R(t)] +

αrBr(t)
t

=
arr(δ4 − δ̄1)

δ1
− 2ε − arr[R(t)] +

αrBr(t)
t

.

(45)
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Then,
[R]∗ ≥ (δ4 − δ̄1)/δ1 a.s. (46)

Combining Equation (41) with (46) gets

[R]∗ = (δ4 − δ̄1)/δ1 a.s. (47)

It follows from Equation (44) and (47) that (iii) holds.
(iv) Similar to the arguments of (iii), it follows from Equation (36) that lim

t→+∞
N(t) = 0 a.s. if

L2 < M2. The first equality of Equation (21) multiplied by erparp plus the third equality of Equation
(21) multiplied by arr gives

arr
1
t

ln
P(t)
P(0)

= −ernarn
1
t

ln
R(t)
R(0)

+ δ6 − δ̄4 − δ2[P(t)]− (arnerparp − arrenpanp)[N(t)]

+
arrαpBp(t) + erparpαrBr(t)

t

≥ δ6 − δ̄4 − 2ε − δ2[P(t)] +
arrαpBp(t) + erparpαrBr(t)

t

(48)

for sufficiently large t. By Lemma 1 and the arbitrariness of ε, we have

[P]∗ ≥ (δ6 − δ̄4)/δ2 a.s. (49)

This implies that

1
t

ln
R(t)
R(0)

≤ r − α2
r

2
+ 2ε − arr[R(t)]− arp[P]∗ +

αrBr(t)
t

≤ r − α2
r

2
− arp(δ6 − δ̄4)

δ2
+ 2ε − arr[R(t)] +

αrBr(t)
t

=
arr(δ3 − δ̄2)

δ2
+ 2ε − arr[R(t)] +

αrBr(t)
t

(50)

for sufficiently large t. From Lemma 1, we get

[R]∗ ≤ (δ3 − δ̄2)/δ2 a.s. (51)

It follows from lim
t→+∞

N(t) = 0 a.s. and Equation (49) that

1
t

ln
P(t)
P(0)

≤ −dp −
α2

p

2
+ 2ε + erparp[R]∗ − app[P(t)] +

αpBp(t)
t

≤ −dp −
α2

p

2
+

erparp(δ3 − δ̄2)

δ2
+ 2ε − app[P(t)] +

αpBp(t)
t

=
app(δ6 − δ̄4)

δ2
+ 2ε − app[P(t)] +

αpBp(t)
t

(52)

for sufficiently large t. Then,

[P]∗ ≤ (δ6 − δ̄4)/δ2 a.s. (53)
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Using Equation (53), we have

1
t

ln
R(t)
R(0)

≥ r − α2
r

2
− 2ε − arr[R(t)]− arp[P]∗ +

αrBr(t)
t

≥ r − α2
r

2
− arp(δ6 − δ̄4)

δ2
− 2ε − arr[R(t)] +

αrBr(t)
t

=
arr(δ3 − δ̄2)

δ2
− 2ε − arr[R(t)] +

αrBr(t)
t

(54)

for sufficiently large t. Hence,
[R]∗ ≥ (δ3 − δ̄2)/δ2 a.s. (55)

It follows from Equations (49)–(53) and Equation (55) that (iv) holds.
(v) By using Equation (37), we obtain

[P]∗ ≤ (L3 − M3)/L (56)

since L3 > M3. For sufficiently large t, it follows from (36) and Equation (56) that

1
t

ln
R(t)
R(0)

≥ r − α2
r

2
− 2ε − arr[R(t)]− arn[N]∗ − arp[P]∗ +

αrBr(t)
t

≥ r − α2
r

2
− 2ε − arr[R(t)]− arn(L2 − M2)

L
− arp(L3 − M3)

L
+

αrBr(t)
t

=
arr(L1 − M1)

L
− 2ε − arr[R(t)] +

αrBr(t)
t

,

(57)

which means
[R]∗ ≥ (L1 − M1)/L. (58)

Similarly, we have

1
t

ln
N(t)
N(0)

≥ −dn − α2
n

2
− 2ε + ernarn[R]∗ − ann[N(t)]− anp[P]∗ +

αnBn(t)
t

≥ −dn − α2
n

2
− 2ε +

ernarn(L1 − M1)

L
− ann[N(t)]− anp(L3 − M3)

L
+

αnBn(t)
t

=
ann(L2 − M2)

L
− 2ε − ann[N(t)] +

αnBn(t)
t

(59)

and

1
t

ln
P(t)
P(0)

≥ −dp −
α2

p

2
− 2ε + erparp[R]∗ + enpanp[N]∗ − app[P(t)] +

αpBp(t)
t

≥ −dp −
α2

p

2
− 2ε +

erparp(L1 − M1)

L
+

enpanp(L2 − M2)

L
− app[P(t)] +

αpBp(t)
t

=
app(L3 − M3)

L
− 2ε − app[P(t)] +

αpBp(t)
t

(60)

for sufficiently large t. Then,

[N]∗ ≥ (L2 − M2)/L, [P]∗ ≥ (L3 − M3)/L. (61)

By Equation (33), (36), (56), (58) and (61), (v) holds. The proof of the theorem is complete.

Now, we establish the sufficient criteria for global asymptotic stability of the positive solutions
for the stochastic model (3). This stochastic model (3) is said to be globally asymptotically stable
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(or globally attractive) if lim
t→∞

max{|R1(t) − R2(t)|, |N1(t) − N2(t)|, |P1(t) − P2(t)|} = 0, where

(Ri(t), Ni(t), Pi(t)), i = 1, 2 are two arbitrary solutions of (3) with initial values (Ri(0), Ni(0), Pi(0)) ∈
R3
+, i = 1, 2. By Lemma 3, similar to arguments as those of Lemma 15 in [32], we have the following

lemma.

Lemma 6. If (R(t), N(t), P(t)) is a positive solution of (3), then almost every sample path of R(t), N(t) and
P(t) are uniformly continuous.

Theorem 2. If there exist positive constants δ1, δ2 and δ3 such that

δ1arr ≥ δ2ernarn + δ3erparp, δ2ann ≥ δ1arn + δ3enpanp, δ3app ≥ δ1arp + δ2anp, (62)

then (3) is globally asymptotically stable.

Proof. We let

V(t) = δ1| ln R1(t)− ln R2(t)|+ δ2| ln N1(t)− ln N2(t)|+ δ3| ln P1(t)− ln P2(t)| (63)

for t ≥ 0, where (Ri(t), Ni(t), Pi(t)), i = 1, 2 are two arbitrary solutions of (3) with initial values
(Ri(0), Ni(0), Pi(0)) ∈ R3

+, i = 1, 2. A direct calculation gives

D+V(t) =δ1 sgn(R1(t)− R2(t))

× [−arr(R1(t)− R2(t))− arn(N1(t)− N2(t))− arp(P1(t)− P2(t))]dt

+ δ2 sgn(N1(t)− N2(t))

× [ernarn(R1(t)− R2(t))− ann(N1(t)− N2(t))− anp(P1(t)− P2(t))]dt

+ δ3 sgn(P1(t)− P2(t))

× [erparp(R1(t)− R2(t)) + enpanp(N1(t)− N2(t))− app(P1(t)− P2(t))]dt

≤− (δ1arr − δ2ernarn − δ3erparp)|R1(t)− R2(t)|dt

− (δ2ann − δ1arn − δ3enpanp)|N1(t)− N2(t)|dt

− (δ3app − δ1arp − δ2anp)|P1(t)− P2(t)|dt := −Δ(t)dt.

(64)

Then,

V(t) +
∫ t

0
Δ(s)ds ≤ V(0) < +∞. (65)

It follows from Lemmas 6 and 4 that (3) is globally asymptotically stable.

4. Stationary Distribution and Ergodicity

In this section, we establish the stationary distribution of the stochastic IGP model (3)
and show that it has the ergodic property. It is clear that the diffusion matrix of (3) is
Λ(x) = diag(α2

r R2, α2
nN2, α2

pP2). Let

λ1 = arr − (arn + ernarn + arp + erparp)/2,

λ2 = ann − (anp + enpanp + arn + ernarn)/2,

λ3 = app − (anp + enpanp + arp + erparp)/2.

(66)

Theorem 3. If λi > 0, i = 1, 2, 3 and (R∗, N∗, P∗) is the positive equilibrium point of the deterministic model
(1) with

(α2
r R∗ + α2

nN∗ + α2
pP∗)/2 < min{λ1(R∗)2, λ2(N∗)2, λ3(P∗)2}, (67)
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then there is a stationary distribution μ(·) for (3) and it has the ergodic property

P
{

lim
t→+∞

1
t

∫ t

0
R(s)ds =

∫
R3
+

ω1μ(dω1, dω2, dω3)
}
= 1,

P
{

lim
t→+∞

1
t

∫ t

0
N(s)ds =

∫
R3
+

ω2μ(dω1, dω2, dω3)
}
= 1,

P
{

lim
t→+∞

1
t

∫ t

0
P(s)ds =

∫
R3
+

ω3μ(dω1, dω2, dω3)
}
= 1.

(68)

Proof. To obtain the conclusion, we need to show that (K1) and (K2) hold. It follows from (67) that the
ellipsoid

− λ1(R − R∗)2 − λ2(N − N∗)2 − λ3(P − P∗)2 +
α2

r R∗

2
+

α2
nN∗

2
+

α2
pP∗

2
= 0 (69)

lies entirely in R3
+. Let U be a neighborhood of the ellipsoid with U ⊆ R3

+. It is not difficult to show
that there exists a ρ > 0 such that

3

∑
i,j=1

aij(x)ωiωj = α2
r R2ω2

1 + α2
nN2ω2

2 + α2
pP2ω2

3 ≥ ρ|ω|2 (70)

for x ∈ U and ω ∈ R3. This implies that (K1) holds.
Let

V(R, N, P) = R − R∗ − R∗ ln
R
R∗ + N − N∗ − N∗ ln

N
N∗ + P − P∗ − P∗ ln

P
P∗ . (71)

Then,

dV(R, N, P) = LV(R, N, P)dt

+ (R − R∗)αrdBr(t) + (N − N∗)αndBn(t) + (P − P∗)αpdBp(t),
(72)

where

LV(R, N, P) =(R − R∗)[r − arrR − arnN − arpP] + α2
r R∗/2

+ (N − N∗)[−dn + ernarnR − annN − anpP] + α2
nN∗/2

+ (P − P∗)[−dp + erparpR + enpanpN − appP] + α2
pP∗/2.

(73)

Since (R∗, N∗, P∗) is the positive equilibrium point of (1), we have

LV(R, N, P) =(R − R∗)[−arr(R − R∗)− arn(N − N∗)− arp(P − P∗)] + α2
r R∗/2

+ (N − N∗)[ernarn(R − R∗)− ann(N − N∗)− anp(P − P∗)] + α2
nN∗/2

+ (P − P∗)[erparp(R − R∗) + enpanp(N − N∗)− app(P − P∗)] + α2
pP∗/2

≤− λ1(R − R∗)2 − λ2(N − N∗)2 − λ3(P − P∗)2

+ (α2
r R∗ + α2

nN∗ + α2
pP∗)/2.

(74)

Then, for any x ∈ R3
+ \ U, we get LV(x) < 0, which means that (K2) holds. It follows from Lemma 5

that (3) has a stationary distribution μ(·), and it is ergodic.
On the other hand, for any m > 0, it follows from the dominated convergence theorem and

Lemma 2 that

E
[

lim
t→+∞

1
t

∫ t

0
(R(s) ∧ m)ds

]
= lim

t→+∞

1
t

∫ t

0
E(R(s) ∧ m)ds ≤ K. (75)
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By the ergodic property, we have

∫
R3
+

(ω1 ∧ m)μ(dω1, dω2, dω3) = E
[

lim
t→+∞

1
t

∫ t

0
(R(s) ∧ m)ds

]
≤ K. (76)

Then,
∫
R3
+

ω1μ(dω1, dω2, dω3) ≤ K as m → +∞. By Lemma 5, the first equality of Equation (68) holds.
Similarly, we can conclude that the second and third equalities of Equation (68) hold. The proof of the
theorem is completed.

5. Conclusions

In this section, we first focus on the stochastic food chains model and the stochastic exploitative
competition model. In the model (3), if we let arp = 0 or anp = 0, then we get the stochastic food
chains model

dR(t) = R(t)(r − arrR(t)− arnN(t))dt + αrR(t)dBr(t),

dN(t) = N(t)(−dn + ernarnR(t)− annN(t)− anpP(t))dt + αnN(t)dBn(t),

dP(t) = P(t)(−dp + enpanpN(t)− appP(t))dt + αpP(t)dBp(t),

(77)

and the stochastic exploitative competition model

dR(t) = R(t)(r − arrR(t)− arnN(t)− arpP(t))dt + αrR(t)dBr(t),

dN(t) = N(t)(−dn + ernarnR(t)− annN(t))dt + αnN(t)dBn(t),

dP(t) = P(t)(−dp + erparpR(t)− appP(t))dt + αpP(t)dBp(t).

(78)

In view of the stochastic IGP model (3), Theorems 1, 2, 3 reduce the corresponding results of
models (77) and (78), that is, we get the stochastic persistence and stochastic extinction, stationary
distribution and ergodicity, and globally asymptotically stability of the positive solution for the
stochastic food chains model (77), and the stochastic exploitative competition model (78), in the case of
arp = 0 or anp = 0.

In this paper, we have developed a stochastic IGP model (3) describing the interactions among
a top predator (IG predator P), an intermediate consumer (IG prey N), and a shared prey (R) under
the influence of environmental noise. We have analyzed the dynamic properties for the stochastic
IGP model (3) and the deterministic IGP model (1). As applications, we show that our results may be
extended to two well-known biological systems: food chains and exploitative competition.

