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1. Introduction

In the last decade, very active research in the field of ultrasound medical imaging has brought to
the development of new advanced image formation techniques and of high-performance systems able
to effectively implement them [1]. For years, Brightness (B)-mode, one of the mostly used ultrasound
imaging modalities [2], has been based on a time-consuming process, in which focused beams are
iteratively sent into the body and the received waves are used to form an image scan-line, covering
line-by-line the region of interest.

“Image formation” refers to the whole process of image reconstruction, starting from the
transmission strategy to the reception of signals, beamforming, and image processing. The role
of the so-called “beamformer” is central in this process, as it manages the ultrasound beam generation,
focusing, and steering [3]. Image quality is in fact deeply influenced by the beam shape, and thus the
beamforming optimization plays an important role in maximizing the signal-to-noise ratio, contrast,
and resolution of the final image, while limiting as much as possible off-axis interferences to reject
clutter and noise. Additionally, an important goal is to improve the acquisition frame-rate, which, as
mentioned above, is limited by the line-by-line acquisition process [4].

Image enhancement methods play an important role during both the image pre- and
post-processing phases [5]. In the former case, these techniques aim at improving the quality of B-mode
frames by directly operating on the image generation process, as for example in spatial/frequency
compounding, pulse compression, or harmonic imaging. The latter category instead refers to
approaches aimed at reducing noise/artifacts, making speckle more uniform, detecting edges,
and consequently facilitating the following processing steps, like segmentation or measurement
of quantitative parameters.

Given the above premises, this Special Issue was launched to collect novel contributions on
both ultrasound beamforming and image formation techniques. Twenty-one interesting works were
consequently submitted and, among them, 10 were selected for publication (i.e., 48% acceptance rate).

2. Ultrasound B-Mode Imaging

The Special Issue opens with a review paper on the main ultrasound beamforming techniques [6].
The classic beamforming method for linear/phase array imaging is first introduced, before presenting
advanced methods: from multi-line transmission and acquisition to synthetic aperture imaging,
passing through plane wave, and diverging wave imaging. The stress is on the peculiarity of each
method in terms of spatio-temporal resolution, contrast, penetration depth, aperture size, and field of
view. The paper may represent a useful handbook for users who need to choose the most appropriate
beamforming method for the specific application of interest.

Appl. Sci. 2019, 9, 2507; doi:10.3390/app9122507 www.mdpi.com/journal/applsci1
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The following nine papers are grouped in three main groups, dealing with novel beamforming
techniques, non-conventional image formation, and image enhancement, respectively.

2.1. Novel Beamforming Techniques

High frame-rate imaging techniques [4] have recently gained increased interest for their capability
to detect fast dynamic events. However, the improvement of temporal resolution comes at the
expense of image quality, thus pushing researchers to recover it by developing smart strategies. Four
papers have been published in this Special Issue presenting advanced transmission sequences [7,8]
and beamforming schemes [9,10] applied to either plane waves [7,10] or multi-line transmission
imaging [8,9].

Bae and Song [7] analyzed the grating lobe artifacts due to the compounding of images obtained
from the transmission of steered plane waves with a constant angle interval. Additionally, they showed
that the use of non-uniform angle sets is a smart solution to keep the frame rate high, while limiting
the level of image artifacts due to grating lobes. Tong et al. [8] studied the effectiveness of orthogonal
coded excitations in multi-line transmission imaging in suppressing crosstalk artifacts. They showed
that Golay codes enable higher crosstalk rejection (and better contrast) compared to linear chirps.

Two papers focus on the so-called coherence-based beamforming methods. Spatial coherence
of ultrasound backscattered echoes is affected by contributions coming from off-axis regions, noise,
and interferences. Matrone and Ramalli (Guest Editors) presented a new formulation of the Filtered
Delay Multiply and Sum (F-DMAS) beamforming, namely Short-Lag F-DMAS [9]. They provided
new insights into the relation between the performance of the F-DMAS algorithm and the coherence
of backscattered signals in multi-line transmission imaging. Polichetti et al. presented a generalized
and extended formulation of the F-DMAS beamformer, referred to as p-DAS [10]. They applied the
proposed method to plane wave imaging and showed the achieved improvements in terms of lateral
resolution and artifacts rejection.

2.2. Non-Conventional Image Formation

Non-conventional imaging systems have been proposed to improve the B-mode image quality
and its diagnostic content. As an example, Inagaki et al. [11] designed and built a multi-modality
(ultrasound and magnetic resonance) system to estimate the ultrasound propagation speed in the
region of interest. The estimates were then used to correct the beamforming delay, both in transmission
and in reception, thus enhancing the image resolution and signal-to-noise ratio. Liu et al. [12] proposed
a multi-perspective ultrasound imaging system based on four 3.5 MHz linear arrays. These arrays
were placed, in a cross shape, on a motorized rotatory table to perform 3D ultrasound computed
tomography of a breast model with different inclusions. The boundary of the breast, as well as the
inclusions, could be clearly seen from all the perspectives, hence potentially improving the specificity
and sensitivity of ultrasonic diagnosis.

2.3. Image Enhancement

Image quality enhancement can also be obtained through post-processing methods for image
filtering, deconvolution, tracking, segmentation, and tissue characterization. In this Special Issue,
Jabarulla and Lee [13] proposed a technique for liver images based on a signal reconstruction model,
known as sparse representation over dictionary learning. This technique allows filtering the speckle
while preserving the image features and the edges of anatomical structures. Guo et al. [14] presented a
novel super-resolution reconstruction method. They developed a low computational load technique for
microbubble localization and trajectory tracking. They showed that the proposed method improves the
image resolution by using fewer frames than other reference methods, thus moving super-resolution a
step forward to real-time imaging. Makūnaitė et al. [15] showed how advanced segmentation and
tracking techniques can be exploited to develop new predictors of cardiovascular events. Specifically,
they tracked arterial wall movements for the evaluation of arterial stiffness and showed that the
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average value of the intima-media thickness, during the cardiac cycle, is statistically different between
healthy volunteers and patients at risk of cardiovascular disease.

3. Future Perspectives

The different contributions published in this Special Issue confirm that the research of new
strategies to improve the image formation process keeps on being a hot topic in the ultrasound imaging
community. In this sense, it is also worth pointing out that efforts have been recently devoted to
objectively evaluating and comparing novel beamforming methods, by creating development/test
platforms and datasets [16,17] to be shared by all research groups working on ultrasound beamforming.

Further active research is thus expected in this field, where many challenges still persist, especially
when dealing with the difficult-to-image patients. For this reason, efforts should always be supported
by real clinical needs, and image enhancement should be aimed at increasing visibility of anatomical
structures and easing image interpretation and clinical parameters extraction, towards a more and
more effective diagnostic process. An increasing involvement of clinicians in the in vivo evaluation of
real image quality from a medical point of view is thus desirable.
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Abstract: Starting from key ultrasound imaging features such as spatial and temporal resolution,
contrast, penetration depth, array aperture, and field-of-view (FOV) size, the reader will be guided
through the pros and cons of the main ultrasound beam-forming techniques. The technicalities
and the rationality behind the different driving schemes and reconstruction modalities will be
reviewed, highlighting the requirements for their implementation and their suitability for specific
applications. Techniques such as multi-line acquisition (MLA), multi-line transmission (MLT),
plane and diverging wave imaging, and synthetic aperture will be discussed, as well as more
recent beam-forming modalities.

Keywords: medical ultrasound; beam forming; ultrasound imaging; multi-line acquisition; multi-line
transmission; plane wave; diverging wave; synthetic aperture; parallel beam forming; beam pattern;
image reconstruction

1. Introduction

In ultrasound medical imaging, beam forming in essence deals with the shaping of the spatial
distribution of the pressure field amplitude in the volume of interest, and the consequent recombination
of the received ultrasound signals for the purpose of generating images. One can thus navigate through
the different techniques using the following question as a compass: which imaging features are
important to my application of interest, and which features can I sacrifice? There is, in fact, no ultimate
beam-forming approach, and the answer to the previous question strongly depends on what one wants
to see in the images.

Below are the key imaging features that will be considered in this paper to review the different
beam-forming techniques, along with their descriptions:

Spatial resolution: the smallest spatial distance for which two scatterers can be distinguished
in the final image. Spatial resolution can be either axial (along the direction of propagation of the
ultrasound wave), lateral, or elevation resolution (along the plane to which the direction of propagation
is perpendicular). This feature is normally expressed in mm.

Temporal resolution: the time interval between two consecutive images. This feature is normally
expressed in Hz.

Contrast: the capability to visually delineate different objects, e.g., different tissue types, in the
generated images. This feature is generally expressed in dB, and it is a relative measure between
image intensities.

Penetration depth: the larger depths for which a sufficiently high signal-to-noise ratio (SNR)
level can be maintained. This feature is normally expressed in cm.

Array aperture: the physical sizes of the surface representing the combined distribution of active
and passive ultrasound sensors: in other words, the array footprint. The array aperture is defined
by the number of ultrasound sensors (elements), their sizes, and their distribution. This feature is
generally expressed in cm2.

Appl. Sci. 2018, 8, 1544; doi:10.3390/app8091544 www.mdpi.com/journal/applsci5
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Field of view (FOV): the sizes of the area represented by the obtained images. This feature is
generally expressed in cm2 or cm3.

Although introduced individually, these features are strongly related. For example, a decrease
in temporal resolution can be traded to achieve a higher spatial resolution or a larger FOV; a deeper
penetration depth can be achieved by lowering the transmitted center frequency, thus deteriorating
spatial resolution, or a broader insonification area can be achieved by widening the transmitted
beam, which will result in lower pressure levels being generated, thus lowering the SNR compared to
a focused beam. To help the reader become more familiar with these concepts, a simple model can be
used. Assuming linear propagation, the following wave equation can be applied to model the pressure
field generated by an arbitrary source which propagates in a homogeneous medium [1]:

∂2
x p(x, t)− 1

c2
0

∂2
t p(x, t) = S(x, t) (1)

Here, ∂2
x and ∂2

t represent the second-order derivative as regards space and time, respectively,
p(x, t) is the pressure field, t is time, x = (x, y, z) is the three-dimensional spatial coordinate in
a Cartesian system, c0 is the small signal speed of sound, and S(x, t) is the source. For a monochromatic
point source, i.e., S(x, t) = δ(x) cos(2π f0t), the solution to this equation is known [1], and can be
expressed as:

pMPs(x, t) =
P0

4π|x| cos
[

2π f0

(
t − |x|

c0

)]
(2)

In this equation, pMPs(x, t) is the pressure field generated by the monochromatic point source,
P0 is the source amplitude, and f0 is the source frequency. This solution is useful, because the pressure
field generated by every source can be approximated as the sum of the pressure generated by several
point sources, the position of which models the actual shape of the source. The following equation can
then be applied:

p(x, t) =
N

∑
i=1

P0

4πDi
cos

[
2π f0

(
t − Di

c0

)]
, (3)

with N being the number of point sources, Di being the distance between the point for which the
pressure field is calculated, and the source being i. Equation (3) can also be expressed in its complex
formulation as follows:

p(x, t) =
N

∑
i=1

P0

4πDi
e−j2π f0(t− Di

c0
)
= P0e−j2π f0t

N

∑
i=1

ej2π f0
Di
c0

4πDi
∝

N

∑
i=1

ej2π f0
Di
c0

4πDi
. (4)

The maximum pressure at a given location is thus obtained when the distances Di are all the
same, i.e., the point sources are placed on the surface of a sphere with radius r and centered at the
location where the pressure field is calculated. Alternatively, in a case where the sources cannot be
arranged in that way, each source could be multiplied by a phase coefficient that compensates for
the differences between each term Di. In essence, this means time delaying the source according to
its distance from the point where the pressure field is calculated. Moreover, to increase the pressure
field amplitude, one can increase the physical size of the actual source (the aperture), which entails
increasing the number of point sources that are needed to describe it. From Equation (4), we can
thus conclude that by applying appropriate phase coefficients, we can maximize the pressure field
generated by an arbitrarily shaped source, and that the larger the aperture, the higher the pressure
field. Generating high amplitudes means improving the signal strength, and thus the SNR.
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If we then associate a specific phase and amplitude to each source, and model this as a function of
the spatial coordinates A(x), we can reformulate Equation (4) as:

p(x, t) = e−j2π f0t
N

∑
i=1

A(x)
4πDi

ej2π f0
Di
c0 . (5)

If we then assume that the source lies on the plane z = 0, and that the point with coordinates
x = (x, y, z) lies on a plane parallel to the plane z = 0, and at distance L from it, with L being much
larger than the maximum distance between two point sources inside the planar surface representing
the actual source, then we can write:

Di =

√
L2 + (xi − X)2 + (yi − Y)2 (6)

with (xi, yi) being the coordinates of each point source, and (X, Y) being the coordinates describing
the point x on the plane parallel to the plane z = 0. Using a binomial expansion, Equation (6) can be
rewritten as:

Di = L

(
1 +

x2
i + X2 − 2xiX + y2

i + Y2 − 2yiY
2L2

)
(7)

and assuming L � X, Y � xi, yi we can approximate:

Di = L
(

1 +
X2 − 2xiX + Y2 − 2yiY

2L2

)
(8)

Combining Equation (8) with Equation (5) we obtain:

p(X, Y, t) =
e−j2π f0te

j2π f0
c0

L(1+ X2+Y2

2L2 )

4πL ∑
x

∑
y

A(x, y)e−
j2π(xX+yY)

λ02L . (9)

with A(x, y) = 0 where there is no source. Thus, the pressure field is proportional to the
two-dimensional discrete Fourier transform of the function describing the source. Note that we
have approximated Di with L as regards the amplitude term inside the summation in Equation (5).
This was not the case for the phase term. In fact, in this case also, small variations of Di with respect to
λ0 = c0

f0
can be significant. From Equation (9), we can deduce that for a circular aperture with radius R,

we can write the pressure field as:

p(X, Y, t)|Y=0 ∝ sin c
(

RX f0

c02L

)
(10)

From Equation (10), we can deduce that the ultrasound beam size is influenced by the aperture
size and transmitted frequency, and that it changes over depth. The beam can be defined as the area
where the pressure amplitude is above a specific value, which is normally considered in relation to
the maximum pressure generated (e.g., the −20 dB beam). A larger aperture and higher frequencies
mean a smaller beam. Moreover, the beam generally widens with increasing depths. The beam size
defines the spatial resolution in the lateral and elevation direction. The smaller the beam, the higher
the spatial resolution. On the other hand, the smaller the beam, the smaller the volume that can be
insonified with a single transmission, and more transmission events are thus required to cover a given
volume. In the next section, the basic differences between linear and phased array beam forming
will be introduced. Subsequently, multi-line acquisition (MLA), multi-line transmission (MLT), plane
and diverging wave imaging, synthetic aperture, and more recent beam-forming modalities will be
described. To summarize the analysis, a table is presented where the peculiarities of each modality
are highlighted.
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2. Linear and Phased Array Beam Forming

We can start by describing the source that generates the ultrasound fields. In particular, we will
address its aperture and how we could excite it by means of electrical signals. As represented in
Figure 1, ultrasound sensors, which are generally able to both transmit and receive ultrasound signals,
can be arranged so that their centers cover a surface, a line, or a curve. In the first case, we have
a matrix or two-dimensional (2D) array, while in the second and third case, we have a one-dimensional
(1D) array. The distance between the centers is referred to as pitch, and the size of the empty space
between consecutive sensors is called kerf [2,3]. For 2D arrays, the pitch and kerf may be different
along the lateral (x) and elevation (y) directions. In general, sensors do not need to be arranged in
a periodic structure. In fact, an aperiodic sensor distribution can produce benefits such as the reduction
of the effects of side lobes [4].

 

Figure 1. This figure shows the different sensor distributions for a one-dimensional (1D) and two-
dimensional (2D) array aperture (top), together with an overview of the possible driving schemes for
linear and phased array beam forming (bottom) in cases with a focused and an unfocused beam.

In principle, as described for point sources, each sensor can be excited by a signal having its own
amplitude, phase, and waveform. However, sensors are generally grouped in sub-apertures, and within
one sub-aperture, the same waveform is transmitted, but with a different phase and amplitude.

This is true for linear array beam forming, where a sub-aperture is defined and used both to
transmit and receive ultrasound fields. The signal so acquired is then representative of the structures
seen by the ultrasound waves over depth and in front of the sub-aperture. This signal is called
an A-scan [2,3]. Subsequently, this sub-aperture is linearly shifted over the entire array so as to obtain
multiple A-scans, ultimately forming an image line by line. The sensors that belong to a sub-aperture
could be excited by signals that share the same phase, i.e., the unfocused case, or have different
phases, as in the focused case. As can be deduced from Equation (4), when focusing is applied, higher
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pressures are generated. Moreover, smaller beams may even be achieved. Thus, focusing implies
that the spatial (in the lateral and/or elevation direction) resolution, SNR, and penetration depth are
improved. On the other hand, the area investigated by every beam is smaller, which means that more
beams are necessary to cover a given FOV compared to the unfocused case. This also implies that more
transmission events are required to form an image, which may decrease the frame rate. Within a given
sub-aperture, the sensors could also be excited with different amplitudes. This is true if an apodization
mask is used. Using an apodization mask reduces the amplitude of side lobes and their effects on
the final image, but negatively affects the lateral and/or elevation spatial resolution. Furthermore,
the maximum pressure generated is reduced, and thus consequently so are the SNR and penetration
depths [2,3].

Unlike linear array beam forming, with phased array beam forming, the entire array aperture is
used for each transmission. The phases of the driving signals are specifically adjusted for every sensor
at each transmission event so as to steer the beam, and place it at a given angle with respect to the
direction that is normal to the array aperture [2,3]. Different sets of phases are then used to obtain
different steering directions, produce multiple A-scans, and thus form an image. With phased array
beam forming, the beam could be a focused or unfocused beam, and apodization could be used. It is
important to add that a particular constrain is present for phased array beam forming: the pitch has
to be smaller than half the wavelength in order to avoid grating lobes. These are additional lobes,
which can further degrade the image quality [2,3]. In Figure 1, a schematic overview of what has
been introduced in this section is presented. Linear and phased array beam forming strategies are
represented only for a 1D aperture, but these can of course be also applied to a 2D aperture, which gives
more flexibility in the definition of the sub-apertures. Moreover, with a 2D aperture, the beam can be
steered through the entire volume, rather than only on a plane perpendicular to the aperture [2,3].

When comparing linear and phased array beam forming, a list of pros and cons can be made.
Both approaches form an image line by line, with one line being generated at every transmission
event. Linear arrays can image only the area in front of the aperture, while a larger area can be
imaged with phased arrays as the beam can be steered. This also means that the aperture of a linear
array has to cover the entire area of interest (along the lateral direction). However, this is not the
case for phased arrays. Consequently, phased arrays are particularly suitable in situations where
there is a small imaging window, as in transthoracic ultrasound imaging, where the ribs represent
an obstacle for imaging [5,6]. On the other hand, the geometries of phased arrays are constrained
by the phenomenon of grating lobes, which is particularly demanding when using high frequencies.
As a result, more accurate phase sets, and as many as the amount of steering angles, are required.

The transmit phase (or active phase), which is the phase that defines the shaping of the spatial
distribution of the pressure field amplitude in the volume of interest, has been our focus thus far.
In the receive phase, the very same phase sets and apodization functions that are used in the transmit
phase can be applied. However, the received echo signals can be also treated differently. Furthermore,
a different group of elements than those used in the transmission phase can also be used, as is,
for example, the case for synthetic aperture beam forming [7,8] and multi-line acquisition beam
forming [9]. Figure 2 illustrates the differences in the spatial distribution of the pressure amplitudes.
The −20 dB beams obtained with a focused sub-aperture, and with an unfocused, focused, and steered
full-aperture, are shown. The typical FOVs achievable with linear and phased array beam forming are
also shown. Note that when the linear array sensors are distributed along a curve, a larger field of view
can also be obtained. This is the case with convex probes. However, the probe loses its flat surface [10].
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Figure 2. This figure shows the different spatial distribution of pressure amplitudes when unfocused,
focused, and steered beams are generated. Moreover, the typical field of view (FOV) that is achievable
with linear and phased array beam forming is also shown. These beam profiles were generated using
the software package k-Wave [11].

3. Multi-Line Acquisition and Multi-Line Transmission Beam Forming

As briefly introduced above, the beam does not need to be the same in the transmit and receive
phase. This is certainly the case with multi-line acquisition (MLA) beam forming. The basic idea
behind this approach is to transmit a wide beam, so that a large area is covered, and then make use in
receive of multiple, narrower beams, in order to form several A-scans along different directions for
each transmission event. In this way, multiple lines are formed in parallel, thus increasing the frame
rate and improving the temporal resolution. The receive phase is in fact defined by how the different
signals received by all of the array elements are combined to form a line of the image. Therefore, it is
possible to apply different phase sets and apodization masks to the signals received after a single
transmission event, thus allowing the formation of multiple lines in parallel. In fact, these techniques
are also referred to as parallel receive beam forming. In Equation (10), we can see that a wider beam
can be achieved by using, without focusing, a small sub-aperture at the center of the array during
transmission [9,12–14]. Since not all of the elements are utilized, and as a result the active aperture is
reduced in transmit, the maximum pressure generated is consequently lower compared to the case
where all of the elements are used. Furthermore, the spatial resolution (although not in the axial
direction) is not as good, as focusing is applied only in the receive phase. Not only can MLA be applied
to achieve a gain in the frame rate, it can also be applied to improve the SNR and contrast by simply
averaging consecutive images obtained at a higher temporal resolution than with standard beam
forming (i.e., techniques where only one line is generated per each transmission event).
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Moreover, MLA techniques can also be used to image a larger FOV. In this case, the gain in
acquisition rate is used to widen the area covered by the imaging system. To summarize with a simple
example, in case 4, image lines could be formed in parallel, which means that: (a) the temporal resolution
could be improved by factor of four, or (b) four consecutive images could be averaged to improve
the SNR, or (c) a FOV that is four times larger could be in principle imaged, or (d) a combination of
these gains could be achieved by spending the higher data acquisition rate in the most desirable way
(e.g., averaging only two consecutive images and thus improving the SNR while still improving also
the frame rate by factor of two).

A similar concept could be also applied at inverted phases: instead of having parallel lines being
formed in the receive phase, they could be generated during transmission. This approach is referred to
as multi-line transmission (MLT) or parallel transmit beam forming. Even in the case where the very
same phase sets and apodization functions are used, and are simply swapped between the transmit
phase and the receive phase, advantages can already be obtained. This is the case for tissue harmonic
imaging applications. Unlike standard (fundamental) ultrasound imaging, this modality makes use of
the harmonic components that are generated during ultrasound propagation, and not the pressure
fields directly emitted by the array, to form an image. The harmonic components represent a part
of the pressure wave fields, which is located around multiples of the transmitted center frequency.
For a pulse-echo imaging system, an improved spatial resolution, a reduction of reverberation, grating,
and side-lobe artifacts [15] are among the advantages of utilizing tissue harmonic imaging. In particular,
MLT beam forming is better than MLA when applied to tissue harmonic imaging, because the higher
pressure amplitude that is generated—thanks to a focused beam in transmission—is fundamental
to boost the generation of sufficiently strong harmonic components. When applied to harmonic
imaging, MLT beam forming provides a further reduction of the side-lobe amplitudes and an increase
in SNR [16].

To generate multiple beams in transmission, different approaches are possible. One approach is
to simply distribute multiple focused beams in the volume of interest. This is achieved by a linear
superposition of the signals that are used to generate each individual beam. As a side effect, this limits
the maximum signal strength that is applicable to the formation of every beam, and thus lowers the
maximum pressure that can be generated by a single focused beam [17]. The MLT approach can be used
both with linear array and phased array beam forming, and with 1D and 2D arrays [17–19]. To minimize
the possible inter-beam interference generated by neighboring transmitted beams, specific sets of
apodization functions can be applied [20]. Additionally, another approach to reduce the interbeam
interference is to separate the different beams in the frequency domain. With this approach, which is
referred to as frequency division multiplexing, the available transducer bandwidth is divided into
orthogonal sub-bands, each of which is allocated to a beam. Multiple beams, as many as the number
of sub-bands, can thus be transmitted in parallel, and the generated echo signals can then be identified
in the receive phase by means of band-pass filters [21]. The main disadvantage of this method is the
loss in axial resolution due to the subdivision of the available band into smaller sub-bands. A smaller
sub-band implies, in fact, a longer pulse.

In general, when implementing MLT, it is beneficial to add small time delays between the signals
that are used to generate multiple beams in transmission. This improves their capability to separate
the different beams. As a side effect, it lengthens the transmit phase, and thus increases the depth
for which the final imaging system will be blind [17,18]. With MLT, the inter-beam interference level
required by the specific application of interest limits the number of parallel beams. In general, a higher
number of parallel beams results in a higher level of interference [18–20].

Figure 3 illustrates the effect of inter-beam interference on the final image. An ultrasound image
of four wire targets obtained by linear array beam forming is shown (top left corner). The same targets
are then imaged using MLT applied to linear array beam forming and performed by frequency division
multiplexing, with three beams in transmission (top right corner). As can be seen, four MLT “ghost”
wires appear before and in front of each “actual” wire. This type of artifact is also present when MLT
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is performed by spatially distributing the transmitted beams over the volume of interest. However,
the location of the artifact is different. To illustrate this phenomenon, a single wire is imaged using
MLT without frequency division multiplexing with six beams in transmission (bottom). In this case,
the image was obtained by MLT applied to phased array beam forming. Ghost wires are visible on the
sides of the actual wire.

As for MLA, and also with MLT, the higher data acquisition rate achieved by generating
multiple beams in transmission is not solely applicable to improve the frame rate. For example,
when implementing MLT by means of orthogonal frequency division multiplexing, a multi-focusing
imaging approach can be realized where the different sub-bands are used to generate beams with
a focus at different depths. In particular, the lower the center frequency of the sub-band, the deeper
the focus will be. Thanks to this approach, the penetration depth and signal-to-noise ratio (SNR)
improves without affecting the frame rate [22]. In conclusion, it is important to note that MLA and
MLT techniques can be combined together to have a multiplicative effect on the gain in the data
acquisition rate [21,23].

Figure 3. This figure illustrates the effect of inter-beam interference on the image. A standard linear
array beam forming image of four wires is shown on the top left corner. The same wires are then
imaged with multi-line transmission (MLT) performed by frequency division multiplexing, and applied
to linear array beam forming. The corresponding image is shown in the top right corner, and “ghost”
wires are clearly visible before and after each wire. At the bottom, an image of a single wire obtained
with MLT performed without frequency division multiplexing, and applied to phased array beam
forming, is shown. Also in this case, ghost wires are visible, but at a different position relative to the
actual wire.

4. Plane and Diverging Wave Beam Forming

With these techniques, the emphasis is certainly more on improving the achievable frame rate.
Plane wave imaging originates from studies aimed at imaging the transient propagation of shear
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mechanical waves in real time [24–26]. For this type of application, a frame rate in the order of
thousands of frames per second is needed. The basic concept is that if one can reduce the number of
transmission events that are needed to form an image to the bare minimum, this implies maximizing
the frame rate. The absolute minimum is of course one transmission event per image. In this case,
the frame rate is, in essence, only limited by the speed of the ultrasound wave in the imaging medium,
the depths that need to be visualized, and the processing time that is necessary to form the image.
Thus, the idea is to approximate in transmission the generation of a plane wave, achieving, in this
way, a very wide and homogeneous beam (as wide as the array aperture). This can be achieved by
simply exciting all of the transducer elements with the same phase for each transmission event. Then,
in the receive phase, the signals acquired by all of the elements are processed with different phase sets
and amplitudes, and multiple lines are generated in parallel. In particular, all of the lines that form
an image are generated with the echo signals, which are received after a single transmission. In simple
words, this approach can be seen as a radical MLA approach where only one large beam is used in
transmission. As in the case of MLA, this technique suffers from lower pressure amplitudes being
generated compared to focused beams, thus affecting the SNR and penetration depths. Moreover,
the straightforward approach of plane wave imaging suffers from low image quality in terms of spatial
resolution and contrast [27]. In fact, all of the imaging features are sacrificed to maximize the temporal
resolution. A way to balance the performance of plane wave imaging among the different imaging
features is to compromise, or in other words, to apply image compounding. Compounding essentially
means averaging. However, it is not a simple averaging of consecutive frames. With plane wave
coherent compounding, steering is applied, and thus the “plane wave” is no longer propagating only
straight in front of the transducer array, it is also propagating under a given angle [27]. An image is
then formed for varying transmission angles, and in the end, averaging is performed over the images
obtained with all of the different angles. In this way, the gain in frame rate is reduced by a factor that
is equal to the number of angles. On the other hand, the other imaging features (spatial resolution,
SNR, penetration depth, contrast) are improved. However, in order to obtain a performance that is
comparable to standard beam forming, the amount of compounded angles is very high (in the order
of 70), and the extreme gain in frame rate that is achievable with plane wave imaging is substantially
lost [27,28]. The number of angles, as well as the maximum steering angle, can be adjusted to tune
plane wave imaging for a specific application. However, the most important feature of this technique
is its capability to reach really high frame rates, which makes it extremely suitable for applications
where fast phenomena need to be observed. In this situation, the spatial resolution is actually less
important, while the key feature is the temporal resolution. Shear wave imaging is certainly a good
example [29,30]. Other interesting areas of application are flow, contrast dynamics, and functional
ultrasound imaging [31]. It is also important to mention that the implementation of this high frame
rate imaging method has also been made possible thanks to the developments of GPU technologies,
which provide the computational speed that is required to process the amount of data generated
during plane wave imaging [32–34].

Diverging wave beam forming does not differ substantially from plane wave imaging. The small
difference between the two methods lies in a defocused beam being used in transmission during
diverging wave beam forming, which allows for an even larger insonification area [28,35–37]. Multiple
parallel lines are generated in the receive phase in this case also, and compounding algorithms can be
applied. In general, the same considerations as in plane wave imaging apply. Neither plane wave or
diverging wave imaging are ideal for applications where a small array aperture is required, as is the case
in transthoracic ultrasound imaging, where the presence of the ribs constrain the size of the imaging
window. Moreover, due to the low-pressure amplitudes that are generated in the transmit phase,
these techniques are certainly not ideal for tissue harmonic imaging applications, where high-pressure
values are needed in order to generate the harmonic components that are necessary to form the
image [16,38,39].
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5. Synthetic Aperture Beam Forming

Synthetic aperture is a beam-forming approach that originates from the world of radar and was
first implemented for medical ultrasound imaging in the late 1960s and early 1970s [40,41]. In its basic
implementation, only one element is excited for every transmission event [42]. In the receive phase,
all of the elements of the array are used to receive the echo signals, and a low quality image is generated
for every transmission event. The key aspect is that every point of the image is obtained by taking into
account the geometrical distance between each transmitting element and each receiving element. Thus,
assuming a constant speed of sound through the imaging volume, appropriate phase sets are used
to compensate for the differences in the arrival time. Subsequently, the received time-compensated
signals are added together.

As a result, the images that are obtained for each transmission are combined to obtain an image of
higher quality in terms of spatial resolution, contrast, and penetration depth with respect to the images
obtained for every transmission. Thus, focusing is performed for every pixel in the image, and applied
both in the transmit phase (indirectly by recombining the images formed with a single emitter) and
the receive phase. As a consequence, the highest possible spatial resolution for delay-and-sum beam
forming is obtained everywhere in the image [43]. However, the signal-to-noise ratio and penetration
depths are significantly degraded by the array aperture being minimized in transmission, since only one
element is active. Transmitting with sub-apertures rather than with a single element can mitigate this
phenomenon [44–46]. However, the accuracy in the image reconstruction given by the availability of
the data as obtained from the entire transmitting–receiving pairs of elements is lost, which deteriorates
the spatial resolution. Once again, improving the performance with respect to a given imaging feature
implies accepting that there will be a loss in performance with respect to another.

An interesting approach based on frequency division multiplexing has been proposed to improve
the SNR and penetration depth without losing access to the full element-to-element data set [47].
Similarly to the case discussed for MLT, the available transducer bandwidth is divided into sub-bands.
During each transmission, all of the elements are active, with each operating at one specific sub-band.
During consecutive transmissions, every element is active at a different sub-band, and the entire
bandwidth is covered. In the receive phase, band-pass filters are used to separate and identify the
signal coming from the different elements. Using this approach, the entire aperture is active for every
transmission event, and the achievable SNR and penetration depth are thus improved. Another
possibility is to use chirp signals in transmission, and a matched filter in the receive phase. Particular
attention to the signal properties is needed when chirp signals are used, so as to avoid temporal
side lobes. Furthermore, additional processing steps and the ability of the hardware to generate
well-controlled electrical signals is also required. However, this approach can improve penetration
depth and axial resolution [48–50]. It is also important to note that if only one element is active for
every transmission event, this implies that the time that is needed to collect all of the signals necessary
to form an image is maximized, which in other words means minimizing the frame rate. However,
not all of the elements of the array need to be used in transmission. In this way, a higher frame rate
can be achieved. On the other hand, this will lower the spatial resolution and increase the amplitude
of the side-lobes and their effect on the final image [51].

6. Comparison among Different Beam-Forming Options

A general comparison between the different techniques discussed thus far can be drawn. Figure 4
illustrates the different driving schemes for MLA, MLT, plane wave, diverging wave, and synthetic
aperture beam forming. The transmit beams are represented in orange, and different shades of orange
are used to highlight the multiple beams for MLT, and separate the beam profiles for plane and
diverging wave beam forming, respectively. For MLA, the receive beams are also shown in shades
of blue. The duration of the transmit phase is also emphasized for MLT. Table 1 summarizes the
peculiarities of each modality. A comparison is made with standard line-by-line beam forming. A plus
or minus sign means that the performance with respect to that specific imaging feature (one for each
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column) is improved or reduced, respectively. MLA and MLT beam forming is essentially trading
spatial resolution for data acquisition rate, and can be generally applied to any array aperture. In the
case of MLT especially, where focused beams are used in transmission, penetration depth is not lost
compared to standard beam forming. Plane and diverging wave beam forming focus instead on
achieving a very high data acquisition rate. Consequently, spatial resolution and penetration depth are
affected. Moreover, these approaches substantially require a large aperture size. This is also true for
synthetic aperture beam forming, where an increase in the number of transmitting elements leads to
improved performance. The strength of synthetic aperture beam forming is certainly on the attainable
spatial resolution, which is achieved at the expense of penetration depth and the data acquisition rate.

