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Preface to ”Learning to Understand Remote Sensing

Images”

Accurate and efficient understanding of remote sensing data is an increasingly important

issue which can make significant contributions to global environmental analysis and economic

development. In this book, we introduce the challenges and advanced techniques in the field of

remote sensing image understanding. This area has attracted a lot of research interest, and significant

progress has been made during the past years, particularly in the optical, hyperspectral, and

microwave remote sensing communities.

Our topic mainly focuses on learning to understand remote sensing images. We discuss some

critical problems in major practical applications including image classification, object detection,

image segmentation, image correction, hyperspectral unmixing, change detection, etc. We report the

state-of-the-art of machine learning techniques and statistical computing methods to analyze remote

sensing data, such as deep learning, graphical models, sparse coding, and kernel machines.

Throughout this book, it is assumed that the readers have a basic background in machine

learning and remote sensing. We believe the reported advanced techniques can provide considerable

value for researchers in teaching and scientific research.

This book is published with the tireless efforts of countless contributors. We thank each author

for sharing their research findings with us. We thank the editors and the publishers for their time and

support. We hope that through our efforts, more people can contribute to the development of remote

sensing.

Qi Wang

Special Issue Editor
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Abstract: Remote sensing (RS) scene classification is important for RS imagery semantic interpretation.
Although tremendous strides have been made in RS scene classification, one of the remaining open
challenges is recognizing RS scenes in low quality variance (e.g., various scales and noises). This paper
proposes a deep salient feature based anti-noise transfer network (DSFATN) method that effectively
enhances and explores the high-level features for RS scene classification in different scales and
noise conditions. In DSFATN, a novel discriminative deep salient feature (DSF) is introduced by
saliency-guided DSF extraction, which conducts a patch-based visual saliency (PBVS) algorithm using
“visual attention” mechanisms to guide pre-trained CNNs for producing the discriminative high-level
features. Then, an anti-noise network is proposed to learn and enhance the robust and anti-noise
structure information of RS scene by directly propagating the label information to fully-connected
layers. A joint loss is used to minimize the anti-noise network by integrating anti-noise constraint and
a softmax classification loss. The proposed network architecture can be easily trained with a limited
amount of training data. The experiments conducted on three different scale RS scene datasets show
that the DSFATN method has achieved excellent performance and great robustness in different scales
and noise conditions. It obtains classification accuracy of 98.25%, 98.46%, and 98.80%, respectively,
on the UC Merced Land Use Dataset (UCM), the Google image dataset of SIRI-WHU, and the SAT-6
dataset, advancing the state-of-the-art substantially.

Keywords: scene classification; saliency detection; deep salient feature; anti-noise transfer network;
DSFATN

1. Introduction

Many RS images have been accumulated due to the rapid development of Remote Sensing
(RS) sensors and imaging techniques. The interpretation of such huge amount of RS imagery is a
challenging task of significant sense for disaster monitoring, urban planning, traffic controlling and
so on [1–5]. RS scene classification, which aims at automatically classifying extracted sub-regions
of the scenes into a set of semantic categories, is an effective method for RS image interpreting [6,7].
However, the complex spatial arrangement and the variety of surface objects in RS scenes make the
classification quite challenging, especially for scenes in low quality (e.g., various scales and noises),
since their within-class differences are more indistinct and between-class similarity are more distinct.
How to automatically recognize and represent the RS scene from these different scale and quality RS
image data effectively has become a critical task. To deal with such a challenge, this paper proposes a
deep salient feature based anti-noise transfer network (DSFATN) approach that effectively enhances

Remote Sens. 2018, 10, 410; doi:10.3390/rs10030410 www.mdpi.com/journal/remotesensing1
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and explores the high-layer features for RS scene classification in different scales and noise conditions
with great efficiency and robustness.

Many attempts have been made for RS scene classification. Among various previous approach, the
bag-of-visual-words (BoVW) based models have drawn much attention for their good performance [1,8–10].
The BoVW based models encode local invariant features of an image and represent the image as
a histogram of visual word occurrences. However, the BoVW based models utilize a collection of
local features, which may not fully exploit the spatial layouts information thus result in information
loss [11]. To solve the problem, the spatial pyramid matching kernel (SPMK) [12] introduced the
spatial layout to form improved local features. Even though SPMK shows inspiring results, it only
considers the absolute spatial arrangement of visual words. Thus, the improved version of SPMK,
spatial co-occurrence kernel (SCK) [1], and its pyramidal version spatial pyramid co-occurrence
kernel (SPCK) [13], were proposed to capture both absolute and relative spatial arrangements.
Other alternative models, e.g., latent Dirichlet allocation (LDA) model [14–16] and the probabilistic
latent semantic analysis (pLSA) model [17,18], represent the image scene as a finite random mixture
of topics and obtain competitive performance. In general, these approaches have made some
achievements in RS scene classification but demand prior knowledge in handcrafted feature extraction,
which is still opening challenging task in scene classification.

Recently, deep learning (DL) methods have achieved dramatic improvements and state-of–the-art
performance in many fields (e.g., image recognition [19], object detection [20,21], and image
synthesis [22]) due to automatic high-level feature representations from images and powerful ability
of abstraction. DL methods also draw much attention in RS image classification [23,24]. For example,
Lu et al. [25] proposed a discriminative representation for high spatial resolution remote sensing
image by utilizing a shallow weighted deconvolution network and spatial pyramid model (SPM), and
classified the representation vector by support vector machine (SVM). Chen et al. [26] utilized the
single-layer restricted Boltzmann machine (RBM) and multilayer deep belief network (DBN) based
model to learn the shallow and deep features of hyperspectral data, the learnt features can be used
in logistic regression to achieve the hyperspectral data classification. As one of the most popular
DL approaches, convolutional neural networks (CNNs) show incomparable superiority on several
benchmark datasets such as Imagenet [27], and have been widely used in the recognition, detection
tasks and obtained impressive results [28–30]. However, training a powerful CNN is complicated
since many labeled training samples and techniques are needed, while the available labeled RS scene
datasets are not comparable to any natural scene dataset. For example, compared with the dataset
ImageNet containing 15 million labeled images in 22,000 classes, the most famous and widely used
UC Merced Land Use (UCM) [1] RS scene dataset only contains 21 classes and 2100 label images.

To address the data limitation, an effective strategy is data augmentation. It generates more
training image samples by adding rotated, flipped versions and random cropped, stretched patches of
the training images [31,32], or patches sampled by some optimized strategy [11,33]. Another effective
strategy is transfer learning based on a pre-trained CNN model. Castelluccio et al. [34] fine-tuned
the pre-trained CNNs on the UCM dataset. The best result reached 97.10% when fine-tuning the
GoogLeNet [35] while training a GoogLeNet from scratch just reached 91.2%. Penatti et al. [36] and
Hu et al. [37] investigated the deep features extracted from different pre-trained CNNs for RS scene
representation and classification, and proved the effectiveness and superiority of the features from
the 1st full-connected layer of CNNs. The features extracted from pre-trained CNNs also have some
invariance to small-scale deformations, larger-scale and so on [38,39]. Compared with training a new
CNN, transfer learning methods are faster and the classification results are much promising without
large amount of training data. It is known that most of the pre-trained CNNs have been trained in
dataset with large number of natural images such as ImageNet. In natural image scenes, the objects are
almost centrally focused, and the center pixels have more influence on the image semantic labels [11],
while, in RS image scenes, the surface objects are usually distributed randomly, and the central parts
may not relate closely with the semantic label. Hence, due to the objects distributions difference
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between natural scenes and RS scenes, the pre-trained CNNs based on transfer learning method is
applicable for a limit amount of training date but lacks robustness to low quality variance (e.g., various
scales and noises) in RS scene classification.

To address the challenging task, we propose a deep salient feature based anti-noise transfer
network (DSFATN) for classification of RS scenes with different scales and various noises. Our method
aims at improving both feature representation of RS scene and classification accuracy. In DSFATN,
a novel deep salient feature (DSF) and an anti-noise transfer network are introduced to suppress the
influences of different scales and noise variances. The saliency-guided DSF extraction conducts
a patch-based visual saliency (PBVS) algorithm to guide pre-trained CNNs for producing the
discriminative high-level DSF. It compensates the affect caused by objects distribution difference
between natural scenes and RS scenes, thus makes the DSF extracted exactly from the most relevant,
informative and representative patches of the RS scene related to its category. The anti-noise transfer
network is trained to learn and enhance the robust and anti-noise structure information of RS scene by
minimizing a joint loss. DSFATN performs excellent with RS scenes in different scales and qualities,
even with noise.

The major contributions of this paper are as follows:

• We propose a novel DSF representation using “visual attention” mechanisms. DSF can achieve
discriminative high-level feature representation learnt from pre-trained CNN for the RS scenes.

• An anti-noise transfer network is improved to learn and enhance the robust and anti-noise
structure information of RS scene, where a joint loss is used to minimize the network by
considering anti-noise constraint and softmax classification loss. The simple architecture of
the anti-noise transfer network makes it easier to be trained with the limited availability of
training data.

• The proposed DSFATN is evaluated on several public RS scene classification benchmarks.
The significant performance demonstrated our method is of great robustness and efficiency
in various scales, occlusions, and noise conditions and advanced the state-of-the-arts methods.

This paper is organized as follows. In Section 2, we illustrate the proposed DSFATN method in
detail. In Section 3, we introduce the experimental data and protocol, provide the performance of the
proposed DSFATN and discuss the influence of serval factors. Section 4 concludes the paper with a
summary of our method.

2. The Proposed DSFATN Method

2.1. Framework of DSFATN

DSFATN consists of two main steps, as shown in Figure 1.

1. Saliency-guided DSF extraction: To achieve discriminative high-level feature representation
for RS scenes, we introduce saliency-guided DSF extraction. Instead of using the whole RS
scene for feature extraction, saliency-guided DSF extraction produces a novel DSF representation
based on saliency-guided RS scene patches using “visual attention” mechanisms. First, we
conduct an improved patch-based visual saliency (PBVS) method to detect salient region and
sample multi-scales salient patches in an image. Next, the multi-scales salient patches are fed
to a pre-trained CNN model to extract the DSF. The saliency-guided DSF extraction ensures the
most informative and representative parts are definitely centrally focused in the salient patches.
Compared with randomly or densely sampling methods, the saliency-guided sampling is also
more targeted and effective. The different scales of the salient patches also help to improve the
scale invariance of DSF in the anti-noise transfer network training process.

2. Anti-noise transfer network based classification: To suppress the influences of various scales
and noises of RS scenes, an anti-noise transfer network is trained as the classifier successively.
It introduces an anti-noise layer to tackle with DSFs extracted from RS scene patches in low quality
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even with various noises. Except for the anti-noise layer, the anti-noise transfer network only has
a fully-connected (FC) layer and a softmax layer, which is a simple CNN architecture and can be
trained easily. Different from the traditional CNN model, we optimize a new objective function
to train the anti-noise transfer network by imposing an anti-noise constraint, which enforces
the training samples before and after adding noises to share the similar features. Meanwhile,
for anti-noise transfer network learning, the input scenes contain origin scenes and scenes with
various noises, such as: (1) salt and pepper noise; (2) partial occlusions; and (3) their mixed
noise. The whole framework works perfectly on three different scale RS scene datasets and even
outperforms the state-of-the-art methods.

Input scenesOrigin scenes Scenes with noises

Add noise 
randomly

Step 1: Saliency-guided DSF extraction
2)Deep salient feature extraction

DSF vectors

1) Salient patches extraction

Input scenes PBVS based salient patches sampling

most salient 
patches 

Pre-trained CNN

Step 2: Anti-noise transfer network based classification

Prediction results
park river overpass

Anti-noise joint loss 

DSF 
set

DSFs

DSFs

labels

FC
1

(a
nt

i-n
oi

se
 la

ye
r)

So
ft

m
ax

FC2

Anti-noise transfer network

 

Figure 1. The framework of deep salient feature based anti-noise transfer network (DSFATN) contains
two main steps: saliency-guided deep salient feature (DSF) extraction and anti-noise transfer network
based classification. The saliency-guided DSF extraction conducts a patch-based visual saliency (PBVS)
to guide pre-trained convolutional neural networks (CNNs) for producing the discriminative high-level
DSF for remote sensing (RS) scene with different scale and various noises. Then, the anti-noise transfer
network is trained to learn and enhance the robust and anti-noise structure information of RS scene by
minimizing a joint loss. For anti-noise learning, the input scenes include origin scenes and scenes with
various noises (e.g., salt and pepper, occlusions and mixtures).

2.2. Saliency-Guided DSF Extraction

The saliency-guided DSF extraction provides the effective and discriminative high-level features
from the most relevant scene patches using “visual attention” mechanisms. This extraction is inspired
by the human visual system which interprets complex scenes in real time to get most relevant features
of the scenes and reduce the complexity of scene analysis [40]. It also can be divided into two steps
(Figure 1): (1) salient patch extraction; and (2) DSF extraction. The first step provides the scene
patches sampled from the salient regions of input RS scenes. Inspired by graph-based visual saliency
(GBVS) [41,42] method, we introduce a patch-based visual saliency (PBVS) algorithm to support the
salient patch extractor. The second step is mainly accomplished by a pre-trained CNN, i.e., VGG-19 [19],
where the 4096-dimensional activations of the first FC layer are used as the final DSFs.

2.2.1. Salient Patch Extraction

We improved the PBVS method for salient patch extraction. Different from traditional GBVS
algorithm which can only detect the salient region from an image, our PBVS can provide multi-scales
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salient patches of the image. PBVS can be organized into the following procedures: (1) salient region
detection; and (2) salient patch extraction. Figure 2 shows the flowchart of the PBVS based salient
patch extraction. The details are described in the following section.

Airplane Storage tanks Tennis court

Input 
RS scene

Runway

Saliency 
map

Harbor

Salient 
region

salient region 
detection

salient patch

 salient patch 
extraction

Resize

Salient 
value

0

0.8

1

0.6

0.2

0.4

Retained patches

Dropped patches

Figure 2. The flowchart of PBVS based salient patch extraction. The brightness in the saliency map
indicates the salient level of the corresponding parts in the input RS scenes: brighter in saliency map,
more salient in RS scene. The overlay of RS scene and saliency map make the salient level reflected in
the input RS scene, the bigger salient value corresponds higher salient level. The red rectangle is the
salient region of the scene.

(1) Salient region detection. Given a set of n scenes S = {s1, s2, · · · , sn}. For expository
simplicity, suppose arbitrarily RS scene s ∈ S is a square image of size n × n. At first step,
PBVS extracts feature vectors at locations over s to form the feature map of Ms

Fea : n× n → R ,
Ms

Fea(i, j)(1 ≤ i ≤ n, 1 ≤ j ≤ n) is the value of locations (i, j) in Ms
Fea. The dissimilarity between

Ms
Fea(i, j) and Ms

Fea(p, q) is defined as

d((i, j)||(p, q)) :=
∣∣∣∣log

Ms
Fea(i, j)

Ms
Fea(p, q)

∣∣∣∣ (1)

Then, the activation map Ms
Act of s needs to be formed. By connecting every node of the feature

map Ms
Fea, the fully connected directed graph graphAct is obtained. The directed edge from node (i, j)

to node (p, q) of graphAct is assigned a weight, as shown in Equation (2). σ is a free parameter that is
set to approximately 1/10 to 1/5 of the map width because it has been proven the results were not
very sensitive to perturbations around these values. Then, the graphAct is treated as a Markov chain to
compute the equilibrium distribution namely get the activation map Ms

Act. More details can be found
in [41].

wAct((i, j)||(p, q)) := d((i, j)||(p, q))· exp

(
− (i− p)2 + (j− q)2

2σ2

)
(2)

Then, activation map Ms
Act will be normalized to get the normalization map Ms

Nor. Similar
to the process of forming Ms

Act, another graph graphNor can be constructed based on activation
map Ms

Act, but the weight assigned to the edges is defined as Equation (3). Again, a Markov chain
on graphNor is obtained to help obtain the normalization map namely the final saliency map Ms

Sal.
If multiple activations were generated, these maps will be combined into one saliency map Ms

Sal
after normalization.
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wNor((i, j)||(p, q)) := MI
Act(p, q)· exp

(
− (i− p)2 + (j− q)2

2σ2

)
(3)

(2) Salient patch extraction. The Salient patch extraction provides multi-scales salient patches
from the salient region. As shown in Figure 2, if an object is salient in the image, the corresponding
location of its saliency map is high-lighted with bigger salient values. In an image, the salient values of
its saliency map range from [0, 1], where 1 indicates the current location in the corresponding RS scene
is the most salient, and 0 corresponds to the most non-salient. By finding the minimum bounding
rectangle (MBR) [43] of the nonzero salient values in the saliency map Ms

Sal, we primarily determine
a salient region rs of RS scene s. Then, α patches will be sampled from rs by an iterative sampling
procedure, where α is the threshold of patches’ number. The size of the patch can be scaled as the
random rate from 30% to 80% of the salient region. The iterative sampling procedure prefers to sample
the patches with bigger salient values in their central boxes, where the central box is defined as the
central rectangle region of the sampled patch with its half width and height. In this work, we regard
[0.8, 1] as the preferred salient value range γ to conduct the sampling process. Algorithm 1 shows the
iterative sampling procedure for RS image scene s. At each iteration, a patch is randomly sampled in
the salient region. If its salient values in the central box are all within the preferred salient value range
γ, this patch should be considered as the salient patch and be kept, otherwise it should be dropped.
The iteration will be continued until α patches with different scales are sampled. In our work, we set
α = 9, and the influence of α will be discussed in Section 3.5.4.

Algorithm 1. The iterative sampling procedure.

Input: Salient region rs of RS image scene s
Output: P = {p1, p2, . . . , pα}

1: Initialization:
2: set salient patch set P = {∅}
3: set salient patches’ number npatch = 0
4: Iterations:
5: while (n < α)
6: randomly sampled a patch ptmp in rs

7: if (each salient value v ∈ γ in central box)
8: put ptmp to P and note ptmp as pnpatch+1 in P

9: npatch = npatch + 1
10: Return P = {p1, p2, . . . , pα}

2.2.2. DSF Extraction

After selecting the training patches, we employed the VGG-19 architecture [19] (Figure 3)
pre-trained with the ImageNet dataset to derive DSF representation. Additionally, we have compared
different pre-trained CNN models in the Experimental Section and showed that VGG-19 performed
the best. VGG-19 is one of the very deep CNN models proposed by Simonyan et al. [19]. Hu et al. [37]
compared the performance of the activation vectors from different layers of the model, and found
the activation vectors from the 1st FC layer are more capable to represent the image feature. Hence,
the 4096-dimensional activation vector from the 1st FC layer of VGG-19 is adopted for deep salient
feature representation in the case.

The pre-trained VGG-19 model includes 16 convolutional layers, five maxpool layers and three
FC layers. When the multi-scales salient patches are fed to VGG-19 and preprocessed to the size of
224× 224, the DSF can be extracted on the 1st FC layer. Supposing a set of n scenes S = {s1, s2, · · · , sn},
the t-th DSF vector can be described as:

dt = f
(
hj(φk(st), α)

)
( k ∈ {0, 1, 2, 3}, j ≤ α ), (4)
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where φk(st) returns scene st added with the k-th kind of noises (see Figure 1) and k = 0 means none
noise is added. PBVS function hj(·) returns the j-th salient patch of the corresponding scene. α is the
threshold of sampled salient patches, as described in Section 2.2.1. f defines the deep feature extraction
from the 1-st FC layer from VGG-19.

64@224×224 128@112×112 256@56×56Input image:
224×224 3×3

3×3

3×3

512@28×28

3×3

512@14×14

3×3

512@7×7

Maxpool layer

Convolutional 
layer ×4

Maxpool 
layer

1000@1×1

2×2

prediction

Softmax 
layerConvolutional 

layer ×4
Convolutional 

layer ×4
Convolutional 

layer ×2

FC  layer 
×3

Maxpool layerMaxpool layerMaxpool layer
Convolutional 

layer ×2

Figure 3. The architecture of the very deep CNN with 19 layers (VGG-19)

2.3. Anti-Noise Transfer Network Based Classification

Different from the traditional CNN models, an anti-noise transfer network is introduced to deal
with the 4096-dimensional DSF vectors, as shown in Figure 4. The anti-noise transfer network is
designed with simple architecture that can be trained easily with limited availability of the training
data. It works well for DSFs of different RS scenes even with lower quality due to the anti-noise layer.
The anti-noise layer imposes an anti-noise constraint to enforce the training samples before and after
adding noises to share the similar output features. Thus, it can produce more robust and discriminative
scene features to make the classification easier. Combining the anti-noise constraint to the softmax
classification loss function, the anti-noise transfer network is learned by minimizing a joint loss, which
is very different from the training of the traditional CNN models. The architecture and loss function of
the anti-noise transfer network is described in detail below.

(anti-noise layer)

FC2

So
ft

m
ax

FC1 ReLU

Joint loss 

anti-noise 
constraint loss

softmax 
classification loss

DSFs
 

Figure 4. The anti-noise transfer network.

2.3.1. DSF Based Anti-Noise Transfer Network Architecture

As Figure 4 demonstrates, the anti-noise transfer network consists of two FC layers named FC1
and FC2 and a softmax layer, where rectified linear units (ReLU) [44] function is adopted to activate the
output of FC1. FC1 and FC2 generate 4096-dimensional and N-dimensional vectors, respectively. N is
the category number of the dataset. FC2 transfers the output vector of FC1 into N-dimensional vector
thus it can be processed by softmax to produce the final classification results. The 4096-dimensional
input DSF vector dt will be fed to anti-noise layer FC1 and activated by ReLU as:

oFC1(dt) = σ(WFC1dt + bFC1), (5)

7



Remote Sens. 2018, 10, 410

where σ(x) = (0, x) is the ReLU function, bFC1 is the bias. Since the output of FC1 is 4096-dimensional,
the weights WFC1 ∈ R4096×4096. Analogously, oFC1(dt) will be processed by FC2 and the last softmax
layer as follows:

oFC2(dt) = ϕ(WFC2dt + bFC2), (6)

where ϕ(x) = ex/ ∑ ex is the softmax function, bFC2 is the bias. oFC2(dt) is N-dimensional, N equals
the category number of scene categories, thus the weights WFC2 ∈ R4096×N. oFC2(dt) is also the final
output of the transfer network Tnet. Setting yi = oFC2(dt, i), where oFC2(dt, i) is the i-th element of
oFC2(dt), the final prediction vector of dt can be represented as Tnet(dt) = {y1, y2, . . . , yN}, which
indicates the probabilities of the corresponding DSF dt belongs to each category. In the test phase, i-th
category is the prediction label of dt when yi is the maximum element of Tnet(dt).

2.3.2. Joint Loss Function Learning

To suppress the influence of noises, we propose a joint loss function to improve the anti-noise
capability of the transfer network, where an anti-noise constraint is imposed to enforce the training
samples before and after adding noise to share similar features. More specifically, for each training
RS scene st and its corresponding scene with the l-th noise φl(st)(l ∈ {1, 2, 3}), their DSFs d0

t and
dl

t are enforced to generate similar output features in the transfer network by the anti-noise layer
FC1. To achieve this goal, the novel joint loss function is proposed to learn parameters. Given the
training RS scene set Str={ st, φl(st)|st ∈S}, their DSF set can be obtained as Dtr =

{
dt

∣∣∣dt ∈ D0 ∪ Dl
}

,

where D0 is the DSF set of origin scenes (e.g., st) and Dl is the DSF set of corresponding scenes with
the l-th (l ∈ {1, 2, 3}) noise (e.g., φ2(st)). Ytr is the true label set of Dtr. The joint loss value L can be
computed by:

L = loss(Dtr, Ytr) + dis
(

D0, Dl
)

, (7)

where the first term loss(Dtr, Ytr) is the softmax classification loss function and the second term
dis

(
D0, Dl

)
is the anti-noise constraint. The joint loss L is feedback for backpropagation update.

Stochastic Gradient Descent (SGD) approach is employed here to solve the optimization problem,
which is a widely used method for neural work training. By minimizing the joint loss value L, both the
softmax classification loss and the distance between features extracted from training samples before
and after adding noises are minimized.

The softmax classification loss is defined by Equation (8), where ydt ∈ Ytr is the true label of dt,
the first term of Equation (8) is the cross-entropy loss of dt, the second term is the L2 regularization
to avoid over-fitting for better performance [45], Wi = {WFC1, WFC2} is the weights of the anti-noise
transfer network, and λ is the regularization coefficient, balance the weight between the two terms to
be added, which is determined by the product of the weights decay.

loss(Dtr, Ytr) = − ∑
dt∈Dtr

ydt log(oFC2(dt)) +
λ

2
‖Wi‖2, (8)

The anti-noise constraint is proposed to enforce the training DSFs before and after adding noises
to share the similar output features extracted by FC1, which introduced as the anti-noise layer in the
transfer network. We define the constraint term by measuring the distance between DSFs before and
after adding noises as:

dis
(

D0, Dl
)
=

1
M ∑

d0
t∈D0

‖oFC2

(
d0

t

)
− oFC2

(
dl

t

)
‖2, (9)

where d0
t ∈ D0 and dl

t ∈ Dl are extracted from one RS scene before and after adding the l-th
(l ∈ {1, 2, 3}) noises. M is the number of D0, namely half of the joint number of the training samples.
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By incorporating Equations (10) and (11) into Equation (9), the joint loss value L is defined as:

L = − ∑
dt∈Dtr

ydt log(oFC2(dt)) +
λ

2
‖Wi‖2 +

1
M ∑

d0
t∈D0

‖oFC2

(
d0

t

)
− oFC2

(
dl

t

)
‖2 (10)

3. Experiments and Analysis

3.1. Dataset and Experimental Protocol

Three different scale datasets are utilized; their specific categories are shown in Figure 5.

1. UC Merced Land Use Dataset [1] (UCM) is collected from the large aerial orthoimagery of
USGS National Map Urban Area Imagery collection. There are 100 images for each of 21 classes.
Each image measures 256 × 256 pixels, with a 1-ft spatial resolution.

2. The Google image dataset designed by RS_IDEA Group in Wuhan University (SIRI-WHU) [10] is
acquired from Google Earth (Google Inc., Mountain View, CA, USA) and mainly covers urban
areas in China. It contains 12 scene categories. Each class consists of 200 images with a size of
200 × 200 pixels and a spatial resolution of 2 m.

3. SAT-6 dataset [46] is extracted from the National Agriculture Imagery Program and consists of a
total of 405,000 image patches of size 28 × 28 and covering six classes. We choose 200 images
from each class for our experiments.

SI
R

I-
W

H
U

SA
T-

6

1.Agricultural 2.Commercial 3.Harbor 4.Idle land 5.Industrial 6.Meadow

7.Overpass 8.Park 9.Pond 10.Residential 11.River 12.Water

1.barrenland 3.grassland 4.roads 5.trees 6.water2.buildings

1.Agricultural 2.Airplane 3.Baseball
 diamond 4.Beach 5.Buildings 6.Chaparral 7.Dense 

residential

15.Overpass 16.Parking 
lot 17.River 18.Runway 19.Sparse 

residential
20.Storage 

tanks
21.Tennis 

court

8.Forest 9.Freeway 10.Golf course 11.Harbor 12.Intersection 13.Medium 
residential 

14.Mobile 
home park

U
C

M

Figure 5. The categories sequences of the UC Merced Land Use Dataset (UCM), The Google image
dataset designed by RS_IDEA Group in Wuhan University (SIRI-WHU) and the SAT-6 dataset:
the numbers before the category names will be used to represent the corresponding categories in
the experiments.
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All experiments are implemented with a 4.0 GHz Intel Core i7-6700K CPU, and two 8 GB GeFore
GTX 1080 GPUs. We carried out experiments with five-fold cross-validation protocol on each RS scene
dataset. The training set contained 80% of the RS scenes for each class, and the remaining scenes were
used for testing. The numbers of training and test images of each RS scene dataset are listed in Table 1.
Moreover, in this paper, three kinds of noise-adding strategies are applied: (1) salt and pepper noise
with fixed noise density 0.1; (2) partial occlusion at random position that covers 20–30% of the image;
and (3) their mixed noise. In the mixed noise strategy, origin scenes, scenes with salt and pepper noise
and scenes with partial occlusion account 1/3 of the total scenes, respectively. Although much fewer
images are utilized in this work than benchmark datasets such as ImageNet, DSFATN performs in
different scales and noise conditions with great efficiency and robustness.

Table 1. Training and test images’ numbers of the three RS scene datasets.

UCM SIRI-WHU SAT-6

Training 1680 1920 960
Test 420 480 240
Total 2100 2400 1200

We mainly analyze the performance of DSFATN by the following aspects: (a) the effectiveness
and applicability of DSFATN on the three different datasets; (b) the representation ability of DSF;
(c) the robustness of the model by the anti-noise layer learning; and (d) the influence factors including
patches’ number and pre-training models. Comparisons with the state-of-the-arts also demonstrate
the superiority of our method.

3.2. Performance on Different Datasets

RS scenes from the three datasets employed in our experiments have a tremendous difference in
image resolution and size. The UCM and SIRI-WHU datasets can provide different high-resolution RS
scene images with proper image size, while the RS scenes from SAT-6 are really blurry with a quite
small size. The diversity of the datasets can test DSFATN to the utmost.

(1) UCM dataset. We compared DSFATN with the state-of-the-arts such as the second
extended spatial pyramid co-occurrence kernel (SPCK++) [13], pyramid-of-spatial-relations (PSR) [47],
saliency-guided unsupervised feature learning (SG+UFL) [33] on the UCM dataset as shown in Table 2.
Although most CNN methods can obtain results higher than 90%, especially the fine-tuning on
GoogLeNet [34] get the second highest accuracy in the table, it is still 1.15% lower than the result of
DSFATN. The CNN (including six convolutional layers and two FC layers) derived from [48] performs
badly with the limited amount of data, while DSFATN deals with it well and obtains the highest
accuracy, topping the accuracy of random forest (RF) [49] by almost 55%.

Table 2. Accuracy comparison of state-of-the-art methods and DSFATN on UCM dataset.

Rank Methods Accuracy (%)

1 RF [49] 44.77
2 CNN(6conv+2fc) 76.40
3 SPCK++ [13] 77.38
4 LDA [15] 81.92 ± 1.12
5 SG + UFL [33] 82.72 ± 1.18
6 PSR [47] 89.10
7 OverFeat [36] 90.91 ± 1.19
8 Caffe-Net [36] 93.42 ± 1.00
9 GoogLeNet [34] 97.10
10 DSFATN 2
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Figure 6 displays the confusion matrix of DSFATN on the UCM dataset. Most scenes can be
classified into the right category, especially, the 6th class chaparral whose accuracy equals 1. While
the 20th class storage tanks, as the lowest accuracy owner, are mistaken for several other classes,
particularly the 5th category buildings and 14th category mobile home park, which is reasonable since
some storage tanks are located on the roofs of buildings. The accuracy of storage tanks is higher than
96%, and the whole classification accuracy of DSFATN on the UCM dataset is quite satisfactory.

1 0.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

2 0.000 0.980 0.001 0.001 0.002 0.000 0.006 0.000 0.001 0.001 0.000 0.004 0.000 0.000 0.000 0.000 0.000 0.002 0.000 0.000 0.001

3 0.000 0.000 0.979 0.001 0.000 0.000 0.000 0.000 0.000 0.009 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.006 0.003 0.001

4 0.000 0.001 0.000 0.997 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000

5 0.000 0.001 0.000 0.000 0.984 0.000 0.003 0.000 0.001 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.002 0.000 0.002 0.003

6 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

7 0.000 0.007 0.001 0.000 0.009 0.000 0.964 0.000 0.000 0.000 0.000 0.001 0.012 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.003

8 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.991 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.002 0.000 0.000

9 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.987 0.000 0.000 0.000 0.000 0.000 0.008 0.000 0.001 0.002 0.000 0.001 0.000

10 0.000 0.001 0.003 0.001 0.000 0.000 0.000 0.002 0.000 0.982 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.000 0.006 0.000 0.000

11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.999 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000

12 0.000 0.001 0.002 0.000 0.007 0.000 0.001 0.000 0.001 0.000 0.000 0.973 0.004 0.001 0.003 0.002 0.000 0.000 0.001 0.001 0.001

13 0.000 0.001 0.000 0.000 0.003 0.000 0.009 0.001 0.001 0.001 0.000 0.002 0.967 0.003 0.000 0.000 0.004 0.000 0.001 0.002 0.003

14 0.000 0.000 0.000 0.000 0.004 0.000 0.006 0.000 0.000 0.000 0.000 0.000 0.004 0.981 0.000 0.000 0.000 0.000 0.001 0.000 0.003

15 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.008 0.001 0.000 0.003 0.000 0.001 0.978 0.000 0.001 0.001 0.004 0.001 0.000

16 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.002 0.002 0.000 0.002 0.000 0.992 0.000 0.000 0.000 0.000 0.000

17 0.001 0.000 0.001 0.000 0.000 0.000 0.000 0.010 0.000 0.001 0.000 0.000 0.000 0.000 0.001 0.000 0.980 0.000 0.004 0.001 0.000

18 0.000 0.001 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.002 0.990 0.000 0.000 0.003

19 0.000 0.000 0.001 0.000 0.001 0.001 0.001 0.001 0.000 0.007 0.000 0.000 0.007 0.000 0.001 0.000 0.003 0.000 0.973 0.000 0.003

20 0.000 0.002 0.003 0.001 0.007 0.000 0.001 0.001 0.001 0.000 0.000 0.004 0.001 0.007 0.001 0.000 0.001 0.000 0.003 0.964 0.001

21 0.000 0.000 0.000 0.000 0.004 0.000 0.003 0.002 0.000 0.001 0.000 0.000 0.004 0.003 0.003 0.000 0.001 0.000 0.003 0.002 0.971
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Figure 6. Confusion matrix of DSFATN on the UCM dataset: the horizontal and vertical axes represent
the predict labels and true labels respectively. All categories obtain accuracy higher than 0.96.

(2) SIRI-WHU dataset. Table 3 shows the results of DSFATN and several compared methods
such Spatial Pyramid Matching (SPM) [12] on the SIRI-WHU dataset. Similar to the results on the
UCM dataset, DSFATN obtains a high classification result of over 98%. RF and CNN(6conv+2fc) obtain
the higher results than the UCM dataset because the SIRI-WHU dataset has fewer categories and
more images in each category. It is obvious that DSFATN outperforms the other methods. Moreover,
Figure 7a is the confusion matrix of DSFATN on the SIRI-WHU dataset. The accuracy of each category
is higher than 97%. The worst misclassification probability is resulted by the 3rd class harbor: 0.9% of
the harbor scenes are mistaken for 12th class water. The reason is that these two classes both consist
of ship and water. For the same reason, the majority of the confusion occurs among categories that
have the same component parts. For example, both the 2nd class commercial and 10th class residential
consist of buildings and roads, while both the 9th class pond and the 11th class river are mainly made
up of water. All categories achieve accuracies of over 97%.
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Table 3. Classification results on the SIRI-WHU dataset.

Methods RF [49] LDA [15] CNN(6conv+2fc) SPM [12] DSFATN

Accuracy (%) 0 60.32 ± 1.20 78.20 77.69 ± 1.01 98.46

1 0.996 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.001 0.000 0.000 0.000

2 0.000 0.988 0.001 0.002 0.002 0.000 0.001 0.003 0.001 0.004 0.000 0.000

3 0.000 0.003 0.975 0.001 0.003 0.001 0.001 0.000 0.000 0.001 0.006 0.009

4 0.002 0.002 0.001 0.979 0.006 0.004 0.001 0.001 0.001 0.002 0.001 0.000

5 0.000 0.001 0.000 0.003 0.993 0.001 0.001 0.001 0.000 0.001 0.000 0.000

6 0.000 0.000 0.002 0.003 0.000 0.983 0.001 0.006 0.004 0.000 0.001 0.001

7 0.000 0.000 0.002 0.001 0.000 0.001 0.993 0.002 0.000 0.002 0.000 0.000

8 0.003 0.002 0.000 0.002 0.000 0.004 0.002 0.981 0.006 0.001 0.000 0.000

9 0.002 0.000 0.002 0.002 0.001 0.004 0.001 0.003 0.977 0.000 0.008 0.000

10 0.000 0.008 0.001 0.002 0.003 0.001 0.002 0.002 0.000 0.980 0.001 0.000

11 0.000 0.001 0.008 0.004 0.001 0.001 0.001 0.003 0.006 0.000 0.974 0.002

12 0.000 0.000 0.002 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.001 0.996
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Figure 7. Confusion matrix of DSFATN on: (a) the SIRI-WHU dataset; and (b) the SAT-6 dataset. The
horizontal and vertical axes represent the predict labels and true labels respectively.

(3) SAT-6 dataset. Note that the image scenes in the SAT-6 dataset are already salient patches
with the dimension of 28× 28 from RS imageries. Even though the image resolution and scale in the
SAT-6 dataset are identically low, DSFATN obtains the average accuracy of 98.80%, as shown in Table 4.
The experiments show the impressive representation ability of DSFATN for small scale image scenes.
Figure 7b is the confusion matrix of DSFATN on the SAT-6 dataset. Compared with results of the UCM
and SIRI-WHU datasets, the misclassification probabilities of the SAT-6 dataset are much higher due to
the high similarity between the scenes in smaller scale. The majority of the confusion occurs between
the 1st class barren-land and the 3rd class grassland, and the 2nd class buildings and the 4th class
roads, because these two pairs of categories have similar color and texture distribution, e.g., the former
pair of categories both consist of green grass and brown earth.

Table 4. Classification results on SIRI-WHU dataset.

Methods RF [49] CNN(6conv+2fc) DeepSat [46] DSFATN

Accuracy (%) 89.29 92.67 93.92 91.96

3.3. Representative Ability Comparison of Different Features

In this section, to demonstrate the discriminative ability of DSF, we compared the DSF with
several different features including histogram of oriented gradients (HOG) [50], scale invariant feature
transform (SIFT) [51], and local binary patterns (LBP) [52], as shown in Table 5. For CNN(6conv+2fc),
we extract its activations from the 1st FC layer as the representation features. After obtaining these
features, we simply implement scene classification by training a linear support vector machine (SVM)
classifier with each kind of features.
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Table 5. Classification results on three datasets with different features.

Features
UCM SIRI-WHU SAT-6

Accuracy (%) Kappa Accuracy (%) Kappa Accuracy (%) Kappa

Raw image 33.10 0.3361 35.83 0.3469 87.08 0.8116
HOG [50] 52.14 0.4975 44.79 0.3977 57.92 0.4950
SIFT [51] 58.33 0.5625 53.96 0.4977 45.00 0.3400
LBP [52] 31.43 0.2800 46.25 0.4136 77.08 0.7250

CNN(6conv+2fc) 63.10 0.6424 60.42 0.5523 94.58 0.9188
DSF 98.07 0.9801 88.96 0.8766 96.25 0.9437

As Table 5 shows, no matter the accuracy or kappa coefficient, DSF obtained much higher results
than other features on the three datasets. The high kappa values indicate the almost perfect coherence
of DSF. On the UCM and SIRI-WHU datasets, the classification results of raw images are worse than
the classification results of low-level features (e.g., HOG and LBP), and as expected both are worse than
the classification results of high-level features extracted from CNNs including the CNN(6conv+2fc)
feature and DSF. The raw images of SAT-6 perform much better than those low-level features owing to
the characteristics of the SAT-6 dataset. The distinctive colors of the raw image in the SAT-6 dataset
help a lot in the raw image classification but does not help in the low-level features extraction. Instead,
the small image size and blurry image quality of SAT-6 image scenes make the low-level features
extracted from raw images more unrepresentative. However, the features extracted from CNNs are
discriminated, both the CNN(6conv+2fc) feature and DSF obtain accuracies over 90%. Especially the
CNN(6conv+2fc) feature, although it does not perform well on the more complex UCM and SIRI-WHU
datasets, it works quite well on the SAT-6 dataset due to the fewer categories and small RS scene
image size of the SAT-6 dataset. The DSF performs more efficient and robust than the others in all
three datasets.

Moreover, we embed the high-dimensional features to 2-D space by t-SNE [53], thus to visualize
and compare the features extracted from these datasets. As shown in Figure 8, subfigures from top
to bottom are the 2-D feature visualization images of HOG, LBP, SIFT, CNN(6conv+2fc) feature and
DSF in order, and from left to right are the 2-D feature visualization images of the UCM, SIRI-WHU
and SAT-6 datasets respectively. Each color in the images represents a category in the corresponding
dataset. Obviously, the 2-D features of HOG, SIFT, and LBP are distributed disordered and only
form very few clusters. In contrast, the 2-D features of DSF form clusters separated much clearly.
Moreover, the 2-D features of CNN(6conv+2fc) also form more clusters than HOG, SIFT and LBP since
the high-level features that contain more abstract semantic information than the low-level features.
Notice that CNN(6conv+2fc) feature performs very well in the SAT-6 dataset, obtaining a high result
of 94.58%, which very close to the result 96.25% obtained by DSF; this is also reflected in the 2-D
feature visualization images, both kinds of features can form the main six clusters. Barren-land class,
grassland class and trees class are very close to each other and have some overlap, since in the small
scale and resolution SAT-6 dataset, these three categories all consist of soils and vegetation with
different vegetation cover rate. The grassland has a middle vegetation plant cover rate; therefore,
its features locate between features of barrenland and trees. The buildings class and the roads class
have similar situations because the roof of the buildings and the roads are both mainly made up of
cement concrete. Particularly, the water class is not similar to the five other categories, and the overlap
between the grassland class and the water class in the CNN (6conv+2fc) situation turns out to be
unreasonable. While the DSFATN discriminates the difference since the pink area that represents the
water features locates far away from the five other categories. Moreover, compared with DSFATN,
the CNN(6conv+2fc) feature generates more points that do not locate in the clusters they belong to.
In general, DSF learns to be more discriminative.
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HOG HOG HOG 

LBP LBP LBP 

SIFT SIFT SIFT 

CNN 
(6CONV+2FC) 

DSF DSF DSF

UCM SIRI-WHU SAT-6 

CNN
(6CONV+2FC) 

CNN 
(6CONV+2FC) 

Figure 8. The comparison of different features on the three datasets by per-class two-dimensional
feature visualization. From left to right: the UCM dataset, the SIRI-WHU dataset and the SAT-6 dataset.
From top to bottom: histogram of oriented gradients (HOG), local binary patterns (LBP), scale invariant
feature transform (SIFT), CNN(6conv+2fc) feature, and DSF. It is obvious that DSF (the last row) has
more clearly separated clusters.
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3.4. Evaluation of Image Distortion

In this section, we validate the robustness of DSFATN for two kinds image distortion conditions:
(1) images with noises; and (2) images in different scales. In Section 3.2, we have already proven
DSFATN worked well on the SAT-6 dataset which contains RS scenes in small scale and low resolution,
thus, in this section, we perform the anti-noise tests on the UCM and SIRI-WHU datasets.

3.4.1. Evaluation of Noises

To validate the anti-noise ability of DSFATN, we compared DSFATN with several different
methods under three kinds of noise. Particularly, to prove the indispensability and effectiveness
of multi-scales salient patches and anti-noise layer, two variant models derived from DSFATN are
introduced. Table 6 lists their difference with the proposed DSFATN. TN-1 refers to DSFATN without
multi-scales salient patches sampling and anti-noise layer training. TN-2 refers to DSFATN without
multi-scales salient patches sampling but with anti-noise layer training. The absence of anti-noise layer
training is simply achieved by learning the joint loss without the anti-noise constraint.

Table 6. Difference between DSFATN and its variant compared models.

Model Multi-Scales Salient Patch Sampling Anti-Noise Layer Training

TN-1 × ×
TN-2 × √

DSFATN
√ √

Table 7 compares the models on the UCM dataset and the SIRI-WHU dataset. Obviously, RF and
CNN(6conv+2fc) have a very weak anti-noise property for obtaining accuracies less than 50% with
all three kinds of noises, while the classification results of DSFATN are all above 95%. In particular,
the result difference between TN-2 and DSFATN almost reaches 10%, which indicates the great
importance of saliency patches sampling. Analogously, TN-1 has much worse results compared
with TN-2, where the result difference even reaches 47.66% on the SIRI-WHU dataset with salt and
pepper noise. The averaged result difference between TN-1 and TN-2 on the UCM and SIRI-WHU
datasets with the three kinds of noises reaches 19.92%, which shows the effectiveness of anti-noise
layer. As expected, on both the UCM and SIRI-WHU datasets, the results with the three kinds of noises
rank in the order: TN-1 < TN-2 < DSFATN. This reflects the important role played by salient patches
and the anti-noise layer.

Table 7. Classification results on the UCM dataset and SIRI-WHU dataset with three kinds of noises.

Model

Classification Accuracy (%)

UCM SIRI-WHU

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

RF 0.0 0.0 0.0 0.0 0.0
CNN(6conv+2fc) 1.60 0.32.00 0.380 0.460 0.5520 0.66240

TN-1 -0.2 -0.04 -0.05 -0.06 -0.07 -0.08
TN-2 -0.4 88.76 88.33 83.83 52.1 84.79

DSFATN 0.0 0.0 0.0 0.0 0.0 0.0

Figure 9 shows the per-class accuracies of TN-1, TN-2, and DSFATN on the UCM and SIRI-WHU
datasets with the three kinds of noises. Similar to the trend of the whole results, in most cases,
the accuracies are in the following order: DSFATN > TN-2 > TN-1. It is interesting to find that TN-1 and
TN-2 perform well in several classes with accuracies over 90%, which even equal or exceed the results
of DSFATN, such as the 1st class agricultural, the 11th class harbor, the 16th class overpass, the 18th
class runway of the UCM dataset and the 12th class water of the SIRI-WHU dataset. These scenes
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including duplicate texture information (e.g., ships, water, roads, and roads) make saliency detection
confusing. Moreover, irrelevant objects (e.g., a ship in the water class scene) occasionally appearing
misled the saliency detection results. Nevertheless, TN-1 and TN-2 behave poor in the other categories,
and the corresponding accuracies dropped in different degrees. In general, on both the UCM and
SIRI-WHU datasets, TN-2 obtains mediocre performance, better than TN-1 and worse than DSFATN,
while TN-1 obtains quite uneven results—most of its results are below 80%. In sharp contrast to this is
the stable performance of the DSFATN, which ensures most results are higher than 90%.
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Figure 9. The per-class accuracy comparisons on: the UCM dataset with salt and pepper noise (top left);
the SIRI-WHU dataset with salt and pepper noise (top right); the UCM dataset with partial occlusion
(middle left); the SIRI-WHU dataset with partial occlusion (middle right); the UCM dataset with
mixed noise (bottom left); and the SIRI-WHU dataset with mixed noise (bottom right). In most cases,
the accuracies rank in the following order: DSFATN > TN-2 > TN-1.

To further confirm the ability of the anti-noise layer FC1 in the anti-noise transfer network,
we compare the FC1 layer’s output feature OFC1(DSF) with different features under the three kinds of
noises (see Table 8), similar to in Section 3.3. Compared with the accuracies in Table 5, the results of
corresponding features in Table 8 have declined in different degrees due to the influence of the noises.
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CNN(6con+2fc) feature and DSF show some superiority compared with the low-level features in this
anti-noise experiments, obtaining accuracies even higher than the results obtained by the low-level
features extracted from origin RS scene images without any noise (see Table 5). However, it is not
robust enough to represent the images with noises. The last row of Table 8 shows the accuracies
obtained by features extracted from the FC1 layer; most of them are higher than 0.90, and all the results
are significantly enhanced compared to the results classified by DSF. The great difference between
DSF and OFC1(DSF) indicates introducing the FC1 layer to the anti-noise transfer network is indeed
very important.

Table 8. Anti-noise analysis on the UCM and SIRI-WHU datasets with different features.

Features

Classification Accuracy (%)

UCM SIRI-WHU

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

Salt and Pepper
Noise

Partial
Occlusion

Mixed
Noise

HOG [50] 41.19 34.76 25.47 40.21 40.63 31.46
SIFT [51] 62.62 41.43 44.05 51.25 46.46 46.46
LBP [52] 25.00 18.10 10.48 37.92 39.38 25.42

CNN(6conv+2fc) 56.19 38.57 47.62 52.92 65.63 53.96
DSF 89.76 83.10 82.62 79.58 87.29 83.54

OFC1(DSF) 96.61 98.04 97.70 86.39 97.52 94.56

3.4.2. Evaluation of Multiple Scales

To evaluate the impact of image scale, we resized the RS scene images from the UCM and
SIRI-WHU datasets to five different scales, i.e., a quarter of original image size (height and width
dimensions), half of original image size, three quarters of original image size, original image size and
one and a quarter size.

We compared DSFATN with CNN(6conv+2fc) and the TN-2 model. As the results in Tables 9
and 10 show, DSFTAN performs the best on the UCM and SIRI-WHU datasets at all five scales. Almost
all the accuracies are over 98%, and the results of DSFATN are quite stable for obtaining the lowest STD
value. The results of CNN(6conv+2fc) are very unstable with the image scale variances. Particularly,
TN-2, which does not conduct multi-scales patches sampling, compared with DSTATN, also obtained
high accuracies around 90% on the two datasets. However, the STD values of TN-2 are much higher.
Moreover, the UCM, SIRI-WHU and SAT-6 datasets also have different scales and resolutions, especially
the SAT-6 dataset. Our method demonstrated robustness across the three datasets.

Table 9. Classification results on the UCM dataset with five kinds of scales.

Models 25% 50% 75% 100% 125% STD

CNN(6conv+2fc) 76.60 80.00 77.80 76.40 80.00 1.58
TN-2 92.20 91.40 91.60 92.60 91.20 0.52

DSFATN 97.87 98.53 98.46 98.25 98.22 0.23

Table 10. Classification results on the SIRI-WHU dataset with five kinds of scales.

Models 25% 50% 75% 100% 125% STD

CNN(6conv+2fc) 77.00 77.40 77.00 78.20 75.40 0.91
TN-2 87.60 89.20 89.60 90.00 90.60 1.01

DSFATN 98.30 98.39 98.73 98.46 98.92 0.23
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3.5. The Analysis of Influence Factors

In this section, we analyze several influence factors in DSFATN: (a) the threshold of salient patches’
number α; (b) the regularization coefficient λ; (c) the pre-trained CNN models; and (d) the noise level.
For simplicity and equity, all comparison experiments were conducted on the UCM dataset.

3.5.1. Influence of Salient Patches’ Number α

Figure 10 shows the influence of salient patches’ number α. Time consumption refers to the time
for obtaining all the DSF of the RS image scenes utilized in the corresponding experiments. α = 0
means salient regions are not detected thus the DSF are directly extracted from the origin image scenes.
As α increases from 0 to 9, the time consumption increases slowly while the accuracy rises sharply.
When α ∈ [9, 36], the accuracy keeps a flat level of growth while the time consumption steepens.
Only when α = 9, a high classification accuracy can be gained without much time consumption.
Hence, α = 9 is selected in our method.
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Figure 10. The influence of salient patches’ number α in DSFATN on UCM dataset.

3.5.2. Influence of the Regularization Coefficient λ

Figure 11 shows the classification results of DSFATN in different regularization coefficient λ.
When λ is very small (i.e., λ ∈ [

1× 10−7, 1× 10−1 ]), DSFATN performs quite good, and the accuracy
levels out at around 98%. When λ is assigned bigger values (i.e., λ > 1× 10−1), the accuracy declines
fast. When λ = 1× 10−4, DSFATN achieves the highest result.
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Figure 11. The influence of the regularization coefficient λ.
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3.5.3. Influence of Pre-Trained CNNs

We changed the pre-trained CNN in DSFATN from VGG-19 to several other kinds of CNNs,
while keeping the rest of the structure of DSFATN unchanged. Table 11 presents the classification
results of different pre-trained CNNs. Note that, for the pre-trained CNN models which contain three
FC layers (Rows 1–7), we extracted the features from the 1st FC layer as the feature presentation.
For the other per-trained CNNs (Rows 8–15), we regarded the output of the layer that generate
one-dimensional vectors (e.g., logits layer in InceptionV3) as the representation. All extracted
representations have the same anti-noise transfer network architecture but are trained separately.
As shown in Table 11, compared with VGG-19, most pre-trained CNNs can achieve comparable results
over 96% (e.g., Rows 1–6 and 11–12). Although the inception models perform well too, they are
not so competitive with other models for deep feature extraction, since they are not deep enough
compared with Resnetv1_50 and Resnetv1_101. The fully connected layers, which appear in each
traditional CNNs (e.g., Rows 1–7), play a great role for deep feature extraction. Nevertheless, the results
of inceptions are still higher than 90%. One can see that our DSFATN with VGG-19 outperforms
the others.

Table 11. Result comparison with different pre-trained CNNs.

No. Pre-Trained CNNs Classification Accuracy (%)

1 Alexnet [48] 96.85
2 Caffenet [54] 97.35
3 VGG -F [55] 97.54
4 VGG -M [55] 97.57
5 VGG -S [55] 97.12
6 VGG-16 [19] 97.91
7 VGG-19 [19] 1.4
8 Inceptionv1 [35] 91.25
9 Inceptionv2 [56] 90.54

10 Inceptionv3 [57] 91.82
11 Resnetv1_50 [58] 97.89
12 Resnetv1_101 [58] 97.94

3.5.4. Influence of Noise Levels

We investigate the robustness sensitivity of DSFATN at five different levels of noises. Table 12
shows the parameters of the salt and pepper noise and partial occlusion at these five levels of noise
conditions; the mixed noise is still the mixture of the former two kinds noise and original image scenes
with the same proportion. Note that Level 2 noise condition has been adopted as the setting in the
preceding experiment part (see Section 3). Figure 12 demonstrates these five noise levels of an example
tennis court scene. Obviously, when the noise level becomes higher, the scenes with salt and pepper
noise are blurrier with more noise pixels, and the scenes with partial occlusion are covered with larger
black region. At Levels 3–5, the tennis court cannot be seen in the image scene.

Table 12. The parameters of the salt and pepper noise and partial occlusion at five levels.

Level Salt and Pepper Noise Density Partial Occlusion Covering Scale

1 0.05 10–20%
2 0.1 20–30%
3 0.15 30–40%
4 0.2 40–50%
5 0.25 50–60%
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Figure 12. The example scenes of an example tennis court scene at five levels of noise conditions.

The average accuracies of DSFATN at these five noise levels are shown in Figure 13. As expected,
the higher the noise level is, the lower the classification accuracy is. In salt and pepper noise condition,
the salt and pepper noise with higher noise level brings more noise pixels to the scene, which makes
the performance of saliency detection degenerate. In partial occlusion condition, the higher partial
occlusion level leads to the semantic information loss. When the noise level is higher than 2, the results
of salt and pepper noise and partial collusion conditions declines more sharply than the result of mixed
noise condition. The origin scenes in the mixed noise condition, which supplement the information
loss caused by the salt and pepper noise and partial occlusion to some extent. In general, although the
accuracies have a declining trend, all results are higher than 80%, even for partial occlusion covering
almost half scale of the scenes. The results are also higher than the accuracies obtained by some
traditional methods in the origin scenes without any noises (see Table 2).
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Figure 13. The results of DSFATN at five levels of noise conditions: the classification accuracies decrease
when the noise level increases.

4. Conclusions

This paper proposes a deep salient feature based anti-noise transfer network (DSFATN) method
for RS scene classification with different scales and various noises. In DSFATN, the saliency-guided
DSF extraction extracts the discriminative high-level DSF from the most relevant, informative and
representative patches of the RS scene sampled by the Patch-Based Visual Saliency (PBVS) method.
The VGG-19 is selected as the pre-trained CNN to extract DSF among various candidate CNNs for
its better performance. DSF achieves discriminative high-level feature representation learned from
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pre-trained VGG-19 for the RS scenes. Meanwhile, an anti-noise transfer network is introduced to
learn and enhance the robust and anti-noise structure information of RS scene by directly propagating
the label information to fully-connected layers. By minimizing the joint loss concerning anti-noise
constraint and softmax classification loss simultaneously, the anti-noise transfer network can be trained
easily with limited amount of data and without accuracy loss. DSFATN performs excellent with RS
scenes in different quality, even with noise.

The results on three different scale datasets with limited data are encouraging: the classification
results are all above 98%, which outperforms the results of state-of-the-art methods. DSFATN also
obtains satisfactory results under various noises. For example, the results on the widespread UCM with
noises are higher than 95%, which is even better than the best results of some state-of-the-art methods
on UCM without noise. The remarkable results indicate the effectiveness and wide applicability of
DSFATN and prove the robustness of DSFATN.

However, the strong anti-noise property of DSFATN is dependent on different datasets; for
example, under salt and pepper noise, the accuracy of DSFATN reaches 95.12% on the UCM dataset
while it dropped to 84.98% on the SIRI-WHU dataset. In the future, we will conduct an end-to-end
multi-scale and multi-channel network to jointly extract more adaptive representation for RS scene
with limited availability of training data for complex scene understanding.
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Abstract: Image segmentation is a key prerequisite for object-based classification. However, it is often
difficult, or even impossible, to determine a unique optimal segmentation scale due to the fact
that various geo-objects, and even an identical geo-object, present at multiple scales in very high
resolution (VHR) satellite images. To address this problem, this paper presents a novel unsupervised
object-based classification for VHR panchromatic satellite images using multiple segmentations via
the latent Dirichlet allocation (LDA) model. Firstly, multiple segmentation maps of the original
satellite image are produced by means of a common multiscale segmentation technique. Then,
the LDA model is utilized to learn the grayscale histogram distribution for each geo-object and
the mixture distribution of geo-objects within each segment. Thirdly, the histogram distribution of
each segment is compared with that of each geo-object using the Kullback-Leibler (KL) divergence
measure, which is weighted with a constraint specified by the mixture distribution of geo-objects.
Each segment is allocated a geo-object category label with the minimum KL divergence. Finally,
the final classification map is achieved by integrating the multiple classification results at different
scales. Extensive experimental evaluations are designed to compare the performance of our method
with those of some state-of-the-art methods for three different types of images. The experimental
results over three different types of VHR panchromatic satellite images demonstrate the proposed
method is able to achieve scale-adaptive classification results, and improve the ability to differentiate
the geo-objects with spectral overlap, such as water and grass, and water and shadow, in terms of
both spatial consistency and semantic consistency.

Keywords: very high resolution (VHR) satellite image; topic modelling; object-based image analysis;
image segmentation; unsupervised classification; multiscale representation

1. Introduction

Recent advances in remote sensing technology, particularly those relating to spatial resolution,
are helping to make detailed observations of the Earth’s surface possible. However, the resulting vast
amounts of very high resolution (VHR) satellite images pose a challenge for automatic classification,
due to the large amount of information and with-class variance characteristics of this kind of images [1].

It is widely acknowledged that, compared to their pixel-based counterparts, object-based
classification methods, which can take advantage of both spectral and spatial information, are probably
more appropriate for VHR satellite images [2–4]. In a typical object-based classification framework,
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image segmentation is usually an initial and vital step. The goal of segmentation is to partition
an original image into a set of non-overlapping homogeneous segments, which are regarded
as higher-level units that are more meaningful and efficient for subsequent processing. Thus,
the classification accuracy of object-based classification is dependent, to a large extent, on the quality
of image segmentation [5]. In order to characterize image structures at different scales, multiscale
segmentation (MS) is often used to conduct a series of segmentation maps at multiple scales from fine
to coarse ones, sequentially, by varying the scale parameter (SP) [6]. As pointed out by Dragut et al. [6],
the SP controls the average segment size, i.e., a smaller value of the SP produces segmentations with
small regions and detailed structures, and a larger value allows for more merges, thus preserving only
large segments and coarse features. Therefore, the SP needs to be appropriately determined in order to
create segments that can match the actual boundaries of landscape features of various sizes as much as
possible [7]. However, there exist several problems in practical applications: (1) the determination of
the optimal SP, in many cases, still relies on a trial-and-error optimization, which is time-consuming
when it applies to complex image scenes [8]; (2) it is often impossible to determine a unique optimal
SP for a whole scene or each geo-object, due to the fact that different geo-objects and even an identical
geo-object may appear at different scales in the same image. Any specific SP is likely to cause
over-segmentation of some parts of the image, but under-segmentation of other parts.

To overcome these shortcomings, many approaches that attempt to directly model multiple
segmentations have been proposed instead of seeking and using an optimal one from multiple
candidate segmentation maps [9–12]. In this direction, Russel et al. [10] used multiple segmentations
to discover objects in natural image collections. The authors assumed while none of the SP settings
can achieve the optimal image segmentation, some segments in some of the segmentations appear
to be correct. Therefore, instead of selecting any particular optimal SP, they utilized multiple
segmentation results to identify objects of various sizes by the learning machine. In a similar
framework, Akcay et al. [13] proposed automatic detection of geospatial objects using multiple
hierarchical segmentations. Afterwards, Santos et al. [14] presented a kind of boost-classifier adapted
to MS for supervised classification, in which a sequential strategy of training for weak classifiers was
adopted based on a hierarchy of image segmentations from fine to coarse. However, both [13] and [14]
are built on hierarchical image segmentation [15], which cannot be directly obtained in many cases
due to the reason that most image segmentation methods do not consider the hierarchical structures.
These observations motive us to develop a novel object-based unsupervised classification based on MS,
in which multiple segmentation maps are jointly utilized by means of topic modelling. In the proposed
framework, the original image does not require to be hierarchically partitioned to form multiple
segmentation maps.

Attracted by the success of topic models, e.g., latent Dirichlet allocation (LDA) [16] and its
relatives [17,18], in text analysis community, there has been an increasing interest in applying such
models for semantically-driven understanding of satellite images, such as image annotation [19–21],
object detection [13,22], scene classification [23–25], and image classification or clustering [26–29].
Among various advantages provided by topic models is their ability to deal with polysemy [16].
For example, the word “bachelor” could refer to a kind of degree or an unmarried man. Based
on co-occurrence of words in the context, topic models are able to capture the polysemous use of
words. This characteristic offers a potential solution to cope with the perplexing, but so common,
phenomenon in VHR satellite image classification, i.e., different geo-objects with nearly identical
spectra. For image classification or clustering, the square image blocks with fixed-size or segments
with arbitrary shape are viewed as the documents [27,29], and the pixels or local patches extracted
from the images are regarded as the words in topic modeling. Using the probabilistic latent semantic
analysis (pLSA) model, Yi et al. [26] presented a novel semantic clustering algorithm for VHR
satellite images. The experiment results confirmed the advantage of topic modelling. However,
in the proposed framework, a pre-processing step was required to partition the original satellite
image into image documents, and an accompanying post-processing step was required to combine
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the allocated multiple labels of a pixel into a unique one using a certain voting rule. To address
this problem, Tang et al. [27] developed a msLDA model, which built an automatic framework that
combined a latent Dirichlet allocation with a multiscale image representation of a panchromatic satellite
image. The msLDA archived an adaptive smoothing on clustering results. Nevertheless, its application
usually introduces a computational bottleneck, due to the manner in which image documents are
generated, where each pixel and its surrounding pixels within the square neighborhood constitute
a document. Shu et al. [30] presented a nonparametric Bayesian hierarchical model to conduct
unsupervised classification of VHR panchromatic satellite images by considering over-segments as
documents. However, it also suffers from the same problems as the traditional object-based methods
mentioned previously, i.e., it is modelled based on single-scale segmentation.

In this paper, a novel object-based unsupervised classification for VHR panchromatic satellite
images using multiple image segmentation maps via the LDA model is presented. The proposed
approach consists of four components: (1) a multiscale image segmentation component that allows
characterizing of image structures at different scales; (2) a topic model component that learns the
grayscale histogram distribution for each geo-object and the mixture distribution of geo-objects in each
segment in an unsupervised manner; (3) a category label allocation component that classifies each
segment by the ranking of probability-based similarities; and (4) an automatic application framework
component that integrates multiple classification results at different scales into a unique one. It should
be noted that while the proposed method still needs to determine the range of scales for creating
a multiscale segmentation representation, the work has been greatly simplified compared to searching
for the optimal image segmentation. The main contribution of the proposed method is an automatic
framework of combining a topic model with a multiscale image segmentation representation to model
both the co-occurrence of various geo-objects and multiscale structures.

This paper extends and improves on a preliminary work [31], which presents our initial ideas
and results. In this paper: (1) a novel strategy of integrating multiple classification results at
different scales into a unique one is added, which can ensure an adaptive smoothing classification
result can be achieved; (2) a constraint specified by the mixture distribution of geo-objects, which
can characterize the co-occurrence relationships of various geo-objects, is incorporated to correct
the KL similarity between the histogram distribution of each segment and that of each geo-object;
and (3) a more thorough presentation of introduction, methodology, experimental analysis, and
discussion is conducted.

The remainder of this paper is organized as follows. In Section 2, the proposed methodology
is presented in detail. Experimental results and related discussion are given in Section 3. Finally,
the conclusion is drawn in Section 4.

2. Methodology

In this section, we present our approach for performing the object-based unsupervised
classification of panchromatic satellite images, using the LDA model.

For the proposed method, a key prerequisite is to create a MS representation of the original
satellite image with varied scales. Since the goal of MS is to produce enough segmentation maps of
the image so as to have a high probability of acquiring better segments that can correspond to potential
geo-objects, we do not need image segmentation at each scale to be exactly correct. Any method that
can create a reasonable MS of a satellite image may meet the requirement.

Given the MS representation, the proposed method is composed of the following three steps:
Firstly, the LDA model is utilized to learn the grayscale histogram distribution for each geo-object
and the mixture distribution of geo-objects within each segment in an unsupervised manner.
Then, the histogram distribution of each segment is compared with that of each geo-object using
the Kullback-Leibler (KL) divergence measure [10], which is further weighted with a constraint
specified by the mixture distribution of geo-objects. Each segment is allocated a geo-object category
label with the minimum KL divergence. Finally, the scale-adaptive unsupervised classification map
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is achieved by integrating the multiple classification results at different scales. The general scheme
is shown in Figure 1.

 

Figure 1. Flowchart of the proposed method.

2.1. Topic Modelling

2.1.1. Latent Dirichlet Allocation

The LDA is a generative hierarchical Bayesian probabilistic model, which is originally proposed
to model collections of discrete data, such as text documents and natural images [32]. In this model,
each document is viewed as a finite mixture of various latent topics. Each topic, in turn, is a probability
distribution over words. For a corpus of M documents, the LDA assumes the following generative
process for the m-th document of length N:

• For the k-th element of K topics, sample the topic-specific term distribution
→
φ k according to

the Dirichlet distribution, i.e.,
→
φ k ∼ Dirchlet(

→
β ), where

→
β is the hyperparameter.

• Sample the topic mixture
→
θ m according to the Dirichlet distribution, i.e.,

→
θ m ∼ Dirchlet(

→
α ),

where
→
α is the hyperparameter.

• For each word wmn ∈ {wm1, wm2, . . . , wmN}, sample a topic zmn according to the multinomial

distribution, i.e., zmn ∼ Multinomial(
→
θ m), and sample a word wmn according to the multinomial

distribution , i.e., wmn ∼ Multinomial(
→
φ zmn

).

Both variational inference and Gibbs sampling have been used to infer and estimate the parameters
of the LDA. To solve the inferential problem, we need to calculate the posterior probability of the
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hidden variables given a corpus, i.e., P(
→
z |→w,

→
α ,
→
β ). The general formulation of a Gibbs sampler for

such latent-variable models becomes:

P(zi|→z −i,
→
w,
→
α ,
→
β ) =

P(
→
z ,
→
w|→α ,

→
β )∫

Z
P(
→
z ,
→
w|→α ,

→
β )dzi

, (1)

which can be approximated by interactively sampling each of the K topics using the chain rule and
noting that

→
w =

{→
w−i, wi = v

}
and

→
z =

{→
z −i, zi = k

}
:

P(zi|→z −i,
→
w,
→
α ,
→
β ) = P(

→
z ,
→
w|→α ,

→
β )

P(
→
z −i ,

→
w|→α ,

→
β )

∝
n(v)

k,−i+βt
V
∑

v′=1
(n(v′)

k +βv′ )−1
∗ n(k)

m,−i+αk
K
∑

k′=1
(n(k′)

m +αk′ )

, (2)

where the counts n(.)
.,−i represents the number of the words or topics with exception of index i.

For a new topic-word pair (z̃ = k, w̃ = v) that is observed in a document d(w̃) = d(z̃) = m, given
the state (z̃, w̃), the multinomial parameters can be determined by:

φk,v =
n(v)

k + βv
V
∑

v′=1
(n(v′)

k + βv′)

, (3)

θm,k =
n(k)

m + αk
K
∑

k′=1
(n(k′)

m + αk′)

, (4)

where V is the number of words in the vocabulary, αk and βv stand for the k-th element and v-th

element of hyperparameter
→
α and

→
β , respectively. For details regarding the derivation, please refer

to [33].

2.1.2. Build an Analogue of Text-Related Terms in the Image Domain

To borrow techniques used in the text domain to satellite images, the first issue that needs to be
addressed is how to build an analogue of text terms in the image domain. For the proposed method,
we follow the definition in [27,29]

• Word: a unique grayscale value of a pixel is defined as a word;
• Vocabulary: the unique grayscale values of the satellite image form the vocabulary;
• Document: each segment is regarded as a document, thus, all segments of multiple segmentation

maps at different scales constitute the corpus;
• Topic: each topic corresponds to a specific geo-object category.

Given multiple segmentation maps at different scales, we can use the LDA model to learn K

grayscale histogram distributions for K geo-objects, i.e., {→φ k}
K

k=1, and M mixture distributions of

geo-objects within M segments, i.e., {
→
θ m}

M

m=1. Furthermore, M grayscale histogram distributions

within M segments, i.e.,
{→

πm

}M

m=1
, can also be easily obtained just by counting the frequencies of

different grayscale values.
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2.2. Label Allocation for Each Segment

Although there may be some differences in size due to the scale effect, the segments that
correspond to the identical geo-object should have similar grayscale histogram distributions.
As a consequence, the category label allocation for each segment is determined according to
the following rule: the histogram distribution of each segment is compared with those of K geo-objects,
respectively. The similarity between two types of distributions is measured using the KL divergence,
which has been proved to be effective in measuring the probability-based similarity. The category label
of the geo-object, which has the minimum KL divergence with the segment, is allocated as the label of
the segment. Given the segment dm, its category label cdm is mathematically given by:

cdm = arg min
1≤k≤K

KL(
→
πm,

→
φ k), (5)

where KL(
→
πm,

→
φ k) denotes the symmetrical KL divergence between two discrete distributions, i.e.,

→
πm

and
→
φ k. To be specific, the symmetrical KL divergence in the discrete form can be represented as the

following:

KL(
→
πm,

→
φ k) =

V
∑

v=1
{πv

m In(πv
m

φv
k
) + φv

k In( φv
k

πv
m
)}

2
, (6)

where πv
m refers to the v-th element of

→
πm, which describes the histogram distribution within

the segment m. Likewise, φv
k refers to the v-th element of

→
φ k, which describes the histogram distribution

for the geo-object k.
Furthermore, it is easy to understand: with the increase of the mixture proportion of a certain

geo-object within the segment, the probability of classifying the segment as the corresponding
geo-object should be improved accordingly. The mixture distribution of geo-objects within each

segment, i.e., {
→
θ m}

M

m=1, learned by topic modelling, exactly provides the mixture proportion features.
Thus, Equation (5) can be further weighted with a constraint specified by the mixture distribution of
geo-objects:

cdm = arg min
1≤k≤K

KL(
→
πm,

→
φ k) · uk

m, (7)

where
→
u m is empirically set to −In(

→
θ m), and uk

m denotes the weight with the geo-object k.
Overall, by means of Equation (7), the category label of each segment is determined jointly

by both the grayscale distribution and mixture distribution of geo-objects, which can characterize
the co-occurrence relationships of various geo-objects.

2.3. Fusion of Multiple Classification Maps

After finishing step 2.2, multiple unsupervised classification maps at different scales are achieved.
However, due to the existence of multiscale effects in VHR satellite images, any classification map based
the single-scale segmentation cannot take into account the various granularities of the geo-objects,
e.g., the narrow roads may be suitable to be extracted at a fine scale, while the large-area field should be
classified at a coarse scale. Therefore, the final classification map is achieved by integrating the multiple
classification maps at different scales, in order to achieve a scale-adaptive unsupervised classification.

Given the scale range {1, 2, . . . , S}, S classification maps at multiple scales can be obtained by
the means of topic modelling presented above. In other words, each pixel i in the original satellite
image will be allocated S category labels. Let di,s(s ∈ {1, 2, . . . S}) denote the segment covering the
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pixel i at the scale s, and k(di,s) denote the category label of the segment di,s, the category label of the
pixel i is given by: ⎧⎨⎩ s∗ = arg min

1≤s≤S
KL(

→
πdi,s

,
→
φ k(di,s)

),

ci = k(di,s∗).
, (8)

where
→
πdi,s

denotes the grayscale histogram distribution within the segment di,s,
→
φ k(di,s)

denotes
the grayscale histogram distribution for the geo-object k(di,s), and s∗ denotes the optimal scale for
the pixel i.

3. Results and Discussion

In this section, we firstly describe the experimental images. Then, we introduce the quantitative
evaluation methods for the experimental results and the state-of-art methods for comparison, and
the parameter settings are also given in detail. Thirdly, we compare the performance of different
approaches for three typical of geographical scenes in terms of both qualitative and quantitative
aspects. The computational efficiency for different approaches is also discussed. Finally, we analyze
the effects of scale setting in the proposed method on the classification results.

3.1. Experiment Data

In order to assess the effectiveness of the proposed approach, three panchromatic satellite
images with different scenes and spatial resolutions are used. The first data is a panchromatic
Mapping Satellite-1 image with 1600 × 1600 pixels and 2 m spatial resolution, which was acquired on
13 August 2012 and covers an area of Miyun District, Beijing, China. As shown in Figure 2a, five major
types of geo-objects, i.e., building, road, water, grass, and ground, occur in this image. The second
data is a panchromatic QuickBird image with 900 × 900 pixels and 0.6 m spatial resolution, as shown
in Figure 2c. It was acquired on 22 April 2006 and located in Tong Zhou district of Beijing, China.
There are six major types of geo-objects distributed in the image, including building, road, water,
shadow, tree, and field. The third data is a panchromatic ZiYuan-3 (ZY-3) image that was acquired over
an area of Tanggu District, Tianjin, China, on 15 August 2015. The image size is 3500 × 3500 pixels,
and the spatial resolution is 2.1 m. As shown in Figure 2e, the image is made up of five major types of
geo-objects, including building, road, water, grass, and field. We manually annotated all the original
images at the pixel level as ground truth label data through visual interpretation. The corresponding
ground truth maps for three satellite images are shown in Figure 2b,d,f, respectively.

3.2. Experiment Setup

3.2.1. Methods for Comparison with the Proposed Approach

To evaluate the effectiveness on three aspects of classification accuracy, spatial smoothness,
and semantic consistency, the performance of the proposed approach is compared with that
of four state-of-the-art unsupervised classification methods based on image segmentation:
(1) the spectral-spatial ISODATA, where the pixel-based ISODATA classification is followed by
a majority voting within the adaptive neighborhoods defined by the over-segmentation (termed
as O_ISODATA) [34]; (2) the spectral-spatial LDA, similar to O_ISODATA, where the same
over-segmentation is applied to the classification result of the LDA model using just the single-scale
image segmentation map as corpus [30] (termed as O_LDA); (3) the msLDA proposed in [27];
and (4) the HDP_IBP proposed in [30].

For convenience, the proposed approach is referred to as the mSegLDA.
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(a) (b)

 
(c) (d)

 
(e) (f)

Figure 2. Experimental datasets. (a) Mapping Satellite-1 panchromatic image; (b) ground truth
map of the Mapping Satellite-1 image; (c) QuickBird panchromatic image; (d) ground truth map
of the QuickBird image; (e) ZY-3 panchromatic image; and (f) ground truth map of the ZY-3
panchromatic image.
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3.2.2. Evaluation Criteria

In our experiments, two quantitative criteria, as well as visual inspection, are utilized to evaluate
the unsupervised classification results, i.e., overall accuracy (OA) and overall entropy (OE).

• Overall accuracy (OA): OA, which serves as a quantitative measurement of the agreement
between the classification result and the ground truth map, is one of the most widely used
statistics for evaluating the classification accuracy. OA can be calculated by dividing the total
correctly-classified pixels by the total number of pixels checked by the ground truth map, and
is given as OA = Ncorrect/Ntotal , where Ncorrect is the total number of correct pixels, and Ntotal
is total number of pixels.

• Overall entropy (OE): entropy is an information theoretical criterion that is able to measure
the homogeneity of the classification results. OE is defined as a linear combination of the class
entropy, which describes how the pixels of the same geo-object are presented by the various
clusters created, and the cluster entropy, which reflects the quality of the individual clusters
in terms of the homogeneity of the pixels in a cluster. Generally speaking, a smaller overall
entropy value corresponds to the classification map with a higher homogeneity. For details
regarding, please refer to [27,35].

3.2.3. Parameter Setting

In order to produce multiple segmentation maps at different scales, this paper uses the entropy
rate superpixel segmentation (ERSS) algorithm [36], which has been proven to be both effective and
efficient. It should be noted that any method that can create a reasonable MS of satellite image may
meet the requirement of the proposed approach. The ERSS algorithm utilizes the number of segments
to control the scale size of image segmentation, i.e., a large number of segments may result in fine-scale
segmentation, and conversely, a small number of segments will generate coarse-scale segmentation.
For the Mapping Satellite-1 image, the QuickBird image and the ZY-3 image, the number of scales S is
set to 6, 9, and 11, respectively, and the corresponding numbers of segments include {100, 200, 500, 800,
1000, 1500}, {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, and {2000, 3500, 5000, 6500, 8000, 9500,
11,000, 12,500, 14,000, 15,500, 17,000}.The range of scales, reflected by the numbers of segments, should
be able to characterize multiscale structures in the images as much as possible. For both O_ISODATA
and O_LDA, the over-segmentation map with 1500 segments, 2500 segments, and 17,000 segments
are used in the three images.

Furthermore, topic model based methods initializes the Dirichlet priors as symmetric priors
empirically, i.e., α = 0.1, β = 0.01 for the Mapping Satellite-1 image, α = 0.01, β = 0.8 for the QuickBird
image, and α = 50/K, β = 0.01 for the ZY-3 image. The number of geo-objects K is set to 6, 7, and 6
according to the distributions of geo-object classes, respectively.

3.3. Comparison of Classification Results

The classification results of various methods for three satellite images are shown in Figures 3–5,
where each geo-object is represented by a different color.

3.3.1. Mapping Satellite-1 and QuickBird Images

From visual inspection, all the unsupervised classification results seem to be compact. The obvious
speckle noise or the isolated pixel patches which are often found in the results of pixel-based
classification approaches are greatly eliminated. Thus, the advantages of enforcing spatial consistency
over the classification by means of performing image segmentation are confirmed. On the other
hand, obvious misclassification between water and grass in Figure 3b,g, and water and shadow
in Figure 4b,g can be observed in the classification results of the ISODATA. Two types of geo-objects,
i.e., grass and shadow, are entirely incorrectly identified as water. This phenomenon can be explained
by the fact that there exist obvious spectral overlaps between water and grass in Figure 2a, and water
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and shadow in Figure 2c. For this reason, the ISODATA which groups image pixels merely according
to their grayscale values and, thus, are not able to differentiate various geo-objects with similar spectra
well. While the O_ISODATA that conducts pixel-based ISODATA classification, followed by spatial
regularization using the segmentation map can ensure spatial continuity within segments, it does not
change the essential mechanism of the ISODATA.

 
(a) (b) (c) 

 
(d) (e) (f) 

   
(g)

 

Figure 3. Classification results of various methods for the Mapping Satellite-1 image. (a) Ground truth
map; (b) O_ISODATA; (c) O_LDA; (d) msLDA; (e) HDP_IBP; (f) mSegLDA; and (g) Details of (a–f).

However, benefitting from topic modelling, for the topic model-based approaches,
the co-occurrence information, characterized by the mixture distribution of various geo-objects within
each segment, can be utilized to correctly recognize different objects with similar spectra. As illustrated
in Figures 3c–g and 4c–g, two types of geo-objects, i.e., grass and shadow, are well separated from
water in the classification results of the topic model based approaches.

Furthermore, because the O_LDA is built on a single-scale over-segmentation map, it lacks
a mechanism to model multiscale features of various-objects and, thus, cannot realize an adaptive
smoothing on classification results. As shown in Figure 4c, the smoothing effect on the fine-scale road
is proper, but is not sufficient for the large-scale field. Additionally, the majority voting scheme adopted
by the O_LDA within the adaptive neighborhoods defined by the over-segmentation also results
in the relatively fragmented classification map. In order to encode the scale-adaptive classification
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ability, the msLDA combines the topic model with a multiscale image representation derived by
convoluting a given image with a variable-scale Gaussian into an automatic framework by embedding
both image block and scale selections, and the HDP_IBP introduces the hierarchical spatial information,
particularly the high-level scene cues, into the classification. As shown in Figures 3d–e and 4d–e,
both the HDP_IBP and msLDA improve the adaptive smoothing effect on the classification results to
a certain extent compared with the O_LDA. However, the improvement is still limited. As a contrast,
as shown in Figure 3f,g and Figure 4f,g the proposed mSegLDA could realized a more significant
self-adaptive spatial regularization on classification results according to various geo-object types at
different scales, i.e., the large-scale geo-object (e.g., field) is heavily smoothed, resulting in a more
homogenous classification, and the fine-scale geo-object (e.g., road) accepts a slight smoothing, thus
preserving detailed structures and edge patterns.

From quantitative evaluation, both OA and OE in different classification results for two experiment
images are calculated, as shown in Tables 1 and 2, respectively. The mSegLDA approach yields
the best classification accuracies and the lowest values of OE, compared to other methods, indicating
the proposed method can achieve a better classification performance on the whole.

 
(a) (b) (c) 

 
(d) (e) (f) 

   
(g)

Figure 4. Classification results of various methods for the QuickBird image. (a) Ground truth map;
(b) O_ISODATA; (c) O_LDA; (d) msLDA; (e) HDP_IBP; (f) mSegLDA; and (g) Details of (a–f).
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Table 1. OA and OE of various methods for the Mapping Satellite-1 image.

O_ISODATA O_LDA msLDA HDP_IBP mSegLDA

OA 48.6 69.3 68.4 70.1 72.0
OE 0.89 0.79 0.84 0.76 0.72

Table 2. OA and OE of various methods for the QuickBird image.

O_ISODATA O_LDA msLDA HDP_IBP mSegLDA

OA 49.8 65.1 68.2 65.5 74.3
OE 0.96 0.84 0.80 0.84 0.71

3.3.2. ZY-3 Image

In this subsection, a ZY-3 satellite image of a large scene covering over 50 km2 is used to evaluate
the effectiveness of the proposed mSegLDA. As shown in Figure 5, the complexity of the scene
significantly increases. For example, various geo-objects, and even an identical geo-object (e.g., building
or field), are present at different sizes in the image. However, the proposed mSegLDA is still able
to realize a more significant self-adaptive spatial regularization on classification maps according to
various geo-object types at different scales, compared to other methods. As shown in Table 3, the largest
value of OA and the lowest value OE are also obtained by the mSegLDA.

 
(a) (b) (c) 

 
(d) (e) (f) 

 

Figure 5. Classification results of various methods for the ZY-3 image. (a) Ground truth map;
(b) O_ISODATA; (c) O_LDA; (d) msLDA; (e) HDP_IBP; and (f) mSegLDA.

Table 3. OA and OE of various methods for the ZY-3 image.

O_ISODATA O_LDA msLDA HDP_IBP mSegLDA

OA 63.0 58.9 61.6 59.2 65.7
OE 0.78 0.93 0.85 0.87 0.74
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3.4. Analysis of Computational Efficiency

The computational efficiency of the mSegLDA is also compared with that of other three topic
model-based methods using the QuickBird image as an example, i.e., the O_LDA, the msLDA and
the HDP_IBP. All the methods are coded using MATLAB R2013b (The MathWorks, Inc., Natick, MA,
USA), and have been performed on a PC with an Intel (R) Core (TM) i7-4710MQ 2.50 GHz CPU and
8.00 GB RAM. As can be seen in Table 4, the O_LDA and the HDP_IBP spend a relatively less amount
of running time compared to the msLDA and the mSegLDA due to their modelling mechanism,
i.e., utilizing only a single-scale segmentation map as a corpus. Instead, since the mSegLDA needs
to use multiple segmentation maps for the topic model inference and calculate a large number of
KL divergences between segments, it is less efficient than the O_LDA and the HDP_IBP. However,
the computation efficiency of the mSegLDA is better than that of the msLDA, because each pixel and
its surrounding pixels within the square neighborhood represent a document in the msLDA, resulting
in the significant increase in the number of documents and accompanying extensive computation.

Table 4. Running time of various methods for the QuickBird image.

Methods Running Time (in Seconds)

O_LDA 797
msLDA 5056

HDP_IBP 766
mSegLDA 2413

In order to speed up the execution of the proposed mSegLDA, the Gibbs sampling component
of the mSegLDA, which is computationally expensive, has been written using C++ MEX code.
The running time of the mSegLDA for the QuickBird image is approximately 65 s.

3.5. Analysis of Scale Setting

3.5.1. Influence of Different Settings on the Range of Scales

As the number of scales S may influence the classification results, we, therefore, analyze how
the performance of the proposed mSegLDA behaves with different settings on the range of scales
using the Mapping Satellite-1 and QuickBird images. Since the ERSS algorithm utilizes the number of
segments to control the scale size of image segmentation, the number of segments could be equivalent
to the size of scales. Given the candidate scale set {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000, 3500,
4000}, for both the Mapping Satellite-1 and QuickBird images, a set of experiments for two images
with different settings on the range of scales by adding one scale every time, i.e., {100, 200}, {100, 200,
500}, {100, 200, 500, 800} . . . , {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000, 3500, 4000}, are modelled
using the mSegLDA.

Figures 6 and 7 show the values of OA and OE against the different settings on the range of scales.
As can be seen, as the number of scales S increases, there is an approximately monotonic increase
in OA and decrease in OE, and the classification performance remains relatively stable when S is
larger than 6 for the Mapping Satellite-1 and 9 for the QuickBird image. This is due to the reason that,
the mSegLDA approach needs to create a series of segmentation maps at multiple scales from fine to
coarse ones for modelling, and the ideal multiscale image segmentation representation is expected to
be able to represent all structural patterns at different scales as much as possible. Hence, a too small S,
e.g., {100, 200}, means that only large-scale structure information can be characterized. As the increase
of S, e.g., {100, 200, 500, 800, 1000, 1500} and {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, the fine
to coarse range of scales makes it possible to characterize multiscale features of various geo-objects.
On the other hand, although it can also ensure all structural patterns at different scales are presented,
a larger value of S increases the computational efficiency.
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(a) (b)

Figure 6. OA and OE versus the number of scales for the Mapping Satellite-1 image. (a) Influence on
OA; and (b) influence on OE.

(a) (b)

Figure 7. OA and OE versus the number of scales for the QuickBird image. (a) Influence on OA; and
(b) influence on OE.

Following the above rules, the range of scales for three experiment images are set to {100, 200,
500, 800, 1000, 1500}, {100, 200, 500, 800, 1000, 1500, 2000, 2500, 3000}, and {2000, 3500, 5000, 6500, 8000,
9500, 11,000, 12,500, 14,000, 15,500, 17,000}, respectively.

3.5.2. Special Cases of the mSegLDA

In this subsection, we analyze several special cases of the mSegLDA for the Mapping Satellite-1
and QuickBird images qualitatively and quantitatively to evaluate the effectiveness of modelling
multiple segmentations by setting the number of scales to 1, i.e.,

• Case #1: the mSegLDA based on a single-segmentation map with 100 segments;
• Case #2: the mSegLDA based on a single-segmentation map with 200 segments;
• Case #3: the mSegLDA based on a single-segmentation map with 500 segments;
• Case #4: the mSegLDA based on a single-segmentation map with 800 segments;
• Case #5: the mSegLDA based on a single-segmentation map with 1000 segments;
• Case #6: the mSegLDA based on a single-segmentation map with 1500 segments;
• Case #7: the mSegLDA based on a single-segmentation map with 2000 segments;
• Case #8: the mSegLDA based on a single-segmentation map with 2500 segments; and
• Case #9: the mSegLDA based on a single-segmentation map with 3000 segments.

As shown in Figures 8 and 9, a smaller number of segments results in a more heavily smoothed
classification result. However, it also filters the detailed patterns of certain geo-objects. On the contrary,
a larger number of segments produces a relatively fragmented result. The advantage of integrating
multiscale segmentation maps for modelling is further confirmed, as shown Tables 5 and 6.

38



Remote Sens. 2017, 9, 840

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 8. Classification results of six special cases of the mSegLDA for the Mapping Satellite-1 image.
(a) Ground truth map; (b) Case #1; (c) Case #2; (d) Case #3; (e) Case #4; (f) Case #5; (g) Case #6; and
(h) mSegLDA.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

 

(i) (j) (k)  

Figure 9. Classification results of nine special cases of the mSegLDA for the QuickBird image.
(a) Ground truth map; (b) Case #1; (c) Case #2; (d) Case #3; (e) Case #4; (f) Case #5; (g) Case #6;
(h) Case #7; (i) Case #8; (j) Case #9; and (k) mSegLDA.
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Table 5. OA and OE of six special cases of the mSegLDA for the Mapping Satellite-1 image.

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 mSegLDA

OA 64.1 62.6 66.2 66.1 68.1 66.0 72.0
OE 0.87 0.89 0.83 0.83 0.81 0.81 0.72

Table 6. OA and OE of nine special cases of the mSegLDA for the QuickBird image.

Case #1 Case #2 Case #3 Case #4 Case #5 Case #6 Case #7 Case #8 Case #9 mSegLDA

OA 57.8 67.7 59.7 60.1 65.4 67.1 63.7 66.5 0.71 74.3
OE 0.87 0.87 0.76 0.75 0.85 0.74 0.74 0.79 0.78 0.72

4. Conclusions

This paper has presented a novel unsupervised object-based approach named mSegLDA for
the classification of VHR panchromatic satellite images. The approach addresses the issues that:
(1) various structural patterns at different scales are usually presented simultaneously in the same
scene of a VHR image; and (2) different geo-objects may have nearly identical spectra. Our major
contribution is to propose an automatic framework that combines the latent Dirichlet allocation with
a multiscale image segmentation representation to model both the co-occurrence of various geo-objects
and multiscale structures. Experimental results using VHR panchromatic satellite images with
different scenes and spatial resolutions indicate that the proposed approach can achieve scale-adaptive
classification results, and improve the ability to differentiate the geo-objects with spectral overlap, such
as water and grass, and water and shadow.

Furthermore, the proposed framework still needs to determine the range of scales for creating
multiscale segmentation empirically. In the future, we will develop an automatic strategy to obtain
the appropriate range.
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Abstract: This paper investigates representation-based classification for multispectral imagery.
Due to small spectral dimension, the performance of classification may be limited, and, in general,
it is difficult to discriminate different classes with multispectral imagery. Nonlinear band generation
method with explicit functions is proposed to use which can provide additional spectral information
for multispectral image classification. Specifically, we propose the simple band ratio function,
which can yield better performance than the nonlinear kernel method with implicit mapping
function. Two representation-based classifiers—i.e., sparse representation classifier (SRC) and
nearest regularized subspace (NRS) method—are evaluated on the nonlinearly generated datasets.
Experimental results demonstrate that this dimensionality-expansion approach can outperform the
traditional kernel method in terms of high classification accuracy and low computational cost when
classifying multispectral imagery.

Keywords: multispectral imagery; nonlinear classification; kernel method; dimensionality expansion

1. Introduction

Airborne and spaceborne optical remote sensors collect useful information from the Earth’s
surface based on the radiance reflected by different materials. Hyperspectral sensors acquire images at
contiguous spectral ranges with high spectral resolution. On the contrary, multispectral sensors acquire
only several wide bands with high spatial resolution. The high spectral resolution of hyperspectral
imagery provides major advantages for classification and detection. However, due to the high
dimensionality, its vast data volume can cause issues in data transmission, storage, and analysis [1,2].
Although multispectral imagery has low spectral resolution and it may be difficult to distinguish
materials with similar spectral signatures, its high spatial resolution and wide coverage make it still
popular in practical applications.

Recently, sparse representation classifier (SRC) [3] and collaborative representation classifier
(CRC) [4] have gained much attention for hyperspectral imagery classification. Different from the
traditional classifiers, such as support vector machine (SVM), these representation-based classifiers
do not use the training-testing fashion. Instead, in these methods, a testing pixel is classified based
on representation residual using labeled samples. The nearest regularized subspace (NRS) [5] is
an improved version of CRC, where samples similar to the testing pixels are allowed to have high
weights in the representation. Other variants of SRC or CRC have been proposed for hyperspectral
imagery. For example, in [6], a local sparse representation-based nearest neighbor is proposed to
increase the performance by utilizing class-specific sparse coefficients. A weighted joint collaborative
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representation based classifier is presented in [7], which adopts more appropriate weights by considering
the similarity between the centered pixel and its surrounding pixels. Bian et al. proposed a multi-layer
spatial-spectral representation framework for hyperspectral classification [8]. NRS is implemented
as a class-specific version by using samples of each class separately in [9], and it is performed on
Gabor features in [10], yielding improved classification accuracy. Representation-based approaches
for hyperspectral classification and detection are summarized in [11]. However, the performance
of such representation-based classifiers in multispectral image classification is limited, because
the low-dimensional pixel vectors cannot offer significant discrepancy in representation residual
when using training samples of different classes, producing ambiguity in label assignment.

As a classical feature expansion approach, the kernel method has been successfully applied to
hyperspectral and multispectral classification. Using the kernel trick, it maps the original data to a high
dimensional feature space without the need of knowing the actual mapping function. Kernel SVM
(KSVM) is applied for hyperspectral image classification, which has been considered as a standard
classifier [12]. Bernabe et al. employed kernel principal component analysis to extend the original
principal component analysis to a nonlinear version [13]. Kernel collaborative representation with
Tikhonov regularization (denoted as KNRS) is presented in [14], and Kernel sparse representation
classifier (KSRC) is developed in [15]. The difficulties of the traditional kernel methods include high
computational cost in the computation of Gram matrix and exhaustive searching in parameter tuning.

In this paper, we propose to use a simple strategy to generate artificial bands for multispectral
imagery classification. The goal of this approach is to use explicit nonlinear functions to contrast
the dissimilarity between original spectral measurements, which can provide additional spectral
information for classification problems [16]. By generating new artificial bands, the spectral contrast
between different classes can be increased. Our major contribution is to use the simple band ratio
as the explicit nonlinear function for dimensionality expansion, which can offer better performance
than the traditional kernel method in terms of high classification accuracy and low computational
cost. Here, we limit the discussion in representation-based classifiers, although the discussed band
expansion can be applicable to any other classifier.

The rest of this paper is organized as follows. Section 2 introduces the two representation-based
classifiers, i.e., SRC and NRS. Section 3 presents the simple nonlinear band generation method.
Section 4 discusses experimental result. The conclusion is drawn in Section 5.

2. Representation-Based Algorithms

Let the dataset with n labeled samples in c classes be X = {X1i , X2, . . . , Xc} ∈ �d×n, where d is
the number of bands and Xi includes labeled samples for the i-th class.

2.1. SRC

In SRC [3], a testing sample y is linearly represented by all the training samples. The objective is
to find a sparse weight vector a that minimizes the term ‖y− Xa‖2

2, i.e.,

arg min
a
‖y− Xa‖2

2 + λ‖a‖1 (1)

where λ is the regularization term. In this research, Equation (1) is solved by mexLassoWeighted.m
in MATLAB [17].

After the sparse weight vector a is estimated, the residual error for each class i is calculated as

ri(y) = ‖y− Xiai‖2
2 (2)

where ai denotes the entries of sparse weight vector a associated with the i-th class. The testing sample
is assigned as

class(y) = arg mini=1,2,...,C (ri(y)) (3)
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2.2. NRS

It has been argued that it is the collaborative representation instead of the l1 norm that actually
improves the classification accuracy [4]. The NRS [5,9,10] can adaptively adjust the regularization term
per sample such that only samples similar to the testing sample can actually participate in collaborative
representation. Its objective function is expressed as

arg min
a
‖y− Xa‖2

2 + λΓ‖a‖2
2 (4)

where Γ is a diagonal matrix, which is defined as

Γ =

⎡⎢⎢⎣
‖(y− x(1))‖2

2 0
. . .

0 ‖(y− x(n))‖2
2

⎤⎥⎥⎦ (5)

where x(i) is the i-th column of the dictionary X. The coefficient a has a closed-form solution as

a =
(

XTX + λΓ
)−1

XTy (6)

Similarly, the residual error is used to determine the class label as Equation (3).
In SRC and NRS, the regularization parameter λ needs to be tuned, which can be the optimal

value for the training samples.

3. Nonlinear Band Generation Method

A simple way for band generation is to adopt some explicit nonlinear functions to create artificial
images that serve as additional linearly independent spectral measurements [16,18]. Although any
nonlinear functions may be used, in our paper, we limit our discussion on multiplication and division.
Band multiplication is related to their correlation, while band ratio is often used to remove the
illumination factor [19]. Three new datasets can be generated by these two methods. The first dataset
uses pixel-wise multiplication, and the second dataset is generated by division, i.e., band ratio. If we
combine the original dataset with the artificial bands by both division and multiplication, we have the
third dataset with a total number of N2 bands.

Note that, in the traditional kernel method, the kernel trick is to avoid to explicitly identify the
nonlinear functions to use. We will show that simple multiplication and division can offer better
classification than the kernel trick, and band ratio (division) is the best choice for the nonlinear function
while keeping the data dimensionality manageable.

3.1. Multiplication

Suppose two images Bi and Bj (pixels at the same locations) are multiplied together, then a new

image
{

BiBj
}N−1

i=1,j=i+1 is produced, where N is the total number of bands of the original multispectral
imagery. Although multiplication can be used for a single band, we only apply multiplication to each
pair of bands in order to compare with the division method yielding the same number of bands, i.e.,{

Bi/Bj
}N−1

i=1,j=i+1. Combining the original multispectral dataset with the generated artificial bands

with multiplication, there are a total of N2/2 + N/2 bands.

3.2. Division

New bands can be created as
{

Bi/Bj
}N−1

i=1,j=i+1 by dividing the pixels at the same locations in the
original bands in the multispectral dataset. If we only combine the original dataset with the bands
generated by division, we get the second dataset. The total number of bands after combining the
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original bands is N2/2 + N/2 in the second dataset. If we combine the original dataset with the
artificial bands by both division and multiplication, we have the third dataset with a total number of
N2 bands.

The proposed framework is shown in Figure 1, which includes the comparison of four cases:
original bands, original bands and bands generated with multiplication (original + multiplication),
original bands and bands generated with division (original + division), original bands and bands
generated with both multiplication and division (original + multiplication + division).

Figure 1. Framework of the band generation method.

3.3. Practical Consideration

In order for the generated bands to have similar dynamic ranges as the original bands, data is
normalized by dividing the maximum value; in other words, after normalization, the maximum value
of all the data points becomes 1. In division, the band with the larger local maximum value is chosen
as the divider, or the band with non-zero minimum value is the divider.

In practice, the value of 0 often occurs at the same pixel locations, such as shadow pixels in
all the bands. Then the band ratio is set to be 0. However, for pixels with very small non-zero
values, such as water pixels, it may be needed to introduce a small constant in both denominator and
numerator as [20]:

{(
Bi + K)/(Bj + K)

}N−1
i=1,j=i+1. Note that due to spectral correlation, the materials

(e.g., water, shadow) consistently have low or zero reflectance values without sudden change.

4. Experiment Results

4.1. Data Description and Experimental Setup

Due to lack of multispectral images with pixel level ground truth, data used in the experiments
are simulated from hyperspectral images through band grouping.

The first multispectral dataset is simulated from hyperspectral Indian Pines dataset acquired by
the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) over the Indiana’s Indian Pines in
June 1992. The spatial size is 145 × 145 with the spatial resolution 20 m/pixel, and the 220 spectral
bands are from 0.4 to 2.5 um. We generate six bands from this dataset since it has wider spectral
range. The generated six bands are to simulate blue, green, red, near infrared, short wave infrared
channels by grouping band range 6~12, 13~21, 24~33, 40~54, 123~143, and 177~220 of the Indian
Pines dataset [21]. Using the technique in Section 3, 15 bands are generated with multiplication, and
another 15 bands are generated with division. There are, in total, 16 different classes from the original
ground truth; however, we select eight classes from the original dataset from a statistic viewpoint [5].
The eight classes we used in the experiments are Corn-no-till, Corn-min-till, Grass-pasture, Hay-windowed,
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Soybean-no-till, Soybean-min-till, Soybean-clean, and woods. The number of labeled samples are tabulated
in Table 1. The false color-infrared image of this dataset is shown in Figure 2a.

Table 1. Number of samples per class for Indian Pines Dataset (the eight classes studied are bolded).

Class No. Class Name Number of Samples

C1 Alfalfa 46
C2 Corn-no-till 1460
C3 Corn-min-till 834
C4 Corn 237
C5 Grass-pasture 483
C6 Grass-trees 730
C7 Grass-pasture-mowed 28
C8 Hay-windowed 478
C9 Oats 20

C10 Soybean-no-till 972
C11 Soybean-min-till 2455
C12 Soybean-clean 593
C13 Wheat 205
C14 Woods 1265
C15 Building-grass-trees-drives 386
C16 Stone-steel-towers 93

Total 10,249

(a) (b)

Figure 2. Color-infrared composites for (a) Indian Pines Dataset; (b) University of Pavia dataset.

The second multispectral dataset is generated from a hyperspectral image acquired by the
reflective optics system imaging spectrometer (ROSIS) sensor. The image scene, covering the University
of Pavia, has 115 spectral bands ranging from 0.43 to 0.86 um with the spatial size of 610 × 340 pixels,
and the spatial resolution is 1.3 m per pixel. This dataset consists of 102 spectral bands after removing
the 12 noisy bands. We generate four bands from this dataset according to [22]. Four bands—i.e.,
blue, green, red, near infrared channels—are simulated by grouping band range 6~24, 25~45, 54~69,
and 89~103 in the original hyperspectral dataset. Based on these four bands, six bands are generated
with multiplication, and another six with division. The number of labeled samples of nine classes are
shown in Table 2. The false color-infrared image of this dataset is shown in Figure 2b.
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Table 2. Number of samples per class for University of Pavia Dataset.

Class No. Class Name Number of Samples

C1 Asphalt 6631
C2 Meadows 18,649
C3 Gravel 2099
C4 Trees 3064
C5 Painted metal sheets 1345
C6 Bare Soil 5029
C7 Bitumen 1330
C8 Self-Blocking Bricks 3682
C9 Shadows 947

Total 42,776

4.2. Classification Results

The datasets using nonlinear band generation method are evaluated on SRC, NRS, their kernel
versions with kernel trick (i.e., KSRC, KNRS), and KSVM. Each experiment is conducted 10 times to
avoid any bias in sampling, and average performance of overall accuracy (OA) is reported. The number
of training samples are set to 10, 30, 50, 70, 90, and 110, which are randomly selected. The regularization
parameter λ is critical to the performance of the two classifiers, and we adopt 10-fold cross validation
to choose the λ. Figures 3 and 4 show the thematic maps from the NRS for Indian Pines and University
of Pavia datasets, respectively. Obviously, there are many misclassified pixels. However, it can be
observed that the maps using the original bands only are worse than others.