Comparing the stochastic IGP model (3) with the deterministic IGP model (1) (see Theorems 1, 2,
3 and Table 1), we obtain the following conclusions:

• In the deterministic model (1), the total extinction of three populations is impossible since E0 is
unstable. However, this situation is possible for the stochastic model (3) when the noise intensity
αr is large enough (see Figure 1a);

• The existence of the shared prey with the extinction of both IG prey and IG predators is a possible
outcome of the stochastic model (3) (see Figure 1b). There is also evidence that the noise is a
harmful factor for the shared prey population (see Er of Table 1 and (ii) of Theorem 1);

• The existence of both the shared prey and IG prey with the extinction of IG predators, and the
existence of both the shared prey and IG predators with the extinction of IG prey are both possible
outcomes of the stochastic model (3) with different sets of parameters (see Figure 1c,d). Here, it
is worth noting that the noise has a negative effect for IG prey and IG predators, and may also
have a positive effect for the shared prey if the values of αn and αp grow larger (see (iii) and (iv) of
Theorem 1). This also implies that stochastic fluctuation of N or P would help R to grow larger;

• This study suggests that the shared prey, IG prey and IG predators can coexist together for the
stochastic model (3), which implies that it is possible for the coexistence of three species under
the influence of environmental noise (see Figure 1e). There is recognition that the noise may be
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favorable to three-species coexistence if Mi < 0, i = 1, 2, 3 (see (v) of Theorem 1). In addition, we
also prove that three-species is stable coexistence for the influence of environmental noise (see
Theorem 2 and Figure 1f);

• The study of Theorem 3 suggests that the time average of the population size of model (3) with
the development of time is equal to the stationary distribution in space.

Figure 1. (a) αr = 0.9177, αn = 0.4472, αp = 0.6325, 0.8 = 2r < α2
r = 0.8422; (b) αr = 0.7750, αn = 0.6325,

αp = 0.5477, 1.3333 = 2r/α2
r > 1 > max{δ5/δ̄3 = 0.9991, δ6/δ̄4 = 0.5123}, lim

t→+∞

1
t

∫ t

0
R(s)ds =

r − α2
r /2

arr
=

0.9970; (c) αr = 0.7746, αn = 0.1414, αp = 0.1414, L= 0.1790, δ5/δ̄3 = 1.2088 > 1 and 0.0445 = L3 < M3 =

0.0501, lim
t→+∞

1
t

∫ t

0
R(s)ds =

δ4 − δ̄1
δ1

= 0.5250 and lim
t→+∞

1
t

∫ t

0
N(s)ds =

δ5 − δ̄3
δ1

= 0.1187; (d) αr = 0.6,

αn = 0.8, αp = 0.4, δ6/δ̄4 = 1.2 > 1 and 0.0730 = L2 < M2 = 0.0862, lim
t→+∞

1
t

∫ t

0
R(s)ds =

δ3 − δ̄2
δ2

= 1.6565

and lim
t→+∞

1
t

∫ t

0
P(s)ds =

δ6 − δ̄4
δ2

= 0.3826; (e) αr = 0.7746, αn = 0.1414, αp = 0.2449, 0.2015 =

L1 > M1 = 0.0046, 0.0730 = L2 > M2 = 0.0014, 0.0445 = L3 > M3 = 0.0087, lim
t→+∞

1
t

∫ t

0
R(s)ds =

L1 − M1
L

= 1.1000, lim
t→+∞

1
t

∫ t

0
N(s)ds =

L2 − M2
L

= 0.4000 and lim
t→+∞

1
t

∫ t

0
P(s)ds =

L3 − M3
L

=

0.2000; (f) αr = 0.7746, αn = 0.1414, αp = 0.2449, R1(0) = 1.7, N1(0) = 0.6, P1(0) = 0.3, R2(0) = 0.7,
N2(0) = 1.6, P2(0) = 1.3. Here r = 0.4, dn = 0.1, dp = 0.2, arr = 0.1, arn = 0.4, arp = 0.5, ern = 0.75, ann = 0.4,
anp = 0.3, erp = 0.6, enp = 0.5, app = 0.8.
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Abstract: Modern sequencing technique has provided a wealth of data on DNA sequences, which
has made the analysis and comparison of sequences a very important but difficult task. In this paper,
by regarding the dinucleotide as a 2-combination of the multiset t8¨ A, 8¨ G, 8¨ C, 8¨ Tu, a novel 3-D
graphical representation of a DNA sequence is proposed, and its projections on planes (x,y), (y,z) and
(x,z) are also discussed. In addition, based on the idea of “piecewise function”, a cell-based descriptor
vector is constructed to numerically characterize the DNA sequence. The utility of our approach is
illustrated by the examination of phylogenetic analysis on four datasets.

Keywords: 2-combination; graphical representation; cell-based vector; numerical characterization;
phylogenetic analysis

1. Introduction

The rapid development of DNA sequencing techniques has resulted in explosive growth in the
number of DNA primary sequences, and the analysis and comparison of biological sequences has
become a topic of considerable interest in Computational Biology and Bioinformatics. The traditional
measure for similarity analysis of DNA sequences is based on multiple sequence alignment, which
uses dynamic programming techniques to identify the globally optimal alignment solution. However,
the sequence alignment problem is NP-hard (non-deterministic polynomial-time hard), making it
infeasible for dealing with large datasets [1]. To overcome the limitation, a lot of alignment-free
approaches for sequence comparison have been proposed.

The basic idea behind most alignment-free methods is to characterize DNA by certain
mathematical models derived for DNA sequence, rather than by a direct comparison of DNA
sequences themselves. Graphical representation is deemed to be a simple and powerful tool for
the visualization and analysis of bio-sequences. The earliest attempts at the graphical representation of
DNA sequences were made by Hamori and Ruskin in 1983 [2]. Afterwards, a number of graphical
representations were well developed by researchers. For instance, by assigning four directions defined
by the positive/negative x and y coordinate axes to the four nucleic acid bases, Gates [3], Nandy [4,5],
and Leong and Morgenthaler [6] introduced three different 2-D graphical representations, respectively.
While Jeffrey [7] proposed a chaos game representation (CGR) of DNA sequences, in which the four
corners of a selected square are associated with the four bases respectively. In 2000, Randic et al. [8]
generalized these 2-D graphical representations to a 3-D graphical representation, in which the center
of a cube is chosen as the origin of the Cartesian (x,y,z) coordinate system, and the four corners with
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coordinates (+1,´1,´1), (´1,+1,´1), (´1,´1,+1), and (+1,+1,+1) are assigned to the four bases. Some
other graphical representations of bio-sequences and their applications in the field of biological science
and technology can be found in [9–24].

Numerical characterization is another useful tool for sequence comparison. One way to arrive at
the numerical characterization of a DNA sequence is to associate the sequence with a vector whose
components are related to k-words, including the single nucleotide, dinucleotide, trinucleotide, and
so on [25–30]. In addition, the numerical characterization can be accomplished by associating with
a graphical representation given by a curve in the space (or a plane) structural matrices, such as the
Euclidean-distance matrix (ED), the graph theoretical distance matrix (GD), the quotient matrix (D/D,
M/M, L/L), and their “higher order” matrices [8–18,31–33]. Once a matrix representation of a DNA
sequence is given, some matrix invariants, e.g. the leading eigenvalues, can be used as descriptors of
the sequence. This technique has been widely used in the field of biological science and medicine, and
different types of matrices are defined to construct various invariants of DNA sequences. However,
the order of these matrices is equal to n, the length of the DNA sequence considered. A problem we
must face is that the calculation of these matrix invariants will become more and more difficult with
larger n values [17,24,32].

In this paper, based on all of the 2-combinations of the multiset t8¨ A, 8¨ G, 8¨ C, 8¨ Tu,
we propose a novel graphical representation of DNA sequences. Then, according to the idea of
“piecewise function”, we describe a particular scheme that transforms the graphical representation of
DNA into a cell-based descriptor vector. The introduced vector leads to more simple characterizations
and comparisons of DNA sequences.

2. Methods

2.1. The 3-D Graphical Representation

As we know, the four nucleic acid bases A, G, C, and T can be classified into three categories:

R “ tA, Gu{Y “ tC, Tu; M “ tA, Cu{K “ tG, Tu; W “ tA, Tu{S “ tG, Cu.

In fact, these groups are just all of the non-repetition 2-combinations of set {A,G,C,T}. If repetition is
allowed, in other words, if we consider multiset t8¨ A, 8¨ G, 8¨ C, 8¨ Tu instead of the set {A,G,C,T},
then the number of 2-combinations equals 10 (see Table 1).

Table 1. The 2-combinations of multiset t8¨ A, 8¨ G, 8¨ C, 8¨ Tu.

Base A G C T

A {A,A} {A,G} {A,C} {A,T}
G - {G,G} {G,C} {G,T}
C - - {C,C} {C,T}
T - - - {T,T}

Let V be a regular tetrahedron whose center is at the origin O “ p0, 0, 0q. V1 = (+1,+1,+1),
V2 = (´1,´1,+1), V3 = (+1,´1,´1), and V4 = (´1,+1,´1) are its four vertices. To each of the vertices we
assign one of the four nucleic acid bases A, C, G and T. Moreover, to the midpoint of the line segment
AC we assign M, and K to the midpoint of the line segment GT, R to that of the line segment AG, Y to
that of the line segment CT, W to that of the line segment AT, and S to that of the line segment CG. We

thus obtain ten fixed directions:
Ñ

OA,
Ñ

OC,
Ñ

OG,
Ñ

OT,
Ñ

OM,
Ñ

OK,
Ñ

OR,
Ñ

OY,
Ñ

OW,
Ñ

OS, based on which we can
derive ten unit vectors:

rA “ 1

||
Ñ

OA||
¨ Ñ
OA, rC “ 1

||
Ñ

OC||
¨ Ñ
OC, . . . , rS “ 1

||
Ñ

OS||
¨ Ñ
OS (1)
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Obviously, the ten unit vectors are ten points on a unit sphere.
An idea arises naturally: each of the ten 2-combinations can be associated with one of the ten unit

vectors. In detail, we have

tA, Au Ð rA, tA, Gu Ð rR, tA, Cu Ð rM, tA, Tu Ð rW ,
tG, Gu Ð rG, tG, Cu Ð rS, tG, Tu Ð rK,
tC, Cu Ð rC, tC, Tu Ð rY, tT, Tu Ð rT .

(2)

To obtain the spatial curve of a DNA sequence, we move a unit length in the direction that the
above assignment dictates. Taking sequence segment ATGGTGCACCTGACTCCTGATCTGGTA as an
example, we inspect it by stepping two nucleotides at a time. Starting from the origin O “ p0, 0, 0q,
we move in the direction dictated by the first dinucleotide AT, rW , and arrive at P1, the first point of the
3-D curve. From this point, we move in the direction dictated by the second dinucleotide TG, rK, and
arrive at the second point P2. From here we move in the direction dictated by the third dinucleotide
GG, rG, and come to the third point P3. Continuation of this process is illustrated in Table 2, and the
corresponding 3-D graphical representation is shown in Figure 1.

Table 2. Cartesian 3-D coordinates for the sequence ATGGTGCACCTGACTCCTGATCTGGTA.

Point Dinucleotide x y z

1 AT 0 1 0
2 TG 0 1 ´1
3 GG 0.5774 0.4226 ´1.5774
4 GT 0.5774 0.4226 ´2.5774
5 TG 0.5774 0.4226 ´3.5774
6 GC 0.5774 ´0.5774 ´3.5774
7 CA 0.5774 ´0.5774 ´2.5774
8 AC 0.5774 ´0.5774 ´1.5774
9 CC 0 ´1.1547 ´1

10 CT ´1 ´1.1547 ´1
. . . . . . . . . . . . . . .

Figure 1. 3-D graphical representation of the sequence ATGGTGCACCTGACTCCTGATCTGGTA.

As the characterization of a research object, a good visualization representation should allow us to
see a pattern that may be difficult or impossible to see when the same data is presented in its original
form. In order to provide a direct insight into the local and global characteristics of a DNA sequence,
the proposed 3-D curve can be projected on planes (x,y), (y,z) or (x,z), and thus three different 2-D
graphical representations will be yielded. Figure 2 shows the projections of 3-D curves of 18 different
DNA sequences listed in Table 3.
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Figure 2. (a) The projection on the xy-plane of 3-D curves of 18 DNA sequences; (b) The projection on
the yz-plane of 3-D curves of 18 DNA sequences; (c) The projection on the xz-plane of 3-D curves of
18 DNA sequences.
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Table 3. The CDS (Coding DNA Sequence) of β-globin gene of 18 species.