Figure 4. This figure illustrates the different driving schemes for MLA, multi-line transmission (MLT),
plane wave, diverging wave, and synthetic aperture beam forming. The transmit beams are represented
in orange, and different shades of orange are used to highlight multiple beams for MLT, and separate
the beam profiles for plane and diverging wave, respectively. For MLA, the receive beams are also
shown in shades of blue. The duration of the transmit phase is also emphasized for MLT.

As described in the previous sections, for every technique, these pros and cons can be mitigated by
specific implementations. However, the rule that what one gains regarding particular feature implies
a loss in performance with respect to the other features generally applies.

Table 1. This table summarizes the peculiarities of each modality. A plus or minus sign means that the
performance with respect to that specific imaging feature (one for each column) is improved or reduced,
respectively. The 0 sign means that there is no significant variation. The evaluation is performed with
respect to standard beam-forming performance.

Beam Forming Strategy Spatial Resolution Data Acquisition Rate Array Aperture Size Penetration Depths

MLA–MLT - + 0 0
Plane and Diverging Wave - ++ - -

Synthetic Aperture + - - -

7. Other Beam-Forming Strategies

Several emerging beam forming strategies, besides those dealt with in this paper, have been
reported and discussed in the literature, including approaches based on machine learning [52].
Particularly interesting concepts are those explored with null subtraction imaging (NSI), and coherence
beam forming. With NSI, particular sets of apodization functions are used to achieve a lateral
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(and potentially elevation) spatial resolution that goes beyond the diffraction limit. This technique
requires the application of signal-processing techniques only in the receive phase. In essence, the idea
is to combine the images formed using zero mean and non-zero mean apodization functions.
A zero-mean apodization generates a beam with a “hole” along the beam axis (see Huygens’ principle).
Consequently, this beam can be subtracted from that generated by a non-zero mean apodization
function, thus obtaining an extremely sharp beam. However, the gain in spatial resolution is costly in
terms of contrast [53–55].

When using coherence beam forming, each imaging pixel is obtained from the integration
of the normalized covariance matrix that is calculated between the signals received by all of the
elements forming the array [56]. This follows after appropriate time-delay compensations are applied.
This technique is clearly more computationally expensive compared to standard beam forming,
and generally results in a smaller dynamic range. However, it is particularly suitable for applications in
low SNR imaging conditions. Contrast is generally improved, and noise is significantly reduced [56–58].

8. Conclusions

In this paper, a review of different beam-forming schemes has been presented. Multi-line
acquisition, multi-line transmission, plane wave, diverging wave, synthetic aperture, and more
recent beam-forming strategies have been introduced. The peculiarities and advantages of these
approaches have been compared, and their applicability has been discussed. In conclusion, it is also
important to mention that all of these studies would have not been possible without the development
of open research platforms, thanks to which the implementation and testing of advanced beam-forming
strategies were carried out [59–64].
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Abstract: Plane wave imaging has been proven to provide transmit beams with a narrow and uniform
beam width throughout the imaging depth. The transmit beam pattern, however, exhibits strong
grating lobes that have to be suppressed by a tightly focused receive beam pattern. In this paper,
we present the conditions of grating lobe occurrence by analyzing the synthetic transmit beam pattern.
Based on the analysis, the threshold of the angle interval is presented to completely eliminate grating
lobe problems when using uniformly distributed plane wave angles. However, this threshold requires
a very small angle interval (or, equivalently, too many angles). We propose the use of non-uniform
plane wave angles to disperse the grating lobes in the spatial domain. In this paper, we present
an approach using two uniform angle sets with different intervals to generate a non-uniform angle set.
The proposed methods were verified by continuous-wave transmit beam patterns and broad-band
2D point spread functions obtained by computer simulations.

Keywords: ultrasonic imaging; beamforming; plane wave imaging; grating lobe suppression

1. Introduction

Plane wave imaging (PWI) has drawn a large amount of attention from researchers in the field
of medical ultrasound imaging [1–3]. First, PWI can provide ultra-fast ultrasound imaging that is
essential for a growing number of applications, such as the estimation of shear elasticity [1,4,5] and
vector Doppler [6,7] as well as high-frame-rate B-mode imaging [8]. In PWI, plane waves (PWs) with
different travelling angles are successively transmitted instead of traditionally focused ultrasound
waves; after each firing, the returned ultrasound waves are received at all array elements. Synthetic
transmit (Tx) focusing at each imaging point is achieved by compounding PWs with proper delays,
while receive (Rx) focusing is performed in the conventional manner. As a result, ultrasound beams
are focused at all imaging points for transmission and reception. Theoretically, the Tx beam pattern
of PWI maintains the same main lobe width at all depths; the width is determined by the range of
compounded PW angles.

When using a finite number of PWs with uniformly distributed steering angles, the synthetically
focused beam has not only the main lobe, but also side lobes and grating lobes (GLs), which create
artifacts in ultrasound image and deteriorate the image quality [2]. A large number of compounded
PWs allow for the mitigation of the side lobe and GLs in the synthetic beam pattern and provide
better image contrast, as illustrated in Figure 1. However, the frame rate of PWI decreases as the
number of PWs increases. To reduce the side lobe without compromising the frame rate, various
adaptive beamforming methods have been proposed. Austeng et al. proposed a minimum variance
beamforming method for PWI [9]. In this method, the optimized weighting factors are applied when
compounding the low-resolution images of different steered PWs. The joint Tx and Rx adaptive
beamformer has also been proposed to apply the data-dependent weighting factors to both the
receiving array domain and PW angle domain (i.e., frame domain) [10]. In addition, as the side lobes
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from different angles are uncorrelated, some beamformers have been suggested to reject less coherent
signals [11–13]. A global effective distance-based side lobe suppressing method has also been proposed
to achieve high quality images of PWI with a small number of PWs [14].

Figure 1. Schematic diagrams of a linear transducer array, transmitted plane waves (PWs) with
uniformly distributed steering angles, and the synthetic transmit (Tx) beam pattern when (a) five PWs
with a larger steering angle interval and (b) eleven PWs with a smaller angle interval are compounded.
As the number of compounded PWs increases when the total range of the steering angle is fixed,
the side lobe level decreases and grating lobes (GLs) occur less frequently.

Only a few studies, however, have been reported that consider GLs in PWI. Though PW angles
with a constant angle interval are employed in most studies, they introduce uniformly spaced grating
lobes (GLs), the interval of which is governed by the angle interval, as shown in Figure 1 [2]. If the
angle interval is sufficiently small to locate GLs far from the main lobe, the GLs might have little
effect on the image quality. However, to preserve the ultra-fast frame rate without compromising the
resolution (i.e., to use a small number of PWs for the given PW angle range), the angle interval should
be large, which introduces GLs close to the main lobe and deteriorates the image quality.

Here, we investigate the conditions of GL occurrence by analyzing the continuous wave (CW)
synthetic transmit beam pattern. Based on the conditions of GL occurrence, the threshold of the angle
interval for the elimination of GLs is presented with the use of uniformly distributed PW angles.
In addition, we propose a method for GL level reduction using non-uniformly distributed PW angles,
which consist of subsets of uniformly distributed angles, each of which has different angle intervals.
To verify and evaluate the methods, simulation experiments are conducted using synthetic Tx beam
patterns and round-trip point spread functions (PSFs).

2. Materials and Methods

2.1. GL Conditions in PWI

Let us consider N PWs with different steering angles, θn (n = 1, 2, . . . , N), in a range of
[θmin, θmax], which are selected in terms of αn(= sin(θn)) for the convenience of analysis such that
αn = αmin + (n − 1)dα, n = 1, 2, . . . , N, where αmin = −(N − 1)dα/2 and dα is a constant α-interval
between successive αn. Assuming that the monochromatic (i.e., CW) plane waves are emitted from
an infinite-length transducer, PWI provides a synthetic Tx beam pattern given by:

ψ
(
x′
)
=

N

∑
n=1

exp
{−jkx′(αmin + (n − 1)dα)

}
= c0

sin(πx′dαN/λ)

sin(πx′dα/λ)
, (1)

where c0 = exp{−jkx′(αmin + (N − 1)dα/2)}, x′ = x − xf, xf is the lateral position of a focus, λ is the
wavelength, and k is the wave number (k = 2π/λ) [3]. Note that almost the same beam pattern can be
obtained from Equation (1) when using PW angles spaced by a constant θ-interval, as in [1,2], if the
angles are sufficiently small such that sin θn ≈ θn and dα ≈ dθ . In the beam pattern, the main lobe is at
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the focus, x′ = 0 (x = xf), and its amplitude is N. GLs must be observed for which both the numerator
and denominator of Equation (1) have zeros except x′ = 0, that occur at:

x′ = ±mλ/dα, m = 1, 2, 3, . . . . (2)

By substituting Equation (2) into Equation (1), the amplitude of the m-th GL can be expressed as:

ψ
(
x′ = ±mλ/dα

)
=

{
(−1)mN for even N

N for odd N
. (3)

It should be noted that the GLs predicted by Equations (2) and (3) arise when (1) all of the N PWs
pass through the GL positions, preserving their linear wave-front (LWF) (LWF condition), and (2) PWs
with a constant α-interval are employed (uniform dα condition).

2.2. GL Suppression Method with Uniformly Distributed PW Angles

In practice, PWs are transmitted by a finite aperture (i.e., a finite-length transducer array), resulting
in a finite collimated beam area. Figure 2 shows three PWs with different steering angles (black solid
lines) and their collimated beam areas (gray shaded areas) with preserved LWFs. In Figure 2, the focus
and the main lobe of the focused beam pattern are in the region where all the PWs preserve their
LWFs (i.e., the darkest area in Figure 2). If a GL locates at this same region and the constant PW angle
interval is employed (i.e., if both LWF and uniform dα conditions are met), the amplitude of the GL
would be as high as that of the main lobe because the number of compounded PWs should be the
same at both the main lobe and GL locations. Note that by reducing dα, one can move the GL away
from the main lobe towards a region where the LWF condition is satisfied by fewer PWs. In such
a case, the GL level would be lower than that of the main lobe because the number of PWs coherently
compounded becomes smaller at the GL location; the PWs that do not maintain LWFs at the grating
lobe locations are compounded with phase errors, leading to a decrease in the corresponding GL levels.
This indicates that GL levels would decrease as GLs are moved farther from the main lobe.

Figure 2. Collimated beam areas (gray shaded areas) of PWs with steering angles of θmax, 0◦, and θmin

(from top to bottom). The points, A and B, are located at the region where none of PWs pass and the
region where half of transmitted PWs propagate, respectively.

One can expect that the GLs can be eliminated by locating all of the GLs in a region where none
of the PWs preserve LWF (i.e., by completely violating the LWF condition). In Figure 2, for example,
when the first GL position, x = xGL,1(= xf + λ/dα), falls onto point A that is out of all the collimated
beam areas of PWs, no GLs can be formed, even when a uniform dα is employed. In this case,
xGL,1 > D/2 + zf tan θmax. Consequently, the GL elimination requirement when using uniformly
distributed PW angles can be defined as:

dα < λ/(D/2 + zf tan θmax − xf), (4)
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where (xf, zf) represents the focal point and D is the transducer width. One can also observe that only
the PWs with θ ≥ 0◦ pass through point B in Figure 2, preserving the LWF. Therefore, the GL level
would be approximately halved at this point (i.e., reduced by −6 dB) if the angular interval is:

dα = λ/(D/2 − xf), (5)

when θmax = −θmin.

2.3. GL Suppression Method with Non-Uniformly Distributed PW Angles

The GL levels can also be reduced using non-uniformly distributed PW angles (i.e., by violating
the uniform dα condition). In this paper, to generate a non-uniform angle set, an approach using two
uniform angle sets with different dα values is presented.

We let the uniform angle set 1 and set 2 have N1 PWs with an interval of dα,1 and N2 PWs with
an interval of dα,2, respectively. The GLs of set 1 would appear at integer multiples of λ/dα,1, while the
GLs of set 2 would arise at integer multiples of λ/dα,2, according to Equation (2). To suppress the GL
level, a non-uniform PW angle set can be obtained by combining the two uniform angle sets. The beam
pattern of the non-uniform angle set is given by the sum of the beam patterns of the two uniform angle
sets. Note that the main lobes of sets 1 and 2 are both centered at x = xf. Therefore, after the field
responses for two uniform sets are summed, the peak value of the resulting main lobe will always be
larger than the main lobe peak of each angle set. When dα,1 and dα,2 are chosen to locate the GLs of two
uniform sets in different locations (i.e., m1λ/dα,1 �= m2λ/dα,2 where m1 and m2 are integer numbers),
the GLs of the non-uniform angle set will have smaller magnitudes than the main lobe. In addition,
even when the GLs of two uniform sets overlap (i.e., m1λ/dα,1 = m2λ/dα,2), they can also be reduced
after they are combined if the two coincident GLs have opposite phases. For example, when N1 and
N2 are both even, the GL at the same location in the beam pattern of the non-uniform set will have
a magnitude of:

|ψ| =∣∣(−1)m1 N1 + (−1)m2 N2
∣∣, (6)

which can be derived by Equation (3). In this case, the magnitude will be decreased to |N1 − N2| if m1

is even and m2 is odd, or vice versa.
Figure 3 shows an example of a non-uniform angle set that is obtained by combining two uniform

angle sets. The angle distributions (left panels) and synthetic Tx beam patterns (right panels) of the
uniform angle set 1 and set 2 are presented in Figure 3a,b, respectively. The number of PWs and angular
intervals of set 1 and set 2 are (N1 = 6, dα,1 = 0.069) and (N2 = 6, dα,2 = 0.046), respectively. The combined
non-uniform angle set and its synthetic beam pattern are shown in Figure 3c. The synthetic beam
pattern was obtained by Equation (1), assuming a center frequency of 5.208 MHz and a sound speed of
1540 m/s (i.e., λ = 0.296 mm).

In Figure 3a,b, the main lobe is located at 0 and the GLs are repeated at a certain interval.
The intervals between the GLs of set 1 and set 2 are 4.29 mm and 6.43 mm, respectively, according to
Equation (2). The GLs of uniform sets 1 and 2 at different locations are halved in the beam pattern of
the non-uniform angle set (see the right panel of Figure 3c). For the chosen parameters (dα,1 = 0.069,
dα,2 = 0.046), m1λ/dα,1 is equal to m2λ/dα,2 when m1 = 3 and m2 = 2, which means that the third
GL of set 1 coincides with the second GL of set 2, as in Figure 3a,b. As the two GL have the same
magnitude with the opposite sign according to the Equation (3), they are canceled out in the combined
transmit beam pattern (Figure 3c), as is expected from Equation (6). On the other hand, the next
coincident GLs at x = 25.6 mm, corresponding to m1 = 6 and m2 = 4, have the same sign and thus
have the same magnitude as the main lobe peak in the beam pattern of the non-uniform set. However,
this theoretical beam pattern is calculated assuming an infinite aperture. Thus, when using a practically
used finite-length transducer, these high GLs can also be removed by placing them in a region where
fewer or no PWs pass through, which is shown in the Results Section, where the finite length of the
array is considered.
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Figure 3. PW angles for synthetic focusing (left panels) and theoretical synthetic beam patterns
(right panels) using three angle sets; (a) uniform angle set 1: N1 = 6, dα,1 = 0.069; (b) uniform angle
set 2: N2 = 6, dα,2 = 0.046; (c) non-uniform angle set (combination of two uniform sets in (a,b)):
N = N1 + N2 = 12.

3. Results and Discussion

Both of the GL suppression methods were verified through computer experiments by obtaining
CW beam patterns and PSF images using a 128-element linear array transducer with a center frequency
of 5.208 MHz and a pitch of 0.298 μm (length of the array = 38.1 mm). The CW beam pattern was
calculated using MATLAB R2015a (MathWorks, Natick, MA, USA); acoustic field responses of plane
waves with different angles, each with a frequency of 5.208 MHz generated from the linear array
transducer, were calculated and then compounded with proper delays for a Tx focal point at (x = 0,
z = 30 mm) [1]. The amplitude of each PW was set to 1.0, and the final synthesized beam pattern was
normalized by its maximum value and displayed in logarithmic scale.

In the PSF experiments, a single pulse plane wave with a center frequency of 5.208 MHz was
transmitted along different directions from the same array transducer. First, RF echo data sets of
different plane wave angles reflected from a single point target at (x = 0, z = 30 mm) were generated
using the Field II simulator [15]. Then, MATLAB was used to obtain the PSF images by reconstructing
a B-mode image of the point target from the RF data sets using coherent plane wave beamforming [1],
demodulation, and logarithmic compression. In the beamforming process, traditional dynamic Rx
focusing was performed with an F-number of 1.0, and all the plane waves were coherently synthesized
with proper delays for each pixel to obtain two-way (Tx and Rx) dynamic focusing. In the logarithmic
compression, the PSF image was normalized by its maximum value and compressed with a dynamic
range of 60 dB.

To validate the methods for GL suppression with a uniform dα, CW Tx beam patterns were
obtained, varying the interval, dα, that is controlled by the number of PW angles within the range of
[−10◦, 10◦]. The focus of the beam pattern was at a depth of 30 mm (zf = 30 mm) on the center scanline
(xf = 0). Figure 4a presents the magnitude of the first GL relative to that of the main lobe as a function
of normalized dα, d̂α (= dα/(2λ/D)); normalization was performed so that d̂α equals 1 when Equation
(5) is satisfied. Figure 4b illustrates the PW propagating regions; region A is a region where no PWs
pass through; region B is a region where more than one PW propagate, and region C is a region where
all of the collimated beam areas of the PWs overlap. As mentioned above, the larger d̂α yields GLs
closer to the main lobe. Sections A, B, and C shown in Figure 4a indicate that the first GL is located in
regions A, B, and C in Figure 4b, respectively. Figure 4c shows the beam patterns of three values of
d̂α from section A, B, and C (from left to right panels). The gray dash-dot line of each panel indicates
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the theoretical first GL position (xGL,1 = λ/dα). From the left to right panels in Figure 4c, one can
observe that the magnitude of GL increases as d̂α increases. Since none of the PWs propagate with the
LWF in region A of Figure 4b (i.e., the GL elimination requirement in Equation (4) is satisfied), the GL
level is sufficiently suppressed in section A of Figure 4a. In section B of Figure 4a, as d̂α increases,
the first GL moves closer to the focus. As it is closer to the center scanline (x = 0) across region B
of Figure 4b, the number of overlapped collimated beam areas (i.e., the number of PWs preserving
the LWF) increases. Consequently, the GL level increases with d̂α in section B of Figure 4a. In section
C of Figure 4a, the first GL has the same magnitude (0 dB) as the main lobe because the number of
PWs passing through each point are the same over all of region C. Note that the GL can be suppressed
below −6 dB if d̂α < 1, as in Figure 4a.

Figure 4. Magnitude of the first GL normalized by that of main lobe when the GL is located in regions
A, B, and C. (a) Magnitude of the first GL in a simulated Tx beam pattern versus d̂α. (b) Region where
none of (region A), more than one of (region B), and all of (region C) the collimated beam areas of
PWs overlap. (c) Simulated beam patterns when using d̂α (marked with star, cross, and triangle in
a (from left to right panels)). The gray dash-dot line indicates the theoretical first GL position, xGL,1, of
each beam pattern.

The method using a non-uniform angle set was verified by the CW Tx beam pattern and PSF image
simulations using the same PW sets used in Figure 3. Figure 5a shows the CW Tx beam patterns using
the PW angle sets presented in the left panels of Figure 3a–c, from top to bottom. Since a finite-length
transducer is used, regions where not all of the PWs pass through exist. In Figure 5a, region A and
B indicate the region where none of the PWs pass and the region where more than one of the PWs
propagate, respectively. The GL levels decrease in regions A and B; it is noteworthy that the GL at x
= 25.6 mm in Figure 3c is greatly suppressed in the bottom left panel of Figure 5 when considering
the finite aperture. The effect of GL reduction using the non-uniform angle set was also assessed with
the 2D PSF images shown in Figure 5b. In the top and middle panels of Figure 5b, artifacts due to the
first GL are observed, though the GL artifacts were reduced because of the Rx beamforming. The GL
artifacts in the middle panel are located further from the point target than those in the top panel as the
uniform PW set 2 has a smaller angular interval than that of the PW set 1 (dα,1 = 0.069 vs. dα,2 = 0.046).

25



Appl. Sci. 2018, 8, 1881

When the non-uniform angle set is employed (bottom panel in Figure 5b), it is clearly observed that
the GLs are successfully suppressed compared to those from the uniform PW sets.

Figure 5. (a) Simulated Tx beam patterns and (b) 2D PSFs of round-trip focusing using the PW angle
sets shown in Figure 3a–c (from top to bottom panels).

The proposed non-uniform angle is very easy to design as it is composed of two uniform angle sets
with different angle intervals. However, there must be ways to discover other types of non-uniform
PW angle distributions or to design an optimal PW angle set for a given imaging specification and
the system requirements. One such approach might be to find a specific PW angle distribution that
produces GLs where they can be further suppressed by the receive beam pattern, which may also have
to be properly (or deliberately) designed. It is also worth noting that a deep neural network can be
applied to find a method for the compressed sampling of PW angles [16].

In future studies, we should also consider ways to maintain or improve other important image
qualities with a smaller number of PWs for fast imaging. The proposed methods in this paper can be
combined with adaptive beamforming and sidelobe reduction techniques [9–14] that have recently
been developed to improve the spatial and contrast resolutions of PW imaging. In addition, encoded
PWs can be transmitted and compounded for a higher signal-to-noise ratio using Chirp, Barker code,
or the Hadamard matrix [5,17,18].

4. Conclusions

In this paper, we describe two conditions for GL formation and present two methods for GL
suppression. The first method is proposed for the case in which uniformly distributed angles are used.
This method can completely eliminate GL problems, but may have to use a very small angle interval
(or, equivalently, too many angles). In such a case, the second method using a non-uniform angle set
could be a practical alternative solution for GL suppression. The two methods were verified by CW Tx
beam patterns and broad-band 2D PSF images obtained by computer simulations. Future work needs
to focus on designing other types of non-uniform PW angle sets to improve the overall image quality
in combination with advanced receive beamforming and signal processing techniques.
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Abstract: (1) Background: Multi-line transmit (MLT) beamforming has been proposed for fast
cardiac ultrasound imaging. While crosstalk between MLT beams could induce artifacts, a Tukey
(α = 0.5)-Tukey (α = 0.5) transmit-receive (TT-) apodization can largely—but not completely—suppress
this crosstalk. Coded excitation has been proposed for crosstalk suppression, but only for
synthetic aperture imaging and multi-focal imaging on linear/convex arrays. The aim of this
study was to investigate its (added) value to suppress crosstalk among simultaneously transmitted
multi-directional focused beams on a phased array; (2) Methods: One set of two orthogonal Golay
codes, as well as one set of two orthogonal chirps, were applied on a two, four, and 6MTL imaging
schemes individually. These coded schemes were investigated without and with TT-apodization
by both simulation and experiments; and (3) Results: For a 2MLT scheme, without apodization
the crosstalk was removed completely using Golay codes, whereas it was only slightly suppressed
by chirps. For coded 4MLT and 6MLT schemes, without apodization crosstalk appeared as that of
non-apodized 2MLT and 3MLT schemes. TT-apodization was required to suppress the remaining
crosstalk. Furthermore, the coded MLT schemes showed better SNR and penetration compared to
that of the non-coded ones. (4) Conclusions: The added value of orthogonal coded excitation on MLT
crosstalk suppression remains limited, although it could maintain a better SNR.

Keywords: multi-line transmit; crosstalk artifacts; coded excitation; cardiac imaging

1. Introduction

High frame rate imaging has recently gained increased attention in the field of echocardiography
given its potential to reveal new areas of myocardial mechanics and blood flow analysis [1]. Among
high frame rate imaging approaches, plane wave or diverging wave imaging are popular research
topics due to their capacity to produce very high frame rates by scanning a given field-of-view
(i.e., a 90-degree sector) with only a few transmissions [2–4]. However, the signal-to-noise ratio
(SNR), spatial and contrast resolution of the resulting images are degraded due to the lack of focusing.
To compensate this limitation, spatial coherent compounding is generally required in which the same
region is interrogated several times from different directions and the final image is an average of
all acquisitions [5]. As a drawback, the effective gain in frame rate drops by a factor equal to the
number of the compounded images. Moreover, motion artifacts can often occur during compound.
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Additionally, plane waves or diverging waves spread energy over a large area leading to small acoustic
pressure amplitudes. Hence, it is technically challenging to make harmonic imaging.

As an alternative, multi-line transmit beamforming (MLT) has also been proposed [6,7]. In this
approach, multiple focused beams are simultaneously transmitted into different directions leading to a
gain in frame rate equal to the number of MLT beams. Typically, to simultaneously obtain multiple
focused beams, the pulses that would be applied to individual elements to sequentially generate
focused beams at different directions during several transmit events can be literally superimposed
and be applied to those elements during a single transmit event. As an example, Figure 1 shows the
pulses that would be used to generate four ultrasound beams either sequentially (Figure 1a–d) or
simultaneously (i.e., 4-MLT) (Figure 1e). Figure 1f presents the transmit beam pattern corresponding
to a case of 4MLT (Figure 1e). In contrast to plane wave/diverging wave imaging, MLT utilizes
focused beams. This implies that the resulting SNR and spatial resolution [8,9] can be preserved as
well as the possibility of a second harmonic imaging [10]. Despite these advantages, MLT beams may
potentially introduce crosstalk that would appear as ghost-like artifacts on the images (Figure 2a).
Intrinsically, crosstalk artifacts are the results of the interference between MLT beams in different
directions. It has been demonstrated that such crosstalk artifacts can be largely suppressed by
using a Tukey (α = 0.5)-Tukey (α = 0.5) (TT) transmit and receive apodization scheme; so that
the resulting MLT images look competitive to the conventional single line transmit beamforming
(SLT) (Figure 2b) [8,9,11]. Nonetheless, despite these promising results, residual crosstalk artifacts
can sometimes be detected [9]. Recently, alternative approaches, such as minimum variance (MV)
receive beamforming [12], low complexity adaptive (LCA) receive apodization [13], and filtered delay
multiply and sum (F-DMAS) [14] have been proposed to reduce receive crosstalk. Indeed, MV adaptive
beamforming could not obtain the same crosstalk reduction as simply using a Tukey apodization
when received, though a better spatial resolution could be obtained [12]. Similar, the LCA adaptive
apodization method using a modified predefined apodization bank could have slightly better crosstalk
reduction while improving the contrast and spatial resolution, but artifacts remained visible when
hyperechoic structures were presented (for instance the pericardium) [13]. The F-DMAS method could
provide a better receive crosstalk suppression but the contrast-to-noise ratio would be degraded [14].
Nonetheless, more attempts for better reduction of crosstalk remain desired.

(a) (b) (e)

(c) (d) (f)

Figure 1. Pulses to be applied on individual elements of a phased array transducer in order to generate
four focused transmit beams: (a) Transmit direction 1, (b) transmit direction 2, (c) transmit direction 3,
(d) transmit direction 4, consecutively, or (e) simultaneously; and (f) A beam pattern of 4 simultaneously
transmit beams.
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(a) (b)

Figure 2. Reconstructed images of a wire phantom in water acquired using a 4-MLT (Multi-line
transmit) imaging scheme (a) without apodization, the ghost-like crosstalk artifacts are presented; and
(b) with a Tukey (α = 0.5)-Tukey (α = 0.5) apodization on transmit and receive, the crosstalk artifacts
are suppressed significantly.

Coded excitation has been shown to improve the penetration, signal-to-noise ratio, as well as the
frame rate for ultrasound imaging. In terms of increasing frame rate, it has been proposed to suppress
crosstalk in many applications [15–21] by using simultaneous transmission, of two or more orthogonal
transmit pulses whose mutual cross-correlation is very small. When simultaneously transmitting two
or more such mutually orthogonal codes, the received signals contain information from all codes. This
information can then be separated through decoding process. Common orthogonal codes are the
Golay or chirp codes. Golay codes possess a good orthogonal property, but require the transmission
of complementary code pairs to constrain the range lobes, which in turn halve the effective frame
rate. On the other hand, orthogonal chirp pairs can be obtained by sweeping a certain frequency
band in opposite directions or by sweeping separate frequency (sub)bands. For the former case, the
cross-correlation of two orthogonal chirps can be relatively high, whereas the imaging performance
of the latter is typically limited by the narrow bandwidth of ultrasound transducers. However, for
chirps, the transmission of complementary codes is not necessary, and so the frame rate would be
compromised. Both orthogonal Golay and chirp codes have been proposed for crosstalk reduction in
increasing frame rate for synthetic aperture imaging with multiple transmit positions [15,17] and in
maintaining frame rate for multi-zone focusing by simultaneous transmissions for linear [16–19,22]
and convex array imaging [20,21]. However, towards phased array based high frame rate cardiac
imaging, it has not been revealed yet that the feasibility of using these orthogonal codes to (further)
reduce crosstalk among focused MLT beams. Hence, the aim of this study was to test this feasibility in
both simulation and experimental setups.

2. Materials and Methods

In this study, a typical 1-D cardiac phased array probe (PA230, Esaote SpA, Florence, Italy) with
128 elements, a central frequency of 2.0 MHz and a bandwidth of 50% was used both for simulation
and experiments. The array measured 21.6 mm in width and 13 mm in height with a pitch of 170 μm.
To accommodate our experimental system, which possesses 64 independent channels, only the odd
elements were pinned, resulting in an equivalent 64-element phased array with an effective pitch of
340 μm. This choice was made so as to exploit the maximum aperture of the probe (22 mm) with the
64 available channels on the system; the selection of 64 consecutive elements would have reduced the
aperture size to 11 mm, thus limiting the lateral resolution that is already poor in cardiac phased array
imaging. Moreover, for a central frequency of 2.0 MHz, the corresponding central wavelength of the
probe is 770 μm at a speed of sound of 1540 cm/s. Thus, the effective pitch of 340 μm is about half of
the central wavelength. This limits the possibility to produce grating lobes when steering the beams
out at 45 degrees, i.e., the typical maximum steering angle in cardiac imaging.
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2.1. Orthogonal Coded Excitations

On this probe, two types of orthogonal coded excitations, i.e., one set of orthogonal Golay
codes and one set of orthogonal linear frequency (FM) modulated chirps were tested since they have
already been proposed for other purposes in ultrasound imaging [12–19] and are relatively simple to
implement. In particular, the following Golay codes were used to obtain good orthogonal property
without largely elongating the excitation duration:

G1: [1, 1, 1, −1]; G1c: [1, 1, −1, 1]; G2: [1, −1, 1, 1]; and G2c: [1, −1, −1, −1].

where G1 is complementary to G1c, G2 is complementary to G2c, the pair of G1 and G1c are orthogonal
to the pair of G2 and G2c. The excitations were obtained by convolving every Golay codes with a burst
of 1.45 cycles square wave at the central frequency of the transducer, respectively, that resulted in a
duration of 2.91 μs.

A linear FM chirp coded excitation can be defined as:

c(t) = a(t)·exp
[

j2π

(
f0t +

B
2T

t2
)]

, −T
2
≤ t ≤ T

2
, (1)

where a(t) is the tapering function, f0 is the central frequency, B is the bandwidth of the chirp signal,
and T is the signal duration. In our case to have better orthogonality, a(t) was a Tukey window (α = 0.2),
T was 10 μs, and B was 3.8 MHz centered around 2 MHz. Two orthogonal chirps, cup and cdown, were
obtained by sweeping B with the opposite directions. The different excitation signals are sketched
in Figure 3. Note that the large sweeping bandwidth of the chips codes were chosen to minimize
the Fresnel rippes around the pass-band of the probe for a better response, as indicated in Figure 4.
Moreover, to decode, matched filters were used for the Golay codes, whereas Chebyshev-apodized
mis-matched filters were adopted for the chirps.

Figure 3. Plots of different excitation signals.
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Figure 4. Frequency response of the two chirp codes.

2.2. Coded Excitation Based Multi-Line Transmit (MLT) Imaging Schemes

Using the two sets of orthogonal codes, a 2, 4, and 6-MLT imaging scheme were set up. The MLT
transmits were obtained by superimposing the transmit pulse patterns that would be applied to the
probe elements to generate subsequent transmit beams [8]. The imaging sector was set to 90◦ and
covered by 180 image lines. For a given MLT imaging scheme, an orthogonal code pair was applied
on neighboring MLT beams in an interleaved manner, as illustrated in Figure 5, i.e., neighboring
sub-sectors were scanned using MLT beams with orthogonal codes. In this way, signals generated
from neighboring MLT beams were expected to be better differentiated through decoding in reception,
which was performed before beamforming.

Figure 5. Illustration of the interleaving arrangement of two orthogonal codes on a given MLT imaging
scheme. Code 1 and code 2 are mutual orthogonal codes.

2.3. Simulations

The performance of coded excitation imaging scheme was first investigated in silico through
the simulation software Field II [23,24] based on the phased array described at the beginning of this
section. To benchmark, an SLT imaging scheme, 2, 4, and 6-MLT schemes using a burst excitation
(1.45 cycles square wave at 2 MHz) were included. For all imaging schemes, the transmit focal point
was maintained at a depth of 70 mm and a dynamic apodization with f# of two was adopted in
reception. As previously proposed, a Tukey (α = 0.5) -Tukey (α = 0.5) (TT) apodization scheme on
transmit and receive were also tested on different MLT schemes (coded and non-coded) for crosstalk
suppression [8,9].