Figure 5 shows the results for the datasets generated by Indian Pines. We conclude the division
method provides the best performance among other band generation methods. The OA using the
division method for both classifiers increases approximately 7%, compared to using the original data
only. Combining multiplication and division can provide approximately the same performance as
using the division only. The KSRC performs slightly better than the original SRC. When the number
of training samples is large, the KNRS outperforms the original NRS. However, when the number of
training samples becomes small, the KNRS may be even worse than the linear NRS. The KSVM using
the original multispectral imagery is inferior to SRC or NRS on the generated bands. The advantage of
using generated bands is more obvious when the number of training samples is small, which may be
because the dimensionality is expanded to a reasonable level.

Figure 6 presents the SRC and NRS results for the University of Pavia dataset. For SRC, using
nonlinear bands outperforms KSRC with the change of training samples. The three datasets containing
nonlinearly generated bands provide comparable performance. When the number of training samples
is small, the KSRC offers similar performance as the SRC on the original dataset. However, when the
number of training sample increases, the KSRC provides much better accuracy than the linear SRC.
For the case of NRS, with a small number of training samples, the KNRS produces approximately the
same performance as its linear version. When the training size is small, using nonlinear bands can
outperform the KSVM; using nonlinear bands can provide an approximately similar performance as
KSVM when the training size is large.

Tables 3 and 4 provide the computation cost of different algorithms in MATLAB when the
training sample is 110 per class. The computer has 3.40 GHz CPU and 16.0 GB RAM. We conclude
that the KSRC is computationally expensive compared to the original SRC. If bands are nonlinearly
generated for the SRC, then the computational cost is only slightly higher than using the original
bands. The discrepancy on computational cost between NRS and KNRS is less significant. However,
KNRS costs more time than the method using NRS on the generated datasets. The KSVM is the
most time consuming approach. Compared with the NRS and SRC approaches, the KSVM is more
computationally expensive.
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Table 3. Computing time (in seconds) in multispectral Indian Pines dataset using 110 samples per class.

Datasets SRC KSRC NRS KNRS KSVM

Original 50.49 311.89 122.70 152.81 1572.29
Original + Multiplication 54.84 — 131.27 — —

Original + Division 56.78 — 135.90 — —
Original + Multiplication + Division 57.88 — 137.05 — —

Table 4. Computing time (in seconds) the multispectral University of Pavia dataset using 110 samples
per class.

Datasets SRC KSRC NRS KNRS KSVM

Original 228.54 2046.9 592.97 794.09 2122.59
Original + Multiplication 240.34 — 611.35 — —

Original + Division 245.34 — 604.75 — —
Original + Multiplication + Division 251.48 — 620.75 — —

 
(a) (b) (c) 

 
(d) (e) (f) 

 

 

(g) (h)  

 

Figure 3. Thematic maps using 110 samples per class for the multispectral Indian Pines dataset
with eight classes (and OA values). (a) Ground truth; (b) Training; (c) Original + NRS (0.7492);
(d) Original + Multiplication + NRS (0.7781); (e) Original + Division + NRS (0.8159);
(f) Original + Multiplication + Division + NRS (0.8124); (g) Original + KNRS (0.7852);
(h) Original + KSVM (0.8193).

49



Remote Sens. 2017, 9, 662

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 

Figure 4. Thematic maps using 110 samples per class for the multispectral University of Pavia dataset
with nine classes (and OA values). (a) Ground truth; (b) Training; (c) Original + NRS (0.7698);
(d) Original + Multiplication + NRS (0.7820); (e) Original + Division + NRS (0.7896);
(f) Original + Multiplication + Division + NRS (0.7880); (g) Original + KNRS (0.7736);
(h) Original + KSVM (0.7981).
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Figure 5. Classification on the multispectral dataset generated from the hyperspectral Indian
Pines dataset.
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(a) SRC (b) NRS 
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Figure 6. Classification on the multispectral dataset generated from the hyperspectral University of
Pavia dataset.

4.3. Parameter Tuning

The parameter λ is important to the representation-based classifiers. In this session, we present
the effects of different λ on both Indian Pines and the University of Pavia datasets using NRS and
SRC. Figure 7a,b show the classification accuracy changes with λ in Indian Pines and Pavia University
datasets, respectively. The training samples are set to be 90 per class, and each experiment is conducted
10 times to estimate the average results. Since the Original + Division provides better performance
with less computational cost, we test the effects of different λ on its generated dataset. We can
conclude a relatively small λ, e.g., 10−2, can guarantee satisfactory performance for both NRS and SRC.
Obviously, NRS is less sensitive to λ due to the fact that the Г matrix can adaptively adjust the penalty
according to the similarity between the training and testing pixels.

(a) (b)

Figure 7. Classification Accuracy with different λ using NRS and SRC for: (a) multispectral Indian
Pines; and (b) multispectral University of Pavia datasets.
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In KSRC and KCRC, the radial basis function (RBF) is chosen as the kernel function. According to [12],
the parameter γ of the kernel function is set as the median value of 1/(||xi − x||22), i = 1, 2, . . . , n,
where x = (1/n)∑n

i=1 xi) is the mean of all available training samples. This simple strategy offers
a similar performance as using the parameter tuned by cross-validation. For the RBF kernel in
the KSVM, we choose the parameter γ and regularization parameter C with cross-validation.

4.4. Modified Band Ratio

To avoid a very small divider when calculating band ratio, a constant value of K can be added to
both numerator and denominator. Figures 8 and 9 show the results for the Indian Pines and University
of Pavia datasets. Since the minimum value of the Indian Pines data is about 0.12 (after normalization),
the original version of band ratio with K = 0 may be sufficient. In the University of Pavia dataset with
many close-to-zero values, this strategy can improve the performance. Overall, a small value of K,
such as K = 0.01, is an appropriate choice for both SRC and NRS.

(a) SRC (b) NRS 
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Figure 8. Classification on the multispectral Indian Pines dataset using the original plus
division-generated bands (original + division) with different adjustment parameter K.
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Figure 9. Classification on the multispectral University of Pavia dataset using the original plus
division-generated bands (original + division) with different adjustment parameter K.
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5. Conclusions

This paper proposes to use nonlinear band generation method with explicit functions for
multispectral classification. Two classifiers, i.e., SRC and NRS, and their kernel versions are evaluated
on the new datasets. The experimental results show that this method performs better than the
traditional kernel methods with higher classification accuracy and much lower computational cost.
In particular, it can outperform when the number of training samples is small.

The difficulty of nonlinear band generation is choosing an appropriate nonlinear function for
different datasets collected by various sensors covering all kinds of image scenes. In our experiments,
it turns out that the band ratio offers the best performance. Considering its role in removing
illumination factor [19], it would be a reasonable choice. Modified band ratio with a small adjustment
parameter may further improve the performance when an image scene contains materials with very
low reflectance.
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Abstract: In this study, a 1-D Convolutional Neural Network (CNN) architecture was developed,
trained and utilized to classify single (summer) and three seasons (spring, summer, fall) of
hyperspectral imagery over the San Francisco Bay Area, California for the year 2015. For comparison,
the Random Forests (RF) and Support Vector Machine (SVM) classifiers were trained and tested
with the same data. In order to support space-based hyperspectral applications, all analyses were
performed with simulated Hyperspectral Infrared Imager (HyspIRI) imagery. Three-season data
improved classifier overall accuracy by 2.0% (SVM), 1.9% (CNN) to 3.5% (RF) over single-season data.
The three-season CNN provided an overall classification accuracy of 89.9%, which was comparable
to overall accuracy of 89.5% for SVM. Both three-season CNN and SVM outperformed RF by over
7% overall accuracy. Analysis and visualization of the inner products for the CNN provided insight
to distinctive features within the spectral-temporal domain. A method for CNN kernel tuning was
presented to assess the importance of learned features. We concluded that CNN is a promising
candidate for hyperspectral remote sensing applications because of the high classification accuracy
and interpretability of its inner products.

Keywords: hyperspectral imagery; 1-dimensional (1-D); Convolutional Neural Network (CNN);
Support Vector Machine (SVM); Random Forests (RF); machine learning; deep learning; TensorFlow;
multi-seasonal; regional land cover

1. Introduction

Land-cover maps provide information for natural resource and ecosystem service management,
conservation planning, urban planning, agricultural monitoring, and the assessment of long-term land
change. The automated classification of land cover from satellite imagery is a challenging task due to
spectral mixing, intra-class spectral variability, and low spectral contrast among classes. Hyperspectral,
or imaging spectroscopy, data consist of hundreds of spectral bands, and capture more spectral detail
and variability relative to conventional multispectral sensors used for mapping land cover. Terrestrial
hyperspectral applications have shown success in mapping composition, physiology, and biochemistry
of vegetation, ecosystem disturbance, and built-up environments [1]. The analysis of hyperspectral
data presents issues in classification, due to large data volumes, and increased spectral variability
as recorded by hundreds of correlated bands [2]. Additionally, the classification task becomes more
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difficult when presented with the larger spatial extents and temporally detailed data collected by
spaceborne hyperspectral sensors with repeat measurements.

A traditional classification method for hyperspectral imagery involves Multiple Endmember
Spectral Mixture Analysis (MESMA), which consists of unmixing image spectra with pure spectral
profiles (endmembers), and assigning the class through endmembers selected in the unmixing
solution [3]. This family of methods typically requires regionally specific libraries of pure spectral
profiles that are from field spectra, synthetically generated, or selected from large libraries of
image spectra [4]. This type of classification is the most closed form solution available currently,
analytically processing an exhaustive combination of endmembers that most closely match the data to
be classified [3]. Further, MESMA assumes linear mixing, which is often violated by the interaction of
photons with components within an individual pixel and from nearby pixels.

Machine learning is an alternative domain of classification techniques that can accurately
distinguish land cover in hyperspectral and multi-seasonal imagery [5]. In contrast to MESMA,
these classifiers can learn non-linear decision spaces and do not require training data optimization
steps to select spectrally pure endmembers. There are many different varieties of machine learning
algorithms implemented on different platforms. Picking the classifier to analyze a dataset at times falls
to the user’s familiarity with the computational platform and/or algorithm for a specific field. Random
Forests (RF) and Support Vector Machines (SVM) are widely adopted machine learning classifiers
in the remote sensing community [6,7]. These algorithms have provided robust results across many
platforms and datasets, surpassing many other families and implementations of classifiers [8].

Convolutional Neural Network (CNN) is a leading machine learning classifier for image
recognition tasks that use 2-dimensional (2-D) image data [9,10], such as identifying faces in
photographs of people. Applications of CNN have extended into the classification of other contiguous
data types, like speech recognition utilizing 1-dimensional (1-D) data [11]. In remote sensing, there
have been several recent applications of CNNs and other similar “deep” network topologies [12–18].
The form in which CNNs are applied to remote sensing data can vary significantly depending on
the data available, as there is no universal deep network classification architecture. The application
of a CNN to classify land cover from 2-D visual images has been performed with good results in
their respective applications. For example, Kussel et al. [15] achieved a 95% overall accuracy with
land-cover classification and Li et al. [19] had a 96% correct detection of plants within a scene. In
some applications, segmentation and previously learned features can be transferred and leveraged as
part of the CNN classification task [12,20–22]. The method within [18,23,24] applies down-selected
spectra to a 2-D CNN architecture, thereby mainly exploiting the spatial extent of the data. The spectral
dimension is reduced because large number of features present with hyperspectral imagery typically
poses a problem for some classifiers, and many studies use dimensionality reduction (DR) to aid in
the classification process [13,18,23–26]. In [23–25] the spectral dimension was reduced, for example
by applying principal component analysis [23,24], comparing salient band vectors in a manifold
ranking space to consider hyperspectral data structure [25], or clustering similar bands and extracting
features [26]. All these methods reduce the number of spectral bands before subjecting the data to
the classifier. The method provided in [6] pre-calculates features based on physical and chemical
composition. All these DR methods have shown an increase in classification accuracy as compared
to using the full hyperspectral data. In contrast, some studies have shown increased classification
accuracy when utilizing the full spectra, invalidating the need for complex DR preprocessing. For
example, the work done in [13] shows the comparison between a 3-dimensional (3-D) CNN, which
utilizes the full spectral dimension, and other methods that do not utilize the full spectral dimension.
The 3-D CNN spanning the full spectral dimension increased accuracy by up to 3%. In this case,
the CNN classifier determines what are the distinctive features from the initial data, without a DR
pre-processing step. As another example, Hu et al. [17] utilized single-season hyperspectral data and
1-D CNN across the full spectral dimension to classify land cover with 90 to 93% overall accuracy,
and CNN outperformed SVM by 1 to 3%. A distinction between the extraction of key spectra by
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using DR and spectral feature generation from the CNN is that the CNN approach extracts features
based on spectral characteristics directly driven from reducing classification error. This makes CNN a
promising method for the exploitation of the distinctive aspects of the spectral dimension of the data
and warrants further investigation with hyperspectral land-cover mapping applications at various
spatial and temporal scales.

A broad goal of this study is to assess the accuracy of a 1-D CNN for classifying land cover from
multi-seasonal hyperspectral imagery. Accuracy from this CNN is compared to those from the two
leading machine learning classification methods in remote sensing, RF and SVM. These methods
were utilized as a control group due to their high accuracy rates, high prevalence within the field
and the robust libraries available for their implementation. In order to support applications based
on spaceborne hyperspectral imagery, our analyses were performed with simulated Hyperspectral
Infrared Imager (HyspIRI) imagery, a satellite mission currently being considered by NASA. Our
analyses are regional in scale, covering the San Francisco Bay Area, California, and land-cover classes
followed the global Land-Cover Classification System (LCCS) [27].

A CNN architecture requires the data to be in a contiguous format as convolutional layers of
the network distinguish, or filter, local features or patterns from neighboring regions throughout the
data. The neural network then performs the subsequent classification based on these learned features.
A potentially useful feature of CNN architectures is that the inner resulting data products, such as
properties of convolutional filters, can provide some insight into what the classifier has learned to make
its classification. The inner data products of CNN architectures as applied to 1-D hyperspectral data
have not been discussed in the literature. Thus, another goal of this study is to show how the inner data
products of CNN can provide insight into the classification task and the features extracted from the
spectra through the training of the network. With the analysis of feature maps that the convolutional
layer of this network creates, local regions within the spectral dimension of the data that are excited by
the convolutional layer of the network can be shown to have an impact on the classification accuracy.
The importance of these learned features can be then traced back to how important they are to the
classification task, by zeroing them from the network and re-computing the accuracy. Additional
processing of the feature maps extracted from the CNN enables an illustrative visual that reveals
which spectral areas assist in separating the classes. By standardizing, scaling and capturing only the
magnitude of the convolutional kernel feature maps, the spectral-temporal band importance can be
visually explored.

2. Materials and Methods

2.1. Study Area

The study area was the San Francisco Bay Area in northern California, USA (Figure 1) and is
described in Clark and Kilhman [6]. Natural vegetation in the study area includes evergreen needleleaf
forests (conifer), evergreen broadleaf forests, deciduous broadleaf forests, mixed forests, shrublands
and grasslands. Anthropomorphic land cover includes dense urban areas around the San Francisco Bay
and perennial crops (e.g., vineyards, fruit orchards) and annual crops (e.g., strawberries, cotton, rice).

2.2. Simulated HyspIRI Imagery

Hyperspectral imagery for the ~30,000 km2 study area was from NASA’s Airborne Visible Infrared
Imaging Spectrometer (AVIRIS) “Classic” sensor, flown in spring, summer and fall of year 2015 [1]. The
AVIRIS-C sensor images spectral radiance in 224 bands from 370 nm (visible) to 2500 nm (shortwave
infrared, SWIR) with 10 nm sampling and SNR of >1000:1 at 600 nm and >400:1 at 2200 nm [28,29].
There were twelve, ~12 km swath flight runs per season that provided 20% image overlap among
runs. Complete spring and fall runs were used while different dates were used to make a complete,
cloud-free summer dataset (Table 1, Figure 1).
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Figure 1. Study area overview with an AVIRIS-C, 11 June 2015 RGB mosaic of 12 individual flight runs.
Reference data are red and cyan points. Inset shows the multi-seasonal image extent with water and
cloud mask applied.

Table 1. Summary of San Francisco Bay Area AVIRIS-C images for the year 2015.

Season
Image Collection

Dates (UTC)
Runs Used

Average Solar
Zenith

Average Solar
Azimuth

Spring 30 April (16:48–21:25) Runs 06–17 26.7◦ 147.0◦

Summer
11 June (18:30–23:42) Runs 09–20 20.1◦ 227.2◦
15 June (21:32–22:51) Runs 12, 15 33.3◦ 254.5◦

Fall 2 October (17:19–22:32) Runs 06–13; Runs 16–20 42.2◦ 191.9◦

Hyperspectral images from AVIRIC-C were used to simulate HyspIRI as part of a preparatory
science campaign [1,6]. The current configuration of HyspIRI is a satellite sensor with 30-m spatial
resolution, 185 km swath width, and 16-day repeat global coverage [1]. The measurements would
cover 380 to 2510 nm in ≤10-nm contiguous bands (~214 bands). The AVIRIS-C radiance data were
processed by NASA’s Jet Propulsion Laboratory into HyspIRI Precursor Data Products (Figure 1) and
can be downloaded at http://aviris.jpl.nasa.gov. The 30-m simulated HyspIRI products include, in
order: orthrorectification and 90 × 90-m Gaussian-weighted resampling of at-sensor radiance to 30 m
pixels, addition of noise approximating a HyspIRI visible-SWIR Noise Equivalent Delta Radiance
(NEdL) function, and ATREM-based per-pixel atmospheric correction and apparent surface reflectance
retrieval [6,30]. Bands in the shortwave infrared with strong atmospheric water vapor absorption
and poor signal-to-noise were removed, leaving 186 bands for analysis per season. Clouds and water
in simulated images were masked prior to image classification using a Random Forests classifier
developed in Clark and Kilham [6]. The analysis of multi-season data was performed on an image
cube of seasonal spectral data stacked in temporal sequence (spring, summer, fall), resulting in an
input vector of 558 bands; Nd = 186 (bands) × 3 (seasons).
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2.3. Land-Cover Reference Data

Reference data for training and testing were collected using visual interpretation of high-resolution
imagery in Google Earth. Detailed methods are found in Clark and Kilham [6] and summarized below.
Data were percent cover of the following twelve “land-cover components” within a polygon: evergreen
needleleaf trees (ENT); evergreen broadleaf trees (EBT); deciduous broadleaf trees (DBT); shrubs;
herbaceous; dune vegetation; tidal marsh; annual crops; perennial crops; impervious surfaces; urban
landscape; and, bare non-vegetated (beaches, dunes, rocks, bare soil). Percent cover data were visually
estimated in 10% intervals using high-resolution Google Earth imagery in 100-, 250- or 500-m square
polygons. Different polygon sizes were chosen depending on patch size in order to maximize pixels
collected in large patches (e.g., 500-m square chosen), while minimizing mixed pixels in relatively
small patches (e.g., 100-m square chosen). Polygons were located over areas of well-mixed land-cover
components, with most centers further than 1000 m to a neighboring sample. Initially, a simple
random method was used to locate samples, which led to under-represented samples of some classes.
This necessitated manual placement to ensure an adequate sample of class types (Figure 1). Each
polygon was classified into one of twelve discrete Land-Cover Classification System [27] classes using
a decision-tree of rules applied to a polygon’s percent cover data (Table A1; [6]). Open-canopy trees
(woodlands) and shrubs (shrublands) have >10–65% tree or shrub cover, respectively; closed-canopy
trees (forests) and shrubs (thickets) have >65% tree or shrub cover, respectively. In this study, we focus
on mapping closed-canopy tree and shrub classes.

There were 1495 total reference polygons for the twelve LCCS classes. Reference reflectance
spectra were extracted from polygons overlaid on the three-season image cube for each run (Figure 2).
To exclude potentially mixed pixels at edges and minimize geolocation error, polygons were buffered
inward using a half-pixel buffer, and only pixels that were 100% contained by the buffered polygon
were selected. Due to scene overlap, there were some polygons that were located in two images. In
these cases, all available pixels were extracted. Reference data were split at the polygon level into
training and testing sets using the same polygon designations found in Clark & Kilham [6], except
polygons in areas of fires between years 2013 and 2015 were removed from the analysis. Training
spectra were then filtered at the polygon level to remove outliers following methods in Clark &
Kilham [6]. Single- and three-season data were processed for outliers separately for each group of
variables. There were a total of 71,362 training pixels and 52,510 testing pixels (Figure 3).

2.4. Classifier Architectures and Tuning

Three machine classifiers were assessed in this work: Random Forest (RF), Support Vector Machine
(SVM) and Convolutional Neural Network (CNN). We used Python’s Scikit-learn machine learning
library for training and classification. This library provides access to established data mining and
data analysis tools and algorithms for implementing RF and SVM. The adaptations of the respective
CNN architectures require a relatively flexible platform for development. A CNN is a deep network
topology that can be formed as a computational graph and Google’s open-source computational
platform, TensorFlow™, is directly suited for this application. In this study, we used TensorFlow™ for
the CNN definition, training and classification portion of this work. This platform had the additional
advantage of using the GPU to speed data processing, whereas Scikit-learn relied solely on the CPU.
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Figure 2. Twenty-five randomly selected three-season reflectance spectra from each of the twelve LCCS
classes. Note that the x-axis is the band number (1–558) with seasons in spring- summer-fall sequence.
Bad bands have been removed within each season (186 bands per season).

Figure 3. Training and testing reference data distributions.

Below we provide a brief background and explanation of the RF, SVM and CNN classifiers and
their respective hyper-parameters. An overview of the method is shown in Figure 4. Training and
testing reference data included duplicate pixels from areas of scene overlap, thus providing spectral
variation for differences in sensor view and sun angle in the classification process. We did not have
a validation dataset due to the limited number of samples of some classes within the data. Training
data were thus used to train the classifier, while hyper-parameter tuning was performed by observing
training and test data accuracies. The final accuracy assessment was performed by extracting the
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most trusted classification from each classifier in the areas of scene overlap. This consists of utilizing
data classifications that result from classifications that have the highest confidence for RF or highest
probability for SVM and CNN (Section 2.6; Figure 4, LCCS-labeled Land-Cover Samples).

 

Figure 4. Overview of machine learning classification and accuracy assessment methodology.

2.4.1. Random Forest

The RF classifier is a technique of training an ensemble of decision trees through randomized
draws of training data. Once the ensemble of trees is created, data are applied to the classifier and
the prediction across the individual trees is captured [31]. The plurality of predictions is the resulting
classification of this algorithm.

There are three main parameters when tuning a Random Forest classifier: the number of estimators
(or trees), the maximum number of features utilized at each decision point within a tree and the
minimum samples at each leaf. As a general rule, the number of features utilized in RF classifiers is√

Nf , where Nf is the number of features. In hyperspectral imagery, each feature is an individual

reflectance band. The number of trees included in the ensemble typically improves classification
accuracy until a critical point is reached, beyond which accuracy does not increase further. For the
minimum leaf size, smaller values result in RF classifiers that are more prone to capturing noise in the
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training data. Optimization of these parameters should be considered when training a RF classifier on
a particular dataset [32].

For this work the standard Max Number o f Features =
√

Nf was utilized. The number of trees

was increased until there was not a significant change in prediction accuracy, resulting in a parameter
of 1000 trees. A search across the minimum leaf sizes was performed, resulting in a parameter of
1 sample in leaves.

2.4.2. Support Vector Machine

The SVM classifier separates training data by defining a hyperplane(s) through the data to segment
the classes. In two dimensions, this can be visualized as a line drawn between two classes that defines
the maximum separation in spectral space. For non-linear and high dimensional classification tasks,
the data are mapped to an even higher dimensional space and the “line” that is drawn between the
classes is, in effect, a plane which creates the most separation between the classes. How this mapping
to the higher-dimensional space is performed is dictated by hyper-parameters. A standard linear
Support Vector Classifier that utilizes a one-vs.-rest classification scheme was utilized for this work.
This implementation simplifies the tuning of the classifier down to one parameter, cost (C). This
parameter accounts for the trade-off between misclassification of training examples and simplicity of
the decision surface. A low C makes this decision surface smooth, while a high C aims at classifying
all training examples by giving the model freedom to select more samples as support vectors [33]. A
linear search for this tuning parameter was performed from 1.0 × 10−2 to 1.0 × 1010 and the highest
accuracy classifier was chosen; a C value of 0.1 was utilized for this work.

2.4.3. Convolutional Neural Network

At a broad level, a CNN is a deep-network topology that typically combines convolutional
filter layers in conjunction with a classification network, which for this work is a fully connected
Neural Network (NN). Through the standard back-propagation training process, convolutional
filters are trained to capture salient structural feature information from the sequential input data.
Hu and colleagues [17] mention these structural features as the “intraclass appearance and shape
variation” within spectra. As an extension from this previous literature, here we demonstrate that
these structural features actually represent those features present within the data that distinguish the
classes from each other. The architecture feeds these features, or filtered input data, into a subsequent
classification process.

A flow diagram of our CNN process is shown in Figure 5. For some datasets, like those consisting
of 2-D imagery, larger networks are required.

CNN Architecture

The feature generation and feature classification nature of CNN can become complex with multiple
layers that extract different levels of features from the data. A few examples of more complex CNN
architectures as implemented for image classification tasks can be reviewed in [9,10]. These complex
networks required the learning of a large number of features and a high level of neural network
complexity. These traditional CNN architectures are implemented in two dimensions (i.e., 2-D, width
and a height). The convolutional operation for these networks occurs with multi-dimensional kernels
and in various configurations, with the goal to classify the full or subsets of the image. In contrast,
hyperspectral data classification can be a pixel-based operation spanning only the spectral dimension
(i.e., 1-D), or in the spatial and spectral dimensions (i.e., 3-D). To simplify implementation and compare
results to RF and SVM, we chose to apply the CNN across the spectral domain of hyperspectral
pixels; and thus, the convolutional operation of the network only needs to operate on this single
dimension. This in turn greatly simplifies the architecture of the hyperspectral CNN relative to 2-D or
3-D implementations [9,10,13,15].
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Figure 5. Convolutional Neural Network (CNN) flow diagram.

Our CNN architecture resembles a network that has been recently introduced for hyperspectral
data classification in [17]. The network consists of a single convolution layer paired with a pooling layer
that feeds a fully connected neural network. Our network was further refined by adding Dropout and
Regularization of the fully connected layer [34,35]. Additionally, here we tune the convolutional layers
based on a technique that reduces the number of kernels trained within the network by accounting for
their impact on the classifier accuracy.

The single convolutional layer accepts the 1-D spectral profile input data and performs the
convolutional operation on the input data with each kernel in the architecture (Figure 6). This filtering
of input data with each kernel creates the features for classification. In our implementation of CNN,
the number of initial kernels to be trained was set at 86, the number of single-season engineered
metrics used in our previous research with these hyperspectral data and the RF classifier [6]. In that
study, engineered “spectral metrics” targeted vegetation biochemical and structural properties found
in reflectance spectra, and perform a similar function as the kernels for this network. Because the
learned features within the CNN are not tied to any pre-selected spectral features, rather only spectral
properties that best distinguish the classes, the number of kernels in the CNN was drastically reduced
by evaluating kernel importance (Section 3.2).

The pooling layer can be thought of as a spectral down-sampling of the convolutional feature
map (Figure 6). A Max Pooling operation was utilized here. This layer accepts the convolutional
feature map, evaluates pairs of data elements across the spectral dimension of the feature maps and
passes the maximum value onto the next layer. This down-samples the data by a factor of two while
preserving the maximum excitations from the convolutional feature map. This operation reduces
the size of the feature map while preserving the features observed within the convolutional feature
map. This provides a level of invariance to the spectral location of feature excitation within the feature
generation network and reduces the overall number of connections to the fully connected network;
and subsequently, this process will decrease the total number of trainable parameters for the network,
thereby reducing overall training time.
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Figure 6. Detailed Convolutional Neural Network (CNN) architecture.

This Pooled Feature map is then provided to the feature classification network (Figure 6). In this
architecture the feature classification network consists of a fully connected neural network. This
fully connected network layer consists of a hidden layer with 500 nodes. This network's learning is
regularized by including standard neural network regularization techniques; specifically, dropout with
a 50% dropout level and L2 regularization on the weights connecting the pooled feature map and the
fully-connected NN’s hidden nodes. These two techniques enable the classification network to learn
information throughout the fully connected network and encourage “smaller” weights to be utilized
within the classification network. This ensures that individual weights between the two networks
(feature generation and feature classification) are not exorbitantly larger than the other weights within
the same layer, helping to prevent overfitting of the training data. By applying a penalty for large
weights at this layer, the network is encouraged to learn information through all of the kernels and not
just a few of them.

The output of the hidden layer is connected to a final Softmax output layer that produces
a probabilistic output per class, or a vector of length of the number of classes, with each value
representing the probability that the input data belongs to a specific class (Figure 6). This probability
or confidence that the Softmax layer calculates is shown in Equation (1).

σ(z)j =
ezj

ΣK
k=1ezk

f or j = 1, . . . K (1)

where Zj are the inputs from the previous fully-connected layer applied to each Softmax layer node
and K is the number of Softmax layer nodes (i.e., the number of classes). Finding the location
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of the argument with the largest probability value via the Argmax() function provides a one-hot
representation of the class (Figure 6).

Stochastic gradient decent was utilized for training of the CNN. During training, this learning
method subjects randomized labeled data to the network and calculates a loss function. This loss is
then propagated back through the network to modify the network’s interconnections, based on the
impact the respective weights had on the previous epoch’s classification. This is the gradient of the
network, and is essentially the degree to which the weights of the network have impacted a given
classification and resulted in a respective loss. Modifying the network based on the loss calculated by
the classification or misclassification of the labeled data is effectively the back-propagation algorithm.
As training progresses, the back-propagation modifies the interconnection of the network to reduce the
loss function. This decreasing of the loss function indicates the classified data more closely matches
the labeled data. Learning curves are provided in Appendix Figures A2 and A3 for the training and
testing data, respectively, and show overfitting is not occurring within the testing data.

The TensorFlow™ platform has built-in implementations for calculating the gradients of the
network and the minimization of the loss function to be back-propagated through the network. The
Adagrad adaptive learning rate algorithm was utilized from the TensorFlow™ platform. The usage of
an adaptive learning rate provided a significant boost to the performance of this architecture on the
order of 4% overall classification accuracy. Additionally, the Adagrad adaptive learning rate greatly
sped up the training of the network as compared to fixed and the exponential decaying learning rate
optimizers. The Adagrad optimizer adjusts the learning rate, the extent the network can be modified,
based on the gradient recently seen by the network. As this optimizer is suited for relatively sparse
data and the dataset analyzed here is relatively unbalanced (Figure 3), this optimizer seemed to be an
appropriate fit for this architecture. Empirical testing proved that this algorithm reached a maximum
accuracy with a seed-learning rate of 0.1.

Hyper-Parameter Tuning

Dominant tunable hyper-parameters of this architecture are: Ks the kernel size, Nk the number of
kernels, and Nh the number of hidden nodes within the classification network (Figure 6). While other
characteristics can be modified within the network, these three hyper-parameters were determined to
be the most influential. Other parameters such as dropout level and regularization level on the hidden
weights could be adjusted, but our experience was that just having these parameters defined would
increase the accuracy of the network. We used values of 50% dropout and 1 × 10−4 for regularization.

The kernel size dictates the size of the feature to capture. It is the size of the local receptive
field considered within the spectral dimension for the convolution with the data. A rule of thumb
originating from the currently engineered features utilized in [6] is to use local receptive fields that are
roughly 10 bands long (10 bands × 10 nm spacing = 100 nm) for a single season. Informal experiments
indicated that Ks could change in size as long as the Number of Kernels, Nk, varied inversely with
this value. We believe that this is because the modification of these two parameters effectively varies
the capacity of the network to learn the data, as long as the network is sufficiently able to learn the
parameters equivalent accuracy should be able to be achieved. Due to familiarity with local receptive
fields of 10 in prior work this was used as the kernel size in our CNN implementation.

The number of kernels contained within the network represents the number of features able to be
learned. As the capacity of the network to learn features is a combination of the number of kernels and
the kernel size. If each of those features are very descriptive, and has a large kernel size, then it would
be expected that fewer of them would be required to achieve similar results. With the kernel size set, it
was determined that the number of kernels can be reduced until zeroing a kernel from the classifier
always has negative effect on overall accuracy. This ensures that the feature maps with respect to each
kernel are excited and that each kernel is important to increasing overall accuracy.
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Evaluating Kernel Importance

A main goal of training deep network topologies is to appropriately load the weights of the
network. If a network has too many nodes or has too many layers, it may not effectively learn the
appropriate weights for its interconnections, in effect not learning the decision space. As applied
to CNNs, too many kernels can produce excess capacity that does not contribute to an increase in
overall accuracy of the classification. With that in mind, we developed a way to verify that each kernel
contributes to an increase in accuracy. CNNs can be evaluated with a similar method to the Mean
Decrease Accuracy utilized in RF to determine feature importance. By zeroing out each convolutional
filter or kernel and assessing the effect on the overall accuracy, information on how important that
kernel is to the classification task can be determined. Kernels with significant impact on accuracy can
be regarded as containing information of distinguishing characteristic(s) of the data.

In our study, the number of kernels trained was reduced to ensure that all the kernels were
important to some degree. Each time the number of kernels was reduced the network was retrained
with the training data to appropriately learn the new kernels. It was determined that the number of
kernels trained within the network could be reduced until the Kernel Importance Table always showed
a negative average percent impact on the classification accuracy for all kernels (Section 3.2). Reducing
the number of kernels beyond this started to have a negative impact on the overall classification
accuracy. While this was determined experimentally, it proved to be useful in reducing the total size of
the network. Additionally, as the learned information is more condensed in fewer trainable kernels,
the features that each kernel is extracting should be more expressive. With this kernel reduction
performed, we expect that the network does not have too much excess capacity and the likelihood
of over training is minimized. In this study, we started with 86 kernels and were able to reduce
this drastically. Acceptable parameters for a three-season CNN were: Nk = 7 and Ks = 10. These
parameters were also applied to the single-season CNN.

Hidden Layer Nodes

The number of hidden layer nodes within the classification portion of the network determines the
capacity of the classification network to make an accurate “combination” of the features learned. It is
important that this network has enough capacity with the upper limit being mainly to keep the size of
the network only large enough to not limit the classification accuracy of the network. Here we chose
500 hidden layer nodes, Nh.

Convolutional Filter Visualization

Useful visualizations for CNN are the feature maps generated by the network. Feature maps are
created by applying individual pieces of data to the network and extracting the resulting convolutional
excitations for each class of data. When a single piece of data is applied to the network, every kernel is
convolved with this data point. This creates the Nd × Nk convolutional feature map. Visualizing this
convolutional feature map enables the identification of where within the temporal-spectral signature
the data is being excited or filtered by a respective kernel. This is the information that is provided to
the feature classification network.

As feature maps are connected to the same spectral locations within the hidden layer, if the feature
maps from each of the classes all are excited in the same area then those excitations do not provide any
distinctive information to the classification network and would have little effect in determining the
class of the data. Thus, for visualization purposes the mean across all class feature maps was removed
from individual class feature maps. As any deviation from zero within the modified feature map
indicates that the kernel learned something in that region, viewing the magnitude of the mean-removed
feature map provides a more useful view. Additionally, averaging feature maps from 75 spectra of the
same class provides the average excitations from convolution with those data, showing general trends
for each class. The resulting visualization feature maps can then shed some light on the distinguishing
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characteristics of the class, on a class-by-class basis. To provide context for the feature map, a random
piece of data from the feature map’s class is provided as a silhouette. This was done to illustrate the
typical structure of that class’s spectral profile across all three seasons. An example is provided in
Figure 7 for Annual Crops.

Figure 7. An example convolutional feature map for an Annual Crop three-season spectrum. The
example class spectrum is shown in background. Green, yellow and gray background areas represent
bands in the spring, summer and fall, respectively. Each season has 186 bands, ordered 370 to 2500 nm.
However, in this figure the original 224 bands per season are shown in order to display the bad data
gaps (e.g., atmospheric absorption windows).

2.5. Data Pre-Processing

Standardizing data for neural networks is a common practice and enables the network to operate
on data that has a similar dynamic range [36]. This frees the network from having to “learn” this
dimension or characteristic of the data. The zero mean and standardization of the data with respect to
spectra effectively removes common structural content from the data and then scales the data to have
an appropriate dynamic range on a per spectra basis. The formula below is the operation performed
for this standardization for each spectral band.

Xi_newspectra =
xi_rawspectra − μi_rawspectra

σi_rawspectra
f or i = 1, . . . Nd (2)

where Nd is the number of spectra or data, μi_rawspectra and σi_rawspectra are the mean and standard
deviation of all the training at the spectral index i.

This standardization of the data boosted performance of the CNN roughly 1% in classification
accuracy and made the training more stable. These same standardized data were applied to RF and
SVM but did not make any noticeable impact on accuracy of these classifiers (Figure 4). As per standard
practice, the mean and standard deviations for this standardization were developed from the training
dataset and then extended to condition the testing and classification image data. This is to prevent
standardization knowledge of the testing data to influence the training of the classifier.
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2.6. Classification Post-Processing and Accuracy Assessment

The final classified LCCS map products were created from mosaics of classified runs from
respective classifiers (Figure 4). In areas of scene overlap, the map class was determined by selecting the
pixels with the maximum number of votes (RF) or highest probability (CNN and SVM). An accuracy
assessment was conducted using confusion matrices, overall percent accuracy and kappa statistics
based on respective classifiers applied to independent test data. In this case, test data did not include
duplicate pixels in areas of scene overlap; that is, the class from the respective mosaicked map was
chosen as the reference class in areas of overlap.

3. Results

3.1. Accuracy Assessment

With single-season (summer) data, CNN had 0.5% and 9.3% significantly higher overall accuracy
(OA) than SVM and RF, respectively (Z > 3.2, p < 0.01, Table 2). With three-season (spring, summer, fall)
data, CNN had 0.3% and 7.3% significantly higher OA than SVM and RF, respectively (Z > 2.1, p < 0.05,
Table 2). Overall accuracy for three-season data was 1.9 to 3.5% significantly higher than single-season
data for all three classifiers (Z > 2.1, p < 0.05). Given their superior performance, remaining results will
focus on three-season CNN and SVM classifications.

Table 2. Overall percent accuracy per classifier using single (summer) or three seasons (spring, summer,
fall) of data. Kappa statistics are provided in parentheses.

CNN SVM RF

Single Season 88.0 (0.86) 87.5 (0.86) 78.7 (0.75)
Three Season 89.9 (0.88) 89.5 (0.88) 82.2 (0.80)

The three-season CNN map had average producer accuracies (PA) of 76.7%, and that ranged from
0.0 (Dune Vegetation) to 98.3% (Built-up, Table 3). The CNN map user accuracies (UA) averaged 80.0%
and ranged from 0.0 (Dune Veg.) to 97.9% (Tidal Marsh). The SVM map had average PA of 73.5%, and
that ranged from 0.0 (Dune Vegetation) to 98.8% (Built-up, Table 4). The SVM map UA averaged 80.0%
and ranged from 0.0 (Dune Veg.) to 97.9% (Tidal Marsh). The class accuracy for Dune Vegetation was
0.0% due to low class sample size (n = 132 pixels) and spectral confusion with Herbaceous, Annual
Crops, Bare, and DBT (Tables 3 and 4). Being located along the coast, Dune Vegetation was not
prevalent in the study area and was thus underrepresented in reference data. Annual Crops had
12.3% greater PA with CNN over SVM, with confusion in both classifiers spanning Perennial Crops,
Herbaceous and Urban Vegetation. Bare had a 35.3% greater PA in CNN over SVM, with greater
confusion with Annual Crops and Built-up in SVM. In both classifiers, deciduous broadleaf forests
(DBT) tended to be confused with evergreen broadleaf forests (EBT). Evergreen broadleaf forests were
confused with conifers (ENT), deciduous forests (DBT), and shrubs.

The mosaicked classified maps created with RF, CNN and SVM are shown in Figure 8. At this scale,
it is visible that all classifiers map land cover relatively well, and are relatively consistent throughout
their respective classification. In general, the RF map tended to be more speckled than SVM or CNN
maps. The RF map had more obvious problems with classifying shrublands in the southeast corner of
the map (Figure 8B), with over-mapping of Perennial Crops; RF also had over-mapping of Built-up in
the Tidal Marsh areas along the northeast bay. Some class differences toward the coast, such as near
San Francisco, are explained by clouds in the imagery that were not fully masked from the analysis.
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Figure 8. Classified land-cover maps for (A) Support Vector Machine; (B) Random Forests; and (C)
Convolutional Neural Networks. White areas indicate pixels that were not classified (e.g., water, clouds,
no data); (D) Natural color mosaic of imagery from June 2015.

The insets show an example of the classifications in the Bay Area delta agricultural zone. This
area is predominantly agricultural land with some urban areas. In this anthropogenic landscape,
homogenous geometric shapes are dictated by property lines (Figure 8D). The RF classifier performs
the worst with many areas with more speckle (i.e., more heterogeneity) of classes across the landscape.
The RF and SVM maps both misclassified several parcels with Urban Vegetated that were mapped as
Annual Crops by CNN. This is an area of irrigated sod production, which has temporal and spectral
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similarities to irrigated golf courses found in the Urban Vegetated class. Despite this spectral similarity,
CNN tended to correctly map these areas as agriculture.

3.2. CNN Kernel Importance and Visualization

The three-season CNN kernel importance matrix (Figure 9) shows the impact of zeroing a kernel
from the CNN on class producer accuracy. For example, conifer forests (ENT, class index 4) producer
accuracy decreases 95.2% if Kernel 7 is removed from the CNN. With Kernel 4 removed, six classes
have a 15.9 to 65.31% decrease in accuracy. In contrast, some kernels have a positive impact if removed
from the network. For example DBT (class index 5) and Urban Vegetation (class index 12) producer
accuracy increases 6% and 10.8% if Kernel 5 is removed from the CNN. On Average, the most important
kernel was Kernel 7 while the least important was Kernel 5.

Figure 9. Kernel Importance Matrix. This table shows the percent change in producer accuracy when
zeroing a kernel from the CNN. Class index definitions found in Table 3.

3.3. CNN Feature Map Visualization

Convolutional feature maps show, for an example spectrum from each class, kernel excitations
subtracted from the average excitation across all classes at a given wavelength (Figure 10). Figure 10
shows the average feature map excitations from 75 randomly selected spectra per class. In general,
feature maps show that kernels tend to excite in specific spectral-temporal regions for a given class,
forming strips in the feature map. At these regions of activity, the kernels tend to be excited at different
magnitudes (e.g., peaks and valleys along a strip).

By observing under which season of the feature map the excitations occur, distinctiveness of
phenological spectral variation can be observed within classes. This effectively enables the feature
maps to show under which season features are more prominent for respective classes. For example,
for the Annual Crop spectrum there is heavy kernel excitation in the summer (Figure 10). The forest
spectra (EBT, DBT, ENT) have excitations throughout the seasons. In contrast, Tidal Marsh and Shrubs
spectra have relatively low excitation throughout the year.
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Figure 10. Convolutional feature maps for each class for the three-season CNN. These feature maps
are the result of averaging the convolution of the kernels with 75 spectra per class (Section 2.4.3). An
example class spectrum is shown in background. Green, yellow and gray background areas represent
bands in the spring, summer and fall, respectively. Each season has 186 bands, ordered 370 to 2500 nm.
However, in this figure the original 224 bands per season are shown in order to display the bad data
gaps (e.g., atmospheric absorption windows).

4. Discussion

4.1. Classified Land-Cover Maps

The classification scheme in this study included twelve classes defined by LCCS rules designed
for global-scale applications. Forest classes had closed-canopies of one leaf type (e.g., deciduous or
evergreen), and thus excluded more mixed forest or open-canopy classes that have more spectral
variability, and subsequent class confusion and decrease in overall accuracy [6]. However, the broad
classes include spectral-temporal variability over a large region. This aspect of this study is unique for
testing machine-learning classifiers with hyperspectral and multi-seasonal datasets.

We found that the 1-D (per-pixel) SVM and CNN classifiers had over 7% overall accuracy
improvement over the RF classifier for these data and a classification scheme. This is similar to a 5%
increase in overall accuracy observed for 1-D CNN over RF in a study focused on crop classification in
Ukraine with multi-temporal multispectral Landsat and Sentinel-2 images [15]. We found that CNN
only had 0.3 (three-season) to 0.5% (summer) greater overall accuracy than the popular SVM classifier.
This result is similar to a previous study with 1-D hyperspectral imagery (not multi-temporal) that
found CNN to improve overall accuracy by 0.9 to 2.6% relative to SVM [17]. In our study, we found
the addition of multi-seasonal data modestly (but significantly) improved classification accuracy by
1.9 to 3.5% over using summer-only data. The Kussal et al. study [15] did not specifically isolate
individual seasons for testing multi-temporal data, and to our knowledge there are no studies that
compare the relative advantage of temporal data in CNN. However, multi-temporal data have been
shown to increase overall accuracy from ~2 to 8% with a variety of classifiers [37]

Our previous research in this study area with 2013 AVIRIS data and the same training and testing
reference data was based on the RF classifier [6]. We found reflectance data yielded a 62.9% and 78.8%
overall accuracy with single- and three-season data, respectively. The RF classifier in the current study
produced 15.8% (single-season) and 3.4% (three-season) higher overall accuracy, respectively. The
current study was not designed to replicate our previous research design. Some of the discrepancy
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in results is explained by a difference in image years, improvements in the atmospheric correction
process, and differences in processing code (Python vs. R). Further, our previous work used a RF
node size of 10 to avoid overfitting and to train a more generalized classifier, while the current study
used a node size of 1. Despite these differences, our results indicate that the CNN and SVM classifiers
offer improved performance relative to RF, and both classifiers should be considered in hyperspectral
classification applications.

All classifications in our study tended to have class confusion among spectrally similar forest
classes, a result in accordance with our previous RF study [6]. Annual Crops were broadly confused
with Herbaceous cover, and to lesser extent Urban Vegetated. Not all agriculture in this area is irrigated
or plowed, and tends to have similar physiognomy and phenology as grasslands, which are dominated
by exotic annual grasses; and thus, spectral-temporal confusion between these two classes is expected.

4.2. CNN Feature Maps and Land Cover

The usage of CNN is promising with respect to classification accuracy as well as visualization of
features within the data. From convolutional feature maps, the seasonal and spectral contribution to
the CNN for each class is visible as excitations by the kernels (Figure 10). This visualization, paired
with the confusion matrices, provide a point of exploration into the distinctive nature of the classes.
For example, the example Annual Crop spectrum has heavy kernel excitation within the summer
reflectance bands (Figure 7). This indicates that the Annual Crop class contains distinctive features
within the summer season as compared to the other classes. This could be due to the lack of chlorophyll
absorption features in the spring and fall visible spectrum and presence of these features in summer;
the example spectrum appears to be green in the summer. The kernels may thus be sensitive to
chemical properties of crops. In contrast, herbaceous cover follows the cycle of precipitation (wet
spring, dry summer and fall) and senesces in the early summer and is fully senesced by the fall
(Figure 2—note lack of chlorophyll absorption in summer and fall). The Herbaceous example spectrum
has convolutional excitations spread more evenly across seasons relative to Annual Crops, with some
excitations occurring in fall where annual crops had none (Figure 10). The Bare class by definition
has relatively low plant cover and minimal chlorophyll absorption signal, although there is high
within-class spectral diversity (Figure 2). With the example spectra, kernels are more uniformly excited
across all three seasons of the feature map, indicating that this class is less influenced by seasonal
variation than within-season spectral properties. This is visible by the additional excitation around the
low-signal area (e.g., low blue, high SWIR) within each season of the class data.

An interesting aspect from feature maps is the kernel activations around areas of low blue,
far shortwave infrared and around atmospheric absorption bands. These are spectral regions
that tend to have more noise due to lower solar irradiance, atmospheric effects (e.g., scattering,
absorption), and spectrometer sensitivity. Engineered metrics used in remote sensing target vegetation
chemistry and structure with narrowband ratios (e.g., indices such as NDVI), spectral derivatives,
and absorption-feature fitting techniques that span the different spectral ranges with well-known
continuous areas [6]. In general, engineered metrics avoid these noise-prone spectral regions. However,
because some CNN feature maps are excited in these regions, these results indicate that these regions
can be important to classification accuracy and warrant further investigation.

One criticism of neural networks and SVM is that they are relatively “black box”; classification
performance may be high, but it is difficult to understand the relative importance of spectral and
temporal information in the input vector. The CNN feature maps and kernel importance matrix
introduced in this study have potential to provide more insight into the classifier and should be
explored further with other datasets. In comparison to RF variable importance, we found these CNN
diagnostic tools to be less easy to interpret [6]. With RF variable importance, there is a direct linkage
between a predictor variable (e.g., reflectance band) and the impact on class and overall accuracy
with its removal. Despite the very different architectures between CNN and RF, we found that RF
importance (Figure A1) tended to cluster around some of the same regions as identified by the CNN
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feature maps, such as blue (spring, summer, fall), high SWIR (spring, summer) and the border of SWIR
atmospheric absorption (band index 500, which is 1761 nm from fall imagery).

4.3. Future Work with CNN Hyperspectral Image Classification

The application of CNN to hyperspectral data has only recently been explored and there are
thus many avenues for future work. The consideration of the spatial domain is an area of current
investigation. The extension of this architecture to include the spatial dimension as in [13] could
continue to add more distinctive information that could aid in the classification process. A 3-D
convolutional network paired with a respective importance figure (Figure 9) could shed light on to the
spatial as well as the spectral features that impact the classification on a per class basis. In a similar
manner, the temporal dimension of image data should be investigated. As in this study, this could
be done by vertically stacking the temporal season data creating a Nd × Nns sized input data array,
where Nd is the number of bands within a single season of image data and Nns is the number of seasons
(rather than horizontally stacked data in temporal sequence, as in our study). This data format would
dictate the architecture of networks that could convolve higher dimension kernels across the input
data, or perform multiple layered convolutional operations. The additional benefit would be that the
kernel’s local receptive field could enable the network to capture patterns within the temporal and
spectral dimensions in an integrated machine-learning framework. If there is distinctive information
within these dimensions, this could increase the accuracy as well as provide more ancillary information
about the distinctive aspects of the data through analysis of convolutional feature maps.

It was observed when reviewing the feature maps that the kernels were exciting the convolutional
feature maps in similar spectral regions, across all kernels. This appeared as strips of excited kernels.
This indicates that the kernels are not capturing unique information. If kernels were “encouraged”
to learn information that is “unique” this would enable the feature maps to show different structural
features in the data on a per kernel basis. One potential way to do this would be to provide
regularization on the kernels during training that would penalize kernels that are not orthogonal.
Although this may enhance CNN as a tool for exploring features that discriminate classes, this approach
may not improve classification accuracy.

As data from future hyperspectral satellites are more readily available, such as from the
Environmental Mapping and Analysis Program (EnMAP) satellite due to launch in 2019, the scalability
of classification techniques should be considered. As TensorFlow has been designed to scale from
multiple-core, GPU(s), and multiple-computer clustered configurations, the CNN can readily scale
for large global and temporal datasets. The Python Scikit-learn library used for RF and SVM in this
study does not have this capability, and thus does not offer a direct comparison of GPU processing
with CNN and TensorFlow. The computers utilized for this work were an 8 Core Xenon 3.7 Ghz
CPU processor with 32 GB ram and a NVIDIA K2200 GPU, as well as a second i7-2640M (2.8 GHz)
dual-core CPU with 8 GB of RAM. We tested the CNN architecture with both CPU- and GPU-based
configurations. The GPU-based implementation performed all graph computations within the GPU,
and was 5 to 8 times faster than CPU-based processing, depending on the learning batch size (larger
batch size increased performance within the GPU space). With our data, the GPU-based CNN was
slower to train than SVM; however, image classification was 9 times faster with CNN (Table A2). For
applications that use large datasets, particularly with the inclusion of spatial and temporal information
in the classification design, the CNN with TensorFlow or similar machine learning platform may have
a considerable advantage in processing time while offering relatively high classification accuracy.

5. Conclusions

A broad goal of this work was to implement and explain how a Convolutional Neural Network
(CNN) with a one-dimensional architecture could be applied to multi-seasonal hyperspectral images.
The results show that CNN can be applied to simulated spaceborne hyperspectral reflectance data
(HyspIRI) to achieve high classification accuracy rates comparable to that from Support Vector
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Machine (SVM), and surpassing the Random Forest (RF) classifier. Highest overall accuracies were
with three-season data (spring, summer, fall), with 89.9% for CNN, 89.5% for SVM and 82.2%
for RF. Single-season (summer) classifications had overall accuracies that were 1.9 to 3.5% lower
than with three-season data. Spectral and temporal information is readily visible through CNN
feature map visualizations and their respective importance is traceable back to kernel importance.
In summary, the CNN is a promising classifier for future hyperspectral classification tasks and this
study identifies future work to increase CNN performance, scalability and incorporation of spatial and
temporal information.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/6/629/s1.
The code utilized within this work can be cloned from the following repository: https://ciga_ssu@bitbucket.org/
ciga_ssu/hsi-cnn-repo.git.
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Appendix A

Table A1. The Land-Cover Classification System (LCCS) rules applied to percent cover estimates of
land cover in reference samples in order to create discrete class labels. Open-canopy (open) trees and
shrubs have >10–65% trees or shrubs, respectively. Closed-canopy (closed) trees and shrubs have >65%
trees or shrubs, respectively. This study focused on closed-canopy tree and shrub classes only.

Rules Based on Land-Cover Abundance LCCS Class

1. If >10% Vegetated
2. If >50% Natural/Semi-natural Vegetation
3. If >50% tidal salt marsh Tidal Marsh
3. If >10% of cover is woody vegetation (trees + shrubs) and
>10% of woody vegetation is trees

4. If ≥75% of relative tree cover is needleleaf trees Evergreen Needleleaved Trees (ENT)
4. If >75% of relative tree cover is broadleaf trees

5. ≥75% of tree cover is evergreen Evergreen Broadleaved Trees (EBT)
5. ≥75% of broadleaf tree cover is deciduous Deciduous Broadleaved Trees (DBT)

3. If >10% of cover is woody vegetation (trees + shrubs) and
>10% of woody vegetation is shrubs Shrubs

3. Else herbaceous cover
6. ≥75% of herbaceous cover is upland grasses and forbs Herbaceous
6. ≥75% of herbaceous cover is dune vegetation Dune Vegetation

2. Else Cultivated/Managed Vegetation
7. >50% perennial crops Perennial Crops
7. >50% annual crops Annual Crops
7. >50% urban landscape Urban Vegetated

1. Else Not Vegetated
8. >50% impervious surface Built-up
8. >50% non-vegetated Bare
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Table A2. Classifier training and classification times in seconds for three season data. For CNN, (1)
initial steady-state validation accuracy; and (2) a 4-mil epoch standard training session. The CNN
classifier utilized GPU-based processing, while SVM and RF were restricted to CPU-based processing.

CNN-1 (s) CNN-2 (s) SVM (s) RF (s)

Training Time 1500 21,146 358 3452
Classification Time per GB 65 65 590 768

Classification Time Per Pixel 0.0008 0.0008 0.00773 0.00959

Figure A1. Feature importance for the three-season Random Forests classifier. Nominal spectral profile
for ENT shown for context.

Figure A2. Mini-batch training accuracy curve.
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Figure A3. Testing accuracy curve.
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Abstract: Hyperspectral image (HSI) classification aims at assigning each pixel a pre-defined class
label, which underpins lots of vision related applications, such as remote sensing, mineral exploration
and ground object identification, etc. Lots of classification methods thus have been proposed for
better hyperspectral imagery interpretation. Witnessing the success of convolutional neural networks
(CNNs) in the traditional images based classification tasks, plenty of efforts have been made to
leverage CNNs to improve HSI classification. An advanced CNNs architecture uses the kernels
generated from the clustering method, such as a K-means network uses K-means to generate the
kernels. However, the above methods are often obtained heuristically (e.g., the number of kernels
should be assigned manually), and how to data-adaptively determine the number of convolutional
kernels (i.e., filters), and thus generate the kernels that better represent the data, are seldom studied
in existing CNNs based HSI classification methods. In this study, we propose a new CNNs based
HSI classification method where the convolutional kernels can be automatically learned from the
data through clustering without knowing the cluster number. With those data-adaptive kernels,
the proposed CNNs method achieves better classification results. Experimental results from the
datasets demonstrate the effectiveness of the proposed method.

Keywords: hyperspectral image classification; automatic cluster number determination; adaptive
convolutional kernels

1. Introduction

Different from traditional images (e.g., RGB image), hyperspectral image (HSI) contains a
continuous spectrum at each pixel, which is beneficial for identifying different imaged land covers.
With such abundant spectral information, hyperspectral image (HSI) classification that aims at
assigning each pixel a pre-defined class label has facilitated various applications, such as mineral
exploration, ground object identification, survey of agriculture and monitoring of geology, etc.
Therefore, plenty of efforts have been made in HSI classification. According to the feature utilized,
HSI classification methods can be roughly divided into hand-crafted feature based methods and the
deep learning feature based methods. A detailed review can be seen from Section 2. For hand-crafted
feature based methods, HSI is often represented by the features designed manually [1–7]. However,
due to their shallow structure, the representation ability of such features is limited, especially for
HSIs which often exhibit high nonlinearity aroused by the high-dimensionality and mixture of pixels.
On the contrary, deep learning feature based methods can automatically extract features from training
data with deep architectures. It has been proved that those deep features perform well in representing
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the complicated nonlinearity of data, which has promoted the development of deep learning feature
based HSI classification methods in recent years [8–12].

Since the convolutional kernels should be updated through the network training, traditional
deep learning based methods exhaust much training time. To address this problem, an advanced
CNNs architecture has been proposed recently, which adopts the kernels pre-learned from clustering
the training data without updating them in the training process any more. One typical method is
the K-means Net proposed in [13], where each CNNs kernel is first learned from a specific cluster
obtained by conducting the K-means algorithm on training data. Nevertheless, the cluster number K
(i.e., the number of kernels in CNNs) of K-means Net should be assigned empirically, which limits
the representational power of CNNs. Specifically, a different number K of kernels designed manually
in the convolutional layer will change the structure of CNNs and thus influence the output of CNNs.
In addition, the number K is expected to be adaptive to different images and tasks. Therefore, how to
data-adaptively choose a proper number of kernels is crucial for representing data characteristics with
CNNs. However, most of the existing CNNs based HSI classification methods fail to pay sufficient
consideration to this problem.

In this study, we propose a MCFSFDP based CNNs framework for HSI classification. First,
inspired by clustering by fast search and find of peaks (CFSFDP) [14], a novel clustering method,
named modified clustering by fast search and find of peaks (MCFSFDP), is proposed to data-adaptively
learn a specific number of kernels from training data. The convolution kernels can be automatically
determined by the center of each cluster and the inter-cluster margin, which guarantees the pre-learned
kernels to be suitable for the data structure. Then, the CNNs framework with those pre-learned
convolutional kernels is employed to classify each pixel in the HSI. Extensive experimental results
demonstrate that the proposed method outperforms several state-of-the-art CNNs based methods in
classification accuracy.

In summary, the proposed CNNs framework has two key advantages: (1) a specific number of
convolutional kernels can be data-adaptively learned from training data, which can well represent the
data characteristics; and (2) the MCFSFDP based CNNs framework is effective for HSI classification.

2. Related Work

Based on the feature adopted in classification of HSI, the HSI classification method can be roughly
divided into two categories, including the hand-crafted feature based methods and the deep learning
feature based methods.

2.1. Hand-Crafted Feature Based Methods

Linear features extracted by principal component analysis (PCA) [15] and partial least squares
(PLS) [16] are applied to classify the HSI data. The kernel methods are further developed to exploit
the nonlinear feature of HSI [17]. To depict the spatial texture of image, the wavelet transform (WT)
methods [18,19] have been widely used, which often show different scales and perform effectively
for classification in the high spatial resolution remotely sensed (HSRRS) data. Considering the
complicated spatial correlation, some Gaussian Markov Random Field (GMRF) [20,21] methods are
proposed to model such correlation within a graph structure. In [22], a spatial feature index that
measured the gray similarity distance in every direction is used to describe the shape feature in
local area that is surrounding a pixel in HSI. An adaptive mean-shift (MS) analysis framework [2] is
proposed for object extraction and classification of HSI over urban areas, which is able to obtain an
object-oriented representations of HSI data. Li et al. [3] integrate the spectral and spatial information
in a Bayesian framework, which utilizes a Multinomial Logistic Regression (MLR) algorithm to learn
the posterior probability distributions from the spectral information. In addition, this method uses
subspace projection to better characterize noise, highly mixed pixels and contextual information. In [4],
a mathematical morphology (MM) based method is utilized to process the HSI data. In this approach,
opening and closing morphological transforms are used to isolate bright (opening) and dark (closing)
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structures in images, where bright/dark means brighter/darker than the surrounding features in the
images. To model different kinds of structural information, morphological attribute profiles (APs) are
adopted to provide a multi-level characterization for an image created by the sequential application of
morphological attribute filters [23]. Based on Gray Level Co-occurrence matrix (GLCM), Zortea et al.
attempt to extract the contextual information of images by concatenating the spectral features used
for classification [1]. To improve the classification result of HSI, the Edge-Aware Filtering (EAF)
and Edge-Preserving Filtering (EPF) methods are proposed in [24,25]. Based on the EPF method,
a spectral-spatial classification framework was proposed in [25], which can significantly enhance the
classification accuracy. Kang et al. propose combining a recursion with image fusion to enhance the
image classification accuracy [26]. Recently, the Bag-of-Words (BOW) model has shown a promising
way to handle the remote sensing imagery classification problem. In the BOW model, images can
be represented by the frequency of visual words that are constructed by quantizing local features
with a clustering method, such as K-means and so on [27,28]. Due to the capacity of extracting the
handcrafted local features, such as local structural points, color histogram and texture features [29,30],
BOW based methods present good performance. Manifold regularized kernel logistic regression (KLR)
are proposed to solve multi-view image classification [31]. To integrate different levels of features for
saliency detection, Wang et al. [32] propose a multiple-instance learning based framework that fuses the
low-level, mid-level, and high-level features into a unified model. While effective, the trepresentation
capacity of the manual feature extraction based methods is limited.

2.2. Deep Learning Feature Based Methods

Recently, with the development of deep learning technology, lots of methods based on deep
learning have been developed for image classification, such as deep brief network (DBN) and
stacked auto-encoder (SAE). The DBN and SAE are unsupervised learning methods that are also
used for spectral-spatial classification of hyperspectral data without using the label information [9,33].
The concept of deep learning is introduced into the hyperspectral data classification for the first time [9].
The Canonical Correlation Analysis Network is useful for multi-view image classification [34]. With
the development of convolutional neural networks (CNNs) [35], which has been widely applied to
the image processing and achieved spectacular effects, more and more deep CNNs frameworks have
emerged, such as AlexNet [36], VGGNet [37], GoogLeNet [38] and ResNet [39], which can provide
results comparable with human beings in image classification and recognition tasks. Those methods
can automatically learn features from the training data, which can replace the manually-engineered
features, and have shown significant effects on HSI classification [8–10]. For example, Li et al. [40]
applied 3D-CNNs for spectral-spatial feature extraction and classification, where 3D kernels were used
to extract the feature from HSI cube without any preprocessing or post-processing. In [41], the transfer
learning method for HRRS scene classification is used for transferring features from successfully
pre-learned CNNs. Different from the CNNs methods, the convolutional kernels are updated in the
training process, and the kernels in PCA-Net [42] and K-means Net are pre-learned before the network
training and don’t need to be updated in the network training. In addition, the kernels come from
data directly. PCA-Net [42] adopts the principle components of training data as multistage filter banks,
while K-means Net learns the kernels by clustering the training data. In this study, we mainly focus on
the K-means Net. Although K-means Net can be directly applied to the classification and reduces the
training time by employing the pre-learned kernels, it is difficult to determine the number of kernels
that is crucial for the performance. To address this issue, we attempt to adaptively generate a specific
number of kernels from the training data of CNNs framework.

3. MCFSFDP Based CNNs

The traditional CNNs framework contains the convolutional layer, fully connected layer and a
classification layer. The convolution layer is updated through the error feedback process, which is
different from the pre-learned convolutional kernels based CNNs framework.
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The proposed MCFSFDP based CNNs method includes three major modules: (1) data
pre-processing module, which extracts patches from block samples; (2) MCFSFDP based kernel learning
module, which learns the convolutional kernels from those extracted patches; and (3) classification
modules which utilize the learned convolution kernels.

The flowchart of our MCFSFDP based CNNs method is shown in Figure 1.

Figure 1. The flowchart of the MCFSFDP based CNNs method.

3.1. Data Pre-Processing

In this study, we follow the standard data pre-processing principle in K-means Net [13].
Specifically, a HSI used in this classification task is denoted by R. Though HSI is 3D data, it also
can be seen as a collection of 2D images (i.e., images from different bands). Here, we denote the HSI as
2D form. First, we randomly select M pixels from R, and then extract M corresponding blocks {Bi}M

i=1
with a size of m×m as samples, where each block is centered at each selected pixel. These extracted M
samples are roughly divided into three parts, namely, training samples, validation samples and testing
samples. The property of center block pixel is described by all the pixels in the block. Then, {Bi}M

i=1 are
put into the network and the center pixel labels of block Bi are used as the ground truth for training.

In addition, we randomly extract N patches
{

Pj
}N

j=1 with a size of n × n from MT training
samples, MT denotes the number of training samples, where MT < M and n < m. The extracted N
patches

{
Pj
}N

j=1 are used for learning the convolutional kernels with a size of n× n via MCFSFDP. The
producing process of the block (sample) and patch is shown in Figure 2.

Figure 2. The block (sample) is extracted from image R and the patch is extracted from
block, respectively.

3.2. MCFSFDP Based CNNs Kernels Learning

To obtain the kernels with those cropped patches, a suitable clustering method is necessary. Lots
of clustering methods have been proposed, among which clustering by fast search and find of peaks
(CFSFDP) [14], is a typical state-of-the-art method. The reason for partial success of CFSFDP on
clustering is based on the idea that “cluster centers are characterized by a higher density than their
neighbors and by a relatively large distance from points with higher densities” and the cluster centers
can be determined through two thresholds of distance and density [14].

Though CFSFDP has shown its power for clustering, we find that when we apply it directly to
generate the kernels for CNNs, the generated kernels are not always optimal for hyperspectral image
classification tasks. This phenomena is observed from the experimental results (a similar conclusion
also can be seen from the results in Section 4.3.1). In our opinion, we consider kernels (filters) as the
standards for comparing the samples, which also show the evaluation standards for determining which

83



Remote Sens. 2017, 9, 618

cluster they belong to. Since the inter-cluster points are difficult to classify, we should also select several
inter-cluster points with representations as the clusters (kernels). To address this problem, we propose
a new clustering method based on CFSFDP, which only uses distance threshold to generate the kernel
centers. The proposed method differs from the traditional CFSFDP in two aspects: (1) CFSFDP
simultaneously uses the points with a large distance and high density to determine the cluster center,
which easily excludes the outlier points into the generation of cluster centers; while the proposed
MCFSFDP method only uses distance threshold to generate the cluster center, the cluster centers can be
generated from either outlier points (with only large distance) or points of density; (2) the number of
clusters via CFSFDP is determined ‘semi-automatically’, i.e., an extra frame needs to be introduced to
help determine the number of clusters, while the number of clusters can be automatically determined
through the proposed method. We give the details of the proposed method as follows.

The same as the CFSFDP algorithm in [14], we assume that the cluster centers are characterized
by a higher density than their neighbors and by a relatively large distance from points with
higher densities.

Following this idea, we firstly reshape each patch Pj into a column vector as a data point j with a
size of 1× n2. For each point j, we compute two values: its local density ρj and its distance δj from the
point with higher density, where, if the point j has the highest density, δj denotes the largest distance
between j and other points.

Both of these values depend only on the Euclidean distances djk between any pair of data points
j and k. The local density ρj of data j is defined as

ρj = ∑
k

χ(djk − dc), (1)

where χ(x) = 1 if x < 0 and χ(x) = 0 otherwise, and dc is a cut-off distance. Basically, ρj is equal to
the number of points that are closer than dc to point j. δj is evaluated through computing the minimum
distance between the point j and any other point with higher density in Equation (2):

δj = min
k:ρk>ρj

(djk) . (2)

For the point with the highest density, we usually take δj = maxk(djk). Note that δj is much larger
than the typical nearest neighbor distance only for points that are local or global maxima in the density.
Thus, the cluster centers are recognized as points for which the value of δj is anomalously large and
the value of ρj is higher than a value density at the same time. To show the distance and density of
each point intuitively, we give the decision graph of 10,000 patches with a size of 10× 10 from the real
Indian pines dataset in Figure 3.
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Figure 3. Decision graph of 10,000 patches with a size of 10 × 10 on the Indian pines dataset.
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Different from choosing cluster centers in CFSFDP [14], we use the MCFSFDP algorithm to learn
the kernels adaptively. Firstly, we choose the distance δ as the only threshold for choosing kernels
from the decision graph in MCFSFDP.

To adapt the kernels and choose the number of kernels, we select the optimal distance threshold
value δA as the following steps:

numv = f (δv), (3)

conv = [ f (δv+1)− f (δv)]/(δv+1 − δv), (4)

quov =|conv/conv+1|. (5)

where, in Equation (3), δv denotes the value of distance that contains points and f (δv) gives the
mapping relationship of the number of points whose distances are equal or larger than δv, as shown
as Figure 4a. In Equation (4), where δv+1 ≥ δv, conv denotes the differential of f (δv), which is an
intermediate result between Equations (3) and (5). Equation (5) denotes the variation quantity of the
number of points with δv, shown as Figure 4b.

δA denotes the adaptive distance threshold, and the points whose distances are larger than δA are
chosen as CNN kernels. δA is a critical point that must satisfy the number numv and numv+1 of points
are stable (in other words, they have a similar quantity), at the same time, the value |conv/conv+1| is
larger than the value |conv+1/conv+2|. In this time, δv is selected as the adaptive distance threshold δA.

In other words, to determine the adaptive distance threshold δA intuitively, from Figure 4a, we can
find the value region δv (0.25–0.30) from curve 1 when numv begins to approach to 0; as can be seen
from Figure 4b, conv with the distance value δv in region (0.25–0.30) has a local maxima at δv = 0.28.
The distance δv (0.28) that belongs to the region (0.25–0.30) is confirmed as the adaptive threshold
distance as δA. In conclusion, by observing Figure 4, the adaptive distance threshold δA is determined
as 0.28 on the Indian Pines dataset.
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Figure 4. The curve for determining the adaptive distance with patches with a size of 10 × 10 the on
Indian pines dataset. (a) shows the curve of point-number over distance δv; (b) gives the curve of
quotients of differential over distance δv.

Finally, the points j with the distance value δj > δA are adaptively chosen as the kernels and thus
the number of kernels is also adaptively determined through the threshold δA. Those chosen points
are then reshaped to patches with a size of n× n as the convolutional kernels in the CNNs framework.
The CNNs with the pre-learned adaptive kernels are called MCFSFDP Net. The pre-learned kernels
are denoted as wk in the following sections.

3.3. Convolutional Neural Networks

With the pre-learned kernels wk, a convolutional neural network such as [13] is designed for
per-pixel level HSI classification. This CNNs structure consists of an input layer, a convolutional layer,
a pooling layer, a fully connected layer and a soft-max layer, as shown in Figure 5.
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Figure 5. The structure of MCFSFDP based CNNs.

There are k kernels in the convolutional layer. Each feature map is calculated by taking the
dot product between the k-th kernel wk of size n× n, w ∈ Rn×n×k, and local context area x of size
m×m with c number of channels, x ∈ Rm×m×c. The feature map corresponding with the k-th filter
f ∈ R(m−n+1)×(m−n+1) is calculated as:

f k
ij = σ(∑

c

n−1

∑
a=0

n−1

∑
b=0

wk
abcxc

i+a,j+b), (6)

where σ is the rectified linear unit (ReLU). The kernels were pre-trained using the MCFSFDP algorithm.
The maximum pooling over a local non-overlapping spatial region is adopted to down-sample the

convolutional layer. The pooling layer for the k-th filter, g ∈ R(m−n+1)/p×(m−n+1)/p, is calculated as:

gk
ij = max( f k

1+p(i−1),1+p(j−1), . . . , f k
pi,1+p(j−1), . . . , f k

1+p(i−1),pj, . . . , f k
1+pi,pj). (7)

The k feature maps are reshaped to the column vectors and all the column vectors are connected
with a fully connected auto-encode unit. The autoencode unit is used to process the connected column
vector and represented the feature of the column vector. The output results of the hide layer in the
auto-encode unit were used to connect the classification layer.

The last CNNs step is a soft-max layer used for final classification.

4. Experiments and Analysis

Three datasets were utilized to validate the feasibility and effectiveness of the proposed CNNs
based MCFSFDP method (named as MCFSFDP Net) in HSI classification. In the following sections,
dataset and experimental settings are described firstly, and then the effectiveness and the superiority
of the proposed method are tested.

4.1. Datasets

To find images with less categories and obvious discriminations between categories, we firstly
select an image dataset with a size of 256× 256. The image of this dataset has been manually labeled
as three categories, including mountains, sky and roads. One hundred samples with a size of 25× 25
from each category that were extracted from this image. We randomly choose 210 context area samples
for training, 30 samples for validation and 60 other samples for testing. The details of selected image
samples were given in Table 1.
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Table 1. Ground truth classes and their respective sample numbers in Dataset 1.

Class
Samples

Training Validation Testing

Mountain 70 10 20
Sky 70 10 20

Road 70 10 20

In order to evaluate the proposed method on complex data, Dataset 2 includes the benchmark
Indian Pines image, which is HSI data captured by the airborne visible imaging spectrometer (AVIRIS)
sensor with a moderate spatial resolution of 20 m over the Indian Pines test site in northwestern
Indiana in 1992. As shown in Figure 6, this image contains145 × 145 pixels and 224 spectral bands,
whose wavelength ranges from 0.4 to 2.5 um. The number of bands of corrected data was reduced to
200 (extracted the 1–200 bands). In addition, 6476 image context area samples with a size of 19× 19
were extracted. Among them, 3238, 647 and 2591 samples were used for training, validation and
testing, respectively. The details of each category of image samples were given in Table 2.

(a) (b)

Figure 6. The Indian Pines on Dataset 2. (a) shows the composite image; (b) shows the groundtruth of
Indian Pines dataset, where the white area denotes the unlabeled pixels.

Table 2. Groundtruth of classes and their respective sample numbers on Indian Pines scene.

Class Samples

Number Classes Total Training Validation Testing

1 Alfalfa 46 23 4 19
2 Corn-notill 1288 636 132 520
3 Corn-mintill 63 29 7 27
4 Corn 35 17 3 15
5 Grass-pasture 180 90 14 76
6 Grass-trees 730 342 84 304
7 Grass-pasture-mowed 28 16 1 11
8 Hay-windrowed 94 45 8 41
9 Oats 20 10 2 8
10 Soybean-notill 807 406 71 330
11 Soybean-mintill 2067 1019 215 833
12 Soybean-clean 227 124 22 81
13 Wheat 204 107 28 69
14 Woods 560 307 44 209
15 Buildings-Grass-Trees-Drives 73 38 9 26
16 Stone-Steel-Towers 54 29 3 22

Total 6476 3238 647 2591
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The third Dataset 3 includes the benchmark Pavia University image, which is HSI data captured
by a ROSIS sensor with a moderate spatial resolution of 1.3 m over the flight campaign over Pavia,
northern Italy. As shown in Figure 7, this image contains 610× 610 pixels and 103 spectral bands. The
number of bands was reduced to 100 (extracted the 1–100 bands). Furthermore, 34,400 image context
area samples with a size of 11× 11 were extracted. Among them, 17,200, 3440 and 13,760 samples were
used for training, validation and testing, respectively. The details of each category of samples were
given in Table 3.

  

(a) (b) 

Figure 7. The Pavia University in Dataset 3. (a) shows the composite image; (b) shows the groundtruth
of the Pavia University dataset, white area denotes the unlabeled pixels.

Table 3. Groundtruth of classes and their respective sample numbers in the Pavia University scene.

Class Samples

Number Classes Total Training Validation Testing

1 Asphalt 5446 2718 580 2148
2 Meadows 12,695 6307 1320 5068
3 Gravel 1314 674 126 514
4 Trees 2709 1329 241 1139
5 Painted metal sheets 1345 688 153 504
6 Bare Soil 5029 2517 453 2059
7 Bitumen 1330 686 120 524
8 Self-Blocking Bricks 3630 1810 362 1458
9 Shadows 902 471 85 346

Total 34,400 17,200 3440 13,760

4.2. Experimental Parameter Settings

Ten thousand patches were randomly extracted from the training samples for learning kernels.
For each dataset, the sample (blocks) size and the number of patches should be maintained consistently
in different pre-learned CNNs frameworks.

The CNNs framework that is shown in Figure 5 uses one convolutional layer, one pooling layer,
one auto-encode layer and a classifier. In our algorithm, the pooling layer adopted the non-overlap
rule, the number of neurons in the hide layer of auto encode was set to 100 and the maximum iterations
for training the classifier was 400. The learning rate is 0.0001 and momentum is 1. The batch sizes on
the three datasets are chosen as 10, 50 and 200, respectively.

The codes are running on the computer with Intel Xeon E5-2678 V3 2.50 GHz × 2 (Intel, Santa
Clara, CA, USA), NVIDIA Tesla (NVIDIA, Santa Clara, CA, USA) K40c GPU × 2, 128 GB RAM, 120 GB
SSD and Matlab 2016a (MathWorks, Natick, MA, USA). The gradient is computed via batch gradient
descent, which is not computed by GPU.

The average test accuracy is calculated on 10 independent Monte Carlo runs.
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4.3. Experimental Results

4.3.1. Effectiveness of the Kernels Learned by MCFSFDP

The aim of this experiment is to validate the effectiveness of the kernels learned by MCFSFDP.
To this end, we compared those kernels with those learned as the cluster center obtained by CFSFDP
algorithm. Those two kinds of kernels were then integrated into the same CNNs framework for HSI
classification on Dataset 1. To obtain fair comparison results, both of the numbers of kernels in those
two methods were fixed at 49. The kernel size was set to 14× 14 and the pooling size was designed
as 4× 4. The average testing classification accuracy of those two methods was shown in Table 4.

Table 4. The testing accuracy compared with learned 49 kernels via CFSFDP and MCFSFDP-M on Dataset 1.

Methods CFSFDP Net MCFSFDP Net

Accuracy (%) 81.67 ± 0.5904 95.00 ± 0.5887

It reveals that the kernels learned by the MCFSFDP are more effective than the kernels learned by
the CFSFDP.

4.3.2. Effectiveness of the Kernels Number Determined by MCFSFDP

To demonstrate the effectiveness of the kernels number determined by MCFSFDP, we compared
MCFSFDP with its variants for classification in each dataset. Those variants shared the same CNNs
architecture and the kernel learning scheme excepted choosing the kernels number manually. Dataset 1,
Dataset 2 and Dataset 3 were used in the experiment. For each dataset, the kernel size and the pooling
size can be found in Table 5.

Table 5. The chosen block size, kernel size and pooling size of each dataset.

Dataset Dataset 1 Dataset 2 Dataset 3

Block Size 25 × 25 19 × 19 11 × 11
Kernel Size 10 × 10 6 × 6 2 × 2
Pooling Size 4 × 4 7 × 7 2 × 2

We report the testing classification accuracy of all these methods on each dataset in Tables 6–8,
respectively. Each variant is denoted as MCFSFDP-M Net followed with a specific number which
indicates the kernel number chosen manually. Similarly, the number that followed MCFSFDP Net
represents the kernel number automatically determined by the proposed method.

Table 6. The testing accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 1.

Methods
MCFSFDP-M

Net-20
MCFSFDP-M

Net-25
MCFSFDP-M

Net-41
MCFSFDP-M

Net-55
MCFSFDP

Net-35

Accuracy (%) 93.33 ± 0.5887 95.00 ± 0.5904 95.00 ± 0.5904 95.00 ± 0.5904 96.67 ± 0.5887
Distance threshold 0.19 0.18 0.16 0.15 0.17
Number of kernels 20 25 41 55 35

Table 7. The testing accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 2.

Methods
MCFSFDP-M

Net-14
MCFSFDP-M

Net-24
MCFSFDP-M

Net-31
MCFSFDP-M

Net-83
MCFSFDP-M

Net-151
MCFSFDP

Net-50

Accuracy (%) 95.29 ± 0.0870 96.51 ± 0.4146 97.03 ± 0.1940 97.07 ± 0.3434 96.82 ± 0.1457 97.84 ± 0.2249
Distance threshold 0.27 0.26 0.25 0.23 0.22 0.24
Number of kernels 14 24 31 83 151 50
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Table 8. The test accuracy of MCFSFDP-M Net compared with MCFSFDP Net on Dataset 3.

Methods MCFSFDP-M Net-19 MCFSFDP-M Net-42 MCFSFDP-M Net-152 MCFSFDP Net-78

Accuracy (%) 88.98 ± 0.2651 89.32 ± 0.1908 89.54 ± 0.1002 90.58 ± 0.1477
Distance threshold 0.08 0.07 0.05 0.06
Number of kernels 19 42 152 78

In Table 6, the proposed method determines the kernel number as 35. The manually chosen kernel
number in other variants are 20, 25, 41 and 55, respectively. The accuracy, distance threshold and
the number of kernels for each method are shown in different rows. It can be seen that the proposed
method shows the best classification accuracy. Similar phenomenon arises in Tables 7 and 8. Therefore,
we can conclude that the proposed method is able to seek a good kernel number for different datasets.

4.3.3. Performance Evaluation of MCFSFDP Net

In this part, the proposed method was compared with three state-of-the-art pre-learned kernels
based CNNs methods, including K-means Net [13], PCA-Net [42] and Random Net. For fair
comparison, the same CNNs architecture was adopted by all comparison methods. The number
of kernels for K-means Net, PCA-Net and Random Net was set to 50, while the proposed method
determines the number of kernels automatically. For each dataset, the kernel size and the pooling size
can be found in Table 9.

Table 9. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 1.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-35

Accuracy (%) 93.33 ± 0.5887 90.00 ± 1.8175 95.00 ± 1.8175 96.67 ± 0.5887

It reveals that the proposed algorithm can produce more accuracy for pixel classification than
those three types of pre-learned kernels based CNNs methods on this dataset as shown in Table 9.
Moreover, the proposed MCFSFDP Net with 35 kernels that has less computational complexity than
comparison methods with 50 kernels in the training process.

The average testing classification accuracy of our proposed algorithm, K-means Net, PCA-Net
and Random Net on Dataset 2 was given in Table 10. The results obviously show that the proposed
MCFSFDP Net obtains better accuracy than those three types of pre-learned kernels based CNNs
methods, which is consistent with the results obtained from Dataset 1.

Table 10. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 2.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-50

Accuracy (%) 95.02 ± 0.3343 97.30 ± 1.1916 97.12 ± 0.6195 97.84 ± 0.2249

The average classification accuracy of our proposed method compared with another three kernels
pre-learned based CNNs on the Pavia University image was presented in Table 11. The results show
that our proposed CNNs method is more accurate than those three types of pre-learned kernels based
CNNs methods. Even if the proposed method needs more kernels number to perform the better
classification result.

Table 11. The testing accuracy of different CNNs methods compared with MCFSFDP Net on Dataset 3.

Methods K-Means Net-50 PCA Net-50 Random Net-50 MCFSFDP Net-78

Accuracy (%) 89.77 ± 0.3399 90.14 ± 0.2652 90.47 ± 0.5113 90.58 ± 0.1477
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5. Discussion

5.1. Effect ofthe Number of Kernels

In the MCFSFDP-M Net, the number of kernels influences the pixel-level classification. Figure 8
shows the classification accuracy achieved with different numbers Ak that were manually selected via
MCFSFDP on Dataset 1, Dataset 2 and Dataset 3.

Figure 8a shows the classification results with the variation of kernel numbers Ak on each kernel
size n× n on Dataset 1. The accuracy of MCFSFDP-M Net computation cannot be enhanced when the
kernel number Ak was increased. Figure 8b shows the highest accuracy on Dataset 2. While the kernel
number is manually chosen via MCFSFDP, the accuracy can get a high point in the number range of
the kernels, as the adaptive kernels learned through the MCFSFDP method. It demonstrates again
that the accuracy cannot be enhanced with the increased kernel number on Dataset 3, as shown in
Figure 8c.
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Figure 8. The classification accuracy influence with the number of kernels. (a) the classification
accuracy with the increased number of kernels with different kernel size on Dataset 1;
(b) the classification accuracy with the increased number of kernels with different kernel size on
Dataset 2; (c) the classification accuracy with the increased number of kernels on Dataset 3.

5.2. Effect of the Kernel Size

In our proposed MCFSFSP based CNN method, the kernel size has a major impact on the pixel
classification performance. Table 12 gives the average classification accuracy obtained by using
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different kernel size. It shows that the highest classification accuracy was achieved when kernel size
was set to 10 × 10 and 6 × 6 on Dataset 1 and 6 × 6 on Dataset 2.

Table 12. The average classification accuracy obtained by using different kernel size.

Dataset Dataset 1 Dataset 2

Pooling Size 4 × 4 4 × 4 4 × 4 5 × 5 7 × 7
Kernel Size 14 × 14 10 × 10 6 × 6 10 × 10 6 × 6

Number of Kernels 15 35 24 32 50
Distance Value 0.22 0.17 0.17 0.28 0.24
Accuracy (%) 95 96.67 96.67 95.33 97.84

6. Conclusions

In this paper, we propose a novel CNNs classification framework for HSIs, which can
data-adaptively learn a specific number of kernels from the training data. In particular, this model
adopts the MCFSFDP algorithm to cluster the training data, and then the convolutional kernels can
be determined automatically by the cluster center and inter-cluster margin. With those pre-learned
kernels, a CNNs framework is developed for classifications. We have compared the proposed CNNs
framework against three state-of-the-art deep learning methods with pre-trained kernels on three
datasets. The experimental results demonstrate the superiority of the proposed CNNs framework in
classification accuracy. Moreover, we validate that the proposed method is able to seek a good kernel
number for a specific dataset. These adaptively learned kernels can help us understand the complexity
of data and adjust the CNNs architecture for good feature extraction.

In terms of future research, we will exploit a multi-layer architecture via MCSFDP based CNNs to
enhance the classification accuracy with less samples.
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Abstract: Due to its capacity for temporal and spatial coverage, remote sensing has emerged as
a powerful tool for mapping inundation. Many methods have been applied effectively in remote
sensing flood analysis. Generally, supervised methods can achieve better precision than unsupervised.
However, human intervention makes its results subjective and difficult to obtain automatically,
which is important for disaster response. In this work, we propose a novel procedure combining
spatiotemporal context learning method and Modest AdaBoost classifier, which aims to extract
inundation in an automatic and accurate way. First, the context model was built with images to
calculate the confidence value of each pixel, which represents the probability of the pixel remaining
unchanged. Then, the pixels with the highest probabilities, which we define as ‘permanent pixels’,
were used as samples to train the Modest AdaBoost classifier. By applying the strong classifier to the
target scene, an inundation map can be obtained. The proposed procedure is validated using two
flood cases with different sensors, HJ-1A CCD and GF-4 PMS. Qualitative and quantitative evaluation
results showed that the proposed procedure can achieve accurate and robust mapping results.

Keywords: inundation mapping; flood; optical sensors; spatiotemporal context learning; Modest
AdaBoost; HJ-1A/B CCD; GF-4 PMS

1. Introduction

Natural disasters are common phenomena in all parts of the world. There are many types of
natural disasters [1], of which a flood is considered to be one of the most destructive, widespread and
frequent disasters [2,3]. Every year, tremendous loss of life and property is caused by flooding [3].
Due to the changes in global climate and land use, floods are becoming more severe and more frequent
all around the world [3,4]. Although it is difficult to prevent floods, it is possible to minimise their
impact through proper rescue, relief and resource allocation for recovery and reconstruction. Therefore,
accurate inundation mapping, especially near real time, is very important for establishing a fast
response plan and mitigating the disaster [5–7].

Traditional methods for inundation mapping are based on ground survey and aerial observation.
However, when the flood spreads to a large scale, these approaches are time- and resource-consuming,
which cannot satisfy the need for a fast response to a disaster. Moreover, aerial observation can be
unrealistic in some extreme weather conditions, and the density of gauging stations is not satisfactory
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in many countries [8]. An alternative choice is provided by satellite remote sensing (RS) techniques [6].
Due to their time availability and cost effectiveness, satellite data has played an important role in
understanding inundation [9–13]. The availability of multi-date images makes it possible to monitor
the progress of floods.

Satellites used for mapping floods can be divided into those that are optical and those that are
microwave. Due to its capacity to penetrate the frequent clouds in a flood event, microwave remote
sensing is all-weather and invaluable for flood monitoring. With multispectral images, the flood can
be analysed in a more straightforward way with simpler pre-processing [14]. In this study, we mainly
focus on methods using multispectral satellite images.

Numerous methods have been proposed for mapping inundation using multispectral remote
sensing images. Among them, the one most frequently used is thresholding. Usually, indices are first
calculated through different band combinations, such as the normalised difference water index (NDWI)
created by McFeeters [15], which has been proven to produce good results for inundated areas [16].
Then a threshold is selected to determine the water range in the image. A manual threshold is accurate,
but has difficulty satisfying the need for fast disaster response. Moreover, it is subjective, as different
operators may produce different results. To overcome the problems, unsupervised thresholding
methods have been proposed. For instance, Xie et al. [17] introduced Otsu’s algorithm to implement
automatic selection of the water threshold. But due to the common illumination differences and mixed
pixels in satellite images, its effectiveness is reduced, especially for some complicated scenes.

The segmentation (semi-supervised) technique [18] has been proposed to minimise the
involvement of the user. The user first selects some seed points, with which the connectivity map is
generated using fuzzy logic. For example, in [19], a fast flood map and a detailed flood map were
obtained using growing strategies with seed points. However, the detailed map result still depended
on the correctness of the seed points.

Unsupervised strategies without any human involvement have attracted a lot of attention
in recent years. There are several kinds of unsupervised inundation mapping methods.
Besides the unsupervised threshold, unsupervised feature extraction methods have been utilised.
Chignell et al. [20] combines the pre- and post-flood images and apply the independent component
analysis (ICA) to them. Segmentation and threshold are used to extract the flood from the change
components. The cloud and crop components help to refine the maximum flood extent. In the work by
Rokni et al. [21], the multi-temporal NDWI images are composited into one file. Principal component
analysis (PCA) is applied to the composited file. The principle components are classified by the
thresholding technique, and the result of the change detection for the lake is obtained. But these
methods are only based on spectral information. When they are applied to cases using different
sensors, the ability of the method can vary with the changes of spectral characteristics.

Recently, context information, especially spatiotemporal context information, has attracted
more attention and proven to bring much improvement in monitoring the water surface. It is
combined with other techniques to generate chains of processing for better representation of an event.
Chen et al. [22] proposed a water surface monitoring method using contextual information. First,
permanent water/non-water pixels were detected by judging the statistical consistency between an
image point and its neighbourhood. Then, a distance-based classifier was used to map the other pixels
with the obtained permanent pixels. Experiments on Moderate Resolution Imaging Spectroradiometer
(MODIS) proved its validity and superiority over other unsupervised methods. However, the proposed
definition of the statistical equality depended on simple one-dimensional features, which were the
means and mediums of temporally adjacent pixels. A pixel was considered to be permanent if it had
more than five spatially adjacent and statistically equal pixels. This simple count strategy can reduce
the robustness of the method. Moreover, the low spatial resolution of MODIS data also limited its
performance in spatial dimension.

To resolve these issues, in this paper, we introduce a spatiotemporal context learning (STCL)
method and propose a novel work flow for flood mapping. The main objective is to delineate the
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water surface in an accurate and automatic way. First, a statistical model is built for the contextual
information of multi-temporal NDWI. Then, permanent pixels are extracted according to their
contextual consistency confidence values calculated from the model. Finally, a Modest AdaBoost
(MADB) classifier, trained with the permanent pixels and a variety of spectral characteristics, is adopted
to map the image into water and non-water categories. Through making full use of the spatiotemporal
and spectral information, the proposed approach improves the ability to map inundated surfaces.
The uncertainty caused by the sensor and scene differences is also reduced. Two different multispectral
datasets with medium resolution, HJ-1A CCD (30 m) and GF-4 PMS (50 m), are employed for
the validation.

2. Experimental Set Up

2.1. Datasets

Several kinds of multispectral satellite data have been used for flood mapping, such as Advanced
Very High Resolution Radiometer (AVHRR), MODIS, and Landsat TM/ETM+ data. However, most of
these data do not have high spatial and temporal resolution at the same time [23]. This has limited their
ability to map inundation, which changes complicatedly and rapidly over time. For example, AVHRR
and MODIS have a frequent revisiting cycle, which can be even shorter than 1 day. Their high temporal
resolution makes them useful for monitoring environmental changes, while the spatial resolution of
AVHRR and MODIS is 1 km and 250 m, respectively, which is coarse. Only general extent, not accurate
results, can be obtained using these data for flood mapping. On the contrary, Landsat TM/ETM+ data
have a middle-to-high spatial resolution of 30 m, but the observation is repeated every 16 days, which
cannot satisfy the needs for timely response.

On 6 September 2008, two optical satellites named HJ-1A/B (short for HuanJing-1A/B),
also known as the Chinese Environment and Disaster Monitoring and Forecasting Small Satellite
Constellation, were launched in China. The data can be downloaded from the website
(http://www.cresda.com/) free of charge, and have been successfully applied in several applications
such as land mapping, yield prediction, and environment assessment. The two satellites were equipped
with CCD cameras, which take multispectral images on the earth surface with a spatial resolution of
30 m. For each satellite, the time interval is 4 days. The constellation of the two satellites theoretically
has a higher revisiting frequency of 2 days. With both the advantages of spatial and temporal resolution,
HJ-1A/B satellites are regarded as an effective tool for monitoring and post-flood assessment [24].

The recently emerged geostationary satellite GaoFen-4 (GF-4) also has a high application value in
rapid assessment and emergency response of floods [25]. Due to its optical geostationary orbit, GF-4
shows a better performance in time resolution over other satellites. It is equipped with a camera for
visible, near infrared and middle-wavelength infrared spectra. The spatial resolution is 50 m. To the
best of our knowledge, research work using GF-4 imagery is limited, as it was only launched on
29 December 2015, and officially put in use on 13 June 2016. In this work, we also want to explore the
potential of the multispectral GF-4 PMS data in flood mapping. The main parameters of the HJ-1A/B
CCD data and GF-4 PMS data are listed in Tables 1 and 2. Slightly different from the HJ-1A/B CCD
data, the GF-4 PMS data have an additional panchromatic band.

Table 1. Technical parameters of the HJ-1A/B CCD data.

Satellite Sensor Band No. Spectral Range (μm) Spatial Resolution (m) Revisiting Time

HJ-1A/B CCD

1 0.43–0.52

30 4 days2 0.52–0.60
3 0.63–0.69
4 0.76–0.90

As can be seen, the HJ-1A/B CCD data and the GF-4 PMS data show balanced abilities in spatial
and temporal resolutions. Due to the limitations stated above in other multispectral data, we decide to
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utilise these two datasets for verifying the methods, and for understanding more about the potential of
these two datasets in flood mapping as well, as they are not so commonly used as MODIS or Landsat
data. Certainly, another reason why the HJ-1A/B CCD and GF-4 PMS data are chosen is because of
their free access.

Table 2. Technical parameters of the GF-4 PMS data.

Satellite Sensor Band No. Spectral Range (μm) Spatial Resolution (m) Revisiting Time

GF-4 PMS

1 0.45–0.90

50 20 s
2 0.45–0.52
3 0.52–0.60
4 0.63–0.69
5 0.76–0.90

2.2. Study Area

The Heilongjiang River is one of the largest rivers in Northeast Asia, flowing through four
countries (Mongolia, China, Russia and North Korea). The main stream has a total length of 2821 km,
and also forms the boundary between China and Russia. There are abundant water resources in the
Heilongjiang River, with a yearly runoff of 346.5 billion cubic meters. The main climate type in that
region is monsoon. The precipitation distribution varies with the season. From April to October, the
precipitation accounts for 90–93% of the annual precipitation, and the period from June to August
accounts for 60–70%. From December, the winter dry season starts and the precipitation mainly falls in
the form of snow.

From 12 August 2013, several severe precipitation events continuously hit the northeastern part
of Asia, leading to great flood in 39 rivers including part of the Heilongjiang River. Especially for the
Tongjiang and Fuyuan Reaches of the Heilongjiang River, the flood had been the most serious one
in the past 100 years. On 24 August 2013, more than 5 million people were affected in this disaster.
The first case study analyses the event in this region. Two cloud-free scenes of HJ-1A CCD data are
utilised. One image was obtained on 12 July 2013, which is around one month before the flood, and the
other one was obtained on 27 August 2013 during the peak flow period. The dimension of the study region
is 1082× 1321 pixels (around 1286 square kilometres). Its location and extent are shown in Figure 1.

Figure 1. (a) Location of the first study site near the border of Russia and China; (b) Extent of the HJ-1A
CCD data used in this study.
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Dongting Lake is one of the most essential lakes in China, and one of the most important wetlands
in the world as well. It is located on the southern bank of the Jinjiang section of the middle Yangtze
River, and is one of the important dispatching lakes for the Yangtze River because of the strong ability
of flood storage. The area of the lake is approximately 2690 square kilometres, across Hunan and
Hubei provinces, and is roughly composed of East Dongting Lake, South Dongting Lake and West
Dongting Lake. The water of Dongting Lake is clean and this area is one of the main freshwater fishery
bases for commercial purposes. Due to its good environment and richness in water, soil and wildlife
resources, it is one of the earliest birth places of Chinese rice raising agriculture. The basin area is of
262.8 thousand square kilometres, accounting for 14.6% of the Yangtze River basin area.

In June and July 2016, heavy rains hit the middle and lower reaches of the Yangtze River basin,
causing a catastrophic and wide flood in southern China. Eleven provinces and more than 10 million
people were affected. On 3 July 2016, the water at the Chenglingji station in Dongting Lake also
surpassed the warning level 32.50 m. A regional flood occurred in Dongting Lake. The second case
study focuses on this area during this flood. Two cloud-free GF-4 PMS images are selected as the
experimental data, which were obtained on 17 June 2016 (before the flood occurred) and 23 July 2016
(during the flood period), with a dimension of 2534 × 2235 pixels (around 14,159 square kilometres).
The location and extent of the second study site are shown in Figure 2.

Figure 2. (a) Location of the second study site at the North of Hunan Province in China; (b) Extent of
the GF-4 PMS data used in this study.

As can be seen from the figures, these two study sites are located in different geographic positions.
The first case study mainly presents a river flood and the second one presents a lake flood. Studies on
different kinds of floods can help validate the robustness of the method. Moreover, these two floods
took place in 2013 and 2016. Each of them is one of the most severe flood events in that year, bringing
about a large amount of damage and wide effects. The areas covered by the first and the second case
studies are also areas with high flood risk every year, so it is significant to choose these two areas for
study, which can help the government to make better decisions in disaster prevention in these areas.
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Before the experiment, these two pairs of data are preprocessed. For HJ-1A/B CCD data, we
download the absolute calibration coefficients from the data source website (http://www.cresda.com/),
and apply the absolute radiometric corrections to the data. These coefficients are obtained through field
experiment and authenticity testing by the China Centre for Resource Satellite Data and Application
(CRESDA). For the GF-4 PMS data and the GF-1 WFV data used for validation, a relative radiometric
correction is implemented before they are archived. We have not made further modifications to
their radiation values. All the satellites images used in this study are geometrically registered using
the software ERDAS IMAGEINE AutoSync. Specifically, in either of these two case studies, the
experimental data before the flood is considered the reference data. Other images used in the same
case are all registered to it. The co-registration technology adopts the cubic polynomial. The mean
displacement error is 0.5 pixels. All the data are projected to the WGS 1984 UTM coordinate system.

2.3. Validation

The extent of the water surface during a flood process can have daily changes. It is almost
impossible to obtain an accurate map of inundation regions on a particular day. In general, most of the
flood products are a rough outline of the main inundated areas. In order to achieve the qualitative and
quantitative evaluation, we produce two approximate reference maps for the first and second case
studies. Either of them is based on a remote sensing image over the same site and taken on the same
date as the corresponding experiment data. The spatial resolution of the data used for generating the
reference map is necessarily higher than that of the experiment data. For the first case study using
HJ-1A/B CCD data, there is a scene of GF-1 WFV data that can meet the requirements. The technical
parameters of the GF-1 WFV data are listed in Table 3. For the second case using GF-4 PMS data,
no corresponding GF-1 WFV data could be found. Instead, we find a scene of HJ-1B CCD data that is
qualified. The technical parameters of the HJ-1B CCD data can be found in Table 1.

Table 3. Technical parameters of the GF-1 WFV data.

Satellite Sensor Band No. Spectral Range (μm) Spatial Resolution (m) Width

GF-1 WFV

1 0.45–0.52

16 800 km
2 0.52–0.59
3 0.63–0.69
4 0.77–0.89

For the process of how the reference map is made, we use a traditional water extraction method.
We take the first case study as an example. First, the selected GF-1 WFV image is geometrically
registered to the experimental HJ-1A CCD data. Then, we calculate the NDWI of the GF-1 WFV image.
Compared with the ground information from Google Earth software, we manually select a threshold
in NDWI to separate water and non-water pixels. Finally, the binary water mask is resampled to the
spatial resolution of HJ-1A CCD data (30 m). Similar processes are applied to the second case study.
Given that there is no detailed ground truth available, and that it is not feasible to get one by field
investigation, we use the reference map in this study as an approximation of the real inundated extent,
helping to evaluate and compare the detection results qualitatively and quantitatively.

3. Methods

3.1. Permanent Pixel Extraction Using Spatiotemporal Context Learning

The images before and after a flood are referred to as image #1 and image #2, respectively.
The pixels with a constant land cover type, no matter what the type is, are defined as permanent pixels.
The proposed method is divided into two steps. First, the permanent pixels in image #1 and image #2
are extracted based on the STCL strategy. This is a method that models the relative relationship between
an object and its context. We introduce it to formulate the relationship between a satellite image pixel
and its context. Through comparing the models at different time points, a confidence value for whether
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a pixel changes or not is calculated to extract the permanent pixels. Second, using these permanent
pixels as a training set, a widely adopted machine learning classifier, Modest AdaBoost, is trained and
implemented for mapping inundation in image #2. Modest AdaBoost is one of the derivations of the
boosting algorithm, like the original AdaBoost algorithm. It combines the performance of a set of weak
classifiers, and also proves better than other boosting algorithms for convergence ability. More details
about these methods will be given below. In this section, we will first discuss the procedure in the
first step.

Due to its capacity for targeting specific land cover type and reducing influence from inconstant
band representation, spectral indices are commonly used in diverse remote sensing applications,
such as disaster monitoring, land cover mapping and disease prevention [26–28]. For mapping
different cover types in different applications, various indices have been proposed, including the
normalised difference vegetation index (NDVI), the enhanced vegetation index (EVI), NDWI, and the
normalised difference built-up index (NDBI) and so on. Among these indices, the NDWI has been
successfully applied to mapping land surface water, and proved more effective than other general
feature classification methods [29]. In this study, we calculate the NDWI in the experimental datasets
(the HJ-1A CCD data for the first case study and the GF-4 PMS data for the second case study) first.
Then, the steps for extracting permanent pixels will be executed on the NDWI data. The NDWI is
calculated as:

NDWI =
Green−NIR
Green + NIR

(1)

where Green and NIR are the reflected green and near infrared radiance, respectively, which are
replaced by band 2 and band 4 in the HJ1-A CCD data case, and band 3 and band 5 in the GF-4
PMS data case [15]. NDWI can eliminate the influence from the band value difference, but not the
influence caused by the different weather conditions. However, as it is the relative relationship
between neighbouring pixels that we use, influences from changes of overall brightness are limited in
the proposed procedure.

