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Preface to ”Brewing and Craft Beer”

Beer is a beverage with more than 8000 years of history, and the process of brewing has not

changed much over the centuries. However, important technical advances have allowed us to

produce beer in a more sophisticated and efficient way. The proliferation of specialty hop varieties has

been behind the popularity of craft beers seen in the past few years around the world. Craft brewers

interpret historic beer with unique styles. Craft beers are undergoing an unprecedented period of

growth, and more than 150 beer styles are currently recognized. While many studies have suggested

the beer value chain might be a vehicle for economic growth, few have estimated the economic

impacts of craft beer to a geographical region. Craft Beer as a Means of Economic Development: An

Economic Impact Analysis of the Michigan Value Chain is a very interesting study in this Special Issue

suggesting that state governments might generate economic growth by creating a business climate

that is conducive to the growth of the instate beer value chain [1].

This Special Issue, Brewing and Craft Beer, comprises nine different works by researchers from

five continents (North America, South America, Europe, Africa, and Oceania). This Special Issue

reflects thus a broad perspective on the most important questions that concern the researchers in

different parts of the world. One such problem is the difficulty to cultivate barley on the African

continent. Barley is a temperate cereal, and the African climate is unsuitable for its cultivation.

The process of brewing lager beer with cereals other than barley is growing to be a common practice,

especially in non-barley-producing countries. Mbeh Harry et al. demonstrate how sorghum can be

well and efficiently utilized industrially in Cameroon for producing beer [2].

Hops are a very important component for the success of craft beer. The aroma and flavor of hops

in strongly hopped and often in dry hopped beers are particularly responsible for the character of

such beers. The work of da Costa Jardim et al. [3] advances the understanding and complexity of

the sensory profile of different styles of craft beers from Southern Brazil. They report that the beer

with the lowest bitterness had a higher preference among consumers, showing bitterness as a key

factor that influences beer preference and leads to a decline in consumer preference. Also from Brazil,

a comparative study of dry and wet milling of barley is presented by Pereira de Moura et al. [4].

Their results indicate the best milling conditions to obtain a good mashing yield in order to increase

competitiveness of the microbreweries sector, as well as to improve product quality and to promote

the reduction of production costs.

The main quality characteristics of beer are appearance, aroma, flavor, and mouthfeel.

Computer vision is a non-destructive technique which has been applied in automated inspection

and measurement. Lukinac et al. present an overview of the applications and the latest achievements

of computer vision methods in determining the quality attributes of beer [5]. The use of machine

learning algorithms, especially artificial neural networks (ANN), has become more popular in recent

years, as they aid in increasing accuracy and reducing time and cost through analytical and sensory

methods to assess the quality and acceptability of beverages. These models may be used as a

cost-effective method for the fast-screening of beers during processing to assess the acceptability

more efficiently, as reported by Gonzalez Viejo et al. [6]. The same team uses a machine learning

modelling approach to study the effect of soundwaves on foamability properties and sensory of beers

[7]. They show that the use of soundwaves is a potential treatment in brewing to improve beer quality

by increasing the number of small bubbles and the foamability without disrupting yeast or modifying

the aroma and flavor profile.
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In the brewing process, the efficiency of fermentation and the character and quality of the

final product are intimately linked. Two papers are published in this Special Issue addressing the

fermentation step. Firstly, Kumar et al. showed that the use of water obtained from the soaking of

corn germ resulted in a shortening of the fermentation time [8]. The addition of germ water, rich in

micronutrients and soluble proteins, increased the free amino nitrogen levels and Zn concentration

in the wort, enhancing its economic value. Then, last but certainly not least, Silva Ferreira et al.

answer the question why craft brewers should be advised to use bottle refermentation to improve

late-hopped beer stability [9]. As bottle refermentation is widely used in Belgian craft beers, the aim

of their work is to assess how this practice might impact their flavor. It was with great pleasure that

I carried out the coordination of this Special Issue of Beverages on the topic Brewing and Craft Beer.

I firmly believe that this research field will hold a very important place in the strategy of Beverages.

I am especially thankful to all authors who have generously shared their scientific knowledge and

experience with others through their contribution to this Special Issue. I wish to extend my thanks to

the Editorial Office of Beverages, in particular to Ms. Tina Tian.

Conflicts of Interest: The author declares no conflict of interest.
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Beer is a beverage with more than 8000 years of history, and the process of brewing has not
changed much over the centuries. However, important technical advances have allowed us to produce
beer in a more sophisticated and efficient way. The proliferation of specialty hop varieties has been
behind the popularity of craft beers seen in the past few years around the world. Craft brewers
interpret historic beer with unique styles. Craft beers are undergoing an unprecedented period of
growth, and more than 150 beer styles are currently recognized. While many studies have suggested
the beer value chain might be a vehicle for economic growth, few have estimated the economic impacts
of craft beer to a geographical region. Craft Beer as a Means of Economic Development: An Economic Impact
Analysis of the Michigan Value Chain is a very interesting study in this Special Issue suggesting that state
governments might generate economic growth by creating a business climate that is conducive to the
growth of the instate beer value chain [1].

This Special Issue, Brewing and Craft Beer, comprises nine different works by researchers from five
continents (North America, South America, Europe, Africa, and Oceania). This Special Issue reflects
thus a broad perspective on the most important questions that concern the researchers in different
parts of the world. One such problem is the difficulty to cultivate barley on the African continent.
Barley is a temperate cereal, and the African climate is unsuitable for its cultivation. The process
of brewing lager beer with cereals other than barley is growing to be a common practice, especially
in non-barley-producing countries. Mbeh Harry et al. demonstrate how sorghum can be well and
efficiently utilized industrially in Cameroon for producing beer [2].

Hops are a very important component for the success of craft beer. The aroma and flavor of hops
in strongly hopped and often in dry hopped beers are particularly responsible for the character of such
beers. The work of da Costa Jardim et al. [3] advances the understanding and complexity of the sensory
profile of different styles of craft beers from Southern Brazil. They report that the beer with the lowest
bitterness had a higher preference among consumers, showing bitterness as a key factor that influences
beer preference and leads to a decline in consumer preference. Also from Brazil, a comparative study
of dry and wet milling of barley is presented by Pereira de Moura et al. [4]. Their results indicate
the best milling conditions to obtain a good mashing yield in order to increase competitiveness of
the microbreweries sector, as well as to improve product quality and to promote the reduction of
production costs.

The main quality characteristics of beer are appearance, aroma, flavor, and mouthfeel. Computer
vision is a non-destructive technique which has been applied in automated inspection and measurement.
Lukinac et al. present an overview of the applications and the latest achievements of computer vision
methods in determining the quality attributes of beer [5]. The use of machine learning algorithms,
especially artificial neural networks (ANN), has become more popular in recent years, as they aid in
increasing accuracy and reducing time and cost through analytical and sensory methods to assess the
quality and acceptability of beverages. These models may be used as a cost-effective method for the
fast-screening of beers during processing to assess the acceptability more efficiently, as reported by
Gonzalez Viejo et al. [6]. The same team uses a machine learning modelling approach to study the
effect of soundwaves on foamability properties and sensory of beers [7]. They show that the use of
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soundwaves is a potential treatment in brewing to improve beer quality by increasing the number of
small bubbles and the foamability without disrupting yeast or modifying the aroma and flavor profile.

In the brewing process, the efficiency of fermentation and the character and quality of the
final product are intimately linked. Two papers are published in this Special Issue addressing the
fermentation step. Firstly, Kumar et al. showed that the use of water obtained from the soaking of
corn germ resulted in a shortening of the fermentation time [8]. The addition of germ water, rich in
micronutrients and soluble proteins, increased the free amino nitrogen levels and Zn concentration in
the wort, enhancing its economic value. Then, last but certainly not least, Silva Ferreira et al. answer
the question why craft brewers should be advised to use bottle refermentation to improve late-hopped
beer stability [9]. As bottle refermentation is widely used in Belgian craft beers, the aim of their work
is to assess how this practice might impact their flavor.

It was with great pleasure that I carried out the coordination of this Special Issue of Beverages on
the topic Brewing and Craft Beer. I firmly believe that this research field will hold a very important place
in the strategy of Beverages. I am especially thankful to all authors who have generously shared their
scientific knowledge and experience with others through their contribution to this Special Issue. I wish
to extend my thanks to the Editorial Office of Beverages, in particular to Ms. Tina Tian.

Conflicts of Interest: The author declares no conflict of interest.
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Abstract: While many studies have suggested the beer value chain might be a vehicle for economic
growth, few have estimated the economic impacts of craft beer to a geographic region. As such, this
study uses modified input/output analysis to identify the economic contributions of instate beer
production to the Michigan economy. We find that the beer value chain generated nearly $500 million
in Gross State Product in 2016, contributing nearly $1 billion as well as 9738 jobs in total aggregate
economic contributions. The results suggest that state governments might generate economic growth
by creating a business climate that is conducive to the growth of the instate beer value chain.

Keywords: craft beer; local value chain; economic contribution analysis

1. Introduction

Where past economic development efforts focused on attracting new industries to create jobs,
economists now recognize the value of import substitution as a possible method for developing regional
economies [1]. The “Buy Local” movement is one key embodiment of import substitution, as increasing
purchases within one’s own region reduces leakages within an economic value chain, while simultaneously
increasing producer surplus [2]. Corresponding with the entry of a younger generation of consumers,
the notion of “consumer-driven growth” has also entered the economic development lexicon [3,4].
Consumer-driven growth is increasingly important, as many consumers desire a proliferation of high-status
options [5]. The economic theories of import substitution and consumer-driven growth converge perfectly
in the craft beer value chain. Many consumers are willing to pay higher prices for more unique craft beer
varieties, signaling that state governments might create a business climate that is conducive to economic
growth via the beer value chain [6]. This is especially important as governments have sweeping power to
regulate the production, importation and sale of beer [7].

It follows that policymakers would benefit from understanding the economic contributions of
the craft beer value chain. Sometimes state legislation can impede the formation of local and regional
breweries, thereby impeding its entrepreneurial activity [6,8]. In response to increased consumer
interests in craft beer, many states have recently provided further opportunities for the growth of
local and regional craft beer by restructuring their beer laws [9]. A thriving local craft beer industry
can contribute to local and regional economic development [10]. It is in this light that we assess the
economic contributions of Michigan’s growing beer sector.

Beverages 2019, 5, 35; doi:10.3390/beverages5020035 www.mdpi.com/journal/beverages3
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This article provides an estimate of the economic impacts associated with a regionally exclusive
beer value chain, largely made up by craft beer. The Michigan beer value chain makes an ideal case
study for our analysis as it ranks fourth in the nation in terms of craft breweries and 11th overall in
terms of craft beer production [11]. What started as three microbreweries in the state in 1993 has now
grown to over 330, with expectations for future growth. Michigan’s long history of beer production
includes a similar history in the production of key inputs, including malting barley and hops [12].
In response to brewery demand, Michigan agricultural producers have been rapidly increasing the
amount of farmed malting barley and hop acres, where Michigan is developing a regional reputation
for quality beer inputs. Specifically, hops grown in Michigan have clear attributes that differentiate
varieties from those grown in other hop producing states, namely Washington, Idaho, and Oregon.
Michigan’s brewers are interested in sourcing barley and hops from local sources and generating a
genuinely Michigan made product [12]. In addition, a cadre of specialty malt producers has developed
to help meet in-state demand. In addition to yeast harvesting and cultivation, wheat and rye are also
grown in Michigan, which provides additional potential for a nearly complete local agricultural supply
chain for beer production.

We contribute to the literature in two ways. First, we fill a gap in the economic development
literature by generating an estimate of the economic contributions of a local food system that might be
accessible to all states. By focusing on the beer value chain, we contribute to the literature in a second
way. The craft beer market has been identified as a vehicle for economic development, but studies
on the value chain economic contributions of state-level beer production are lacking. The remainder
of this article is organized as follows: First, we provide a brief background of the beer value chain.
Second, we describe the conceptual framework of input-output analysis, which utilizes a sequence
of interlinking production functions to estimate the total (direct, indirect and induced) economic
impacts of the beer value chain in Michigan. Following the conceptual framework, we explain our
application of input-output analysis to the Michigan beer value chain. We then describe the results of
our model, which suggest that the beer value chain contributed nearly $500 million to the Gross State
Product in 2016. The final section concludes with a discussion of the implications and limitations of
the current study.

1.1. Background

The industrial organization of the U.S. beer industry has an incredible history [13]. In 1873,
4131 breweries operated in the United States. Industry consolidation reduced the number of breweries
to 100 in 1978, operated by only 50 firms, as brewers tended toward flavors with the broadest consumer
appeal [14]. This developed a marketplace where brand loyalty is fierce even though most consumers
cannot distinguish between leading brands [15]. The beer market changed significantly in 1979 when
changes in federal laws freed states to allow for homebrewing [13]. Over the next few decades, many
of those hobbyists set out to commercialize their homebrews, planting the seeds of a burgeoning craft
beer market [16].

The Brewers Association defines craft breweries as independently owned and producing less than
6 million barrels a year [17]. They further define Microbreweries as producing less than 15,000 barrels
a year, with at least 75 percent of sales off-premise—though Michigan law defines microbreweries as
those producing less than 60,000 barrels per year. Brewpubs sell more than 25 percent or more of its
beer on site. Today, over 7000 breweries operate in the U.S., but market share is still concentrated with
a few national firms. There are about 15.5 breweries per million residents today compared to 96.1 per
million in 1873. The six largest firms make up about 84.5 percent of the total market of beer sales,
led by Anheuser-Busch InBev, with 40.2 percent of the market [18]. Craft beer consumers largely fall
into one of five categories: Traditional beer drinkers, mavens, locavores, premium beer drinkers and
uninformed beer drinkers [19].

Brewers compete in one of three markets: (1) Local, (2) regional or (3) national. As most brewers
start out small and with a local footprint, they start out in a local market. Upon developing a following
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in their local market and depending on the span of this market, some expand regionally and sell
outside of the state. Reaching this level requires a level of distribution resources that are usually
reserved for the top tier national brands. However, the obstacles to reaching new markets are getting
smaller through information technologies and wholesalers that can take a product to a national market
with little up-front costs to the brewer. Conversely, a brand can reach a national audience through
acquisition by a national supplier. Acquisitions have become common in the craft beverage industry,
although beer labeling is not always clear about the transition of ownership. This is due in large part to
the value beer drinkers place on independently owned breweries [20]. For a more thorough discussion
of mergers and acquisitions in the U.S. beer market, see Howard [21].

1.2. Conceptual Framework

Input-output (I-O) models have become staple economic impact models for regional analysis and
are often used in generating economic impact estimates of publicly-funded projects [22,23]. Because I-O
models trace transactions across industries and institutions, they are instrumental in understanding
how changes in one sector of a region’s economy can affect all other economic sectors within the
region [24]. They have been especially popular in estimating the economic impacts of local food
systems [25–30]. Their applicability to a myriad of questions has resulted in I-O models being the most
applied economic modeling approach used in economic analysis [31].

Input-output models generalize linear transactions in a set of multipliers that capture the full extent
of transactions associated with any changes in the level of production in an industry. Mathematically,
the total effect of this change can be specified as:

Total Effect = Direct Effect + Indirect Effect + Induced Effect (1)

The I-O model takes changes in demand (the “direct” effect) and relates them to overall economic
impact (the “total” effect) through a set of mathematical equations. The indirect effect is the value of
secondary inter-industry transactions in response to direct effects. The “induced” effect is the value of
transactions resulting from changes in income in response to direct effects. Because the relationships
are linear, the direct, indirect and induced effects can be specified as multiples of the direct effect,
so Equation (1) can be restated as:

Total Effect = (1 + k1 + k2) · Direct Effect (2)

where k1 and k2 are greater than or equal to zero and represent the multiplicative response of indirect
and induced transactions, respectively. For simplicity, we restate Equation (2) as:

Total Effect = k · Direct Effect (3)

where k = (1 + k1 + k2). Equation (2) suggests that the economy-wide impact, the total effect, is some
multiple of the direct effect, where the multiplier takes a positive value that is equal to or greater
than one. Consider the minimum value the multiplier can take: One. This value reflects the intuitive
result that if the economy’s output of agricultural products expands by $1 million dollars, for example,
the economy will expand at least by $1 million dollars. If the indirect and induced effects are not equal
to zero (i.e., not imported), this $1 million increase in output will spur other industries to expand their
output of goods and services and will generate household income that will be applied to the purchase
of goods and services in the economy, generating a total economic impact greater than the initial $1
million expansion. It follows that the economic multiplier is specified as a ratio of the total to direct
effects. Rearranging Equation (3) provides:

k = (Total Effect)/(Direct Effect) (4)

5
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where the multiplier, k, encompasses all the direct, indirect and induced effects for a given industry and
denotes the impact of a change in direct effects on the total economic system. Each industry in a region
is characterized by its own value of multiplier k. Industries with expansive localized production chains
will tend to have higher multipliers than industries that rely on suppliers outside of the modeling
region. When there is adequate supply within the region, the region has more potential to retain
the total effects of the industry. However, when producers depend on supplies outside the region,
leakage occurs, and part of the total effect is lost.

All versions of I-O models require several common restrictive assumptions. First, the model
imposes constant returns to scale, such that a doubling of output requires a doubling of all inputs.
Second, technology is fixed with no substitution. Combined, these two assumptions mean an increase
in industry output requires an equal and proportionate increase in all inputs. Additionally, supply is
assumed to be perfectly elastic such that there are no supply constraints. This final assumption also
asserts that all prices are fixed, such that an increase in demand for any commodity will not result
in a price change for that industry. Input-output models have been criticized on the grounds that
some of these assumptions are overly restrictive and that the magnitude of the bias generated by
these assumptions is greater when the industry direct effects are larger, relative the overall size of the
industry [32]. Despite this criticism, I-O models have become a standard by which economic impact
assessment is generated.

2. Methods

We used a value chain assessment to estimate the economic contribution of the beer value chain
in Michigan. A contribution analysis is similar to an economic impact assessment [33], but asserting an
economic impact to an industry’s presence posits some challenges. In an economic impact assessment,
the generally accepted counterfactual state is that not all direct expenditures will exist in the absence of
the measured industry or business. This assumption may be applicable for assessing the economic
impact of a new factory that exports to other regions but is overly restrictive for assessing the economics
of a visceral industry. For example, when measuring the economic impact of a new automobile panel
stamping plant, it may make sense to assume that the transactions arising from that plant would
not exist in the local economy in the absence of the plant. However, when measuring the economic
impact of a dispersed industry like beer production, it is very likely that many of the transactions
arising from the value chain would exist in the absence of beer production. Consumers will still buy
beer, but it would be imported to the region. Farmers would still produce cash crops, but it would
likely not be barley for malting. Rather than asserting that the value of all associated transactions
would cease to exist, as in an economic impact assessment, an economic contribution study is silent
on the counterfactual state of the economy in the absence of the measured industry. The associated
contribution estimates suggest the extent to which the industry contributes to the overall size of
the economy.

We used the IMPLAN Pro 3.1 economic input-output modeling software with the Michigan
transactions data in this assessment. The IMPLAN Pro model is widely used in economic impact and
industry contribution simulations and has become a standard resource for regional economists [27].
A Michigan-calibrated IMPLAN economic impact assessment model was used to estimate the
contributions that would arise through secondary transactions. Of the commercial input-output
models used in economic simulations, IMPLAN is one of the most referenced in the literature.
Transactions are adopted from the Bureau of Economic Analysis’s benchmark input-output tables,
meaning that it traces transactions across industries, households and government units and uses these
measures to estimate secondary transactions arising from a given set of industry transactions [34].
In this assessment, industry transactions include the set of estimated transactions along the value
chain for producing Michigan beer. Secondary transactions are those transactions not directly made
by industries making up the Michigan supply chain, but rather are generated for the provisions of
intermediate goods and services inputs into the supply chain as indirect effects, and expenditures
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from earnings by workers, proprietors and government (through fees and taxes) as induced effects.
The total contributions, estimated as the sum of direct and secondary effects, generally exceed the
initial infusion of economic activity, generating what is commonly referred to as a multiplier effect.
That is, once accounting for secondary transactions, the total contribution is larger than the direct value
of economic activities along the value chain, as predicated by economic theory [35].

The IMPLAN model is driven by the dollar value of transactions, and therefore, the resulting
contributions were measured in the value of total transactions. However, estimates of employment,
labor income and contributions to gross state product were made via fixed ratios to industry output.
The fixed ratios are industry averages. While IMPLAN provides a high degree of industry granularity,
with 528 distinct industries, barley and hops production is included in industry aggregates of grain
farming and fruit farming, respectively. Additionally, brewpubs are represented in the full-service
restaurants industry. Only breweries are uniquely categorized within the 528 distinct industry categories.
Hence, industry aggregates may not be suitably representative of the actual transactions associated
with Michigan brewing. Consequently, we modified the industry purchases, as described by Miller [12],
to better represent the industries under this study.

The direct economic contribution of Michigan’s brewing industry is measured through brewing
activities, including the transportation costs of the final output. However, in a separate measure, we
included the economic contribution beyond brewing to include retail and food accommodation sales
of Michigan-brewed beer as a separate measure, netting out the production of the beer sales in our
final estimates. In this, we recognize two downstream channels from brewing by which economic
value is generated.

We assumed brewery sales follow two channels to consumption: Onsite consumption,
which includes own- and third-party sales, or through off-premise retail sales. For on-premise
consumption, own sales command higher seller margins per unit of sale since sales are not required to
pass through the three-tier trade system [36], entailing a licensed wholesale distributor. All off-premise
consumption is channeled through the three-tier trade system, entailing the wholesale and retail trade
sectors. Only margins earned at the point of sale are captured, and those through food and drinking
places account only for beer sales components. Beer that is brewed and distributed in Michigan
generates value all the way to final sale for consumption, while beer that is brewed in Michigan and
shipped out of state stops contributing value for the state at the state borders. The structural relationship
of the modeling frame is represented in Figure 1, where exports along the value chain are implied
along the value chain, as that share that does traverse downstream along the instate value chain.

 

Figure 1. Michigan beer value chain.

2.1. Calculating Direct Contributions

Because all but one of Michigan’s breweries were classified as craft breweries in 2016, and because
the Brewers Association (BA) tracks commercial craft beer production, estimates of the production
of craft beer by volume were provided by the BA statistics to be 846,029 barrels [11]. The volume of
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production from the one non-craft beer brewery was added to get the total volume of beer produced
in-state. This beer may be packaged in barrel form for draft sales or may be packaged in bottles and
cans. Using national statistics, about 61 percent of beer purchases are in the form of kegs, while the
remaining 39 percent is sold by the bottle or can [37]. Additionally, the market research firm Mintel
provides an estimate of where consumers purchase beer based on household surveys, showing that
79 percent of beer is consumed away from home [18]. Applying estimated sales values to volume
allowed us to isolate estimates of the economic contributions of on-premise and off-premise sales
channels. Assuming equitable combinations of inputs, except for beer packaging, in the brewing
process and all associated agricultural inputs, the remainder of the up-stream value chain can be
estimated in the aggregate based on the volume of in-state production.

Through discussions with growers and maltsters, it was determined that malting barley production
largely follows standard winter and spring grain production processes, by which the IMPLAN software
is readily sufficient for estimating. Similarly, as craft beer production differs from that of national brands,
which are largely represented in the IMPLAN transactions table, the standard IMPLAN production
function for beer brewing was modified to account for added barley and hops. More specifically, while
barley use per barrel of beer is typically higher for craft beer over conventional beers [12], much of this
represents a substitution of rice for barley. However, rice and barley are grouped into a single category
in IMPLAN under the category of grain farming. Since barley is produced in-state while rice is not, the
substitution of barley for rice represents a reduction of the intermediate imports of rice, which is not
grown in Michigan, with more barley, which is grown instate. Additionally, separate accounting for
wheat beers is not necessary in the IMPLAN software, as wheat and barley represent similar inputs by
volume [12] under IMPLAN’s grain farming sector. As both malting wheat and barley are grown in
Michigan, substituting barley with wheat does not represent a shift in import shares. Finally, hop use
is also heavier in craft beer, but as hops make up a minute input by volume, the overall change of hop
shares in the baseline production function is minute. Hops are vegetables and therefore reflect added
vegetable inputs into the production process, which falls into the IMPLAN category “vegetables and
melon farming”.

Under this approach, estimates exclude the contribution of imported beers into the state, where
imports include domestic and foreign beers produced outside of but imported into Michigan. Hence,
the estimated contributions reflect that of the beer production value chain in Michigan, but not the
entirety of the economic contribution of the beer industry as a whole. One can argue that food sales
through brewpubs should be included in economic contribution estimates, as food sales complement
beer sales from these venues. Rather than asserting that food sold through brewpubs contributes to
Michigan’s beer value chain, we opted to separate the two and focus only on contributions directly
arising from the production and sale of Michigan-produced beer. To be sure, on-premise sales can
accrue through food and drinking establishments, but may also entail hotels, casinos, sporting and
community event venues, and other recreation outlets, outside of food and drinking establishments
where beer is typically sold. However, we modelled on-premise sales as if taking place in food and
drinking establishments, as the underlying production functions likely better represent the actual food
and drink value chains of these alternative venues. This is also a simplifying assumption, freeing us
from sorting out the values of different on-premise venues that beer is sold through.

As IMPLAN is driven on sales values, not volume of production, we must convert the volume
of production into actual sales values. To do this, we broke out volume into three categories:
(1) On-premise drafts, (2) on-premise bottled/canned and (3) off-premise bottled/canned. Each were
assigned an average price per volume, as described below. Because the IMPLAN production function
for brewing beer is dominated by larger, national brand processors, the production functions were
modified based on industry interviews discussed by Miller [38]. These modifications emphasize deeper
ties to local supply chains of barley and hops and deemphasize rice imports through modified regional
purchase coefficients. Similarly, the trade sector retail and wholesale shares of local supply from
breweries is increased, as well as that for food sector inputs.

8



Beverages 2019, 5, 35

2.2. Estimating Final Sales Direct Effects

Estimates of direct effects start at the brewery level, where estimates exist for the total volume of
beer produced in the state. Production direct effects are dollar-values based on the volume of beer
produced in Michigan. Total volume of brewery sales comes from the Brewers Association’s 2016
estimate for Michigan [11]. However, since the Brewers Association only tracks craft beer sales, and
because Michigan’s Founders Brewery does not fall into the Brewers’ Association definition of craft
beer, estimates for the Founders Brewery production must be added to the total in-state brewery output.
Estimates for Founders Brewery production in 2016 were based on direct contact with the brewery [39].
Accordingly, the in-state production of beer totaled 846,688 barrels.

Generating sale values requires breaking out production between keg sales and bottle/can sales, as
the average selling prices of beer depends on the packaging. We assume producer prices of $110.00 per
keg (1/2 barrel) and $4.62 per six-pack of bottled or canned beer. With 61 percent of the beer produced
going to kegs, keg sales total $113,626,000. Alternatively, estimated brewery bottle/can sales totaled
$83,906,000. Taken together, the value of beer sales totaled $197,532,000.

Estimating the downstream contributions of wholesalers, retailers and food services requires
the application of estimates of margins earned. To simplify the estimates, we assumed that all keg
sales go to on-premise consumption venues, represented by IMPLAN’s full-service restaurants sector.
Through industry interviews, Miller [12,38] provided estimates of sales margins, which have been
reproduced in Table 1. In Table 1, brewer’s prices represent the sale price brewers earn per keg or
6-pack, sold through the three-tier system of a wholesaler distributor. Wholesale margins are the
added value attributed to wholesalers and the entailed shipping costs. Retail margins are only applied
to off-premise sales by assumption and represent that which is earned by the retailer, while food
service margins, which tend to be about four times the wholesale price, is that which is earned by food
service providers. By assumption, the brewer operating its own brewpub can earn food service prices.
Summing the column provides the estimated consumer prices. While not shown, the estimated sales
prices were $4.79 per pint of draught beer, $1.75 per bottle/can for off-premise consumption and $4.83
per bottle/can for on-premise consumption.

Table 1. Beer prices at points of sale.

On-Premise Consumption Off-Premise Consumption

Keg 6-Pack 6-Pack

Brewers’ Price $110.00 $4.62 $4.62
Wholesale/Shipping Margins $38.50 $2.63 $2.63

Retail Margin $3.26
Food Service Margin $445.50 $21.74

Consumer Price $594.00 $28.98 $10.50

Next, the total volume sold through the value chain must be estimated based on the estimated
volume of Michigan’s production. First, we estimated the total volume and value of sales based
on production. From which, we applied estimates of the share that remained in Michigan for final
consumption. The share of beer that is sold out of state does not contribute to downstream economic
impacts but increases brewery production contributions. Table 2 shows the estimated volume and
sales revenues by sales channel, based on the volume of in-state beer production. As discussed
above, 61 percent of volume goes to kegs, while 39 percent goes to bottles and cans. A simplifying
assumption asserts that all keg production is sold through on-premise drinking establishments. Of the
bottle/can-packaged volume, Mintel estimates indicate that consumers purchase 48 percent of beer for
on-premise consumption and 52 percent for off-premise. Applying the prices above determines total
expenditures, where brewers’ earnings through keg sales topped out at $113,626,000, while that for
bottled/canned production was $83,906,000. These estimates are based on the volume of production at
the brewery and therefore do not account for exports.
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Table 2. Revenues at points of sale with no exports.

On-Premise Consumption Off-Premise Consumption

Keg 6-Pack 6-Pack

Kegs (Units) 544,370
6-packs (Units) 4,594,123 4,976,967
Wholesale ($) $20,958,234 $12,059,574 $13,064,539

Consumer Sales ($) $242,516,710 $99,853,273 $16,200,028

3. Results

The final estimates of the economic contribution of beer sales net out in-state production exported
out of Michigan. The most current IMPLAN data for Michigan at the time of this study was 2013.
We used IMPLAN regional purchase coefficients for Michigan [34] to estimate the share of beer produced
in Michigan that stays in Michigan. The IMPLAN software estimates regional trade flows using a
constrained gravity model that combines trade flow data with economic intensity and is believed to be
a superior approach for measuring trade flows across regions by commodity. The reference data for
Michigan suggests that about 52.7 percent of Michigan’s beer production remains in-state. While the
underlying trade flow estimates were made three years prior to this 2016 data assessment, we have no
impression that this share is either increasing or decreasing. While consumers of the growing craft
beer segment express a preference for locally-sourced beers [40], Michigan producers have indicated
an increase in exporting activities [12]. Hence, the final estimates of economic contributions used
52.7 percent as the basis of volume that remains in state. This rate was applied to all channels of sales,
which is consistent with the input-output literature for applying regional purchase coefficients [41].

3.1. Economic Contribution Estimates

Using the assumptions described above, we estimated the economic contribution of Michigan’s
beer production value chain in three parts: (1) Beer brewing, (2) retail for off-premise consumption, and
(3) sales for on-premise through food and beverage establishments. The findings for each contribution
area are presented below. This is followed by the aggregate gross contribution estimates across the
value chain.