To appreciate the spatial resolution as well as the crosstalk artifacts, the point-spread-functions
(PSFs) of different imaging schemes were simulated. In particular, four point scatterers were positioned
at depths from 30 mm to 90 mm with an equal axial interval of 20 mm. In the azimuth direction, they
were positioned at 10 mm offset of the transducer symmetry axis to better appreciate the potential
crosstalk. A given PSF profile was evaluated by the −6 dB beam width in both radial and lateral
directions. The crosstalk was quantified by calculating the intensity difference between the PSF of a
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given MLT scheme and that of the SLT imaging scheme (xtalkpsf). For details on the definitions of these
parameters, please refer to Formulas (3), (5), and (7) in Reference [9].

2.4. Experimental Validation

To experimentally investigate the performance of the coded MLT schemes, the imaging schemes
defined in Section 2.3 were implemented on the ultrasound advanced open platform (ULA-OP) [25,26]
equipped with the above mentioned phased array transducer. The pulse repetition frequency (PRF)
was 4750 Hz and the prebeamformed radio-frequency (RF) channel data were acquired at a sampling
frequency of 50 MHz using the ULA-OP acquisition board [27] and beamformed offline through
MATLAB R2015a (The MathWorks, Natick, MA, USA). The beamforming parameters were the same
as those applied in the simulations.

Using these setups, a general-purpose tissue mimicking phantom (CIRS Model 040GSE, Norfolk,
VA, USA) and the left ventricle of a healthy volunteer from a parasternal long axis view were imaged.
To quantify the image quality, the contrast-to-noise (CNR), the contrast ratio (CR) of the cystic regions,
and the signal-to-noise ratio (SNR) were calculated for the static phantom images:

CNR =
μb − μc√
σ2

b + σ2c
, (2)

CR = 20log10
μb
μc

(3)

SNR = 10log10
μb
μn

(4)

where μb and μc, μn, are the mean gray-level in the background, the cystic regions and in the noise
region, respectively, and σb and σc are their corresponding standard deviations. Finally, the quality of
the in-vivo images was visually examined.

3. Results

The simulated PSFs of different MLT schemes without and with coded excitation are presented
in Figures 6–8. Without apodization on transmit and receive, no crosstalk was seen in the image of
the Golay-coded 2-MLT scheme (Figure 6c) within a 55 dB-dynamic range, whereas a slight crosstalk
suppression was observed in the image of the chirp-coded 2-MLT scheme (Figure 6d, highest crosstalk
at about −46 dB) compared to that of the non-coded 2-MLT scheme (Figure 6b, highest crosstalk at
about −40 dB). For the non-apodized coded 4-MLT and 6-MLT schemes, obvious crosstalk artifacts
was observed (Figure 7c–f), though less artifacts were found on the Golay-coded images than on
the chirp-coded images in particular in the near field. With TT apodization, most of the crosstalk
was suppressed within the 55 dB-dynamic range (Figure 8), despite the fact that the image of the
point scatterer at the depth of 30 mm was severely distorted for the TT-apodized chirp-coded 6MLT
scheme. Quantitative crosstalk evaluation is shown in Figure 9. It was found that, without apodization
and for the same number of MLT beams, Golay-coded MLT schemes presented the lowest crosstalk
level. In particular, zero level crosstalk was detected for Golay-coded 2-MLT schemes. Moreover,
with apodization, the crosstalk level of both Golay and chirp-coded 4MLT and 6MLT schemes was
significantly reduced compared to that of the non-apodized ones. In general, despite of the apodized
chirp-coded 6MLT schemes, all apodized coded MLT schemes showed lower crosstalk compared to
the corresponding non-apodized non-coded MLT schemes.

In addition, for the mean radial beam widths, all imaging schemes showed similar values (around
1mm), although Golay-coded schemes had slightly larger values (about 1.07 mm) (Figure 10, top plot).
With respect to lateral beam widths, the non-apodized coded schemes showed similar widths, which
was about 2.30 mm, whereas the values of apodized schemes were around 2.89 mm (Figure 10,
bottom plot).
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(a) (b)

(c) (d)

Figure 6. Point-spread-function (PSF) of different MLT schemes without apodization on transmit and
receive. (a) SLT (single line transmit i.e., 1MLT) scheme with non-coded excitation as the reference
image, (b) 2MLT scheme using non-coded excitation with crosstalk artifacts, (c) 2MLT scheme using
Golay coded excitation without crosstalk artifacts, and (d) 2MLT scheme using chirp coded excitation
with slight crosstalk artifacts. A dynamic range of 55 dB was used.

Based on the simulation results, TT-apodized 4MLT and 6MLT schemes were tested in in-vitro
experiments. Results are presented in Figures 11 and 12 where in Figure 12 the cystic regions were
zoomed for better visualization. The images of the tissue phantom presented in Figure 11 showed that
the crosstalk artifacts were hardly observed for all MLT schemes. However, the coded images showed
better contrast for both the middle and bottom cystic regions (Figure 12). Moreover, coded images
presented less electronic background noise compared to the non-coded ones (Figure 11, indicated by
the arrows). Quantitatively, seven regions of interest (ROI) were defined on those images to compute
the SNR, CNR, and CR. As indicated in Figure 11a, three ROIs were defined in the three cystic regions
by adjusting the radius of the cysts, whereas three ROIs were accordingly defined in the hyperechoic
background next to individual cysts. The CNR and CR of each cystic region were thus computed
using Equations (2) and (3). Moreover, the last ROI was defined in the noise region (Figure 11, NROI),
where the SNR was computed based on signal in NROI and BROI using Equation (4). The results are
presented in Table 1. It can be seen that in terms of CNR, all MLT imaging schemes showed similar
values for the top and middle cysts, whereas for the bottom cyst, the coded 4-MLT and 6-MLT schemes
showed higher values than that of the non-coded 4-MLT and 6-MLT schemes, respectively. In terms of
CR, except for the top cyst, coded schemes showed about 2.1–5.5 dB higher CR compared to that of
the non-coded ones; the chirp-coded MLT schemes presented the highest CR values. Similarly, with
respect to SNR, the coded schemes had about 2.6–5.4 dB higher SNR than that of the non-coded ones;
still, the Golay-coded performed the best and presented the highest SNR.
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(a) (b)

(c) (d)

(f)(e)

Figure 7. Point-spread-function (PSF) of 4MLT and 6MLT schemes using (a,b) non-coded excitation;
(c,d) Golay coded excitations; and (e,f) chirp coded excitations. No apodization was applied on transmit
and receive. Crosstalk artifacts appeared and became more severe as increasing the MLT beams.
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(a) (b)

(c) (d)

(f)(e)

Figure 8. Point-spread-function (PSF) of 4MLT and 6MLT schemes using (a,b) non-coded
excitation; (c,d) Golay coded excitations; and (e,f) chirp coded excitations. Tukey (α = 0.5)-Tukey
(α = 0.5) apodization scheme was applied on transmit and receive that the crosstalk artifacts were
largely suppressed.

Table 1. Quantifications of different Tukey-Tukey apodized multi-line transimt (MLT) schemes.

Imaging
Schemes

Non-
Coded
4-MLT

Non-
Coded
6-MLT

Golay-
Coded
4-MLT

Golay-
Coded
6-MLT

Chirp-
Coded
4-MLT

Chirp-
Coded
6-MLT

CNRtop 1.28 1.31 1.18 1.15 1.24 1.28
CNRmiddle 1.53 1.40 1.49 1.50 1.56 1.60
CNRbottom 1.82 1.01 2.05 1.31 2.25 1.51
CRtop (dB) 9.54 10.75 8.11 9.40 9.93 10.50

CRmiddle (dB) 17.26 14.49 20.40 17.76 19.41 20.01
CRbottom (dB) 11.55 6.50 14.52 8.12 16.03 9.99

SNR (dB) 12.71 10.66 18.15 16.17 15.94 13.31
Frame rate (Hz) 105.56 158.33 52.78 79.17 105.56 158.33
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Finally, in-vivo images of a healthy volunteer were acquired with the three TT-apodized 4MLT
schemes (Figure 13). From the cineloops (Supplementary Materials: Video S1: Figure13_a; Video
S2: Figure13_b; Video S3: Figure13_c), the coded images seemed to have better contrast between the
myocardial and blood pool and no obvious crosstalk was observed.

Figure 9. Crosstalk evaluation of different MLT schemes. TT: Tukey (α = 0.5)-Tukey (α = 0.5)
apodization scheme.

Figure 10. Beam widths in radial (upper panel) and lateral (lower panel) directions estimated from
the point-spread-function (PSF). The red line indicates the value of a non-coded SLT scheme using TT
apodization. TT: Tukey (α = 0.5)-Tukey (α = 0.5) apodization scheme.
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Non coded 4MLT TT apodized Non coded 6MLT TT apodized

Golay 4MLT TT apodized Golay 6MLT TT apodized

Chirp 4MLT TT apodized Chirp 6MLT TT apodized

(a) (b)

(c) (d)

(f)(e)

Figure 11. Tissue phantom images of the 4MLT and 6MLT schemes using (a,b) non-coded; (c,d)
Golay-coded excitation; or (e,f) chirp-coded excitation. TT apodization was applied on both transmit
and receive. TT: Tukey (α = 0.5)-Tukey (α = 0.5) apodization scheme. A dynamic range of 55 dB was
used. The arrows in panel (a) and (b) point the areas in which the non-coded MLT schemes started to
lose signal-to-noise ratio (SNR).
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Non coded 4MLT TT 

Non coded 6MLT TT 

(a) (b)

(d) (e) (f)

Golay 4MLT TT 

Golay 6MLT TT Chirp 6MLT TT 

Chirp 4MLT TT 

(c)

Figure 12. Zoomed in tissue phantom images of the 4MLT and 6MLT schemes using (a,d) non-coded;
(b,e) Golay-coded excitation; or (c,f) chirp-coded excitation. TT apodization was applied on both
transmit and receive. TT: Tukey (α = 0.5)-Tukey (α = 0.5) apodization scheme. A dynamic range of
55 dB was used. The arrows in panel (a) and (d) point the areas in which the non-coded MLT schemes
started to lose SNR.

(c)(b)(a)

Chirp 4MLT TT apodizedGolay 4MLT TT apodizedNon coded 4MLT TT apodized

Figure 13. In-vivo examples of 4MLT schemes using (a) non-coded excitation, (b) Golay coded
excitation, and (c) chirp coded excitation with TT apodization. TT: Tukey (α = 0.5)-Tukey (α = 0.5)
apodization scheme. Video clips available online. A dynamic range of 55 dB was used (video clips
available as Supplementary Materials).
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4. Discussion

In this study, we investigated the impact of two types of orthogonal codes on phased array based
MLT imaging schemes in order to see whether they could be of (added) value to suppress the associated
crosstalk artifacts. The performance of these coded imaging schemes was investigated without and
with TT apodization and benchmarked against non-coded MLT schemes with TT apodization in both
simulation and experiments. The results show that without apodization, for a 2MLT scheme, the
crosstalk was completely removed using orthogonal Golay codes with a 55 dB dynamic range, whereas
it was slightly suppressed with the orthogonal chirps (Figures 6 and 9). Indeed, this implied extremely
low cross-correlation between the used orthogonal Golay pair. Compared to a non-coded non-apodized
four or 6-MLT scheme, a coded non-apodized four or 6-MLT scheme showed less crosstalk artifacts
and the appearance of its artifacts largely replicated that of a non-coded non-apodized two or 3-MLT
scheme, respectively (Figure 7). This was to be expected given that only two sets of orthogonal codes
were applied on neighboring MLT beams in an interleaved manner. Hence, to suppress the remaining
crosstalk, TT apodization was applied (Figure 8). While almost no crosstalk artifacts could have been
seen on the TT-apodized coded images (Figure 8), crosstalk quantification showed that the chirp-coded
schemes had slightly higher crosstalk level than that of the Golay-coded ones (Figure 9). This was in
agreement with the fact that the cross-correlation of the two “orthogonal” chirps remained high due to
the overlapping sweeping frequency bands. The information in two different directions can thus not be
completely separated. Moreover, in the near field, the PSF of the chirp-coded 6MLT scheme distorted
[e.g., Figure 8f the scatterer at a depth of 30 mm]. This might be due to the fact that the inter-beam
space was very small for the 6MLT scheme when it was close to the probe, since the duration of the
chirps were relatively long, the level of interference between simultaneously transmitted waveforms
could be too high to be well separated in the near field. Nonetheless, with respect to crosstalk artifacts,
experimental images of the apodized coded MLT schemes showed similar quality compared to that
the non-coded schemes (Figures 8 and 11–13). It is important to note that the effective gain in frame
rate of the Golay-coded schemes was compromised by a factor of two due to the transmission of
complementary codes (Table 1).

Concerning spatial resolution, the coded schemes had slightly worse axial resolution whereas
the lateral resolution was almost not affected (Figure 10); the latter, as is known, is affected by TT
apodization. Moreover, as expected, the coded schemes had significantly improved the penetration,
SNR, and contrast, especially at larger depths (Figures 11 and 12, Table 1). This was also expected
given that more energy was transmitted into the tissue with the coded schemes given the increased
time-bandwidth product [28]. It should be noticed that the transmit power of different imaging
schemes was not normalized in order to make the different imaging schemes operating at their
individual optimal conditions. Furthermore, the different blind regions of the experimental images are
due to different signal lengths; indeed, longer excitations keep the transmitters switched on for longer
times, during which the receivers are disabled.

Regarding crosstalk reduction, the tested Golay and chirp codes did not show much added value,
and indeed, the apodization is still mandatory; the number of MLT beams is usually larger than
the number of the orthogonal codes, hence the cross-talk cannot be perfectly suppressed; the frame
rate might be decreased by a factor of two when complementary codes are needed. On the other
hand, coded signals are beneficial in terms of SNR and penetration depth that are limited by MLT
transmission schemes. In the latter, the pulse patterns transmitted to generate simultaneous beams, are
given by the superimposition of different signals [7]. This superimposition leads to fully constructive
interferences on the central elements. As such, the amplitudes applied on non-central elements would
decrease since the maximal peak-peak voltage level is fixed on a given system, force a decrease of
the amplitudes on the non-centered elements. As a consequence, less energy is transmitted, which
would lower the penetration and SNR. The more the MLT beams, the lower the transmitted energy
on a given MLT beam. This effect was well demonstrated in Figure 11a,b. In this perspective, coded
excitation could thus be an alternative in maintaining the transmit energy/penetration in MLT imaging,
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particularly for schemes with a larger number of MLT beams. Moreover, a TT-apodized Golay-coded
4-MLT, 6-MLT, and a chirp-apodized 4-MLT could be good candidates as imaging scheme providing
a good tradeoff between frame rate and signal-to-noise ratio. As a preliminary test, only one set of
in-vivo images using Golay-coded 4-MLT and Chirp coded 4-MLT schemes were acquired. Further
in-vivo investigation is the topic of the on-going work.

Finally, it should be noted that for either Golay or chirp codes, only two sets of orthogonal coded
excitations were adopted since finding larger number of mutually orthogonal codes was challenging.
Indeed, to have more mutually orthogonal Golay codes, the excitation duration would be significantly
increased and/or more sets of complementary codes would be required [29,30]. Long excitation
duration could lead to a large dead zone and strong interference of the MLT beams in the near field,
whereas sending more complementary codes would result in no benefit in frame rate. As for chirp
codes, more mutually orthogonal codes could be obtained by subdividing the transducer pass-band
and by increasing the code duration. However, the transducer pass-band would not be effectively
used, thus limiting the achievable range resolution. Moreover, a larger dead done could appear close
to the transducer surface as well as more near-field artifacts due to higher interference between MLT
beams with longer codes. Finally, stitching artifacts were seen in the in-vivo images as previously
demonstrated in [9]. However, in the present study, this was not compensated, as described in
Reference [31], since the primary purpose was to investigate the capability of coded excitation on
crosstalk suppression.

5. Conclusions

The main goal of this study was to investigate the impact of orthogonal coded excitation for MLT
crosstalk suppression. The results demonstrated that coded excitation could be used to suppress MLT
crosstalk, although a Tukey-Tukey apodization is still required when the number of MLT beams is
larger than the number of orthogonal codes. Moreover, coded excitation could help maintain the
transmit energy (thus the SNR), which can be largely reduced as a result of increasing MLT beams.
Overall, the benefit of applying coded excitation on an MLT imaging scheme to further suppress
crosstalk artifacts remains limited, however when seeking a balance between frame rate and SNR,
coded excitation could indeed be a valid alternative.

Supplementary Materials: The following are available http://www.mdpi.com/2076-3417/9/3/486/s1, Video
S1: Figure13_a; Video S2: Figure13_b; Video S3: Figure13_c.
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Abstract: In Multi-Line Transmission (MLT), high frame-rate ultrasound imaging is achieved by the
simultaneous transmission of multiple focused beams along different directions, which unfortunately
generates unwanted artifacts in the image due to inter-beam crosstalk. The Filtered-Delay
Multiply and Sum (F-DMAS) beamformer, a non-linear spatial-coherence (SC)-based algorithm,
was demonstrated to successfully reduce such artifacts, improving the spatial resolution at the same
time. In this paper, we aim to provide further insights on the working principle and performance
of F-DMAS beamforming in MLT imaging. First, we carry out an analytical study to analyze the
behavior and trend of backscattered signals SC in MLT images, when the number of simultaneously
transmitted beams and/or their angular spacing change. We then reconsider the F-DMAS algorithm
proposing the “short-lag F-DMAS” formulation, in order to limit the maximum lag of signals used
for the SC computation on which the beamformer is based. Therefore, we investigate in simulations
how the performance of short-lag F-DMAS varies along with the maximum lag in the different MLT
configurations considered. Finally, we establish a relation between the obtained results and the
signals SC trend.

Keywords: filtered-delay multiply and sum beamforming; multi-line transmission; spatial coherence;
ultrasound imaging

1. Introduction

Spatial coherence (SC) of ultrasound backscattered echoes has been the object of numerous works
in the ultrasound imaging field. The first works date back to the 90s [1–5], when it was proposed to
extend to pulse-echo ultrasound the Van Cittert Zernike (VCZ) theorem of statistical optics, which
describes the spatial covariance of the wave field generated by an incoherent source [1].

Recently, the attention has been focused towards exploiting the concept of spatial coherence
for the development of new image reconstruction and beamforming techniques. Some of the most
renowned coherence-based methods are coherence-factor [6], phase-coherence and sign-coherence [7]
beamforming, Filtered-Delay Multiply and Sum (F-DMAS) beamforming [8], and Short-Lag Spatial
Coherence (SLSC) imaging [9]. The latter is a technique which directly generates an image of
the spatial coherence of backscattered echoes evaluated at short lags, while all other methods
aim at generating B-mode images, either via a coherence-based weighting or through non-linear
correlation-like operations as in F-DMAS. Anyway, all these techniques use some estimate of spatial
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coherence to increase image quality. In general, they show enhanced clutter rejection and contrast
improvement capabilities [9,10], which often also come along with an increase of lateral resolution [7,8].
For these reasons, in several studies, they have been proposed for use in application to techniques that
partially sacrifice some of the above-mentioned image quality metrics to improve other crucial factors
in ultrasound medical imaging, such as the frame rate. This is the case of well-known techniques
like plane-wave imaging [11,12], multi-line acquisition (also called parallel beamforming) [13], and
multi-line transmission (MLT) [14].

MLT, as the name suggests, is based on the use of multiple beams, which are transmitted
simultaneously in the medium [15], reducing the acquisition time by a factor equal to the number
of transmitted beams. It has recently gained a lot of interest, especially for application in cardiac
ultrasound imaging [15], where the possibility to observe and track heart motion in real-time is of the
uttermost importance for diagnostic purposes. In [15], it has been shown that, by applying a Tukey
apodization window on both transmit and receive sides, improved performance can be achieved thanks
to the lowering of cross-talk artifacts that arise when multiple beams are transmitted simultaneously,
but at the expense of lateral resolution. Other works in the literature have addressed this same problem,
such as [16–18].

Our group has recently worked towards the joint use of MLT with a new non-linear beamforming
algorithm [19], i.e., F-DMAS [8,20,21], and showed how F-DMAS overcomes the main problems
that have so far limited the use of MLT in clinical practice (i.e., cross-talk artifacts and low lateral
resolution). This algorithm basically consists of computing the aperture spatial autocorrelation in
reception; however, the pulse-echo response is heavily jeopardized by MLT imaging [22], hence the
question we address in this work is: does this affect spatial coherence? If so, how?

To understand how spatial coherence varies in different imaging setups and with different
image acquisition strategies can indeed be very useful, in that it allows us to explain the achievable
performance and possible effects that could be observed in images generated with the previously
mentioned spatial-coherence-based beamformers, which are obviously influenced by its behavior.
In particular, here we are interested in analyzing the performance of F-DMAS when combined with
different MLT strategies and when the spatial correlation operation, on which this algorithm is based,
is only computed between signals within a certain maximum lag.

Therefore, the work presented here is organized in two parts. In the first part, an analytical study
of the spatial coherence trend in a simulated uniform medium with MLT imaging is presented. Such
analysis is performed by varying the main MLT parameters, i.e., the number of transmitted beams
and/or their angular separation. In the second part, a modified version of F-DMAS beamforming,
called short-lag F-DMAS, is introduced; the simulated results of MLT imaging with short-lag F-DMAS
beamforming are analyzed in the different MLT scenarios mentioned above, also studying how the
maximum spatial lag between signals that enter this beamformer influences image quality.

In the next sections, we will briefly recall the theoretical background of spatial coherence in
ultrasound imaging and the main steps of the F-DMAS algorithm; the simulation setup will be
described and the strategy used to study the trend of coherence with MLT will be presented (Section 2).
Finally, the results of the coherence analytical study and F-DMAS performance in the considered test
cases will be shown and discussed (Section 3). Conclusions will be provided in Section 4.

2. Materials and Methods

In Section 2.1, the spatial correlation concept is introduced and mathematically described, followed
by a presentation of the MLT technique in Section 2.2. Subsequently, a description of short-lag F-DMAS
beamforming is provided in Section 2.3. The simulation setup and the whole study organization are
illustrated in Section 2.4.
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2.1. Spatial Coherence

Spatial coherence (also called spatial correlation) is a measure of the coherence of the ultrasound
beam reflected by a diffuse scattering medium. The VCZ theorem [2] states that spatial coherence can
be obtained by computing the Fourier transform of the field intensity. Hence, in a classic B-mode scan,
where dynamic focusing is only applied in reception, spatial coherence reaches its maximum value at
the transmit focus, where the beam is narrower; moreover, the coherence function has a triangular
shape, being the field a sinc2 for a uniformly weighted aperture. Away from the focus, the beam
widens and spatial coherence decreases. The same effect is observed in all those cases in which a
decorrelation occurs, e.g., because of the presence of acoustic and/or electronics noise, beam sidelobes,
and aberrations, etc. [9,20,23].

For each discrete time sample t, we define the normalized spatial covariance as:

CN(l, t) =
C(l, t)
C(0, t)

=

N−l
∑

n=1

t2
∑

t=t1

sn(t)sn+l(t)

N
∑

n=1

t2
∑

t=t1

s2
n(t)

(1)

where sn(t) are the backscattered radio-frequency (RF) signals received by each n-th transducer of the
N-element receive aperture and focused (delayed). l is an integer number representing the spatial lag,
i.e., the number of elements between the couple of multiplied signals sn(t) and sn+l(t) (l = 0 . . . N − 1),
whose product is integrated over a short time interval t = [t1; t2]. C(l,t) is the spatial covariance at the
l-th lag; the normalization factor (denominator of Equation (1)) is given by the zero-lag covariance
C(0,t), as in [3].

Thus, a metric which accounts for the total spatial coherence SC(t) (similar to what is proposed
in [10] for SLSC imaging) can be computed as:

SC(t) =
N−1

∑
l=0

CN(l, t). (2)

2.2. Multi-Line Transmission

MLT consists of transmitting NTX beams simultaneously in different focusing directions. After
each transmission (TX), the backscattered signals are collected by the array elements in reception (RX)
and beamformed in parallel along the considered steering directions. Then, the beams are moved
by an angular step θSTEP = θSECT/NLINES in order to cover the full θSECT-wide image field of view
with NLINES scan lines. Therefore, the simultaneous TX beams are separated by an angular distance
θTX = θSECT/NTX [22].

To achieve multiple beam TX, a set of focusing delays has to be computed for each of the
simultaneous TX focusing directions. Thus, the MLT excitation pulse is obtained by summing up the
excitation signals that would be used to focus the TX beam along each one of the considered steering
directions in the classic single-line transmission (SLT) case.

As explained in [22], the main problem with MLT is the presence, in the final image, of the so
called cross-talk artifacts due to interferences between the multiple beams.

To better understand how such artifacts generate, we have to recall the array theory [24], according
to which the TX (hTX) and RX (hRX) ultrasound beams at the focal depth can be generally expressed
as follows:

hTX(u) = sinc(
pxu
λ

)sinc[
Npx

λ
(u −

+∞

∑
j=−∞

jλ
px

− uTX)] (3)

hRX(u) = sinc(
pxu
λ

)sinc[
Npx

λ
(u −

+∞

∑
j=−∞

jλ
px

− uRX)] (4)
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where u = sin(θ), uTX refers to the focusing direction of the TX beam (θTX) and uRX to the focusing
direction of the RX beam (θRX). N is the number of array elements, px is the array pitch, and λ is the
wavelength. Then, in the classic SLT case (i.e., each time one beam is transmitted and received), the
pulse-echo (hPE) response is given by:

hPE(u) = hTX(u)hRX(u). (5)

In MLT imaging, instead, several beams are transmitted in parallel, thus we have a summation in
the TX beam expression:

hTX(u) = sinc(
pxu
λ

)
NTX

∑
i=1

sinc[
Npx

λ
(u −

+∞

∑
j=−∞

jλ
px

− uTX
i )] (6)

where ui
TX refers to the focusing direction of the i-th TX beam (θi

TX). Hence, in this case the pulse-echo
beam in (5) is made of NTX terms, where one term is the one generated when θi

TX = θRX, i.e., the
TX and RX responses are equal (as in a classic SLT scan), and the other terms with θi

TX �= θRX are
the so called cross-talk contributions that originate from interferences among the TX and RX beams.
Consequently, in the SLT case, when NTX = 1, the pulse-echo beam has a sinc2 shape, while in MLT
with NTX > 1, the beam has a more complex shape, with NTX peaks in the simultaneous TX focusing
directions, as shown in Figure 1 for MLT with four or 12 TX beams (i.e., 4-MLT and 12-MLT).

Figure 1. Examples of theoretical beampatterns in 4-MLT and 12-MLT: in the panels on the left, the TX
(gray) and RX (black) beampatterns are plotted in each MLT case, when the RX beam is steered in one
of the TX beams’ direction (e.g., at 0◦); on the right, the resulting pulse-echo beam shapes are shown.

In particular, interferences generate two types of cross-talk, i.e., the so called TX cross-talk, caused
by interferences among TX beam side lobes and the RX beam main lobe, and RX cross-talk, caused by
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interferences between the TX beam main lobe and RX beam side lobes [22], which appear as artifacts
around the beam main lobe along the axial or lateral direction, respectively.

2.3. Short-Lag Filtered-Delay Multiply and Sum Beamforming

F-DMAS beamforming derives from microwave imaging [25] and was recently introduced in
ultrasound B-mode imaging by some of the authors [8]. This algorithm is based on the computation of
the RX aperture spatial autocorrelation function. In F-DMAS, after focusing, the received RF signals
sn(t) are amplitude-rescaled, by means of the signed square-root operator, and then combinatorially
coupled and multiplied. The beamformed output is thus computed as:

yDMAS(t) =
N−1

∑
n=1

N

∑
m=n+1

sign(sn(t)sm(t)) ·
√
|sn(t)sm(t)|. (7)

yFDMAS(t) is subsequently obtained by band-pass (BP) filtering yDMAS(t), in order to pass the
second-harmonics that originates after signal cross-multiplications, and to attenuate as much as
possible the baseband and higher frequency components which originate from such non-linear
operations. After beamforming, the obtained RF image lines are demodulated using the Hilbert
transform, normalized, and logarithmically compressed to produce the final B-mode image.

The F-DMAS formulation in (7) includes in the summation all possible couples among received
RF signals, whose spatial lag l = m − n varies from a minimum of 1 to a maximum M equal to N−1
(i.e., only auto-product terms are excluded). Since we are interested in studying the relation between
SC and F-DMAS in MLT imaging, in this work we present the short-lag F-DMAS formulation, which
limits the maximum lag M considered in the F-DMAS cross-multiplication stage. In particular, we will
analyze the quality of images generated by using the following short-lag F-DMAS formulation:

yDMAS(t, M) =
M

∑
l=1

N−l

∑
n=1

sign(sn(t)sn+l(t)) ·
√
|sn(t)sn+l(t)|, (8)

with M = 1, 2, 3, . . . , N − 1.

2.4. Simulation Setup and Study Organization

In this work, Matlab (The MathWorks, Natick, MA, USA) simulations with Field II [26,27] were
carried out by modeling a 64-element phased array probe with a 340 μm pitch. The central working
frequency was 2 MHz, and a 2-cycle Hanning-weighted sinusoidal burst was used as the excitation
signal. The transmit focus was set at a 70 mm depth and dynamic focusing was implemented in
reception. A 100 MHz sampling frequency was considered.

First, the analytical study on the spatial coherence trend was performed by simulating a
numerical uniform speckle phantom, made of 140,000 scattering points with a Gaussian amplitude
distribution, randomly placed in a 100 × 1 × 70 mm3 volume centered around (x, y, z) = (0, 0, 65) mm
(i.e., >10 scatterers per resolution cell).

In B-mode imaging with standard dynamic RX focusing, the spatial coherence is known to
decrease before and after the fixed TX focus [20,23]; thus, in this work, both the normalized covariance
CN(l,t) and total spatial correlation SC(t) were evaluated using Equations (1) and (2), and averaging
the values obtained in a small 5 × 5 mm2 area centered at (x, z) = (0, 70) mm, i.e., over the TX focus.
Three different scenarios were analyzed (Table 1):

1. the number of MLT beams varies (i.e., NTX = 1/4/6/8/12), but the total image sector is fixed
(θSECT = 90◦), as well as the number of lines (192); consequently, the angle among the TX beams
(θTX = θSECT/NTX) changes together with the number of beams (usually, this is the classic
MLT implementation);
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2. the number of MLT beams varies (i.e., NTX = 1/4/6/8/12), but the same angle (θTX) among the
beams is used in all configurations; in particular, this angle was set to be equal to the one that
would be obtained applying 12-MLT to scan a 90◦ sector (i.e., θ12). Thus, in this case, the total
image sector also changes in the different MLT configurations;

3. the number of beams is fixed (i.e., NTX = 4), while the angle among them changes, as it would do
in 4/6/8/12-MLT when a 90◦ sector is acquired. Thus, also here, the total image sector changes
in each case.

Table 1. MLT configurations: number of TX beams and angular spacing.

Scenario 1 Scenario 2 Scenario 3

NTX θTX NTX θTX NTX θTX

1 θ1 = 90◦ 1 θ12 - -
4 θ4 = θ1/4 4 θ12 4 θ4
6 θ6 = θ1/6 6 θ12 4 θ6
8 θ8 = θ1/8 8 θ12 4 θ8

12 θ12 = θ1/12 12 θ12 4 θ12

These three scenarios were specifically chosen to evaluate the influence of the number of
simultaneously transmitted beams or of their angular spacing, or of both factors, on the SC trend.

The second part of this study aimed at testing the performance of short-lag F-DMAS beamforming
in MLT imaging. Results were also compared to those of DAS with Tukey apodization in RX. In both
cases, Tukey apodization was also applied in TX, in order to reduce TX cross-talk [22].

Image quality was evaluated in terms of lateral resolution (at −6 dB), contrast ratio (CR),
contrast-to-noise ratio (CNR), and speckle signal-to-noise ratio (sSNR) [8]:

CR = 20log10

(
μcyst

μbck

)
, (9)

CNR =

∣∣μcyst − μbck
∣∣√

σ2
cyst + σ2

bckt

, (10)

sSNR =
μbck
σbck

. (11)

Point spread function (PSF) simulations were carried out considering a series of vertically
aligned point scatterers along the x = 0 mm axis, from z = 10 mm to 90 mm with a 20 mm step;
in addition, resolution measurements were made at the focal depth on the PSF at (x, z) = (0, 70) mm.
CR, CNR, and sSNR were instead evaluated by simulating a numerical phantom of 140,000 points
(i.e., >10 scatterers per resolution cell), with a 10-mm-diameter anechoic cyst centered at
(x, z) = (0, 70) mm, in a 100 × 1 × 70 mm3 uniform tissue background starting at z = 30 mm.
Measurements were performed considering two 6-mm-diameter circular areas inside and outside
the cyst.

3. Results and Discussion

3.1. Spatial Coherence Trends in MLT Images of a Homogeneous Phantom

Figure 2 shows the trend of backscattered signals SC (averaged over a small region around the
focal depth, as said before), measured on the simulated uniform phantom images. The trend is plotted
for SLT and 4/6/8/12 MLT in the three scenarios described in Section 2.4. Figure 3 represents the
total spatial coherence values obtained by computing a summation over lags of the values plotted in
Figure 2, for each MLT configuration (i.e., for each curve).

49



Appl. Sci. 2018, 8, 486

Figure 2 shows that SC has a triangular trend in SLT, which decreases from 1 at lag 0 to about
−0.1 at lag 63. This trend is consistent with the one predicted by the VCZ theorem, which states that
(at the focal depth) the SC of backscattered signals is the Fourier transform of the field intensity.

By looking at Figure 2a, we can also see that, when the number of TX beams increases (decreasing
at the same time the angle among them), SC decreases more rapidly in the short-lag region, immediately
after the peak at lag 0, and varies following a sort of damped oscillation for each different MLT case.
On the whole, as shown by Figure 3a, total coherence decreases non-linearly as the number of MLT
beams increases.