In the visual tracking field, as the video frames usually change continuously, a strong
spatiotemporal correlation is thought to exist between a target and its surroundings. In order to
make better use of this relative relationship, Zhang et al. [30] proposed the STCL method. In this
method, a rectangular contextual region was first built with the target in the centre. With the low-level
features (including the image density and location) of the contextual region, the relative relationship
between the target and its surroundings in contextual region was modelled. When a new frame came,
it was put into the model to calculate a confidence map, indicating the location that best matched the
contextual relationship of previous frames. This location was the inferred location of the target in the
new frame. As it depended on a kind of relative relationship, the illumination difference during the
frames cannot influence the result. Extensive experiments showed its effectiveness and good degree of
precision. This method has also been further employed and extended in other visual trackers [31,32].

A remote sensing image time series shares many similar characteristics with video data, although
video sequence images have a higher sampling rate. It can be inferred that there is also a relationship
between a target pixel and its spatiotemporal neighbourhoods in a local scene of RS images, if the
images are of good quality, without too many clouds and shadows. Due to the constant changes in
weather and light conditions, radiation values of the same cover type can vary greatly in different
scenes. Furthermore, it is rather difficult to calibrate the radiation of two RS images to absolute
consistency. As a result, more false positives can be introduced in mapping the changes. While the
relative relationship between unchanged pixels and their nearby pixels is relatively constant, the STCL
method, which aims at modelling this kind of relationship, is supposed to be robust also to illumination
variation in RS images. What is more, the STCL method provides a fast solution to online problems.
In this work, we borrow the concept of STCL to build a procedure for extracting permanent pixels for
flood mapping. The proposed flowchart for extracting permanent pixels is shown in Figure 3.
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Figure 3. Flowchart of permanent pixel extraction procedure.

One core of the STCL method is its utilisation of the attention focus property in biological visual
systems. In the mechanism of biological vision, assume that we are observing a point in a picture.
Besides the point itself, which draws most of our attention, other points around the target point are
the part we pay the second most attention to in the picture. The further one point is from the target
point, the less concern it will get from the visual system. On the contrary, if someone tries to find a
known point in an image, the visual mechanism first roughly figures out the background of the target,
and then, on the basis of a correlation between the background and the point, the point can be easily
targeted. But if only the feature of the target itself is considered, the search will be time and labour
intensive. In the visual tracking field, it means the tracker may get lost.

According to this conception, the STCL proposed by Zhang et al. [30] in the visual tracking field
uses the distribution of the attention focus, which is formulated as a curved surface function. In the
function, the peak is located at the target point and its surroundings gradually decrease. With the
weights from this function, the correlation of the target with its local background in image density
and location are modelled. If the target location gradually changes, this context model will gradually
change as well, and will be updated in each frame. When a new frame comes, although there are
illumination variation and occlusion problems, the new location of the target can still be found by
comparing the model with that of each pixel in the image. We borrow the concept and the formulation
of the spatiotemporal context in STCL, and propose a method based on this context information for
extracting permanent pixels. Details of the method are described as follows. The core of this problem
is calculating the confidence map c(x) between image #1 and image #2, which is also the probability of
that the pixel is permanent. It can be formulated as

c(x) = P(x), (2)

where x ∈ R2 is a pixel location, and P(x) is the probability. The higher P(x) is, the more likely x will
be permanent. After transformation, P(x) can be given by

P(x) = ∑
f (z)∈XC

P(x| f (z))P( f (z)) (3)

where XC = { f (z) = (I(z), z)|z ∈ Ω(x)}. I(z) denotes the pixel value, i.e., the NDWI value, at location
z, and Ω(x) is the neighbourhood of location x. P( f (z)) is the context prior probability that models
the appearance of the local context, and P(x| f (z)) represents the relative relationship between x and
its neighbourhood, which is defined as the spatial context model

gSC(x− z) = P(x| f (z)) (4)
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In image #1, x∗ and z are, respectively, the locations of the target pixel and its local context. For
context prior probability, when x∗ is permanent, if the values of x∗ and z, as well as I(x∗) and I(z),
are closer, there is a higher probability that the pixel at location z will also be permanent. Different
from the original solution for the tracking problem, we model the context prior probability P( f (z)) as

P( f (z)) = e−|I(x∗)−I(z)|ωσ(z− x∗), (5)

where ωσ(z− x∗) is a spatial weight function. With regard to the attention focus principle, if the local
context pixel z is located closer to the object x∗, z should make a greater contribution to the contextual
characteristics of x∗ in (5), and a higher weight should be given to it, and vice versa. Given that the
weight should decrease smoothly with the increase of the distance to the object, ωσ is defined as an
exponential type as

ωσ(z) = ae−
|z|2
2σ2 , (6)

where a is a normalising constant that restricts P( f (z)) to a range from 0 to 1. σ = 0.5 is the scale
parameter. As there are no changes occurring to x∗ in image #1, we set its confidence value c(x∗) = 1.
According to the correlation between adjacent pixels, if the context pixel is located closer to the object,
it should be more likely to be permanent. Therefore, the confidence function in image #1 can be
modelled as

c(x) = P(x) = e−|
x−x∗

α |β , (7)

where α is a scale parameter and β is a shape parameter. The confidence value changes monotonically
with the values of α and β. Therefore, these two parameters can be neither too large nor too small.
For instance, if β is too large, the model can easily get over-fitted. While if β is too small, the smoothing
may cause some errors. We empirically set α = 4.5 and β = 1 for all the experiments here. Based on
(2)–(5), it can be inferred that

c(x) = P(x) = ∑
f (z)∈XC

P(x| f (z))P( f (z)) = ∑
z∈Ω(x′)

gSC(x− z)e−|I(x∗)−I(z)|ωσ(z− x∗)
= gSC(x)⊗ (e−|I(x∗)−I(x)|ωσ(x− x∗))

, (8)

where ⊗ denotes the convolution operation. According to (7), (8) can be transformed to the frequency
domain as:

F(c(x)) = F(e−|
x−x∗

α |β) = F(gSC(x))� F(e−|I(x∗)−I(x)|ωσ(x− x∗)), (9)

where F donates the Fourier transform function. � is the element-wise product. So, for image #1,
the spatial context model is

gSC(x) = F−1(
F(e−| x−x∗

α |β)
F(e−|I(x∗)−I(x)|ωσ(x− x∗)) ) (10)

With the spatial context model gained from image #1, according to (9), the confidence map of
image #2 can be calculated by

c′(x) = F−1(F(gSC(x))� F(P′( f ′(x)))) = F−1(F(gSC(x))� F(e−|I
′(x∗′)−I′(x)|ωσ(x− x∗′))), (11)

where x∗′ is the location of the target pixel in image #2, and f ′(x) and I′(x), respectively, represent the
context prior probability and image intensity in image #2 [30]. After the permanence confidence map
is calculated for image #2, obtained after a flood, we select the pixels with top n% confidence values as
the final permanent pixels. In this work, we choose n = 2. More discussion on how n influences the
result will be given later.
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3.2. Inundation Mapping Based on Modest AdaBoost

3.2.1. Permanent Pixels Labelling

According to the previous section, we get the set of permanent pixels. In order to utilise the
permanent pixels for training the classifier later, we need to label the permanent pixels into water
and non-water categories. In keeping the whole process automatic, manual labelling should not be
used. In this study, we adopt the openly accessible MODIS 250 m land-water mask, which is called
MOD44W for short, to achieve this purpose. MOD44W is a constant product, which is derived from
Terra MODIS data MOD44C 250 m 16-day composites. If a pixel is identified as water in more than
50% of the period May to September of years 2000–2002, this pixel is labelled as water in the MOD44W
product. This method effectively smooths the short-term water surface changes caused by flood and
drought. Therefore, although the MOD44W was produced years before the case study, it is widely
accepted as the description of average water distribution [33]. Here, we adopt MOD44W to label
the permanent pixels. It is acknowledged that there are most likely some mistakes, caused by small
changes in water surface over the years. But, as the general condition changes little, and the permanent
pixels have high probability of being unchanged, the labels from MOD44W are generally reliable.

For both the first and second study area, there is only one scene of MOD44W data. We resample
the MOD44W data to the same spatial resolution as the experimental image, and then label the
permanent pixels into permanent water pixels and permanent non-water pixels according to the
MOD44W values. As the labels of the permanent pixels are used for classifier training, the proportion
of the permanent pixels of each class will influence the classifier training result. However, as most
changes happen inside or around the river regions, it can be inferred that the permanent confidence
is generally higher in non-water regions than in water regions. Among the pixels of the highest
confidence values, we selected the water and non-water permanent pixels with the same proportion as
that in the same scene in MOD44W. The sum of water and non-water permanent pixels remained n%
of the total. With the labelled permanent pixels, the Modest AdaBoost classifier is trained. Then it is
applied to the testing set consisting of multiple features of image #2. The final inundation mapping
result can be calculated.

3.2.2. Inundation Mapping

Boosting is a technique that combines several weak classifiers to generate a powerful one. The first
proposed boosting algorithm, AdaBoost, was created by Freund and Schapire in 1996 [34], which is
regarded as the basis for all other kinds of boosting method. Due to its good generalisation ability, low
computational complexity and high execution efficiency, boosting has become one of the most popular
and effective classification tools in computer vision [35] and pattern recognition [36]. A number
of algorithms are derived from the boosting method, such as the Discrete AdaBoost (DADB), Real
AdaBoost (RADB) and Gentle AdaBoost (GADB). DADB is a boosting method that mainly employs
binary weak classifiers, and RADB is a generalisation version of the basic AdaBoost algorithm [37].
On the basis of RADB, GADB is designed with better performance and higher resistance to outliers [38].
Here, we adopt a different boosting method called Modest AdaBoost, which proves to outperform
GADB in generalisation error and overfitting. Its natural stopping criterion is also an advantage, which
other boosting techniques lack [36]. The flowchart of mapping inundation using Modest AdaBoost is
shown in Figure 4.

Modest AdaBoost is a variant of boosting proposed by A. Vezhnevets et al. [36]. The basic idea of
this method is that in every iteration for computing the new distribution, more importance is given to
the samples that are misclassified in the previous step (with low margins). In every step, the method is
committed to improve the lowest margins of samples. While those training samples that already have
high margins may be misclassified with the new distribution and the margins are decreased, this forces
the weak classifier to work only in its domain and be ‘modest’, which is the origin of the name MADB.
Through this strategy, some regions of the input space have fewer chances to become overconfident,
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and the generalisation ability of the method benefits from this. The open source GML AdaBoost Matlab
Toolbox [39] is used in the experiments to implement the Modest AdaBoost algorithm. It is a collection
of classes and functions of several boosting algorithms. More details about the mapping procedure are
presented below.

Permanent Pixels

Permanent 
Water Pixels

Permanent Non-
water Pixels

Calculating Multiple Spectral Features 
in image #1

Training Set

Training Modest AdaBoost Classifier

Image #2

Testing Set

Inundation Mapping Results of Image #2

Calculating Multiple Spectral Features 
in image #2

Modest AdaBoost Classifier

 

Figure 4. Flowchart of inundation mapping procedure.

First, each permanent pixel is set as a training sample point. Thus, the training dataset
(x1, y1), , (xN , yN) can be obtained. xi ∈ X is the input vector, which consists of several feature
values of the permanent pixel, and yi ∈ {−1,+1}, which is the corresponding class label of the
permanent pixel. Here we define y = +1 when the pixel is water, and y = −1 when the pixel is
non-water. N is the number of permanent pixels. At the beginning, we initialise the weight distribution
on the input data as D0(i) = 1/N, i = 1, 2, . . . , N.

For each iteration t = 1, . . . , T, with the weight distribution Dt(i), the weak classifier st(x) ∈ S
can be trained by weighted least squares:

st = argmin
s

(
N

∑
i=1

Dt(i) · (yi − s(xi))
2

)
, (12)

In addition, the ‘inverted’ distribution of the data weights is calculated by

Dt(i) = (1− Dt(i))αt, (13)

where αt is the normalisation coefficient. Then we compute the probabilities:

P+1
t (x) = PDt(y = +1∩ st(x)), (14)

P+1
t (x) = PDt

(y = +1∩ st(x)), (15)

P−1
t (x) = PDt(y = −1∩ st(x)), (16)

P−1
t (x) = PDt

(y = −1∩ st(x)). (17)

Set
ft(x) = (P+1

t (1− P+1
t )− P−1

t (1− P−1
t ))(x), (18)

and update the distribution by:

Dt+1(i) = Dt(i) exp(−yi ft(xi))αt, (19)
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where αt is the normalisation coefficient. After T iterations or ft = 0, the final classifier can be
constructed by [36]

F(x) = sign[
T

∑
t=1

ft(st(x))] (20)

The procedure of training the Modest AdaBoost classifier uses the permanent pixels extracted
in previous steps, which contain the typical characteristics of water and non-water. After the strong
classifier is obtained, it is applied to image #2 to get the inundation mapping results. Due to the
difference in the bands of different satellites, the individual index of fixed band combination cannot
always be effective in different flood scenarios. In order to overcome this shortcoming and make the
method more robust, we set the components of the training vector using several bands and indices:
(1) original bands; (2) NIR− Red; (3) NIR/Red; (4) EVI; (5) NDVI; (6) NDWI. All of these indices can
be applied to optical satellite images. The computing method of NDWI is described in (1). For the EVI
and the NDVI, the computing methods are as follows [40,41]. The training and classification processes
are performed individually on each pixel of the image.

EVI =
2.5× (NIR− Red)

6× Red + NIR− 7.5× Blue + 1
, (21)

NDVI =
NIR− Red
NIR + Red

, (22)

For comparison, the commonly used unsupervised classification method K-MEANs, and another
two different permanent pixel extraction methods combined with Modest AdaBoost, are also applied
to the same experimental datasets. K-MEANs is implemented using the ENVI 5.0 software. The change
threshold is set as 5.0%. One permanent pixel extraction method is from [22], which determines the
permanent pixels through the means and mediums of the spatial neighbouring pixels. In another
permanent pixel extraction method, a similar judgment rule using mediums and means, but extended
to spatiotemporal field, is utilised. Specifically, each pixel has 8 spatial neighbouring pixels, and in the
spatial neighbourhood-based permanent pixel extraction method (SP) in [22], if more than 5 among the
8 spatial neighbouring pixels are statistically equal (having the same medium or mean) to the target,
the target pixel is considered permanent. For the spatiotemporal neighbourhood-based permanent
pixel extraction method (STP), not only more than five spatially neighbouring pixels, but also more
than five among the nine temporally neighbouring pixels, need to be statistically equal to the target
for the target to be considered permanent. These permanent pixels are utilised with MADB in the
same way as the proposed method. The inundation mapping results from each comparison method
is then obtained. Here we call these two comparison methods utilising different permanent pixel
strategies SP-MADB and STP-MADB, for short. All of these comparison methods are applied on the
same multiple feature set of the classification step to the proposed method.

4. Results

4.1. Inundation Mapping Using HJ-1A CCD Data

As described above, in the first case study, two images, acquired on 12 July 2013 (before the flood)
and 27 August 2013 (after the flood), are selected for the analysis. After pre-processing, the false colour
composite images of the study area and the corresponding MOD44W product used for labelling the
training data are shown in Figure 5.
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Figure 5. False colour composites (R4G3B2) of HJ-1A CCD images acquired on (a) 12 July 2013 (before
the flood) and (b) 27 August 2013 (after the flood) for the first case study. (c) Corresponding MOD44W
water mask product with water in blue and land in black.

The proposed spatiotemporal-context-learning-based permanent pixels-MADB (STCLP-MADB)
method and three other comparison methods (K-MEANs, SP-MADB and STP-MADB) are each
respectively applied to the experimental data. The final inundation mapping result for the individual
method is shown in Figure 6. For a better visualization of the obtained results, we select four
sub-regions and make a detailed zoom in. The location and size of the four sub-regions are shown in
Figure 6e. The enlarged view of the small regions and their corresponding false colour composite, flood
extraction result and the reference map are shown in Figure 7. Table 4 lists the number of inundated
pixels derived by different methods in the full scene and sub-regions.

Table 4. The first case study in 2013—Number of inundated pixels.

Method Full Region Sub-Region A Sub-Region B Sub-Region C Sub-Region D

K-MEANs 528,238 1833 16,236 7778 1442
SP-MADB 710,587 96 8470 5207 0

STP-MADB 843,570 1750 16,060 7009 1345
STCLP-MADB 812,610 1308 13,884 7011 1047
Reference Map 764,470 1176 11,861 6267 873

From the above figures and table, some comments can be made:

(1) The proposed inundation mapping method, based on STCL permanent pixel extraction and
MADB, successfully extracts most of the flood regions in the first case study. In each column of
the Table 4, the STCLP-MADB method achieves the closest number of inundated pixels to the
reference, except in sub-region C. It is the second best among the methods, and has almost the
same number of inundated pixels as the best. All of this evidence proves the effectiveness of
the HJ-1A CCD data and the proposed procedure for mapping wide inundated areas in a river
flood event.

(2) On the whole, it can be seen that the main regions of the flood are mostly well-delineated by each
inundation mapping algorithm, except for small tributaries−for example the tributaries near
the sub-region A and D−which are omitted by the SP-MADB method, and are shown in yellow.
The STCLP-MADB performs better than the three other methods from the visual effect. In these
regions, the K-MEANs and STP-MADB results present more false alarms, and the SP-MADB
method makes more omissions. The result derived from STCLP-MADB is most consistent with
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the reference map. Its effectiveness for precision mapping is significant for inferring the future
evolution of the flood.

(3) From the detailed mapping results, it can be found that the inundated regions are delineated
differently by different methods. In the map derived using K-MEANs, many points of false
positive can be found in the unflooded regions. However, the SP-MADB method produces more
false negatives in some small flood regions and half-submerged regions. More advanced results
are obtained by STP-MADB and STCLP-MADB methods. Further comparisons of the details
show that the results from STCLP-MADB provide finer outlines and are slightly better.

(4) Although the results from STCLP-MADB are quite promising, there are still some false positive
errors, mainly occurring in the small unflooded areas surrounded by large flooded areas.
For example, in Figure 6d, we can find some pixels in blue inside the main region of the flood,
which are unflooded areas but determined as flood by the STCLP-MADB method. This is because
these areas mostly comprise mixed pixels. Different proportions and locations of water in one
mixed pixel influence what class the pixel is distributed to.

Figure 6. (a–d) Flood inundation mapping results for the first case study using K-MEANs, SP-MADB,
STP-MADB and STCLP-MADB methods. (Gray: flood pixels in both the detection and reference maps;
Blue: flood pixels only in the detection map; Yellow: flood pixels only in the reference map; Black: the
background). (e) The locations of the four sub-regions in red rectangle, shown on the reference map of
inundation derived from the GF-1 WFV data, with the water in yellow and the background in black.
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Figure 7. From the left to the right column: the regions of interest A, B, C and D for the first case study.
From the second to the fifth row: corresponding detection and reference maps with the flood in blue
and the background in black.

Besides the qualitative evaluation, a quantitative evaluation is also made for the test.
For classification, the confusion matrix is one of the most commonly used methods for calculating
accuracy. In this study, the reference and the detection results are all binary maps with two categories,
water and non-water. Then, the confusion matrix can be produced. The accuracies of each method can
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be calculated, among which the overall accuracy is the rate of correctly classified water and non-water
pixels among the total pixels. The values are shown in Table 5.

From the numbers reported in Table 5, a few further conclusions can be summarised:

(1) STCLP-MADB achieves the highest overall accuracy and kappa coefficient among these four
methods, which shows that STCLP-MADB performs better than the others in terms of quantitative
evaluation. Extending the SP strategy to STP strategy improves mapping accuracy. Furthermore,
utilising STCL confidence calculation instead of a simple counting strategy in STP also enhances
the mapping results.

(2) With incomplete flood information, different flood detectors produce different commission and
omission errors. The best omission and commission rates are achieved by the K-MEANs and
SP-MADB methods, respectively. However, there is always a balance between the omission and
the commission. A decrease in omission errors usually brings about an increase in commission
errors and vice versa. As can be seen from Table 5, the high commission and omission rates limit
the ability of K-MEANs and SP-MADB methods in inundation mapping, which is illustrated in
Figures 6 and 7, while the STCLP-MADB method achieves a balance between these two rates and
provides a more acceptable result.

Table 5. The first case study in 2013—Accuracy.

Method Overall Accuracy (%) Kappa Omission (%) Commission (%)

K-MEANs 87.48 0.7450 2.77 17.51
SP-MADB 90.73 0.8146 12.18 5.53

STP-MADB 91.22 0.8220 3.03 12.13
STCLP-MADB 92.25 0.8435 4.10 9.78

We also discuss the relation between accuracy of the proposed method and the n in the permanent
pixels extraction step, i.e., the influence that the number of selected permanent pixels has over mapping
precision. The result is shown in Figure 8 below. In this work, we try n = 1, 2, . . . , 9, for if n is too big,
it will cost a lot of computation resources and time for training the classifier, which is impractical and
cannot satisfy the need for a quick response to a disaster.

From the figure, it can be seen that more permanent pixels leads to an increase in commission and
decrease in omission, but this only happens when n ≤ 2. When the value of n gets higher, there is no
significant change in commission and omission. Similarly, for overall accuracy, there is only a slight
decrease (around 0.1%) when n changes from 1 to 2. After that, the overall accuracy remains almost
unchanged. Therefore, it can be concluded that for the proposed STCLP-MADB method using HJ-1A
CCD data, the number of permanent pixels has a very limited influence on mapping precision. Given
the importance of computation efficiency in disaster response, it is quite enough to set n as 1 or 2.
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Figure 8. The first case study: commission, omission and overall accuracy in function of n, the
percentage of permanent pixels.
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4.2. Inundation Mapping Using GF-4 PMS Data

The second case study aims to analyse the GF-4 PMS data for the 2016 flood event at Dongting
Lake. Figure 9 shows the two images selected for this case, which were acquired on 17 June 2016
(before the flood) and 23 July 2016 (after the flood). The corresponding MOD44W product used as the
ancillary data is also shown in Figure 9.

In the second case study, inundation mapping results using different strategies are shown in
Figure 10. Similar to the first case study, four sub-regions located at different positions are selected and
shown in Figure 11, which aims to visually compare the results in a more detailed way. With regards
to quantitative evaluation, Tables 6 and 7 report the number of inundated pixels and the final accuracy
values, respectively. Figure 12 illustrates the relation between the permanent pixel proportion and
detection accuracy.

As can be seen from the figures and the table, many similarities exist between the results of the
second and the first case studies, and several slight differences as well. They are described as follows:

(1) In terms of the performance in categorisation, results in the second test are similar to that in the
first test. The proposed STCLP-MADB method still achieves the best overall accuracy and kappa
coefficient. K-MEANs and STP-MADB methods achieve the best omission and commission,
respectively, while STCLP-MADB shows an average performance of these two rates. As the two
test datasets are from different sensors, locations and inundation cases, this experiment further
proves the good robustness of the proposed method.

(2) K-MEANs makes use of the statistical properties of the whole image, which causes high
commission because the inundated pixels can have a different appearance in different contextual
situations. SP-MADB and STP-MADB draw more attention to the local characteristics, but they
make the determination of permanent pixels by counting, which lacks a theoretical foundation
and can be easily disturbed. This can be found by comparing Figures 6c and 10c. In the first
case, using HJ-1A CCD data, the STP-MADB method produces more commission, while in the
second case study, using GF-4 PMS data, more omission than commission is introduced in the
STP-MADB result. In the proposed method, a spatiotemporal context confidence calculating
model is adopted to overcome the limitation of counting. With the formulised combination of
local spatiotemporal and spectral information, we achieve a more accurate and robust inundation
map than other methods.

(3) The changing curves of accuracy with n are more unstable than those in the first test. The influence
of n on result precision does not change monotonically. It is difficult to find any rules in the curves
at all. This could be because the outline of the inundation is more complicated in the second case
study than in the first. Moreover, the spatial resolution of the GF-4 PMS data is sparser than that of
the HJ-1A CCD data, which brings out more mixed pixels. With the increase in these uncertainties,
the variation in accuracy becomes more unpredictable. Nevertheless, the fluctuation is still within
a limited range. The effectiveness of the proposed method is rather stable.

(4) As the GF-4 satellite was officially put into service not long ago (in June 2016), research on
GF-4 PMS data is rare. Our work explores the applied value of this new dataset and proves its
effectiveness for inundation mapping. More promising research about GF-4 PMS data could be
carried out in the future.

Table 6. The second case study in 2016—Number of inundated pixels.

Method Full Region Sub-Region A Sub-Region B Sub-Region C Sub-Region D

K-MEANs 2,417,535 74,610 21,785 10,363 13,001
SP-MADB 1,103,408 23,946 1488 5884 6163

STP-MADB 873,738 16,908 1468 5233 3848
STCLP-MADB 1,215,464 30,502 2116 6668 6961
Reference Map 1,357,670 37,529 3654 7963 7510
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Table 7. The second case study in 2016—Accuracy.

Method Overall Accuracy (%) Kappa Omission (%) Commission (%)

K-MEANs 79.73 0.5613 3.24 45.66
SP-MADB 92.88 0.7877 26.43 4.29

STP-MADB 91.01 0.7190 36.58 1.46
STCLP-MADB 93.66 0.8195 18.47 8.93

Figure 9. False colour composites (R: 5, G: 4, B: 3) of GF-4 PMS images acquired on (a) 17 June 2016
(before the flood) and (b) 23 July 2016 (after the flood) for the second test case. (c) Corresponding
MOD44W water mask product with water in blue and land in black.

Figure 10. (a–d) Flood inundation mapping results for the second test area using K-MEANs, SP-MADB,
STP-MADB and STCLP-MADB methods. (Gray: flood pixels in both the detection and reference maps;
Blue: flood pixels only in the detection map; Yellow: flood pixels only in the reference map; Black: the
background). (e) The locations of the four sub-regions in red rectangle, shown on the reference map of
inundation derived from the HJ-1B CCD data, with the water in yellow and the background in black.
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Figure 11. From the left to the right column: the regions of interest A, B, C and D for the second case
study. From the second to the fifth row: corresponding detection and reference maps with the flood in
blue and the background in black.
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Figure 12. Second test—commission, omission and overall accuracy in function of n, the percentage of
permanent pixels.

5. Discussion

In this study, we choose cloud-free images for the experiment. In practice, clouds and their
shadows have been a critical issue for flood mapping using multispectral images, especially the as
flood is usually accompanied by rainy and cloudy weather. This is because the visible and near infrared
spectra cannot penetrate the cloud, so the image quality is frequently affected during flood periods.
We put forward some analysis and speculation regarding how this may influence the result of the
proposed method. First, the confidence value calculated in the step of STCL will certainly be affected
by the clouds. As the STCL method models the correlation of image density and distance, and the
cloud has different characteristics with those of the land or the water, the relative relationship will
change a lot with the interference of clouds. According to the description in Section 3.1, if there are
some clouds present nearby, the confidence value will decrease. However, since we only extract pixels
with high confidence values for training the classifier, its impact on the final flood mapping may be
limited. On the other hand, the GF-4 is a geostationary satellite. When a disaster happens, it can take
images of the same region with a very high time resolution if needed. Through combining the common
region of multiple images over a short time, data hidden by clouds and shadows may be recovered.
Anyhow, it is a deficiency in our work that no experiment using cloudy data has been carried out.
More explorations concerning cloudy data will be made in a future work.

In the proposed process for flood mapping, the MOD44W product plays a role in separating
permanent pixels into permanent water pixels and permanent non-water pixels. With the introduction
of this water mask, some issues are introduced as well. One is that this product is obtained based on
the MODIS data from 2000 to 2002, while our case studies are in 2013 and 2016. There was over a
decade between the MOD44W product and the experimental data. The outlines of the water are very
likely to have altered. Besides the difference in time, the huge gap between the spatial resolutions of
the water mask and the experimental data could also lead to problems. The spatial resolution of the
MOD44W product is 250 m, which is much lower than that of the HJ-1A/B CCD and GF-4 PMS data.
Many jagged edges can be found in the resampled result of the MOD44W product. Moreover, some
small water surfaces are omitted because of the low spatial resolution. Both of these issues will bring
about errors in labelling the permanent pixels. Nevertheless, as the labelled permanent pixels serve as
the training set for the Modest AdaBoost classifier, not the final detailed classification result, we think
a certain number of errors can be tolerated. Figures 5c and 9c also show that, in the experimental areas,
from the visual effect, the MOD44W product is able to provide a general outline of the water before
the flood comes. From another perspective, for the areas near the edges of the rivers and lakes, where
most of the differences between the MOD44W product and the study data exist, the confidence value
is generally low because of the changes induced by the flood. Therefore, the pixels at these areas are
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less likely to be selected as permanent pixels, and their corresponding MOD44W labels would have
little influence on the final result.

According to the demand for automation and details in disaster assessment, this study aims
to explore a novel solution for flood mapping that can achieve precise results with minimal human
intervention. After two experiments on different regions and data, the proposed method shows
better performance than other automatic methods. Several important reasons we infer are as follows.
The first is the introduction of the machine learning classification method. Extensive literature shows
that the precision of supervised classification methods is generally better than that of unsupervised
classification methods. Unsupervised flood mapping methods, like K-MEANs, can bring about more
errors in scenes of large area or complicated distribution. Because in these situations, the radiation
value of water may vary a lot at different locations. Without a learning strategy, some non-water pixels
with similar features to the water at other locations could be identified as water, as can be seen in
Figure 10a of the Dongting Lake case. With the aid of the samples, the supervised classifier can learn
and adapt itself better to different land cover characteristics in different scenes, resulting in higher
accuracy. But the samples usually need to be selected manually, which limits their applicability in
disaster response. Another essential advantage of the proposed method is that it proposes an automatic
sample selection method, and combines it with a learning method. With the advantages of these two
methods, both good precision and automation can be achieved.

The utilisation of local information is also a factor bringing improvement to the result. On one
hand, it is more robust to utilise both contextual and global information than to utilise global
information only. On the other hand, the experiment results show that the proposed method
outperforms (qualitatively and quantitatively) the SP-MADB, STP-MADB methods. The only
distinction among these three methods is the permanent pixel extraction strategy. All three methods
utilise the local relationship between a pixel and its surroundings. The SP-MADB and STP-MADB
methods count the number of 8-neighbourhood or 17-neighbourhood pixels with equal mean or
medium to the object pixel. Noise and radiation variation, which exist all the time, can easily change
the count result. Moreover, if a pixel and its neighbouring pixels simultaneously change from one cover
type to another, the mean and medium will still remain the same, leading to errors in the permanent
pixel set. From the experiment results we can see that the STP-MADB method obviously makes more
commissions than omissions in the first case study, but makes more omissions in the second case,
which proves its lack of robustness. Whereas, the proposed method builds a model between the pixel
and its neighbouring regions, instead of counting the few adjacent pixels. Even if there are some noise
pixels, the general structure of the model will not change. With better selection of the permanent pixels
and the training set, the STCLP-MADB method produces a more precise outline of the inundated areas.

This study is proposed for floods, which is a practical problem. Hence it makes sense that
this proposed method can be applied operationally, and that it can help when a real flood comes.
Here we propose some suggestions for implementation, which may help the STCL-MADB method
to be effectively applied in a real application. The whole workflow can be divided into three steps:
extracting permanent pixels using STCL, training the classifier and mapping the inundation. The first
step, especially the STCL algorithm, accounts for most of the time consumption in the whole process.
Not only because the STCL algorithm has higher computation complexity than other steps, but the
operations need to be performed pixel by pixel. For example, in the second case study at Dongting
Lake, the size of the data is 2534 × 2235 pixels. The first step takes around 3 days, while the second
and third steps take around 15 min and a few dozen seconds, respectively. All these experiments
are implemented by MATLAB 2013 on a laptop with an i7-4710HQ CPU and 8 GB RAM. In practice,
a library of permanent pixels can be built in advance for regions with high flood risk. With the
accumulation of time series data, the library can be updated continuously. Then, the classifier can
also be trained and updated with the new library. As soon as the latest scene of remote sensing data
arrives, the ready classifier can be directly applied to it. In addition, implementing the process in other
programming languages and utilising high-performance processors could also help promote efficiency.
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Above all, remote sensing data with middle-high spatial and temporal resolution are recommended
in the proposed method, as the spatiotemporal contextual information in the image is important for
the method. If the spatial or the temporal resolution is rather low in the data, the correlation between
neighbouring pixels could be unremarkable.

6. Conclusions

Due to its vast coverage in spatial and temporal scales, flood is considered to be one of the most
complex disasters in the world. A novel inundation mapping approach based on spatiotemporal
context learning and Modest AdaBoost is proposed and verified in this paper. The proposed method
is implemented and evaluated in two different flooding cases using images from different sensors,
HJ-1A CCD and GF-4 PMS. The experimental results show that the proposed approach is effective,
and is able to produce more accurate mapping results than other state-of-the-art methods and, more
importantly, without any artificial samples and thresholds.

On one hand, compared with the traditional global-based unsupervised flood mapping methods
(such as K-MEANs), the SP-MADB, STP-MADB and the proposed method combine an automatic
sample selection strategy with a machine learning classifier, leading to higher accuracies in an automatic
way. With the samples extracted using local information, each of these three methods achieves an
overall accuracy of more than 90% in both of the first and second case studies. By comparing the results
of the SP-MADB and STP-MADB methods, it can be seen that only extending the neighbouring region
to the temporal domain cannot significantly improve the performance of the SP-MADB method. With a
formulised model of the spatiotemporal context information instead of simple counting, the proposed
approach achieves a more accurate and robust result than other methods. As a result of mixed pixels,
there are still some inaccuracies in the result. Moreover, the effect of the proposed method on cloudy
data needs to be explored. Future work will focus on these aspects and validate the proposed method
with more kinds of data.
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Abstract: This paper presents an optimized kernel minimum noise fraction transformation (OKMNF)
for feature extraction of hyperspectral imagery. The proposed approach is based on the kernel
minimum noise fraction (KMNF) transformation, which is a nonlinear dimensionality reduction
method. KMNF can map the original data into a higher dimensional feature space and provide a small
number of quality features for classification and some other post processing. Noise estimation is an
important component in KMNF. It is often estimated based on a strong relationship between adjacent
pixels. However, hyperspectral images have limited spatial resolution and usually have a large
number of mixed pixels, which make the spatial information less reliable for noise estimation. It is the
main reason that KMNF generally shows unstable performance in feature extraction for classification.
To overcome this problem, this paper exploits the use of a more accurate noise estimation method
to improve KMNF. We propose two new noise estimation methods accurately. Moreover, we also
propose a framework to improve noise estimation, where both spectral and spatial de-correlation are
exploited. Experimental results, conducted using a variety of hyperspectral images, indicate that the
proposed OKMNF is superior to some other related dimensionality reduction methods in most cases.
Compared to the conventional KMNF, the proposed OKMNF benefits significant improvements in
overall classification accuracy.

Keywords: hyperspectral image; feature extraction; dimensionality reduction; optimized kernel
minimum noise fraction (OKMNF)

1. Introduction

Hyperspectral images provide very rich spectral information of earth objects [1,2]. In general,
a hyperspectral image contains hundreds of spectral bands with high spectral resolution. However,
the high dimensionality reduces the efficiency of hyperspectral data processing. Moreover,
in hyperspectral image classification, another problem is known as the curse of dimensionality or
the Hughes phenomenon [3]. Namely, the more spectral bands the image has, the more training
samples are needed in order to achieve an acceptable classification accuracy. Obviously, it is not easy
to be satisfied to the hyperspectral case [4]. Dimensionality reduction is a very effective technique
to solve this problem [5,6]. Dimensionality reduced data should well represent the original data,
and can be considered as the extracted features for classification [7–9]. When the data dimensionality is
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lower, the computing time will be reduced, and the number of training samples required will become
less demanding [10–13]. Therefore, dimensionality reduction is a very critical pre-processing step
for hyperspectral image classification [14–16]. Typically, several approaches exist for dimensionality
reduction in hyperspectral data that can be split into two major groups. The first group includes
band selection approaches. Such methods aim at selecting a subset of relevant data from the original
information. This group includes not only a supervised method such as Bhattacharyya distance,
Jeffries–Matusita distance, divergence, kernel dependence, mutual information, and spectral angle
mapper, but also unsupervised methods such as geometric-based representative bands, dissimilar
bands based on linear projection, manifold ranking [17] and dual clustering [18,19], which have proven
to be valuable to achieve superior classification results. The second group relates to feature extraction
approaches. Feature extraction methods transform original hyperspectral data into an optimized
feature space by mathematical transformation, and then achieve dimensionality reduction through
feature selection. A number of techniques have been developed for feature extraction. These techniques
can be categorized as two major classes. The first class includes supervised feature extraction
methods such as linear discriminant analysis (LDA) [20], nonparametric weighted feature extraction
(NWFE) [21], sparse graph based feature extraction and their extensions [22–24]. The second class
relates to unsupervised feature extraction approaches such as principal component analysis (PCA) [25]
and minimum noise fraction (MNF) [26], sparse-graph learning-based dimensionality reduction
method [27], which do not need priori knowledge on label information. PCA and MNF are two of
the widely adopted methods for dimensionality reduction of hyperspectral images. As we all know,
the performance of PCA highly relies on noise characteristics [26,28]. When the noise is not uniformly
distributed across all of the spectral bands or when the noise variance is larger than the signal variance
in one band, PCA cannot guarantee that the first few principal components have the highest image
quality [26]. MNF generates new components ordered by image quality and provides better spectral
features in the major components than PCA, no matter how the spectral noise is distributed [28].
Original MNF is a linear dimensionality reduction method. It is simple in processing and can
be applied in most conditions. However, it is not easy for this method to handle the nonlinear
characteristics within the data. The nonlinear characteristics of hyperspectral data is often due to
the nonlinear nature of scattering as described in the bidirectional reflectance distribution function,
multiple scattering within a pixel, and the heterogeneity of subpixel constituents [29,30]. The Kernel
MNF (KMNF) method is developed to overcome this weakness in MNF [31–33]. KMNF is a nonlinear
dimensionality reduction method, which introduces the use of kernel functions [34] to model the
nonlinear characteristics within the data. The nonlinear transformation based on a kernel function
can transform the original data into a higher dimensional feature space, and then a linear analysis can
be followed in this space, as the complex nonlinear characteristics in the original input space have
become simpler linear characteristics in the new feature space [35–39]. Using a similar theory of the
kernel methods such as KMNF, kernel PCA (KPCA) was also proposed for nonlinear dimensionality
reduction of hyperspectral images [40].

While MNF is a valuable dimensionality reduction method for hyperspectral image classification,
it is found that the traditional version of MNF cannot provide desired results in real applications.
From the theoretical and experimental analysis, it has been reported that noise estimation is the key
factor leading to this problem [41–43]. In the traditional MNF, it is assumed that spatial neighboring
pixels have very high correlation and the differences between these pixels can be considered as
the noise. It works when the image has very high spatial resolution. Due to the limitation of
hyperspectral sensors, hyperspectral images are often unable to offer high spatial resolution, and mixed
pixels are very common in a hyperspectral image [44]. Thus, spatial information adopted in the
traditional MNF is less reliable for estimating noise for a hyperspectral image. Obviously, the spectral
resolution of hyperspectral images is very high, which means that hyperspectral images have strong
spectral correlation between bands [45]. It has been found that the combination of the spatial and
the spectral information is much more appropriate to estimate noise in hyperspectral images than
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only using single spatial information [46,47]. Optimized MNF (OMNF) utilized spectral and spatial
de-correlation (SSDC) [48–50] to improve noise estimation [51]. However, existing SSDC combines the
spectral information with only one spatial neighbor for noise estimation [48–50], leading to imperfect
exploitation of spatial information. KMNF is a kernel version of MNF, and can well treat nonlinear
characteristics within the data. However, the classification results using the features extracted by
KMNF are often disappointing, and sometimes even worse than using MNF. The fundamental reason
of this problem mainly also lies in the fact that the original KMNF adopts only spatial information to
estimate noise that has a lot of errors and is not stable.

To overcome the above limitations, we propose a new framework to optimize KMNF (OKMNF)
for feature extraction of hyperspectral data. Instead of only relying on single spatial information for
noise estimation, the proposed OKNMF estimates noises by taking into account both spectral and
spatial correlations through multiple linear regression. We also propose a more general method than
SSDC [51–53] for noise estimation, where more spatial neighbors are exploited. Moreover, the proposed
OKMNF can well treat nonlinear characteristics within the data, which cannot be effectively processed
by linear OMNF and MNF. Therefore, OKMNF is much more stable and accurate than KMNF on
the noise estimation, and enables better performances on both dimensionality reduction and its post
application to classification. Last but not least, the proposed framework can be extended to a general
model, when some other accurate noise estimation methods are available.

The remainder of this paper is organized as follows. In Section 2, the OKMNF method will be
introduced in detail. Section 3 validates the proposed approach and reports experimental results,
comparing them to several state-of-the-art alternatives. Section 4 discusses the performance of noise
estimation algorithms and dimensionality reduction methods. Section 5 states the conclusions.

2. Proposed OKMNF Method

Let us consider a hyperspectral image data set with n pixels and b spectral bands organized as a
matrix X with n rows and b columns. Hyperspectral images inevitably contain noises due to the sensor
error and other environmental factors’ influence. Normally, we can consider the original hyperspectral
image X as a sum of a signal part and a noise part [26,54–56]:

x(p) = xS(p) + xN(p), (1)

where x(p) is the pixel vector in position p, xN(p) and xS(p) are noise and signal contained in x(p),
respectively. In optical images, noises and signals are often considered to be independent. Thus,
the covariance matrix S of image X could be written as a sum of the noise covariance matrix SN and
signal covariance matrix SS,

S = SN + SS. (2)

Let us consider x̃k as the average of the kth band, and we can get the matrix Xmean with n rows
b columns:

Xmean =

⎡⎢⎢⎢⎢⎣
x̃1 x̃2 · · · x̃b
x̃1 x̃2 · · · x̃b
...

...
...

...
x̃1 x̃2 · · · x̃b

⎤⎥⎥⎥⎥⎦, (3)

Z as the center matrix of X, is given by

Z = X− Xmean. (4)

The covariance matrix S of images X could be written as

S = ZTZ/(n− 1). (5)
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Let us consider x̃Nk as the average of the noise in kth band, and we can get the matrix XNmean
with n rows and b columns:

XNmean =

⎡⎢⎢⎢⎢⎣
x̃N1 x̃N2 · · · x̃Nb
x̃N1 x̃N2 · · · x̃Nb

...
...

...
...

x̃N1 x̃N2 · · · x̃Nb

⎤⎥⎥⎥⎥⎦. (6)

ZN , as the center matrix of the noise matrix XN , can be computed as

ZN = XN − XNmean. (7)

The covariance matrix SN of XN could be expressed as

SN = ZT
NZN/(n− 1). (8)

The noise fraction NF could be defined as the ratio of the noise variance to the total variance,
so for a linear combinations, aTz(p) [26,31], we get

NF = aTSNa/aTSa = aTZT
NZNa/aTZTZa, (9)

where a is the eigenmatrix of NF. In NF, it is significant that the noise is estimated reliably. The original
KMNF method [31] mainly adopts the spatial neighborhood (3 by 3) feature of a hyperspectral image
to estimate noise ZN [57], as shown below:

ni,j,k = zi,j,k − ẑi,j,k
= zi,j,k − (−zi−1,j−1,k + 2zi,j−1,k − zi+1,j−1,k + 2zi−1,j,k+

5zi,j,k + 2zi+1,j,k − zi−1,j+1,k + 2zi,j+1,k − zi+1,j+1,k)/9
, (10)

where zi,j,k is the value of pixel located at line i, column j, and band k of the original hyperspectral
image Z, ẑi,j,k is the estimated value of this pixel, and ni,j,k is the estimated noise value of zi,j,k.

However, noise estimation based on spatial information alone can be unstable and
data-selective [25,51,53]. It is because hyperspectral images do not always have very high spatial
resolution, and the difference between pixels may contain a significant signal instead of pure noise.
In contrast, in hyperspectral images, correlation between bands generally is very high. Therefore, we
can incorporate the high correlations between bands for noise estimation, such as SSDC, which is a
useful method for hyperspectral image noise estimation. In SSDC, the spatial and spectral correlations
are removed through a multiple linear regression model, and the remaining residuals are the estimates
of noise [49,50,58]. Recent works show that SSDC can offer reliable results for noise estimation when
there are different land cover types in the hyperspectral images [50].

2.1. Noise Estimation

In noise estimation based on spectral and spatial de-correlation, an image is uniformly divided
into non-overlapping small sub-blocks Xsub with w× h pixels, in order to reduce the influence of the
variations in ground cover types. In SSDC, a multiple linear regression formula is adopted as follows
for each pixel [49,50]:

xi,j,k = a + bxi,j,k−1 + cxi,j,k+1 + dxp,k, (11)

xp,k =

{
xi−1,j,k; i > 1, j = 1
xi,j−1,k; j > 1

, (12)

where 1 ≤ i ≤ w, 1 ≤ j ≤ h, and (i, j) �= (1, 1), a, b, c, and d are the coefficients need to be determined.
For each sub-block Xsub, the multiple linear regression models could be written as
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Xsub = Bμ+ ε, (13)

Xsub =

⎡⎢⎢⎢⎢⎣
x1,2,k
x1,3,k

...
xw,h,k

⎤⎥⎥⎥⎥⎦, B =

⎡⎢⎢⎢⎢⎣
1 x1,2,k−1 x1,2,k+1 x1,1,k
1 x1,3,k−1 x1,3,k+1 x1,2,k
...

...
...

...
1 xw,h,k−1 xw,h,k+1 xw,h−1,k

⎤⎥⎥⎥⎥⎦,μ =

⎡⎢⎢⎢⎣
a
b
c
d

⎤⎥⎥⎥⎦, (14)

where Xsub is sub-block matrix, B is the spectral-spatial neighborhoods matrix, μ is the coefficients
matrix, and ε is residual value.

However, SSDC integrates spectral information and one spatial neighbor in multiple linear
regression for noise estimation. This way the spatial information might not be well exploited to estimate
noise. To solve this problem, we propose two methods to improve the SSDC, named SSDC1 and SSDC2,
where more spatial neighbors are incorporated into multiple linear regression for noise estimation.

We define SSDC1 in the same multiple linear regression (same as Equation (11)) framework,
but adopts the spatial neighbor parts xp,k as follows:

xp,k =

{
(xi−1,j,k + xi+1,j,k)/2; i > 1, j = 1
(xi,j−1,k + xi,j+1,k)/2; j > 1

, (15)

where Xsub and μ are the same as SSDC, but B is different from it, and can be defined as follows:

B =

⎡⎢⎢⎢⎢⎣
1 x1,2,k−1 x1,2,k+1 (x1,1,k + x1,3,k)/2
1 x1,3,k−1 x1,3,k+1 (x1,2,k + x1,4,k)/2
...

...
...

...
1 xw,h,k−1 xw,h,k+1 (xw,h−1,k + x,w,h+1,k)/2

⎤⎥⎥⎥⎥⎦. (16)

We can also improve multiple linear regression, which we define as SSDC2:

xi,j,k = a + bxi,j,k−1 + cxi,j,k+1 + dxi,j−1,k + exi,j+1,k, (17)

where Xsub is the same as SSDC, but B and μ are defined as follows:

B =

⎡⎢⎢⎢⎢⎣
1 x1,2,k−1 x1,2,k+1 x1,1,k x1,3,k
1 x1,3,k−1 x1,3,k+1 x1,2,k x1,4,k
...

...
...

...
...

1 xw,h,k−1 xw,h,k+1 xw,h−1,k xw,h+1,k

⎤⎥⎥⎥⎥⎦,μ =

⎡⎢⎢⎢⎢⎢⎣
a
b
c
d
e

⎤⎥⎥⎥⎥⎥⎦. (18)

μ could be estimated by

μ̂ = (BT B)
−1

BTXsub. (19)

Signal value could be estimated through

X̂sub = Bμ̂. (20)

Finally, the noise value Nsub can be obtained by

Nsub = Xsub − X̂sub. (21)

The procedure of noise estimation is summarized in Algorithm 1.
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Algorithm 1. Noise Estimation.

Input: hyperspectral image X, sub-block width w× h.
Step 1: compute the coefficients a, b, c, d and e of the multiple linear regression models for each sub-block
using Equation (11) or Equation (17); then:
xi,j,k = a + bxi,j,k−1 + cxi,j,k+1 + dxp,k, or
xi,j,k = a + bxi,j,k−1 + cxi,j,k+1 + dxi,j−1,k + exi,j+1,k
Step 2: estimate noise: ni,j,k = xi,j,k − x̂i,j,k
Output: noise data N.

We analyze the influences of sub-block size by using hyperspectral image as shown in Figure 1a.
From the experiments, we found that, when the sub-block size is 4 × 4, or 5 × 5, some sub-blocks
are homogeneous and have similar DN values in certain bands; thus, it makes the matrix inversion
in multiple linear regression infeasible. When the sub-block size is too large, such as 15 × 15 and
30 × 30, some sub-blocks contain multiple types of earth surface features, and the results of noise
estimation become inaccurate and instable. When the sub-block size is 6 × 6, as shown in Figures 2
and 3, the results of noise estimation are reliable and stable. Therefore, we set the sub-block size to
6 × 6 for SSDC, SSDC1 and SSDC2. The width and height of each sub-block are set as w = 6, h = 6.

2.2. Kernelization and Regularization

After noise is estimated through SSDC, SSDC1 or SSDC2, it will be included in KMNF. In KMNF,
in order to get the new components ordered by image quality after dimensionality reduction, we
should minimize the NF. For the convenience of mathematics, we can maximize the 1/NF, which can
be presented as

1/NF = aTSa/aTSNa = aTZTZa/aTZT
NZNa. (22)

We can get to the dual formulation by reparametrizing and setting a ∝ ZTb [31,34]:

1/NF = bTZZTZZTb/bTZZT
NZNZTb. (23)

For the kernelization of 1/NF, we will consider an embedding map

Φ : x → Φ(x) , (24)

where x ∈ Rn, Φ(x) ∈ RN , N > n, and nonlinear mapping Φ(x) can transform the original data x into
higher dimensional feature space F [34].

After mapping Φ(x), the kernelized 1/NF can be expressed as

1/NF = bTΦ(Z)Φ(Z)TΦ(Z)Φ(Z)Tb/bTΦ(Z)Φ(ZN)
TΦ(ZN)Φ(Z)Tb. (25)

Traditionally, the inner products 〈Φ(x), Φ(y)〉 (x, y ∈ Rn) sometimes can be computed more
efficiently as a direct function of the input features, without explicitly computing the mapping Φ(x) [34].
This function is called the kernel function κ, which can be expressed as

κ(x, y) = 〈Φ(x), Φ(y)〉. (26)

Therefore, Equation (25) could be written as

1/NF = bTκ2b/bTκNκT
Nb, (27)

where κ = Φ()Φ()T with elements κ(zi, zj), and κN = Φ(Z)Φ(ZN)
T with elements κ(zi, zNj).

To ensure the uniqueness of the result in Equation (27), we regulate the 1/NF by introducing a regulator
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r, similarly to what the other kernel methods (e.g., KMNF, KPCA [28,31]) have done. This way, we get
a version which is regulated as

1/NF = bT [(1− r)κ2 + rκ]b/bTκNκT
Nb. (28)

2.3. OKMNF Transformation

The regulated version described above is a symmetric generalized eigenvalue problem, which could
be solved by maximizing the Rayleigh quotient in Equation (28). Therefore, this problem can be written as

[(1− r)κ2 + rκ]b = λκNκT
Nb, (29)

[(1− r)κ2 + rκ]b = λ(κNκT
N)

1/2
(κNκT

N)
1/2

b, (30)

(κNκT
N)
−1/2

[(1− r)κ2 + rκ](κNκT
N)
−1/2

[(κNκT
N)

1/2
b] = λ[(κNκT

N)
1/2

b], (31)

where λ and (κNκT
N)

1/2
b are eigenvalues and eigenvectors of (κNκT

N)
−1/2

[(1− r)κ2 + rκ](κNκT
N)
−1/2,

respectively. a ∝ ZTb, after mapping Φ(x), ZTb transforms to Φ(Z)Tb. Thus, we can get the value of
b, and the feature extraction result Y can be obtained by:

Y = Φ(Z)a

= Φ(Z)Φ(Z)Tb

= κb

. (32)

From the above analysis, we can see that noise estimation is a very critical step in the OKMNF
method. Firstly, in the original data space, based on original hyperspectral data Z, we get the
estimated data Ẑ calculated by multiple linear regression models. Then, we transform the original real
hyperspectral data Z and the estimated data Ẑ to the kernel space. In this space, we get the results of
noise estimation through calculating the difference of kernel Z and kernel Ẑ. It means that the noise
is estimated in the kernel space. Finally, we get the transformation matrix by maximizing regulated
1/NF and achieve the dimensionality reduction. A good noise estimation is important for effective
dimensionality reduction.

In many real applications, a hyperspectral image typically has a huge amount of pixels. Then,
the kernel matrix could be very large (for example, the matrix sizes of κ and κN are n by n,
and n is the number of pixels). In this case, even in conventional hyperspectral remote sensing
images, the kernel matrix will exceed the memory capacity of an ordinary personal computer.
For example, a hyperspectral image of n = 512 × 512 pixels, the size of the kernel matrix is
n × n = (512 × 512) × (512 × 512) elements. To reduce memory cost and computational complexity,
we can randomly subsample the image and perform the kernel eigenvalue analysis only on these
selected samples (suppose m), which can be used as training samples. We can generate a transformed
version of the entire image by mapping all pixels onto the primal eigenvectors obtained from the
subset samples. The procedure of OKMNF is summarized in Algorithm 2.

Algorithm 2. The Proposed OKMNF.

Input: hyperspectral image X, and m training samples.
Step 1: compute the residuals (noises) of training samples: ni,j,k = xi,j,k − x̂i,j,k.
Step 2: dual transformation, kernelization and regularization of 1/NF using Equation (22).

Step 3: compute the eigenvectors of (κNκT
N)
−1/2

[(1− r)κ2 + rκ](κNκT
N)
−1/2.

Step 4: mapping all pixels onto the primal eigenvectors.
Output: feature extraction result Y.
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3. Experiments and Results

This section designs three experiments to evaluate the performances of a few noise estimation
algorithms and dimensionality reduction methods. The first experiment using real images with
different land covers is to assess the robustness of noise estimation algorithms adopted in OKMNF,
and the results are shown in Figure 4. The other two experiments are to validate the performances of
dimensionality reduction methods in terms of maximum likelihood-based classification (ML) on two
real hyperspectral images. The experimental results of Indian Pines image (as shown in Figure 5) are
shown in Figures 6–9. The experimental results of Minamimaki scene image (as shown in Figure 10)
are shown in Figures 11–13.

3.1. Parameter Tuning

In Equation (28), we introduced a parameter r to guarantee the uniqueness of the eigenvectors.
Figures 7a and 12a show the sensitivity of kernel dimensionality reduction methods (KPCA, KMNF,
and OKMNF) with respect to r. We can see that the values of parameter r have little effect on kernel
dimensionality reduction methods, and OKMNF gets overall better or comparable accuracy than
KMNF and KPCA. To fairly compare different dimensionality reduction methods, we adopt the
optimal value of parameter r within the range of requirements when the classification accuracy of
hyperspectral images achieves the maximum value. According to our empirical study, in the Indian
Pines scene, r of OKMNF, KMNF, and KPCA are all set to 0.0025, and in the Minamimaki Scene, r of
KMNF is set to 0.1, and r of OKMNF and KPCA are both set to 0.005.

Another important parameter is the number of subsamples (pixels), m. They were used to derive
eigenvectors for data transformation. Figures 7b and 12b show the sensitivity of kernel dimensionality
reduction methods (KPCA, KMNF, and OKMNF) with respect to m. We can see that the values
of parameter m have little effect on KPCA. To the Indian Pines scene and the Minamimaki scene,
the classification accuracy of OKMNF and KMNF both evidently descend when the value of parameter m
is greater than 100. However, OKMNF shows lower sensitivity on parameter m than KMNF, and is even
better or comparable to KPCA when the value of parameter m is less than 80. We fix the number of the
extracted features to see the impact of subsample size on classification. We see the performance decrease,
as the number of subsample increases. The reason is that when m increases, more extracted features
are required. To reduce the computational time and memory use, we will adopt a small number of
subsamples. It is an important empirical rule that can be considered in the applications of OKMNF. Here,
we also adopt the optimal value of parameter m within the range of requirements when the classification
accuracy of hyperspectral images achieves the maximum value. According to our empirical study, in the
Indian Pines scene, m of OKMNF and KPCA are both set to 63, and m of KMNF is set to 42. In the
Minamimaki Scene, m of KMNF and KPCA are both set to 30, and m of OKMNF is set to 25.

In this paper, the employed kernel function is the Gaussian radial basis function, which is the
same as KPCA, KMNF, and OKMNF [59] The Gaussian radial basis function is defined as

κ(xi, xj) = exp[−∣∣ ∣∣xi − xj
∣∣ ∣∣2/(2σ2)], (33)

where xi and xj are vectors of observations, σ = sσ0, σ0 is the mean distance between the observations
in feature space and s is a scale factor [33,37]. Figures 7c and 12c show the sensitivity of KPCA, KMNF,
and OKMNF with respect to s. We can see that both OKMNF and KPCA show better performance
than KMNF. In the Indian Pines scene, OKMNF performs better than KPCA. Just like above, we adopt
the optimal value of parameter s within the range of requirements when the classification accuracy
of hyperspectral images achieves the maximum value. According to our empirical study, s of KPCA,
KMNF, and OKMNF are set to 35, 1, and 15 for the Indian Pines scene, respectively. Then, for the
Minamimaki scene, s of OKMNF is set to 25, and s of KPCA and KMNF are both set to 10.
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3.2. Experiments on Noise Estimation Algorithms in KMNF and OKMNF

To assess the performance of noise estimation algorithms adopted in KMNF and OKMNF, six real
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance images with very different land
cover types were used in this experiment. These images are shown in Figure 1. Each of them contains
300 × 300 pixels, and covers spectral wavelengths from 400 nm to 2500 nm. Normally, the random
noise in AVIRIS sensor images is mainly additive and uncorrelated with the signal [60]. More detailed
descriptions are shown in Table 1.

We assess the performance of noise estimation algorithms by computing noise standard deviation,
after we get noise data through Algorithm 1. The local standard deviation (LSD) of each sub-block is
estimated by

LSD = [
1

w× h− 4

w

∑
i=1

h

∑
j=1

n2
i,j,k]

1
2 (34)

where w× h− 4 means that four parameters are used in the multiple linear regression model and that
the degree of freedom is w× h− 4. The LSD of each sub-block is calculated as the noise estimate of
that region. The mean value of these LSD is considered as the best estimate of the band noise.

The AVIRIS hyperspectral imageries in Figure 1 were acquired from July 1996 to June 1997. Figure 1a–f
are cut from the same image, respectively. Therefore, their noise level should be the same [50].

  
(a) (b) (c) 

  
(d) (e) (f) 

Figure 1. Airborne Visible/Infrared Imaging Spectrometer radiance images used for noise estimation,
where (a) is the first subimage of Jasper Ridge; (b) is the second subimage of Jasper Ridge; (c) is the
first subimage of Low Altitude; (d) is the second subimage of Low Altitude; (e) is the first subimage of
Moffett Field; and (f) is the second subimage of Moffett Field.

Figure 2. Noise estimation results of spectral and spatial de-correlation (SSDC) of Figure 1a in a
different size of sub-block.
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Figure 3. Noise estimation results of SSDC, SSDC1, and SSDC2 of Figure 1a in the 6× 6 size of sub-block.

(a)

(b)

(c)

Figure 4. Noise estimation results of (a) Figure 1a,b; (b) Figure 1c,d; (c) Figure 1e,f, through the
difference of spatial neighborhood (DSN) used in kernel minimum noise fraction (KMNF), and the
SSDC, SSDC1, and SSDC2 used in optimize KMNF (OKMNF).
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Table 1. Detailed description of Airborne Visible/Infrared Imaging Spectrometer images shown
in Figure 1.

Spatial Resolution Acquired Site Acquired Time Image Description

(a)
20 m Jasper Ridge 3 April 1997 Dominated by a heterogeneous city area

(b) Dominated by a homogeneous vegetation area

(c)
3.4 m Low Altitude 5 July 1996 Dominated by a heterogeneous city area

(d) Homogeneous farmland

(e)
20 m Moffett Field 20 June 1997

A mix of a heterogeneous city area and a
homogeneous bare soil

(f) Dominated by a homogeneous water

3.3. Experiments on Dimensionality Reduction Methods

In these experiments, the dimensionality reduction performance of OKMNF is evaluated in terms
of classification results on two real hyperspectral images. Classification accuracies using the features
extracted by PCA, KPCA, MNF, KMNF, OMNF, and OKMNF (OKMNF-SSDC, OKMNF-SSDC1,
and OKMNF-SSDC2) are compared. Each experiment was run ten times, and the average of these ten
experiments was reported for comparisons.

3.3.1. Experiments on the Indian Pines Image

The experimental dataset was collected by the AVIRIS at Indian Pines. The image
contains 145 × 145 pixels with spatial resolution of 20 m, and is with 220 spectral bands from 400 nm
to 2500 nm. In this experiment, we compare with different dimensionality reduction methods based
on original image including all the 220 bands. It is worth observing that 20 bands covering the
region of water absorption are really noisy, thus allowing us to analyze the robustness of the different
dimensionality reduction methods to real noise. As shown in Figures 5 and 9, large classes are
considered in this experiment. In addition, 25% of samples are randomly selected for training and the
others 75% are employed for testing [61,62]. The numbers of training and testing samples are listed in
Table 2. The first three features extracted by different dimensionality reduction methods are shown in
Figure 8. The overall accuracies of ML classification after different dimensionality reduction methods
are shown in Table 3 and Figure 6. The results of ML classification after different dimensionality
reduction (number of features = 5) methods are shown in Figure 9.

 

 
(a) (b)

Figure 5. (a) original Indian Pines image; (b) ground reference map containing nine land-cover classes.
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Table 2. Training and testing samples used in Indian Pines image.

Classes Training Testing

Corn-no till 359 1075
Corn-min till 209 625

Grass/Pasture 124 373
Grass/Trees 187 560

Hay-windrowed 122 367
Soybean-no till 242 726

Soybean-min till 617 1851
Soybean-clean till 154 460

Woods 324 970
Total 2338 7007

Figure 6. Comparison of accuracies of maximum likelihood-based classification (ML) classification
after different dimensionality reduction methods.

(a)

(b)

(c)

Figure 7. Parameter tuning in the experiments using the Indian Pines dataset for ML classification after
different feature extraction methods (number of features = 8), where (a) is r versus accuracies; (b) is m
versus accuracies; (c) is s versus accuracies.
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Table 3. The overall accuracies of maximum likelihood-based classification (ML) classification after
different dimensionality reduction methods.

Number of Features PCA KPCA MNF KMNF OMNF OKMNF-SSDC OKMNF-SSDC1 OKMNF-SSDC2

3 64.57% 64.84% 63.75% 57.63% 66.50% 64.21% 68.19% 66.19%
4 67.90% 67.33% 65.44% 69.14% 72.25% 72.23% 73.34% 73.60%
5 71.35% 73.41% 67.14% 69.36% 74.15% 76.93% 77.74% 78.29%
6 75.60% 76.23% 73.09% 72.76% 76.69% 78.31% 80.48% 81.22%
7 77.08% 76.81% 78.43% 73.53% 77.88% 79.73% 83.35% 84.07%
8 77.65% 78.45% 82.76% 76.39% 80.21% 82.86% 84.56% 85.03%
9 79.01% 80.32% 84.74% 75.71% 83.27% 84.59% 87.21% 86.93%
10 79.92% 82.82% 85.43% 76.35% 83.84% 84.87% 87.56% 87.26%
11 81.40% 83.96% 86.16% 77.88% 83.97% 84.69% 87.94% 87.44%
12 82.27% 83.96% 86.93% 78.18% 84.96% 85.66% 88.17% 87.60%
13 82.67% 84.10% 87.15% 78.42% 86.61% 86.63% 88.33% 88.13%
14 82.90% 84.84% 87.08% 78.94% 87.57% 86.50% 88.63% 88.04%
15 84.49% 84.54% 87.33% 79.31% 87.95% 87.17% 89.10% 88.04%
16 84.87% 85.03% 87.48% 79.72% 88.30% 87.43% 89.04% 88.17%
17 84.72% 85.50% 87.55% 80.66% 88.05% 87.64% 89.37% 88.41%
18 85.02% 85.50% 87.34% 80.89% 88.28% 87.91% 89.51% 88.84%
19 85.50% 85.37% 86.91% 80.78% 88.47% 87.98% 89.68% 89.00%
20 86.16% 85.59% 87.27% 81.25% 88.25% 88.20% 89.82% 89.30%
21 86.21% 85.41% 87.21% 81.13% 88.37% 88.24% 89.77% 89.14%
22 86.23% 85.89% 87.57% 81.88% 88.10% 88.01% 89.64% 89.03%
23 86.00% 85.76% 87.28% 81.76% 88.00% 88.30% 89.55% 89.15%
24 86.24% 85.49% 86.97% 81.88% 88.17% 88.28% 89.35% 89.14%
25 86.27% 85.40% 86.87% 81.82% 88.08% 88.23% 89.42% 89.14%
26 86.06% 85.30% 86.74% 81.66% 88.11% 88.34% 89.34% 88.89%
27 86.27% 85.84% 86.76% 81.72% 87.85% 88.20% 89.28% 88.82%
28 85.96% 85.59% 86.84% 81.60% 87.43% 88.27% 89.27% 88.88%
29 85.71% 85.50% 86.80% 81.92% 87.50% 88.25% 89.28% 88.91%
30 85.89% 85.39% 86.31% 81.60% 87.87% 88.24% 89.23% 88.97%

PCA: principal component analysis; KPCA: kernel PCA; MNF: minimum noise fraction; KMNF: kernel minimum
noise fraction; OMNF: optimized MNF; OKMNF: optimized kernel minimum noise fraction.

  

  

  
KPCA KMNF OKMNF-SSDC OKMNF-SSDC1 OKMNF-SSDC2 

Figure 8. The first three features (from up to bottom) of kernel PCA (KPCA), KMNF, OKMNF-SSDC,
OKMNF-SSDC1, and OKMNF-SSDC2.
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ML-PCA ML-KPCA ML-MNF ML-KMNF 

 
ML-OMNF ML-OKMNF-SSDC ML-OKMNF-SSDC1 ML-OKMNF-SSDC2 

Figure 9. The results of ML classification after different dimensionality reduction methods (number of
features = 5).

3.3.2. Experiments on the Minamimaki Scene

This scene was collected by the Pushbroom Hyperspectral Imager (PHI) sensor over Minamimaki,
Japan. The PHI sensor was developed by the Shanghai Institute of Technical Physics of the Chinese
Academy of Sciences, China. The data has 200 × 200 pixels with a spatial resolution of 3 m and 80
spectral bands from 400 nm to 850 nm. As shown in Figure 10, this image has six classes. About
10% of samples per class were randomly selected for training and the other 90% were employed for
testing. The numbers of training and testing samples are listed in Table 4. The overall accuracies of
ML classification after different dimensionality reduction methods are shown in Table 5 and Figure 11.
The results of ML classification (number of features = 3) are shown in Figure 13.

  
(a) (b)

Figure 10. (a) true color image of the Minamimaki scene; (b) ground reference map with 6 classes.

Table 4. Training and testing samples used in the Minamimaki scene.

Classes Training Testing

Bare soil 1238 11,150
plastic 33 300

Chinese cabbage 29 245
forest 111 1000

Japanese cabbage 425 3830
pasture 20 153

Total 1856 16,678
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Figure 11. Comparison of accuracies of ML classification after different dimensionality
reduction methods.

(a)

(b)

(c)

Figure 12. Parameter tuning in experiments using the Minamimaki dataset for ML classification after
different dimensionality methods (number of features = 8), where (a) is r versus accuracies; (b) is m
versus accuracies; (c) is s versus accuracies.
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ML-PCA ML-KPCA ML-MNF ML-KMNF 

 
ML-OMNF ML-OKMNF-SSDC ML-OKMNF-SSDC1 ML-OKMNF-SSDC2 

Figure 13. The results of ML classification after different dimensionality reduction methods (number
of features = 3).

Table 5. The overall accuracies of ML classification after different dimensionality reduction methods.

Method
Number of Features

3 4 5 6 7 8

PCA 85.14% 89.13% 89.86% 90.17% 90.44% 90.75%
KPCA 87.43% 88.41% 89.46% 90.19% 90.22% 90.87%
MNF 86.34% 88.73% 89.48% 89.69% 90.32% 90.59%

KMNF 68.30% 83.81% 86.02% 87.69% 88.61% 89.66%
OMNF 87.82% 88.51% 89.32% 90.10% 89.88% 90.51%

OKMNF-SSDC 88.10% 88.94% 89.98% 90.60% 90.63% 90.97%
OKMNF-SSDC1 89.46% 90.18% 90.44% 91.19% 91.39% 91.68%
OKMNF-SSDC2 89.24% 90.17% 90.78% 91.56% 91.88% 91.89%

4. Discussion

This section discusses the performances of noise estimation algorithms, and these results are
shown in Section 3.2. In addition, the results of the dimensionality reduction methods are shown in
Section 3.3.

Based on the experiment of assessing the performance of noise estimation algorithms adopted in
KMNF and OKMNF, it can be seen in Figure 4 that the estimated noise curves through the difference
of spatial neighborhood used in KMNF show a strong relationship with land cover types in the scene,
and the noise levels are not the same for the two subimages from the same image. There are no such
problems when the noise is estimated by OKMNF through SSDC, SSDC1 and SSDC2. We can see that
SSDC, SSDC1 and SSDC2 are more reliable noise estimation methods than that used in KMNF. Thus,
we can adopt SSDC, SSDC1 and SSDC2 to estimate noise for OKMNF.

Based on the experiment of assessing the performance of dimensionality reduction methods
from Section 3.3.1, it can be seen in Figure 8 that the feature quality of KMNF is worse than other
dimensionality reduction methods. OKMNF, by considering SSDC, SSDC1 or SSDC2 for noise
estimation, outperforms the other dimensionality reduction methods. It can be seen in Table 3,
and Figures 6 and 9 that the classification results using transformed data by MNF are not always better
than those of PCA on low dimension space. KMNF performs worse than KPCA. By considering the
spectral and spatial de-correlation for noise estimation, linear OMNF always performs better than PCA
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and mostly better than MNF. OKMNF, by considering SSDC, SSDC1 or SSDC2 for noise estimation,
outperforms the other dimensionality reduction methods (including linear OMNF and kernel MNF),
with less sensitivity for parameter settings, as well as better performances for classification. This is
because OKMNF not only can treat nonlinear characteristics well within the data but also take into
account both spectral and spatial correlations for reliable noise estimation. Moreover, OKMNF-SSDC1

and OKMNF-SSDC2 perform better than OKMNF-SSDC. This indicates that, by incorporating more
spatial neighbors, we enable better noise estimation, as well as improve the classification performances.

Based on the experiment of assessing the performance of dimensionality reduction methods from
Section 3.3.2, it can be seen in Table 5, and Figures 11 and 13 that the performances of PCA, KPCA,
MNF, and OMNF are very similar, and all of them are better than KMNF. When we optimized the
KMNF method through SSDC, SSDC1 and SSDC2 noise estimation, the performance of KMNF was
greatly improved. OKMNF gets much better results than KMNF, and also performs slightly better
than the other four dimensionality reduction methods.

The two experimental results, based on the experiment of assessing the performance of
dimensionality reduction methods, show that: (1) the greater the number of features extracted,
the higher classification accuracy is; (2) it is better not to use KMNF for dimensionality reduction
in many cases, the overall accuracies of ML classification after KMNF are lower than MNF and
other dimensionality reduction methods; (3) our proposed OKMNF, OKMNF-SSDC, OKMNF-SSDC1,
and OKMNF-SSDC2 perform much better than KMNF and mostly better than OMNF and MNF. These
results imply that the dimensionality reduction results of KMNF are not suitable for image classification.
By exploiting both spectral and spatial information for noise estimation, the proposed OKMNF benefits
both dimensionality reduction and its post applications (e.g., classification). Compared to linear MNF,
the proposed OKMNF not only has good performance in dimensionality reduction for classification
but also does better in dealing with nonlinear problems.

To compare the efficiency of feature extraction methods, we took Indian Pines data as an
example, and the consumed time (by extracting 30 features) of OKMNF-SSDC, OKMNF-SSDC1,
OKMNF-SSDC2, KPCA, KMNF, OMNF, MNF, and PCA are 23.07 s, 25.27 s, 22.80 s, 1.03 s, 1.26 s,
22.87 s, 0.52 s and 0.20 s, respectively. We can find that the proposed OKMNF (OKMNF-SSDC,
OKMNF-SSDC1, OKMNF-SSDC2) methods consume comparatively longer time but with better
dimensionality reduction performances. However, we can use high performance computing techniques
such as graphics processing unit to reduce the processing time of OKMNF. In real applications,
the number of features kept for classification should be determined for both classification performance
and computing cost. Too few features may not provide adequate class separability. On the other hand,
more features might not always bring higher classification accuracy, which can be seen from the results
listed in Table 3. It is important to use as few features as possible to avoid overfitting and minimise
computational load.

5. Conclusions

This paper proposes an optimized KMNF for dimensionality reduction of hyperspectral imagery.
The main reason affecting the original KMNF in dimensionality reduction is the larger error and the
instability in estimating noise. Here, we conduct a comparative study for noise estimation algorithms
using real images with different land cover types. The experimental results show that the combined
spatial and spectral correlation information provides better results than the algorithms only using
spatial neighborhood information. OKMNF adopts SSDC, SSDC1, and SSDC2 to stably estimate noise
from hyperspectral images. Through this optimization, the overall accuracies of ML classification after
OKMNF are much higher than those of KMNF, and the dimensionality reduction results of OKMNF
are also better than OMNF, MNF, KPCA, and PCA in most situations. It can be concluded that OKMNF
solves the problems existing in original KMNF well and improves the quality of dimensionality
reduction. Moreover, OKMNF is valuable to reduce the dimensionality of nonlinear data. We can
also expect that OKMNF will enhance the separability among endmember classes and improve the
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quality of spectral unmixing. Our future work will focus on incorporating more validations on other
applications (e.g., target detection).
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Abstract: The fusion of spatial and spectral information in hyperspectral images (HSIs) is useful for
improving the classification accuracy. However, this approach usually results in features of higher
dimension and the curse of the dimensionality problem may arise resulting from the small ratio
between the number of training samples and the dimensionality of features. To ease this problem, we
propose a novel algorithm for spatial-spectral feature extraction based on hypergraph embedding.
Firstly, each HSI pixel is regarded as a vertex and the joint of extended morphological profiles (EMP)
and spectral features is adopted as the feature associated with the vertex. A hypergraph is then
constructed by the K-Nearest-Neighbor method, in which each pixel and its most K relevant pixels
are linked as one hyperedge to represent the complex relationships between HSI pixels. Secondly,
the hypergraph embedding model is designed to learn a low dimensional feature with the reservation
of geometric structure of HSI. An adaptive hyperedge weight estimation scheme is also introduced
to preserve the prominent hyperedges by the regularization constraint on the weight. Finally,
the learned low-dimensional features are fed to the support vector machine (SVM) for classification.
The experimental results on three benchmark hyperspectral databases are presented. They highlight
the importance of spatial–spectral joint features embedding for the accurate classification of HSI data.
The weight estimation is better for further improving the classification accuracy. These experimental
results verify the proposed method.

Keywords: feature extraction; hypergraph learning; morphological profiles; hyperedge weight estimation

1. Introduction

Hyperspectral imaging is an important mode of remote sensing imaging, which has been widely
used in a diverse range of applications, including environment monitoring, urban planning, precision
agriculture, geological exploration, etc. [1–3]. Most of these applications depend on the key problem
of classifying the image pixels within hyperspectral imagery (HSI) into multiple categories, i.e., HSI
classification, and extensive research efforts have been focused on this problem [4–9].

In HSI, each pixel contains hundreds of spectral bands from the visible to the infrared range of
the electromagnetic spectrum. In general, the spectral signature of each pixel can be directly used
as the feature for classification. However, due to the noise corruption and high correlation between
spectral bands, the using of the spectral feature alone is often unable to obtain good classification
results. It is well accepted that the HSI pixels within a small spatial neighborhood are often made
up of the same materials. Thus, spatial contextual information is also useful for classification [10,11].
Landgrebe and Ketting proposed the well-known extraction and classification of homogeneous objects
(ECHO) approach that partitioned the HSI pixels into homogeneous object and classified homogeneous
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object as different categories [12]. Later, Markov random field (MRF) modeling was widely adopted to
capture the interpixel dependency through the neighbor system [13,14]. However, the optimization
of MRF-based methods is very time-consuming. Due to the high dimensionality of HSI data, the
computationally effective algorithm is desirable. In this sense, Pesaresi and Benediktsson [15] proposed
the use of morphological transformations to build a morphological profile (MP) for extracting the
structural information. Palmason et al. [16] extended the method proposed in [15] to the high-resolution
hyperspectral data classification. They first extracted several principal components of the hyperspectral
data. Then, the MP is constructed based on each selected principal component. At last, all MPs are
jointed as extended MP (EMP), which is input into a neural network for classification. However, EMP
was primarily designed for classification of urban structures and it did not fully utilize the spectral
information in the data. Regrading this issue, Fauvel et al. [17] proposed fusing the morphological
information and the original hyperspectral data, i.e., the two vectors of attributes are concatenated
into one feature vector. The final classification is achieved by using a support vector machine classifier.
Many other spectral and spatial joint features [18–22], such as 3D wavelet [18], spatial and spectral
kernel [19], matrix-based discriminant subspace analysis [20], etc. are used for classification.

These joint features usually have a high dimension. In order to avoid the Hughes
phenomenon, feature extraction and dimensionality reduction must be conducted before classification.
Principal component analysis (PCA) and Fisher’s linear discriminant analysis (LDA) [23] are two simple
and effective approaches for dimension reduction. PCA aims at projecting the data along the directions
of maximal variance. LDA is designed to generate the optimal linear projection matrix by maximizing
the between-class distance while minimizing the within-class distance. Apart from these linear methods,
many nonlinear versions have been developed, such as kernel PCA [24] and kernel LDA [25]. Some other
feature extraction techniques have also been proposed, e.g., locality preserving projection (LPP) [26],
independent component analysis (ICA) [27,28], and locally linear embedding (LLE) [29]. In particular,
Yan et al. [30] proposed a general graph embedding (GE) model that seamlessly includes many existing
feature extraction techniques. In this GE model, each data point is visualized as a vertex and a pairwise
edge is used to represent the association relationship between two data points. They consider each
feature extraction algorithm as an undirected weighted graph that describes geometric structures of
data. GE algorithms have been widely explored for dimension reduction of HSI. Besides the geometric
structures of data, sparsity is also explored to construct the graph embedding model. Luo et al.
proposed constructing a graph with the sparse coefficients that reveals the sparse properties of data,
and the transformation matrix is obtained for feature reduction [31]. In addition, by regarding different
band sets as different views of land covers, multiview graph ensemble-based graph embedding is also
utilized to promote the performance of graph embedding for hyperspectral image classification [32].

A hypergraph is a generalization of a pairwise graph. Different from pairwise graphs, each edge
in a hypergraph is capable of connecting more than two vertices [33]. Thus, the complex relationships
of the dataset can be captured by a hypergraph, and hypergraphs have been gaining more and more
attention in recent years. Bu et al. [34] presented a hypergraph learning based music recommendation
method with the use of hyperedges to exploit the complex social media information. A hypergraph
semi-supervised learning model [35] was also proposed for image classification. Yuan et al. [36] utilized
a hypergraph embedding model for HSI feature reduction, in which the spatial hypergraph models
(SHs) are construed by selecting the K-nearest neighbors within the spatial region of the centroid pixel.
Experimental results demonstrated that SH outperformed many existing feature extract methods for
HSI classification, including raw spectral feature (RAW), PCA, LPP, LDA, nonparametric weighted
feature extraction (NWFE) [37] and semi-supervised local discriminant analysis (SELD) [38]. However,
SH is designed to learn the projection matrix for reducing the spectral feature. The spatial structure
is not exploited for hypergraph embedding, which is not capable of simultaneously extracting the
spectral-spatial features. Furthermore, the hyperedge weight is computed in advance and fixed in the
hypergraph embedding procedure. As the discussion stated in [39,40], all of the hyperedges do not
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have the same effect on the learning procedure. Some hyperedges are not as informative as others. The
hypergraph embedding should be enhanced by estimating the hyperedge weights adaptively.

In order to cope with these issues, we propose a novel algorithm for HSI spatial-spectral joint
feature extraction. We combine the EMP and spectral features and adopt the KNN method to construct
a hypergraph, where each sample and its K nearest neighbors are enclosed in one hyperedge.
Similar to [36], a linear projection matrix P can be learnt by solving the hypergraph embedding
model. However, in [36], the hyperedges’ weights in the hypergraph embedded model are fixed.
Inspired by [39,40], we introduce a scheme to update the weights adaptively to preserve the prominent
hyperedge and further learn the low-dimensional structure. It helps improve the accuracy of the
final HSI classification to a certain extent. Finally, the leaned low-dimensional features are fed to the
SVM for classification. The flowchart of the proposed method is shown in Figure 1. Experiments
conducted on three widely used types of HSI demonstrate that the proposed method achieves superior
performance over many other feature extract methods for HSI classification.

Figure 1. The flowchart of the proposed method.

2. Hypergraph Model

Denote a hypergraph as G = (V,E,W), which consists of a set of vertices V, a family of hyperedge
E and a weight matrix W of hyperedges. Different from pairwise graphs (For convenience, we call
it a simple graph in the following), every hyperedge ei can contain multiple vertices and is assigned
a weight w(ei). As shown in Figure 2b, hyperedge e1 is composed of vertices v1, v2 and v3. e2

is composed of vertices v3 and v4. e3 is composed of vertices v4, v5, v6 and v7. W is a diagonal
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matrix of the hyperedge weights. The connection relationship of hypergraph G can be represented by
an incidence matrix H ∈ R|V|×|E|, which can be defined as:

Hij = H(vi, ej) =

{
1, if vi ∈ ej,

0, if vi /∈ ej.
(1)

The degree of vertex v and hyperedge e can be respectively represented as:

d(vi) = ∑
ej∈E

w(e)H(vi, ej), (2)

δ(ej) = δj = ∑
vi∈V

H(vi, ej). (3)

Figure 2. The example of graph and hypergraph (a) simple graph, each edge consists of only two
data points; (b) hypergraph G, each hyperedge is marked by an ellipse and consists of at least two
data points; (c) taking the seven vertices as example, H is the incidence matrix of G, whose values are
usually binary.

According to the above definition, the main difference between hypergraphs and simple graphs is
that every hyperedge can link more than two vertexes. Therefore, hypergraph is suitable to represent
local group information and the high-order relationship of data. For example, considering seven
vertices in Figure 2b, they are attributed to three groups and the corresponding incidence matrix is
shown in Figure 2c. In terms of building a simple graph with these seven data points, the complex
relations within the group are broken into multiple pairwise links. Some valuable information may be
lost in this procedure; therefore, a simple graph can not describe the group structure well.

3. Hypergraph Embedding of Spatial-Spectral Joint Features

As shown in Figure 1, our algorithm mainly consists of three steps: spatial-spectral joint feature
construction, hypergraph embedding and SVM classification.

3.1. Spatial-Spectral Joint Feature Construction

Following [16], we first extract several PCs from the original HSI I(x) and then build an MP from
each of the PCs:

MP (x) =
{

CPn (x) , . . . , I (x) , . . . , OPn (x)
}

, (4)

where n is the number of the circular structural element (SE) with different radius sizes, OPn(x) and
CPn(x) are the opening profile (OP) and the closing profile (CP) at the pixel x with an SE of a size n,
respectively. Specifically, we have CP0(x) = OP0(x) = I(x). The MP of I contains the original image I,
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n opening profile and n closing profile. Therefore, each MP is a (2n + 1)-dimensional vector. Finally,
all MPs are stacked together in one as EMP:

EMP (x) =
{

MPPC1 (x) , MPPC2 (x) , . . . , MPPCm (x)
}

, (5)

where m represents the number of PCs. The EMP is defined as an m(2n + 1)-dimensional vector.
After obtaining the EMP feature, we represent the spatial and spectral joint feature of the i-th HSI

pixel as

vi =

[
xi

EMP(xi)

]
∈ Rm(2n + 1)+d, (6)

where d is the number of the spectral bands. Denote the spectral features matrix of HSI as
X = [x1, x2, . . . , xN ] ∈ Rd×N , EMP matrix of HSI as EMP = [EMP(x1), · · · , EMP(xN)], where xi
is the i-th pixel, and N is the number of HSI pixels. Then, the joint feature matrix of HSI can be

represented as: V =

[
X

EMP

]
∈ R(m(2n + 1) + d)×N .

3.2. Hypergraph Embedding

We take each pixel of HSI as a vertex and construct a hypergraph G = (V, E, W) to represent
the correlation between HSI pixels. Each vertex vi is associated with the spatial and spectral joint
feature defined in Equation (6). The hypergraph G is constructed by the K-nearest neighbor method.
In detail, each pixel vi and its K nearest neighbors are enclosed as hyperedge ei. Thus, hyperedge set
E = {e1, e2, . . . , eN} contains N hyperedges. Meanwhile, the weight w(ei) of hyperedge ei is defined as:

w (ei) = ∑
vi ,vj∈ei

exp

⎛⎝−∥∥vj − vi
∥∥2

2
2σ2

⎞⎠, (7)

where σ is the mean distance between all vertices and can be calculated by σ = 1
N2 ∑

i
∑
j

d
(
vi, vj

)
,

d
(
vi, vj

)
is the distance between vertex vi and vertex vj. The degree of vertex vi and the degree of

hyperedge ei can be computed by Equations (2) and (3), respectively. Based on this definition, the more
"compact" hyperedge (local group) is assigned with a higher weight.

Denote Dv and De as two diagonal matrices of the vertex degrees and the hyperedge degrees,
respectively, and P ∈ R(m(2n+1)+d)×u (generally, m (2n + 1) + d >> u) as the linear projection matrix.
The objective of hypergraph embedding model is to learn the projection matrix P for reducing the
feature dimension with the preservation of geometric property in the original space. The objective
function is formulated as:

min
PTVDvVTP=1

1
2 ∑

e∈E
∑

vi ,vj∈e

w (e) h (vi, e) h
(
vj, e

)
δ (e)

∥∥∥PTvi − PTvj

∥∥∥2

2

=
1
2

N

∑
k=1

N

∑
i,j=1

wkhikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2

= trace
(

PTVLVTP
)

,

(8)

where L = Dv −HWD−1
e HT is the hypergraph laplacian matrix. The constraint PTVDvVTP = 1 is

used for scale normalization of the low-dimensional representations. This objective function induces
the constraint that if vi and vj are similar and belong to the same hyperedge, they should also be
adjacent in embedded space. In addition, an efficient hypergraph weight estimation scheme is proposed
to preserve the prominent hyperedges. Assuming that w = (w1, w2, . . . , wN)

T is composed of the
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elements lying in the main diagonal of W, we enforce 1T
Nw = 1 and add an l2 norm regularizer on w.

Then, our proposed embedding model is finally defined as:

{P∗, w∗} = arg min
PTVDvVTP=1

{
trace

(
PTVLVTP

)
+ λ‖w‖2

}
s.t. 1T

Nw = 1. (9)

3.3. Optimization Algorithm

The objective function Equation (9) is a multiple variables optimization problem, and it is
non-convex with respect to w and P jointly. However, it is convex with either of them individually when
the other is fixed. Thus, an alternative iteration strategy is adopted to get the solution of Equation (9).
We first initialize w according to Equation (7). With w fixed, we optimize P according to Equation (8).
The solution of Equation (8) is to find the eigenvectors corresponding to the first u largest eigenvalues
of the matrix

(
VLVT)−1 (

VDvVT).
Next, fix P and optimize w:

arg min
w

{
trace

(
PTVLVTP

)
+ λ‖w‖2

}
s.t. 1T

Nw = 1. (10)

In this paper, we employ the Lagrangian algorithm to optimize the Equation (10). The Lagrangian
function of the objective function (10) is defined as:

ψ (w, c)= trace
(

PTVLVTP
)
+ λwTw + c

(
1T

Nw− 1
)

=
1
2

N

∑
k=1

N

∑
i,j=1

wkhikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ λwTw + c

(
1T

Nw− 1
)

.
(11)

The partial derivatives of ψ w.r.t. wi, i = 1, 2, · · · , M are given by:

∂ψ (w, c)
∂wk

=
1
2

N

∑
i,j=1

hikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ 2λwk + c = 0. (12)

By simplifying Equation (12), wk can be calculated as:

wk = −
1
2

N
∑

i,j=1

hikhjk
δk

∥∥PTvi − PTvj
∥∥2

2 + c

2λ
. (13)

According to the constraint 1T
Nw = 1, the Lagrange multiplier can be calculated as:

c = − 1
N

[
1
2

N

∑
k=1

N

∑
i,j=1

hikhjk

δk

∥∥∥PTvi − PTvj

∥∥∥2

2
+ 2λ

]
. (14)

By substituting Equation (14) into Equation (13), we can obtain w finally.
Following this iteration process, w and P are alternately optimized until the maximal iteration

number is reached or the relative difference of objective function value of Equation (9) is smaller than
a given tolerance const ε, i.e.,

| f (t + 1)− f (t)|
| f (t)| � ε, (15)

where f (t + 1) and f (t) is the function value of Equation (9) at iteration t + 1 and t, respectively. In
addition, we can obtain the final projection matrix P∗. At last, the joint feature set V is reduced as
a low-dimensional feature set Y =

[
(P∗)Tv1, . . . , (P∗)TvN

]
, which is then transmitted into an SVM

classifier. Based on the above analysis, the proposed method can be summarized in Algorithm 1.
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Algorithm 1: The proposed method ( denoted as SSHG*) for HSI classification.
Input: Data matrix X, the reduced dimensionality u, the nearest neighbors number K and

regularization parameter λ.
Output: The class-label vector f .

1 Normalize all the features to [0,1].
2 Build the MP from each of the PCs: MP (x) = {CPn (x) , . . . , I (x) , . . . , OPn (x)}.
3 Obtain the EMP by stacking all MPs: EMP (x) = {MPPC1 (x) , MPPC2 (x) , . . . , MPPCm (x)}.
4 Represent the new stacked joint feature set as:

V = [X; EMP] = [v1, v2, . . . , vN ] ∈ R(m(2n+1)+d)×N .
5 Compute the incidence matrix H ∈ R|V|×|E|by KNN, set H(v, e) = 1, if v ∈ e, otherwise,

H(v, e) = 0.
6 Construct the hypergraph G and Calculate the weight of hyperedge ei:

w (ei) = ∑
vj∈ei

exp
(
−‖vj−vi‖2

2
2σ2

)
, the vertex degree: d(vj) = ∑

ei∈E
w(ei)H(vj, ei), and the

hyperedge degree: δ(ei) = ∑
vj∈V

H(vj, ei).

7 Obtain the projection matrix P by optimizing Equation (8)
8 Solve Equation (10) and obtain the hyperedge weights computed as Equation (13).
9 With the new hyperedge weights, update Dv, L and W.

10 Repeat the steps 7–9 until the convergence criterion 15 is met or the maximal iteration number
is reached.

11 Find the final projection matrix P∗.
12 Project the joint feature set into a low-dimensional feature set: Y =

[
(P∗)Tv1, . . . , (P∗)TvN

]
.

13 Feed the learned low-dimensional feature set Y into the SVM for classification.
14 return the class-label vector f .

4. Experiments and Discussion

4.1. Data Sets

In order to verify the performance of our proposed method, we conduct the experiments on the
following three benchmark datasets.

(1) Indian Pines data set—the first data set was acquired by the AVIRIS sensor over the Indian
Pines test site in Northwestern Indiana, USA. The size of the image is 145 pixels × 145 pixels
with a spatial resolution of 20 m per pixel. Twenty water absorption bands (104–108, 150–163,
220) were removed, and the 200-band image is used for experiments. Sixteen classes of interest
are considered.

(2) Pavia University data set—the second data set was acquired by the ROSIS sensor during a flight
campaign over Pavia, northern Italy. The size of the image is 610 pixels × 340 pixels with a spatial
resolution of 1.3 m per pixel. Twelve channels were removed due to noise. The remaining 103
spectral bands are processed. Nine classes of interest are considered.

(3) Botswana data set—the third data set was acquired by the NASA EO-1 satellite over the Okavango
Delta, Botswana, in 2001. The size of the image is 1476 pixels× 256 pixels with a spatial resolution
of 30 m per pixel. Uncalibrated and noisy bands that cover water absorption features were
removed, and the remaining 145 bands are used for experiment. Fourteen classes of interest
are considered.

4.2. Experimental Setting

In order to demonstrate the effectiveness of adaptive weight estimation, we implement our
algorithm as two versions. One is SSHG, which only utilizes the KNN hypergraph model for dimension
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reduction of the stacked feature set without adaptive weight estimation. The other is SSHG* shown
in Algorithm 1. They are compared with the following feature extraction methods: (1) the method
by using PCA to extract spectral features (denoted as PCA); (2) the method by using EMP features
without dimension reduction (denoted as EMP); (3) the method [17] stacking the EMP and the spectral
features as feature without dimension reduction (denoted as EMPSpe); and (4) the spatial hypergraph
embedding method proposed in [36] (denoted as SH). In order to facilitate comparisons with these
competing feature extraction methods, we adopt the overall accuracy (OA), the average accuracy
(AA), the per-class accuracy and Kappa coefficient (κ) to evaluate the classification performance.
Furthermore, the SVM classifier with Gaussian kernel is adopted to classify all of the aforementioned
feature data of these feature extraction methods. The grid search tool is used to select the parameters
of the optimal penalty term and Gaussian kernel variance in SVM within the given sets

{
2−10, ..., 210}

and
{

2−10, ..., 210}, respectively. The one-against-all strategy is adopted for multi-class classification.
Regarding the three data sets, we select 15 samples from each class randomly to form a training set
and the remaining samples are used as the test set. The training sample selection and the classification
process are repeated ten times to reduce the bias induced by random sampling. We retain the average
results. The parameters setting of SH is the same as the original paper [36]. With respect to our
algorithm, the tolerance const ε is set as 1× 10−3 and the regularization parameter λ is set as 100. The
number of nearest neighbors K is selected as 10, 15, 5 for Indian Pines, Pavia University and Botswana
data sets, respectively.

4.3. Experimental Results

The classification results of various methods upon three types of HSI are reported in Tables 1–3,
respectively. The best results are highlighted with bold fonts. The number in brackets corresponds
to the optimal dimensionality of reduced features. Classification maps of these different approaches
are shown in Figures 3–5, respectively. According to the experimental results, our proposed method
achieves the highest OA, AA, and κ among all of the competing methods, which shows the effectiveness
of our feature extraction algorithm. The effectiveness of our SSHG method owes much to the
hypergraph embedding of spatial and spectral joint features.

Table 1. Classification accuracy of various algorithms on the Indian Pines image.

Class PCA (25) EMP (27) EMPSpe (227) SH (22) SSHG (44) SSHG* (44)

1 91.61 98.71 99.03 94.87 98.06 98.06
2 47.36 61.46 64.28 82.59 72.53 73.96
3 48.60 78.75 77.14 73.50 84.06 84.85
4 68.29 95.90 91.76 91.32 96.76 97.21
5 75.75 87.78 88.85 92.12 89.83 90.32
6 85.37 91.48 92.36 98.22 93.93 94.04
7 91.54 99.23 99.23 100 100 100
8 79.52 98.47 98.92 98.31 99.57 99.63
9 96.00 100 100 100 100 100

10 56.22 74.23 71.61 87.51 76.81 77.68
11 49.62 69.51 71.02 64.41 75.65 75.57
12 45.43 75.67 77.40 84.31 84.33 84.79
13 93.47 98.68 99.00 99.49 99.37 99.37
14 69.55 93.25 94.83 94.84 97.57 97.58
15 46.42 95.96 95.85 75.07 97.74 97.76
16 89.62 97.56 98.46 98.75 99.74 99.87

OA 58.90 79.14 79.88 82.33 84.36 84.75
AA 70.90 88.54 88.73 89.71 91.62 91.92

kappa 53.88 76.42 77.24 80.06 82.27 82.73
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Figure 3. Indian Pines. (a) three-channel color composite image with bands 65, 52, 36; (b,c) ground-truth
map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG, SSHG*, respectively.

Table 2. Classification accuracy of various algorithms on the Pavia university image.

Class PCA (10) EMP (27) EMPSpe (130) SH (30) SSHG (46) SSHG* (46)

1 66.21 82.40 81.57 70.33 81.67 82.70
2 65.14 83.44 84.09 82.13 92.02 91.44
3 70.00 77.04 77.79 72.37 80.47 80.08
4 85.26 97.42 97.44 89.58 93.93 94.90
5 99.37 99.76 99.75 99.61 99.79 99.80
6 69.16 78.91 80.16 91.76 86.50 89.63
7 90.45 94.07 93.28 92.68 94.16 94.44
8 71.34 86.12 85.30 72.16 83.07 84.06
9 99.72 96.04 97.44 99.51 98.26 98.15

OA 70.59 84.77 85.05 81.88 89.01 89.43
AA 79.63 88.35 88.53 85.57 89.99 90.58

kappa 63.20 80.38 80.78 76.80 85.64 86.24

Comparing the EMP and EMPSpe method, we can find that EMPSpe method is always slightly
better than EMP due to the fusion of EMP and spectral features for classification. As mentioned in [17],
the stacked EMP and spectral features are transformed to low dimensional features by the decision
boundary feature extraction (DBFE) and NWFE methods before classification. However, the DBFE
and NWFE did not bring about the effective improvement of algorithm performance. SH utilized
the hypergraph embedding model for feature reduction. Compared with PCA, the SH method has
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much better classification performance, which verifies the capacity of the hypergraph to capture
the intrinsic complex relationships between HSI pixels. However, SH utilized only the spectral
similarity for finding the nearest neighbors within a given spatial region. The superiority of SSHG
over SH demonstrates that the embedding of EMP and spectral features is better for HSI classification.
Specifically, our SSHG method can extract the rich spatial structures in the Pavia University data
and achieve the maximum improvement upon this data. SSHG* obtains better classification results
than SSHG, which demonstrates that adaptive hypergraph weight estimation is also beneficial for
improving the classification accuracy.

(a) (b)

C1
C2
C3
C4
C5

C6
C7
C8
C9

(c)

(d) (e) (f)

(g) (h) (i)

Figure 4. Pavia university. (a) three-channel color composite image with bands 102, 56, 31;
(b,c) ground-truth map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG,
SSHG*, respectively.

There are two parameters, i.e., K and u, in our proposed method. The parameter K is the number
of nearest neighbors, which determines how many pixels are included in the hyperedge. u is the
dimensionality of the embedded low-dimensional feature. To evaluate their effects on the classification
performance, we conduct the experiments on the above three datasets. We firstly fix the reduced
dimensionality as u = 40 and evaluate the influence of different K on the OA. As seen in Figure 6,
when K is set as 10, 15, 5 for Indian Pines, Pavia University and Botswana data sets, respectively, the
OA achieves the highest value. Taken as a whole, [5, 15] is usually a good range for the selection of
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parameter K. We then fix the K as 10, 15, 5 for the three datasets, respectively, and evaluate the influence
of different us on the OA. Figure 7 shows the changes of OA with the reduced dimensions on three
types of HSI. We can see that the inflection point of classification results is around the dimensionality
25 for these three HSIs, and there was no significant improvement on the classification results if the
dimension continues to grow up.

Table 3. Classification accuracy of various algorithms on the Botswana image.

Class PCA (22) EMP (27) EMPSpe (172) SH (25) SSHG (34) SSHG* (34)

1 100 99.92 99.89 100 100 100
2 96.51 100 97.99 100 99.68 98.05
3 96.19 94.79 95.85 99.15 96.76 100
4 99.00 95.85 98.83 99.50 98.41 93.27
5 81.10 79.76 82.32 82.86 91.79 96.38
6 69.29 81.73 88.34 81.89 96.37 99.22
7 96.31 97.70 99.20 98.77 99.72 99.95
8 98.40 99.63 99.48 99.47 100 97.42
9 79.93 92.34 94.47 96.32 98.86 99.79
10 95.28 98.33 97.98 99.57 99.92 97.97
11 83.45 97.24 95.19 97.59 94.97 99.88
12 93.98 99.94 99.88 88.55 100 99.49
13 89.33 99.60 98.37 94.47 99.92 99.75
14 98.75 99.25 98.35 100 91.36 99.63

OA 89.83 94.69 95.65 95.10 97.79 98.38
AA 91.25 95.43 96.15 95.58 97.70 98.63

kappa 88.98 94.24 95.36 94.68 97.60 98.24

(a) (b)

C1
C2
C3
C4
C5
C6
C7

C8

C10
C11
C12
C13
C14

C9

(c)

(d) (e) (f) (g) (h) (i)

Figure 5. Botswana. (a) three-channel color composite image with bands 65, 52, 36; (b,c) ground-truth
map and class labels; (d–i) classification maps of PCA, EMP, EMPSpe, SH, SSHG, SSHG*, respectively.
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(a) (b) (c)

Figure 6. Effects of the number K of nearest neighbors on OA. (a) Indian Pines; (b) Pavia University;
(c) Botswana.

(a) (b) (c)

Figure 7. Effects on the reduced dimensions. (a) Indian Pines; (b) Pavia University; (c) Botswana.

5. Conclusions

In this paper, we propose a novel algorithm for spatial-spectral feature extraction based on
hypergraph learning. A hypergraph is constructed by the KNN method and the embedding operation
is conducted to transform the joint EMP and spectral features into the low-dimensional representation.
Meanwhile, an efficient hypergraph weight estimation scheme is adopted to preserve the prominent
hyperedges. Classification is performed with SVM using the embedded features. The experimental
results on three benchmark hyperspectral datasets verify that our embedded representation can
enhance the classification accuracy effectively. The hypergraph weight estimation can further improve
the accuracy of HSI classification.
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Abstract: As a variant of Convolutional Neural Networks (CNNs) in Deep Learning, the Fully
Convolutional Network (FCN) model achieved state-of-the-art performance for natural image
semantic segmentation. In this paper, an accurate classification approach for high resolution remote
sensing imagery based on the improved FCN model is proposed. Firstly, we improve the density
of output class maps by introducing Atrous convolution, and secondly, we design a multi-scale
network architecture by adding a skip-layer structure to make it capable for multi-resolution image
classification. Finally, we further refine the output class map using Conditional Random Fields
(CRFs) post-processing. Our classification model is trained on 70 GF-2 true color images, and tested
on the other 4 GF-2 images and 3 IKONOS true color images. We also employ object-oriented
classification, patch-based CNN classification, and the FCN-8s approach on the same images for
comparison. The experiments show that compared with the existing approaches, our approach has
an obvious improvement in accuracy. The average precision, recall, and Kappa coefficient of our
approach are 0.81, 0.78, and 0.83, respectively. The experiments also prove that our approach has
strong applicability for multi-resolution image classification.