3.2. Brewing Activity

Estimates of the contributions of brewing activities entail all the upstream transactions associated
with brewing, including the purchase of inputs and services in commercial breweries. Estimates include
those contributions from in-state consumption, as well as for exportation out of the state. The estimates
also aggregate brewing activities for both on-premise and off-premise sales. Accordingly, we estimate
the value of Michigan beer production to be $197.5 million in 2016. Once accounting for the indirect
and induced effects, this and the associated transactions are expected to give rise to $314.6 million
in economy-wide transactions, as shown in Table 3. These transactions are expected to give rise to
some 877 new jobs per year, where 218 are directly employed in the upstream brewing value chain.
These jobs support some $44.3 million in labor income in the state and contribute about $106.9 million
in Gross State Product.

Table 3. Economic contribution of brewing activities.

Impact Type Employment Labor Income Gross State Product Output

Direct Effect 218 $9,931,000 $50,298,000 $197,532,000
Indirect Effect 438 $24,893,000 $39,468,000 $87,128,000
Induced Effect 221 $9,510,000 $17,094,000 $29,958,000

Total Effect 877 $44,334,000 $106,861,000 $314,618,000
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3.3. Off-Premise Consumption Sales

The impacts of sales for off-premise consumption include only those sales that remain in Michigan.
The estimates include both retail and wholesale sales, where only margins (markup earned by retailers
and wholesalers) are used as a basis of impacts. Because of the nature of the model, the purchases of
beer from brewers and wholesalers cannot be easily subtracted from the estimates. Hence, the estimated
secondary effects include the expected purchases of beer through conventional channels and may not
represent the true expected extent to which final transactions take place. A correction is provided in
the aggregate contribution estimates below.

Retail sales margins generate a more moderate level of contribution to the Michigan economy.
About $29.3 million in wholesale and retail margins is generated by Michigan-produced beer, giving rise
to some $53.1 million in transactions throughout the economy (Table 4). This facilitates about
458 Michigan jobs, where about 294 are directly related to the retail and wholesale efforts of beer
distribution. These jobs are expected to bring in about $19.5 million in annual labor income and
contribute about $33.6 million to the Gross State Product.

Table 4. Economic contribution of retail and associated wholesale activities.

Impact Type Employment Labor Income Gross State Product Output

Direct Effect 294 $11,829,000 $19,896,000 $29,265,000
Indirect Effect 67 $3,470,000 $6,188,000 $10,704,000
Induced Effect 97 $4,177,000 $7,508,000 $13,158,000

Total Effect 458 $19,476,000 $33,591,000 $53,127,000

3.4. On-Premise Consumption Sales

The final contribution estimates are for sales for on-premise consumption and associated wholesale
activities. The value of wholesaling activities differs from that of the prior section only with regards
to volume. That is, we do not differentiate wholesale per-unit values between selling to retail and
selling to food and drink establishments. However, the per-unit consumer prices at food and drink
establishments are much higher than at retail establishments. These higher markups are attributed to
the mix of services and attributes the establishment provides, whether it be the mix of food, big-screen
TVs, ambiance or sporting facilities. Hence, the values earned are not necessarily driven by the value
of the beer consumed, but rather by the mix of products and ambiance afforded by the venue.

Accordingly, we estimate that the contribution of Michigan-brewed beer to food and drink
establishments through margins earned and associated wholesaling is $342.4 million (Table 5).
This drives additional transactions up to $625.7 million annually. Being more labor intensive, direct
employment (including venue and wholesaling) is expected to top out just short of 6511 jobs.
Through the multiplier effect, about 8403 jobs are supported with expected total labor income of
$229.9 million, contributing about $329.1 million to the annual Gross State Product.

Table 5. Economic contribution of on-premise consumption sales and associated wholesale activities.

Impact Type Employment Labor Income Gross State Product Output

Direct Effect 6511 $140,820,000 $170,031,000 $342,370,000
Indirect Effect 749 $39,719,000 $70,389,000 $128,032,000
Induced Effect 1144 $49,312,000 $88,638,000 $155,345,000

Total Effect 8403 $229,851,000 $329,058,000 $625,747,000

3.5. Estimated Gross Contributions

The final task is to combine the contribution estimates into a single set of contribution estimates.
The wholesale and retail sales contributions estimated above reflect the share of Michigan-produced
beer that remains in state, and only account for the margins earned at each leg. Hence, adding the

11



Beverages 2019, 5, 35

retail and wholesale margin contributions to that of brewing contributions avoids double counting.
When combining the direct effects of sales, we assert that Michigan consumers spent about
$569.17 million on Michigan-produced beer. According to the statistics reporting portal Statistica [42],
per-capita expenditures on beer average about $229.40 nationally. Given Michigan’s population of 9.951
million in 2016 [43], our estimates suggest that Michigan’s per capita expenditure on Michigan-produced
beer was $57.19, or about 24.0 percent of the national average total expenditure on beer. A Mintel
survey of beer drinkers found that 19 percent of beer drinkers associate with purchasing craft beer [44].
Our findings’ close proximity suggests an appropriate estimate, while the fact that our findings suggest
a higher proportion of sales to craft can be attributed to the higher price points of locally-sourced beers.

The resulting gross contribution estimates are shown in Table 6. In this, the expected contribution
of Michigan’s craft beer value chain, including the Founders Brewery, totals $993.5 million, where
the direct value chain transactions amount to about $569.2 million of that value. In total, just over
9700 jobs can be linked back to Michigan-produced beer, where about 7023 are directly tied to brewing,
moving, selling and serving beer. The largest bulk of this is in the food and drink service industry.
Total labor income is expected to be about $293.7 million, making up average annual job earnings
of around $30,156. Finally, our estimates suggest that Michigan’s craft beer sector contributes some
$469.5 million to the annual Gross State Product.

Table 6. Aggregate economic contribution of Michigan’s brewery value chain.

Impact Type Employment Labor Income Gross State Product Output

Direct Effect 7023 $162,580,000 $240,225,000 $569,166,000
Indirect Effect 1254 $68,082,000 $116,046,000 $225,864,000
Induced Effect 1461 $62,999,000 $113,240,000 $198,462,000

Total Effect 9738 $293,661,000 $469,511,000 $993,492,000

4. Conclusions

The U.S. beer industry is undergoing a significant, consumer-driven restructuring as portions
of the national alcohol landscape are shifting to localized supply chains. This study estimated the
economic contributions of Michigan’s beer industry. The distinction of measuring the economic
contribution from economic impacts is important, as an economic impact estimate would assert a
change in economic activity in the absence of Michigan’s brewing value chains. Rather than focus on
such hypothetical scenarios, our measures detail the contributions of Michigan’s beer production value
chains to existing economic activities. Our findings suggest that Michigan-produced beers generate a
sizeable contribution to the state economy, contributing just under $500 million to the annual Gross
State Product (a measure of total income generated in the state), or alternatively, 8.4 percent of the
value of Michigan’s food and beverage and tobacco products manufacturing sector’s annual Gross
State Product [45].

Some limitations remain. These estimates omit some sources of contribution along Michigan’s
beer-production value chain. Namely, Michigan’s agricultural producers of malting grains and
hops have found markets outside of Michigan, making raw ingredient inputs an export industry for
Michigan. Michigan entrepreneurs are also experimenting with specialty malting operations, with a
specific focus on supplying in-state breweries, but with the potential for extending the export options
along Michigan’s beer production value chains. Miller [38] estimates that Michigan’s agricultural
inputs and malting operations contributed $8.9 million in annual transactions in 2016. Much of this
value is captured in our estimates, though the value attributed to exports is not. Furthermore, not all
states are likely to have as significant an economic impact from their beer value chain, as few states
are as well prepared to foster the development of the industry along the extent of the value chain.
Michigan is a state with a long history of growing beer inputs such as malting barley and hops, so the
potential for economic impact can be relatively large.
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The findings of this study highlight the ubiquitous nature of Michigan’s brewing industry from
that which is produced for consumption in the state and that which is produced for export to other
markets. While largely comprised of small producers, in the aggregate, it comprises a measurably large
component of the Michigan economy. Interest in consuming locally-sourced beer and craft beers is
increasing and we believe that the industry will continue to grow, relative to the 2016 numbers used in
this estimate. There are a surprisingly large number of jobs that can be tied to Michigan-sourced beer,
but most of these jobs are tied to the food and drink service sector. While beer production has long been
regulated at the federal and state levels, recent changes in federal law have relaxed federal oversight
and increased the authority of state regulations over beer production. Recognizing that regulation is a
collective choice for managing the affairs of society, regulation without a full understanding of the
economic contributions can result in money and opportunities left on the table.
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Abstract: Sorghum (Safrari) was valorized into sorghum coffee-lactose stouts using Vernonia
amygdalina as a bittering ingredient. These sorghum grains and subsequent sorghum pale malt were
tested for their acceptability in the brewing field. Results obtained were the germinative capacity of
99.29 ± 0.58%, a germinative energy of 98.56 ± 1.79%, a thousand corns weight 48.08 ± 0.02 g for the
grains, and a diastatic power of 187.44 ± 7.89 WK for sorghum malt. The worts and beers produced
were characterized and were found suitable. Moreover, alcohol content in stout beers obtained was
between 8.8% and 9.4% ABV. Sensory evaluation was implemented on beers using 30 panellists and
the best combination was the one using 50% lactose (250 g) and 50% coffee (250 g) in 5 L of wort
during wort boiling.

Keywords: Safrari; coffee; lactose; stout beer; sensory evaluation

1. Introduction

Sorghum is Africa’s fourth most important crop in terms of tonnage after maize, rice, and wheat [1].
In certain parts of Africa and India, sorghum grain has traditionally been used in the production of
porridge, alcoholic beverages, and for bread making [2]. More than 300 million people in developing
countries rely on sorghum as an energy source [3–5]. This is the case in Cameroon where sorghum is
the largest energy source in the northern part [6–8] with a significant annual production of 1,102,000
tons [1]. Given the competition of multinational enterprises, sorghum appears to be the best alternative
to lager beer production [8]. Barley has become the basic raw material for brewing for both barley
and non-barley-producing countries like Cameroon. The process of brewing lager beer with cereals
other than barley is growing to be a common practice, especially in non-barley-producing countries
due to various drawbacks related to barley. Barley is a temperate cereal and the African climate is
unsuitable for its cultivation. This presents a major problem; barley grain or barley malt must be
imported, hence there are skyrocketing prices due to strong global demand and high shipping costs,
meaning some valuable foreign exchange and increasing the price of the beer beyond the reach of
most Africans. Importation also disadvantages local farmers as it denies them potential markets [9].
This occurs in Cameroon and these force a re-think by industries to invest in other cereals as a malting
substitute. Sorghum can be well and efficiently utilized industrially in Cameroon for producing
beer. The chemical composition of sorghum reassures it as an alternative cereal to barley in lager
style beer production. It was previously believed that beer could not be produced without barley.
However, it has been well-documented that cereals like sorghum have the potential to be an alternate
substrate for conventional beer brewing. Research studies into sorghum are progressing rapidly and
making a significant impact in brewing despite the earlier misunderstanding that malted sorghum
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developed insufficient hydrolytic enzymes [6–10]. Differences in malting and mashing temperatures
employed in studies of sorghum in the past were an important contributory factor and complicated our
understanding of the physiological behavior of sorghum during processing [6–10]. In recent times, the
large body of work carried out on sorghum to understand the physiological behavior of sorghum has
led to improved malting and mashing processes amongst other findings, such as improved varieties
of sorghum suitable for beer brewing, which contributes in producing commercially acceptable
sorghum beers both lager and stout [6,7,11–15]. Nigeria, South Africa, Uganda, Tanzania, Zambia,
and Zimbabwe successfully brew commercial sorghum lager and stout beer [16]. The utilization of
a locally grown crops as a brewing material is cost effective and can potentially boost the regional
economy of Cameroon. It would benefit sorghum farmers with guaranteed income and thus reduce
unemployment. In addition, the use of a native crop would reduce logistical costs for manufacturers
resulting in reduced beer retail prices [17]. Manufacturers would be able to negotiate lower taxes with
the government on sorghum-based beer, which would contribute to another significant cost reduction
of particular benefit to the consumer. It would help create affordable lager beer for consumers for
whom this type of beer is unaffordable. These factors would thus lead to an increased growth in the
brewing industry [17]. Sorghum beer is gluten-free and can be used by celiacs [18,19]. In order to
valorize sorghum, we came up with producing a coffee–lactose sorghum stout. The choice of coffee
and lactose is not trivial. Beer customers showed interest in such a beer as they showed interest to
give their impression. Bitter leaf (Vernonia amygdalina) was used as a substitute for hop. Bitter leaf has
successfully served as a substitute to hop in lager beer. Its properties render it suitable for use [20–24].
We were interested in this paper to present how the production of the coffee–lactose stout from the
malting process through and fermentation was undertaken. Thereafter, the results of the analyses
conducted on worts and beers are discussed, ending up with discussing the sensory evaluation of
the beers.

2. Materials and Methods

2.1. Acquisition of Materials

Safrari sorghum cultivar (Figure 1) used was obtained from the Institute of Research and
Agronomic Development (IRAD), Maroua, Cameroon. The Vernonia amygdalina leaves (Figure 2)
were harvested from farms in the Bini-dang neighborhood of Ngaoundere, Cameroon. Coffea
arabica (Figure 3) beans used during this work were bought from a local cooperative society in
Bafoussam, Cameroon.

 

Figure 1. Safrari cultivar.
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Figure 2. Vernonia amygdalina (bitter leaf).

 

Figure 3. Green coffee bean.

The D-Lactose monohydrate was obtained from Sigma-Aldrich, Johannesburg, South Africa.
Saccharomyces cerevisiae (Safbrew T-58) used for fermentation was obtained from “Malterie du Chateau”,
Chemin du Couloury 1, 4800 Lambermont, Belgium. The characteristics of the commercial mashing
enzymes used are: Hitempase 2XL®, a thermostable α-amylase from Bacillus licheniformis, and
Bioglucanase TX, from an enzymatic composition of β-glucanase and hemicellulases from Trichoderma
reesei and their sources, are presented in Table 1. Hitempase 2XL and Bioglucanase TX were obtained
from Kerry Bioscience, Kilnagleary, Carrigaline, Co. Cork, Ireland.

Table 1. Characteristics of commercial enzyme preparations used during mashing.

Commercial Mashing Enzyme

Hitempase 2XL Bioglucanase TX

Organism of origin Bacillus licheniformis Trichoderma reesei
Activity 4416.29 ± 19.34 U/mL 750 BGU/mL
Description α-amylase β-glucanase
Optimum temperature (◦C) 60–95 60
Optimum pH 4–8 4.5–6.5
Recommended application level in adjuncts 60 U/g 0.01 and 0.025% (v/w)
Form Solution Solution

2.2. General Work Overview

Safrari cultivar was sorted to obtain homogenous samples free from foreign materials, and broken
and infected grains. The sorted grains were submitted to tests of acceptability and brewing potential,
which included: the germinative capacity, germinative energy, moisture content, thousand corns
weight, and total ash. The grains were then malted (Figure 4) and different malts were produced by
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varying the kilning program. Diastatic power of the pale malt was also determined. Malted grains were
mashed with a supplement of exogenous enzymes (Hitempase 2XL and Bioglucanase TX). Coffee and
D-Lactose monohydrate (lactose) were added during the boiling process of wort following a mixture
design to produce worts of different formulations. Dry bitter leaves (Vernonia amygdalina) were used as
a substitute to hops. Worts produced were fermented with Saccharomyces cerevisiae (Safbrew T-58) at
ambient temperature (25 ◦C). Formulations of worts, as well as the corresponding beers produced,
underwent physicochemical analyses. A sensory analysis of the beers was performed. It consisted of a
hedonic nine-point verbal scale with 30 panellists.

Figure 4. General work overview (MC = moisture content; GE = germinative energy; GC = germinative
capacity; TCW = thousand corn weight; DP = diastatic power; FAN = free amino nitrogen: SG = specific
gravity; TP = total polyphenols; TA = titratable acidity; ABV = alcohol by volume).

2.3. Processing of Raw Bitter Leaves (Vernonia Amygdalina)

As showed in Figure 5, the leaves were screened to remove foreign bodies and withered leaves.
They were thoroughly washed afterwards with tap water, rinsed, and oven-dried at 30 ◦C for 9 days.
Dried leaves were hand crushed and conditioned in glass bottles, in a refrigerator at 4 ◦C.
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Figure 5. Processing of Vernonia amygdalina leaves.

2.4. Processing of Coffee Beans

The coffee beans were bought with their parchment. They were thus dehulled manually to obtain
the green beans. The green beans were roasted at 200 ◦C for 20 min in a Memmert ventilated oven
(ULM/SLM 400–800), Germany. They were subsequently cooled before being ground and conditioned
in glass bottles. Figure 6 depicts the process used.

2.5. Preparation of Sorghum Grains

Sorghum grains were cleaned by first manually sorting to remove deformed, small, broken, and
immature kernels, dust, sand, stones, and other foreign materials.
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Figure 6. Processing of coffee beans.

2.6. Analysis of Sorghum Grain

2.6.1. Determination of the Germinative Energy of Sorghum

Two filter papers were placed at the bottom of two Petri dishes. A total of 4 mL and 8 mL of
distilled water were accurately added [25].

Two lots of 100 corns were placed on the paper so that each made good contact without drowning
the embryo by ensuring that the ventral side only touched the paper. After which, the dish was covered
to prevent moisture loss, and placed in a dark cupboard. Chitted corns were removed after 24, 48,
and 72 h from the beginning of steeping, thus avoiding excessive moisture uptake by those corns that
germinated early. The germinative energy was calculated using the formula:

GE = 100 − Nng (1)

where GE is the germinative energy (%) and Nng is the number of grains that had not chitted.

2.6.2. Determination of the Germinative Capacity of Sorghum

Three lots of 200 corns were obtained after removing foreign matter and half of the corns out of
each of the lots of 200 corns was steeped in 200 mL of fresh H2O2 solution at a concentration of 7.5 g/L
at room temperature (22–25 ◦C) for 2 days. After a day, the steep liquor was drained off and replaced
with 200 mL of fresh H2O2 solution at room temperature. After 2 days of steeping the steep liquor was
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drained off and corns were separated and counted for those that had not developed both roots and
acrospires [25]. The germinative capacity was calculated using the formula:

GC =
200 − Nng

2
(2)

where GC is the germinative capacity (%) and Nng is the number of grains that had not chitted.

2.6.3. Determination of the Thousand-Corn Weight of Sorghum

Three lots of 35 g of sorghum was sampled and weighed, and half of the corns and foreign
matter was removed and the weight subtracted, after which the corns were counted in each lot. This
experiment was repeated thrice to obtain a more precise and accurate value. The thousand-corn weight
on the dry matter was calculated using a standard formula [25]:

TCW =
1000 × (100 − M)× W

100 × N
(3)

where TCW is the weight of a thousand corns of dry sorghum in g, W is the weight of lot of sorghum
taken in g, M is the moisture% (m/m), and N is the number of corns in each lot taken.

2.6.4. Determination of the Moisture Content

Twenty grams of sorghum was finely milled using a hand grinding machine and 5 g of the flour
obtained was put in a clean dry dish and dried at of 105 ◦C for 24 h. The product was later removed
from the oven and was immediately allowed to cool in a desiccator and weighed again. The moisture
content percentage (%) of the sample was calculated using a standard formula [25]:

MC =
100 × (M0 − M1)

M0
(4)

where MC is the moisture content (%), M0 is the mass in g of the sample before drying, and M1 is the
mass in g after drying.

2.6.5. Determination of Total Ash

The sample was completely incinerated until obtaining white ash in a muffle furnace calibrated at
550 ◦C [26]. For that, the porcelain crucibles containing the samples resulting from drying at 105 ± 2 ◦C
(M2) were placed in the furnace. After incineration for 24 h, the crucibles were removed from the
furnace by using grips, then cooled in the atmosphere of a desiccator and weighed (M3). The ash
content per 100 g of DM (dry matter) was calculated using the formula:

Total ash =
100 × (M3 − M1)

M2
(5)

where M1 is the mass of the empty crucible.

2.7. Experimental Procedure for Malting Sorghum

Seven kilograms of Safrari sorghum cultivar grains were washed three times using 21 L of distilled
water to remove dirt and foreign bodies. Grains were steeped in 21 L of distilled water for 48 h at room
temperature (≈25 ◦C) with three changes of water at intervals of 12 h before steep out. Germination was
carried out for 4 days in a Heraeus type incubator (D-63450 Hanau, Germany) at a temperature of 25 ◦C
with water sprinkled on the grains on a daily basis. The green malt was then kilned following different
kilning programs to obtain characteristic malts used in the beer recipe. The malt was rubbed-off of
its rootlets and stored until further use. Different malts were produced by varying the temperature
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and time for kilning the green malt [27]. Four malts were used in the course of this work: base malt,
caramel malt, toasted malt, and roasted malt. Figure 7 shows the malting process.

Figure 7. Sorghum malting process.

2.8. Determination of the Diastatic Power of Pale Malt

For the enzyme extraction, a water bath was first set at 40 ◦C. Ten grams of flour was measured
into a beaker and 480 mL of water added. The mixture was mixed to avoid balling. The beaker was
placed in the water bath and mashed for 1 h while stirring continuously. The extraction solution
was cooled to room temperature. The beaker contents were adjusted to 510 g. The contents of the
beaker were stirred and transferred onto a filter. The first 200 mL were discarded and the next 50 mL
immediately used for analysis. A hundred mililiters of starch solution was pipetted into a 200 mL
volumetric flask. Five milliliters of sodium acetate buffer was added and the flask placed in the water
bath at 20 ◦C and allowed to stand for 20 min. Five mililiters of the flour extract was added using
a pipette, then the contents of the flask was shaken thoroughly and replaced in the bath for 30 min.
Sodium hydroxide (4 mL) was added to the mix to inactivate the enzymes. The volume was made up to
200 mL with water and mixed well. The alkalinity of the solution was verified using a thymolphthalein
solution. The blank was prepared by pipetting 100 mL of starch solution into a 200 mL volumetric flask.
NaOH solution (2.35 mL) was then added and mixed thoroughly. The malt extract (5 mL) was then
added and the volume made up to 200 mL. The alkalinity was also checked using the thymolphthalein
solution. The determination of the reducing sugars was done by transferring a 50 mL aliquot of the
digest into a 150 mL Erlenmeyer flask. Into this flask was added 25 mL of iodine solution and 3 mL of
sodium hydroxide, and was shaken. The flask was stoppered and allowed to stand for 15 min. Sulfuric
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acid (4.5 mL) was added and the unreacted iodine titrated with thiosulphate solution until the blue
colour disappeared [25].

DP1 = F × (VB − VT) (6)

DP2 =
100 × DP1

100 − M
(7)

where, DP1 is the diastatic power on sample in Windisch–Kolbach (WK) units; DP2 is the diastatic
power on dry malt in Windisch–Kolbach units; VB is the titration value of the unreacted iodine in
the blank test, in mL; VT is the titration value of unreacted iodine in the test portion, in mL; F is the
correction factor to obtain the result per 100g of flour used for the extraction; and M is the moisture
content of the flour in percentage (m/m).

2.9. Experimental Procedure for Mashing Sorghum

A decantation mashing program [7] for sorghum was adopted for the study (Figure 8).
The quantities and types of malts used are given in Table 2 below. It was done according to
preliminary studies.

 

Figure 8. Decantation mashing process.

Table 2. Sorghum malt types and quantities used during mashing.

Sorghum Malt Type Quantity/kg

Pale malt 3.1
Caramel malt 1.2
Toasted malt 0.3
Roasted malt 0.4

Twenty-five litres of distilled water was put into a stainless-steel pot and 5 kg of a mixture of
sorghum malts (flour Ø < 1 mm) as given in Table 2, added with continuous stirring until a homogenous
mixture was obtained. This mixture was kept at 45 ◦C for 1 h with intermittent stirring at intervals
of 5 min. The mixture was allowed to decant and 12 L of the supernatant was withdrawn and kept
aside. The temperature of the mash was then raised to boiling so as to gelatinize the sorghum starch.
This was done for 40 min with intermittent stirring at intervals of 5 min before cooling to 65 ◦C. The
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supernatant withdrawn together with the commercial enzymes (Hitempase 2XL) were added to the
mash and held at 65 ◦C for 1 h 30 min with intermittent stirring at intervals of 10 min. The mash was
filtered at 25 ◦C using Whatmann no. 4 paper to obtain the sweet wort.

2.10. Wort Boiling

The motherwort was divided into five portions of 5 L. Each portion (5 L) of wort was boiled for
an hour. During boiling, 35 g of dry bitter leaves per 5 L was added as a substitute for hops. Coffee
and lactose (lactose) in a proportion of 10% (w/v) was also added 5 min before the end of wort boiling
following a mixture design generated by the software Design Expert ® Version 7.0.0 (Stat-Ease, Inc.
2021 East Hennepin Ave., Suite 480 Minneapolis, MN 55413) as showed in Table 3 below.

Table 3. Experimental matrix.

Std Run Block
Proportion Quantity (g)

x1: Lactose x2: Coffee x1: Lactose x2: Coffee

4 1 Block 1 1.000 0.000 500 0
1 2 Block 1 0.750 0.250 375 125
3 3 Block 1 0.500 0.500 250 250
2 4 Block 1 0.250 0.750 125 375
5 5 Block 1 0.000 1.000 0 500

2.11. Clarification and Fermentation

The bitter worts were then cooled to room temperature, filtered to clarify them, characterized,
pitched, and then fermented at room temperature for 9 days. Figure 9 illustrates the
fermentation scheme.

Figure 9. Brewing process.
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2.12. Physicochemical Analyses of Worts and Beers

2.12.1. Determination of Specific Gravity (Analytica-EBC, 1998)

A thoroughly cleaned pycnometer was washed and rinsed with distilled water. It was then dried
in an oven set at 105 ◦C for 5 min and then cooled in a desiccator. The initial mass of the pycnometer
was weighed and then filled with the sample (wort, beer). The difference in mass between the empty
pycnometer and when it was filled with the sample was evaluated. This mass was used to calculate
the specific gravity by dividing the value obtained by 25 mL, which corresponds to the volume of the
calibrated pycnometer. The specific gravity thus calculated was checked across an extract table for the
corresponding concentration in ◦Brix and ◦Plato. Results from tables are expressed as ◦Plato using the
Goldiner and Klemann table.

2.12.2. Determination of Color Using Spectrophotometric Method

The wavelength was set at 430 nm. The cell was filled with water and the absorbance set to read
0.00. The cell was then rinsed and filled with the sample (wort and beer) and the absorbance read [25].

Color (EBC) = A × d × 25 (8)

where A is the absorbance at 430 nm in 10mm cell and d is the dilution factor

2.12.3. Determination of pH

The electrode of the pH-meter was immersed into the wort and beer samples and the pH was
read. The beer was degassed before the pH was read.

2.12.4. Determination of Turbidity

The tube was filled with the sample and wiped carefully and thoroughly. It was then placed in
the turbidimeter, closed, and read immediately. Results are expressed in NTU (nephelometric turbidity
unit).

2.12.5. Determination of Free Amino Nitrogen (FAN) Content

The samples (wort and beer) were diluted to 1% (v/v); 2 mL of the diluted sample was placed in a
test tube into which was added 1 mL of coloured reagent. Tubes were stoppered with aluminium foil,
thoroughly homogenized, and placed in a water bath (95 ◦C) for exactly 16 min and then cooled in
cold water (20 ◦C) for 20 min. After this time, 5 mL of dilution solution was added, mixed, and the
absorbance was read at 570 nm against a reference sample prepared from the reagents plus 2 mL of
distilled water in place of diluted wort and beer [25]. The free amino nitrogen (FAN) was calculated
according to the relation:

FAN (mg/L) =
A1 × 2 × d

A2
(9)

where A1 is the absorbance of test solution at 570 nm, A2 is the mean absorbance of standard solutions
at 570 nm, and d is the dilution factor.

2.12.6. Determination of Titratable Acidity

Titratable acidity was determined according to the standardized method, i.e., AFNOR (1982), with
0.1 N sodium hydroxide (NaOH) in the presence of phenolphthalein indicator. Ten milliliters of the
sample was pipetted into a conical flask and 0.1 mL of phenolphthalein (0.05%) was added. Titration

26



Beverages 2019, 5, 20

was stopped when the initial color changed to pink and persisted for at least 30 s. The burette reading
was noted. The titratable acidity (TA) is expressed in g/L H2T:

TA = 75 × N × V
T

(10)

where V is the volume (mL) of the sodium hydroxide noted at endpoint, N is the concentration of the
base, and T is the volume of titre.

2.12.7. Determination of Total Polyphenols

After haven prepared the reagents needed for this experiment, with the help of standard solutions
of gallic acid, a scale of standardization was prepared and the samples are titrated.

The test tubes were again agitated and allowed to rest for 2 h at room temperature, after which
their relative absorbance was read at 725 nm. The polyphenol mg/L content was obtained using the
relationship given in the standard curve after plotting optical density against concentration [28].

2.12.8. Alcohol Determination Using Specific Gravity

The original gravity (OG) and final gravity (FG) were determined using a pycnometer as
previously described in Section 2.12.1. The ABV was expressed as follows:

ABV (% v/v) =
(OG − FG)

0.0075
(11)

2.12.9. Sensory Evaluation of Beers

A hedonic test was conducted. Sensory evaluation was conducted by 30 ordinary consumers (20
males and 10 females) from the town of Ngaoundere. The consumers were selected from different
age groups (21–35 years old). The prerequisites for participating in the study were that the individual
consumed beer and showed an interest in participating in all test sessions. Evaluations were carried
out at the Food Engineering and Technology Laboratory; the beer samples were served in a random
way at temperatures of about 8 ◦C. All the beer samples were coded. Each participant received a
series of five beers (30 mL of each formulation) served in opaque cups except when rating appearance,
during which they were served in glasses. The degree of liking was rated using a nine-point hedonic
scale for five main attributes i.e., smell, taste, bitterness, mouthfeel, and appearance; They were also
asked to rate their overall liking for each beer. For each sample, participants were instructed to drink
and swallow the beer when rating taste. Consumers were asked to drink mineral water to clean their
mouth between tastings to avoid cross-contamination between samples. Also, they were asked not to
smoke, eat, or drink anything, except water, 1 h before the tasting session. The panellists were invited
to comment on the beers especially with respect to the attributes rated. After tasting, a purchase intent
score sheet was filled by all the tasters.

3. Results

3.1. Physicochemical Characteristics of Unmalted and Malted Sorghum

The quality of beer was dictated by the nature of the raw materials. Sorghum (Safrari) utilized for
this study was characterized in order to assess its brewing potentials. These tests (for acceptability
in brewing) helped in determining the potentiality of the Safrari cultivar. Table 4 shows the results
obtained for characterization of unmalted and malted sorghum.
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Table 4. Physicochemical characteristics of unmalted and malted sorghum.

Characteristics Unmalted Safrari Safrari Malt

Water content (%) 8.50 ± 0.01 4.80 ± 0.56
Germinative capacity (%) 99.30 ± 0.58 N.D.
Germinative energy (4 mL) (%) 98.60 ± 1.79 N.D.
Germinative energy (8 mL) (%) 97.00 ± 1.21 N.D.
Thousand corn weight (g) 48.10 ± 0.02 38.00 ± 1.35
Diastatic power (WK) N.D. 187.40 ± 7.89
Total ash (%) 1.30 ± 0.10 0.90 ± 0.22

N.D. = not determined.