No. Species AC (GenBank) Location

1 Human U01317 join(62187..62278, 62409..62631, 63482..63610)
2 Homo AF007546 join(180..271,402..624,1475..1603)
3 Gorilla X61109 join(4538..4630, 4761..4982, 5833..>5881)
4 Chimpanzee X02345 join(4189..4293, 4412..4633, 5484..>5532)
5 Lemur M15734 join(154..245, 376..598, 1467..1595)
6 CebusaPella AY279115 join(946..1037, 1168..1390, 2218..2346)
7 LagothrixLagotricha AY279114 join(952..1043, 1174..1396, 2227..2355)
8 Bovine X00376 join(278..363, 492..714, 1613..1741)
9 Goat M15387 join(279..364, 493..715, 1621..1749)

10 Sheep DQ352470 join(238..323, 452..674, 1580..1708)
11 Mouflon DQ352468 join(238..323, 452..674, 1578..1706)
12 European hare Y00347 join(1485..1576, 1703..1925, 2492..2620)
13 Rabbit V00882 join(277..368, 495..717, 1291..1419)
14 Mouse V00722 join(275..367, 484..705, 1334..1462)
15 Rat X06701 join(310..401, 517..739, 1377..>1505)
16 Opossum J03643 join(467..558, 672..894, 2360..2488)
17 Gallus V00409 join(465..556, 649..871, 1682..1810)
18 Muscovy duck X15739 join(291..382, 495..717, 1742..1870)

It is easy to see that, in each projection, the trend of curves of the two non-mammals
(Gallus, Muscovy duck) is distinguished from that of the mammals. On the other hand, the Primates
species are similar to one another, so it is with the curves of bovine, sheep, goat, and mouflon. Also, the
curves of rabbit and European hare show their great similarity. In addition, both Figure 2b, the projection
on yz-plane, and Figure 2c, the projection on xz-plane, show opossum has relatively low similarity with
the remaining mammals, while mouse and rat look similar to each other because both of their curves
wind themselves into a mass and need a relatively small space.

2.2. Numerical Characterization of DNA Sequences

The graphical representations not only offer the visual inspection of data, helping in recognizing
major differences among DNA sequences, but also provide with the numerical characterization
that facilitates quantitative comparisons of DNA sequences. One way to arrive at the numerical
characterization of a DNA sequence is to convert its graphical representation into some structural
matrices, and use matrix invariants, e.g., the leading eigenvalues, as descriptors of the DNA
sequence [8–18,31,32]. It is expected that effective invariants will emerge and enable to uniquely
characterize the sequences considered. However, the difficulties associated with computing various
parameters for very large matrices that are natural for long sequences have restricted the numerical
characterizations, for instance, leading eigenvalues and the like [17,24]. The search for novel descriptors
may be an endless project. The art is in finding useful descriptors, and those that have plausible
structural interpretation, at least within the model considered [8]. In this section, we bypass the
difficulty of calculating the invariants like the leading eigenvalue and propose a novel descriptor to
numerically characterize a DNA sequence.

As described above, the pattern, including shape and trend, of curves for the 18 DNA sequences
provides useful information in an efficient way. This inspires us to numerically characterize a DNA
sequence with an idea of “piecewise function” as below.

For a given 3-D graphical representation with n vertices, by the order in which these vertices
appear in the curve, we partition it into K parts, each of which is called a cell. All the cells contain

m “
Y n

K

]
vertices except the last one. For the i-th cell, i = 1,2,...,K, the geometric center Ui “ pxi, yi, ziq

is viewed as its respective. Then we have

Ñ
Ui´1Ui “ pxi ´ xi´1, yi ´ yi´1, zi ´ zi´1q (3)
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where U0 “ p0, 0, 0q. It is not difficult to find that
Ñ

Ui´1Ui reflects a certain “growing trend” of these

cells. For convenience, we call
Ñ

Ui´1Ui the trend-point. On the basis of the K trend-points, a DNA
sequence can be characterized by a 3K-dimensional vector Vtp:

Vtp “ px1 ´ x0, x2 ´ x1, ¨ ¨ ¨ , xk ´ xk´1,
y1 ´ y0, y2 ´ y1, ¨ ¨ ¨ , yk ´ yk´1,
z1 ´ z0, z2 ´ z1, ¨ ¨ ¨ , zk ´ zk´1q

(4)

In this paper, K is determined by round
ˆ

log4
L

2
?

2

˙
, where L “ 1

N

Nř
j“1

ˇ̌
sj

ˇ̌
, N is the cardinality of

the dataset Ω considered, and
ˇ̌
sj

ˇ̌
stands for the length of sequence sj P Ω. Taking for example the two

non-mammals of the 18 species, the corresponding vectors can be calculated as

VGallus “ p4.524, ´9.588, ´5.546, ´10.962, ´9.234, ´20.304,
´9.824, ´12.093, ´4.087, ´0.450, 10.255, 5.615q,

(5)

VMDuck “ p6.186, ´10.593, ´3.440, ´12.511, ´10.639, ´21.519,
´12.987, ´18.351, ´1.244, 0.498, 10.478, 9.325q.

(6)

3. Results and Discussion

In this section, we will illustrate the use of the proposed cell-based descriptor Vtp of a DNA
sequence. For any two sequences Sa and Sb, suppose their descriptor vectors are a “ pa1, a2, ¨ ¨ ¨ , a3kq
and b “ pb1, b2, ¨ ¨ ¨ , b3kq, respectively. Then, their similarity can be examined by the following
Euclidean distance. Clearly, the smaller the Euclidean distance is, the more similar the two DNA
sequences are.

d pa, bq “
gffe 3kÿ

j“1

`
aj ´ bj

˘2 (7)

Firstly, we give a comparison for CDS (Coding DNA Sequence) of β-globin gene of 18 species
listed in Table 3. The lengths of the 18 sequences are about 434 bp. Thus K is taken to be 4, and each of
these sequences is converted into a 12-D vector. According to Equation (7), we calculate the distance
between any two of the 18 DNA sequences. Then an 18 ˆ 18 real symmetric matrix D18 is obtained.
On the basis of D18, a phylogenetic tree (see Figure 3) is constructed using UPGMA (Unweighted Pair
Group Method with Arithmetic Mean) program included in MEGA4 [34]. Observing Figure 3, we
find that the CDS are more similar for Primate group {Gorilla, Chimpanzee, Human, Homo, CebusaPella,
LagothrixLagotricha, Lemur}, Cetartiodactyla group {bovine, sheep, goat, mouflon}, Lagomorpha group
{Rabbit, European hare}, and Rodentia group {mouse, rat}, respectively. On the other hand, CDS of the
two kinds of non-mammals {Gallus, Muscovy duck} are very dissimilar to the mammals because they are
grouped into an independent branch. This is analogous to that reported in the literature [8,12,14,31],
and the relationship of these species detected by their graphical representations as well. From this
result, a conclusion one can draw is that the cell-based descriptors of the new graphical representation
may suffice to characterize DNA sequences.

In order to further illustrate the effectiveness of our method, we test it by phylogenetic analysis
on other three datasets: one consists of mitochondrial cytochrome oxidase subunit I (COI) genes of
nine butterflies, another includes S segments of 32 hantaviruses (HVs), and the last is composed of
70 complete mitogenomes (mitochondrial genomes). For convenience, we denote the three datasets
by COI, HV and mitogenome, respectively. In the COI dataset (see Table 4), which is taken from
Yang et al. [12], eight belong to the Catopsilia genus and one belongs to Appias genus, which is used as
the out-group. The average length of these COI gene sequences is 661 bp, and thus K, the number of
cells, is calculated as 4. According to the method mentioned above, a distance matrix is constructed,

241



Appl. Sci. 2016, 6, 63

and then a phylogenetic tree (see Figure 4) is generated. Figure 4 shows that the five pomona sub-species
have relatively high similarity with each other, while the two pyranthe sub-species cluster together.
In addition, scylla sub-species is situated at an independent branch, whereas the Appias lyncida stays
outside of all the Catopsilia. This result is consistent with that reported in [12,35].

Figure 3. The relationship tree of 18 species.

Table 4. The COI (cytochrome oxidase subunit I) genes of nine butterflies.

NO. Species Code AC (GenBank) Region

1 C.pomona pomona f.pomona PA GU446662 Yexianggu, Yunnan
2 C.pomona pomona f.hilaria HI GU446664 Yexianggu, Yunnan
3 C.pomona pomona f.crocale CR GU446663 Menglun, Yunnan
4 C.pomona pomona f.catilla CA GU446666 Daluo, Yunnan
5 C.pomona pomona f.jugurtha JU GU446665 Daluo, Yunnan
6 C.scylla scylla CS GU446667 Yinggeling, Hainan
7 C.pyranthe pyranthe CP GU446668 Daluo, Yunnan
8 C.pyranthe chryseis CH GU446669 Yinggeling, Hainan

9 Appias lyncida - GU446670 Bawangling,
Hainan

Figure 4. The relationship tree of nine COI (cytochrome oxidase subunit I) gene sequences.

The hantavirus (HV), which is named for the Hantan River area in South Korea, is a relatively
newly discovered RNA virus in the family Bunyaviridae. This kind of virus normally infects rodents
and does not cause disease in these hosts. Humans may be infected with HV, and some HV strains
could cause severe, sometimes fatal, diseases in humans, such as HFRS (hantavirus hemorrhagic fever
with renal syndrome) and HPS (hantavirus pulmonary syndrome). The later occurred in North and
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South America, while the former mainly in Eurasia [12,36]. In Eastern Asia, particularly in China and
Korea, the viruses that cause HFRS mainly include Hantaan (HTN) and Seoul (SEO) viruses, while
Puumala (PUU) virus is found in Western Europe, Russia and northeastern China. The HV dataset
analyzed in this paper includes 32 HV sequences. Phlebovirus (PV) is another genus of the family
Bunyaviridae. Here, two PV strains KF297911 and KF297914 are used as the out-group. The name,
accession number, type, and region of the 34 sequences are described in Table 5. The lengths of these
sequences are in the range of 1.30–1.88 kbp. Thus K is calculated as 5, and each of the 34 viruses is
converted into a 15-D vector. The phylogenetic tree constructed by our method is shown in Figure 5.

Table 5. Sequence information of S segment of hantavirus.

No. Strain AC (GenBank) Type Region

1 CGRn53 EF990907 HTNV Guizhou
2 CGRn5310 EF990906 HTNV Guizhou
3 CGRn93MP8 EF990905 HTNV Guizhou
4 CGRn8316 EF990903 HTNV Guizhou
5 CGRn9415 EF990902 HTNV Guizhou
6 CGRn93P8 EF990904 HTNV Guizhou
7 CGHu3612 EF990909 HTNV Guizhou
8 CGHu3614 EF990908 HTNV Guizhou
9 Z10 AF184987 HTNV Shengzhou

10 Z5 EF103195 HTNV Shengzhou
11 NC167 AB027523 HTNV Anhui
12 CGAa4MP9 EF990915 HTNV Guizhou
13 CGAa4P15 EF990914 HTNV Guizhou
14 CGAa1011 EF990913 HTNV Guizhou
15 CGAa1015 EF990912 HTNV Guizhou
16 H5 AB127996 HTNV Heilongjiang

17 76-118 M14626 HTNV South
Korea

18 Gou3 AF184988 SEOV Jiande
19 ZJ5 FJ753400 SEOV Jiande

20 80-39 AY273791 SEOV South
Korea

21 SR11 M34881 SEOV Japan
22 K24-e7 AF288653 SEOV Xinchang
23 K24-v2 AF288655 SEOV Xinchang
24 Z37 AF187082 SEOV Wenzhou
25 ZT10 AY766368 SEOV Tiantai
26 ZT71 AY750171 SEOV Tiantai
27 K27 L08804 PUUV Russia
28 P360 L11347 PUUV Russia
29 Sotkamo X61035 PUUV Finland
30 Fusong843-06 EF488805 PUUV Jilin
31 Fusong199-05 EF488803 PUUV Jilin
32 Fusong900-06 EF488806 PUUV Jilin
33 91045-AG KF297911 PV Iran
34 I-58 KF297914 PV Iran
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Figure 5. The relationship tree of 34 viruses.

From Figure 5, we find that the two PV strains form an independent branch, which can be
distinguished easily from the HV strains, while the 32 HVs are grouped into three separate branches:
the strains belonging to PUUV are clearly clustered together, the strains belonging to SEOV appear
to cluster together, and so do the ones belonging to HTNV. A closer look at the subtree of HTNV, all
CGRn strains whose host is Rattus norvegicus tend to cluster together, so it is with the CGHu strains
whose host is Homo sapiens. In addition, all the four CGAa strains whose host is Apodemus agrarius
are grouped closely. Needless to say, the phylogeny is not only closely related to the isolated regions,
but also has certain relationship with the host. This result is similar to that reported in [12,37].

The mitogenome dataset comprises 70 complete mitochondrial genomes of Eukaryota. The
name, accession number, and genome length are listed in Table 6. Among them, two species
(Argopecten irradians irradians and Argopecten purpuratus) belong to family Pectinidae are used as
the out-group. Four species belong to the Order Caudata under the Class Amphibia, while four species
belong to the Order Anura under the same Class. The remaining belongs to the Class Actinopterygii.
The average length of the 70 genome sequences is about 16817 bp. Thus, K is calculated as 6, and each
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of these genome sequences is converted into an 18-D vector. The phylogenetic tree constructed by
our method is shown in Figure 6. It is easy to see from Figure 6 that the two Pectinidae species stay
outside of the others, while the four Hynobiidae species and four Ranidae species form an independent
branch. In the subtree of the Class Actinopterygii, the 60 genomes are separated into six groups:
group 1 corresponds to genus Anguilla under family Anguillidae; group 2 includes genera Bangana and
Acrossocheilus under family Cyprinidae; group 3 includes genera Brachymystax and Hucho under family
Salmonidae; group 4 is genus Alepocephalus under family Alepocephalidae; group 5 is the family of
Clupeidae; group 6 includes genera Trichiurus, Amphiprion and Apolemichthys under Acanthomorphata.
This result agrees well with the established taxonomic groups. In addition, we make a comparison for
the 70 genome sequences by using ClustalX2.1 [38], and the corresponding tree is shown in Figure 7.
Observing Figure 7, we find that the tree includes four branches: the outside is the Argopecten branch,
the following is Babina, then Batrachuperus, and the subtree consisting of the other 60 species. A closer
look at the subtree shows that Trichiurus is distinguished from the remaining, which seems to be a
disappointing phenomenon in the evolutionary sense.