Keywords: deep learning; convolutional neural network (CNN); fully convolutional network (FCN);
classification; remote sensing; high resolution

1. Introduction

Classification is a fundamental task for remote sensing imagery analysis. Applying intelligent
methods, such as pattern recognition and statistical learning, is an effective way to obtain class
information of ground objects. It is always the main focus of research and commercial development.
Early classification was mainly for low spatial resolution (10–30 m) images and pixel-leveled images,
including unsupervised classification (also known as clustering, such as K-means [1]) and supervised
classification (such as Neural Networks [2,3] and Support Vector Machines [4,5]). These methods
often use only spectral information of the images, and have formed general modules in commercial
software, and have been successfully applied in land resources, environment, agriculture, and other
fields. In recent years, some new approaches have appeared that are much superior to the traditional
approaches. For example, Yuan Yuan et al. [6] and Qi Wang et al. [7] applied the latest achievements in
the machine learning field, such as Manifold Ranking and Sparse Representation, to hyperspectral
image classification.
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High resolution (2 m spatial resolution and higher) remote sensing images contain more
ground details. Many applications tend to obtain attributes of a ground object (such as a single
building) rather than pixels. However, the pixel-level classification methods are sensitive to noise,
and lack semantic meaning of the objects, and are difficult for obtaining object-level information.
Therefore, object-oriented classification [8] is proposed, and it has made great achievements in
high resolution image classification. At present, eCognition [9], ENVI [10], and other commercial
software have developed object-oriented classification modules. Most of the object-oriented approaches
perform a “segmentation-classification” mode. In the segmentation stage, Multi-Resolution (MR) [11],
Full-Lambda Schedule (FLS) [12], Mean-Shift [13], Quadtree-Seg [14], and other image segmentation
approaches are used to generate image segments, which we called image objects. In the classification
stage, object features (color, texture, and geometric features) are calculated, which are taken as inputs
of supervised or unsupervised classification, or a manually designed rule set for feature filtering,
to achieve the final class discrimination.

Land-cover has various types, and is affected by noise, illumination, season, and many other
factors, and brings great difficulties to classification using high resolution images. Even using the
object-oriented approaches, accurate classification is still very difficult. From the pattern recognition
perspective, selection/extraction of representative features is the bottleneck to improving accuracy.
That is, the use of a specific set of features cannot be achieved on the classification for all kinds of
ground objects. Therefore, learning features automatically from a remote sensing data set rather than
using manually designed features, and then performing classification on the learned features, is an
effective way to improve the accuracy of classification.

Deep learning theory was explicitly proposed by Hinton et al. [15] in 2006. It is a branch of
machine learning based on a set of algorithms that attempt to model high level abstractions in data [16].
The basic motivation of deep learning is to establish a deep neural network to simulate the leaning and
analysis mechanism of the human brain. Compared with the traditional machine learning theories,
the most significant difference of deep learning is emphasizing automatic feature learning from a
huge data set through the organization of multi-layer neurons. In recent years, various deep learning
architectures such as Deep Belief Networks (DBN) [17], Convolutional Neural Networks (CNN) [18],
and Recurrent Neural Networks (RNN) [19] have been applied to fields like computer vision [20,21],
speech recognition, natural language processing, audio recognition, and bioinformatics, and they have
been shown to produce state-of-the-art results in these domains.

In deep learning techniques, CNN has achieved remarkable results in image classification,
recognition, and other vision tasks, and has the highest score on many visual databases such as
ImageNet, Pattern Analysis, Statistical Modeling and Computational Learning Visual Object Classes
(PASCAL VOC), and Microsoft Common Objects in Context (MS-COCO). For image classification,
the basic structure of the standard CNN is stacks of “convolutional-pooling” layers as multi-scale
feature extractors, and subsequent numbers of fully connected layers as classifiers. Many works on
CNN-based remote sensing image analysis emerged in recent years. Nguyen et al. [22] presented an
approach for satellite image classification using a five-layered network and achieved classification
accuracy higher than 75%. Wang et al. [23] used a CNN structure with three layers and Finite State
Machine (FSM) for road network extraction for long-term path planning. Marco Castelluccio et al. [24]
explored the use of CNNs for the semantic classification of remote sensing scenes. Similarly,
Hu et al. [25] also classified different scenes from high resolution remote sensing imagery using a
pre-trained CNN model. Weixun Zhou et al. [26] employed CNN architecture as a deep feature
extractor for high-resolution remote sensing image retrieval (HRRSIR). Volodymyr Mnih [27]
proposed a CNN-based architecture to learn large scale contextual features for aerial image labeling.
The model produces a dense classification patch, instead of outputting a single value image category.
Martin Lagkvist et al. [28] presented a novel remote sensing imagery classification method based on
CNNs for five classes (vegetation, ground, road, building, and water), outperforming the existing
classification approaches. Besides the CNN family approaches, Yuan Yuan et al. [6] used a Stacked
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AutoEncoder classifier for a classification experiment after using the Manifold Ranking based salient
band selection.

The standard CNN is in an “image-label” manner and its output is the probability distribution
over different classes. However, most of the remote sensing image classification expects a dense
class map as the output, which has the same dimensions as the original image. A class map is a 2-D
distribution of class labels with pixel correspondence, which is in a “pixel-label” mode. In the study
of Martin Lagkvist et al. [28], a “per-pixel” classification is considered using overlapped patches and
average post-processing. However, the use of the overlapped patches introduces too much redundant
computations, and the averaging processing may easily lose useful edge information. Based on the
standard CNN, Jonathan Long et al. [29] proposed the Fully Convolutional Network (FCN) model in
2015. By replacing fully connected (FC) layers in the standard CNN with convolutional layers, the FCN
model maintains the 2-D structure of images, and firstly carries out CNN-based image semantic
segmentation. In order to obtain a dense class map, Liang-Chieh Chen et al. [30] used the “atrous”
convolution instead of the ordinary convolution, increasing the density of the predicted class labels,
and then performed the Conditional Random Fields (CRFs) as post-processing to refine the region
boundaries. The CRFs-based boundary refinement is also used in the works of Sakrapee et al. [31].
In order to integrate the CRFs procedure into the training stage, Shuai Zheng et al. [32] applied
the idea of RNN to image segmentation, implementing an “end-to-end” training procedure. In the
remote sensing society, several studies employ FCN-based approaches for dense class map generation.
Jamie Sherrah [33] analyzed the down-sampling and up-sampling mechanism in CNNs, and adopted
an FCN architecture for aerial image semantic labelling. The down-sampling mechanism of standard
FCN is removed by involving deconvolution. D. Marmanis et al. [34] also used FCN and subsequent
deconvolution architecture to perform a semantic segmentation for aerial images. Emmanuel
Maggiori et al. [35–37] addressed the dense classification problem, and compared the patch-based
CNN dense classification using CNN with FCN. With the advantages of FCN, the author proposed an
end-to-end framework for large-scale remote sensing classification. A multi-scale mechanism was also
considered by designing a specific neuron module that processes its input at multiple scales.

In this paper, we perform a FCN-based classification on high spatial resolution remote sensing
imagery with 12 classes (bare land, grass, tree, water, building, cement ground, parking lot, playground,
city road, trail, shadow, and others). These classes are typical ground objectives in city areas, and some
of them (such as building, cement ground, road, and parking lot) are easily confused in traditional
classification tasks. The class configurations were arranged to test the effectiveness of our approach in
a complex environment. We fine-tuned the model parameters of the ImageNet-pretrained VGG-16 [37]
network using GF-2 satellite images, to adapt it to our remote sensing imagery classification task.
The VGG network has a more compact structure of convolutional and pooling layers, and achieved the
highest classification accuracy for ImageNet ILSVRC-2014. To overcome the noise caused by pixel-level
classification, we refine the region boundaries using fully connected CRFs, following the procedure of
Liang-Chieh Chen et al. [30] and Sakrapee et al. [31]. The refined output is more readily applied to an
object-oriented analysis.

We compare our approach with the object-oriented approach with MR segmentation [11] and SVM
classification, patch-based CNN classification proposed in [27], and the FCN-8s approach proposed
in [29], which achieved success for high resolution imagery classification or natural image segmentation.
The result shows that our approach achieves higher accuracy in the classification. For those objectives
which are difficult to be classified, our approach has lower confusion rates.

2. Methods

Similar to other supervised classification, our approach generally has two stages: the training
stage and the classification stage, which is illustrated in Figure 1. In the training stage (the upper part
of Figure 1), image-label pairs, with pixel-class correspondence, are input into the FCN network as
training samples. The error between predicted class labels and ground truth (GT) labels is calculated
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and back-propagated through the network using the chain rule, and then the parameters of the FCN
network are updated using the gradient descent method. The above iteration will be stopped when the
error is less than a given threshold. In the classification stage (the lower part of Figure 1), the trained
FCN network is performed on an input image to generate a rough class prediction. The rough class
prediction, with the input image, is then input into the CRFs post-processing module to generate the
final refined classification. The details of the training stage and classification stage are presented in
Sections 2.2 and 2.3, respectively.

 
Figure 1. The general pipeline of our approach: The training stage and the classification stage are
illustrated in the upper and lower parts, respectively.

2.1. Network Architecture

CNN currently is the state-of-the-art in visual recognition such as classification and detection.
Simonyan et al. [38] developed the very deep CNN networks (VGG) by increasing the depth to
16–19 weight layers. To reduce the number of parameters in the networks, small 3× 3 filters are
used in all the convolutional layers. VGG models won the runner-up in ImageNet ILSVRC-2014.
Although the subsequently emerged deeper models, such as ResNet [39] and Inception-V4 [40],
achieved a higher score in many vision tasks, VGG networks have clear structures and compact
memory requirements, which can be easily extended and applied, so we chose the 16-layered VGG
network as our basic network architecture. Based on the VGG network, we constructed the FCN model
by replacing the last three fully connected layers (two layers with 4096 neurons and one with 1000
neurons) with convolutional layers. Then following the idea of Liang-Chieh Chen et al. [30], we use
“atrous” convolution (also known as “dilation” convolution in other studies) instead of the ordinary
convolution to increase the feature density, and build the multi-scale classification model by adding
the skip-layer network architecture.

2.1.1. Fully Convolutional Network

In classification tasks, the last structures in standard CNN are always several Fully Connected
(FC) layers (see Figure 2a for illustration). These layers play the role of classifier like standard BP
neural networks (For example, in Figure 2a, the 3 FC layers are similar to a 3-layered BP network with
one hidden layer). From the first FC layer, the 2-D structure of the input image maintained by the
convolutional-pooling layers is lost. The output of standard CNN is a 1-D distribution over classes
(for a Softmax regression). It works in an “image-label” manner. In other words, given an image,
it predicts one class label (a scalar) for it. The “image-label” mode has great advantages in single scene
classification. The effectiveness has been presented in studies of Marco Castelluccio et al. [24] and
Hu et al. [25].
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However, in most remote sensing applications, a 2-D dense class map is required as an output.
To maintain the 2-D structure, some approaches were presented based on the common CNN structures.
The most typical one is the patch-based CNN approach [27,28]. The basic idea of patch-based CNN
is: separate the large image into small patches, and apply the common CNN model on each patch
to predict the class label(s) centered at the corresponding patch. Finally, the class labels will be
arranged in a 2-D layout as the output. Jonathan Long et al. [29] proposed the FCN model, which is a
convolutionalized version of CNN. FCN replaces all the FC layers with convolutional layers. Thus,
the important 2-D structure of the image is maintained. Figure 2b is the illustration of the FCN model.

 
(a)

 
(b)

Figure 2. Network architectures for standard Convolutional Neural Network (CNN) and Fully
Convolutional Network (FCN). (a) Architecture of standard CNN: stacks of convolutional-pooling
layers and fully connected (FC) layers. Given an image, the distribution over classes is predicted.
The class with the largest distribution value is considered as the class of a given image; (b) Architecture
of FCN: FC layers are replaced by convolutional layers. FCN maintains the 2-D structure of the image.

Compared with patch-based CNN, the advantages of the FCN model are obvious for

• Easy implementation: The FCN architecture is designed brilliantly by replacing the FC layers by
convolutional layers, which enables us to take arbitrary sized images as inputs. Additionally,
by training entire images at a time instead of patch cropping, FCN does not have to
rearrange the output labels together to obtain the label predictions and thus reduces the
implementation complexity.

• Higher accuracy: Under the patch-based CNN learning framework, only the “intra-patch” context
information is taken into account. Nevertheless, correlations among patches are ignored,
which might lead to obvious gaps between patches. Unlike the patch-based CNN, FCN performs
the classification in a single-loop manner, and considers the context information overall and
seamlessly. Please refer to Section 4.2 for more details.

• Less expensive computation: In patch-based CNN, when using overlapped patches for dense class
label generation, such as the study of Martin Lagkvist et al. [28], it introduces too much redundant
computations (especially convolutions) on the overlapped regions. By performing a single loop
operation, the FCN model makes remarkable progress and allows the large image classification to
be implemented in a more effective way.

We adopt the FCN model for remote sensing imagery classification. The output number (channels)
of the last convolutional layer (also called feature maps) is equal to the class number of our task (so in
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this paper, it is 12 for 12-class classifications). The feature maps can be seen as a stack of heat maps
for all classes. A 2-D slice along the channel axis represents the heap map (score distribution) of
the corresponding class (For example in Figure 2b and in Figure 3c, we extract the heap map for
the building).

 

Figure 3. “Atrous” convolutions with r = 1, 2, and 3. The first convolution (r = 1) is actually the
ordinary convolution.

2.1.2. Atrous Convolution for Dense Feature Extraction

The repeated combination of pooling and striding at consecutive layers significantly reduces the
spatial resolution of the resulting feature map. Typically in our VGG-16 model, 5 max-pooling layers
with 1/2 down-sampling cause 1/32 total factor reduction in spatial resolution. For high resolution
remote sensing image classification tasks, such operations lead to a serious loss of spatial information.
Liang-Chieh Chen et al. [30], inspired by the Wavelet Transform, proposed the “atrous” convolution
for generating dense feature maps. In the 1-D case, given the input signal x[i], and the convolutional
kernel w, the output of “atrous” convolution y[i] is calculated as:

y[i] =
K

∑
k=1

x[i + r·k]w[k] (1)

where r denotes the rate parameter corresponding to the stride. In the 2-D cases, “atrous” convolutions
(use 3× 3 kernel) with rate r = 1, 2, and 3 are demonstrated in Figure 3.

In order to further illustrate the effect of “atrous” convolution, we compare it with standard
convolution using a simple example in Figure 4. Firstly, represented by the red route, we take an image
patch (300× 300) as an input, and perform 1/2 down-sampling and 10× 10 standard convolution
(horizontal Gaussian derivative kernel) on it, which is used to simulate a pooling-convolution
combination in standard CNNs. The receptive field corresponding to the original image is 20× 20,
and only 1/4 of the image positions are involved in calculating the feature map. The obtained low
resolution feature map is then enlarged by an up-sampling operation with a factor of 2. Secondly, as a
comparison, we perform “atrous” convolution with rate r = 2 on the original image. The size of the
receptive field is unchanged, but the density of the feature map is increased by two times, which means
half of the image positions are considered for generating the feature map. Compared with the standard
convolution, the “atrous” convolution generates a high resolution feature map, while keeping the size
of receptive field. Besides, there is no extra parameter involved. The “atrous” convolution for dense
feature map generation is illustrated by the blue route in Figure 4.

The “atrous” convolution is generally applicable and allows us to efficiently compute dense
CNN feature maps at any target subsampling rate without introducing any approximations and extra
parameters. Theoretically, the “atrous” convolution can be applied to each convolutional layer of the
network to maintain the resolution, but this ends up being too costly, and the advantage for translation
invariant brought by the down-sampling operation could also be weakened. So we modify the basic
VGG-16 network to adapt it to our classification task. We take this modified network as our primary
architecture (we add multi-scale functionality, which is described in Section 2.1.3).
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Figure 4. Illustration of atrous convolution for dense feature map generation. Red route: standard
convolution performed on a low resolution feature map. Blue route: dense feature map generated
using atrous convolution with rate r = 2 on a high resolution input feature map.

2.1.3. Network Architecture for Multi-Scale Classification

The variant of resolution will affect the classification accuracy. Single-scale classification has great
limitation in its applicability. Therefore, many works considered multi-scale classification in their
approaches [29–32]. A simple method for a multi-scale classification is training the model on datasets
that contain objects of varying sizes. However, this approach needs the times of sample storage and
training time (more iteration to traverse all the samples). A good idea for CNN-based multi-scale
segmentation and detection is using the skip-layer network architecture [29,41]. In this architecture,
links are added to incorporate the feature responses from different levels of the primary network
stream, and these responses are then combined in a shared output layer [42]. Our multi-scale network
architecture is illustrated in Figure 5.

Figure 5. Multi-scale network architecture.
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As presented in Figure 5, feature maps are generated along five streams. The stream A is our
primary network, generating a feature map with dimension W/8× H/8× 12, which is described
in Section 2.1.2. Branch streams B to E are the added skip-layer architecture for the multi-scale
classification. These streams begin from the feature map generated by layers pool4 to pool1,
respectively. For each branch stream, the subsequent architecture is the layer group with two
convolutional layers, generating a feature map with 1024 channels, and then a convolutional layer
(kernel 1× 1× 12) outputs a 12-channeled feature map. Each stream, including the primary stream and
the branch streams, introduce down-sampling effects caused by the max-pooling operation (the factor
is 1/8 for stream A to C, 1/4 for stream D, and 1/2 for stream E). However, in the applications
of remote sensing classification, we need the class map to have the same size with the input
image. So we perform the up-sampling operation after the feature maps are generated by these
streams to recover the feature maps at the original image resolution. In this paper, we adopt
Liang-Chieh Chen et al.’s [30] approach, and use simple bilinear interpolation to increase the resolution
by a factor of 8, 4, and 2 at negligible computational cost. The up-sampled feature maps are then
combined using summation in an element-wise manner. The output of this network architecture is a
feature map with dimension W × H × 12. Our multi-scale network architecture captures three levels
of resolution, represented by stream A to C, stream B, and stream E.

2.2. Network Training

Our training dataset is collected from two GF-2 high resolution remote sensing images (true color
fusion images with 0.8 meter resolution) of northeastern Beijing, China.

The images were taken in 5 December 2014 and 2 September 2015, respectively. The reason why
we chose images with different imaging times is to increase the anti-interference abilities of our model,
such as the change of seasons, to enhance its applicability. In our training dataset, there are a total of
74 images (size 1024× 1024). We manually labeled all images at the pixel level as ground truth (GT)
label data. In other words, for each image, there exists a 1024× 1024 label map, having a pixel-class
(row-col indexed) correspondence with it. We used 70 images for training, and the remaining 4 images
for testing. Three image-GT label pair examples are illustrated in Figure 6.

The general procedure of our training stage is: Image-GT label pairs are input into the multi-scale
classification network as training samples. The Softmax function is performed on the output feature map
generated by the network to predict the class distribution. Then the cross entropy loss is calculated and
back-propagated, and finally the network parameters are updated using Stochastic Gradient Descent
(SGD) with momentum. The general procedure is shown in Figure 7.

The softmax function is used to probabilize the output feature map of our multi-scale network.
However, the mode of softmax here is different from that in the standard CNNs: it is performed on
each location with row-column coordinate (i, j), 0 ≤ i < H and 0 ≤ j < W, and it outputs a dense
distribution over the classes. Figure 8 illustrates this function.

Figure 8 shows that the output of our multi-scale network is a H×W × 12 feature map, which has
the same width and height as the original image. A “drill hole” along the channel axis at location (i, j)
is the feature vector with 12 elements corresponding to the pixel at the same location. The softmax
function is adopted on this feature vector to generate a 12-D probabilized vector, which is the discrete
distribution over 12 classes at location (i, j). The softmax function will traverse each location to obtain
the dense class distribution.

The SGD method with momentum is used for parameter updates in our training, which is
described by the following:

W(n+1) = W(n) − ΔW(n+1) (2)

where W(n) and W(n+1) denote the old parameters and new parameters, respectively, and ΔW(n+1)

is the increment for the current iteration, which is a combination of old parameters, gradient,
and historical increment:
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ΔW(n+1) = η·
(

dw·W(n) +
∂J(W)

∂W(n)

)
+ m·ΔW(n) (3)

where J(W) is the loss function, η is the learning rate for step length control, and dw and m denote the
weight decay and momentum, respectively.

We employ the VGG-16 network which has been pre-trained on ImageNet for fast convergence.
We use a “step” policy for learning rate adjustment (gamma = 0.1, step_size = 15, 000) so that closer
to the error minimum, the smaller the step length is. The base learning rate is 0.0001. The basic
parameters for calculating increments are: m = 0.9, and dw = 0.0005. The max iteration in our training
is 60,000. In the training procedure, we first randomly shuffle the samples, and then feed them into the
network in batches. Each batch contains 10 images. We also crop and rotate samples randomly in each
batch to increase the diversity and variability of the samples.

 
(a) (b) 

Figure 6. Three sample examples for our classification training. (a) Original images; (b) Ground truth
(GT) labels corresponding to the images in (a).
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Figure 7. General procedure of network training.

Figure 8. Softmax function performed on the output feature map.

2.3. Classification Using the Trained Network

The trained network is adopted on an image for classification. However, our multi-scale
network involves up-sampling operations, leading to the blurring of classification boundaries.
Several works [29–32] use CRFs as post-processing to refine the image segmentation results.
So following their idea, we adopt the fully connected CRFs for our rough class prediction. The model
employs the energy function:

E(x) = ∑i θi(xi) + ∑ij θij
(

xi, xj
)

(4)

where x is the label assignment for pixels. θi(xi) = − log P(xi) is the unary potential, where P(xi) is
the label assignment probability at pixel i as the output of our multi-scale network after the softmax
function. θij

(
xi, xj

)
is the pairwise potential represented by a fully connected graph, connecting all pairs

of image pixels i and j. We use the following definition of the pairwise potential [43]

θij
(

xi, xj
)
= μ

(
xi, xj

)
∑K

m=1 wm·km
(

fi, fj

)
(5)

where μ
(

xi, xj
)

is the sign function, and μ
(
xi, xj

)
= 1 if xi �= xj, and is zero otherwise. μ

(
xi, xj

)
removes the self-connected links from the graph. km is a Gaussian kernel function that takes feature as
input (denoted by fi and fj extracted for pixel i and j). Each Gaussian kernel is weighted by wm. In our
study, the bilateral position and color terms is adopted as the kernel function

w1· exp

(
−‖pi − pj‖2

2σ2
α

− ‖Ii − Ij‖2

2σ2
β

)
+ w2· exp

(
−‖pi − pj‖2

2σ2
γ

)
(6)
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where pi, pj denote the locations, and pi, pj denote the color of pixel i, j. So the first kernel depends on
both pixel positions and color, and the second kernel only depends on pixel positions. σα, σβ, and σγ

are the hyper parameters that control the scale of the Gaussian kernels. The classification pipeline is
illustrated in Figure 9.

 
Figure 9. General procedure of image classification using the trained network.

In CRFs post-processing, the rough class distribution predicted by the multi-scale network is
input as the unary potential, and the original image provides the pairwise potential with position
and color information. The CRFs is solved using mean field approximation [43]. The class labels are
adjusted and refined under the position-color constraints. The weight parameters we adopt in this
paper are w1 = 4, w2 = 3, which are the default configuration of [30]. Following the idea of [43],
we use σα = 54, σβ = 5, and σγ = 4 through a cross-validation on the training set. We employ 10 mean
field iterations for solving CRFs.

3. Experiment and Comparison

In the following section, the experiment and comparison will be presented to evaluate our
classification approach. Our algorithm is implemented using Microsoft Visual C++ 11, and is performed
on the Windows 7 operating system installed NVIDIA GeForce GTX980M graphic device with 8G byte
graphic memory.

3.1. Comparison Setup

We conduct two groups of experiment (denoted as Experiment A and B) on GF-2 and IKONOS
true color images, respectively. We compare our approach with object-oriented classification using MR
segmentation [11], SVM classification (MR-SVM), patch-based CNN classification proposed in [27],
and the FCN-8s approach proposed in [29].

3.1.1. MR-SVM

For Multi-Resolution and Support Vector Machine (MR-SVM) object-oriented classification,
the first step is MR segmentation [11] to generate image objects. The quality of image objects directly
affects the classification results. We believe that the high quality image objects are neither over-covered
nor over-segmented. Ideally, each image object contains only a single-class ground object. The MR
segmentation is controlled by the scale, shape, and compactness parameters. In order to obtain
high-quality image objects, we determine the parameters through the times of experiments by different
settings, to achieve the ideal segmentation as much as possible. The parameters we used in MR
segmentation are listed in Table 1.

Once the image objects are obtained, we construct the initial feature space using 60 common
features involving spectral, geometric, and texture aspects:

• Spectral features: mean, standard deviation, brightness, and max difference for each band.
• Geometric features: area, length, width, length-width ratio, border length, compactness, elliptic fit,

rectangular fit, density, shape index, main direction, and symmetry.
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• Texture features: Features calculated from the Gray Level Co-occurrence Matrix (GLCM) and the
Gray Level Difference Vector (GLDV) with all directions, etc.

Table 1. Scale, shape, and compactness parameters used in the Multi-Resolution (MR) segmentation.

Experiment Scale Shape Compact

Exp.A-(1) 115 0.5 0.5
Exp.A-(2) 140 0.3 0.8
Exp.A-(3) 105 0.4 0.5
Exp.A-(4) 100 0.4 0.7
Exp.B-(1) 120 0.3 0.5
Exp.B-(2) 80 0.5 0.4
Exp.B-(3) 85 0.5 0.7

To select the most representative features for the following classification, we seek significant
features for optimal class separation using the Separability and Thresholds (SEaTH) method [44].
According to the SEaTH method, we optimize the 60-D initial feature space, and obtain a 10-D
sub feature space including: mean value and brightness for each band; density and length-width
ratio of the image object; GLCM-mean value for each band; GLDV-mean for the first band. In the
classification stage, we select almost 25% of the image objects from each image as training samples,
and input their features to the SVM classifier implemented using the LibSVM library [45]. The kernel
function we used in SVM is the Radial Basis Function (RBF), and the objective function type is
the C-Support Vector Classification (C-SVC). To determine the optimal penalty factor C and kernel
function parameter γ, we employ a simple grid search for all training samples on the C−γ domain that
minimize the classification error. The search range of C and γ are [0.4, 1.6] and [0.02, 0.14] according
to the experience [45]. The step lengths are 0.2 and 0.01, respectively. According to the grid search,
the optimal parameters we used for the SVM classifier are C = 1.2 and γ = 0.08.

3.1.2. Patch-Based CNN

In the patch-based classification experiment, the general procedure is illustrated in Figure 10.

 

Figure 10. General procedure of our patch-based CNN classification experiment.

Different from the architecture used in [27], we employ the VGG-16 network as the main structure
for its high performance in the previous vision tasks. In order to prevent excessive reduction of the
resolution, we modified the stride and padding values of the last two pooling layers (the stride and
padding values we used are all 1) so that the architecture has a 1/8 down-sampling effect. Following
the idea of Volodymyr Mnih [27], the last 3 FC layers are modified to a single FC layer with output
number 256 representing a 16× 16 prediction area. So for 64× 64 input patches, the overall architecture
causes a 1/4 down-sampling. Finally, we perform an up-sampling post-processing with a factor of 2 to
increase the resolution.
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3.1.3. FCN-8s

For the FCN model, we directly employ the FCN-8s model proposed by Jonathan Long et al. [29].
The architecture of the model is also the VGG-16 network with skip-layer structure. The final prediction
is fused from the output of three branches (from the primary network, the pool4 layer, and the pool3
layer, respectively) after the up-sampling operation. In the training phase, by modifying the number
of outputs from 21 to 12, we fine-tuned the network based on the ImageNet pre-trained model.
The training parameters for FCN-8s in the experiment are the same as ours. In the testing stage,
except for the CRF-based post-processing, we use the same classification parameters as our approach.
Please refer to [29] for detailed information.

3.2. Experiments and Comparison

In Experiment A, we adopt our trained model on four GF-2 true color images (0.8 m resolution)
for the classification (In the following section, they will be abbreviated as Exp.A-(1) to Exp.A-(4)).
All the image sizes are 1024× 1024. These images are the testing images that are not involved in
training. Figure 11 is the illustration of the results and the comparison. In Experiment B, we adopt
the same trained model on three IKONOS true color images (1.0 m resolution) for the classification
(Abbreviated as Exp.B-(1) and Exp.B-(3) in the following section) to test the applicability. All the image
sizes are also 1024× 1024. Figure 12 illustrates the classification results and comparison.

We employ precision, recall, and Kappa coefficient as the indicators to evaluate our approach.
These indexes are calculated from the confusion matrix C, where the precision is calculated as
1

12 ∑i Cii/ ∑j Cij that denotes the average proportion of pixels being classified to one class that are
correct, and the recall is computed as 1

12 ∑i Cii/ ∑i Cij that represents the average proportion of pixels
that are correctly classified, and the Kappa coefficient measures the consistency of the predicted classes
with the GT classes. The comparisons are listed in Table 2.

Table 2. Comparison between approaches using MR-SVM, patch-based CNN, FCN-8s, and
our approach.

Approach Index Exp.A-(1) Exp.A-(2) Exp.A-(3) Exp.A-(4) Exp.B-(1) Exp.B-(2) Exp.B-(3) Mean

MR-SVM
Precision 0.67 0.72 0.67 0.66 0.65 0.73 0.64 0.68

Recall 0.52 0.59 0.52 0.63 0.39 0.51 0.74 0.56
Kappa 0.55 0.66 0.62 0.65 0.54 0.64 0.64 0.61

Patch-based
CNN

Precision 0.68 0.64 0.71 0.55 0.73 0.76 0.70 0.68
Recall 0.61 0.61 0.70 0.73 0.47 0.58 0.74 0.63
Kappa 0.64 0.69 0.62 0.70 0.63 0.71 0.75 0.68

FCN-8s
Precision 0.83 0.84 0.68 0.66 0.81 0.78 0.83 0.78

Recall 0.71 0.79 0.80 0.80 0.66 0.66 0.79 0.74
Kappa 0.73 0.80 0.81 0.80 0.76 0.81 0.82 0.79

Ours

Precision 0.86 0.87 0.74 0.68 0.84 0.78 0.92 0.81
Recall 0.83 0.78 0.81 0.82 0.70 0.68 0.84 0.78
Kappa 0.79 0.85 0.84 0.83 0.78 0.84 0.89 0.83

The above statistics show our approach obtains the best performance compared with the others.
Approaches using carefully-designed MR-SVM and patch-based CNN achieve similar accuracy levels,
and the FCN-8s approach performs much better than those two. Some ground objects such as building,
city road, and cement ground, have similar spectral and geometrical features, which are hard to
distinguish. For example, in Exp.A-(2), when using MR-SVM, the recall for “cement ground” is 0.41.
That means that more than half of the pixels are wrongly classified. The proportions that are incorrectly
classified as “building” and “road” are 0.26 and 0.19. It means that in that case, the object-oriented
classification has almost no effect on distinguishing these classes.
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Figure 11. Classification results on GF-2 images (Experiment A). (a) Original images; (b) GT labels
corresponding to the images in (a); (c–e) Results of the MR-SVM object-oriented classification,
patch-based CNN classification, and FCN-8s classification corresponding to the images in (a),
respectively; (f) Our classification results corresponding to the images in (a).
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Figure 12. Classification result on IKONOS images (Experiment B). (a) Original images; (b) GT
labels corresponding to the images in (a); (c–e) Results of the MR-SVM object-oriented classification,
patch-based CNN classification, and FCN-8s classification corresponding to the images in (a),
respectively; (f) Our classification results corresponding to the images in (a).
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Table 3 lists the partial confusion matrix (only involves the above three classes) of our classification
results. From the table, we can see that our approach achieves higher classification performance. In the
above example, our recall for “cement ground” is 0.79. The proportions that are wrongly classified as
“building” and “city road” are 0.05 and 0.06, respectively.

Table 3. Partial confusion matrix of our approach for “building”, “cement ground”, and “city road”.

Experiment GT/Predicted Class Building Cement Ground City Road

Exp.A-(1)
Building 0.91 0.05 0.02

Cement ground 0.13 0.76 0.02
City road 0.02 0.01 0.95

Exp.A-(2)
Building 0.92 0.03 0.03

Cement ground 0.05 0.79 0.06
City Road 0.01 0.04 0.89

Exp.A-(3)
Building 0.91 0.02 0.05

Cement ground 0.10 0.82 0.03
City road 0.05 0.04 0.82

Exp.A-(4)
Building 0.95 0.03 0.00

Cement ground 0.07 0.81 0.05
City road 0.01 0.01 0.93

Exp.B-(1)
Building 0.90 0.02 0.01

Cement ground 0.26 0.65 0.01
City road 0.11 0.03 0.84

Exp.B-(2)
Building 0.83 0.01 0.00

Cement ground 0.08 0.75 0.15
City road 0.01 0.01 0.96

Exp.B-(3)
Building 0.87 0.06 0.01

Cement ground 0.03 0.70 0.04
City road 0.10 0.01 0.87

4. Discussion

This paper presents a classification approach for high resolution images using the improved FCN
model. Compared with the object-oriented method and two typical deep learning-based approaches,
the classification accuracy is obviously improved. In the following sections, we will discuss the reasons.

4.1. MR-SVM vs. Our Approach

Most of the traditional object-oriented classification approaches employ their classification in
a “segmentation-classification” manner. In an ideal segmentation, each segment represents a single
ground object. In other words, an ideal image object is neither over-covered nor over-segmented.
However, most of the segmentation was conducted in an unsupervised way, which relies only on image
information, but no prior class information. When the spectral and geometric features are similar,
it is difficult to obtain high-quality image objects. Once the image objects are incorrect, subsequent
object-oriented classification cannot lead to an accurate result. For an image, it is difficult to find
universal segmentation parameters so that all image objects can be correctly generated. Figure 13
shows one image object (with a yellow boundary) generated by MR segmentation that incorrectly
covers both building and cement ground.

In the classification stage, it is very difficult to choose expressive features for an image object as
the input of the classifier. The feature selection usually needs many attempts and largely depends
on experience. Therefore, the uncertainty introduced by the two stages, together affects the final
classification accuracy.

In our FCN-based approach, the class information, which is the ultimate objective for classification,
is taken as the supervisory signal that controls the whole process including both feature extraction
and classification. Our approach combines the segmentation and classification stages, and achieves
high quality classification in an end-to-end way. This is also the most obvious advantage of the deep
learning theory.

168



Remote Sens. 2017, 9, 498

 
(a) (b) (c) 

Figure 13. Incorrect image object generated by MR segmentation. (a) Original images; (b) GT labels
corresponding to the images in (a); (c) Incorrect image object covers both the building and cement
ground (with yellow boundary).

4.2. Patch-Based CNN vs. Our Approach

In the patch-based CNN approach, each image patch is input to the model independently,
which means that only the “intra-patch” context information is considered. However, correlations
between patches are not taken into account, which might lead to obvious gaps between patches.
Especially for objects with strong continuity, such as road and building edges, the problem is more
serious. Figure 14 shows the differences between patch-based CNN and our approach for building
heat map generation.

 
(a) 

 
(b) 

 
(c) 

Figure 14. Heat map for the building generated by patch-based CNN and our approach. (a) Original
images; (b) Heat map generated by patch-based CNN classification using 128× 128 patches; (c) Heat
map generated by the FCN model.

169



Remote Sens. 2017, 9, 498

Compared with the patch-based approaches, our model takes the whole image as the input,
and performs the classification in a single-loop manner, which considers the context information
overall and seamlessly. Our model eliminates the discontinuities at the patch boundaries. This is also
the most remarkable advantage of FCN.

4.3. FCN-8s vs. Our Approach

FCN model is a convolutionalized version of standard CNN through a simple modification.
The most significant feature of the FCN model is: on the one hand, FCN inherits the high accuracy
feature for image-label classification from standard CNN. On the other hand, it maintains the
2-D spatial information of the input image, thus achieving dense class prediction. However,
pooling operations cause serious reduction of the resolution. The output is not fine enough,
which will result in the loss of valuable detail information. As can be seen from Figure 15,
our approach outperforms FCN-8s in terms of detail preserving. Therefore, the classification accuracy
is greatly improved.

 
(a) (b) (c) 

Figure 15. Detail comparison between FCN-8s and our approach. (a) Original images; (b) Classification
result from FCN-8s; (c) Classification result from our approach.

As the most accurate model in the FCN family, FCN-8s combines the feature maps with different
resolutions from different pooling stages, to obtain a more intensive class prediction. In FCN models,
the lost resolution is compensated by the deconvolution operation. However, deconvolution is difficult
for efficiently restoring the resolution by way of learning. Benefiting from the “atrous” convolution,
the resolution of the feature map is maintained naturally in our approach. Besides, FCN models do
not consider the relationship between pixels, ignoring the spatial regularization that is commonly
employed in remote sensing image analysis. In our approach, the relationship between pixels is taken
into account by CRF-based post-processing. The class map predicted by FCN is further refined, and the
accuracy is therefore improved.

5. Conclusions

This paper presents a classification approach for high resolution images using an improved FCN
model. Compared with the object-oriented method and two typical deep learning-based approaches,
the classification accuracy is obviously improved.

Our FCN-based classification combines the segmentation and classification stages, taking the
class accuracy as the only constraint, and achieves high quality classification in an end-to-end way.
The GT classes of ground objects are taken as the supervised information that guides both the feature
extraction and the region generation. The classification results of using “atrous” convolution and
CRF-based post-processing allows us to obtain a high resolution class prediction. In addition, due to
the use of a multi-scale model, the model trained from the GF-2 images also has high classification
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accuracy on the IKONOS images. It is proven that our approach has a strong applicability for images
with different resolutions.

The main limitation of our approach is that it needs a large number of high quality GT-labels
for the model training, which relies on professional interpretation experiences and lots of manual
work. Therefore, the main aspect of our future work is training the model in a weak supervision way,
to further enhance its applicability.
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Abstract: Recently, sparse and low-rank graph-based discriminant analysis (SLGDA) has yielded
satisfactory results in hyperspectral image (HSI) dimensionality reduction (DR), for which sparsity
and low-rankness are simultaneously imposed to capture both local and global structure of
hyperspectral data. However, SLGDA fails to exploit the spatial information. To address this
problem, a tensor sparse and low-rank graph-based discriminant analysis (TSLGDA) is proposed
in this paper. By regarding the hyperspectral data cube as a third-order tensor, small local patches
centered at the training samples are extracted for the TSLGDA framework to maintain the structural
information, resulting in a more discriminative graph. Subsequently, dimensionality reduction is
performed on the tensorial training and testing samples to reduce data redundancy. Experimental
results of three real-world hyperspectral datasets demonstrate that the proposed TSLGDA algorithm
greatly improves the classification performance in the low-dimensional space when compared to
state-of-the-art DR methods.

Keywords: hyperspectral image; sparse and low-rank graph; tensor; dimensionality reduction

1. Introduction

A hyperspectral image contains a wealth of spectral information about different materials by
collecting the reflectance of hundreds of contiguous narrow spectral bands from the visible to infrared
electromagnetic spectrum [1–3]. However, the redundant information in a hyperspectral image
not only increases computational complexity but also degrades classification performance when
training samples are limited. Some research has demonstrated that the redundancy can be reduced
without a significant loss of useful information [4–7]. As such, reducing the dimensionality of
hyperspectral images is a reasonable and important preprocessing step for subsequent analysis and
practical applications.

Dimensionality reduction (DR) aims to reduce the redundancy among features and simultaneously
preserve the discriminative information. In general, existing DR methods may belong to one of three
categories: unsupervised, supervised, and semisupervised. The unsupervised methods do not take the
class label information of training samples into consideration. The most commonly used unsupervised
DR algorithm is principal component analysis (PCA) [8], which is to find a linear transformation by
maximizing the variance in the projected subspace. Linear discriminant analysis (LDA) [9], as a simple
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supervised DR method, is proposed to maximize the trace ratio of between-class and within-class
scatter matrices. To address the application limitation in data distribution of LDA, local Fisher’s
discriminant analysis (LFDA) [10] is developed. In order to overcome the difficulty that the number of
training samples is usually limited, some semisupervised DR methods in [11,12] are proposed.

The graph, as a mathematical data representation, has been successfully embedded in the
framework of DR, resulting in the development of many effective DR methods. Recently, a general
graph embedding (GE) framework [13] has been proposed to formulate most of the existing DR
methods, in which an undirected graph is constructed to characterize the geometric information of the
data. k-nearest neighbors and ε-radius ball [14] are two traditional methods to construct adjacency
graphs. However, these two methods are sensitive to the noise and may lead to incorrect data
representation. To construct an appropriate graph, a graph-based discriminant analysis with spectral
similarity (GDA-SS) measurement was recently proposed by considering curves changing description
among spectral bands in [15]. Sparse representation (SR) [16,17] has attracted much attention because
of its benefits of data-adaptive neighborhoods and noise robustness. Based on this work, a sparse graph
embedding (SGE) model [18] was developed by exploring the sparsity structure of the data. In [19],
a sparse graph-based discriminant analysis (SGDA) model was developed for hyperspectral image
dimensionality reduction and classification by exploiting the class label information, improving the
performance of SGE. In [20], a weighted SGDA integrated both the locality and sparsity structure
of the data. To reduce the computational cost, collaborative graph-based discriminant analysis
(CGDA) [21] was introduced by imposing an l2 regularization on sparse coefficient vector. In [22],
Laplacian regularization was imposed on CGDA, resulting in the LapCGDA algorithm. SR is able to
reveal the local structure but fails in capturing the global structure. To solve this problem, a sparse and
low-rank graph-based discriminant analysis (SLGDA) [23] was proposed to simultaneously preserve
the local and global structure of hyperspectral data.

However, the aforementioned graph-based DR methods only deal with spectral vector-based
(first-order) representations, which do not take the spatial information of hyperspectral data into
consideration. Aiming to overcome this shortcoming, simultaneous sparse graph embedding (SSGE)
was proposed to improve the classification performance in [24]. Although SSGE has obtained enhanced
performance, it still puts the spectral-spatial feature into first-order data for analysis and ignores the
cubic nature of hyperspectral data that can be taken as a third-order tensor. Some researchers have
verified the advantage of tensor representation when processing the hyperspectral data. For example,
multilinear principal component analysis (MPCA) [25] was integrated with support vector machines
(SVM) for tensor-based classification in [26]. A group based tensor model [27] by exploiting clustering
technique was developed for DR and classification. In addition, a tensor discriminative locality
alignment (TDLA) [28] algorithm was proposed for hyperspectral image spectral-spatial feature
representation and DR, which has been extended in [29] by combining with well-known spectral-spatial
feature extraction methods (such as extended morphological profiles (EMPs) [30], extended attribute
profiles (EAPs) [31], and Gabors [32]) for classification. Though the previous tensor-based DR methods
have achieved great improvement on performance, they do not consider the structure property from
other perspectives, such as representation-based and graph-based points.

In this context, we propose a novel DR method, i.e., tensor sparse and low-rank graph-based
discriminant analysis (TSLGDA), for hyperspectral data, in which the information from three
perspectives (tensor representation, sparse and low-rank representation, and graph theory) is exploited
to present the data structure for hyperspectral image. It is noteworthy that the proposed method aims
to exploit the spatial information through tensor representation, which is different from the work
in [23] only considering the spectral information. Furthermore, tensor locality preserving projection
(TLPP) [33] is exploited to obtain three projection matrices for three dimensions (one spectral dimension
and two spatial dimensions) in TSLGDA, while SLGDA [23] only considers one spectral projection
matrix by locality preserving projection. The contributions of our work lie in the following aspects:
(1) tensor representation is utilized in the framework of sparse and low-rank graph-based discriminant
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analysis for DR of hyperspectral image. To the best of our knowledge, this is the first time that
tensor theory, sparsity, and low-rankness are combined in graph embedding framework; (2) Tensorial
structure contains the spectral-spatial information, sparse and low-rank representation reveals both
local and global structure and a graph preserves manifold structure. The integration of these
three techniques remarkably promotes discriminative ability of reduced features in low-dimensional
subspaces; (3) The proposed method can effectively deal with small training size problem, even for the
class with only two labeled samples.

The rest of this paper is organized as follows. Section 2 briefly describes the tensor basics and some
existing DR methods. The proposed TSLGDA algorithm for DR of hyperspectral imagery is provided in
detail in Section 3. Parameters discussions and experimental results compared with some state-of-the-art
methods are given in Section 4. Finally, Section 5 concludes this paper with some remarks.

2. Related Work

In this paper, if not specified otherwise, lowercase italic letters denote scalars, e.g., i, j, k,
bold lowercase letters denote vectors, e.g., x, y, bold uppercase letters denote matrices, e.g., U, X,
and bold uppercase letters with underline denote tensors, e.g., A, X.

2.1. Tensor Basics

A multidimensional array is defined as a tensor, which is represented as A ∈ RI1×...In×...IN .
We regard A ∈ RI1×...In×...IN as an N-order tensor, corresponding to an N-dimensional data array,
with its element denoted as Ai1...in ...iN

, where 1 ≤ in ≤ In, and 1 ≤ n ≤ N. Some basic definitions
related to tensor operation are provided as follows [28,33,34].

Definition 1. (Frobenius norm): The Frobenius norm of a tensor A is defined as
‖A‖F = (∑i1...iN

(Ai1...iN
)2)1/2.

Definition 2. (Mode-n matricizing): The n-mode vector of an N-order tensor A ∈ RI1×...In×...IN is defined as
an n-dimensional vector by fixing all indices except in. The n-mode matrix is composed of all the n-mode vectors
in column form, denoted as An ∈ RIn×(I1...In−1 In+1...IN). The obtained n-mode matrix is also known as n-mode
unfolding of a tensor A.

Definition 3. (Mode-n product): The mode-n product of a tensor A with a matrix U ∈ RI
′
n×In yields

C = A×n U, and C ∈ RI1...In−1 I
′
n In+1...IN , whose entries are computed by

Ci1...in−1i′nin+1...iN
=

In

∑
in=1

Ai1...in−1inin+1...iN
Ui′nin

(1)

where ik = 1, 2, . . . , Ik, (k �= n) and i
′
n = 1, 2, . . . , I

′
n. Note that the n-mode product can also be expressed in

terms of unfolding tensor
C = A×n U⇔ Cn = UAn (2)

where ×n denotes mode-n product between a tensor and a matrix.

Definition 4. (Tensor contraction): The contraction of tensors A ∈ R
I1×...×IN×I

′
1×...×I

′
N′ and

B ∈ R
I1×...×IN×I

′′
1 ×...×I

′′
N′′ is defined as

[A⊗ B; (1 : N)(1 : N)]i1,i2,...,iN =
I1

∑
i1=1
· · ·

IN

∑
iN=1

Ai1,...,iN ,i′1,...,i′
N′

Bi1,...,iN ,i′′1 ,...,i′′
N′′

(3)
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The condition for tensor contraction is that both two tensors should have the same size at the specific
mode. For example, when the contraction is conducted on all indices except for the index n on tensors
A, B ∈ RI1×...In×...IN , this operation can be denoted as [A⊗ B; (n)(n)]. According to the property of tensor
contraction, we have

[A⊗ B; (n)(n)] = AnBnT (4)

2.2. Sparse and Low-Rank Graph-Based Discriminant Analysis

In [19], sparse graph-based discriminant analysis (SGDA), as a supervised DR method,
was proposed to extract important features for hyperspectral data. Although SGDA can successfully
reveal the local structure of the data, it fails to capture the global information. To address this problem,
sparse and low-rank graph-based discriminant analysis (SLGDA) [23] was developed to preserve local
neighborhood structure and global geometrical structure simultaneously by combining the sparse and
low-rank constraints. The objective function of SLGDA can be formulated as

arg min
W(l)

1
2
‖X(l) − X(l)W(l)‖2

F + β‖W(l)‖∗ + λ‖W(l)‖1,

s.t. diag(W(l)) = 0
(5)

where β and λ are two regularization parameters to control the effect of low-rank term and sparse term,
respectively, X(l) represents samples from the lth class in a vector-based way, and l = [1, 2, . . . , c],
in which c is the number of total classes. After obtaining the complete graph weight matrix
W = diag(W(1), W(2), . . . , W(c)), the projection operator can be solved as

P∗ = arg min
PTXLpXTP

∑
i �=j
‖PTxi − PTxj‖2

2Wij

= arg min
PTXLpXTP

tr(PTXLsXTP)
(6)

where Ls = D−W is defined as the Laplacian matrix, D is a diagonal matrix with the ith diagonal
entry being Dii = ∑N

j=1 Wij, and Lp may be a simple scale normalization constraint [13].
The projection can be further formulated as

P∗ = arg min
P

|PTXLsXTP|
|PTXLpXTP| (7)

which can be solved as a generalized eigendecomposition problem

XLsXTpb = λbXLpXTpb (8)

The bth projection vector pb is the eigenvector corresponding to the bth smallest nonzero
eigenvalue. The projection matrix can be formed as P = [p1, . . . , pB] ∈ Rd×B, B � d. Finally,
the reduced features are denoted as X̂ = PTX ∈ RB×M.

2.3. Multilinear Principal Component Analysis

In order to obtain a set of multilinear projections that will map the original high-order tensor data
into a low-order tensor space, MPCA performs to directly maximize the total scatter matrix on the
subspace Ui(i �= n)

max
UnUT

n=In

tr(UnSn
TUT

n ) = max
UnUT

n=In

tr
(

Un(
M

∑
k=1

Xn
k XnT

k )UT
n

)
, (9)

where Sn
T = ∑M

k=1 Xn
k XnT

k and Xn
k is the n-mode unfolding matrix of tensor Xk.
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The optimal projections of MPCA can be obtained from the eigendecomposition

Sn
TUT

n = UT
n Dn (10)

where Un = [u1
n, . . . , udn

n ] is the eigenvector matrix and Dn = diag(λ1
n, . . . , λdn

n ) is the eigenvalue
matrix of Sn

T , in which the eigenvalues are ranked in descending order, and λ
j
n is the eigenvalue

corresponding to the eigenvector u
j
n. The optimal projection matrix for mode-n is composed of the

eigenvectors corresponding to the first Bn largest eigenvalues, e.g., Un = [u1
n, . . . , uBn

n ]. After obtained
the projection matrix for each mode, the reduced features can be formulated as

X̂k = Xk ×1 U1 . . .×N UN (11)

where Ui ∈ RBn×In(Bn ≤ In).

3. Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis

Consider a hyperspectral image as a third-order tensor A ∈ RI1×I2×I3 , in which I1 and I2 refer to
the width and height of the data cube, respectively, and I3 represents the number of spectral bands,
I3 = d. Assume that the kth small patch is composed of the kth training sample and its i1× i2 neighbors,
which is denoted as Xk ∈ Ri1×i2×d. M patches construct the training set {Xk}M

k=1. The training patches
belonging to the lth class are expressed as {Xk,l}Ml

k=1, where Ml represents the number of patches
belonging to the lth class and l ∈ {1, 2, . . . , c}. For the purpose of convenient expression, a fourth-order
tensor X(l) ∈ Ri1×i2×d×Ml is defined to represent these Ml patches, and X ∈ Ri1×i2×d×M denotes all
training patches for c classes, where M = ∑c

l=1 Ml . A visual illustration of 3-mode vectors, 3-mode
unfolding, and 3-mode product is shown in Figure 1.

Figure 1. Visual illustration of n-mode vectors, n-mode unfolding, and n-mode product of a third-order
tensor from a hyperspectral image.

3.1. Tensor Sparse and Low-Rank Graph

The previous SLGDA framework can capture the local and global structure of hyperspectral
data simultaneously by imposing both sparse and low-rank constraints. However, it may lose some
important structural information of hyperspectral data, which presents an intrinsic tensor-based data
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structure. To overcome this drawback, a tensor sparse and low-rank graph is constructed with the
objective function

arg min
W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖W(l)‖∗ + λ‖W(l)‖1,

s.t. diag(W(l)) = 0,
(12)

where W(l) ∈ RMl×Ml denotes the graph weigh matrix using labeled patches from the lth class only.
As such, with the help of class-specific labeled training patches, the global graph weigh matrix W can
be designed as a block-diagonal structure

W =

⎡⎢⎣ W(1) 0
. . .

0 W(c)

⎤⎥⎦ (13)

To obtain the lth class graph weight matrix W(l), the alternating direction method of multipliers
(ADMM) [35] is adopted to solve problem (12). Two auxiliary variables Z(l) and J(l) are first introduced
to make the objective function separable

arg min
Z(l) ,J(l) ,W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖Z(l)‖∗ + λ‖J(l)‖1,

s.t. W(l) = Z(l), W(l) = J(l) − diag(J(l))
(14)

The augmented Lagrangian function of problem (14) is given as

L(Z(l), J(l), W(l), D1, D2)

=
1
2
‖X(l) − X(l) ×4 W(l)‖2

F + β‖Z(l)‖∗ + λ‖J(l)‖1 + 〈D1, W(l) − Z(l)〉+ 〈D2, W(l) − J(l) + diag(J(l))〉
+

μ

2
(‖W(l) − Z(l)‖2

F + ‖W(l) − J(l) + diag(J(l))‖2
F)

(15)

where D1 and D2 are Lagrangian multipliers, and μ is a penalty parameter.
By minimizing the function L(Z(l), J(l), W(l)), each variable is alternately updated with other

variables being fixed. The updating rules are expressed as

Z
(l)
t+1 = arg min

Z(l)
β‖Z(l)‖∗ + 〈D1,t, W

(l)
t − Z(l)〉+ μt

2
‖W(l)

t − Z(l)‖2
F

= arg min
Z(l)

β

μt
‖Z(l)‖∗ + 1

2
‖Z(l) − (W

(l)
t +

D1,t

μt
)‖2

F

= Ω β
μt
(W

(l)
t +

D1,t

μt
)

(16)

J
(l)
t+1 = arg min

J(l)
λ‖J(l)‖1 + 〈D2,t, W

(l)
t − J〉+ μt

2
‖W(l)

t − J(l)‖2
F

= arg min
J(l)

λ

μt
‖J(l)‖1 +

1
2
‖J(l) − (W

(l)
t +

D2,t

μt
)‖2

F

= S λ
μt
(W

(l)
t +

D2,t

μt
),

J
(l)
t+1 = J

(l)
t+1 − diag(J(l)t+1),

(17)
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where μt denotes the learning rate, Ωτ(Δ) = QSτ(∑)VT is the singular value thresholding operator
(SVT), in which Sτ(x) = sgn(x)max(|x| − τ, 0) is the soft thresholding operator [36]. By fixing Z

(l)
t+1

and J
(l)
t+1, the formulation of W

(l)
t+1 can be written as

W
(l)
t+1 = arg min

W(l)

1
2
‖X(l) − X(l) ×4 W(l)‖2

F + 〈D1,t, W(l) − Z
(l)
t+1〉+ 〈D2,t, W(l) − J

(l)
t+1〉

+
μt

2
(‖W(l) − Z

(l)
t+1‖2

F + ‖W(l) − J
(l)
t+1‖2

F)

= (H(l) + 2μtI)
−1(H(l) + μtZ

(l)
t+1 + μtJ

(l)
t+1 − (D1,t + D2,t)),

(18)

where H(l) = [X(l) ⊗ X(l); (4)(4)] ∈ RMl×Ml , W(l) ∈ RMl×Ml , and I ∈ RMl×Ml is an identity matrix.
The global similarity matrix W will be obtained depending on Equation (13) when each

sub-similarity matrix corresponding to each class is calculated from problem (12). Until now, a tensor
sparse and low-rank graph G = {X, W} is completely constructed with vertex set X and similarity
matrix W. How to obtain a set of projection matrices {Un ∈ RBn×In , Bn ≤ In, n = 1, 2, . . . , N} is the
following task.

3.2. Tensor Locality Preserving Projection

The aim of tensor LPP is to find transformation matrices {U1, U2, . . . , UN}
to project high-dimensional data Xi into low-dimensional representation X̂i,
where X̂i = Xi ×1 U1 ×2 U2 · · · ×N UN .

The optimization problem for tensor LPP can be expressed as

arg min J(U1, U2, . . . , UN) = ∑
i,j
‖X̂i − X̂j‖2Wij

= ∑
i,j
‖Xi ×1 U1 · · · ×N UN − Xj ×1 U1 · · · ×N UN‖2Wij

s.t. ∑
i
‖Xi ×1 U1 · · · ×N UN‖2Cii = 1

(19)

where Cii = ∑j Wij. It can be seen that the corresponding tensors X̂i and X̂j in the embedded tensor
space are expected to be close to each other if original tensors Xi and Xj are greatly similar.

To solve the optimization problem (19), an iterative scheme is employed [33]. First, we assume that
{U1, . . . , Un−1, Un+1, . . . , UN} are known, then, let X̂i,(n) = Xi ×1 U1 . . .×n−1 Un−1×n+1 Un+1 . . .×N UN.
With properties of tensor and trace, the objective function (19) is rewritten as

arg min Jn(Un) = ∑
i,j
‖X̂i,(n) ×n Un − X̂j,(n) ×n Un‖2Wij

= ∑
i,j
‖UnX̂n

i −UnX̂n
j ‖2Wij

= ∑
i,j

tr
(

Un
(
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
UT

n

)

= tr
(

Un
(
∑
i,j
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
UT

n

)
,

s.t. tr
(
Un(∑

i
X̂n

i X̂nT
i Cii)U

T
n
)
= 1,

(20)

180



Remote Sens. 2017, 9, 452

where X̂n
i denotes the n-mode unfolding of tensor X̂i,(n). Finally, the optimal solution of problem (20) is

the eigenvectors corresponding to the first Bn smallest nonzero eigenvalues of the following generalized
eigenvalue problem (

∑
i,j
(X̂n

i − X̂n
j )(X̂

n
i − X̂n

j )
TWij

)
u = λ

(
∑

i
X̂n

i X̂nT
i Cii

)
u (21)

Assume Φ = ∑i,j(X̂
n
i − X̂n

j )(X̂
n
i − X̂n

j )
TWij, Ψ = ∑i X̂n

i X̂nT
i Cii, then, problem (21) can be

transformed into
Φu = λΨu (22)

To solve this problem, the function eig(·) embedded in the MATLAB software (R2013a,
The MathWorks, Natick, Massachusetts, USA) is adopted, i.e., [u, Λ] = eig(Φ, Ψ), and the eigenvectors
in u corresponding to the first Bn smallest nonzero eigenvalues in Λ are chosen to form the projection
matrix. The other projection matrices can be obtained in a similar manner. The complete TSLGDA
algorithm is outlined in Algorithm 1.

Algorithm 1: Tensor Sparse and Low-Rank Graph-Based Discriminant Analysis for Classification.

Input: Training patches X = [X(1), X(2), . . . , X(c)], testing patchesY, regularization parameters β and λ,
reduced dimensionality {B1, B2, B3}.

Initialize: Z
(l)
0 = J

(l)
0 = W

(l)
0 = 0, Y1,0 = Y2,0 = 0, μ0 = 0.1, μmax = 103, ρ0 = 1.1, ε1 = 10−4, ε2 = 10−3,

maxIter = 100, t = 0.
1. for l = 1, 2, . . . , c do
2. repeat

3. Compute Z
(l)
t+1, J

(l)
t+1, and W

(l)
t+1 according to (16)–(18).

4. Update the Lagrangian multipliers:
Y1,t+1 = Y1,t + μt(W

(l)
t+1 − Z

(l)
t+1), Y2,t+1 = Y2,t + μt(W

(l)
t+1 − J

(l)
t+1).

5. Update μ: μt+1 = min(ρμt, μmax), where

ρ =

{
ρ0, i f μt max(‖W(l)

t+1 −W
(l)
t ‖F, ‖Z(l)

t+1 − Z
(l)
t ‖F, ‖J(l)t+1 − J

(l)
t ‖F)/‖X̂(l)‖F < ε2,

1, otherwise.

6. Check convergence conditions: ‖W(l)
t+1 − Z

(l)
t+1‖∞ < ε1, ‖W(l)

t+1 − J
(l)
t+1‖∞ < ε1.

7. t← t + 1.
8. until convergence conditions are satisfied or t >maxIter.
9. end for
10. Construct the block-diagonal weight matrix W according to (13).
11. Compute the projection matrices {U1, U2, U3} according to (21).
12. Compute the reduced features:

X̂ = X×1 U1 ×2 U2 ×3 U3, Ŷ = Y×1 U1 ×2 U2 ×3 U3.
13. Determine the class label of Ŷ by NN classifier.
14. Output: The class labels of test patches.

4. Experiments and Discussions

In this section, three hyperspectral datasets are used to verify the performance of the proposed
method. The proposed TSLGDA algorithm is compared with some state-of-the-art approaches,
including unsupervised methods (e.g., PCA [8], MPCA [25]) and supervised methods (e.g., LDA [9],
LFDA [10], SGDA [19], GDA-SS [15], SLGDA [23], G-LTDA (local tensor discriminant analysis with
Gabor filters) [29]). SGDA is implemented using the SPAMS (SPArse Modeling Software) toolbox [38].
The nearest neighbor classifier (NN classifier) is exploited to classify the projected features obtained
by these DR methods. The class-specific accuracy , overall accuracy (OA), average accuracy (AA),
and kappa coefficient (κ) are reported for quantitative assessment after ten runs. All experiments are
implemented on an Inter Core i5-4590 CPU personal computer (Santa Clara, CA, USA).
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4.1. Experimental Datasets

The first dataset [39] was acquired by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over northwest Indiana’s Indian Pine test site in June 1992. The AVIRIS sensor generates the
wavelength range of 0.4–2.45-μm covered 220 spectral bands. After removing 20 water-absorption
bands (bands 104–108, 150–163, and 220), a total of 200 bands is used in experiments. The image with
145 × 145 pixels represents a rural scenario having 16 different land-cover classes. The numbers of
training and testing samples in each class are listed in Table 1.

Table 1. Number of training and testing samples for the Indian Pines and University of Pavia datasets.

Indian Pines University of Pavia

Class Name Training Testing Name Training Testing

1 Alfalfa 5 41 Asphalt 40 6591
2 Corn-notill 143 1285 Meadows 40 18,609
3 Corn-mintill 83 747 Gravel 40 2059
4 Corn 24 213 Tree 40 3024
5 Grass-pasture 48 435 Painted metal sheets 40 1305
6 Grass-trees 73 657 Bare Soil 40 4989
7 Grass-pasture-mowed 3 25 Bitumen 40 1290
8 Hay-windrowed 48 430 Self-blocking bricks 40 3642
9 Oats 2 18 Shadows 40 907
10 Soybean-notill 97 875
11 Soybean-mintill 246 2209
12 Soybean-clean 59 534
13 Wheat 21 184
14 Woods 127 1138
15 Buildings-Grass-Trees-Drive 39 347
16 Stone-Steel-Towers 9 84

Total 1027 9222 360 42,416

The second dataset [39] is the University of Pavia collected by the Reflective Optics System
Imaging Spectrometer (ROSIS) sensor in Italy. The image has 103 bands after removing 12 noisy bands
with a spectral coverage from 0.43 to 0.86 μm, covering a region of 610 × 340 pixels. There are nine
ground-truth classes, from which we randomly select training and testing samples as shown in Table 1.

The third dataset [39] was also collected by the AVIRIS sensor over the Valley of Salinas,
Central Coast of California, in 1998. The image comprises 512 × 217 pixels with a spatial resolution
of 3.7 m, and only preserves 204 bands after 20 water-absorption bands removed. Table 2 lists
16 land-cover classes and the number of training and testing samples.

Table 2. Number of training and testing samples for the Salinas dataset.

Salinas

Class Name Training Testing

1 Brocoli-green-weeds-1 40 1969
2 Brocoli-green-weeds-2 75 3651
3 Fallow 40 1936
4 Fallow-rough-plow 28 1366
5 Fallow-smooth 54 2624
6 Stubble 79 3880
7 Celery 72 3507
8 Grapes-untrained 225 11,046
9 Soil-vinyard-develop 124 6079
10 Corn-senesced-green-weeds 66 3212
11 Lettuce-romaine-4wk 21 1047
12 Lettuce-romaine-5wk 39 1888
13 Lettuce-romaine-6wk 18 898
14 Lettuce-romaine-7wk 21 1049
15 Vinyard-untrained 145 7123
16 Vinyard-vertical-trellis 36 1771

Total 1083 53,046
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4.2. Parameters Tuning

For the proposed method, four important parameters (i.e., regularization parameters β and λ,
window size, and the number of spectral dimension) that can be divided into three groups need
to be determined before proceeding to the following experiments. β and λ control the effect of
sparse term and low-rank term in the objective function, respectively, which can be tuned together,
while window size and the number of spectral dimension are another two groups that can be
determined separately. When analyzing one group specific parameter, the other group parameters
are fixed on their corresponding chosen values. According to many existing DR methods [22–24] and
tensor-based research [26,28], window size is the first set as 9 for the Indian Pines and Salinas datasets,
and 7 for the University of Pavia dataset; the initial value for the number of spectral dimension is given
as 30 for all three datasets, and the performance basically reaches steady state with this dimension.

4.2.1. Regularization Parameters for TSLGDA

With the initial values of window size and the number of spectral dimension fixed, β and λ

are first tuned to achieve better classification performance. Figure 2 shows the overall classification
accuracy with respect to different β and λ by fivefold cross validation for three experimental datasets.
It can be clearly seen that the OA values can reach the maximum values for some β and λ. Accordingly,
for the Indian Pines dataset, the optimal values of β and λ can be set as (0.01, 0.1), which is also an
appropriate choice for the University of Pavia dataset, while (0.001, 0.1) is chosen for the Salinas data.

(a) (b) (c)

Figure 2. Parameter tuning of β and λ for the proposed TSLGDA algorithm using three datasets:
(a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.2.2. Window Size for Tensor Representation

For tensor-based DR methods, i.e., MPCA and TSLGDA, window size (or patch size) is another
important parameter. Note that small windows may fail to cover enough spatial information, whereas
large windows may contain multiple classes, resulting in complicated analysis and heavy computational
burden. Therefore, the window size is searched in the range of {3× 3, 5× 5, 7× 7, 9× 9}. β and λ are
fixed on the tuned values, while the numbers of spectral dimension are still set as initial values for
three datasets, respectively. Figure 3 presents the variation of classification performances of MPCA and
TSLGDA with different window sizes for experimental datasets. It can be seen that the window sizes
for MPCA and TSLGDA can be both chosen as 9× 9 for the Indian Pines and Salinas datasets, while the
optimal values are 5× 5 and 7× 7, respectively, for the University of Pavia dataset. This may be because
the formers represent a rural scenario containing large spatial homogeneity while the Pavia University
data is obtained from an urban area with small homogeneous regions. To evaluate the classification
performance using the low-dimensional data, 1NN classifier is adopted in this paper.
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(a) (b) (c)

Figure 3. Parameter tuning of window size for MPCA and TSLGDA using three datasets:
(a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.2.3. The Number of Spectral Dimension for TSLGDA

According to [28], {1, 1} is set as the reduced dimensionality of the first two dimensions
(i.e., two spatial dimensions). The third dimension (i.e., spectral dimension) is considered carefully by
keeping the tuned values of β, λ, and window size is fixed. Figure 4 shows the overall classification
accuracy with respect to spectral dimension for three hyperspectral datasets. Obviously, due to the
spatial information contained in tensor structure, tensor-based DR methods (i.e., MPCA, TSLGDA)
outperform vector-based DR methods (i.e., PCA, SGDA, GDA-SS, SLGDA). According to [29,37],
G-LTDA can automatically obtain the optimal reduced dimensions during the optimization procedure;
therefore, the number of spectral dimension for G-LTDA is not discussed here. For the Indian Pines
dataset, the performances of all considered methods increase when the spectral dimension increases,
and then keep stable at the maximum values. The similar results can also be observed from the
University of Pavia and Salinas datasets. In any case, TSLGDA outperforms other DR methods
even when the spectral dimension is as low as 5. In the following assessment, {1, 1, 30} and {1, 1, 20}
dimensions are used to conduct classification for two AVIRIS datasets and one ROSIS dataset, respectively.

(a) (b) (c)

Figure 4. Overall accuracy versus the reduced spectral dimension for different methods using three
datasets: (a) Indian Pines; (b) University of Pavia; (c) Salinas.

4.3. Classification Results

4.3.1. Classification Accuracy

Tables 3–5 present the classification accuracy of individual class, OA, AA, and kappa coefficient
for three experimental datasets, respectively. Obviously, the proposed method provides the best results
than other compared methods on almost all of classes; meanwhile, OA, AA, and kappa coefficient
are also better than those of other methods. Specifically, by comparing to all considered methods,
TSLGDA yields about 2% to 30%, 5% to 20%, and 2% to 12% gain in OA with limited training sets
for three datasets, respectively. Even for classes with few labeled training samples, such as class 1,
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class 7, and class 9 in the Indian Pines data, the proposed TSLGDA algorithm offers great improvement
in performance as well. Besides TSLGDA, MPCA and G-LTDA also obtain much higher accuracies
than other vector-based methods, which effectively demonstrates the advantage of tensor-based
techniques. In addition, SLGDA yields better results than SGDA (about 3%, 1%, and 0.6% gain) by
simultaneously exploiting the properties of sparsity and low-rankness, while GDA-SS is superior to
SGDA by considering the spectral similarity measurement based on spectral characteristics when
constructing the graph.

Table 3. Classification accuracy (%) and standard deviation of different methods for the Indian Pines
data when the reduced dimension is 30.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 39.02 54.15 33.66 44.88 65.04 49.59 48.78 71.34 92.20 91.71
±8.27 ±11.1 ±17.8 ±15.5 ±7.45 ±12.2 ±6.90 ±9.63 ±4.69 ±8.02

2 55.92 52.96 57.28 67.78 69.31 74.24 73.04 81.09 96.47 97.32
±2.68 ±1.53 ±2.13 ±3.56 ±2.37 ±3.95 ±1.93 ±2.74 ±1.01 ±0.68

3 49.83 50.15 58.34 66.75 62.65 69.57 67.00 82.26 93.98 97.51
±2.68 ±2.34 ±2.57 ±2.82 ±1.76 ±5.56 ±0.28 ±2.74 ±2.34 ±0.91

4 42.07 40.19 38.12 54.93 49.14 58.06 62.68 87.91 96.53 97.37
±7.75 ±4.56 ±4.00 ±7.69 ±5.40 ±8.24 ±12.3 ±4.65 ±3.93 ±1.90

5 82.95 84.47 81.20 88.25 89.55 92.03 93.32 91.13 93.15 97.00
±2.93 ±4.58 ±3.87 ±2.41 ±1.74 ±1.34 ±0.98 ±2.00 ±1.44 ±2.50

6 90.75 93.06 93.36 94.64 95.38 96.91 96.27 97.53 94.76 99.27
±1.00 ±2.95 ±1.47 ±1.59 ±0.61 ±0.89 ±0.11 ±1.14 ±2.94 ±0.46

7 81.60 72.00 76.00 79.20 88.00 88.00 88.00 94.00 95.20 96.80
±8.29 ±13.6 ±12.3 ±22.5 ±4.00 ±8.00 ±5.66 ±7.66 ±7.15 ±3.35

8 96.28 93.02 95.26 99.12 99.53 97.91 99.19 98.37 97.81 99.86
±1.78 ±1.52 ±2.71 ±1.47 ±0.40 ±2.02 ±0.49 ±1.66 ±0.67 ±0.31

9 26.67 34.44 25.56 43.33 50.00 37.04 25.00 54.17 78.89 93.33
±4.65 ±12.0 ±16.5 ±9.94 ±33.8 ±16.9 ±11.8 ±19.4 ±15.4 ±7.24

10 66.06 63.91 65.40 69.04 69.64 73.64 74.03 84.12 95.93 96.52
±2.04 ±3.49 ±3.61 ±3.05 ±5.81 ±3.02 ±0.32 ±1.32 ±1.35 ±1.56

11 71.75 71.41 73.65 72.43 78.18 79.45 79.52 90.30 96.32 98.53
±3.00 ±2.00 ±1.81 ±1.83 ±1.42 ±1.23 ±2.08 ±0.78 ±1.41 ±0.59

12 43.41 41.46 48.63 67.20 67.29 74.78 76.83 73.73 93.60 96.17
±6.34 ±2.55 ±3.25 ±1.56 ±2.19 ±4.59 ±1.99 ±2.38 ±1.70 ±1.75

13 91.41 94.02 93.59 98.70 96.01 97.83 98.64 98.23 91.85 99.46
±2.44 ±2.40 ±1.11 ±0.62 ±0.63 ±1.63 ±1.15 ±1.12 ±4.21 ±0.67

14 90.04 89.65 89.44 93.83 94.58 94.00 96.05 95.78 97.72 99.67
±1.96 ±2.10 ±2.16 ±1.56 ±0.89 ±1.18 ±0.87 ±0.40 ±0.66 ±0.43

15 37.98 36.54 41.15 61.04 48.90 56.20 56.48 88.26 95.91 98.67
±2.18 ±2.30 ±3.73 ±2.89 ±1.92 ±3.20 ±2.85 ±4.69 ±1.62 ±1.16

16 88.43 88.67 91.08 89.64 92.37 91.27 93.98 93.07 84.29 97.35
±6.30 ±3.02 ±3.47 ±5.56 ±3.03 ±2.99 ±1.70 ±4.33 ±8.68 ±1.32

OA 69.25 68.52 70.86 76.60 77.65 80.51 80.76 88.34 95.67 98.08
±1.16 ±0.88 ±0.76 ±0.82 ±1.44 ±0.31 ±0.08 ±0.51 ±0.49 ±0.30

AA 65.89 66.26 66.36 74.42 75.97 76.91 76.80 86.33 93.41 97.28
±1.19 ±1.62 ±2.30 ±1.79 ±2.37 ±2.38 ±1.98 ±1.17 ±0.56 ±0.85

κ 64.90 64.04 66.73 73.32 74.40 77.70 78.01 86.70 95.07 97.81
±1.30 ±0.98 ±0.92 ±0.93 ±1.68 ±0.38 ±0.14 ±0.59 ±0.56 ±0.34

Table 4. Classification accuracy (%) and standard deviation of different methods for the University of
Pavia data when the reduced dimension is 20.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 56.13 55.98 64.77 60.56 47.44 52.88 52.84 84.20 72.41 91.15
±1.99 ±2.90 ±2.11 ±5.24 ±2.00 ±6.58 ±1.98 ±1.49 ±2.03 ±1.46

2 69.68 70.30 68.75 77.05 82.15 78.88 80.92 84.60 89.24 92.59
±5.59 ±3.27 ±3.44 ±4.42 ±2.71 ±2.80 ±3.74 ±3.31 ±0.93 ±2.68

3 68.02 67.34 69.90 66.47 63.83 64.27 61.17 80.24 89.48 86.83
±3.95 ±1.49 ±3.10 ±3.94 ±10.5 ±3.28 ±3.26 ±3.01 ±5.68 ±2.44

4 90.21 86.98 88.92 91.33 90.73 91.26 92.54 92.20 71.28 96.04
±4.43 ±3.70 ±2.23 ±2.01 ±2.25 ±2.10 ±0.07 ±1.85 ±4.90 ±2.23

5 99.39 99.49 99.51 99.88 99.73 99.79 99.66 99.72 98.41 100
±0.38 ±0.23 ±0.25 ±0.10 ±0.18 ±0.08 ±0.27 ±0.26 ±1.10 ±0.00
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Table 4. Cont.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

6 59.11 61.68 66.35 65.36 59.47 65.07 63.97 77.99 95.04 93.06
±2.25 ±6.60 ±6.62 ±7.09 ±5.18 ±2.72 ±0.50 ±4.68 ±2.35 ±3.12

7 83.36 83.22 86.34 75.78 82.25 79.04 81.71 89.22 98.26 97.50
±4.59 ±3.57 ±2.25 ±1.97 ±5.40 ±3.64 ±1.75 ±2.09 ±1.37 ±0.90

8 68.06 66.89 68.24 60.81 61.16 64.67 65.46 76.30 93.31 86.07
±2.72 ±4.34 ±3.24 ±4.18 ±8.92 ±4.21 ±2.87 ±3.07 ±1.32 ±3.27

9 95.94 95.90 97.00 83.95 84.04 87.81 85.17 99.49 88.00 98.39
±1.52 ±1.36 ±1.82 ±4.64 ±6.01 ±2.20 ±1.01 ±0.32 ±2.23 ±1.03

OA 69.47 69.65 71.38 73.04 72.59 73.01 73.80 84.30 86.92 92.33
±2.16 ±0.88 ±1.10 ±0.70 ±0.68 ±1.47 ±1.91 ±1.05 ±0.42 ±0.93

AA 76.66 76.42 78.86 75.69 74.53 75.96 75.94 87.11 88.38 93.52
±0.52 ±0.70 ±0.92 ±1.55 ±1.82 ±0.74 ±0.25 ±0.71 ±0.43 ±0.53

κ 61.22 61.43 63.79 65.31 64.39 65.22 66.10 79.57 82.88 89.93
±2.30 ±0.88 ±1.19 ±0.83 ±0.89 ±1.74 ±2.14 ±1.24 ±0.50 ±1.17

Table 5. Classification accuracy (%) and standard deviation of different methods for the Salinas data
when the reduced dimension is 30.

No. Origin PCA LDA LFDA SGDA GDA-SS SLGDA MPCA G-LTDA TSLGDA

1 98.07 98.73 98.98 99.44 99.49 99.39 99.61 98.00 96.94 99.92
±0.44 ±0.80 ±0.81 ±0.10 ±0.13 ±0.14 ±0.23 ±0.98 ±1.63 ±0.15

2 98.68 98.90 98.88 99.23 99.54 99.25 99.50 99.47 98.73 99.98
±0.38 ±0.25 ±0.29 ±0.17 ±0.28 ±0.21 ±0.37 ±0.55 ±0.81 ±0.03

3 96.20 96.85 95.13 99.16 99.28 99.59 99.57 98.17 93.65 99.97
±0.25 ±0.61 ±1.05 ±0.25 ±0.05 ±0.15 ±0.17 ±0.19 ±1.88 ±0.06

4 99.24 99.39 99.51 99.12 99.41 99.12 99.15 99.71 93.92 98.41
±0.08 ±0.35 ±0.18 ±0.46 ±0.13 ±0.41 ±0.30 ±0.87 ±3.27 ±0.68

5 94.55 93.45 95.63 98.79 98.64 98.42 99.03 97.95 96.50 98.87
±0.66 ±1.85 ±0.81 ±0.09 ±0.87 ±0.62 ±0.12 ±1.28 ±1.76 ±1.33

6 99.67 99.63 99.56 99.79 99.77 99.70 99.87 99.24 98.74 100
±0.16 ±0.25 ±0.11 ±0.21 ±0.05 ±0.13 ±0.13 ±1.27 ±0.52 ±0.00

7 98.87 99.40 99.34 99.43 99.44 99.64 99.64 98.18 96.21 99.99
±0.53 ±0.11 ±0.24 ±0.24 ±0.09 ±0.30 ±0.08 ±0.35 ±2.39 ±0.02

8 72.41 73.59 74.13 73.01 76.25 78.11 78.86 90.80 97.93 97.73
±2.03 ±2.33 ±0.49 ±3.40 ±4.74 ±0.42 ±1.50 ±0.19 ±0.60 ±0.22

9 97.82 97.91 98.79 98.92 99.10 98.78 99.65 99.54 98.71 100
±0.01 ±0.88 ±0.50 ±0.18 ±0.19 ±1.46 ±0.12 ±0.07 ±1.07 ±0.00

10 87.70 89.62 91.68 95.24 96.07 94.88 95.42 94.77 94.96 99.77
±4.21 ±0.33 ±1.05 ±0.44 ±1.28 ±1.65 ±1.12 ±0.67 ±2.25 ±0.37

11 93.82 96.85 93.47 95.03 96.49 95.61 97.29 94.58 90.58 100
±1.38 ±1.92 ±4.81 ±2.28 ±3.75 ±2.83 ±3.54 ±1.72 ±4.90 ±0.00

12 99.75 99.93 99.45 99.95 99.91 99.95 99.82 99.44 97.17 100
±0.16 ±0.12 ±0.46 ±0.09 ±0.06 ±0.07 ±0.17 ±0.98 ±1.53 ±0.00

13 97.29 96.14 97.14 98.36 97.84 97.94 98.59 99.74 95.01 100
±0.17 ±1.56 ±0.17 ±0.73 ±0.89 ±0.08 ±0.84 ±0.28 ±2.11 ±0.00

14 92.49 93.89 95.00 94.91 96.91 95.23 97.23 94.97 93.16 99.87
±1.53 ±0.87 ±0.98 ±1.63 ±1.39 ±2.02 ±0.25 ±2.23 ±5.57 ±0.15

15 62.04 58.38 64.37 69.36 67.05 67.51 66.31 88.63 96.22 96.77
±1.48 ±2.25 ±1.98 ±4.08 ±5.23 ±1.65 ±1.88 ±0.62 ±1.10 ±1.47

16 94.75 94.44 98.00 98.78 98.57 98.76 99.30 96.95 91.91 100
±1.41 ±0.85 ±0.58 ±0.40 ±0.31 ±0.16 ±0.46 ±1.68 ±7.30 ±0.00

OA 86.97 86.96 88.23 89.34 89.86 90.13 90.43 95.27 96.73 98.98
±0.63 ±0.49 ±0.27 ±0.79 ±0.45 ±0.42 ±0.07 ±0.04 ±0.89 ±0.15

AA 92.71 92.94 93.69 94.91 95.24 95.12 95.55 96.70 95.65 99.46
±0.58 ±0.23 ±0.40 ±0.43 ±0.38 ±0.24 ±0.18 ±0.06 ±1.41 ±0.08

κ 85.50 85.48 86.90 88.15 89.02 88.33 89.34 94.74 96.35 98.86
±0.70 ±0.53 ±0.30 ±0.88 ±0.49 ±0.46 ±0.08 ±0.05 ±0.99 ±0.16

4.3.2. Classification Maps

In order to show the classification results more directly, classification maps of all considered
methods are provided in Figures 5–7 for three experimental datasets, respectively. From Figure 5,
it can be clearly seen that the proposed method can obtain much smoother classification regions than
other methods, especially for class 1 (Alfalfa), class 2 (Corn-notill), class 3 (Corn-mintill), and class 12
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(Soybean-clean) whose spectral characteristics are highly correlated with other classes. The similar
results can also be observed from Figures 6 and 7, where class 1 (Asphalt), class 6 (Bare Soil),
and class 8 (Self-blocking bricks) in the second dataset, and class 8 (Grapes untrained), class 15
(Vineyard untrained) in the third dataset are labeled more precisely. These observations are consistent
with the quantitative results listed in Tables 3–5.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5. Classification maps of different methods for the Indian Pines dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 6. Classification maps of different methods for the University of Pavia dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Classification maps of different methods for the Salinas dataset: (a) ground truth;
(b) training set; (c) origin; (d) PCA; (e) LDA; (f) LFDA; (g) SGDA; (h) GDA-SS; (i) SLGDA; (j) MPCA;
(k) G-LTDA; and (l) TSLGDA.
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4.3.3. The Influence of Training Size

To show the influence of training size, some considered DR methods are tested. The results are
given in Figure 8, from which we can see that the OA values of all methods are improved when the
number of training samples increases for three datasets. Due to the spatial structure information
contained in the tensor, the proposed method always performs better than other methods in all
cases. In addition, with the label information, the supervised DR methods (i.e., SGDA, GDA-SS,
SLGDA, G-LTDA, TSLGDA) achieve better results than the corresponding unsupervised DR methods
(i.e., PCA, MPCA).

(a) (b) (c)

Figure 8. Overall classification accuracy and standard deviation versus different numbers of training
samples per class for all methods using three datasets: (a) Indian Pines; (b) University of Pavia;
(c) Salinas.

4.3.4. The Analysis of Computational Complexity

For the comparison of computational complexity, we take the Indian Pines data as an example.
Table 6 shows the time requirements of all considered methods, from which it can be clearly
seen that traditional methods (e.g., PCA, LDA, LFDA) run faster than other recently proposed
methods. In addition, due to complicated tensor computation, tensor-based DR methods (e.g., MPCA,
G-LTDA, TSLGDA) cost more time than vector-based methods (e.g., SGDA, GDA-SS, SLGDA).
Although TSLGDA has the highest computational complexity, it yields the best classification
performance. In practice, the general-purpose graphics processing units (GPUs) can be adopted
to greatly accelerate the TSLGDA algorithm.

Table 6. Execution time (in seconds) of different methods for the Indian Pines data with different
training size.

Methods 6% 8% 10% 12% 14%

PCA 1.23 1.49 1.86 2.35 2.54

LDA 1.23 1.51 1.88 2.34 2.54

LFDA 1.24 1.57 1.93 2.40 2.62

SGDA 10.60 14.11 18.53 23.90 29.30

GDA-SS 1.13 1.36 1.67 2.15 2.45

SLGDA 3.24 4.81 7.20 10.19 13.09

MPCA 115.94 150.00 161.06 182.37 203.94

G-LTDA 30.96 40.24 49.86 62.41 74.83

TSLGDA 183.91 225.06 281.19 349.44 456.84
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5. Conclusions

In this paper, we have proposed a tensor sparse and low-rank graph-based discriminant analysis
method (i.e., TSLGDA) for dimensionality reduction of hyperspectral imagery. The hyperspectral data
cube is taken as a third-order tensor, from which sub-tensors (local patches) centered at the training
samples are extracted to construct the sparse and low-rank graph. On the one hand, by imposing
both the sparse and low-rank constraints on the objective function, the proposed method is capable of
capturing the local and global structure simultaneously. On the other hand, due to the spatial structure
information introduced by tensor data, the proposed method can improve the graph structure and
enhance the discriminative ability of reduced features. Experiments conducted on three hyperspectral
datasets have consistently confirmed the effectiveness of our proposed TSLGDA algorithm, even for
small training size. Compared to some state-of-the-art methods, the overall classification accuracy of
TSLGDA in the low-dimensional space improves about 2% to 30%, 5% to 20%, and 2% to 12% for three
experimental datasets, respectively, with increased computational complexity.
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Abstract: In this study, a convolutional neural network (CNN) is used to estimate sea ice concentration
using synthetic aperture radar (SAR) scenes acquired during freeze-up in the Gulf of St. Lawrence
on the east coast of Canada. The ice concentration estimates from the CNN are compared to those
from a neural network (multi-layer perceptron or MLP) that uses hand-crafted features as input and
a single layer of hidden nodes. The CNN is found to be less sensitive to pixel level details than the
MLP and produces ice concentration that is less noisy and in closer agreement with that from image
analysis charts. This is due to the multi-layer (deep) structure of the CNN, which enables abstract
image features to be learned. The CNN ice concentration is also compared with ice concentration
estimated from passive microwave brightness temperature data using the ARTIST sea ice (ASI)
algorithm. The bias and RMS of the difference between the ice concentration from the CNN and that
from image analysis charts is reduced as compared to that from either the MLP or ASI algorithm.
Additional results demonstrate the impact of varying the input patch size, varying the number of
CNN layers, and including the incidence angle as an additional input.

Keywords: ice concentration; SAR imagery; convolutional neural network

1. Introduction

In the operational sea ice community, visual analyses of SAR imagery by expert ice analysts are
a key contribution to ice charts, which are used to assist navigation and operations in ice-covered
waters [1]. However, the generation of these analyses is time consuming. Upcoming and new satellite
missions, such as the Canadian RADARSAT Constellation Mission (RCM), and the European Sentinel
mission, will lead to significantly increased volumes of SAR imagery [2], increasing the need for
automated methods to analyze the imagery.

There are several previous studies extracting information from SAR imagery using automated
methods. Many of these studies use ‘engineered’ or hand-crafted features, which are features designed
and selected to carry out a specific task. Examples include, the HH autocorrelation, normalized
polarization difference and cross-polarization ratio all of which have been used in ice concentration
estimation [3,4], grey level co-occurrence matrix features, Gabor filters and Markov random fields,
which have been used to classify imagery into ice type and ice/water [5–8], and curvelet features used
to locate the ice edge [9]. One of the challenges with using a set of engineered features to automatically
extract information from SAR imagery is the difficulty of developing a set of robust features that can be
applied to different geographic regions and seasons and for different imaging geometries. To capture
various ice conditions, features may need to be designed for different locations or times of the year.
For example, a large database of HH and HV backscatter values that represent typical signatures of
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100% ice cover has been generated to retrieve ice observations for use in data assimilation. In the
database, the backscatter values are estimated for each month as a function of incidence angle and
windspeed on a region dependent-basis [10]. Such an extensive database may be necessary to assess
the robustness of engineered features for large-scale applications, such as estimating ice concentration
for assimilation in an operational prediction system [11]. Data assimilation requires high quality
observations due to the nature of the assimilation cycle, in which erroneous observations will lead
to an erroneous analysis, the influence of which will persist when the analysis is used to initialize
the next assimilation cycle. For example, the open water regions that are estimated by Karvonen [4]
as having an ice concentration of 10% or 15% would generate an incorrect analysis in a sea ice data
assimilation system. A similar situation would arise upon assimilating a consolidated ice cover
estimated with passive microwave data, in the event that the real ice cover has cracks and leads.
Such openings in the ice are crucial for heat transfer from the ocean to the atmosphere. When the ice
cover is used as a boundary condition for numerical weather prediction, an accurate estimate of the
sea ice concentration is critical [12].

When an analyst estimates ice concentration from a SAR image, they combine their knowledge
of ice conditions in the region with visual cues in the image. This may involve looking at the SAR
image features over a range of scales. For example, at large scale, tonal changes across a region can
be used to identify the region as either ice or open water, while at small scale visible ridges in the ice
cover may indicate a region of high ice concentration, or small-scale ice floes may indicate a marginal
ice zone. Thus, if it is desired to emulate the analyst’s task, the goal can be viewed as emulating
the human visual system’s ability to assimilate information at various scales with prior knowledge.
Convolutional neural networks (CNNs) are a known method to learn features from images, taking into
account information at various scales. The training takes place by minimizing a difference between
output of the CNN and training data, which represents prior knowledge. Remarkable similarities
between CNNs and the human visual system have been demonstrated in numerous studies [13].

The present study uses a CNN trained with image analysis charts to estimate ice concentration
from SAR imagery acquired over the Gulf of St. Lawrence during freeze-up in the winter of 2014.
A previous study [14] has evaluated a similar architecture for the problem of ice concentration
estimation in the Beaufort Sea for the 2010-2011 melt period. The present study builds on that
work, addressing the following questions: (i) Can a CNN estimate sea ice concentration accurately
during freeze-up, when the ice is very thin and may be difficult to distinguish from open water [15,16]?
(ii) How is the performance of the CNN affected when some of the parameters (e.g., number of
layers and input patch size) are modified? (iii) Can a CNN manage to interpret ice concentration for
environments, such as the Gulf of St. Lawrence, where the ice characteristics are dynamic?

2. Background

Learning image features from SAR imagery to estimate ice concentration, as compared to first
calculating engineered features from the image, builds on previous work in feature learning, which is
a promising method to analyze complex and large volumes of data [17–21]. Deep learning is a type of
feature learning method that can automatically extract complex data representations at high levels of
abstraction [18,22,23]. For image recognition tasks, deep convolutional neural networks (CNN) are
widely used due to their ability to model local image structures at multiple scales efficiently [24–27].

There has been limited research in using CNNs to learn features from satellite images. Related
studies include using CNNs for road classification from aerial images [28] and the detection of
vehicles [29] and buildings [30] from high resolution satellite images. Training of CNN models requires
a large quantity of high quality training samples. For many remote sensing problems, gathering high
quality ground truth is expensive and sometimes not feasible, due to the vast study area and diversity
of surface conditions. This is in particular the case for ice concentration mapping. Due to harsh
environmental conditions and in the interest of safety, obtaining adequate in situ samples coincident
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or near-coincident in time with a SAR scene is not usually feasible. Normally such in-situ studies are
limited to small geographic regions and a limited time period.

Using other sources of satellite data or output from ice-ocean models may not be very suitable
choices for training data. For example, many algorithms that compute ice concentration from passive
microwave data are known to be biased over thin ice and in regions with low ice concentration
levels [16,31,32]. Training a CNN with this data will lead to a CNN model that generates similar
biases. Ice concentration estimated by image analysts is considered the best available ice concentration
information [33]. Hence, the extensive image analysis database at the Canadian Ice Service (CIS)
represents a promising archive that can be used to provide data to investigate the use of a CNN to
estimate ice concentration from SAR imagery.

3. Data and Study Area

The study area is located in the Gulf of Saint Lawrence, which is situated on the east coast of
Canada (Figure 1). The period of study extends from 17 January 2014 to 10 February 2014. This time of
year corresponds to freeze-up in the Gulf of Saint Lawrence, with both ice concentration and thickness
increasing from January into February. For the duration of the study, the ice cover is composed of new
ice (less than 10 cm in thickness) and grey and grey-white ice (10–30 cm in thickness), with thicker
first-year ice near Prince Edward Island. Definitions for the various ice types are provided by the
World Meteorological Organization (WMO) [34].

A total of 25 RADARSAT-2 dual-pol (HH and HV) ScanSAR Wide [35] images are used for the
present study. The full list of the SAR images used is provided in Table 1. The nominal pixel spacing of
the acquired SAR images is 50 m by 50 m, and the incidence angle ranges from 20◦ to 49◦. The image
size is roughly 10 k × 10 k covering a spatial extent of about 500 km × 500 km. The outlines of all the
SAR images in the dataset are shown in Figure 1.

Esri, DeLorme, GEBCO, NOAA NGDC, and other contributors,
Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap
contributors, and the GIS user community, Sources: Esri,
GEBCO, NOAA, National Geographic, DeLorme, HERE,
Geonames.org, and other contributors
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Figure 1. Study area and the dataset for the Gulf of Saint Lawrence. There are 25 scenes of dual-pol
SAR images acquired between 16 January 2014 and 10 February 2014 in this area. The coverage for
each scene is marked in a translucent polygon with different colors. Yellow scenes are used for training,
red are used for validation and blue for testing.

Each SAR image has an accompanying image analysis chart, which is used to provide the training
data to the ice concentration estimation methods. Compared to other types of ice charts (daily ice chart
and regional ice chart), image analysis charts provide a more detailed interpretation of SAR images and
are valid at the SAR image acquisition time [34]. Image analyses are prepared manually by a trained
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analyst who identifies regions (polygons) in which the ice conditions appear to be uniform, in terms
of the total ice concentration and the relative mix of ice types. The ice types are defined according
to their stage of development following World Meteorological Organization standards [34]. The ice
concentration label given to a polygon is assigned in increments of 10%, hence the the precision of
the image analyses cannot be higher than 10%. In addition, since each polygon of the image analysis
is labeled with a single ice concentration value for the entire polygon, the actual ice concentration at
the grid-point locations may be different from that indicated by the polygon label, depending on the
spatial distribution of ice within the polygon.

As is the case with other sources of ice concentration data, it is difficult to quantify the accuracy
of the image analysis charts. In comparing image analyses with other sources of data there are several
factors that should be taken into account. First of all, the preparation of image analyses is subjective,
and interpretation of image data by different analysts can lead to biases [36]. There are also errors
due to converting continuous image data to discrete ice thickness categories, for example small scale
details such as cracks in the ice or streaks of new ice are typically lost. Finally, the ice charts may have
a slight tendency to over predict the ice concentration in the interest of marine safety.

The image analysis training data obtained from CIS in this study are grid-point data from the
image analysis charts. The sampling interval is about 8 km in the north-south direction and 5 km in
the east-west direction. The number of image analysis grid points for each SAR image varies from
a few hundred to several thousand (Table 1) which depends on the area of sea surface in that scene.
Note that while most of the validation data were acquired in February, these validation images overlay
a large part of the study area. Visual inspection of the images reveals that they contain a variety of ice
types, representative of those seen in the training and test data.

Table 1. Details of the Gulf of Saint Lawrence dataset. Each image analysis point covers an area of
approximately 5 km × 8 km.

Set Scene ID Date Acquired Number of Image Analysis Points

Training

20140131_103053 31 January 2014 8231
20140127_221027 27 January 2014 1319
20140203_104323 3 February 2014 3019
20140116_223042 16 January 2014 530
20140208_095758 8 February 2014 13,872
20140210_220111 10 February 2014 8358
20140207_214938 7 February 2014 612
20140125_100500 25 January 2014 5200
20140131_215240 31 January 2014 11,111
20140124_103501 24 January 2014 6900
20140120_105149 20 January 2014 829
20140118_101002 18 January 2014 7492
20140128_101751 28 January 2014 12,791
20140130_222234 30 January 2014 1407
20140123_222627 23 January 2014 950
20140127_104734 27 January 2014 3427
20140124_215646 24 January 2014 10,964
20140121_214420 21 January 2014 15,897

Validation

20140122_095247 22 January 2014 5014
20140206_221744 6 February 2014 3395
20140209_223030 9 February 2014 545
20140207_102631 7 February 2014 9228

Testing

20140210_103911 10 February 2014 2918
20140130_110029 30 January 2014 425
20140126_223850 26 January 2014 165
20140117_103914 17 January 2014 2922
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Corresponding daily AMSR2 ice concentration maps for each SAR scene are downloaded from
the website of PHAROS group at the University of Bremen. These AMSR2 ice concentration maps are
reprojected to their corresponding SAR image pixel grids with cubic interpolation, and are referred
to as ASI ice concentration in the remainder of this paper, where ASI refers to the ARTIST sea ice
concentration algorithm [31]. The ice cover during the study period is generally thin, with significant
regions of thickness less than 30 cm. Based on previous studies [16] it is expected that the ice
concentration calculated from passive microwave data will be underestimated in these regions of thin
ice. However, the ASI ice concentration is based on the 89GHz channels of the AMSR2 sensor, and
is known to have less of an underestimation than other products [16]. No modifications were made
to the ASI algorithm, such as a recalibration of the algorithm tie-points, in order to compare our ice
concentration against that from an available product. Note that the ASI algorithm contains a weather
filter that on average removes all ice up to 15% concentration, and that the ASI data are daily averages
whereas the CNN results and image analyses are snapshots valid at the image acquisition time.

4. Methodology

4.1. Preprocessing of SAR Images

All the SAR images are sub-sampled by 8 × 8 block averaging to reduce data volume while
also reducing image speckle noise. Learning at this reduced scale requires a smaller spatial context
window and therefore smaller neural networks. This is desired because of the limited number of
training samples available (0.152 million image analysis sample points) for our study compared to
model size (≈3.9 million parameters). The sub-sampled images have 400 m pixel spacing with pixel
values between 0 and 255. Input normalization is a common practice to improve the performance of
CNNs [26,37]. In this study, the pixel values of the dual-polarized SAR images are normalized by first
calculating the mean and standard deviation of pixel values over the entire dataset for each channel,
then subtracting from each pixel value this mean, and dividing by the standard deviation.

If training sample patches are selected near land, when the patches are processed by the CNN,
the land pixels may lead to signatures in the adjacent water regions that could be interpreted as ice.
This may lead to overestimation (contamination) of ice concentration estimates near land. The size
of land contaminated regions depends on the size of training sample patches. In our case, an image
patch size 45 by 45 pixels is used, which corresponds to 18 km × 18 km ground distance. Therefore,
land contamination can potentially affect regions within 18 km distance to the coast. Direct masking
out land pixels to 0 is not used because the masked pixels may be confused with dark new ice or
calm open water. Instead, a land mask is applied to the SAR images and land pixels are replaced
by their corresponding mirrored ice or water pixels to reduce land contamination. By doing this,
the estimated ice concentration only depends on local ice or water pixels. The actual ice concentration
may be changed by the land mirroring process, depending on the shape of the coastline. However,
in our testing, the mirroring was found to significantly reduce the effect of land on the estimated
ice concentration. Therefore, no further investigation of alternative methods to mask land pixels is
performed at this time.

The incidence angle for each SAR image pixel is calculated from the image meta data using linear
interpolation and stored as incidence angle images. These incidence angle images are also normalized
to have similar value ranges as the normalized SAR images. For the experiments that use incidence
angle, each image patch is a three dimensional matrix of size 3 × 45 × 45, while for the experiments
that do not use incidence angle, each image patch is a two dimensional matrix of size 2 × 45 × 45.

Each extracted patch and the ice concentration located at the patch center from the image analysis
is one sample used to train the CNN. Polygon boundaries were not considered in selecting samples
from the image analyses due to the limited number of samples available. Patches chosen that contain
a polygon boundary are assigned the label corresponding to the polygon of the central pixel of the
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patch, but could be better described with a label the specifies the ice concentration as the mixture of
the two polygons. These issues should be considered in a future study.

4.2. Overview and Structure of the CNN

CNN is a trainable architecture composed of multiple stages [38–40]. Each stage is composed
of three consecutive operations (layers): convolutional filtering, non-linear transformation and
sub-sampling (pooling). A CNN normally contains multiple stages that learn the image features,
followed by a stack of fully connected (FC) layers [40]. The structure of the CNN used in this study is
illustrated in Table 2. The CNN contains three convolutional layers followed by two fully connected
layers. An excellent overview of CNNs can be found in [13].

Table 2. Structure and configuration of the CNN model used in the present study. Each row for a given
layer corresponds to: the layer dimension (top row), the layer configuration (middle row) and the
dimension the output (bottom row). For example for the layer Conv1 there are 64 filters of dimension
3× 5× 5 that are applied to an input patch of size 3× 45× 45 with a stride of 1 and using a pad 2,
to produce an output of dimension 64× 45× 45.

Layer

Data 3 × 45 × 45

Conv1
64 × 3 × 5 × 5

stride 1, pad 2, ReLU
64 × 45 × 45

Pool1
2 × 2

stride 2, pad 1, Max
64 × 23 × 23

Conv2
128 × 64 × 5 × 5

stride1, pad 2, ReLU
128 × 23 × 23

Pool2
128 × 23 × 23

stride 2, pad 1, Max
128 × 12 × 12

Conv3
128 × 128 × 5 × 5

stride 1 , pad 2 , ReLU
128 × 12 × 12

FC4
1024 × 128 × 5 × 5

ReLU
1024 × 1

Dropout
1024 × 1 × 1
Drop rate: 0.5

1024 × 1

FC5
1 × 1024
Linear

1

In the convolutional layers, the layer input matrix x (width Sx pixels, height Sy pixels and number
of channels Sz), which is a patch extracted from the SAR image, is convolved with K convolution filters
of size (Cx, Cy, Sz), denoted by Ck, k = 1, . . . , K. Each filter is applied to the image patch with a step
size (stride) P (convolution is carried out for locations that are P pixels apart). A total of K feature
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maps, denoted as hk of dimension Mx and My will be generated as the output of this convolutional
layer as described in Equation (1),

hk = (Ck ∗ x) + b, in which, k = 1, . . . , K (1a)

Mx =
Sx − Cx

P
+ 1 (1b)

My =
Sy − Cy

P
+ 1, (1c)

where the operation of convolution is denoted by ∗ and the size of the feature maps (Mx ×My) is
given for the case with zero padding. For a discussion of padding see [41]. Each convolutional layer is
mainly characterized by the size and number of filters. The values of the filter weights and the bias
term, b, are learned from the training data [42].

A convolutional layer is followed by a nonlinear transformation layer, which applies a nonlinear
function to each element in the feature maps. This nonlinear function is also referred as the activation
function, and is a well known feature used in neural networks to ensure the output is not simply
a linear transformation of the input [43]. The rectified linear unit, ReLU is used as the activation
function in the present study. ReLU activation has been demonstrated to lead to faster learning and
better features than traditionally used sigmoid activation function, because ReLU activation does not
saturate, as compared to sigmoid activation [26,44].

The nonlinear transformation layer is followed by the sub-sampling layer, also known
as the pooling layer. Max pooling is used in the present study due to its simplicity and
effectiveness [25,26,40,45]. It outputs the maximum value over each pooling window. For example,
when pooling window size and step size are both set to 2, a max-pooling layer outputs the maximum
value of every two by two non-overlapping window of its input.

