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Preface to ”Learning to Understand Remote Sensing

Images”

Accurate and efficient understanding of remote sensing data is an increasingly important

issue which can make significant contributions to global environmental analysis and economic

development. In this book, we introduce the challenges and advanced techniques in the field of

remote sensing image understanding. This area has attracted a lot of research interest, and significant

progress has been made during the past years, particularly in the optical, hyperspectral, and

microwave remote sensing communities.

Our topic mainly focuses on learning to understand remote sensing images. We discuss some

critical problems in major practical applications including image classification, object detection,

image segmentation, image correction, hyperspectral unmixing, change detection, etc. We report the

state-of-the-art of machine learning techniques and statistical computing methods to analyze remote

sensing data, such as deep learning, graphical models, sparse coding, and kernel machines.

Throughout this book, it is assumed that the readers have a basic background in machine

learning and remote sensing. We believe the reported advanced techniques can provide considerable

value for researchers in teaching and scientific research.

This book is published with the tireless efforts of countless contributors. We thank each author

for sharing their research findings with us. We thank the editors and the publishers for their time and

support. We hope that through our efforts, more people can contribute to the development of remote

sensing.

Qi Wang

Special Issue Editor
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Abstract: Object segmentation of remotely-sensed aerial (or very-high resolution, VHS) images
and satellite (or high-resolution, HR) images, has been applied to many application domains,
especially in road extraction in which the segmented objects are served as a mandatory layer
in geospatial databases. Several attempts at applying the deep convolutional neural network
(DCNN) to extract roads from remote sensing images have been made; however, the accuracy
is still limited. In this paper, we present an enhanced DCNN framework specifically tailored for road
extraction of remote sensing images by applying landscape metrics (LMs) and conditional random
fields (CRFs). To improve the DCNN, a modern activation function called the exponential linear
unit (ELU), is employed in our network, resulting in a higher number of, and yet more accurate,
extracted roads. To further reduce falsely classified road objects, a solution based on an adoption
of LMs is proposed. Finally, to sharpen the extracted roads, a CRF method is added to our
framework. The experiments were conducted on Massachusetts road aerial imagery as well
as the Thailand Earth Observation System (THEOS) satellite imagery data sets. The results showed
that our proposed framework outperformed Segnet, a state-of-the-art object segmentation technique,
on any kinds of remote sensing imagery, in most of the cases in terms of precision, recall, and F1.

Keywords: deep convolutional neural networks; road segmentation; conditional random fields;
satellite images; aerial images; THEOS

1. Introduction

Extraction of terrestrial objects such as buildings and roads, from remotely-sensed images has
been employed in many applications in various areas, e.g., urban planning, map updates, route
optimization, and navigation. For road extraction, most primary research is based on unsupervised
learning, such as graph cut and global optimization techniques [1]. These unsupervised methods,
however; have one common limitation, color-sensitivity, since they rely on only the color features.

Remote Sens. 2017, 9, 680; doi:10.3390/rs9070680 www.mdpi.com/journal/remotesensing1
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That is, the segmentation algorithms will not perform well if the road colors presented in the suburban
remotely-sensed images contain more than one color (e.g., yellowish brown roads in the countryside
regions and cement-grayed roads in the suburban regions). This, in fact, has become a motivation of
this work, that is, to overcome the color sensitivity issues.

Deep learning, a large convolutional neural network with performance that can be scaled
depending on the size of training data and model complexity as well as processing power, has shown
significant improvements in object segmentation from images as seen in many recent works [2–13].
Unlike unsupervised learning, more than one feature—other than color—can be extracted: line, shape,
and texture, among others. The traditional deep learning methods such as the deep convolutional
neural network (DCNN) [3,14], deep deconvolutional neural network (DeCNN) [5], recurrent neural
network, namely reSeg [15], and fully convolutional networks [4]; however all suffer from accuracy
performance issues.

A deep convolutional encoder-decoder (DCED) architecture, one of the most efficient newly
developed neural networks, has been proposed for object segmentation. The DCED network is
designed to be a core segmentation engine for pixel-wise semantic segmentation, and has shown good
performance in the experiments tested using PASCAL VOC 2012 data—a well-known benchmark data
set for image segmentation research [6,8,16]. In this architecture, the rectified linear unit (ReLU) is
employed as an activation function.