Table 6. Sequence information of 70 complete mitogenomes.

No. Genome AC (GenBank) Length

1 Acrossocheilus barbodon NC_022184 16596
2 Acrossocheilus beijiangensis NC_028206 16600
3 Acrossocheilus fasciatus NC_023378 16589
4 Acrossocheilus hemispinus NC_022183 16590
5 Acrossocheilus kreyenbergii NC_024844 16849
6 Acrossocheilus monticola NC_022145 16599
7 Acrossocheilus parallens NC_026973 16592
8 Acrossocheilus stenotaeniatus NC_024934 16594
9 Acrossocheilus wenchowensis NC_020145 16591

10 Alepocephalus agassizii NC_013564 16657
11 Alepocephalus australis NC_013566 16640
12 Alepocephalus bairdii NC_013567 16637
13 Alepocephalus bicolor NC_011012 16829
14 Alepocephalus productus NC_013570 16636
15 Alepocephalus tenebrosus NC_004590 16644
16 Alepocephalus umbriceps NC_013572 16640
17 Alosa alabamae NC_028275 16708
18 Alosa alosa NC_009575 16698
19 Alosa pseudoharengus NC_009576 16646
20 Alosa sapidissima NC_014690 16697
21 Amphiprion bicinctus NC_016701 16645
22 Amphiprion clarkia NC_023967 16976
23 Amphiprion frenatus NC_024840 16774
24 Amphiprion ocellaris NC_009065 16649
25 Amphiprion percula NC_023966 16645
26 Amphiprion perideraion NC_024841 16579
27 Amphiprion polymnus NC_023826 16804
28 Anguilla anguilla NC_006531 16683
29 Anguilla australis NC_006532 16686
30 Anguilla australis schmidti NC_006533 16682
31 Anguilla bengalensis labiata NC_006543 16833
32 Anguilla bicolor bicolor NC_006534 16700
33 Anguilla bicolor pacifica NC_006535 16693
34 Anguilla celebesensis NC_006537 16700
35 Anguilla dieffenbachia NC_006538 16687
36 Anguilla interioris NC_006539 16713
37 Anguilla japonica NC_002707 16685
38 Anguilla luzonensis (Philippine eel) NC_011575 16635
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Table 6. Cont.

No. Genome AC (GenBank) Length

39 Anguilla luzonensis (freshwater eel) NC_013435 16632
40 Anguilla malgumora NC_006536 16550
41 Anguilla marmorata NC_006540 16745
42 Anguilla megastoma NC_006541 16714
43 Anguilla mossambica NC_006542 16694
44 Anguilla nebulosa nebulosa NC_006544 16707
45 Anguilla obscura NC_006545 16704
46 Anguilla reinhardtii NC_006546 16690
47 Anguilla rostrata NC_006547 16678
48 Apolemichthys armitagei NC_027857 16551
49 Apolemichthys griffisi NC_027592 16528
50 Apolemichthys kingi NC_026520 16816
51 Argopecten irradians irradians NC_012977 16211
52 Argopecten purpuratus NC_027943 16270
53 Babina adenopleura NC_018771 18982
54 Babina holsti NC_022870 19113
55 Babina okinavana NC_022872 19959
56 Babina subaspera NC_022871 18525
57 Bangana decora NC_026221 16607
58 Bangana tungting NC_027069 16543
59 Batrachuperus londongensis NC_008077 16379
60 Batrachuperus pinchonii NC_008083 16390
61 Batrachuperus tibetanus NC_008085 16379
62 Batrachuperus yenyuanensis NC_012430 16394
63 Brachymystax lenok NC_018341 16832
64 Brachymystax lenok tsinlingensis NC_018342 16669
65 Brachymystax tumensis NC_024674 16836
66 Hucho bleekeri NC_015995 16997
67 Hucho hucho NC_025589 16751
68 Hucho taimen NC_016426 16833
69 Trichiurus lepturus nanhaiensis NC_018791 17060
70 Trichiurus japonicus NC_011719 16796
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Figure 6. The tree of 70 genome sequences constructed with the current method.
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Figure 7. The tree of 70 genome sequences constructed with multiple alignment.
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4. Concluding Remarks

By means of a regular tetrahedron whose center is at the origin, we associate the ten
2-combinations of multiset t8¨ A, 8¨ G, 8¨ C, 8¨ Tu with ten unit vectors (points on a unit sphere),
and then a novel 3-D graphical representation of a DNA sequence is proposed. Moreover, we
partition the graph into K cells, and then a 3K-dimensional cell-based vector is used to numerically
characterize a DNA sequence. The proposed method is tested by phylogenetic analysis on four
datasets. In comparison with other methods, our approach does not depend on multiple sequence
alignment, and avoids the complex calculation as in the calculation of invariants for higher order
matrices. Nevertheless, K, the number of cells, is dataset specific, which may restrict our approach. We
will make efforts in our future work to find a possible formula for K that is independent of the dataset.
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Abstract: The technique of comparison and analysis of biological sequences is playing an increasingly
important role in the field of Computational Biology and Bioinformatics. One of the key steps in
developing the technique is to identify an appropriate manner to represent a biological sequence.
In this paper, on the basis of three physical–chemical properties of amino acids, a protein primary
sequence is reduced into a six-letter sequence, and then a set of elements which reflect the
global and local sequence-order information is extracted. Combining these elements with the
frequencies of 20 native amino acids, a (21 + λ) dimensional vector is constructed to characterize the
protein sequence. The utility of the proposed approach is illustrated by phylogenetic analysis and
identification of DNA-binding proteins.

Keywords: generalized pseudo amino acid composition; numerical characterization; phylogenetic
analysis; identification of DNA-binding proteins

1. Introduction

In the task of comparison and analysis of biological sequences, choosing a type of DNA/protein
representation is an important step. The usual representation of the primary structure of DNA is
a string of four letters: A (adenine); G (guanine); C (cytosine); and T (thymine). This expression
is called a letter sequence representation (LSR) or a DNA primary sequence. Similarly, a protein
primary sequence is usually expressed in terms of a series of 20 letters, which denote 20 different
amino acids. The sequence encodes information of the corresponding structure and function in a
living organism. However, it is difficult to obtain the information from the representation of a primary
sequence directly. Therefore, various sequence representation techniques have been developed for
encoding bio-sequences and extracting the hidden information.

Graphical representation of DNA is a useful tool for visualizing and analyzing DNA sequences.
By using the tool, one can obtain a route to condense the information coded by DNA primary sequences
into a set of invariants [1,2]. Early attempts towards graphical representations of DNA were made by
Hamori and Ruskin in 1983 [3], Hamori in 1985 [4], and Gates in 1985 [5]. Afterwards, more graphical
representations of DNA sequences were well developed by researchers [1,2,6–15]. In comparison
with DNA, graphical representations of proteins emerged only very recently [2,16–27]. As a matter
of fact, most of the graphical representations of DNA involve some degree of arbitrariness, such as
the selection of directions to be assigned to individual bases. For a string like DNA sequence over
an alphabet with size 4, there are 4! = 24 possible ways of assigning 4 directions to 4 nucleic acid
bases. If these methods are directly extended to protein sequences, the corresponding figure is
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20! ≈ 2.433 × 1018. It is impracticable to represent one protein sequence by such an enormous number
of graphs. This is probably the most important reason why protein graphical representations have
not been advanced [19,23]. It is found that reducing the alphabet or fixing the directions assigned to
amino acid residues plays an important role in addressing this problem. For details, we refer to some
recent publications [2,16,21,23,24,28].

Matrix representation of a biological sequence is another powerful tool for characterization and
comparison of sequences. These matrices include: The frequency matrix; Euclidean-distance matrix
(ED); graph theoretical distance matrix (GD); line distance matrix (LD); quotient matrix (D/D, M/M,
L/L); and their “higher order” matrices [1,2,12,13,20,21,27,29,30]. Among them, ED, GD, L/L, etc., are
derived from a graphical representation. For example, L/L is a symmetric matrix whose diagonal
entries are zero, while other entries are defined as the quotient of the Euclidean distance between two
points of the graph and the sum of geometrical lengths of edges between the two points. Once the
matrix is given, some of matrix invariants can be used as descriptors of the sequence. Eigenvalues of
a matrix are one of the best-known matrix invariants [31]. In fact, two graphs are isomorphic if and
only if their adjacency matrices are similar. It is of interest to note that similar matrices have the same
eigenvalues. Among all the eigenvalues, the leading eigenvalue often plays a special role and has been
widely used in the field of biological science and chemistry. However, a problem we must face is that
the calculation of the eigenvalue will become more and more difficult with the order of the matrix
large. ALE-index is an alternative invariant we proposed in 2005 [32]. The ALE-index can be viewed as
an Approximation of the Leading Eigenvalue (ALE) of the corresponding matrix (it is just in this sense
that it is called ‘ALE’-index), while it is much simpler for calculation than the latter. Therefore, it may
be more economical to adopt the ALE-index when one is interested only in the leading eigenvalue.

The third method for formulating a protein sequence is the pseudo amino acid composition
(PseAAC), with the advantage of avoiding loss of the sequence-order information. Ever since the
concept of PseAAC [33,34] or Chou’s PseAAC [35,36] was proposed, it has rapidly penetrated into
nearly all fields of computational proteomics (see a long list papers cited in [36,37]). Stimulated by the
great successes of PseAAC in dealing with protein/peptide sequences, the concept of PseAAC has
been extended [38–42] to cover DNA/RNA sequences as well via the form of PseKNC (pseudo K-tuple
nucleotide composition) [43,44], which has been proven very useful in studying many important
genome analysis problems, as summarized in a recent review paper [45]. Also, because the concept
of PseAAC has been increasingly and widely used in both computational proteomics and genomics,
a very powerful web-server called “Pse-in-One” [46] was established that can be used to generate the
pseudo components for both protein/peptide and DNA/RNA sequences.

In this paper, we modify the method of Chou’s PseAAC and propose a novel approach for
numerically characterizing a protein sequence. We characterize a protein sequence by a (21 + λ)

dimensional vector, whose first 20 components are the occurrence frequencies of 20 native amino
acids, while the last λ+ 1 components are based on a six-letter sequence derived from the protein
primary sequence. The former is used to reflect the effect of the amino acid composition, and the
latter is used to reflect the effect of sequence order and property of the residues. It is well known
that a sequence naturally contains two pieces of information: the elements of the sequence; and the
orders of the elements. Any methodologies based on the amino acid composition alone are worthy
of further investigation. However, as pointed out by Chou [33,34], it is not feasible to completely
include all sequence order patterns. It was stirring to see that Chou creatively developed an approach
as mentioned above to extract the important feature beyond amino acid composition. Our scheme is
similar to, but different from, that of Chou. Experiments about phylogenetic analysis on two datasets
and identification of DNA-binding proteins illustrate the utility of the proposed method.

2. Methods

A protein sequence can be viewed as a string of 20 amino acids. Without loss of generality, by
the numerical indices 1,2, . . . ,20, we represent the 20 native amino acids according to the alphabetical
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order of their single-letter codes: A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W and Y. Then the frequencies
of appearance of the 20 amino acids in a protein sequence are often used to construct a vector

[f1, f2, . . . , f20]

This is the conventional amino acid composition. The advantage of such a vector representation
is that it is easy in statistical treatment, but it cannot reflect the effect regarding sequence order and
property. In what follows, we will take this effect into account through a set of elements in addition to
the 20 components.

Hydrophobicity, isoelectric point (pI), and relative distance (RD) are three important
physicochemical properties of the 20 native amino acids. Here RD can be viewed as an integration of
the information on three side chain properties: composition; polarity; and molecular volume—where
composition is defined as the atomic weight ratio of hetero (noncarbon) elements in end groups or
rings to carbons in the side chain (for details, see [47]). Listed in Table 1 are the original numerical
values for hydrophobicity, pI and RD. As can be seen from Table 1, the values of P0

1 (Hydrophobicity)
is in the range [−2.53~1.38], and the values of P0

2 (isoelectric point) are in the range of 2.97~10.76, while
P0

3 (relative distance) varies between 1469 and 3355. Therefore, the normalization of these values is
needed. Here we normalize them by the formulary below:

p′n(AAi) = P0
n(AAi)− min

j=1,...,20

{
P0

n(AAj)
}

,

P∗
n (AAi) =

p′n(AAi)

max
j=1,...,20

{
p′n(AAj)

} . i = 1, 2, . . . , 20, n = 1, 2, 3. (1)

Table 1. The original numerical values for the properties of the 20 native amino acids.

Amino Acid (AA) Hydrophobicity a (P0
1) pI b (P0

2) RD b (P0
3)

A 0.62 6.02 1889
C 0.29 5.02 3355
D −0.90 2.97 2209
E −0.74 3.22 1812
F 1.19 5.48 1916
G 0.48 5.97 2078
H −0.40 7.59 1507
I 1.38 6.02 1765
K −1.50 9.74 1797
L 1.06 5.98 1822
M 0.64 5.75 1689
N −0.78 5.42 1943
P 0.12 6.30 1720
Q −0.85 5.65 1538
R −2.53 10.76 1697
S −0.18 5.68 2000
T −0.05 6.53 1469
V 1.08 5.97 1680
W 0.81 5.89 2317
Y 0.26 5.66 1787

a Taken from [41]; b Taken from [47–49].

Clearly, the normalized values for properties of the 20 native amino acids are in the interval [0,1].
The corresponding values are listed in Table 2. The last row in this table gives the average values.
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Table 2. The normalized values for the properties of the 20 native amino acids.