3.1.1. Water Content

The values obtained for the water content of unmalted and malted sorghum were 8.50 ± 0.01%
and 4.86 ± 0.56%, respectively (Table 4). In both cases, these values were in the range of those reported
by the literature [29,30]. The samples produced were therefore considered to be suitable for storage
since it was also reported that grains at a moisture content of up to 11.7% will keep safe without
deterioration during storage [31].

3.1.2. Germinative Capacity and Energy

Results obtained for germinative capacity, germinative energy (4 mL), and germinative energy
(8 mL), were 99.29 ± 0.58%, 98.56 ± 1.79%, and 97.00 ± 1.21%, respectively (Table 4). They all fell
within the specifications of at least 95% [25]. These two properties had a direct bearing on the suitability
of cereals for malting since it was mentioned in the literature that a GE ≥ 90% is appropriate for malting
and brewing [31,32].

3.1.3. Thousand Corn Weight

The thousand-corn weight of unmalted and malted sorghum Safrari cultivar were 48.08 ± 0.02 g
and 38.05 ± 1.35 g, respectively (Table 4). The literature stated a range of 7–61 g [7,15,33]. The samples,
therefore, were one more time suitable for brewing.

3.1.4. Diastatic Power

The diastatic power (DP) of Safrari malt was 187.44 ± 7.89 WK (Table 4), less than the average
value of 250 WK recorded in barley. This indicated a relatively low enzymatic activity, and thereafter,
showed insufficient production of enzymes during malting when compared to barley. These relatively
low levels of DP in sorghum may indicate the necessity of the addition of exogenous starch hydrolyzing
enzymes since it was stated that the most important characteristics of good malt are high enzyme
levels to degrade starch and obtain high extract yield [34].

3.1.5. Ash Content

The ash content of unmalted grains was 1.35 ± 0.01% (Table 4). It fell within the range indicated
in the literature, which was between 0.3 and 1.7% [35,36]. A significant decrease in ash content was
observed after malting. This was due to the removal of roots and shoots after kilning. Safrari malt had
an ash content of 0.87 ± 0.22%. Despite the loss in ash content, Safrari malt was still within the 0.3 to
1.7% range reported in the literature [35,36]. This is beneficial for lager brewing as the yeast needs
minerals for optimum function during wort fermentation [37].
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3.2. Analysis of Worts and Beers

3.2.1. Specific Gravities

The specific gravity of the worts produced a range between 1.0508 and 1.0748 (Table 5). These
values fall within the range as recorded in the literature [9,10,24]. The lowest value recorded was
that of the motherwort. This increase could be explained, amongst other reasons, by the evaporation
of water taking place during the boiling process. This evaporation should have contributed to wort
concentration; thus, specific gravity increased in the boiled wort [18]. In the beer, specific gravity
between 0.9923 and 1.0040 was obtained (Table 6). The lower final gravity could be explained by the
fact that sugars were used up by yeast to convert the wort into beer; hence, the final gravity will be
much lower as yeasts have consumed much of the sugar, which is denser than water, and have left
alcohol in its place, which is less dense than water [18].

3.2.2. pH

The pH of all the worts studied was within the range 5.41 ± 0.00 to 5.79 ± 0.01 (Table 5). All the
boiled wort had pH values higher than 5.41 ± 0.00, which was that of the motherwort. This increase
could be explained by the fact that the pH of wort was dependent on the residual alkalinity of the
water [37]. According to the literature, sorghum wort pH should range between 5.3–6.0 for optimum
brewing [3,4,38]. All the worts produced were within this range. Equally, in the beer, pH ranged
between 4.47 ± 0.02 and 4.68 ± 0.03 (Table 6). The lower pH values obtained in the beers could be
explained by the fact that during fermentation, the pH continued to drop as a result of the yeast
cells taking in ammonium ions (which are strongly basic) and excreting organic acids including lactic
acid [37].

3.2.3. Turbidity

The proportion of lactose and coffee impacted the turbidity of wort by increasing it (Table 5). This
could be due to the fact that coffee contains proteins, polyphenols, and carbohydrates [39], amongst
other components that induce the formation of haze [7,8]. High turbidity values were recorded for
all wort samples. The wort containing 100% coffee recorded a turbidity value of 91.00 ± 0.00 NTU
(Table 5). A turbidity value of 606.00 ± 0.82 NTU was obtained in the sample containing 100% lactose
(Table 5). Together with polyphenols, proteins are thought to cause haze formation during wort boiling
(hot break) and wort cooling (cold break). The trub in both cases was as a result of the interaction
between proteins and polyphenols which forms some complex that clumps. At the end of the boil,
as the wort cooled it got more and more cloudy. The clumps of polyphenol and protein in the cold
break were much smaller than the hot break. Therefore, they tended to stay in suspension longer,
causing the wort to be turbid [7,8]. The lower turbidity values obtained in the beer (Table 6) could
be explained by the fact that during maturation, clarification of the beer took place. This was due to
natural sedimentation in the cold (lagering at 0 ◦C) of protein and polyphenol complexes. This ensured
that turbidity owing to chemical precipitation or growth of microorganisms did not occur or, in the
case of chemical precipitation, did not recur when the beer was clear and stable [7,8].
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3.2.4. Total Polyphenols

Total polyphenols ranged between 416.00 ± 0.13 and 615.00 ± 0.06 mg GAE/L (Table 5). These
values were higher than the 150 mg/L to 300 mg/L range from the literature [27,33,40]. The proportion
of lactose and coffee impacted the total polyphenols of beer. This could be accounted for by the
fact that coffee contains polyphenols in their composition [41,42]. Total polyphenols between 108 to
146 mg GAE/L were obtained in the beer (Table 6). Before the end of fermentation and maturation, a
large amount of the polyphenolic material and protein had been removed by adhesion and coagulation,
and it had then sunk to the bottom of the fermenter, hence the drop in total polyphenols of beer.
However, they were still present in the final beer where they contributed in determining its quality
since polyphenols contribute to flavor, astringency, the perception of bitterness, haze, oxidative effects,
and antioxidative effects [43–45].

3.2.5. Free Amino Nitrogen (FAN)

The FAN of wort varied from 308.00 ± 0.23 mg/L to 339.00 ± 0.93 mg/L (Table 5). This could be
explained by coffee, which contains proteins [41,42]. These proteins were broken down by proteases to
FAN during mashing. It has been generally agreed that at least 120 mg/L of FAN is required to support
proper yeast growth during brewing, though with the high gravity brewing processes employed in
most modern breweries, recommended levels are at about 150 mg/L [46]. In beers, the FAN varied
from 110.00 ± 0.23 mg/L to 140.00 ± 0.14 mg/L (Table 6). During fermentation, FAN provided
nutritional support to the yeast, enabling the optimal yeast growth and efficient fermentation necessary
for good head retention and foam quality. This further explained the decrease in FAN recorded
compared to wort [47,48].

3.2.6. Color

The color values of the worts produced were within the range 146.75 ± 3.00 EBC to
242.50 ± 2.04 EBC (Table 5). This could be due to the fact that color depends on the grain used
as raw materials and bitter leaf, as well as on the processes during the brewing. Color components
were produced partly in the Maillard and caramelization reactions, and partly by the oxidation of
polyphenols [7,49]. The color of beer ranged between 112.50 to 242.50 EBC (Table 6). The values
obtained indicated that the beer produced was in the range of stout given that the appellation of
stout with reference to colour starts as from 69 EBC as indicated on the beer colour chart based on the
standard reference method.

3.2.7. Titratable Acidity (TA)

The proportion of lactose and that of coffee impact on the TA of beer. This could be accounted for
by the fact that both lactose and coffee contained titratable acids in their composition as reported by
Fox et al. (2015) and Wang and Ho (2009), respectively. Titratable acidity varied slightly comparatively
in the formulation: between 2.58 ± 0.04 and 2.84 ± 0.01 g/L H2T (Table 5). Values of the TA of beer
ranged between 3.92 to 4.38 g/L tartaric acid (Table 6).

3.2.8. Alcohol by Volume (ABV) Content of Beer

The ABV of the five beers were very high (Table 6). Three of beer formulations had ABV above
9%. They include formulations 1 to 3. A formulation with higher ABV means more fermentable
sugars have been converted into ethanol during fermentation. Beers can contain up to about 12.5%
ABV [10,24,37,50,51].

3.3. Sensory Evaluation Results

For beer 1 containing 100% lactose, all attributes had the majority of votes located in “the liking
part” of the hedonic scale (Figure 10). Mouthfeel had the highest number of votes. Smell, taste, and
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bitterness scored high too. This could be the reason for the high score recorded for the overall liking.
However, for this beer, some panellists commented on the appearance, saying it was hazy, making
it less attractive. Some also mentioned that the colour was not bad but the haziness gave a poor
appearance. They suggested that the beer be more brilliant.

 

Figure 10. Hedonic nine-point scale grading for beer 1 (100% lactose and 0% coffee).

The bitterness and overall liking scored the highest in beer 2. Likewise for beer 1, for beer 2
containing 75% lactose and 25% coffee, all attributes had the majority of votes located in “the liking
part” of the hedonic diagram (Figure 11). Similar comments were made by the panellists with respect
to appearance being hazy. According to them, the beer lacked brilliance. They also mentioned that the
colour was not bad but the haziness gave a poor appearance. They suggested that the haziness should
be removed to make the beer more attractive.

 

Figure 11. Hedonic nine-point scale grading for beer 2 (75% lactose and 25% coffee).
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Concerning beer 3 containing equal proportions of lactose and coffee, all attributes had the
majority of votes located in “the liking part” of the hedonic diagram (Figure 12). Though overall liking
had the highest number of votes, a panellist said the beer could even taste better if the bitterness was
reduced a little and carbonation increased. This explained the votes seen in the dislike part of the
diagram. Smell, taste, and mouthfeel were, however, much appreciated in the comments made by
panellists. Appearance scored higher than in the previous beer as haziness dropped.

 

Figure 12. Hedonic nine-point scale grading for beer 3 (50% lactose and 50% coffee).

Except for smell and appearance, beer 4 containing 25% lactose and 75% coffee, had the majority
of votes for all other attributes located in “the disliking part” of the diagram (Figure 13). The comments
gave a clue on consumers’ grading. They commented that the beer was too bitter such that they could
not appreciate the flavour of the malts. They suggested much of the bitterness should be reduced. The
dark colour with less haze of the beer was much appreciated and gave the appearance its good score.

 

Figure 13. Hedonic nine-point scale grading for beer 4 (25% lactose and 75% coffee).

Beer 5 containing 100% coffee had the majority of votes in the “liking part” of the hedonic diagram,
except for bitterness with the majority of votes located in “the disliking part” of the diagram (Figure 14).
The appearance was very much liked. The dark colour with the least haze of the beer was highly
appreciated as depicted by the votes. Though the bitterness was decried and suggested being reduced
in the comments made by consumers, the taste scored well.
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Figure 14. Hedonic nine-point scale grading for beer 5 (0% lactose and 100% coffee).

4. Conclusions

Studies on the physicochemical characterization of a beer stout using coffee and lactose as
ingredients and Vernonia amygdalina as bittering were made. It emerged from this study after having
carried out a mixing plan having given five different beers that the physicochemical characteristics of
musts and beers were comparable to the values obtained in the literature. The sensory analysis of these
beers revealed those which are appreciated by the panellists during a hedonic test. It is therefore at the
end of this work, plausible to consider a feasibility study for a pilot production of this type of beer.
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Abstract: Craft beers are known for their distinct flavor, brew, and regional distribution. They are
made using top-fermenting (ale) yeast, bottom-fermenting (lager) yeast, or through spontaneous
fermentation. Craft beers are consumed and produced in Brazil in large quantities. However,
they present a high level of polyphenols, which affects consumer preference as they may yield a
taste of bitterness to beers. In this study, we analyzed the relationship between polyphenols and
bitterness as well as the composition of the main styles of craft beers and consumer preference for
them. Six different styles were analyzed according to their polyphenol content, bitterness, chemical
composition, sensory profile, and preference. For preference, a panel of 62 untrained assessors was
used. For sensory profile, quantitative descriptive analysis was performed using expert assessors
(n = 8). The most preferred style was classic American pilsner, and the least preferred was standard
American lager. The most preferred style showed less bitterness (9.52) and lower polyphenol content
(0.61 mg EAG/mL), total solids (6.75 ◦Brix), and turbidity (7.27 NTU). This beer also exhibited
reduced sensory notes of malty, fruity, smoked, hoppy, and phenolic but a higher perception of
floral, sweet, and yeast notes; the bitterness attribute had a reduced perception. This study advances
the understanding and complexity of the sensory profile of different styles of craft beers from
Southern Brazil.

Keywords: craft beer; polyphenols; bitterness; preference; sensory attributes

1. Introduction

Beer can be defined as a product of cereal fermentation process, and it consists of more than 90%
water in addition to carbohydrates, minerals, and alcohol (on average 3.5–10%) [1]. Last year, Brazil
produced 13.9 billion liters and consumed 1.25 billion liters of beer, representing 7.0% and 6.6% of
the global beer market, respectively [2]. Beers are primarily classified according to the fermentation
process [3]. Lagers, the most consumed type of beer, are produced by low fermentation, which is usually
carried out between 6 and 15 ◦C [2]. In contrast, ale type beers are produced by high fermentation,
occurring between 16 and 24 ◦C after which yeast cells rise to the surface of the fermentation media,
forming a thick film that is not generally removed completely [2]. Indeed, the transformation of wort
into beer essentially represents the yeast-driven conversion of sugars into ethanol, CO2, and many
other secondary products that provide specific aromas and flavors [4].

Craft beer can be defined as a distinctively flavored and brewed variety that is distributed
regionally. Their popularity has benefited from innovation, creativity, typicality, and authenticity,
which typifies craft beer as an experience that offers pleasure, enjoyment, sense of identity and
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belonging, self-fulfillment, social recognition, and sustainability [5]. In recent years, there has been a
big increase in the Brazilian market for craft beer consumption and production. In addition, craft beer
is generally unfiltered, unpasteurized, and without additional nitrogen or carbon dioxide pressure [3].
Unlike commercial beers, craft beers are mainly produced in microbreweries following the basic
brewing principles and using specific recipes according to the preference of consumers. At the same
time, like commercial beers, they can be brewed using different adjuncts and yeast types [6].

It is well known that many compounds affect the sensory properties of craft beers, such as sugars,
organic acids, hop bitter acids, polyphenols, and carbonyl compounds [6]. The fermentation processes
through the inoculated yeast (i.e., first fermentation and refermentation in craft beers) are fundamental
to the aromatic profile of the final beer produced [4]. Polyphenols are important compounds for beer
quality as they can contribute to bitterness, color, body, and astringency and can therefore influence
their acceptance [7,8]. Almost 67 different polyphenols have been detected in beers, both from barley
and hop [9]. The most abundant phenolic acid is ferulic acid, which is found in different beer styles,
especially in pilsner and weissbier [10]. Polyphenols have a key impact on the sensory quality of beers,
with a higher number of polyphenols leading to better aroma and flavor of the final product [11].

Beer polyphenols come from barley malt [12] and hop [8], and their content depends on the type
of beer and the quantity of hops added during its production. The brewing process and fermentation
are also important factors as some chemical changes can occur during these processes [12]. Three
polyphenol groups—flavan-3-ol, flavonols, and phenolic acids—are found in beers and contribute to
their flavor, aroma, and chemical stability [9]. Some polyphenols act as antioxidants and prevent the
oxidative degradation of beers. In addition, they provide potential benefits for human health as they
inhibit mutagenic and carcinogenic agents [8].

Consumers choose craft beers because they have a variety of flavors, such as malted barley,
chestnut, and honey, which increases the probability of perceiving craft beers to be of a higher
quality [13]. Moreover, their consumption has become, in a qualitative approach, experienced-based
and emerging from a desire for identity and distinction. The goal toward consumption is not functional
but rather symbolic. [5]. Moreover, Brazilian consumers choose craft beers because they have an
individual quality value and distinct sensory attributes [14]. Indeed, there has been a worldwide
increase in the popularity of craft beers in recent times, particularly traditional ales, lagers, and even
styles that do not fit in any of the two main types [3].

In the present study, the relationship between polyphenols and bitterness of the main styles of craft
beers brewed in Southern Brazil was analyzed, along with the preference of consumers. In addition,
each style of craft beer was characterized according to its chemical composition, polyphenol content,
and sensory attributes. As far as we know, few researches have been conducted with the sensorial
description and composition of Brazilian artisanal beer styles, evidencing the importance of this work.

2. Material and Methods

2.1. Craft Beers and Styles

Six different styles of beer were used: standard American lager (SAL), classic American pilsner
(CAP), weissbier (WSB), American India pale ale (IPA), Irish red ale (IRA), and robust porter (RPO).
Table 1 shows the characteristics and packaging specifications of the different craft beers. These
styles were selected so that each specific beer showed different levels of color, bitterness, and ethanol
content. All beer sample styles were defined according to sensory characteristics and brewing process
as determined by the Beer Judge Certification Program (BJCP) [15]. The beer samples were purchased
from the market and were brewed in different localities of Rio Grande do Sul State in Southern Brazil
(Table 1).
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Table 1. Characteristics of each craft beer samples regarding their production and packaging type.
Classic American pilsner (CAP), standard American lager (SAL), weissbier (WSB), American India
pale ale (IPA), Irish red ale (IRA), and robust porter (RPO).

Beer
Samples

Type Beer Color Packing
Packing

Volume (mL)
Production City Purchase Place

CAP Lager Yellow Bottle 1000 Porto Alegre Specialty store
SAL Lager Yellow Can 473 Caxias do Sul Supermarket
WSB Lager Yellow Bottle 1000 Porto Alegre Specialty store
IPA Ale Red Bottle 500 Campo Bom Specialty store
IRA Ale Red Bottle 600 Porto Alegre Specialty store
RPO Ale Brown Bottle 600 Gramado Specialty store

2.2. Chemical Composition of Craft Beers

For all the beer parameters analyzed, the samples were decarbonated in an ultrasonic bath (Ultra
Sonic Cleaner, Unique, São Paulo, Brazil) (30 min and at 80 kHz) until the foam disappeared, indicating
that the beer did not contain CO2 [16]. The turbidity was measured in a turbidity meter (TU-2016,
Lutron Electronic, Taipei, Taiwan) and expressed in nephelometric turbidity units (NTU). The pH was
directly measured using a calibrated pH meter (AZ 86505, AZ Instruments, Taichung City, Taiwan).
The total solids were measured by refractometric method using a refractometer (Fisher Scientific,
Waltham, MA, USA) and expressed in ◦Brix.

Dry extract was determined using an aliquot of 25 mL into metallic capsules (weighed before),
evaporated in water bath for approximately 30 min, and expressed in g/L. The acidity was measured
by titration with a 0.1 M NaOH solution in the presence of phenolphthalein as the indicator until the
appearance of pale pink color that persisted for 1 min. The content of reducing sugar was measured
using the 3,5-dinitrosalicylic acid method [17]. All procedures were carried out in triplicate, and
samples were collected from the same production lot.

2.3. Beer Color

The color of craft beers was determined by colorimetric method [18,19]. The color of the beer
samples was determined by HunterLAB software and a colorimeter (UltraScan PRO, Hunterlab,
Reston, VA, USA) using D65 illuminating standard source, which was calibrated in the ultraviolet
region for an accurate measurement of whitening agents. Aliquot of 2 mL of each craft beer was placed
in a glass cell with a thickness of 2 mm. The parameters analyzed were luminosity (L*); a* (green to
negative value and red to positive value); b* (blue to negative value and yellow to positive value);
chroma (C*), which indicates the color purity; and angle measurement (h*), which shows the hue of
the samples’ color. The C* was calculated by the equation C* = (a*2 + b*2)1/2); the h* was measured
by the equation h* = tg−1(b*/a*). Moreover, the absorbance of beer was measured at a wavelength of
430 nm in a 10-mm cuvette, and the color in European Brewing Convention (EBC) units was obtained
by multiplying the absorbance by a given factor [15]. All determinations were carried out in triplicate.

2.4. Polyphenols and Antioxidant Analysis

The total phenolic content was determined using the Folin–Ciocalteu method [20]. Briefly,
in 500 μL of beer samples or standard solutions, 2.5 mL of 0.2 M Folin–Ciocalteu reagent (Sigma-Aldrich,
St Louis, MO, USA) and 2 mL of sodium carbonate (Sigma-Aldrich) solution (75 g/L) were added and
mixed. After incubation (2 h), the absorbance was measured at 760 nm. The phenolic content was
calculated from the calibration curve of Gallic acid (Sigma-Aldrich) standard solutions and expressed
as millimoles of Gallic acid equivalent (GAE) per mL of craft beer. All determinations were carried out
in triplicate.

The antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging
activity [21]. A 0.1 mL aliquot of methanolic extract was added to 3.9 mL of a 6 × 10−5 mol/L DPPH
radical (Sigma-Aldrich), and the absorbance was measured at 515 nm. Quantification was performed
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using a calibration curve prepared with Trolox standard (6-hydroxy-2,5,7,8-tetramethylchroman-
2-carboxylic acid) (Sigma-Aldrich). The results of DPPH radical-scavenging activity were expressed as
μmol of Trolox per mL of beer, and all determinations were carried out in triplicate.

2.5. Determination of Bitterness

Craft beer samples were decarbonated, and bitter substances were extracted with iso-octane [16]
using 10 mL of sample, 1 mL of hydrochloric acid, and 20 mL iso-octane. After this, the sample was
agitated for 5 min at room temperature and then centrifuged for 15 min at 4000 rpm. The iso-octane
phase was decanted and drained; the sample tube was covered and left to stand in the dark for at least
30 min before measuring the absorption at 275 nm. Results were expressed as International Bittering
Units (IBU), and the average values of three determinations were used.

2.6. Sensory Analysis of Craft Beers

Ethical approval for the sensory tests of this investigation was obtained from the University of
Vale do Rio dos Sinos Committee (number 12247636), and all participants gave written informed
consent to participate in the study. Two different sensory tests—the ranking preference test and
quantitative descriptive analysis (QDA)—was performed for each beer style.

For the ranking preference test, a hedonic panel test composed of 62 assessors who were not
experienced and aged 20–56 years old was used. The selection criteria were availability and motivation
to participate on all days of the experiments and the panelists being regular beer consumers. Initially,
these participants answered questions about the habits of beer consumption, such as the frequency;
the type, style, and brand consumed; factors that influence consumption (prize, packaging, place of
consumption, etc.); sensory characteristics they appreciate the most in craft beers (aroma, flavor, color,
taste, foam, etc.); and food pairing with beers. The preference was evaluated by the ranking preference
test [22,23]. The test was carried out in individual cabins under white light. In each session, the beer
samples were served at refrigeration temperature ranging from 6 ◦C to 8 ◦C. About 30 mL of each beer
was served in transparent, glass cups without assessors having prior knowledge regarding the brand
of the beer being evaluated. The samples were served randomly at the same time, and the assessors
were requested to order the least preferred to the most preferred craft beers. The preference tests were
carried out in four different sessions with intervals of at least eight hours between sessions to avoid
sensory fatigue of the consumers. The results were submitted to Friedman test at a significance level of
5% after which the least significant difference value between the sums of the scores obtained with all
analyses was calculated.

For the QDA, the flavor attributes of Southern Brazilian craft beers were analyzed [22,23]. The
QDA was carried out by an experienced panel (n = 8) to outline the qualitative aspects of beers. Fifteen
attributes, derived from literature, panelists perception, and from the attribute list used by the “beer
taster association” [15], were included in the evaluation process. Seven of the attributes were related
to flavor (malty, fruity aroma, floral notes, hoppy, phenolic aroma, smoked and yeast odor), two
were visual attributes (foam persistency and color), five were gustatory traits (overall intensity, sweet,
bitter, alcoholic, residual flavor), and one concerned the texture (level of carbonation). Industrial beers
were used in pretesting panel-test sessions to let the assessors familiarize with the products under
investigation and the related terminology. These sessions were also used to standardize the panel’s
attribute definitions according to literature and the panelists’ perceptions.

The sensory attributes were assessed using an unstructured 9-point scale anchored at the left
end with “absent” and at the right end with “high”. The samples were identified with a code of three
different random digits, where each panelist received 50 mL of each beer sample, monadically and
randomly. In all sensory analysis sessions, the panelists received mineral water and dry unsalted
breadsticks for palate cleansing between samples to avoid carry-over effects.
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2.7. Statistical Analysis

One-way analysis of variance (ANOVA) was performed to detect statistically significant
differences among the beers for the sensory attributes and chemical composition. A Tukey honestly
significant difference (HSD) post-hoc test was used to identify samples that were significantly different
from each other (95% significance). For ranking preference test, the Friedman test and table of Newell
and MacFarlane were performed (95% significance). Statistical analysis was done using SPSS Statistics
21 software (SPSS Inc., Chicago, IL, USA). Differences of p < 0.05 were considered significant. Principal
component analysis (PCA) was carried out on panel QDA data to identify the key attributes that most
contributed to the variation in products within the product space. All PCA statistical analyses were
performed with the XLSTAT, v2017 package (Addinsoft, New York, NY, USA).

3. Results

3.1. Craft Beer Composition and Color

All the craft beers tested showed best quality condition parameters according to international
quality guidance [15]. Table 2 shows the composition of craft beers. In general, the craft beers had a
similar composition in sugars, density, acidity, and pH; more differences were observed in turbidity,
total solids, and dry extract.

The porter style (RPO) showed a higher turbidity (230 NTU) than the other tested samples.
This beer had a high pH value (4.40), more solids (10% m/v), dry extract (7.47 g/L), acidity (2.19 g
acetic acid/L), sugars (2.08% w/v), and ethanol (7.0% w/w). In addition, this characteristic was
detected and pointed out by the hedonic panel, which described the beer as turbid and with a dark and
intense color, as expected by the analysis of parameters. The SAL exhibited minor turbidity (1.44 NTU),
dry extract (3.84 g/L), solids (5.75 ◦Brix), and acidity (1.49 g acetic acid/L).

Table 2. Principal quality parameters of each craft beer. Classic American pilsner (CAP), standard
American lager (SAL), weissbier (WSB), American India pale ale (IPA), Irish red ale (IRA), and robust
porter (RPO). Different letters in the same column indicate significant differences between groups of
beers (p < 0.05, ANOVA followed by post-tests).

Style/Beer
Turbidity

(NTU)
pH

Total Solids
(◦Brix)

Dry Extract
(g/L)

Acidity
(g Acetic Acid/L)

Density
Sugars
(% w/v)

Ethanol
(% w/v)

CAP 7.27 e 4.24 c 6.75 b,c 4.20 d 1.84 c 1.0112 b 0.9 d,e 5.1 c

SAL 1.44 f 4.12 c 5.75 c 3.84 e 1.49 d 1.0098 b 0.93 c,d 5.0 c

WSB 16.78 d 3.88 d 7 b 4.80 c 1.97 b 1.0116 b 0.95 c 5.0 c

IPA 37.77 b 4.12 c 7 b 4.21 d 1.97 b 1.0084 b 0.86 e 6.2 b

IRA 29.14 c 4.33 a,b 7.75 b 5.36 b 1.52 d 1.0139 a,b 1.13 b 6.2 b

RPO 230 a 4.40 a 10 a 7.47 a 2.19 a 1.0222 a 2.08 a 7.0 a

Regarding the color of beers, differences in L*, a*, and b* parameters were found. All samples
showed high luminosity, but SAL had higher luminosity than other craft beers analyzed (Table 3).
Minor L* value was detected with porter (RPO) style, a very turbid beer (Table 2). The L* value ranged
from 14.02 (RPO beer) to 91.65 (SAL beer). The a* value, which represents the color axis green to red,
ranged from −0.49 (SAL) to 33.43 (RPO). The positive values indicated a perception of red color due
to the toasted barley use in craft beer production. For parameter b*, a tendency of yellow color was
noticed and ranged from 24.03 (RPO) to 89.6 (IRA). The decrease in b* value of some samples of craft
beers led to a reddish color and with a brown trace, as a function of a* value of color. Chroma value
was positive for all craft beer samples and ranged from 32.74 (SAL beer) to 94.19 (IRA). The beer IRA
showed a higher chroma when compared to other samples, representing a beer color with more quality,
purity, and intensity. The h angle oscillated from −1.556 (SAL) to 1.532 (CAP), indicating a more yellow
color of beer samples. The h is correlated to a* and b* value, and it is important to differentiate the
color hue from different beer samples. The CAP beer had a more intense and yellow hue compared to
the other samples (Table 3).
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Table 3. Color parameters of craft beers. L* (luminosity), C* (chroma), h* (hue) and EBC (European
Brewery Convention) units. Classic American pilsner (CAP), standard American lager (SAL), weissbier
(WSB), American India pale ale (IPA), Irish red ale (IRA), and robust porter (RPO). Different letters in
the same column indicate significant differences between groups of beers (p < 0.05, ANOVA followed
by post-tests).

Style/Beer L* a* b* C* h* EBC Units

CAP 87.21 c 1.82 d 47.39 c 47.43 c 1.532 a 13.37 d

SAL 91.65 a −0.49 f 32.73 e 32.74 e −1.556 e 7.50 e

WSB 89.90 b 1.01 e 40.87 d 40.89 d 1.546a 9.75 e

IPA 77.12 d 12.13 c 71.72 b 72.74 b 1.403 b 16.75 c

IRA 62.46 e 29.06 b 89.60 a 94.19 a 1.257 c 44.75 b

RPO 14.02 f 33.43 a 24.03 f 41.17 d 0.623 d 157.0 a

The color expressed in EBC units varied from 7.50 (SAL) to 157 (RPO). The beer with higher
EBC index (RPO: 157) showed lower luminosity (14.02), and the least intense EBC color had more
luminosity (91.65).

3.2. Bitterness, Antioxidant Activity, and Polyphenols

The polyphenol content in beer is an important factor to analyze as it can improve the quality and
acceptance of craft beers. Table 4 shows the content of polyphenols, antioxidant activity, and bitterness
of each craft beer sample. The beers with higher level of polyphenols were RPO (1.62 mg EAG/mL),
IRA (0.95 mg EAG/mL), and WSB (1.68 mg/EAL/mL). The SAL craft beer showed lower polyphenols
content (0.35 mg EAG/L) compared with other samples. In Table 4, it can be seen that the beers that
presented higher content of total polyphenols were also the ones with greater antioxidant activity.

The antioxidant activity was maximal (5.58 μmol Trolox/mL) with the weissbier beer (WSB)
using the DPPH method. In general, the antioxidant activity of the tested beers varied from 1.74 μmol
Trolox/mL (SAL) to 5.58 μmol Trolox/mL (WSB). The beer bitterness was maximal in IPA beer
(46.15 EBU), and the lowest value of bitterness was 9.52 EBU (CAP) (Table 4). The bitterness EBC value
varied depending on the content of bitter compounds and polyphenols in the beers. In this case, the
craft beer with higher content of total polyphenols did not show a higher bitterness value.

Table 4. Total polyphenols content, antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH)
method), and bitterness value of different craft beers. Classic American pilsner (CAP), standard
American lager (SAL), weissbier (WSB), American India pale ale (IPA), Irish red ale (IRA), and robust
porter (RPO). Different letters in the same column indicate significant differences between groups of
beers (p < 0.05, ANOVA followed by post-tests).