In the road extraction task, there are many issues that can cause limited detection performance.
First, based on [6,8], although the most recent DCED approach for object segmentation (or SegNet)
showed promising detection performance on overall classes, the result for road objects is still limited
as it fails to detect many road objects. This could be caused by the rectified linear unit (ReLU) which
is sensitive to the gradient vanishing problem. Second, even when we apply Gaussian smoothing at
the last step to connect detected roads together, this still yields excessive detected road objects (false
road objects).

In this paper, we present an improved deep convolutional encoder-decoder network (DCED)
for segmenting road objects from aerial and satellite images. Several aspects of the proposed method
are enhanced, including incorporation of exponential linear units (ELUs), as opposed to ReLUs that
typically outperform ELU in most object classification cases; adoption of landscape metrics (LMs) to
further improve the overall quality of results by removing falsely detected road objects; and lastly,
combination with the traditional fully-connected conditional random field (CRF) algorithms used in
semantic segmentation problems. Although the ELU-SegNet-LM network may suffer a performance
issue due to the loss of spatial accuracy, it can be alleviated by the conditional random fields algorithm,
which takes into account the low-level information captured by the local interactions of pixels and
edges [17–19]. The experiments were conducted using well-known aerial imagery, a Massachusetts
roads data set (Mass. Roads), which is publicly available, and satellite imagery (from the Thailand
Earth Observation System (THEOS) satellite) which is provided by GISTDA. The results showed
that our method outperforms all of the baselines including SegNet in terms of precision, recall, and
F1 scores. The paper is organized as follows. Related work is discussed in Section 2. Section 3
describes our proposed methodology. Experimental data sets and evaluations are described in Section
4. Experimental results and discussions are presented in Section 5. Finally, we conclude our work
and discuss future work in Section 6.

2. Related Work

Deep learning is one of the fast-growing fields in machine learning which has been successfully
applied to remotely-sensed data analysis, notably land cover mapping on urban areas [20]. It has
increasingly become a promising tool for accelerating image recognition process with high accuracy
results [4], [6], [21]; new architectures are proposed constantly on a weekly basis. This related work
is divided into three subsections: we first discuss deep learning concepts for semantic segmentation,
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followed by a set of road object segmentation techniques using deep learning, and finally activation
functions and post processing technique of deep learning are discussed.

Note that this paper only focuses on approaches built around deep learning techniques. Therefore,
prior attempts at semantic segmentation [22,23] are not included and compared here since they are not
based on a deep learning approach.

2.1. Deep Learning for Semantic Segmentation

Semantic segmentation algorithms are often formulated to solve structured pixel-wise labeling
problems based on the deep convolutional neural network (DCNN), and are state-of-the-art
supervised learning algorithms for modeling and extracting latent feature hierarchies. Noh et
al. [5] proposed a novel semantic segmentation technique utilizing a deconvolutional neural
network (DeCNN) and the top layer from DCNN adopted from VGG16 [24]. The DeCNN structure
is composed of upsampling layers and deconvolution layers, describing pixel-wise class labels
and predicting segmentation masks, respectively. Their proposed deep learning methods yield high
performance in the PASCAL VOC 2012 data set [16], with a 72.5% accuracy in the best case scenario
(this was the highest accuracy—at the time of writing this paper—compared to other methods that
were trained without requiring additional or external data). Long et al. [4] proposed an adapted
contemporary classification network incorporating Alex, VGG and Google networks into a full
DCNN. In this method, some of the pooling layers were skipped: layer 3 (FCN-8s), layer 4 (FCN-16s),
and layer 5 (FCN-32s). The skip architecture reduces the potential over-fitting problem and has shown
improvements in performance ranging from 20 to 62.2% in the experiments tested using PASCAL VOC
2012 data. Ronneberger et al. [12] proposed U-Net, a DCNN for biomedical image segmentation. The
architecture consists of a contracting path and a symmetric expanding path that capture context and
consequently, enable precise localization. The proposed network claimed to be capable of learning
despite the limited number of training images, and performed better than the prior best method
(a sliding-window DCNN) on the ISBI challenge for segmentation of neuronal structures in electron
microscopic stacks. In this work, VGG16 is selected as our baseline architecture since it is the most
popular architecture used in various networks for object recognition. Furthermore, we will investigate
the effect of the skipped layer technique, especially FCN-8s, since it is the top-ranking architecture
as shown in Long et al. [4].