Figure 2. Normalized spatial covariance trend vs. lags, measured on the simulated uniform phantom
data, and averaged over a 5 × 5 mm2 area around (x, z) = (0, 70) mm in the different scenarios of Table 1:
(a) both the number of TX beams and the angle among them varies (as in SLT or 4/6/8/12-MLT);
(b) only the number of TX beams varies (NTX = 1/4/6/8/12), while the angular distance among them
is fixed to the one of 12-MLT; (c) the number of TX beams is set to four, while the angular distance
among them is the one of 4/6/8/12-MLT (in this last case, the legend refers to the number of TX beams
which would determine the angular distance).

Figure 3. Total average spatial coherence, measured in a 5 × 5 mm2 area around (x, z) = (0, 70) mm in
the different scenarios of Table 1: (a) both the number of TX beams and the angle among them varies
(as in SLT or 4/6/8/12-MLT); (b) only the number of TX beams varies (NTX = 1/4/6/8/12), while the
angular distance among them is fixed to the one of 12-MLT; (c) the number of TX beams is set to four,
while the angular distance among them is the one of 4/6/8/12-MLT (in this last case, the legend refers
to the number of TX beams which would determine the angular distance).

In order to understand which factor determines such trends and an overall decrease of SC, we
can look at Figure 2b,c and Figure 3b,c. Figure 2b refers to the case in which only the number of
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simultaneous TX beams varies, but the angle among them is fixed; in this way, it is possible to analyze
the dependence of the SC trend on NTX only. The plots clearly show that this time the SC oscillatory
trend becomes similar for all MLT configurations (except for SLT), but the lobes have different peak
amplitudes and widths, which still makes the total SC decrease when increasing the number of TX
beams (Figure 3b). On the other hand, when the number of MLT beams NTX is fixed, while the angle
among them varies, we see in Figure 2c that the SC trend shows a different pitch between secondary
lobes. Instead, total SC becomes similar in all cases (Figure 3c).

Therefore, by merging the information derived from the plots in Figures 2 and 3, we can observe
that in all cases SC decreases when the lag between backscattered signals increases; this decreasing
trend only follows a triangular pattern in the SLT case, when the pulse-echo beam is approximately
a sinc2, while a sort of damped oscillatory behavior is shown in MLT imaging, as expected because
of the more complex beam shape obtained when multiple beams are transmitted simultaneously
(cf. Figure 1). Furthermore, Figure 2b,c and Figure 3b,c demonstrate that it is the angular distance
between the multiple TX beams (i.e., θTX) that mainly influences the SC trend over lags in MLT imaging,
while the total SC value depends on the number of TX beams. When NTX is fixed to four, for example,
as in Figures 2c and 3c, total SC remains almost constant at ~8, while the lobes of the SC trend gradually
move at higher lags with increasing values of NTX. Conversely, when θTX is fixed (Figures 2b and 3b),
we have a similar trend in all the MLT cases, with a peak at about lag 19, but the total SC decreases as
NTX becomes higher. Both behaviors can be observed in Figures 2a and 3a, where NTX and θTX change
at the same time in the different MLT configurations analyzed.

3.2. Simulated Images with MLT and Short-Lag F-DMAS

In this section, images generated with the short-lag F-DMAS formulation are analyzed, and
the trend of each performance parameter is reported along with the maximum lag, in the MLT
configurations considered.

First analyses have been performed on the simulated PSF at the focal depth, by measuring the
lateral resolution at −6 dB; the results are plotted in Figure 4.

Figure 4. Lateral resolution (at −6 dB) trends, measured on the PSF images with varying maximum-lag,
in the different scenarios of Table 1: (a) both the number of TX beams and the angle among them varies
(as in SLT or 4/6/8/12-MLT); (b) only the number of TX beams varies (NTX = 1/4/6/8/12), while the
angular distance among them is fixed to the one of 12-MLT; (c) the number of TX beams is set to four,
while the angular distance among them is the one of 4/6/8/12-MLT (in this last case, the legend refers
to the number of TX beams which would determine the angular distance).
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The plots in Figure 4a show that no significant difference among lateral resolution curves can
generally be observed when the number of TX beams and their angular distance vary, from SLT to
4/6/8/12-MLT, both for DAS and F-DMAS images. In any case, a better resolution is always achieved
by F-DMAS, with an increasing trend from ~1.4 mm at lag 1 to ~2.4 mm at lag 63 on average, as
compared to ~3 mm on average for DAS.

When the angular distance between multiple TX beams is fixed (Figure 4b), the trend of F-DMAS
image resolution remains almost the same, as observed in Figure 4a. The curves are actually slightly
different in the 4/6/8/12-MLT cases, but no significant variation is observed: the trend is always
increasing and better values are achieved by F-DMAS than DAS for all maximum-lag values.

Similar results are obtained in Figure 4c, when a fixed number (i.e., four) of TX beams is used
while varying θTX.

Therefore, both DAS with Tukey RX apodization and F-DMAS are generally able to keep the
lateral resolution unaltered when MLT with an increasing number of TX beams is applied to improve
the frame-rate; this is probably because RX cross-talk in MLT mainly affects the lateral sides of the
PSFs and not their main lobe width at −6 dB. However, F-DMAS both reduces RX cross-talk better
than DAS and achieves up to a 1.5 mm better lateral resolution. If we consider the short-lag F-DMAS
formulation, lateral resolution varies with the maximum lag employed; in particular, it worsens as the
maximum lag increases.

As an example, Figure 5 (which refers to the 4-MLT configuration of scenario 1, cf. Table 1),
clearly shows that the standard F-DMAS always achieves better RX cross-talk reduction than DAS, as
well as lower side-lobe levels and a higher lateral resolution, which also makes TX cross-talk (that is
suppressed in both cases by Tukey TX apodization) be confined to a narrower region [19]. When the
maximum lag is reduced to 40 (Figure 5d) or 10 (Figure 5c), the PSF main-lobes become increasingly
narrow as compared to the standard F-DMAS case (Figure 5b), but unfortunately, side-lobes and RX
cross-talk artifacts become more visible at the same time (which, on the other hand, affects contrast
performance, as will be shown hereinafter), becoming even worse than those of DAS when the
maximum lag is limited to 10.

Figure 5. 4-MLT PSF images obtained in scenario 1 by applying (a) DAS with Tukey apodization in
TX/RX, or F-DMAS with (b) maximum lag = 63 (standard version), (c) maximum lag = 10, (d) maximum
lag = 40, and Tukey apodization in TX only. Figures are displayed over an 80 dB dynamic range, in
order to better highlight the possible presence of small cross-talk artifacts.
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This can be also observed by looking at Figure 6, which represents the lateral and axial profiles of
the PSF at a 70 mm depth in the same four cases analyzed in Figure 5. In Figure 6a, we can see, for
example, that RX cross talk artifacts (i.e., the two peaks at the left and right sides of the main lobe)
are wider and also 15 dB higher using short-lag F-DMAS with maximum lag = 10, as compared to
the standard F-DMAS case; on the other hand, the main lobe at −6 dB is narrower. The four axial
sections of the PSFs in Figure 6b are instead very similar, also thanks to the application of Tukey TX
apodization which lowers TX crosstalk in all cases [22].

Figure 6. Lateral (a) and axial (b) profiles of the PSF at 70 mm (i.e., the TX focal depth) shown in
Figure 5 for DAS, F-DMAS (standard formulation with maximum lag = 63), short-lag F-DMAS with
maximum lag = 10 (SL F-DMAS (10)) and maximum lag = 40 (SL F-DMAS (40)).

The following results show how contrast and speckle quality are influenced by SC variations and
by the maximum lag considered in short-lag F-DMAS.

Figure 7 represents the trend of DAS and F-DMAS image CR, CNR, and sSNR over maximum-lag
values, measured on the cyst phantom in the three scenarios investigated.

By looking at the curves in Figure 7, we can see at first an increasing trend of the CR (in absolute
value) together with the maximum lag employed in F-DMAS. When the classic F-DMAS formulation
is used (maximum lag = 63), the CR is always better than that achieved in the corresponding DAS
image, for all MLT cases (e.g., ~5–8 dB higher in scenario 1). This is not true in the short-lag region,
where a maximum-lag threshold value exists, below which the CR of F-DMAS becomes worse than
that of DAS. Such a threshold value is variable (generally in a range between lag 29 and 45) and seems
to mainly depend on the angular distance between MLT beams (e.g., for 4-MLT in scenario 3 it is equal
to 29 or 39 when θTX is the one that would be used in 4- or 12-MLT, respectively, cf. Figure 7CR-c).
In scenario 2, this threshold is similar for all plots (i.e., lag = 39/41/42/42 for 4/6/8/12 TX beams, cf.
Figure 7CR-b), since θTX is the same (i.e., θ12). Moreover, panels CR-a and CR-c show that there is a
dependence of the CR trend on the angular distance among TX beams, but no significant relation exists
with the number of MLT beams (in panel CR-b in fact, all curves are almost overlapped). In particular,
the CR gets worse as θTX decreases from θ4 to θ12.

For what concerns the CNR, the values obtained with F-DMAS are in any case lower than those
achieved by DAS, as also previously reported [8,19]; their difference becomes higher when MLT is
applied, i.e., the CNR at lag 63 with standard F-DMAS in scenario 1 is ~0.4 and ~0.8 (on average) lower
than with DAS when implementing SLT and MLT, respectively.

The F-DMAS CNR exhibits a different trend compared to CR: it rapidly increases in the short-lag
region (up to about lag 10), followed by a plateau up to lag 63, where the CNR is ~1.3 on average.
Almost the same pattern can be observed in all the three scenarios and for all MLT configurations.
By looking at Figure 7CNR-a, CNR-c (scenario 1 and 3), we can also see that the short-lag region
trend depends on the angular distance between the multiple TX beams, where lower CNR values are
obtained for smaller θTX values; on the other hand, when θTX is fixed (Figure 7CNR-b, scenario 2), the
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curves are almost overlapped. Thus, the CNR trend also seems to be related to θTX, even if in a less
pronounced way as compared to the CR one.

Figure 7. CR (top row), CNR (middle row), and sSNR (bottom row) trends, measured on the
cyst-phantom images with varying maximum lag, in the different scenarios of Table 1: (a) both
the number of TX beams and the angle among them varies (as in SLT or 4/6/8/12-MLT); (b) only the
number of TX beams varies (NTX = 1/4/6/8/12), while the angular distance among them is fixed to
the one of 12-MLT; (c) the number of TX beams is set to four, while the angular distance among them is
the one of 4/6/8/12-MLT (in this last case, the legend refers to the number of TX beams which would
determine the angular distance).

Additionally, the F-DMAS sSNR is lower than that achieved by DAS, for all maximum-lag values
and in all configurations; this is because F-DMAS impacts the speckle uniformity and a higher variance
can be measured, as shown in [8]. As opposed to the CR and CNR trends, the sSNR decreases when
the maximum lag increases; however, the total variation is quite small: it settles between 1.3 and 1.7
for lags ranging from 3 to 63, and the highest observable difference between the sSNR at lag 1 and
at lag 63 is ~0.9 for 12-MLT in scenario 1 (Figure 7sSNR-a). Overall, for the sSNR trend, it is hard to
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clearly notice a dependence on the number of TX beams or their angular spacing, as in all scenarios,
the curves are very similar.

Finally, to better highlight the short-lag F-DMAS contrast and sSNR performance, an example of
images obtained in the classic 4-MLT configuration (i.e., scenario 1, Table 1) is presented in Figure 8.
The figure shows an improved image quality achieved by F-DMAS as compared to DAS. Thanks to the
higher lateral resolution, the cyst borders are always more clearly visible with F-DMAS, even when
the maximum lag is limited to 10 and the CR is lower than that of DAS. The best resolution (~1.68 mm)
is that achieved by the short-lag F-DMAS image with a maximum lag of 10 (Figure 8c); in this case,
the cyst dimensions are almost equal to the real ones (i.e., 10 mm diameter), while for higher lags,
it looks elliptic and smaller. When the maximum lag is 40 or 63 (Figure 8b,d), the lumen becomes
increasingly dark as compared to the short-lag case in Figure 8c, and CR increases (about +9.3 dB and
+15.5 dB in absolute value, respectively). This is further highlighted by Figure 9, which compares the
cross-sections of the anechoic cysts in Figure 8, showing a definitely lower amplitude level for the
pixels in the cyst lumen with standard F-DMAS, as compared to the case with maximum lag = 10.

Figure 8. 4-MLT cyst-phantom images obtained in scenario 1 by applying (a) DAS with Tukey
apodization in TX/RX, or F-DMAS with (b) maximum lag = 63 (full-version), (c) maximum lag = 10,
(d) maximum lag = 40, and Tukey apodization in TX only. Figures are displayed over a 60 dB
dynamic range.

The CNR is almost equal in Figure 8b,d (i.e., ~1.4), as well as the sSNR (i.e., ~1.4), and they are
~0.1 and ~0.25 lower than in Figure 8c, respectively.

On the whole, the results highlight a dependence of F-DMAS MLT image quality on backscattered
signals SC from two points of view.

First, we have shown that, in MLT mode, performance varies with the number and angular
spacing of simultaneously transmitted beams, which are in turn related to a variation of backscattered
signals SC. The plots highlight that image contrast and speckle uniformity are mainly related to the
angular distance between the multiple TX beams, and thus also to the trend of SC over lags; on the
contrary, increasing the number of TX beams causes a drop of the measured total SC and has a lower
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impact on these parameters. In general, in fact, CR and CNR decrease when the angle between TX
beams reduces, while the sSNR does not show an evident dependency on the number of TX beams
or angular spacing. As expected, the lateral resolution measured at −6 dB is generally less or not
influenced by the implemented MLT configuration.

Figure 9. Cross-section of the anechoic cyst in Figure 8, for DAS, F-DMAS (standard formulation with
maximum lag = 63), short-lag F-DMAS with maximum lag = 10 (SL F-DMAS (10)) and maximum
lag = 40 (SL F-DMAS (40)).

Secondly, the results demonstrate that a relation exists between the analyzed outcome parameters
and the maximum lag of received signals that enter the F-DMAS beamforming algorithm. Particularly,
when only short-lag signal couples are used to generate the image, the PSF main lobe is narrower and
the resolution is higher, but side-lobe and artifact suppression is not as good as in the full F-DMAS
formulation case, which negatively affects image contrast. This is probably because in the short-lag
region signals are highly correlated, being recorded by elements separated by a small distance in the
probe, but the inclusion of higher-lag components in the F-DMAS summation provides further useful
information for a better off-axis artifact rejection.

Albeit the presented analysis does not suggest an absolute criterion for the choice of an optimum
maximum-lag value that could maximize all the analyzed performance parameters in F-DMAS
images, it provides valuable indications to select a maximum-lag value (and thus a certain trade-off
between contrast, resolution, and speckle SNR) based on the specific requirements of the considered
application, also relating it to the frame-rate. For example, in those cases in which the contrast
achieved by simple DAS could be sufficient but a higher resolution is required, like tissue Doppler
applications [28], short-lag F-DMAS with low maximum-lag values can be employed; on the other
hand, high maximum-lag values should be used when a high contrast is particularly required (e.g., for
an effective segmentation of cardiac walls in ultrasound images [29]).

4. Conclusions

In this paper, we have presented an in-depth investigation of the performance of F-DMAS
beamforming in the context of MLT imaging; this study is in fact not limited to the classic F-DMAS
algorithm case, but it includes a thorough analysis of the image quality achievable with this beamformer
when considering different maximum-lag values—and thus using the so called short-lag F-DMAS
formulation—in different MLT imaging configurations.

The short-lag F-DMAS formulation provided new insights on the relation between the
performance of the F-DMAS algorithm and the SC of backscattered signals. Simulation results show
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that the SC trend over lags and its total value are influenced by the number and angular spacing
of simultaneous TX beams. This in turn influences the CNR, CR, sSNR, and resolution of F-DMAS
images: higher maximum-lag values improve contrast, while lower values improve resolution and
sSNR, which makes the quality of images change with the SC trend.

As a future development of this work, experimental tests will be carried out to assess the impact of
noise on the trend of spatial correlation and on the image-quality parameters of interest considered here.
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Abstract: Ultrafast medical ultrasound imaging is necessary for 3D and 4D ultrasound imaging,
and it can also achieve high temporal resolution (thousands of frames per second) for monitoring
of transient biological phenomena. However, reaching such frame rates involves reduction of
image quality compared with that obtained with conventional ultrasound imaging, since the
latter requires each image line to be reconstructed separately with a thin ultrasonic focused beam.
There are many techniques to simultaneously acquire several image lines, although at the expense
of resolution and contrast, due to interference from echoes from the whole medium. In this paper,
a nonlinear beamformer is applied to plane wave imaging to improve resolution and contrast
of ultrasound images. The method consists of the introduction of nonlinear operations in the
conventional delay-and-sum (DAS) beamforming algorithm. To recover the value of each pixel,
the raw radiofrequency signals are first dynamically focused and summed on the plane wave
dimension. Then, their amplitudes are compressed using the signed pth root. After summing on
the element dimension, the signed p-power is applied to restore the original dimensionality in
volts. Finally, a band-pass filter is used to remove artificial harmonics introduced by these nonlinear
operations. The proposed method is referred to as p-DAS, and it has been tested here on numerical
and experimental data from the open access platform of the Plane wave Imaging Challenge in
Medical UltraSound (PICMUS). This study demonstrates that p-DAS achieves better resolution
and artifact rejection than the conventional DAS (for p = 2 with eleven plane wave imaging on
experimental phantoms, the lateral resolution is improved by 21%, and contrast ratio (CR) by 59%).
However, like many coherence-based beamformers, it tends to distort the conventional speckle
structure (contrast-to-noise-ratio (CNR) decreased by 45%). It is demonstrated that p-DAS, for p = 2,
is very similar to the nonlinear filtered-delay-multiply-and-sum (FDMAS) beamforming, but also
that its impact on image quality can be tuned changing the value of p.

Keywords: adaptive beamforming; pth root; contrast enhancement; plane wave imaging; ultrasound
imaging

1. Introduction

In ultrasound B-mode imaging, in terms of resolution and contrast, the image quality relies
essentially on the strategy used to sonicate the biological tissue. The conventional focused approach
consists of constructing the image lines one by one. Such approach suffers from particularly low
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frame rates (tens of frames per second) that are then not compatible with the present issues of ultrafast
medical imaging allowing thousands of frames per second necessary for the the observation of transient
biological phenomena [1], but also three-dimensional (3D), and even 4D, imaging [2].

To increase the frame rate, different sonication strategies have been investigated to decrease the
number of acquisitions required to obtain a complete image. Multi-line acquisition uses wider beams
for reconstruction, with several adjacent lines at the same time [3]. The multi-line transmit strategy
consists of transmitting L simultaneous focused beams to reconstruct L image lines at the same time [4].
In both cases, the frame rate is multiplied by the number of simultaneous reconstructed lines. However,
the image quality is impacted upon, due to interference from the echoes of different image lines.

To go further, all of the image lines can be reconstructed using the same set of radiofrequency (RF)
signals after the whole medium has been sonicated with a single plane wave. In this case, the frame
rate is multiplied by the number of image lines, which allows the acquisition of thousands of images
per second. However, as less energy is sent into the medium and the echoes from the medium
interfere, the resolution and the contrast are degraded. To limit this impact on image quality, several
transmissions/receptions of steered plane waves can be combined to reconstruct a single image [5].
Montaldo et al. demonstrated that the image quality obtained with the conventional focused beam
strategy can be recovered with plane wave compounding using a 10-fold greater frame rate. However,
in the context of ultrafast imaging, the number of plane waves must be maintained as low as possible,
and so image quality needs to be achieved with a complementary approach.

In addition, image quality relies on the beamformer used for reception, in order to process the
raw echo signals into image lines. The conventional delay-and-sum (DAS) beamformer consists of
correctly rephasing the raw signals acquired with the probe, and simply summing these. However,
better resolution and contrast can be achieved by combining the delayed signals in a different way.
The basic approach consists of applying a fixed weighting window before the sum of the delayed
signals, to influence the shape of the point spread function (PSF). Typically, Tukey, Hann, or Hamming
windows are used to reduce the side-lobe level, at the expense of a wider main lobe. Tong et al.
investigated the influence of window shape on the rejection of interference during reception [4]. To go
further, the adaptive Capon’s minimum variance beamformer was proposed to compute the optimal
weighting window that corresponds to each pixel [6,7]. This approach achieves a lot thinner main
lobe and strong side-lobe rejection, compared with conventional DAS. Nevertheless, since finding the
optimal set of weights for each pixel involves high computational complexity, the computing time
required for beamforming is no more negligible than for simple DAS. A derived approach with lower
complexity level was proposed by [8]. The optimal window for each pixel is chosen from a predefined
set of windows. As the number of predefined windows increases, the image quality is enhanced, while
the computational costs rise.

Other adaptive beamformers are instead based on coherence. These can reduce artifacts that
originate from incoherent noise or interference. The coherence of N delayed samples is measured to
obtain a weighting factor that is associated to each pixel value computed with the DAS beamformer.
For instance, the generalized coherence factor is computed on the fast Fourier transform of the
aperture [9], in order to define the coherent energy in the low frequencies. Alternatively, the phase
coherence factor tends to reject the pixel value when the phase dispersion is high through the
aperture [10]. The resolution and contrast enhancement, coupled with the low level of complexity
(suitable for real-time implementation), make coherence approaches very attractive.

Recently, Matrone et al. proposed a nonlinear beamformer to enhance image quality, known as
filtered-delay multiply-and-sum (FDMAS) [11], and demonstrated that this can be used to reject
interference in the case of multi-line transmit imaging [12]. As this process correlates the N delayed
samples, FDMAS can be considered as a beamformer that is based on coherence [13]. The value of
each pixel is computed as the sum of the signed square roots of the corresponding N delayed samples,
multiplied in pairs. The signed square root is used to keep the original pixel dimensionality in volts.
However, these cross-products represent heavy computational costs.
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A previous study demonstrated that the algebraic expression of FDMAS can be approximated as
the squared sum of the signed square roots of the delayed samples [14]. Such formalism allows not
only very similar performances of FDMAS to be recovered particularly rapidly, but also generalizes this
approach to higher ranges by using the pth root. However, for even p-values, the sign of the oscillations
is lost, which leads to the splitting of the frequency between the direct current (DC) components,
and a doubling of the excitation frequency. This phenomenon tends to flatten the main lobe of the PSF
compared to conventional DAS.

In the present study, a nonlinear beamformer is proposed, p-DAS, which consists of computing
the value of each pixel as the signed p-power of the sum of the signed pth root of the delayed samples.
As the signs of the ultrasound oscillations are preserved through the algorithm, the frequency content
is no longer split.

This paper is organized as follows. In the second section, the beamformers compared for this
study are introduced in the context of ultrafast plane wave imaging, as DAS (conventional), FDMAS
(nonlinear), and p-DAS (proposed method). Then, the numerical and experimental settings for the
reconstruction of the Plane-Wave Imaging Challenge in Medical Ultrasound (PICMUS; IEEE IUS 2016)
data [15] are described. In the third section, the principle and performance of p-DAS are illustrated.
The last section concludes the paper and looks at several perspectives for the proposed method.

2. Methods and Materials

In this section, the three beamformers that are compared are presented in the context of plane
wave compounding [5] (note that p-DAS beamforming could be applied to synthetic aperture or
conventional focused imaging). Then, conventional DAS and FDMAS, as proposed by [11], and the
here-proposed p-DAS method, are described. The data settings and reconstruction parameters are
also given.

2.1. Methods

2.1.1. Conventional DAS for Plane Wave Imaging

In this section, the process for compounded plane wave imaging is described. The same linear
ultrasound probe composed of N equally spaced elements is used for both transmission and reception.
To reconstruct one image, M plane waves are transmitted. For a given plane wave m, with a
transmission angle θm and a given element n of the array, the recorded signal is pn,m(t). The data
acquired are beamformed to reconstruct the pixels in the grid (x, z), where x is the lateral axis parallel
to the array, and z is the depth axis.

Each pixel r(x, z) of the RF image is obtained through combination of the N × M correctly
delayed samples qn,m(x, z). Each pixel is extracted from the raw echo signal pn,m(t). To correctly
select the qn,m(x, z) samples, two assumptions are required. The speed of sound in tissues is believed
to be constant c0 = 1540 m·s−1, and a point scatterer is believed to back-scatter the spherical wave
front. In this way, the echo back-scattered by a point located at (x, z) corresponds to the samples
qn,m(x, z) with:

qn,m(x, z) = pn,m(τn,m(x, z)), (1)

where τn,m(x, z) is the time of flight of the wave, which is the sum of τTX,m(x, z), the time in
transmission for the steered plane wave m to get to the scatterer, and τRX,n(x, z), the time in reception
from the scatterer to element n of the probe:

τn,m(x, z) = τTX,m(x, z) + τRX,n(x, z), (2)

τTX,m(x, z) =
1
c0
[x · sin θm + z · cos θm], (3)
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τRX,n(x, z) =
1
c0

√
(x − xn)2 + z2, (4)

where xn is the lateral position of the nth element. Then, the N × M correctly delayed samples qn,m(x, z)
are summed on the plane wave dimension, in order to obtain N compounded delayed samples sn(x, z):

sn(x, z) =
M

∑
m=1

qn,m(x, z). (5)

Finally, in the case of conventional DAS beamforming, the samples sn(x, z) are simply summed
along the element dimension, in order to obtain the pixel value rDAS(x, z):

rDAS(x, z) =
N

∑
n=1

an · sn(x, z), (6)

where an are the weighting coefficients of the apodization window (e.g., Tukey, Hann, and others).
Finally, to obtain the B-mode image, the RF image is subjected to envelop detection along the depth
dimension. Of note, if the central frequency of the ultrasound array is f0, then the RF image lines
oscillate around the spatial frequency fz =

2
c0

f0. Thus, for the sake of simplicity, the parts that follow
make direct use of the temporal frequency f0 rather than the spatial frequency fz.

In this study, all of the beamformers presented follow the same process for delaying and plane
wave compounding. The only difference lies in the way sn(x, z) are combined to obtain the pixel
value rDAS(x, z).

2.1.2. FDMAS Beamforming

For FDMAS beamforming, as proposed by [11], each pixel is reconstructed by multiplying the
compounded delayed samples sn(x, z) in pairs. To keep the pixel dimensionality in volts, the signed
square root is initially applied:

rFDMAS(x, z) =
N−1

∑
n=1

N

∑
n′=n+1

sign(sn(x, z) · sn′(x, z))×
√
|sn(x, z) · sn′(x, z)|. (7)

The value of the pixel computed by FDMAS reflects an autocorrelation process for the receive
aperture. In this way, FDMAS rejects noise and incoherent echoes with greater efficiency than DAS.
Note that the multiplication of signals with the same polarity leads to the loss of the sign information.
Therefore, if the RF signals sn(x, z) oscillate at f0 (along the depth dimension), the spectrum of the
image rFDMAS(x, z) is split between the DC component and 2 f0. To retrieve narrow-band image lines
before envelop detection, the RF image needs to be band-pass filtered at 2 f0 along the depth dimension.

2.1.3. Proposed Method: p-DAS Beamforming

The proposed method is referred to as p-DAS. A block diagram is given in Figure 1 to describe how
the value of a pixel rp-DAS(x, z) is computed from the corresponding compounded delayed samples
sn(x, z) with the p-DAS beamformer. After being correctly delayed and compounded, the sn(x, z)
amplitudes are compressed through the application of the signed pth root:

s̃n(x, z) = sign(sn(x, z)) · |sn(x, z)| 1
p . (8)

Note that the p-value can be an integer or a float. Then, the s̃n(x, z) are summed on the
element dimension:

r̃p-DAS(x, z) =
N

∑
n=1

s̃n(x, z). (9)
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With the original dimensionality of sn(x, z) in volts, this implies that r̃p-DAS(x, z) is homogeneous
to volt1/p. Thus, p-powering is necessary to recover the conventional image dimensionality in volts,
as for DAS. Note that the signed p-power is used to keep the polarity of the samples. The value of the
pixel obtained is then:

rp-DAS(x, z) = sign(r̃p-DAS(x, z)) · |r̃p-DAS(x, z)|p. (10)

Figure 1. Block diagram describing how the value of a pixel rp-DAS(x, z) is obtained from the N × M
raw echo signals recorded after M plane wave transmissions, using the N channels of the probe.
Once all the pixel values have been computed in this way, a band-pass filter (not represented here)
centered at f0 is applied along the z-dimension of the complete image, in order to remove potential
artificial harmonics due to nonlinear operations.

Note that while sn(x, z) oscillates at f0 along the depth dimension, the nonlinear operations
(such as signed pth root and signed p-power) distort the shape of oscillations, and so generate
artificial harmonics on rp-DAS(x, z), which have no acoustic meaning. The reconstructed image must
be band-pass filtered to remove these artificial harmonics. The central frequency of this band-pass
filter along the z-dimension is f0. Note also that the frequency sampling has to be high enough (e.g.,
>8 f0 ) to ignore the potential aliasing of artificial harmonics.

As for FDMAS, p-DAS is a coherence-based nonlinear beamformer, but it has the advantage that
it is tunable with the p-value to balance the effects of the beamformer on the images. Moreover, p-DAS
preserves the sign of the oscillations through the reconstruction process thanks to the use of the signed pth

root and the signed p-power. Such difference and the impact on the images are investigated in Section 3.3.
In actuality, p-DAS can be viewed as DAS applied to the signed pth root of the raw signals,

followed by the signed p-power, in order to re-establish the original dimension of the image. In this
way, the effects of the coherent summation are reinforced. The principle of the proposed method is
illustrated in Section 3.1, considering p-DAS as a DAS beamformer with adaptive weighting, as in [6].
Indeed, Equation (9) can be rearranged as:

r̃p-DAS(x, z) =
N

∑
n=1

wn(x, z) · sn(x, z), (11)

where wn(x, z) are the adaptive weights that depend on the sn(x, z) amplitudes:

wn(x, z) =
1

|sn(x, z)|
p−1

p

. (12)
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2.2. Materials

The performances of DAS, FDMAS, and p-DAS are compared based on the data acquired for the
four phantoms available on the open access PICMUS platform (IEEE IUS 2016) [15]. The PICMUS
challenge was specifically developed for a challenge on advanced beamforming methods using
quantitative criteria for image quality. In this way, resolution and contrast are evaluated separately on
two numerical phantoms and two experimental phantoms, using Matlab (R2016b, The MathWorks,
Natick, MA, USA). The probe settings and the parameters for transmission are given in Table 1.
The performances are evaluated with single plane wave imaging (1 PW), and also with 11 plane wave
imaging (11 PW), uniformly tilted from θ1 = −10◦ to θM = +10◦.

Table 1. Transmission settings for the PICMUS challenge [15].

Number of Elements N 128 Excitation (number of cycles) 2.5

Pitch (mm) 0.3 Transmit frequency f0 = fs/4 (MHz) 5.2

Element width (mm) 0.27 Sampling Frequency fs (MHz) 20.8

2.2.1. Beamforming Parameters

This part describes the details and parameters used for the three beamformers compared:
DAS, FDMAS, and p-DAS. For all of these beamformers, the raw RF data are previously oversampled
at 2 fs = 41.6 MHz (corresponding to 8 f0). For this paper, the over sampling frequency was empirically
determined to ignore the potential aliasing of artificial harmonics when using p-DAS. A dynamic
aperture with a constant F-number of 1.75 is used, as by [5]. For DAS, uniform receive apodization is
used. For FDMAS, the band-pass filter used is the same as that described by [16], as a Kaiser finite
impulse response (FIR) filter with a centred frequency at 2 f0 and a pass-band defined on the range
1.5 f0 − 2.5 f0. For p-DAS, two p-values are investigated: p = 2 and p = 3. The band-pass filter required
to remove artificial harmonics on the image is performed along the depth dimension. The RF image
is first low-pass filtered using a Butterworth filter (order 11; cut-off frequency 1.7 f0), and then it is
high-pass filtered using another Butterworth filter (order 11; cut-off frequency 0.4 f0).

2.2.2. Image Quality Metrics

To evaluate image quality, the metrics are computed for the envelop images (before
log-compression). The mean resolutions in the axial and lateral directions are automatically measured
as described in [15]: the full width at half maximum (FWHM) is averaged over the 20 point scatterers
for the numerical phantom (Figure 2a–d), and over seven point scatterers embedded in the speckle
for experimental phantom (Figure 2i–l). This averaging is necessary as the FWHM is not spatially
constant [17]. The contrast is measured according to two criteria: the mean contrast ratio (CR), and the
mean contrast-to-noise ratio (CNR):

CR =
1
K

K

∑
k=1

20. log10

(
μspeckle,k

μcyst,k

)
, (13)

CNR =
1
K

K

∑
k=1

20. log10

⎛⎜⎜⎝ |μspeckle,k − μcyst,k|√
σ2

speckle,k + σ2
cyst,k

2

⎞⎟⎟⎠ , (14)

where k is the index of the cyst. μspeckle,k (respectively μcyst,k) is the mean pixel amplitude in the speckle
ring (respectively inside the kth cyst). σ2

speckle,k (respectively σ2
cyst,k) is the variance of the pixel amplitude

in the speckle ring (respectively inside the kth cyst). For simulation, the phantom is composed of K = 9
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cysts (Figure 2e–h), and, for the experiment, the phantom is composed of K = 2 cysts (Figure 2m–p).
The full details of this dataset are available in [15].

Figure 2. B-mode images obtained with single plane wave imaging for the four phantoms and the
four beamformers compared: DAS (a,e,i,m), FDMAS (b,f,j,n), 2-DAS (c,g,k,o), and 3-DAS (d,h,l,p).
(a–d) the numerical phantom used for the resolution; (e–h) the numerical phantom used for the contrast;
(i–l) the experimental phantom used for the resolution; and (m–p) the experimental phantom used
for the contrast. All of the images are displayed with a 60-dB dynamic range. An example of the
boundaries chosen for the contrast metrics is given for simulation (e) and experiment (m), with the
inside of the cyst in red, and the outside of the speckle ring in green.