Style/Beer Total Polyphenols (mg EAG/mL) DPPH (μmol Trolox/mL) Bitterness (IBU)

CAP 0.61 d 3.24 b 9.52 f

SAL 0.35 e 1.74 e 11.57 e

WSB 1.68 a 5.58 a 12.55 d

IPA 0.8 c 2.30 c 46.15 a

IRA 0.95 b 2.05 d 33.45 b

RPO 1.62 a 3.14 b 24.72 c

3.3. Sensory Analysis of Beers

For the hedonic test of beers, 62 panelists were recruited to evaluate six different styles. This panel
was composed of 57.4% females and 42.6% males. The average consumer age was 32.09 ± 10.6 years
old and ranged from 20 to 56 years old. Regarding the frequency of beer consumption, 81.5% of panel
reported frequently drinking beer every day and only occasionally consuming it on a weekly basis.
They also consumed both commercial and craft beer brands; the most consumed craft beers were local
beers, followed by the international brands of craft beers available.
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Concerning the factors that influence beer consumption, most assessors chose the beer differential
and typical sensory characteristics, the type of serving, the beer label design, and the beer style. The
second most important factor was the place of consumption. The least important factor was the type
of packaging. The most important sensory characteristics appreciated by the survey participants were
the flavor and then the beer fragrance notes. Regarding the preference for styles of beer, the most cited
were pilsner, weissbier, and India pale ale.

The calories contained in beer had relevance for only eight participants (12.9%) in the survey,
and the clear majority of participants said they usually drink with their friends. When talking about
the consumption of beer combined with some type of gastronomic preparation, 24 people (38.7%)
reported that they do not care about it, 14 (22.6%) said they do not usually drink with food, and
24 assessors (38.7%) said they try to harmonize the drink with food. Regarding the factors influencing
beer consumption, a majority chose the beverage differential, such as how it is served, the label,
and the style. The second most important factor was the place where they drink the beer. The least
important factor was the packaging. According to sensory characteristics of craft beers, the most
prominent was the taste, followed by aroma. For only eight participants (12.9%) in the survey, the
calories contained in beer had relevance. On the other hand, the clear majority of participants usually
drink with their friends. When talking about the consumption of beer harmonized with some type of
gastronomic preparation, 20 people (31.25%) reported that they do not care about it and 14 (22.6%) do
not usually drink with the food and only 20 people (31.25%) try to harmonize the drink with the food.
Concerning the brewing schools (English, Belgian, German, and American), 63% did not know any of
them. Regarding the preference for a particular style of beer, the most cited were pilsner, weissbier,
and India pale ale.

Regarding the useful ranking preference test, the least preferred beer was IPA, and the
most preferred style was pilsner (CAP). The ranking preference test was considered significant
(95% significance) using the Friedman test, and there was a significant difference in the preference when
comparing the scores between them. Pilsner craft beer (CAP) was more preferred when compared to
lager beer (SAL) and other craft beers. In fact, none of the participants chose CAP beer as the least
preferred of all beer samples. Pilsner (CAP), one of the beers with the lowest number of polyphenols
(0.61 mg EAG/mL) and bitterness (9.52 IBU), had a higher preference compared to the others. Thus,
an increase in polyphenol level and beer bitterness led to a decrease in preference by the panel test.
The IPA beer also showed a more intense bitterness (46.15 IBU), which was a factor that contributed to
its low preference among beer consumers.

Figure 1 shows the sensory profile of different craft beer styles by QDA. This data indicates
the differences in the craft beer styles according to the abovementioned sensory attributes. Aroma
attributes, carbonation, hoppy, and foam were some important characteristics evaluated by
beer consumers.

The CAP beer showed a high sweet flavor score (3.64) but did not show high scores for other
descriptors (Figure 1). The RPO beer exhibited good color (6.23), overall intensity (5.23), foam (5.34),
malty (5.08), and smoked (3.48). The hoppiest (4.59) and fruitiest (5.24) craft beer was IPA. This craft
beer had around 2.5-fold more hoppy flavor than CAP beer (1.8), which was the most preferred
beer. The bitterest craft beer was IPA (7.40) and IRA (7.25). Consumers preferred beers without high
polyphenols content, less bitterness (EBU units), and lower bitter and hoppy character.

Differences in the sensory profiles of craft beers were investigated by PCA, and the results are
shown in Figure 2. This analysis matrix included all sensory attributes evaluated (Figure 1). Two
principal components (PCs) were extracted, and one group of samples was discernible after analysis of
PC1 versus PC2 in a biplot of samples and selected variables. In this PCA plot, PC1 explained 37.94%
of total variance and PC2 explained another 29.7%. Based on the results of PCA and considering
the studied beer samples, CAP, IRA, and WSB were grouped (Figure 2). The beers IPA, RPO, and
SAL did not cluster together and remained separated in the plots. The group of beers showed
yeast/fermentation and sweet flavor and had a high perception of carbonation. In the upper left
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quadrant, the beer IPA was mainly related to the presence of floral flavor. The IPA style showed a
more intense perception of floral flavor and hoppy character. The RPO positioned in the upper right
quadrant was more related to the presence of more intense color besides alcoholic, malty, fruity, and
overall intensity attributes (Figure 2).

 

Figure 1. Plots of mean intensity scores for sensory profile of six different craft beers evaluated
by quantitative descriptive analysis using a 9-point scale. Standard American lager (SAL), classic
American pilsner (CAP), weissbier (WSB), American India pale ale (IPA), Irish red ale (IRA), and robust
porter (RPO).

Figure 2. Scatter plots of principal component analysis (PCA) scores for specific sensory attributes
of Southern Brazilian craft beers analyzed in the present study. (PC1 + PC2 explain 67.64% of total
matrix variance). Standard American lager (SAL), Classic American pilsner (CAP), weissbier (WSB),
American India pale ale (IPA), Irish red ale (IRA), and robust porter (RPO).
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4. Discussion

Beer is a very complex mixture, and its chemical composition varies considerably [24], as shown
in Table 2. To bring more light into the differences found in craft beer consumption, the objective of this
work was to explore the impact of polyphenol content and bitterness of Southern Brazilian craft beers
on consumer preference. As craft beers have different flavors, aromas, etc. than the usual well-known
commercial brands, their preference is increasing among consumers [13].

These differences in craft beer flavors come from the ingredients used as well as the brewing
process [16]. The yeast strains used have a key impact on the final craft beer quality, either in the aroma
compound production or in the interaction of some beer components, such as polyphenols [4]. While
several yeast strains are commercially accessible, the availability of new starter strains could be an
important differentiating factor among craft beers produced in different microbreweries [25]. The main
ingredients used in beer production are barley, hops, water, and yeast [26], with each ingredient
playing a crucial role in the quality and composition of beers. The porter style beer, for example,
is characterized as a substantial, malty dark beer with a complex and flavorful dark malt character [15].
This beer showed high scores in composition parameters compared to other beers tested in this study.
Nevertheless, in general, the tested craft beers were similar in analytical factors to the styles described
in the BJCP guide [15].

In addition, craft beers have distinctive and pleasant flavor characteristics, and these attributes
are easily perceived by consumers [27]. Today, consumer preferences appear to be connected to the
discovery of new beer flavors [13], which can increase the consumption of craft beers. Brazilian
consumers have followed the same trend as they search for beers with high sensorial quality and
differentiated and characteristic flavor and aroma, as verified in this study. The main factor that affects
Brazilian beer consumers is the sensory attributes, as pointed out by other studies [13,27,28]. The
most preferred craft beer in our study was the CAP style, which mainly shows a fruity and sweet
note. Additionally, consumers have a predilection to drink with friends and consider the flavor and
fragrances of beer.

It must be noted, however, that this study had some limitations, in particular the few number
of craft beer samples that were evaluated for each style of beer. Even so, the sensory attributes
and craft beer styles selected in this study for their consumer relevance spanned a wide range of
beer characteristics.

Moreover, studying consumer behavior can have great value for the beer industry as it can show
how consumers represent the beer category, the associations linked to them, and the proximity
across different types of beer [27]. In addition, studies about consumer preferences can assist
brewers to understand consumer attitude and translate consumer needs, wants, and expectations
into manufacturing design to produce the best, most cost-competitive, and widely accepted product
possible in a relatively short period [29].

Beers are rich in polyphenols, which are mostly acquired from barley and hop [8], and they
were found in the six styles of beers evaluated in this study. For example, xanthohumol is the most
common phenol in hop [30]. Investigating the Brazilian beers, we found that the contents of phenolic
compounds, as well as the antioxidant capacity, were like those of beers produced elsewhere in the
world [2]. Polyphenols are already extracted in the initial phase of the fermentation process, i.e., during
the wort production [9]. This study showed that polyphenols, especially the bitterness associated with
it, have an important relationship with the preference of different beers among Brazilian consumers.
The most preferred beer showed the lowest bitterness (Table 4, Figure 1) of all styles tested and the
second lowest level of polyphenols (0.61 mg EAG/mL). This same relationship with bitterness was
verified when analyzing consumer acceptance of craft beers and commercial brands in the Brazilian
market [31]. Understanding the sensory characteristic of bitterness in beers and how that relates to
their content of polyphenols has a significant value for understanding consumer response as well as
optimizing production processes [8].
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The malt kilning process determines the color parameter, and it is quite an important process
as it can improve the acceptance of beers [26]. The luminosity (L* value) also has a great importance
because beers with higher L* value (high luminosity) show a more vivid and intense color [19]. The
lager beers show high L* values [19].The darker and more turbid beers show big scores in fruity,
floral, and malty flavors, but they still have a low preference among consumers. Beer appearance
provides substantial opportunities for product differentiation, and even beers of the same type have
the potential to deliver on rather different usage contexts [32].

The most popular beer style in Brazil is the Germany-style pilsner, which is very light and
clear [31]. This beer style is very common in the Brazilian market and has a great familiarity to
consumers. Familiar beers would be more often cited as appropriate in most of usage contexts, and
that familiar and novel products would be associated with different usage contexts [32]. Consumers
perceive familiar beers to be more interesting and tasty [32], which can increase their preference,
as verified in this study. The preference order obtained from this study came from the sensory
proprieties perceived by non-trained assessors because the beer samples were analyzed at the same
time and were not assigned different styles.

From the sensory characterization of Brazilian beer styles, it is possible to attest that the evaluated
consumers could differentiate and prefer the most aromatic and fruity beers. In addition, this distinct
character is a motivation to choose and buy craft beers instead of other beer brands [29]. In this
context, the use of S. cerevisiae strains isolated from food matrices can represent a valid approach for
the selection of starters for brewing to obtain craft beers with more complex flavors [25]. A study
with Italian consumers found similar preference to beers brewed from moderately kilned/roasted
malts with a milder flavor and less intense mouthfeel perceptions [28]. More complex craft beers with
remarkably increased flavors would lead to an improvement of consumer preference [29].

The IPA was the lowest preferred beer and showed a higher level of bitterness attribute
perception by the panel test. According to international definitions, the IPA style is a hop-forward,
bitter, dryish beer with good drinkability. However, the excessive harshness and heaviness of IPA
are typical faults that result from the strong flavor clashes between the hops and other specialty
ingredients [15]. Furthermore, IPA beer was differentiated by PCA (Figure 2) from other styles because
of its characteristic floral note.

Bitterness is a very important quality parameter in beer production [16]. Nearly four out of ten
consumers report that they highly appreciate sweet and fruity samples but dislike primarily bitter,
burnt, and roasted notes and hoppy resinousness of beer [28]. The bitter foods are generally disliked
due to the instinctive rejection of the bitter taste [33]. Variations in liking and the willingness to
consume bitter foods can be triggered by motivational states in humans [33]. In this study, the beer
with the lowest bitterness had a higher preference among consumers. This shows bitterness is a key
factor that influences beer preference and leads to a decline in consumer preference.

5. Conclusions

In this study, we found that the polyphenol content and bitterness determine the preference of
craft beers among Southern Brazilian as consumers can perceive their complex sensory attributes.
The research also showed the influence of polyphenols in terms of consumer preference as beers with
less polyphenol content and bitterness (CAP beer) were more preferred than other craft beer types.
Brazilian craft beers with high antioxidant activity, polyphenols, and bitterness were the porter style
(RPO), red ale (IRA) and India pale ale (IPA). The craft beers showed complex aromatic notes and
flavors, which were described as floral, fruity, yeast, and malty. There were, however, some limitations
in this study as it was only exploratory. Therefore, additional work with a larger craft beer sample that
is representative of Brazilian craft beers is needed to strengthen our conclusion.

Considering these study findings, it is possible to describe some craft beers and point to the
adverse effect of polyphenols and bitterness on consumer preferences. These preliminary results will
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be important in stimulating the production of more appreciable craft beers for Southern Brazilian
consumers who want to improve their drinking experience and hedonic aspects.
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Abstract: Beer is a fermented drink produced from a wort comprised of barley malt, hops, and
water in combination with activity from the yeast strains of the genus Saccharomyces. The beverage is
consumed around the world and has a global market controlled by several multinational companies.
However, in recent years, it has been possible to note an increase in the number of microbreweries
and homebrewers, necessitating additional research both to develop and increase competitiveness of
this market sector as well as to improve product quality and promote the reduction of production
costs. The process of milling barley malt is often not considered relevant to these goals; however, this
operation is influential with regard to, for example, mashing yield, the concentration of polyphenols
in beer, and the quality of wort clarification. Therefore, this work evaluates the wet (10%, 20%, 30%,
40%, and 50% moisture content) and dry barley malt milling process as well as analyzes particle size
distribution and the mean diameter of particles. The milled grains were submitted to a mashing
process to evaluate how particle size contributes to the conversion of starch to sugars and the
availability of polyphenols on sweet wort. The results indicate the best milling conditions to obtain a
good mashing yield while preserving as much malt husk as possible to facilitate wort clarification.

Keywords: barley milling; wet milling; brewing technology; granulometry; beer wort

1. Introduction

Beer is produced by the alcoholic fermentation of wort, which is prepared with barley malt and
water, hop addition, and yeast action (Saccharomyces genus) [1,2]. The process can be divided into
the following steps: malting, milling, mashing, boiling, cooling, fermentation, filtration, carbonation,
microbiological stabilization, and packaging.

Milling has an important role in the process both in the professional beverage industry and
in homebrew production because, in this step, the barley husk breaks down, exposing the starchy
endosperm and the content of the embryo (predominantly enzymatic) [3,4]. If the grains are not
properly milled, this will influence the rest of the brewing process, notably the wort composition.
The presence of intact grains or large fragments result in non-exposure of internal grain fractions,
promoting low conversion of starch to fermentable sugars and, consequently, low final yields of the
mashing stage [5]. On the other hand, excessive milling promotes the extraction and solubilization
of compounds whose presence causes the increase of undesirable characteristics to wort and beer,
e.g., sensory properties such as an excessive bitterness or viscosity. Undesirable compounds include
phenolic compounds, which, if present in large quantities, cause problems such as excessive bitterness,
color changes, and excessive formation of trub [6,7]. Approximately 70–80% of the total polyphenol
content of beer comes from the malt husk; its transfer to the wort is influenced by cereal milling [8].
The preservation of grain husk integrity also plays an important role in the formation of the filter cake
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in the clarification stage of sweet wort [5]. The more intact the husks, the easier and more efficient the
clarification step will be.

The milling step can be conducted in either dry or wet form [9]. Dry milling increases grain
comminution, which increases the yield of the brewer wort production; however, dry milling can
make wort clarification more difficult [4]. Wet milling occurs in the presence of excess water (up to
45%) and promotes greater grain elasticity. Generally, wet milling is used to obtain advantages such
as reduction of energy expenditures, elimination of dust (particulate material), transport facilitation,
and the reduction of damage to mills (increased durability) [4,10]. However, wet milling can lead to
problems, such as greater adhesion of starchy semolina on husk fraction, decreasing the yield. In the
case of malt milling, another advantage of wet operation is that the moisture makes the husk more
resistant and flexible, which reduces the probability of breakage [2,11,12].

Dry milling is most frequently used by the brewing industry; however, wet milling has recently
become another popular method. Currently, wet milling is used industrially for corn and wheat,
but it could also be successfully applied to other cereals, such as sorghum, barley, oats, or rice [13].
Wet milling is very common in Africa and Asia but not, for example, in the United States [14] or Brazil.
When using non-malted barley as an adjunct to the brewing process, wet milling is the most indicated
due to the toughness of this grain [15].

In this context, the objective of this work was to compare the milling process of malt grains with
different moisture content to evaluate parameters such as final grain size, availability of starch for
conversion to fermentable sugars, and overall content of phenolic compounds. Accordingly, it will
be possible to stipulate the best conditions for the milling of barley grains to optimize the brewing
process with regard to the mashing yield and the quality of the sweet wort.

2. Materials and Methods

2.1. Materials

Pilsen malt (Agrária®, Paraná, Brazil) was used because it is the base malt for most beer
formulations. The malt grain, provided in dry form by the producer (<5%), was obtained in 5 kg sacks
and kept dry and sealed throughout the development of the work. The malt specifications were as
follows: extract of fine milling (81.5%), diastatic power (292 WK), and protein (11%).

The water used for grain humidification and mashing was potable water from the state’s supply
system (CEDAE, Rio de Janeiro, Brazil). It was filtered on activated charcoal to remove the free chlorine
ions, which result from its chemical treatment.

2.2. Humidification Limit

The water saturation limit was defined to establish the highest moisture percentage used in grain
milling. Water was added to a small amount of malt grains (50 g) and the water saturation limit was
stipulated as the concentration in which the water was no longer absorbed by the grain and remained
at the Becher bottom. This analysis was strictly visual, and the procedure was executed in ambient
conditions (25 ◦C) with constant manual homogenization.

2.3. Milling and Granulometric Analysis

After determining the maximum water absorbed by the grains (Item 2.2), six samples with 50 g
of barley malt were prepared in quadruplicate. One sample was kept dry (sample A) and the others
were humidified in consideration of the results of the previous analysis, resulting in five samples
with the following relation of water/grain: 10%, 20%, 30%, 40%, and 50% (samples B, C, D, E, and F,
respectively).

The dry and wet samples were milled in duplicate in cereal disc mill (Guzzo®, Rio Grande do
Sul, Brazil), adjusted to 1.0 mm disk spacing. The wet samples were collected and dried in oven at
40 ◦C until constant mass to avoid contamination and to allow particle size analysis. A mechanical
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agitator and sequential sieves (SOLOTEST®, Rio de Janeiro, Brazil), with meshes of 2.00 (sieve 1),
1.84 (2), 1.54 (3), 1.20 (4), 0.86 (5), 0.51 (6), and 0.30 mm (7) were used to perform the granulometric
analysis [16] of the grains after milling. Previously, the initial quantities were weighed and the masses
retained on each sieve were determined as well as the fraction inferior to 0.30 mm, which allowed for a
calculation of their respective fractions and to determine the granulometric profile. The mean diameter
was calculated from the Sauter mean diameter equation (Equation (1)).

dp =
1

∑ xi
dpi

(1)

where:

dp = Sauter mean diameter
Xi = mass fraction in sieve i
dpi = particle diameter in sieve i

These results were expressed in bar graphs with particle size distribution profiles and the mean
diameter was present with respective deviation. In addition, a linear correlation graph between mean
diameter and moisture content for milling was obtained.

2.4. Extraction of Soluble Material and Mashing Milled Grains

Milled grains from each of the six different moisture conditions (dry, 10%, 20%, 30%, 40%, and 50%
moisture) were submitted to water-soluble material analysis by simple extraction. For this analysis,
the milled grain was washed with excess water (400 mL) at ambient conditions (25 ◦C) and underwent
simple homogenization for 30 min. These samples are called “soluble fraction”.

The remaining milled samples of each moisture condition (dry, 10%, 20%, 30%, 40%, and 50%
moisture) was reserved for the mashing procedure, following compilation data from the brewing
process literature: addition of water (2:1, water to malt ratio) and conduction of the following mash
profile curve: 35 ◦C/10 min (solubilization step), 45 ◦C/15 min (proteolytic step), 55 ◦C/15 min
(proteolytic step), 66 ◦C/40 min (β-amylase step), 72 ◦C/5 min (α-amylase step), and 78 ◦C/5 min
(inactivation step) [1,3,17,18]. These samples were called “sweet wort”.

2.5. Analytical Determinations

Subsequently, all “soluble fraction” and “sweet wort” samples obtained in the previous Item
(Item 2.3) were centrifuged at 3500 RPM for 3 min under controlled temperature (4 ◦C) (FANEM®,
model 280R, Rio de Janeiro, Brazil). Soluble fractions and sweet worts produced were analyzed
by determination of ◦Plato (by refractometry) [16,19], total reduction of sugar content (by DNS
method) [20] and total phenolic compounds content (by Follin–Ciocalteu method) [20], as described
below. The chemical analyzes were performed in triplicate and the standard deviation calculated.

For the DNS method, diluted samples were submitted to reaction with DNS reagent
(100 ◦C/10 min) and the resulting product had its absorbance read at 540 nm (BioChrom®, model Libra
S-21, Cambridge, UK). The reduced sugar concentration was calculated using a glucose standard
curve. For the Follin–Ciocalteu method, diluted samples were reacted with Follin reagent (0.2 N),
and Na2CO3 4% (50 ◦C/20 min) and the resulting product had its absorbance read at 740 nm
(BioChrom®, model Libra S-21, Cambridge, UK). The total phenolic compounds content was calculated
in gallic acid equivalents using a standard curve.

The variation of the parameters before and after mashing was calculated by simple subtracting of
the obtained values and was named Δ (delta).
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3. Results and Discussion

3.1. Humidification Limit

With humidification and constant homogenization of the grains in ambient conditions, it was
possible to observe water deposit in Becher bottom, i.e., water not absorbed by the grains, from 60%
moisture sample (60:100 g, water to grain). Therefore, it was decided to perform the study of malt
milling with a dry fraction and fractions at 10%, 20%, 30%, 40%, and 50% moisture.

3.2. Granulometric Analysis

The granulometric distribution profiles of each milling condition, dry, 10%, 20%, 30%, 40%,
and 50% moisture (samples A to F, respectively) can be seen in Figure 1 and the mean diameter values
calculated by Equation (1) are shown in Table

Figure 1. Granulometric distribution profiles of milled grain: dry (A); 10% moisture (B); 20% moisture
(C); 30% moisture (D); 40% moisture (E); and 50% moisture (F).

In the dry grain distribution profile (Figure 1A), it was observed that the largest grain fraction
(about 30% of the total) remained in the second largest mesh sieve, and the smaller granulometry
fractions, sieves 5, 6, and 7, had less than 10% of the total grains. However, the distribution of the
grains with 10% moisture (Figure 1B) presented a different granulometric profile from the dry grains
(Figure 1A), with a larger fraction (about 40% of the total) in the fourth sieve. It also presented a
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considerable increase in the mass of particles in the smaller sieves, which determined a reduction in its
mean granulometry, as observed by the calculation of the mean diameter (Table 1).

Table 1. Sauter mean diameter (mm) and deviation for each moisture (%) milling condition.

Sample Moisture Mean Diameter (mm) *

A 0% (dry) 1.35 ± 0.15
B 10% 1.02 ± 0.20

C 20% 1.24 ± 0.16
D 30% 1.50 ± 0.13
E 40% 1.66 ± 0.12
F 50% 1.66 ± 0.13

* Calculated by Equation (1).

For the samples in the moisture range between 20% and 40% (Figure 1C–F), an increase tendency
of accumulated grains in larger sieves was observed. Consequently, the mean diameter of the grains
also increased (Table 1). The grain sample with 20% moisture (Figure 1C) showed this tendency,
but the largest grain fraction was accumulated in sieve 4, similar to the 10% moisture sample (Figure 1B).
For the 30% and 40% moisture (Figure 1D,E), respectively, the largest grain fraction was accumulated
in sieve 1.

When the grains with 50% moisture were milled (Figure 1F), the tendency for an increase in
grain size was interrupted, and the mean diameter was the same as in the previous sample, with 40%
moisture (Table 1). This fact corroborates the hypothesis of water saturation by the grains observed in
the previous analysis.

From the calculated mean diameters, the relationship between the mean diameter and the moisture
content of the grains was estimated by simple linear regression of the points, excluding the dry and
the 50% moisture samples. The results can be seen in Figure 2.

 

Figure 2. Correlation graph of moisture content (%) for milling with mean grain diameter.

Figure 2 shows a good linear regression (R2 = 0.9907) for the tendency for an increase in mean
grain diameter with increasing moisture content between 10% and 40% moisture. The dry sample
also had a superior diameter to the samples with 10% and 20% moisture and inferior to the others.
The reduction of the granulometry in the 10% moisture sample when compared to dry sample may
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be attributed to the water content. This amount of water may not have been not able to promote
humidification of the whole grain and was only absorbed by the husk. To elucidate what occurs
between the dry grain and its humidification in 10% moisture, it is necessary to consult other studies
to verify the humidification at other points in this interval. To analyze these two results, it would be
interesting to continue the study using fractions of moisture equal to 5%, 15%, and 25%.

In studies by Reinold [5] and Venturini Filho and Nojimoto [12], an increase in the granulometry
of the barley malt husk with the adoption of wet milling is described; however, the behavior of the
internal fraction of the barley grains is not mentioned. In the literature, the humidification ranges in
which an improvement in working conditions occurs are also not determined.

In general, lower values for mean diameter results in an increase in the contact surface of the
grains and, consequently, promotes a higher extraction of its components, such as starch (in the case of
internal grain fractions) or phenolic compounds (in the case of husk fractions). However, it cannot be
disregarded that larger mean diameters, especially for homebrewers, promotes less wort turbidity and,
consequently, easier and more efficient clarification.

3.3. Analytical Determinations

The results obtained for both water-soluble wort (before mashing) and sweet wort (after mashing)
for refractive indices (◦Plato), total reducing sugars, and total phenolic compounds are presented in
Table 2. The variation, which refers to the difference of the determinations before and after mashing
(mashing yield), was calculated by simple subtraction and is shown in Table 3.

Table 2. Analytical determinations of samples for malted grains with different moisture contents (%)
for milling before (soluble fraction) and after mashing (sweet wort).

Sample (% Moisture)
◦Plato TRS 1 (g·L −1) TPC 2 (mg·L −1)

Soluble Fraction Sweet Wort Soluble Fraction Sweet Wort Soluble Fraction Sweet Wort

A (dry) 1.0 9.5 10.16 ± 0.06 89.44 ± 0.00 70.62 ± 2.44 148.99 ± 1.63
B (10%) 3.1 13.9 26.21 ± 1.29 175.84 ± 5.86 131.84 ± 13.08 228.47 ± 0.06
C (20%) 2.8 13.7 25.67 ± 0.06 168.23 ± 3.52 107.42 ± 4.13 215.91 ± 10.29
D (30%) 2.9 12.0 28.14 ± 0.12 146.78 ± 0.59 117.36 ± 4.77 186.74 ± 1.98
E (40%) 3.1 9.1 27.00 ± 1.93 115.10 ± 0.00 119.69 ± 13.95 185.97 ± 10.12
F (50%) 1.9 10.9 17.71 ± 0.47 103.37 ± 4.40 107.75 ± 0.48 188.95 ± 2.87

1 TRS = Total Reducing Sugars; 2 TPC = Total Phenolic Compounds.

Table 3. Variation (Δ) between parameters before (soluble fraction) and after mashing (sweet wort)
calculated by simple subtraction.

Sample (% Moisture) Δ◦Plato ΔTRS 1 (g·L −1) ΔTPC 2 (mg·L −1)

Dry 8.5 79.28 ± 0.05 78.37 ± 0.66
10 10.8 149.63 ± 3.68 96.63 ± 10.63
20 10.9 142.56 ± 2.81 108.49 ± 5.03
30 9.1 118.64 ± 0.31 69.38 ± 2.23
40 6.0 88.1 ± 1.58 66.28 ± 3.12
50 9.0 97.57 ± 3.21 81.20 ± 1.95

1 TRS = Total Reducing Sugars; 2 TPC = Total Phenolic Compounds.

Table 2 shows that the soluble extract (◦Plato) presents a very close initial value for the samples
milled with 10%, 20%, 30%, and 40% moisture content, whereas, for the dry sample, this value was
significantly decreased, indicating the effect of the wet milling on the exposure of the soluble fractions
of the grains. For the produced worts, the highest values of the extract were observed for the samples
milled with 10%, 20%, and 30% moisture content.

The results in Table 2 show that the samples with 30% and 40% moisture presents a slightly higher
concentration of reducing sugars in the soluble extract than the samples with 10% and 20% moisture.
Although not expected because of the higher grain size, this result is close to the expectation related to
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the determination of ◦Plato, for which the results of the soluble extract samples with 10%, 20%, 30%,
and 40% moisture were very close. After mashing, the highest values of total reducing sugars were
observed for the samples milled with 10% and 20% moisture, as these being the smallest particle size,
and were according to expected result. The high total values of reducing sugars are very favorable to
the process because they guarantee more substrate for the yeast activity and, in turn, allow for the
addition of more water in the process, which can maintain an ideal concentration of sugars, leading to
a higher overall production of beer with the same initial malt mass. Again, these results indicate that
the humidification of the malt provided greater exposure of the grain fractions, allowing the enzyme
to be more efficient with the hydrolysis of macromolecules and the liberation of fermentable sugars in
the wort.

The results of Table 3 indicate that the higher starch conversion (mashing yield), which can
be directly related to the presence of sugars and to soluble solids concentration, is calculated for
the samples of 10% and 20% moisture content, which were the samples of smaller particle size.
As such, larger deltas of conversion for reducing sugar content of these samples were also calculated.
This result was expected because the high contact surface leaves the starchy fraction more available
for conversion to sugars via enzyme action. This result indicates that wet milling, using up to 30%
moisture, increased the extraction of soluble solids of the grains during mashing.

Szwajgier [21] evaluated the milling (in roller mills) and mashing on an industrial scale of dry
and wet malts (12–15%) and observed that there was no difference in the final concentration of sugars
(glucose and maltose). However, it was verified that the extraction of these compounds from the grain
occurred more rapidly, which may have resulted in a reduction of the mashing duration. Haros and
Suarez [22] evaluated corn milling and observed a greater chemical recovery of the starch in wet grains.

Unlike other parameters, in phenols analysis, it is not generally interesting to compare the results
with granulometry, given that the contribution of phenols coming from the malt is exclusively from
husks, as observed in Broderick et al. [23]. Therefore, a higher concentration of phenols was expected
in the samples in which the husks were more comminuted, with no relation to the conservation status
of the starchy fraction. Unlike total reducing sugars, the concentration of phenols during mashing is
not increased by enzymatic conversion. The increase in the concentration on the stage occurs purely by
extraction due to the prolonged contact of the husks with the water and elevation of the temperature.

The ‘delta’ of extraction exposed in Table 3 suggests that the greatest variation for phenols with
mashing occurred in the 10% and 20% moisture samples. The highest result in variations of the sample
of 50% moisture as well as in the other parameters analyzed in the present study; again, this result
was not expected, as it was necessary to study the behavior of barley malt grains against samples with
higher humidification than their moisture saturation. Szwajgier [21] observed that, for total phenolic
compounds content, there was a prevention of its extraction from malt husk due to the humidification
of the grains.