The convolutional layers are followed by fully connected layers that serve as classification modules
using the features extracted by the previous multiple stages. These layers have structure that is similar
to that of a basic neural network [43]. Every neuron in a fully connected layer is connected to all the
neurons of its input layer. The first fully connected layer takes a stack of feature maps, hk as input.
The feature maps are flattened to a vector and transformed to the output space by a weight matrix W
and bias b. This is followed by the application of an activation function, f , to generate the output,

h = f ((W ∗ x) + b). (2)

4.3. Training and Testing

Our network is trained to output the ice concentration from SAR image patches. Instead of using
softmax loss [26], which is commonly used in classification CNNs, the L2 loss is used (3) for this
regression problem to penalize the discrepancy between the CNN output and the ice concentration
provided by the image analysis charts. The loss function is,

L(F(x; θ), z) =
1
M

M

∑
m=1

(F(x; θ)m − zm)
2, (3)

where F(x; θ) is the network output given input x and parameterization θ, zm is the ice concentration
for the mth sample from image analyses, and M is the number of samples used in each training sample
batch. For batch sizes larger than 1, the overall loss of this mini-batch is the average loss of all samples
in that mini-batch.

Backpropagation and mini-batch stochastic gradient descent (SGD) [46] are used as the training
algorithm. This method uses the derivatives of loss function (3) with respect to the network parameters

∂L

∂θ
=

2
M ∑(F(x; θ)m − zm)

∂F(x; θ)m

∂θ
, m = 1, ..., M. (4)
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The derivatives are backpropagated through each pixel in the predictions. The network
parameters are updated according to the derivative of the loss to the parameters over each mini-batch,
which is described by (5).

V t+1 = α · V t − r · ε · θt − ε
∂L

∂θ
|θt (5a)

θt+1 = θt + V t+1. (5b)

The weights θ are updated by Vi+t at iteration t + 1 with learning rate ε = 10−3 and weight
decay of r = 2× 10−5 with momentum, α, of 0.9. The setting of the training parameters for SGD is
similar to the published setting by Krizhevsky et al. [26]. Adjustments are made by tuning the training
parameters sequentially. ε is first tuned due to its significant effect on the training results. Then r and
α are tuned. Similar to Krizhevsky et al. [26], the parameters of the CNN are initialized by uniform
random sampling between −0.05 and 0.05. Stochastic gradient descent is used to iteratively update the
model weights using the gradient of loss with respect to the model parameters calculated using a subset
of the training samples (mini-batch). The gradients of the loss with respect to the network parameters
(∂L/∂θ) are calculated and averaged over the mini-batch. An epoch training scheme [46] is adopted.
For each epoch, all the training samples are iterated once by the training algorithm. The learning rate
is reduced by a factor of 10 for every 20 thousand mini-batches (about 17 epochs). To accelerate the
training process, the training is set to stop when the score of the loss function is changing less than
0.001 for 20 consecutive epochs, in case the training converges early (which is typical [47]).

Overfitting is a common problem with CNNs. It is common practice to use a validation dataset
to validate the CNN model during training time [26]. The derived CNN model is evaluated after
each training epoch by calculating the loss function on the validation dataset using the current model.
The CNN model with the smallest validation error will be selected as the trained CNN. Note that
validation is used for model selection and it is therefore part of the training scheme. In this case,
the 25 scenes are randomly divided to 17 training images, 4 testing images and 4 validation images,
as described in Table 1.

To further reduce overfitting, training sample augmentation and dropout are used. Training
sample augmentation artificially enlarges the training dataset by label-preserving transformations,
such as rotation and flipping [26,48]. In our experiment, training samples are augmented on-the-fly by
random rotating and flipping. These transformed SAR image patches are used for forward-propagation,
which corresponds to increasing the training set by a factor of several hundred times. Dropout is
a different and complementary technique used to reduce overfitting. A dropout layer randomly sets
the outputs of neurons (also referred as units) in a layer to zero with predefined probability [49].
Those dropped neurons are not contributing to the forward pass and therefore are not updated in
the backpropagation. The use of dropout can reduce the co-adaptations between neurons because
a neuron cannot rely on the presence of other neurons [26,49]. The network is therefore forced to learn
more representative features. A dropout layer with drop rate 0.5, i.e., half of the neurons are randomly
chosen and their outputs are set to zero, is used in the present study.

Once the CNN model is trained, ice concentration for each pixel location is estimated by applying
the trained model on the target SAR images. Since the CNN can only predict a single location in one
forward-propagation, the CNN model is used on input images with stride 1, i.e., the input window
moves one pixel every time.

4.4. Implementation

Caffe [50], a popular C++ open-source deep learning package, is used in this study. It provides
a ready-to-use implementation of the CNN. SAR image preprocessing and patching are implemented
in Python. A data layer is implemented using C++ under Caffe to read the image patches and their
corresponding image analyses ice concentration values. In-situ training sample augmentation is also
implemented in the data layer.
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5. An MLP for Ice Concentration Estimation

For the purpose of evaluation, a fully connected neural network, known as MLP (multilayer
perceptron) has also been developed to estimate sea ice concentration from the set of SAR images.
The structure of this MLP is similar to that of a fully connected layer, and is described in [43]. The MLP
used here is a variation of that used in the ice concentration estimation algorithm developed by
Karvonen [4]. Karvonen’s method [4] uses a preliminary ice concentration estimated from the
autocorrelation of HH pol SAR images by a segmentation based approach [3] and four other SAR
image features (HV, HV/HH, (HH-HV)/HH, and incidence angle) as input to an MLP with one hidden
layer of 10 units. The MLP developed in [4] was trained using data from Finnish Ice Service (FIS)
ice charts.

In our implementation, the ice concentration is estimated on a pixel-by-pixel basis using an MLP
with one hidden layer of size 40. Ten GLCM features are used in addition to the four features used
by Karvonen (HV, HV/HH, (HH-HV)/HH, and incidence angle). These ten GLCM features are
identified as the most important ten SAR image features from a pool of 172 SAR image features used to
distinguish ice and water [7] and should also benefit the ice concentration estimation task. The features
input to the MLP are listed in Table 3. In Leigh et al. [7], image features are extracted from 4 by
4 block averaged SAR images. For consistency with the 8 by 8 block averaged SAR images used here,
the image features are first calculated from 4 by 4 block averaged SAR images as done in [7], and are
then averaged for every 2 by 2 block.

Table 3. Image features used for method MLP40.

# Pol Feature

1 HV GLCM mean 25 by 25 step 5
2 HH GLCM correlation 51 by 51 step 5
3 HH GLCM mean 25 by 25 step 1
4 HH GLCM dissimilarity 51 by 51 step 20
5 HH GLCM second moment 101 by 101 step 5
6 HH Intensity
7 HV Average 25 by 25 window
8 HH Average 5 by 5 window
9 HH GLCM dissimilarity 51 by 51 step 5
10 HH GLCM mean 101 by 101 step 20
11 HV Intensity
12 HH, HV HV/HH
13 HH, HV (HH-HV)/HH
14 HH Intensity autocorrelation
15 Incidence angle

Due to the larger number of input image features in our MLP as compared to [4], the number of
hidden neurons needs to be increased. The resulting MLP has higher ratio of hidden neurons to input
features (40/15) as compared to Karvonen’s implementation (10/6). Note that Karvonen [4] made
a correction to the images to account for the variation of backscatter with incidence angle, while in our
implementation such a correction was not applied due to the fact that such a correction depends on
whether the underlying surface is ice or water [10], and also varies with ice type, none of which can be
assumed known in advance. The same training scheme used by Karvonen is used to train the MLP [4].

6. Results

6.1. Evaluation

The ice concentration estimated from the SAR images using the CNN described in Section 4,
as well as ice concentration from ASI and MLP40 are evaluated against image analyses in the SAR
image space. In other words, each image analysis sample point is compared to the ice concentration
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of its nearest pixel in the associated SAR scene, which means the image analysis samples are used at
a finer spatial resolution than what the analyst intended. The mean error (Esgn), mean absolute error
(EL1), error standard deviation (Estd) and root mean squared error (Ermse) are calculated for evaluation
purposes using (6)

Esgn = mean(IC− ImA) (6a)

EL1 = mean(|IC− ImA|) (6b)

Estd = std(IC− ImA) (6c)

Ermse =
√
(mean[(IC− ImA)2]). (6d)

The term IC denotes the ice concentration estimated using the CNN and ImA denotes the ice
concentration from the image analysis charts.

While the ice concentration derived from the image analysis is a discrete number (0–10) scaled
between 0 and 1 (0, 0.1, ..., 1.0), the ice concentration from the CNN is determined as a real number
between 0 and 1. This difference may introduce errors into the evaluation statistics. To investigate
this, the ice concentration estimates are also quantized by rounding to 11 levels between 0 and 1 and
re-evaluated against the image analyses. The evaluation results are similar with slight improvement
after quantization, and are therefore not shown.

The evaluation results for training, testing and validation datasets are given in Table 4. The Ermse is
lower for the ice concentration estimated by the CNN than that from either MLP or ASI. The statistical
significance of the Ermse for each of the test datasets is assessed using a z-test, with the Ermse assumed
to follow a chi-squared distribution [51]. For Table 4, the null hypothesis is that the Ermse of the CNN
and MLP have the same distribution. The calculated p-value is <<0.001, indicating that the difference
between the two is statistically significant for significance level of 0.01. Similar tests were done for
the other experiments (discussed in Sections 6.3.2 and 6.3.3) and in all cases the p-value is <<0.001,
with the exception of the experiment comparing two convolutional layers with three convolutional
layers, in which case the p-value is 0.0019. For each experiment it was the Ermse of the test dataset that
was evaluated.

Table 4. Average error statistics across different methods for Gulf of Saint Lawrence dataset.

Method Set Esgn EL1 Estd Ermse

ASI
Training −0.2423 0.2605 0.3207 0.4020

Validation −0.3416 0.3768 0.3693 0.5031
Testing −0.2717 0.2877 0.3097 0.4121

MLP40
Training 0.0002 0.1460 0.2050 0.2049

Validation −0.0410 0.2381 0.2986 0.3015
Testing −0.0819 0.1727 0.2325 0.2466

CNN
Training −0.0039 0.0845 0.1506 0.1507

Validation −0.0123 0.1253 0.2056 0.2059
Testing −0.0274 0.1295 0.2197 0.2214

In Table 4 it can be seen that ASI underestimates ice concentration by around 24% when compared
with image analyses (Table 4). Since the CNN is trained using image analysis charts, while ASI ice
concentration is not, it is expected to have lower error than ASI when the error is calculated with
respect to image analysis charts. Previous studies reported that the ASI ice concentration normally
has errors less than 10% for intermediate and high ice concentrations [31]. The large underestimation
of ice concentration observed in this study is mainly caused by the large regions of thin ice, and the
magnitude of the error is consistent with that reported in other studies [16]. The underestimation of
ice concentration is improved by the CNN compared to MLP40. Note that the error standard deviation
(Estd) for testing is at the same level as training and validation for the CNN, which indicates a low
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level of over-fitting for the trained CNN model. The validation errors are larger than testing errors for
MLP40. This might be caused by the insufficient testing samples used, which could lead to different
distributions of image surface types for validation and testing images.

Figure 2 shows the mean value of the estimated ice concentration ± one standard deviation
of the ice concentration estimate errors for different ice concentration bins from the image analysis
charts. Results are shown separately for training, validation and testing datasets. There is a clear
trend between image analyses and ice concentration estimates generated from SAR images for all
three sets in general. ASI shows underestimation for almost all ice concentration levels, with larger
underestimation for higher ice concentration values. MLP40 overestimates ice concentration for water
regions by about 15% for all three datasets, and underestimates ice concentration by 20% to 40% for
training, testing and validation in the highest ice concentration bin. The CNN has relatively less
overestimation for water regions and less underestimation for ice regions compared to MLP40. For
water, CNN overestimates ice concentration on average by approximately 5% for training and 10%
for testing and validation. For ice (where ice concentration is equal to 1), CNN underestimates ice
concentration by less than 10% on average for all three sets. The estimation of pure water or ice
generally has smaller error standard deviation than the estimate for intermediate ice concentration
levels. This might be caused by the abundant water samples and ice samples in the training dataset
(Figure 3), or the better quality (less errors) of ice/water samples than samples of intermediate ice
concentration levels. It is reasonable to assume that the ice concentration estimates could be improved
by using more training samples of intermediate ice concentration levels.
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Figure 2. Errors at different ice concentration levels for ASI (1st row), MLP40 (2nd row), and CNN
(3rd row) for training (1st column), validation (2nd column) and testing (3rd column) sets. The red lines
represent the mean ice concentration, and half length of a bar represents the error standard deviation.

204



Remote Sens. 2017, 9, 408

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b) (c)

Figure 3. Histogram of the percentage of samples from each 10% interval of the image analyses for
training, validation and testing dataset of the Gulf of Saint Lawrence. The training samples are strongly
biased since the majority of the training samples are either water or ice. (a) Training; (b) Validation;
(c) Testing.

6.2. Comparison between MLP and CNN

All SAR based algorithms produce ice concentration estimates with more details and sharper
ice-water boundaries than the ASI data (see Figures 4 and 5), which may be due to the higher
resolution of SAR images, and the fact that regions of thin ice are reasonably well captured in the
training data used for the SAR based methods. Figure 4e,f shows that MLP40 is more sensitive to
backscatter changes in SAR images than the CNN. Therefore, MLP40 produces more details in the
ice concentration estimates, as well as an ice cover that appears noisy (e.g., spurious ice can be seen
over open water regions). This can sometimes introduce errors, noted in the lower left portion of
Figure 6d. The ice concentration estimates by the CNN contain fewer visible errors in assignment of
ice concentration than the result of MLP40, but more details than the image analysis charts, especially
in low ice concentration regions and marginal ice zones (Figure 6). These differences may be caused by
the difficulty to manually identify accurate boundaries of low ice concentration regions by ice analysts
or the limited number of polygons they can use for each image analysis, or simply the fact that the
ice charts contain an estimate of ice concentration in 10% intervals over a region (polygon) identified
as homogeneous.

(a) (b) (c)

(d) (e) (f)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4. Ice concentration estimated by CNN compared to that from other methods. The HH and HV
images are shown in panels (a) and (b) repectively. Panel (c) is the image analysis, (d–f) are the ice
concentration from ASI, MLP40 and CNN, repectively. Scene shown is 20140117_103914, which is used
for testing. Scene centered at 47.99◦N, 66.85◦W with extent of 500 km by 500 km.
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(a) (b) (c)

(d) (e) (f)
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Figure 5. Ice concentration estimated by CNN compared to that from other methods. The HH and HV
images are shown in panels (a) and (b) respectively. Panel (c) is the image analysis. Panels (d–f) are
ice concentration from ASI, MLP40 and CNN respectively. Scene shown is 20140210_103911, which is
used for testing. Scene centered at 49.90◦N, 66.42◦W with extent of 500 km by 230 km.

(a) (b) (c) (d) (e)
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Figure 6. An example shows the details for a region with new ice and water. The ASI result is mainly
water for this region. It can be seen MLP40 (d) produces noisy ice concentration estimates with new
ice in the bottom left identified as water with some ice of low ice concentration. The CNN (e) is able
to correctly identify new ice and water with higher accuracy. Subscene of dimension 60 km × 60 km
from 20140117_103914 centered at 47.60◦N, 64.13◦W. The HH image, HV image and image analysis are
shown in panels (a–c) respectively.

Strong banding in the HV channel of the RADARSAT-2 imagery may cause overestimation of
ice concentration for water regions. Such an example is given in Figure 7, where MLP and CNN
overestimate ice concentration for water regions with strong banding in the HV pol. The level of
overestimation is reduced slightly when a larger patch size (55 vs. 45) is used for the CNN.

(a) (b) (c) (d) (e)
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Figure 7. Example of water misidentified as ice for both MLP40 and CNN due to the banding effect in
HV pol. Water in the right part of HV pol (a) is obviously brighter than water in the left. Water regions
are estimated incorrectly for MLP40 (c), and CNN with patch size 45 (d). Results from the CNN are
improved when a patch size of 55 is used, as shown in panel (e), although the features are also less
sharp. Subscene centered at 49.72◦N, 59.11◦W of dimension 200 km × 200 km from 20140121_214420.
Image analysis is shown in panel (b).
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6.3. Evaluation of CNN Architecture and Parameters

6.3.1. Patch Size

The size of the input patches, and the support of the convolutional filters, are related to the
intrinsic scale and complexity of the problem. The impact of patch size was evaluated by examining
the output of the CNN for patch sizes of 25, 35, 45 and 55, corresponding to 10 km (25 × 400 m), 14 km
(35 × 400 m), 18 km (45 × 400 m) and 22 km (55 × 400 m). With larger patch size, the model is a better
fit to the training data and the Ermse of the training data decreases. The Ermse for test and validation
data decreases when the patch size increases from 25 to 45. However, when the patch size increased
from 45 to 55, the Ermse for the test and validation data increased slightly, which could be an indication
of slight overfitting for the dataset used. Therefore, a patch size of 45 was used in this study. Note that
for a different dataset, the patch size selected may be different.

The impact of patch size on the estimated ice concentration can be seen in the regions contaminated
with either banding or wind roughened open water. Examples are shown in Figure 8. The smaller patch
sizes (Figure 8e,f) lead to spurious ice in water regions due to wind and banding. These results suggest
that the separation of water and ice requires spatial context information over a larger region. This is
also seen in studies using GLCM statistics to separate ice from water, in which case the separation
of the two generally improves when larger patches are considered [7]. In contrast, ice is generally
well identified for all tested patch sizes. Using small patch sizes tends to slightly underestimate ice
concentration, leading to ice cover that is less homogeneous, as compared to larger patch sizes. For the
patch size of 25, in some cases openings (i.e., open water) can be seen in the ice cover (not shown) for
polygons corresponding to 100% ice concentration in the image analysis chart.

(a) (b) (c) (d)

(e) (f) (g) (h)
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Figure 8. Visual comparison of different patch sizes, (e) 25 × 25 pixels, (f) 35 × 35 pixels,
(g) 45 × 45 pixels, (h) 55 × 55 pixels. Estimate of ice concentration is improved when patch size
increases. Patch size 45, corresponding to ground distance of 18 km, has cleaner water estimates than the
others. Subscene of dimension 270 km × 270 km from 20140124_215646 centered at 47.86◦N, 60.94◦W.
Panels (a–d) are the HH image, HV image, image analysis chart and ASI ice concentration respectively.

6.3.2. Use of Incidence Angle Data

The results shown in previous sections used input image patches consisting of HH pol, HV pol
and incidence angle. To investigate the impact of including incidence angle on the estimated ice
concentration, CNNs are trained, validated and tested, with HH pol and HV pol only. The network
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structure used is the same as that for the CNN without incidence angle (Table 2). The ice concentration
from the CNN is evaluated against image analysis charts, results are given in Table 5. The errors are
higher in all cases when incidence angle is included. This is in part likely due to the fact that including
the incidence angle information leads to greater dependency of the CNN on the HH channel. This may
also be due to the fact that with a third channel of input, the model is larger (there are more weights
that need to be trained), and is therefore has more potential to overfit the training data.

Table 5. The average error statistics for networks trained with or without incidence angle data using
CNN on the Gulf of Saint Lawrence data.

Set Esgn EL1 Estd Ermse

with incidence angle
Training −0.0039 0.0845 0.1506 0.1507

Validation −0.0123 0.1253 0.2056 0.2059
Testing −0.0274 0.1295 0.2197 0.2214

without incidence angle
Training 0.0052 0.0817 0.1434 0.1435

Validation 0.0035 0.1183 0.1837 0.1836
Testing −0.0119 0.1220 0.2031 0.2035

Due to the reduced dependency of the CNN on the HV pol, and more significant extraction of
information from the HH pol with the use of incidence angle, the banding effect from HV is reduced,
but the ice concentration estimates appear to be more sensitive to wind roughening. New ice is more
likely to be correctly identified when incidence angle is used (Figure 9), in particular for cases when
there are features visible in the HH image that appear to indicate a region of new ice.

(a) (b) (c) (d)

Figure 9. New ice can be seen in the HH image as the dark regions along the coast (a). This ice is
correctly identified when incidence angle data are used (c), as compared to when the incidence angle
data is not used (d). Subscene of dimension 120 km× 52 km from 20140206_221744 centered at 47.12◦N,
64.72◦W. Image analysis is shown in panel (b).

6.3.3. Network Depth

Network depth is the number of convolutional layers in the CNN, where each layer contains
a filtering, non-linear activation and pooling operation. The network depth is an important parameter
that determines the level of abstraction used for classification or regression. Here, CNN models
with two and three convolutional layers are trained and evaluated. In both cases, there are two
fully connected layers after the convolutional layers. The error statistics against image analyses
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are illustrated in Table 6. Although the use of two or three convolutional layers in the networks
generates similar error statistics, visually, the network with three convolutional layers produces
smoother and more reasonable ice concentration estimates, as shown in Figure 10. This makes sense
as deeper networks extract more abstract features so that the results are less sensitive to raw pixel
values. The ice-covered regions in Figure 10a that are incorrectly identified by the network with two
convolutional layers (Figure 10c) are correctly identified by the network with three convolutional layers
(Figure 10d). Regions that can be visually identified as open water in Figure 11a look cleaner when
three layers are used, as shown in Figure 11d. While similar results (meaning sharper features with
increasing layers) are obtained when more convolutional layers are used, as adding more layers leads
to increased computational complexity, the three-convolutional-layer structure is deemed adequate.

Table 6. Average error statistics for networks with two convolutional layers and three convolutional
layers on the Gulf of Saint Lawrence dataset.

Two Convolutional Layers Three Convolutional Layers

Set Esgn EL1 Estd Ermse Esgn EL1 Estd Ermse

Training −0.0055 0.0874 0.1266 0.1269 −0.0039 0.0845 0.1506 0.1507
Validation −0.0028 0.1229 0.1933 0.1934 −0.0123 0.1253 0.2056 0.2059

Testing 0.0054 0.1556 0.2300 0.2302 −0.0274 0.1295 0.2197 0.2214

(a) (b) (c) (d)
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Figure 10. The network with three convolutional layers (d), improves the estimation for new ice
compared to network with two convolutional layers (c). Panel (a) is the HH image, and (b) is the
image analysis chart. Subscene of dimension 8 km × 8 km centered at 47.06◦N and 64.46◦W from
20140117_103914.

(a) (b) (c) (d)
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Figure 11. Comparison of results produced by networks with two-convolutional-layer (c) and
three-convolutional-layer structures (d) for a sample location centered at 49.57◦N, 66.59◦W with
size 200 km × 200 km in scene 20140127_104734 in Gulf of Saint Lawrence. Estimate by the
two-convolutional-layer network is noisier. The three-convolutional-layer network produces smoother and
more reasonable results. Panel (a) is the HH image and (b) is the image analysis chart for the subregion.
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7. Discussion

In this study, a CNN has been applied to estimate sea ice concentration from dual-polarized SAR
images in the Gulf of St. Lawrence. State-of-the-art ice concentration estimates with finer details than
the image analysis chart are generated. Experiments using HV pol or HH pol only have also been
carried out (results not shown here). Using dual-pol SAR imagery leads to improved ice concentration
estimates as compared to using HH pol or HV pol only. When using HH pol only, the results are
strongly affected by the incidence angle, which causes overestimation of ice concentration for water
regions at low incidence angles. Using only HV pol shows banding in the estimated ice concentration.
Similar results have been demonstrated in previous studies [4,52].

Sea ice concentration from image analysis charts was selected as the training data for this
study. These charts contain regions (polygons) labelled by a trained analyst as having homogeneous
ice conditions. When the image analysis charts were sampled, a single pixel from the image
analysis (representing an area of 8 km × 5 km) was associated with a patch from the SAR image
(representing an area of 18 km × 18 km). This means the SAR image patches could overlap polygon
boundaries. While it may have been more appropriate to sample the image analysis charts to avoid this
overlap, the accuracy of the polygon boundaries is not known. The image analyses are also subjective
manual analyses, and are known to contain errors [36], as is the case with any ice concentration analysis.
Even if it can be assumed the polygon boundaries are accurate, the use of spatially discrete polygons to
represent the ice concentration over an image of continuous grey levels, introduces sampling errors in the
ice concentration estimates. Preliminary work on the impact of errors in the training data, and alternative
methods to train a CNN to estimate sea ice concentration, can be found in [53]. Learning a sparse
representation of the data could improve the ice concentration estimates when training sample quality
and quantity are not sufficient [54].

Testing demonstrates that the CNN is robust to the changes in image tone with incidence angle,
even without explicitly including incidence angle data as an input. When the incidence angle data
was included, an increased dependence on the HH pol image was observed in the ice concentration.
Windspeed information could also be included as an additional input, which could help reduce the
spurious ice that appears in some cases over open water when it appears to be wind-roughened.
This would require accurate windspeed information at a sufficiently high spatial resolution, which is
not presently available.

A linear activation function has been chosen for the last fully connected layer, which means that
ice concentration values can be estimated that are greater than 1 or less than zero. For comparison
between the different methods these ice concentration values were truncated to remain in the range of
[0,1]. A sigmoid activation would be a more intuitive choice, as it naturally bounds the output of the
CNN to 0 and 1. However, in our experiment, sigmoid activation was found to produce saturated ice
concentration predictions close to 0 or 1, and large errors for intermediate ice concentration levels.

8. Conclusions

The CNN has been found to generate ice concentration estimates with improved details and
accuracy as compared to ASI passive microwave ice concentration products when IA charts are used
as the verification data. Our CNN ice concentration is also improved as compared to that from a
method that uses an MLP to regress ice concentration from a set of engineered SAR image features.
Because of the shallow network structure, MLP40 is more sensitive to the SAR image backscatter
values than the CNN, which causes noisy ice concentration estimates. The small model used by
MLP40 does not have the large learning capacity as the CNN. Some complex cases, such as dark
new ice, are not recognized correctly. This causes systematic errors in the results, which cannot be
corrected by segmentation based post-processing. Therefore, the deeper and larger CNNs used here
can generate more accurate ice concentration estimates than MLP40. Note that while a multilayer
version of MLP40 could be developed, maintaining full connectivity between the weights in these

210



Remote Sens. 2017, 9, 408

layers would require many weights to be learned, making such networks prone to overfitting [13].
Compared to standard fully connected neural networks with similar number of units, CNNs are
able to model local spatial information more efficiently with fewer trainable parameters, which also
makes them easier to train [26,55]. The success of CNNs as multi-layer networks is due to weight
sharing and the local connectivity between adjacent layers [38], and methods developed to reduce
overfitting [26], such as training sample augmentation and dropout, which have been implemented in
the present study.

We note that there are alternative approaches to using a CNN for this problem that may be more
efficient than that presented here. For example, methods that predict dense labelling as compared to a
label [30,56] at a single pixel location (as has been done in the present study). Preliminary work using
such an architecture for the GSL data has been presented in [53], and will be investigated further in
a future study.
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Abstract: Subpixel mapping (SPM) is a technique that produces hard classification maps at a spatial
resolution finer than that of the input images produced when handling mixed pixels. Existing spatial
attraction model (SAM) techniques have been proven to be an effective SPM method. The techniques
mostly differ in the way in which they compute the spatial attraction, for example, from the
surrounding pixels in the subpixel/pixel spatial attraction model (SPSAM), from the subpixels
within the surrounding pixels in the modified SPSAM (MSPSAM), or from the subpixels within the
surrounding pixels and the touching subpixels within the central pixel in the mixed spatial attraction
model (MSAM). However, they have a number of common defects, such as a lack of consideration of
the attraction from subpixels within the central pixel and the unequal treatment of attraction from
surrounding subpixels of the same distance. In order to overcome these defects, this study proposed
an improved SAM (ISAM) for SPM. ISAM estimates the attraction value of the current subpixel at
the center of a moving window from all subpixels within the window, and moves the window one
subpixel per step. Experimental results from both Landsat and MODIS imagery have proven that
ISAM, when compared with other SAMs, can improve SPM accuracies and is a more efficient SPM
technique than MSPSAM and MSAM.

Keywords: spatial attraction model (SAM); subpixel mapping (SPM); land cover; mixed pixel; spatial
distribution; hard classification

1. Introduction

Land use and land cover (LULC) information is very important in many scientific studies and
applications. Remote sensing is the only feasible way of obtaining LULC information for large
geographic areas. Many algorithms have been developed to classify various remote sensing data
to obtain LULC maps [1–4]. However, remote sensing images often contain mixed pixels, since the
sensor’s instantaneous field of view (IFOV) includes more than one land cover class [5,6]. The existence
of mixed pixels leads to three main problems which need be solved: (1) What classes of land cover
does a mixed pixel contain? (2) What are the proportions of land cover classes in a pixel? (3) What is
the subpixel spatial distribution of land cover classes [7]? For the first problem, end-member extraction
algorithms [8], such as the pixel purity index (PPI), N-FINDER, iterative error analysis (IEA), etc., have
been developed. For the second problem, soft or fuzzy classification algorithms, which allocate all
classes, in varying proportions, to each pixel [9], have been proposed. These algorithms can be broadly
categorized as linear spectral mixed models (LSMMs) and nonlinear mixture models [10–12]. Due to
the intrinsic complexity of the mixture modeling and the difficulty in obtaining scene parameters,
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nonlinear mixture models (NLMMs) have not been applied as widely as LSMMs [10,11]. For the third
problem, subpixel mapping (SPM) or super resolution mapping (SRM) methods, which produce hard
classified maps at a spatial resolution finer than that of the input images [13], have been developed
in recent decades. This paper focuses on SPM, which has been proved as an alternative method for
obtaining land use/land cover with an acceptable accuracy [14–19].

In 1993, Schneider first introduced a knowledge-based analysis technique for the automatic
localization of field boundaries in agricultural areas [20]. Atkinson formally proposed the concept of
SPM and mentioned that SPM can be considered as the post-processing of soft classification based
on spatial dependence theory [21]. With the assumption of spatial dependence, Verhoeye et al. [6]
proposed a spatial dependence mathematical model and employed linear optimization techniques to
find the maximum of the dependence. Considering each pixel as a neuron, Tatem et al. [22–24] and
Wang et al. [25] applied a Hopfield neural network (HNN) to map subpixel land cover. The HNN
increases the spatial correlation between neighboring subpixels and minimizes iterations to obtain
SPM results. Atkinson [13] utilized a two-point histogram method to optimize the match between
the target and the current realization of the two-point histograms for subpixel classes within pixels.
Atkinson [9,26] developed a pixel swapping algorithm (PSA) to maximize the spatial correlation
between neighboring subpixels, by changing the spatial arrangement of subpixels. PSA was initially
designed to work for binary-class images, and was later expanded to work on multiple-class
images [27–29]. Mertens et al. [30] proposed a subpixel/ pixel spatial attraction model (SPSAM)
to calculate the spatial attractions between subpixels and their neighboring pixels. In addition, the
Markov random field [31,32], genetic algorithms [33,34], and indicator cokriging-based geostatistical
methods [35,36], have also been successfully applied in SPM.

Among all of the aforementioned SPM methods, SPSAM has several advantages in terms of both
its simplicity and its explicit physical meanings [30]. For example, spatial attraction, which calculates
the spatial correlation between subpixels and their surrounding pixels, is used in SPSAM as a simple
tool to directly convey spatial dependence. Without requiring prior knowledge on the spatial structure,
which is essential in some learning-based SPM methods, such as a two-point histogram, indicator
cokriging-based methods, and genetic algorithms, etc., SPSAM can obtain satisfactory SPM results.
However, SPSAM ignores the uncertainty of the spatial distribution of subpixels within surrounding
pixels and fails to adequately consider the spatial correlation between subpixels within the central
pixel. Consequently, the SPM results obtained by SPSAM are noisy and its accuracy is limited [37].
Therefore, based on SPSAM, Wang et al. proposed a modified SPSAM (MSPSAM) [37] which estimates
the spatial attractions according to the distribution of subpixels within neighboring pixels. They also
proposed a mixed spatial attraction model (MSAM) for improving the SPM result. MSAM integrates
the spatial attraction from both the immediate surrounding subpixels of the current subpixel within
the central pixel, and all of the subpixels within the immediate neighboring pixels of the central pixel.

Among the abovementioned spatial attraction models (SAMs), MSAM is the only SAM which
considers the spatial attractions generated by not only the subpixels of neighboring pixels, but also the
subpixels of the central pixel. However, MSAM assumes that the spatial attraction of a subpixel being
considered (called the current subpixel hereafter) is only influenced by the neighboring subpixels,
instead of all the subpixels within the central pixel. Yet, according to the spatial dependence theory, the
subpixels within the central pixel can exert stronger spatial attractions than those within neighboring
pixels because they are spatially closer to the current subpixel. In MSAM, after spatial attraction of all
subpixels within the central pixel is calculated, the calculation moves to the next pixels. As a result of
this, the same set of subpixels within the neighboring pixels is used in calculating the spatial attraction
of all the subpixels within the central pixel. When the current pixel, of which the spatial attraction is
being calculated, is not located at the center of the central pixels, the subpixels within the pixel next
to the neighboring pixels, which are closer to the current pixel than many of the subpixels within
the neighboring pixels, are not considered. This results in the unequal treatment of attraction from
surrounding subpixels of the same distance.
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This study proposes an improved spatial attraction model (ISAM) to overcome the shortcomings
of MSAM. ISAM estimates the attraction value of the current subpixel at the center of a moving
window from all the subpixels within the window, and moves the window one subpixel per step, to
improve the SPM result.

2. Methodology

2.1. Subpixel Mapping (SPM): Theory

SPM aims to determine the most likely locations of the class fractions within a pixel. The general
methods of SPM include three steps: (1) Utilizing spectral mixture analysis models to obtain soft class
fraction (proportion) images at an original (coarse resolution) pixel resolution; (2) Dividing the original
pixels into a series of subpixels, assuming that one subpixel only contains a specific class, to determine
the number of subpixels for each class; (3) Applying spatial distribution features of classes and other
prior knowledge, to map the subpixel spatial distribution of classes. From the abovementioned steps, it is
obvious that the spatial distribution features of classes are the critical factor of SPM. A random subpixel
distribution of classes can be assumed if prior knowledge is lacking. However, according to the spatial
dependence theory, the land covers of two adjacent subpixels are more similar than those of two distant
subpixels. Therefore, Atkinson considered the spatial dependence theory as the basis for SPM [21].

Figure 1 illustrates the spatial dependence theory of SPM. It shows a raster grid of 3 × 3 original
(coarse resolution or mixed) pixels, with associated fractions of a specific class (Figure 1a). Each pixel
is divided into S2 subpixels (S is scale factor), each corresponding to 1/ S2 area of the original pixel.
Although both Figure 1b,c can present the possible results of the subpixel allocation of the gray class
corresponding to the indicated proportion in Figure 1a, according to spatial dependence theory, this is
more likely to represent the ground truth.

 

Figure 1. Illustration of spatial dependence theory for subpixel mapping in an 8 × 8 subpixel scene.
(a) 3 × 3 coarse resolution pixels with the indicated proportion of a specific (gray) class; (b) and
(c) The possible results of the subpixel allocation of the gray specific class.

Based on Atkinson’s study [21], Verhoeye et al. [6] presented a mathematical model for SPM,
which transformed the SPM problem into one of assigning classes to the subpixels using linear
optimization techniques. Suppose that the coarse resolution pixels are to be divided into S2 subpixels.
The number of subpixels that have to be assigned to class c is NSPc and has been derived from soft
class fraction images. A measure for spatial dependence SDVc,j will be computed for class c at each
subpixel j. Each subpixel has to be assigned a value of one or zero for each class, one indicating an
assignment to a particular class. Following this, the problem of assigning each subpixel to a specific
class emerges, which has the maximum value of the spatial dependence.

The mathematical model can be expressed as Equation (1):

Maximize Z = ∑
c

∑
j

xcj · SDVcj (1)

where c ∈ {1, 2, . . . , C}, C is the total number of classes in the study case; SDVcj, the model key
parameter, respresents the spatial dependence values (SDV) of subpixel pj when it is assigned to class
c; xcj, the choice variable of subpixel pj when it is assigned to class c, is defined in Equation (2):
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xcj =

{
1, i f subpix pj is assigned to class c

0, otherwise
(2)

The model meets two constraints:

∑
c

xcj = 1 (3)

∑
j

xcj = NSPc (4)

Equation (3) means that only one subpixel can be assigned to a specific class and Equation (4)
means that the number of subpixels belonging to class c within an original pixel has to be NSPc.

2.2. SPSAM, MSPSAM, and MSAM

2.2.1. SPSAM

SPSAM was proposed based on the theory of spatial dependence. The assumptions of SPSAM
are: (1) the fraction values of neighboring pixels exert the attraction toward subpixels within a central
pixel; (2) a subpixel within the central pixel can only be attracted by pixels surrounding the central one;
and (3) other pixels are assumed to be too distant to exert any attraction. Assuming that closer pixels
attract the subpixel more than the distant ones, SPSAM calculates the attraction value of a neighboring
pixel to a subpixel, based on their Euclidean distance.

Figure 2 illustrates the labeled pixels and subpixels, the coordinate system, and the distance
between pixels and subpixels in SPSAM. A scale factor of S = 4 means that the original central pixel P11

contains 16 subpixels with labels: p44, p45, p46, p47, . . . , p74, p75, p76, p77. The distance between subpixel
pij within the central pixel and the neighboring pixel PMN can be defined as:

d
(

PMN , pij
)
=

√
[i + 0.5− S(M + 0.5)]2 + [j + 0.5− S(N + 0.5)]2

(i, j = 0, 1, . . . , 8; M, N = 0, 1, 2)
(5)

SDVc,ij, the attraction values of subpixel pij, which is assigned class c, by the neighboring pixels, can
be defined using Equation (6).

SDVc,ij = ∑M ∑N
1

d
(

PMN , pij
) Fc(PMN) (6)

where Fc(PMN) is the fraction value of class c of the neighboring pixel PMN .

 

Figure 2. Illustration of the subpixel/pixel spatial attraction model (SPSAM) (adapted from [30]).
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2.2.2. MSPSAM and MSAM

SPSAM estimates the spatial attractions of subpixel pij by the neighboring pixel, ignoring that
the other subpixels within the central pixel can exhibit spatial attraction toward the subpixel pij, and
the different spatial distribution of classes of the neighboring pixels can also have different spatial
attraction values. Therefore, Wang et al., 2012b, proposed MSPSAM and MSAM to improve the SPM
results. As illustrated in Figure 3a, MSPSAM calculates the spatial attractions of subpixel pij within the
central pixel for a given class by using all of the subpixels within the neighboring pixels that have been
assigned to the same class as the given class of subpixel pij. MSAM, illustrated in Figure 3b, computes
the spatial attraction of subpixel pij by using not only the subpixels within the neighboring pixels, but
also the neighboring subpixels of subpixel pij within the central pixel.

(a) (b)

Figure 3. Illustration of the modified subpixel/pixel spatial attraction model (MSPSAM) and the mixed
spatial attraction model (MSAM) (adapted from [37]). (a) MSPSAM; (b) MSAM.

2.3. Improved Spatial Attraction Model (ISAM)

Referring to PSA in Atkinson [9,26] and the modified pixel swapping algorithm (MPSA) in [29],
ISAM computes the spatial attractions of the current subpixel at the center of a moving window by
the surrounding subpixels within the window, which can be 2S + 1 times the size of the subpixel and
moves the window one subpixel per step. As an illustration of ISAM, Figure 4 shows that subpixel pij
within the central pixel Pcen is attracted by the surrounding subpixels within a moving window that is
double the size of the original pixel. In Figure 4, S is the scale factor, which divides an original pixel
into S2 subpixels, each corresponding to 1/S2 area of the original one.

 

Figure 4. Illustration of the Improved Spatial Attraction Model (ISAM) (the size of the moving window
is equal to 2S + 1).
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Therefore, defined in Equation (7), Jc,ij, the spatial attraction of subpixel pij which is assigned to
class c (c can be any class in the study case), can be estimated as an inverse-distance weighted function
of its surrounding subpixels within the moving window.

Jc,ij = ∑m ∑n

xc,ij

d
(

pmn, pij
) (7)

where d
(

pmn, pij
)

is the distance between subpixel pij and the surrounding subpixel pmn defined in
Equation (8), and xc,ij is a choice variable defined in Equation (9).

d
(

pmn, pij
)
=

√
(i−m)2 + (j− n)2 (8)

xc,ij =

{
1, i f subpixel pij and pmn are assigned to the same class c

0, otherwise
(9)

The mathematical model thus becomes Equation (10):

Maximize J = ∑c ∑i ∑j ∑m ∑n

xc,ij

d
(

pmn, pij
) (10)

The model constraints of ISAM are shown as Equations (11) and (12):

∑
c

xc,ij = 1 (11)

∑
i

∑
j

xc,ij = nc (12)

Equation (11) means that only one subpixel can be assigned a specific class, and Equation (12)
means that the number of subpixels that have to be assigned class c is nc, which has been determined
from the fraction images.

Based on spatial dependence theory, maximum J will be retrieved when the top nc subpixels
within the central pixel are assigned to class c.

The ISAM proposed in this study is similar to the MPSA proposed by Shen et al., 2009 [29], but
there are three differences between them, including: (1) the initialization of subpixel class allocation.
The former uses the random allocation and the latter allocates the subpixel class based on spatial
attractiveness; (2) the size of the moving window. The former’s is 2S + 1 times the size of the sub-pixel,
and the latter’s is unfixed; and (3) the calculation of the distance weighting parameter. The former takes
the Euclidean distance as the weighting parameter of two subpixels and the latter uses an exponential
model containing the Euclidean distance and a non-linear parameter. These differences make ISAM
computationally more efficient.

As seen for other SPM methods, theoretically, ISAM also has a few limitations, including: (1) the
classification accuracy of ISAM depends on the accuracy of the soft class fraction image, which is the
result of spectral mixture analysis; and (2) ISAM prefers a subpixel mapping H-resolution-case image,
of which the pixels are smaller than the objects of interest or landcover, to the L-resolution-case one, of
which the pixels are much larger than the objects of interest or landcover [38,39].

2.4. The Algorithm of ISAM

The algorithm flowchart of ISAM is shown in Figure 5, and the detailed steps of the algorithm are
given below:
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Figure 5. The algorithm flowchart of the improved spatial attraction model (ISAM): Hmax—maximum
steps of iteration; H—current step of iteration; Acc—the accuracies of SPM of previous iteration step;
Acc_c—the accuracies of SPM of current iteration step; Pcen—the central pixel; pij—the subpixel which
spatial attractions are currently calculated; C—the number of classes in the study case; Jc,ij—the spatial
attractions of subpixel pij when it is assigned to class c, SLSc—the spatial location sequence of class c of
pixel Pcen.

Input a soft classification fraction image of C number of classes

Set scale factor S
Set maximum iteration step Hmax

Randomly allocate subpixel to classes based on the pixel-level class fraction
Estimate Acc, the accuracies of SPM of previous iteration step
Initialize current iteration step H
FOR each iteration//H

FOR each pixel//Select a pixel as the central pixel Pcen

FOR each subpixel pij within the central pixel
Initialize the column and row ranks for subpixels within a moving window around subpixel pij
FOR each class

FOR each subpixel pmn within the moving window
Calculate the spatial attraction of subpixel pij exercised by pmn

END FOR each subpixel pmn within the moving window
Summarize Jc,ij, the spatial attractions of subpixel pij exercised by subpixels within the

moving window
END FOR

END FOR

Sort SLSc (spatial location sequence for class c) by Jc,ij descending order
Choose top nc subpixels and assign them to class c, according to SLSc

Reassign the subpixels, which have been assigned to more than one class, to a specific class of
which the spatial attractions reach the maximum. Make sure every subpixel is uniquely assigned to
a specific class.

END FOR

Estimate Acc_c, the accuracies of SPM of current iteration step
IF Acc ≥ Acc_c or H = Hmax

break
ELSE

Acc = Acc_c
ENDIF

END FOR
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3. Experiments and Results

To test and validate the advantages of the proposed ISAM algorithm, this study compared the
SPM accuracies of ISAM with those of other SAMs by using Landsat OLI and MODIS imagery. ISAM,
SPSAM, MSPSAM, and MSAM were implemented with ENVI IDL 8.3, and the following experiments
were all accomplished in ENVI 5.1. A workstation computer with an Intel Quad 2.67 GHz processor
and 4 GB RAM was used for this study. In all experiments, the moving window for ISAM is set to
two original pixels plus one subpixel in size, so that the current subpixel is always at the center of
the window.

3.1. Experiment with Landsat OLI Imagery

3.1.1. Data Sets

A scene of the Landsat-8 Operational Land Imager (OLI) image with its identifier
LC81460322015267LGN00 was downloaded from the U.S. Geological Survey (USGS) official
website [40] and the region of interest (ROI) of 552 × 424 pixels in size was subset from the scene.
By applying a support vector machine (SVM, of which the training samples were selected through
visually interpreting both the high spatial resolution Google earth and the Landsat-8 images) to the
Landsat image of ROI, a hard land cover classification map, which is used as a reference map, was
created for the ROI at 30-m resolution. Then, by using a bi-cubic resampling algorithm, the land cover
map at the original 30-m resolution was aggregated to 60-, 120- and 240-m resolution to form soft land
cover fraction maps which were 276 × 212, 138 × 106, and 69 × 53 pixels in size, respectively.

3.1.2. Experiment Results

The accuracy is measured by comparing the SPM results from ISAM, SPSAM, MSPSAM,
and MSAM with the reference map. The Overall Accuracy (OA) and Kappa Coefficient (κ),
the most commonly used indices for classification accuracy assessment, are applied in this study.
The experimental results are displayed in Figures 6–8 and the accuracy measures are shown in
Tables 1–3. From Figures 6–8, a visual assessment of the image quality reveals that: (1) the SPM of
the four SAM algorithms can reveal more details than hard classification results at scale factors of
S = 2, 4, and 8; (2) the SPM from ISAM can obtain more details than those from other SAMs (see the
details within red rectangles in Figure 8c). From Tables 1–3, a quantitative comparison analysis proves
that: (1) the OA values of ISAM and the other SAMs at different scale factors are all above 95%, while
all κ values are greater than 0.92, which means that all SAMs are effective SPM techniques; (2) both
the OA and κ values of ISAM are the highest among all SAMs; (3) both the OA and κ values of all
SAMs decrease with an increase of the scale factor, since the bigger the scale factor is, the coarser the
aggregated image can be, and the less the detail of an initial image can convey; (4) the OA and κ of
SPSAM are lower than those of MSPSAM and MSAM when the scale factor, S, is 2 or 4, while OA and
κ of SPSAM are higher than those of MSPSAM and MSAM when the scale factor, S, is 8. From both
visual and quantitative assessments, it is concluded that ISAM is a more accurate SPM technique than
the other SAMs. From Tables 1–3, it can be also found that OA and κ of the four SAMs decreases
by about 1.816%~4.035% and 0.029~0.065, respectively, when the scale factor S increases from 2 to 8.
The sensitivity of the scale factor to the accuracy of the four SAMs is not obvious in this experiment
and S can be determined according to the goal of experiment.
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Figure 6. The comparison of SPM results among ISAM, SPSAM, MSPSAM, and MSAM (scale factor
S = 2): (a) The classification result from Landsat data; (b) The hard classification result at scale factor S;
(c–f) the results from ISAM, SPSAM, MSPSAM, and MSAM, respectively.

 

Figure 7. The comparison of SPM results among ISAM, SPSAM, MSPSAM, and MSAM (scale factor
S = 4): (a) The classification result from Landsat data; (b) The hard classification result at scale factor S;
(c–f) the results from ISAM, SPSAM, MSPSAM, and MSAM, respectively.
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Figure 8. The comparison of SPM results among ISAM, SPSAM, MSPSAM, and MSAM (scale factor
S = 8): (a) The classification result from Landsat data; (b) The hard classification result at scale factor S,
(c–f) the results from ISAM, SPSAM, MSPSAM, and MSAM respectively.

Table 1. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 2)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 99.806 0.996
SPSAM 97.970 0.967

MSPSAM 99.629 0.994
MSAM 99.781 0.996

Table 2. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 4)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 98.776 0.980
SPSAM 95.852 0.933

MSPSAM 98.116 0.969
MSAM 98.734 0.979

Table 3. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type
Accuracies (Scale Factor S = 8)

Overall Accuracy (OA, %) Kappa Coefficient (κ)

ISAM 96.671 0.947
SPSAM 96.154 0.938

MSPSAM 95.594 0.929
MSAM 96.001 0.936
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The comparison results of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
are shown in Table 4 when the scale factor S is set to 8 and the image size is 424 × 552 subpixels.
Among the four SAMs, SPSAM needs the fewest number of iterations and the least time to achieve the
optimal results, while ISAM needs three more iterations than SPAM, but one and five iterations fewer
than MSPSAM and MSPSAM, respectively. Furthermore, ISAM reduces to almost 900 s per iteration
or 2.2 h and 7.8 h less per entire computation than MSPSAM and MSPSAM. In other words, ISAM is
more efficient than MSPSAM and MSPSAM, but less efficient than SPSAM. The reason for this is that
SPSAM only considers the attraction from eight neighboring pixels at the original resolution to the
subpixels of the central pixels, resulting in a significant reduction in the computational requirement,
while the others all consider the attraction from the subpixels of the neighboring pixels. Although
the computing power is not a significant limit factor nowadays for processing remote sensing images,
timesaving is significant if applying the ISAM algorithm to large-scale subpixel hard classification,
which may need to classify hundreds of remote sensing images, instead of MSPSAM and MSAM.
Nevertheless, if the computational efficiency is the main concern, SPSAM is the better choice since it is
67 times faster than ISAM.

Table 4. The comparison of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
(scale factor S = 8).

Iterations ISAM SPSAM MSPSAM MSAM

Steps 4 1 5 9
Optimization time per step (s) ≈4000 240 ≈4890 ≈4890

3.2. Experiment with MODIS Imagery

3.2.1. Data Sets

The experiment in this section, taking the land cover classification results from the Landsat OLI
image with the support vector machine (SVM) as the reference map, focuses on extracting the subpixel
land cover from MODIS imagery.

The MODIS image, which covered the area of the Landsat OLI image and was acquired on
16 May 2014, was downloaded from the U.S. NASA official website [41]. The MODIS image was
re-projected from Sinusoidal to Universal Transverse Mercator (UTM) projection with the MODIS
Re-projection Tool (MRT), so that it could be co-registered with the Landsat image. Smoothing
filter-based intensity modulation (SFIM) [42] was utilized to sharpen the MOD09GA bands 3–7 data to
a 250-m pixel resolution of the MOD09GQ bands 1–2. After using the pixel purity index (PPI) method
to select the end member of the land cover classes, the linear spectral mixing model (LSMM) was
applied to extract the soft classification fraction from MODIS bands 1-2 and sharpened bands 3–7 data.

The Landsat OLI image (data identifier: LC81460322014136LGN00), which was acquired on the
same day as the MODIS image, was downloaded from the U.S. Geological Survey (USGS) official
website [40]. The Landsat image then was strip-repaired, atmospherically corrected, ROI clipped, and
resampled into a pixel resolution of 31.25 m, to meet the requirement of SPM from the 250-m resolution
MODIS image with an integral number of scale factors. The preprocessed image was used to extract
the land cover classification map, which was used as the ground truth in this MODIS experiment, by
utilizing the support vector machine (SVM).

3.2.2. Experiment Results

Setting scale factor S to 8, the subpixel resolution of the MODIS image will be 31.25 m, the same
as the reference map. The soft classification fraction image is used as the input to the SPM algorithms
of ISAM, SPSAM, MSPSAM, and MSAM. Similar to the experiment with the Landsat OLI image, the
accuracy is measured by comparing the SPM results of ISAM and the other SAMs with the reference
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map. The SPMs from different SAM algorithms are displayed in Figure 9 and the accuracy measures
are shown in Table 5.

Figure 9. The comparison of subpixel mapping results among ISAM, SPSAM, MSPSAM, and MSAM
(Scale factor S = 8; Mask represents the class of nonagricultural land; PML represents the class of plastic
mulched landcover which is a type of farmland covered by plastic mulch film): (a) The classification
results from Landsat data; (b) The hard classification results at scale factor S; (c–f) the results from
ISAM, SPSAM, MSPSAM, and MSAM, respectively.

Table 5. The comparison of SPM accuracies among ISAM, SPSAM, MSPSAM, and MSAM (Scale factor
S = 8).

Accuracies ISAM SPSAM MSPSAM MSAM

Overall accuracy (OA, %) 82.44 70.22 82.13 82.25
Kappa coefficient (κ) 0.66 0.46 0.66 0.66

By making a visual assessment of SPM maps in Figure 9, it can be found that the SPM map from
ISAM contains more details than those from other SAMs. For instance, the details within the red
rectangular areas in the SPM Map from ISAM match the same areas in the reference map much better
than those from other SAMs. Table 5 shows that the OA of the SPM results from ISAM is 82.44%, which
is higher than those of other SAMs; and κ is 0.66, which is higher than that of SPSAM and is equal
to those of MSPSAM and MSAM. From both a visual assessment and quantitative analysis, it can be
concluded that ISAM is more effective than other SAMs in SPM.

The comparison results of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM
are shown in Table 6. Among the four SAMs, SPSAM is the most efficient SPM technique, while ISAM
is the second most efficient one.

Comparing ISAM with SPAM, OA and κ increase by 12.22% and 0.2, respectively, in the
experiment with MOIDS (though the accuracies of ISAM increase slightly, compared with SPSAM, and
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MSPSAM and MSAM in the experiment with Landsat). Therefore, ISAM can improve SPM accuracies
more than SPSAM and is a more efficient SPM technique than MSPSAM and MSAM.

Table 6. The comparison of computational efficiency among ISAM, SPSAM, MSPSAM, and MSAM.

SAM Type

Scale Factor S = 2 Scale Factor S = 4 Scale Factor S = 8

Optimization
Time per Step (s)

Steps
Optimization

Time per Step (s)
Steps

Optimization
Time per Step (s)

Steps

ISAM 1.18 3 5.20 4 35.30 5
SPSAM 0.90 1 1.10 1 2.6 1

MSPSAM 1.20 3 5.60 4 40.25 6
MSAM 1.25 3 6.80 7 47.10 11

4. Conclusions

In order to overcome the defects in the existing SAM techniques, this study has proposed an
improved SAM (ISAM) for SPM, through extending the existing SAM techniques. Instead of computing
the spatial attraction by the surrounding pixels in SPSAM, or by the subpixels within the surrounding
pixels and the touching subpixels within the central pixel in MSAM, ISAM estimates the attraction of
the current subpixel at the center of a moving window by using all of the subpixels within the window
and moves the window one subpixel at a time. The design of the algorithm is more straightforward
and logically consistent than existing SAM algorithms, resulting in the simplification of the algorithm
implementation and efficiency in the algorithm execution. Experimental results from both Landsat
and MODIS imagery show that ISAM improves the SMP accuracy over the existing SAMs and is
computationally more efficient than SPSAM and MSAM. Overall, ISAM is an effective and efficient
technique for SPM.
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Abstract: In this paper, we present the supervised multi-view canonical correlation analysis ensemble
(SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed
to address heterogeneous domain adaptation problems, i.e., situations in which the data to be
processed and recognized are collected from different heterogeneous domains. Specifically, the
multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces
that are useful for joint representations for data association across domains. This scheme makes
homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems.
Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a
weighted voting scheme based on canonical correlation coefficients to combine classification results
in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original
procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis
(SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical
analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the
performance of the semi-supervised approach, a comparison is made with other techniques such as
Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the
approaches are tested on two real hyperspectral images, which are considered the target domain,
with a classifier trained from synthetic low-dimensional multispectral images, which are considered
the original source domain. The experimental results confirm that multi-view canonical correlation
can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used
in the comparison with respect to not only the classification accuracy but also the computational
efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a
valid option with respect to other ensemble schemes and that because of their ability to balance
diversity and accuracy, canonical views extracted using partially joint random view generation are
more effective than those obtained by exploiting disjoint random view generation.
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1. Introduction

Supervised learning algorithms predominate over all other land cover mapping/monitoring
techniques that use remote sensing (RS) data. However, the performance of supervised learning
algorithms varies as a function of labeled training data properties, such as the sample size and
the statistically unbiased and discriminative capabilities of the features extracted from the data [1].
As monitoring requires multi-temporal images, radiometric differences, atmospheric and illumination
conditions, seasonal variations, and variable acquisition geometries can affect supervised techniques,
potentially causing a distribution shift in the training data [2,3]. Regardless of the cause, any
distribution change or domain shift that occurs after learning a classifier can degrade performance.

In the pattern recognition (PR) and RS image classification communities, this challenge is
commonly referred to as covariate shift [4] or sample selection bias [5]. Many solutions have been
proposed to resolve this problem, including image-to-image normalization [6], absolute and relative
image normalization [7,8], histogram matching [9], and a multivariate extension of the univariate
matching [10]. Recently, domain adaptation (DA) techniques, which attempt to mitigate performance
the degradation caused by a distribution shift, has attracted increasing attention and is widely
considered to provide an efficient solution [11–16].

According to the technical literature in PR and machine learning (ML), DA is a special case of
transductive transfer learning (TTL). Its goal is to learn a function that predicts the label of a novel test
sample in the target domain [12,15]. Depending on the availability of the source and the target domain
data, the DA problem can result into supervised domain adaptation (SDA), semi-supervised domain
adaptation (SSDA), unsupervised domain adaptation (UDA), multisource domain adaptation (MSDA)
and heterogeneous domain adaption (HDA) [14–19].

Moreover, according to the “knowledge” transferred across domains or tasks, classical approaches
to DA can be grouped into parameter adapting, instance transferring, feature representation, and
relational knowledge transfer techniques.

Parameter adapting approaches aim to transfer and adapt a classification model and/or its
parameters to the target domain; the model and/or parameters are learned from the source domain
(SD) [20]. The seminal work presented by Khosla et al. [5] and Woodcock et al. [7], which features
parameter adjustment for a maximum-likelihood classifier in a multiple cascade classifier system by
retraining, can be categorized into this group.

In instance transferring, the samples from the SD are reweighted [21] or resampled [22] for
their use in the TD. In the RS community, active learning (AL) has also been applied to address DA
problems. For example, AL for DA in the supervised classification RS images is proposed by Persello
and Bruzzone [23] via iteratively labeling and adding to the training set the minimum number of the
most informative samples from the target domain, while removing the source-domain samples that do
not fit with the distributions of the classes in the TD.

For the third group, feature representation-based adaptation searches for a set of shared and
invariant features using feature extraction (FE), feature selection (FS) or manifold alignment to reduce
the marginal, conditional and joint distributions between the domains [16,24–26]. Matasci et al. [14]
investigated the semi-supervised transfer component analysis (SSTCA) [27] for both hyperspectral and
multispectral high resolution image classification, whereas Samat et al. [16] analyzed a geodesic
Gaussian flow kernel based support vector machine (GFKSVM) in the context of hyperspectral
image classification, which adopts several unsupervised linear and nonlinear subspace feature
transfer techniques.
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Finally, relational knowledge transfer techniques address the problem of how to leverage the
knowledge acquired in SD to improve accuracy and learning speed in a related TD [28].

Among these four groups, it is easy to recognize the importance of RS image classification
of adaptation strategies based on feature representation. However, most previous studies have
assumed that data from different domains are represented by the same types of features with the same
dimensions. Thus, these techniques cannot handle the problem of data from source and target domains
represented by heterogeneous features with different dimensions [18,29]. One example of this scenario
is land cover updating using current RS data; each time, there are different features with finer spatial
resolution and more spectral bands (e.g., Landsat 8 OLI with nine spectral bands at 15–30 m spatial
resolution, and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) with 224 spectral bands
at 20 m spatial resolution), when the training data are only available at coarser spatial and spectral
resolutions (e.g., MSS with four spectral bands and 60 m spatial resolution).

One of the simplest feature-based DA approaches is the feature augmentation proposed in [17],
whose extended versions, called heterogeneous feature augmentation (HFA) and semi-supervised
HFA (SHFA), were recently proposed in [18]. Versions that consider the intermediate domains as being
manifold-based were proposed in [30,31]. However, none of these approaches have been considered in
RS image classification.

Finding a joint feature representation between the source and target domains requires FS [12,19]
or FE [16] to select the most effective feature set. To accomplish this aim, canonical correlation analysis
(CCA), which aims to maximize the correlation between two variable sets (in this case, the different
domains) could be a very effective technique. Indeed, CCA and kernel CCA (KCCA) have already been
applied with promising results in object recognition and text categorization [29], action recognition
and image-to-text classification [32]. However, existing joint optimization frameworks such as [32]
are limited to scenarios in which the labeled data from both domains are available. This is not the
case in many practical situations. To solve this problem, CTSVM was proposed in [29], incorporating
the DA ability into the classifier design for a cross-domain recognition scenario of labeled data that is
available only in the SD. However, the CTSVM might fail to balance the possible mismatches between
the heterogeneous domains.

One solution might be to multi-view learning (MVL), a procedure that implies the splitting of
high-dimensional data into multiple “views” [33,34]. If multiple views are available, then multiple
classification results must be reconciled, and this step is efficiently performed using Ensemble Learning
(EL) [35,36]. Accordingly, this work introduces an EL technique based on supervised multi-view CCA,
which is called supervised multi-view canonical correlation analysis ensemble (SMVCCAE), and we
prove its effectiveness for DA (and specifically heterogeneous DA) problems.

Additionally, in real applications, it is typical to experience situations in which there are
very limited or even no labeled samples available. In this case, a semi-supervised learning (SSL)
technique (e.g., [37]), which uses of unlabeled data to improve performance using a small amount
of labeled data from the same domain, might be an appropriate solution. As a matter of fact, many
SSDAs have been proposed. However, most existing studies, such as asymmetric kernel transforms
(AKT) [38], domain-dependent regularization (DDR) [32], TCA, SSTCA [14,27], and co-regularization
based SSDA [39], were designed for homogeneous DA. Very recently, Li et al. [18] proposed a
semi-supervised heterogeneous DA by convex optimization of standard multiple kernel learning
(MKL) with augmented features. Unfortunately, this optimization is quite challenging in real-world
applications. This work instead proposes a semi-supervised version of the above-mentioned multi-view
canonical correlation analysis ensemble (called SSMVCCAE), incorporating multiple speed-up spectral
regression kernel discriminant analysis (SRKDA) [40] into the original supervised algorithm.
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2. Related Work

2.1. Notation for HDA

According to the technical literature, feature-based approaches to HDA can be grouped into the
following three clusters, depending on the features used to connect the target and the SD:

(1) If data from the source and target domains share the same features [41–43], then latent semantic
analysis (LSA) [44], probabilistic latent semantic analysis (pLSA) [45], and risk minimization
techniques [46] may be used.

(2) If additional features are needed, “feature augmentation” approaches have been proposed,
including the method in [37], HFA and SHFA [18], manifold alignment [31], sampling geodesic
flow (SGF) [47], and geodesic flow kernel (GFK) [16,30]. All of these approaches introduce
a common subspace for the source and target data so that heterogeneous features from
both domains.

(3) If features are adapted across domains through learning transformations, feature
transformation-based approaches are considered. This group of approaches includes the
HSMap [48], the sparse heterogeneous feature representation (SHFR) [49], and the correlation
transfer SVM (CTSVM) [29]. The algorithms that we propose fit into this group.

Although all of the approaches reviewed above have achieved promising results, they also have
some limitations of all the approaches reviewed above. For example, the co-occurrence features
assumption used in [41–43] may not hold in applications such as object recognition, which uses
only visual features [32]. For the feature augmentation based approaches discussed in [18,30,31], the
domain-specific copy process always requires large storage space, and the kernel version requires even
more space and computational complexity because of the parameter tuning. Finally, for the feature
transformation based approaches proposed in [29,32,48], they do not optimize the objective function
of a discriminative classifier directly, and the computational complexity is highly dependent on the
total number of samples or features used for adaptation [12,19].

In this work, we assume that there is only one SD (SD) and one TD (TD). We also define

XS =
[
xS

1 , ..., xS
nS

]† ∈ �dS×nS and XT =
[
xT

1 , ..., xT
nT

]† ∈ �dT×nT as the feature spaces in the two
domains, with the corresponding marginal distributions p(XS) and p(XT) for SD and TD, respectively.
The parameters dS and dT represent the size of xS

i , i = 1, ..., nS and xT
j , j = 1, ..., nT , nS and nT are the

sample sizes for XS and XT , and we have SD = {XS, P(XS)}, TD = {XT , P(XT)}. The labeled training

samples from the SD are denoted by
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {�l}c
l=1, and they refer to c classes.

Furthermore, let us consider as “task” Y the task to assign to each element of a set a label selected in a
label space by means of a predictive function f , so that υ = {y, f }.

In general, if the feature sets belong to different domains, then either XS �= XT or
p(XS) �= p(XT), or both. Similarly, the condition υS �= υT implies that either YS �= YT (YS = [yS

1 , ..., yS
nS
],

YT = [yT
1 , ..., yT

nT
]) or p(YS|XS) �= p(YT |XT), or both. In this scenario, a “domain adaptation algorithm”

is an algorithm that aims to improve the learning of the predictive function fT in the TD TD using
the knowledge available in the SD SD and in the learning task υS, when either SD �= TD or υS �= υT .
Moreover, in heterogeneous problems, the additional condition dS �= dT holds.

2.2. Canonical Correlation Analysis

Let us now assume that nS = nT for the feature sets (called “views” here) in the source and target
domains. The CCA is the procedure for obtaining the transformation matrices ωS and ωT which
maximize the correlation coefficient between the two sets [50]:

max
ωS ,ωT

ρ =
ω†

SΣSTωT√
ω†

SΣSSωS

√
ω†

TΣTTωT

(1)
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where ΣST = XSX†
T , ΣSS = XSX†

S, ΣTT = XTX†
T , ρ ∈ [0, 1], and “†” means the matrix transpose.

In practice, ωS can be obtained by a generalized eigenvalue decomposition problem:

ΣST(ΣTT)
−1Σ†

STωS = η(ΣSS)ωS (2)

where η is a constraint factor. Once ωS is obtained, ωT can be obtained by ΣTT
−1ΣSTωS/η. By adding

the regularization terms λSI and into ΣSS and ΣTT to avoid overfitting and singularity problems,
Equation (2) becomes:

ΣST(ΣTT + λTI)−1Σ†
STωS = η(ΣSS + λSI)ωS (3)

As a result, the source and target view data can be transformed into correlation subspaces by:

XC
S = XS·ωS,ωS ∈ �dS×d (4)

XC
T = XT ·ωT ,ωT ∈ �dT×d (5)

Note that one can derive more than one pair of transformation matrices
{
ωS

i
}d

i=1 and
{
ωT

i
}d

i=1,
where d = min{dS, dT} is the dimension of the resulting CCA subspace. Once the correlation subspaces
XC

S and XC
T spanned by ωS and ωT are derived, test data in the target view can be directly labeled by

any model MC
S that is trained using the source features XC

S .

2.3. Fusion Methods

If multiple “views” are available, then for each view, a label can be associated with each pixel
used, for instance, CCA. If multiple labels are present, then they must be fused to obtain a single value
using a so-called decision-based fusion procedure. Decision-based fusion aims to provide the final
classification label for a pixel by combining the labels obtained, in this case, by multiple view analysis.
This usually is obtained using two classes of procedures: weighted voting methods and meta-learning
methods [51].

For weighted voting, the labels are combined using the weights assigned to each result. Many
variants have been proposed in past decades. For the sake of comparison and because we must consider
these options to evaluate the performance of the canonical correlation weighted voting (CCWV) scheme
proposed in this paper, here, we consider only the following state-of-the-art techniques:

• Accuracy weighted voting (AWV), in which the weight of each member is set proportionally to its
accuracy performance on a validation set [51]:

wi =
ai

∑T
j=1 aj

(6)

where ai is a performance evaluation of the i-th classifier on a validation set.
• Best–worst weighted voting (BWWV), in which the best and the worst classifiers are given a

weight of 1 or 0, respectively [51], and for the ones the weights are compute according to:

αi = 1−
ei −min

i
(ei)

max
i

(ei)−min
i
(ei)

(7)

where ei is the error of the i-th classifier on a validation set.
• Quadratic best–worst weighted voting (QBWWV), that computes the intermediate weights

between 0 and 1 via squaring the above-mentioned BWWV:

αi =

⎛⎝ max
i

(ei)− ei

max
i

(ei)−min
i
(ei)

⎞⎠2

(8)
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3. The (Semi) Supervised Canonical Correlation Analysis Ensemble

3.1. Supervised Procedure

The idea of this procedure is to adopt MVL to decompose the target domain data into multiple
disjoint or partial joint feature subsets (views), where each view is assumed to bring complementary
information [52]. Next, these multiple views are used for DA, providing multiple matches between the
source and the target domains. Eventually, the labeling task in the SD is transferred into the target
domain through CCA, and the results of this “multi-view” CCA are combined to achieve a more
efficient heterogeneous DA.

Specifically, without loss of generality, let us assume a heterogeneous DA from a low-dimensional
XS to a high-dimensional XT , with dS < dT , which requires that XT is decomposed into N views, i.e.,
XT =

{
Xi

T
}N

i=1, Xi
T ∈ �di×nT , dT = ∑N

i=i di. In this case, the implementation of MVCCA corresponds to
searching for the following:

argmax
(ωi

S ,ωi
T),...,(ω

N
S ,...,ωN

T )

(ρ1, ..., ρN) =
N

∑
i=1

(
ωi

S
)†Σi

STω
i
T√(

ωi
S
)†Σi

SSω
i
S

√(
ωi

T
)†Σi

TTω
i
T

(9)

where Σi
ST = XS

(
Xi

T
)†, Σi

SS = XSX†
S and Σi

TT = Xi
T
(
Xi

T
)†. Generalizing the standard CCA, Equation (9)

can be rewritten as:

argmax
(ωi

S ,ωi
T),...,(ω

N
S ,...,ωN

T )

(ρ1, ..., ρN) =
N
∑

i=1

(
ωi

S
)†Σi

STω
i
T

s.t.
(
ω1

S
)†Σ1

STω
i
T = 1, ...,

(
ωN

S
)†ΣN

STω
N
T = 1

(10)

As a result, by using the solutions ωi
S

∣∣N
i=1 and ωi

T
∣∣N
i=1, we will have multiple transformed

correlation subspaces, each one considering the SD and one of the target “views”:

XCi
S = XS·ωi

S,ωi
S ∈ �dS×d̂i (11)

XCi
T = Xi

T ·ωi
T ,ωi

T ∈ �dT×d̂i (12)

For any new instance of the target domain, i.e., x = {xi}|Ni=1, xi ∈ XCi
T , the decision function of

this SMVCCAE, trained with labeled training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
, xSC

j ∈ XCi
S , i = ∀N, can be

implemented via majority voting (MV):

H(x) = sign
(

N
∑

i=1
hi(xi)

)

=

⎧⎨⎩ �l , if
N
∑

i=1
hl

i(xi) � 1
2

c
∑

k=1

N
∑

i=1
hk

i (xi)

reject, otherwise

(13)

However, to further optimize the ensemble results, one can also recall that the canonical

correlations ρ =

{{
ρ1, ..., ρj

}∣∣d̂1
j=1, ...,

{
ρ1, ..., ρj

}∣∣d̂N
j=1

}
obtained together with the transformation

matrices ωi
S and ωi

T provide information about correlation between the SD and each target view. Since

larger values of ∀{ρj
}∣∣d̂i

j=1 ∈ {ρi}|Ni=1 show a greater correlation, this can also be considered a hint to
obtain a better domain transfer ability for the corresponding view. We expect that poor correlation

values (i.e., low values of ∑d̂i
j=1 ρj) will result in poor domain transfer abilities. Therefore, ∑d̂i

j=1 ρj may

be used to quantitatively evaluate the domain transfer ability of the transformation matrices ωi
S and
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ωi
T . Accordingly, we propose to include the following canonical correlation coefficient in the voting

strategy of Equation (13):

H(x) = sign

(
N

∑
i=1

∑d̂i
j=1 ρjhi(xi)

)
(14)

The algorithmic steps of the new algorithm (called Supervised MVCCA Ensemble, or SMVCCAE
for short) are summarized in Algorithm 1.

Algorithm 1. Algorithmic details of SMVCCAE.

1. Inputs: SD XS =
[
xS

1 , ..., xS
nS

] ∈ �dS×nS ; TD XT =
[
xT

1 , ..., xT
nT

] ∈ �dT×nT ; id for labeled training samples

2.
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {�l}c
l=1 from XS, where the superscript C represents the number of

class types;

3. Supervised classifier ζ; N the number of views of the TD; and min(dS, dT) ≤
⌊

max(dS ,dT)
N

⌋
.

4. Train: for i = 1 to N
5. generate the target domain view Xi

T ∈ �di×nT , dT = ∑N
i=i di;

6. return the transformation matrices ωi
S and ωi

T according to Equation (10);
7. obtain the correlation subspaces XCi

S and XCi
T according to Equations (11) and (12);

8. compute the transformed training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
from XCi

S according to id;

9. train the classifier hi = ζ
(
xSC, yS);

10. end
11. Output: return the classifier pool {h1, ..., hN};
12. Classification: For a given new instance x = {xi}|Ni=1, xi ∈ XCi

T , predict the label according to
Equation (14).

3.2. Semi-Supervised Version

To implement a semi-supervised version of the proposed algorithm, the multiple speed-up
SRKDA approach has been incorporated into the supervised procedure. SRDKA essentially improves
the original idea of the spectral regression proposed in [53] for linear discriminant analysis (LDA), by
transforming the eigenvector decomposition based discriminant analysis into a regression framework
via spectral graph embedding [40]. For the sake of clarity, we briefly recall here the SRKDA notation
before formalizing its implementation in the new procedure.

Given the labeled samples
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {�l}c
l=1, the LDA objective function is:

aLDA = argmax a†ψba
a†ψwa

ψb =
c
∑

k=1
nk

(
u(k) − u

)(
u(k) − u

)†

ψw =
c
∑

k=1

(
nk
∑

q=1
(x

(k)
q − u(k))(x

(k)
q − u(k))

†
) (15)

where u is the global centroid, nk is the number of samples in the k-th class, u(k) is the centroid of the
k-th class, x

(k)
q is the q-th sample in the k-th class, and ψw and ψb represent the within-class scatter

matrix and the between-class scatter matrix respectively, so that the total scatter matrix is computed
as ψt = ψb +ψw. The best solutions for Equation (15) are the eigenvectors that correspond to the
nonzero eigenvalues of:

ψbaLDA = λψtaLDA (16)
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To address the nonlinearities, the kernel extension of this procedure maps the input data to a
kernel Hilbert space through nonlinear positive semi-definite kernel functions, such as the Gaussian
kernel K(x, y) = exp

(
−‖x− y‖2/2σ2

)
, the polynomial kernel K(x, y) =

(
1 + x†y

)d and the sigmoid

kernel K(x, y) = tanh
(
x†y + a

)
. Generalizing Equation (15), the projective function of KDA is therefore:

υKDA = argmaxυ
†ψ

φ
bυ

υ†ψ
φ
t υ

ψ
φ
b =

c
∑

k=1
nk

(
u(k)

φ − uφ

)(
u(k)

φ − uφ

)†

ψ
φ
w =

c
∑

k=1

(
nk
∑

q=1
(φ(x

(k)
q )− u(k)

φ )(φ(x
(k)
q )− u(k)

φ )
†
)

ψ
φ
t = ψ

φ
b +ψ

φ
w

(17)

where ψ
φ
b , ψφ

w, and ψ
φ
t denote the between-class, within-class and total scatter matrices in the kernel

space, respectively.
Because the eigenvectors of ψφ

bυKDA = λψ
φ
t υKDA are linear combinations of φ(xq) [54], there is

always a coefficient εq such as υKDA = ∑nk
q=1 εqφ(xq). This constrain makes Equation (17) equivalent to:

εKDA = argmax
ε†KWKε

ε†KKε
(18)

where εKDA =
[
ε1, ..., εnk

]†. Then, the corresponding eigenproblem becomes:

KWKεKDA = λKKεKDA (19)

where K is the kernel matrix, and the affinity matrix W is defined using either HeatKernel [55] or the
binary weight mode:

Wi,j =

{
1/nk, if xi and xj both belong to the kth class;
0, otherwise.

(20)

To efficiently solve the KDA eigenproblem in Equation (19), let us consider ϑ to be the solution of
Wϑ = λϑ. Replacing KεKDA on the left side of Equation (19) by ϑ, we have:

KWKεKDA = KWϑ = Kλϑ = λKϑ = λKKεKDA (21)

To avoid singularities, a constant matrix δI is added to K to keep it positive definite:

εKDA = (K + δI)−1ϑ (22)

where I is the identity matrix, and δ ≥ 0 represents the regularization parameter. It can be easily
verified that the optimal solution given by Equation (22) is the optimal solution of the following
regularized regression problem [56]:

min
f∈F

nS

∑
j=1

(
f
(
xj
)− yj

)2
+ δ‖ f ‖2

K (23)

where F is the kernel space associated with the kernel K, and ‖ f ‖K is the corresponding norm.

236



Remote Sens. 2017, 9, 337

According to Equations (19) and (21), the solution can be reached in two steps: (1) solve the
eigenproblem Wϑ = λϑ to obtain ϑ; and (2) find a vector εKDA that satisfies KεKDA = ϑ. For Step 1, it
is easy to check that the involved affinity matrix W has a block-diagonal structure:

W =

⎡⎢⎢⎢⎢⎣
W(1) 0 · · · 0

0 W(2) · · · 0
...

...
. . .

...
0 0 · · · W(c)

⎤⎥⎥⎥⎥⎦ (24)

where
{

W(k)
}c

k=1
is an nk × nk matrix with all of the elements defined in Equation (19), and it is

straightforward to show that W(k) has the eigenvector e(k) associated with e(k) = [1, 1, ..., 1]†. In addition,
there is only one nonzero eigenvalue of W(k) because the rank of W(k) is always 1. Thus, there are
exactly c eigenvectors of W with the same eigenvalue 1:

ϑk = [0, ..., 0︸ ︷︷ ︸
∑k−1

i=1 ni

, 1, ..., 1︸ ︷︷ ︸
nk

, 0, ..., 0︸ ︷︷ ︸
∑c

i=k+1 ni

]† (25)

According to the theorem proven by Cai and He in [57], the kernel matrix is positive definite, and
the c-1 projective function of KDA gives exactly the same solutions as the c-1 linear equations systems

Kεk
KDA = ϑ

k. Then let Θ = [ε1, ..., εc−1] be the KDA transformation matrix which embeds the data
into the KDA subspace:

Θ†[K(:, x1), ..., K(:, xnk )
]
= Y† (26)

where the columns of Y† are the embedding results. Accordingly, the data with the same label
correspond to the same point in the KDA subspace when the kernel matrix is positive definite.

To perform SRKDA in a semi-supervised way, one straightforward solution is to use the label
information to guide the construction of the affinity matrix W, as in [57–59]. Let G = (V, E) be a
graph with set of vertices V, which is connected by a set of edges E. The vertices of the graph are

the labeled and unlabeled instances
(

xS
j , yS

j

)∣∣∣nS

j=1
∪
{(

xT
j

)∣∣∣nT

j=1

}
. An edge between two vertices (or

labeled and unlabeled samples) i, j represents the similarity of two instances with an associated weight
{Wi,j}. Then, the affinity matrix W is built using both labeled and unlabeled samples. To achieve this
goal, p-nearest neighbors, ε-neighbors, or fully connected graph techniques can be adopted, where 0–1
weighting, Gaussian kernel weighting, Polynomial kernel weighting and Dot-product weighting can
be considered to establish the graph weights [57,58]. Usually, graph-based SSL methods compute the
normalized graph Laplacian:

L = I − D−1/2WD−1/2 (27)

where D denotes a diagonal matrix defined by Dii = ∑j Wi,j (see [59,60] (Chapter 5) for more details
on different families of graph based SSL methods).

According to this procedure, and inserting the notation for DA using multiple view CCA, the
new semi-supervised procedure follows the steps reported in Algorithm 2.
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Algorithm 2. Algorithmic details of SSMVCCAE.

1. Inputs: SD XS =
[
xS

1 , ..., xS
nS

] ∈ �dS×nS ; TD XT =
[
xT

1 , ..., xT
nT

] ∈ �dT×nT ; idL
S for labeled training

2. samples
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {�l}c
l=1 from XS, where superscript C represents the number

of class

3. types; idU
T for unlabeled candidates

{(
xT

j

)∣∣∣nT

j=1

}
from XT Semi-supervised classifier ζSRKDA; N =

4. Number of views of the target domain; and min(dS, dT) ≤
⌊

max(dS ,dT)
N

⌋
.

5. Train: for i = 1 to N
6. generate the target domain view Xi

T ∈ �di×nT , dT = ∑N
i=i di;

7. return the transformation matrices ωi
S and ωi

T according to Equation (10);
8. obtain the correlation subspaces XCi

S and XCi
T according to Equations (11) and (12);

9. compute the transformed training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
from XCi

S according to idL
S and the

10. transformed unlabeled samples
{(

xTC
j

)∣∣∣nT

j=1

}
from XT according to idU

T ;

11. build the graph Laplacian Li according to Equation (27) using
(

xSC
j , ySC

j

)∣∣∣nS

j=1
∪
{(

xTC
j

)∣∣∣nT

j=1

}
;

12. obtain the KDA transformation matrix Θi according to the solutions of Equation (26) and
Equation (22);

13. return the embedded results Y†
i ;

14. end

15. Output: return the KDA transformation matrices {Θi}N
i=1 and the full KDA subspace embedded results{

Y†
i

}N

i=1
;

16. Classification: For a given new instance x = {xi}|Ni=1, xi ∈ XCi
T

17. for i = 1 to N
18. first map xi into RKHS with the specified kernel function φ(xi);
19. obtain the embedded results YiT in KDA space according to Equation (26);

20. return the decision function hi(x) = argmin
c
∑

j=1

(
‖yiT − uj‖2

)
, yiT ∈ YiT , and uj = ∑x∈ci

x/
∣∣∣cj

∣∣∣,
which represents the class center of ci in the KDA embedded space.

21. end
22. obtain the final predicted label by a majority voting ensemble strategy using Equation (14).

Summing up algorithmic details of the SMVCCAE and SSMVCCAE as described in
Sections 3.1 and 3.2, Figure 1 illustrate the general flowchart for the proposed heterogeneous DA
algorithms for RS image classification.
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Figure 1. General flowchart for the proposed heterogeneous DA algorithms SMVCCAE and
SSMVCCAE for RS image classification.

4. Data Sets and Setups

4.1. Datasets

For our analyses and evaluations, we consider two datasets, with different spatial and spectral
resolutions. The first dataset is a 1.3 m spatial resolution image collected by the Reflective
Optics Spectrographic Image System (ROSIS) sensor over the University of Pavia, with a size of
610 × 340 pixels (Figure 2). A total of 103 spectral reflectance bands that cover a region of the spectrum
between 430 and 860 nm were retained for the analyses. The captured scene primarily represents a
built-up setting with these thematic classes: asphalt, meadows, gravel, trees, metal sheets, bitumen,
bare soil, bricks and shadows, as listed in Table 1. As described earlier, the main purpose of this
article is to investigate the proposed methods in a heterogeneous DA problem. In this sense, the
low-dimensional image is simulated by clustering the spectral space of the original ROSIS image.
Specifically, the original bands of the original ROSIS image are clustered into seven groups using
the K-Means algorithm, and the mean value of each cluster is considered as a new spectral band,
providing a total of seven new bands. In the experiments, the new synthetic image is considered as the
SD, whereas the original ROSIS image is considered as the TD.
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(a) (b) (c) (d)

Figure 2. (a–d) False color composite of the: synthetic low spectral resolution (a); and the original
hyperspectral (c) images of the University campus in Pavia, together with: training (b); and validation
(d) data sets (legend and sample details are reported in Table 1). False color composites are obtained
and are displayed as R, G, and B bands 7, 5, and 4 for the synthetic, and bands 60, 30, and 2 for the
original image, respectively.

Table 1. Class legend and sample details for the ROSIS University data set.

No. Class Code
Source Target

Train Test

1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

The second dataset was gathered by the AVIRIS sensor over the Indian Pines test site in
North-western Indiana in 1992, with 224 spectral reflectance bands in the wavelength range of 0.4 to
2.5 μm. It consists of 145 × 145 pixels with moderate spatial resolution of 20 m per pixel, and a 16-bit
radiometric resolution. After an initial screening, the number of bands was reduced to 200 by removing
bands 104–108, 150–163, and 220, due to noise and water absorption phenomena. This scene contains
two-thirds agriculture, and one-third forest or other natural perennial vegetation. For the other Pavia
data set, K-Means is used to simulate a low dimensional image with 10 bands. For illustrative purposes,
Figure 3a,b shows false color composition of the simulated low dimensional and the original AVIRIS
Indian Pines scene, whereas Figure 3b shows the ground truth map that is available for the scene,
which is displayed in the form of a class assignment for each labeled pixel. In the experimenting stage,
this ground truth map is subdivided into two parts for training and validation purposes, as detailed in
Table 2.

  
(a) (b) (c) (d)

Figure 3. (a–d) False color composites of the: simulated low spectral resolution (a); and original
hyperspectral (c) images of Indian Pines data, together with: training (b); and validation (d) data
sets (color legend and sample details are reported in Table 2). False color composites are obtained
displaying as R, G, and B bands, 6, 4, and 5 for the synthetic, and bands 99, 51, and 21 for the original
image, respectively.
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Table 2. Class legend and sample details for the AVIRIS Indian Pines data set.

No. Class Code
Source Target

Train Test

1 Alfalfa 23 23
2 Corn-notill 228 1200
3 Corn-mintill 130 700
4 Corn-notill 57 180
5 Grass-pasture 83 400
6 Grass-trees 130 600
7 Grass-pasture-mowed 14 14
8 Hay-windrowed 78 400
9 Oats 10 10
10 Soybean-notill 172 800
11 Soybean-mintill 255 2200
12 Soybean-clean 93 500
13 Wheat 55 150
14 Woods 265 1000
15 Buildings-grass-trees-drives 86 300
16 Stone-steel-towers 43 50

4.2. Experiment Setups

All of the experiments were performed using MatlabTM on a Windows 10 64-bit system with
Intel® CoreTM i7-4970 CPU, @3.60 GHz, 32GB RAM. For the sake of evaluation and comparison,
a Random Forest classifier (RaF) is considered as benchmark classifier for both the SMVCCAE
and SVCCA approaches, because of its proven velocity, and its generalized and easy-to-implement
properties [61,62]. The number of decision trees in RaF is set by default to 100, whereas the number of
features is set by default to the floor of the square root of the original feature dimensionality.

For both the ROSIS and Indian Pines data sets, all of the initial and derived features have been
standardized to a zero mean and unit variance. For incorporated object oriented (OO), five statistics
are utilized, including the pixels’ mean and standard deviation, area, orientation and major axis length
of the segmented objects via K-Means clustering algorithm, whereas the spatial feature morphology
profiles (MPs) are applied to the three transferred features that have the highest canonical correlation
coefficients. Specifically, MPs are constructed by applying closing by reconstruction (CBR) with a
circular element with a radius of 3–11 pixels, and opening by reconstruction (OBR) with an element
with a radius of 3–6 pixels, refer to works carried out in [63,64]. Therefore, the feature dimensionality
set in the experiments is 7 (10) vs. 103 (200) when using spectral features only for ROSIS (Indian Pines),
7 + 5 (10 + 5) vs. 103 + 5 (200 + 5) when using spectral features stacked with OO ones, 7 + 39 (10 + 39)
vs. 103 + 39 (200 + 39) when using spectral features stacked with MPs features, and finally 7 + 5 + 39
(10 + 5 + 39) vs. 103 + 5 + 39 (200 + 5 + 39) when using all spectral, OO, and MPs features.

To assess the classification performances of the proposed semi-supervised approach, two
state-of-the-art semi-supervised classifiers, Logistic label propagation (LLP) [65] and Laplacian support
vector machine (LapSVM) [66] were considered. For the critical parameters of the semi-supervised
technique (SRKDA), such as the regularization parameter δ and the number of neighbors NN used to
construct the graph Laplacian L with HeatKernel [40], their values are obtained by a heuristic search in
the (0.01–1) and (1–15) ranges, respectively. The parameter settings for LLP and LapSVM are instead
reported in Table 3. Because LapSVM was originally proposed for binary classification problems,
a one-against-all (OAA) scheme was adopted to handle the multiclass classification in our experiments.
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Table 3. Parameter details for LLP and LapSVM.

Classifier Parameters Meanings Values

LLP

g graph complete type KNN
τ neighborhood type Supervised
N neighbor size for constructing graph 5
ω weights for edge in graph Heat Kernel
σ parameter for Heat Kernel 1
C regularization scale 0.001
M maxim iteration number 1000
η weight function for labeled samples mean

LapSVM

γa regularization parameter (ambient norm) 10−5

γi regularization parameter (intrinsic norm) 1
α the initial weights 0
κ kernel type RBF
σ RBF kernel parameter 0.01
M maximum iteration number 200
c LapSVM training type primal
η Laplacian normalization TRUE
N neighbor size for constructing graph 6

5. Experimental Results and Discussion

5.1. Domain Transfer Ability of MVCCA

As discussed in Section 3.1, each dimension in the derived CCA subspace is associated with a
different canonical correlation coefficient which is a measure of its transfer ability. Moreover, in the
MVCCA scenario, the transfer ability of each view and dimension is controlled not only by the number
of views but also by the view generation technique. In this sense, Figure 4 presents the results of
the average canonical correlation coefficient obtained using different view generation techniques, i.e.,
disjoint random sampling, uniform slice, clustering and partially joint random generation. Partially
joint random view generation can apparently increase the chance of finding views with better domain
transfer ability on the one hand, and to overcome the limitation ensemble techniques when the number
of classifiers (equal to number of views in our case) is small on the other hand. Please note that for a
more objective evaluation and comparison, each experiment was executed 10 times independently.
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Figure 4. Average canonical correlation coefficient versus embedded features for: ROSIS (a–d); and
Indian Pines (e–h) data sets using different view generation techniques: disjoint random sampling
(a,e); uniform slice (b,f); clustering (c,g); and partially joint random generation (d,h).
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In Figure 4, we see that the embedded features with the highest canonical correlation coefficient
are obtained by directly applying CCA without multi view generation (i.e., n = 1). However, single
view CCA may still fail to balance potential mismatches across heterogeneous domains by overfitting,
as demonstrated in the results reported in the following sections. Additionally, the decreasing trend
of the canonical correlation coefficient with an increasing number of views is obvious because of
the increasing mismatch between the source and target views. However, the decreasing rates of the
canonical correlation coefficient for disjoint random and partially joint random generation techniques
are lower than those from disjoint uniform slice and disjoint clustering view generations. Therefore,
partially joint random and disjoint random view generation techniques have been selected for the
following experiments.

5.2. Parameter Analysis for SMVCCAE

In Figure 5, we report the results of a sensitivity analysis of SMVCCAE that involves its critical
parameters: the dimension of the target view di

T = dT
N , the view generating strategies including disjoint

random (DJR) and partially joint random (PJR) generation, as well as the ensemble approaches MJV
and CCWV. Please note that the number of views for PJR based SMCCAE was set to 35, which is a
number that will be discussed later in this paper.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 5. (a–h)Average OA values versus target view dimensionality for SMVCCAE with different
fusion strategies using: spectral (a,e); spectral-OO (b,f); spectral-MPs (c,g); and spectral-OO-MPs (d,h)
features on: ROSIS University (a–d); and Indian Pine datasets (e–h).

As illustrated in Figure 5 for the test data sets, the choice of PJR view generation with MJV
and CCWV strategies allows the best overall accuracy values (OA curves in color green and
pink). Concerning the dimensionality of the target views, they are different using different features.
Specifically, for spectral features, the larger the dimensionality of the target views, the larger the OA
values for PJR-based SMVCCAE because of the better domain transfer capacity with more ensemble
classifiers. However, a dimensionality that is too large leads to too few view splits, i.e., a small number
of ensemble elements, eventually resulting in a degraded performance. For example, when target view
dimensionality is larger than four times the source view (7) dimensionality for ROSIS and larger than
six times this value for Indian Pines, the OA value exhibits a decreasing trend (Figure 5a,e). Among
the different types of features, (e.g., spectral and object-oriented features (labeled “spectral-OO”),
spectral and morphological profile features (labeled “spectral-MPs”), and all of them together (labeled
“spectral-OO-MPs”), the outcome is as expected, which is that the best results are obtained using
spectral-OO-MPs. Interestingly, whereas the classification performances of the PJR-based approach
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are quite stable with respect to the dimensionality of the target views, the DJR-based results show a
negative trend with an increasing number of target views. This finding is especially true when spatial
(i.e., OO and morphological profiles) features are incorporated. This result can be explained by the
trade-off between the diversity, OA and number of classifiers in an ensemble system. Specifically, the
statistical diversity among spectral and spatial features tends to enhance the classification accuracy
diversities more than using any view splitting strategy. As a result, the final classification performance
could be limited or even degraded, especially when the number of classifiers is small.

Finally, in Figure 6, we focus on the computational complexity of the proposed approach by
presenting OA, kappa statistics and CPU time values with respect to the number of views and the
various fusion strategies.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 6. Average OA, Kappa (κ) and CPU time in seconds vs. the number of views for SMVCCA with
PJR view generation and various fusion strategies applied to spectral features of ROSIS: University
(a–c); and Indian Pines datasets (d–f).

According to Figure 6, the proposed CCWV fusion technique is effective as the other fusion
techniques. Apparently, with regard to the improvements in the OA values (see Figure 6a,b,d,e),
and the computational burden from the number of views (see Figure 6c,f), views between 30 and
40 produce the best tradeoff between computational burden and classification accuracy.

In summary, in a scenario in which low-dimensional and high-dimensional data sets require DA,
a well-designed SMVCCAE requires us to set the dimensionality of each target view to three or four
times the dimensionality of the source view, and to use a PJR view generation technique.

5.3. Validation of SMVCCAE

Figure 7 provides the SMVCCAE heterogeneous cross-domain classification maps with OA values
for the ROSIS University dataset using spectral, spectral-OO, spectral-MPs and spectral-OO-MPs
features. Compared with the maps produced by a single-view canonical correlation analysis (SVCCA)
approach, the thematic maps obtained by SMVCCAE using the associated features are better,
specifically with adequate delineations of the bitumen, gravel and bare soil areas (see the numbers
in Table 4). These results experimentally verify our earlier assumptions that single view CCA could
fail to balance potential mismatches across heterogeneous domains by overfitting. Additionally, the
most accurate result is obtained with spectral-OO-MPs by SMVCCAE using the PJR view generation
strategy, as shown by the results in Figure 7 and the numbers in bold in Table 4.

For the Indian Pines dataset, Figure 8 shows the thematic maps with OA values, whereas Table 5
reports the classification accuracies (Average accuracy (AA) and OA), and kappa statistics (k) with
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respect to various features. Once again, the thematic maps with larger OA values produced by
SMVCCAE are better than the results produced by SVCCA, especially when the OO and MPs are
incorporated. The numbers in bold in Table 5 show that the largest accuracies for various class types
are obtained by the SMVCCAE with the PJR technique using spectral-OO-MPs features.
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Figure 7. (a–t) Summary of the best classification maps with OA values for SMVCCAE with different
fusion strategies using spectral, OO and MPs features of ROSIS University.
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Figure 8. (a–t) Summary of the best classification maps with OA values for SMVCCAE with different
fusion strategies using spectral, OO and MPs features of Indian Pines.
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5.4. Parameter Analysis for the Semi-Supervised Version of the Algorithm

In Figures 9 and 10, we report the results of the sensitivity analysis for SSMVCCAE while
considering the two critical parameters from the adopted SRKDA technique: (1) the regularization
parameter δ; and (2) the number of neighbors NN used to construct the graph Laplacian L. The other
parameters, such as the target view dimensionality, di

T and the number of total views N (i.e., the
ensemble size), are set by default to di

T = 4× ds and N = 35, according to our previous experimental
analysis for the supervised version of the same technique.

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. (a–f) OA values and CPU time (in seconds) versus the regularization parameter (δ) and
nearest neighborhood size (NN) set of SSMVCCAE with DJR view generation strategy for ROSIS
University using different sizes of labeled samples: 10 pixels/class (a,d); 50 pixels/class (b,e); and
100 pixels/class (c,f).

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 10. (a–f) OA values and CPU time (in seconds) versus the regularization parameter (δ)
and nearest neighborhood size (NN) set of SSMVCCAE with the DJR view generation strategy for
Indian Pine using different size of labeled samples: 10 pixels/class (a,d); 30 pixels/class (b,e); and
55 pixels/class (c,f).
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According to the results, the smaller the regularization parameter δ is and the larger the number
of neighbors NN, the larger the OA values. Thus, δ = 0.01 and NN = 12 were considered in all of the
experiments. Computational complexity is primarily controlled by the labeled sample size (note the
vertical axis in Figures 9d–f and 10d–f.

5.5. Validation of the Semi-Supervised MVCCAE

To validate the performances of the semi-supervised version of the proposed algorithm,
comparisons with existing methods, specifically LLP and LapSVM, are presented for the ROSIS
University data set, starting from a label set of increasing size.

Figure 11 shows the learning curves for SSMVCCAE, LLP, and LapSVM using different view
generation and classifier ensemble strategies as a function of this size. Each point on the x-axis
represents the size of the labeled samples (pixels) for each class type, while the y-axis represents
the average overall classification accuracy. In Table 6, we report the average overall classification
accuracies and kappa statistics (κ) over 10 independent runs, when a total of 100 labeled samples are
considered for each class.
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Figure 11. (a–p) Average OA values versus labeled pixels for SSMVCCAE with different view
generation and fusion strategies for ROSIS University dataset.

According to the results in Figure 11 and Table 6, the proposed semi-supervised heterogeneous
DA approach achieves comparable and sometimes better results in any case (see the learning curves
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in blue for SSMVCCAE-SRKDA vs. green for SSMVCCAE-LPP and red for SSMVCCAE-LapSVM in
Figure 11). Moreover, larger OA values with faster convergence rates are shown by SSMVCCAE with
PJR as opposed to DJR view generation, either by MJV fusion or by the CCWV fusion, especially using
the spectral-OO-MPs features.

In Figure 12 and Table 7, the results of the same experiments are reported for the Indian Pines test
set. Please note that because only a few samples are available for some classes in the Indian Pines case,
class types that contain less than 70 pixels for training are not considered here. Even in this case, to
obtain a more objective comparison and evaluation, each test is executed independently for 10 rounds.
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Figure 12. (a–p) Average OA values versus labeled pixels for SSMVCCAE with different view
generation and fusion strategies on Indian Pines data.

Figure 12 shows that better classification results are obtained by the SSMVCCAE with SRKDA,
not only using the original spectral features but also using spectral features that incorporate OO
and MPs features (see the learning curves in blue vs. those in green and red). Moreover, the best
classification results are obtained by SSMVCCAE-SRKDA with the PJR view generation technique,
and when considering the spectral-OO-MPs stacked features (see the numbers in bold in Table 7).
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Finally, in Figures 13 and 14, the CPU time consumptions in seconds for the different
implementations of the semi-supervised procedure are reported as a function of the labeled sample
size for both Pavia and Indian Pines. According to the results, SSMVCCAE with SRKDA is only
slightly more efficient than LapSVM for the ROSIS University data, but is much more efficient for the
Indian Pines data. Moreover, the computational complexities of LapSVM and LLP increase linearly
with the number of labeled samples, because they are more visible for the Indian Pines data, whereas
the CPU time for SRKDA stays almost constant.
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Figure 13. (a–h) CPU time consumption in seconds versus the size of the labeled samples for
SSMVCCAE-SRKDA/-LLP/-LapSVM for the ROSIS University data.
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Figure 14. (a–h) CPU time versus the size of the labeled samples for SSMVCCAE-SRKDA/
-LLP/-LapSVM for the Indian Pines data.

Summing the results presented in this section, it can be concluded that the novel proposed
semi-supervised heterogeneous DA approach works properly and achieves satisfactory results better
than the current state-of-the-art techniques when using a PJR view generation technique either with
majority voting or with canonical correlation coefficient voting. A comparison of the results by
SSMVCCAE with those by LLP and LapSVM shows that the performance of SRKDA is superior for
both classification accuracy and computational efficiency. Finally, the computational burden caused
by the sizes of the labeled samples and feature dimensionality is much smaller for SSMVCCAE with
SRKDA, whereas it increases linearly with the sample size when using the other techniques.

6. Conclusions

In this paper, we have presented the implementation details, analyzed the parameter sensitivity,
and proposed a comprehensive validation of two versions of an ensemble classifier that is suitable for
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heterogeneous DA and based on multiple view CCA. The main idea is to overcome the limitations
of SVCCA by incorporating multi view CCA into EL. Superior results have been proven using two
high dimensional (hyperspectral) images, the ROSIS Pavia University and the AVIRIS Indian Pine
datasets, as high dimensional target domains, with synthetic low dimensional (multispectral) images
as associated SDs. The best classification results were always obtained by jointly considering the
original spectral features stacked with object-oriented features assigned to segmentation results,
and the morphological profiles, which were subdivided into multiple views using the PJR view
generation technique.

To further mitigate the marginal and/or conditional distribution gap between the source and
the target domains, when few or even no labeled samples are available from the target domain, we
propose a semi-supervised version of the same approach via training multiple speed-up SRKDA.

For new research directions, we are considering more complex problems, such as single SD
vs. multiple TDs, as well as multiple SDs vs. multiple TDs supervised and semi-supervised
adaptation techniques.
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Abstract: This paper proposes a novel method of segment-tree filtering to improve the classification
accuracy of hyperspectral image (HSI). Segment-tree filtering is a versatile method that incorporates
spatial information and has been widely applied in image preprocessing. However, to use this
powerful framework in hyperspectral image classification, we must reduce the original feature
dimensionality to avoid the Hughes problem; otherwise, the computational costs are high and the
classification accuracy by original bands in the HSI is unsatisfactory. Therefore, feature extraction
is adopted to produce new salient features. In this paper, the Semi-supervised Local Fisher (SELF)
method of discriminant analysis is used to reduce HSI dimensionality. Then, a tree-structure filter that
adaptively incorporates contextual information is constructed. Additionally, an initial classification
map is generated using multi-class support vector machines (SVMs), and segment-tree filtering is
conducted using this map. Finally, a simple Winner-Take-All (WTA) rule is applied to determine the
class of each pixel in an HSI based on the maximum probability. The experimental results demonstrate
that the proposed method can improve HSI classification accuracy significantly. Furthermore, a
comparison between the proposed method and the current state-of-the-art methods, such as Extended
Morphological Profiles (EMPs), Guided Filtering (GF), and Markov Random Fields (MRFs), suggests
that our method is both competitive and robust.

Keywords: hyperspectral image classification; SELF; SVMs; Segment-Tree Filtering

1. Introduction

Hyperspectral image (HSI) classification is important for urban land use monitoring, crop
growth monitoring, environmental assessment, etc. Various machine learning algorithms that process
high-dimension data can be employed in pixel-wise classification, such as Support Vector Machines
(SVMs) [1], Logistic Regression [2,3], Artificial Neural Networks (ANNs) [4], etc. However, these
conventional approaches do not consider spatial HSI information between neighboring pixels, which
can lead to noisy classification output. Including the spatial relationships between pixels can enhance
the classification accuracy. For example, there is a high probability that a pixel shares the same class
as its neighboring pixels if the similarity measure between them is high. Otherwise, if the similarity
measure is low, this probability decreases. Therefore, HSI classification could be improved further by
combining spatial and spectral features.