AA P∗
1 P∗

2 P∗
3

A 0.8056 0.3915 0.2227
C 0.7212 0.2632 1.0000
D 0.4169 0 0.3924
E 0.4578 0.0321 0.1819
F 0.9514 0.3222 0.2370
G 0.7698 0.3851 0.3229
H 0.5448 0.5931 0.0201
I 1.0000 0.3915 0.1569
K 0.2634 0.8691 0.1739
L 0.9182 0.3864 0.1872
M 0.8107 0.3569 0.1166
N 0.4476 0.3145 0.2513
P 0.6777 0.4275 0.1331
Q 0.4297 0.3440 0.0366
R 0 1.0000 0.1209
S 0.6010 0.3479 0.2815
T 0.6343 0.4570 0
V 0.9233 0.3851 0.1119
W 0.8542 0.3748 0.4496
Y 0.7136 0.3453 0.1686

Pn 0.6471 0.3994 0.2283

For each amino acid (AA), we associate it with a triple (t(1), t(2), t(3)), where

t (n) =

{
+1 if P∗

n (AA) ≥ Pn

−1 otherwise
(n = 1, 2, 3) (2)

All the amino acids with a same triple form a group. In this way, the 20 native amino acids can be
classified into 6 groups:

GI = {A, Y, V, M, L, I},
GII = {C, W, G, F},
GIII = {D, S, N},
GIV = {E, Q},
GV = {H, T, R, K},
GVI = {P}.

For each group, the first amino acid is selected to be the representative. That is, A, C, D, E, H and
P are used to stand for the six groups, respectively. The value of the property of a group is defined
as the average value of the property of amino acids belonging to the group. Listed in Table 3 are the
corresponding values of the six groups.

Table 3. The values for properties of the six groups.

Group Representative P1 P2 P3

GI A 0.8619 0.3761 0.1607
GII C 0.8242 0.3363 0.5024
GIII D 0.4885 0.2208 0.3084
GIV E 0.4437 0.1881 0.1092
GV H 0.3606 0.7298 0.0787
GVI P 0.6777 0.4275 0.1331
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At the same time, a protein primary sequence can be reduced into a six-letter sequence by replacing
each element in the protein sequence with its representative letter. Suppose S = S1S2 . . . SL is a given
six-letter sequence, we inspect it by stepping one element at a time. For the step k (k = 1, 2, . . . , L),
a 3-D space point qk = (xk, yk, zk) can be constructed as follows:

(xk, yk, zk) = (xk−1, yk−1, zk−1) + (P1 (Sk) , P2 (Sk) , P3 (Sk)), (3)

where (x0, y0, z0) = (0, 0, 0). When k runs from 1 to L, we get L points q1, q2, . . . , qL. Connecting these
points one by one sequentially with straight lines, a three-dimensional curve can be drawn. One can
further associate the graph with some structural matrices. Here we adopt the L/L matrix and denote it
by M, whose (i,j)-entry is defined as follows:

mij =

⎧⎪⎪⎨⎪⎪⎩
d(i,j)

d(i,i+1)+d(i+1,i+2)+...+d(j−1,j) if i < j

0 if i = j

mji if i > j

, (4)

where d(i, j) is the Euclidean distance between points qi and qj. It is not difficult to see that limt→+∞
tM

is a (0,1) matrix; here tM stands for the product of Hadmammard multiplication of the matrix M by
itself t-times. In this paper, we call the limit matrix as a generalized adjacency matrix (GAM) generated
by points q1, q2, . . . , qL, and denote it by MG. Obviously, [MG]ij = 1 if and only if qi and qj lie on a
straight line in the graph.

As mentioned above, once a symmetric matrix is given, one can calculate its ALE-index by the
following formula:

χ =
1
2

(
1
L
||· ||m1 +

√
L − 1

L
||· ||F

)
, (5)

where L is the order of the matrix, ||· ||m1 and ||· ||F are the m1- and F-norms of a matrix, respectively.
In order to reduce variations caused by comparison of matrices with different sizes, we consider
instead of χ (MG) a normalized ALE-index χ′ (MG) =

χ(MG)√
6L

.
In addition, following the similar procedures in capturing the sequence-order information of a

protein [33,34], for the six-letter sequence S = S1S2 · · · SL, we extract a set of new order-correlated
factors as defined below:

θ1 = 1
L−1 × 1

3 × ∑3
n=1 gn(S, 1),

θ2 = 1
L−2 × 1

3 × ∑3
n=1 gn(S, 2),

· · ·
θλ = 1

L−λ × 1
3 × ∑3

n=1 gn(S, λ).

(λ < L) (6)

where θk(k = 1, 2, . . . , λ) is called the k-th tier correlation factor, gn(S, k) represents the coupling mode
function as given by

gn(S, k) =

√√√√L−k

∑
i=1

(Pn(Si)− Pn(Si+k))
2 (7)

Factor θ1 reflects the coupling mode between the most contiguous elements along a six-letter
sequence (Figure 1a); θ2 reflects the coupling mode between the second-most contiguous (Figure 1b);
θ3 reflects the coupling mode between the third-most contiguous (Figure 1c), and so on. λ is the highest
rank of the coupling mode.
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Figure 1. A schematic diagram to show: (a) the first-tier; (b) the second tier; and (c) the third-tier
sequence order correlation mode along a sequence. Where the regular hexagon is used to show that
each element of the sequence corresponds to one of the six amino acid groups.

Consequently, a protein sequence can be characterized by a (21 + λ) dimensional vector V:

V = (v1, v2, . . . , v20, v20+1, . . . , v20+λ, v20+λ+1), (8)

where

vi =

⎧⎪⎪⎨⎪⎪⎩
fi 1 ≤ i ≤ 20

w1θi−20 20 + 1 ≤ i ≤ 20 + λ

w2χ′ i = 20 + λ+ 1

(9)

Here w1 and w2 are weight factors. It is easy to see that the first 20 components reflect the effect of
the amino acid composition, whereas the last λ+ 1 components reflect the effect of sequence order
and property of the residues. For convenience, a set of such 21 + λ components as formulated by
Equations (8) and (9) is called the generalized pseudoamino acid composition of a protein sequence,
and denoted by G-PseAAC.

3. Results

In this section, we will illustrate the use of the new quantitative characterization of protein
sequences with two experiments. As we can see from Equations (8) and (9), there are three adjustable
parameters for the G-PseAAC: λ, w1, and w2. It is not known beforehand which λ, w1, and w2 are best
for a given problem. Three datasets are considered in this paper. The first one is used for determining
these parameters and others for testing purpose.

3.1. Experiment I: Phylogenetic Analysis on Two Datasets

The first dataset used in this paper is composed of β-globin protein of 17 species (see Table 4).
According to the method proposed, we associate each of the 17 protein sequences with a τ = 21 + λ

dimensional vector. These vectors are then used to define a pair-wise evolutionary distance between
any two protein sequences i and j:

D(i, j) = d(Vi, Vj) =
√

∑τ

k=1(vik − vjk)2 (10)

where Vi = (vi1, vi2, . . . , vi,τ) and Vj =
(
vj1, vj2, . . . , vj,τ

)
are the corresponding vectors for sequences

i and j, respectively. Thus, a 17 × 17 real symmetric matrix D17 is obtained. On the basis of the
achieved distance matrix D17, a phylogenetic tree can be constructed using a UPGMA (Unweighted
Pair Group Method with Arithmetic Mean) program included in the MEGA4 package. It is found that,
when λ = 7 and w1 = w2 = 1.6, the non-mammals, including Guttata, Gallus and Muscovy duck,
appear to cluster together and stay outside of the mammals, while Opossum is distinguished from
the remaining mammals. In addition, Primate group {Human, Chimpanzee, Gorilla}, Cetartiodactyla
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group {Cattle, Banteng, Sheep, Goat}, Lagomorpha group {Rabbit, European hare}, and Rodentia group
{House mouse, Western wild mouse, Spiny mouse, Norway rat} form separate branches, respectively
(cf. Figure 2). This result is in accordance with the accepted taxonomy and the literature [1,12,30].

Table 4. The β-globin protein of 17 species.

No. Species Accession Number Length (aa)

1 Human ALU64020 147
2 Gorilla P02024 147
3 Chimpanzee P68873 147
4 Cattle CAA25111 145
5 Banteng BAJ05126 145
6 Goat AAA30913 145
7 Sheep ABC86525 145
8 European hare CAA68429 147
9 Rabbit CAA24251 147
10 House mouse ADD52660 147
11 Western wild mouse ACY03394 147
12 Spiny mouse ACY03377 147
13 Norway rat CAA29887 147
14 Opossum AAA30976 147
15 Guttata ACH46399 147
16 Gallus CAA23700 147
17 Muscovy duck CAA33756 147

 Human

 Chimpanzee

 Gorilla

 Rabbit

 European Hare

 Cattle

 Banteng

 Goat

 Sheep

 Norway rat

 W estern wild mouse

 House mouse

 Spiny mouse

 Opossum

 Guttata

 Gallus

Muscovy Duck

Figure 2. The relationship tree of 17 species.

Using the above-determined values for λ, w1, and w2, we infer the relationship of 72 coronavirus
spike (S) proteins. The coronavirus, whose name is derived from its crown-like shape, is a
positive-sense, single-stranded RNA virus in the family Coronaviridae. It was first identified in the 1960s
from the nasal cavities of patients with the common cold. Most coronaviruses are not dangerous, but
some strains could cause severe, sometimes fatal, diseases in humans and other animals. The MERS
coronavirus (commonly shortened to MERS-CoV) is the virus that causes the Middle East respiratory
syndrome (MERS). MERS was first reported in 2012 in Saudi Arabia and then in other countries in the
Middle East, Africa, Asia, Europe and America. As of July 2016, 1769 laboratory-confirmed cases of
MERS-CoV infection, including at least 630 related deaths (the case fatality rate is >30%), have been
reported in over 27 countries (http://www.who.int/emergencies/mers-cov/en/). People also died
from a severe acute respiratory syndrome (SARS), which first emerged in 2002 in Guangdong Province,
China, and then spread globally. SARS resulted in more than 8000 infections with a case-fatality rate of
~10%. The virus that causes SARS is officially called SARS coronavirus (SARS-CoV). Both MERS-CoV
and SARS-CoV are identified as members of the beta group of coronavirus, Betacoronavirus, while
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they are distinct from each other. The name, accession number, and abbreviation of the 72 sequences
are listed in Table 5. According to the existing taxonomic groups, sequences 1–5 belong to group
alpha (formerly known as Coronavirus group 1 (CoV-1)), sequences 6–8 are members of group gamma
(formerly CoV-3), and the remaining belongs to group beta (formerly CoV-2). Refer to Table 5 for details.

Table 5. The accession number, name and abbreviation for 72 coronavirus spike proteins.

NO. Accession Number Virus Name/Strain Abbreviation

1 CAB91145 Transmissible gastroenteritis virus, genomic RNA TGEVG
2 NP_058424 Transmissible gastroenteritis virus TGEV
3 AAK38656 Porcine epidemic diarrhea virus strain CV777 PEDVC
4 NP_598310 Porcine epidemic diarrhea virus PEDV
5 BAL45637 Human coronavirus 229E HCoV-229E
6 AAP92675 Avian infectious bronchitis virus isolate BJ IBVBJ
7 AAS00080 Avian infectious bronchitis virus strain Ca199 IBVC
8 NP_040831 Avian infectious bronchitis virus IBV
9 NP_937950 Human coronavirus OC43 HCoV-OC43
10 AAK83356 Bovine coronavirus isolate BCoV-ENT BCoVE
11 AAL57308 Bovine coronavirus isolate BCoV-LUN BCoVL
12 AAA66399 Bovine coronavirus strain Mebus BCoVM
13 AAL40400 Bovine coronavirus strain Quebec BCoVQ
14 NP_150077 Bovine coronavirus BCoV
15 AAB86819 Mouse hepatitis virus strain MHV-A59C12 mutant MHVA
16 YP_209233 Murine hepatitis virus strain JHM MHVJHM
17 AAF69334 Mouse hepatitis virus strain Penn 97-1 MHVP
18 AAF69344 Mouse hepatitis virus strain ML-10 MHVM
19 NP_045300 Mouse hepatitis virus MHV
20 AAU04646 SARS coronavirus civet007 civet007
21 AAU04649 SARS coronavirus civet010 civet010
22 AAU04664 SARS coronavirus civet020 civet020
23 AAV91631 SARS coronavirus A022 A022
24 AAV49730 SARS coronavirus B039 B039
25 AAP51227 SARS coronavirus GD01 GD01
26 AAS00003 SARS coronavirus GZ02 GZ02
27 AAP30030 SARS coronavirus BJ01 BJ01
28 AAP13567 SARS coronavirus CUHK-W1 CUHK-W1
29 AAP37017 SARS coronavirus TW1 TW1
30 AAR87523 SARS coronavirus TW2 TW2
31 BAC81348 SARS coronavirus TWH genomic RNA TWH
32 BAC81362 SARS coronavirus TWJ genomic RNA TWJ
33 AAQ01597 SARS coronavirus Taiwan TC1 TaiwanTC1
34 AAQ01609 SARS coronavirus Taiwan TC2 TaiwanTC2
35 AAP97882 SARS coronavirus Taiwan TC3 TaiwanTC3
36 AAP13441 SARS coronavirus Urbani Urbani
37 AAP72986 SARS coronavirus HSR 1 HSR1
38 AAQ94060 SARS coronavirus AS AS
39 AAP94737 SARS coronavirus CUHK-AG01 CUHK-AG01
40 AAP94748 SARS coronavirus CUHK-AG02 CUHK-AG02
41 AAP94759 SARS coronavirus CUHK-AG03 CUHK-AG03
42 AAP30713 SARS coronavirus CUHK-Su10 CUHK-Su10
43 AAP33697 SARS coronavirus Frankfurt 1 Frankfurt1
44 AAR14803 SARS coronavirus PUMC01 PUMC01
45 AAR14807 SARS coronavirus PUMC02 PUMC02
46 AAR14811 SARS coronavirus PUMC03 PUMC03
47 AAP41037 SARS coronavirus TOR2 TOR2
48 AAP50485 SARS coronavirus FRA FRA
49 AAR23250 SARS coronavirus Sin01-11 Sino1-11
50 AHX00731 MERS coronavirus KFU-HKU1
51 AHX00711 MERS coronavirus KFU-HKU13
52 AHX00721 MERS coronavirus KFU-HKU19Dam
53 AIY60578 MERS coronavirus Abu-Dhabi_UAE_9
54 AIY60568 MERS coronavirus Abu-Dhabi_UAE_33
55 AIZ74417 MERS coronavirus Hu-France(UAE)-FRA1
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Table 5. Cont.