In conclusion, faster sugar conversion during mashing occurs with wet milling, as confirmed
by Szwajgier [21]. Concurrently, greater chemical recovery of the starch occurs for wet barley malts,
as confirmed by Haros and Suarez [22] with regard to corn grains milling. To optimize the mashing
conditions with an increase in starch conversion to reducing sugars, wet malt milling with 10 or 20%
moisture is recommended.
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Abstract: Beers are differentiated mainly according to their visual appearance and their fermentation
process. The main quality characteristics of beer are appearance, aroma, flavor, and mouthfeel.
Important visual attributes of beer are foam appearance (volume and persistence), as well as the
color and clarity. To replace manual inspection, automatic, objective, rapid and repeatable external
quality inspection systems, such as computer vision, are becoming very important and necessary.
Computer vision is a non-contact optical technique, suitable for the non-destructive evaluation of
the food product quality. Currently, the main application of computer vision occurs in automated
inspection and measurement, allowing manufacturers to keep control of product quality. This paper
presents an overview of the applications and the latest achievements of the computer vision methods
in determining the external quality attributes of beer.

Keywords: beer; computer vision; image analysis; quality

1. Introduction

Beer is one of the oldest (low) alcoholic beverages in the world and the third most widely-consumed
drink (after water and tea). Today, besides industrial commercial beers, craft beer has gained great
popularity among consumers [1]. Beer is produced in a brewing process from malt, water, brewer’s
yeast, and hops. The basic quality characteristics of beer are divided into visual and sensory attributes.
Appearance is the first attribute that consumer experiences (and evaluates) when he/she gets a glass of
beer. Important visual characteristics of beer are foam appearance (volume and persistence), as well as
color and clarity of the beer. Perception and acceptability of beer are also determined by other
properties e.g., the alcohol content (expressed as Alcohol by volume, ABV or Alcohol by weight, ABW),
carbon dioxide content, the presence/absence of off-flavors in bottled beer [2–4], aroma, mouthfeel and
bitterness (listed in International Bitterness Units, or IBUs).

The main collections of the standard methods of beer analysis used worldwide are methods of the
Institute of Brewing and Distilling (IBD), American Society of Brewing Chemists (ASBC), European
Brewery Convention (EBC), and Central European Commission for Brewing Analysis (MEBAK).
Beers are differentiated mainly according to their visual appearance (depends on its color and turbidity)
and their fermentation process. Regarding the yeast used and the fermentation temperature, beer
can be categorized in the three main categories: top-fermented (ale), bottom-fermented (lager), and
naturally fermented beer. Beer classification can be done regarding the color during the production
process. Beer color is determined by the malt color that develops during the Maillard reactions and
caramelization in the malting and roasting process [5]. Therefore, it is possible to distinguish bright,
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red, dark and black beer color. The aforementioned beer color is actually different shades of yellow, red,
brown and black; the most common color is a pale amber produced from pale malts. Commonly used
methods for beer classification are flame atomic spectroscopy, linear discriminant analysis [6], nuclear
magnetic resonance and multivariate analysis [7,8], and Fourier transform infrared spectroscopy
analysis [9]. Trained human inspectors usually perform an inspection of food sensory quality, but this
method is unreliable because the results may vary due to subjective evaluations by the inspectors.

Given the unreliability of the human inspectors, there is a need for a precise, objective, and
reproducible instrumental method that could imitate human testing methods. Based on this assumption,
researches try to develop an instrumental method to evaluate the external and internal appearance of
the product non-destructively. Due to a visual inspection, monitoring the external quality attributes
is time-consuming, and the computer vision method enables to perform this task automatically.
Remembering that a way to improve brewing techniques, rapid feedback from quality control is
required. Therefore, the development and implementation of new methods are of great importance in
the beer industry. This paper covers an overview of the current achievements in applying the computer
vision methods to determine the external quality attributes of beer.

2. Computer Vision and Image Analysis-Basics

Computer vision system (CVS) is a non-destructive technique that includes several different
technologies, e.g., optical, mechanical and electromagnetic instrumentation, and digital image
processing [10]. CVS is the automatic extraction of information from digital images. CVS is a
rapid, objective and effective alternative over the destructive methods [11,12]. Computer vision
includes several operations: image capturing, processing and image analysis (Figure 1). After image
capture, there is a process of digitization (transformation images into numbers) [13,14].

 

Figure 1. Components of a computer vision system.

CVS can measure the external features of products, recognize objects and extract quantitative
information from digital images [15]. Currently, the main application of CVS occurs in the
automated inspection providing constant control of product quality. Configuration of CVS is relatively
standard, basic components are illumination device (lights), a device for image acquisition (digital
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camera/scanner), frame grabber (in the case of an analog camera), and computer hardware and software
(algorithms for image analyzing and pre-processing) [16,17].

2.1. Illumination

With the camera, one of the most important elements of the CVS system is the illumination.
The illumination device is used for object illumination under test. There are many properties of
illumination (light angle of incidence, light source color, direct/diffuse light technique), which must
be selected in such a way to reduce disturbances (shadows, reflections, noise) or enhance image
contrast [14,18,19]. Suitable illumination increases the quality of captured images and improves the
accuracy of the analysis. There are several simple rules and good practices that can help select the
proper illumination and improve the image quality:

• maximizing the contrast of the features that must be inspected or measured
• minimizing the contrast of the features of no interest
• getting rid of unwanted variations caused by ambient light and differences between items that are

non-relevant to the inspection task.

To view an object, it is necessary for it to be illuminated by a light source. The color perception
of an object depends on the color of the light source and the color of the surface. Considering the
color, we distinguish these light colors: red, green, blue, white with particular color temperature,
infrared, and ultraviolet. Light sources may be either natural (sunlight) or artificial (incandescent,
halogen, fluorescent, compact fluorescent, LED, metal halide, Xenon, High Pressure Sodium, lasers,
and infrared lamps) [20–23]. The most suitable illumination is defined by its position, sources type,
geometry and color [14,19]. The term “light source” implies any object that emits energy in the
visible spectrum (380–750 nm). Sunlight is one example of the light source, but is not suitable for
colorimetric characterization because its quality and energy may vary during the day. To provide
reliable colorimetric characterization CIE establishes illuminants upon binding standards (relative
energy versus wavelength).

All illuminants are compared against the color temperature, which is described as the spectral
energy distribution of the ideal blackbody radiator that radiates light with a specific color at defined
temperatures in kelvin (K). Color temperature for an incandescent lamp (~100 W) is 2800 K, for halogen
lamp 3000–3200 K, for the fluorescent lamp (cold white) 4000 K, for Xenon and metal halide lamp
4500–5000 K, for warm white LED lamp is 2700–3000 K, and cold white LED lamp 5000–5500 K [20,24].

According to the CIE, we distinguish several illuminants like:

• daylight illuminants lamps (illuminants that represent daylight conditions): C lamp, D50 lamp
and D65 lamp

• incandescent/tungsten lamps: A lamp
• fluorescent lamps: F2 lamp (cool white fluorescent), F7 lamp, and F11 lamp
• special light sources.

Several parameters should be considered when deciding on a selection of illuminant source:
characteristic of the object surface (whether the object is absorptive, transmissive or reflective), the
object geometry (curved of flat), and object/background contrast (translucent objects are usually
illuminated with backlight). When an object is illuminated, the incident light is partly (Figure 2):

• reflected and/or
• transmitted and/or
• absorbed and/or
• strayed.

Type of the effect that will occur, depends on the object surface (opaque, semi-transparent or
translucent, glossy or matt). Because of that, the position of a light source is very important. When the
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object surface is glossy, the light is reflected from the object surface at an angle of incidence. If surface
is opaque, semi-transparent or translucent, the light is transmitted (penetrates through the object) or it
can be polarized or diffracted at the object surface. Usually one of these effects never appears alone,
but it is always a combination of several effects.

Due to a different object geometry, there are the three common lighting geometries: the point
lighting for flat objects, the diffuse lighting for challenging reflective 3-D objects, and collimated
lighting (laser light) [10,22].

 

Figure 2. Different types of effects that can occur when the object is illuminated.

Regarding the angle of incidence of the illumination (angle between light source, object and
camera), there are several illumination techniques [14]:

• direct incident light (front light)

� vertical illumination from above,
� ring illumination,
� angular illumination;

• incident lighting with a diffuser

� flat,
� coaxial,
� dome-shaped;

• lateral light at angles—at angles from one side or all around;
• shallowly—illumination at a shallow angle from all sides: dark field illumination (usually uses a

low angle ring light that is mounted very close to the object where the light rays from the light
source are not reflected into the camera lens, but only a proportion of light that is scattered by an
uneven surface);

• backlighting—transmitted light from the opposite side of the object (backlit image);
• collimated lighting—laser light (Figures 3–8).
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Figure 3. Direct lighting techniques—point and ring lighting.

 

Figure 4. Diffuse lighting techniques—flat diffuse and dome shaped illumination.

61



Beverages 2019, 5, 38

 

Figure 5. Coaxial lighting techniques with diffuser and angular lighting techniques.

 

Figure 6. Lateral lighting techniques.
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Figure 7. Shallowly lighting techniques—Dark field lighting.

 

Figure 8. Backlighting and collimated lighting techniques.

2.2. Image Acquisition Devices

Image acquisition encompasses images capturing, with digital camera or scanner. There are
three basic elements in image capturing: energy, the lens (optical system) and the sensor. Electronic
capturing of the image with camera and frame grabber is the first step in the processing of the digital
image. Photons are converted to electrical signals with a camera, and these signals are digitalized with
the frame grabber [18]. The frame grabber is required for the transformation of analog to digital signal
when analog cameras are used [25]. Usually, only three channels are used by camera (i.e., R, G, B),
but when higher accuracy and extended information is required, more channels can be used.

The basic parameters (Figure 9) of an imaging system are:

• Field of View (FOV)—visible object area photographed;
• Working Distance (WD)—the distance between the lens front and the inspected object;
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• Resolution—number of pixels or number of minimal parts of the object that can be distinguished
by digital imaging;

• Depth of Field (DOF)—the maximum depth tenable in acceptable focus;
• Sensor Size—the active area size of the camera sensor;
• Camera.

 

Figure 9. Basic parameters of an Imaging System.

There are a wide range of digital camera capabilities, and consequently, of sizes and prices (Table 1).
The most commonly used camera sensors are charged coupled device (CCD) and complementary
metal-oxide semiconductor (CMOS) [26]. In a CCD camera, radiation energy (proportional to light
exposure) is converted to an electrical signal using of mass photodiodes. These cameras provide good
system differentiation and flexibility for various applications (industrial imaging, digital photography,
scientific and medical research, etc.). A CMOS camera is more sensitive than a CCD camera, and has
a greater dynamic range with very fast signal transferring. They are suitable for industrial use for
on-line product inspection, and for all other applications where there is no need for high image quality
(wireless video devices, video conferencing, toys, bar-code scanners, etc.) [26].

Scanners are usually used for specialized tasks and specific use (extreme resolution, large numbers
of output channels or extreme wavelengths). Qualifying specification parameters for a scanner are bit
(color) depth, resolution, and dynamic range. The scanner’s bit-depth defines the amount of color
information in the image. Accuracy increases with higher depths (4-bit with 16, 8-bit with 256, 24-bit
with almost 17 million tones, etc.). Resolution is expressed in dots per inch (dpi) and determines the
number of details in the image. Dynamic range is a measure of scanner ability to distinguish image
colors and tones. It is similar to image depth and it ranges from perfect white (0.0) to black (4.0) [20].
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2.3. Hardware and Supplied Software

Furthermore, important components of CSV are computer hardware and software, providing
storage space for images and computing capacity with specific software applications. Visualization of
images and results of the image analysis process, are enhanced by high-resolution monitors [16,27–29].

3. Digital Image Analysis

Image capturing (acquisition), processing and analysis are operations included in the computer
vision system (Figure 10). The role of image processing is to obtain an image with enhanced quality and
to decrease various defects such as noise, distortion, improper lighting and focus, and errors caused
by camera movement. Image analysis separates the region of interest (ROI) from the background is
then used to obtain quantitative information about the analyzed object. There are several steps in
image processing and analysis. The first step is image acquisition and pre-processing of the image
to improve its quality (correction of contrast, blur, distortions etc.). Second processing step includes
image segmentation (thresholding), representation and description [28]. In the last step, different
statistical tools are used to recognize and interpret information obtained from the object image [30].

 

Figure 10. Steps in digital image analysis.

4. Perception and Measuring of Beer Color

Each beer style has a range of acceptable colors. The actual color of each beer is nothing more than
gradations of a brown tone, which decreases in concentration through red, copper, and amber colors,
through to golden yellow and light yellow. The brewer’s ability to predict and control beer color,
as one of the three visual attributes which influence beer appearance, is very important. Consumers
have a habit associating the beer color with the flavor, and according to the color, to determine which
type it belongs, to lager, ale or stout [31]. Consumers expect consistently high-quality standards of
foods and beverages, and color loss will be perceived as a sign of quality reduction. They have high
requirements in terms of external product quality (appearance, shape, color), so the food industry has
the task of providing efficient systems for continuous monitoring of the product’s color during the
production and storage [12].

The color of the beer comes from malted barley, and wort production. Substances responsible
for beer color (melanoidin, polyphenols, trace metals like copper and iron, riboflavin, caramel) are
formed during several different chemical reactions [32–34]. Melanoidins are water soluble pigments
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whose color changes from initially yellow to dark brown [35]. During the kilning process, when the
temperature is greater than 95 ◦C, a Maillard reaction takes place and produces color and aroma
components from sugars and amino acids. Caramelization reactions take place at temperatures above
120 ◦C, and are affected by pH and the type of sugar [36]. At the temperature above 200 ◦C, pyrolysis
reaction occurs and black pigments are produced in the brewing process.

Through history, numerous techniques of color determination of malt and beer have been
developed. Grading techniques are based on a comparison of the color standards with the product
color. The color is expressed using several scales according to Lovibond (◦L), European Brewery
Convention color scheme (EBC) [37] or Standard Reference Method (SRM) (Figure 11). A scale for
the beer color expression is determined by the used method of color measurement. The first method
used to determine the color of beer was the visual comparison method, where beer color is expressed
in degrees Lovibond. J.W. Lovibond developed this method in 1893, which was then adopted by
Bishop in 1950. The method is quantitative and based on subjective estimation of beer color by visual
comparison of beer samples with colored glass discs references. After improving, the European
Brewery convention accepted the visual comparison method and the color of malt, wort and beer are
expressed in EBC units [31]. In the US, the color of malt is commonly expressed in ◦L while SRM
scale is used for estimation of the beer color. However, visual comparison method ha weaknesses,
because it is subjective (based on visual comparison of color sample and reference with the human
eye). Because of this disadvantage, new instrumental methods for beer color assessment are developed
(spectrophotometric and tristimulus method). That group of methods is independent of the observers,
and allow an objective assessment of beer color. In the tristimulus method, light reflected from the
sample is separated through the filters into three color channels corresponding to the human eye vision
and captured by sensors. Several color systems have been proposed to describe a color as a tristimulus
value of individual intensities of red, green and blue [38]. There are many different color systems like
Lovibond RYBN color, The Munsell Scale, CIE color system (CIELab, CIELCh, CIEXYZ), RGB color
system. The spectrophotometric method uses multiple sensors to measure spectral transmittance or
reflectance in a visible light spectrum range (380–740 nm).

Currently, the color of beer and wort is expressed in EBC scale, and North America is an exception
where the color is expressed in a SRM scale. The American Society of Brewing Chemists (ASBC) has
developed a method for beer color determination by spectrophotometer, called the Standard Reference
Method (SRM). The SRM method is based on an absorbance measurement, where the beer color is
expressed as a quantity of absorbed light at a wavelength of 430 nm in a 10 mm quartz cuvette against
water as a reference [39].

A430·D·12.7 = SRM (1)

where, D = dilution factor of the sample and A430 = the light absorbance at 430 nm in a 1 cm cuvette.
Based on spectrophotometry, the European Brewing Convention (EBC) system has developed a

similar method in Europe. The simple equation is used to calculate beer color in EBC units:

A430·D·25 = EBC (2)

where, D present dilution factor of the sample, A430 present absorbance of the beer at a wavelength of
430 nm in a 1 cm cuvette.

Since EBC and ASBC measurements are based on absorbance at 430 nm, conversion can be made by
simply adjusting for the differences in path length and multiplicative factors by the following equation:

EBC = 1.97·SRM (3)

SRM =
EBC
1.97

(4)

For both methods, it is important that the beer sample have no turbidity during color measurement.
Otherwise, if turbidity is greater than 1 EBC unit, the sample needs to be filtered or centrifuged.
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The values of the EBC color scale are approximately 2 times higher than the values of the SRM
scale. There are also darker beers whose color is out of the scale and difficult to detect; such samples
have to be diluted when measuring [40].

Figure 11. European Brewery Convention (EBC) and Standard Reference Method (SRM) color values
of various beer types.

Photometry can be used for color determination of beer and malt [9], and color can be expressed
with a tristimulus CIELab color model, were L is the lightness component, a refers to the degree of
the red and green, and b to the degree of the blue and yellow color. Lightness (L value) is strongly
correlated with the conventional EBC scores [41]. To replace the conventional visual color assessment
a novel, computer vision system (CVS) has been developed [24]. CVS enables the non-destructive,
contactless, fast, automated, objective, and repeatable color measurement of different food products.
It is based on the analysis of each pixel on a captured photo (covering the entire sample), which makes
it objective and precise as a method [42,43].

Various methods have been developed for the characterization of different beer types.
Silva et al. [44] investigated computer vision method and digital image analysis as an alternative
method for color classification of Brazilian pale lager beers. Beer samples are scanned in Petri dishes,
and digital image analysis was applied for pattern recognition of beers. After applying digital image
analysis, results were presented as color histograms in RGB color space for each brand of Brazilian
pale lager beer. Along with conventional analytical methods of color determination, digital image
analysis has been demonstrated to be a suitable method for classifying beer of the same type or category.
Nikolova et al. [45] reported the use of digital image analysis and spectrophotometer for beer type
classification according to their color. For this purpose, several beer samples were chosen to obtain
digital images: light beer, dark beer, a beer with lemon and beer with fruits. Cluster analysis was
applied to a group of similar beer samples. Beer samples were photographed with a CCD camera in a
BMP format. After pre-processing of the image, obtained results were presented as RGB values, and
later transformed into the CIELab values. The beer color determined by the image analysis corresponds
to the color results measured by the spectrophotometer. Therefore, computer vision and digital image
analysis proved capable color-based method in classifying beer.
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5. Bubble Size Distribution and Nucleation in Beer

Bubble haze arises in the beer during dispensing beer into the glass (creating an illusion of haze),
as a result of a large number of microbubbles which are formed during bubble nucleation. Formed
microbubbles do not go immediately to its surface, thus contributing to the effect of the beer bubble
haze, and are responsible for the formation of the foam ring on the top of the liquid surface. Bubble
haze is an important beer quality parameter and can be preferred by the consumers. For the brewing
industry, it is essential to measure beer bubble haze during beer dispense, as one of the product quality
indicators. Furthermore, it is very important to determine and control the bubble size in beer haze
because their size directly affects the distribution of flavor and taste of beer. Bubbles collect at the top of
the glass in a foam called “head”. A beer perceived as flat showed little nucleation activity (bubbling)
in the glass, regardless of its normal CO2 content. Also, active bubbling regenerates the head [46–48].

Several methods can measure the frequency of bubble formation, their size and distribution in
supersaturated beer liquid. Saxena et al. [49] categorized these methods into three groups:

• Image (photographic) analysis methods—analysis of the captured images of bubbles;
• Optical probe methods—analysis of the bubble penetration length in the area of intensive

bubbles migration;
• Electrical conductivity (resistivity) probe methods—analysis of the bubble volume with

ultrasound/isokinetic sampling probes.

A digital balance can be used for the estimation of gas loss (measuring the mass loss of the beer
glass) over time, to quantify the degree of nucleation activity. The nucleation activity also can be
performed visually, observing the reduction in the number of bubbles occurring in beer glass over time.
This method is one of the first to be reported for observing the nucleation activity in beer. This method
has many faults, is long-lasting, requires a lot of time and is not precise and objective [50]. Lubetkin
and Blackwell [51] developed a method for quantification of the nucleation activity using sound data
recorded with a microphone and computer at the surface of the liquid. After recording, the sound data
were analyzed and the frequency of the bubble rupturing is determined. In this method, the nucleation
activity is observed by measuring the sound of rupturing bubbles. This method also has limitations in
the application since the beer is the system with foam-forming nature. Image analysis method can
also be used for measuring the bubble rate formation in beer. This method is based on image analysis
of the photographed bubbles in beer glass during the time. Liger-Belair et al. [52] reported the use
of an image analysis method for investigation of the bubble formation in Champagne. They used
stroboscopic light and digital camera for image capturing. In this study, the authors reported that the
image analysis method could be used to measure numerous parameters of bubble formation: bubble
formation frequency, growth rates, and bubbles rising velocities in the liquid.

Hepworth et al. [53–55] made several studies of using computer vision method and image analysis
to monitor bubble haze in beer and to investigate the influence of numerous process parameters on
bubble haze formation and distribution in beer glass during beer dispense. Hepworth et al. [55] tried
to explain the phenomenon of bubble haze in beer more closely in the general aim to predict their
presence or absence, and to understand how process parameters affect the bubble haze. They examined
the influence of changing the dissolved nitrogen and carbon dioxide content on the stability of the
bubble haze in beer. Furthermore, they observed the influence of beer flow rate from the tap and
applying a sparkler (a thin plastic disk) in the tap on the stability of the bubble haze. Stability of beer
bubble haze was monitored by measuring surge time (the period of the haze disappearing), haze
velocity (velocity increase of bubbles), and bubble size distribution (diameter and number of bubbles)
in beer. Experiments were carried out using the high-speed video camera and a CCD camera for
image acquisition, followed by the image analysis method. Experimental results indicate a positive
correlation between the surge time and beer flow rate, sparkler application and supplied nitrogen
content. Besides, the size and number of bubbles are crucial factors for the prediction of bubble haze
lifetime, and they can be affected by varying the process condition [55].
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Hepworth et al. [54] also developed another experimental procedure for monitoring the bubble
nucleation (measuring bubble production rate and bubble size) during beer dispense. In this study,
they investigated the influence of liquid motion, gas composition, and beer flow rate on the bubble
nucleation in beer using computer vision and mathematical modeling. The image analysis was
performed on images captured with a CCD camera to determine the bubble diameters and bubble
distribution. They adopted the classical mathematical model for predicting bubble nucleation by
including liquid motion as a new variable. According to the result, the proposed mathematical
model can be suitable for predicting the bubble production rate and size, considering liquid motion.
When the flow rate increases, the bubble nucleation rate in beer also increases. The nitrogen content
in the gas headspace has an opposite effect on the bubble nucleation (greater nitrogen content, the
lower nucleation rate). Hepworth et al. [53] developed and adapted the image analysis method
for measuring bubble distribution in beer (measuring bubble production rate and size). For this
purpose, they captured images of bubbles in beer, and after image capturing, they applied an image
processing to extract valuable data from the captured image like bubble size (diameter) and bubble
velocities (distribution and position of bubbles in the observed tank during the time) (Figure 12).
In order to ignore the influence of errors and limitations during image capturing (distortion from the
curved glass, the distance between the camera lens and glass, focusing problems), they constructed
flat-bottomed beer tank with the camera in a very close position. Thus, distortions were avoided
due to this positioning method. The proposed method has shown as a good tool for predicting the
bubble nucleation rate, bubble growth, and motion under various experimental conditions. The great
advantage of this technique is that is designed to be simple to use and relatively portable.

 

Figure 12. Bubble size determination in beer using digital image analysis method.
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Zabulis et al. [56] reported the method for bubbles detection and their size determination in
dense dispersions with digital image technique. In this study, they developed software for bubble
detection, which is easy to use without any need for additional intervention during application.
The method is objective and effective in determination of the bubble distribution, and bubble size in
beer. This method provides a good tool to control and monitor foam decay through measurement of
bubble size distribution. The method is based on monitoring of visual appearance (appearance-based
approach) of beer samples with a digital camera in a single image. The proposed approach utilizes
templates to increase robustness and an image scale-space to detect bubbles independently of their
size. Furthermore, algorithmic optimizations for the proposed approach that target the reduction of
computational complexity and user-intervention are proposed and compiled into a software application.

6. Foam Stability (Head Retention)

Beer external quality is characterized by foam stability and visual appearance. Therefore, for
beer having a long-lasting head of foam and strong foam, some say that beer is of good quality and is
desirable among consumers Features of a good foam are quantity and stability, cling or lacing (adhesion
to the glass), density or creaminess, whiteness, and strength. Methods for foam quality evaluation are
based on the different foam physical characteristics. Most methods measure foam collapse or the rise
of the liquid/foam surface (drainage). Drainage is the liquid flow from a wet foam fraction to the liquid
underneath and, in the first stages of the foam decay (collapse), it is the dominant process contributing
to foam collapse. However, rearrangement of the foam bubbles during time is an equally important
factor when measuring foam stability. Furthermore, some other phenomena also must be considered
when beer foam kinetics is studied, e.g., creaming, which represents the rise of the bubbles to the top
of the system [57].

Many research activities have been focused on detecting the main components and reaction
mechanisms that influence beer foam quality (both positive and negative effects). Stability of beer
foam mainly depends on the presence of the hydrophobic surface-active proteins (polypeptides) of
albumin class, primarily protein Z (40 kDa) and lipid transfer protein LTP1 (9.7 kDa). Among the
proteins mentioned above, the stability of beer foam is also influenced by an iso-α-acids from hops,
metal cations, hordein-derived (poly) peptides, polyphenols and non-starch polysaccharides (β-glucan
and arabinoxylan). Contrary to substances that promote foam stability, destabilization substances
are lipids, some amino acids and increased ethanol content [47,48,56–61]. The beer foam stability
can be improved by using nitrogen gas, the way of pouring beer into a glass (pouring from a certain
height which can increase the foam in the glass), or by using the beer dispensing system. In addition,
the shape of a beer glass plays an important role in beer foam stability. Beer glasses with a larger
diameters at the top have a larger exposed surface area of foam in relation to volume ratio, which is
why the stability of the foam is disturbed.

The assessment of beer foam quality depends both on the foam generation method, and on foam
collapse/drainage measurement procedure. Techniques to generate beer foam can be divided into
artificial (foaming devices) and natural categories (pouring). Standard methods for determination of
beer foam stability are based on measurements of the weight or volume of the liquid collapse from the
foam, visual assessment of foam volume decrease or conductometric assessment of foam/air interface.
Some traditional methods for the foam quality assessment are Rudin head retention, Ross and Clark
procedure, NIBEM, Sigma head value (SHV), ASBC sigma method [62]. Those traditional (standard)
methods can produce errors due to some experimental conditions, e.g., non-reproducible and irregular
way of foam generation. Evaluation of the foam stability is much more commonly determined by
measuring the liquid drainage rate from the foam due to an inconsistent foam-air boundary, which is
difficult to define precisely. Additionally, the beer temperature of 20 ◦C is greater than one used when
beer is served to the customer; foam stability is directly related to temperature (the foam quality differs
at lower and higher temperatures).

71



Beverages 2019, 5, 38

In contrast to standard methods, new devices like digital cameras and image analysis software
have been developed for the assessment of the beer foam stability [59]. Methods using such devices
are automated, low-cost, contactless and non-destructive, and measures the foam collapse over
time. The method is based on photographing a glass in which a known volume of beers is poured.
This method can be used to monitor two parameters simultaneously: beer foam collapse or beer liquid
height increase in the glass over the time. The beer poured into a glass and is photographed over time,
photos are processed using appropriate image analysis software, and obtained results describe the
decrease of the beer foam height and increase of the beer liquid phase height over time. Constant [63]
investigated the beer foam collapsing by photographing the foam collapse during a 5 min period.
After applied image analysis method on photographed beer samples, he observed two separated
parameters on photography: total beer height (which includes foam, and liquid together), and liquid
height separated from the foam (beer beneath the foam). Yasui et al. [64] investigated foam stability
(foam collapse over time, FTC) using image analysis method. Total foam stability over the time is
measured using images captured with CCD camera, and beer samples are poured into a beer glass
directly from a beer bottle. This method is based on simulation of the foam formation in realistic
conditions (the consumer pours beer directly from the bottle into the beer glass). After images are
captured, they are analyzed by the image analysis software. The results of the image analysis method
(captured foam collapse during the time) are foam height, FTC and foam stability. They confirmed that
image analysis is suitable as a method to monitor foam stability by measuring FTC values. Further, it
has been found that monitoring FTC values may replace the usual visual impression of foam stability.

Wallin et al. [65] reported a comparison of three methods for the assessment of foam stability.
To measure foam stability of nine different beer, they use NIBEM (foam collapse assessment), Steinfurth
(foam drainage assessment) and image analysis technique (monitoring foam stability during time)
(Figure 13). The main difference between those methods is a way that foam is generated. In the NIBEM
and Steinfurth method, foam is generated artificially (under pressure); meanwhile, for the purpose of
the image analysis, foam is generated in a natural pour. The result showed a significant correlation
between three different methods for assessing foam stability and good reproducibility, and better foam
stability of ale beers over lagers.

 

Figure 13. Image analysis of beer foam stability (original images and images with applied threshold
segmentation; and graphical parameters presentation of the beer foam stability).
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Recently, to analyze some foam properties like foamability, foam stability, and structure,
the Dynamic Foam Analyzer (DFA100) has been introduced. This apparatus is based on the principle
of the image analysis method. In KRÜSS GmbH study report [66] samples of degassed clear wheat beer,
Pils and Kolch were analyzed to determine the influence of the surfactants in the beer independently
of the CO2 content and its impact on the foam behavior. Removal of CO2 before analyses provides
a better insight into the influence of other foam-forming substances (e.g., proteins). The equipment
uses a vacuum pump to remove CO2 from the sample and, after degassing, foaming is conducted
in controlled conditions by computer-regulated air pumping through the beer sample. Samples are
illuminated with the LED panel and changes in foam height is captured with photodetector of a video
camera. During the analysis, the device records the formed foam in a column and simultaneously
provides data on the foamability and foam stability. Furthermore, this equipment measures changes in
foam structure during the time (size and number of foam bubbles).

Sauerbrei et al. [67] conducted a computer-aided image processing research of redistribution
and size of the foam bubbles during the beer foam decay. They used CCD camera, diffuse coaxial
illumination to record photographs of the foam collapse, and foam bubble structure over time (5 s
interval). The use of the ultrasonic device accomplished foaming. They have successfully implemented
image analyses to measure the foam bubble size and area of the liquid fraction in the foam. Immediately
after foaming bubbles were very small and uniformly distributed. Over time, coalescence occurs due
to rupture of the bubble surface and some of the bubbles merge, forming larger bubbles (Figure 14).
Remaining smaller bubbles fill the remaining space between the larger bubbles. The authors have
compared the resulting pattern to a known mathematical structure called the Apollonian gasket.
They also concluded that beer foam does not follow simple exponential decay but more complex higher
order kinetics.