Many spatial-spectral methods have been proposed to incorporate spatial or contextual
information. For example, spatial information was represented using Markov Random Fields (MRFs)
in [5,6], and classification has been performed using α–Expansion [7] and Belief Propagation [8], which
are commonly used max-flow/min-cut algorithms in MRF optimization. Another method is presented
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in [9], namely Extended Morphological Profiles (EMPs). After the first two principal components of
the HSI are computed using the Principal Component Analysis (PCA) method, spatial features are
extracted by morphological operations. Together with spectral information, they are concatenated
for HSI classification. As morphological operations such as opening and closing involve neighboring
pixel calculations, contextual information is naturally utilized in this manner. Another example
of employing contextual information is via texture analysis. In [10], a Gray Level Co-occurrence
Matrix (GLCM) is used to extract this type of contextual information, which is then employed to
concatenate spectral features used for classification. In [11], segmentation is employed to represent
spatial information based on a minimum spanning tree method, and majority voting is used to assign
a class label to each region. Similar to [11], methods based on segmentation [12–15] have attracted
increased attention because they produce satisfactory results. However, there are some drawbacks
to algorithms based on hard segmentation. For example, they assume that all pixels in the same
region are homogenous. After segmentation is completed, the relationship between pixels in different
regions is fully disconnected; thus, if the segmentation is incorrect, the accuracy decreases dramatically.
Although an over-segmentation approach is applied in [11,15] to improve the similarity in a region, the
computational complexity increases considerably. Therefore, these algorithms are not efficient because
of the complex voting processes in thousands of regions. In [16], super-pixel segmentation is applied
to feature extraction and then classification is conducted in a novel framework via multiple kernels,
which avoid voting but the super-pixel method still needs over-segmentation. To make classification
more efficient, Edge-Aware Filtering and Edge-Preserving Filtering (EAF and EPF) methods [17,18]
can be applied. These methods have been adopted successfully in many computer vision applications,
such as stereo matching [19], optical flow [20], image fusion [21], etc. Unlike image segmentation, the
most prominent merit of the EAF method is that in homogeneous image areas, EAFs can generate
smooth output, while in inhomogeneous image areas, they can adaptively preserve boundaries, even
in challenging situations. In this paper, we implement a tree-structure EAF for HSIs that is based on
the segment-tree algorithm [22,23] and combines the advantages of segmentation and EAF. Unlike
other EAF methods, the window size does not need to be set in this scheme. It is difficult to establish
a proper window size for bilateral and guided filters [17], largely because objects of interest display
the most prominent features at different scales. Another merit of this scheme is that the segment-tree
filter is more efficient than other EAFs because of its tree structure [24]. By traversing the tree in two
sequential passes, from the leaves to the root and from the root to the leaves, every pixel in HSI can be
filtered and labeled.

However, the Segment-Tree Filter cannot be used for original HSI directly because the
computational cost of this method is extremely high and the Hughes phenomenon always makes
the classification accuracy unsatisfactory. The hyperspectral bands that are contaminated by noise
may destroy the true connection between neighboring pixels. To avoid this problem, there are several
literature that introduce how to choose the bands of original HSI [25,26] or produce new salient
features. In this paper, the Semi-supervised Local Fisher (SELF) discriminant analysis method [27] is
employed to reduce dimensionality. The SELF method of feature reduction is used because it retains
prior knowledge from training sets and statistical distribution of clusters, unlike methods such as
PCA, Linear Discriminant Analysis (LDA)/Fisher Discriminant Analysis (FDA) [28], and Local FDA
(LFDA) [29]. In practice, the segmentation will be less sensitive to the number of training samples
based on the SELF method. Additionally, we can construct the Segment-Tree Filter using a limited
number of bands, which can reduce the computational cost of segmentation. Because the extracted
SELF bands can reduce the effect of noise, a limited number of bands can well represent the inherent
spatial structure of the image, which can lead to better output.

The remainder of this paper is organized as follows. In Section 1, we discuss some related methods
and processes, including initial classification, SELF, Graph-based Segment-Tree Filter construction, and
filtering. In Section 2, the proposed HSI classification scheme is described in detail. The experimental
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results are presented in Section 3. Finally, we draw our conclusions and present our outlooks for future
research in Section 4.

2. HSI Classification Refinement Using Segment-Tree Filtering

A schematic diagram of the proposed method is shown in Figure 1.

1. Step 1: Construct the Segment-Tree Filter, which involves feature extraction using the SELF
method followed by building a tree-structure filter for an HSI based on dimensionality reduction.

2. Step 2: Use a Multi-class SVM method to obtain the initial classification map.
3. Step 3: Perform Segment-Tree Filtering based on the Multi-class SVM, pixel-based initial

classification map. By combining this initial classification map and the Segment-Tree Filter, we can
incorporate spatial information and spectral features, adaptively. Finally, the HSI classification
map can be derived from the result of Segment-Tree Filtering.

Figure 1. Workflow of Segment-Tree Filtering for HSI classification.

2.1. Initial Classification

In this paper, a Multi-class SVM classifier is adopted in the initial classification step. SVMs are
widely used classifiers in remote sensing image classification. These supervised learning models are
used for classification and regression in binary classification problems. In this paper, we utilize a
Multi-class SVM from LIBSVM library with a radial basis function (RBF) kernel. In this method, a “one
against one” strategy [30] is employed to extend the binary SVM to multi-class cases. The punishment
parameter C and the spread of the kernel gamma are optimally determined by cross-validation.

In most cases, the output of the initial classification is a probability map, which can be represented
as a tensor [18] as follows:

{Mk
p

∣∣∣ p(i, j); i = 1, 2, . . . , H; j = 1, 2, . . . , W; k = 1, 2, . . . , S} (1)

where (i, j) is the position of sample p in the image; H and W are the height and width of the image,
respectively; k is the label of the sample; S is the total number of classes in the classification; and Mk

p is
the probability that the sample p belongs to the kth class. Based on the Multi-class SVM classifier, Mk

p
is either 0 or 1 depending on whether the sample belongs to the kth class.

Mk
p =

{
1 i f class(p) = k
0 otherwise

(2)
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2.2. Semi-Supervised Local Fisher Discriminant Analysis

In this section, we review SELF briefly. The SELF method seeks an embedding transformation
such that the local, between-class scatter is maximized and the local, within-class scatter is minimized
in both the training and test sets. We assume that HSI X has m hyperspectral bands and n samples, and
the training set X′ has n′ samples. Then, the test set has n− n′ samples. There are three pre-defined
input parameters: the trade-off parameter β, the dimensionality of the reconstruction space r, and the
KNN parameter K. The five steps in this process are as follows:

1. Local scaling coefficient σi is pre-computed for each sample in the training set, which is equal to
the Euclidean distance between the sample xi and its Kth nearest neighbor xK

i among all samples
in both the training and test sets.

σi = ‖xi − xK
i ‖ (3)

2. Local between-class weight matrix Wlb and local within-class weight matrix Wlw are computed
as Equations (4) and (5), respectively. In this step, if two samples have the same label in the
training set, σi is used to scale the local geometric structure with heat kernel weighting.

Wlb
i,j =

⎧⎨⎩ ( 1
n′ − 1

n′yi
) exp(

−‖xi−xj‖2

σiσj
) i f yi = yj

1
n′ otherwise

(4)

Wlw
i,j =

⎧⎨⎩ 1
n′yi

exp(
−‖xi−xj‖2

σiσj
) i f yi = yj

0 otherwise
(5)

3. The local between-class scatter matrix Slb and local, within-class scatter matrix Slw are calculated
by Equations (6) and (7):

Slb = X′{diag(Wlb1n′)}X′T ; (6)

Slw = X′{diag(Wlw1n′)}X′T ; (7)

Note that 1n′ is a unit column vector of size n′ × 1. Steps 1–3 are the same as those used in the
LFDA procedure. In our procedure, only samples in the training set have been used at this point,
and the statistical distribution of clusters has not been assessed or applied.

4. The covariance matrix St is computed based on all samples in both the training and test sets
as below:

St =

n
∑

i=1
(xi − x)(xi − x)T

n
; (8)

where x is the mean of all samples. Then, the regularized, local, between-class scatter matrix Srlb

and the regularized, local, within-class scatter matrix Srlw are derived by Equations (9) and (10),
respectively.

Srlb = (1− β)Slb + β St; (9)

Srlw = (1− β)Slw + β Im; (10)

β is the trade-off parameter based on prior knowledge from the training set and the statistical
distribution of clusters. Therefore, SELF maintains the advantages of LFDA and PCA. Note that
Im is an m×m identity matrix.

5. Transformation matrix T can be computed based on generalized eigenvalue decomposition.
T consists of weighted eigenvectors corresponding to the r largest eigenvalues. After T is
determined, all the pixels in the HSI can be reprojected to a new low-dimensional space.
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The parameter β plays an important role in the algorithm. When it is relatively small
(e.g., β = 0.01), SELF is nearly identical to LFDA, and SELF becomes increasingly similar to PCA
when β approaches 1. β balances prior knowledge regarding the labels in the training set and the
statistical distribution of clusters in the test set. In our experiment, we set β to 0.6, as we found that
this value fully utilizes the advantages of the algorithm.

As a Semi-Supervised Learning (SSL) method, SELF can adapt based on the number of training
samples. When the number of samples in a training set is small and prior knowledge about labels is
limited and/or noisy, SELF can use the statistical distribution of clusters in the test set to offset these
issues. We demonstrate this advantage in Figures 2 and 3. Figure 2 illustrates the reconstructed image
of the Indian Pines dataset using PCA, LDA, LFDA, and SELF when the training samples accounted
for only 1% of all samples. Figure 3 shows the same reconstructed image when the training percentage
increases to 20%. In both figures, the color images (R, G, and B) are composed of the first three
bands extracted using the corresponding feature-transformation methods. In Figure 2a, because the
reconstruction based on LDA only relies on a small number of training set samples, the image exhibits
considerable noise and error. When the number of training samples increases, LDA reconstruction is
improved (e.g., there are fewer fractions and more homogenous areas in Figure 3a than in Figure 2a).
Additionally, LFDA is more robust than LDA, even if the number of training samples is limited.
However, as the number of samples increases, numerous false edges and fractions can be observed in
the reconstructed image based on LFDA, as shown in Figures 2b and 3b. The boundary of the purple
trapezoid in the bottom-left portion of Figure 2b was correctly extracted; however, it was incorrectly
extracted in Figure 3b. As shown in Figures 2d and 3d (see the red rectangular region), SELF is
robust regardless of the number of samples in the training set. Conversely, PCA does not depend on
the training set; therefore, Figures 2c and 3c display the same reconstruction result. However, the
comparison between PCA and SELF in the rectangular region in Figure 3d shows that PCA creates
more segments and fractions because it aligns the boundaries of objects rather than classes, which
causes more errors in subsequent processing steps compared to using SELF. In our experiment, the
best reconstructed images based on SELF had 10 bands. Thus, the spectral dimension of the original
HSI was dramatically reduced, but the most discriminatory information within the spectral bands
was retained.

 
Figure 2. Indian Pines reconstructed using different methods of dimensional reduction: (a) LDA;
(b) LFDA; (c) PCA; (d) SELF. The number of samples in the training set accounts for only 1% of
all samples.
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Figure 3. Indian Pines reconstructed using different methods of dimensional reduction: (a) LDA;
(b) LFDA; (c) PCA; (d) SELF. The number of samples in the training set accounts for 20% of all samples.

2.3. Segment-Tree Filter Construction

The image transformed using SELF is used as input for the graph-based Segment-Tree Filter.
The implementation of Segment-Tree Filtering is based on the methodology presented in [22,23], which
use the Kruskal algorithm to construct a Minimum Spanning Tree (MST). The general workflow is
summarized as follows. First, a graph G = {V, E} is constructed for an image (m× n pixels), where
V represents the vertices and each pixel is a vertex. E represents an edge that links four neighbors,
and there are m(n− 1) + n(m− 1) edges in total. A weight we is assigned for each edge E to represent
the dissimilarity between the linked vertices. Several dissimilarity measures, such as the L1-norm,
L2-norm, L∞-norm, and Spectral Angle Mapper (SAM), have been proposed in the literature [11].
In our experiment, SAM is used as the dissimilarity measure.

1. All the edges are sorted in ascending order according to their weights. This step can be performed
efficiently using a quicksort algorithm [31], even if the number of edges is very large.

2. For each vertex, we initialize a tree Ti(Vi, Ei).
3. A subtree is then built for each segment. Then, subtrees are merged based on the order of sorted

edges. Segment-Tree Filtering is a variant of the conventional MST approach that considers an
extra criterion to merge trees [22,32], as shown in Equation (11):

we ≤ min(max(wTp) +
k
|Tp| , max(wTq) +

k
|Tq| ) (11)

where we is the weight of the edge between subtrees Tp and Tq,
∣∣Tp

∣∣ is the number of vertices
in the subtree Tp, and k is a constant. In our experiments, k is set to five times the standard
deviation of all weights in the graph. If criterion (3) is satisfied, subtrees Tp and Tq are merged.
Criterion (3) establishes a trade-off between the edge weights and the numbers of pixels in
the subtrees. Initially, merging subtrees is easy because the number of pixels in each subtree is
small. As the number of pixels increases, the criterion becomes increasingly rigorous; therefore, it
is adaptive.

4. All the remaining edges that are not part of any subtree are sorted again. If the number of vertices
in a subtree is smaller than a threshold T0, then the subtrees should be merged. In our experiment,
T0 = 6. This processing step is based on the improvement presented in [23] to omit small fractions
caused by noise. The obtained subtrees are illustrated in Figure 4, in which each color represents
an obtained subtree. As shown, constructed subtrees can be used to segment HSIs adaptively.
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5. Finally, subtrees are merged until all vertices are included in the trees. For each tree, all the
connected vertices exhibit the highest similarity and are within the shortest possible distance.
As shown in Figure 5b, the edges of the final tree minimally cross the boundaries between
two regions.

(a) (b) (c)

Figure 4. Subtrees constructed for different standard benchmarks: (a) Indian Pines; (b) University of
Pavia; (c) Salinas. Each color segment represents a subtree.

 
(a) (b)

Figure 5. Tree structure of the Segment-Tree Filter for the Indian Pines dataset: (a) Image of the segment
tree; (b) Close-up of the red rectangular region in (a).

2.4. Segment-Tree Filtering

The final step is to filter the initial probability maps using the tree-structure filter. The objective
of the filtering process is to compute the aggregated probabilities. In the proposed approach, all
vertices contribute to the aggregated probabilities, unlike using local neighbor methods. The non-local,
aggregated probabilities M

d
p can be defined as follows:

M
d
p = ∑

q∈I
S(p, q)Md

q (12)

where Md
p is defined in Equation (1). S(p, q) is a weighting function that denotes the weight

contribution of pixel q to p:
S(p, q) = exp(− ∑

i∈path(p,q)
wei/γ) (13)

where wei is the weight of an edge in the tree structure connecting p and q and γ is a constant parameter.
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Due to the tree structure, all the aggregated probabilities of class d in the image can be computed
efficiently through traversing the tree in two sequential passes. In the first pass, forward filtering
occurs from the leaf pixels to the root:

Md↑
p = Md

p + ∑
q∈c(p)

S(p, q)Md↑
q (14)

where c(p) represents all the children of vertex c(p). In the second pass, backward filtering occurs
from the root to the leaf pixels:

M
d
p = S(pa(p), p)Md

pa(p) + (1− S2(pa(p), p))Md↑
q (15)

where pa(p) represents the parent of vertex p.
As Figure 6 shows, vertex V4 aggregates the probabilities of V5, V6, V7, and itself during the

forward filtering step using Equation (16). During the backward filtering step, the probabilities of
V1, V2, and V3 contribute to V4 based on Equation (17). After only two filtering steps, the aggregated
probabilities of all vertices are computed, which reflects an extremely low computational complexity.
Finally, the classification map is obtained using a simple Winner-Take-All (WTA) rule.

 
(a) (b)

Figure 6. Segment-Tree Filtering in two sequential passes: (a) Forward filtering from the leaves to root;
(b) Backward filtering from the root to leaves.

3. Experiments and Results

The proposed method has been implemented in C++ with the OpenCV library and Lapack library.
The implemented code is available by contracting author. Evaluations were performed using three
hyperspectral benchmark datasets as below:

1. The first HSI is a 2 × 2 mile portion of agricultural area over the Indian Pines region in Northwest
Indiana, which was acquired by NASA’s Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor. This scene with a size of 145 × 145 pixels, comprises 202 spectral bands in the
wavelength range from 0.4 to 2.5μm, with spatial resolution of 20 m. The ground truth of scene
(see Figure 7a) contains 16 classes of interest and total 10,366 samples. Due to the imbalanced
number of available labeled pixels and a large number of mixed pixels per class, this dataset
creates a challenge in HSI classification.

2. The second HSI is a 103-band image acquired by Reflective Optics Spectrographic Image System
(ROSIS-03) sensor over the urban area of the University of Pavia, Italy. The spatial resolution is
1.3 m and the scene contains 610 × 340 pixels and nine classes. The number of samples is 42,776
in total. The ground truth of the scene is shown in Figure 8a.

3. The third HSI is also derived by AVIRIS sensor over Salinas Valley, California. This scene with a
size of 512 × 217 pixels, and 204 spectral bands is used for classification. There are 16 classes in
the ground truth image, which is shown in Figure 9a.
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The overall accuracy (OA), average accuracy (AA), Kappa coefficient, and producer accuracy (PA)
are used to assess the classification accuracy.

(a) (b) (c) (d) 

(e) (f) (g) (h) 

 

(i) (j)   

Figure 7. Classification results for Indian Pines: (a) Actual values; (b) Multi-class SVM; (c) ST;
(d) PCA + ST; (e) LDA + ST; (f) LFDA + ST; (g) EMPs; (h) SVM + MRF; (i) PCA + GF ([18]); (j) The
proposed method; (d–f) combine different dimensionality reduction methods (before “+”) with
Segment-Tree Filtering (after “+”); (g–i) are other methods of spatial-spectral classification for HSIs.

  
(a) (b) (c) (d) (e) 

Figure 8. Cont.
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(f) (g) (h) (i) (j) 

Figure 8. Classification results for Pavia University: (a) Actual values; (b) Multi-class SVM; (c) ST;
(d) PCA + ST; (e) LDA + ST; (f) LFDA +ST; (g) EMPs; (h) SVM + MRF; (i) PCA + GF ([18]); (j) The
proposed method. (d–f) combine different dimensionality reduction methods (before “+”) with
Segment-Tree Filtering (after “+”); (g–i) are other methods of spatial-spectral classification for HSIs.

   
(a) (b) (c) (d) (e) (f) 

  

 

(g) (h) (i) (j)   

Figure 9. Classification results for Salinas; (a) Actual values; (b) Multi-class SVM; (c) ST; (d) PCA + ST;
(e) LDA + ST; (f) LFDA + ST; (g) EMPs; (h) SVM + MRF; (i) PCA + GF ([18]); (j) The proposed method;
(d–f) combine different dimensionality reduction methods (before “+”) with Segment-Tree Filtering
(after “+”); (g–i) are other methods of spatial-spectral classification for HSIs.
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3.1. Influence of Different Parameters

Some parameters in our proposed method may affect the classification accuracy, such as β, K,
and r. Therefore, the Indian Pines dataset is used to test the importance of these parameters to the
classification. In this case, the training samples account for 15% of all samples, regardless of their class.
When one of the parameters is measured, the other parameters are fixed. Five-fold cross validation is
used to tune all parameters. The influences of β, K, and r on the classification accuracy are shown in
Figures 10–12, respectively. The influences of β and r are less than 1%, while the influence of K is greater
than 1%. Figures 10–12 illustrate that the classification accuracy is the most sensitive to the influence
of parameter K. Different dissimilarity measures are adopted during graph-based Segment-Tree Filter
construction in our experiments, including the Minkowski distance (from 1 to 6 and infinity) and SAM,
as shown in Figure 13. All the parameters affect the classification accuracy by approximately 1% to 2%,
and the SAM dissimilarity measure was the largest in our Segment-Tree Filtering approach.

Figure 10. Influence of parameter β on the classification accuracy.

Figure 11. Influence of parameter K on the classification accuracy.

267



Remote Sens. 2017, 9, 69

Figure 12. Influence of parameter r on the classification accuracy.

Figure 13. Influences of different dissimilarity measures on the classification accuracy.

3.2. Classification Accuracy Analysis

In this experiment, the training samples account for 15% of all the available samples, regardless
of their class. The parameter settings are summarized as follows. In the initial classification step, the
parameters were based on observed values, as discussed in Section 2.1. In the SELF transformation
step, β = 0.6, K = 7, and r = 10. In the graph-based Segment-Tree construction step, SAM is used as
the dissimilarity measure, and in the Segment-Tree Filtering step, γ is set as three times the standard
deviation of we.

All experiments would be repeated five times according to different sampling training-set.
The average of the five classification accuracies is recorded. The results of our proposed method
based on analyses of the Indian Pines, University of Pavia, and Salinas datasets are shown in
Tables 1–3, respectively. The visual results of the initial classification of each HSI are shown in
Figure 7b, Figure 8b, and Figure 9b, respectively. Although SVMs are powerful classifiers, the results
of the initial classification based solely on spectral features contain substantial noise. However, our
proposed method greatly improves the classification accuracy after Segment-Tree Filtering, as shown
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in Figure 7j, Figure 8j, and Figure 9j. The OA increases by 8.56% for the Indian Pines dataset, 4.64%
for the Pavia University dataset, and 1.22% for the Salinas dataset. The largest PA increase is 32.60%
for the Indian Pines dataset, followed by 22.71% for the Pavia University dataset and 3.41% for the
Salinas dataset.

Table 1. Number of training and test samples from the Indian Pines dataset and the classification
accuracies (in percentages) of different methods (the bolded item in each line means the best accuracy).

Class Training/Test SVM ST PCA + ST LDA + ST LFDA + ST EMP SVM + MRF PCA + GF Proposal

Alfalfa 7/46 58.70 71.74 91.30 76.09 82.61 82.61 83.30 80.43 91.30
Corn-N 214/1428 81.65 92.86 89.22 90.68 89.64 71.57 88.51 89.29 92.37
Corn-M 125/830 75.90 83.25 96.51 91.81 92.65 76.99 80.84 81.20 92.16

Corn 36/237 64.56 85.23 76.79 91.56 93.67 62.87 87.34 89.87 88.61
Grass-Pa 73/483 89.23 90.89 92.75 91.10 92.13 78.05 91.72 93.17 93.37
GrassT 109/730 96.99 99.73 99.45 99.59 99.45 98.36 99.18 100 99.73
GrassP 5/28 89.29 96.43 92.85 100 96.42 89.29 96.43 96.43 96.43
Hay-W 72/478 98.74 99.79 100 100 100 98.95 100 100 100

Oats 5/20 75.00 100 100 90.00 100 90.00 0.00 0.00 100
Soy-N 146/972 82.10 89.20 86.31 88.17 88.16 84.77 87.14 84.26 88.17
Soy-M 368/2455 85.62 94.70 95.62 95.11 94.50 93.40 94.87 95.52 94.58
Soy-C 89/593 74.20 94.77 99.66 96.46 97.64 71.16 93.76 95.45 97.98
Wheat 31/205 96.59 99.51 99.51 99.51 99.51 97.56 99.51 100 99.51
Woods 190/1265 95.42 97.23 98.50 97.94 98.26 98.26 96.60 98.66 98.10

Building 58/386 61.14 59.07 60.62 58.55 60.33 85.23 62.79 76.42 64.88
Stone-ST 14/93 87.10 87.10 98.92 87.10 98.92 60.22 88.17 94.62 98.92

OA 84.78 92.11 93.32 92.83 93.01 70.48 91.22 92.20 93.34
AA 82.01 90.09 92.44 90.85 92.74 67.26 89.07 85.96 93.50

Kappa 82.60 90.97 92.47 91.80 92.00 67.28 90.11 91.08 92.47

Table 2. Number of training and test samples from the Pavia University dataset and the classification
accuracies (in percentages) of different methods (the bolded item in each line means the best accuracy).

Class Training/Test SVM ST PCA + ST LDA + ST LFDA + ST EMP SVM + MRF PCA + GF Proposal

Asphalt 995/6631 93.03 96.95 95.97 96.03 95.99 93.53 97.10 96.44 96.67
Meadows 2797/18,649 95.06 99.33 99.88 99.81 99.88 95.69 100 99.18 99.79

Gravel 315/2099 66.32 72.46 71.46 72.74 71.46 76.13 69.03 73.80 71.08
Trees 460/3064 93.05 94.65 94.39 94.09 94.45 98.63 90.31 97.03 93.79
P-M-S 202/1345 99.70 99.55 99.78 99.63 99.78 84.31 100 100 99.70

Bare Soil 754/5029 66.65 70.33 71.01 70.01 71.12 76.89 70.87 68.50 71.30
Bitumen 200/1330 77.21 96.99 97.07 95.78 97.74 84.81 83.38 97.22 99.92
Self-B B 552/3682 91.55 98.37 97.99 98.09 97.83 89.19 98.29 99.76 98.80

Shadows 142/947 100 98.94 96.09 91.12 96.09 77.82 98.10 100 98.32

OA 89.25 93.74 93.76 93.51 93.78 90.75 93.21 93.78 93.89
AA 86.95 91.95 91.52 90.81 91.59 86.34 89.68 92.43 92.15

Kappa 85.60 91.58 91.59 91.26 91.62 87.72 90.82 91.62 91.77

Table 3. Number of training and test samples from the Salinas dataset and the classification accuracies
(in percentages) of different methods (the bolded item in each line means the best accuracy).

Class Training/Test SVM ST PCA + ST LDA + ST LFDA + ST EMP SVM + MRF PCA + GF Proposal

g_w_1 301/2009 98.80 100 100 100 100 98.95 100 99.80 100
g_w_2 491/3276 99.97 100 99.97 100 99.97 99.68 100 99.97 99.97
Fallow 296/1976 98.68 100 100 99.75 100 90.13 100 99.89 100

Fallow_r_p 209/1394 99.35 98.21 60.04 99.50 98.92 99.14 99.43 100 98.92
Fallow_s 401/2678 98.28 98.81 99.22 98.62 98.62 96.83 99.10 98.92 98.62
Stubble 593/3959 99.97 99.92 99.90 99.97 99.87 99.75 100 99.97 99.87
Celery 536/3579 99.35 99.61 99.66 99.52 99.64 98.46 99.89 99.78 99.64

Grapes_u 1690/11,271 92.11 95.03 95.20 95.16 95.51 95.40 94.58 95.11 95.52
Soil_v_d 930/6203 99.43 99.50 99.87 99.48 99.69 96.45 99.79 99.47 99.68
C_s_g_w 491/3278 93.62 96.06 94.63 95.18 95.79 94.97 96.86 95.73 95.64

L_r_4 160/1068 96.44 99.25 96.72 97.94 99.63 94.66 98.69 99.25 99.63
L_r_5 289/1927 99.53 100 95.69 100 100 99.79 100 100 100
Le_r_6 137/916 98.03 97.82 98.25 97.49 98.14 95.09 98.25 98.80 98.14
L_r_7 160/1070 92.05 93.74 93.74 93.93 93.48 96.07 96.26 93.64 93.49
V_u 1090/7268 56.89 57.33 56.70 56.84 57.75 50.30 57.04 57.66 57.85
V_v 271/1807 98.83 99.06 99.11 99.00 99.06 89.60 99.39 99.45 99.06

OA 91.56 92.59 91.35 92.49 92.77 90.32 92.76 92.72 92.78
AA 95.08 95.89 93.05 95.77 96.00 93.45 96.17 96.09 96.00

Kappa 90.57 91.73 90.33 91.60 91.91 89.17 91.92 91.85 91.92
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3.3. Influences of Different Techniques for Dimensionality Reduction

In the above section, we illustrated that incorporating spatial information can improve the
classification accuracy. In the following section, we will evaluate how different techniques for
dimensionality reduction can affect the classification accuracy. First, we assess the classification
accuracy with/without dimensionality reduction. If no dimensionality reduction method is used, the
Segment-Tree Filter is constructed using the original HSI. Figure 7c, Figure 8c, and Figure 9c show the
results of classification using this scheme. Because redundant bands negatively affect segmentation, the
classification accuracy using the original bands in the three HSI datasets is less than that produced using
the proposed method. The fourth column in Tables 1–3 illustrates that reducing the dimensionality
is necessary to increase the classification accuracy, and the average OA increased by approximately
0.53%. In addition, dimensionality can considerably improve the computational speed.

Next, we examine how different methods of dimensionality reduction can affect the classification
accuracy. Figures 7–9 show the classification results for various methods, including the PCA, LDA, and
LFDA methods; however, the classification accuracy produced by SELF is better than the accuracies of
those methods.

Figure 7d–f, Figure 8d–f, and Figure 9d–f show the classification results for PCA, LDA, and LFDA,
respectively. As expected, the OA and Kappa coefficient of SELF is the highest among these methods
and the AA is the highest for the Indian Pines dataset and the second highest for the Pavia University
and Salinas datasets. Although PCA sometimes performed better than SELF in some PAs, PCA with
Segment-Tree Filtering is not a robust algorithm and can easily over-smooth spatial information, as
illustrated in Figure 9d. The results illustrated in the red rectangle exhibit considerable classification
error-based PCA, and the PA of Fallow_r_p decreases from 99.35% to 60.04% in the fourth row of
Table 3.

3.4. Comparison to Other Methods of Spectral-Spatial Classification

As discussed in Section 1, spectral-spatial classification is a powerful method of combining
contextual information. Therefore, we compared the proposed method to other common methods of
spectral-spatial classification. We implemented the following spectral-spatial classification algorithms
in our analysis.

1. The first algorithm is based on EMPs [9]. In [9], a neural network classifier was applied; however,
an SVM is used instead of a back-propagation neural network to create a fair comparison.
The EMPs are shown in Figure 7g, Figure 8g, and Figure 9g.

2. The second approach uses MRFs [6] with Multi-class SVM, which is, to the best of our knowledge,
the state of the art method for spatial-spectral image classification based on remote sensing.
Multi-class SVM is used as the initial classifier, and the spatial optimization is performed using the
max-flow/min-cut algorithms. In our experiment, α-expansion is adopted, and the regularization
coefficient is fixed to 0.5. The results of the SVM with MRFs are shown in Figure 7h, Figure 8h,
and Figure 9h.

3. The third approach is based on a Guided Filter with PCA [18]. The size and blur degree in Guided
Filtering are tuned adaptively by cross-validation. The results of this classification are shown in
Figure 7i, Figure 8i, and Figure 9i.

The proposed method produced results that were more accurate than those of the EMP-based
method for the Indian Pines dataset; however, the results were similar for the other datasets.
This result suggests that the proposed method is more suitable for different datasets compared to the
EMP-based approach.

The classification accuracies of the proposed method and the SVM method with MRFs were nearly
equal. This result indicates that the proposed method achieved an accuracy comparable to that of a
state of the art method for spatial-spectral HSI classification. Furthermore, when the number of training
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samples within a class is very small, e.g., the PAs of the “Oats” class in Table 1, the classification
accuracy of the proposed approach is perfect, while the SVM with MRFs method fails. This occurs
because MRFs over smooth spatial features; thus, the regularization parameter requires complex
tuning steps. Therefore, our proposed approach is more robust than the SVM with MRFs method.

The classification accuracy of the proposed method is slightly higher than that of the Guided
Filter based on the OAs of the three datasets.

However, we computed the computational times associated with the three HSIs based on GF
with PCA [18] and our method. We assume that N pixels, M bands, D classes, and local window size
R are used for the reconstruction of the HSIs. The complexity of Segment-Tree Filtering is O (ND),
and that of Guided Filtering is O (NDM). For the Indian Pines dataset, GF needed 2.6138 s to process
10 bands in the compressed dataset, while the proposed method required only 0.0536 s (all programs
were executed using an Intel(R) Xeon(R) CPU E5-2620 with 24 GB of RAM.). Guided Filtering is slower
because it computes the inverse covariance matrix for each sample. In extreme cases, Guided Filtering
using an original HSI as the guide image can be time consuming and ineffective.

3.5. Effect of the Training Set on Classification

In this section, we assess how the number of training samples affects the classification accuracy
of the proposed method. Thus, we varied the training sample size from 1% of all samples to 20% of
all samples. We found that when the training sample size increases, the classification accuracy also
increases. Therefore, we only illustrate how the number of training samples affects the classification
accuracy of the Indian Pines dataset, as shown in Figure 14. The classification accuracy improves
considerably until the number of pixels in the training set reaches 5% of the total pixel number. Then,
the accuracy continues to improve but at a lower rate.

Figure 14. Classification accuracy based on the number of training samples for the Indian Pines dataset.

We also evaluate the effects of the training sample size on the classification accuracies of the
Guided Filter [18] and Multi-class SVM methods. As shown in Figure 14, the proposed method and
Guided Filter approach improve the classification accuracy regardless of the size of the training set,
and the proposed method yields better results. Furthermore, the advantage is larger when the size of
the training set is small.

4. Conclusions

A novel and efficient approach based on a Segment-Tree Filter has been proposed for hyperspectral
image classification. Our proposed approach is based on spatial-spectral filtering, which is a special
EAF. This filter construction utilizes both spectral features using a SELF transformation and spatial
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information using a Segment-Tree algorithm. After an initial classification map is generated by
Multi-class SVM, we can filter the map using the Segment-Tree Filter. One advantage of our proposed
approach is that the classification accuracy has been improved dramatically. Experimental results
show that the proposed method produced a high classification accuracy for hyperspectral image
benchmark sets, including 93.34% for the Indian Pines dataset, 93.89% for the Pavia University dataset,
and 92.78% for the Salinas dataset. Compared to other spatial-spectral methods, another advantage of
the proposed method is that it provides a more robust classification approach for different datasets
and training sets of different sizes.

In the future, two major aspects of our approach could be improved. First, dimensionality
reduction using could be performed in SELF to reconstruct HSIs with nonlinear projections. Second,
other classifiers, including fuzzy classifiers, could be applied to improve the classification accuracy.
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Abstract: Estimating animal populations by direct counting is an essential component of wildlife
conservation and management. However, conventional approaches (i.e., ground survey and aerial
survey) have intrinsic constraints. Advances in image data capture and processing provide new
opportunities for using applied remote sensing to count animals. Previous studies have demonstrated
the feasibility of using very high resolution multispectral satellite images for animal detection,
but to date, the practicality of detecting animals from space using panchromatic imagery has not
been proven. This study demonstrates that it is possible to detect and count large mammals (e.g.,
wildebeests and zebras) from a single, very high resolution GeoEye-1 panchromatic image in open
savanna. A novel semi-supervised object-based method that combines a wavelet algorithm and
a fuzzy neural network was developed. To discern large mammals from their surroundings and
discriminate between animals and non-targets, we used the wavelet technique to highlight potential
objects. To make full use of geometric attributes, we carefully trained the classifier, using the
adaptive-network-based fuzzy inference system. Our proposed method (with an accuracy index of
0.79) significantly outperformed the traditional threshold-based method (with an accuracy index of
0.58) detecting large mammals in open savanna.

Keywords: GeoEye-1; wavelet transform; fuzzy neural network; remote sensing; conservation

1. Introduction

Global biodiversity loss is a pressing environmental issue [1]. Populations of a number of wild
animals have been reduced by half over the past four decades [2,3]. Counting wild animals to determine
population size is an essential element of wildlife conservation and environmental management [4].
However, accurate population estimation using ground-based methods remains challenging, requiring
considerable investment in resources and time [5]. Aerial surveys have been used as an alternative
approach to detect large mammal populations and generate statistical estimates of their abundance
in open areas [6]. In developed countries, wildlife such as caribou, elk, deer and moose have been
monitored using aerial surveys [7–9]. For developing nations, where scores of endangered and
threatened fauna are found, such an alternative is not always feasible due to limitations in access,
technology, aircraft availability and skilled human resources [10,11]. It is therefore desirable to develop
alternative approaches for conducting wildlife population counts in such regions.

Advances in satellite technology have provided new avenues in remote sensing for environmental
applications, including the remote counting and mapping of animal populations. Lower spatial
resolution satellite images have proven inadequate to detect and count individual animals [12], but the
availability of commercial satellite images with a spatial resolution of one meter or less (e.g., IKONOS,
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QuickBird, GeoEye and WorldView) has made such an undertaking more feasible [13]. As a result,
studies have been undertaken utilizing satellite remote sensing data to detect animals. For example,
Fretwell et al. [14] successfully estimated the abundance of penguins from fecal staining of ice by using
a combination of medium resolution (15–30 m) Landsat-7 ETM+ and very high resolution (0.6–2.5 m)
QuickBird satellite images, but they did not attempt to count individual birds. Stapleton et al. [15] used
different very high resolution (VHR) satellite images (i.e., QuickBird, WorldView-1 and WorldView-2)
to track the distribution and abundance of polar bears. Although their findings demonstrated the
potential of remote sensing applications for wildlife detection and monitoring, they also revealed the
need for more automated detection processes to expedite analysis. Yang et al. [16] explored mammal
detection in open savanna country from VHR (0.5–2 m) GeoEye-1 satellite images, using a hybrid
image classification approach. Through a two-step process of pixel-based and object-based image
classification, they were able to demonstrate the feasibility of automated detection and counting of
large wild animals in vast open spaces. However, the method they proposed requires the input by an
expert of a number of parameters, and therefore this method remains subjective and labor-intensive.
Fretwell et al. [17] compared a number of classification techniques endeavoring to automatically detect
whale-like objects. They found that a simple thresholding technique of the panchromatic and coastal
band delivered the best results. Neither Stapleton et al. [15] nor Fretwell et al. [17] made full use of the
multispectral band, while the panchromatic band played an important role in their research. To our
knowledge, there has been no substantial exploration of the feasibility of using a single panchromatic
(black and white) band for wildlife detection. The typical panchromatic band data obtained from
airborne platforms have a much wider spectral range than is utilized by multispectral bands (red,
green, blue) [18], and also have a higher radiometric resolution (number of bits per pixel). Moreover,
panchromatic satellite images have a higher spatial resolution than multispectral images [19].

Object counting can also be achieved with computer vision techniques, such as local feature-based
subspace clustering algorithms [20,21] and global feature-based saliency detection approaches [22–25].
The conventional clustering method, such as the K-means clustering algorithm, has been used to extract
local features, but its performance relies on finding “similar” records in the training data and could
therefore be highly influenced by noise [21]. Data in a specific category can also be well-represented by
low-dimensional subspace where noise can be reduced [26]. To achieve a good result by eliminating
the influence of errors (e.g., noise, outliers), Peng et al. [20] proposed a graph-oriented learning method,
which applied the L2-Graph for subspace learning and subspace clustering, for facial recognition
and moving-vehicle detection [26]. However, studies on subspace clustering mainly concentrate on
high-dimensional data clustering, such as facial recognition and motion image segmentation. Saliency
detection is a well-researched problem in computer vision. It aims at indicating the saliency likelihood
of each pixel by generating bounding boxes, binary foreground and background segmentation, or
saliency maps [27]. The aforementioned methods have proven to be useful for multi-level features
with multi-band images, but are difficult to apply to a single-band image where the object consists of
few pixels.

Aerial photographs have been used for bird censuses since the 1980s, counting image points
falling below an established threshold [28,29]. Bajzak and Piatt [29] studied the greater snow goose,
contrasting its white plumage against the surrounding mud flats by size and tonal class. Similarly, a
panchromatic image can use thresholding as a simple image segmentation method that divides an
image into objects and background [30–32]. It works well when targets contrast sharply with their
background. However, thresholding methods have their limitations: (1) targets cannot be separated
from ground elements with similar brightness values; (2) gray value thresholding does not make full
use of geometric information; and (3) threshold values are defined manually and depend heavily on
the user’s expertise.

Animal detection using remote sensing then predominantly switched to a two-step process [33]:
(1) highlighting suspected targets; and then (2) classifying them, using geometric information.
Groom et al. [33] proposed a scheme using geometric feature (object-size) filters to count birds against
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a monochromatic background. As targets were visually small and dim, they were not easily discerned
against their background [34]. Using filters and image processing techniques, targets embedded in
the scene could be visualized and detected [35–38]. However, the performance of such filters remains
dependent on the brightness contrast between the target and background [34]. Several studies have
employed wavelet-based techniques to address this concern [39–41]. The discernibility of targets from
the background may vary at different scales, which can be problematic for object detection [19,42].
Wavelet analysis can transform signals into multiple resolutions, using an adaptive window [43], and
thereby latently detect targets in cluttered backgrounds.

After highlighting the targets, the major challenge becomes how to make full use of geometric
features to help separate a target from its surroundings. Spectral characteristics, cluster size, shape
and other spatial features have been used in rule sets for image segmentation [44]. McNeill et al. [45]
analyzed potential regions using shapes, by rejecting those with a compactness greater than a specified
threshold value. Descamps et al. [46] counted large birds by fitting suspected objects (birds) into
bright ellipses surrounded by a darker background. Expert knowledge can also play a critical role
in image classification [16,47,48]. For example, Yang et al. [16] developed a specific rule set using
expert knowledge to remove misclassified objects generated by object-based analysis. In another
study, Wang et al. [47] proposed a hybrid neural network and expert system to quantify understory
bamboo from satellite imagery, and they concluded that integration of a neural network and expert
system appeared to be more efficient than when using either a neural network or an expert system
alone. However, these methods rely on experts’ subjective experience and knowledge, which can be
challenging for practical applications.

An alternative approach to using an expert system is machine learning: a data analysis technique
that automates model building through algorithms that iteratively learn from a given dataset.
Though different classifiers based on machine learning generate varying levels of accuracy for
different datasets [49], the most recent machine-learning techniques have a proven ability to solve
complex problems [50]. For example, convolutional neural networks (CNNs) [51] have emerged
as state-of-the-art models for image classification and object detection [52–57]. Local connections,
shared weight, pooling and multiple layers are four architectural factors that make CNNs excel in
processing natural signals [58]. However, the human involvement level is high when tailoring the CNN
algorithm to a specific task [59], and large data sets are required for training purposes to ensure a high
quality output [60]. Another major limitation of CNNs is their intrinsic black-box nature: their internal
workings are hidden and not easily understood [61], so the models they generate are unexplainable [62].
The fuzzy neural network (FNN) is an alternative model that incorporates both the explicit knowledge
representation of an fuzzy inference system (FIS) and the learning ability of an artificial neural
network [63,64].The McCulloch–Pitts model [65] was one of the earliest applications to use fuzzy sets
with a neural network concept. Since the 1990s, Takagi and others have developed a solid foundation
for the fuzzy neural network [66]. In 1993, Jang proposed the adaptive-network-based fuzzy inference
system (ANFIS) [67]. This algorithm has been widely employed in applied mathematics [68–71], and,
unlike traditional expert systems, does not require a high level of expert knowledge when developing
decision rules.

This study aims to detect and count large mammals in open spaces from a single, VHR GeoEye-1
panchromatic image, using a novel semi-supervised object-based scheme that combines a wavelet
algorithm and a fuzzy neural network.

2. Materials and Methods

2.1. Study Area and Animal Species

The study area is located in the Maasai Mara National Reserve (also known as Maasai Mara or
the Mara), a large game reserve in the Great Rift Valley in the southern part of Kenya (Figure 1).
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Figure 1. Location of the Maasai Mara National Reserve in Kenya and the three pilot study areas on a
natural color composite of a GeoEye-1 image, acquired on 11 August 2009.

The reserve’s topography is mainly open savanna (grassland) with clusters of acacia trees along
the southeastern area of the park [72]. The reserve not only protects the habitat of resident species, but
also preserves a critical part of the route used by wildebeests and zebras during the great migration
that traverses the Maasai Mara via the Serengeti National Park. The wildebeest is the dominant
species of the Maasai Mara, and herd sizes can range from a few individuals to many thousands [73].
Serengeti wildebeests migrate seasonally, and are seen intermittently in the Mara between August and
November [74]. The sheer numbers of animals that congregate during migration make the wildebeest
an ideal candidate species to map through the use of satellite technology.

2.2. Satellite Images

We acquired two GeoEye-1 satellite images of part of the Maasai Mara National Reserve through
the DigitalGlobe Foundation (www.digitalglobefoundation.org/), each covering an area of 25 km2.
Both images are cloud free, and include one panchromatic (0.5 m) and four multispectral (2 m) bands.
The image captured on 11 August 2009 depicts large numbers of animals. The other image, without any
large animals present, was captured on 10 August 2013. To address our research objective, we carefully
selected three small pilot study areas from the first image, each covering an area of 120 × 120 m
(Figure 2). These pilot study areas were chosen to represent different levels of complexity regarding
three criteria: (a) complexity of the landscape; (b) abundance of animals; and (c) feasibility and
reliability of the visual interpretation of target animals. Pilot area No. 1 represents low complexity,
with a few dozen animals viewed against a uniform background; Pilot area No. 2 represents moderate
complexity, with more than one hundred animals viewed against a slightly less uniform background;
and Pilot area No. 3 represents high complexity, with several hundred animals viewed against a
non-uniform background.
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Figure 2. The panchromatic band of the GeoEye-1 image taken on 11 August 2009, showing large
mammals in the Maasai Mara National Reserve. Pilot area No. 1 represents low complexity regarding
animal numbers and uniformity of background; Pilot area No. 2 represents moderate complexity; and
Pilot area No. 3 represents high complexity. The rectangle visible in the top-left corner of Pilot area
No. 3 is a white vehicle.

2.3. Visual Interpretation to Establish Ground Truth for Large Animals Discerned on GeoEye-1 Imagery

Ground truth is required to calibrate the model, as well as validate the classification result.
Using the panchromatic band of the GeoEye-1 image, large mammals (e.g., wildebeests and zebras) are
visualized as 3–4 pixels long and 1–2 pixels wide [16]. Due to their similarity in size, large animals can
be confused with small ground features such as bushes and termite mounds [75]. To facilitate the visual
interpretation of target animals and avoid the problem of subjectivity, we used one pan-sharpened
GeoEye-1 image with, and one without, the presence of large animals (Figure 3). We invited two
experienced wildlife researchers from Africa as independent visual interpreters. Together we visually
compared the two separate temporal images of the three pilot study locations at multiple scales under
the ArcGIS 10.3.1 environment (ESRI Inc., Redlands, CA, USA). After the observers had discussed their
interpretation results, especially regarding uncertain objects, and had agreed which identified objects
were indeed large mammals, their knowledge was recorded as confirmed animal ground truth points.
In total, we identified 50, 128 and 426 large mammals in the pilot study areas 1, 2 and 3, respectively.

Figure 3. Visual interpretation of target animals by comparing two pan-sharpened GeoEye-1 images
(0.5 m): one acquired 10 August 2013, without large animals present (top), and one acquired 11 August
2009, with large animals (bottom). The three pilot study areas represent the complexity of the landscape
and the abundance of animals appearing in these images, from left to right: low, moderate and high.
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2.4. Semi-Automatic Animal Detection Algorithm

Large mammals were identified by a series of multistage, semiautomatic techniques in VHR
panchromatic satellite images. Our proposed scheme includes four principal steps (Figure 4): image
preprocessing, preclassification, reclassification and accuracy assessment. Visual interpretation was
incorporated for the purpose of reclassification and accuracy assessment.

Figure 4. Workflow of the proposed method for counting large mammals from a single, very high
resolution panchromatic GeoEye-1 satellite image.

2.4.1. Image Preprocessing

To highlight large mammals in the panchromatic imagery, we applied a histogram stretch in ENVI
5.2 (Exelis Visual Information Solutions, Inc., Boulder, CO, USA). Due to the limited resolution of
the panchromatic band of VHR satellite images, an individual animal is represented as a cluster of
pixels consisting of no more than eight pixels. To fully use their geometric information, we resampled
the original image. Bicubic interpolation, which uses weighted arithmetic means, was chosen, as
it maintains the quality of detailed information through antialiasing [76]. The image was carefully
resized to eight times the original size, taking the wavelet decomposition performance into account, as
well as memory and computation time, using

I =
[
ai,j

]
m×n (1)

where the original image
[
ai,j

]
m×n is a matrix with m rows and n columns. We describe the resampled

image as
I′ = f

(
λ
[
ai,j

]
m×n

)
(2)

where I′ is the new image, λ represents the diagonal matrix of the resized scale and f is the bicubic
interpolation function.
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2.4.2. Wavelet-Based Preclassification

Based on the generally accepted methodology of image decomposition and reconstruction, we
used the wavelet-based method when highlighting suspected large mammals, to enhance their contrast
against the immediate surroundings and to suppress irrelevant background [77,78]. Wavelet transform
(WT) is based on the theory of Short-Time Fourier Transform (STFT) [79]. The WT differs from STFT in
that it replaces infinite triangle function bases with finite decay wavelet bases. The finite decay wavelet
bases, which are stretched (or squeezed) and translated from the mother wavelet, have an average
value of 0 [80]. The WT of a continuous signal is defined as

T(a, b) = w(a)
∫ ∞

−∞
x(t)ψ∗(

t− b
a

)dt (3)

where a is scale, b is the position parameter, w(a) is a weighting function and ψ∗( t−b
a ) is the wavelet

base [81]. If the wavelet base sufficiently corresponds to an input signal, the WT coefficient at this
position is high [82]. The optimal mother wavelet and parameters were selected by comparing the
performance of mainstream wavelet families regarding maintaining geometry features of suspected
targets in our experimental imagery. A Haar wavelet (or db1 wavelet) was selected as it is not
continuous and is therefore able to detect signals containing a sudden transition [83].

The image was transformed into a series of sub-images: A1 (low-frequency image), H1
(high-frequency image in the horizontal direction) and V1 (high-frequency image in the vertical
direction); and then the same procedure was applied to the low frequency image (A1). Such a method
permits multiresolution processing in both directions. After three transformation iterations, nine
sub-images were generated, containing details as well as background. To highlight suspected targets
and suppress background information, a weighted fusion algorithm was used. We then calculated
the mean-square error (MSE) [84] between sub-images (resized to the original) and the original image.
Sub-images containing more high-frequency information yielded higher MSE values. The weight of
each sub-image should be

ωi =
σ2

i

∑n
j=1 σ

2
j
(i, j = 1, 2, . . . , n) (4)

where i,j are the serial numbers of the current image, σi(j) is the MSE of the current sub-image, and n is
the total number of calculated sub-images. The weighted fusion algorithm creates a high signal-to-noise
ratio (SNR) image. We then used Ostu’s method [85] in MATLAB (The Mathworks Inc., Natick, MA,
USA), to discriminate between each suspected animal blob and the background.

2.4.3. Selecting Geometric Features

The next concern was how to identify which suspected large mammals were true large mammals.
This entailed deciding which geometric features to use, typically length and area. We also considered
gray value (hue) pixels. We used cross-validation (a model assessment technique) to verify the
performance of classifiers [86]. This basically involves grouping raw data: one group is used as
training set and the other for validation. K-fold cross-validation (K-CV) is a commonly used validation
technique in object detection [86,87]. We divided the data into ten groups, and used each group once
as the training dataset while the other nine groups acted as the validation dataset. We determined the
most suitable combination for this experiment by calculating the average value of the training errors
and checking errors using the dataset mentioned above at situations of different feature combinations.
After employing the K-fold cross-validation multiple times, we decided a combination of feature area,
major axis length, minor axis length and bounding box area was most suitable for this experiment.

2.4.4. ANFIS-Based Reclassification

A total of 100 blobs (or unknown objects) were randomly selected from the database to train the
final model. The distribution of training data was comparable to the distribution of the whole dataset.
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Before we trained these data using ANFIS, a number of rules was decided upon. The Fuzzy C-Mean
(FCM, or Fuzzy ISODATA), which was originally designed by Dunn [88], is a well-accepted clustering
algorithm ideally suited to solving a natural problem [89,90]. As shown in Figure 5, this algorithm
generated 10 cluster centers (corresponding to 10 membership functions for each variable). To limit the
number of feature fields, we used expert knowledge to eliminate redundant classes. Finally, we input
the 100 randomly selected blobs to train ANFIS in MATLAB. With the function ′genfis2′, we built an
initial fuzzy inference system (FIS) structure. We then loaded the initial FIS structure into the function
′anfis′ to train the ANFIS and develop the model. A hybrid method, including least-squares and
backpropagation gradient descent, was applied to optimise the model. ANFIS model evaluation was
conducted according to the ‘evalfis’ function. Required parameters for the ‘anfis’ function, including
training error goal, initial training step size, step size decrease rate and step size increase rate, were set
to default values (0, 0.01, 0.9, 1.1), which were proven to be adequate for most situations [91]. In order
to avoid overfitting, we set the epoch number to 75 by considering both training error and checking
error (see Appendix A). The adaptive tuning stops when the least-squares error is less than the training
error goal, or has reached the epoch number. By loading all the datasets containing feature values into
the model, all suspected blobs were classified by the inference system into targets and non-targets.

 

Figure 5. Flow diagram of the adaptive-network-based fuzzy inference system (ANFIS) based
reclassification system.

2.5. Accuracy Assessment

We assessed the accuracy of the classification results by comparing the number of large mammals
detected by the computer model with the ground truthing, and then calculated the omission error and
commission error [92]. Detection accuracy (DA), which is the most commonly used metric, is highly
inversely correlated (DA + omission error = 1) [93]. The values for both the omission error and the
commission error are always between 0 and 1. The closer their values are to 0, the better the result.

The accuracy index (AI), which was devised by Pouliot et al. [94], was computed as:

AI =
N− TP− FN

N
(5)

where TP (true positive) denotes the number of targets occurring in both the ground truth and our
processing result; FN (false negative) denotes the number of targets that do appear in the ground truth,
but not in our processing result; FP (false positive) denotes the number of targets occurring in our
processing result, but not in the ground truth data; and N is the number of ground truth targets in the
study area. The higher the value of the accuracy index, the better the result.

3. Results

In Figure 6, the visual results of our semi-automated ANFIS-wavelet approach to detecting large
mammals are compared with the results gained with the thresholding method.
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Figure 6. Results regarding large mammal detection in the three different pilot study areas.
The columns show images of the three pilot areas: No. 1 is of low complexity, No. 2 of moderate
complexity and No. 3 of high complexity. The first row contains the original panchromatic satellite
images; the second row illustrates results based on the thresholding method; and the third row
illustrates the results obtained using the method proposed in this study (i.e., ANFIS-wavelet). The
green, red and yellow dots indicate true positive, false negative and false positive results, respectively.

The accuracy index regarding the proposed method for the low complexity study area (No. 1)
was as high as 0.86 (Table 1). For the higher-complexity sites, the results also yielded acceptable
accuracy indices: 0.79 and 0.72, respectively, for the moderately (No. 2) and highly (No. 3) complex
sites. As shown in Table 2, the thresholding method produced accuracy indices of 0.64, 0.56 and 0.54,
respectively, for the low, moderate and high complexity areas, with an average accuracy index of
0.58. The average accuracy index of our proposed method, depicted in Table 1, is 0.79, which is 0.21
higher than that of the thresholding method. Also, the calculated omission and commission errors
of our approach (0.09 and 0.12, respectively) are lower than those of the thresholding method (0.15
and 0.24, respectively). It should also be noted that, if the study area is more complex, this does not
necessarily mean that the detection is less accurate. As shown in Figure 6, specific ground features
can introduce inaccuracies, such as the errors appearing in this study close to roads and edges of
forests. In absolute terms of detected targets, the thresholding technique and our semi-automated
ANFIS-wavelet approach showed different accuracies for each pilot study area. The statistical results
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regarding this study area illustrate that a higher detection accuracy is obtained with the ANFIS-wavelet
method than with the threshold-based method.

Table 1. Accuracy assessment of the ANFIS-wavelet method for the three pilot study areas: No. 1,
No. 2 and No. 3, with low, moderate and high complexity, respectively.

Pilot Area No. 1 Pilot Area No. 2 Pilot Area No. 3 Average

Ground truth 50 128 416 198
True positive 47 118 370 178
False positive 4 17 64 28
False negative 3 10 56 23
Omission error 0.06 0.08 0.13 0.09

Commission error 0.08 0.13 0.15 0.12
Accuracy index 0.86 0.79 0.72 0.79

Table 2. Accuracy assessment of the threshold-based method for the three pilot study areas with low,
moderate and high complexity, respectively.

Pilot Area No. 1 Pilot Area No. 2 Pilot Area No. 3 Average

Ground truth 50 128 416 198
True positive 45 105 354 168
False positive 13 33 126 57
False negative 5 23 72 33
Omission error 0.10 0.18 0.17 0.15

Commission error 0.22 0.24 0.26 0.24
Accuracy index 0.64 0.56 0.54 0.58

4. Discussion

The results from this study demonstrate that it is feasible to use VHR panchromatic satellite
imagery to detect and count large mammals in extensive open areas. In comparison with the traditional
thresholding technique, our ANFIS-wavelet method produced a higher accuracy index and less
commission/omission errors.

Although the thresholding method performs adequately when the targets share similar gray
values and are dissimilar to their background, it is less accurate in more complex areas. There are two
main reasons for the higher commission error found when using the thresholding method. Firstly, when
the gray values of suspected objects (animals) are similar to those of the surroundings, they may be
ignored by the threshold-based segmentation. In the ANFIS-wavelet method, the representation of the
target is considered at different spatial scales. Suspected animals that do contrast with their immediate
background, once different spatial scales are considered, will contribute to a higher weighted value in
the preclassification results. Secondly, when animal objects and terrain have similar gray values, they
cannot be altered simply by using thresholds: more information is required before further processing
can be undertaken [32]. We statistically selected four geometric features to distinguish non-target
objects from large mammals in the feature space. This approach proved more accurate than merely
using a simple threshold value.

The commission error derived from our method was found to be three percentage points greater
than the omission error, resulting in more non-target objects being incorrectly classified as large
mammals than large mammals being incorrectly omitted. Further analysis revealed that commission
errors always appeared near roads and vegetation. Bushes were confused with large mammals because
of similarities in geometric features. Rough road surfaces or vehicles may result in discontinuous
blobs and may thus also be recognized as large mammals by our method. Two reasons for omission
include targets that are not clearly distinguishable from the background and targets that are too close
to each other.
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The geometric features chosen to distinguish an animal from its background were area, major
axis length, minor axis length and bounding area. These features differ between target animals and
non-targets such as shrubs or boulders. Even though some features were highly correlated, they can
also help us in detecting animals. For example, defining both major and minor axis length can help to
eliminate objects that do not have a correct length–width ratio.

The ANFIS-wavelet method has proved to be a feasible method for detecting animals in
open savanna landscapes. This method is based on wavelet preclassification followed by ANFIS
reclassification. The wavelet-based classification is able to highlight objects and maintain their
geometric features. This is critical because the targets are dim and small, and as much useful
information as possible needs to be retained. By using multiscale analysis, targets can be precisely
located in poorer quality (i.e., low SNR) imagery without information loss. The ANFIS, which combines
the advantages of machine learning and a fuzzy system, makes it possible to learn from data and
concomitantly use existing expert knowledge, resulting in a method that is both efficient and stable.

5. Conclusions

We developed a novel semi-supervised object-based method that combines a wavelet algorithm
and a fuzzy neural network for detecting and counting large mammals (e.g., wildebeests and zebras)
from a single, very high resolution GeoEye-1 panchromatic image in open savanna. To discern large
mammals from their surroundings and discriminate between animals and non-targets, we used the
wavelet technique to highlight potential objects. To make full use of geometric attributes, we carefully
trained the classifier, using the adaptive-network-based fuzzy inference system. We then compared
our method with the traditional threshold-based method. The results showed that our proposed
method (with an accuracy index of 0.79) significantly outperformed the traditional threshold-based
method (with an accuracy index of 0.58) in detecting large mammals in open savanna. The greater
availability of VHR images, and the advances in image segmentation techniques, mean that animal
detection by means of remote sensing technology is a pragmatic alternative to direct animal counting.
Further developments in image processing should eventually make it feasible to detect and monitor
medium-sized and small animals remotely from space as well.
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Appendix A

ANFIS is a hybrid method which combines both least-square and backpropagation algorithms.
The training datasets were used to construct the initial model, and the validation datasets were used
for tuning. The training algorithm stops when either the training error goal value is satisfied, or the
number of training epochs is reached. The training error goal was always being used as default value
0 when solving an unknown problem [91]. After a certain epoch number, the model will overfit the
training data. To avoid overfitting, an optimal epoch number is required, but it is also difficult to
determine. We evaluated the training error and the checking error (also known as validation error)
with increasing the epoch number (Figure A1). Root-mean-square error (RMSE) is one of the most
used indexes for performance indication [95]. The RMSE of the training data decreases along with the
epoch number, but the tendency is slowed down after around 120 epochs and does not seem to have
an obvious descent after 200 epochs. The RMSE of the checking data decreases along with the epoch
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number until around 75 epochs, and increases rapidly before around 120 epochs. According to this
quantitative analysis, we found that it is proper to set the epoch number to around 75.

Figure A1. Indentification of optimum epoch number based on the root-mean-square error of both
training error and checking error.
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Abstract: In an effort to detect the region-of-interest (ROI) of remote sensing images with complex
data distributions, sparse representation based on dictionary learning has been utilized, and has
proved able to process high dimensional data adaptively and efficiently. In this paper, a visual
attention model uniting hyperparameter sparse representation with energy distribution optimization
is proposed for analyzing saliency and detecting ROIs in remote sensing images. A dictionary
learning algorithm based on biological plausibility is adopted to generate the sparse feature space.
This method only focuses on finite features, instead of various considerations of feature complexity
and massive parameter tuning in other dictionary learning algorithms. In another portion of the
model, aimed at obtaining the saliency map, the contribution of each feature is evaluated in a
sparse feature space and the coding length of each feature is accumulated. Finally, we calculate the
segmentation threshold using the saliency map and obtain the binary mask to separate the ROI from
the original images. Experimental results show that the proposed model achieves better performance
in saliency analysis and ROI detection for remote sensing images.

Keywords: saliency analysis; remote sensing; ROI detection; hyperparameter sparse representation;
dictionary learning; energy distribution optimizing

1. Introduction

With the rapid progress of remote sensing technology, it is becoming easier to acquire high spatial
resolution remote sensing images from various satellites and sensors. However, the analysis and
processing of high spatial resolution images in more effective and efficient ways still remains a great
challenge, particularly in images with complicated spatial information, clear details, and well-defined
geographical objects [1–4].

The detection of the region of interest (ROI) has become a popular research topic, with valuable
applications in many fields, such as object segmentation [5,6], image compression [7,8], video
summarization [9], and photo collage [10,11]. Introducing ROI detection into remote sensing image
processing has raised great concern among some scholars.

The human visual system serves as a filter for selecting a certain subset of visual information,
based on visual saliency, while ignoring irrelevant information for further processing [12,13]. The region
that draws human attention in an image is called ROI. There has been a lot of work done on saliency
analysis and ROI extraction based on visual saliency, which is generally constructed based on low-level
visual features, pure computation or a combination of these.
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Itti et al. [14] developed a biologically-based model ITTI, which was named after the presenter,
using “Difference of Gaussians” across multiple scales to implement “center-surround” contrast in
color, intensity, and orientation features. Li et al. [15] presented a model based on Itti’s method and
additionally extracted GIST features trained by a support vector machine (SVM). Klein et al. [16]
extracted ROIs with the knowledge of information theory. Although the models calculated visual
saliency based on biological plausibility, the computing of center-surround involved the tuning of
many parameters that determined the final performance.

In addition, pure computation based algorithms for ROI extraction have also been developed.
Saliency analysis based on frequency domain has been shown in [17–19]. Imamoglu et al. [20] utilized
the lower-level features produced by wavelet transform (WT). The above methods based on pure
computing improve the efficiency of saliency processing. However, problems related to the complexity
of modeling catering to different feature distributions and the lack of sufficient plausibility of biological
visual saliency mechanisms are still unsolved.

With regard to mixed models, the Graph-based visual saliency (GBVS) model proposed by
Harel et al. [21] applied the principles of Markov Chain theory to normalize activation maps on each
extracted feature under the ITTI model. In 2012, Borji and Itti [22] utilized the sparse representation of
the image and used local and global contrast in combination to detect saliency. Goferman et al. [23]
combined local underlying clues and visual organization rules with methods of local contrast to
highlight significant objects, and proposed a different model based on context-aware (CA) salient
information. The CA model can detect the salient object in certain scenes, but the inevitably high false
detection rate affects the accuracy. Another drawback of the model is that the time complexity is much
higher than for other spatial-based saliency models. Wang et al. [24] proposed a visual saliency model
based on selective contrast. Additionally, methods utilizing learning have also attracted attention in
recent years, such as the model for saliency detection by multiple-instance learning [25].

In terms of the application of saliency analysis in remote sensing images, some have employed
support vector machines (SVM) to extract bridges and airport runways from remote sensing
images [26,27]. Some have constructed parameterized models to extract roads and airports from
remote sensing images with prior information of targets [28–30]. Zhang et al. [31] proposed a frequency
domain analysis (FDA) model based on the principle of Quaternion Fourier Transform to attain better
experimental results compared with those that only used the information of amplitude spectrum or
phase spectrum in the frequency domain. Zhang et al. also adopted multi-scale feature fusion (MFF)
based on integer wavelet transform (IWT) to extract residential areas along the feature channels of
intensity and orientation [32]. For some remote sensing images corrupted by noise, the saliency analysis
of co-occurrence histogram (SACH) model uses a co-occurrence histogram to improve robustness
against Gaussian and Salt and Pepper noises [33]. In addition, global clustering methods for image
pre-classification or ROI detection are also introduced in remote sensing images [34–36]. For example,
Lu et al. [36] first produced an initial clustering map, and then utilized a multiscale cluster histogram
to analyze the spatial information around each pixel.

It is noticeable that the data sets of remote sensing images have a high volume of dimensional
information, which is usually too large to handle effectively. Aiming at this problem, sparse codes have
been introduced into image processing. Sparse codes learned from image patches are similar to the
receptive fields of simple-cells in the primary visual cortex (V1) [37], which shows that the mechanism
of human visual saliency is consistent with sparse representation. Sparse representation has also been
shown to be a quite effective technique for wiping out non-essential or irrelevant information in order
to reduce the dimensions. Furthermore, it has greater flexibility for data structure capture, and better
stability against perturbations of the signal, which suggests that we can obtain the sparse coefficients
produced by those basic functions with good robustness against noise or corruption.

Researchers have proposed a number of methods for dictionary learning. Independent Component
Analysis (ICA) is a good method for learning a dictionary in order to obtain compact basic functions.
Thus, ICA is mainly utilized for the learning of basic functions based on a large number of randomly
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selected image patches. In addition, there are also some other methods, such as DCT [38], DWT [39],
K-SVD [40], and FOCUSS [41], which also perform well at forming sparse representation of datasets.

However, these methods are difficult to use when faced with different data modalities requiring
specific extensive hyper-parameter tuning on each modality when learning a dictionary in remote
sensing images. For DCT and DWT, there are three parameters that need to be considered: the number
of extracted features; the sparsity penalty, which is used to balance sparsity and distortion during the
learning process; and the size of mini-batch, which helps improve processing efficiency. For K-SVD,
sparsity and dictionary size of the target should also be considered. For FOCUSS, the calculation of
the final results needs a posteriori information. Therefore, the efficiency of these dictionary learning
algorithms may run into a bottleneck when applied to remote sensing images.

Considering the problems mentioned above, we propose a model based on the integration of
hyperparameter sparse representation and energy distribution optimization for saliency analysis.
In this study, we focus on the ROI in optical remote sensing images. As a whole, the combination has
full biological plausibility in terms of the human visual mechanism. In terms of sparse representation
of remote sensing images, we adopt a novel feature learning algorithm—hyperparameter sparse
representation—to train a dictionary. This algorithm is simple, clear and can be quickly implemented
with high effectiveness, as well as being almost parameter-free, as the feature number is the only item
to be decided. As for the measure of saliency, we use an energy distribution optimization algorithm
to define saliency as entropy gain. Similarly, computation of this algorithm does not involve any
parameter tuning, and is computationally efficient.

In the experimental process, we first transform the image from the RGB color space to the HSI
color space as a preprocessing step. Subsequently, the input remote sensing images are divided into
overlapping patches, and the patches are further decomposed over the learned dictionary. Then,
an algorithm is utilized to maximize the entropy of visual saliency features for energy redistribution,
so as to generate a final saliency map. Finally, Otsu’s threshold segmentation method is implemented
in the acquisition of binary masks from saliency maps, and the masks are then used for ROI extraction
from the original remote sensing images. Experimental results show that the proposed model achieves
better performance than other traditional models for saliency analysis of and ROI detection in remote
sensing images.

There are three major contributions in our paper: (1) we introduce hyperparameter sparse
representation into dictionary learning for remote sensing images. The algorithm converges faster and
has fewer parameters; (2) while training the dictionary, we define every single pixel as a feature. Thus,
the sparse representation of an image is equal to the optimal features used for further saliency analysis;
and (3) hyperparameter sparse representation and energy distribution optimization of features are
integrated to compute the saliency map. This method is biologically rational, and consistent with
cortical visual information processing.

The work in this paper is organized as followed: the proposed model is thoroughly illustrated in
Section 2, Section 3 focuses on the experimental results and discussion, Sections 4 and 5 provide the
applications and conclusion, respectively.

2. Methodology

In the proposed model, the whole process of ROIs detection for remote sensing images can be
divided into three parts: (1) obtain sparse representation of the image feature; (2) compute saliency
contribution of all sparse features; (3) extract the ROIs from saliency maps. Figure 1 illustrates the
framework of the proposed model. As we can see, in the first part, an unsupervised feature learning
algorithm—Hyperparameter Sparse Representation—is utilized to create a dictionary for sparse
representation of remote sensing images. We define every single pixel as a feature. Thus, the sparse
representation of an image is equal to the optimal features that are used for further saliency analysis.
The second part measures the entropy gain of each feature. On the basis of the general principle of
predictive coding [42], the rarity of features can be seen as their average energy, which is redistributed
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to features in terms of their code length: frequently activated features receive less energy. The final
saliency map is generated by summing up the activity of all features. Finally, we segment ROI from
the original remote sensing image with the mask of saliency map based on the threshold segmentation
algorithm [43].

Figure 1. The framework of the proposed model.

Due to the characters of the simple computation, time efficiency and consistency in terms of
the human color perception system of an HSI-based model [44], we preprocess images from RGB to
HSI color space. Then the represented image is divided into overlapping patches and each patch is
vectored as a column where all the pixel features were columned to form a feature matrix. Section 2.2,
Section 2.3, Section 2.4 separately introduce the details of the three parts of our proposed model.

2.1. The Inadequacy of Traditional Algorithms

As we mentioned in Section 1, traditional visual saliency analysis methods have played an
increasingly important role in the field of remote sensing image processing. Remote sensing images
generally have high resolution and complex structure, which means that it is difficult to process directly.
Visual attention models are first proposed for natural scene images. This kind of image is mostly
obtained by different types of cameras, which means that we can highlight the significant targets by
adjusting the aperture and the shutter. Targets will contain more information than background by
selecting artificially. However, in remote sensing images, all objects have the same clarity. In other
words, there is no difference in terms of clarity between the residential areas and the mountains,
the roads and the ponds. Because of the clear and complex background, the problem of background
interference is serious, which makes the saliency analysis hard.

The traditional methods need to combine the difference of the data distribution characteristics to
select the effective calculation method for analysis, which will undoubtedly increase the diversity and
complexity of the analysis. Moreover, the primary visual cortex shows that the receptive field of the
single cell is similar to the sparse coding of the natural image block [45]. The human visual system
also exhibits the characteristics of multilayer sparse representation of the image data. It shows that the
sparse representation is consistent with the principle of human visual saliency mechanism, and can
well explain the visual significance, which is biologically rational.

As shown in Figure 2, the ITTI model always mistakenly detects the background and sometimes
misses the target region. The results of the frequency domain based model, Frequency-tuned (FT)
model, contain a lot of debris and holes. The algorithms, which are designed specifically for
ROI detection of remote sensing images, FDA and our model, obtain acceptable results. However,
our results are clearly more accurate. In general, the ITTI and FT model are likely to get more inaccurate
results, the FDA model makes some relative progress, and our model works best.
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Figure 2. Region-of-interest (ROI) detection results produced by our model and the other 3 models. (a)
origin images; (b) ITTI; (c) FT; (d) frequency domain analysis (FDA) and (e) our model.

2.2. Hyperparameter Sparse Representation

The method of dictionary learning can be considered as the generation of a particular feature
distribution. For example, sparse representations are designed to use several nonzero coefficients to
represent each sample, which highlight the main features of the sample. To achieve this goal, the ideal
characteristics of the feature distribution should be optimized.

The desirable properties of feature distribution should meet with and include the three criteria [46]:
population sparsity, lifetime sparsity and high dispersal. Population sparsity means that for each
column in the feature matrix, there should be finite active (non-zero) elements. Moreover, it provides
an effective coding method which is a theoretical basis for early visual cortex studies. Lifetime
sparsity refers to that each row of feature matrix having only a small number of non-zero elements.
This is because the features which are needed for further calculation ought to be characteristic of
discrimination. High dispersal indicates that all features should have similar contributions, and the
activity value of each row is supposed to be the same for every feature. Under certain circumstances,
high dispersal is not completely necessary for good feature representation, on account of the same
features which may be active and can prevent feature degeneration [46].

According to the characteristics that the sparse features should have, we apply a simple
algorithm—hyperparameter sparse representation—which can optimize the three properties of features.
Specifically, we illustrate these properties with a feature matrix of each sample. Figure 3 shows the
structure of this algorithm.

Figure 3. The structure of Hyperparameter Sparse Representation algorithm.
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Each pixel column is viewed as a feature in our model. A feature matrix will be obtained after
remote sensing image preprocessing. Each row of the matrix represents a feature and each column is a
patch divided from the image. f (i)j represents the jth feature value (rows) for the ith patch (columns).
This sparse representation method aims to optimize and normalize the feature matrix by rows (feature
values), then by columns (vectored image patch) and finally sums up the absolute value of all entries.

Firstly, by dividing each feature by its l2-norm across all patches, each feature is normalized to be
equally active:

∩
f j = f j/‖ f j‖2 (1)

Then, analogously, by computing
∧

f (i) =
∩

f (i)/
∩

‖ f (i)‖2, all these features are normalized by each
patch to put them on the l2-norm ball. All normalized features are further optimized for sparsity by l1
penalty. If there are M patches, then the sparse filtering objective function can be written as follows:

min
M

∑
i=1
‖
∧

f (i)‖1 =
M

∑
i=1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∩
f (i)

‖
∩

f (i)‖2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

(2)

Now it is essential to analyze whether the objective function meets with the three properties of
desire features. First, population sparsity of features on the ith patch is measured by the equation
as follows:

∧
‖ f (i)‖1 =

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

∩
f (i)

‖
∩

f (i)‖2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

(3)

when the features are sparse, an objective function can reach a minimum for the constraint of
∧

f (i) in
the l2-norm ball. Contrarily, a patch that has similar values for each feature would incur a high penalty.
Normalization of all features would cause competition between features: if only one element of f (i)

increases, all the other elements in f (i) will decrease in the normalization, and vice versa. Minimal
optimization of the objective function aims to make the normalization features sparse and mostly close
to zero. With the principle of the competition between features, some features in f (i) have to be of
large values while most of the rest of them are very small. To sum up, the objective function has been
optimized for population sparsity.

Meanwhile, to satisfy the quality of high dispersion, each feature should equally active. As
mentioned above, each feature is divided by its l2-norm across all patches and normalized to be equally
active by Equation (1). This is equal to constraining each feature to have the same expected squared
value, thus contributing high dispersion. In the work of Ngiam et al. [47], they found that we can
obtain over-complete sparse representation when realizing population sparsity and high dispersion
in feature optimization, which also means that it is sufficient to learn good features as long as the
condition of population sparsity and high dispersion are satisfied.

Therefore, obviously, the sparse filtering satisfies the three properties of desirable feature
distribution and at the same time is also proved to be a fast and easy algorithm to implement. The entire
optimization can be seen as the process of dictionary learning. When the objective function is optimized
to reach a minimum under constraints, a dictionary D for sparse representation of the original image
would appear to be the natural next-step before going on to process the image.

Notably, the entire optimization process of the feature matrix is automatically operated with the
only tunable parameter: the number of the features. We can change the number of features by resizing
the row number of the feature matrix to satisfy different requirements in image and signal processing.
We can also learn that the dictionary learning process of the proposed model is approximately similar
to the multi-layer sparsity by which the human vision system reacts to an image with the salient region
from its surroundings.
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2.3. Energy Distribution Optimizing

In this part, we describe the saliency of images with the optimized energy distribution (Algorithm 1),
where different feature responses should have different energy intensity based on the principle of
predictive coding. Therefore, incremental coding length is introduced to measure the distribution of
energy on different features [48], which implies that different features have different rarity. The energy
of the jth feature is defined as the ensemble’s entropy gain during the activity of the jth feature.
So the rarity of a dictionary feature is computed as its average energy. That is to say, rarely activated
features will receive higher energy than activated ones. Then the final visually saliency is obtained by
energy measurement, which shows that saliency computation by energy distribution conforms to the
mechanism of human visual saliency in some degree.

Algorithm 1. Energy Distribution Optimizing

Input: A remote sensing image A = [a1, a2, · · · ak, · · · ] and the liner filter W = [w1, w2, · · ·wk, · · · ].
Vectorize the image patch ak

for each feature do

compute the activity ratio of the jth feature pj.
maximize the entropy H(p).
when a new excitation add a variation ε to pi

if i = j
∧
pi = (pi + ε)/(1 + ε)

else
∧
pi = pi/(1 + ε)

end

calculate the change of entropy of the jth feature COE(pj).
get the salient features group G = {i|COE(pi) > 0}
compute the energy of the jth feature dj

end

obtain the saliency map mk of image patch ak

With the dictionary D for sparse representation mentioned above, the spare feature matrix X of
image A on D can be acquired by X = WA, where W = D−1. Then we can compute the activity ration
pj as follows:

pj =
∑k |wjak|

∑j ∑k |wjak| (4)

To fully consider the reaction degree of each feature in the sparse code and achieve optimality,
maximizing the entropy H(p) of the probability function p is a key principle to efficient coding.
The probability function p varies at different points of time, depending upon whether there is a new
perturbation on a feature, which means a variation ε will be added to pi and further change the whole
probability distribution.

This variation will change the entropy of the feature activities. We define the change of entropy of
the jth feature COE(pj) as the following equation:

COE(pj) =
∂H(p)

∂pj
= −H(p)− pj − logpj − pjlogpj (5)

The features with COE value above zero are viewed as salient and a salient feature set is obtained
as G. Then the energy among features are redistributed according to their COE values. Denote the
amount of energy that every sparse feature obtains dj is computed as follows:

dj =

⎧⎨⎩
COE(pj)

∑
j∈G

COE(pj)
j ∈ G

0 j /∈ G
(6)
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Finally, the saliency map M = [m1, m2, · · ·mk, · · · ] of image A can be obtained as the equation below:

mk = ∑
j∈G

djwjak (7)

The final saliency map can be obtained by restoring all the vectorization image patches to the
whole original remote sensing image.

2.4. Threshold Segmentation

To further evaluate the performance of the proposed model, we segment the saliency maps from
the original images and obtain masks of the ROIs with the threshold algorithm proposed by Otsu [43].

Assume that the total number of pixels in an image is N, gray values of the image range from 1 to L,
and the number of pixels with gray value i in the entire image is ni. The occurrence ratio of pixels is
computed as follows:

pi = ni/N (i = 1, 2, . . . L)

L

∑
i=1

pi = 1 (8)

Suppose that the gray threshold value is k, pixels of the whole image is thus divided into two
classes: A and B. Values in class A range from 1 to k, and values in class B from k + 1 to L. Their
respective ratio is:

ωA =
k
∑

i=1
pi = ω(k)

ωB =
k
∑

i=k+1
pi = 1−ω(k)

(9)

Then, the average gray value of each cluster is:

λA =
k
∑

i=1
ipi/ωA = λ(k)

ω(k)

λB =
L
∑

i=1+k
ipi/ωB = λT−λ(k)

1−ω(k)

(10)

where λ(k) =
k
∑

i=1
ipi and λT =

L
∑

i=1
ipi. λT is the average gray value of the whole image. The variance

between A and B are calculated as follows:

σ2(k) =
[λTω(k)− λ(k)]2

ω(k)[1−ω(k)]
(11)

Then, the optimal segmentation threshold can be obtained by:

k∗ = argmax
1≤k≤L

σ2(k) (12)

The segmentation threshold value varies for different saliency maps. With the image binary
segmentation, the masks of the ROIs are produced, and the masks are overlaid onto the original images
to extract the final ROI in the next step.
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3. Experimental Results and Discussion

To evaluate the performance of the proposed model, we used 300 remote sensing images of two
different kinds as the experimental data. One is the remote sensing images from the SPOT 5 satellite
with a spatial resolution of 2.5 m; the other is the remote sensing images from Google Earth with a
higher spatial resolution of 1.0 m. The size of the experimental data are all 512 × 512 pixels. Among
experiment images, we define the rural residential regions as ROIs, which should be detected primarily.
As we have presented before, these regions typically include rich texture, irregular boundary, the area
of brightness and color highlighting.

For the proposed model, the size of all these images used for learning a dictionary is
down-sampled to 128 × 128 pixels, considering that we chose each pixel as a feature for saliency
detection and ROI extraction. Therefore, the time consumed will be unbelievably excessive if we
directly process images of original size. For remote sensing images of each kind, we randomly
selected 60 images of to train the dictionary for sparse representation and all the 150 images were
demonstrated for saliency analysis and ROIs extraction. The performance of the proposed model was
compared qualitatively and quantitatively with other nine models including the Itti’s model (ITTI) [14],
the frequency-tuned (FT) model [17], the spectral residual (SR) model [18], the Graph-based visual
saliency (GBVS) model [21], the Wavelet-transform-based (WT) model [20], the context aware (CA)
model [23], the multiscale feature fusion (MFF) model [32], the frequency domain analysis (FDA)
model [31] and the saliency analysis of co-occurrence histogram (SACH) model [33]. These nine
models are selected for the following reasons:

• high citation rate: The classic model ITTI and SR have been widely cited;
• variety: ITTI is biologically motivated; FT, SR, and WT model all are the purely computational

based models and estimate saliency in the frequency domain; GBVS and CA both belong to
biological models and partly to the computational model;

• affinity: MFF, FDA and SACH model all are specially designed for saliency analysis in remote
sensing images.

Notably, we use resized original images of 128 × 128 pixels to test their respective performance
on different models. Finally, we resized the saliency maps of all models uniformly to the size of
128 × 128 pixels for fair comparison. Here, in each kind of image, we choose eight out of all the
150 images to make up the display figures for our experimental results.

After the transformation from RGB to HSI color space, we divide all the input remote sensing
images used for dictionary training into overlapped patches of the size of 8 × 8 pixels with
192-dimension and further form an up to 130,000 large set of vectorization image patches.

Here, what we should pay attention to is the selecting feature number which is the only tunable
parameter in the process of dictionary learning. Generally, a greater numbers of features correlates
to a better performance. For consistency with the input dimension of the vectorization image set to
form a square matrix, we choose 192 features for dictionary learning and saliency analysis. In our
experiments, we adopted the off-the-shelf L-BFGS [49] package to optimize the sparse filtering objective
until convergence with a maximum iteration number of 100. The learned dictionary we have obtained
is shown in Figure 4.
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Figure 4. The learned dictionary.

3.1. Qualitative Experiment

As shown in Figures 5 and 6, the comparison among saliency maps generated by the proposed
model and the other nine competing models on remote sensing images from SPOT 5 satellite and
Google Earth, respectively. We can see that the saliency maps obtained by the proposed method focus
on the residential areas and hardly have any background information. In contrast to the original
images, the results of our model detected almost all salient objects. However, the other nine models
detected some redundant information from the original images and cannot accurately locate the salient
region. Although the CA model detects a clear boundary, it also includes the non-residential areas,
thus enlarging the fall-out ratio and meanwhile is quite time-consuming.

Figure 5. Saliency maps by our proposed model and nine competing models on SPOT 5 images.
(a) Origin images; (b) Ground truth; (c) CA; (d) FT; (e) GBVS; (f) ITTI; (g) WT; (h) SR; (i) MFF; (j) SACH;
(k) FDA and (l) Ours.
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Figure 6. Saliency maps by our proposed model and nine competing models on Google Earth images.
(a) Origin images; (b) Ground truth; (c) CA; (d) FT; (e) GBVS; (f) ITTI; (g) WT; (h) SR; (i) MFF; (j) SACH;
(k) FDA and (l) Ours.

For SPOT 5 images, the experimental results of FDA model seem close to ours but we can see that
there are still some little non-salient regions such as roads contained in the last four saliency maps in
Figure 5. The MFF and SACH model can also obtain saliency maps which are not bad, but they are not
accurate enough. Other models such as the ITTI, GBVS, and SR generate the final saliency maps of
low resolution with blurred boundaries, which do not contribute to further ROI extraction. The CA
and WT model always get acceptable results, but the inevitable needless background information can
always be highlighted, too. Conversely, FT model fails to highlight the entire salient area, which results
in the so-called hole effect that is the incomplete description of the salient area’s interior. Meanwhile,
for Google Earth images, although the performance of all the other models on saliency details such as
border information is a little worse than that on SPOT images because of the higher spatial resolution,
the proposed model still performs better intuitively.

Similarly, we can see the ROIs extraction results for two kinds of images from Figures 7 and 8
after Otsu’s threshold segmentation. For the other nine models, some extracted ROIs are not able
to completely contain the residential areas while some ROIs include excessively large redundant
background information such as roads, especially in the ROI extraction results of the ITTI model and
the GBVS model. In contrast, the proposed model exactly extracts the ROIs with clear boundaries and
also has a good performance for remote sensing images with complex background, especially for the
images with non-salient regions inside the outline of the residential areas and those with more than
one salient region, as is shown in the ROI extraction result on the fifth and sixth images in Figure 7.
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Figure 7. ROIs extracted by our proposed model and nine competing models on SPOT 5 images.
(a) Origin images; (b) Ground truth; (c) CA; (d) FT; (e) GBVS; (f) ITTI; (g) WT; (h) SR; (i) MFF; (j) SACH;
(k) FDA and (l) ours.

Figure 8. ROIs extracted by our proposed model and nine competing models on Google Earth images.
(a) Origin images; (b) Ground truth; (c) CA; (d) FT; (e) GBVS; (f) ITTI; (g) WT; (h) SR; (i) MFF; (j) SACH;
(k) FDA and (l) ours.

On a qualitative level, the experimental results show that the proposed model can not only
generate saliency maps with a clear boundary with no excessive redundant background information,
but also extracts exactly the ROIs with irregular shape and multi-saliency.
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3.2. Quantitative Experiment

In the quantitative analysis of the experiment results, the ROC (Receiver Operator Characteristic)
curve is adopted to measure the performance of different models. The ROC curve is derived by
thresholding a saliency map at the threshold within the range [0, 255] and further classifying the
saliency map into the ROIs and the background. The True Positive Rate (TPR) and the False Positive
Rate (FPR) are two dimensions for spanning the ROC curve and respectively denote the percentage of
the ROIs from the ground truth intersecting with the ROI from the saliency map and the percentage of
the remaining background except for the ROIs. They are both computed as follows:

TPR =

M
∑

i=1

N
∑

j=1
g(i, j)s(i, j)

M
∑

i=1

N
∑

j=1
g(i, j)

(13)

FPR =

M
∑

i=1

N
∑

j=1
[1− g(i, j)]s(i, j)

M
∑

i=1

N
∑

j=1
[1− g(i, j)]

(14)

where, for an M × N image, g denotes the ground truth, s denotes the saliency map after the
binary image, and (i, j) denotes the coordinate of the images. A higher TPR value indicates a better
performance when the FPR value is the same and, conversely, better performance depends on a smaller
FPR value at the same TPR value. The area beneath the curve is called the Area Under the Curve
(AUC). Thus, a larger AUC indicates better performance. The AUCs of all the models are shown in
Tables 1 and 2. From the Tables we can see that our model obtains the largest value of AUC compared
to the other nine competing models, thus achieving better performance.

Table 1. The Area Under the Curve (AUC)s of our proposed model and nine competing models on
SPOT 5 images.

Model CA FT GBVS ITTI WT SR MFF SACH FDA OURS

AUC 0.8832 0.9008 0.8216 0.7973 0.8934 0.9107 0.9278 0.9350 0.9408 0.9629

Table 2. The AUCs of our proposed model and nine competing models on Google Earth images.

Model CA FT GBVS ITTI WT SR MFF SACH FDA OURS

AUC 0.9274 0.9227 0.9267 0.8634 0.9531 0.9354 0.9639 0.9889 0.9789 0.9887

Similarly, we used two kinds of resized remote sensing images of 128 × 128 pixel size to test our
model’s performance. For each image, a manually segmented binary map using graphic software
was generated as the ground truth. The average TPR and FPR values of every model are computed,
and their ROCs on two kinds of images are shown in Figure 9a,b, respectively. From Figure 9a, we can
conclude that the ROC curve that our model generated seems to show better performance than the
others. However, we can see from Figure 9b that the performance of the SACH model is slightly better
than our model whose ROC trace almost coincides with the other one. Therefore, we can know that the
same model may have different performance for different kinds of remote sensing images, such as the
FDA model and SACH model. The AUC comparison in Figure 10a,b further verifies our conclusion
exactly, meanwhile, the Tables 1 and 2 also show the clear value of AUC.
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Figure 9. ROC curves of our proposed model and nine competing models on (a) SPOT 5 and (b) Google
Earth images.

Figure 10. AUC of ROC curves of our proposed model and nine competing models on (a) SPOT 5 and
(b) Google Earth images.

Another method based on Precision, Recall and the F-Measure which are denoted as P, R and F
is also adopted to further evaluate the model’s performance. They are computed as follows and the
comparison of different models is shown in Figure 11a,b.

P =

M
∑

x=1

N
∑

y=1
t(x, y)s(x, y)

M
∑

x=1

N
∑

y=1
s(x, y)

(15)

R =

M
∑

x=1

N
∑

y=1
t(x, y)s(x, y)

M
∑

x=1

N
∑

y=1
t(x, y)

(16)

Fβ = (1 + β2)
P · R

β2 · P + R
(17)

where, for an image with size of M × N, t(x, y) denotes the ground truth, and s(x, y) denotes the
saliency map. The β serves as an indicator for the relative importance between precision and recall.
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The larger the value of β, the more emphasis we put on recall than precision and vice versa. We choose
β = 1 to equally balance the weight in our experiment.

Figure 11. Precision, Recall and F-Measure of ROIs by our proposed model and nine competing models
on (a) SPOT 5 and (b) Google Earth images.

From Figure 11a,b the precision of our model is obviously much higher than the other nine
competing models, which means our model returns substantially more salient regions than background
regions. Based on the previous qualitative analysis, the CA, WT, SR, MFF, SACH and FDA models
achieve higher recall than the proposed model, probably because these models capture not only salient
areas but some little non-salient regions with blurred boundaries. Meanwhile, this can be obtained
clearly and reasonably according to Equation (17). Although the Recall is not the highest among these
models, and in Google Earth dataset our ROC curve is slightly worse than SACH, our model still
achieves the highest F-measure, thus showing better performance than others on different kinds of
remote sensing images.

Additionally, we have compared the computational time for each method using matlab on a PC
with 8 G RAM, Intel Core i3-4170 CPU @ 3.70 GHz. For the proposed model, the size of all these images
used for learning a dictionary is down-sampled to 128 × 128 pixels. Here, we resized all images to
the size of 128 × 128 pixels for fair comparison. From the Table 3 we can see that the run time of our
proposed model is in the middle of the ten methods.

The FDA, FT, SR, ITTI and SACH model have a shorter run time than our model. The ITTI,
FT and SR model are not proposed for remote sensing images. They do not take into account the
complex background of remote sensing images, and use only a few simple features for analysis.
The models FDA and SACH are specially designed for remote sensing images. For the former, there
remain some holes in ROIs and the latter is not as high as our F-measure evaluation.

The MFF, GBVS, WT and CA model have a longer run time than our model. GBVS generates the
final saliency maps of low resolution with blurred boundaries. WT and CA can always get acceptable
results some non-salient regions were still extracted. Although MFF does not perform badly, it is not
accurate enough.

Table 3. Running time comparisons for 10 models.

Model FDA FT SR ITTI SACH MFF GBVS WT CA OURS

AUC 0.85 1.72 2.04 3.68 4.83 6.81 18.43 106.51 1664 5.72
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4. Applications

Because of the development of remote sensing technology, remote sensing image registration and
fusion have been paid more and more attention in this field. Some researchers have applied region
based image fusion algorithms to remote sensing images [50]. In the previous section, our experiments
show that our model can extract ROI accurately from high resolution remote sensing images. Therefore,
according to the region information provided by our model and the Gauss Pyramid decomposition,
we can obtain more details from different scales of the original images, and then carry out image fusion
to construct a clearer and accurate map.

The JPEG 2000 standard demonstrates many attractive features, including the ROI definition.
In this case, ROI needs to encode with higher quality than the background [51]. However, knowing
how to accurately select investment returns is still a prominent problem. Therefore, the results of our
model can also be applied to image compression. The saliency map of the image can be detected and
the visual importance [52] of the image pixels is measured, so that ROI can be considered as a step in
the process of image compression priority encoding. According to Figure 12, the ROI still has a high
subjective quality even at low bit rates (e.g., 0.5 bpp).

Figure 12. ROI compression example of remote sensing image. (a) reconstructed image; (b) part of
ROI; and (c) part of background region. From top to bottom: reconstructed images are 0.5 bpp and
2.0 bpp, respectively.
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5. Conclusions

This paper proposes a novel model based on hyperparameter sparse representation and energy
distribution optimizing for saliency analysis and ROI detection in remote sensing images. The proposed
model is simple to use and makes up the deficiency of biological plausibility as well as achieving
better performance on saliency analysis and ROI detection. In this model, we firstly down-sample
the original images and then transform them to HSI color space to increase the efficiency for further
processing. After the overlapped patches segmentation and vectorization, a feature learning algorithm
is adopted to train the dictionary for sparse representation. Then, energy distribution optimizing
based on the principle of predictive coding is used to maximize the entropy of the feature of visual
saliency, thereby generating the final saliency map. Finally, ROIs are extracted from original images
with Otsu’s segmentation method implemented in the obtained saliency map. Experimental results in
two different kinds of remote sensing images demonstrate that the proposed model outperforms the
other nine models in ROI extraction, qualitatively and quantitatively. In our experiments, each pixel is
simply used as feature and only the number of features need to be chosen. Thus, there is no need to
consider the specific structural information of different remote sensing images, which may provide
a new unified method for feature extraction for image processing areas such as object compression,
segmentation and recognition in the future.
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Abstract: Road detection plays key roles for remote sensing image analytics. Hough transform (HT)
is one very typical method for road detection, especially for straight line road detection. Although
many variants of Hough transform have been reported, it is still a great challenge to develop a
low computational complexity and time-saving Hough transform algorithm. In this paper, we
propose a generalized Hough transform (i.e., Radon transform) implementation for road detection
in remote sensing images. Specifically, we present a dictionary learning method to approximate
the Radon transform. The proposed approximation method treats a Radon transform as a linear
transform, which then facilitates parallel implementation of the Radon transform for multiple images.
To evaluate the proposed algorithm, we conduct extensive experiments on the popular RSSCN7
database for straight road detection. The experimental results demonstrate that our method is
superior to the traditional algorithms in terms of accuracy and computing complexity.

Keywords: Hough transform; dictionary learning; road detection; Radon transform

1. Introduction

The determination of the location and orientation of a straight line road is a fundamental task for
many computer vision applications such as road network extraction [1–23], image registration [4],visual
tracking [5], robot autonomous navigation [6], hyperspectral image classification [7,8], Global
Navigation Satellite System(GNSS) [9,10], unmanned aerial vehicle images [11], and sports video
broadcasting [12,13]. A Hough transform (HT) [14–16] is one of the very typical methods and
has been widely applied to computer processing, image processing, and digital image processing.
It transforms the problem of a global detection in a binary image into peaks detection in a Hough
parameter space. Dozens of HT extensions have been developed for solving straight line road detection
problem. And particularly, these methods can be divided into the following four groups: generalized
HT (GHT) [17–21], randomized HT (RHT) [22–25], probabilistic HT (PHT) [26–29], and fuzzy HT
(FHT) [30–32].

Generalized HT (GHT) [17–21] detects arbitrary object curves (i.e., shapes having no or complex
analytical form) by transforming the curves in image space into a four dimensional parameter space.
For example, Lo et al. [18] developed a perspective-transformation-invariant GHT (PTIGHT) by using
a new perspective reference table (PR-table) to detect perspective planar shapes. Ji et al. [19] proposed
fuzzy GHT by using fuzzy set theory to focus the vote peaks to one point. Yang et al. [20] proposed
polygon-invariant GHT (PI-GHT) by exploiting the scale-and rotation invariant polygon triangles
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characteristic to accomplish High-Speed Vision-Based Positioning. Xu et al. [21] developed robust
invariant GHT (RIGHT) based on a robust shape model by utilizing an iterative training method.

Randomized Hough transform (RHT) [22–25] reduces the calculation and storage by using
random sampling in image space, converging mapping and dynamic storage. Lu et al. [23] proposed
an iterative randomized HT (IRHT) by the iteration to gradually reduce the target area from the
entire image to the region of interest. Jiang [24] determined sample points and candidate circles by
probability sampling and optimized methods to avoid false detection. Lu et al. [25] developed a direct
inverse RHT (DIRHT) by incorporating inverse HT with RHT, this method is able to enhance the target
ellipse in strong noisy images.

Probabilistic Hough transform (PHT) [26–29] defines a Hough transform in a mathematically
“correct” form with a likelihood function in the output parameters. Matas et al. [27] proposed
Progressive PHT (PPHT) utilized the difference in the fraction of votes to greatly reduce the amount of
calculation of line detections. Galambos et al. [28] controlled the vote process by gradient information
to improve the performance of PPHT. Qiu and Wang [29] proposed an improved PPHT by exploiting
segment-weighted voting and density-based segment filtering to improve accuracy rate.

Fuzzy Hough transform (FHT) [30–32] finds the target shapes in noisy images by fitting data
points approximately. Basak and Pal [31] utilized gray level images in FHT (gray FHT) to process the
shape distortion. Pugin and Zhiznyakov [32] proposed a new method of filter or fusion of straight
lines after performing FHT and thus avoiding detecting unnecessary linear features.

Although Hough transform and its many variants have achieved better results, it is still a great
challenge to develop a low computational complexity and time-saving HT algorithm. In this paper,
we propose a new method based on a generalized HT (i.e., Radon transform) and apply it for straight
road detection in remote sensing images. We adopt a dictionary learning method [33] to approximate
the Radon transform. The proposed approximation method has two significant contributions: (1) our
method treats Radon transform as a linear transform, which greatly reducing the computational
complexity; and (2) linear transformation makes it possible to realize parallel implementation of the
Radon transform for multiple images, which can save time. To evaluate the proposed algorithm,
we conduct extensive experiments on the popular RSSCN7 database for straight road detection.
The experimental results demonstrate that our method is superior to the traditional HT algorithm in
terms of accuracy and computing complexity.

The rest of this paper is arranged as follows. Section 2 briefly reviews the related works including
the Hough transform and Radon transform. Section 3 presents the dictionary learning method to
approximate the Radon transform. Section 4 describes the extensive experiments and discusses the
experimental results. Finally, Section 5 gives some conclusions.

2. Related Work

In this section, we review some related works including Hough transform and Radon transform.
A Hough transform [14–16] detects shape in binary images by using an array named parameter

space. Each point in binary images votes for the parameters space. The highest values of votes in
the parameter space represent a parameter shape with the same linear features in the original image.
Generally, linear features of a straight line on two dimensional plane (s1, s2) are parameterized by the
slope (k) and intercept (b). Each point of a straight line will focus on one point in the (k, b) parameter
space (Figure 1).

However, when the values of parameters are infinite (i.e., k = ∞), the parametrization of a straight
line exists a singularity. Duda and Hart [34] proposes that straight lines can be parameterized by ρ, θ

(Figure 2). And the mapping relations between image point (s1, s2) and (ρ, θ) parameter space satisfy
the following:

ρ = s1cos(θ) + s2sin(θ) (1)
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Figure 1. Mapping of P1 and P2 from Cartesian space to the slope-intercept parameter space.

Figure 2. Mapping of P1 and P2 from Cartesian space to the (ρ, θ) parameter space.

Considering that a Hough transform can only be used for binary images, a Radon transform
extends this concept to the problem of straight line detection in grayscale images [35]. If we denote
y(s1, s2) as an image on a two-dimensional Euclidean plane space, the Radon transform x(ρ, θ) of
image y can be expressed as follows [36]:

x = R
=

∫
R2

y(s1, s2)δ(ρ− s1cos(θ)− s2sin(θ))ds1ds2) (2)

where δ(.) is the Dirac delta function,R is the Radon operator, y(s1, s2) is the grayscale value of the
point of (s1, s2), ρ is the distance between the origin and the vertical of straight line, and θ is the
angle between the normal of straight line and the s1 axis. Each point y(s1, s2) can be mapped into a
sinusoidal curve in the parameterized space, and a single point (ρ, θ) in the parameter space can be
used to represent a line in image space.

The inverse Radon transform is defined as

y(s1, s2) = Cx(ρ, θ) =

π∫
0

z[s1cos(θ) + s2sin(θ), θ]dθ (3)

z(ρ, θ) �
+∞∫
−∞

|ω|X(ω, θ)ej2πωtdω (4)

whereR = C−1 is the Radon operator, X(ω, θ) is the Fourier transform of x(ρ, θ) at angle θ. In addition,
the Formulas (3) and (4) are the filtered back projection algorithm which is introduced to compute the
inverse Radon transform.
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3. Dictionary Learning Based Radon Transform

In this section, we introduced a dictionary learning method to approximate the Radon transform.
Specifically, we use linear transform to approximate the discretized form of Formula (3) in practice.
The relationship between the discretized parameter space image x and the discretized image data y
can be defined as [37]:

y = Cx (5)

where C is the discrete inverse Radon operator, y ∈ Rmn denotes the vectorized y ∈ Rmn, and x ∈ Rpq

denotes the vectorized x ∈ Rpq.
In this paper, we employ a dictionary learning method to obtain the matrix C. Suppose the N

training samples is Y = (y1, y2, · · · , yN) ∈ Rmn×N , where yi ∈ Rmn denotes the vectorized yi ∈ Rmn.
X = (x1, x2, · · · , xN) ∈ Rpq×N , and xi ∈ Rpq denotes the vectorized xi ∈ Rpq. Our purpose is to learn a
dictionary C ∈ Rmn×pq based on Equation (5):

(y1, y2, · · · , yN) = C(x1, x2, · · · , xN) (6)

Since X is not a square matrix, matrix C can be calculate by the least squares method through
minimizing the following objection function:

J =‖ Y− CX ‖2 (7)

where ‖ ∗ ‖ denotes the 2-norm of ∗. By minimizing the objective function (7), we have

C = Y
(

XTX
)−1

XT , when pq > N; (8)

or
C = YXT

(
XXT

)−1
, when pq < N; (9)

since matrix XXT or XTX may be a singular matrix or approach a singular matrix, we add a damping
factor α (with range from 0.1 to 1) to ensure the stability of numerical value:

C = Y
(

XTX + αI
)−1

XT , when pq > N; (10)

or
C = YXT

(
XXT + αI

)−1
, when pq < N; (11)

where matrix XT is the transpose of the matrix X and I is a unit matrix.
Hence, the Radon transform of an image can be treated as a two matrix multiplication (i.e.,

linear transform):
X = C−1Y (12)

Since C is not a square matrix, we can obtain the value of X by minimizing the following
target function:

J =‖ Y− CX ‖2 (13)

we have
X =

(
CTC

)−1
CTY, when mm > pq; (14)

or
X = CT

(
CCT

)−1
Y, when mm < pq. (15)
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Similarly, to ensure the stability of a numerical value, we add a damping factor α.