There is a new research area called "instance-aware semantic segmentation" which is slightly
different from "semantic segmentation." Instead of labeling all pixels, it focuses on the target objects
and labels only pixels of those objects. FCIS [25] is a technique developed based on fully convolutional
networks (FCN). Mask R-CNN [26] is also created on top of FCN but incorporates with a proposed
joint formulation. Even though their results are promising, they are not directly related to our scope on
"semantic segmentation." In the future, we can extend these works and compare them to our proposed
technique.

2.2. Deep Learning for Road Segmentation

There are many approaches to road network extraction in very-high-resolution (VHR) aerial and
satellite imagery literature. Wand et al. [14] proposed a DCNN and finite state machine (FSM)-based
framework to extract road networks from aerial and satellite images. DCNN recognizes patterns
from a sophisticated and arbitrary environment while FSM translates the recognized patterns to
states such that their tracking behaviors can be captured. The results showed that their approach
is more accurate compared to the traditional methods. The extension of the method for automatic
road point initialization was left for future work. DCNN for multiple object extraction from aerial
imagery was proposed in [3] by Saito et al. Both features (extractors and classifiers) of DCNN
were automated in that a new technique to train a single DCNN for extracting multiple kinds of
objects simultaneously was developed. Two objects were extracted: buildings and roads, thus a
label image consists of three channels: buildings, roads, and background. Finally, the results showed
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that the proposed technique not only improved the prediction performance but also outperformed
the cutting-edge method tested on a publicly available aerial imagery data set. Muruganandham
et al. [2] designed an automated framework to extract semantic maps of roads and highways, so
the urban growth of cities from remote sensing images could be tracked. They used the VGG16
model—a simplistic architecture with homogeneous 3 × 3 convolution kernels and 2 × 2 max pooling
throughout the pipeline—as a baseline for a fixed feature extractor. The experimental results showed
that their proposed technique for the prediction performance was improved with F1 scores of 0.76 on
the Mass. Roads data set.

2.3. Recent Techniques in Deep Learning

Activation function is an important factor for the accuracy of DCNN. While the most popular
activation function for neural networks is the rectified linear unit (ReLU), Clevert et al. [21] have
just proposed the exponential linear unit (ELU), which can speed up the learning process in DCNN
and therefore lead to higher classification accuracies as well as overcoming the previously unsolvable
problem, i.e., the vanishing gradient problem. Compared to other methods with different activation
functions, ELU has greatly improved many of the learning characteristics. In the experiments, ELUs
enable fast learning as well as more effective generalization performance than the ReLUs and the leaky
rectified linear units (LReLUs) in networks with five layers or more. In ImageNet, ELU networks
substantially increased the learning time compared to ReLU networks with the identical architecture;
less than 10% classification error was presented for a single crop, model network.

Recently, there have been some efforts to enhance the performance of DCNN by combining
it with other classifier as a post-processing step. Conditional random fields (CRFs) has been reported
successful in increasing the accuracy of DCNN, especially in the image segmentation domain.
CRFs have been employed to smooth maps [7,17–19]. Typically these models contain energy
terms that couple neighboring nodes, favoring same-label assignments to spatially proximal pixels.
Qualitatively, the primary function of these short-range CRFs has been used to clean up the spurious
predictions of weak classifiers built on top of local hand-engineered features.

3. Proposed Methodology

In this section, we propose an enhanced, improved DCED network (or SegNet) to efficiently
segment road objects from aerial and satellite images. Three aspects of the proposed method are
enhanced: (1) modification of DCED architecture; (2) incorporation of landscape metrics (LMs); and (3)
adoption of conditional random fields (CRFs). An overview of our proposed method is shown
in Figure 1.