Figure 14. Different bubble size and distribution in the beer foam (10, 60 and 120 s after pouring).

Cimini et al. [68] presented an inexpensive, automated and flexible image analysis method instead
of the standard foam head retention method (developed by Rudin [69]). The standard Rudin’s method
is improved by using three different systems for automatic data collection: tracking software for
mouse movement; Accurate Image Analysis system (AIA) and low-cost image analysis (LCIA) system.
The main difference between AIA system and LCIA system is that AIA used CCD camera and script
written in MATLAB, while LCIA system used a Raspberry Pi single-board computer and a camera
module. Authors reported that the LCIA system could be successfully used for analyzing beer foam
attributes, such as the number of bubbles in the beer, their distribution, diameter and size.
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7. Conclusions

The computer vision system (CVS) represents an efficient and non-destructive inspection technique
for evaluating the external attributes of food products. It is an effective alternative to human vision,
enabling rapid and objective analyses of food quality properties. Lately, digital image analysis is
increasingly used in the study of various beer quality parameters (color, bubble size and distribution,
foam stability, etc.). The strongest arguments for deploying CVS in evaluating external quality attributes
of beer are the reliability and reproducibility of the obtained results. Although more and more progress
is being made on the development of image analysis devices, there is still no available equipment
that will simultaneously cover the determination of all quality features, due to the complexity and
broad spectrum of beer quality parameters. Despite the fact that CVS is, in any case more, precise than
visual methods, algorithms used for image representation and interpretation may be the source of the
errors, resulting in the improper extraction and analysis of the obtained data. Therefore, additional
efforts must be made in the development of more sophisticated equipment and algorithms that will
further enhance measuring precision. One way of improving algorithms is the use of the information
collected with the chemometric methods, using a wide set of various statistical tools which are capable
of providing useful information by the analysis and modeling large quantities of data.
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Abstract: Artificial neural networks (ANN) have become popular for optimization and prediction of
parameters in foods, beverages, agriculture and medicine. For brewing, they have been explored to
develop rapid methods to assess product quality and acceptability. Different beers (N = 17) were
analyzed in triplicates using a robotic pourer, RoboBEER (University of Melbourne, Melbourne,
Australia), to assess 15 color and foam-related parameters using computer-vision. Those samples
were tested using sensory analysis for acceptability of carbonation mouthfeel, bitterness, flavor and
overall liking with 30 consumers using a 9-point hedonic scale. ANN models were developed using
17 different training algorithms with 15 color and foam-related parameters as inputs and liking of
four descriptors obtained from consumers as targets. Each algorithm was tested using five, seven
and ten neurons and compared to select the best model based on correlation coefficients, slope and
performance (mean squared error (MSE). Bayesian Regularization algorithm with seven neurons
presented the best correlation (R = 0.98) and highest performance (MSE = 0.03) with no overfitting.
These models may be used as a cost-effective method for fast-screening of beers during processing to
assess acceptability more efficiently. The use of RoboBEER, computer-vision algorithms and ANN
will allow the implementation of an artificial intelligence system for the brewing industry to assess
its effectiveness.

Keywords: beer acceptability; machine learning; robotics; fast-screening; automation

1. Introduction

Machine learning is defined as the computer-based system that is able to learn and find patterns
among the data to predict specific outputs [1,2]. There are different types of machine learning from
which two main categories are derived: (i) pattern recognition or classification and (ii) fitting or
regression [3]. The first is mainly used for decision making as it classifies samples into two or
more categories, the most publicized applications can be found in medical diagnosis [4,5], food and
beverages to classify into types of brewages [6–8] and level of liking of brewages [8,9], in agriculture for
identification of grapevine cultivars [10], and to estimate plant water status [11], among others. Fitting
or regression is used to predict specific values of certain variables such as chemical compounds [7,12],
sensory descriptors [13], and microbial spoilage [14] among others.

There are different types of regression algorithms, which can be classified within categories such
as linear regression, regression trees, support vector machines, Gaussian process, ensemble of trees
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and artificial neural networks (ANN) [15]. The latter has been widely used due to its non-linearity
and ability to find patterns from inputs in a similar way to the functioning of neurons in the human
brain. These algorithms are able to learn from data by testing and modifying weights and biases
until they find the best correlation [7,16]. Furthermore, it has the advantage that the derived ideal
relationship, which links the inputs and outputs, is obtained during the training stage [17,18]. There are
several ANN training algorithms that may be used, which can be classified into four main categories:
(i) backpropagation with Jacobian derivatives, (ii) backpropagation with gradient derivatives [3],
(iii) supervised weight and bias, and (iv) unsupervised weight and bias training functions [19]. In this
paper, only the first three categories will be used.

The use of machine learning algorithms, especially ANN, in food and brewages has become more
popular in recent years as they aid in the increase in accuracy, time and cost reduction in analytical
and sensory methods to assess quality and acceptability of beverages [20]. Specifically, in beer, it has
been used in the prediction of chemical compounds using near-infrared spectroscopy [7,21,22], and
prediction of the intensity of sensory descriptors [13,23].

This paper aimed to find the best machine learning regression model by comparing 17 different
ANN training algorithms to predict the liking of four sensory attributes of beer using 15 color
and foam-related parameters measured using a robotic pourer (RoboBEER), and computer vision
algorithms [6]. For this purpose, 17 beer samples from different styles and from the three types
of fermentation (top, bottom and spontaneous) were analyzed in triplicates to develop the models.
The targets considered for the models were obtained conducting a sensory session with 30 consumers
which rated the liking of four attributes (carbonation mouthfeel, bitter taste, flavor and overall liking).
After comparing the models developed using the 17 training algorithms, the best model was selected on
the basis of best performance. The best models found may potentially be used for fast-screening of beer
samples in product development and/or at the end of the production line to assess beer acceptability
without the need of recruiting consumers, which is more cost-effective and less time-consuming.

2. Materials and Methods

2.1. Beer Samples Description

Triplicates of 17 different beer samples (N = 51) from different countries, styles and type of
fermentation (Table 1) were used to assess their color and foam-related parameters. However, only
one replicate was used to assess consumer acceptability as the replicates were obtained from bottles
belonging to the same production batch.

Table 1. List of samples used for the study, indicating their style, country of origin and type
of fermentation.

Beer Style Country of Origin Type of Fermentation

Kolsch Australia Top
Porter Poland Top

Steam Ale Australia Top
Sparkling Ale Australia Top

Blonde Ale Belgium Top
Red Ale USA Top

American Lager Mexico Bottom
American Lager Mexico Bottom

Lager The Netherlands Bottom
Pilsner Czech Republic Bottom

American Lager USA Bottom
Pilsner Czech Republic Bottom

Lambic Gueuze Belgium Spontaneous
Lambic Cassis Belgium Spontaneous
Lambic Kriek Belgium Spontaneous

Lambic Framboise Belgium Spontaneous
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2.2. Color and Foam-Related Parameters

Color and foam-related parameters were obtained using a robotic pourer, RoboBEER (University of
Melbourne, Melbourne, Australia), to ensure uniform pouring. RoboBEER works with two Lego® servo
motors and has three sensors attached that work with Arduino® (Arduino, Ivrea, Italy): (i) temperature,
(ii) alcohol and (iii) carbon dioxide (CO2) gas release and is coupled with an iPhone 5S to record 5 min
videos of the pouring (Figure 1). These videos were then analyzed with Matlab® R2018b (Mathworks
Inc., Matick, MA, USA) using customized computer vision algorithms. The first algorithm worked in a
semi-automatic way, which consisted of standardizing and scaling the glass size by selecting the height
and glass rim in the first frame of the video, followed by the manual selection of the foam height every
30 frames for the algorithm to automatically calculate the foam and beer volume. These results were
then used to develop the foam volume versus time curve and to calculate the following parameters:
(i) maximum volume of foam (MVol), (ii) total lifetime of foam (TLTF), (iii) lifetime of foam (LTF), and
(iv) foam drainage (FDrain). Furthermore, a single frame of the video (highest in foam) was processed
using other algorithms in Matlab® to assess color in two scales CIELab [(v) L, (vi) a, (vii) b] and RGB
[(viii) R, (ix) G, (x) B] as well as bubble size distribution divided in (xi) small (SmB), (xii) medium
(MedB), and (xiii) large bubbles (LgB), the latter were analyzed based on the “Hough Transformation”
from the middle section of the foam and classifying bubble size based on the diameter measured in
pixels. Additionally, the parameters (xiv) alcohol (OH) and (xv) CO2 gas release from the sensors were
obtained. More details about the robotic pourer and computer vision analysis can be found in the
paper from Gonzalez Viejo et al. [6]. All data were analyzed using customized codes in Matlab® and a
Titan Xp GPU (NVIDIA Corporation, Santa Clara, CA, USA).

 
Figure 1. Cont.
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Figure 1. Equipment used to assess beers physical measurements; (a) robotic pourer, RoboBEER, which
was used to assess the color and foam-related parameters and (b) a frame of a video taken to analyze
the beer using computer vision algorithms.

2.3. Sensory Session

A double-blind sensory session to assess beer acceptability was conducted with 30 consumers
using a 9-point hedonic scale. According to the Power analysis, this sample size of consumers is enough
to compare samples in a sensory test (1–β > 0.99). The session was conducted in individual booths
with uniform lighting located in the sensory laboratory of the Faculty of Veterinary and Agricultural
Sciences of The University of Melbourne. Before the sensory session, participants were asked to sign a
consent form in accordance with the ethics approval 1545786.2 by the Human Ethics Advisory Group
(HEAG) of the Faculty of Veterinary and Agricultural Science at The University of Melbourne. The beer
samples were semi-randomized in two blocks of eight and nine samples at refrigeration temperature
(4 ◦C) and participants were provided with crackers and water to cleanse the palate and to allow them
to rest between samples to avoid fatigue. The sensory attributes evaluated and used as targets for the
model construction consisted of (i) carbonation mouthfeel (MCarb), (ii) bitter taste (TBitt), (iii) flavor,
and (iv) overall liking (overall).

2.4. Machine Learning Modelling

Seventeen training algorithms (Table 2) were used to develop artificial neural network models
using a customized Matlab® code capable of testing all the algorithms in a loop. The models were
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developed using as inputs the normalized values (from −1 to 1) of the 15 color and foam-related
parameters measured with the RoboBEER: (i) MVol, (ii) TLTF, (iii) LTF, (iv) FDrain, (v) L, (vi) a, (vii) b,
(viii) R, (ix) G, (x) B, (xi) SmB, (xii) MedB, (xiii) LgB, (xiv) OH and (xv) CO2, and the four sensory
attributes as targets/outputs: (i) MCarb, (ii) TBitt, (iii) flavor, and (iv) overall.

Table 2. Algorithms used and description of the main function type and abbreviations, which were
used to develop the artificial neural network models.

Main Function Type Algorithm Abbreviation

Backpropagation with Jacobian
derivatives

Levenberg Marquardt LM
Bayesian Regularization BR

Backpropagation with gradient
derivatives

Broyden, Fletcher, Goldfarb, and Shanno quasi-Newton BFGS
Conjugate gradient with Powell-Beale restarts PB
Conjugate gradient with Fletcher-Reeves updates FR
Conjugate gradient with Polak-Ribiere updates PR
Gradient descent backpropagation GD
Gradient descent with adaptive learning rate GDLR
Gradient descent with momentum GDM
Gradient descent with momentum and adaptive learning rate GDMLR
One step secant OSS
Resilient backpropagation RPROP
Scaled conjugate gradient SCG

Supervised weight and bias
training functions

Batch training with weight and bias learning rate BLR
Cyclical order weight and bias CO
Random order weight and bias RO
Sequential order weight and bias SO

A neuron trimming exercise (5, 7 and 10 neurons) was performed for each algorithm. Ten was
the largest number of neurons tested as using fewer neurons and obtaining good models without
overfitting is the best practice. Using a larger number of neurons would most likely lead to overfitting.
All models were developed using a random data division considering 70% (n = 35) of samples used
for training, 15% (n = 8) for validation using a mean squared error performance algorithm, and 15%
(n = 8) for the testing stage with a default derivative function. The models were constructed based on a
two-layer feedforward network with a tan-sigmoid function in the hidden layer and a linear transfer
function in the output layer (Figure 2).

Figure 2. A two-layer feedforward model diagram showing the 15 inputs, number of neurons tested in
the hidden layer, and targets/outputs used to create the model.

The statistical analysis to evaluate and compare the accuracy of the models developed consisted
of the correlation coefficient (R), determination coefficient (R2), mean squared error (MSE) to assess
performance and slope (b) for each stage (i) training, (ii) validation, (iii) testing, and (iv) overall model
as well as the p-value for the overall model. For the three best models, the percentage of outliers using
95% confidence bounds were obtained.
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3. Results

Table 3 shows the statistical data of the best and worse models developed from each group of
training algorithms. For the backpropagation with Jacobian derivatives algorithm, there was no worse
model as those from both algorithms within the group produced two of the best models. Tables S1–S3
in Supplementary Material show the statistical data of the models developed using the 17 training
algorithms. Correlations from all models were significant with a p-value < 0.0001. It can be observed
that the algorithms with the lowest R and R2 were from the gradient descent backpropagation with five
and seven neurons (Table 3; Table S1), the batch training with weight and bias learning rate with seven
neurons (Table 3) and the sequential order weight and bias with five neurons (Table S3). On the other
hand, the models with the highest R and R2 were with those developed using seven neurons from both
algorithms belonging to the backpropagation with Jacobian derivatives function (LM and BR) and the
RPROP with R values consistently over 0.90 for all stages (Table 3). Furthermore, the slope from these
three best models was close to unity (b ~ 1) for all stages, with the RPROP having the lowest slope
values with a b = 0.90 for the overall model (Table 3; Figure 3). On the other hand, the three models
had low MSE values (≤0.06) for the three stages and overall model. Table 3 also shows the best model
from the supervised weight and bias algorithms; however, this still had some signs of overfitting as the
validation and testing performances were not as close (MSE = 0.10 and 0.06, respectively) and the R
values were lower than the three best models.

Table 3. Statistical results of the best and worse models developed using the algorithms from the three
different groups. Numbers in bold represent the models with the highest correlation and determination
coefficients from each group of algorithms.

Algorithm Neurons Stage R R2 b MSE

Backpropagation with Jacobian derivatives algorithm

Levenberg Marquardt 7

Training 0.96 0.92 0.94 0.02

Validation 0.95 0.90 1.00 0.06

Testing 0.95 0.90 1.10 0.05

Overall 0.95 0.90 0.98 0.03

Bayesian Regularization 7

Training 0.99 0.98 0.97 0.01

Validation - - - -

Testing 0.97 0.94 1.1 0.03

Overall 0.98 0.96 1.0 0.01

Backpropagation with gradient derivative algorithms

Gradient descent backpropagation 5

Training 0.83 0.69 0.60 0.04
Validation 0.67 0.45 0.39 0.07
Testing 0.65 0.42 0.57 0.11
Overall 0.77 0.59 0.56 0.06

Resilient backpropagation 7

Training 0.95 0.90 0.90 0.02

Validation 0.95 0.90 0.91 0.04

Testing 0.93 0.86 0.97 0.04

Overall 0.95 0.90 0.90 0.03

Supervised weight and bias algorithms

Batch training with weight and bias
learning rate 7

Training 0.80 0.64 0.59 0.10
Validation 0.67 0.45 0.49 0.13
Testing 0.76 0.58 0.57 0.11
Overall 0.76 0.58 0.57 0.06

Random order weight and bias 10

Training 0.89 0.79 0.82 0.06

Validation 0.84 0.71 0.74 0.10

Testing 0.88 0.77 1.10 0.06

Overall 0.87 0.76 0.83 0.06

Figure 3 shows the training, validation, testing and overall models of the three best algorithms
developed using 7 neurons. Model 1 (Figure 3a), which was developed with the Levenberg-Marquardt
algorithm, had a training R = 0.96, and validation, testing and overall R = 0.95, furthermore, the overall
model had 6.86% of outliers according to the 95% confidence bounds. Figure 3b shows Model 2 with
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the Bayesian regularization algorithm with R = 0.99 for the training stage, R = 0.98 for testing and
overall model with R = 0.98 and 5.88% outliers, this algorithm does not use a validation stage. On the
other hand, Figure 3c depicts Model 3 developed using the RPROP algorithm, which also had a high
R = 0.95 for training and validation stages, R = 0.93 for testing and an overall model with R = 0.95 and
a low percentage of outliers (4.90%). It can be observed that in the overall models, some predicted
values are >1 or < −1, this is because the targets were normalized based on the range of data obtained
in the study (3–7); however, the liking hedonic scale is within the 1–9 range, therefore, a value <−1
or >1, will still fit within the 1–9 scale when reversing the normalization.

Figure 3. Models showing the three stages (training, validation and testing) as well as overall model
of the three best algorithms found to assess liking of beer from morpho-colorimetric parameters
from beer and beer foam: (a) Levenberg Marquardt, (b) Bayesian Regularization and (c) Resilient
Backpropagation, showing the correlation coefficient (R) and 95% confidence bounds. In all graphs, the
x-axis represents the observed data and y-axis the predicted or estimated values. N/A = not applicable.

4. Discussion

According to Beale, et al. [24], an indicator of a good model with no overfitting is when the
validation correlation coefficient is close to the value from the training stage, which was met by the
three best models found in this paper (Table 3 and Figure 3). The Bayesian regularization model
(Model 2) does not have a validation stage; however, the R values of the other three stages are high and
similar. Furthermore, an indication of a model with no overfitting is that the training performance
(MSE) must be lower than the other stages, and the gap between the validation and testing MSE must
be small [3,24]. This was also met by the best models found in this paper (Table 3).

The Levenberg-Marquardt algorithm (Model 1) is a backpropagation function, which works by
calculating the second derivatives of a cost function. The advantages of this algorithm are: (i) that
it is capable of giving a solution even though its start-point is far from the final minimum, (ii) its
processing time is one of the lowest compared to other algorithms, (iii) the training algorithm stops
when it finds the maximum epoch and (iv) the best performance value is achieved, or when it finds
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that the gradient value is lower than its minimum [25]. However, some disadvantages include: (i) it
may not always secure a global optimum for an unrestrained optimization issue and ii) it may require
higher memory usage [26]. On the other hand, the Bayesian regularization algorithm (Model 2) works
using the same principles of Levenberg Marquardt but updating the weights and biases according
to the optimization. The main advantages of this algorithm include: (i) lower memory usage, (ii) it
has a good generalization for noisy or small datasets, (iii) it avoids overfitting effectively and (iv) it
does not require a validation stage [17,25,27]. The RPROP (Model 3) works through an adaptation
of the weight values according to the information of the local gradient, based only on the sign of the
derivative. Its purpose is to avoid the negative effects of the small magnitude of partial derivatives
which often result in small or null changes in weights and biases. The training stops when it reaches
the maximum number of epochs or time, or when the best performance has been reached [28,29].
Some of the advantages of RPROP are: (i) the performance is better than other techniques used for
adaptation [30] and (ii) it has fast convergence and low memory usage [31].

Based on the results from the three best models found to assess beer liking and acceptability by
consumers, and considering the advantages and disadvantages of the algorithms, it can be said that
Model 2 is the most appropriate for the prediction of beer liking using beer color and foam-related
parameters. This is based on the highest correlation coefficient (R = 0.98), best performance, good fit
within the confidence bounds with a low number of outliers, overall slope b = 1 and, therefore, no signs
of overfitting. Furthermore, the dataset used met the small database requirements (N = 51), which is
appropriate for the Bayesian Regularization.

The implementation of the models presented in this paper would allow a reduction in time and
costs for the brewers when developing new products. It may also be used to do a fast-screening of any
new developments without the need to conduct large sensory tests with consumers, which requires
time for preparation, data gathering and analysis as well as financial resources for sampling and
recruiting of consumers. This model allows accurate prediction of the liking of carbonation mouthfeel,
flavor, bitterness, and overall liking using the physical parameters related to color and foam, this being
possible because consumers are able to judge beer quality and acceptability based only on the visual
attributes which give the first impression [8,9,32]. Furthermore, there is a relationship between the
foam and color-related parameters, and bitterness as the iso-α-acids derived from hops are responsible
for bitterness, but also contribute to foamability and foam stability due to their tensio-active properties.
Furthermore, hops contribute to the development of aromas and flavors in beer, and foam aids in the
release of aromas and flavors when bubbles burst [8,13,33,34].

Since the models are based on an automated data gathering process by using the RoboBEER and
video analysis of pouring using computer vision algorithms, an artificial intelligence (AI) application
may be implemented. This will offer to the beer industry a completely automated process to predict
liking and acceptability of different beers by consumers.

5. Conclusions

The comparison of different artificial neural network algorithms aids in the selection of the best
model making sure that it has no overfitting and it has the best performance. However, it is also
important to consider the advantages and disadvantages of the algorithms in accordance with the
dataset details and intended application to make the best choice. The best algorithm for the specific
model presented in this paper was the Bayesian Regularization with very high accuracy (R = 0.98), and
it would aid in the optimization of costs and time for breweries to assess beer acceptability without
the need of recruiting consumers and running sensory sessions, being able to get the results within
minutes. This is important, especially when having a large number of prototypes when developing
new beer products. The use of the RoboBEER, computer vision algorithms and the ANN algorithms
found in this research will allow the implementation of an AI system for the brewing industry to assess
the effectiveness of beer making in terms of quality and acceptability of consumers.
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Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5710/5/2/33/s1,
Table S1: Statistical results of the models developed using the backpropagation with Jacobian derivatives
algorithm. Numbers in green and bold represent the models with the highest correlation and determination
coefficients. Table S2: Statistical results of the models developed using the backpropagation with gradient derivative
algorithms. Numbers in red and italics represent the models with the lowest correlation and determination
coefficients, while those in green and bold represent the highest values. Table S3: Statistical results of the models
developed using the supervised weight and bias algorithms. Numbers in red and italics represent the models
with the lowest correlation and determination coefficients.
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Abstract: The use of ultrasounds has been implemented to increase yeast viability, de-foaming,
and cavitation in foods and beverages. However, the application of low frequency audible sound to
decrease bubble size and improve foamability has not been explored. In this study, three treatments
using India Pale Ale beers were tested, which include (1) a control, (2) the application of audible
sound during fermentation, and (3) the application of audible sound during natural carbonation.
Five different audible frequencies (20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz) were applied daily for
one minute each (starting from the lowest frequency) during fermentation (11 days, treatment 2) and
carbonation (22 days, treatment 3). Samples were measured in triplicates using the RoboBEER to
assess color and foam-related parameters. A trained panel (n = 10) evaluated the intensity of sensory
descriptors. Results showed that samples with sonication treatment had significant differences in the
number of small bubbles, alcohol, and viscosity compared to the control. Furthermore, except for
foam texture, foam height, and viscosity, there were non-significant differences in the intensity of any
sensory descriptor, according to the rating from the trained sensory panel. The use of soundwaves is
a potential treatment for brewing to improve beer quality by increasing the number of small bubbles
and foamability without disrupting yeast or modifying the aroma and flavor profile.

Keywords: foamability; audible sound; brewing; carbonation; fermentation

1. Introduction

Sound consists of a mechanical longitudinal wave, which propagates through gas and liquid
media such as air and water but may also do so through solid materials [1]. Furthermore,
frequency is defined as the number of complete oscillations per second and is expressed in Hertz [2,3].
The wavelength is the distance between the peaks of the sound signal [4] and is calculated using
the following equation: V = λF, where “V” is the speed of sound, λ is the wavelength, and “F”
is the frequency [5]. The wavelength depends on the velocity. Therefore, the medium affects the
wavelength since the density and elasticity of the medium will change the velocity of sound [6].
Soundwaves are divided in three different classes according to their frequency range including
(i) infrasound, which are those below 20 Hz and not audible by the human ear but may be detected by
measuring the variation in pressure and vibrations. This type of soundwaves is naturally produced by
earthquakes, volcanic eruptions, among others. A second class of soundwaves includes (ii) audible
sound, which is produced within 20 Hz and 2000 Hz and, as its name implies, it can be perceived by
the human ear and (iii) ultrasound that is above 2000 Hz and cannot be heard by humans. However,
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some animals are able to hear it [7–9]. In food-related products, infrasound has been used to reduce
membrane fouling in beer and wine filtration [10] while audible sound has been used to increase
Escherichia coli growth [11], in the control of insects in stored products such as grains [12], and to
increase yeast cells growth rate [13] among others. However, ultrasound has been the most applied
frequency range in food and beverages to increase the retention of nutritional compounds in fruit
beverages [14], to increase production capacity and promote lightness of juices, and to aid in their
preservation by the inactivation of enzymes [15] for the degassing of liquids [16] among others.

The amount and stability of foam and bubbles are essential in carbonated beverages such as beer
since they comprise the most important factors that consumers consider when assessing the quality
of beer. According to previous studies, consumers have a preference for beers with a medium level
of foam height and consider the low foam as non-desirable with the lowest liking, lowest perceived
quality scores, and highest penalty scores [17–21]. Therefore, it is important to explore methods such
as sonication during its production process to increase foam in beer. However, the application of
soundwave frequencies in beer has been limited to infra-sound or ultrasound with other purposes
such as the aforementioned reduction of membrane fouling during filtration [10], to measure density of
beer during fermentation [22], hops extraction [23], to increase yeast viability, and to increase alcohol
concentration applying ultrasound during fermentation [24] among others.

The use of soundwaves to modify bubble size has been narrowed to the purpose of degassing,
de-foaming [16], and to produce cavitation, which is the effect of forming bubbles that increase their
size and cause their implosion [25]. Nevertheless, there are no studies that had assessed the effects
of audible sound in bubbles and foam quality in carbonated beverages. Some breweries such as
Philadelphia’s Dock Street Brewery, Mikkeller craft brewery, and Garage Project have applied music
during the fermentation stage of the brewing process by claiming that music improves beers sensory
characteristics and increases yeast activity [26–28]. However, music has a mix of different frequencies
and soundwaves, which does not allow us to isolate the effects of the specific frequency levels. This can
potentially have a higher, lower, or no effect on beer characteristics such as foaming and bubble size.

This paper aims to present the results from the assessment of the effects of audible soundwaves
on beer bubbles and foam quality during fermentation and natural carbonation stages of the brewing
process. The study was conducted using triplicates of three different treatments including (i) a control
using the usual brewing process, (ii) the application of frequencies during fermentation, and (iii)
the application of frequencies during the carbonation stage. Five different frequency levels (20 Hz,
30 Hz, 45 Hz, 55 Hz, and 75 Hz) were used for the treatments. These were applied using two
speakers including an amplifier and an iPhone application Audio Function Generator (Thomas Gruber,
Forchenstein, Austria). The samples were analyzed using a robotic pourer RoboBEER and Matlab®

R2018b (Mathworks, Inc., Matick, MA, USA) to assess foam and color-related parameters and through
a trained sensory panel (n = 10) to assess significant differences between the treatments in their sensory
descriptors. Lastly, two machine learning models previously developed by Gonzalez Viejo et al. [29,30]
were tested by feeding the inputs from the RoboBEER of the triplicates of the three treatments to (i)
predict the type of fermentation and (ii) to predict the intensities of sensory descriptors by obtaining
high accuracy in the testing.

2. Materials and Methods

2.1. Beer Samples Description and Processing

English style India Pale Ale (IPA, Berlin IPA, BrewBaker, Berlin, Germany) samples were selected
for this study since breweries who have used music for brewing have done it using this style of
beer [26,28]. The samples were brewed using the PicoBrew S (PicoBrew, Seattle, WA, USA). The samples
came in special containers specific for the PicoBrew, which included the malted barley and different
types of hops (Perle, Polaris, Tettnanger, Smaragd, and Cascade). As shown in Figure 1, for the control
and the other two treatments (soundwaves during fermentation = SWF and soundwaves during
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carbonation = SWC), the container including the ingredients was inserted in the PicoBrew machine
and followed the default formula in the machine for the specified IPA sample (Bitterness = 65 IBU).
The first part of the brewing process for the control and two treatments lasted 2.5 h and consisted
of heating, doughing, mash 1, mash 2, mash out, boiling to a maximum temperature of 114 ◦C, and
holding at 94 ◦C for 1 h with the addition of four different types of hops at the start, the middle, and the
end of the boiling process (Figure 1 (1)). Following the first part of the process, the yeast (Saccharomyces
cerevisiae; strain 1056; Safale US-05, Belgium) was added to the three treatments in the same way.
Then the hermetically sealed kegs for the control and SWC were left at room temperature (25 ◦C) in the
same place for 11 days while the SWF, which was also hermetically sealed, was treated with audible
soundwaves daily by applying frequencies of 20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz at −4 dB for 1 min
each during 11 days of fermentation. The soundwaves were applied using two speakers, an amplifier,
an iPhone 5s (Apple Inc., Cupertino, CA, USA), and an Audio Function Generator application (Thomas
Gruber) (Figure 1 (2)). To make sure the fermentation was completed, the CO2 from the keg was
released once and then tried again 1 h later to make sure there was no more gas production. The last
part of the process consisted of bottling the samples in brown bottles and adding one sugar drop for
the natural carbonation process in which all the samples were left at 25 ◦C for 22 days. The control and
SWF were left in the sample place during this stage of the process while the SWC were treated with
audible soundwaves every day by applying frequencies of 20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz at
−4 dB for 1 min each for 22 days (Figure 1 (3)).

Figure 1. Diagram representing the brewing process and soundwave treatments applied to the different
beer samples such as Control, SWF = soundwaves application at fermentation, and SWC = soundwaves
applied in the carbonation process. Where (1) brewing process, (2) fermentation, and (3) bottling and
natural carbonation.
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The specific frequencies were selected by recording videos of the application of different levels
(20–100 Hz) at −4 dB of amplitude to milk and dry thyme leaves in a Petri dish (Figure 2) and were
further magnified using the Eulerian Magnification Algorithm [31] in Matlab® R2018b (Mathworks,
Inc., Matick, MA, USA). Those frequencies that produced movements of the thyme in different
directions such as grouping particles, separating them, and vibrating in the same position were
selected (20 Hz, 30 Hz, 45 Hz, 55 Hz, and 75 Hz). Dry thyme and milk were used due to the lack of
solubility and to ease the magnification and visibility of particle movement.

Figure 2. Diagram representing the setup of the testing of different audible sound frequencies to select
the most appropriate ones for the treatments.

2.2. Color and Foam-Related Parameters

All samples were analyzed in triplicates using computer vision algorithms written in Matlab®

R2018b (Mathworks, Inc., Matick, MA, USA) to analyze 5-min videos recorded while using the
automatic robotic pourer RoboBEER to obtain 15 color and foam-related parameters including:
(i) maximum volume of foam (MaxVol), (ii) total lifetime of foam (TLTF), (iii) lifetime of foam (LTF),
(iv) foam drainage (FDrain), color in two scales (v ), (vi), (vii) CIELab and (viii), (ix), (x) RGB and
bubble size distribution of (xi) small (SmBubb), (xii) medium (MedBubb), and (xiii) large bubbles
(LgBubb) as well as (xiv) alcohol gas (OH) and (xv) carbon dioxide (CO2) release. The samples were
poured in the same International Standard Wine Tasting Glass Luigi Bormioli to avoid differences
due to the glass. Details about the procedure of the RoboBEER can be found in the paper published
by Gonzalez Viejo et al. [29]. The three parameters from the RGB color scale were converted to a
color index using Equations (1)–(4). The samples were also analyzed for alcohol content in the liquid
(Alcohol) using an Alcolyzer Wine M alcohol-meter (Anton Paar GmbH, Graz, Austria). Additionally,
pH was measured using a pH-meter Benchtop pH/mV meter 860031 (Sper scientific direct, Scottsdale,
AZ, USA) with 50 mL of the sample at an ambient temperature (25 ◦C). Furthermore, viscosity (Visc)
was measured with a Brookfield viscometer DV-II+ (AMETEK Brookfield, Middleborough, MA, USA)
using 150 mL of the sample and an RV02 spindle at 50 rpm for 20 s.