X =
(

CTC + αI
)−1

CTY, when mm > pq; (16)

or
X = CT

(
CCT + αI

)−1
Y, when mm < pq; (17)

where matrix CT is the transpose of the matrix C.
Our method treats a Radon transform as a linear transform, which can be realized by parallel

computation of the Radon transform for multiple images:

(x1, x2, · · · , xN) =
(

CTC + αI
)−1

CT(y1, y2, · · · , yN), when mm > pq; (18)

or
(x1, x2, · · · , xN) = CT

(
CCT + αI

)−1
(y1, y2, · · · , yN), when mm > pq; (19)

The advantages of our solution is two-fold. Firstly, the transform (5) of the Radon operator makes
it convenient and reasonable to leverage the performance by adding some special regularizations.
For example, we can incorporate our objective function (5) into the regularization framework:

x̂ = argmin
x
‖y− Cx‖2 + α2 ϕ(x) (20)

where ϕ(x) is a regularization term which includes norm regularizer terms, log regularizer term,
etc. Norm regularization terms take the form of ϕl1(x) = ‖x‖1 = ∑i|xi| for l1- regularization,
ϕl2(x) = ‖x‖2 = ∑i x2

i for l2- regularization, ϕlp(x) = 1/p(∑i|xi|p), (p < 1) for lp- regularization,
etc. The log regularization term is in the form of ϕlog(x) = ∑i log|xi|. We will verify the effect of
adding regularization items in the future work.

Secondly, the linear transformation makes it possible to detect a straight line road of multiple
images at one time, which will significantly reduce the time consuming aspect of this process.

4. Experiments and Discussion

In order to evaluate the performance of our method, we implement extensive experiments on
RSSCN7 [38]. The RSSCN7 database is a remote sensing database which was issued in 2015, and the
size of each remote sensing image is 400× 400 pixels. There are 2800 remote sensing scene images
in the RSSCN7 database, and they are from seven typical scene categories, which are a grassland,
forest, farmland, parking lot, residential region, industrial region, river and lake. In this paper, we
selected 170 remote sensing images with a straight line road to verify the proposed algorithm, and
those 170 color images are converted to grayscale images in the preprocessing stage. Particularly,
150 images are used as a training set and the others as a test set. Some selected remote sensing images
are shown in Figure 3.

In order to obtain sufficient training images, we rotate those 150 images from 0 to 180 degrees
with a fixed step length, i.e., 10 degrees. Thus, we totally have 2700 grayscale images with the same
size by intercepting those rotating images. Finally, the 2700 grayscale images are resized to 128× 128.
Further, all the test images are also adjusted to the size 128× 128.

In this section, we demonstrate some experimental results of test samples and illustrate how our
method is superior to the traditional algorithms in terms of accuracy and computing complexity.

Figures 4–7 illustrate the experimental results of four test samples. Now we discuss the
experimental results of our methods with the experimental results of a traditional Radon transform.
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Figure 3. Some remote sensing images with straight road examples from the RSSCN7 dataset.

 

a215 (b) (c)(a)

(i) (j) (k)(h)

(e) (f)d (g)

Figure 4. a215 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).
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(b) (c)(a)

(j) (k)(i)(h)

(e) (f) (g)

Figure 5. a266 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

 

(b) (c)(a)

(j) (k)(i)(h)

(e) (f) (g)

Figure 6. b088 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).
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(c)(b)(a)

(j) (k)(i)(h)

(e) (f) (g)

Figure 7. g146 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Figures 4a–7a show the Radon transform of a test sample in a two-dimensional parameter space
and Figures 4i–7i show the transform image from our method in a two-dimensional parameter space.
The one distinctly bright spot in Figures 4a–7a and Figures 4i–7i corresponds to the detected line
(i.e., a red line) overlaid on the test image. It cannot be easy to isolate this one distinctly bright
spot which matches with the straight road in test images from transform domain due to a lot of
interference highlights in Figures 4a–7a. However, Figures 4i–7i show a bright spot corresponding to
the detected line overlaid on the test image. The bright spot area in Figures 4a–7a is cluttered in visual
effect. However, our algorithm reduces the effect of cluttered interference bright spots. By comparing
Figures 4a–7a with Figures 4i–7i, we can see that the proposed method is superior to the conventional
Radon transform in terms of the visual effect.

Figures 4b–7b show the three-dimensional form of Radon transform and Figures 4j–7j show the
three-dimensional form of our method. The peak (i.e., bright spot in Figures 4a–7a) in Figures 4b–7b
and Figures 4j–7j corresponds to the detected line overlaid on the test image. As seen in Figures 4b–7b,
it cannot be easy to isolate the actual peak corresponding to the road in the test image from test samples
owing to the mess in the transform domain. Particularly, the clutter of the peak in the transform
domain will lead to false road detection or missed detection. From Figures 4j–7j, we can see that our
method greatly accentuates the peak amplitudes relative to the background and it is possible to visually
distinguish the peak point corresponding to the actual location of the straight road. Figures 4j–7j show
that our method reduces the clutter interference to a large extent, and we are very easily able to isolate
the true peak corresponding to the road in the test image.

Figures 4c–7c show the detected line from our method overlaid on the test samples and
Figures 4k–7k show the detected line from Radon transform overlaid on the test samples. The location
of the true and estimated straight line road are shown in Table 1. The ground truth parameters (ρ, θ) of
the straight road are obtained by manual marking in sample images.
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Table 1. The orientation of true and detected straight line.

Test Sample a215 a266 b088 g146

True (ρ,θ) (−56.1, 90.7◦) (−27.6, 178.4◦) (8.3, 16.95◦), (33.2, 17.6◦) (−0.8, 91.4◦)
Our Method (ρ,θ) (−56, 91◦) (−28, 179◦) (9, 18◦), (33, 18◦) (−1, 92◦)

Radon Transform (ρ,θ) (0, 46◦) (−27, 180◦) (20, 28◦), (26, 23◦) (1, −60◦)

It can be seen from the Figure 4b,c that the peak point does not match with the straight road in
test sample a215. Figure 4j,k of test sample a215 show a conspicuous peak point which corresponds
to the straight road in test sample a215. The experimental results of the test sample a215 illustrate
that our method has a better detected result than traditional Radon transform if the detection target is
not obvious.

The enlarged part in the Figure 5c shows the detected line from Radon transform. The enlarged
part in the Figure 5k shows the detected line from our method. We can see that our detected results are
closer to the true straight road.

By observing the Figure 6b, we can see that the peaks in a three-dimensional parameter space do
not focus on one point. Scattered peaks result in a wrong detection, while Figure 6j illustrates that the
peak point obtained by our method is more concentrated and easier to distinguish. From Figure 6k,
we can see that the detected lines from our method correspond to the actual location of roads.

Test sample g146 has some noises which are similar to the straight road. From Figure 7c, we see
that the detected line from the traditional Radon transform does not match with the straight road in
the noisy image very well, whereas our method has good robustness for noisy images, as is shown in
Figure 7k.

The above experimental results indicate that our method can accurately detect the position of the
straight road when the noise is high or the road characteristics are not obvious, which illustrates that
our method has stronger robustness, and our detected results are closer to the actual road location.

We also compared our method with a traditional Hough transform. A Hough transform can only
be used for binary images. Although the binary images weaken the background noise, they also cause
the loss of some road information.

Figures 4d–7d are the binary images of the test samples. By comparing the images of
two-dimensional parameter space in Figures 4–7, we see that Figures 4e–7e also have many interference
bright spots although the binary image weakens the background noise. However, Figures 4i–7i only
include true bright spots. From the transform images of three-dimensional form in Figures 4–7, we
see that our method greatly accentuates an area of high intensity in the transform domain relative to
the background.

A binary image causes the loss of some road information. It can be seen from the Figure 7g,k that
the detected line from Hough transform does not correspond to the true position of the straight road.

To clearly compare our method with the Radon transform and Hough transform, we also report
the Receiver Operator Curves (ROC) result in Figures 4h–7h. The ROC was produced by changing
the threshold parameter. Specifically, we first determine a threshold parameter, if peak points surpass
the threshold, it was classified as road pixels, or otherwise as noise pixels. The ground truth data was
obtained by manual marking in remote sensing image. The x-axis is the false positive rate (FPR) which
can be calculated by:

FPR =
Positives correctly classi f ied

Total positive

the y-axis is the true positive rate (TPR) which can be calculated by:

TPR =
negatives incorrectly classi f ied

Total negatives
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The accuracy of detected methods is measured through the area under the ROC curve. As shown
in Figures 4h–7h, we can see that the accuracy of our method outperforms the traditional Radon
transform and Hough transform.

To further demonstrate the performance of our method, we show the experimental results of
another two test samples in Figures 8 and 9. The description of the experimental results in Figures 8
and 9 is the same as above.

 

(a) (c)(b)

(i) (k)(j)(h)

(e) (f) (g)(d)

Figure 8. a038 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Specifically, test sample a038 shows a grayscale image with a shorter straight road. Figure 8b
shows an undistinguishable peak point due to the mess in transform domain, and the detected line
overlaid on a038 does not match with the straight road. From Figure 8j, we see that our method
greatly accentuates an area of high intensity in the transform domain relative to the background.
The experimental results in Figure 8 illustrate that our method can well detect a shorter straight road.
The same conclusion can be drawn in the experimental result of test sample b230. This indicates that
our algorithm is more sensitive to a shorter line road.

Particularly, our method is able to complete the line road detection of multiple images at one time.
In dealing with a large number of images, our method facilitates parallel implementation of the Radon
transform for multiple images (i.e., replace vector yi with a matrix). Table 2 shows the time-consuming
comparison between our method and the traditional Radon transform. We record the average running
time of 20 test samples. Radon transform takes 0.106 s for per test image, but our method only takes
0.027 s. Experimental results of Table 2 show that the computation of our method is nearly 4 times
faster than Radon transform.

318



Remote Sens. 2017, 9, 590

 

(b) (c)(a)

(j) (k)(i)(h)

(e) (f) (g)

Figure 9. b230 is a test image. (a) Radon transform of test image in two-dimensional parameter space.
(b) Three-dimensional form of (a). (c) Detected line from (b) overlaid on test image. (d) Binary image
of the test image. (e) Hough transform of (d). (f) Three-dimensional form of (e). (g) Detected line from
(f). (h) Receiver Operator Curves of the evaluated detection methods. (i) Transform image obtained by
our method. (j) Three-dimensional form of (i). (k) Detected line from (j).

Table 2. Time-consuming comparison of two methods.

Methods Our Method Radon Transform

Test Samples 20 20
Average Running Time 0.027 s 0.106 s

Above all, our method is superior to the traditional Radon transform in terms of accuracy and
computing complexity.

Table 3 illustrates the mean-error and variance of error. We can see that the mean-error of our
method is much lower than traditional Radon transform. Hence, the detected parameters (ρ, θ) using
our method is closer to the ground truth parameters. From the values of variance, we see that our
method is more stable in detecting straight line.

Table 3. The mean-error and variance of two methods.

Methods Our Method Radon Transform

Test Samples 20 20
Line Parameters ρ θ ρ θ

Mean-Error 0.32 0.911◦ 11.46 15.65◦
Variance of Error 0.089 0.286◦ 528.788 1105.48◦

5. Conclusions

Road detection plays a key role for remote sensing image analytics and has attracted intensive
attention. A Hough transform (HT) is a very typical method for road detection, especially for straight
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line road detection, and many variants have been proposed based on Hough transforms. However,
developing a low computational complexity and time-saving Hough transform algorithm is still a
great challenge. To solve the above problems, we present an approximation method by treating
a Radon transform as a linear transform, which facilitates parallel implementation of the Radon
transform for multiple images. Extensive experiments which are conducted on the RSSCN7 database
show that our method is superior to the traditional Radon transform in terms of both accuracy and
computing complexity. In the future, we will further study the regularization function being based on
our algorithm to optimize our method.
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Abstract: Joint vehicle localization and categorization in high resolution aerial images can provide
useful information for applications such as traffic flow structure analysis. To maintain sufficient
features to recognize small-scaled vehicles, a regions with convolutional neural network features
(R-CNN) -like detection structure is employed. In this setting, cascaded localization error can be
averted by equally treating the negatives and differently typed positives as a multi-class classification
task, but the problem of class-imbalance remains. To address this issue, a cost-effective network
extension scheme is proposed. In it, the correlated convolution and connection costs during extension
are reduced by feature map selection and bi-partite main-side network construction, which are
realized with the assistance of a novel feature map class-importance measurement and a new
class-imbalance sensitive main-side loss function. By using an image classification dataset established
from a set of traditional real-colored aerial images with 0.13 m ground sampling distance which
are taken from the height of 1000 m by an imaging system composed of non-metric cameras, the
effectiveness of the proposed network extension is verified by comparing with its similarly shaped
strong counter-parts. Experiments show an equivalent or better performance, while requiring the
least parameter and memory overheads are required.

Keywords: vehicle localization; vehicle classification; high resolution; aerial image; convolutional
neural network (CNN); class imbalance

1. Introduction

For most of the sliding window-based vehicle detection methods involving localization and
categorization, predictions are often performed in a separated manner, where the categories are
estimated after the positional information is obtained. In the localization process—also called vehicle
detection in its narrow sense—the positional existence of vehicles is estimated by analyzing the features
extracted from the sliding window that moves across the region of interest with a pre-defined route and
stepping pattern. The features used for vehicle detection can either be hand-crafted shallow descriptors
or the deep features generated by convolutional neural network (CNN). Shallow features such as
Haar [1], histogram of oriented gradients (HOG) [2,3], and local binary pattern (LBP) [3], etc.—although
they are less robust and accurate as the deep ones—can make a good compromise between speed
and efficiency when the computational resources or the quantity of training samples are very limited.
However, once these limitations no longer exist, the detection methods based on deep features are
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often superior with strong resistance to disturbances in scale, lighting condition, and shadow, and their
supreme performances have been repeatedly verified in many studies [4–8]. For these CNN-based
methods, their underlying structures generally follow the regions with convolutional neural network
features (R-CNN) [9] or its accelerated variants [10–13] with region of interest (ROI)-pooling [14].
More specifically, the R-CNN detector—whose features are calculated from the full-scale input image
without sub-sampling—despite being primitive, turns out to be informative for recognizing small
objects. Because of this, in large aerial images with small-scaled vehicles, R-CNN-like structure [5–8]
is often preferred over those with ROI-pooling [4,15], which is also used in this article. Moreover, it
can be accelerated by lossless preprocessing means such as saliency detection [16,17] and objectness
filtering [8].

Once the vehicle locations are obtained, they are fed to the subsequent categorization process as
positional indications to extract features. Similar to the localization process, features for classification
can be produced by either shallow or deep models. At present, limited by the number of publicly
available high-resolution aerial image datasets, only a small number of vehicle detection methods
involve a classification procedure [18–20]. Among these limited publications, authors in both [19]
and [20] tried to categorize vehicles by the “SVM + feature” strategy, while in [20] the strong influence
of the class-imbalance issue on classification accuracies has been observed.

The separated estimation scheme discussed above is quite natural, and has been adopted for the
positional classification of many general objects [10,12,13,21]. However, it could be troublesome for
classifying targets as small as vehicles. Considering a private car only six pixels in width, any location
error greater than four pixels will miss the main body of the vehicle and make the following categorization
meaningless. Detecting objects in dense scenes can be untangled via density estimation [22] or object
counting [23], which has already been validated for congested traffic scene classification [24]. While in
this article, without loss of generality, taking the R-CNN detector as a common CNN-based classifier as
in [7,8], the previously mentioned cascaded localization error can be avoided by treating the samples
with deviation as a negative class and classifying them alongside the accurately centered but differently
typed positives.

This arrangement primarily solves the problems caused by the small target scale, and strictly
constrains type classification to those accurately located situations. Except for that, however,
the introduction of a large quantity of negatives further skews the unbalanced categorical
distributions between vehicle types. To address this problem, a bi-partite network extension driven
by a class-imbalance-aware cost function is proposed. This cost function is designed based on the
idea of providing the two network components with different training losses, intentionally correlating
the extended component to the minority classes which are badly classified. Moreover, to reduce
the extension costs, the extended components are built with feature maps from lower convolutional
layers selected by a novel importance measurement. Notably, compared with other similarly-shaped
structures, this proposed modification scheme is capable of achieving equal or better performance
with much less extension overhead.

The rest of the paper is arranged as follows: Related and similar works are discussed in Section 2.
The CNN basics and the semantic interpretation of convolutional kernels are given in Section 3.
The proposed extension and its details are introduced in Section 4. Dataset preparation, experiment
setup, and analysis of experimental results are presented in Section 5. Conclusive discussions on the
experiments are given in Section 6. Section 7 concludes the paper.

2. Related Work

Class imbalance is a ubiquitous issue existing in nearly every real-life classification problem. As it
has been intensively studied for more than two decades, many comprehensive and insightful reviews
have been published to generalize the methods on this topic [25–28]. According to [28], these proposed
treatments generally fall within three categories: data-level, algorithm-level, and hybrid treatments.
The data-level methods focus on balancing the training samples, modifying their distributions via
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over-sampling or under-sampling. Typical techniques would include synthetic minority over-sampling
technique (SMOTE) [29] and many of its variants, such as adaptive synthetic sampling (ADASYN) [30]
and cluster-based oversampling (CBO) [31]. The algorithm-level methods—which are mostly based
on the cost-sensitive principle [32,33]—alleviate the bias with majority classes by assigning greater
penalties for the minority ones in training. The hybrid methods (e.g., the ensemble style classifiers [34])
take the advantages of the previous two for further performance enhancement, which is common, as
mentioned in [25,28].

All of the previously mentioned means are for “shallow” models, but their class-imbalance-addressing
principles still apply to the deep learning-based classifiers [35]. For instance, the re-sampling tricks work
fine [36,37], although some more advanced dealing methods (e.g., the generative adversarial network
(GAN) [38]) should be used to avoid noise and over-fitting in the re-sampling. Similarly, algorithm-level
cost function reformation is also widely applicable [39–41], where the softmax loss [42,43], cross-entropy
loss [39], and logistic regression [44] are mostly taken as the basis format. More recently, a new branch
of cost-sensitive methods based on improving the underlying micro feature space structure have
appeared, and they have achieved a significant improvement by constraining the relative sample
distances [35,45–47]. Representative methods in this category include the triplet loss [43,45], quintuplet
loss [35], and the center loss [47], which are now hotly debated in the academy.

Although the proposed method in this article generally follows the algorithm-level principle,
it is more concerned about achieving a robust performance improvement with less or no influence on
the original structure. This goal is achieved by re-balancing the classification bias with the assistance
of an extra network component, where the structural expansion cost is kept at a minimum by the
incorporative usage of feature map selection.

Plain extension of the convolutional kernel was theoretically analyzed in [48] without involving the
class-imbalance issue. Structural extension is a common method for network performance enhancement
whose underlying intentions focus either on feature space enhancement [41,48–50] or strong prior
generation [51,52], and it has been applied to numerous topics, including classification [49,51],
tracking [52], edge detection [41], etc. Specifically, only one paper [53] has been found to directly
address the class-imbalance issue by combining the feature vectors outputted from a dual arrangement
of auto-encoders, where the issue of cost-efficiency has not been emphasized.

Feature map selection can be viewed as a special case of feature selection based on the CNN
structure. Consistent with the feature selection methods, it also has two categories with three types [54]:
the first category includes the filters [55–57], where ranks of the features are obtained without the help
of classifiers; the second category employs the predictor, and for the included types, wrappers [58]
explicitly score the feature, while the embedded methods [59–61] do it implicitly in the training process.
Mostly, feature map selection is used for the enhancement of network performance. However, for the
purpose of structural simplification, the wrappers principle would be more appropriate in our case.

Due to such specialized requirement, per the brief review above, few studies have tried to make
a combinatorial usage of these two methods to seek effective network performance improvement with
optimized expansion costs. So, the method proposed in this article acts as a novel approach to the
class-imbalance problem with convenient usage, where no tricky hard negative mining or parameter
selection is involved.

3. Background

3.1. Basic Knowledge of Convolutional Neural Networks

Convolutional neural networks (CNNs) currently dominate computer vision studies, with
constant state-of-the-art performance in almost every topic to which they are applied. CNNs are
a special kind of deep belief network (DBN) with components called convolutional layers, composed
of units called kernels or filters. Due to space limitations, a very brief introduction based on [62] is
given for the principles of DBN and CNN and to help with the clarity of symbols. Firstly, a normal
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DBN can be viewed as a stack of fully-connected layers, where each layer has a set of learnt parameters
θ composed of connection weights W and bias b. During the forward propagation, every input vector
x will be processed by an affine transformation to get the output z, as in Equation (1).

z = WTx + b (1)

In practice, the output z will be further corrected by a nonlinear function such as h = g (z) to
overcome the XOR problem, where the rectified linear unit (or ReLU) [63,64] will always be chosen as
the g (·). At the final stage of forward propagation, an output vector from the topmost fully-connected
layer would be transformed by a probability distribution function (e.g., the softmax function) before
being outputted. The softmax function defined in Equation (2) is one of the most commonly used
Bernoulli distribution outputs calculated through normalized exponential transformation.

P (y = i|x) = softmax (zi)

=
exp (zi)

∑j exp
(
zj
) (2)

To obtain the highest probability on the correct class label y on the input x, this output for softmax
function is minimized by its negative log-likelihood format, which is defined in Equation (3).

J (θ; x, y) = L (ŷ, y) + λ ·Ω (θ)

L (ŷ, y) = − log (softmax(z)i)

= log ∑j exp
(
zj
)− zi

(3)

Here, J (·) is the loss to be minimized during training, and L (ŷ, y) is the softmax-based loss term
in which y and ŷ are the true and estimated labels for input x. Ω (·) is some regularization term with
restrictions defined on the network parameters θ (e.g., the weights W or biases b). More often than
not, gradient descent-based optimization is employed to reduce the value of J (·), where the updating
gradient from the softmax loss is g = ∇ŷ J, based on the estimated label. Similarly, the updating
gradients for W and b are defined in Equation (4), calculated by the chain rule.

∇W(k) J = h(k−1)Tg, ∇b(k) J = g (4)

W(k) ← W(k) + α·∇W(k) J, b(k) ← b(k) + α · ∇b(k) J (5)

W(k) and b(k) are the weights and bias for the fully connected layer at level k, whose rectified
output is denoted as h(k−1). During the back propagation, at each layer, the weights and bias are
updated by adding the deviations ∇W(k) J and ∇b(k) J, with the latter ones multiplied by a learning rate
α to control the convergence rate, as in Equation (5).

Those are the cases for the DBN, while all things are almost identical in the case of CNN, except
for the part involving the convolutional layers. Convolutional layers can be treated as a special
kind of fully-connected layer with shared connection weights held by kernels. Take the network
in Figure 1 for illustration; considering a 4-D kernel tensor K(k) from the kth convolutional layer,
during the back propagation, the input signal data V(k−1) is convoluted with K(k) with step s to
get the output Z(k). The produced activation map Z(k) is also called the feature map, which will
always be under-sampled in practice by an operation called pooling to get the input data for the next
layer, denoted as Z(k) → V(k+1). After the input image V(0) has gone through all five convolutional
layers in Figure 1, the final feature map V(5) will be flattened into a 1-D vector h(5) to be fed to the
fully-connected trailing layer FC6 and the following FC7, FC8 to get the final predicted probabilities.
Likewise, in the back-propagation, the 1-D difference g(5) from the FC6 layer is reshaped into 3-D
as G(5) to update the feature maps. Assuming the objective function value is J (V, K) on the feature
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maps V and kernels K, its back-propagated differences from the upper layer should be calculated as
G(k) = ∇V(k) J

(
V(k), K(k)

)
and ∇K(k) J

(
V(k), K(k)

)
. Then, the feature maps and kernels are updated

in a manner identical to Equation (5), where the convolutional kernels and feature maps are updated
by adding with the derivations multiplied by a learning rate coefficient α, as in Equation (6).

V(k) ← V(k) + α · ∇V(k) J
(

V(k), K(k)
)

K(k) ← K(k) + α · ∇K(k) J
(

V(k), K(k)
) (6)

Figure 1. A typical convolutional neural network (CNN) structure, with feature and difference maps
produced by the forward and backward propagations. SW: station wagon; WT: working truck.

3.2. The Semantic Texture Encoding Pattern for Convolutional Kernels

Despite of all the symbols and equations listed above, studies like [65] sought to produce more
interpretable results, helping to better understand and improve the network. One of the important
functional components of the DeepVis toolbox proposed in [65] is to find and show the image crops
causing the top-most activations by each kernel. This kind of data-centric visualization measure [66–68]
differs from other means such as deconvolution [69] or image synthesis [70], showing the correlations
between kernel and image samples more directly.

The manifestation effectiveness of the previously mentioned data-centric max-activation
illustration method is shown in Figure 2. Therein, six kernels from the CONV5 layer are arranged into
two separated groups, denoted as {Si |i = 1, 2, 3} and {Wi |i = 1, 2, 3} by their correlation strengths
with the input image x shown in the column Raw Image. Under the column Top Activation Image Crops,
the max-activation image crops are listed for each kernel, from which a stable image content can
be observed, and that represents the textural pattern being encoded. Finally, for each kernel, the
correlation between its texture and the input image can be measured by the corresponding feature
maps being listed under the Feature Map column. Clearly, the feature maps from the kernels {Si}
have greater activation values, while those belonging to {Wi} are almost black. Considering that
these pixel-wise activations will be fed to the trailing fully-connected layers to produce the class-wise
likelihoods, strongly activated feature maps from {Si} indicate that they have stronger correlations
with the input image.
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Figure 2. Illustration of the semantic meaning of the convolutional kernels. The raw input image
is displayed in the Raw Image column; the six feature maps produced by six different kernels at the
CONV5 layer are shown in the Feature Map column; and six arrays of local image crops on which the
top six feature map activations are produced are shown in the Top Activation Image Crops column.

In fact, the way in which the high activations in feature maps from the last convolutional layer
help with efficient classification can be exemplified by using Equation (5). Considering two activations
h(k−1)

l1
and h(k−1)

l2
at the same position i, m, n from two feature maps Z(k−1)

q1 and Z(k−1)
q2 at layer level

k− 1, with that h(k−1)
l1

= Z(k−1)
q1,i,m,n and h(k−1)

l2
= Z(k−1)

q2,i,m,n. The connection weights bounded with these

two activations are W(k)
l1

and W(k)
l2

in a single trailing fully-connected layer with its final categorical

probabilities generated by transformation z(k)j = ∑l W(k)
l hl + b(k)j . Then, by Equation (4), the updating

differences for W(k)
l1,j and W(k)

l2,j can be calculated by Equation (7), where g(k)j = ∂

∂z(k)j

J.

∇
W

(k)
l1,j

= g(k)j · h(k−1)
l1

, ∇
W

(k)
l2,j

= g(k)j · h(k−1)
l2

(7)

So, when there is h(k−1)
l1

> h(k−1)
l2

, greater updating differences will be generated for the W(k)
l1

as

∇
W

(k)
l1,j

> ∇
W

(k)
l2,j

. Assuming activations h(k−1)
l1

and h(k−1)
l2

are all beneficial for the final probabilistic

estimation on class j, the weighted connection W(k)
l1

will grow faster and larger with respect to W(k)
l2

.

This means that the feature map Z(k−1)
q1 produced by convolutional kernel K

(k−1)
q1 is more effective for

recognizing samples from class j.
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4. Methods

4.1. Overview of the Proposed CNN Extension Scheme

So, being aware of the fact that the modeling power of a CNN is strongly correlated with the
diversity of feature maps at the last convolutional layer, this article sets out to tackle the problem of
class-imbalance by adopting a cost-effective imbalance-aware feature map extension. Commonly, two
kinds of overheads will be introduced when new feature maps are added: the convolution overhead and
the connection overhead. Specifically, the convolution overhead refers to the extra convolution operation
and extra feature map storage. The connection overhead happens in the fully-connected layer right above
the extended convolutional layer, where every connection between pixels in the new feature map
and the hidden-neurons in the fully-connected layers should be added. In order to reduce these two
overheads, two general measures are adopted, which are illustrated in Figure 3: (1) the selective feature
map extension by a newly derived class-importance measurement; (2) a class-imbalance-sensitive
softmax loss function for optimizing the extended component. As a result, after these two modifications,
the original network is turned into a bi-partite structure with enhanced sensitivities to the samples in
the minority classes.

Main-Side Loss

CONV 1

CONV 2

CONV 3

CONV 4

CONV 5

FC 6

FC 7

FC 8

DataLabel

FC Ext

Extended
Features

Feature
Selection

Main Network

Side Network

Common
Part

Figure 3. The general structure of the proposed network enhancement method.

(1) Part 1: The selective feature map extension by class-importance measurement. This measure aims
to reduce the convolution overhead by reusing feature maps selected from the preceding layers.
The criteria adopted in the feature selection process—named feature map class-importance—are
similar to that in [58], but are further extended for a multi-class problem with slight modification.
Additionally, according to [58], these selected feature maps are further filtered by an extra
convolutional layer to reduce noise before being used as the Extended Features component in
Figure 3.

(2) Part 2: the class-imbalance-sensitive softmax loss function. This measure aims at reducing the
connection overhead and increasing the class-imbalance awareness of the improved structure. Firstly,
the extended network components holding the Extended Features are isolated from the main part
of the Original Network by a single-layered fully-connected (FC) layer FC Ext. This FC layer
has hidden neurons only as few as the number of output classes; thus, the additional connection
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quantity for the new maps is largely reduced. Secondly, as shown in the right-most text-box of
Figure 3, a new loss function named main-side loss is adopted in place of the original softmax
loss to raise the sensitivities of the Extended Features to the minority classes.

For the rest of Section 4, the proposed extension is described in detail based on a network
prototype miniature visual geometry group (VGG-M) shown in Figure 3, which is very similar to
AlexNet [71], but has slight improvements on the local convolutional parameters. This illustrative
network has five convolutional layers (denoted as CONV1 to CONV5) and three fully-connected layers
(denoted as FC6 to FC8), and feature maps for extension are selected from layers CONV3 and CONV4.
All of these terms will be used in the following explanations.

4.2. The Network Extension by Selected Feature Maps

The idea of using quadratic expansion of the loss function to reduce less-effective network
connections is not new—similar studies can be seen in [72], dating back to 1989. However, loss
function-based feature map significance cannot be used to make class related pruning. Instead, the
class-wise importance measurement for the feature maps is not hard to obtain—it can be produced
by using a similar expansion technique on the output class likelihoods from the output neurons.
Considering a general case where Z(k−1) is the collection feature maps at the k− 1th layer generated
from input image x, and the predicted probability for class i is P

(
y = i|Z(k−1)

q

)
. Then, the contribution

of feature map Z(k−1)
q to the estimated likelihood on class i can be approximated by Equation (8).

P
(

y = i|Z(k−1)
q

)
≈ P

(
y = i|Z(k−1)

)
− P

(
y = i|Z(k−1)

/q

)
= ∑

⎡⎣∂P
(

y = i|Z(k−1)
)

∂Z(k−1)
q

� Z(k−1)
q

⎤⎦+ R2

(
Z(k−1)

q

) (8)

In Equation (8), Z(k−1)
/q is the collection of feature maps Z(k−1) without Z(k−1)

q , and R2

(
Z(k−1)

q

)
denotes the other higher-order expansions based on Z(k−1)

q . In the first expansion term,
∂P(y=i|Z(k−1))

∂Z(k−1)
q

is

the feature map differences back-propagated from the probability value at the ith output neuron, and
� is the element-wise multiplication between matrices. In practice, this difference can be efficiently
obtained by back-propagation. By summing the pixel-wise production of the feature map and its
differences, the class-importance for the feature map on class i can be obtained. This is vividly shown
in Figure 4.

Figure 4. The first-order term of the Taylor expansion in Equation (8).
∂P(y=i|Z(k−1))

∂Z(k−1)
q

denotes the feature

map difference, positive, negative, and zero values marked as green, red, and black.

The class-important measure is validated in Figure 5, where the correlations for the maximal
feature map activation and maximal feature significance to the probability values on negative samples
are presented. Specifically, the x-axis max activations in Figure 5a means the topmost activation value
measured from all the feature maps from CONV5. This is also the case for the x-axis class importance
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in Figure 5b. As can be seen, the data points in Figure 5b are much tighter and dense, roughly
distributed on a curve with shape y = K · x

a+x , where a > 0. Such strong correlation also indicates that
the final categorical estimation is mostly based on a single feature map, which again emphasizes the
importance of effective feature map selection.

(a) (b)

Figure 5. Correlations of the max-activations and class-importance with the class probability of the
negative class. (a) Max-activation vs. class probability. (b) Max class-importance vs. class probability.

Figure 6a shows the distribution pattern of feature maps from the CONV3 and CONV4 layers
in the max class-importance vs. max-activation space. From Figure 6a, it can be determined that
feature maps from the CONV4 are slightly more significant than those from CONV3, with elements
in the high class-importance section distributed closer to the x-axis. The categorical inclination of
a specific feature map Zq can be calculated by getting the index i of its largest class importance as
i = arg max

j
P
(
y = j|Zq

)
, and their categorical distributions are shown in Figure 6b for five vehicle

classes. As can be observed, feature maps belonging to all five classes have similar distributions in the
importance section either high and low. Accordingly, in picking the most relevant feature maps for
extension, it would be reasonable to select the ones with highest importance scores from each class
and control that class-wise quantity according to their classification deficiencies, as in Algorithm 1.

(a) (b)

Figure 6. Scatter plots showing the distribution of the feature maps
{

Zq
}

from CONV3 and CONV4 in
the class-importance vs. max-activation space. (a) The distributions of CONV3 and CONV4 feature
maps. (b) Feature maps correlated to the five classes by the class-importance measurement.
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Algorithm 1 Class Imbalance-Aware Extension Feature Map Selection

Input: Classification accuracies {ACC (j)}, class-importance
{

P
(
y = i|Zq

)}
for feature maps

{
Zq
}

from the CONV3 and CONV4 layers, and the total number of maps to be selected Nsel .

Output: Selected feature map indexes {i}CONV3,CONV4 on CONV3 and CONV4

1: Calculate the number of extension maps needed for each class. For instance, for class j, denote the

required extension quantity as N(j)
sel , then there is N(j)

sel =
[

1−ACC(j)
∑i (1−ACC(i))

]
· Nsel .

2: For each class j, sort the CONV3 and CONV4 feature maps
{

Zq
}

by their class importance

values
{

P
(
y = i|Zq

)}
in descending order, with the indexes denoted as {mi}DESC(j)

CONV3,CONV4 ={
mi |P (y = j|Zm1) ≥ ... ≥ P

(
y = j|Z(k−1)

mNall

)}
, where Nall =

∣∣{Zq
}∣∣.

3: For each class j, get the top N(j)
sel map indexes from the descending order set as {mi}

TOP
(

N(j)
sel

)
CONV3,CONV4 ={

ni

∣∣∣i = 1, ..., N(j)
sel , ni ∈ {mi}DESC(j)

CONV3,CONV4

}
.

4: Merge the class-wise top indexes {mi}TOP(j)
CONV3,CONV4 from the previous step, and get the output

feature map index set as {i}CONV3,CONV4 =
⋃

j {mi}
TOP

(
N(j)

sel

)
CONV3,CONV4.

More specifically, as in Algorithm 1, the selection ratio for each class is measured by their pro rata
accuracy deficiencies 1−ACC(j)

∑i (1−ACC(i)) , so the class-wise selection quantity is N(j)
sel =

[
1−ACC(j)

∑i (1−ACC(i))

]
· Nsel .

Two exemplified CONV3 and CONV4 feature map selections are illustrated in Figure 7, where the
total selection quantities are Nsel = 64 and Nsel = 160. Therein, the extended feature map candidates
mainly reside in the high class-importance region.

(a) (b)

Figure 7. (a) The 50 selected maps for Nsel = 64. (b) The 109 selected maps for Nsel = 160.

4.3. Class Imbalance-Sensitive Softmax Loss Function

Up to the present, explanations for the cost-effective network extension have been focused on
the feature map selection process which reduces the convolution overhead. However, the connection
overhead is also significant if the newly extended feature maps are encoded directly by the trailing
fully-connected layer FC6. Typically, for a network with structure similar to that in Figure 3, there can
be as many as 4096 hidden neurons in FC6. Supposing the feature maps from CONV5 are of shape
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13× 13, then as many as 4096× 13× 13 real-valued connection weights will be introduced for every
newly added feature map. This kind of overhead can be greatly reduced if these extended feature maps
are encoded by a single-layered fully-connected layer independent of the original network, which
has hidden neurons with quantity equal to the number of output classes. As shown in Figure 8, the
resulting bi-partite network is generalized as composed by three structural components: the common
part, the main network, and the side network. For the eight-layered network in Figure 3, the common
part refers to the shared layers CONV1 and CONV2, the Main Network refers to layers CONV3
through FC8 in the Original Network, and the Side Network refers to the Extended Features along with
the isolated FC Ext layer.

In this structure, the output values from FC Ext can be viewed as an extra categorical estimation
based purely on the newly added feature maps, whereas the final categorical prediction from the
extended network can be calculated as the summation of these two. Taking the predicted likelihoods
from the Main and Side Network components as z and z∗, this kind of summarization-based likelihood
mixture can be viewed as applying a hard connection on these two likelihoods as f (z, z∗) = 1 · z+ 1 · z∗,
in which both predictions are equally weighted. However, according to the analysis in Section 3.2, this
straightforward means does not promise that the extended part will be more correlated with minority
class samples. Take the h(k−1)

l as some activation from a feature map in the Side Network component

at layer k− 1, and its connection weights to a majority class i and a minority class j are denoted as W(k)
l,i

and W(k)
l,j . Then, according to Equation (9), in the case of using softmax loss, the updating differences

g(k)i and g(k)j from upper layer will be almost equal.

∇
W

(k)
l,i

= g(k)i · h(k−1)
l , ∇

W
(k)
l,j

= g(k)j · h(k−1)
l (9)

Figure 8. Principle structure of the class-imbalance aware Main-Side Network.

So, in order to achieve class-imbalance sensitivity, the loss function should differ the
back-propagated values for the Side Network between majority and minority classes. This setting
is manageable. By Figure 8, considering the likelihood summation format as employing the z∗ from
Side Network to rectify the estimates z from the Main Network, then the z∗ acts as a filling for
the probability deficiencies of z marked by the red bar in Figure 8. Then, if this kind of likelihood
amendment is intentionally diminished for the majority classes and encouraged for the minority
classes, the predictions from the Side Network are more likely to be correlated with samples from the
minority classes.
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More specifically, as in Equation (10), the newly introduced Main-Side loss is denoted as
J ( f (z, z∗) , y) at the right-side of the picture, which takes the softmax loss L ( f (z, z∗) , y) as its
main component. Then, in order to make these two updating values vary from each other, an extra
regularization only relevant with z∗ is added to the loss function, which is denoted as Ω (z∗) with a
global penalization coefficient λ. Since Ω (z∗) is only dependent on the Side Network output z∗, the
back-propagated differences for the Main and Side Network components ∂J( f (z,z∗),y)

∂z and ∂J( f (z,z∗),y)
∂z∗

will be different, as in Equation (11).

J ( f (z, z∗) , y) = L ( f (z, z∗) , y) + λ ·Ω (z∗)

L ( f (z, z∗) , y) = − log
[
softmax(z + z∗)y=i

] (10)

∂J ( f (z, z∗) , y)
∂z

= softmax(z + z∗)y=i − 1 (y = i)

∂J ( f (z, z∗) , y)
∂z∗ = softmax(z + z∗)y=i − 1 (y = i) + λ · ∂Ω (z∗)

∂z∗

(11)

Recalling that the softmax loss term L ( f (z, z∗) , y) should be diminished during training, this Side
Network correlated regularization Ω (z∗) should produce small penalty values for the minority classes,
but large values for the majority classes. The simplest way to achieve this is to assign varied penalty
coefficients for class-wise likelihood values in z∗, and the classification accuracies for these classes
measured on the cross-validation dataset serves such needs. So, as in Equation (12), the additional loss
function regularization term Ω (z∗) is defined as the Norm-2 of the element-wise multiplication of z∗

and the class-wise accuracies measured on the Main-Network.

Ω (z∗) = ‖B� z∗‖2 =

√
∑j

(
β j · z∗j

)2

β j ∝ ACC(X)j, ACC(X)j =
TP(X)j

TP(X)j + FP(X)j

(12)

The ACC(X)j in Equation (12) is the averaged accuracy for the given image set X on class j
measured by z from the Main Network, B is the categorical penalization coefficient applied on z∗, and
�means element-wise multiplication between two vectors. Following this definition, for a majority
class i already having very high accuracy ACC(X)i, its penalization will be higher than a minority
class j with lower ACC(X)i, and vice versa. Besides, due to the flexibilities in choosing the set of
input images X, three penalization modes can thus be derived, here denoted as Global, Local, and
Batch-wise, as shown in Figure 9.

Conceptually, these three penalization modes have specific pros and cons of their own. According
to Figure 9, the global penalization β based on the overall sample set O stays unchanged for all training
subsets, and thus is insensitive to abnormalities in local space. The local penalization βi,k partially
improves the flexibility by using accuracy local cluster Si for each training sample that k belongs to, but
such accuracy must still be measured beforehand and could be obsolete during the training. Instead,
for the batch-wise mode, a real-time tracking of accuracy can be acquired from the training mini-batch
Bi, while the additional price is the increased non-linearity in convergence.
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(a) (b) (c)

Figure 9. The t-Distribution stochastic neighbor embedding (t-SNE) -based visualization [73] of the
negatives and vehicle types in the FC8 output space, and the three penalization modes used for B:
(a) global, (b) local, and (c) batch-wise.

5. Experiments and Analysis

5.1. Data Set Description and Experiment Setup

5.1.1. DLR 3K Aerial Image Dataset

The DLR 3K aerial image dataset is an aerial image dataset made publicly available online by the
Germany Aerospace Center, which has been studied in [19]. It contains 20 aerial images with resolution
of 5616× 3744 captured over the city of Munich by a low-cost airborne imaging system called DLR
3K+ Cam, which is composed of three non-metric Canon Eos 1Ds Mark III cameras with Zeiss lenses.
This system is intended to be fixed on an airplane or a glider with a ZEISS shock mount, where images
are taken at the height of 1000 m with real-time ortho-rectification made either on-board or at ground
station. All pictures are in RGB real-colored spectral bands (each being digitalized by 8 bits) with
ground sampling distance (GSD) at 13 cm.

Although there is no modern skyscraper, these pictures contain quantities of medium-height
residential buildings, workshops, trees, lawns, railway track, and streets filled with kinds of vehicles
either wide or narrow. All of these put together form a rich set of scenarios which would include
most of the typical conditions that cause false detections. Figure 10 shows some of the image samples.
The four sub-figures marked as b1 ∼ b4 are cropped from spots marked by yellow squares in the main
image a on the left, which represent classical detection disturbances: tight parking (b1), shadows from
trees and houses (b1, b2, and b3), and partial occlusion (b4). In addition, buildings and man-made
facilities in this area have complex textures similar to vehicles, which further increases the localization
and categorization difficulties.

Instead of using the original vehicle classes in the dataset, we defined a new set of classes, with the
main focus being put on small and medium-sized vehicles; that is, Sedan, Station Wagon (i.e., private
SUV), Van, and Working Truck. Quantitative distributions and averaged scales of these vehicle types
are listed in Table 1, by which a highly skewed inter-class distribution of samples can be clearly
observed. In it, the Station Wagon class has the top-most quantity with the Sedan and Van lagging far
behind. The quantity of Working Truck is trivial, with occupation ratios at merely 0.8% in the training
set and 0.6% in the testing set.
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Figure 10. (a) A typical frame from the training sample. (b1 ∼ b4) Typical difficult detection cases.
(c) The close-to-vehicle region (shaded blue) and categorical sampling positions.

Table 1. The vehicle types defined in this paper and the basic statistics.

Type Samples
Training Set Testing Set

L (px) W (px) N L (px) W (px) N

Sedan 21.45 10.47 776 20.83 10.16 1075

Station Wagon 19.99 9.76 2302 19.14 9.32 4178

Van 24.65 12.06 312 24.14 11.83 512

Working Truck 27.17 13.31 29 26.58 13.02 34

Note: L (px) and W (px) denote the length and width of vehicles in pixels, and N denotes the
quantity.

5.1.2. Training and Testing Preparation as a Classification Problem

Since the R-CNN detection structure is employed, it can be regarded as a common CNN-classifier
making categorization on full-scaled input images. To facilitate the analysis and verification, 48× 48
sized patches are uniformly extracted from the original image for a simplified experimental environment.
Furthermore, to reduce the quantity of unnecessary negative samples with redundant textural patterns,
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these image patches are produced from three different regions by their distance to vehicle centers DistV ,
which are shown in Figure 11:

• The Centered category: position marked by yellow square in sub-figure c in Figure 10 with DistV
no more than 3 pixels;

• The Close Range category: positions marked by red squares within the blue shaded region in
sub-figure c in Figure 10, whose DistV are in range from 4 to 20 pixels;

• The Far Range category: in sub-figure c from Figure 10, positions marked by green squares outside
the blue shaded region with DistV more than 20 pixels.

Figure 11. The sample categories used on the three regions: Centered, Close Range, and Far Range.

Only samples in the Centered category are treated as positives, which will be further categorized
into different vehicle types. Samples from the Close Range and Far Range categories are taken as
negatives with different classification difficulties. By Figure 11, data enhancements are performed
on these samples by rotation with different times Naug., where rotated angle spacing Δθ is calculated
by Δθ = 360◦/Naug.. Since samples in the Centered and Close Range categories are less populated,
their rotate angle spacings are 22.5◦ and 45◦ with augmentation times at 16× and 8×. Finally,
sample quantities in these categories are kept equal (approximately 33.3% for each), which results in
210,944 training samples and 534,624 testing samples.

5.1.3. The Baseline Network Structure and Extension Styles for Analysis

To manifest the effectiveness of feature selection and Main-Side loss-based fine-tuning, the
VGG-M [74] network is employed as the baseline for the optimized extension. The VGG-M and its
full version the 16-layered VGG [75] are powerful holistically structured networks, and have achieved
a top-5 error at only 13.7% and 7.4% on the ILSVRC-2012-val dataset, which are the best scores until
2014. Different from its ancestor AlexNet [71], VGG-M uses small kernels of size 3× 3 with 1 pixel-sized
padding, making them ideal for encoding the local structural differences. After that, the development
on CNN have either sought greater depth by shortcut connection [76–78] or more miscellaneous
structural complexities [21,50,79].

Three typical kinds of extension structures based on VGG-M are illustrated in Figure 12, which
will be studied in the following subsections. Figure 12a shows the case when the network is extended
with blank randomly initialized kernels, and Figure 12b shows the case when selected feature maps
from the preceding layers are used for extension. Figure 12c shows the case when both the feature
selection and Main-Side loss techniques are employed for extension.

During the experimental analysis in the rest of the section, six kinds of network extension
in total are involved for general or specific analysis, and their principle structures are shown in
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tables in Figure 13. Therein, the miniature VGG-M and full-sized VGG-16 are abbreviated as Orig.M
and Orig.16 in Figures 13a,b. Plain network extension by blank kernels and selected feature maps
with the original softmax loss are abbreviated as New Ext. and Select Ext., shown by Figures 13c,d.
Blank kernel-based and selected feature map-based extension with the class-imbalance-sensitive
Main-Side loss are denoted as New S-Ext. and Select S-Ext., shown by Figures 13e,f.
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CONV 4

CONV 5

FC 6

FC 7

FC 8

+

E-CONV 5

softmax loss
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S-CONV 4 S-CONV 3
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+

Main-Side Loss

FC6 Ext

(c)

Figure 12. Three typical extension schemes. (a) Plain extension with blank kernel generated feature
maps; (b) Plain extension with selected feature maps; (c) Main-Side bi-parted extension with selected
feature maps.

(a) (b) (c)

(d) (e) (f)

Figure 13. The five network structures studied in the experimental section. (a) The baseline network
miniature miniature visual geometry group (VGG-M) (Orig.M) and (b) 16-layered VGG (Orig.16), the
comparative extensions with either (c,d) the Loss of Softmax (New Ext., Select Ext.) or (e,f) the proposed
Main-Side Loss (New S-Ext., Select S-Ext.).
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More specifically, the network structures Orig.M, Orig.16, New Ext., Select Ext., and Select S-Ext.
with the three penalization modes are compared and studied in Section 5.2 for a holistic comparison.
After that, the structures New Ext. and Select Ext. are compared in Section 5.3 to showcase the effect of
using selected features in the plain softmax loss-based network extension instead of the blank kernels.
Finally, the main factors including the coefficient λ, coefficients B, and the three penalization modes
are compared based on the New S-Ext. structure to analyze the behavior of the Main-Side loss function
in Section 5.4.

5.2. Experimental Results

The proposed network extension scheme is verified in this section. The networks chosen for
comparison are the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), extensions
based on the softmax loss (New Ext. and Sel. Ext.), and extensions based on the selected features and
Main-Side loss (Sel. S-Ext.).

The parameter model file sizes, memory consumption sizes, and their overheads are shown in
Table 2, in which the memory consumption is measured with batch size 96. All data are measured
based on the Caffe CNN platform. Generally, Main-Side loss-based network extensions have the
least overhead compared to those using softmax loss. The parameter file size increments are trivial
since the FC6 Ext. layer has only five hidden neurons. For the memory consumptions, extra memory
space saving is done by reusing existing feature maps from preceding layers. Moreover, there are also
implicit computation savings by eliminating the convolutions in layers Conv3 Ext. and Conv4 Ext..

Table 2. Trained model file sizes and GPU-memory consumption for batch size of 96.

Net Struct. Orig.M Orig.16 New Ext.
128

New Ext.
256

Sel. Ext.
128

Sel. Ext.
256

Sel. S-Ext.
128

Sel. S-Ext.
256

Model (Mb) 361.7 537.1 439.6 519.8 426.1 460.9 362.2 362.8
Δ Model (Mb) - 175.4 77.9 158.1 64.4 99.2 0.5 1.1

Mem (Mb) 1820.3 10547.1 1988.4 2093.0 2018.5 2053.7 1977.4 2004.3
Δ Mem (Mb) - 8726.8 168.0 272.7 192.7 223.1 157.1 183.9

Class-wise classification performances measured by accuracies and F1 scores are presented in
Tables 3 and 4, based on extensions with Nsel = 128 and Nsel = 256 by Algorithm 1. In them,
the global, local and batch-wise based penalization modes for Select S-Ext. are abbreviated as
Glb., Lcl., and Bat.. Due to the limitation of page space, the Select Ext. is further abbreviated as
Sel. Ext.. The trailing keyword ReLU indicates the usage of ReLU layer to constrain the Side-Network
probabilities. In each column, the first-, second-, and third-highest scores are marked by bold, underline,
and double-underline.

From these two tables, several important phenomena need to be taken care of. Firstly, compared
to the small version Orig.M, the full-sized Orig.16 is superior in achieving high F1 scores and high
accuracy for recognizing negatives, but it is bad for making accurate predictions on the positive classes.
This means that the depth-based network extension is more likely to be affected by the class-imbalance.
Secondly, the softmax loss-based Sel Ext. has more high scores when Nsel = 128, meaning that
selected features are better utilized for minority classes under smaller extension quantity. Thirdly, the
Main-Side loss-based selective feature map extensions are stabler at maintaining high performance
for the minority classes (Sedan, Van) except for ones too trivial in size (Working Truck). Fourthly, the
usage of ReLU slightly decreases the improvement in accuracies while helping with the enhancement
of F1 score. Considering the small overhead cost for the Select S-Ext. variants, their network extension
efficiencies are better than the others.
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Table 3. Best averaged F1 score cases of classification performance for 128 feature map extension.

Negative Sedan Station Wagon Van Working Truck

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Orig.M 96.83% 0.9791 58.40% 0.6247 81.81% 0.8010 90.11% 0.8422 69.72% 0.5435
Orig.16 99.68% 0.9624 57.13% 0.6433 82.04% 0.8329 91.64% 0.8650 70.05% 0.5914

New Ext. 97.20% 0.9822 63.38% 0.6474 82.13% 0.8245 91.92% 0.8459 74.52% 0.5666
Sel. Ext. 96.90% 0.9808 63.56% 0.6487 82.25% 0.8247 93.00% 0.8501 68.16% 0.5609

Glb. 97.01% 0.9810 65.73% 0.6438 81.51% 0.8303 92.38% 0.8471 71.29% 0.5377
Glb.ReLU 97.22% 0.9820 65.95% 0.6410 81.27% 0.8315 92.69% 0.8477 71.25% 0.5406

Lcl. 97.00% 0.9813 65.45% 0.6408 81.65% 0.8310 92.66% 0.8497 69.63% 0.5418
Lcl.ReLU 97.27% 0.9823 64.61% 0.6404 81.53% 0.8285 92.56% 0.8498 70.70% 0.5375

Bat. 97.12% 0.9814 64.40% 0.6417 81.54% 0.8276 92.89% 0.8471 70.38% 0.5351
Bat.ReLU 97.30% 0.9820 63.87% 0.6407 81.67% 0.8273 92.66% 0.8505 72.78% 0.5556

Note: The first, second and third topmost values in each column are marked by bold, underline and double-underline.
Meanings of abbreviations are: the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), the softmax loss
based extensions (New Ext. and Sel. Ext.), and Main-Side loss based extensions (Sel. S-Ext.).

Table 4. Best averaged F1 score cases of classification performance for 256 feature map extension.

Negative Sedan Station Wagon Van Working Truck

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

Orig.M 96.83% 0.9791 58.40% 0.6247 81.81% 0.8010 90.11% 0.8422 69.72% 0.5435
Orig.16 99.68% 0.9624 57.13% 0.6433 82.04% 0.8329 91.64% 0.8650 70.05% 0.5914

New Ext. 97.23% 0.9823 61.97% 0.6431 82.26% 0.8207 92.26% 0.8484 71.97% 0.5804
Sel. Ext. 96.96% 0.9808 61.98% 0.6453 82.39% 0.8192 91.69% 0.8451 70.85% 0.5439

Glb. 97.12% 0.9816 64.26% 0.6419 81.47% 0.8263 92.83% 0.8453 70.31% 0.5409
Glb.ReLU 97.16% 0.9818 64.47% 0.6441 81.80% 0.8290 92.94% 0.8505 73.60% 0.5472

Lcl. 96.94% 0.9809 65.91% 0.6384 81.45% 0.8306 92.46% 0.8507 68.53% 0.5469
Lcl.ReLU 97.11% 0.9816 65.11% 0.6439 81.69% 0.8296 92.46% 0.8481 72.05% 0.5564

Bat. 97.01% 0.9809 63.75% 0.6413 81.52% 0.8242 92.92% 0.8457 69.94% 0.5442
Bat.ReLU 97.31% 0.9823 65.12% 0.6420 81.45% 0.8303 92.70% 0.8482 71.70% 0.5419

Note: The first, second and third topmost values in each column are marked by bold, underline and double-underline.
Meanings of abbreviations are: the baseline VGG-M (Orig.M), the 16-layered full-sized VGG (Orig.16), the softmax loss
based extensions (New Ext. and Sel. Ext.), and Main-Side loss based extensions (Sel. S-Ext.).

Finally, a brief illustration of the effectiveness of the proposed network extension is given in
Figure 14, where Orig.M and Select S-Ext. with Nsel = 256 and λ = exp (−2) are chosen for comparison.
In Figure 14a, newly recognized images by Select S-Ext. are listed in Figure 14a by their types in each
row. According to the common characteristics in appearance, three categories can be established in the
columns: those with rare structures or confusing appearances (Rare Instances), those being blurred by
shadows (Shadowing), and those being partially covered by trees and buildings (Covering). These are
the challenging conditions to which the extended network structure is devoted. At last, prediction
accuracies of Orig.M and Select S-Net. on the three sample categories discussed in Section 5.1.2 are
illustrated in Figure 14b, abbreviated as Orig. and Imprv.. Therein, accuracy values of Imprv. are
marked above its curve markers, and the improvement values Diff. are shown as bars. As expected,
samples with greater vehicle center distances (Far Distance) are better predicted by their recognition
easiness. Additionally, consistent with the design pattern of Main-Side Loss, greater improvement
happens on positives in the Centered category.
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(a) (b)

Figure 14. Network classification performance improvement illustrated by the established classification
dataset. (a) Newly recognized positives after extension. (b) Prediction accuracies and the increments
on sample categories: Centered (Cent.), Close Range (Close), and Far Range (Far).

5.3. Network Extension Efficiency by Selected Feature Maps

This sub-section discusses the network extension efficiency in using the selected convolutional
feature maps. To justify the comparisons, only the extensions New Ext. and Select Ext. based on the
softmax loss are adopted, so all kernels will be penalized equally over different classes.

Table 5 shows the classification accuracies between the original VGG-M network and its two
extended counterparts, New Ext. and Select Ext.. Seven extension quantities are involved in the
comparison, ranging from 64 to 256. Since the feature maps selection scheme described in Algorithm 1
will introduce duplications, the number of feature maps used in the selective extension is always
smaller. As can be observed from Table 5, outperforming instances frequently occur on large and
medium-sized classes (e.g., Sedan and Station Wagon) which have occupation ratios at 23.06% and
66.96%. For class Van, which has an occupation ratio of 9.10%, only one outperforming is detected.
Accuracy differences on class Working Truck fluctuate radically, a class which has the smallest data
occupation ratio at 0.88%.

Table 5. Classification accuracies for softmax loss-based extensions New Ext. and Select Ext..

Sedan Station Wagon Van Working Truck
Original

ACC 58.40% ACC 81.81% ACC 90.11% ACC 69.72%

New Ext. & Sel. Ext. New Select New Select New Select New Select
N64/S50 63.02% 63.19% 81.85% 82.27% 92.58% 91.81% 74.06% 76.30%
N96/S71 63.00% 62.78% 82.11% 82.35% 92.76% 91.90% 75.84% 67.97%

N128/S89 63.38% 63.56% 82.13% 82.25% 91.92% 93.00% 74.52% 68.16%
N160/S109 63.23% 63.59% 82.07% 81.96% 92.62% 92.48% 75.30% 75.73%
N192/S130 62.55% 62.30% 81.99% 82.40% 92.53% 92.07% 72.54% 73.62%
N224/S150 63.38% 63.10% 81.84% 82.05% 92.46% 91.95% 69.97% 68.73%
N256/S168 61.97% 61.98% 82.26% 82.39% 92.26% 91.69% 71.97% 70.85%

Note: For each pair of accuracies given by New Ext. and Select Ext., instances where the Select Ext. outperforms the
New Ext. are emphasized by bold font.

The phenomenon mentioned above can be regarded as the equal penalization nature of the
softmax loss. As most of the feature maps selected by Algorithm 1 have high class-significance for all
classes, they are more likely to be assigned to majority classes. For the kernels only efficient on minority
classes, fluctuations occur as softmax loss attempts to bias them to the majority ones. As a result, poor
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overall performance refinement is obtained by Select Ext.. As in Figure 15, averaged F1 scores and
accuracies are shown for the three networks, with differences between Select Ext. (Select) and New Ext.
(Simple) displayed as bars Diff.. Instances where Select Ext. is comparable to New Ext. are marked by
arrows, and values for Select Ext. are listed above the markers. For the aforementioned reasons, these
instances are rare, and the superiorities of Select Ext. are less significant.

(a) F1 Score (b) Accuracies

Figure 15. Overall performance comparisons between the Orig.M, New Ext. and Select Ext. under
different extension sizes. (a) the averaged F1 scores, (b) the averaged accuracies. Instances where Select
Ext. is comparable to New Ext. are marked by arrows.

Finally, in Figure 16, a more fair comparison for showing the feature map extension efficiency
is performed based on a per-kernel evaluation, where the increase in F1 score for each newly added
feature map is calculated by

(
F1ext − F1orig

)
/Next, in which F1orig and F1ext for the baseline and

extended network, and Next is the number of extended feature maps. As can be observed from
Figure 16, the selective feature map-based extension is more efficient in medium-sized minority classes
(Sedan and Van) for small extension quantity, while dropping more rapidly than the blank kernel-based
one since the selected ones lack enough flexibility.

(a) Sedan (23.06% * Npos) (b) Station Wagon (66.96% * Npos)

Figure 16. Cont.
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(c) Van (9.10% * Npos) (d) Working Truck (0.88% * Npos)

Figure 16. Efficiency comparison of extended feature maps (kernels). Npos is the quantity of all vehicles.
Selected feature maps (kernels) are more effective for small extension and minority classes.

5.4. Main Factors in Main-Side Loss Function-based Fine-Tuning

Three major configurations have to be considered when using the Main-Side loss to fine-tune
the bi-parted Main-Side network, which will be analyzed on the New S-Ext. extension: the first one
is whether to fix the FC layers in the Main Network during the fine-tuning; the second one is the
penalization coefficient λ and the positive constraint imposed on the single layered FC6 Ext. by an
extra ReLU layer; and the third one is the three penalization modes. The reason for choosing the New
S-Ext. extension for inspection is that it uses feature maps generated by blank kernels, which ensures
that all extended kernels are equally flexible, and thus can be useful for an objective illustration of the
impact caused by different configurations.

The first configuration—which involves partial fixation or joint optimization—determines
whether the FC6 to FC8 layers should be updated during the fine-tuning. This configuration is
only examined on the global penalization version of New S-Ext., with the class-wise performances
shown in Table 6. It is then obvious from the table that the joint optimization settings outperform the
partially fixed ones in almost every class, including the accuracies and F1 scores, except the trivially
populated class Working Truck. The superiority in performance for the joint optimization version is
caused by the simultaneous adjustment of the estimation accuracies by the Main Network component,
which means that kernels in the Main and Side Networks are optimally re-assigned. It is worth note
that the existence of the positive constraint by ReLU layer is less significant for the joint optimization
versions, in which the scores are almost identical.

Table 6. Categorization accuracies for fixed-Main and joint optimization, best average F1 cases.

Sedan Station Wagon Van Working Truck

ACC F1 ACC F1 ACC F1 ACC F1

Global No ReLU, Fix-M 62.12% 0.6275 81.10% 0.8212 91.46% 0.8479 72.67% 0.5492
Global ReLU, Fix-M 60.26% 0.6289 81.48% 0.8132 91.03% 0.8463 72.33% 0.5542

Global No ReLU, Joint 65.42% 0.6435 81.44% 0.8320 93.29% 0.8497 73.77% 0.5508
Global ReLU, Joint 65.66% 0.6449 81.58% 0.8325 92.96% 0.8484 72.06% 0.5490

Note: Fixed and non-fixed optimization settings are abbreviated as Fix-M and Joint, and the top-2 highest scores are
marked as bold and underline.
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For the second configuration involving the coefficient λ and the positive constraint ReLU,
comparing results are shown in Figures 17 and 18. As can be observed from Figure 17a, the influences
of λ are more correlated with the prediction accuracies, as they arise when the coefficient decreases.
This is because smaller penalization encourages larger likelihood rectifications from the Side Network.
This rectification effect is more clear in Figure 18, where medium-sized minority classes (e.g., class
Sedan and Van) have greater accuracy improvements compared with majority ones (e.g., Station
Wagon). However, the class that is too small (e.g., Working Truck) seems to benefit less from this effect
because of the possibility of over-fitting.

In contrast, as seen previously in both figures, the existence of the ReLU layer has little or no
influence on the resulting accuracies, while the removal of the ReLU layer seems to help stabilize the
fluctuations in accuracies and F1 scores as the penalization λ changes. This is reasonable, since by
permitting negative adjustments from the Side Network, they help with pruning the Main Network
likelihoods too high to cause over-fitting.

For the third configuration—which involves the comparison between the three penalization
modes (Global, Local, and Batch-wise)—experimental results are presented in Table 7. Judging from
the scores, there is no apparent winner: Batch-wise penalization is more suitable for improving the
small-sized classes (e.g., Working Truck), the Global penalization is more suitable for medium-sized
classes (e.g., Sedan and Van), and the Local penalization performs better for the large and medium-sized
ones (e.g., Station Wagon and Sedan).

Table 7. Best accuracies and F1s for three modes with or without the ReLU layer on FC6 Ext. layer.

Sedan Station Wagon Van Working Truck

ACC F1 ACC F1 ACC F1 ACC F1

Global No ReLU, Joint 65.42% 0.6435 81.44% 0.8320 93.29% 0.8497 73.77% 0.5508
Global ReLU, Joint 65.66% 0.6449 81.58% 0.8325 92.96% 0.8484 72.06% 0.5490
Local No ReLU, Joint 65.79% 0.6415 81.63% 0.8335 92.91% 0.8494 69.67% 0.5491
Local ReLU, Joint 65.53% 0.6441 81.55% 0.8320 92.88% 0.8468 72.17% 0.5432
Batch-wise No ReLU, Joint 64.79% 0.6442 81.95% 0.8308 92.40% 0.8498 71.04% 0.5548
Batch-wise ReLU, Joint 65.00% 0.6435 81.72% 0.8307 92.58% 0.8477 74.92% 0.5662

Note: In each column, the first and second topmost values are emphasized by bold and underline. Implementations
with and without ReLU layer are marked by ’ReLU’ and ’No ReLU’. ’Joint’ means non-fixed optimization same as that
in Table 6.

(a) Accuracies by λ and ReLU (b) F1 Scores by λ and ReLU

Figure 17. Influences of the coefficient λ and ReLU constraint on the overall accuracy and F1 score in
three modes. (a) the averaged accuracies; (b) the averaged F1 scores.
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(a) Sedan (23.06% * Npos) (b) Station Wagon (66.96% * Npos)

(c) Van (9.10% * Npos) (d) Working Truck (0.88% * Npos)

Figure 18. Influences of the penalization mode and the coefficient λ on accuracy and F1 score for
different vehicle types. Npos is the quantity of positives, which is all the vehicles.

6. Discussion

As mentioned in Section 1, few articles have been found to address the class-imbalance issue
in high-resolution aerial image-based vehicle localization and categorization using CNN structure
extension; this article serves as an exploration of such methods. A principally similar work named
hierarchical deep CNN (HD-CNN) [50] has studied the effectiveness of a tree-structured CNN ensemble
on general object classification problems involving dozens of classes. However, with only a few classes,
it is inconvenient to build multi-level class taxonomy, and appending a near-full-sized CNN structure
might not be sufficiently cost-efficient considering the size of the problem.

The effectiveness of the proposed extension scheme is exemplified in a moderately-sized VGG-M
network in a self-proven manner. According to the analysis in the previous experimental section,
several general conclusions can be drawn on the network extension-based class-imbalance dealing
methods, which can be useful for applying the methods on other similar applications:

(a) According to Tables 3 and 4, using wider and deeper network structure with plain extension
(blank kernels and softmax loss) will generally improve the classification performances on all
classes, while using deeper structure will help more with the generalized performance measured
by F1 score.
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(b) According to Table 5, the effectiveness of the softmax loss-based plain width extension with either
blank kernels or selected feature maps will decrease rapidly as the extension quantity increases.
Additionally, the selected feature maps are more effective under small extension quantity, while
losing their advantage in large extension, as they lack flexibility.

(c) As can be seen from Tables 3–5, selected feature maps are more helpful for improving the
classification accuracies, while they can barely keep up with the blank kernel-based extension
in overall F1 score by Figure 15a. To maintain a reasonably high F1 score performance, the
penalization mode Glb.ReLU and Bat.ReLU are preferred, as in Tables 3 and 4.

(d) As seen by Figure 17a, penalization modes without ReLU constraint in the Main-Side loss-related
fine-tuning can produce a more significant increment in accuracies as the global penalization λ

decreases. The existence of a ReLU layer helps to stabilize the fluctuation in F1 scores when λ

changes, as in Figure 17b.
(e) By Figure 18, the class-imbalance-sensitive penalization term Ω (z∗) helps to improve the

classification accuracies for the medium-sized minority classes (Sedan and Van), but is not
so ideal for classes with an absolutely trivial sample quantity (Working Truck).

(f) The sizes of most effective vehicle classes for the three penalization modes are different. Shown
by Table 7, the Global penalization mode is effective on medium-sized classes (Sedan and Van),
the Local mode is effective for large- and medium-sized classes (Station Wagon and Sedan), while
the Batch-wise mode is effective for small-sized classes (Working Truck).

7. Conclusions

Methods for joint vehicle localization and categorization in aerial images helps with important
applications such as traffic flow analysis and suspicious vehicle detection. By treating samples who
exceed the permitted location deviation as negatives and classifying them along with the other vehicle
classes, the problem of cascaded localization error in separated estimation is eliminated. Top-3 accuracy
as high as 99% can be achieved when a typical CNN-based classifier is employed (e.g., the 16-layered
VGG network), but it still suffers from the class-imbalance issue, which causes poor classification
performances on minority classes.

Based on the R-CNN detection structure, a cost-effective network extension scheme is proposed in
this paper to address this issue by introducing less computation and memory consumption overhead.
Such efficiency is achieved by two means: the feature map selection and bi-partite Main-Side Network
extension, which are performed with the help of a feature map class-importance measurement and
a class-imbalance-aware loss function newly proposed in this article. The resulting extended network
structure is verified along with its similarly-shaped strong counterparts on a 0.13 m GSD aerial image
dataset captured over the urban region of Munich. Experimental results show that the selectively
extended feature maps are more effective than those produced by randomly initialized new kernels.
By applying the Main-Side loss on this bi-partite network, classification performances on medium-sized
minority classes can be further improved. The three Main-Side loss penalizing schemes help with
this performance improvement differently, showing varied refinement effect on different-sized classes.
Generally, by jointly employing the feature map selection and Main-Side loss optimization schemes,
comparable vehicle categorization results can be achieved compared to the counterparts with less
parameter and memory overheads.

Key contributions of this study are as follows: First, a novel multi-class feature map importance
measurement is proposed by extending the existing significance score for binary classification problems.
Second, an easy-to-use cost-effective network extension scheme called Main-Side Network is proposed
to greatly improve the classification performances on minority classes with small amount of overhead.
Third, three penalization modes are proposed for regularizing the Main-Side loss adopted in this
extension, which are simple to implement and beneficial for minority classes with different properties.
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In future work, the existing classification deficiencies on tiny classes (e.g., the Working Truck class)
is planned to be deeply investigated by using stronger models from the one-class classification. Difficult
detection conditions involving shadowed and partially sheltered vehicles caused by skyscrapers and
street trees will be further analyzed with harder experimental dataset. Behaviors of the three penalization
modes for the Main-Side Loss should be further analyzed in detail to enhance the performance.
The Main-Side Network extension structure is intended to be replaced by a network splitting method;
thus, the convolution and memory consumption overhead can be completely eliminated.
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The following abbreviations are used in this manuscript:

ADASYN Adaptive Synthetic Sampling
CBO Cluster-based Oversampling
CNN Convolutional Neural Network
DBN Deep Belief Network
FCN Fully Convolutional Neural Network
HOG Histogram of Oriented Gradients
GAN Generative Adversarial Network
GSD Ground Sampling Distance
LBP Local Binary Pattern
R-CNN Regions with Convolutional Neural Network Features
ROI Region of Interest
SIFT Scale Invariant Feature Transform
SMOTE Synthetic Minority Over-sampling Technique
SVM Support Vector Machine
t-SNE t-Distributed Stochastic Neighbor Embedding
VGG Visual Geometry Group
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Abstract: Target detection from hyperspectral images is an important problem but encounters a
critical challenge of simultaneously reducing spectral redundancy and preserving the discriminative
information. Recently, the joint sparse representation and multi-task learning (JSR-MTL) approach
was proposed to address the challenge. However, it does not fully explore the prior class label
information of the training samples and the difference between the target dictionary and background
dictionary when constructing the model. Besides, there may exist estimation bias for the unknown
coefficient matrix with the use of �1/�2 minimization which is usually inconsistent in variable
selection. To address these problems, this paper proposes an adaptive joint sparse representation and
multi-task learning detector with locality information (JSRMTL-ALI). The proposed method has the
following capabilities: (1) it takes full advantage of the prior class label information to construct an
adaptive joint sparse representation and multi-task learning model; (2) it explores the great difference
between the target dictionary and background dictionary with different regularization strategies in
order to better encode the task relatedness; (3) it applies locality information by imposing an iterative
weight on the coefficient matrix in order to reduce the estimation bias. Extensive experiments were
carried out on three hyperspectral images, and it was found that JSRMTL-ALI generally shows a
better detection performance than the other target detection methods.

Keywords: hyperspectral image; target detection; multi-task learning; sparse representation;
locality information

1. Introduction

Target detection is essentially a binary classification problem, which aims to separate specific target
pixels from various backgrounds with prior knowledge of the targets [1,2]. With the characteristic of
high spectral resolution [3], hyperspectral images (HSIs) with hundreds or even thousands of spectral
bands can distinguish subtle spectral differences, even between very similar materials, providing a
unique advantage for target detection [4,5]. Target detection has therefore attracted much attention in
many HSI applications, and it has been successfully used in real-world applications such as detecting
rare minerals in geology, oil pollution in environmental research, landmines in the public safety and
defense domain, and man-made objects in reconnaissance and surveillance applications [6–9].

The current target detection methods mainly utilize the detailed spectral information from the HSI
data and use different techniques to distinguish the targets and the background, such as the statistical
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hypothesis testing theory [10–12], filtering or projection technique [13–15], and sparse representation
technique [16–19]. These existing target detection methods, using a uniform vector of test pixel’s
spectrum as input, usually employ all the original bands to both construct the model and perform the
detection. In other words, these methods fully and uniformly utilize the discriminative information
within all single-band images, without considering the inherent similarity between the adjacent
single-band images of HSI. In fact, the spectral resolution of HSIs is so high that the adjacent single-band
images present a great spectral similarity or redundancy, and this spectral redundancy provides an
obstacle for effective target detection. Many methods via dimension reduction for hyperspectral
target detection have been proposed in order to relieve this problem [20–24]. However, none of them
can guarantee that all the valuable discriminative spectral information underlying the HSI data is
preserved, since the HSI data dimension is greatly reduced after the dimension reduction process.
To summarize, there exists a dilemma to simultaneously reduce spectral redundancy and preserve
discriminative information for Hyperspectral target detection.

In recent years, the multi-task learning (MTL) technique has attracted much interest [25–28] and
has been employed to address the above dilemma for hyperspectral target detection in [29], labeled as
the joint sparse representation and multi-task learning (JSR-MTL) approach. The approach explores the
spectral similarity between the adjacent single-band images to construct multiple sub-HSIs with a band
cross-grouping strategy, which leads to multiple related detection tasks. The approach further explores
the similarity between the sub-HSIs to analyze the latent sparse representation of each task. Then
multiple sparse representation models via the union target and background dictionary are integrated
via a unified multitask learning technique. In this way, the redundancy in each detection task can be
effectively avoided; and the spectral information behind the high dimension original HSI dataset fully
used, so that the discriminative information is not lost [29].

However, there still exist several problems with the JSR-MTL approach. Firstly, it does not fully
incorporate the class label (prior) information of the training samples, which only utilizes the class
label information in post-processing when calculating the residuals for each class and ignores the
class label information when constructing the sparse representation models. Secondly, it encourages
shared sparsity among the columns of the coefficient matrix corresponding to the union dictionary,
which lead to the same sparsity constraint among the tasks corresponding to both the target dictionary
and background dictionary. However, as the size and the spectral variability of the target dictionary
are much different from the background dictionary, it is therefore not appropriate to impose the
same sparsity constraint for both the coefficient matrices corresponding to the target dictionary and
background dictionary. Finally, it does not take the locality information between the test pixel and all
the neighboring background training samples into consideration, which may make a contribution for
better signal reconstruction, due to the fact that the samples similar to the test pixel are more likely to
be selected for signal reconstruction.

To address the above problems, this paper proposes an adaptive joint sparse representation
and multi-task learning detector with locality information (JSRMTL-ALI). The proposed method
explores the prior class label information of the training samples to construct two joint sparse
representation and multi-task learning models, where the test pixel is separately modeled via the
target dictionary or background dictionary. Considering also the great difference between the target
dictionary and background dictionary, different regularization strategies encoding the task relatedness
are employed for the two joint sparse representation and multi-task learning models based on the
target dictionary or background dictionary. Besides, a locality information descriptor is introduced to
indicate the difference between the central test pixel and the neighboring background training samples.
Additionally, inspired by the idea that the coefficient matrix may have estimation bias in [30,31], since
the �1/�2 minimization used in the regularization strategy is usually inconsistent in variable selection,
a locality information descriptor-based weight is employed to iteratively constrain the regularization
term to reduce the estimation bias.
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The rest of this paper is organized as follows. Section 2 briefly introduces the original JSR-MTL
method. The proposed JSRMTL-ALI method is then presented in Section 3. The experimental results
of the proposed method with several HSIs are presented in Section 4. Finally, the discussion and
conclusions are drawn in Sections 5 and 6.

2. Brief Introduction to the JSR-MTL Method

For the hyperspectral imagery (HSI), as discussed in [29], the adjacent single band images
are similar to each other and MTL technology is introduced to utilize the spectral similarity for
hyperspectral target detection.

The MTL methodology was proposed by Caruana [28]. It is an inductive transfer method that uses
the domain-specific information contained in the training signals of related tasks, which can guarantee
that the related tasks can learn from each other and make the inductive transfer method work. There
are two key techniques of MTL. One is the construction of multiple tasks with commonality. The other
key technique is the relevance analysis of multiple tasks. The multiple tasks can be constructed in
various ways, which may depend on the specific application [25,26]. Tasks can be related in various
ways. There are two commonly used approaches: (1) tasks may be related by assuming that all the
learned functions are close to each other in some norm, such as the linear regression function [25];
and (2) tasks may also be related in that they all share a common underlying representation [32], such
as sparsity, a manifold constraint, or a graphical model structure.

In JSR-MTL [29], multiple related detection tasks are constructed through band cross-grouping
strategy. In accordance with the band order of the original HSI, the multiple adjacent single-band
images are cross-grouped into different groups. Each group then forms a sub-HSI, as shown in Figure 1.
Based on the spectral similarity between the adjacent single-band images, multiple sub-HSIs from
the original HSI are related with each other. Therefore, these multiple related sub-HSIs naturally
correspond to multiple related detection tasks [29].

Figure 1. Illustration of the band cross-grouping strategy for the multiple detection tasks.
HSI = hyperspectral image.

For the relevance analysis of the multiple tasks, the spectral similarity of the multiple sub-HSIs
naturally guarantees the relevance of the multiple detection tasks. Therefore the multiple detection
tasks are likely to share a common sparse representation [29], which has shown effectiveness in
hyperspectral target detection [16–19].

Considering hyperspectral data X ∈ Rh×w×B with training samples D =
[
Dt, Db

]
, where Dt is

the target dictionary generated via the target training samples {di
t}

Nt
i=1 ∈ RB, and Db is the background

dictionary generated via the background training samples {di
b}

Nb
i=1 ∈ RB. Nb and Nt are the number

of background and target training samples, respectively. Let x be a test pixel in the original HSI,

and
{

xk ∈ RBk
}K

k=1
represents the partial test pixel in each sub-HSI.
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For the k-th sub-HSI, the partial test pixel
{

xk
}K

k=1
∈ RBk

can be modeled to lie in the union
of the background and target subspaces respectively spanned by the background training samples

{dkb
i ∈ RBk×Nb }

Nb

i=1 and the target training samples {dkt
i ∈ RBk×Nt }

Nt

i=1. Therefore, xk can be represented
by a sparse linear combination of the training samples

xk =
(

wkb
1 dkb

1 + wkb
2 dkb

2 + · · ·+ wkb
Nb

dkb
Nb

)
+
(

wkt
1 dkt

1 + wkt
2 dkt

2 + · · ·+ wkt
Nt

dkt
Nt

)
+ ςk

= Dkbwkb + Dktwkt + ςk

= Dkwk + ςk

(1)

where ςk is the random noise. Dkb and Dkt are the Bk × Nb background sub-dictionary and Bk × Nt

target sub-dictionary, respectively. wk ∈ RNb+Nt is a concatenation of wkb and wkt, which are the
coefficient sub-vectors over the k-th sub-dictionary Dkb and Dkt.

Since the K groups of partial test pixels are highly related to each other, the sparse representation
for a single-task case can be generalized to a multiple-task case. Thus, for the multiple detection tasks,
the original pixel x ∈ RB decomposed into K sub-vectors can be represented as

x1 = D1bw1b + D1tw1t + ς1 = D1w1 + ς1

...
...

xK = DKbwKb + DKtwKt + ςK = DKwK + ςK

(2)

These can be incorporated into the joint sparse representation and multi-task learning model

�
W = arg min

wk

K

∑
k=1
||xk −Dkwk||22 + ρ||W||2,1 (3)

where W ∈ R(Nb+Nt)×K is the coefficient matrix formed by stacking the vectors wk ∈ RNb+Nt . ρ is
the regularization parameter to trade off the data fidelity term and the regularization term, which
penalizes the �2,1-norm of the coefficient matrix W. The �2,1-norm of W is obtained by first computing
the �2-norm of the rows {wi}Nb+Nt

i=1 (across the tasks) of the matrix W, and then computing the �1-norm
of the vector b(W) = (||w1||2, · · · , ||wNb+Nt ||2)T . This norm encourages the sparsity of each column
of the matrix W, and simultaneously encourages shared sparsity among the columns of the matrix W.

3. Adaptive JSR-MTL with Locality Information Detector

3.1. Adaptive JSR-MTL Model

Some sparse representation classifiers employ the sparsity within a class for the classification, and
show that a few background samples are adequate to reconstruct a test background sample in HSI [18].

Thus, If x is a background pixel, for the k-th sub-HSI, the partial test pixel
{

xk
}K

k=1
∈ RBk

can be

approximately represented as a linear combination of the background training samples {dkb
i }

Nb
i=1 ∈ RBk

as follows:
xk =

(
wkb

1 dkb
1 + wkb

2 dkb
2 + · · ·+ wkb

Nb
dkb

Nb

)
+ ςkb

= Dkbwkb + ςkb
(6)

where ςkb is the random noise. Dkb is the Bk × Nb background sub-dictionary. wkb ∈ RNb is the
coefficient sub-vector over the sub-dictionary Dkb.

For the multiple detection tasks, the original background pixel x ∈ RB decomposed into K
sub-vectors can be represented as
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x1 = D1bw1b + ς1b

...
...

xK = DKbwKb + ςKb

(7)

These models can be incorporated into the following joint sparse representation and multi-task
learning model

�
W

b
= arg min

wkb

K

∑
k=1
||xk −Dkbwkb||22 + ρbΩ(Wb) (8)

where Wb ∈ RNb×K is the matrix formed by stacking the vectors wkb ∈ RNb . Ω(Wb) is the
regularization term to further encode the task relatedness. ρb is the regularization parameter to
trade off the data fidelity term and the regularization term.

Similarly, a target pixel x ∈ RB decomposed into K sub-vectors can be represented as

x1 = D1tw1t + ς1t

...
...

xK = DKtwKt + ςKt

(9)

where ςkt is the random noise. Dkt is the Bk × Nt target sub-dictionary. wkt ∈ RNt is the coefficient
sub-vector over the k-th sub-dictionary Dkt.

These models can also be incorporated into the following joint sparse representation and
multi-task learning model

�
W

t
= arg min

wkt

K

∑
k=1
||xk −Dktwkt||22 + ρtΩ(Wt) (10)

where Wt ∈ RNt×K is the matrix formed by stacking the vectors wkt ∈ RNt .
In the detection problems, we are given a set of training samples with corresponding labels.

The above two JSR-MTL models in Equations (8) and (10) make the assumption that a test sample
should be represented by atoms from the same classes that the test sample belongs to, which means
that the test sample is modeled separately for target and background pixel. Therefore, the above two
JSR-MTL models in Equations (8) and (10) are more complete and realistic than the basic JSR-MTL
model in [29]. In the above two JSR-MTL models in Equations (8) and (10), the test samples are
modeled separately with more reasonable dictionaries, with only the background training samples
for the null hypothesis, and the target training samples for the alternative hypothesis. In the case of
the basic JSR-MTL model in [29], either the target test samples or the background test samples are
represented by both the background and target training samples. In other words, the basic JSR-MTL
model in [29] does not fully incorporate the class label (prior) information of the data set; it only
utilizes the class label (background and target) information in post-processing when calculating the
residuals for each class and ignores it when constructing models and calculating sub-vectors.

What is more, as noted, the regularization terms Ω(W) in Equations (8) and (10) are employed to
further encode the task relatedness for the background pixel and target pixel, respectively. It can be
seen that different assumptions on the task relatedness lead to different regularization terms. Whether
the same regularization terms should be used for both the target and background pixel is an interesting
problem, which needs further discussion. As we know, in the basic JSR-MTL model [29], multiple partial
test pixels xk in each sub-HSI are sparsely represented via the union target and background dictionary
Dk = [Dkt, Dkb], and the �2,1-norm of W encourages shared sparsity among the columns of the matrix
Wwhich is formed by stacking the vectors wk ∈ RNb+Nt . This will lead to the same sparsity constraint
among the columns of the matrix Wb and Wt corresponding to the target dictionary and background
dictionary. This is inappropriate when considering the construction of target and background dictionary.
In target detection applications, the number of target pixels is usually small. The target dictionary is
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therefore constructed from some of the target pixels in the global image scene [17,18]. The background
dictionary is generated locally for each test pixel through a dual concentric window which separates the
local area around each pixel into two regions, a small inner window region (IWR) centered within a larger
outer window region (OWR), which can better represent and capture the spectral signature of the test
sample [17,18]. The background dictionary consists of many locally neighboring background training
samples whose spectra are likely to be similar to each other. Thus, for the background pixel, multiple
columns of the coefficient matrix Wb corresponding to multiple background sub-dictionaries are likely to
share consistent sparsity among different tasks. However, the case for the target pixel is much different
from the background pixel. The size of the target dictionary is smaller than the background dictionary,
and the target training samples selected from the whole image are likely to show spectral variability [11].
Therefore it is inappropriate to assume consistent sparsity among multiple columns of the coefficient
matrix Wt corresponding to multiple target sub-dictionaries. In brief, different regularization terms should
be used for the target pixel and background pixel.

For the background pixel in (8), the �2,1-norm can be enforced to the matrix Wb as is done in [29].
For the target pixel in Equation (10), the �1-norm is applied for the matrix Wt, which is obtained by the
sum of absolute values in the matrix. The difference between �1-norm and �2,1-norm of the matrix W is
that, �1-norm imposes element wise sparsity and does not require consistent feature selection among
columns (tasks), while �2,1-norm by grouping rows together can achieve consistent sparsity among
different columns (tasks).

Therefore, Equations (8) and (10) can be rewritten as the following adaptive JSR-MTL model,
which can be labeled as the JSRMTL-A model:

�
W

b
= arg min

wkb

K

∑
k=1
||xk −Dkbwkb||22 + ρb||Wb||2,1 (11)

�
W

t
= arg min

wkt

K

∑
k=1
||xk −Dktwkt||22 + ρt||Wt||1 (12)

3.2. Locality Information Descriptor-Based Weight

The background dictionary is further discussed in this section. It can be seen from Equation (11) that,
all the training samples (atoms) in the background dictionary are treated equally for signal representation,
which ignores locality information, such as differences between the neighboring pixels and the central
test pixel. However, some surrounding pixels may be quite similar to the center pixel and are likely to be
selected for signal representation; some are quite different from the center pixel, such as the pixel which
has a different kind of material from the central pixel, which should be limited or even prohibited for
signal representation. The differences between the test pixel and the target atoms are not discussed here
due to the small size of the target atoms and the global target atoms selection method.

To preserve the locality difference between the central test pixel and the neighboring background
atoms, a distance based locality information descriptor is introduced, which can be expressed as

αk
i = exp

(
||xk − dkb

i ||22
2

)
(13)

where αk
i is the sample-specific descriptor for training sample i(i = 1, 2, · · · , Nb) in the k-th background

sub-dictionary Dkb. It is clear that a smaller αk
i indicates xk is more similar to the atom dkb

i , and vice versa.
Once the above descriptor is included, all the atoms in the background dictionary will be

adaptively treated for signal representation via the �2,1-norm. However, there may still exist estimation
bias for the signal representation. As stated in [30,31] the estimation bias can be large due to the
fact that the �1/�2 minimization is generally inconsistent in variable selection. Many efforts have
been made to reduce the estimation bias, such as adaptive Lasso method [30] and the reweighted �1
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minimization [31]. Inspired by the reweighted �1 minimization, a weight strategy on the �2,1-based
regularization term is introduced to reduce the estimation bias as follows.

�
W

b
= arg min

wkb

K

∑
k=1
||xk −Dkbwkb||22 + ρb||Ψ�Wb||2,1 (14)

where Ψ =
{

Ψk
i

}
is the weighting matrix, and Ψk

i is the weight for atom i(i = 1, 2, · · · , Nb) and column

(task) k(k = 1, 2, · · · , K), � denotes modifying the element in the coefficients matrix Wb by iteratively
multiplying a weight during the coefficient optimization.

In order to impose a relatively higher penalty for smaller coefficients and a lower penalty for
larger coefficients, the weight can be computed as inversely proportional to the sparse coefficient

ϕk
i =

1
|wkb

i |
(15)

Combining the above locality information descriptor and weight strategy, we obtain the locality
information descriptor-based weight defined as

Ψk
i =

ϕk
i αk

i

max
i,k

ϕk
i αk

i
(16)

3.3. Model Optimization

For the model optimization, we use the popular accelerated proximal gradient (APG)
algorithm [33,34] to efficiently solve the problem in Equations (12) and (14). The APG algorithm

alternately updates a matrix sequence
�
W

t
=

[
wk,t

i

]
and an aggregation matrix sequence

�
V

t
=

[
vk,t

i

]
.

Given the current matrix aggregation matrix
�
V

t
, a generalized gradient mapping step is employed

to update matrix
�
W

t+1
as follows

�
w

k,t+1
=

�
v

k,t − ηt∇k,t, t ≥ 1,
�
W

t+1
= f (

�
W

t+1
) , k = 1, 2, · · ·K

(17)

where ∇k,t = −(Dk)
T

xk + (Dk)
T

Dk�v
k,t

, ηt = 1/2t is the step size. f (·) is a function of
�
W

t+1
=

[
�
w

k,t+1
i

]
, which has a different format for (12) and (14).

For (12), the matrix
�
W

t+1
can be updated as follows

�
W

t+1
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
PΩ1(

�
W

t+1
− ρ

2t ), Ω1 : (
�
W

t+1
)i,k∈Ω1

> ρ
2t

PΩ2(
�
W

t+1
+

ρ

2t ), Ω2 : (
�
W

t+1
)i,k∈Ω2

< − ρ
2t

PΩ3(0 ∈ RNt×K), Ω3 : (Ω1 ∪Ω2)
⊥ , i = 1, 2, · · · , Nb

(18)

where PΩ is the projection of a matrix onto an entry set, and Ω is the index of the entry set.

For (14), the matrix
�
W

t+1
can be updated as follows

�
wi

t+1
=

[
1− ρ

2t ||�wi
t+1||2

]
+

�
wi

t+1
, i = 1, 2, · · · , Nb

�
wi

k,t+1
=

�
wi

k,t+1 × αk
i /|�wi

k,t+1|
max

i=1,2,···Nb ,k=1,2,···K
αk

i /|�wi
k,t+1|

(19)
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where [·]+ = max(·, 0).

An aggregation forward step is then employed to update
�
V

t+1
by linearly combining

�
W

t+1
and

�
W

t
as follows

�
V

t+1
= (1 + τt)

�
W

t+1
− τt �W

t
(20)

where the sequence τt is conventionally set to τt = 2(t− 1)/(1 +
√

1 + 4t2), as applied in our
implementation.

The optimization methods for the problem in Equations (12) and (14) can be summarized as
Algorithms 1 and 2, respectively.

Algorithm 1. The Coefficients over Target Dictionary Optimization Algorithm.

Input: Data
{

Dk, xk
}K

k=1
, regularization parameter ρ

Output: Coefficient vectors
{
�
w

k
}K

k=1

Step (1): Initialization:
�
w

k,0
= (Dk)

T
xk,

�
v

k,0
=

�
w

k,0
, τ0 = −1, t: = 0

Step (2): Repeat {Main loop}

a)
�
w

k,t+1
=

�
v

k,t − 1
2t

[
−(Dk)

T
xk + (Dk)

T
Dk�v

k,t
]

, k = 1, · · ·K

b)
�
w

k,t+1
i =

⎧⎪⎪⎨⎪⎪⎩
�
w

k,t+1
i − ρ/2t, Ω1

�
w

k,t+1
i + ρ/2t, Ω2

0, Ω3

c) τt = 2(t−1)
1+
√

1+4t2 ,
�
v

k,t+1
= (1 + τt)

�
w

k,t+1 − τt�w
k,t

d) t: = t + 1
Until: convergence is attained

Algorithm 2. The Coefficients over Background Dictionary Optimization Algorithm.

Input: Data
{

Dk, xk
}K

k=1
, regularization parameter ρ, locality information descriptor

{
αk

i

}
Output: Coefficient vectors

{
�
w

k
}K

k=1

Step (1): Initialization:
�
w

k,0
= (Dk)

T
xk,

�
v

k,0
=

�
w

k,0
, τ0 = −1, t: = 0

Step (2): Repeat {Main loop}

a)
�
w

k,t+1
=

�
v

k,t − 1
2t

[
−(Dk)

T
xk + (Dk)

T
Dk�v

k,t
]

, k = 1, · · ·K

b)
�
wi

t+1
=

[
1− ρ

2t ||�wi
t+1||2

]
+

�
wi

t+1
, i = 1, 2, · · · , Nb

�
wi

k,t+1
=

�
wi

k,t+1 × αk
i /|�wi

k,t+1|
max

i,k
αk

i /|�wi
k,t+1|

c) τt = 2(t−1)
1+
√

1+4t2 ,
�
v

k,t+1
= (1 + τt)

�
w

k,t+1 − τt�w
k,t

d) t: = t + 1
Until: convergence is attained

3.4. Final Sketch of the JSRMTL-ALI Detector

Once given the recovery of the coefficient vectors
�
w

kb
and

�
w

kt
corresponding to the background

dictionary Dkb and target dictionary Dkt for each task, we can then calculate the residual errors for the

background and target between the multiple signals in the sub-HSIs
{

xk
}K

k=1
and the approximations

recovered via their corresponding sub-dictionaries
{

Dkb
}K

k=1
and

{
Dkt

}K

k=1
as follows.
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rb =
K
∑

k=1
||xk −Dkb�w

kb||2

rt =
K
∑

k=1
||xk −Dkt�w

kt||2
(21)

where
�
w

kb
and

�
w

kt
are the subsets of the coefficient vector

�
w

k
associated with the background and

target. The output of the test pixel x is then calculated by

D(x) = rb − rt (22)

Finally, a visual illustration of the proposed LWAJSR-MTL algorithm for HSIs is shown in Figure 2.
Given a hyperspectral image, multiple sub-HSIs are extracted via the band cross-grouping strategy.

We construct the multiple-signals for each pixel
{

xk
}K

k=1
, multiple background dictionary

{
Dkb

}K

k=1

with the local dual window, and multiple target dictionary
{

Dkt
}K

k=1
via the target training samples.

Each pixel is represented by the multi-task sparse representation model via the target dictionary and
background dictionary, respectively. The coefficient matrices corresponding to the target dictionary
and dictionary are recovered via the Algorithms 1 and 2, respectively. Finally, the detection decision
rules in favor of the target class or the background class with the lowest total reconstruction error
difference accumulated over all the tasks.

Figure 2. Schematic illustration of the adaptive joint sparse representation and multi-task learning
detector with locality information (JSRMTL-ALI) algorithm.

4. Experiments and Analysis

4.1. Dataset Description

Three hyperspectral datasets were used in this study to evaluate the effectiveness of the proposed
detector introduced in Section 3.

The first dataset was collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) sensor
from San Diego, CA, USA. The spatial resolution of this image is 3.5 m per pixel. The image has 224
spectral channels in wavelengths ranging from 370 to 2510 nm. After removing the bands that correspond
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to the water absorption regions, low-SNR, and bad bands (1–6, 33–35, 97, 107–113, 153–166, and 221–224),
189 bands were retained in the experiments. An area of 100 × 100 pixels was used for the experiments.
The image scene is shown in Figure 3a. There are three planes in the image, which consist of 58 pixels,
as shown in Figure 3b. We selected one pixel from each plane as the target atoms, Nt = 3.

The second dataset was gathered by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensor over the Indian Pines test site in Northwest Indiana and consists of 145 × 145 pixels and 224
spectral reflectance bands in the wavelength range 0.4–2.5 μm. The false color image of the Indian
Pines image is shown in Figure 4a. We also reduced the number of bands to 200 by removing bands
covering the regions of water absorption: 104–108, 150–163, and 220, as referred to in [35]. This image
contains 16 ground-truth classes via a ground truth labels, and the stone-steel-towers was selected
as the target of interest to be detected, which has 93 pixels, as shown in Figure 4b. We selected three
pixels from the target as the target atoms, Nt = 3.

The third data set was acquired by the Nuance Cri hyperspectral sensor. This sensor can acquire
imagery with a spectral resolution of 10 nm. The image scene covers an area of 400 × 400 pixels, as
shown in Figure 5a, with 46 spectral bands in wavelengths ranging from 650 to 1100 nm. There are ten
rocks located in the grassy scene, which consist of 1254 pixels, as shown in Figure 5b. We selected one
pixel from each rock as the target atoms, Nt = 10.

(a) Image scene (b) Ground truth

Figure 3. The AVIRIS dataset.

 
(a) Image scene (b) Ground truth

Figure 4. The Indian dataset.

 
(a) Image scene (b) Ground truth

Figure 5. The Cri dataset.
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4.2. Evaluation of JSRMTL-ALI Model

Firstly, the effectiveness of the JSRMTL-ALI model was investigated and compared with the
original JSR-MTL model in Equation (3) and the adaptive JSR-MTL (labeled as JSRMTL-A) model
in Equations (11) and (12). We took three detection tasks (K = 3) as an example, and the JSR-MTL
with K = 1 which indicates the detection performance without the multi-task learning technique.
For simplicity, all regularization parameters used in the four models are set with the same value
(ρ = 0.1). The sizes of the OWR for the three datasets were respectively set as 17 × 17, 23 × 23,
and 23 × 23. The sizes of the IWR are related to the size of the target, and were set as 7 × 7, 15 × 15,
and 15 × 15 for the AVIRIS, Indian, and Cri datasets, respectively. The numbers of the background
training samples for the three datasets were therefore Nb = 240, Nb = 304, and Nb = 304, respectively.
The detection performance for the four models with three datasets are provided by the area under the
receiver operation characteristics (ROC) curves, as shown in Figure 6.

For the AVIRIS dataset, as shown Figure 6a, the ROC curve of JSRMTL-ALI is not above that
of JSRMTL-A, however, it is above that of JSR-MTL with K = 3 and K = 1. For the Indian dataset,
as shown in Figure 6b, the ROC curve of JSRMTL-ALI is always above those of the other models, and
the ROC curve of JSRMTL-A is always above that of JSR-MTL with K = 3 and K = 1. For the Cri
dataset, as shown Figure 6c, the ROC curve of JSRMTL-ALI is successively above that of JSRMTL-A,
JSR-MTL with K = 1, and JSR-MTL with K = 3.

Overall, the results show that the performance of the JSR-MTL model is generally better than that
without the multi-task learning technique, especially for the AVIRIS and Indian datasets. The JSRMTL-A
model can also obtain a better detection performance compared to the JSR-MTL model for all three datasets,
which shows the effectiveness of the adaptive JSR-MTL (JSRMTL-A) model. This result demonstrates
that it is useful to explore the prior class label information of the training samples and the difference
between the target dictionary and background dictionary for hyperspectral target detection. What is more,
the JSRMTL-ALI model can further improve the detection performance of the JSRMTL-A model, especially
for the Indian and Cri datasets. This result confirms that the locality information descriptor-based weight
can improve the detection performance, which can remain as the locality information between the central
test pixel and neighboring background training samples, and also reduce the estimation bias caused by the
�1/�2 minimization. In addition, we can further adjust the number of detection tasks, the regularization
parameter, and the window size to obtain an even better performance.

 
(a) AVIRIS dataset (b) Indian dataset (c) Cri dataset 
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Figure 6. Receiver operation characteristic (ROC) curves for the effectiveness investigation of
JSRMTL-ALI model.

4.3. Parameter Analysis for the JSRMTL-ALI Algorithm

In this section, we examine the effect of the parameters on the detection performance of the
JSRMTL-ALI algorithm with the three datasets. We fixed the other parameters and focused on
one specific parameter at a time. There are three key parameters in the JSRMTL-ALI algorithm:
the detection task number parameter K, the regularization parameter ρ, and the size of the dual
window. As is done in [29], the range of K was set as [1, 2, 3, 4, 5, 6, 7, 8, 9] and the range of ρ was
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set as [1, 0.5, 10−1, 10−2, 10−3, 10−4, 10−5]. For the size of the dual window, the size of the IWR is
related to the size of the target. When the size of the IWR is set too large, the background training
samples in the OWR will not effectively represent the local background characteristic. Thus, the sizes
of the IWR were fixed as above-mentioned 7 × 7, 15 × 15, and 15 × 15 for the AVIRIS, Indian, and Cri
datasets, respectively. The range of the size of the OWR for AVIRIS dataset was set as [17, 19, 21, 23,
25], and it was set as [23, 25, 27, 29, 31] for the Indian and Cri datasets. The experimental results are
provided through the AUC values, as shown in Figures 7–9. The X-axes and the Y-axes respectively
represent the value range of the corresponding parameter and the AUC values.
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Figure 7. Detection performance of JSRMTL-ALI versus the detection task number K.
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Figure 8. Detection performance of JSRMTL-ALI versus the detection task number ρ.
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Figure 9. Detection performance of JSRMTL-ALI versus the size of the outer window region (OWR).

For the AVIRIS dataset in Figure 7a, the AUC value of the JSRMTL-ALI algorithm improves as
the detection task number parameter K increases to 6. After that, the detection performance slowly
decreases as K increases to 9. For the Indian dataset in Figure 7b, the AUC value generally improves
as K increases to 6 and then decreases as K increases to 9. For the Cri dataset in Figure 7c, the AUC
value improves as K increases to 3, gently decreases as K increases to 9. Based on these results, it can
be generally concluded that the performance of the JSRMTL-ALI algorithm improves as the detection
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task number parameter K increases and then begins to decrease after the maximum value. The reason
for this may be as follows. As discussed in [29], a large detection task number K results in too many
detection tasks which leads to too many unknown coefficients; however, the rows of the dictionary
for the multiple representation models will be significantly decreased. This can lead to a weakened
estimation for the unknown coefficient matrix, which will affect the detection performance. Besides,
the advantage of the multi-task learning technique for hyperspectral image lies in the fact that it can
explore the relatedness within the corresponding single-band images in the same position in each
sub-HIS. However, a large detection task number is highly likely to reduce the relatedness within
multiple sub-HSIs, and the effectiveness of MTL will decrease in return.

For the AVIRIS dataset in Figure 8a, the AUC value of the JSRMTL-ALI algorithm improves when
the regularization parameter ρ decreases from 1 to 10−1, and the AUC values gradually decrease as
ρ decreases from 10−2 to 10−5. For the Indian dataset in Figure 8b, the AUC value improves as ρ

decreases from 1 to 10−4, and decreases as ρ decreases to 10−5. For the Cri dataset in Figure 8c, the
AUC value improves as ρ decreases from 1 to 0.5, and generally decreases as ρ decreases to 10−5. Based
on these results, it can be generally concluded that a too small or too large regularization parameter ρ

can decrease the detection performance of JSRMTL-ALI. The reasons may be listed as follows. A too
small regularization parameter makes the dominant part of Equations (11) and (14) become the first
term ||xk −Dkwk||22, which will weaken the effect of the multiple detection task combination, and will
affect the final detection performance of JSRMTL-ALI. A too large regularization parameter makes the
dominant part of Equations (11) and (14) become the second term, which will weaken the effect of the
data representation, and again affect the final detection performance of JSRMTL-ALI.