NO. Accession Number Virus Name/Strain Abbreviation

56 AIZ74433 MERS coronavirus Hu-France-FRA2
57 ALJ54502 MERS coronavirus Hu/Qunfidhah-KSA-Rs1338
58 AKN24821 MERS coronavirus KFMC-1
59 AKN24830 MERS coronavirus KFMC-7
60 ALJ76282 MERS coronavirus Hu/Taif, KSA-2083
61 ALJ76281 MERS coronavirus Hu/Taif, KSA-5920
62 ALJ54493 MERS coronavirus Hu/Makkah-KSA-728
63 ALB08267 MERS coronavirus KOREA/Seoul/014-1
64 ALB08278 MERS coronavirus KOREA/Seoul/014-2
65 ALR69641 MERS coronavirus D2731.3
66 AKQ21055 MERS coronavirus ADFCA-HKU1
67 AKQ21064 MERS coronavirus ADFCA-HKU2
68 AKQ21073 MERS coronavirus ADFCA-HKU3
69 ALA50001 MERS coronavirus camel/Taif/T68
70 ALA50012 MERS coronavirus camel/Taif/T89
71 ALT66813 MERS coronavirus Jordan_1
72 ALT66802 MERS coronavirus Jordan_10

The corresponding phylogenetic tree constructed by our method is shown in Figure 3. Observing
Figure 3, we find that TGEVG, TGEV, PEDVC, PEDV and HCoV-229E, which belong to group alpha,
are clearly clustered together, and so do the three gamma coronaviruses IBV, IBVBJ, IBVC. In the
subtree of the group beta, MERS-CoVs appear to cluster together, and SARS-CoVs are situated at
an independent branch, while BCoV, BCoVM, BCoVQ, BCoVE, BCoVL, HCoV-OC43, MHV, MHVA,
MHVM, MHVP and MHVJHM form a separate branch. The resulting cluster agrees well with the
established taxonomic groups.

3.2. Experiment II: Identification of DNA-Binding Proteins

Numerous biological mechanisms depend on nucleic acid-protein interactions. The first step
for understanding these mechanisms is to identify the interacting molecules. There are different
strategies for determining DNA sequences that bind specifically to a known protein. However, it is
difficult to accurately identify DNA-binding proteins [50]. Existing experimental techniques have low
practical value due to time consumption and expensive costs [51]. Therefore, developing an efficient
computational approach for identifying DNA-binding proteins is becoming increasingly important.
In this section, we explore the application of the G-PseAAC to the identification of DNA-binding
proteins. The parameters λ, w1, and w2 used here are the same as those determined in Section 3.1.

The dataset used here is taken from [51]. Itsoriginal version was created in 2009 by Kumar et al. [52],
in which the DNA-binding proteins are extracted from the Pfam database [53] with keywords of
“DNA-binding domain” and pairwise sequence identity cutoff of 25%, while the non DNA-binding
domains are randomly selected from Pfam protein families that are unrelated to the DNA-binding protein
family. Xu et al. [51] removed some sequences from the original dataset, and its current version is
composed of 1585 protein sequences. This benchmark dataset contains 770 DNA-binding proteins
and 815 non DNA-binding proteins, which form the positive sample set and negative sample set,
respectively. We randomly divide the 770 DNA-binding proteins into two parts, one has 410 sequences
and the other 360 sequences. Also, we randomly select 410 and 405 sequences from the 815 non
DNA-binding proteins, respectively. We conduct two sets of data. Set I contains 410 DNA-binding
proteins and 410 non DNA-binding proteins. This set serves as a training set. The remaining protein
sequences (360 DNA-binding proteins and 405 non DNA-binding proteins) form Set II, which serves
as a test set.
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Figure 3. The relationship tree of 72 coronavirus spike proteins.
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Support vector machine (SVM) is employed as the classifier, and its implementation is based
on the package LIBSVM (a Library for Support Vector Machines) v3.17 [54], which is open sourced
and can be freely downloaded from http://www.csie.ntu.edu.tw/~cjlin/libsvm. There are four types
of kernel functions in LIBSVM: linear kernel; polynomial kernel; radial basis function (RBF) kernel;
and sigmoid kernel. Among them, the RBF kernel is deemed a reasonable first choice [55]. The main

reason is that, taking the form K
(
Vi, Vj

)
= e−γ||Vi−Vj ||2 , the RBF kernel can non-linearly map samples

into a higher dimensional space so it can handle the non-linearly separable data. Accordingly, the
RBF kernel is also adopted in this paper. The model selection of this kernel involves two parameters
to be decided: the penalty parameter C and the kernel parameter γ. We first convert each of the
1585 protein sequences into a 28-D vector, and then the vectors belonging to Set I are scaled and fed
to the SVM. With an optimization procedure using a grid search strategy in LIBSVM, the parameter
pair (C, γ) is determined as (8, 0.5) (It should be pointed out that the optimal values for one round
of cross-validation may not be the same for another.). In literature, a set of metrics are often used to
measure the prediction quality. To make it intuitive and easy to understand for readers, here we adopt
the definition and notations used in [40,41,56–60] to describe the corresponding evaluation metrics:

Sn = 1 − N+−
N+

,

Sp = 1 − N−
+

N− ,

Acc = 1 − N+− + N−
+

N+ + N− ,

MCC =

1 −
(

N+−
N+ +

N−
+

N−

)
√(

1 + N−
+−N+−
N+

)(
1 + N+−−N−

+
N−

) ,

F1_M = 2 × Precision × Recall
Precision + Recall

,

where N+ is the total number of DNA-binding proteins investigated, while N+− the number of
DNA-binding proteins incorrectly predicted to be of non DNA-binding proteins; N− the total number
of non DNA-binding proteins investigated, while N−

+ the number of non DNA-binding proteins

incorrectly predicted as DNA-binding proteins. Precision =
N+−N+−

N+−N+−+N−
+

, Recall = 1 − N+−
N+ . It should

be pointed out that the set of metrics above is valid only for the single-label system (such as the
case at hand). For the multi-label systems whose existence has become more frequent in system
biology [61–64] and system medicine [65], a completely different set of metrics as defined in [66]
is needed.

With the best pair (C, γ) obtained in the training stage, Set II is fed to the SVM. We find that
N+− = 17 and N−

+ = 22. We thus have

Sn = 95.28%, Sp = 94.57%, Acc = 94.90%, MCC = 0.8978, F1_M = 94.62%.

Repeating the above random division procedure three times, we perform three cross-validation
tests and list the results in Table 6. As can be seen, the accuracy (Acc), Matthew’s correlation coefficient
(MCC), and F1-measure (F1_M) in each cross-validation test are greater than 94.90%, 0.8977, and 94.59%,
respectively. This result indicates that our method is promising in identifying DNA-binding proteins.
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Table 6. The results of three different cross-validation tests.

Test 1 2 3 Average

Sn (%) 95.28 94.72 95.00 95.00
Sp (%) 94.57 95.06 95.06 94.90

Acc (%) 94.90 94.90 95.03 94.94
MCC 0.8978 0.8977 0.9004 0.8986

F1_M (%) 94.62 94.59 94.73 94.65

4. Discussion

4.1. Selection of Properties for Amino Acids

In addition to the three physical–chemical properties mentioned above, both hydrophilicity and
molecular weight of amino acids can play important roles for characterization of proteins. Therefore,
one can consider r-combinations of the five properties to describe a protein sequence. The purpose of
this paper is to find an appropriate way for converting a protein sequence of 20 kinds of amino acids
into a string over a “small” alphabet. If we take r to be 3, by the scheme described in Section 2, the
triple (t(1), t(2), t(3)) has at most 23 = 8 different forms. This means that the 20 native amino acids
can thus be classified into no more than eight groups, whereas if the 5-combination or 4-combination
is selected, by the similar scheme, (t(1), t(2), · · · , t(r)) will have 25 = 32 or 24 = 16 possible forms.
Compared with “20,” the figure is not “small.” Therefore, r is taken to be 3 in this paper. By means of
each of the 3-combinations of the five properties, the same experiments are performed. As a result, we
find that hydrophobicity, isoelectric point, and relative distance form the best 3-combination.

4.2. Feature Analysis

As we see from Equations (8) and (9), the 28-D feature vector consists of three parts: 20 amino acid
compositions; 7 correlation factors; and 1 ALE-index. One may be interested in knowing whether or not
the last two parts are significant. First and foremost, let us see what would happen if only the first part
was used? Without loss of generality, suppose S is a protein sequence and the counts of 20 native amino
acids are n1, n2, · · · , n20, respectively. Then we have a multi-set M (S) = {n1·A, n2·C, · · · , n20·Y}.
Based on the knowledge of combinatorics, it is not difficult to see that there are a total of

|S|!
n1!·n2!·····n20! =

(n1+n2+····n20)!
n1!·n2!·····n20! different sequence/strings possessing the same amino acid compostion.

This suggests that the amino acid composition alone is not sufficient to represent and compare
protein sequences. What would happen if only the first two parts were used (i.e., without using the
ALE-index)? By using the vector with the first 27 components, experiments I and II are performed. For
the first dataset, there is no significant difference between the tree constructed with the 27-D vector and
that with the 28-D vector. For the second dataset, the corresponding relationship tree of coronavirus
spike proteins is shown in Figure 4. From Figure 4, it is easy to see that MERS-CoVs belonging to
Betacoronavirus appear to cluster together with the three Gammacoronaviruses, instead of the other
Betacoronaviruses. This phenomenon is disappointing. For the third dataset, we repeat the three
cross-validation tests with the 27-D vector and list the corresponding results in Table 7. By comparing
Table 7 with Table 6, we can find that the prediction quality diminished slightly. These results indicate
that the ALE-index can make a very positive contribution to the performance of experiments.

Table 7. Results of the three cross-validation tests with the 27-D vector.

Test 1 2 3 Average

Sn (%) 95.00 93.61 94.44 94.35
Sp (%) 94.32 94.32 95.06 94.57

Acc (%) 94.64 93.99 94.78 94.47
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 IBV

 IBVBJ

 IBVC

 TGEV

 TGEVG

 HCoV-229E

 PEDV

 PEDVC

 MHV

 MHVA

 MHVM

 MHVP

 MHVJHM

 HCoV-OC43

 BCoVM

 BCoVQ

 BCoVL

 BCoV

 BCoVE

Figure 4. The relationship tree of the coronavirus spike proteins with the 27-D vector.

5. Conclusions

By means of three important physicochemical properties of amino acids, we first classify the
20 native amino acids into six groups, and assign to each group a representative symbol. Then, by
substituting each letter with its representative letter, we convert a protein primary sequence into a
six-letter sequence, which can be regarded as a coarse-grained description of the protein primary
sequence. In comparison with the string composed of 20 kinds of amino acids, the reduced sequence
not only makes the generalization from representations of DNA sequences to those of proteins easier,
but also enables us to focus more on the information of our interest. On the basis of the six-letter
sequence, we obtain a generalized adjacency matrix (GAM) and then its normalized ALE-index. Also,
we extract λ order-correlated factors via the reduced sequence. Combining these elements with the
frequencies of occurrenceof 20 native amino acids, we constructa (21 + λ) dimensional vector to
characterize a protein sequence. Our method is tested byphylogenetic analysis and identification of
DNA-binding proteins. The feature analysis implies that the λ + 1 components beyond the amino
acid composition play very important roles in the performance of the experiment. As shown in
a series of recent publications (see, e.g., [58,67–72]) in demonstrating new methods or approaches,
user-friendly and publicly accessible web-servers will significantly enhance their impacts [73]. We will
make efforts in our future work to further improve our method and provide a web-server for the new
method presented.
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Abstract: From the aspect of human circulation system structure, a complete hemodynamic model
requires consideration of the influence of microcirculation load effect. This paper selected the seepage
in porous media as the simulant of microcirculation load. On the basis of a bi-directional liquid-solid
coupling tube model, we built a liquid-solid-porous media seepage coupling model. The simulation
parameters accorded with the physiological reality. Inlet condition was set as transient single-pulse
velocity, and outlet as free outlet. The pressure in the tube was kept at the state of dynamic stability in
the range of 80–120 mmHg. The model was able to simulate the entire propagating process of pulse
wave. The pulse wave velocity simulated was 6.25 m/s, which accorded with the physiological reality.
The complex pressure wave shape produced by reflections of pressure wave was also observed.
After the model changed the cardiac cycle length, the pressure change according with actual human
physiology was simulated successfully. The model in this paper is well-developed and reliable.
It demonstrates the importance of microcirculation load in hemodynamic model. Moreover the
properties of the model provide a possibility for the simulation of dynamic adjustment process of
human circulation system, which indicates a promising prospect in clinical application.