RGB Intensity ratio(I) = R + G + B (1)

Red intensity ratio (RI) =
R
I

(2)

Green intensity ratio (GI) =
G
I

(3)

Blue intensity ratio (BI) =
B
I

(4)
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2.3. Sensory Descriptive Analysis

A sensory session was conducted using a trained panel of 10 participants who were regular beer
consumers using the quantitative descriptive analysis (QDA) method. Two 1.5 h training sessions
using IPA beers were conducted previous to the evaluation of the samples to obtain the descriptors
and for the participants to familiarize themselves with the test. The sensory session was conducted
at room temperature (24 ◦C) in a focus room in the sensory laboratory of the Faculty of Veterinary
and Agricultural Sciences of The University of Melbourne, Australia (FVAS-UoM). Triplicates of the
samples were evaluated and all were served in 1 oz plastic glasses at a refrigerated temperature (4 ◦C).
The tasting was double blind and all samples were labeled with 3-digit random codes. Table 1 shows
the parameters evaluated for all samples and the anchors used for each. For the visual assessment, the
first 20 s of the videos obtained using the RoboBEER were shown on a large screen to all participants
at the same time to ensure uniformity in the pouring and to evaluate all samples under the same
conditions. The questionnaire was displayed in a Samsung Galaxy View Tablet (Samsung Group,
Seoul, South Korea) using the Bio-sensory application [17,18,32,33]. All descriptors were rated using a
15 cm non-structured scale.

Table 1. Descriptors, abbreviation, and anchors used for the sensory descriptive test.

Descriptor Abbreviation Anchors

Foam Stability FStab Short time–Long time
Foam Height FHeight Short–High

Foam Texture (Bubble size) FText Small–Large
Color Intensity CInt Light–Dark

Clarity Clarity Haze–Clear
Aroma–Hops AHops Absent–Intense
Aroma–Spices ASpices Absent–Intense
Aroma–Floral AFloral Absent–Intense
Aroma–Fruity AFruity Absent–Intense

Aroma–Brown Sugar ABSugar Absent–Intense
Aroma–Yeast AYeast Absent–Intense
Aroma–Nuts ANut Absent–Intense

Aroma–Grains AGrain Absent–Intense
Viscosity MVisc Thin–Thick

Astringency MAstr Absent–Intense
Carbonation Mouthfeel MCarb Absent–Intense

Warming Mouthfeel MWarm Absent–Intense
Taste–Bitter TBitt Absent–Intense
Taste–Sweet TSweet Absent–Intense
Taste–Sour TSour Absent–Intense

Flavor–Hops FHops Absent–Intense

2.4. Statistical Analysis

Data obtained from the RoboBEER were analyzed using multivariate data analysis based on
the PCA with a customized code written in Matlab® R2018b. The factor loadings are shown as
supplementary material (Table S1). A correlation matrix (CM) was developed in Matlab® R2018b to
assess significant correlations (p < 0.05). Furthermore, all data were assessed for significant differences
using ANOVA and the least significant differences (LSD) post-hoc test (α = 0.05) in SAS® 9.4 software
(SAS Institute Inc., Cary, NC, USA). Mean and standard deviation (SD) values were obtained.

Two machine learning models developed using commercial beers with artificial neural networks
(ANN) [29,30] were fed with the 15 parameters obtained from the RoboBEER for the control. SWF and
SWC were used as inputs to predict the type of fermentation and to predict the intensity of ten
sensory descriptors (AHops, AYeast, AGrain, MVisc, MAstr, MCarb, TBitt, TSweet, TSour, and FHops).
Results were correlated with those obtained using the trained sensory panel to validate the accuracy
of the model for sensory descriptors. To assess the later, a Pearson linear correlation (y = ax + b) was
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developed, Statistical data such as the correlation coefficient (R), determination coefficient (R2), and
slope were obtained.

3. Results

3.1. Color and Foam-Related Parameters

Figure 3a shows the principal components analysis (PCA) of the foam and color-related
parameters and CO2 and alcohol gas release were obtained using the RoboBEER. It can be observed that
the principal component one (PC1) represented 50.73% of data variability while principal component
two (PC2) accounted for 21.05% with the PCA explaining a total of 71.78%. According to the factor
loadings (Table S1), the PC1 was mainly represented by the TLTF, MaxVol, LTF, and color parameter
a in the positive side and by GI and L on the negative side of the axis. On the other hand, the PC2
was primarily represented by BI and L on the positive side and by RI and a color parameter b on the
negative side of the axis. It is shown that the control samples were more represented by the FDrain
and green and yellow colors (GI and b) while two of the replicates of SWC had more GI, L, and BI.
The third replicate was more characterized by small, medium, and large bubbles and a red color (a and
RI). The SWF samples were more represented by the foam-related parameters such as MaxVol, LTF,
TLTF, SmBubb, LgBubb, MedBubb, and CO2.

(a) 

Figure 3. Cont.
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(b) 

Figure 3. Results from multivariate data analysis showing: (a) principal component analysis where the
x-axis represents the principal component one (PC1) and y-axis represents the principal component
two (PC2), samples in blue and triangles represent the control, those in green, and circles the treatment
of soundwaves during fermentation (SWF) and the purple squares the soundwaves during carbonation
(SWC), and (b) the correlation matrix shows only the significant correlations (p < 0.05) where the color
bar depicts the positive (blue) and negative (yellow) correlations between the different descriptors.
The values inside the boxes are the correlation coefficients (R). Abbreviations: MaxVol = maximum
volume of foam, TLTF = total lifetime of foam, LTF = lifetime of foam, FDrain = foam drainage,
L, a, b = color in CIELab scale, RI, GI, and BI indices of color in the RGB scale. SmBubb = small
bubbles. MedBubb = medium bubbles. LgBubb = large bubbles. OH = alcohol gas and CO2 = carbon
dioxide release.

Figure 3b shows the CM in which MaxVol had positive and significant correlation with TLTF
(R = 0.93), TLF (R = 0.89), LgBubb (0.71), and a negative correlation with FDrain (R = −0.74).
Furthermore, TLTF had a positive correlation with SmBubb (R = 0.70). Yet, as expected, the red
color from the RGB scale (RI) had a positive correlation with a red color (a) from the Lab scale
(R = 0.86). Likewise, there was a negative correlation between the blue color (BI) from the RGB scale
and b from the Lab scale (R = −0.81).

Table 2 shows the results of the ANOVA for the foam-related parameters measured with the
RoboBEER. It can be observed that there were significant differences in the number of small bubbles in
the foam with SWC being the highest and significantly different from the control. While there were
no significant differences for the other foam-related parameters, the MaxVol had a p-value of 0.055,
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which is close to the significant value. According to the SD, the SWF treatment was the most consistent
in MaxVol, TLTF, LTF, FDrain, and LgBubb since it had the lowest values compared to the control
and SWC.

Table 2. Means and standard deviation (SD) of the three treatments for the foam-related parameters.

Treatment MaxVol (mL) TLTF(s) LTF (mL s−1)
FDrain

(mL s−1)
SmBubb
(number)

MedBubb
(number)

LgBubb
(number)

Control 25.7 a ± 14.0 1647.6 a ± 1288.5 594.9 a ± 537.7 42.4 a ± 16.4 597.2 b ± 390.0 8.3 a ± 9.9 4.0 a ± 4.3
SWC 43.9 a ± 12.9 3243.7 a ± 1468.0 1552.3 a ± 1222.3 36.2 a ± 9.2 2519.5 a ± 1651.5 28.2 a ± 49.9 5.7 a ± 4.9
SWF 39.2 a ± 9.4 3005.5 a ± 1139.4 1100.7 a ± 482.8 34.4 a ± 3.1 1400.0 ab ± 1030.2 7.8 a ± 11.3 4.5 a ± 3.3

Abbreviations: MaxVol = maximum volume of foam, TLTF = total lifetime of foam, LTF = lifetime of foam, FDrain =
foam drainage, SmBubb = small bubbles, MedBubb = medium bubbles, LgBubb = large bubbles, SWC = application
of soundwaves during carbonation, and SWF = application of soundwaves during fermentation. a – b: Different
letters depict significant differences using the least significant difference (LSD) post-hoc test.

Table 3 shows the means and results from the ANOVA and LSD tests for the color parameters,
alcohol, and CO2. There were no significant differences in most of the parameters except for the +b
(yellow color) being the highest value and the blue color index (BI) with SWC being the highest in this
parameter. There were also significant differences between the SWF, which had the highest value as
well as significant differences between the control and SWC for the alcohol content in the liquid and
viscosity (Visc).
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3.2. Descriptive Sensory Evaluation

Results from the descriptive sensory evaluation are found in Figure 4. It can be observed that
there were non-significant differences in most of the sensory descriptors except for FHeight, FText, and
MVisc. The sample rated as the highest in foam (FHeight) and foam texture (FText) was SWC, which is
significantly different from and followed by SWF and control. Yet, SWF was the highest in viscosity
(MVisc), which was similar to the control and with significant differences with SWC. Although there
were no significant differences in AFruity, AFloral, and AGrain, the control and SWF had a higher
rating than SWC. The three samples were rated high in bitter taste with ratings between 8.6 and 8.9 in
a 15 cm intensity scale (Figure 4).

Figure 4. Spider chart showing the significant differences found for the intensity of sensory descriptors
using the least significant difference (LSD) post-hoc test where NS represents non-significant differences
and different letters depict significant differences. The numbers in the chart represent the mean values
at that position of the scale. SWC = application of soundwaves during carbonation, and SWF =
application of soundwaves during fermentation. Abbreviations of the descriptors can be found in
Table 1.

3.3. Validation of Machine Learning Models

The results from the 15 foam and color-related parameters obtained using the RoboBEER were fed
as inputs in an ANN model developed using commercial beers, which had a 92% accuracy as shown
by Gonzalez Viejo et al. [29] to predict the type of fermentation. The results obtained showed that
the three samples were classified as top fermentation (Table 4), which is accurate since IPA beers are
brewed using top fermenting yeast at an ambient temperature (~25 ◦C). However, the three treatments
especially SWC presented a few characteristics from spontaneous fermentation beers.
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Table 4. Results from the classification of the type of fermentation using an artificial neural network
model was developed using the color and foam-related parameters.

Treatment Top Bottom Spontaneous

Control 0.996 0.000 0.004
SWF 0.997 0.000 0.003
SWC 0.994 0.000 0.006

Abbreviations: SWC = application of soundwaves during carbonation and SWF = application of soundwaves
during fermentation.

Figure 5 shows the results from the validation of the second ANN model, which was also fed
using the 15 foam and color-related parameters obtained using the RoboBEER to predict 10 of the
sensory descriptors (AHops, AYeast, AGrain, MVisc, MAstr, MCarb, TBitt, TSweet, TSour, and FHops).
The model used to predict the values had a correlation of R = 0.91 and a determination coefficient
R2 = 0.83. It can be found from Gonzalez Viejo et al. [30]. For the samples developed in this study, the
correlation between the observed values obtained with the trained sensory panel and the predicted
values using the model was R = 0.85 with a determination coefficient R2 = 0.72 and a slope of 1.09.
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Figure 5. Correlation of the observed values (x-axis) of 10 sensory descriptors (AHops, AYeast, AGrain,
MVisc, MAstr, MCarb, TBitt, TSweet, TSour, and FHops) obtained using the trained sensory panel and
the predicted values (y-axis) using an artificial neural network model developed using the color and
foam-related parameters.

4. Discussion

4.1. Color and Foam-Related Parameters

The negative correlation found between MaxVol and FDrain (Figure 3b) was expected since
the FDrain is the excess of liquid drained by gravity from the wet foam to produce dry foam [34].
Therefore, the volume of foam decreases and the liquid volume increases [29]. In the PCA (Figure 3a),
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it was observed that there was a separation of the triplicates since one bottle of each had different
characteristics. However, for the SWF, the separation of the triplicates in the PCA and the SD of the
means (Tables 2 and 3) for most of the parameters was lower than the other treatments. Therefore, this
might be due to the soundwaves treatment applied during the fermentation process, which could make
the sample more uniform. According to Choi et al. [24], there is an increase in yeast viability when
applying ultrasound during the fermentation process and, therefore, an increase in alcohol content
in the beer. A similar effect was found in the present study, but, using audible sound, higher and
significantly different values were found between the SWF and the other treatments in alcohol content
in the liquid. Although non-significant, the MaxVol, TLTF, LTF, and SmBubb tended to be higher for
the SWC and SWF when compared to the control. Significant differences were found for viscosity
with SWF being the different treatment with the highest value followed by SWC. The viscosity of beer,
which is mainly defined by the amount of surfactant substances such as proteins and carbohydrates,
is directly linked with foam stability [35,36]. According to previous research, an ultrasound has
been used for de-foaming since it causes the foam to collapse as the ultra-high frequencies provoke
the coalescence of the bubbles, which causes bubbles breakage [37]. Another effect of ultrasound
is to increase bubble size until it implodes (cavitation) [25]. Therefore, according to the findings
in the present study, the effects of audible sound in foam and bubbles are opposite to those found
using ultrasound.

In beer, color is defined due to the Maillard reaction that occurs when malted barley is exposed
to high temperatures during the kilning process [38]. The yellow color is produced by melanoidins
before turning brown. However, a yellow color is maintained when the kilning process is mild.
During fermentation, the pH drops and produces a lighter color [35]. Results showed the control had a
slightly lighter color (L) and was significantly higher in yellow color (b) than SWF and SWC. However,
although non-significant, pH tended to be lower for the control (Table 3). Further studies are needed
to assess the cause of the difference in yellow color when applying audible sound to beer processing.

4.2. Descriptive Sensory Evaluation

The trained sensory panel was able to perceive significant differences in FHeight between the
three treatments (Figure 4). Similar to the data obtained using the RoboBEER for MaxVol, SWC was
rated as the highest in foam height followed by SWF and control. Significant differences were also
found for FText, which had SWC rated as the highest and the control as the lowest. The significant
differences found using the trained panel in MVisc coincide with those found using the viscometer
with SWF rated as the highest in viscosity. This shows that the panel had an appropriate training
since they were able to detect differences similar to the more objective measurements. There were
no significant differences found in any of the tastes, aromas, and flavors, which was desired since it
shows that there was no modification in the sensory profile that could be indicative that there was no
breakage of yeast cells with the use of audible sound. Authors such as Martin et al. [39] have found a
high yeast cell disruption when applying ultrasound to wine. Therefore, although further research
using different types of beer is needed, results from this study showed that using lower frequencies
(20–75 Hz) have an effect in foam and bubbles without disturbing the yeast cells, which is a potential
treatment that might be applied to beer processing to improve beer quality.

4.3. Validation and Testing of Machine Learning Models

The slightly lower value obtained for SWC from top fermentation and slightly higher value for
spontaneous fermentation are mainly due to the higher foam volume and stability, which are two
of the main characteristics from spontaneous fermentation beers. However, despite this, the three
treatments were classified as top fermentation with a very high accuracy (~99%). This shows that the
use of audible sound in beer processing either during fermentation or carbonation stages, even though
it improves the beer foamability and bubble size distribution, does not drastically change the nature
of the style of beer. Yet, the results obtained from the validation of the ANN model to predict the
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intensity of sensory descriptors showed that the use of the RoboBEER along with machine learning
modeling are potential tools to assess beer quality at the end of the production process to sample every
single batch as well as for new products or processing techniques testing in a more objective, effective,
and rapid manner when compared to traditional methods.

5. Conclusions

The use of audible sound is a potential treatment to implement in beer processing during the
fermentation or carbonation stages to improve the products’ quality by increasing the number of small
bubbles and increasing foamability and foam stability without modifying the aroma and flavor profile
of the specific beer style. However, further research is required to assess the effects of the application
of audible sound during both the fermentation and carbonation stages and to find the possible causes
for the significant differences in the color. Furthermore, in further research, it would be important to
assess the microbiological aspects to analyze yeast viability. The use of the robotic pourer, RoboBEER,
the computing vision algorithms and machine learning algorithms are accurate, objective, affordable,
and rapid. Tools are used to assess the beer quality in terms of its physical and sensory descriptors for
all existing products, new products, and processing techniques.

Supplementary Materials: The following are available online at http://www.mdpi.com/2306-5710/4/3/53/s1,
Table S1: Factor loadings of each descriptor in the principal components analysis for the principal components
one and two (PC1 and PC2).
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Abstract: Corn grits are commonly used adjuncts in the brewing industry in the United States,
especially for lager beers. The major challenge of using a high amount of adjuncts in the brewing
process is reduced levels of nutrients available to yeast during fermentation, which negatively affects
the growth and functioning of yeast, and results in sluggish fermentation. The problem is usually
addressed by adding external nutrition. The objective of this work was to assess the suitability of
corn components other than brewer’s grits to improve the fermentation rates. Water obtained after
soaking of corn germ, a vital source of lipids and soluble proteins, was investigated as a source of
nutrient during brewing of 40:60 (w/w) corn grits and malt mixture. Performance of water-soluble
nutrients from germ of two corn verities, yellow dent corn and flint corn, was investigated. Germ
soak water was added during corn grits slurry formation before mashing. The addition of germ water
increased the free amino nitrogen levels by 37% and Zn concentrations by 3.6 times in the wort, which
resulted in up to a 28% higher fermentation rate (between 48 to 72 h of fermentation) and shortened
the fermentation time from 120 to 96 h. The use of water obtained from the soaking of flint corn germ
resulted in a similar shortening of fermentation time. In another approach, nutrient-rich concentrated
germ soak water was directly added into the wort, which also resulted in similar improvements in
the fermentation rate as those from adding germ soak water during slurry formation. Due to leaching
of micronutrients and soluble proteins, the oil concentrations in the germ increased by more than
30%, enhancing its economic value.

Keywords: beer; adjuncts; fermentation rate; germ; nutrient; FAN

1. Introduction

Beer is the oldest and the most popular alcoholic beverage in the world. Since ancient times,
barley has been the most common raw material used for beer brewing. The use of barley provides
advantages of easy germination, high starch content, moderate protein content, high amylolytic
activity, and wort filtration assistance from husk [1,2]. However, due to increasing demands of sensory
modification and specialty beers, and cost optimization, brewing industries are increasing the use
of locally available less expensive unmalted grains, known as adjunct grains, in the beer brewing
process [3–5]. The use of locally available grains as adjuncts in the brewing process reduces the need
for importing malt, provides tax benefits (avoidance of malt tax in some countries), reduces the carbon
footprint, and supports local farmers [6]. Corn, wheat, rice, unmalted barley, oats, and sorghum
are some of the major adjunct grains used. High amounts of adjuncts are used to produce specialty
beers. A type of beer known as “happoshu” is produced in Japan that contains more than 75% rice as
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adjuncts [6]. The use of adjuncts also provides advantages of increased foam stability, various color and
flavor options, and health benefits (e.g., reduced gluten levels). The potential cost savings are highly
dependent on the type of adjunct used, local prices of adjunct grains, malt availability, and other costs
of productions [4]. Although the benefits of adjuncts have been realized and highlighted in the last
few years only, the use of adjuncts is as old as beer itself. For example, the Sumerians (Mesopotamia;
Lady Pu-Abi Queen of Ur (2600BC)) had a beer that was made from barley and emmer (ancient wheat).
Raw wheat has been used as an adjunct in the production of lambic (a type of spontaneous fermented
beer), in Belgium for centuries. Currently, 85% to 90% of all of the beer in the world is produced with
adjuncts used in the process [5].

Due to large availability, corn grits are the most commonly used adjuncts in the United States,
especially for lager beers. The use of 30% corn grits as adjuncts can reduce brewing costs by about
8% [4]. In addition to ready availability and lower cost, the use of corn adjuncts provides benefits in
the form of color adjustments and sweet and fuller flavor profile. The profile of fermentable sugars
and dextrins from enzymatic conversion corn-based adjuncts is similar to that of malt [2]. In 2017,
about 150 million bushels of corn were used in beverage alcohol production in the United States [7].

The use of adjuncts in brewing also has several disadvantages, including the need of a cereal
cooker, low enzymatic power, and reduced levels of nutrients for yeast. A cereal cooker is needed
for starch gelatinization and commercial enzymes are often used to overcome the limitation of lower
amylolytic activity [4]. The major limitation that use of adjuncts in the brewing process leads to is the
reduced levels of nutrients available to yeast during fermentation. Most of the adjuncts used in the
industry have relatively low protein levels, and replacement of malt with these adjuncts decreases
the concentrations of nitrogen-containing substances during fermentation, also known as protein
dilution in wort [5]. Nitrogen is an essential element required for yeast growth and synthesis of cellular
proteins and other cell compounds. Individual amino acids, small peptides, and some ammonium
ions produced from the proteolysis of proteins in barley malt are the main nitrogen sources for yeast
metabolism in wort [8]. Free amino nitrogen (FAN) level, collectively accounting for individual amino
acids and small peptides (dipeptides and tripeptides), are commonly monitored to ensure efficient yeast
cell growth in order to achieve a desirable fermentation performance [8]. Poreda et al. (2013) reported
that even with similar protein content in malt and corn grits, FAN concentration in wort obtained with
the addition of 20% grits was 7% lower (223 ppm vs. 240 ppm) compared to pure malt wort [4]. It has
been reported that proteins in adjuncts do not get hydrolyzed as efficiently as malt protein and result
in a deficiency of total soluble nitrogen in wort [4,9]. Partially hydrolyzed proteins remain insoluble
and are separated along with spent grains during filtration [5]. Other than reduced free nitrogen
levels, the use of high amounts of adjuncts also decreases the concentrations of other nutrients, such as
inorganic ions and vitamins, which required for efficient yeast growth [10]. The nitrogen limitation
and deficiency of micronutrients results in poor yeast viability, which leads to retarded or sluggish
fermentation [5,11]. To overcome this issue, the wort obtained during the use of high percentage of
adjuncts is usually supplemented with external nutrients in order to achieve an efficient fermentation.
The challenge of inefficient fermentation due to lack of yeast nutrition has also been reported in
the form of the use of dry-fractionated corn for fuel ethanol production [12,13]. During whole corn
fermentation, germ is a vital source of lipids and water-soluble proteins, which help in maintaining the
membrane integrity and yeast performance. However, flaking grits and brewer grits, obtained from
the dry-fractionation of corn, do not contain the germ fraction and have a relatively small amount of
protein, oil, and other micronutrients, compared to whole corn, which causes nutrient deficiency to
yeast during fermentation. The addition of yeast extract, lipid supplementation, and leaving some
germ (minimum 20%) behind, are some successful reported approaches to improving fermentation
of dry-fractionated corn during fuel ethanol production [12–14]. However, due to concerns of the
negative effects of lipids on beer flavor and foam, these approaches cannot be applied in the beverage
alcohol production process. One approach that could have potential application in the brewing process
is the extraction of soluble nutrients from corn germ by soaking and the use of that water in the process.
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The water would contain only soluble proteins and micronutrients but not lipids. Murthy et al. (2006)
reported that the use of germ soak water (2 h soaking) in the dry grind process resulted in higher final
ethanol concentrations (14.7% vs. 12.3% (v/v)) with a relatively small amount of residual glucose [14].
Juneja et al. (2018) reported that the use of water from germ soaked for a longer time (12 h instead
of 2 h) can result in complete fermentation (no residual glucose) and achieve a fermentation profile
similar to that obtained with the addition of excess B vitamins or protease enzymes [15]. Both of
these studies only reported the fermentation improvements but did not determine the actual nutrition
enhancement with the addition of germ soak water.

The objective of this study was to investigate the feasibility of using corn germ soak water to
improve yeast nutrition and fermentation rates in the brewing process using 40% corn grits adjuncts.
Performance of water-soluble nutrients from germ of two corn verities, yellow dent corn and flint corn,
was investigated. In addition to a new process development, individual amino acids, total FAN levels,
and other important nutrients (e.g., Zn concentrations) in the germ water and wort were determined
to enhance the understanding of the potential benefits of implementing this approach.

2. Materials and Methods

2.1. Materials

Degermed yellow brewing grits and corn germ (from yellow dent corn) samples were obtained
from a commercial corn dry milling plant (Bunge, Danville, IL, USA). Malt and flint corn samples were
obtained from a commercial brewing company (Anheuser-Busch InBev, Brouwerijplein 1, 3000 Leuven,
Belgium). Germ from the flint corn was separated using a 1 kg laboratory scale protocol outlined by
Rausch et al. (2009) [16]. All materials were stored at 4 ◦C in refrigerator until use.

Active dry brewing yeast Saflager S-189 yeast, used for the fermentation in the current study, was
obtained from the Fermentis-Lesaffre Yeast Corporation (Milwaukee, WI, USA). Novozymes (Bagsvaerd,
Denmark) generously donated Termamyl 120 L, Type L, a thermostable bacterial α-amylase preparation.

2.2. Corn Grits and Germ Composition

Starch content in the ground corn grits was determined by the modified acid hydrolysis method [17]
and was found to be 79.64%. About 1 g of ground corn grits were mixed with 50 mL of 0.4N HCl in
100-mL autoclavable glass bottles. After mixing, the slurry was autoclaved for 1 h at 126 ◦C in a laboratory
scale autoclave (Napco Model 9000D, Thermo Fisher 157 Scientific, Waltham, MA, USA). Glucose recovery
factors were determined using pure glucose and starch samples. After cooling, 1-mL aliquot samples
were withdrawn and centrifuged at 1500× g for 5 min (Model 5415 D, Brinkmann–Eppendorf, Hamburg,
Germany). The supernatants were analyzed in the HPLC for glucose concentration determination.

Germ (before and after soaking) samples were analyzed for oil (AOAC method 920.39) content by
a commercial analytical laboratory (Illinois crop improvement association, Champaign, IL, USA) [18].
All analyses were conducted in duplicates.

2.3. Brewing Process

A simple schematic of the lab-scale process used for the beverage alcohol production is shown in
Figure 1. Corn grits and malt samples were ground in a hammer mill (model MHM4, Glen Mills, 126
Clifton, NJ, USA) equipped with a 1.0-mm sieve. The moisture contents of the ground samples were
determined by drying flour at 135 ◦C for 2 h (Approved Method 44-19, AACC International 2000).
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Figure 1. Schematic of steps followed for fermentation of corn grits and malt.

Malt and corn grits were used in 60:40 ratios on a mass basis. Twenty grams (dry weight) of
ground corn grits was mixed with a calculated amount of deionized water (for control) or germ soak
water (for treatments) to form a slurry with 15% solids, and the pH of the slurry was adjusted to 5.8
(recommended optimum pH for the α-amylase). Germ soak water was obtained by soaking the germ
in deionized water (1:10, germ:water on a weight basis) at 52 ◦C for 12 h, with continuous shaking at
125 rpm. After soaking, the liquid was vacuum-filtered through Whatman No. 4 filter paper and used
to make corn slurry. The corn grits starch was liquefied by adding 10 μL of α-amylase and agitating
the slurry at 85 ◦C for 120 min using an infrared heated reactor system equipped with mini-stainless
steel tubular reactors that are locked onto a rotating carrousel (Labomat BFA-12, Werner Mathis AG,
Switzerland). Simultaneously, 30 g (dry weight) of ground malt was mixed with a calculated amount of
deionized water to form a mixture with 20% solids, and incubated at 45 ◦C for 30 min, with continuous
shaking at 125 rpm. After incubation, malt slurry was mixed with the liquefied corn slurry (cooled to
45 ◦C), and 60 mL of preheated water (45 ◦C) was added in the mixture. The mixture was heated to
70 ◦C at the heating rate of 1 ◦C per minute, and incubated for 60 min in the mini-stainless steel tubular
reactors using a Labomat incubator. The mash was cooled down to room temperature and filtered
using Whatman No. 4 filter paper to separate liquid (wort) and solids (spent grains). The filtered wort
was boiled on a heating plate for about 1 h and filtered again (using Whatman No. 4 filter paper) after
cooling. Yeast inoculum was prepared by sprinkling dry yeast in ten times the amount of water and
incubating at 23 ◦C for 20 min, followed by gentle stirring for 30 min. The yeast was inoculated in the
wort at the dosage of 100 g/hL, as recommended by the supplier. The fermentation was performed at
15 ◦C for 144 h with continuous agitating at 125 rpm. About 2 mL of samples were withdrawn every
24 h to monitor the fermentation.

2.4. Sample Analysis and Ethanol Production Rate

Samples collected during the fermentation process were analyzed for sugars and ethanol
concentrations using HPLC, equipped with an ion-exclusion column (Aminex HPX-87H, Bio-Rad,
Hercules, CA, USA). The mobile phase used was 50 mM sulfuric acid, eluted at 50 ◦C and 0.6 mL/min.
The amounts of sugars and ethanol were quantified using a refractive index detector and calibration
based on pure sugars and ethanol standards.
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Ethanol production rates (fermentation rates, %v/v-h) between different time points were
calculated using the following equation.

Ethanol production rate =
Et2 − Et1

t2 − t1
(1)

where Et2 and Et1 are ethanol concentrations (%v/v) at fermentation times t2 and t1 in hours.

2.5. Total Free Amino Nitrogen and Amino Acid Profile

Total free amino nitrogen (FAN) concentrations in various germ soak water samples were
determined using the ninhydrin colorimetric method (Official Method 945.30L, AOAC 1980) [19].
Quantification of individual amino acids concentration in germ soak water and wort was conducted at
the University of Missouri Agricultural Experiment Station Chemical Laboratories (ESCL) using the
AOAC official methods (Method 982.30 E(a,b)) [20].

2.6. Zinc Determination

Zn concentrations in the germ water samples were determined using ICP (Inductively Coupled
Plasma) analysis, performed in the Microanalysis Laboratory, School of Chemical Sciences at the
University of Illinois.

3. Results and Discussion

3.1. Effect of Germ Water Addition

The wort obtained from the processing of a mixture of malt and corn grits (60:40, weight basis)
as described in Figure 1, contained 1.1% glucose, 8% maltose, 1.5% maltotriose, and 0.25% fructose.
The sugar concentrations were similar in wort obtained from control samples (no germ water addition)
and wort from germ water supplemented mash. The sugar profile and concentrations from the current
process match closely with the values reported by Stewart et al. (2013) for 30% corn adjunct wort [10].
Figure 2 illustrates the comparison of ethanol concentration during fermentation, for control and germ
water addition. Use of germ soak water improved the fermentation profile significantly compared to
that of the control. Yeast preferred glucose over maltose during fermentation, and almost all of the
glucose was consumed in the first 48 h for both cases (Figure 3). Fermentation profiles of control and
germ soak water samples were almost similar in the first 48 h (until the presence of glucose). However,
maltose to ethanol conversion rates were higher for samples with the addition of germ soak water.
Almost all of the maltose was converted to ethanol in 96 h for the germ soak water samples, compared
to 1.47% (w/v) residual maltose for the control. The ethanol concentration of 6.32% (v/v) was 18.5%
higher compared to the control (5.33% (v/v)) after 96 h of fermentation. Ethanol production rates for
the germ water treatment were 16% and 28% higher than that of control between 24–48 and 48–72 h of
fermentation, respectively. Due to low sugar availability, fermentation rate drops after 72 h and it was
lower for the germ water treatment compared to the control after 96 h of fermentation. The higher
fermentation rate could be attributed to the improved functioning of the yeast due to the availability
of free amino acids and other nutrients present in germ soak water.