For the AVIRIS dataset in Figure 9a, the AUC value of the JSRMTL-ALI algorithm decreases as
the size of the OWR increases to 23, and then slightly increases as the size of the OWR increases to 25.
For the Indian dataset in Figure 9b, the AUC value improves as the size of the OWR increases to 31.
For the Cri dataset in Figure 9c, the AUC value of the JSRMTL-ALI algorithm generally decreases as the
size of the OWR increases to 31. Based on these results, it can be seen that the detection performance
decreases as the size of Outer Window Region (OWR) increases for the AVIRIS dataset and Cri dataset,
while the case is totally different for the Indian dataset. Although the regular patter of the size of the
OWR for all datasets is not obvious; it can still generally be concluded that a too large or too small size
of OWR can affect the detection performance of JSRMTL-ALI. The reason for this may be as follows.
For a too large size of OWR, the background training samples in the OWR will not effectively represent
the local background characteristic, which may include some other background materials. For a too
small size of OWR, the background training samples in the OWR are not sufficient to represent the
local background characteristic. Both cases will lead to a weakened detection performance. Therefore,
it is not easy to select a proper value for the size of OWR in a practical application.

4.4. Detection Performance

In this section, the detection performance of the proposed JSRMTL-ALI algorithm was further
analyzed and compared with traditional detectors of local adaptive coherence/cosine estimator (LACE),
local constrained energy minimization (LCEM), reweighted adaptive coherence/cosine estimator
(rACE) [10], hierarchical constrained energy minimization (hCEM) [14], STD [17], RBBHD [18],
and JSR-MTL [29]. The parameters of the JSRMTL-ALI algorithm were set as the optimal parameter
values for the three datasets. The detection task number parameter K was respectively set as 6, 6, and 3
for the three datasets. The regularization parameter ρ was respectively set as 10−1, 10−4, 0.5 for the
three datasets. The size of the OWR was set as 17, 31, and 23 for the three datasets. For the comparison
methods, the parameters were also tested, such as the sparsity level for the sparsity-based detectors
(STD, SRBBHD), and so on. The optimal parameter values were experimentally set for the comparison
methods. For all the detectors, we used the same given target spectra as a priori target spectra. In the
case of hCEM and LCEM, the mean of the target atoms was used as the target signature. We adopted
the pixels falling in the OWR to estimate the background covariance matrix for LACE, to estimate
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the background correlation matrix for LCEM, and to construct the background dictionary for STD,
SRBBHD, JSR-MTL, and JSRMTL-ALI. The detection performance of the eight detectors are provided
through the receiver operation characteristics (ROC) curves, as shown in Figure 10.

For the AVIRIS dataset, as shown in Figure 10a, the ROC curve of JSRMTL-ALI is above that of
the other detectors, except for rACE. For the Indian dataset, as shown in Figure 10b, the ROC curve of
JSRMTL-ALI is always above those of the other detectors. For the Cri dataset, as shown in Figure 10c,
rACE and hCEM obtain the best result, and the ROC curve of JSRMTL-ALI is above those of the rest of
the detectors.

Overall, the results generally show that the JSRMTL-ALI algorithm obtains a better detection
performance than the other detectors, especially for the Indian dataset. For the AVIRIS and Cri dataset,
JSRMTL-ALI does not perform as well as rACE or hCEM. However, the detection performances of
rACE and hCEM are much different for the three datasets and a robust detection performance is not
shown. For example, rACE obtains a good performance for AVIRIS and Cri datasets, while obtains
a weak performance for the Indian dataset. hCEM obtains a good performance for Indian and Cri
datasets, while obtaining a weak performance for the AVIRIS dataset.

The separability between target and background was evaluated via separability maps, as shown
in Figure 11. After statistical calculation of the detection values of each pixel, boxes were drawn to
enclose the main parts of the pixels, excluding the biggest 10% and the smallest 10%. There are target
and background columns for each detector. The lines at the top and bottom of each column are the
extreme values, which are normalized to [1]. The orange boxes illustrate the distribution of the target
pixel values, and the line in the middle of the box is the mean of the pixels. In a similar way, the green
boxes enclose the middle 80% of the pixels of the background pixels. The position of the boxes reflects
the tendency and compactness of the distribution of the pixels. In other words, the position reflects the
separability between target and background.

For the AVIRIS dataset, as shown in Figure 11a, STD and rACE can effectively suppress the
background information; and LACE, LCEM, STD, SRBBHD, rACE and hCEM can effectively suppress
the middle 80% of the background pixels. Compared to these detectors, the gaps between the target
box and the background box for rACE, JSR-MTL, and JSRMTL-ALI are very obvious, and the gap
for JSRMTL-ALI is larger than JSR-MTL. The target box and the background box for rACE, JSR-MTL,
and JSRMTL-ALI are overlapping, but the overlapped region for JSR-MTL is slightly less. For the
Indian dataset, as shown in Figure 11b, rACE can specially, effectively suppress the middle 80% of the
background pixels. Compared to these detectors, the gap between the two boxes for JSRMTL-ALI is
very obvious, and the two boxes for the other detectors are overlapping. For the Cri dataset, as shown
in Figure 11c, JSRMTL-ALI, hCEM, and rACE can gradually and successively increase the gap between
the target box and the background box. Based on these results, it can be seen that, the proposed
JSRMTL-ALI algorithm can perform well at the distinguishing target from the background.
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Figure 10. Detection performance of eight detectors for three datasets.
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Figure 11. The separability maps of eight detectors for three datasets.

Finally, 2-D plots of the detection map of all the comparison algorithms with the three data
sets are shown in Figures 12–14. For the AVIRIS dataset, as shown in Figure 12, we can see that the
proposed JSRMLT-ALI shows high statistical values for the target pixels as well as STD, rACE, and
JSR-MTL. However, compared with JSRMLT-ALI, STD and JSR-MTL also show high values for some
tree or grass pixels, particularly in the bottom/right left corner in the image. Also rACE shows a good
performance for suppressing background. For the Indian dataset, as shown in Figure 13, none of these
detectors show a clearly distinguishable statistic map, but JSRMLT-ALI generally shows relatively
higher statistical values for the target pixels compared with all the other detectors. For the Cri dataset,
as shown in Figure 14, the proposed JSRMLT-ALI shows low statistical values for the background
pixels as well as rACE and hCEM. However, compared with rACE, JSRMTL-ALI does not show a
clearly distinguishable statistic map between target and background.

 
(a) LACE (b) LCEM (c) STD (d) SRBBHD 

 
(e) rACE (f) hCEM (g) JSR-MTL (h) JSRMTL-ALI

Figure 12. Two-dimensional plots of the detection map for the AVIRIS dataset.
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(a) LACE (b) LCEM (c) STD (d) SRBBHD 

 
(e) rACE (f) hCEM (g) JSR-MTL (h) JSRMTL-ALI

Figure 13. Two-dimensional plots of the detection map for the Indian dataset.

(a) LACE (b) LCEM (c) STD (d) SRBBHD 

(e) rACE (f) hCEM (g) JSR-MTL (h) JSRMTL-ALI

Figure 14. Two-dimensional plots of the detection map for the Cri dataset.

5. Discussion

An adaptive joint sparse representation and multi-task learning detector with locality information
(JSRMTL-ALI) is proposed in this paper. In order to fully explore the prior class label information of
the training samples, JSRMTL-ALI constructs two joint sparse representation and multi-task learning
models corresponding to the target and background classes. In order to consider the difference between
the target dictionary and background dictionary, JSRMTL-ALI then employs different regularization
strategies encoding the task relatedness for the two models, where the �2,1-norm is enforced to the
coefficient matrix Wb corresponding to the background dictionary, while the �1-norm is applied for
the coefficient matrix Wt corresponding to the target dictionary. These two contributions lead to the
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so-called JSRMTL-A model. What is more, in order to keep the locality information between the
central test pixel and neighboring background training samples, JSRMTL-ALI employs the locality
information descriptor-based weight to the joint sparse representation and multi-task learning model
corresponding to the background class, which can also reduce the estimation bias caused by the
�1/�2 minimization.

From the above experimental results, it can be seen that Figure 6 shows the superiority of the
JSRMTL-A model to the traditional JSR-MTL. The JSRMTL-ALI model can generally further improve
the detection performance of the JSRMTL-A model. In the detection performance analysis section,
as shown in Figure 10, the detection performance of the JSRMTL-ALI generally outperforms the other
detectors for all the datasets, especially the robustness of the JSRMTL-ALI compared to the rACE and
hCEM algorithms. From the separability maps as shown in Figure 11 and detection map as shown
in Figure 12, it can be seen that, the proposed JSRMTL-ALI algorithm generally performs well at a
distinguishing target from the background. However, the performance of suppressing background for
the JSRMTL-ALI algorithm is not as good as rACE, which needs further consideration in the future.

There are three key parameters of the JSRMTL-ALI algorithm, which have been analyzed as
depicted in Figures 7–9. As shown in Figure 7, it can be seen that a large detection task number K
can affect the detection performance of JSRMTL-ALI. A larger value for detection task number K is
recommended for the dataset with more bands, such as 6 for the AVIRIS and Indian datasets and a
lower value is recommended for the dataset with fewer bands, such as 3 for the Cri dataset. Then as
shown in Figure 8, it can be seen that a too small or too large regularization parameter ρ can decrease
the detection performance of JSRMTL-ALI, and a proper value should be set for ρ, such as 0.1. Based
on the results as shown in Figure 9, it can be seen that, it is not easy to recommend a regular value
for the size of OWR in practical application. Our future research will investigate the construction of a
global background dictionary in order to avoid tuning the size of the OWR.

6. Conclusions

In this paper, the adaptive joint sparse representation and multi-task learning detector with locality
information (JSRMTL-ALI) algorithm was proposed. Based on the prior class label information of
the training samples, this algorithm constructs an adaptive joint sparse representation and multi-task
learning (JSRMTL-A) model, where the test pixel (target pixel or background pixel) is separately
modeled via the target dictionary or background dictionary. Considering the great difference between
the target dictionary and background dictionary, different regularization strategies encoding the task
relatedness are employed for the two joint sparse representation and multi-task learning models
based on the target dictionary or background dictionary. A locality information descriptor is then
introduced to indicate the difference between the central test pixel and neighboring background
training samples. A descriptor based weight strategy is applied to reduce the estimation bias caused
by �1/�2 minimization used in the JSRMTL-A model. The detection decision rules in favor of the target
class or the background class with the lowest total reconstruction error difference accumulated over all
the tasks.

Experiments in hyperspectral target detection with three datasets confirmed the superior
performance of the multiple detection task combination in the proposed JSRMTL-ALI algorithm.
With the integration of the JSRMTL-A model and local information descriptor based weight strategy,
the JSRMTL-ALI shows its superiority to the traditional JSR-MTL for hyperspectral target detection.
In general, the JSR-MTL presents a better detection performance and better separability than the other
common detectors.
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Abstract: In current remote sensing literature, the problems of sea-land segmentation and ship
detection (including in-dock ships) are investigated separately despite the high correlation between
them. This inhibits joint optimization and makes the implementation of the methods highly
complicated. In this paper, we propose a novel fully convolutional network to accomplish the
two tasks simultaneously, in a semantic labeling fashion, i.e., to label every pixel of the image into
3 classes, sea, land and ships. A multi-scale structure for the network is proposed to address the
huge scale gap between different classes of targets, i.e., sea/land and ships. Conventional multi-scale
structure utilizes shortcuts to connect low level, fine scale feature maps to high level ones to increase
the network’s ability to produce finer results. In contrast, our proposed multi-scale structure focuses
on increasing the receptive field of the network while maintaining the ability towards fine scale details.
The multi-scale convolution network accommodates the huge scale difference between sea-land and
ships and provides comprehensive features, and is able to accomplish the tasks in an end-to-end
manner that is easy for implementation and feasible for joint optimization. In the network, the input
forks into fine-scale and coarse-scale paths, which share the same convolution layers to minimize
network parameter increase, and then are joined together to produce the final result. The experiments
show that the network tackles the semantic labeling problem with improved performance.

Keywords: semantic labeling; convolution neural network; fully convolutional network; sea-land
segmentation; ship detection

1. Introduction

Remote sensing imagery is one important solution to maritime surveillance, because of its wide
field of view, satisfying spatial resolution and update frequency. Remote sensing imagery includes
various kinds, ranging from hyper-spectral imagery [1], synthetic aperture radar (SAR) imagery [2],
to optical imagery. These kinds of imaging technology serve varying purposes according to their
different characteristics, and optical imagery is applied widely for its rich presentation and similar
reception frequency to that of human eyes.

There has been a considerate amount of research in optical imagery understanding focusing on
detection of different types of objects, such as roads [3,4], buildings [5,6], oil tanks [7,8], vehicles [9–11]
and airplanes [12–14]. Aside from detecting scattered objects, the classification of scenes also receives
a lot of attention recently, such as in [15–17], where the objective is to classify image patches into
different classes, such as buildings, forest, harbor, etc.
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Two of the most important tasks in understanding remote sensing images that is maritime-related,
would be sea-land segmentation and ship detection. Research on ship detection originally focuses
on off-shore ships with relatively simple background, majorly on SAR imagery [2,18,19]. In recent
literature, both sea-land segmentation [20,21] and ship detection [22–27] tasks are addressed with
complex frameworks, which consists of cascaded procedures and have to be designed and fine-tuned
with expert knowledge. That is, when the source sensor of the images is changed, the carefully
designed framework always has to be re-calibrated or even re-designed by experts. The complex
steps that constitute the framework also make the implementation difficult. Furthermore, ship
detection, especially when including in-dock ships, are highly dependent of the performance of
sea-land segmentation, making it less robust in precarious sea-land situation. Furthermore, to tackle
the two problems separately, also inhibits the joint optimization of the designed algorithm.

The recent advancement in the deep learning community motivates us to address these problems
with deep neural networks. Deep learning, as a subcategory of soft computing [28–34], is seeing great
attention. In our previous work, we focus on the detection of objects instance-wise, i.e., acquiring the
location and bounding box of the objects in interest. In this paper, we propose to address the sea-land
segmentation and ship detection at the same time, with a deep neural network, in a semantic labeling
perspective. The network allows us to cope with these problems in an end-to-end fashion, without
complex procedures, and without handcrafted features.

The semantic labeling of everyday images recently receives increasing attention [35–38] and
is regarded as a more challenging task compared to object classification and detection of images.
Semantic labeling provides a pixel-to-pixel label map corresponding to the input image, as opposed to
only a single label in classification task. It also, from another point of view, provides the boundaries of
the detected object, as opposed to only bounding boxes in detection task. This is similar to the saliency
detection methods [39,40], with the difference that saliency detection is more general and pays less
attention to object boundaries. One general approach of semantic labeling is to first process images
into over-segmented areas and then classify each area with its extracted features [35]. Yet with the
fast-paced development of deep learning, it also proves to be able to achieve state-of-the-art semantic
labeling in everyday images [36–38]. Moreover, since recent research shows that neural networks based
on everyday object knowledge can have satisfactory performance on remote sensing imagery [41],
the application of deep learning in remote sensing imagery is promising.

In both sea-land segmentation and ship detection tasks, semantic labeling using deep networks
shows great potential. First, deep network is able to learn high level features, as opposed to that
in other methods, features has to be handcrafted and are complex to implement. Second, semantic
labeling’s pixel-labeling nature allows it to be independent of bounding boxes and are relatively
indifference to objects’ size and shape. This helps because sea and land are of arbitrary sizes and
shapes, and the bounding boxes of in-dock ships are hard to acquire.

However, the deep network, when used to address these remote sensing problems, is faced
with one critical problem, to balance between the hardware requirement and the network’s efficacy.
In remote sensing images, the area of interest can be of arbitrary size. This lead to the need for a network
with extra-large receptive field (which will be extensively discussed in Section 3.2), which requires
increased amount of weights for the network layers, which then leads to excessive graphics processing
unit (GPU) memory requirement from the network and increased computation in training and testing.

To ameliorate the trade-off between the network’s receptive field and the GPU memory
requirement, we introduce a novel multi-scale structure for the semantic labeling network, which
greatly increases the receptive field of the network, with only a small number of parameter increase.

The main idea of our multi-scale structure is different than those of the conventional ones, where
shortcuts are created between convolution layers of different levels to utilize the finer feature maps
in order to produce finer outputs. Our structure focuses on enlarging the receptive field of the
network to incorporate information from larger scale, which is important for understanding remote
sensing images.
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In the network, the input data is processed in two separate layers, crop layer and resize layer,
into different scales of data, fine-scale and coarse-scale, respectively. The fine-scale path with crop
layer keeps the fine details in the data, but with small sized receptive field, while the coarse-scale
path with resize layer down-samples the data, omitting high-resolution textures in exchange for large
sized receptive field. In this paper, the coarse-scale path is more suitable for discriminating between
sea and land, for their large proportion in area and usually obscure boundaries (near beaches and
other natural shore-lines, for example). The fine-scale path is suitable for ship detection, for exactly the
opposite reasons.

The main contribution of the paper is listed as follows,

1. Joint sea-land segmentation & in-dock ship detection. The information extracted by the network
is used both for sea-land segmentation and ship detection. The sharing of the information can
lead to better performance, especially in in-dock ship detection, since it is no longer dependent
on other separated sea-land segmentation methods and can be trained jointly.

2. A different perspective into multi-scale structure for remote sensing images with small parameter
number increase. The conventional multi-scale structures connect different feature maps from
different layers that represents different level of semantics, aiming to fully utilize fine-scale
features. The proposed structure aims to widen the receptive field of the network, designed
specifically for remote sensing images. With the multi-scale structure, the network is able to
achieve tasks that require different scales, while maintaining relatively small number of parameter
and low calculation complexity. An extensive experiment is conducted to compare our proposed
structure to several variants to show its superiority in learning speed and performance.

The following content is structured as follows. In Section 2, a brief introduction to fully
convolutional network is given. In Section 3, the proposed multi-scale structure is described in
detail and the receptive field of the network is analyzed. In Section 4, the given framework and other
methods are experimented on two remote sensing datasets. Finally, Section 6 concludes this paper.

2. Fully Convolutional Network

In this section, we will provide a brief introduction to the fully convolutional network (FCN)
upon which we construct our semantic labeling framework.

CNN proves to be extremely effective in image related tasks, such as object detection and
classification [42,43]. Based on CNN, Fully Convolutional Networks (FCN) are designed to predict a
label map rather than a single label for an input image, by replacing fully connected layers in CNN
with small sized convolution layers [44]. FCN’s pixel-to-pixel label map output naturally suits the
need of semantic labeling. Figure 1, modified from in [44], shows a typical FCN structure, when used
to semantic label a remote sensing image.

forward/inference

backward/learning

256

512

512
512 1024

1024

Pixel-w
ise predictio

n

Segmentatio
n re

sult

3

512

Figure 1. A typical FCN, each cuboid indicating an output matrix of a convolution layer. The numbers
indicate the size of the 3rd dimension of each cuboid, or equally, the number of kernels of the
corresponding layer.
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A typical FCN consists of convolution layers, pooling layers and activation layers [44]. There
are also softmax layers for output and loss layers for training. An input data matrix (say, an RGB
image X ∈ Rh×w×3 or a grayscale image X ∈ Rh×w×1) is processed through each layer in sequence in
a neural network.

A convolution layer consists of an array of kernel matrices, with which the input data are
convoluted. In a convolution layer, the data is processed with the following calculation,

Yl = fl ∗ X (1)

where ∗ is a 3D (3 Dimensional) convolution operator, X is the input matrix of the layer, fl is the lth
kernel of the layer and Yl is the output matrix correspond to the lth kernel. Here it is mandatory that
fl and X are of the same size in 3rd dimension, so that the size of dimension 3 of Yl is necessarily 1.
Finally, the Yls of a layer are concatenated in 3rd dimension, resulting in

Y(x, y, l) = Yl(x, y) (2)

where Y is the complete output matrix of the convolution layer. x, y and l are indexes for Y of
dimension 1, 2 and 3, respectively. Convolution layers are designed to capture local features and
are translation invariant, and the output matrix of a convolution layer is usually called a feature
map, since the output represents the extracted features of each single pixels of the input image, with
pixel-to-pixel correspondence.

Activate functions are often added after convolution layers to provide non-linear properties for a
network to enhance the expressive ability of the features. In an activation function, an element-wise
operation is conducted,

Y(x, y, z) = f (X(x, y, z)) (3)

where x, y, z are indexes of 3 dimensions of a matrix and X, Y are input and output matrices,
respectively. f is the function of the layer. In a simple but rather popular activation layer, Relu [45],

f ( ·) = max(0, ·) (4)

A pooling layer, acting like a down-sampling filter, is often inserted among other layers. It is
designed to progressively reduce the size of transferred data to reduce the amount of parameters
and enhance the generalization of a network. The most common form of a pooling layer uses max
operation to produce results for each local area of the input,

Y(x, y, z) = max
(i,j)∈Ω

(X(i, j, z)) (5)

where x, y, z, i and j are indexes of their according dimensions of the matrices and X, Y are input and
output matrices, respectively. In addition,

(i, j) ∈ Ω ⇐⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
i ≥ x× step

i < x× step + kernel_size

j ≥ y× step

j < y× step + kernel_size

(6)

where step and kernel_size are the two hyperparameters of the pooling layer, determining the stride of
the output according to input and the size of Ω, respectively. For simplicity, the indexes here follow
the convention in programming and start from zero.

In an FCN, there are no fully connected layers, which connect all the elements in the input
matrix and output results that ignore all spatial information. Convolution layers with kernels of size
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1× 1 are implemented instead, producing an output matrix of corresponding spatial dimensions [44].
Because some of the convolution layers at the top of the network still act as a role of traditional fully
connected layers, in our paper we still distinguish these layers and symbolize them as “fc” layers
following the notation in [36].

A softmax layer is a layer for output, it takes in matrices of arbitrary-scaled elements and outputs
a matrix of probabilities, with the formula of

Y(x, y, j) =
eX(x,y,j)

∑K
k=1 eX(x,y,k)

(7)

where X and Y are input and output matrix of the softmax layer, respectively. x, y, j and k are indexes
of their corresponding dimensions. K is the size of dimension 3 of X. In a semantic labeling network,
the softmax layer outputs the probabilities of every pixel belonging to every category.

A loss layer takes in data both from outputs of previous layers and from ground truth labels.
The gradients are firstly calculated from the difference of both sides, and then are back-propagated to
previous layers. The kernels of each layer are then updated according to the gradients. This process is
gone through iteratively and the network will be trained.

3. Multi-Scale Network for Semantic Labeling

The semantic labeling of maritime scenes calls for multi-scale features because of the tremendous
size difference between the sea, land and ships. Sea-land identification demands wide spatial range
of input for richer context and comprehensive understanding, whereas small targets, such as ships,
demand context of smaller scale but more detailed information from local area. The feature of
multi-scale has been extensively utilized in neural networks. Liang et al. connects output of the first
few layers to the last layer for attention on fine-resolution layers [36]. Paisitkriangkrai et al. trains
several CNNs with different resolution of input images [46]. Eigen et al. concatenates layers that are
designed for different scales into a whole [37]. These networks either are trained separately on every
scale, resulting in far more parameters to train, or leave the layers trained without the knowledge of its
corresponding scale information. Here we present a multi-scale FCN specifically designed for remote
sensing imagery. This framework enlarges the receptive field of the network, while preserving the
ability to take in fine details, with only a small increase in the number of parameters.

3.1. Network Structure

To implement the multi-scale structure in the network, we introduce two layers, crop layer and
resize layer, which is illustrated in Figure 2. In a resize layer, the input is down-sampled, and in the
crop layer, the input is center-cropped. The input are separated into what we call fine and coarse scale,
respectively, after these two layers.

Input

Output of resize layer

      Output of crop layer

Figure 2. An illustration of the input/output of crop layer and the resize layer.
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With the two layers, we have two separate paths of images as well as ground truth labels going
through the network at the same time, each representing a different scale.

In Figure 3, the whole network is illustrated. First, an input image patch is duplicated and
preprocessed in 2 separate ways, fine-scale and coarse-scale, using aforementioned crop layer and
resize layer and are fed into following convolution layers. The outputs of the two preprocessing layers,
although cover different areas (Area Yellow vs. Area Blue), are of the same size and thus can be fed
into the same layer configuration with the same weights. The convolution layers are configured as
DeepLab-LargeFOV [36], with its first 13 convolution layers and are interlaced with Relu and pooling
layers. We implement this convolution configuration because it proves to have state-of-the-art semantic
labeling performance in everyday images.

Crop

Resize
Conv, 
fc_b1, fc_b2

Conv,  fc_a1
Concatenate,
fc_a2

Resize, 
Crop

Figure 3. An illustration of the proposed network. The texts on the arrowed lines specify the layers
the data go through to produce the displayed results. The color of the outline (blue and yellow) of
each result marks the corresponding input area it represents for the sake of clarity. The results that are
directly connected to loss layers are underlined with dashed lines.

In Figure 3, some of the results of certain layers are represented as a group of 3 slices, each slice
representing the probability map of a corresponding class. We name these groups as score maps for
convenience. A score map, in essence, is the same as a feature map, where both maps are the output of
a certain convolution layer, but the position and the configuration of the convolution layer define the
semantics that the layer is to learn to output the scores of each pixel to belong to a certain category
(In fact, a score map is a direct output of a softmax layer, which is placed after a convolution layer. But
the function of a softmax layer is relatively trivial compared to the other layers, so the softmax layers
are not mentioned either in the figure or in the text).

The network also utilizes two loss layers, each to train the layers in different scales. In Figure 3,
the score maps that are connected to a loss layers are underlined with dashed lines. As for the ground
truth labels that are needed by the loss layers, they are acquired in the same way as the input patches.
The original labels go through crop layer and resize layer separately, and then are fed into loss layers in
fine-scale loss layer and coarse-scale loss layer, respectively. With the two loss layers, the convolution
layers and fc_** layers learn to produce score maps in accordance. To be specific, the coarse-scale score
map is predicted purely from coarse-scale data and then are modified with resize and crop layers, and
finally are fed into fine-scale path (Layer fc_a2) to produce fine-scale score map jointly.

Although in Figure 3 the convolution layers are divided into fine-scale and coarse-scale, it is only
for clarity. In the practical implementation the fine-scale and coarse-scale data are concatenated first
and fed into the same convolution layers, and then separated back to each scale before producing score
maps. The weights are shared for convolution layers on the same level and also between fc_*1 layers to
minimize the number of parameters. Here the feature extraction mechanism of the convolution layers
are not scale specific. The feature maps extracted from different scales may share different semantics,
but they are equally effective. We presume that just as deep features can generalize from everyday
objects to remote sensing domains [41], deep features can also generalize between different scales of
scenes, hence the sharing weights between scales.
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The crop layer we design has a simple forward function, which center crops the input with a
single parameter, scale_ f actor. The crop function only work on spatial dimensions, which means only
the sizes of the first 2 dimension will change. It also has no backward function, meaning no gradient
is transferred back through this layer, for simplicity. The simplification is plausible because (a) it is
located in special positions in the network, twice after data layers and once after convolution layers
and (b) the convolution layers before it have shared weights and can already learn from both scales
and (c) coarse-scale layers should focus on sea-land classification and need to take little knowledge
from fine-scale losses.

It is also worth mentioning that in [36,47], a ’hole algorithm’ is introduced into the deep network
for convolution layers, to increase the receptive field of the layers while keeping the number of weights
unchanged. A simple explanation would be to put ’holes’ in the layer kernels to enlarge the kernels
spatially, while maintaining the number of parameters in a kernel,

Khole(x, y, z) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
K(x/hole, j/hole, z),

if x mod hole = 0, y mod hole = 0

0,

otherwise

(8)

where x, y, z are indexes of their according dimensions of the matrices, mod means to calculate the
remainder of division and K, Khole are original and modified kernel of the convolution layer with ’hole
algorithm’, respectively. hole is a hyperparameter of the layer, specifying how large the ’hole’ you
want to insert into the kernels. In this paper, we keep the ’hole algorithm’ as is implemented in [36],
but with tuned-down size of the hole, in order to acquire more subtle details for the label result.

Table 1 lists the structure setup of the network. The layer names are either self-explanatory or
mentioned in the text, so the layer types are omitted. Apart from the Relu layers after each convolution
layer, the layers from conv1_1 to pool5b are listed as the exact setup order.

Table 1. The setup of the network.

Layer Name Kernel Size Kernel Num. Remarks

conv1_1, conv1_2

3

64 -
pool1 - step: 2 type: max
conv2_1, conv2_2 128 -
pool2 - step: 2 type: max
conv3_1, conv3_2, conv3_3 256 -
pool3 - step: 2 type: max
conv4_1, conv4_2, conv4_3 512 hole: 2
pool4 - step: 1 type: max
conv5_1, conv5_2, conv5_3 512 hole: 2
pool5a - step: 1 type: max
pool5b - step: 1 type: average
fc_a1, fc_b1 512 hole: 2
fc_a2, fc_b2 1 3 -

3.2. Receptive Field Analysis

The receptive field is a vital concept that can affect a network’s performance. It is a
biologically-inspired term from animals’ visual cortex. In a network, it describes the spatial range
of input pixels that can contribute to the calculation of a single element in the output. With larger
receptive field, each layer can take in more context and represent more abstract meanings. For a
network to determine if a pixel belongs to a ship, it is important that the network can determine if the
pixel belongs to the forecastle deck or the side of a ship. For ship detection, the receptive field is best to

376



Remote Sens. 2017, 9, 480

be large enough to cover the space of ship and its context, and for sea-land segmentation, extensively
larger receptive field is needed.

The crop layer and the resize layer introduced in the former section is introduced into the network
to specifically enlarge the receptive field of one path, while also maintaining the detail feature in
another path. The resize layer acts as a downsampling filter, which shrinks the spatial size of the input
at the cost of losing detail information, while allowing enlarging the receptive field of the following
network path (coarse-scale) without any modification to the existing convolutional layers. The crop
layer ensures the input image is cropped to the same spatial area as the desired and maintains the
detail information (for the fine-scale). In the training procedure, the parameters of the network is
jointly optimized to decrease the loss to the ground truth label. With the different scale of the input
data that is given to each path, the network can automatically learn the optimized task for each path,
as shown in Section 4.4.

Figure 4 also illustrates the relation between the kernel size and the receptive field of each
convolution layer. The kernel size determine the area of the input data to calculate one single element
in the output. We can see that with the layers going deeper, or with larger kernel size, the receptive
field of the the output layer will increase. Apart from that, the pooling layer also can increase the
receptive field, with the possible draw-back of lowering the layer resolution.

Layer 1

Layer 2
Layer 3

Figure 4. The receptive field of each convolution layer with a 3× 3 kernel. The green area marks the
receptive field of one pixel in Layer 2, and the yellow area marks the receptive field of one pixel in
Layer 3.

The whole network’s receptive field can calculated by stacking up each layer’s receptive radius,

R = ∑
L

rl (9)

where R is the radius of the network receptive field (2× R + 1 = receptive_ f ield_size), l is the index of
the layers and affects receptive field, including pooling layers and convolution layers. L is the total
number of the above layers, and r is the radius of the layer’s receptive field when considering the
subsampling effect of its previous pooling layers. r is defined by

r = rkernel ×∏
N

stepn (10)

where rkernel is the radius of the kernel of the current layer (2× rkernel + 1 = kernel_size), N is the
number of pooling layers between the input layer and the current layer, and stepn is the step size of
the pooling layer n.
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Apart from the crop layers and resize layers, all the layers that affect receptive field are listed in
Table 1. All the layers without hole hyperparameter have an r_kernel of 1, and those with hole = 2 have
an r_kernel of 2. With 13 convolution layers, 5 pooling layers and 2 fc_** layers, our non-multi-scale
network has a receptive field of 259× 259 pixels. While the ships in our datasets average about 25× 150
in size, the receptive field is suitable only for ship detection tasks. To enlarge a network’s receptive
field for sea-land segmentation, traditional methods such as increasing kernel size or increasing the
depth of the network all lead to huge amount of increase in weight number, which in turn leads to
harder network training, higher hardware requirement and more computation complexity. The resize
layer in the multi-scale structure has a similar effect on receptive fields as the pooling layer, therefore
the receptive field of network is enlarged as if a pooling layer is put at the very beginning of the
network. With scale_ f actor of both resize layer and crop layer set to 3, the receptive field is roughly
scaled up by 9 times in area, into 775× 775, with only two additional layers (fc_b1 and fc_b2) with
weights. The convolution layers which hold large proportion of the weights stay unchanged, and the
network is still able to be fine-tuned from the pre-trained original one.

3.3. Data Preprocessing

Different from most of the previous works that focus on open datasets only containing extracted
small image patches, we focus our framework on large, relatively complete images that general remote
sensing images are distributed as. The network training and testing on large images brings in new
problems, such as how to effectively extract samples or image patches for the network.

Because of the limitation of GPU memory, both training and testing images have to be cut into
relatively small patches before being fed into the neural network. For training, we select samples from
training images randomly. To be specific, for each original image in the training set, we randomly
generate N triplets (x, y, θ), with each symbol indicating pixel coordinate x, coordinate y, and the
rotating angle. For each triplet one training sample is selected according to (x, y, θ), with (x, y) being
the coordinate of the selected patch in the original image. Finally each sample is rotated by angle θ.
For testing samples, the patches are extracted in a sliding-window manner, with a stride the same
as the size of the fine-scale input patch, so that the fine-scale inputs has no overlaying on each other.
The experiment shows that the network we train performs well on patch borders, especially with the
help of the multi-scale scheme. When put back together, the label maps connects to each other well,
with no obvious artifacts.

In the literature of semantic labeling, the balancing of samples is barely mentioned, because
its application background is mainly on daily images in well-prepared dataset and the problem of
unbalanced samples does not exist. In the remote sensing dataset, it is crucial to balance the samples
(in this context, to balance the number of pixels of different categories) first for the network to learn
equally from different classes. Without the balanced samples, the network will lean towards better
performance on sea-land classification, neglecting the accuracy of ship category. In this experiment,
firstly, we limit the number of samples that do not contain ships, secondly, we utilize one of the
functions of loss layer in DeepLab’s Caffe implementation [36], the ability to ignore the loss on the
pixels that are labeled to a special class, ignore. We randomly set the ground truth label of sea and land
pixels to ignore, so that when calculating the loss value of the network, the actual functioning ground
truth pixels are category-balanced. In our experiment, without balancing the sample, the accuracy of
ship detection would decrease dramatically (by 10%).

The samples that contain ships are rotated several times because a ship presented on an remote
sensing image can be of arbitrary possible orientation. We also control the number of samples
extracted from an image, so that the image is covered roughly twice by the training samples. Although
convolution layers have the property of translation invariance, we sample the images more times to
counter-act the border effect of the convolution (the borders of a input matrix has to be padded by zero
before convolution to maintain output matrix size, thus compromising the effectiveness of features
close to the borders).
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4. Experiments

This network is implemented with Caffe [48], on Ubuntu 14.04, with one Titan X. The network
is trained with mini-batched Stochastic Gradient Descent (SGD) with momentum and step learning
rate. The batch size is set to 14, base learning rate 0.001, which drops by a factor of 10 every
2000 iterations. We use momentum 0.9, weight decay 5 and doubled learning rate for biases
following the implementation in [36,44]. The network is first initialized with pre-trained weights from
ImageNet dataset and then fine-tuned with remote sensing data, to compensate the limited amount of
training images. With the pre-trained weights, the network converges to a satisfactory extent at only
4000 iterations.

The selection of the Caffe framework and the training scheme follows the common
acknowledgment in the deep learning community [36,49]. Although there are plenty of selection
of deep learning framework to use (such as TensorFlow, Torch), the accuracy-wise performance
has only a very limited variation [49]. The choice of training scheme has also undergone extensive
investigation [50] and we follow [36] because of the similar network architecture. We also experiment
other modified version of SGD [50] but yield inferior results.

We experiment our proposed method on two different datasets. The first dataset we use consists
of 6 panchromatic (grayscale) images from GaoFen-1 satellite each with above 18, 000× 18, 000 pixels
and a resolution of 2.5 m/pixel. The second dataset has 21 images (RGB) from Google Map, each
with above 5000× 5000 pixels and a resolution of 1 m/pixel. Both datasets focuses on areas with
harbors, where both ships and various types of terrain exist. Although datasets (such as SPOT-4) that
has lower resolution can provide competitive results for sea/land segmentation [51], we select the
high resolution imagery to meet the requirement for in-shore ship detection, as proposed in [23,25].

Remote sensing datasets from Google Map has received extensive research in the recent days and
are recognized as a valid source for remote sensing research [52]. Although imagery from Google Map
may be enhanced to different extents, we qualitatively find that the imagery are not too varied to the
degree that human cannot distinguish the objects in the imagery in the way on daily life objects, i.e.,
objects in Google Earth still are faithful to real colors and textures. Nevertheless, we here provide the
coordinates and the sensor of the images we use for the experiment. All of the images from Google
Map are produced by Digital Mapping Camera (DMC) collected from United States Geological Survey
(USGS) High Resolution Orthoimagery and the coordinates of the most north-west pixel of the images
are listed in Table 2.

Table 2. Coordinates of maps used in Google Map dataset (excerpt).

Map No. Longitude Latitude Map No. Longitude Latitude Map No. Longitude Latitude

1 129.687E 33.122N 2 127.645E 26.214N 3 21.958W 64.132N
4 132.520E 34.199N 5 79.926W 9.233N 6 21.936W 64.140N
7 139.627E 35.267N 8 129.837E 32.702N 9 15.580E 56.128N
10 129.687E 33.122N 11 12.590E 55.662N 12 10.160E 54.293N
13 8.126E 53.504N 14 30.720E 46.450N 15 4.197W 50.355N
16 1.113E 50.774N 17 3.1884E 51.312N 18 27.886E 43.155N
19 4.773E 52.927N 20 8.306W 51.801N 21 12.094E 54.147N

For the Google dataset, we select 7 images as test data and the other 14 as training data.
For GaoFen-1 dataset, we find that to augment the training data by including Google images can
improve the performance, so we convert the 14 RGB training images to grayscale images and join
them to 2 of the GaoFen-1 images as training data, and choose the remaining 4 as test data. Note that
the distribution of the ships also varies across the dataset, where the dataset from Google Map has far
more in-dock ships. In the test data, Google Map dataset has 55 ships in total, including 50 in-dock
ships, while GaoFen-1 dataset has 160 ships in total, including only 20 in-dock ships.

As a novel effort to implement deep learning semantic labeling into the maritime area, we focus
our detection target on large navy ships/oil tankers to limit the scale of the target. The length of the

379



Remote Sens. 2017, 9, 480

target ships vary from 80 m to under 200 m in Google Map dataset and around 300 m in GaoFen-1
dataset. This lead to a similar scale for ships on both datasets because of the different resolution. The
ships vary from 80 to 200 pixels in length.

For performance evaluation, we follow the method that is widely used in segmentation/semantic
labeling tasks [36,46] . We count the number of pixels that are correctly labeled and those that are
not, and compute the confusion matrix and Intersection-Over-Unions (IOU) for each task. Values
in a confusion matrix indicate the percentage of the pixels labeled to the column class in the pixels
belonging to the row class, meaning a row of a confusion matrix sums to one. Whereas IOU is
calculated as

IOU =
true positives

true positives + f alse positives + f alse negatives
(11)

4.1. Benefit of Multi-Class Classification

Previous in-shore ship detection methods rely heavily on the acquirement of shore-line as a 1st
step. This step contributes to locating possible areas with in-shore ships and eliminating complex
inland areas that could produce huge number of false alarms. Traditionally there are two options to
acquire shore-line information, (a) manually labeled shore-line database, which has two problems, the
need for constant update and the need for accurate registration between database and image; And (b)
a separate algorithm for the detection of shore-line, which is time consuming and requires tedious
optimization (possibly hand-tuned) iterated between shore-line and ship detection algorithm.

In our framework the two problems are tackled at the same time and are jointly optimized
to achieve better performance. We experiment our network on GaoFen-1 dataset on two different
scenarios to show the benefit of multi-class classification of our framework, (1) the network is tasked to
classify only 2 classes, Non-ship and Ship and (2) the network is tasked to classify 3 classes, Sea, Land
and Ship. Table 3 shows with 3-class task, the network’s accuracy on Ship is greatly improved, the
network’s learning time is also decreased. This is because with the 3-class task, the network in training
is given extra information to comprehend the context of the task and by jointly classify multiple
classes, the network learns the spatial relationship between the different classes (the Ship have minimal
probability to appear in the middle of Land but maximal probability at the brink between Land and
Sea). The 3-class problem also provides a more balanced sample pool so the network is easier to train
with larger learning rate and faster converging speed.

Table 3. The comparison of Accuracy/Recall on Ship and training time on 2-Class/3-Class problems.

Problem Accuracy Recall Trained Epoch

2-Class 85.3% 83.9% 160
3-Class 94.1% 83.4% 80

Although in the remote sensing imagery the land area features most complex objects, we find the
classification of these objects will not contribute to the performance of the task. This is because ship
detection is majorly focused at the brink between land and sea. The classification of objects enclosed
by land will not provide any additional information for ship-detection, while also unnecessarily taking
up the capacity of the network.

4.2. Comparison between Different Realization of Multi-Scale Structure

The multi-scale structure which ensembles paths of different receptive fields has various ways
of implementation. In this section we list a few different multi-scale structures and compare the
convergent speeds and parameter numbers of the various structures to show the superiority of our
choice. Note that although there are already many multi-scale structures proposed in literature,
by creating shortcuts between layers to ensemble feature maps of different level of semantics, we here
focus on multi-scale structures that use input of different scales.
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Figure 5 depicts the some of the common structures feasible for multi-scale implementation that
we experiment in the comparison. Network A (Figure 5a) is the most basic multi-scale structure which
simply averages the results of different scales. This network is similar to basic scale augmentation of
training samples. The network does not learn the relationship between different scales. Network B
(Figure 5b) concatenate the results after the convolution layers. Here the fc_** layers start to learn the
weights of different paths to classify different objects. In Network C (Figure 5c), the concatenation
takes place after the first fc_** layers. The proposed network is similar to Network C except the the
network has two loss layers, each on the top of either path. In contrast, Network A, B, C only have one
loss layer at the very top of the network.

(a)

c

(b)

c

(c)

Figure 5. Different multi-scale structures in our experiment, (a) the features are summed up
element-wise at the very end, (b) features are concatenated before fc_** layers and (c) features are
concatenated between fc_** layers. Here green blocks indicate inputs of different scales, white indicates
convolution layers, blue indicates fc_** layers, circle with a plus indicates element-wise addition
operation of feature maps, circle with a C indicates concatenation operation. The loss layers are placed
on the very top of each network.

We experiment the different networks on Google Map images. Figure 7 shows the training average
Accuracy/epoch, Recall/epoch and IOU/epoch curve of these networks. It shows that the proposed
method, with 2 loss layers at different path, has overall faster learning speed and higher performance.
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Figure 7. Training average Accuracy/epoch, Recall/epoch and IOU/epoch curve of networks with
different multi-scale structure in Figure 5, with (a-c) labeled accordingly.

In Table 4 we show the the numbers of parameters and the computation time of a single
forward/backward routine on a 961× 961 training patch of these networks. Since Network C differs
from the proposed one only in that it has one fewer loss layer, its data is omitted. The table shows that
our proposed multi-scale structure has relatively small number of parameters and considerate fewer
computation time compared to Network B.

Table 4. The numbers of parameters of the networks and computation time of a single forward/backward
routine per patch.

Results Network A Network B Proposed

# of Parameters 15.2 m 15.7 m 15.2 m
Computation time 0.1525 s 0.2825 s 0.1425 s

We also include an experiment to show the performance comparison between the usage of
hole algorithm and different convolution architecture. In one of the experiment we cancel the hole
implementation and in the other experiment we use Resnet [53] as the convolution structure. The IOU
is shown in Table 5. As shown in the table, the hole implementation and the convolution structure
both slightly increase the performance compared to the counterpart. The implementation with Resnet
has the worst performance despite it is the more recent architecture. This is because Resnet introduce
heavy pooling and the small details are further neglected. This can be seen in the 4% drop IOU in
Ship performance.

Table 5. IOUs of the proposed method/without hole/with Resnet.

IOU (%) Sea Land Ship

Proposed 98.2 98.7 68.3
W/O hole 98.0 98.5 68.1
W/Resnet 96.9 97.2 64.4

4.3. Comparison with Other Methods

For a performance baseline, we also experiment the SLIC (Simple Linear Iterative Clustering)
method [35] and DenseCRF (Dense Conditional Random Field) [54] two of the most widely used
semantic labeling methods other than deep learning networks, to approach the same problem. SLIC is

382



Remote Sens. 2017, 9, 480

a widely approved way of producing superpixels as a preprocessing step for other process such
as object localization and semantic labeling. We first break the large images into small, irregular
segments called superpixels and then learn to classify each superpixel into different categories as
described in [35], i.e., to extract color, shape and texture info of each superpixel as features and train an
adaboost classifier [55] for classification. DenseCRF is a widely used multi-class image segmentation
method based on fully connected random field. This model accounts for unary and pairwise potentials
among pixels at the same time. The pairwise potential can address the difference between pixels in
arbitrary feature spaces and the unary potentials are computed independently on each pixel. The unary
potentials are treated as the initial guess of each pixel’s category, and the pairwise potentials are to
rectify the results. The solution to this model is yielded in an iterative fashion and leads to a refined
classification results of each pixel. In this experiment, we follow the implementation in [54], in which
the unary potentials are acquired using TextonBoost [56]. Although for the unary potentials there
are multiple selection such as convolutional network, we use TextonBoost for the consistency to the
original paper.

Table 6 shows the comparison results. We notice that because of the nature of the categories in this
problem, pixels that belongs to sea or land takes an extremely great proportion (over 99%), affecting
the statistics in the evaluation. So we randomly ignore pixels belonging to sea or land in the evaluation,
to ensure the numbers of pixels in different categories are of similar order of magnitude (the ratio
between the areas of land, sea and ships is balanced roughly to 4:4:1). We also list the IOUs without
the balanced evaluation in Table 7 for completeness, but for future results, we will only show the ones
with balanced evaluation.

Table 6. Accuracy of segmentation of different methods. Confusion matrix with percentages
row-normalized and IOU of each class.

a SLIC/DenseCRF/proposed network on GaoFen-1 images.

% of Total Sea Land Ship IOU

Sea 96.1/95.3/99.5 3.7/4.6/0.5 0.2/0.1/0.0 93.4/71.9/99.5
Land 2.7/8.2/1.4 94.8/91.4/98.6 2.4/0.4/0.0 /47.1/98.6
Ship 0/27.4/12.8 53.9/61.1/3.8 46.0/11.5/83.4 44.8/11.5/83.4

b SLIC/DenseCRF/proposed network on Google Map images.

% of Total Sea Land Ship IOU

Sea 91.4/95.1/98.2 8.1/4.8/1.7 0.5/0.1 0.0 78.1/72.0/98.2
Land 14.1/8.6/1.2 64.9/91.0/98.7 21.1/0.5/0.0 40.4/43.9/98.7
Ship 3.1/24.5/6.8 51.9/59.8/24.9 45.0/15.7/68.3 37.0/15.6/68.3

Table 7. IOUs of the proposed method without balanced evaluation.

IOU (%) Sea Land Ship

GaoFen-1 99.3 95.8 59.0
Google Map 96.9 97.2 40.5

We notice that the SLIC method performs poorly in this problem because a) the superpixels
produced are of bad accuracy even with carefully tuned parameters (initial region size and spatial
regularizer) and b) at the classification stage, the features extracted are not rich enough to distinguish
each category. The DenseCRF’s iteration method relies greatly on its initial result, the unary potentials
from TextonBoost, which is initially designed for everyday image circumstances. The experiment
shows that TextonBoost is, however, not suitable for remote sensing images. We presume the failure of
DenseCRF and SLIC is generally due to the fact that remote sensing images have scarce (if any) color
information and objects are of much smaller size compared to those in everyday images.
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4.4. Experiments on Multi-Scale Structure

Table 8 shows the performance comparison between the network with and without multi-scale
structure. The multi-scale structure enhances the network’s ability to discriminate categories in
different scales, with accuracy on sea and land greatly improved.

Table 8. Accuracy of segmentation with or without multi-scale. Confusion matrix with percentages
row-normalized and IOU for each class.

a network without/with multi-scale on GaoFen-1 images.

% of Total Sea Land Ship IOU

Sea 99.6/99.5 0.3/0.5 0.0/0.0 97.7/99.5
Land 8.2/1.4 91.8/98.6 0.0/0.0 89.2/98.6
Ship 14.5/12.8 2.8/3.8 82.7/83.4 82.6/83.4

b network without/with multi-scale on Google Map images.

% of Total Sea Land Ship IOU

Sea 97.9 / 98.2 2.1 / 1.7 0.0 / 0.0 94.9 / 98.2
Land 2.3 / 1.2 97.6 / 98.7 0.0 / 0.0 86.4 / 98.7
Ship 1.3 / 6.8 33.1 / 24.9 65.6 / 68.3 65.4 / 68.3

As is shown in Figure 8, after the training of the network, we extracted the weights of Layer fc_a2,
which is used to combine the information from fine-scale feature maps and coarse-scale score maps.
Only 20 weights of each kernel are shown for clarity. The layer learns that sea and land score maps
from coarse-scale have greater weights and ship score map have relatively lesser weight (as it should,
intuitively, since coarse-scale network are more reliable for sea-land segmentation).
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Figure 8. First 20 weights of Layer fc_a2 plotted as lines. Each line represents the weights corresponding
to a specific output category (sea, land and ship) as listed in the legend. Each dot on the line represent a
weight corresponding to an input dimension. The first 3 input dimensions corresponds to coarse-scale
score slices of sea, land and ship, respectively, and the other dimensions corresponds to feature maps
from fine-scale Layer fc_a1.

4.5. Qualitative Experiments

The qualitative performance is shown in Figures 9 and 10. Figure 9 features the comparison
between our proposed method with and without multi-scale structure. The result with multi-scale
structure tends to be more accurate and continuous, especially on GaoFen-1 dataset. Also note that
images from GaoFen-1 dataset have more ships off-shore, which can be relatively easy for the network
and add to better quantitative performance on GaoFen-1 dataset in Table 6. It is also noticed that
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the segmentation boundaries are not quite accurate with respect to the original images. This is in
accordance with the initial results of DeepLab network [36], which, later implements DenseCRF
as a post-process to acquire better segmentation boundaries. However, DenseCRF does not yield
satisfactory results in our experiments, due to the fact that the objects in our dataset lack color
differentiation and clear boundaries, especially in GaoFen-1 images.

Qualitative comparisons between our proposed method and DenseCRF, SLIC are shown in
Figure 11. The compared methods presents inferior results because of two aspects, the classification
and the segmentation. DenseCRF and SLIC both have worse performance when compared to our deep
network and can not fully identify the ship body. In addition, when the shadows on the ship is evident,
these two methods often classify these shadows into sea category.
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Figure 9. Semantic labeling results on Google Map images (a,b) and GaoFen-1 images (c,d). The images
are arranged as original (top), proposed method without multi-scale (a,c) and proposed method with
multi-scale (b,d). Here sea, land and ship are labeled as blue, green and white, respectively.
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(a) (b) (c)

Figure 10. Zoomed in semantic labeling results (bottom) on GaoFen-1 images (a-c), presented with
The original image (top). Here sea, land and ship are labeled as blue, green and white, respectively.
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(g) (h) (i)

Figure 11. Zoomed in semantic labeling results of DenseCRF (a-c), SLIC (d-f) and proposed method (g-i)
with original images (top). Here sea, land and ship are labeled as blue, green and white, respectively.

5. Feasibility of Ship Detection via Coastline Detection

Coastline detection has undergone extensive research over the last decades [51,57,58] and it is
possible to consider it as an approach towards ship detection to regard dynamic ships as a temporal
change in multi-temporal images. The automatic coastline detection can facilitate autonomous
navigation, coastal resource management and coastal environmental protection.

Although the accuracy of coastline detection is constantly increasing, it is still not enough
for direct implementation for ship detection [59]. Coastline detection methods commonly utilize
image segmentation tools such as watershed transformation [59] or graph-based discrimination [60],
which are based on the features of textures and intensities and have no knowledge to holistic objects
such as ships. As a result, for instance, at the fine scale segmentation stage, shadows on the decks that
are cast by ships themselves are often segmented into seas [23]. Besides, a post-validation algorithm is
still needed since not all detected changes are ships.

Moreover, single image ship detection, in contrast to multi-image ship detection, has the advantage
that it does not need the multiple image registration and the storing of template images. Besides,
change detection methods has the disadvantage that it is not accurate when image contrast has severe
variation and that it needs constant manual power to update latest coast line.

6. Conclusions

In this paper, we propose a semantic labeling network with unified multi-scale structure which
has enlarged receptive field and minimal parameter number increase, which is different from tradition
multi-scale schemes that focus on utilizing finer-scale feature maps. The large receptive field is
designed specifically for maritime remote sensing images and the experiments show that with the
multi-scale semantic labeling scheme, an improved performance is achieved in the problem of sea-land
segmentation and ship detection on both GaoFen-1 and Google Map images, under the circumstances
that the ship targets are limited to large navy ships and oil tankers. In the future work, we will extend
this work for more diversified ship targets such as yachts and fishing boats.
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Abstract: In this research, a semi-automated building damage detection system is addressed under
the umbrella of high-spatial resolution remotely sensed images. The aim of this study was to develop
a semi-automated fuzzy decision making system using Genetic Algorithm (GA). Our proposed
system contains four main stages. In the first stage, post-event optical images were pre-processed.
In the second stage, textural features were extracted from the pre-processed post-event optical images
using Haralick texture extraction method. Afterwards, in the third stage, a semi-automated Fuzzy-GA
(Fuzzy Genetic Algorithm) decision making system was used to identify damaged buildings from the
extracted texture features. In the fourth stage, a comprehensive sensitivity analysis was performed
to achieve parameters of GA leading to more accurate results. Finally, the accuracy of results
was assessed using check and test samples. The proposed system was tested over the 2010 Haiti
earthquake (Area 1 and Area 2) and the 2003 Bam earthquake (Area 3). The proposed system
resulted in overall accuracies of 76.88 ± 1.22%, 65.43 ± 0.29%, and 90.96 ± 0.15% over Area 1, Area 2,
and Area 3, respectively. On the one hand, based on the concept of the proposed Fuzzy-GA decision
making system, the automation level of this system is higher than other existing systems. On the
other hand, based on the accuracy of our proposed system and four advanced machine learning
techniques, i.e., bagging, boosting, random forests, and support vector machine, in the detection of
damaged buildings, it seems that our proposed system is robust and efficient.

Keywords: building damage detection; Fuzzy-GA decision making system; machine learning
techniques; optical remotely sensed images; sensitivity analysis; texture analysis

1. Introduction

Detecting damaged buildings after a massive disaster in a robust manner is a critical task,
because it helps relief and rescue teams to manage related works accurately and precisely and then
may reduce losses. Hence, the production of accurate building damage maps after disasters would
help relief and rescue teams in emergency situations. Remote sensing (RS) data is one of the sources
which can be used for generating building damage maps. Due to specific characteristics of the RS data
such as its high temporal frequency and the availability of various sensors with different spatial and
spectral resolutions, it plays an important role in producing building damage maps. Satellite optical
images, as a source of the RS data, have been frequently used to produce damage maps [1]. In this
study, we present a novel semi-automated decision making system based on the fuzzy theory and
genetic algorithm (GA) in order to produce the building damage maps. Our proposed system can be
used as a knowledge extraction tool in future works. Knowledge extraction is a necessary stage in
order to convert a semi-structured problem into a structured one [2].
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Remote Sens. 2017, 9, 349

1.1. Literature Review

The existing damage detection methods can be discussed from viewpoints of data used and
methodology. From the perspective of data used, researchers employed different sources of RS data,
including Light Detection and Ranging (LiDAR) [3], Synthetic Aperture Radar (SAR) [4–9], and optical
imagery [10–12]. Optical satellite imagery is one of the useful sources in building damage detection
process. Disasters may damage components of a building. A building’s roof is one of these components.
Optical satellite sensors usually observe the roof of buildings. The spectral signature is the outcome of
an optical satellite sensor. The spectral signature of each phenomenon is unique. Therefore, spectral
signatures of a damaged roof and an intact roof are different from each other. For this reason, spectral
signatures obtained from optical satellite sensors or their extracted features are suitable for detecting
damaged buildings [2,13].

From the viewpoint of the methodology, presenting a comprehensive analysis about existing
methods used in damage detection application is a difficult task, because there are many research
studies. Therefore, we attempt to mention the related works to our research. In this study, we propose
a fuzzy decision making system in order to detect damaged buildings from textural features extracted
from post-event optical images. Hence, the literature review is presented in three parts: (1) the use of
optical images for detecting damaged areas, (2) the role of textural features for detecting damaged
areas, and (3) fuzzy systems used for detecting damaged areas.

Some researchers attempted to specify the role of optical images in damage detection application.
Eguchi and Mansouri (2005) focused on investigating and categorizing papers that used RS technology
for detecting buildings damaged after the 2003 Bam earthquake. It was concluded that detecting
regional damages by RS technology is possible [14]. Voigt et al. (2011) presented results concerning
actions of the German Aerospace Center (DLR) after the 2010 Haiti earthquake. It was deduced that
extracting building damage maps even with high spatial-resolution optical satellite images is not an
easy task and needs several human experts [15]. Lu et al. (2012) implemented a building damage
detection method based on mono-temporal very high-spatial resolution optical images. In this paper,
integrating manual and automatic interpretations resulted in a robust building damage map [16].
Tiede et al. (2011) used shadow information extracted from pre- and post-event optical images for
generating a damage map after the 2010 Haiti earthquake. The proposed method was able to create
the damage map of the Carrefour area after 12 h [17]. Lemoine et al. (2013) used aerial optical data
for providing a realistic estimate from damaged buildings. Using the aerial optical data instead of
satellite data was the key objective of the presented study to obtain more accurate results [18]. Based on
the presented research works, it appears that optical data is a suitable source for detecting damaged
buildings. However, owing to the complexity of this problem (i.e., damage detection), the role of
experts is important and undeniable.

Many researches have benefited from textural features extracted from the RS data for identifying
areas damaged after disasters. The ability of textural features in measuring spectral and height
variations in the spatial domain over RS data is the main reason for use of them in the damage detection
problem. Table 1 briefly depicts researches that used textural features in damage detection applications,
especially for building damage detection [1] and road damage detection [19]. The existing researches
can be discussed from three viewpoints. The used feature extraction method is the first viewpoint.
From this perspective, Laws mask [1], Haralick [20], Multivariate variogram [21], 1st statistical [19],
and Gabor filter [22] feature extraction methods were frequently employed to produce textural features
in previous research works. Moreover, from the second viewpoint, textural features were extracted
from different remotely sensed data including optical images, light detection and ranging (LiDAR)
data, and synthetic aperture radar (SAR) data. Based on the literature, textural features extracted from
pre- and/or post-event optical images were widely employed for detecting damaged areas. From the
third viewpoint, researchers utilized textural features for improving the accuracy of the final damage
map. In fact, it seems that textural features positively affect the performance of machine learning
techniques and decision making systems in identifying damaged areas.
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Table 1. A brief presentation from previous research studies that used textural features in damage
detection applications.

Reference Textural Features Used Remotely Sensed Data

[1] Laws mask Pre- and post-event optical images

[23] Haralick Pre- and post-event optical images

[20] Haralick Pre- and post-event optical images

[21] Multivariate variogram Pre- and post-event optical images and post-event LiDAR data

[22] Gabor Filter Pre- and post-event optical images

[19] 1st statistical features, Gabor
features and Haralick features Pre- and post-event optical images

[24] Multivariate variogram Pre- and post-event optical images

[25] Haralick Pre- and post-event digital elevation models

[26] Haralick Post-event SAR data

[27] 1st statistical features, Gabor
features and Haralick features Pre- and post-event optical images

[28] Haralick Pre- and post-event optical images

After extracting features, it is necessary to use a classifier or machine learning technique or
decision making system for creating a relation between the extracted features and the damage
extent of buildings. To this end, some researchers used advanced and non-parametric classifiers.
Chesnel et al. (2008) utilized the Support Vector Machine (SVM) classifier to partition the feature space
for detecting damaged and undamaged buildings [22]. Li et al. (2010) used the One-Class Support
Vector Machine (OCSVM) classifier to obtain damaged areas from high spatial-resolution optical
images [21]. Dubois and Lepage (2014) employed a multilayer backpropagation perceptron neural
network to detect damaged buildings after the 2010 Haiti earthquake [1]. In addition to advanced
classifiers, based on Table 2, some researchers used fuzzy-based decision making systems in the
damage detection process [2,13]. The fuzzy-based decision making systems are usually employed
in issues where experts want to model their knowledge. Damage detection is one of these issues.
Producing damage maps using experts after disasters in a manual manner proves our claim. To the best
of our knowledge, in the damage detection application, the fuzzy-based decision making systems can
be used for two main procedures including: (1) land use/cover classification [29,30] and (2) modeling
the damage extent of buildings from the extracted features [2,13]. Ural et al. (2011) employed a
fuzzy classifier in order to map buildings and their rubble after the 2010 Haiti earthquake in a robust
manner [30]. Moreover, researches have used Mamdani fuzzy inference systems (MFISs) as a decision
making system for modeling the damage extent of buildings [19,27,28]. In these researches, parameters
of fuzzy inference systems were manually adjusted in a trial and error manner that is a time consuming
task. In these cases, the accuracy of results completely relies on the selected parameters. For this reason,
Janalipour, M. et al. [2,13] used semi-automated Sugeno fuzzy decision making systems in order to
detect damage and changed areas. The use of these systems was a good solution for improving the
automation level of fuzzy systems, but it is a difficult task to extract knowledge from a Sugeno fuzzy
system due to the structure of its rules [31]. Knowledge extraction is an important stage for converting
a semi-structured problem (i.e., the damage detection) into a structured one. For further study on
damage detection methods, we encourage readers to refer to [32–34].

Table 2. A brief presentation from previous research works which used fuzzy inference systems in
damage detection application.

Reference Type of Fuzzy System Automation Level

[19] Mamdani Manually
[28] Mamdani Manually
[27] Mamdani Manually
[35] Mamdani Manually
[13] Sugeno Semi-automated
[2] Sugeno Semi-automated
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1.2. Research Aims

In this study, three important objectives are satisfied. Based on the previous works, researchers
widely used Mamdani fuzzy decision making systems for detecting damaged areas whose parameters
of these systems were manually chosen in a trial and error basis which is a time consuming
task. Moreover, the robustness of outcomes relies on the selected parameters. For this reason,
Janalipour, M. et al. [2,13] proposed a semi-automated Sugeno fuzzy decision making system.
However, for knowledge extraction, the Sugeno fuzzy system is not appropriate due to the structure
of its rules. To this end, it is necessary to employ a semi-automated Mamdani fuzzy system.
However, there is no semi-automated Mamdani fuzzy system. Therefore, it is essential to propose
a semi-automated (or fully-automated) Mamdani fuzzy decision making system to detect damaged
areas. In the first and main objective, we develop a semi-automated Mamdani fuzzy decision making
system using Genetic Algorithm (GA). Based on the previous researches [2,13], sensitivity analysis
plays an important role in identifying the appropriate parameters of a system leading to more accurate
results. In the mentioned researches, a step-by-step sensitivity analysis method was used. However,
it is necessary to simultaneously test all parameters of a system, because it permits us to consider the
relationship between changes of all the parameters. For this reason, in the second objective, we study
the effect of the simultaneous change of all parameters of the system on the final result. To investigate
the robustness and effectiveness of our semi-automated Mamdani fuzzy decision making system,
we compare results of this system with four advanced machine learning techniques including random
forests (RF), bagging, boosting, and support vector machine (SVM)—that is our third objective.

2. Materials and Methods

In this section is included information about study areas and data used and description about our
proposed methodology.

2.1. The First Study Area: The 2010 Haiti Earthquake

Port-au-Prince city is the first study area, where an earthquake occurred on 12 January 2010.
Port-au-Prince is the capital of Haiti. Two areas including Area 1 and Area 2 were chosen
over Port-au-Prince.

The previous research studies proved that ancillary information such as a pre-event vector map
improves the accuracy of damage detection methods [36–38]. On the other hand, the use of the
pre-event map in our proposed system is necessary, because it is difficult to find the footprint of
buildings on post-earthquake optical images. For these reasons, a pre-event building map was injected
into our methodology. There are some old-vector maps in the Haiti area such as [39]. To update the
old-vector map, pre-event Geoeye-1 and IKONOS-2 images were employed. To this end, the old-vector
map was updated as much as possible by an expert. Moreover, in the first study area, an ortho-rectified,
pansharpened and georeferenced post-event Geoeye-1 image acquired on 13 January 2010 with a
spatial resolution of 50 cm and three spectral bands (blue, green, and red) was employed.

2.2. The Second Study Area: The 2003 Bam Earthquake

Bam city is the second study area, a city located in southwestern Iran, where an earthquake
occurred on 26 December 2003. The post- earthquake pansharpened QuickBird image and pre-event
digital vector map of the Bam area were used in this study. The post-earthquake image was acquired
on 3 January 2004 and also has 61 cm spatial resolution and four spectral bands (red, green, blue,
and near infrared). The second study area has about 400 buildings with different damage extent.
The pre-event digital vector map with a scale of 1:500 was produced by the National Cartographic
Center (NCC) of Iran in 1994, which was updated using an expert according to [13].
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2.3. Methodology

Our proposed damage detection system is presented in four main stages according to Figure 1.
In stage “1”, post-event optical images are pre-processed. In stage “2”, Haralick texture features
are extracted from the pre-processed optical images using the pre-event map and related equations.
In stage “3”, a Fuzzy- GA (Genetic Algorithm) based decision making system is developed to estimate
the damage extent of buildings from the extracted texture features. In stage “4”, a comprehensive
sensitivity analysis is performed to achieve the best parameters leading to more accurate results.
Finally, the accuracy of results is firstly assessed and then the building damage map is obtained.
The aforementioned stages are presented in more detail below.

Post-Event 
Optical Data

Pre-Event 
Map

Convert RGB images 
into Grayscale Image

Texture Extraction

Variance Homogeneity Contrast

Average of each Extracted 
Texture Feature for each 

Building

Fuzzy-GA Based 
Decision Making 

System

Sensitivity Analysis

Final Damage MapAccuracy 
Assessment

Training 
Data

Check Data

Test Data

Stage 1: Pre-Processing

Stage 2: Feature Extraction

Stage 3: Decision Making

Stage 4: Sensitivity Analysis
& Accuracy Assessment

Normalization

Figure 1. The workflow of our semi-automated damage detection system in this study.

2.3.1. Stage 1: Pre-Processing

Pre-processing is one of the important stages in building damage detection. Geo-rectification and
pansharpening are two of the important pre-processes, which should be performed on the post-event
optical images. Georeferencing and pansharpening were performed on the post-event optical image
of the Haiti earthquake. Moreover, the mentioned pre-processes were performed on the post-event
optical image of the Bam earthquake according to [13].

As another pre-process, based on previous research works [2], the correlation between
corresponding textural features extracted from spectral bands (i.e., red, blue, and green) is high.
Hence, numerous and correlated features result, which increase the computational cost of the proposed
method. For this reason, a grayscale image is produced from red, blue, and green bands using
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Equation (1) (please see [40] for further study about Equation (1)). Textural features are extracted from
the grayscale band.

E = 0.2989× Rr + 0.5870× Rg + 0.1140× Rb (1)

where, Rr, Rg, Rb, and E are the reflectance value of the red, green, blue, and resulting grayscale
bands, respectively.

2.3.2. Stage 2: Feature Extraction

Extracting textural features is the main process of the feature extraction stage. The potential
of textural features in measuring variations of digital numbers in the spatial domain enables us to
use them in satellite image processing, especially after natural hazards. Natural hazards suddenly
cause damage of objects of the earth’s surface leading to reflectance changes in the spatial domain.
Therefore, the textural features extracted from remotely sensed optical data are widely used for
detecting damaged areas. Based on previous works presented in the literature review section, different
texture extraction methods have been used in damage detection applications. In most of the previous
works [20,23], Haralick features were widely chosen for extracting textural features. For this reason,
these features are also used in our study. For further study on the Haralick texture extraction method,
please see [41,42].

In this study, in order to detect damaged buildings from textural features, variance, homogeneity,
and contrast features were chosen, which can be calculated from Equation (2), Equation (3),
and Equation (4), respectively. The selection of these features was based on three reasons. First of all,
three texture features with three linguistic terms and Gaussian membership functions (MFs) generate
24 unknown parameters regarding MFs in a Mamdani fuzzy inference system which should be
simultaneously set. It seems that the number of unknown parameters is sufficient to test an
optimization algorithm and the selection of them by an expert is a difficult task. For the second
reason, based on equations of the mentioned features, it appears that correlation among the selected
features is low. Finally, the performance of our decision making system and advanced machine
learning techniques would be investigated in similar conditions (i.e., with three texture features).
Hence, the selection of the mentioned texture features is within the path of objectives of this study.

Variance =
G−1

∑
i=0

(i− μ )2P(i, j) (2)

Homogenity =
G−1

∑
i=0

G−1

∑
j=0

P(i, j)

1 + (i− j)2 (3)

Contrast =
G−1

∑
i=0

G−1

∑
j=0

(i− j)2 × P(i, j) (4)

where, μ is the mean value of gray-levels in an area selected for producing texture features. Moreover,
P and G are the probability matrix and the number of image gray-levels, respectively.

There are two important points about extracting textural features in this study. For the first point,
for preserving the negative effects of non-building pixels on extracted textural features, building pixels
are specified by the pre-event map and are only used to extract textural features. For the second point,
to compare the three mentioned texture features, they should be standardized. Hence, Equation (5) is
employed to standardize the extracted textural features.

xi =
Di − Dmin

i
Dmax

i − Dmin
i

, i = 1 : 3 (5)

where, xi is the ith standardized texture feature; Dmin
i and Dmax

i are the minimum and maximum
values of the ith texture feature; and Di is an arbitrary value of the ith texture feature.
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2.3.3. Stage 3: Decision Making

After extracting textural features, it is necessary to employ a decision making system [43] or a
machine learning technique to provide a relation between the extracted features and the damage extent
of buildings. In this study, a decision making system based on MFIS and GA is used to provide the
mentioned relation. MFIS was firstly proposed by Zadeh [44]. In a MFIS, initially, crisp input values
are converted into fuzzy values by input MFs. This is called “fuzzification”. In fact, fuzzification
is a mapping process that is performed using membership functions. In this process, membership
functions act as connectors among crisp and fuzzy spaces. Then, using fuzzy values, the inference
system and existing rules in the fuzzy rule base, fuzzy output values are generated. Finally, the fuzzy
output values are transformed into crisp output values by a defuzzification method [31].

In general, a MFIS is a function of three main parameters according to Equation (6) including:
parameters of membership functions (C1), rules (C2), and parameters of the inference system (C3).
Therefore, in designing a MFIS, two essential tasks must be performed by an expert: (1) designing rules
of the fuzzy rule base and parameters of the inference system, and (2) designing and selecting type
and parameters of input and output MFs. In this study, we focus on the second task, because the
number of rules in our study is minor and can be easily selected and also an expert could select the
small parameters of the inference system.

Mamdani Fuzzy System = F(C1, C2, C3) (6)

For expressing the importance of the second mentioned task, an example is employed here.
Please note that this example is also used as a MFIS in our damage detection method. A MFIS with
three inputs and one output (its MF type is Gaussian) is presented in Figure 2. Suppose three rules
similar to Equations (7) to (9) have been designed by an expert. Based on these equations, we can
express that C1 is a function of some unknown parameters (Equation (10)).
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C1 = F(m1, σ1, . . . , m12, σ12) (10)

where, X1, X2, and X3 are input linguistic variables 1 to 3, respectively and Z is the output linguistic
variable. Moreover, mi and σi are the mean and standard deviation of a Gaussian membership function.

According to Figure 2 and the designed rules, 24 unknown parameters of MFs (Equation (11))
must be set by an expert. From our viewpoint, the procedure of selection of 24 unknown parameters
in a continuous-space is an optimization problem. For this reason, in this study, Genetic Algorithm
(GA), as an optimization algorithm, is employed to select unknown parameters [45,46]. The ability
of GA in selecting optimum answers was the main reason for the selection of this algorithm. In fact,
in this research, MFIS and GA are integrated to select appropriate parameters of MFs leading to the
best result. In the following, concepts of GA and its integration with the MFIS are presented.

Unknown Parameters =
[

m1 σ1 · · · m12 σ12

]
1×24

(11)

397



Remote Sens. 2017, 9, 349

Figure 2. A schematic presentation of a MFIS with three inputs and one output and its MFs.

Genetic Algorithm (GA) is based on the mechanism exhibited by nature incorporating the
robustness of biological systems as presented by Charles Darwin [47]. This algorithm is one of
the powerful artificial intelligence algorithms, which selects the optimal answer using a random
searching method in the search-space.

To find the optimal unknown parameters regarding MFs of a fuzzy inference system using GA,
five main steps are employed in GA. The employed steps are presented below:

The first step: initial parameters regarding MFs of the fuzzy system are generated in a random
manner. Suppose the number of the population is equal to k and the generated parameters are:

positions =

⎡⎢⎢⎣
m1

1 σ1
1 . . . m1

12 σ1
12

...
... . . .

...
...

mk
1 σk

1 · · · mk
12 σk

12

⎤⎥⎥⎦
k×24

=

⎡⎢⎣ the 1st population
...

the kth population

⎤⎥⎦ (12)

After generating the initial parameters, it is necessary to use a cost function to calculate the
efficiency of each population. It should be considered that the fitness function and objective function
terms are also used instead of the cost function one. The cost function is at the heart of our proposed
system. The integration of the fuzzy system and GA is the main task of this function. Moreover,
the cost function is responsible for assessing population. In this study, to obtain the cost of population,
some training and check samples according to Equations (13) and (14) are considered. The duty of
training samples is to learn the fuzzy-GA system. Furthermore, check samples are employed to prevent
an over-learning problem.

training samples =

⎡⎢⎣ x1
t1 x1

t2 x1
t3 zt

1

...
...

...
...

xs
t1 xs

t2 xs
t3 zt

s

⎤⎥⎦
s×4

=
[
Xtrain

1 Xtrain
2 Xtrain

3 Ztrain] (13)

check samples =

⎡⎢⎣ x1
c1 x1

c2 x1
c3 zc

1

...
...

...
...

xu
c1 xu

c2 xu
c3 zc

u

⎤⎥⎦
u×4

=
[

Xcheck
1 Xcheck

2 Xcheck
3 Zcheck

]
(14)

where, xh
t1, xh

t2, xh
t3 are values of textural features regarding the hth training sample. Moreover, zt

h is
the damage extent of the hth training sample. xh

c1, xh
c2, xh

c3 are values of textural features regarding the
hth check sample. Moreover, zc

h is the damage extent of the hth check sample. Furthermore, s and u
are the number of training samples and the number of check samples, respectively.
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To estimate the cost of each population for training samples (Equation (15)), at first, the parameters
of the MFs are updated using the population (Equation (16)). For population r, the updated MFIS is
represented by Equation (17). Then, using the updated MFIS and Equation (18), the damage extent of
training samples is obtained from Equation (19). Finally, the cost of population r (costr

train) obtained
from the training samples is calculated from Equation (20). The cost of check samples is also estimated
in the same way.

Coststrain =

⎡⎢⎣ cost1
train
...

costk
train

⎤⎥⎦
k×1

(15)

Cr
1 = F

(
mr

1, σr
1, . . . , mr

12, σr
12
)

; 1 ≤ r ≤ k (16)

Mamdani Fuzzy Systemr = F
(
Cr

1, C2, C3
)

(17)

Ẑ = Mamdani Fuzzy System
(
Xtrain

1 , Xtrain
2 , Xtrain

3
)

(18)⎡⎢⎢⎣
Ẑ1

...
Ẑs

⎤⎥⎥⎦ =

⎡⎢⎣ Mamdani Fuzzy Systemr (x1
t1, x1

t2, x1
t3
)

...
Mamdani Fuzzy Systemr (xs

t1, xs
t2, xs

t3
)
⎤⎥⎦

s×1

(19)

costr
train = 1

s ×
√

s
∑

i=1

(
zts − Ẑs

)2, r = 1, . . . , k (20)

where, Cr
1 and Mamdani Fuzzy Systemrare parameters of MFs obtained from population r and the

fuzzy inference system updated from Cr
1, respectively.

The second step: In this step, new MF parameters are obtained from crossover function and
population generated by the previous step. Crossover is one of the important functions in GA,
which is responsible for generating new children (parameters of fuzzy systems) from their parents.
To generate new children, the number of uses of crossover function (ncrossover) should be specified.
To this end, at first, parameter α is calculated from the crossover rate and the number of population
(population) using Equation (21). Then, the number of uses of crossover function is obtained from
Equation (22). For generating new MF parameters from the crossover function, first, two random
parents (like mi and ni) are chosen. Afterwards, new children are achieved from Equation (23).
Since unknown parameters were defined in specific ranges, there are two conditions according to
Equations (24) and (25) for undefined values. Finally, by using Equations (15) to (20), costs of the new
children are calculated and inserted into Equation (26) [47].

α = crossover rate×population
2 (21)

ncrossover = max{n ∈ Z|n ≤ α} (22)

positionscrossover

=

⎡⎢⎢⎢⎢⎢⎢⎣
γ1 × positions(m1, :) + (1− γ1)× positions(n1, :)
γ1 × positions(n1, :) + (1− γ1)× positions(m1, :)

...
γncrossover × positions(mncrossover , :) + (1− γncrossover )× positions(nncrossover , :)
γncrossover × positions(nncrossover , :) + (1− γncrossover )× positions(mncrossover , :)

⎤⎥⎥⎥⎥⎥⎥⎦
(2×ncrossover)×24

=

⎡⎢⎢⎢⎢⎢⎢⎣
m1

1 σ1
1 · · · m1

12 σ1
12

m2
1 σ2

1 · · · m2
12 σ2

12
...

...
. . .

...
...

m2×ncrossover−1
1 σ2×ncrossover−1

1 · · · m2×ncrossover−1
12 σ2×ncrossover−1

12
m2×ncrossover

1 σ2×ncrossover
1 · · · m2×ncrossover

12 σ2×ncrossover
12

⎤⎥⎥⎥⎥⎥⎥⎦

(23)
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σi =

{
0.01 i f σi < 0
0.5 i f σi > 0.5

(24)

mi =

{
0 i f mi < 0
1 i f mi > 1

(25)

Costscrossover =

⎡⎢⎣ cost1

...
cost2×ncrossover

⎤⎥⎦
(2×ncrossover)×1

(26)

where, γ1 is a random number between −0.1 and 1.1. σi and mi are the variance and mean of the ith
variable achieved from the crossover function, respectively.

The third step: In this step, one of the parameters of a population is changed using the mutation
function. The mutation is another important function in GA. The mutation function has an undeniable
role in solving the local minimum problem in GA. To generate new children by the mutation function,
the number of uses of the mutation function (nmutation) should be specified. To this end, at first,
parameter β is calculated from the mutation rate and the number of population using Equation (27).
Then, the number of uses of the mutation function is obtained from Equation (28). For each use
of the mutation function, one random population is selected. Afterwards, a new child is achieved.
Equation (29) depicts all new children achieved from the mutation function. Undefined values of
variables are corrected using Equations (24) and (25). Finally, using Equations (15) to (20), costs of the
new children are calculated and inserted into Equation (30).

β =
mutation rate× population

2
(27)

nmutation = max{n ∈ Z|n ≤ β} (28)

positionsmutation =

⎡⎢⎢⎣
m1 σ1 + sigma× rand1 . . . m12 σ12
...

... . . .
...

...
m1 + sigma× randnmutation σ1 · · · m12 σ12

⎤⎥⎥⎦
nmutation×24

(29)

Costsmutation =

⎡⎢⎣ cost1

...
costnmutation

⎤⎥⎦
(nmutation)×1

(30)

where, randi is a random number. Moreover, sigma is calculated from Equation (31). Variables σi and
mi are defined respectively in a range of [0.01–0.5] and [0–1]. Because the range of the variable σi is
lower than the variable mi, sigma values of Equation (31) regarding these variables are different:

sigma =

{
0.049 f or variable σi
0.1 f or variable mi

(31)

The fourth step: In this step, using elitism operator, GA is able to preserve the best answer of
iterations. To this end, at first, all population and costs obtained from the previous steps are inserted in
two pools according to Equations (32) and (33). Afterwards, they are sorted in descending order by
Equation (34) (i.e., a population with the minimum cost value is the best answer). Finally, we select k
population with minimum cost values as the best answers from the sorted population (Equation (35)).
With the elitism operator, it is possible to preserve the best solutions and GA can be converged on the
best solution. In fact, with deep insight into this step, we can conclude that the artificial intelligence of
GA exists in the fourth step.

all poistions = [positions; positionscrossover; positionsmutation](nmutation+2×ncrossover+k)×24 (32)
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Costs = [Coststrain, Costscrossover, Costsmutation] (33)

all poistions = sort(all poistions, Costs) (34)

positions = all poistions(1 : population, :) (35)

The fifth step: The second, third and fourth steps should be repeated to obtain the best solution.
The first row of Equation (35) is the best solution with the minimum cost value.

2.3.4. Stage 4: Damage Map and Accuracy Assessment

In order to assess the accuracy of the final damage maps, the confusion matrix and statistical
descriptors extracted from this matrix are considered. To generate a confusion matrix, it is necessary
to employ training, test, and check samples. To this end, the damage extent of some buildings was
specified as training, test, and check samples. More information about these samples is presented in
Section 3.2. After generating the confusion matrix, statistical descriptors are employed to specify the
accuracy of results. For this purpose, some statistical descriptors, including overall, user, and producer
accuracies extracted from the confusion matrix, are used to display the accuracy of the proposed
system. Based on a sample confusion matrix presented in Table 3, the overall, user, and producer
accuracies are calculated from Equations (36) to (38), respectively.

Overall_Accuracy =
a + d

a + b + c + d
(36)

User_accuracy_class1 =
a

a + c
(37)

Producer_accuracy_class1 =
a

a + b
(38)

Table 3. A sample confusion matrix.

References

Class 1 Class 2

Class 1 a b
Class 2 c d

Sensitivity Analysis

A sensitivity analysis should be carried out to confirm the stability and the reliability of the
proposed system’s results with respect to changes of its parameters [48–50]. In this study, the sensitivity
of the Fuzzy-GA is assessed against any changes in GA’s parameters: (a) the number of iterations;
(b) the number of population; (c) the mutation rate; and (d) the crossover rate. In the previous
works [2,13], a step-by-step sensitivity analysis method was used. However, step-by-step sensitivity
analysis methods are unable to consider simultaneous changes of parameters of a system [51]. For this
reason, in this study, a grid-partitioning based sensitivity analysis method was performed to study the
effect of change of parameters on the accuracy of the final results [52]. In this method, the mentioned
parameters of GA are changed in a limited and meaningful range to achieve accurate results. The range
of parameters was adjusted based on experimental results and our knowledge about GA.

3. Results

3.1. Feature Extraction Considerations

In the feature extraction stage, variance, homogeneity, and contrast features were extracted
by producing the probability matrix (P) for a distance of 1 pixel, orientation angles of 0, 45, 90,
and 135 degrees and a window size of 3 × 3. Our experimental results showed that increasing the
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window size and the distance parameter negatively affects the accuracy of the building damage
detection methods. For this reason, the mentioned parameters were chosen for producing textural
features. The textural features were finally calculated from the average of features obtained on all
orientation angles.

3.2. The Number of Training, Test and Check Samples Used over Area 1, Area 2, and Area 3

Training, check, and test samples must be used in modeling and validation processes of the
Mamdani fuzzy system. To this end, two different sources were employed to extract these samples
from the Haiti and Bam areas. The Haiti building damage atlas (the first source) was used to collect
the mentioned samples over the Haiti area (Area 1 and Area 2). In this atlas, buildings were classified
as undamaged (D1), substantial to heavy damage (D3), very heavy damage (D4), and destruction (D5).
Moreover, according to [13], the damage extent of buildings over the Bam area was specified using the
visual interpretation of an expert on pre- and post-event high-spatial resolution images (the second
source). Table 4 shows the number of training, check, and test samples selected over Area 1, Area 2,
and Area 3.

Table 4. The number of training, check and test samples selected over Area 1, Area 2, and Area 3.

Training Samples Check Samples Test Samples

D1 D3 D4 D5 D1 D3 D4 D5 D1 D3 D4 D5

Area 1 172 15 30 83 66 5 13 40 185 8 36 100
Area 2 380 22 196 102 118 10 61 35 530 43 268 142
Area 3 25 - 56 115 14 - 30 74 23 - 38 93

3.3. Considerations for Implementing the Fuzzy System

For implementing the fuzzy system, in this study, its parameters were adjusted according to
Table 5. Based on the opinion of an expert about the number of linguistic terms and results presented
to [2,13], it seems that a number of three MFs for each input or output variable are appropriate for
building damage detection. Moreover, according to the previous works [2,13], the Gaussian MF is
efficient and robust for damage detection application, therefore this function was also utilized in
this study. Furthermore, 12 fuzzy rules were designed by an expert, which were employed over
three selected areas. In addition, Min, Max, Min and Max operators were chosen for “and”, “or”,
“aggregation” and “implication” methods, respectively.

Table 5. Parameters of Mamdani fuzzy inference system selected in this study.

Parameter Name Fuzzy Parameters Selected

Number of MF for each input 3
Number of MF for each output 3

Type of input MF Gaussian Function
Type of output MF Gaussian Function

Number of iterations Flexible
Defuzzification method Centroid

“and” method Min
“or” method Max

Implication method Min
Aggregation method Max

Number of Rules 12

3.4. Sensitivity Analysis on Fuzzy-GA Parameters

In order to perform the sensitivity analysis of results with respect to GA parameters, including
the number of iteration (it), the number of population (pop), the mutation rate (Pm) and the crossover

402



Remote Sens. 2017, 9, 349

rate (Pc), these parameters were varied in a limited range. Tables 6–8 depict the overall accuracy of
our proposed system obtained from variations of GA parameters over Area 1, Area 2, and Area 3,
respectively. The range of values of parameters was selected based on experimental results and our
knowledge about GA. Here, our description is presented on the range of the selected values. In general,
low mutation rates are selected in GA, because increasing the mutation rate leads GA into a random
search method. For this reason, mutation rates 0.1, 0.2, and 0.3 were chosen in this study. In contrast
with the mutation rate, the selection of high values for the crossover rate guaranties optimized solutions
to be achieved in a speedy manner. Hence, crossover rates 0.7, 0.8, and 0.9 were selected. Furthermore,
based on the diagram of convergence of GA (see Section 3.5), it seems that GA is approximately
converged after the 100th iteration. Therefore, the sensitivity of results with respect to iterations 100,
200, and 300 was tested. Finally, based on the previous works [53], the effect of population 50, 150,
and 250 on the accuracy of the proposed damage detection system was investigated.

Table 6. Overall accuracies achieved from variations of GA parameters over Area 1.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 76% 73% 73% 77% 79% 79% 77% 79% 79% 100
0.2 76% 77% 74% 79% 77% 72% 79% 78% 77% 100
0.3 76% 75% 74% 76% 80% 77% 79% 73% 79% 100
0.1 73% 75% 75% 77% 76% 78% 77% 79% 79% 200
0.2 74% 77% 79% 77% 79% 77% 79% 79% 79% 200
0.3 77% 77% 78% 77% 73% 77% 79% 79% 77% 200
0.1 79% 78% 70% 75% 77% 77% 75% 73% 80% 300
0.2 77% 79% 77% 78% 79% 78% 78% 79% 77% 300
0.3 77% 79% 77% 77% 80% 78% 71% 71% 79% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc

Table 7. Overall accuracies achieved from variations of GA parameters over Area 2.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 65% 65% 65% 64% 66% 66% 64% 64% 64% 100
0.2 64% 67% 66% 64% 66% 66% 66% 66% 64% 100
0.3 65% 67% 66% 66% 66% 66% 66% 66% 66% 100
0.1 65% 65% 66% 65% 67% 66% 65% 65% 63% 200
0.2 65% 64% 67% 65% 65% 66% 66% 65% 66% 200
0.3 63% 65% 64% 67% 66% 66% 65% 66% 65% 200
0.1 66% 67% 66% 66% 65% 64% 66% 66% 65% 300
0.2 65% 67% 67% 65% 65% 65% 64% 65% 66% 300
0.3 65% 65% 66% 67% 67% 65% 66% 65% 65% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc

Table 8. Overall accuracies achieved from variations of GA parameters over Area 3.

pop→ 50 50 50 150 150 150 250 250 250 it ↓
0.1 91% 91% 92% 90% 89% 90% 91% 90% 91% 100
0.2 91% 90% 90% 90% 91% 90% 91% 92% 92% 100
0.3 92% 90% 90% 89% 90% 92% 92% 90% 92% 100
0.1 90% 90% 90% 91% 91% 91% 90% 91% 91% 200
0.2 93% 92% 91% 91% 92% 92% 91% 91% 92% 200
0.3 92% 90% 90% 91% 92% 92% 91% 92% 91% 200
0.1 92% 90% 90% 91% 91% 90% 91% 91% 91% 300
0.2 92% 91% 90% 92% 92% 92% 91% 92% 90% 300
0.3 92% 91% 89% 91% 92% 90% 92% 91% 91% 300

Pm ↑ 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9 ← Pc
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3.5. Results of Optimized Fuzzy System

In this section, results of optimized fuzzy systems, including the diagram of convergence of GA
and optimized parameters regarding MFs, are presented. Figure 3 depicts the cost value of the best
population with the minimum cost at 300 iterations over Area 1 and Area 3. Figure 3 shows that
300 iterations are appropriate for converging GA in this research. Moreover, in order to illustrate
the importance of GA in selecting parameters of the fuzzy system, changes of MFs of input “2” and
input “3” in an experiment are presented in Figure 4. Based on Figure 4, it is easily observed that vast
variations must be applied on MF parameters to achieve optimized results. Therefore, it seems that
selecting these parameters by an expert is not an easy task.

(a)

(b)

Figure 3. The diagram of convergence of GA over (a) Area 1, (b) Area 3.

(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. The presentation of preliminary MFs and optimized MFs in an experiment for input 2 and
input 3: (a) preliminary MFs for input 2, (b) optimized MFs for input 2, (c) preliminary MFs for input 3,
(d) optimized MFs for input 3.

3.6. Accuracy Assessment by Confusion Matrix

According to Section 3.5, to produce a confusion matrix, it is necessary to specify the number of
classes and their definitions. In this study, we consider two damage classes including “damaged” and
“undamaged” regarding each building. The “damaged” class includes very heavy damage (D4) and
destruction (D5) whose definitions of D4 and D5 were presented in European Macroseismic Scale 1998
(EMS 98) [54]. To the best of our knowledge, substantial to heavy damage class (D3) which is related
to cracks on the buildings facades would not be detected by our optical data used [54]. Therefore,
“undamaged” class includes negligible to slight damage (D1) and D3. The confusion matrix of training,
test and check samples as well as some statistical descriptors such as user and producer accuracies are
presented to Table 9. Moreover, the range of overall accuracy of the generated damage maps with 90%
confidence level is presented in Table 10.

3.7. Damage Map Resulting

In this subsection, final building damage maps regarding Area 1, Area 2, and Area 3 extracted from
the proposed method are presented. Figure 5 shows the building damage maps of the mentioned areas.

Table 9. Confusion matrix of training, check, and test samples over Area 1, Area 2, and Area 3.

Area 1 Area 2 Area 3
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Test samples
undamaged 153 40 79 79 444 195 77 69 20 9 87 69

damaged 40 96 70 70 129 215 52 63 3 122 93 98

Check samples
undamaged 51 11 72 82 97 45 76 68 10 7 71 59

damaged 20 42 79 68 31 51 53 62 4 97 93 96

Training samples
undamaged 142 34 76 81 310 126 77 71 21 4 84 84

damaged 45 79 70 60 92 172 58 65 4 167 98 98

405



Remote Sens. 2017, 9, 349

Table 10. Overall accuracy of the proposed method obtained on Area 1, Area 2, and Area 3.

Area 1 (with 90%
Confidence Level)

Area 2 (with 90%
Confidence Level)

Area 3 (with 90%
Confidence Level)

Overall accuracy (%) 76.88 ± 1.22 65.43 ± 0.29 90.96 ± 0.15

(a) 

(b) 

(c) 

Undamaged 
incorrectly classified 

as the Undamaged class 
Damaged 

incorrectly classified  
as the Damaged class 

Figure 5. Building damage maps resulting from the proposed method on (a) Area 1, (b) Area 2,
(c) Area 3.
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4. Discussion

In this section, a comprehensive discussion about the obtained results is presented. Moreover,
sources of error of the proposed method are specified. Furthermore, the accuracy and precision of
Fuzzy-GA are compared with advanced machine learning techniques.

Based on the convergence diagram of GA presented to Figure 3, it is concluded that GA has been
fully converged. Figure 3 shows that the selected parameters regarding GA were appropriate for
providing a robust fuzzy system. Moreover, based on Figure 3, Fuzzy-GA succeeded in decreasing
the cost value of training and check samples over the selected areas. It should be considered that
the reduction of cost value directly improves the accuracy of the final results. These results show
that the change of parameters of MFs in a fuzzy system is very important in obtaining an accurate
result. Furthermore, based on Figure 4, in order to obtain more accurate results, vast variations should
be performed on parameters of MFs (i.e., mean (mi) and variance (σi) of Gaussian MF). Owing to
employing an optimization algorithm (i.e., GA) in our study, the selection of the optimized parameters
was carried out in a semi-automated way. However, it seems that adjusting these parameters in a
manual way is not an easy task.

In this part, conclusions obtained from the sensitivity analysis stage are presented. Based on
sensitivity analysis results (i.e., Tables 6–8), it was found that the selected parameters are appropriate
for extracting an accurate damage map. Moreover, based on the outcomes, the accuracy of the final
damage maps varies over a specific range. For example, overall accuracies of 90%, 91%, and 92% were
achieved a lot over Area 3. In fact, in this study, it seems that the optimum answer is defined for a
limited continuous range of variables. For this reason, increasing or decreasing the parameters of GA
in the defined ranges does not follow a predictable procedure. Hence, based on these results, it appears
that step-by-step sensitivity analysis methods presented to [2,13] are not proper for performing the
sensitivity analysis in optimization-based decision making systems.

Based on the description presented in the previous paragraph on the range of optimum answers,
it is better to present the overall accuracy of the obtained damaged maps in a (a± b)% form. In this
form, a is the most probable overall accuracy and [a− b, a + b] is the most probable range of overall
accuracy. Based on Table 10, overall accuracies obtained on Area 1, Area 2, and Area 3 were equal to
76.88± 1.22%, 65.43± 0.29% and 90.96± 0.15%, respectively. Based on these results, the study area and
its characteristics completely affect the accuracy of the damage detection method. For example, Area 2
is a complex urban region. In this area, different types of buildings, including buildings connected
with trees, buildings with small area, and gabled roof buildings, are observed. It should be considered
that a complex area could spread many uncertainties and errors over the final damage maps (we will
present the source of errors in the following). For this reason, the overall accuracy of the proposed
system over Area 2 was lower than the other areas. In general, based on our visual observations from
high-spatial resolution satellite images, Area 1 and Area 2 are more complex than Area 3. For this
reason, the accuracy of our proposed system over Area 3 was higher than Area 1 and Area 2.

There have been many damage detection methods implemented in the Haiti and
Bam areas [4,13,55,56]. However, it is a difficult issue to present a fair and comprehensive judgment
between the existing methods over study areas and our proposed method, because based on our
experimental results, study area and its characteristics affect the accuracy of damage detection methods.
Results achieved on Area 1, Area 2, and Area 3 completely confirm our claim. In this part, we compare
our achieved results with the outcomes of [13], because Area 3 of our study is similar to the selected
area of the mentioned paper. Janalipour and Mohammadzadeh (2016) employed a Nuero-fuzzy
decision making system in order to create a relation between geometrical features obtained from
post-event satellite image and the damage extent of buildings [13]. They reported an overall accuracy
of 76% for detecting damaged buildings. While, in our study, the use of Fuzzy-GA and Haralick
textural features resulted in an overall accuracy of 90.96 ± 0.15%. Therefore, as a result, Fuzzy-GA
and Haralick textural features outperformed Nuero-fuzzy and the geometrical features in detecting
damaged buildings.
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In this part, outcomes of Fuzzy-GA decision making system are compared with four advanced
machine learning techniques, including bagging, boosting, random forests (RF) [57] and support vector
machine (SVM), from viewpoints of accuracy and precision. It should be considered that results of the
mentioned techniques and our decision making system were achieved with similar textural features.
Hence, we can compare them with respect to each other. Based on [58], precision measures the degree
of consistency among overall accuracies obtained in the selected areas (Tables 6–8) and accuracy
shows the degree of closeness of measurements to true value. Based on the presented definitions
and the form of presentation of overall accuracy (i.e., (a± b)%), a and b can be used respectively
as an accuracy measure and a precision creation. Based on Table 11, from the perspective of the
accuracy, the Fuzzy-GA decision making system was more successful than bagging, boosting, and RF
and SVM machine learning techniques. For example, over Area 3, overall accuracies of Fuzzy-GA,
bagging, boosting, RF and SVM were respectively equal to 90.96%, 89.05%, 87.47%, 88.03% and 89.03%.
To compare results of machine learning techniques with our proposed system from the viewpoint
of precision, it should be considered that b is a function of precision. A machine learning technique
with the lowest b is more precise than other ones. Because values of b for our proposed system are
lower than the corresponding values for the advanced machine learning techniques, it appears that
Fuzzy-GA decision making system is more precise than bagging, boosting, RF and SVM machine
learning techniques.

Table 11. Overall accuracies of Fuzzy-GA, bagging, boosting, RF, and SVM machine learning techniques
obtained on Area 1, Area 2, and Area 3.

Area 1 (%) Area 2 (%) Area 3 (%)

Fuzzy-GA 76.88 ± 1.22 65.43 ± 0.29 90.96 ± 0.15
Bagging 74.5 ± 2.0 56.03 ± 1.2 89.05 ± 0.6
Boosting 71.33 ± 2.2 62.79 ± 2.9 87.47 ± 1.0

RF 73.07 ± 1.4 55.92 ± 1.4 88.03 ± 0.5
SVM with a radial basis function (RBF) kernel 72.53 ± 1.6 60.52 ± 1.2 89.03 ± 0.6

As mentioned, an urban area with a complex structure could spread many uncertainties and
errors on outcomes. In this part, reasons of some misclassifications that occurred in the study areas
are discussed. Table 12 depicts post-event optical image, variance feature, and damage map of nine
miss-classified buildings. Building No. 1 is connected to a tall building. According to Table 12,
parts from building No. 1 were covered with the shadow of the tall building. This is sufficient for
texture extraction methods to produce high texture values in the roof of building No. 1. For this reason,
this building was incorrectly classified as damaged class. The root of error of building No. 2 is similar
to building No. 1 but with the difference that the overlapped shadow with this building resulted from a
tall tree. This type error was frequently observed over Area 2 which is a complex urban area. Moreover,
based on the Haiti building damage atlas, building No. 3 was classified as undamaged class by experts.
While our visual interpretation showed that this is a damaged building. Hence, the proposed method
correctly performed its task. Building No. 4 is an inclined damaged one. Based on the definition
of inclined buildings [59] and Table 12, textural features are unable to detect these damage types.
Therefore, the class of this building was incorrectly assigned as unchanged category. The use of LiDAR
data may be an appropriate solution for detecting inclined damaged buildings.
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Table 12. The presentation of pre-event image, variance feature, and damage map of nine
mis-classified buildings.

No. Post-Event Image Variance Feature Damage Map

1

  

2

   

3

  

4

   

5

   

6

   

7

   

8

   

9
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The high spectral variation of pixels of undamaged building roofs over satellite optical images is
a critical issue for texture-based damage detection methods, because the behavior of texture features of
these buildings is similar to damaged ones. This issue was the main reason for classifying building
No. 5 as a damaged one. Building No. 6 is a gabled roof one, in which parts of the roof of this building
were destroyed. The texture extraction method correctly identified the damaged parts. However,
it seems that the Fuzzy-GA decision making system was the main reason for classifying this building
as undamaged category incorrectly. The class of building No. 7 is undamaged. The spectral variation
of pixels of building No. 7 is very high. For this reason, our proposed system classified building
No. 7 as damaged category. Based on our interpretation, the texture extraction method and Fuzzy-GA
decision making system are two sources of error for the misclassification of building No. 8. Finally,
the damage extent of building No. 9 is totally pancaked. The proposed system was unsuitable in
the detection of the damage class of this building, because the variation of the digital numbers of the
building roof was not high enough for assigning it to the damaged class. The use of a normalized
digital surface model may be an appropriate way for identifying totally pancaked damaged buildings.

5. Conclusions

In this study, a semi-automated Mamdani based fuzzy decision making system was developed
in order to identify damaged buildings using their textural features. For improving the automation
level of the Mamdani fuzzy system, a genetic algorithm was used to find its optimized parameters
concerning membership functions. The proposed system was tested over two areas of the 2010 Haiti
earthquake and one area of the 2003 Bam earthquake. Based on the concept of our proposed system,
its automation level is higher than other existing decision making systems [19,27,28]. Moreover,
based on the statistical descriptors and results of bagging, boosting, RF, and SVM machine learning
techniques, it seems that Fuzzy-GA decision making system is more accurate and precise than
the mentioned techniques for building damage detection. Furthermore, based on outcomes of the
sensitivity analysis stage, it seems that results of our proposed system are robust enough for building
damage detection. Based on the results of the sensitivity analysis stage, the overall accuracy of
76.88 ± 1.22%, 65.43 ± 0.29% and 90.96 ± 0.15% was obtained on Area 1 (the Haiti earthquake), Area 2
(the Haiti earthquake), and Area 3 (the Bam earthquake), respectively. According to these results,
the study area and its characteristics directly affect the accuracy achieved from the proposed method.

Based on the presented discussions, there are some major error sources: (1) high spectral variation
of digital numbers over the roofs of undamaged buildings, (2) the shadow of tall buildings and trees
connected with undamaged buildings, (3) inability of optical data in detecting inclined and pancaked
damaged buildings.

As a future work, based on limitations of this study, it will be necessary to propose a damage
detection method for integrating optical and LiDAR data. Moreover, due to the importance of
the automation level of the damage detection method, it is important to present an automatic and
accurate fuzzy decision making system in these future works. As another future work, the robustness
of the Fuzzy-GA decision making system can be assessed over SAR data for detecting damaged
areas. Moreover, the Fuzzy-GA decision making system can be adapted for applications that use
hyperspectral bands. Because we are dealing with a high dimensional feature space, it is very important
to select the appropriate bands using efficient feature selection methods such as [60,61]. Finally,
owing to our proposed method which depends on a pre-event updated map, proposing an efficient
building extraction method such as [62,63] for obtaining building footprints from pre-event optical
images is very important to consider as a research study.
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The following abbreviations are used in this manuscript:

LiDAR Light Detection and Ranging
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OA Overall Accuracy
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GA Genetic Algorithm
Fuzzy-GA Fuzzy Genetic Algorithm
RS Remote Sensing
SVM Support Vector Machine
RF Rnadom Forests
OCSVM One-Class Support Vector Machine
MF Membership Function
MFIS Mamdani Fuzzy Inference System
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