3. Results and Discussion

In this section, the three beamformers (i.e., DAS, FDMAS, p-DAS) are analyzed and compared
through the results obtained in simulation and experiments. In the first subsection, p-DAS is illustrated
with a simulated point target. Then, the performances of the p-DAS in terms of the image quality
(resolution and contrast) for the four phantoms of the PICMUS challenge are presented, for 1 PW
and 11 PW. The last subsection makes the comparison of images reconstructed with FDMAS and
p-DAS beamformers.
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3.1. Analysis on the Principle of p-DAS

First of all, the principle of the p-DAS beamformer is compared to the DAS beamformer,
for the case of single plane wave imaging. Namely, their respective PSFs (shown in Figure 3a,b)
are investigated in simulation on the resolution phantom described by [15]. Here, p-DAS is considered
as a DAS beamformer with adaptive weighting, considering Equations (11) and (12).

Figure 3. Illustration of the enhanced side-lobe rejection for the point spread function (PSF) with
the proposed method with p = 2 (2-DAS), compared with conventional DAS. The scatterer placed
at (x0 = 0 mm, z0 = 35 mm) on the numerical phantom is considered. The B-mode log-compressed
images with a 40-dB dynamic range are shown for DAS (a) and 2-DAS (b). The delayed signals sn(x, z)
are shown for x0 = 0 mm (c) and x1 = 0.9 mm (d); (e) the delayed samples sn(x0, z0) for the pixel on the
main lobe are shown in blue, with their corresponding adaptive weights wn(x0, z0) in red; and (f) the
delayed samples sn(x1, z0) for the pixel on the side lobe are shown in blue, with their corresponding
adaptive weights wn(x1, z0) in red.

For the point scatterer placed at (x0 = 0 mm, z0 = 35 mm), the PSF obtained with 2-DAS is
shown in Figure 3b, and this shows better side-lobe rejection compared with the PSF obtained with
DAS, as shown in Figure 3a. To explain this observation, the two beamformers are compared through
consideration of two specific pixels: the maximum of the main lobe at (x0 = 0 mm, z0 = 35 mm),
which corresponds to the point scatterer location, and the peak side-lobe at (x1 = 0.9 mm, z0 = 35 mm).
First, the pixel reconstruction at the main lobe is investigated. In Figure 3c, the oscillations are
successfully rephased for the pixel at (x0, z0) because a wave front actually comes from this location.
As a result, a uniform level of amplitude is observed for sn(x0, z0) in Figure 3e (blue). For DAS,
these delayed samples are simply summed. For 2-DAS, an adaptive weighting window is applied
(Figure 3e, red). However, the N weighting values wn(x0, z0) are quasi-identical, as they depend on
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the sn(x0, z0) amplitudes, which are similar along the elements. Finally, this pixel reconstructed with
2-DAS is equivalent to that reconstructed with DAS.

Then, DAS and 2-DAS are compared for the pixel at (x1 = 0.9 mm, z0 = 35 mm),
which corresponds to the peak side-lobe position for the reconstruction with DAS. The value of
the pixel should tend to 0, as no scatterer is present. However, it is corrupted with the energy of the
ill-rephased wave front in Figure 3d. As a result, the corresponding sn(x1, z0) amplitudes are no longer
uniform (Figure 3f, blue). To lower the value of the pixel reached with conventional DAS, the adaptive
weights wn(x1, z0) of 2-DAS tend to be the strongest for the lowest amplitudes, as demonstrated in
Equation (12). This is why side-lobes vanish for 2-DAS (Figure 3b) compared to DAS (Figure 3a).

Note that, considering Equation (12), the side-lobe rejection increases with the p-value, as stronger
weights are applied. The following subsection presents the impact on the B-mode images that arises
from this adaptive approach.

3.2. Performances Evaluation of p-DAS on Image Quality

In this subsection, the image qualities obtained with the DAS and p-DAS (p = 2 and p = 3)
beamformers are investigated, in order to understand the influence of the value of p on images.
The images obtained for single plane wave imaging (1 PW), and 11 plane wave imaging (11 PW) are
presented and analyzed.

3.2.1. Single Plane Wave Imaging

First, the results obtained for single plane wave imaging (1 PW) are considered. The images
obtained on the four phantoms with 1 PW are shown in Figure 2. The measurements are summed
in Figure 4. As a first observation, the resolution is enhanced with p-DAS, due to its better rejection
of ill-rephased wave fronts: in Figure 4, as p increases, improved sensitivity in the lateral direction
is highlighted, both in simulation (Figure 4b; DAS, 0.73 mm; 2-DAS, 0.53 mm; 3-DAS, 0.46 mm) and
experiment (Figure 4f; DAS, 0.81 mm; 2-DAS, 0.58 mm; 3-DAS, 0.48 mm).

Figure 4. Performances obtained with DAS, FDMAS, 2-DAS, and 3-DAS beamformers, using a single
plane wave in simulations (a–d) and experiments (e–h). The results obtained are given for axial
resolution (a,e), lateral resolution (b,f), contrast ratio (c,g), and contrast-to-noise ratio (d,h).

The mean axial FWHM over the 20 targets relies mainly on the excitation waveform, and it
is slightly decreased for p = 2 and p = 3 (Figure 4a,e). For the simulated phantom (Figure 2a,c),
the 20 axial FWHM are quasi constant for all of the scatterers with DAS (0.39–0.41 mm), but they
decrease for the interfering scatterers when using 2-DAS (0.31–0.41 mm). The target that is most
affected by interference located at (x = 0 mm, z = 20 mm) has an axial FWHM of 0.40 mm with
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DAS, whereas this is 0.31 mm with 2-DAS. However, the FWHM of the isolated scatterer placed at
(x = 0 mm, z = 10 mm) is 0.40 mm for DAS and 2-DAS. Indeed, the rejection of interference for p-DAS
is nonlinear with respect to amplitude, as seen for Equation (12). Then, the same interference noise is
not rejected in the same way whether it interferes with the top of the pulse, or with the low-amplitude
edges of the pulse. Finally, p-DAS tends to shrink the axial FWHM in the presence of interference.

In addition, the results demonstrate that the CR increases with the p-value for both simulation
(Figure 4c; DAS, 16.4 dB; 2-DAS, 24.9 dB; 3-DAS, 31.0 dB) and experiment (Figure 4g; DAS, 12.7 dB;
2-DAS, 19.9 dB; 3-DAS, 24.2 dB). These observations confirm the conclusions of Section 3.1: the higher
the p-value is, the more rejected the side-lobes are. As a result, the artifacts from the bright speckle
into the dark cysts are attenuated for p = 2 (Figure 2g,o), and even more so for p = 3 (Figure 2h,p),
with respect to those for DAS (Figure 2e,m).

Conversely, the CNR decreases as the p-value increases, both for simulation (Figure 4d; DAS, 5.9 dB;
2-DAS, 2.1 dB; 3-DAS, −1.6 dB) and experiment (Figure 4h; DAS, 6.0 dB; 2-DAS, 2.5 dB; 3-DAS, −0.2 dB).
This means that the variance of the pixel intensities inside the cysts and inside the speckle is stronger
with p = 2 and even more with p = 3. Looking at the simulated images, the speckle obtained with DAS
(Figure 2e,m) is relatively homogeneous with gray pixels, whereas for p = 2 (Figure 2g,o) and p = 3
(Figure 2h,p) the speckle is more heterogeneous, with a background that is darker. Indeed, the coherent
bright spots in the speckle are not strongly impacted by p-DAS, whereas the incoherent dark pixels of the
speckle are heavily rejected. As a result, the CNR drops for high p-values because it varies in the opposite
way to the increased variance. The same trend is obtained for the experiment (Figure 2m,o,p).

Moreover, roughly coherent wave fronts back-scattered from point targets appear as relatively
brighter spots when using p = 2 or p = 3 (Figure 2k,l), rather than conventional DAS (Figure 2i).
Note that the energy of such high coherent targets tends to darken the speckle in their near lateral
neighborhood. This phenomenon was identified by Ole et al. in [18] as an inner characteristic of
beamformers based on coherence. For this reason, the p-value can be adjusted to enhance the resolution
and the CR (useful for lesion detectability), while preserving the speckle structure and CNR (used
for texture analysis, and so, tissue characterization) [19]. Such a trade-off was identified as common
behavior for adaptive beamformers by [20].

3.2.2. Eleven Plane Wave Imaging

The results for 11 PW imaging are analyzed in this section. The images obtained on the four
phantoms with 11 PW are shown in Figure 5. The measurements are summarized in Figure 6.
The results demonstrate that p-DAS can be applied successfully to plane wave compounding since the
effects of p-DAS obtained with 1 PW are preserved when using 11 PW (i.e., as p increases, better lateral
resolution and CR, but worse CNR). The lateral resolution is improved as p increases both in simulation
(Figure 6b; DAS, 0.62 mm; 2-DAS, 0.49 mm; 3-DAS, 0.44 mm) and experiment (Figure 6f; DAS, 0.65 mm;
2-DAS, 0.51 mm; 3-DAS, 0.44 mm). The CR is also improved for higher p-values, for both simulation
(Figure 6c; DAS, 28.1 dB; 2-DAS, 43.7 dB; 3-DAS, 55.1 dB) and experiment (Figure 6g; DAS, 21.0 dB;
2-DAS, 33.6 dB; 3-DAS, 41.4 dB). In the image (Figure 5e,g,h), the cysts are darker with respect to the
speckle when using p = 2 or p = 3. This can be explained as follows. If the compounding leads to
different mean values for each channel, this is because no coherent source is detected, but only noise
or interference: the nonlinear weighting attenuates the noisy pixel value. In this way, the interferences
from bright speckles in the cysts vanish, so the cysts tend to be darker, and so the CR is improved.
As p-DAS increases the gap between coherent and incoherent sources, the variance inside the cyst and
inside the speckle are also increased. Such darkening of the speckle structure is also noticeable on
experimental phantoms (Figure 5m,o,p). In this way, the CNR decreases with the p-values for both
simulation (Figure 6d; DAS, 6.5 dB; 2-DAS, 3.0 dB; 3-DAS, 0.1 dB) and experiment (Figure 6g; DAS,
7.7 dB; 2-DAS, 4.1 dB; 3-DAS, 1.3 dB). Finally, the impact of p-DAS on the axial FWHM is less than
with 1 PW, for both simulation (Figure 6a; DAS, 0.40 mm; 2-DAS, 0.39 mm; 3-DAS, 0.38 mm) and
experiment (Figure 6e; DAS, 0.56 mm; 2-DAS, 0.55 mm; 3-DAS, 0.54 mm). Indeed, as observed for
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1 PW, the more a scatterer is impacted by interference, the more its FWHM is improved. However,
as the compounding of the 11 PW before p-DAS attenuates the level of interference, the nonlinear
behavior of p-DAS with respect to the amplitude is less highlighted.

Figure 5. B-mode images obtained with eleven plane wave imaging for the four phantoms and the
four beamformers compared: DAS (a,e,i,m), FDMAS (b,f,j,n), 2-DAS (c,g,k,o), and 3-DAS (d,h,l,p).
(a–d) the numerical phantom used for the resolution; (e–h) the numerical phantom used for the contrast;
(i–l) the experimental phantom used for the resolution; and (m–p) the experimental phantom used for
the contrast. All of the images are displayed with 60-dB dynamic range.

In summary, p-DAS is an interesting beamformer to reject any incoherent pixel values that result
from either ill rephased wavefronts, or waveforms corrupted by interference or noise. This explains
the better lateral resolution and enhanced side-lobe rejection, and so the improved contrast ratio.
These three first metrics increase with the p-value. However, the CNR is degraded, as the speckle
results from interference, and so it is heavily rejected with respect to the coherent target. Finally, p-DAS
appears to be a good candidate to resolve particularly punctual targets embedded in speckle or noise.
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Figure 6. Performances obtained with DAS, FDMAS, 2-DAS, and 3-DAS beamformers, using 11 plane
waves in simulation (a–d) and experiment (e–h). Results obtained are given for axial resolution (a,e),
lateral resolution (b,f), contrast ratio (c,g), and contrast-to-noise ratio (d,h).

3.3. Comparison between FDMAS and p-DAS

The comparison between 2-DAS and FDMAS is seen through the results obtained with single
plane wave imaging. First, the images obtained with a single plane wave on the numerical phantom
are compared (see Figure 2b,c). Namely, the PSFs obtained with 2-DAS and FDMAS (Figure 7a,b) are
compared for the point scatterer placed at (x0 = 0 mm, z0 = 35 mm). Their normalized lateral sections
are plotted in Figure 7c. As a first observation, the main lobe is not flat any more when using 2-DAS
beamforming rather than FDMAS beamforming. This explains the better lateral resolution for 2-DAS
with respect to FDMAS (Figure 4b; 2-DAS, 0.53 mm; FDMAS, 0.58 mm). This enhancement is also seen
in the experiment (Figure 4f; 2-DAS, 0.58 mm; FDMAS, 0.61 mm). Moreover, the relative enhanced
side-lobe rejection of 2 dB observed for PSFs in Figure 7c leads to slightly better CR for 2-DAS than for
FDMAS, for both simulation (Figure 4c; 2-DAS, 24.9 dB; FDMAS, 22.0 dB) and experiment (Figure 4g;
2-DAS, 19.9 dB; FDMAS, 17.3 dB). To explain these better performances, the role of the ‘signed’ p-power
in p-DAS rather than the ’unsigned’ p-power is highlighted. A previous study by [14] demonstrated
that images obtained with 2-DAS with unsigned p-power or with FDMAS are equivalent. Indeed,
considering Equation (10) with the unsigned p-power with p = 2 leads to:

r̃unsigned,2-DAS(x, z) =

[
N

∑
n=1

s̃n(x, z)

]2

. (15)

Then, the rearranged algebraic expression of Equation (15) gives:

r̃unsigned,2-DAS(x, z)︸ ︷︷ ︸
a© p-DAS with

unsigned p-power

=
N

∑
n=1

s̃2
n(x, z)︸ ︷︷ ︸

b© Sum o f |sn(x,z)|

+ 2 ×
N−1

∑
n=1

N

∑
n′=n+1

s̃n(x, z)s̃n′(x, z)︸ ︷︷ ︸
c© FDMAS

. (16)

Finally, FDMAS expression is recovered in Equation (16), where the term (b) is negligible compared
to the term (c). Indeed, when these originate from the same wave front, the sn(x, z) have almost the
same amplitudes, whatever the index n. This means that, in Equation (16), s̃n(x, z)2 and s̃n(x, z)s̃n′(x, z)
are particularly close values. For Equation (16), as there are only N terms in the sum (b) but N(N−1)

2
in the sum (c), the sum (b) can be neglected, and then r̃unsigned,2-DAS(x, z) is approximatively equal to
rFDMAS(x, z). Note that a band-pass filter centred at 2 f0 for the RF images is necessary when using
2-DAS with the unsigned p-power, as the sign information is lost and thus the frequency content
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is split between the DC component and 2 f0. However, using p-DAS (i.e., with the signed p-power)
preserves the sign of the oscillations, and thus avoids splitting the frequency content of RF images.
In this way, the band-pass filter selects the entire information maintained at f0, instead of just keeping
the reduced part split at 2 f0, as for FDMAS.

Figure 7. Comparison of PSFs obtained with 2-DAS and FDMAS. The scatterer was placed at
(x0 = 0 mm, z0 = 35 mm) on the numerical phantom. B-mode log-compressed images are shown over
a 40-dB dynamic range for 2-DAS (a) and FDMAS (b). Their respective normalized lateral profiles are
shown in (c).

In summary, compared to FDMAS, 2-DAS avoids the flatenning of the main lobe and allows a
slight better side-lobe rejection of 2 dB (Figure 7), which is consistent with the slight improved lateral
resolutions and contrast ratios on the different numerical and experimental phantoms. Moreover,
with the generalized formalism of p-DAS, the proposed beamformer can be tuned with the p-value
to adjust the trade-off between the CR and the CNR. Finally, 2-DAS has a similar formulation as the
real-time implementation of FDMAS proposed by Ramalli et al. [21].

4. Conclusions

This paper proposes a nonlinear beamformer, p-DAS, to enhance image quality. This beamformer
is tested here in simulation and also under experimental conditions in the context of ultrafast plane
wave imaging. The main benefits of this method are to improve lateral resolution, to better reject side
lobes, and, as a consequence, to improve the contrast ratio, depending on the p-value used. However,
p-DAS tends to distort the speckle statistics as the nonlinear operations increase the gap between the
coherent and incoherent targets that compose the speckle, which leads to decreased CNR.

Another interesting aspect is that the proposed method is an extended version of an already
well-known nonlinear beamformer: FDMAS. The signed p-power allows the removal of the PSF flat
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main lobe in FDMAS and better side-lobe rejection. Finally, the p-value can be tuned to find the best
trade-off between CR and CNR, as required by the user.

Several applications are expected for this p-DAS beamforming. First, as p-DAS highlights
punctual targets in noisy environments, it appears to be a very promising tool for bubble localization.
For instance, Errico et al. reconstructed high-resolution vascular maps using ultrafast imaging of
microbubbles [22]. The efficiency of the method relied on the assumption that the bubbles are punctual
and separable sources, and then on the detection of a large number of them in B-mode images. p-DAS
also represents a solution to increase the number of detected bubbles, as when the echo signals are
weak due to ultrasound attenuation (e.g., deep tissues, through the skull, high frequency ultrasound).
Another application might be imaging of cavitation for therapeutic monitoring. In [23], Boulos et al.
proposed enhancing the resolution of passive imaging of cavitation with the adaptive phase coherence
factor based beamformer [10]. p-DAS might also be an appropriate tool to reject interference between
the punctual bubbles that compose the cavitation cloud, which generate strong artifacts on cavitation
maps. Moreover, the performance of p-DAS might be investigated with other high frame rate imaging
strategies. In the case of multi-line transmit [4,12], p-DAS might be a good candidate to reject the
cross-talk for reception.

For the methodology, further studies can be conducted on the function used to compress the
adaptive weights. Indeed, the coupling of ‘pth-root and p-power’ has been used in this paper,
while it might be interesting to use other couplings of functions, such as ‘exponential and logarithm’,
to understand their impact on image quality.
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Abstract: Since the sound velocity for medical ultrasound imaging is usually set at 1540 m/s, the
ultrasound imaging of a patient with a thick layer of subcutaneous fat is degraded due to variations in
the sound velocity. This study proposes a method of compensating for image degradation to correct
beamforming. This method uses the sound velocity distribution measured in simultaneous ultrasound
(US) and magnetic resonance (MR) imaging. Experiments involving simultaneous imaging of an
abdominal phantom and a human neck were conducted to evaluate the feasibility of the proposed
method using ultrasound imaging equipment and a 1.5 T MRI scanner. MR-visible fiducial markers
were attached to an ultrasound probe that was developed for use in an MRI gantry. The sound velocity
distribution was calculated based on the MRI cross section, which was estimated as a corresponding
cross section of US imaging using the location of fiducial markers in MRI coordinates. The results
of the abdominal phantom and neck imaging indicated that the estimated values of sound velocity
distribution allowed beamform correction that yielded compensated images. The feasibility of the
proposed method was then evaluated in terms of quantitative improvements in the spatial resolution
and signal-to-noise ratio.

Keywords: beamforming; MRI; MR-visible fiducial marker; subcutaneous fat layer; thyroid imaging;
spatial resolution; signal-to-noise ratio (SNR); 1-3 piezocomposite material

1. Introduction

Ultrasound diagnostic equipment, which has widely been used in clinical diagnosis, assumes
that sound velocity has a uniform distribution, since it is based on pulse-echo imaging. However, in
biological soft tissues, the sound velocity ranges from 1400 m/s to 1600 m/s [1]. For example, the
sound velocity in mammalian fat tissues ranges from 1400 m/s to 1490 m/s [1]. Therefore, since the
sound velocity for ultrasound imaging (US imaging) is usually assumed to be 1540 m/s, the imaging
of a patient with a thick layer of subcutaneous fat is degraded due to variations in the sound velocity.
Significant image degradation presumably reduces spatial resolution and the signal-to-noise ratio (SNR)
in US imaging. If the sound velocity distribution is known before imaging, image degradation could be
reduced by compensating for improper beamformation. Various methods for the in vivo measurement
of the sound velocity distribution have been proposed [2–5]. For example, Aoki et al. [6] and Nitta
et al. [7] proposed methods for the measurement of the sound velocity in cartilage using magnetic
resonance imaging (MRI) and US imaging. In the two methods, sound velocity is estimated based on
the length of cartilage, as measured with MRI, divided by the time-of-flight, as measured with the
ultrasonic pulse-echo technique. Since the estimated sound velocity is obtained at different times and
locations in US imaging and MRI, the measurements are not accurate enough to correct beamforming.
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Thus, the aim of the current study was to evaluate the feasibility of a method of measuring the sound
velocity distribution in vivo using a prototype simultaneous US imaging and MRI system. This method
corrected beamforming to improve image quality in terms of the spatial resolution and SNR. In this
study, magnetic-resonance-visible (MR-visible) fiducial markers were attached to an ultrasound probe
to display a cross section of US imaging in MRI coordinates. The ultrasound probe was developed for
use in the coils of an MRI scanner.

When measuring the sound velocity distribution with a simultaneous US imaging and MRI
system, the following issues need to be resolved: (1) the development of an ultrasonic array probe for
use in an MRI gantry; (2) the development of MR-visible fiducial markers and the estimation of the
location of a cross section in MRI coordinates; and (3) the suppression of crosstalk (electrical noise)
between the MRI scanner and ultrasound equipment. Curiel et al. [8] imaged a phantom kidney and
a rabbit kidney by mechanically scanning a single transducer. Tang et al. [9] used a commercially
available probe with attached MR-visible fiducial markers to simultaneously image a phantom. In the
current study, linear array transducers made of 1-3 piezocomposite materials [10,11] were embedded
in an ultrasound probe for use in an MRI gantry. The probe was made of nonmagnetic materials,
and MR-visible fiducial markers were attached to it. The probe used in the gantry was connected to
ultrasound equipment via a connector that passed through the walls shielding the MRI room and
the control room. Crosstalk between the ultrasound equipment and the MRI scanner was reduced by
grounding the connector.

Simultaneous imaging of an abdominal phantom and a human neck was performed to evaluate
the feasibility of the proposed method. This was accomplished with US imaging equipment with 128
transmission/reception channels and a 1.5 T MRI scanner. Imaging of the phantom indicated that
the error rate for the accuracy of sound velocity measurement was less than 6%, while the spatial
resolution was 0.43 (the ratio of the lateral resolution before and after compensation), and the SNR was
8 dB. Simultaneous imaging of a human neck was performed to evaluate the compensation for image
degradation due to the layer of subcutaneous fat. An acoustic standoff pad with a sound velocity
similar to that of the fat tissue was inserted between the probe and the surface of the skin on the neck.
Improvement in image quality was noted in the resulting image of the thyroid region. During imaging
of the thyroid region in the neck, the spatial resolution (the ratio of the lateral resolution before and
after compensation) was 0.60 and the SNR improved by 3 dB as compared to the SNR in the Region of
Interest (ROI) without compensation. Nevertheless, the clinical feasibility of the proposed method,
and especially its use in abdominal imaging, needs to be studied further.

2. Materials and Methods

2.1. Ultrasound Probe for Use in MRI

An ultrasound probe for use in an MRI gantry was developed to evaluate the feasibility of
simultaneous US imaging and MRI. Array transducers made of 1-3 piezocomposite materials were
embedded in the probe (Kyokutan, Japan Probe Co., Yokohama, Japan) as shown in Figure 1.
The specifications of the array transducers are shown in Table 1. MR-visible fiducial markers were
attached to the probe to indicate the probe position and orientation in a three-dimensional MR image.
Each MR-visible fiducial marker was made of a polyoxymethylene (POM) sphere contained in an
acrylic cylinder (9.00 mm in diameter and 8.50 mm in height) filled with olive oil, as shown in Figure 2.
Since the marker appeared in an MRI as a dark sphere within a bright cylinder, the geometric center
of the dark region served as the marker location. The eight markers were arranged in two rows in
the probe as shown in Figure 1. The array transducers were arranged along the center line between
the two rows. Thus, the location of the cross section of the ultrasound image was estimated based on
the coordinates of the marker location in the MRI image. The transducer array was located along the
central line between two rows formed by MR-visible fiducial markers. Thus, the cross section of an
MRI image corresponding to a cross section of an ultrasound image was estimated as the plane through
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the central line and perpendicular to the lines formed by the pairs of markers. The central coordinates
of each marker were calculated by MRI. The distance between the footprint of the transducer array and
the marker array was measured in advance. Thus, the cross section of the ultrasound B-scan image
was located in the coordinates of the MRI.

Table 1. Specifications of the array transducers used in MRI.

Bandwidth
(MHz)

Number of
Elements

Element Pitch
(mm)

Element Size
(mm)

Focal Length of
Acoustic Lens (mm)

5–8 192 0.30 8.0 × 0.20 20

Figure 1. Top view of the prototype ultrasound probe for use in MRI. Array transducers made of 1-3
piezocomposite materials were embedded in the probe (Kyokutan, Japan Probe Co., Yokohama, Japan).
The specifications of the array transducers are shown in Table 1. MR-visible fiducial markers were
attached to the probe to locate the probe position and orientation in a three-dimensional MRI image.

 

Figure 2. MR-visible fiducial marker. (POM: polyoxymethylene).

2.2. Simultaneous Multimodality Imaging System Using Ultrasound and Magnetic Resonance

This study used a simultaneous multimodality imaging system consisting of an MRI scanner
(Echelon Vega, 1.5T, Hitachi Co., Tokyo, Japan) and US imaging equipment (RSYS0006MRF, Microsonic
Co., Tokyo, Japan). The US imaging equipment was located in the control room as shown in Figure 3.
The specifications of the US imaging equipment are shown in Table 2. The probe that was placed in
the MRI scanner was connected to the US imaging equipment via a connector that passed through the
walls shielding the MRI room and the control room. This connector was grounded in the MRI room to
eliminate crosstalk between the MRI scanner and the US imaging equipment.

A B-scan image was formed by a dynamic focusing method applied to the echo signals received
by array transducers. This focusing was obtained by the summation of delayed ultrasonic echo signals.
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The delay time sequence was calculated by the sound velocity and the path between an element of the
array and a virtual focal point. Due to the conventional focusing method used, the sound velocity was
assumed to have a constant value of 1540 m/s. The beamforming method proposed in this paper is a
dynamic focusing technique that employs the sound velocity and the path estimated by simultaneous
US imaging and MRI. This method can also be applied to the transmitting beam focusing technique if
the sound velocity distribution is obtained by MRI. Through the use of simultaneous US imaging and
MRI, beamform correction can be achieved for both the transmission and reception. Therefore, this
method offers a novel approach to beamform correction.

 
Figure 3. A simultaneous multimodality imaging system consisting of ultrasound (US) imaging
equipment (RSYS0006MRF, Microsonic Co., Tokyo, Japan) and an MRI scanner (Echelon Vega, 1.5T,
Hitachi Co., Tokyo, Japan). The probe that was placed in the MRI scanner was connected to the US
imaging equipment via a connector that passed through the walls shielding the MRI room and the
control room.

Table 2. Specifications of US imaging equipment.

Maximum Number of
Probe Interface

Channels

Number of TX/RX
Channels

A/D
Resolution

(Bits)

Sampling
Frequency

(Hz)

Memory
Capacitance

Channel (MB)

256 128 12 31.25 256

2.3. Measurement Method of Sound Velocity in Human Crus

An experiment was conducted to measure the sound velocity in human fat and muscle in the
crus using the method of simultaneous US imaging and MRI. The probe was placed on the top of
the crus. The focal length for the transmission beam was set at 30 mm. The MRI scan parameters for
human crus imaging are shown in Table 3. An RF receiving coil for the knee was used in the MRI
setup. The thickness, L, of muscle and fat was measured by MRI. The time-of-flight, T, was measured
by using an ultrasonic echo signal. Thus, the sound velocity, c, was estimated to be c = 2L/T. The crura
of three subjects were measured.

Table 3. MRI scan parameters for human crus.

Sequence TR TE Thickness Slices Frequency Encoding Phase Encoding

SE 937 ms 19.7 ms 2.0 mm 30 256 180

2.4. Experimental Imaging of an Abdominal Phantom using the Proposed Method of Compensating for the
Sound Velocity Distribution to Correct Beamforming

An experiment was conducted to evaluate the accuracy with which the sound velocity distribution
was measured during simultaneous US imaging and MRI of an abdominal phantom. Image
degradation was compensated for by correcting beamforming using the measured sound velocity
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distribution. The Model 075A abdominal phantom (Triple Modality 3D Abdominal Phantom, CIRS,
USA) was used in the experiment. The probe was placed on the top of the phantom. Agar gel
containing 5% glycerol was placed between the phantom and the probe to avoid air cavities, as shown
in Figure 4. The driving waveform to the transducers was a square wave containing 1.5 sinusoidal
waves. The pulse repetition time was 190 μs. The focal length for the transmission beam was set at
30 mm using the conventional array focusing technique. Since the phantom consists of four regions
with different sound velocities as shown in Figure 4, the sound velocity in each region was estimated
using simultaneous US imaging and MRI. For each region, the length was represented by L and the
time-of-flight was represented by T, so the sound velocity c was estimated to be c = 2L/T. The delay
time for each element to form a beam must be calculated based on the estimated value of sound
velocity on the path from an element to an arbitrary position during simultaneous imaging.

The signal processing was as follows: (1) RF data acquisition of 128 elements in a 128-channel
digital format at 12 bits and 31.25 MHz; (2) the RF data of each channel were delayed by a certain
amount of time calculated by Equations (1) or (2); (3) after quadrature detection at 5.0 MHz, the
magnitude was calculated; and (4) the B-scan image was calculated using the logarithmic magnitude
in a dynamic range of 60 dB.

For the conventional dynamic focusing in reception, the delay time of the ith element of the
transducers τi is expressed as

τi = − (iΔx − a/2)2

2clF
(1)

where Δx is the element pitch, a is the aperture length, c is the sound velocity, and lF is the focal length.
For the proposed compensated dynamic focusing in reception, the delay time of the ith element

of the transducers τi is expressed as

τi = −
N

∑
k=1

lk
ck

+
N0

∑
k=1

l0k
c0k

(2)

where N is the number of the region with the same sound velocity along the ultrasound propagation
path from the ith element to the focal point, ck is the sound velocity in the kth region, and lk is the
length of the path through the kth region. The subscript of 0 indicates the path from the center element
of the aperture to the focal point. The region with the same sound velocity is estimated by MRI. MRI
scan parameters for abdominal phantom imaging are shown in Table 4.

Table 4. MRI scan parameters for the abdominal phantom and human neck.

Sequence TR TE Thickness Slices Frequency Encoding Phase Encoding

SE 1436 ms 20 ms 1.5 mm 45 256 180

Figure 4. Composition of the phantom used in the experiment.
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2.5. Experimental Imaging of the Human Neck

An experiment was conducted to measure the sound velocity distribution during simultaneous
US imaging and MRI of the human neck. Image degradation due to a layer of subcutaneous fat was
compensated for by correcting beamforming. The experimental setup was the same as that shown in
Figure 3. Image quality significantly degrades due to a layer of subcutaneous fat in the abdominal
region. An MRI scan takes 20 min. As the imaging time increases, the spatial resolution decreases
due to heartbeat and respiration. MRI images need to be obtained with a high spatial resolution in
order to significantly improve image quality. Thus, the neck region of a male healthy volunteer was
imaged to avoid motion artifacts. Since the subject had a thin layer of subcutaneous fat in his neck, an
acoustic standoff pad (Model AC-1, Acoustic standoff pads, ATS Laboratories Co., Nofolk, VA, USA)
was placed between the ultrasound probe and the surface of the skin of the neck to mimic a layer of
subcutaneous fat. This pad had a thickness of 10 mm and a sound velocity of 1410 m/s [12]. MRI scan
parameters for human neck imaging are shown in Table 4.

3. Results and Discussion

3.1. Experimental Results of the Measurement of Sound Velocity in Human Crus

The transducer array was located along the central line between two rows formed by MR-visible
fiducial markers. Thus, the cross section of an MRI image corresponding to a cross section of an
ultrasound image was estimated as the plane through the central line and perpendicular to the lines
formed by the pairs of markers. The resultant cross section of the MRI image is shown in Figure 5.

The estimated values of the sound velocity in human muscle and fat tissue in the crus for three
subjects are shown in Table 5. The sound velocities in fat and muscle were measured as 1450 ± 20 m/s
and 1560 ± 20 m/s, respectively. The sound velocities in human fat and muscle measured in vitro are
typically in the ranges of 1459–1479 m/s and 1540–1566 m/s, respectively [1]. Those values are in
approximate agreement with those obtained in this study, i.e., falling within the standard deviation.

 

Figure 5. An example of an MRI image of a human crus. The fat layer corresponds to the upper
high-brightness region. The sound velocity in fat was measured in the central fat layer. The sound
velocity in muscle was measured in the central muscle region between the bottom of the fat layer and
the top of the fascia layer (lower-brightness horizontal stripe region).
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Table 5. The estimated values of sound velocity obtained by simultaneous US imaging and MRI.