Total FAN concentrations found in the water obtained from germ soaked in various amounts
of water (germ:water weight ratios of 1:10, 1:5, 1:2.5) are presented in Table 1. As discussed earlier,
the brewing industry uses FAN concentration as an indicator of available assimilable nitrogen. Free
amino nitrogen is essential for the synthesis of structural proteins and enzymatic proteins required
for yeast growth and metabolic reactions [5]. Adequate levels of FAN are critical for the yeast to
perform efficient fermentation [8,21]. FAN is considered an index for predicting yeast viability, vitality,
and fermentation efficiency [10]. Water obtained from 1:10 germ:water (weight basis) ratio, used in
this experiment, contained 127 ppm of FAN. The use of this water to make corn mash resulted in total
FAN of 170 ppm (11.5 mg/L/Plato) in the wort, compared to 125 ppm (8.4 mg/L/Plato) in wort from
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the control. Heldt-Hansen et al. (2011) recommended a FAN concentration of 9–14 mg/L/Plato and
10–18 mg/L/Plato in unmalted barley (adjuncts) wort and all-malt worts, respectively, to achieve
comparable fermentation performance [5]. The FAN level in the wort with the use of germ soak
water is within the recommended range. The FAN concentrations in the germ water increased with
a decrease in water used while soaking. As the amount of soaking water was reduced to half (1:5
germ:water ratio), the FAN concentrations almost doubled. Similarly, for a 1:2.5 germ:water ratio,
the FAN concentration was more than 4 times that of water compared to the treatment with 1:10
germ:water soaking (Table 1). The effect of shaking during the germ soaking on FAN concentrations
was also investigated. No significant difference in FAN concentrations in the water obtained from
germ soaked with or without shaking was observed.

 
Figure 2. Ethanol concentration during fermentation without (control) and with addition of germ soak water.

 
Figure 3. Glucose and maltose concentration during fermentation without (control) and with addition
of germ soak water.
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Table 1. Free amino nitrogen (FAN) concentrations in the water obtained from germ soaked under
various conditions.

Soaking (Germ:Water by Weight) Concentration (ppm)

1:10 127 ± 8
1:5 250 ± 12

1:2.5 517 ± 12

Other than reducing overall free nitrogen levels, the use of adjuncts is believed to alter the
proportion of the various amino acids in the wort, which is also important for yeast functioning [5].
Figure 4a illustrates the concentration of amino acids in the germ water. Correspondingly, the amino
acid concentrations for wort from control and germ water supplemented samples are provided
in Figure 4b. Total amino acid concentrations in germ water, wort from control, and wort from
germ water supplemented samples were found to be 100 ppm, 115 ppm, and 146 ppm, respectively.
The concentrations of lysine and leucine, amino acids categorized in Group A (fast absorption) and
Group B (intermediate absorption), were double for wort in germ water supplemented samples
compared to wort from control samples. Other than these, the amounts of phenylalanine and
hydroxylysine were also double in wort from germ water supplemented samples.

 

Figure 4. Amino acid concentrations in (a) liquid obtained after germ soaking and (b) wort from wort
obtained from control samples and from germ water supplemented samples. Data in Figure 4a is
average of two replications.
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Other than FAN, some trace metals—such as Zn, which is considered to be an important
trace metal that plays an essential structural and functional role in yeast cells—act as a modulator
of environmental stress and are important for the fermentation process [22,23]. Although Zn
concentrations are at a sub-ppm level in the wort, even these small amounts are critical for efficient
fermentation of wort [24]. Zinc concentrations below 0.1 ppm can lead to fermentation problems,
especially decreased specific rate of fermentation [24,25]. The germ water used in this experiment
(from 1:10 germ:water ratio) contained 1.49 ppm of Zn. The use of this water in the brewing process
resulted in a Zn concentration of 0.33 ppm in the wort, compared to 0.09 ppm in wort from the control.
The adequate levels of Zn in the wort from the germ water supplemented process can be another factor
for the observed increased fermentation rates.

3.2. Effect of Germ Water Addition from Flint Corn Germ

For real application of this approach (using water-soluble nutrients from corn germ) in the
brewing industry, it is critical to ensure the availability of the nutrient source. As the types of corn
used vary among industries, it was important to investigate the performance of germ obtained from
various corn types. The effect of water obtained from the soaking of germ from the fractionation of
flint corn was also investigated on the fermentation performance of lager yeast. Germ was separated
from the flint corn milled employing a slightly adapted laboratory-scale (1 kg) dry-milling procedure,
outlined by Rausch et al. (2009). About 40 to 50 g of germ was obtained from the milling of 1 kg of corn.
Germ water collection and fermentation procedures were similar to that performed with the yellow
dent corn germ. Sugar consumption and ethanol production profiles during the fermentation are
presented in Figure 5. Similar to the case of yellow dent corn germ, the use of water from the soaking
of flint corn germ improved the fermentation of maltose significantly compared to that of the control.
The fermentation profiles of the control and germ soak water samples were almost similar in the first
48 h, until all of the glucose was consumed. The ethanol production rate for the germ water treatment
was 16% and 42% higher than the control between 24–48 and 48–72 h of fermentation, respectively.
Almost all of the maltose and maltotriose were consumed in 96 h of fermentation in the case of germ
soak water treatment contrary to 1.31% and 0.38% (w/v) residual maltose and maltotriose, in the case
of control. Due to low sugar availability, the fermentation rate dropped and was lower than the control
after 72 h and it was almost zero after 96 h of fermentation. Although all the maltose was consumed in
96 h in both cases, the increase in fermentation rate between 48–72 h in the current case was compared
to that observed with the addition of water obtained from yellow dent corn germ (42% vs. 28%
increase). This could be due to the availability of relatively higher free nitrogen. Water obtained from
the soaking of flint corn germ at 1:10 germ:water (weight basis) ratio contained 195 ppm of FAN, which
was significantly higher than the water from dent corn germ (127 ppm). The total FAN concentration
in wort with the use of flint corn germ was 193 ppm (13.1 mg/L/Plato), compared to 128 ppm (8.7
mg/L/Plato) in the control of this experiment, and 170 ppm (11.5 mg/L/Plato) in wort from the
addition of yellow dent corn germ. The relatively higher amount of FAN in the water from flint corn
germ compared to dent corn germ could be due to genetic differences between two corn verities and
different quality germ obtained from laboratory scale milling (for flint corn) and commercial milling
(for dent corn). The high quality of the flint corn germ was also indicated by higher oil (28.8 vs. 21.6%,
dry basis) and protein (17.3% vs. 15.5%, dry basis) contents in the flint corn germ compared to the
yellow dent corn germ.
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Figure 5. Ethanol (% v/v), glucose (% w/v), and maltose (% w/v) concentrations during fermentation
without (control) and with the addition of flint corn germ soak water.

3.3. Use of Concentrated Germ Water in Wort

In the previous experiments, germ water was added during the slurry formation before mashing
(Figure 1). To explore the possibility of using these water-soluble nutrients without making many
changes in the currently used brewing process, another approach of adding germ water directly in
the wort was also investigated. However, the addition of germ water in wort would result in dilution.
To provide the same amount of nutrients (as in previous experiments), the addition of germ water
(1:10 germ to water ratio soaking) would result in about 40% dilution. This problem was addressed
by using germ soak water containing a higher concentration of nutrients. The total FAN in the water
obtained from 1:2.5 germ to water ratio (referred as 4X water in the manuscript) was a little more than
4 times the FAN concentration in water from 1:10 germ to water ratio (referred as 1X water in the
manuscript) during soaking (Table 1). Due to the high amount of FAN, a relatively small amount of
this water would be required to be added to the wort, which would reduce the dilution (only 10%).
Further concentration (using less than 2.5 times water) was not possible due to insufficient water
available to soak all of the germ. Germ (from yellow dent corn) was soaked in water (1:2.5 germ to
water ratio, mass basis) and incubated at 52 ◦C for 12 h with continuous shaking at 125 rpm. In this
experiment, 27 mL of this water was mixed in 265 mL wort, before the boiling step. The rest of the
steps were similar to the previous process, as explained in Figure 1. In addition to the current treatment
(adding 4X water in wort) and control (no germ water), another treatment (1X water) following the
original process (adding germ water from 1:10 germ to water ratio to make corn mash) was also
conducted for comparison purposes. To keep the wort concentrations similar in all three cases, 27 mL
of deionized water was added in the wort before boiling for control and 1X water. All treatments were
conducted in replication.

Figure 6 illustrates the ethanol production rate comparison for three cases: (i) control, (ii) use
of germ soak water to make corn mash (1X water), (iii) use of concentrated (4X) germ soak water
in the wort. The addition of concentrated germ soak water in wort increased the fermentation rate
compared to the control. Both treatments (the addition of 4X water in wort or making corn slurry with
germ water) were equally efficient in increasing the fermentation speed. The ethanol concentration
was almost the same for both treatments at all the time points. Less than 0.1% (w/v) maltose was
observed after 96 h of fermentation, compared to 0.73% (w/v) for the control, for which the maltose
concentration was found to be 0.1% after 120 h of fermentation. The fermentation rate was 30% higher
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than the control between 48 and 72 h of fermentation. These results indicate that germ water can be
concentrated and added to the wort to fasten the fermentation.

 

Figure 6. Rate of ethanol production during fermentation for three cases: (i) control, (ii) use of germ
soak water in corn mash, (iii) use of concentrated germ soak water in wort. Data in the graphs is the
average of two replications.

3.4. Change in Composition of Germ

Corn germ is valuable for its oil content, which directly decides its market value [26].
The extraction of soluble protein and other micronutrients during soaking would increase the oil
content in germ and improve its economic value. The oil content of soaked dent corn germ increased
by 33% (21.6% to 28.7%, dry basis) compared to raw germ. The increase in oil content of flint corn germ
was found to be 29%. Due to increased oil content, the germ would have a higher market price, which
could compensate the cost required for soaking and filtration to make germ soak water. The protein
content in soaked dent corn germ (14.7%) was 5% less compared to raw germ (15.5%). This reduction
in protein content further indicates that soluble proteins were extracted during germ soaking, which
enhanced the yeast functioning and fermentation speed.

4. Conclusions

Due to low protein content, the use of high amounts of corn grits as adjuncts causes nutrient
deficiency to yeast during fermentation and leads to sluggish fermentation. This work developed
economical process strategies to improve the fermentation rate by providing these nutrients from
cereal-based origin. Water obtained from the soaking of corn germ was used as a nutrient source to
improve yeast performance during the brewing process using 40% corn grits as adjuncts. The addition
of germ water improved the FAN levels in the wort, which enhanced yeast functioning and shortened
the fermentation time from 120 to 96 h. The water obtained from flint corn germ had higher amounts of
FAN compared to dent corn germ, however, the total maltose consumption time was 96 h in both cases.
The study also demonstrated that the nutrients can be concentrated up to 4 times by proportionally
decreasing the degree of dilution during the soaking process, and the concentrated water can be added
directly to the wort to improve fermentation speed. Soaking of germ increased oil content by 33% in
the germ, improving its market value.
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Abstract: The aromatic complexity of craft beers, together with some particular practices (use of
small vessels, dry hopping, etc.), can cause more oxidation associated with pre-maturated colloidal
instability, Madeira off-flavors, bitterness decrease, and aroma loss. As bottle refermentation is widely
used in Belgian craft beers, the aim of the present work is to assess how this practice might impact their
flavor. In fresh beers, key flavors were evidenced by four complementary techniques: short-chain
fatty acids determination, esters analysis, XAD-2 extract olfactometry, and overall sensory analysis.
In almost all of the fresh beers, isovaleric acid was the sole fatty acid found above its sensory threshold.
Selected samples were further analyzed through natural aging at 20 ◦C. The presence of yeast in the
bottle minimized the trans-2-nonenal released from Schiff bases and proved less deleterious than
suggested by previous studies with regard to fatty acid release and ester decrease through aging.
Furthermore, according to the yeast species selected, some interesting terpenols and phenols were
produced from glucosides during storage.

Keywords: craft beer; bottle refermentation; AEDA; short-chain fatty acids; beer aging

1. Introduction

Worldwide, over the last few decades, the production of craft beers has grown significantly,
with new commercial products launched onto the market every day. Craftsmen can bring distinctive
flavors to their beers by working with special malts, dual-purpose hop varieties (with or without
dry hopping), spices, and/or specialty yeasts. These are known to impart fruity esters [1,2] and, in
some cases, typical phenolic flavors [3] (e.g., 4-vinylguaiacol brought by phenolic off-flavor (POF(+))
yeasts). In addition, odorous heterocyclic compounds can be issued from colored malts [4,5], while hop
terpenols and polyfunctional thiols bring pleasant citrus and exotic flavors to late- and dry-hopped
beers [6–8]. Unfortunately, the use of small vessels and craftsmanship, by definition, lead to a higher
risk of oxidation and shelf-life decrease.

Beer aging has been the focus of much interest for decades, with the development of worldwide
beverage exchanges. The Dalgliesh plot [9] describes aromatic changes occurring in lager beers
during storage. A linear decrease in bitterness (degradation of isohumulones and/or humulinones)
coincides with an increase in sweet aroma and toffee flavor, together with the well-known cardboard
taint (caused by trans-2-nonenal) [10–13] and ribes off-flavor (a catty smell linked to the presence of
3-sulfanyl-3-methylbutyl formate) [14,15]. Aging of specialty beers is even more complex, with defects
such as Madeira off-flavor [16], phenolic perception [17], a change in hoppy aromas [18], and a detected
ether taint [19].

Bottle refermentation has been widely used by Belgian craft brewers for its carbonation effect,
giving beer the desired effervescence, and also for the associated oxygen consumption, which limits
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oxidation and the development of related off-flavors [20–22]. About half a million yeast cells per mL
are pitched into the beer before bottling, in the presence of added fermentable sugars. The beer is then
kept in a warm room (20–28 ◦C) from two to four weeks.

According to Saison et al. [23], however, refermentation can be damageable, causing loss of
flowery, fruity, and ester notes that are highly appreciated by consumers. Long storage can lead to
yeast autolysis with release of esterases (deleterious to fruity esters) and to excretion of amino acids,
peptides, and short-chain fatty acids [24–28]. When Brettanomyces strains are present in the bottle,
production of isovaleric, hexanoic, and octanoic acids is especially promoted [29–31].

The aim of the present paper was to assess how bottle refermentation impacts the flavor
properties of Belgian craft beers. As bottle refermentation was already known to significantly
improve the release of free-hop thiols from cysteine and glutathione conjugates [22], we decided to
investigate only non-dry-hopped commercial samples. First, short-chain fatty acids were investigated
in 16 bottle-refermented and two unrefermented Belgian craft beers to determine whether they were
present above their sensory threshold. In a few selected samples, more flavors were then analyzed
through natural aging at 20 ◦C in the dark. Esters (isoamyl acetate, ethyl hexanoate, and ethyl octanoate)
were quantitated by headspace-GC-FID, and most trace aromas were monitored by GC-olfactometry
after XAD-2 aroma extraction. Lastly, some cardboard defects (trans-2-nonenal) and a few other
changes in aroma were evidenced by overall sensory analysis.

2. Materials and Methods

2.1. Materials

Isoamyl acetate (99%), ethyl hexanoate (99%), ethyl octanoate (99%), 2-pentanol (98%), isovaleric
acid (99%), hexanoic acid (≥98%), octanoic acid (≥98%), nonanoic acid (99%), and decanoic acid
were purchased from Sigma Aldrich GmbH (Bornem, Belgium); n-hexanol from Acros Organics
(Geel, Belgium); ethanol (99.8%) from Merck (Darmstadt, Germany); XAD-2 resin from Supelco Inc.
(Bellefonte, United States of America); and sodium chloride, copper sulfate (II), and diethyl ether from
VWR International (Leuven, Belgium). Authentic standard flavor compounds for olfactometry were of
pure grade (purity >98%) from Sigma-Aldrich. Milli-Q water was used (Millipore, Bedford, MA, USA).

2.2. Beer Samples and Aging Procedure

A total of 18 commercial, top-fermented, late-hopped beers (here listed as A–R for reasons of
confidentiality) were kindly supplied by Belgian craft brewers. All were bottle-refermented, except
beers A and B. Six representative samples (A–F), same lot as above, were further selected for more
in-depth investigations through natural aging (20 ◦C in the dark). The main characteristics of these
beers are depicted in Table 1.

Table 1. Main characteristics of the six selected craft beers.

Beer
Alcohol
(% vol)

Real Extract
(◦P)

pH
Bitterness

(BU)
Color
(EBC)

Sensorial Characteristics

A 6.5 4.6 4.2 15 12.5 Butter, apple, hop, green
B 12.3 6.6 4.4 20 25 Alcohol, banana, cheese, phenols

C * 7.9 5.1 4.5 21 16.5 Butter, sulfur, hop
D * 8.8 5.8 4.4 14 66 Malt, sulfur, green
E * 8.1 4.2 4.4 29 14.5 Lemon, banana, apple, spicy, phenols
F * 7.5 3.7 4.5 24 15.5 Orange, pineapple, spicy, phenols

*: with bottle refermentation.
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2.3. Short-chain Fatty Acid Analysis

First, 100 μL of internal standard (IST—1000 mg/L nonanoic acid) was added to 10 mL of beer
in a 20-mL vial flask, which was immediately closed and shaken for 10 s. Then, 300 μL of n-hexanol
was added before shaking again for 5 min. Compounds were recovered in assembled n-hexanol
fractions after 2 successive centrifugations (14,000 rpm) [32]. Next, 1 μL of extract was analyzed on an
Agilent 6890N gas chromatograph equipped with a split injector maintained at 200 ◦C (split ratio = 73.6).
The FID (flame ionization detector) was set at 220 ◦C. Compounds were injected into a CP-Wax 58 column
(Agilent, 60 m × 0.32 mm i.d., 0.5-μm film thickness). The carrier gas was nitrogen, and the pressure was
set at 60 kPa. The oven temperature was programmed to rise from 125 to 140 ◦C at 8 ◦C/min and then to
180 ◦C at 15 ◦C/min. Quantitation was done by determining the relative response of each compound to
IST (done by standard addition to beer B). Results are expressed as the average of duplicates.

2.4. Static Headspace Analysis of Esters

Prior to analysis, the beers were stored for 2 h at 4 ◦C to avoid excessive foaming. The whole
procedure was carried out in a cold room (4 ◦C). Then, 40 μL of internal standard (IST, 2500 mg/L
2-pentanol) and 1.9 g of sodium chloride were added to 5 mL of beer in a 20-mL screw vial flask, which
was closed immediately and kept closed until analysis. A total of 500 μL of extract were analyzed on a
Thermo Finnigan Trace gas chromatograph, equipped with a splitless injector maintained at 250 ◦C;
the split vent was opened 1 min post-injection. The FID detector was set at 260 ◦C. Compounds were
injected into a VF-Wax MS column (Agilent, 60 m × 0.32 mm i.d., 0.5-μm film thickness). The carrier
gas was nitrogen, and the pressure was set at 100 kPa. The oven temperature was programmed to
rise from 40 to 140 ◦C at 8 ◦C/min and then to 180 ◦C at 15 ◦C/min. Quantitation was performed by
standard addition (relative response of each compound to IST). Results are expressed as the average
of duplicates.

2.5. Flavor XAD-2 Extraction and Gas Chromatography—Olfactometry Analytical Conditions

An extraction procedure based on that of Lermusieau et al. [33], was used to recover aroma
compounds from beer. First, 4 g of XAD-2 resin were added to 50 mL of beer in a 250-mL flask.
The flask was sealed with a Teflon-lined cap and shaken in the dark for 2 h at 200 rpm. After extraction,
the contents were poured into a glass column with a coarse frit and Teflon stopcock, and the liquid
was drained off, leaving a small bed of resin, which was further rinsed with 100 mL of distilled
water (4 × 25 mL). Aroma compounds were then eluted with 40 mL of diethyl ether (2 × 20 mL).
The extract was dried with Na2SO4 and concentrated to 0.5 mL in a Kuderna-Danish evaporator at
39 ◦C. A Chrompack CP9001 gas chromatograph equipped with a splitless injector maintained at 250 ◦C
was used for the olfactometry analyses, and the split vent was opened after 0.5 min. Compounds were
separated using a wall-coated open-tubular (WCOT) apolar CP SIL5 CB capillary column (Agilent,
50 m × 0.32 mm, 1.2-μm film thickness) connected to a GC-odor port at 250 ◦C. The eluent was diluted
with a large volume of air (20 mL/min) previously humidified using aqueous copper (II) sulfate solution.
The oven temperature was programmed from 36 to 85 ◦C at 20 ◦C/min, to 145 ◦C at 1 ◦C/min, to 250 ◦C
at 3 ◦C/min, and then to remain constant at 250 ◦C for 30 min. A volume of 1 μL of extract was injected.
Sniffing was performed by two experienced panelists. Serial dilutions were prepared from the initial
XAD-2 extract at a ratio of 1:3n in diethyl ether. The dilution factor (FD) was calculated as 3n, n + 1
being the number of dilutions (factor 3) required for no odor to be perceived (Log3FD values in Table 2
equal to 0, 1, 2, . . ., 10, nd if no odor detected for the undiluted extract). The difference between two
Log3FD becomes significant when above 1.
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Table 2. GC-olfactometric analysis of XAD-2 extracts issued from beers A, C, E, and F (fresh and after 6
months of storage at 20 ◦C). RI: retention index; nd: not detected.

Log3FD

A C E F

Compound RI Odor Fresh Aged Fresh Aged Fresh Aged Fresh Aged

Ethyl butyrate 778 Red fruits 1 1 4 6 nd 3 3 4

3-Methyl-2-
buten-1-thiol 809 Garlic, hoppy 7 8 7 8 10 10 10 10

Isovaleric acid 811 Sweat, rancid 2 2 2 2 4 5 5 5

2-Methylbutanoic
acid 828 Sweat 2 2 2 2 4 5 3 6

2-Methyl-3-
furanthiol 850 Broth 5 7 5 2 10 10 10 10

Isoamyl acetate 854 Fruity, banana 1 1 2 2 nd nd nd nd

Ethyl hexanoate 979 Fruity, candy 2 2 4 4 3 4 4 4

Furaneol 1037 Cotton candy 4 5 6 7 5 5 4 7

Linalool 1089 Flowery,
coriander 7 6 6 7 nd nd 5 2

trans-2-Nonenal 1127 Cardboard nd 6 nd 5 3 4 4 5

Citronellol 1216 Fruity, flowery nd nd 1 4 3 2 nd 8

4-Vinylguaiacol 1294 Clove 3 4 4 4 5 6 4 6

γ-Nonalactone 1327 Coconut nd 3 0 4 1 2 3 5

Vanillin 1365 Vanilla 0 nd 6 7 nd 4 1 5

β-Damascenone 1374 Fruity, apricot 2 3 4 5 4 4 3 6

4-Vinylsyringol 1543 Clove 3 3 0 3 2 3 5 5

2.6. Sensory Analyses

A group of 10 panelists (all trained scientists, non-smokers, and regular consumers of craft beers,
including three women and seven men aged 23–55 years) scored four aging attributes on a scale of
0–4: cardboard, bread, cooked fruit, and dried fruit. A score of 0 meant the panelist did not detect the
aroma, whereas a score of 4 meant the aroma was strongly perceived.

3. Results and Discussion

3.1. Short-Chain Fatty Acids

GC analyses revealed considerable variability of short-chain fatty acid profiles among fresh
Belgian craft beers (Figure 1). Most samples contained isovaleric acid (Figure 1a) at a concentration
above its threshold (1 mg/L) [34]. In all cases, on the other hand, hexanoic (Figure 1b), octanoic
(Figure 1c), and decanoic acids (Figure 1d) were below their sensory thresholds (10, 10, and 5 mg/L,
respectively [35]). A good correlation (R2 = 0.72) was found, as expected, between the concentrations
of hexanoic acid and octanoic acid (Figure 2).
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Figure 1. Concentrations of isovaleric (a), hexanoic (b), octanoic (c), and decanoic (d) acids (mg/L) in
18 fresh Belgian craft beers. The dotted lines in each graph indicate the compound sensory threshold (Thr.).
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Figure 2. Correlation between the concentrations (mg/L) of octanoic acid and hexanoic acid (in eighteen
fresh beers: A–R).

In a representative set of beers (A–F), short-chain fatty acids were determined after 3, 6, and
12 months of natural aging (Figure 3). No increase in isovaleric, hexanoic, octanoic, or decanoic acid
concentration was observed over the aging period. Worth mentioning, however, is the significant
decrease in octanoic acid in beer C (Figure 3C). This was the only beer tested here in which the
concentration of this compound reached 9 mg/L before aging. In conclusion, bottle refermentation
does not cause significant release of fatty acids through natural aging and thus does not negatively
impact flavor.
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Figure 3. Concentrations (mg/L) of isovaleric acid (�), hexanoic acid (�), octanoic acid (�), and decanoic
acid (�) in fresh beers (A–F) and their evolution during natural aging (3, 6, and 12 months). Variation
coefficients under 5%.

3.2. Esters

Esters were determined on the same sampling of craft beers (A–F) in the course of one year of
natural aging (Figure 4). For fresh beers, a strong correlation (R2 = 0.86) was again observed between
the concentrations of ethyl hexanoate and ethyl octanoate (Figure 5a), although these ester levels did not
correlate well with the hexanoic and octanoic acids concentrations (Figure 5b,c). Ethyl hexanoate and
ethyl octanoate, were found very close to their sensory thresholds (0.2 and 0.9 mg/L, respectively [36])
in all fresh samples and remained relatively stable during aging, with no significant difference between
the unrefermented (A and B) and bottle-refermented (C–F) samples. On the other hand, the fruity
banana-like isoamyl acetate was found to be partially degraded throughout the year of storage in all
beers except B (characterized by a much higher level of ethanol, Table 1). The similar trend observed in
A and C–F confirms that esters can be broken down even without the release of esterases upon yeast
autolysis. In all of the beers, the isoamyl acetate concentration remained above the sensory threshold
(0.5 mg/L [37]) after one year.

120



Beverages 2019, 5, 39

Unrefermented 

 
Bottle-refermented 

 

 

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
nt

ra
ti

on
 (m

g/
L) A Isoamyl acetate

Ethyl hexanoate
Ethyl octanoate

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
nt

ra
ti

on
 (m

g/
L) B

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
nt

ra
ti

on
 (m

g/
L) C

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
n

tr
at

io
n

 (m
g/

L
) D

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
nt

ra
ti

on
 (m

g/
L) E

0.0

1.5

3.0

4.5

6.0

Fresh 3 months 6 months 12 months

C
on

ce
n

tr
at

io
n

 (m
g/

L
) F

Figure 4. Concentrations (mg/L) of isoamyl acetate (�), ethyl hexanoate (�), and ethyl octanoate (�) in
fresh beers (A–F) and their evolution during natural aging (3, 6, and 12 months). Variation coefficients
under 5%.
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Figure 5. Correlations between the concentrations (mg/L) (a) ethyl octanoate and ethyl hexanoate,
(b) ethyl hexanoate and hexanoic acid, and (c) ethyl octanoate and octanoic acid (in six fresh beers: A–F).

3.3. Olfactive Analysis of XAD-2 Extracted Flavors

Samples A, C, E, and F (all blond beers to avoid the complexity of special malt-derived
molecules largely investigated elsewhere [5,17]) were subjected to XAD-2 resin extraction followed
by GC-olfactometric (GC-O) analysis. Beer odor intensities were determined by the aroma extract
dilution analysis (AEDA) [38]. To focus on beer flavor-active compounds, we list in Table 2 only those
compounds whose FD was as high as that of ethyl hexanoate, an ester known to be present in the
samples at concentrations close to its sensory threshold.

3-Methyl-2-buten-1-thiol (Log3FD = 7–10, a pleasant hoppy flavor here but also known as skunky
at a much higher level [22]), 2-methyl-3-furanthiol (Log3FD = 2–10, broth), furaneol (Log3FD = 4–7,
cotton candy), and linalool (Log3FD = 2–7, flowery/coriander) emerged as the most potent odorants in
all four beers. The persistent detection of 4-vinylguaiacol (Log3FD = 3–6) in all samples indicates that
POF(+) strains had been used by the brewers.

As already mentioned above, even in bottle-refermented beers (C, E, and F), isoamyl acetate
(Log3FD = 1–2, undetectable in E and F due to the strong previous odor) and ethyl hexanoate
(Log3FD = 2–4) showed good stability through aging, with no significant changes in FD. On the other
hand, the red-fruit ethyl butyrate was produced during storage in the bottle-refermented beers (from
not detected to Log3FD = 3 in beer E and from 4 to 6 in beer C).

Although trans-2-nonenal showed an increase in all four beers during aging, the highest FD jump
was observed for the unrefermented A (from not detected to Log3FD = 6).

An interesting result was the strong increase, especially in aged beer F, of compounds suspected
to be released during storage through glucoside hydrolysis: citronellol, 4-vinylguaiacol, vanillin, and
β-damascenone [39,40]. In this case, the selected yeast clearly brought new flavors to F, explaining why
some consumers may prefer the six-month-aged beer. The efficiency of the yeast β-1,3-glucanase or
β-glucosidase should be taken into account to predict the amounts in which aglycons can be released
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through aging. Linalool (detected in fresh beers A, C, and F) was the sole hop terpenol found to
decrease in beer F (Log3FD from 5 to 2), suggesting yeast terpenol biotransformations in the bottle [41].

3.4. Sensory Analyses

Beers A–F were investigated by a trained panel while fresh and then after 3 and 6 months of
storage. As suspected from the GC-olfactometry results, unrefermented beers A and B developed
a relatively intense cardboard flavor (trans-2-nonenal), already strongly perceived after 3 months
(Figure 6). Despite the increase in FD for furaneol and β-damascenone after 6 months of storage, the
attributes bread, dried fruit, and cooked fruit remained absent or relatively weak.
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Figure 6. Spider diagram of cardboard flavor intensity in fresh (�), and naturally aged (3 and 6 months)
beers (A–F).

4. Conclusions

Bottle refermentation of craft beers can be promoted for its ability both to protect beer against
oxidation, (this protection is required to avoid colloidal instability, bitterness decrease, and aroma
loss) and to avoid the accumulation of trans-2-nonenal through enzymatic reduction to nonenol and
nonanol. Moreover, the presence of yeast in the bottle proved not so deleterious as it regards fatty acid
excretion and ester hydrolysis during the first year of storage, while leading to the release of interesting
terpenols and phenols from aglycons.
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