Keywords: hemodynamic model; microcirculation load; liquid-solid-porous media seepage coupling

1. Introduction

A hemodynamic model is able to provide theoretical evidence for suitable selections of clinical
treatment plan, and hence has important meanings. Take human physiology as an example: if the heart
is regarded as a power source and the arteries at each level as transportation pipelines, the human
microcirculation system can be seen as the system load. There is a complex coupling relationship
between various components of the circulation system, which influence each other severely. A change
in one factor can even cause a change in the environment of the entire circulation system. Complex
phenomena in the human blood circulation system should be the properties produced by the coupling
of various parts of the system, not only relying on the selection of boundary conditions. Therefore,
a well-developed hemodynamic model must be able to show completely different components of
the circulation system and their effects. Only in this way can it provide a correct simulation of the
numerous phenomena of human blood flow, and provide evidence for research on producing and
developing principles for dealing with some diseases.

Nowadays, there are many studies on the hemodynamics model, but none of them is able to
show the properties of the human circulation system. Though the hemodynamic model of a rigid tube
wall [1–4] has been widely utilized, it is not able to show the stress-strain properties of solids, which
places severe limitations on clinical applications. The model of a flexible tube wall [5–7] is not only
able to show the deformation of the solid, but also reflects the influence of solid deformation on flow
field, which has great potential for application [8]. However, the model fails to show the complex
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pressure wave of physiology [9] and simulate the propagation of a pulse wave. In these studies, the
outlet pressures were all set as a fixed value or a measured value, and it was assumed that these outlet
conditions will not change with the change of the flow field. Since pressure influences the deformation
of the tube wall, the change of outlet pressure conditions will have a profound influence on the flow
field. Therefore, the results were not ideal in those studies relating to the adjustment process of the
entire human circulation system [10]. In the study on myocardial bridge [11], Schwarz observed the
influence of changes of downstream flow field on the front-end flow field. It follows that changeable
load condition is one of the most important components neglected in most hemodynamic models.
Through analysis of the characteristics of a capillary microcirculation system and the flow properties
of the kidney and other organs, it was found that the seepage in porous media is a load model that
accords relatively well with the form of physiological changes. Therefore, this paper needs to add a
load of porous media seepage in the classical bi-directional liquid-solid coupling model to completely
simulate the human circulation system.

Additionally, in order to make the load of porous media seepage accord with physiology, there are
requirements for the tube length and other flow field factors. The human microcirculation system is
located at the end of the human blood circulation system. Before arriving at the microcirculation system,
the fluid will flow through the entire circulation system and experience severe changes. However
in previous studies, the flow field was not long enough for the simulation of these changes, so the
model requires a flow field that is equivalent to the actual physiology to simulate the physiological
flow field correctly. In addition, the deformation of tube wall is an important factor influencing the
flow field. Thus, in the calculating simulation of Dong [12], as the influence of liquid-solid coupling
was not considered, his simulation results were not very satisfying, though the load of porous media
seepage was also selected. It can be seen that a bi-directional liquid-solid coupling model with enough
developing space for a flow field is the precondition for a load to produce correct results. Only when
all the factors in this system can meet physiological needs can the results accord with physiology.

Accordingly, this paper built a bi-directional liquid-solid model with long straight tube to simulate
the human blood vessel. A load of porous media seepage was arranged at the outlet of the liquid-solid
coupling model to simulate the human microcirculation system. Using the most ideal single-pulse
inlet condition and free outlet’s boundary condition, we successfully simulated various complex
phenomena in human blood vessels. The mechanisms of these phenomena were revealed through
analysis. Moreover, the heart rate was changed for a comparison with human physiological reality,
thus verifying the reliability of the model proposed.

2. Model and Methods

2.1. Hemodynamic Model

According to the discussions above, this paper built a model of a long straight tube with a flexible
wall and a load of porous media seepage. As shown in Figure 1, the model mainly consists of three
parts: the straight tube is used for simulating the flow field region of the blood vessel; the flexible tube
wall is used for simulating deformation of the vascular wall and its influence on flow; and the tube
with porous media seepage is used for simulating flow in the microcirculation system. The control
equations of the various regions are as follows:

2.1.1. Fluid Region

Continuity equation:
Bui
Bxi

“ 0 (1)

Momentum equation:
Bui
Bt

` uj
Bui
Bxj

“ ´ 1
ρf

Bp
Bxi

` 1
ρf

Bτij

Bxj
(2)
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where ui is fluid velocity, p is fluid pressure, ρf is fluid density, and τij is the fluid stress tensor. The
configuration of the fluid region is changeable.

2.1.2. Solid Region

Structural momentum equation:
Bσij

Bxi
` fi “ ρp

Bui
Bt

(3)

Solid constitutive equation:
σij “ Dijklεkl (4)

where σij is the solid stress tensor, Dijkl is the Lagrange elasticity tensor, and εkl is the strain tensor.

2.1.3. Liquid-Solid Coupling Interface:

σ f ¨ n f “ σp¨ np (5)

u f “ up (6)

where σ is the stress tensor, n is the normal vector, and u is the velocity vector of the interface.

2.1.4. Region with Porous Media Seepage

Continuity equation:
Bεui
Bxi

“ 0 (7)

Momentum equation:

Bεui
Bt

` uj
Bεui
Bxj

“ ´ 1
ρ f

Bεp
Bxi

` 1
ρf

Bετij

Bxj
´ ε2μ

ρf¨ k
ui (8)

where k is permeability, ε is porosity, and μ is the fluid viscosity factor.

2.1.5. Fluid-Porous Media Seepage Interface

If,p “ ´Kfp pVf ´ Vmq (9)

where If,p is the momentum exchange capacity of the interface; Kfp is the interface conductivity, which
is determined by the constitutive equation of porous media seepage; V is velocity.

Figure 1. Calculation model and schematic of measuring point distribution.

2.2. Simulate Method

In order to comprehensively show the properties of the model, this paper selected the entire blood
circulation system starting from the aorta as a study subject. The whole aorta has a straight tube of
about 1 m. Because of the scale and strain rate of the aorta, the fluid was simplified as the Newtonian
fluid [13]. The straight tube was set with a length of 1000 mm, diameter of 20 mm, and wall thickness
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of 2 mm, which accords with the aortal physiological parameters. The tube with porous media for
seepage had a length of 300 mm, ensuring its internal flow developing completely. As the power
source of the blood circulation system, the inlet took velocity as its boundary condition. Outlet was set
as free outlet, located at the end of the tube with porous media for seepage.

The Computational methodology process of the hemodynamic model is shown in Figure 2.
On the liquid-solid interface, fluid applied the calculated wall pressure on the solid; after the solid
was deformed due to the pressure, the flow field grid was rebuilt. Then, after several iterations, a
convergent result was obtained. Notably, due to the change in the flow field region, the fluid would
be temporarily stored in the deformation; when the pressure in the tube dropped, the deformation
would decrease and those stored fluids would reenter the flow field to flow. On the fluid-porous
media seepage interface, fluid provided the pressure on interface. Under this pressure, the total fluid
amount allowed to go through the seepage tube could be calculated. In this system, though solid
and porous media seepage did not interact directly on an interface, they were connected together by
the flow field. Therefore, the three parts operate synergistically, creating a complex multi-directional
coupling relationship.

Figure 2. Computational methodology.

This paper divided the model into a structural grid. As shown in Figure 3, the tube cross-section
was divided into butterfly grids. The model finally consisted of 84,728 cells, with 107,850 nodes.
Therein, the fluid region had 52,668 cells, the solid region had 16,632 cells, and the tube with
porous media for seepage had 15,428 cells. CFD-ACE SOLVER was chosen to carry out the entire
calculation for this paper, and an arbitrary Lagrangian-Eulerian (ALE) method was employed. The
first-order upwind difference scheme was used. A constant time step Δt = 0.02 s was employed in
this study. When the program was running, corresponding physical quantities such as pressure and
displacement transfer across fluid-structure interfaces through the coupling of the two sets of codes
until a convergence criterion (10´4) was reached for each time step. Repeated computations with a
finer grid (253,800 nodes, 205,386 cells) and coarser grid (33,165 nodes, 24,220 cells) were carried out.
Results showed that the alteration of maximum pressure at the same location of the fluid domain was
6% between the finer grid and the coarser grid, and alteration was 3% between the finer grid and the
grid in this paper.
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Figure 3. Grid division for the tube cross-section.

2.3. Calculation Examples and Parameters

In order to verify the reliability and superiority of the hemodynamic model proposed, five
calculation examples (see Table 1) were taken through changing the tube length, load conditions,
and cardiac cycle. All the calculation examples were based on the physiological parameters of the
descending aorta, and the transient flow was adopted for simulating actual the working state of a
blood vessel. The fluid in the tube was simplified as the Newtonian fluid of blood parameters, with
a density of 1050 kg/m3 and a dynamic viscosity coefficient of 0.0035 Pa¨ s [14]. The density of the
flexible tube wall was 1120 kg/m3, Young’s modulus was 0.5 MPa [15], and Poisson’s ratio is 0.49 [16].
The permeability of the porous media was 9.5 ˆ 10´9m2, and the porosity was 100%.

Table 1. Five calculation examples and their parameters.

Calculation Examples
Permeability of
Porous Media k

Length of
Flow Field

Cardiac Cycle T

Example 1. Normal physiology 9.5 ˆ 10´9 1000 mm 0.8
Example 2. No seepage load N/A 1000 mm 0.8

Example 3. Short tube 9.5 ˆ 10´9 200 mm 0.8
Example 4. Accelerated heart rate 9.5 ˆ 10´9 1000 mm 0.6
Example 5. Decreased heart rate 9.5 ˆ 10´9 1000 mm 1

All the calculation examples selected velocity inlet condition and free outlet, and the inlet
condition and outlet condition are shown in Figure 4. The inlet condition was velocity inlet, which
was used for simulating the process of cardiac impulse. Systole was 0–0.2 s, and the maximum systolic
velocity was 0.8 m/s [17]. Diastole ranged from 0.2 s to the end of a cardiac cycle. Inlet velocity at
this period was kept at 0 m/s to simulate the state of a closed heart valve without reflux. The average
Reynolds number was about 661, which was based on the average velocity of the inlet. The flow
regime was laminar flow. The outlet condition was pressure-free, i.e., the pressure was always kept
at 0 Pa. This not only eliminated the influence of disturbance from outer pressure factors, but also
achieved similarity with the physiological reality in the vein.

For the two calculation examples where the heart rate was changed, this paper assumed the
outflow after every heart pulse to be consistent. Thus one only has to change the length of the diastole
to achieve a change in the cardiac cycle. As shown in Figure 4, for different cardiac cycle calculation
examples, the systole was kept unchanged while the diastole changed. Accordingly, in the example of
normal physiology, heart rate was 75/min and cardiac cycle was 0.8 s (0.2 s for systole, and 0.6 s for
diastole); in the example of accelerated heart rate, heart rate was 100 min´1 and cardiac cycle was 0.6 s
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(0.2 s for systole, and 0.4 s for diastole); in the example of decreased heart rate, heart rate was 60 min´1

and cardiac cycle was 1 s (0.2 s for systole, and 0.8 s for diastole).
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Figure 4. Boundary condition of the flow field.

3. Results and Discussion

This paper firstly compared the calculation example with no seepage load. Using the index
of vascular pressure, the rationality of the liquid-solid coupling hemodynamic model with seepage
load proposed in this paper was analyzed. Then, through simulation of pressure wave propagation,
reflection, and other physiological phenomena in the blood vessel, the importance of the length of
the straight tube was analyzed, which supports the reliability of the model proposed. Finally, the
superiority of the model was discussed from the formation of secondary pressure wave in blood vessel
and the influence of cardiac cycle.

In the process of data analysis, in order to show the different variation forms in the entire flow
field at different positions, this paper selected five measuring points in the tube. All of them were
located in the center of the tube cross-section. As shown in Figure 1, the distances of the five measuring
points P1–P5 from the inlet were 0.1 m, 0.3 m, 0.5 m, 0.7 m, and 0.9 m, respectively. Under such a
configuration, we could comprehensively master the similarities and differences at each position of the
tube, through analysis of the pressure-time relationship at various measuring points of the flow field.
In addition, we could analyze phase differences of various feature points in one cycle.

3.1. Physiological Pressure Level

Calculation results showed that the influence of load on the flow field was tremendous. Thus,
between calculation examples with load and without load, the properties of flow field exhibited major
differences. In Figure 5, there is a comparison between the pressure results of calculation examples
with normal physiology and no seepage load. Therein, A is the systolic pressure of various positions
in the tube, B is the diastolic pressure, and C is the amplitude of the pressure in the tube. In the
example of normal physiology, the systolic pressure of all positions in the tube was maintained at
around 120 mmHg; the diastolic pressure was kept at 80 mmHg, and the amplitude of pressure at
30–40 mmHg. These observations accorded with the physiological reality. In the example without
seepage load, the systolic pressure near the inlet was 29 mmHg, while that near the outlet was 6 mmHg.
The diastolic pressure near the inlet was ´32 mmHg, while that near the outlet was ´6 mmHg. With
the approach to the outlet, the amplitude decreased continuously. It can be seen that the use of pressure
alone as the outlet condition led to a larger negative pressure, and the pressure amplitude in the tube
was changing. These results do not accord with the physiological conditions. The seepage load played
a role in impeding flow in the model, which had a great effect on whether the fluid would be stored
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in the deformation of the tube wall. Thus the pressure in the tube was redistributed and reached the
physiological pressure level.
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Figure 5. Comparisons of pressure in the examples with seepage load and pressure-free outlet:
(a) maximum vascular pressure; (b) minimum vascular pressure; (c) pressure amplitude.