Subject 1 Subject 2 Subject 3 Average References [1]

Fat layer
Length (mm) 3.58 ± 0.1 4.63 ± 0.1 4.24 ± 0.1 - -

Time of flight (μs) 5.02 ± 0.03 6.34 ± 0.03 5.86 ± 0.03 - -
Sound velocity (m/s) 1430 ± 40 1460 ± 30 1450 ± 40 1445 ± 20 1459–1479

Muscle
tissue

Length (mm) 15.00 ± 0.1 14.13 ± 0.1 15.7 ± 0.1 - -
Time of flight (μs) 9.75 ± 0.03 17.92 ± 0.03 20.0 ± 0.03 - -

Sound Velocity (m/s) 1540 ± 10 1580 ± 10 1570 ± 10 1562 ± 30 1540–1566

3.2. Imaging of an Abdominal Phantom

The results of the simultaneous imaging of an abdominal phantom are described as follows.
The cross section of an MRI image was estimated based on MR-visible fiducial markers in the
corresponding cross section of an ultrasound image, as shown in Figure 6. The sound velocity
was estimated to be 1500 m/s in the agar gel and 1430 m/s in the fat-mimicking region. Image
degradation was compensated for by using a sound velocity of 1540 m/s for the soft-tissue-mimicking
region. The resulting image was compared to an ultrasound image that was obtained by assuming a
sound velocity with a uniform distribution as shown in Figure 7. Fine specks are evident in the lower
layer of fat in the compensated image, as shown in Figure 7a, although the margins of darker regions
are indistinct. Similar specks are evident in the horizontal direction in a conventional B-scan image
as shown in Figure 7b. This image was obtained when a constant sound velocity of 1540 m/s was
used in beamforming. The margins of the darker circular region are clearly evident compared to those
in the compensated image. Image degradation due to a fluctuation in sound velocity was improved
by correcting beamforming using the estimated sound velocity distribution. To improve the spatial
resolution, the half-width of the autocorrelation function in the horizontal direction was calculated
for the three red squares shown in Figure 7; the half-width of the autocorrelation function is defined
as the distance equal to half of the maximum value of the autocorrelation function. The calculated
half-widths are shown in Table 6. The average ratio of improvement was 0.43. The SNR is defined
as the signal power divided by the noise power; the signal power is calculated as the square of the
maximum value in the transmitting focal region and the noise power is calculated as the standard
deviation in the ROI. The improvement in the SNR was calculated to be 8 dB based on the images
shown in Figure 7a,b.

 

Figure 6. Cross section of an MRI image corresponding to that of an ultrasound image.
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Figure 7. Comparison of B-mode images of the phantom obtained using the proposed method of
compensation (a) and a conventional approach (b). The three red squares indicate ROIs for calculation
of the autocorrelation function for a B-mode image.

Table 6. Comparison of the half-widths of the autocorrelation functions in the lateral direction.

ROIs
The Half-Width of the

Autocorrelation Function for
a Compensated Image

The Half-Width of the
Autocorrelation Function for

a Conventional Image

Ratio of the Half-Width
Improvement

Left square 1.35 mm 2.55 mm 0.53
Center square 0.85 mm 2.60 mm 0.30
Right square 1.33 mm 3.02 mm 0.44

Average 1.18 mm 2.72 mm 0.43

3.3. Imaging of the Neck

The simultaneous application of US imaging and MRI to the neck was performed to determine
the feasibility of the proposed method of compensation. Examples of T1-weighted images that were
obtained with the simultaneous imaging system are shown in Figure 8. The MR-visible fiducial
markers that were attached to the ultrasound probe are indicated by the arrows in Figure 8. The cross
section of an MR image corresponding to the cross section of an ultrasound image is shown in Figure 9.
First, the sound velocity in the acoustic gel pad was estimated as 1360 m/s by simultaneous US
imaging and MRI. The difference between the estimated value and the reference value was 50 m/s.
Beamforming was corrected using an estimated sound velocity of 1360 m/s for the pad and a sound
velocity of 1540 m/s for biological tissues in the neck region. The resulting image was compared
to a conventional B-scan image as shown in Figure 10. Image degradation due to variations in the
sound velocity was reduced by compensating for the sound velocity, as shown in Figure 10a. Without
compensation, the conventional B-scan image was blurred as a result of fluctuations in the sound
velocity, as shown in Figure 10b. To determine the improvement in the spatial resolution, the half-width
of the autocorrelation function in the horizontal direction was calculated for the region of the red
square shown in Figure 10. The ratio of the half-width of the autocorrelation in the conventional
image with that in the compensated image was calculated to be 0.60. The improvement in the SNR
was 3 dB. The results indicated that simultaneous US imaging and MRI is a feasible way to reduce
image degradation due to layers of subcutaneous fat by compensating for the sound velocity to
correct beamforming.
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Figure 8. Examples of MR images obtained using the simultaneous multimodality imaging system.
Each image corresponds to a cross section, and rows of fiducial marker arrays are indicated by arrows.
The probe was equipped with two rows of marker arrays, as shown in Figure 1.

Figure 9. The estimated cross section of the MR image corresponding to the cross section of the
ultrasound image according to coordinates of MR-visible fiducial markers.

Figure 10. B-mode images of the neck obtained using the proposed method of compensation (a) and a
conventional approach (b). A red square indicates a ROI in part of the thyroid for the autocorrelation
function in each B-mode image.
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4. Conclusions

US imaging based on the pulse-echo method assumes that the sound velocity has a constant
value in the imaging media. In general, a conventional B-scan imaging system uses a sound velocity
of 1540 m/s as the mean value for biological soft tissues. Since the sound velocity for biological
tissues ranges from 1400 m/s to 1600 m/s, differences in the sound velocity affect beamforming and
cause image degradation. In particular, the sound velocity for fat tissue is 10% slower than the mean
value for biological soft tissues, so a thick layer of subcutaneous fat degrades image quality in terms
of the spatial resolution and SNR. Thus, this study proposed a method of compensating for image
degradation due to fluctuations in sound velocity. This method uses simultaneous multimodality
imaging with US and magnetic resonance to estimate the distribution of the sound velocity in order to
correct beamforming. An experiment was conducted with a phantom and imaging of a human neck
was performed to evaluate the feasibility of the proposed method. A cross section of an MRI image
and the corresponding cross section of an ultrasound image were compared to accurately measure the
sound velocity. An MR-visible fiducial marker was developed and attached to an ultrasound probe
for use in an MRI gantry. The experiment with a phantom indicated that the spatial resolution and
SNR improved. During imaging of the human neck, an acoustic standoff pad was placed between
the ultrasound probe and the surface of the skin of the neck to mimic a layer of subcutaneous fat.
The sound velocity in the pad was estimated using simultaneous US imaging and MRI. Imaging of the
neck indicated that the correction of the beamforming using the estimated sound velocity resulted in
improved image quality for the thyroid region. The current results indicated that the proposed method
is a feasible form of beamform correction in terms of improvements in the spatial resolution and SNR.
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Abstract: In this paper, we propose a multi-perspective ultrasound imaging technology with the
cylindrical motion of four piezoelectric micromachined ultrasonic transducer (PMUT) rotatable linear
arrays. The transducer is configured in a cross shape vertically on the circle with the length of the
arrays parallel to the z axis, roughly perpendicular to the chest wall. The transducers surrounded
the breast, which achieves non-invasive detection. The electric rotary table drives the PMUT to
perform cylindrical scanning. A breast model with a 2 cm mass in the center and six 1-cm superficial
masses were used for the experimental analysis. The detection was carried out in a water tank and
the working temperature was constant at 32 ◦C. The breast volume data were acquired by rotating
the probe 90◦ with a 2◦ interval, which were 256 × 180 A-scan lines. The optimized segmented
dynamic focusing technology was used to improve the image quality and data reconstruction was
performed. A total of 256 A-scan lines at a constant angle were recombined and 180 A-scan lines
were recombined according to the nth element as a dataset, respectively. Combined with ultrasound
imaging algorithms, multi-perspective ultrasound imaging was realized including vertical slices,
horizontal slices and 3D imaging. The seven masses were detected and the absolute error of the size
was approximately 1 mm where even the image of the injection pinhole could be seen. Furthermore,
the breast boundary could be seen clearly from the chest wall to the nipple, so the location of the
masses was easier to confirm. Therefore, the validity and feasibility of the data reconstruction method
and imaging algorithm were verified. It will be beneficial for doctors to be able to comprehensively
observe the pathological tissue.

Keywords: multi-perspective ultrasound imaging; cylindrical scanning; dynamic focusing; PMUT
linear array

1. Introduction

Breast cancer is one of the most harmful diseases to women in today’s society. Therefore, early
detection and early treatment of breast cancer is particularly crucial [1]. The breast is made up of breast
glands and other soft tissues without bones, which the cancerous tissues have higher density [2,3].
In order to avoid the harm of false positive to women, it is necessary to develop highly sensitive and
specific diagnostic tools for early detection of breast cancer [4]. At present, the imaging technology
for breast cancer mainly includes X-ray mammography, Magnetic resonance imaging (MRI) and
ultrasound [5]. X-ray mammography has the advantages of high sensitivity and high specificity to

Appl. Sci. 2019, 9, 419; doi:10.3390/app9030419 www.mdpi.com/journal/applsci85



Appl. Sci. 2019, 9, 419

calcification points [6]. Whereas, early lesion is small, similar to the density of surrounding glands
and the boundary is not clear, hence the imaging effect in breast detection is not obvious [7]. Besides,
because of the radiation hazards, early screening is not appropriate [8]. Although MRI has higher
sensitivity, the specificity is rather poor [9]. In addition, its disadvantages are high costs and long
inspection time, which is not conducive to early screening [10–12]. Likewise, breast ultrasound relies
heavily on the doctor’s interpretation and is often used as a supplementary tool [13,14]. In general,
biopsy is the gold standard for the diagnosis of breast cancer, which show that there are a lot of
false-positive cases diagnosed by ultrasound imaging [15–18]. Ultrasound computer tomography
(USCT) is a potential candidate for the imaging of breast cancer [19,20]. The simultaneous recording
of reflection, speed of sound and attenuation images is the key superiority of the USCT system [21].
Comfort, safety and 3D imaging are the potential clinical benefits of ultrasound tomography [22,23].

Three-dimensional USCT, which is a new ultrasound imaging technology, promises high quality
images with satisfactory reproducibility and could offer a better chance for survival by the detection of
cancers at the early stage [24,25]. One problem that exists with the image reconstruction process is
the assumption of 2D geometry while the object imaged is in 3D [26]. In a 2D image sequence, only
clinicians with experience can estimate the size and shape of lesions and construct a three-dimensional
geometric relationship between the lesion and its surrounding tissue [27]. This brings great difficulty
to the accuracy and convenience of diagnosis and treatment and the specificity is poor [28]. Therefore,
it is very necessary to visually demonstrate the collection data of USCT on a computer with different
perspective [29]. Breast data were obtained from different perspectives and then ultrasound imaging
analysis was conducted to observe tissue lesion information retrospectively, so as to improve specificity,
further reduce misdiagnosis rate and avoid the pain caused by biopsy.

In this study, we addressed the multi-perspective imaging technology, which is used to diagnose
breast lesions. A system with a cylindrical motion of four 1 × 128 PMUT linear arrays was applied to
acquire the whole volume data using the optimized segmented dynamic focusing technology in the
reflection mode. The data reconstruction was performed at a constant angle and according to the Nth
element respectively. The experiment platform was set up and an ultrasound tomography algorithm
was used to generate the vertical slice, horizontal slice and three-dimensional imaging. Furthermore,
the characteristics of each perspective image were compared and analyzed.

2. Experiments and Methods

2.1. 3D Imaging System with Cylindrical Motion of Linear Arrays

We developed an original breast ultrasound imaging system with the cylindrical motion of four
linear arrays. The setup was mainly used to diagnose breast lesions. Figure 1 shows the schematic
diagram of the experimental setup and the connection of main components. Ultrasound imaging with
the cylindrical motion of linear arrays is as shown in Figure 2. The transducer configuration scheme is
shown in Figure 2a. The 1 × 128 PMUT was placed 90◦ cross vertically on the circle with the length
of the arrays parallel to the axis of the circle, which was roughly parallel to the central axis of the
breast. Figure 2b shows the dimensions (7 cm × 3 cm × 13.5 cm) of the linear array transducer and
the active area (1.8 cm × 12.8 cm) of the transducer for imaging. The sensors were customized for the
breast detection. The transducers surrounded the breast, which allowed for non-invasive detection.
The detection was carried out in the water tank and the working temperature was constant at 32 ◦C.
By controlling the electric rotary table controller through the PC workstation, the electric rotary table
drives the PMUT to perform the cylindrical scanning. The cylindrical scanning diagram is shown in
Figure 2c. The four PMUT linear arrays were arranged in a cross shape. The distance of the opposite
PMUT was 180 mm and the array element center to center spacing was 1 mm. Hence, the maximum
test aperture was 18 cm × 13 cm. Set 1 (Adjacent PMUT) and Set 2 (Another adjacent PMUT) operate
alternately. A 64 channel ultrasonic transmitting/receiving acquisition circuit was employed to control
the linear array. The data acquisition circuits had a sampling frequency of 40 MHz.
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Figure 1. Schematic diagram of the experimental setup.

 

(a)                            (b)                            (c) 

Figure 2. Ultrasound imaging with cylindrical motion of linear arrays. (a) Transducer configuration
scheme. (b) The dimensions of the linear array transducer. (c) Cylindrical scanning diagram.

The breast volume data were obtained by performing the cylindrical scanning with a constant
interval. For four linear array transducers, a full circle requires rotating the sensors 90 degrees. The step
angle was set to 2◦, therefore, it took 1.2 s for each rotation and 3 s for the vertical slice data collection.
Hence, the whole scan time was about 3 minutes using a HP workstation (16G). The smaller the
interval angle, the longer the scan time. Besides, the rotation precision was 0.05◦, which allows for
obtaining 7200 pulse echo signals. The optimized segmented dynamic focusing technology was used
to improve the emission energy of the A-scan line, thereby improving the imaging quality. The high
density was 256 scan lines and the low density was 128 scan lines, respectively; hence, the maximum
data were 7200 × 256 A-scan lines. Multi-perspective ultrasound imaging of the breast could be
obtained through the data reconstruction where the data could be reconstructed to obtain 7200 vertical
slices, 256 horizontal slices and a three-dimensional imaging. By adopting four rotatable linear arrays
to perform cylindrical scanning, it could make the sensor’s fabrication process easier and gain better
consistency and reliability than a cylindrical array [30].

The 1 × 128 PMUT linear array was characterized using a precision impedance analyzer (Agilent
E4990A) as shown in Figure 3. The ultrasound transducer had a static capacitance of 664 pF,
an impedance of 64 Ω and the operating frequency of 3.5 MHz [30]. Eight elements were randomly
selected to test the transmitting sensitivity Sv and receiving sensitivity M as shown in Figure 3a.
The average value of Sv is -220.5875 dB and the average value of M is 166.775 dB. The consistency is
±1dB@3.5MHz. The bandwidth experiment was conducted with the ultrasound transducer working
as a transmitter and a standard transducer working as a receiver. The frequency response had a –6 dB
bandwidth of 86.7% as seen in Figure 3b.
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(a) (b) 

Figure 3. Frequency property of the ultrasound transducer. (a) Sensitivity. (b) Fractional bandwidth.

2.2. Multi-Perspective Ultrasound Imaging

This system was able to gain sufficient data and store it in the computer by rotating a full circle.
These data could then be reconstructed to form multi-perspective breast ultrasound imaging as shown
in Figure 4. Ultrasonic reflection imaging is mainly dependent on the acoustic impedance mismatch
between different tissues [23]. In this paper, we describe the recombination method and ultrasound
tomography algorithm from three perspectives, the details are as follows:

Figure 4. Multi-perspective breast ultrasound imaging. (a) Vertical slice (b) Horizontal slice.
(c) 3D imaging.

2.2.1. Vertical Slices

A total of 256 A-scan lines at a constant angle were recombined as a dataset; then, we used a
Butterworth filter to process the data for decreasing signal noise. Envelope detection was carried out
for the data after filtering and the contour of the signal was extracted. The enveloping signal was
processed by logarithmic compression and the dynamic range of the image was adjustable. Then,
a vertical slice could be produced using gray-scale imaging as shown in Figure 4a.

2.2.2. Horizontal Slices

A total of 7200 A-scan lines were recombined according to the nth element as a dataset. Then,
a Butterworth filter was used to process the data for decreasing signal noise. Envelope detection was
carried out for the data after filtering and the contour of the signal was extracted. The enveloping
signal was processed by logarithmic compression and the dynamic range of the image was adjustable.
The data were truncated to leave half the depth. The coordinate transformation of the data was carried
out and the reference point is the center of the detection window. Then, a horizontal slice was acquired
by using morphological processing including an inflation algorithm and a bicubic filling algorithm as
shown in Figure 4b.
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2.2.3. 3D Imaging

Reconstruction of the 3D breast imaging could be realized by merging the horizontal slices as
shown in Figure 4c. The Medical Imaging ToolKit (developed by Institute of Automation of Academia
Sinica) was used to realize the 3D visualization.

3. Principles

3.1. Focusing Delay Calculation

The focusing delay time is related to the parameters of the transducer and the position of the focal
point. The main parameters involved in the ultrasound transducer include subarray number and array
spacing. The subarray number of elements m was 64 and the array spacing d was 1 mm. The position
of focal point P was on the central axis of the subarray and the depth of the scanning was 180 mm.
The known parameters were the ultrasound velocity c and the sampling rate fs, which were 1520 m/s
and 40 MHz, respectively. The calculation of the focusing delay time τ of the 64 channel linear array
transducer is shown in Figure 5. However, the calculation only needed to consider channels 1 to 32,
because the 64 channels were symmetrically related to the central axis of the subarray.

Figure 5. Calculation of the focusing delay time τ for the linear array transducer.

The focusing delay time τj(F, βj) of channel j can be calculated with the formula shown in Equation (1).

aj =
∣∣∣ 64+1

2 − j
∣∣∣× d (j = 1, 2, . . . , 32)

τj
(

F, β j
)
=

(√
aj

2 + F2 − F
)

/c

ΔF = c/2 fs = 0.019mm

(1)

where the distance between array element j and the center axis is aj; the angle between the array
element j and the center axis is βj; the focal length is F; the ultrasound velocity is c; the array spacing is
d; and the minimum distance between the two adjacent focal points is ΔF [31–33].

3.2. Delay Data Analysis

The range of the scanning depth was 2 to 180 mm and the focusing delay data of 32 channels were
calculated according to Equation (1). The delay focusing data of channels 1–32 update in real time with
the change of the focal depth. The variation of focusing delay data relative to the focal depth F and
channel j is shown in Figure 6. For the focal depth F and the channel j, the variation is a monotonically
decreasing function. The smaller the distance between two adjacent focal points, the more focusing
points means that the quality of the image is higher. Whereas, field programmable gate array (FPGA)
consumption also increases. The tradeoff between image quality and FPGA consumption, the distance
between two adjacent focal points, was 0.45 mm. These features showed that the following focusing
delay data could be stored to some extent that used less memory.
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Figure 6. Focusing delay data τj(F, βj) of each channel.

The transmission and receiving of ultrasonic transducers were controlled by the 64 channel
ultrasonic signal circuit and the beam synthesis algorithm was realized according to the focusing
delay data. By adopting the sequential scanning method, the focus changed dynamically during the
scanning process, so that the beam of the whole detection depth could converge well.

4. Results

4.1. Breast Model Imaging

In this section, multi-perspective ultrasound imaging was realized with the cylindrical motion of
the linear arrays and the experimental setup was built as shown in Figure 7. The system description is
described in Section 2.1. The breast model is made of similar to the mammary gland material, close to
the hardness of soft tissue and can be used for ultrasound imaging research. The model with a 2 cm
mass in the center and six 1-cm superficial masses were used for experimental analysis as shown in
Figure 8d. The breast model size was 15.5 cm × 8 cm. The test was carried out in the water tank and
the working temperature was constant at 32 ◦C. The sound velocity was 1520 m/s and the maximum
detection depth was 17.8 cm. The PMUT’s center frequency was 3.5 MHz and the element spacing
center to center was 1 mm. The 64 channel ultrasonic signal acquisition circuit was used to realize the
point-by-point dynamic focusing, where the sampling frequency was 40 MHz. The breast model was
placed through the detection window. The rotation interval was set to 2 degrees. When the rotation
was 90 degrees, the cylindrical scanning was completed. Hence, 180 × 256 A-scan lines were obtained.
These scan lines were analyzed from multiple perspectives according to the algorithm described in
Section 2.2 and the results are shown in Figures 8–10. The experimental setup (Figure 7a) can be
encapsulated into the detection bed as shown in Figure 7d, which will be used for clinical imaging
research in the future.

A total of 180 vertical slices were obtained where the dynamic range of the image was 50 dB
and slices with different angles are shown in Figure 10. We could distinguish the boundary of the
breast model. The size of the hypothetical masses could be easily seen, which were about 1.9 cm and
0.9 cm, respectively. Compared with the theoretical value, the relative error of the mass size was 5%.
Furthermore, the location of the hypothetical masses could be determined by the distance from the
center of the mass to the chest wall and the central line of the breast. However, the number of the masses
could be determined with some difficulty. As the detection depth increased, the breast boundary
became somewhat blurred. This was due to the attenuation problem of the ultrasound in soft tissue
transmission. In general, the attenuation coefficient of the soft tissue is 0.6~0.7 dB/(cm/MHz) [12].
As the detection depth increases, the ultrasonic pulse echo signal will be weaker because of the
attenuation. However, if the signal attenuation is too fast, the detection depth will be limited.
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The acquisition of vertical slices requires a depth detection of 18 cm, which have a uniform resolution
in the direction of the depth.

Figure 7. (a) Experimental setup. (b) PC workstation. (c) 64 channel ultrasonic signal receiving and
transmitting circuits. (d) Diagram of the clinical imaging.

Figure 8. Ultrasonic tomography using this setup. (a) The whole breast model imaging. (b) The upper
part of the breast imaging. (c) The lower part of the breast imaging. (d) Breast model.

A total of 256 horizontal slices were acquired at different nth elements and representative images
are shown in Figure 9. The breast boundary could be seen clearly from the chest wall to the nipple.
The masses number could be easily seen. Six small masses could be seen in the superficial surface and
one big mass can be seen in the center. The size and location could also be detected. At the same time,
the contour of the breast was more complete than the vertical slices, which was due to the horizontal
ultrasound tomography algorithm. Hence, this method could reduce the detection depth by half, only
requiring a depth detection of 9 cm. Furthermore, the image center resolution was higher than the
edge, particularly at the center of the breast where each pixel was viewed from 180 degree angles.

91



Appl. Sci. 2019, 9, 419

Figure 9. Ultrasonic horizonal tomography images using this setup. (a) Slice N = 2. (b) Slice N = 15.
(c) Slice N = 25. (d) Slice N = 40. (e) Slice N = 50. (f) Slice N = 72.

Figure 10. Ultrasonic vertical tomography images using this setup. (a) Angle = 24◦. (b) Angle = 64◦.
(c) Angle = 96◦. (d) Angle = 164◦. (e) Angle = 196◦. (f) Angle = 258◦.

The 256 horizontal slices and the 3D ultrasonic imaging of the breast model were realized using
the MITK software platform, as shown in Figure 8. The experimental results showed that 3D imaging
was more intuitive for tumor detection when compared with the 2D imaging sequences.

5. Discussions and Conclusions

In this project, the breast model was rapidly collected from a series of angles to obtain data from
different perspectives. The vertical slices and horizontal slices could be reconstructed retrospectively
and the 3D image could be further processed and displayed. The detection of the size, position and
shape of different masses was realized with the minimum size of 1 cm. Even the image of the injection
pinhole could be seen. Furthermore, each perspective image had its own characteristics. For the vertical
slice, the image had a uniform resolution and was relatively easy to obtain. However, it required a
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larger detection depth. To some extent, the transmitter frequency of the transducer was limited. As for
the horizontal slice, the algorithm was relatively complex, with the internal resolution higher than
the edge, which is more suitable for the detection of breast deep mass. Meanwhile, it can reduce the
demand for transducer detection depth. Thus, it is beneficial to the application of high frequency probes.
The 2D slice sequence diagnosis requires more experience for the operator, whereas the information of
the breast model and the masses can be shown intuitively through 3D imaging. Therefore, masses can
be comprehensively detected from different perspectives and this approach will help to improve the
specificity and sensitivity of ultrasonic diagnosis. However, it is still difficult to differentiate between
benign over growths in breast tissue (or even calcifications) from malignant tumors. The mechanical
and elastic changes in cancerous tissues result in higher density and sound velocity in breast cancer.
Mean values of the sound velocity are as follows: fat, 1478 m/s; glandular breast, 1510 m/s; benign
breast tumors, 1513 m/s; and malignant breast tumors, 1548 m/s [30]. These data manifest that breast
density can be assessed by sound velocity and attenuation. Thus, the multi-perspective imaging
technology convergence sound velocity and attenuation imaging algorithm will help with the more
specific detection of breast lesions. Meanwhile, the improvement in the sensitivity depends on the
study of high density integrated ultrasonic transducer arrays. These methods will overcome the
roadblocks in using this approach in the clinic along with biopsies for the breast cancer diagnosis,
which will be helpful to reduce the retest rate and improve its accuracy.
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Abstract: Ultrasound images are corrupted with multiplicative noise known as speckle, which
reduces the effectiveness of image processing and hampers interpretation. This paper proposes a
multiplicative speckle suppression technique for ultrasound liver images, based on a new signal
reconstruction model known as sparse representation (SR) over dictionary learning. In the proposed
technique, the non-uniform multiplicative signal is first converted into additive noise using an
enhanced homomorphic filter. This is followed by pixel-based total variation (TV) regularization
and patch-based SR over a dictionary trained using K-singular value decomposition (KSVD). Finally,
the split Bregman algorithm is used to solve the optimization problem and estimate the de-speckled
image. The simulations performed on both synthetic and clinical ultrasound images for speckle
reduction, the proposed technique achieved peak signal-to-noise ratios of 35.537 dB for the dictionary
trained on noisy image patches and 35.033 dB for the dictionary trained using a set of reference
ultrasound image patches. Further, the evaluation results show that the proposed method performs
better than other state-of-the-art denoising algorithms in terms of both peak signal-to-noise ratio and
subjective visual quality assessment.

Keywords: ultrasound; speckle reduction; medical image processing; sparse representation;
K-singular value decomposition; dictionary learning; B-mode imaging

1. Introduction

In the last 20 years, there has been growing interest in the use of ultrasound imaging for a
variety of applications, such as observing the blood flow through an organ or other structures;
determining bone density; imaging the heart, a fetus, or ocular structures; or diagnosing cancers [1,2].
Ultrasound imaging has been widely applied owing to its ability to produce real-time images and
videos. Ultrasound images are captured in real-time by transmitting high frequency sound waves
through body tissue. It comprises an array of transducer elements that sequentially echo the signal
for each spatial direction to generate a raw line signal. The scan is converted to construct a Cartesian
image from the processed raw line signal [2].

In recent years, many researchers have attempted to develop computer-aided diagnostic (CAD)
systems for diagnosing liver and breast cancers [3–6] based on ultrasound imaging. The aim of
these systems is to differentiate benign and malignant lesion tissues as well as cysts [7]. A CAD
system carries out the diagnosis in four stages: data preprocessing, image segmentation, feature
extraction, and classification [4]. Data preprocessing is the first and most vital step in the CAD system
process because it reconstructs an image without eliminating the important features by reducing
signal-dependent multiplicative noise called speckle [8].

The development of a precise speckle reduction model is an important step to achieve efficient
denoising filter design. Recent review articles [4,9], reported that speckle reduction filters are
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categorized into two broad approaches: spatial filtering and multiscale methods. Techniques under
spatial domain filtering include enhanced Frost filtering [10], Lee filtering [11], mean filtering [12], Wiener
filtering [13], Kuan filtering [14], and median filtering [15]. Spatial filters utilize local statistical properties
to reduce speckle noise. However, small details may not be preserved [9]. Several methods [16–19]
use multiscale filtering, which uses the wavelet transform to preserve the image signal regardless
of its frequency content. Donoho et al. [20] proposed reducing noise in the wavelet domain by
soft thresholding. However, their approach lacked translation invariance when using the discrete
wavelet transform. This is resolved by eliminating up and down samplers in the wavelet transform
by using a stationary wavelet transform [21], which is a redundant technique because the number of
input and output samples at each level is the same. A multiresolution technique called translation
invariant image enhancement was proposed in [22]. The proposed technique incorporates noise
reduction and directional filtering. Directional filtering is executed using eigenvalues by analyzing the
structure of each pixel’s neighborhood. Rudin et al. [23,24] and Perona et al. [25] proposed successful
image denoising techniques called total variation (TV) and anisotropic smoothing, respectively.
These models were improved and extended upon in later works [26,27]. However, all these methods
are computationally expensive. In recent years, more efficient denoising techniques such as sparse
representation (SR) have been proposed [28–31]. In digital image processing, many signals are sparse;
i.e., they contain many coefficients either equal to or close to zero in a specific domain. The objective of
SR is to efficiently reconstruct the signal with a linear combination of a few dictionary atoms from the
transformed signal domain [32].

This study was conducted with the objective of developing filtering algorithm that can reduce
noise without losing significant features or eliminating edges. To this end, this paper proposes,
a technique that reduces the speckle noise in ultrasound imaging systems by applying a relatively
new signal reconstruction model known as SR [32] to deal with complicated noise properties. Sparse
representation provides superior estimation even in an ill-conditioned system [33], and has been found
to be very useful in medical imaging applications. However, one challenge of designing this system is
the presence of a multiplicative speckle signal because dictionary learning methods are not effective
on multiplicative and correlated noise. We overcome this by using two different methods. Firstly,
the speckle noise is transformed into additive noise using an enhanced homomorphic filter that can
also capture high and low frequency signal of the image. Secondly, we introduced TV regularization
of the image and sparse prior over learned dictionaries. Total variation regularization is efficient for
noisy image, while the patch-based dictionaries are well adapted to texture features [34], and reduces
the artifacts in smooth pixel regions [35]. The advantage of the sparse prior is that it utilizes fewer
dictionary columns to reconstruct a noiseless ultrasound image without losing many important features
of the signal. Therefore, in our proposed model we combined the two approaches, the patch-based SR
over learned dictionaries and the pixel-based TV regularization method, for efficient speckle reduction.
The K-singular value decomposition (KSVD) algorithm [36] is used to learn two modified dictionaries
from reference ultrasound image datasets and the corrupted images; these are referred to as dictionaries
1 and 2, respectively. The results are evaluated on both dictionaries and compared with conventional
algorithms to show that the speckle noise is suppressed effectively in the ultrasound image using SR.

The rest of the paper is organized as follows. Noise model and related works are described in
Section 2. The proposed SR framework for speckle reduction in ultrasound imaging is presented in
Section 3. In Section 4, the experiments and results obtained are discussed. The paper is concluded in
Section 5.

2. Background

2.1. Ultrasound Noise Model

Ultrasound imaging system are often affected by multiplicative speckle [37]. Scattering time
differences lead to constructive and destructive interference of the ultrasound pulses that are reflected

97



Appl. Sci. 2018, 8, 903

from biological tissues. Speckle patterns can be classified depending on the spatial distribution,
number of scatters per resolution cell, and properties of the imaging system [9]. Speckle noise affects
the detectability of the target and reduces the contrast and resolution of the images, making it difficult
for a clinician to provide a diagnosis.

In ultrasound, the multiplicative noise models are based on the product of the original signal and
noise. Thus, the intensity of a noisy signal depends on the original image intensity. The mathematical
expression for a multiplicative speckle model is given by

y(i, j) = x(i, j)h(i, j), (1)

where y(i, j) is the speckled image, x(i, j) is the original image, and h(i, j) is the speckle noise.
The spatial location of an image is represented using indexes i and j, where index i ranges from
1 to N, and index j from 1 to M.

2.2. Related Work on Multiplicative Noise Reduction

Several algorithms have been proposed to deal with more complex multiplicative and additive
speckle noise models [38]. For instance, the Kuan, Frost, Lee filters, and speckle reducing anisotropic
diffusion (SRAD) filter [39] are effective on the multiplicative noise model. Other filters, specifically
the median, Wiener, and wavelet filters [40], are designed for the additive noise model [4]. However,
each filter has certain advantages and limitations [38]. In a few filter models, the quality of the
processed image is affected by the window size: large window sizes cause image blurring, degrading
the fine details of an image. Conversely, small window sizes do not denoise the image sufficiently.
Other widely used multiplicative noise reduction algorithms are based on the TV regularization
term [23,41], nonlocal methods [42,43], and wavelet-based approaches [16]. Total variation-based
methods effectively remove flat-region-based noise and preserve the edges of images. However, fine
details are lost because of over-smoothed textures. Nonlocal algorithms depend on similarities of
image patches. Their performance is limited by dissimilar image patches. However, wavelet-based
approaches preserve texture information better than TV-based methods. This approach assumes
that images in the SRs are based on a fixed dictionary [29,36]. However, certain characteristics of
the processed image might not be captured because the dictionary does not contain any similar
image content.

To overcome the above disadvantages, over the past few years, researchers have sought to develop
an algorithm based on SR in the field of image and signal processing [32]. This is because the pattern
similarities of image signals such as textures and flat regions, mean that the signal can be efficiently
approximated as a linear combination using a dictionary of only a few functions called atoms [29,34,36].
Elad and Aharon [36] proposed an image denoising algorithm using an adaptive dictionary called
KSVD that is based on sparse and redundant representations. It includes sparse coding and dictionary
atoms that are updated to better fit the data. The advantage of KSVD compared to fixed dictionaries is
that it is effective at removing additive Gaussian noise using the linear combinations of a few atoms,
by learning a dictionary from noisy image patches and then reconstructing each patch.

A dictionary A ∈ R
Nr×Nc , composed of Nc columns of Nr elements, is called a sparse-land

model [36]. K-singular value decomposition seeks the best signal representation of image signal y from
the sparsest representation α:

�
α = argmin‖α‖0 subject to ‖y − Aα‖2 ≤ ε,

where the vectorization of y(i, j) is denoted by vector y ∈ R
M×1 and ε is the few number of non-zero

entries in α. K-singular value decomposition replaces the dictionary update and sparse coding stages
with a simple singular value decomposition. The orthogonal matching pursuit (OMP) method [44]
is an effective method to find the sparse approximation. In the OMP, if the noise level is below the
approximation, the image patches are rejected. The singular value decomposition constructs better
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atoms by combining patches to reduce noise for ultrasound speckle reduction. K-singular value
decomposition has also proved to effectively reduce the speckle produced by additive white Gaussian
noise on corrupted images [29,36].

The filtering algorithm comprises two steps. First, the dictionary is trained from a set of image
data patches or from noisy image patches based on KSVD. The next step uses

�
α to compute SR using

dictionary A and denoises the image [29].
The method proposed in [45] also uses a dictionary learning approach for denoising ultrasound

images. A homomorphic filter is used to convert multiplicative noise into additive white Gaussian
noise and then the noiseless signal is reconstructed over image patches (atoms) to create the SR from a
learned dictionary. However, noise in flat regions still exists and poor edges make the reconstructed
images difficult to analyze. In [34], the authors proposed an image denoising technique that operates
directly on multiplicative noise and is based on three terms: SR over an adaptive dictionary, a TV
regularization term, and a data-fidelity term. However, the proposed model is nonconvex because of
the product between the unknown dictionary and sparse coefficients and the data-fidelity term is a log
function. Therefore, solving the squared l2 norm is difficult. This optimization problem is overcome
by the split Bregman technique. However, these methods do not contain high- and low-frequency
components of the image. We obtain this information using an enhanced homomorphic filter designed
to improve the final image. Furthermore, we utilize the advantages of combining a TV regularization
term and SR learned over two modified dictionaries.

3. Sparse Representation Framework for Speckle Reduction

As discussed above, we define our proposed scheme for ultrasound speckle reduction by
considering the multiplicative noise model [37] obtained by an ultrasound transducer. Equation (1)
can thus rewritten as

y∂(i, j) = x�(i, j)nσ(i, j), (2)

where y∂(i, j) is the degraded B-mode image signal [46], x�(i, j) represents the ideal image that must
be recovered, and nσ(i, j) represents the speckle noise, generally modelled as a Rayleigh probability
density function with random variables [11,47]. Each term includes coordinates (i, j) defined according
to the acquisition geometry.

In general, a homomorphic filter [48] is a well-proven technique for converting multiplicative
noise. In this study, we modified it by taking the log of the multiplicative noisy signal and filtering the
image using a Butterworth high-pass (BW-HP) filter to attenuate low frequencies in the transmitted
signal while preserving the high frequencies in the reflected component. The equation of the BW-HP
filter is

HB(u, v) =
1

1 +
[

D0/
√

u2 + v2
]2 f , (3)

where, D0 is the cut-off frequency and f is the order of the filter. We varied the frequency values u
and v of the i and j spatial coordinates. We used the BW-HP filter because it generates fewer ringing
artifacts on the image signal.

We also used a Gaussian low pass (GLP) filter to smooth the low-frequency signal component in
the log domain. The equation of the GLP filter is

HG(u, v) = e−D2(u,v)/2D0
2
, (4)

where D(u,v) is the distance from the origin in the frequency plane. Finally, the additive noise signals
were estimated by applying inverse transform.

Figure 1 shows the steps used to convert an original noisy image into an image with additive
noise using the enhanced homomorphic transform. This technique consists of five steps. We first
take the log on both sides of Equation (2) and use a two-dimensional fast Fourier transform (FFT)
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to represent the image in the frequency domain. Then, the Fourier image is filtered with two filter
functions, those are the BW-HP and GLP filters [12]. The BW-HP filter increases the contrast of the
image signal corresponding to the high-frequency component. The GLP filter smooths the noise signal
without eliminating the entire low-frequency component. Both filtered signals are applied to the
two-dimensional inverse fast Fourier transform (IFFT). Finally, taking the exponent of the image, we
obtain the transformed image. This process is discussed in detail below.

Figure 1. Flow diagram of the enhanced homomorphic filter. FFT: fast Fourier transform; IFFT inverse
fast Fourier transform.

Step 1: Take the log on both sides of the x�(i, j) and the nσ(i, j) signal; now the multiplicative
noise can written as

log(y∂(i, j)) = log(x�(i, j)) + log(nσ(i, j)), (5)

After being transformed logarithmically, the signal now contains Gaussian additive noise [49].
We remove log(x�(i, j)) from the speckled ultrasound image by applying an additive noise suppression
algorithm. Thus, the problem is now to estimate log(x�(i, j)) from noisy data.

Step 2: Apply FFT to convert the image into the frequency domain. Equation (5), thus becomes,

y∂(u, v) = Fx�(u, v) + Fnσ (u, v), (6)

where, Fx�(u, v) and Fnσ (u, v) are the FFT of log(x�(i, j)) and log(nσ(i, j)), respectively.
Step 3: Apply BW-HP and GLP to the y∂(u, v) by means of two filter function HB(u, v) and

HG(u, v) from Equations (3) and (4) respectively in the frequency domain. The filtered version of
S(u, v) is written as

S(u, v) = HB(u, v)y∂(u, v) + HG(u, v)y∂(u, v). (7)

Step 4: Take the inverse Fourier transform of Equation (7) to get the converted signal in the
spatial domain

S(i, j) = F−1{S(u, v)}.

Step 5: Finally, we obtain the transformed image t(i, j) by taking the exponent of the image using
the following equation

t(i, j) = exp
{

S(i, j)
}

.

In this paper, we model the transformed image as additive noise degradation W(i, j) of the
original image x�(i, j), i.e.,

t(i, j)x�(i, j) + W(i, j). (8)
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This completes how we have used the homomorphic filter to transform the speckle noise into
additive noise. The two filter functions are utilized to improve edge information by enhancing contrast
and smooths the additive noise of the transformed image.

Figure 2 shows the output of the enhanced homomorphic filter at the BW-HP and GLP filter
stages. It is clear that the image in Figure 2b has an increased intensity because the low frequency
signal is attenuated and the image in Figure 2c is smoothed by the GLP filter. The sum of these two
signals is the final transformed noisy image.

Figure 2. (a) Noisy ultrasound image; (b) Butterworth high-pass (BW-HP) filtered image; (c) Gaussian
low pass (GLP) filtered image; and (d) transformed output of ultrasound noisy image.

An ultrasound image x�(i, j) can be represented as sparse in the gradient domain. We thus define
here a difference signal. A pixel-based TV regularization can be performed on the transformed image
for more effective denoising. The horizontal and vertical difference matrices are defined below [50].

Vix�(i, j) =

{
x�(i + 1, j)− x�(i, j), i f i < n

0, i f i = n

Vjx�(i, j) =

{
x�(i, j + 1)− x�(i, j), i f j < m

0, i f j = m

Further, the difference signal of x�(i, j) is defined as

Vi,jx�(i, j) =

(
Vix�(i, j)
Vjx�(i, j)

)
.

We can show that there exists a dictionary A ∈ R
Nr×Nc with which the original image can be

sparsely represented as
x� = Aα,

where x� is the vectorization of the recovered signal x�(i, j) such that x� ∈ R
Nr . If a signal x� is

K-sparse in the dictionary A ∈ R
Nr×Nc for Nc > Nr, we imply that the signal can be represented with

K columns of the dictionary. The column vector α ∈ R
Nc×1 is the vector of the coefficients. Then,

by optimizing the following convex problem, the signal x� can be recovered:

min‖α‖0,
subject to ‖t − Aα‖2

2 ≤ ε.
(9)

In Equation (9), a NM × 1 column vector t is the vectorization of the transformed image t(i, j),
note that NM = Nr. Also note that ε is a utility parameter selectable according to the noise strength.
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This convex constrained problem can be transformed into an unconstrained optimization problem
using the Lagrange multiplier method [51]:

min‖t − Aα‖2
2 + τ‖α‖0. (10)

Using the unconstrained problem, we are able to combine a regularization term, which is weighted
by parameter τ > 0 and a quadratic data-fidelity term. Equation (10) is not ready for use yet since
we do not know the sparsity dictionary A. Therefore, we use the following approach where the
dictionary, the sparse representation coefficient vector α, and the image vector x� are estimated
altogether. The overall optimized discrete sparse model proposed in this paper, for denoising the
ultrasound image, can be written as{

x̂�,
�
α ij,

�
A
}

= min
x� ,αij ,A

λ‖VxR‖1 + τ ∑
ij
‖Rijt − Aαij‖2

2 + τ ∑
ij
‖αij‖0, (11)

where Rij is an operation that extracts a square image patch from the transformed image t located at the
i, j pixels of the image. The notation ‖.‖1 is used to imply the l1 norm, which is the sum of the absolute
values of the argument signal, which in this case is the difference signal VxR. There are two positive
parameters λ and τ used to balance the contribution of different terms. In Equation (11), the first and
second terms are the TV regularization norm and the sparse representation prior. Optimization in
Equation (11) seeks to find a solution with which each patch of the recovered image can be represented
by a dictionary matrix with sparse coefficient α in the sense of a bounded error. The l0 norm gives the
sparsity constraint which controls the sparsity coefficients of any small image patch.

As mentioned in Related Work Section 2.2, there is a sparse coding stage that utilizes the KSVD
iterative process. In the first stage, sparse coding is performed assuming fixed x� and A. In the second
stage, dictionary A is updated to minimize using known sparse coefficients α and x�. The sparse
coefficients

�
α ij are computed using the OMP method [52] because of its efficiency and simplicity.

Elad et al. [29] showed that learning a dictionary trained from good quality image patches and noisy
images results in better performance.

In this paper, we use two approaches to train the dictionary. The first approach is to use a group of
image patches taken from many ultrasound reference images. We call the dictionary obtained from this
approach Dictionary 1. The second approach is to use the corrupted images and call them Dictionary 2.
We aim to compare the performance difference based on these two approaches. The comparison is
made in the Results section.

It should be noted that Equation (11) is non-convex because of the non-differentiable TV
regularization term and the product of the unknowns A and αij. We overcome this by using the
split Bregman iterative approach [53].

Overall, the proposed algorithm can be summarized as follows:

1. Convert the multiplicative noise into additive noise using an enhanced homomorphic filter and
capture the high- and low-frequency components to retain detailed information.

2. Apply pixel-based TV regularization to smooth the filtered image signal.
3. Apply patch-based sparse representation over a dictionary trained using the KSVD algorithm.

We employed two modified dictionaries—one trained with a set of reference ultrasound image
patches and another trained using the speckled image patches.

4. Iterate between the TV regularization and sparse representation procedure to improve the
reconstructed image.

Figure 3 summarizes the proposed algorithm.
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Figure 3. Proposed despeckle model for an ultrasound image. KSVD: K-singular value decomposition.

3.1. Performance Estimation

The reconstructed denoised image using the proposed algorithm were compared with the original
image. Two image quality metrics were used for quantitative performance measurements: peak
signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) [54]. Peak signal-to-noise ratio is
defined as:

PSNR = 10 log10
Nmax

1
MN ∑N

n=1 ∑M
m=1

∣∣∣x(n, m)−�
x (n, m)

∣∣∣2 , (12)

where Nmax represents the maximum fluctuations in the input image. Here, Nmax = (2n − 1),
Nmax = 255, when the components of a pixel are encoded using eight bits. N denotes the number of
pixels processed, x(n, m) is the original signal, and

�
x (n, m) is the recovered image signal. In MSSIM,

the structures of the two images are compared after normalizing the variance and subtracting the
luminance as follows:

MSSIM =
1
N

N

∑
i=1

[
l
(
�
x , x

)]α
.
[
c
(
�
x , x

)]β
.
[
s
(
�
x , x

)]γ
, (13)

where l
(
�
x , x

)
denotes luminance, c

(
�
x , x

)
denotes contrast, and s

(
�
x , x

)
denotes structure comparison

functions. Further, α, β, and r are weighted parameters that are used to adjust the relative importance
of the three components.

4. Experimental Results and Discussion

4.1. Simulations on Synthetic Images

In this section, we analyze the performance of the proposed approach on the synthetic
Shepp–Logan phantom test image [55] (Figure 4a) with a speckle noise variance of σ = 10 (Figure 4b)
of a 256 × 256 pixel size. This result helps us to understand the effectiveness of the simulated image,
clearly determine the distinctive features of the image, and optimize the algorithm before testing on
the clinical datasets. We compared the proposed algorithm with some standard speckle reduction
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filters for ultrasound liver images [4]. The compared algorithms were local statistical filters such as
the Frost filter [10], Lee filter [11], 3 × 3 Weiner filter [13], Kuan filter [14], 3 × 3 median filter [15],
and speckle reducing anisotropic diffusion (SRAD) filter [39]. In addition, multiscale filters such as
wavelets [40] were evaluated. The despeckled images in Figure 4e–g show that the Frost, wavelet, and
Kuan filters do not effectively reduce noise. In contrast, Figure 4h–j show that the median, Weiner,
and SRAD filters, reduce most noise; however, the edges are not preserved and artificial noises can
be introduced to a certain extent. This result verifies that the proposed SR technique reduces noise
and preserves the edges better than the conventional methods on synthetic images. Table 1 shows the
PSNR value and MSSIM value. The proposed algorithm reconstructs the original image with a PSNR
value of 36.86 dB with Dictionary 1 and 37.04 dB with Dictionary 2.

Figure 4. (a) Original image; (b) noisy image. Results of the proposed method with (c) Dictionary
1 and (d) Dictionary 2; Results of the (e) Frost; (f) wavelet; (g) Kuan; (h) median; (i) Weiner; and (j)
speckle reducing anisotropic diffusion (SRAD) filters.

Table 1. Peak signal-to-noise ratio (PSNR) and mean structural similarity (MSSIM) for the synthetic
images for σ = 10.

Models PSNR (dB) MSSIM

Noise image 32.113 0.727
Frost 32.466 0.768

Wavelet 33.214 0.801
Kuan 32.895 0.794

Median 34.597 0.839
SRAD 33.434 0.827
Weiner 33.782 0.834

Proposed: Dictionary 1 36.862 0.953
Proposed: Dictionary 2 37.044 0.967
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4.2. Clinical Liver Ultrasound Images

The proposed algorithm efficiency was estimated using a set of B-mode greyscale ultrasound liver
images. The images were obtained using the ECUBE 12R ultrasound research system from Alpinion
medical systems, Seoul, Korea. The components used to generate the ultrasound images include a
128-element linear transducer at a center frequency of 5 MHz, a lateral beam width of 1.5 mm, and a
pulse length of 1 mm. In our experiment, sparse coding was performed using two dictionaries with a
64 × 256 size, designed to handle patches of 8 × 8 size pixels (N = 64 and K = 256)—one trained from a
noisy image and the other trained from a set of reference images.

The training data were constructed from a dataset comprising 3245 reference ultrasound images.
The random collection of 16 × 16 dictionary atoms (K = 256) is presented in Figure 5a and the dictionary
trained on the noisy image itself by overlapping patches is represented in Figure 5b. Where, every
dictionary atom occupies a cell of 8 × 8 pixel (N = 64). We performed the tests on the three ultrasound
reference images shown in Figures 6a, 7a and 9a. The KSVD algorithm was initialized with a trained
dictionary and executed 180 iterations, as recommended in [29].

Figure 5. The random collections of 16 × 16 atoms (K = 256) of trained dictionary from (a) a reference
set of 3245 ultrasound images and (b) a noisy image.

The numerical evaluation was performed using PSNR and MSSIM (as discussed in Section 3.1) on
the proposed algorithm and compared with the denoising methods Frost filter [10], Lee filter [11], 3 × 3
Weiner filter [13], Kuan filter [14], 3 × 3 median filter [15], SRAD filter [39], and wavelet filter [40].

Figure 6a, shows a right lobe liver image with size 256 × 256 pixels, where the lateral size is
given by the x-axis, and the axial size is given by the y-axis. In this original image, we included a
speckle noise parameter σ = 10 and the PSNR was calculated using Equation (12). It is clear that
detailed information of the image is highly distorted, as shown in Figure 6b with a PSNR value of
28.148 dB. Figure 6c,d show the denoising results obtained by the proposed method using Dictionary 1
with a PSNR value of 35.033 dB and Dictionary 2 with a PSNR value of 35.537 dB. It is clear that the
SR over learned dictionaries improves both edges and smooth features by eliminating the noise and
reconstructs the image as much closer to the original image, as shown in Figure 6a.

Figure 7 shows the comparative experimental results obtained on real-time ultrasound images.
For this experiment, we obtained a 256 × 256-pixel liver image of a healthy person with a PSNR
value of 24.6271 dB. The radio frequency (RF) frames were obtained using a linear transducer with
a frequency range of 8 MHz. This frequency range was selected because of its suitability for liver
imaging, and we considered natural speckle noise for these experiments. The original speckled image
was then denoised using the proposed algorithm with both dictionaries and also using conventional
algorithms. To assess the speckle reduction, we selected two regions in of the speckled image. The two
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regions in the case of Figure 7a are displayed as a red square and a green square. The red one indicates
the diaphragm of a liver and the green square shows the presence of an excessive noisy region observed
from deeper tissue. The differences can be noticed from the filtered images in dashed red and the
green square. Figure 7d–f show that detailed information lost by the blurring effect on the results
obtained with Frost filter, median filter, and Kuan filter. In particular, the wavelet filter, Weiner filter,
and the SRAD filter are not very effective in reducing speckle and perform poorly in retrieving sharp
edge information, as can be seen in Figure 7g–i. Figure 7b shows the results for the proposed method
using Dictionary 1 (PSNR = 30.3345 dB) and Figure 7c shows the results for the proposed method
using Dictionary 2 (PSNR = 30.8073). It is clear that the image denoised using the proposed SR method
reconstructed image very close to the original image. It can also be seen that the dictionary trained on
the noisy image gives better results than using a set of multiple references images. The results of this
comparative experiment show that the proposed algorithm not only reduces the speckle noise but also
preserves the edge information. Table 2 shows the PSNR and MSSIM values to quantify the results
numerically for noise parameter σ = 15.

Figure 6. Reconstruction of liver right lobe images. (a) Original ultrasound image; (b) Speckled
ultrasound image (PSNR = 28.148 dB); Images reconstructed using (c) Dictionary 1 (PSNR = 35.033 dB)
and (d) Dictionary 2 (PSNR = 35.537 dB).

Table 2. PSNR and MSSIM for the ultrasound liver image for σ = 15.

Models PSNR (dB) MSSIM

Frost 28.966 0.822
Median 25.497 0.659
Wavelet 27.772 0.782
SRAD 28.766 0.813
Kuan 28.279 0.801

Weiner 29.218 0.834
Proposed: Dictionary 1 30.334 0.901
Proposed: Dictionary 2 30.807 0.926
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Figure 7. Despeckled results obtained for the ultrasound liver dataset using a linear transducer with a
frequency of 8 MHz. The red and the green boxes highlight the differences observed from the noisy and
filtered images. (a) Speckled image and results yielded by the proposed method using (b) Dictionary 1
and (c) Dictionary 2 as well as results using the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner;
and (i) SRAD filters.

Speckle is an arbitrary granular texture noise that degrades ultrasound image quality.
This experiment was performed to evaluate different noise variances by comparing the PSNR obtained
using the proposed algorithm and other despeckling algorithms. The simulated result using the noise
levels 10, 15, 20, 25, and 30 are illustrated in Figure 8. The results clearly depict that, for different noise
variances, the proposed algorithm gives the best PSNR value of all the algorithms on speckle reduction.
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Figure 8. Comparison of PSNRs obtained by different methods. SRAD: speckle reducing anisotropic
diffusion.

The experiments presented above were performed on ultrasound liver images, and the
performance compared with conventional methods. However, our algorithm can also be utilized for a
wide range of ultrasound images. To prove this, we conducted experiments on a real thrombus (blood
clot) image with a left ventricular mass [56]. The visual assessment was performed using the proposed
technique and the results compared to those obtained by various other algorithms. The reference
image size was 256 × 256 pixels in order to fit our proposed model. The data were obtained from
an open medical imaging dataset on GitHub [57]. The ultrasound image along with a marked note
are shown in Figure 9a. The dashed white box in Figure 9b–j indicate regions of the ventricular mass.
The thrombus data-set results presented in Figure 9h–j show that the wavelet, Weiner, and SRAD filters
performed very poorly in noise reduction. The difference can be seen from the white note marked on
the right atrium of the reference ultrasound image in Figure 9a. Figure 9e–g shows that Frost, median,
and Kuan reduces speckle but tends to over-smooth the image, which leads to the loss of a distinctive
feature of the unclear mass. Among all the methods, Figure 9c,d show good results for the SR-based
on learned dictionaries 1 and 2. Several details are well preserved and the speckle noise is reduced
efficiently. Figure 10 shows the zoomed sub-images of Figure 9 to observe a clear visualization of
the despeckled images. The red box highlights the texture details in the noisy image and the filtered
image for a comparative visual assessment. It can be noted that from the Frost, Median, and Kuan
filtered data displayed in Figure 10d–f, an unclear mass (blood clot) and texture feature are blurred and
over smoothed. Figure 10h,i show that the Weiner and SRAD filters are not much more effective on
speckle reduction. These filters also greatly reduce the contrast, making images more indistinguishable
from the background. This effect is especially noticeable in the case of the Wavelet filter as shown in
Figure 10g. It was found that the anatomical structure was more clearly visible in Figure 10b,c obtained
using the SR framework, where the speckle is reduced around the unclear mass without removing its
features such as edges and texture. These results were comparatively better than those of Figure 10d–i
of the standard despeckling methods. Thus, the proposed algorithm has various advantages for use in
CAD systems based on image analysis, such as segmentation and edge detection. Future work will
include extensive laboratory and clinical testing on diseased and healthy subjects for a more rigorous
validation of the system. In conclusion, our approach reconstructs the detailed information in real
ultrasound images, not only by preserving edge information but also by eliminating artifacts and
reducing speckle noise.
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Figure 9. (a) Ultrasound image of the thrombus in the left ventricle. LV: left ventricle, RA: right atrium
and RV: right ventricle and (b) noisy image. Despeckled ultrasound images of proposed method using
(c) Dictionary 1 and (d) Dictionary 2. Results using the (e) Frost, (f) median, (g) Kuan, (h) wavelet,
(i) Weiner, and (j) SRAD filters. The dashed white box indicates the region of image showing visual
enhancement owing to despeckling.

Figure 10. Cont.
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Figure 10. (a) Zoomed sub-image of noisy thrombus ultrasound images. The red boxes highlight
texture details of images for visual assessment. Results of proposed method using (b) Dictionary 1
and (c) Dictionary 2. Results using the (d) Frost; (e) median; (f) Kuan; (g) wavelet; (h) Weiner; and (i)
SRAD filters.

5. Conclusions

In this paper, we presented a method that reconstructed ultrasound images by suppressing
multiplicative speckle noise using the SR framework. The proposed method utilizes an enhanced
homomorphic filter, TV regularization, and sparse prior over two learned dictionaries. In addition, the
KSVD algorithm is used to train the two dictionaries—one trained with a set of reference ultrasound
image patches and another trained with the speckled image patches. Both training options were
tested with the synthetic images and various clinical ultrasound images. The experimental results
obtained for different noise levels proved superior to those of other standard denoising methods. The
results also show that the two modified dictionaries performed well with sparse and TV regularization
terms. Overall, the proposed SR framework reconstructs the image signals by removing speckle noise
while preserving the texture and yielding a smoother image than conventional methods without
eliminating edges.
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Featured Application: This work makes real-time imaging of tumor microvessels more realistic.

Abstract: The emergence of super-resolution imaging makes it possible to display the
microvasculatures clearly using ultrasound imaging, which is of great importance in the early
diagnosis of cancer. At present, the super-resolution performance can only be achieved when
the sampling signal is long enough (usually more than 10,000 frames). Thus, the imaging time
resolution is not suitable for clinical use. In this paper, we proposed a novel super-resolution
reconstruction method, which is proved to have a satisfactory resolution using shorter sampling
signal sequences. In the microbubble localization step, the integrated form of the 2D Gaussian
function is innovatively adopted for image deconvolution in our method, which enhances the
accuracy of microbubble positioning. In the trajectory tracking step, for the first time the averaged
shifted histogram technique is presented for the visualization, which greatly improves the precision
of reconstruction. In vivo experiments on rabbits were conducted to verify the effectiveness of the
proposed method. Compared to the conventional reconstruction method, our method significantly
reduces the Full-Width-at-Half-Maximum (FWHM) by 50% using only 400-frame signals. Besides,
there is no significant increase in the running time using the proposed method. Considering its
imaging performance and used frame number, the conclusion can be drawn that the proposed
method advances the application of super-resolution imaging to the clinical use with a much higher
time resolution.

Keywords: ultrasound imaging; super-resolution; microbubble; reconstruction; time resolution

1. Introduction

Ultrasound has become a commonly used method of medical examination because of its fast,
non-destructive and inexpensive characteristics. However, the main problem of ultrasound imaging
lies in its low image quality. Compared to other modalities, such as the computed tomography (CT)
and the magnetic resonance imaging (MRI), ultrasound imaging has a lower resolution. The reason is
that the resolution of ultrasound imaging is limited by the emission wavelength [1]. Usually, the center
frequency of the ultrasound is at the megahertz order, resulting in the wavelengths at the order of a
hundred microns. With a resolution of this magnitude, it is not possible to observe the microvessels in
microns, which are of great importance in the early diagnosis of cancer [2].

In 2016, M. Tanter et al. [3] proposed the epoch-making ultrasound imaging method called
super-resolution ultrasound imaging. This method uses microbubbles as the resolution units and
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breaks through the resolution limitations of traditional ultrasound imaging. Through continuous plane
wave transmissions, the complete trajectory of microbubbles can be recorded. After trajectory tracking,
tiny blood vessels can be observed. This technique was tested on rat cerebral vascular and has been
proved to be effective [3].

The concept of ultrasound super-resolution imaging originates from optical imaging [4–6],
and both processes are very similar [7–9]. In ultrasound super-resolution imaging, the beamformed
images corresponding to the plane wave transmissions are preprocessed firstly by the wall filter [10,11].
Then following are the two most important steps of the reconstruction, the microbubble localization
and the trajectory tracking [7].

The sub-pixel localization of a single microbubble with an accuracy below the diffraction limit
is the basis of super-resolution reconstruction methods [12]. Because a single microbubble can be
treated as an incoherent point source in the beamformed image sequence, the result of fitting a
point-spread-function (PSF) model to an image of a point-like emitter is an estimate of the microbubble
position, its imaged size and intensity. It has been shown that the Gaussian function provides a very
good approximation of the real PSF of an ultrasound scanner [13]. The advantages of Gaussian PSF
models are their simplicity, robustness, and computational efficiency. However, due to the lack of
adaptability, the original Gaussian PSF has a limited accuracy for positioning.

As for the trajectory tracking, the scatter plot is the simplest and most common visualization
method [14], and does not always provide high-quality results. A simple binary image is created with
the pixel intensity value set to one at locations corresponding to microbubble positions. All other pixel
intensity values are set to zero. This method is fast but does not reflect the density of microbubbles.

Due to the above problems, the existing reconstruction methods can only get good
super-resolution results when the collected signals are long enough (usually up to 10,000 frames) [15].
In this paper, we propose a novel super-resolution reconstruction method, in which brand-new
microbubble localization and trajectory tracking techniques were presented for better reconstruction
results with fewer sampling frames. Taking the characteristics of ultrasound images and the
microbubble density into consideration, we innovatively adopted the integrated form of the 2D
Gaussian function [16] and the averaged shifted histograms (ASH) [17] for the two steps respectively.
The introduction of the methods helps enhance the quality of the reconstructed images significantly,
and in turn improves the imaging time resolution. In order to prove the validity of the proposed
method, we conducted in vivo experiments on the kidney of a rabbit.

The structure of the paper is arranged as follows: Materials and Methods section introduces the
mathematical background of our proposed method. The setup of in vivo experiments is also given
in this section. The corresponding results are shown in the Experimental Results section. Analysis
and discussion of the resulting data are given in the Discussion section. Finally, we draw our short
conclusion in the Conclusion section.

2. Materials and Methods

2.1. Super-Resolution Imaging Process

The process of super-resolution ultrasound imaging is quite like that of the single-molecule
localization microscopy (SMLM) in optics [4,6], which is usually decomposed into four steps as shown
in Figure 1.

In the SMLM, the first step is imaging light-activated fluorescent molecules that act as tiny,
randomly distributed pinpricks of light. The use of low light intensities and the fact that the molecules’
activation is inherently random ensures that only a sparse subset is turned on at any one time.
Thus, these point-like light sources are separated by more than half a wavelength, so the image of
each one (a blurred spot called the PSF) does not overlap with that of its neighbors. In ultrasound
super-resolution imaging, the flowing microbubbles excited by the acoustic waves are similar to those
molecules excited by the fluorescence. By controlling the injection concentration and injection volume,

114



Appl. Sci. 2018, 8, 1143

the microbubbles can reach the appropriate concentration. In this case, the microbubbles (or its group)
do not overlap in vessels. The echoes enhanced by a microbubble group can be recorded by the
ultrasound plane wave imaging, which uses the low emission energy and keeps the microbubbles
unbroken [18–20]. After comparing sequential images, the locations of the few, well-separated, flowing
microbubbles would be pinpointed.

The second step is to determine the exact position of each point-like source by finding the center
of the PSF. This is possible for well-separated sources, because the shape of the PSF can be devised in
advance. The resolution of the final imaging result depends largely on the design of the PSF. For this
step, ultrasound imaging and fluorescence imaging are the same. We call this step microbubble
localization in the following sections.

The third step is to repeat the illumination and detection steps many times. A different set of
separated point-like sources is detected each time, until a sufficient density of source points has been
obtained. In acoustics, microbubbles vibrate under the excitation of scanning ultrasound, so we do not
need an extra operation like the illumination in optics.

In the final step, by marking the positions of all these point sources on a single meta-image,
a super-resolved picture can be built up. The spatial resolution in this image can exceed the diffraction
limit, because it is determined by the accuracy with which the position of each source can be estimated.
The accuracy of the reconstructed super resolution image is closely related to the chosen visualization
method. We call this step the trajectory tracking in the following sections.

According to the above analysis, two steps of the microbubble localization and trajectory
tracking are most closely related to the quality of reconstructed images. Therefore, we improve
the corresponding algorithms for these steps respectively in order to get more precise super-resolution
reconstruction images in this paper.

Figure 1. Super-resolution imaging process: Step 1. Scanning and comparing, Step 2. Microbubble
localization, Step 3. Repeating 1 & 2 for each frame, Step 4. Trajectory tracking.

2.2. Microbubble Localization

2.2.1. PSF Models

The impulse response of an ultrasound scanner to a point-like source is described by the PSF.
A common approximation of the real PSF is a symmetric two-dimensional Gaussian function given by
the formula [13]:

PSFG( x, y|θ) = θN

2πθ2
σ

exp

(
− (x − θx)

2 +
(
y − θy

)2

2θ2
σ

)
+ θb, (1)

where PSFG(x,y|θ) gives the expected microbubble count at the integer pixel position (x,y) for the
parameters θ = [θx; θy; θσ; θN; θb]. The entries of the vector θ are as follows: θx and θy are the sub-pixel
microbubble (group) coordinates, θσ is the imaged size of the microbubble (group), θN corresponds to
the total number of the microbubbles at this position, and θb corresponds to the background noise level.
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Though being simple, the original two-dimensional Gaussian function omits the prior knowledge
about the imaging priori knowledge. The integrated form of a symmetric two-dimensional Gaussian
function [21] is used in our method to help take into account the discrete nature of pixels presented in
ultrasound images. Assuming a uniform distribution of pixels with the unit size, a single microbubble
intensity profile can be expressed as:

PSFG( x, y|θ) = θN ExEy + θb, (2)

where PSFIG (x,y|θ) gives the expected microbubble count at the integer pixel position (x,y) for the
parameters θ = [θx; θy; θσ; θN; θb] and

Ex =
1
2

erf

(
x − θx +

1
2√

2θσ

)
− 1

2
erf

(
x − θx − 1

2√
2θσ

)
, (3)

Ey =
1
2

erf

(
y − θy +

1
2√

2θσ

)
− 1

2
erf

(
y − θy +

1
2√

2θσ

)
. (4)

2.2.2. Data Approximation

Given the approximate position of a microbubble (group)
(

x̃p, ỹp
)

and a user-specified fitting
radius r > 0, we define D = {−r, . . . , r} × {−r, . . . , r} as a set of integer (x,y) coordinates,
and Ĩ(x, y) = I

(
x + x̃p, y + ỹp

)
as intensity values of an l × l sub-image centered at the point

(
x̃p, ỹp

)
of the raw input image I, where l = 2r + 1 is the size of the subimage. The desired sub-pixel coordinates
of the microbubbles are obtained as x̂p = x̂0 + x̃p and ŷp = ŷ0 + ỹp, where x̂0 and ŷ0 define the
sub-pixel refinements of the coordinates obtained by the data approximation.

To approximate the data with a PSF, least-squares methods are employed to minimize the sum of
(weighted) squared residuals defined by the data approximation method [22]

X2(θ|D ) = ∑
x,y∈D

w
(

Ĩ(x, y)− PSF( x, y|θ)
)2

. (5)

Here the residual value for the (x,y) data point is defined as the difference between the observed
image intensity Ĩ(x, y) and the value approximated by the PSF( x, y|θ), where θ are the PSF parameters.
The residual value can be further weighted by w = 1, making all measurements equally significant,
or weighted by w = 1/ Ĩ(x, y), which takes into account the uncertainty in the number of detected
microbubbles [23].

The search for parameters θ̂ which minimize X2(θ|D ), leads to an optimization problem
formulated as [24]

θ̂ = arg min
θ

X2(θ|D ), (6)

which we solve by the Levenberg-Marquardt algorithm as implemented in the Apache Commons
Math library [25]. The starting point for the optimization process is computed from the data as the
difference between the maximum and the minimum intensity values for the microbubble intensity θN,
and as the minimum intensity value for the background offset θb. Users have to choose the starting
point for the approximate microbubble (group) width θσ. The sub-pixel refinement of the coordinates
is obtained as x̂0 = θ̂x and ŷ0 = θ̂y, where θ̂ =

[
θ̂x, θ̂y, . . .

]
.

For constraining parameters of PSF models, the Levenberg-Marquardt algorithm used above
searches for values of the parameters θ over an infinite interval. The optimization process can therefore
converge to a solution with negative values which is impossible for variables corresponding to the
image intensity or to the standard deviation of a Gaussian PSF. We therefore limit the interval of
possible values by transforming the relevant parameters and using PSF ( x, y|θ̃) in Equation (2)
instead of PSF ( x, y|θ). The transformation for a 2D Gaussian PSF model is θ̃ =

[
θx, θy, θ2

σ, θ2
N , θ2

b
]
.
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The optimization process is still unconstrained but will result in positive PSF parameters. Such a
transformation also improves the stability of the fit.