Through studying the process of the flow field developing in the tube, the internal mechanism
of how the normal physiology example maintained the physiological pressure level can be revealed.
When the load had a very strong hindering effect, the fluid entering the flow field was not able to flow
out completely. Part of the fluid was stored in the deformation of tube wall and participated in the next
cardiac cycle. Thus, the initial pressure of the second cycle would be increased. After several cardiac
cycles, when the initial pressure of the flow field increased to a certain level, the newly input fluid was
able to pass through the load and flow out of the flow field in one cycle. Accordingly, the fluid in the
tube resumed a stable state, and the initial pressure of flow field also reached a dynamic balance.

Figure 6 is the curve of pressure change with time in the flow field of the normal physiology
example, which shows the whole process of flow field developing from completely static to stable. The
five lines in the figure represent the five positions from inlet to outlet in the tube. The time ranged from
0 s to 16 s, with 20 cycles in total. It can be seen from the figure that the pressure in flow field increased
rapidly from 0 s to 7 s, and gradually became stable after 7 s. The final pressure at all measuring points
in the tube was kept in the range of physiological pressure of 80–120 mmHg. This indicates that the
load influenced the total fluid quantity stored through the elastic deformation of tube wall, which
further influenced the systolic pressure, diastolic pressure, and pressure amplitude in the tube.
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Figure 6. Changing process of pressure in the tube from static flow field (P1–P5 are five measuring
points distributing axially along the tube).

3.2. Pulse Wave Propagation

This model showed very complex phenomena in time and in space, which included the
propagation of pulse wave. When fluid entered the tube, fluid would be stored in the increased
flow field from tube wall deformation, which would not cause influence for downstream flow field
temporarily. Due to such property, the moments when the pressure wave peak occurred at various
positions of the tube were different. Figure 7 is the pressure nephogram of the tube cross-section,
wherein A, B, C, and D represent four moments (0 s, 0.1 s, 0.16 s, and 0.2 s, respectively). From the
nephogram, we can clearly observe the propagation of the pressure wave peak, that is, the propagation
of the pulse wave. At the initial moment, the pressure in the tube was maintained at a stable value.
At 0.1 s, inlet velocity just reached the wave peak, and the inlet pressure reached the maximum. At
0.16 s, the pressure wave peak started to move forward, and the pressure decreased on both sides of
the wave peak. Until0.2 s, the pressure wave peak was near the outlet. Comparing the flow field of
these moments, the whole process of the pressure wave peak moving from inlet to outlet can be seen
distinctly. This is the same as the result of Olson’s research [18]. According to the academic monograph
of Fung [13], propagation of the pulse wave exists widely. Therefore, it is necessary to take the effect of
the pulse wave into account in hemodynamic simulations.

Results of the short tube example show that the difference in peak occurring moment was small.
As shown in Figure 8a, the pressure peak values in tube all occurred at 0.18 s. The tube with a length
of only 200 mm failed to show the phenomenon of pressure wave propagation. Comparatively, in the
model of this paper, the tube length was the same as the actual aorta length. This provided the flow
field with enough developing space. It follows that tube length is one of the essential conditions for
simulation results to accord with the physiological reality.

Through data treatment, the moments when pressure peaks occurred at five measuring points
were obtained and subjected to linear fitting, as seen in Figure 8b. It can be seen that the measuring
point P1 at 0.1 m away from the inlet reached the pressure maximum first. Other measuring points
showed the pressure peak value successively; the closer to the inlet, the earlier the peak occurred. The
two measuring points at 0.1 m and 0.9 m away from the inlet had a time difference of 0.12 s in the
occurrence of pressure peak. Through the linear fitting for peak-occurring moments, we can obtain
the relationship between peak-occurring moment and the distance from inlet. According to the fitting
result, the velocity of the pulse wave in the tube was 6.25 m/s, which is close to the actual pulse wave
velocity [19]. Also, it is the same as the one-dimensional pressure wave velocity [20]. This confirms
that this model was able to correctly simulate the pulse wave propagation in human aortas.
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Figure 7. Pressure nephograms (A. t = 0 s; B. t = 0.1 s; C. t = 0.16 s; D. t = 0.2 s).

(a) (b) 

0.00 0.05 0.10 0.15 0.200.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
e 

P
re

ss
ur

e 
pe

ak
 m

om
en

t (
s)

Location (m)

 The Pressure peak moment

Short tube case

0.2 0.4 0.6 0.8

0.15

0.20

0.25

Th
e 

P
re

ss
ur

e 
pe

ak
 m

om
en

t(s
)

Location (m)

 The Pressure peak moment
 Linear Fit of The Pressure peak moment

Value Standard Error
Intercept 0.1 0.00663
Slope 0.16 0.01155

Figure 8. Moments corresponding to the pressure peak and their fitting results: (a) peak-occurring
moments in short tube example; (b) peak-occurring moments in a normal physiology example.

3.3. Pulse Wave Reflection

Another phenomenon shown in the model is the reflection of the pulse wave. When pressure
propagated to the load interface, seepage load played a hindering effect. Accordingly, not all the fluid
was able to flow out of the flow field smoothly; part of it would be held in the flow field. At this time
the tube wall near the outlet would expand, and the pressure would increase accordingly. When the
pressure downstream was larger than that upstream, it would also propagate back towards the inlet,
producing a reflection wave. If the pulse wave is taken as a major pressure wave, this reflection wave
is typically called a secondary pressure wave. By overlapping this reflection wave with the incoming
major pressure wave, a pressure-time curve with double wave peaks can be produced. In previous
studies, such a curve failed to be simulated. However, in the results of physiological measurement and
of simulation by our model, such a curve shape with a double wave peak was visible.

Figure 9 shows a pressure-time curve, plotted with the observations of two measuring points at
0.3 m and 0.7 m away from the inlet. We can clearly see the double peak structure from the figure. The
pressure-time curve was formed through the overlapping of a major pressure wave and a reflection
wave; the reflection wave was obviously smaller than the major pressure wave. Comparing the curves
of the two measuring points, it can be seen that though the difference between major pressure waves
was not large, there was a significant difference between reflection waves.
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Figure 9. Pressure-time curves of measuring points: (a) P2 (0.3 m); (b) P4 (0.7 m).

This paper studied the occurring moments of the major pressure wave peak and reflection wave
peak, as shown in Figure 10. It can be seen that the occurring moments of major pressure peak were in
linear relationship with distance. However, the reflection wave peak presented a non-linear feature,
e.g., the peak-occurring time was earlier at the position of 0.3 m than at the position of 0.1 m, while it
was earlier at the position of 0.7 m than at the position of 0.9 m. This exactly suggests that secondary
pressure wave is also propagated in the form of a wave. As shown by marks of the figure, the major
pressure wave was a non-reflected primary pressure wave, propagating towards the outlet. However,
at the positions of 0.3 m and 0.1 m, the pressure waves were secondary pressure waves that have been
reflected once by the load and hence propagated towards the inlet. Similarly, the pressure waves at
0.7 m and 0.9 m were the third pressure waves that experienced another reflection by the inlet, and
propagated towards the outlet again. Conclusively, in Figure 9, the reflection wave at 0.3 m was the
secondary pressure wave undergoing one reflection, and that at 0.7 m was the third pressure wave
undergoing two reflections. That is why there was a large difference between the magnitudes of
reflection waves at these two positions.

Through comparing with physiological measurements [9], it can be seen that the secondary
pressure wave simulated by the model of this paper accords with the physiological reality. Without the
coupling of liquid-solid-porous media seepage, it is impossible to simulate this physiological blood
pressure, which is produced by repeated reflections and overlapping of pressure waves. In addition,
this complex wave shape produced a profound influence on the flow field by influencing the tube
wall deformation. The wall shear stress and other flow field parameters would change accordingly.
Therefore, the simulation of this paper accords with the physiological reality, and this complex wave
structure is also an important guarantee for the correctness of the study later.
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3.4. Influence of Cardiac Cycle

In order to verify the reliability of the model in terms of physiological parameter change, this
paper used the cardiac cycle as the study subject. In human physiological phenomena, a change in
the cardiac cycle has a great influence on the pressure in a blood vessel. The blood flux output after
every cardiac pulse is fixed. However, with a change in the cardiac cycle, the time of fluid flowing
out of the flow field will change, and the pressure required by a fluid to pass through the load will
increase, finally influencing the pressure in the tube. Therefore, the pressure change caused by heart
rate is not only related to flux but also has a close connection with vascular wall deformation and load.
It can be seen that the influence of the cardiac cycle on vascular pressure is produced by a coupling of
multiple factors, and all factors in the system are required to accord with the physiological reality. In
a numerical simulation, a short straight tube could not meet the needs of storing fluid, and normal
pressure outlet conditions could not change with the tube's flow field. Hence, both could not simulate
the pressure change caused by cardiac cycle change. Comparatively, the model in this paper provides
fluid with enough developing space and storing ability, as well as the load condition changing with
the flow field. Therefore it can complete the task the numerical simulation cannot. This paper selected
two cardiac cycles (0.6 s and 1 s), and compared them with the normal physiology example.

First, this paper analyzed the systolic pressure and diastolic pressure of various positions under
the circumstances of different cardiac cycles. As shown in Figure 11, three lines represent the results of
the three calculation examples with cardiac cycles of 0.6 s, 0.8 s, and 1 s, respectively. It can be seen that
the shortening of the cardiac cycle brought simultaneous increases in diastolic pressure and systolic
pressure. When the cardiac cycle was 0.6 s, the systolic pressure was 140–150 mmHg and diastolic
pressure was 110–115 mmHg. When the cardiac cycle was 1 s, systolic pressure was 90–100 mmHg
and diastolic pressure was about 60 mmHg. The above described pressure change was the same as the
actual changing principle of human blood pressure under rest and motion states. Thus the change of
vascular pressure in our model accords with the physiological reality.
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Figure 11. Comparison of pressure in tube under different cardiac cycle (a) systolic pressure;
(b) diastolic pressure.

Secondly, this paper analyzed the changes of tube displacement under different cardiac cycles.
In Figure 12, three lines represent the tube displacement circumstances in the three examples, with
cardiac cycles of 0.6 s, 0.8 s, and 1 s. Figure 12a shows the initial displacement circumstance of tube
at 0 s. Figure 12b shows the circumstance of tube displacement at 0.1 s, when the peak occurred at the
inlet. Figure 12c shows the circumstance of tube displacement at 0.16 s, when the peak had not reached
the outlet. Figure 12d shows the displacement circumstance at 0.2 s, when the peak reached the outlet.
It can be seen that when the cardiac cycle decreased, tube wall deformation increased markedly, and
vice versa. The inlet pressure reached its peak value at 0.1 s. The pressure peak moved forward at 0.16 s
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and arrived at the outlet at 0.2 s. However, like the pressure distribution, the curve shape changed
little under different frequencies. This illustrates that the cardiac cycle has limited influence on the
change of flow in the tube, and the pressure change is mainly caused by a change in the fluid amount
stored through tube wall deformation.
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Figure 12. Comparison of tube wall deformation under different cardiac cycle lengths: (a) 0 s; (b) 0.1 s;
(c) 0.16 s; (d) 0.2 s.

With the coupling effect of three major systems, the proposed model successfully simulated the
pressure changes in the tube only by adjusting cardiac cycle length. The simulated pressure changes
have been proved to accord with the actual physiological features. This illustrates that the model
of this paper is a well-developed and reliable system, which is able to show comprehensively the
transition process of the circulation system under different states.

4. Conclusions

Conclusively, the liquid-solid coupling hemodynamic model built in this paper considering
microcirculation load effect is able to effectively simulate pulse wave propagation and reflection. It
can also reflect the physiological features of human aortas and circulation system. The model is a
hemodynamic model according with actual physiological process. Through data analysis, it was
revealed that in the human blood circulation system, the coupling relationship of liquid, solid, and
porous media seepage is exactly the deep reason why the various complex flowing phenomena of
human blood occur in the circulation process. The effects of the propagation and reflection of the pulse
wave should not be ignored in hemodynamic simulations. Meanwhile, through this model, we were
able to simulate the motion and physiological features of flow in a blood vessel more rationally. This
study thus provides an important theoretical foundation and technical methods for analyzing cause,
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development, and clinical treatment of atherosclerosis, aneurysms, high blood pressure, and other
cardiovascular and cerebrovascular diseases in the future.

The constitutive equation of microcirculation load has a great influence on the bloodstream, and
has decisive influence on various phenomena in the flow field. Therefore, in hemodynamic study and
simulation, the influence of microcirculation load must be considered. The simulations will achieve a
better correspondence with human physiology through deep study of microcirculation load properties
and improving the constitutive equation of the model.

The model is able to realize the transition of the circulation system under different flow field
conditions, providing the possibility of simulating the dynamic condition of the human circulation
system. Through studying dynamic properties, we cannot only analyze the properties of the blood
circulation system under different physiological states, but also simulate the transition process of the
human body between different physiological states. These have important meanings for research on
aneurysms and other blood diseases.

However, the present work is limited by physiological inaccuracies in the geometrical shape of
the models. Further work will be conducted on the simulation in actual arterial geometries extracted
from CT angiography or MRI. High-precision grids will be employed. In addition, the effect of
non-Newtonian fluid on the small arteries will be considered.
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