2.2.3. Localization Uncertainty

Localization uncertainty works as an evaluation metric measuring the accuracy of microbubble
positioning. Let σ be the standard deviation of a fitted Gaussian PSF, a is the super-resolution
reconstructed pixel size, N is the number of microbubbles detected for a given location, and b is
the background signal level in microbubbles calculated as the standard deviation of the residuals
between the raw data and our fitted PSF model [26]. The uncertainty in the lateral position of a
microbubble can be approximated by the following formula [27]

〈Δx2〉 = σ2 + a2/12
N

+
8πσ4b2

a2N2 . (7)

As for the integrated Gaussian function, this formula still holds. Meanwhile, the σ is reduced and
the localization accuracy increased.

2.3. Trajectory Tracking

Visualization (rendering) of the processed sequence data involves the creation of a new
super-resolution image based on the coordinates of the localized microbubbles. The original scatter
plot method [14] is a typical all-or-none tracking method. When a microbubble appears at a certain
place, it is simply recorded and reflected with the constant gray level in the reconstruction result.
It cannot display the density of microbubbles and the exact shape of the blood flow vessels. Thus, it has
a negative impact on the imaging resolution. We solved this problem based on the histograms.

Histograms are often used to estimate the density of data by counting the number of observations
that fall into each bin [14]. In our case, a two-dimensional histogram of microbubble positions can
be created with the bin size corresponding to the pixel size of the final super-resolution image.
Thus, for every localized microbubble (group), the bin value (i.e., the image brightness) at the
corresponding microbubble positions is incremented by one. For a random sample of size h, the classic
histogram takes the value

f̂ (x) =
bin count

h
. (8)

The histogram visualization optionally supports “jittering” of the microbubbles between frames.
When enabled, a random number drawn from the normal distribution, with a standard deviation
equal to the computed (or user-specified) localization uncertainty, is added to the coordinates of every
microbubble position before creating the histogram. This step is applied several times and all generated
histograms are averaged together. As the number of jitters increases, the final image approaches the
result of the Gaussian rendering, whose result is often considered as the golden standard in the SMLM.
It can reflect the density of microbubbles and depict an accurate vascular boundary. For a small number
of jitters, the histogram visualization is much faster than the Gaussian rendering but the resulting
images may appear noisy. To solve this problem, we introduced an improved visualization algorithm.

This visualization algorithm uses a density estimation approach based on ASH [16]. The averaged
shifted histogram or ASH is a nonparametric probability density estimator derived from a collection
of histograms [28], as shown in Figure 2. In the one-dimensional case, this method works by averaging
n histograms with the same bin width w, but with the origin of each histogram shifted by w

n from the
previous histogram. In the multidimensional case, there are nd multidimensional histograms averaged
in total, i.e., for n shifts in each of d dimensions. In our implementation, the width of the histogram bin
is determined as w = na, where a is the pixel size of the super-resolution image. The number of shifts n
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in the lateral and axial directions can be specified independently. A simple calculation shows that the
ordinary ASH is given by

f̂ (x) =
1
n

n−1

∑
i=1−n

(n − |i|)bin counti
h

. (9)

Figure 2. A simple example of the ASH method for the step count in one day: (a) a histogram,
(b) an ASH estimate of 4 shifted histograms, and (c) an ASH estimate of 16 shifted histograms.

Theoretically, the time complexity of the proposed method is O(N), where N is the number of
microbubbles to visualize. This complexity level is close to the conventional scatter plot approach.
However, the real speed of our visualization method is also influenced by the number of histograms to
average, which makes it a bit slower than the scatter plot. From the perspective of the reconstruction
performance, the proposed method based on the ASH approach provides similar results as Gaussian
rendering with a constant localization uncertainty. However, the ASH approach is orders of magnitude
faster than Gaussian rendering.

2.4. In Vivo Experiment Setups

2.4.1. In Vivo Ultrafast Imaging

The proposed method was evaluated using a New Zealand white rabbit model. Normal
vasculature was imaged in the kidney of a healthy rabbit using the pulse inversion (PI) technique.
The rabbits weighed 3.5–4.5 kg. Before the experiment, we carried out depilation on the rabbit’s
abdomen. The in vivo scans were performed using the Verasonics ultrasound system (Verasonics,
Kirkland, WA, USA) with channel-domain data acquisition capabilities. A 6.3 MHz, 128-element
linear array transducer (L11-4v) (Verasonics, Kirkland, WA, USA) with a pitch of 0.30 mm was used
and the sampling frequency was set to 36 MHz. One and a half cycle Gaussian envelope-modulated
pulses with a carrier frequency of 4.5 MHz were used in order to capture the harmonic components.
Entire images were acquired using plane-wave acquisitions at a frame rate of 750 Hz (pulse repetition
frequency of 1500 Hz) and low mechanical index of 0.05. Short cine loop of 400 frames were acquired
for the rabbit model. Sonovue (Bracco, Milan, Italy), a clinically approved commercial ultrasound
contrast agent [29], was used in our experiment. The microbubbles were injected via the ear vein of the
rabbit in bolus injections of 1 mL with concentration of 10 μL/Kg and flushed with an additional 1 mL
of saline. All experimental protocols were under the approval of the ethics and academic committee
with the number (FD-ZS2016-082).

2.4.2. Radio-Frequency (RF) Data Processing and Wall Filtering

The RF echoes were first summed in order to separate the signal nonlinear component from
the linear clutter. Then the second harmonics were filtered by a finite impulse response (FIR)
bandpass filter with a 4 to 11 MHz passband and then beamformed with a delay-and-sum (DAS)
beamformer. A wall filter based on the eigen-decomposition [30] was then used to separate the
echoes of flowing microbubbles from the weak harmonic tissue clutter and stationary microbubbles.
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Following References [10,30], the cut-off eigen-value was chosen as 0.2·max_eigen value. This is the
lowest cut-off possible in order to include slow flowing microbubbles while removing clutter artifacts.

2.4.3. Methods for Comparison

Apart from the method in Reference [3] (Gaussian PSF deconvolution + scatter plot) and our
proposed reconstruction method, a method based on super-resolution optical fluctuation imaging
(SOFI) [31] is included for comparison too. This method calculates high-order moments for the
microbubble localization and uses the power Doppler integral for the trajectory tracking. Generally,
the SOFI method requires a short sampling sequence and short reconstruction time. In the meantime,
the accuracy of its reconstruction results is not so good. In this method, the 4th order central moments
of the RF signal were calculated for a single frame time-lag. In our method, a is set to 2 μm and n is set
to 10. The super-resolution reconstruction algorithms are implemented in Matlab® and Image J® [32]
with the Thunderstorm® plugin (version 1.3) [33] on a standard desktop PC with an Intel® Xeon® CPU
E5-2637 v2 3.50 GHz with 64 GB of RAM.

2.4.4. Parameters Measurement

We use the Full-Width at Half-Maximum (FWHM), defined as the −6 dB bandwidth for the
mainlobe, and Peak Sidelobe Level (PSL), defined as the peak value of the first sidelobe, to quantify
the performance of different methods for imaging microvasculars. The former corresponds to the
lateral resolution and the latter corresponds to the sidelobe level. To compare the efficiency of different
methods, we also record their runtime in seconds.

3. Experimental Results

In this section, the results of three different super-resolution imaging schemes are shown for
comparison using the same ultrafast plane wave dataset.

3.1. Preprocess

In order to demonstrate the whole process of super-resolution imaging more clearly, we show
the results of each step from the start in Figure 3. Figure 3a shows the imaging result after the DAS.
As seen, the echoes of the background tissues are strong, and the microbubbles cannot be observed.
After the wall filtering, the signal of the contrast agents has been highlighted in Figure 3b, but the
structure of the microvessels still cannot be seen at this time. After super-resolution reconstruction
using the Gaussian PSF deconvolution and scatter plot is taken, the microvascular structure is finally
clearly displayed, as shown in Figure 3c.

Figure 3. The imaging results of rabbit kidney using: (a) DAS, (b) DAS + wall filter, and (c) DAS + wall
filter + Gaussian PSF deconvolution + scatter plot respectively. All images are shown with a dynamic
range of 50 dB.
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3.2. Results of Different Methods

Figure 4 shows the super-resolution imaging results of three reconstruction algorithms for the
same dataset. Because only the echoes of 400 sampling frames are used in the imaging process,
the resolution of the image reconstructed by Gaussian PSF deconvolution and scatter plot is limited.
The high-order moment calculation and power Doppler integration method performs better in
suppressing the background noise but the resolution of the reconstructed image is worse and not
satisfactory. As for the vessels in the right bottom corner pointed by the blue arrows, this method
fails to figure them out. The proposed method presents the finest microvascular structure and also
has a certain inhibitory effect on the artefacts. For the artefacts in the left bottom corner pointed by
the yellow arrows, the proposed method has the best suppressing performance. In order to observe
the details of the image more clearly, we selected and enlarged a specific area of the image, and the
results are shown in Figure 5. The analysis object is the vessels at the top right corner marked by the
orange rectangles in Figure 4. As the results show, the proposed method is the only one that can clearly
display the microvascular structure, which suggests that our method obtains the best resolution.

Figure 4. The super-resolution construction imaging results of rabbit kidney using: (a) Gaussian
PSF deconvolution + scatter plot, (b) High-order moment calculation + power Doppler integration,
and (c) Integral form of Gaussian PSF deconvolution + ASH respectively. All images are shown with a
dynamic range of 50 dB. The orange, yellow and blue arrows point to the point target, artefact and the
vascular details respectively. The orange box marks the area we choose to enlarge.

Figure 5. Locally magnified (10 times) microvascular images of rabbit kidney using: (a) Gaussian
PSF deconvolution + scatter plot, (b) High-order moment calculation + power Doppler integration,
and (c) Integral form of Gaussian PSF deconvolution + ASH respectively. All images are shown with a
dynamic range of 50 dB.
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To further compare the resolution performance, Figure 6 shows the lateral variation of the point
target on the right top corner in Figure 4, which is pointed by the orange arrows. As seen, our proposed
method performs best in the lateral resolution while the moment calculation method performs worst.

Figure 6. The lateral variation of different reconstruction methods for the point target at the right
top corner.

Table 1 gives the statistical results for the resolution and running time of different methods.
The result is the same as that of qualitative observation. The best FWHM and PSL indices are obtained
by the proposed method. In terms of FWHM, the value of the proposed method is reduced by half in
comparison to the original Gaussian PSF method. Meanwhile, the reduction of the PSL exceeds 5 dB.
Though our method is not the fastest, its running time is still in the acceptable range. Considering the
short sequence that was used, the improvement in the time resolution by our method is obvious.

Table 1. Full-Width at Half-Maximum (FWHM), Peak Side Lobe (PSL) and the run time of different
reconstruction methods.

Method FWHM (μm) PSL (dB) Run Time (s)

Gaussian PSF deconvolution + scatter plot 7.72 −37.22 14.20
High-order moment + power Doppler integration 13.44 −26.46 9.27

Integral form of Gaussian PSF deconvolution + ASH 3.88 −42.35 17.11

4. Discussion

In this paper, we propose a new super-resolution construction method for ultrasound imaging.
Compared to the existing methods [3,31,34–36], the innovations of the proposed method lie in two
aspects. In the microbubble localization step, we adopt a new Gaussian PSF to measure the accurate
location of the microbubbles. This kind of Gaussian PSF takes the discreteness of the ultrasonic
imaging coordinates into consideration and obtains more accurate positioning result. In the trajectory
tracking step, we introduce the ASH method. The ASH enjoys several advantages compared with the
conventional histogram method: better visual interpretation, better approximation, and nearly the
same computational efficiency. According to the comparison of the methods in Results, our method
has two main advantages over the other super-resolution construction methods:

First, the proposed method acquires the best resolution. This is because our method takes into
account the characteristics of ultrasonic imaging when calculating the PSF. Besides, a more accurate
visualization method is adopted.

Second, our approach has better real-time performance. Basically, the frames needed
for the reconstruction are decreased in our method, which in turn increases the frame rate.
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Besides, our algorithm still keeps a low amount of computation. Thus, our proposed method makes a
step forward to the real-time super-resolution imaging.

At present, our improved method has achieved good results in displaying the rabbit kidney
microvessels. In order to further verify the effectiveness of the proposed method, we need to carry out
more in vivo animal experiments and clinical experiments in the future.

5. Conclusions

This paper aims to improve the original super-resolution ultrasound reconstruction imaging
method, and achieve more accurate imaging results with shorter acquisition dataset. To this end,
a novel super-resolution reconstruction method is put forward. The integrated form of a symmetric
two-dimensional Gaussian function is introduced to locate the microbubble center after wall filtering.
Then, the ASH is employed to visualize the microvessels in the reconstruction result. In vivo
experimental results demonstrate that our proposed super-resolution ultrasound reconstruction
method can obtain better performance in comparison with the original method in Reference [3]
and other methods using a shorter dataset. Although our method shows certain potential in the
existing experiments, a clinical experiment is needed in the future.
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Abstract: This paper shows the results of a preliminary study on the performance of new methods
based on ultrasonic images parametrization, to estimate the arterial wall movements used for the
evaluation of arterial stiffness, considered to be a predictor of cardiovascular events. The well-known
technique of motion tracking in ultrasound image sequences was applied on cine loops scanned
from subjects with different risks of suffering from cardiovascular disease (CVD). The motion of
arterial walls was traced using displacement signals: Diameter, intima-media thickness (IMT) and
longitudinal intima-media (IM) complex movement. The new methods used for the parametrization
of the displacement signals were the average value (AV), effective or root mean square (RMS) value,
and peak-to-peak motion amplitude estimate. A total of 79 subjects were analyzed in the study with
30 considered at low risk and 49 included in a preventive program for monitoring high CVD risk
subjects. The results show a statistically significant difference between healthy volunteers and at-risk
patients according to the AV of IMT, RMS values of longitudinal and radial motions and peak-to-peak
amplitude of radial motion.

Keywords: common carotid artery; arterial wall motion; intima-media complex longitudinal motion;
quantitative parametrization

1. Introduction

Cardiovascular diseases (CVDs) are the number one cause of human mortality and morbidity
worldwide (WHO, 2017) [1]. Every year, more and more people die from these diseases than from any
other illnesses. In 2016, 17.9 million people died from CVDs, constituting 31% of all global deaths.
Heart attack and stroke make up 85% of these deaths [1] and the number of deaths from CVDs in the
world is predicted to reach 23.6 million by 2030 [2].

CVDs are a group of disorders affecting the heart and blood vessels, which can cause myocardial
infarction and stroke. They are usually acute events, mainly caused by a blood flow cut-off to the
heart or brain, and described as the final stage of atherosclerosis [1,3], which is a systemic and chronic
inflammatory disease of the medium and large arteries. Atherosclerosis is a degenerative progress that
refers to the buildup over many years of lipids and other blood-borne materials in the arterial walls.
Finally, atherosclerotic plaque forms, which can restrict blood flow in an artery. Overall, atherosclerotic
arterial affection is not noticeable in the long term, but general signs of this disease develop only after
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complications start: Thickening of the intima-media complex, narrowing of the arterial lumen or its
thrombosis, and/or loss of elasticity [4].

There are many risk factors that assist in the development of CVDs, which can be classified into
two groups: Non-modifiable risk factors and modifiable risk factors. The first group’s factors cannot
be changed, and they are age, gender, family history, and race. The second group of factors can be
changed or treated, and they include smoking, high blood pressure, diabetes, physical inactivity,
overweight, high blood cholesterol, etc. [5]

An independent predictor of cardiovascular events is arterial stiffness. This parameter is generally
analyzed to assess cardiovascular risk [5–7]. In clinical practice, the most commonly used risk markers
for arterial stiffness evaluation are IMT, pulse wave velocity (PWV), and cross-sectional distensibility
(CSD) [8–11]. Unfortunately, the clinical potential of these traditional risk markers as a screening test
remains limited [12]. The risk of CVDs in patients under the age of 50 is difficult to evaluate, especially
in the absence of specific individual CVDs risk factors or anamnesis. Therefore, it is difficult to assess
the likelihood of developing a disease, and if so, to start drug treatment [5].

Nonetheless, it has been proven that significant anatomical changes (i.e., IMT) of the arterial wall
appear much later than mechanical changes (i.e., longitudinal and radial motion of the arterial wall) [3].
Radial motion is a parameter describing the mechanical properties of the arterial walls, and it has
been widely studied in recent years, becoming an informative non-invasive parameter that helps to
investigate cardiovascular diseases and to determine the elasticity of arterial walls. Unlike the radial
motion of the arterial wall, the longitudinal motion has not received such recognition. It was believed
that the longitudinal motion during the heart cycle was negligible compared with the radial motion.
However, using modern ultrasound scanners, it has been noticed that the innermost and middle layers
of the large arteries (i.e., intima-media complex) during the heart cycle move not only in radial, but also
in a longitudinal direction [13,14]. It has also been observed that the longitudinal motion of the arterial
wall has the same amplitude as the radial motion and reaches about one millimeter [15]. In addition,
clinical studies demonstrated the correlation of common carotid artery (CCA) longitudinal motion
with risk factors and CVDs [16,17]. Previous studies have shown a relationship between the decrease
in longitudinal motion of the CCA wall, arterial stiffness and CVDs [3]. While there is a link between
longitudinal motion amplitude and CVDs, determinants of the phases of longitudinal motion remain
unknown [9].

The aforementioned bidirectional longitudinal motion of the intima-media complex is observed
during the heart cycle. Cinthio et al. [14] discuss the dependence of longitudinal motion peaks
on heart cycle phases, i.e., systole and diastole. There are many speculations about what causes
longitudinal motion in the arterial wall. Finally, determinants of the phases of longitudinal motion
remains unknown [9]. At the beginning of systole, the first antegrade motion of the IM complex
is observed, i.e., motion in the direction of blood flow. Later, still in systole, the first retrograde
motion of this complex appears, i.e., motion in the opposite direction of blood flow. During diastole,
the second antegrade motion of the IM complex follows and then it gradually returns to its original
position [14]. Predominantly, only the longitudinal motion amplitude in different heart cycle phases is
used. Most researchers measure the first antegrade, the first retrograde and the peak-to-peak amplitude
of the longitudinal motion during the heart cycle [14,18,19]. Despite the fact that the longitudinal
motion amplitude is used and is able to distinguish low risk (i.e., healthy controls) from high risk (i.e.,
at-risk patients), the entire longitudinal motion pattern (waveform) can be useful [19,20]. Moreover,
the longitudinal motion pattern is different for different individuals [18,21]. To the best knowledge of
the authors of this article, the RMS estimates for arterial wall movements were not tested in healthy
controls and at-risk patients.

The aim of this paper is to evaluate both the motion average (AV) and RMS values for the
parameterization of the arterial motion. Proposed parameters will be influenced by all amplitude
values of the temporal variation of IMT, longitudinal and radial motion signals during the heart cycle.
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2. Materials and Methods

2.1. Study Population

Thirty-three young healthy volunteers and sixty-nine older volunteers were involved in this study.
Healthy subjects had no cardiovascular risk factors as assessed by a written questionnaire, while older
subjects had high risk of cardiovascular diseases. The age of healthy volunteers was 22–23 years,
while the at-risk patients’ mean age was 51 years (±7 years standard deviation). In the control group,
9 subjects (27%) were male and 24 subjects (73%) were female. In the patients’ group, 43 subjects (51%)
were male and 26 subjects (49%) were female.

Clinical data were collected at the Lithuanian University of Health Sciences Hospital, Department
of Cardiology, during May–October, 2018. The study was approved by the Kaunas Region Biomedical
Research Ethics Committee (2018-08-02, No. BE-2-51, Kaunas, Lithuania). Every participant provided
written consent to participate in the study and allowed the usage of the obtained B-mode images under
the principle of confidentiality.

2.2. Collection of In Vivo Data

All analyses were performed using a clinical scanner Ultrasonix SonixTouch (Analogic Ultrasound,
Canada), equipped with a 5–14 MHz linear array probe. During the CCA echoscopy, the frame rate,
depth and focus were 52 fps, 2.5 cm and 2 cm, set in the ultrasound scanner accordingly. The data was
stored in a cine-loop as consecutive frames for later offline analysis.

The acquisition of CCA B-mode sequences was performed by two cardiology physicians.
Before the measurement, all subjects were asked to rest in supine position for at least 15 min. During the
measurement, the subjects were lying in supine position, stretching their neck and turning it 45 degrees
to the right or left, depending on the echoscopic neck side. Arterial longitudinal motion amplitude does
not depend on the echoscopic neck side [8], so both right and left CCA were scanned. Measurements
of the longitudinal movement and the diameter change of the CCA were performed 2–3 cm proximate
to the bifurcation during at least two full heart cycles. In order to ensure that the CCA data was of
acceptable quality, the longitudinal movement had to be clearly visible along the preselected segment of
the arterial wall. All sequences were stored digitally and transferred to a computer for further analysis.

2.3. Estimation and Post-Processing of IMT, Longitudinal and Radial Motion Signals of CCA

For this study, CAROLAB software was used in order to estimate IMT, longitudinal and radial
motions of CCA [10,22,23]. This software is used for the analysis of ultrasound B-mode image
sequences and assesses the longitudinal motion with a speckle-tracking approach that is based on
the block-matching (BM) method [10]. The main point of the BM framework is to detect the motion
d(n) between two consequent frames by comparing pixel blocks of consecutive images I(n-1) and
I(n). The motion corresponds to the displacement between the center point p(n-1) of the reference
block and the center point p(n) of the best-matched block. This results in the shift of the center point
p(n) between images I(n-1) and I(n). Pixel blocks alignment in images I(n-1) and I(n) takes place
only within the search window, i.e., in the defined maximum margin around the center point of the
reference and best-match blocks. After summing up all the displacements d(n) received, the p(n) point
motion trajectory is estimated. In order to cope with the issue of speckle decorrelation, a pixel-wise
Kalman filter is used to update the reference block [10]. Once the estimation is done, a fully-automatic
technique based on front propagation is used [22] in order to segment the IM complex and track
temporal variations in the IMT in CCA B-mode ultrasound images.

From right and left CCA image sequences, the higher-quality video sequence was chosen and
finally one CCA image sequence was used for every subject. Subjects presenting low-quality video
sequences or having less than two full heart cycles detected with CAROLAB were rejected from the
study. Three subjects (9%) were rejected from the healthy volunteers’ group while twenty subjects
(29%) were rejected from the at-risk patients’ group.
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A region of interest (ROI) containing a well-contrasted speckle pattern of the distal vessel wall for
longitudinal and radial motion, and clearly visible IM complex for IMT variation were chosen in the
first frame of each B-mode sequence. A kernel of the ROI was selected manually, with size 3 × 0.5 mm
as seen in Figure 1a. Estimated signals of longitudinal motion, radial motion and temporal variation in
the IMT were saved for further post-processing in MATLAB.

Figure 1. (a) Common carotid artery (CCA) echoscopy image with preselected kernel (red rectangular)
for the estimation of the longitudinal motion and the segmented intima-media (IM) complex of both
proximal and distal arterial walls (yellow lines) for temporal variation of intima-media thickness (IMT)
and radial motion estimation in CAROLAB. (b) CAROLAB output signals detrended and filtered
for better observation in a single diagram. A post-processed diameter signal was used to select
two consequent heart cycles (red shadowed area). Only this time interval was used for quantitative
parametrization of the signals.

Post-processing algorithm was developed in MATLAB. The CAROLAB output signals were
loaded in original form as shown in Figure 2a.

Figure 2. Cont.
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Figure 2. (a) Examples of three signals of CAROLAB output: Longitudinal motion, temporal variation
of intima-media thickness (IMT) and radial motion. Average values (AV) or offsets of these three
signals were denoted by X0, IMT0 and D0 accordingly. (b) Post-processed (each motion signal was
filtered and detrended, subtracting the offset of the signal) motion signals of the common carotid artery
(CCA) wall were used for the estimation of the root mean square (RMS): XRMS, IMTRMS, DRMS.

Motion signals were then filtered with a band-pass IIR filter (fpass-lower = 0.9 Hz and
fpass-higer = 8 Hz) and then detrended, subtracting the mean of the resulting signal. After this,
two consequent heart cycles were selected manually in time. Only this time segment (see red shadowed
area in Figure 1b for an example) was used in all signals for the evaluation of time domain parameters:
Peak-to-peak amplitude change of the arterial diameter and IMT between systole and diastole, AV and
RMS values of temporal variation of IMT (IMT0 and IMTRMS), and longitudinal and radial motions
(X0, D0 XRMS, DRMS) of two consequent heart cycles.

2.4. Quantitative Parametrization of IMT, Longitudinal and Radial Motion Signals of CCA

The average value (AV) is the mean amplitude of the waveform and can be calculated as follows:

AV =
∑n

i=1 xi

n
(1)

The RMS value of a quantity is the square root of the mean value of the squared values of the
quantity taken over an interval:

RMS =

√
1
n

n

∑
i=1

(xi − DC)2 (2)

CAROLAB output signals were post-processed and quantitatively parametrized in our algorithm.
From Equation (1), we calculate offset estimate or AV of longitudinal motion (X0), diameter motion
(D0), and IMT motion (IMT0) signals in the preselected time interval before post-processing. Examples
of these estimates are shown with the help of arrows in Figure 2a. After filtering and detrending, all the
aforementioned signals are parametrized calculating peak-to-peak amplitude and RMS estimates.
Longitudinal motion RMS values were denoted by XRMS, radial motions by DRMS, and temporal
variation of IMT by IMTRMS. Examples of these estimates are indicated in Figure 2b.
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2.5. Statistical Analysis

All the earlier calculated parameters were represented as box-and-whisker plots for evaluation
and analysis. The data were assessed for normality using the Shapiro–Wilk test [24]. This test was
applied to the two subject groups and for each evaluated parameter, separately. The significance
level was 5% and we found that the data were not normally distributed. To determine the difference
between the two groups, a Mann–Whitney U test was used. The value p < 0.015 was considered to
indicate a statistically significant difference. Statistical analysis was performed using MATLAB.

3. Results

From now on, we will provide two sets of boxplots for comparisons: One for healthy volunteers
(white) and one for at-risk patients (yellow).

Figure 3 shows the comparison between the AV of longitudinal motion, radial motion and
temporal variation of IMT for healthy volunteers and at-risk patients. The AV of radial motion and
IMT variation can be interpreted as arterial diameter and IMT at equilibrium instants between pulses.
The AV of longitudinal motion is near zero because the IM complex is returning to the initial position
after anterograde and retrograde longitudinal shifts. Both the radial and IMT average values in
healthy volunteers are a little more closely grouped, whereas the variability of these measurements
in the at-risk patients’ group is slightly greater. Two extreme outliers of the IMT AV appear in both
subjects’ groups.

Figure 3. Box-and-whisker plots of average values (AV) of longitudinal motion (X0), radial motion (D0),
and temporal variation of IMT (IMT0) multiplied by a constant for healthy volunteers (white boxes,
n = 30) and at-risk patients (yellow boxes, n = 49). Median values (successively, –0.09, –0.03, 5.41, 5.89,
5.49, 7.05) are shown as a horizontal red line within each box. Whiskers represent the minimum and
maximum values. Outliers (estimates outside 1.5 times the inter-quartile range) are indicated by red +.
The comparisons between the two groups are indicated by the p values. NS–non-significant.

Figure 4 shows statistics of RMS estimates of longitudinal motion, radial motion and temporal
variation of IMT of the two groups. RMS estimates, or so-called effective values, are commonly used
to indicate the time-averaged magnitude of a signal. In this particular case, this parameter accounts
for the average activity of motion during two heart cycles. Both longitudinal and radial RMS values in
healthy volunteers are a little wider whereas the spread of these measurements in at-risk patients are a
little more closely grouped. Additionally, three to four extreme outliers of IMT RMS values appear in
both groups.
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Figure 4. Box-and-whisker plots of root mean square (RMS) values of longitudinal motion (XRMS),
radial motion (DRMS) and temporal variation of IMT (IMTRMS) multiplied by a constant for healthy
volunteers (white boxes, n = 30) and at-risk patients (yellow boxes, n = 49). Median values (successively,
0.25, 0.18, 0.19, 0.14, 0.24, 0.22) are shown as a horizontal red line within each box. Whiskers
represent the minimum and maximum values. Outliers (estimates outside 1.5 times the inter-quartile
range) are indicated by red +. The comparisons between the two groups are indicated by the
p values. NS–non-significant.

Figure 5 shows the IMT and radial peak-to-peak motion amplitude distribution between the
two groups. Peak-to-peak amplitudes represent time instant estimates of peaking motion signals.
Radial motion signals are in maximal peak at systole and in minimal at diastole. IMT motion signals
are in minimal peak at systole and in maximal at diastole. In addition, there are two extreme outliers
in the healthy volunteers’ group and three in the at-risk patients’ group for the IMT peak-to-peak
motion amplitude.

Figure 5. Box-and-whisker plots of peak-to-peak motion amplitude of radial motion and temporal
variation of IMT multiplied by a constant for healthy volunteers (white boxes, n = 30) and at-risk
patients (yellow boxes, n = 49). Median values (successively, 0.67, 0.62, 0.62, 0.47) are shown as a
horizontal red line within each box. Whiskers represent the minimum and maximum values. Outliers
(estimates outside 1.5 times the inter-quartile range) are indicated by red +. The comparisons between
the two groups are indicated by the p values.
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4. Discussion

In this study, we propose new parameters for the evaluation of the temporal variation of
IMT and the longitudinal and radial arterial walls’ motions during the heart cycle. The main
purpose is to provide estimates that will be influenced by all amplitude values of the aforementioned
motion variations.

We have used CAROLAB software [10,22,23] in order to analyze two different populations
(33 healthy volunteers and 69 at-risk patients). Our results have demonstrated that the arterial
diameter of healthy volunteers is not distinct from that of the at-risk patients, while there is a significant
difference in the IMT between these two groups, as seen in Figure 3. The arterial diameter is the same
among all subjects while IMT increases for at-risk patients. In accordance with previous studies [10,11],
we can state that IM thickening is associated with CVDs. There is a significant difference between
healthy volunteers and at-risk patients according to the RMS values of longitudinal and radial motions,
as seen in Figure 4. From these results, it is clear that the healthy volunteers’ CCA moves more in
longitudinal and radial directions than in at-risk patients. This is consistent with what has been found
in previous studies [17] and it may explain higher arterial elasticity in the healthy volunteers’ group.
In this paper we only have motion or displacement signals to analyze. Elastography researchers [25,26]
state that in response to pulsatile flow, a stiffer artery moves less. This empirical knowledge about
the negative correlation of motion amplitude with artery stiffness can be observed in our estimates.
In addition, we have done our own experiments [27] determining that displacement correlates with
stiffness. We found that with the decrease of agar-based phantoms’ stiffness, the motion amplitude
increases. No statistical difference can be claimed between the two groups according to the RMS value
of IMT. Contrary to the findings of Zahnd et al. [23], we did not find any IMT variation increase in
at-risk patients compared with healthy volunteers. Our results have demonstrated that there is no
significant difference between healthy volunteers and at-risk patients according to IMT peak-to-peak
motion amplitude, demonstrated in Figure 5. Although in our study two investigated populations
were not so different, like healthy volunteers and diabetic patients, there is enough statistical difference
of radial peak-to-peak motion amplitude between healthy volunteers and at-risk patients.

The main drawback is that some subjects presented low-quality B-mode sequences resulting
in motion signals that were not repeatable. In these cases, the tracking process was repeated again
with another kernel position in the CCA image, but this did not yield any better results. In addition,
there were some sequences with fewer than two full heart cycles. Finally, all the B-mode sequences
having such repeatability limitations were rejected from the study.

In order to get correct estimates of the temporal variation of IMT and radial motion, CCA walls
have to appear as double-line patterns in all video sequences [14]. However, there were a few frames
in some B-mode sequences where the intima-media complex was not as clearly visible as needed
in CAROLAB software. This appears to be a case of errors resulting in inaccurate IM complex
segmentation and finally incorrect values of IMT and radial motion.

According to our study, the echoscopy of CCA for the registration of temporal variation of IMT,
longitudinal and radial motions is challenging. Following completion of the work reported in this
paper, Au et al. [28] suggested to average four consequent heart cycles for representative measurement
of longitudinal motion in CCA. Au et al. [28] noticed that indices of variability were reduced when
two to four heart cycles were used. Any improvements in indices of variability were not observed
when more than four heart cycles were averaged. This proves that more than four heart cycles are
unnecessary to use [28]. In future studies, we propose using four heart cycles for representative
estimates of not only longitudinal, but also temporal variation of IMT and radial motion. In addition,
parameters for consecutive heart cycles’ repeatability must be incorporated into the B-mode sequences’
acquisition. Only similar consecutive heart cycles will be taken for evaluation of CCA motion. Standard
deviation values can be derived between four consequent heart cycles as feedback for the sonographer
and determine if the acquired sequence is acceptable or not. As we understand it, this gives clearly
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better results and ensures correct parametrization of the temporal variation of IMT, longitudinal and
radial motions.

AV and RMS values of IMT variation, longitudinal and radial motions of two consequent heart
cycles are new parameters, which have not been used previously in clinical studies associated with
CCA and atherosclerosis. Future investigations are necessary to validate the conclusions that can be
drawn from this study. Frequency domain parameters could be proposed in the future to distinguish
healthy subjects from at-risk patients.

5. Conclusions

Reliable recording of sequences of echoscopy images from subject CCA is challenging.
Collaboration of the subject is necessary to keep the body motionless during recording. All subjects’
motions during echoscopy were recorded as artefacts and this decreased repeatability of arterial
pulsing movements. The results show statistically significant difference between healthy volunteers
and at-risk patients according to the AV of temporal variation of IMT, RMS values of longitudinal and
radial motions, and peak-to-peak amplitude of radial motions.
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