Figure 1. A process in our proposed framework.

3.1. Data Preprocessing

Data preparation is required when working with neural network and deep learning models.
In addition, data augmentation is often required in more complex object recognition tasks. Thus, we
increased the size of our data sets to improve the method efficiency by rotating them incrementally
with eight different angles. All images on Massachusetts road data sets are standardized and cropped
into 1500 × 1500 pixels with a resolution of 1 m2/pixel. The data sets consist of 1108 training images,
49 test images, and 14 validation images. The original training images were further extended to 8864
training images.
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On the THEOS data sets, we also increased the size of data sets in a similar fashion. Each image
has 1500 × 1500 pixels with a resolution of 2 m2/pixel.

3.2. Object Segmentation (ELU-SegNet)

SegNet, one of the deep convolutional encoder-decoder architectures, consists of two main
networks encoder and decoder, and some outer layers. The two outer layers of the decoder
network are responsible for feature extraction task, the results of which are transmitted to the next
layer adjacent to the last layer of the decoder network. This layer is responsible for pixel-wise
classification (determining which pixel belongs to which class). There is no fully connected layer
in between feature extraction layers. In the upsampling layer of decoder, pool indices from encoder
are distributed to the decoder where the kernel will be trained in each epoch (training round) at
the convolution layer. In the last layer (classification), softmax is used as a classifier for pixel-wise
classification. The encoder network consists of convolution layer and pooling layer. A technique, called
batch normalization (proposed by Ioffe and Szegedy [27]), is used to speed up the learning process
of the DCNN by reducing internal covariate shift. In the encoder network, the number of layers
is reduced to 13 (VGG16) by removing the last three layers (fully connected layers) [6,8,28,29] for
the following two reasons: to maintain the high-resolution feature maps in the encoder network,
and to minimize the countless number of parameters from 134 million features to 14.7 million
features compared to the traditional deep learning networks such as DCNN [4] and DeCNN [5],
where the fully connected layer remains intact. In the activation function of feature extraction, ReLU,
max-pooling, and 7 × 7 kernels are used in both encoder and decoder networks. For training images,
three-channel images (RGB) are used. The exponential linear unit (ELU) was introduced in [21],
which can speed up learning in deep neural networks, offer higher classification accuracies, and give
better generalization performance than ReLUs and LReLUs on networks. In SegNet architecture, to
perform optimization for training networks,the stochastic gradient descent (SGD) [30] with a fixed
learning rate of 0.1 and momentum of 0.9 is used. In each training round (epoch), a mini-batch (a set
of 12 images) is chosen such that each image is used once. The model with the best performance
on the validation data set in each epoch will be selected. Our architecture (see Figure 2) is enhanced
from SegNet, consisting of two main networks responsible for feature extraction. In each network,
there are 13 layers, with the last layer being the classification based on softmax supporting pixel-wise
classification.

In our work, an activation function called ELU is used as opposed to ReLU based
on its performances. For the network training optimization, stochastic gradient descent (SGD) is
used and configured with a fixed learning rate of 0.001 and momentum of 0.9 to delay the convergence
time and so, can avoid local optimization trap.

Figure 2. A proposed network architecture for object segmentation (exponential linear unit
(ELU)-SegNet).
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3.3. Gaussian Smoothing

Gaussian smoothing [31] is a 2-D convolution operator that is used to ‘blur’ images and remove
unnecessary details and noises by utilizing the Gaussian function. The Gaussian function is used
to determine the transformation needed for each pixel, resulting in a more complete extended road
objects. We applied the Gaussian function first in the post-processing step in order to expand
and prepare objects that are close to each other to be combined into components in the next step
(as we shall see in Section 3.4).

The 1-D and 2-D Gaussian functions are described in Equations (1) and (2), respectively.

G(x) =
1

2πσ2 e−
x2

2σ2 (1)

G(x) =
1

2πσ2 e
−x2−y2

2σ2 (2)

where x represents the distance from the origin in the X-axis, y represents the distance from the origin
in the Y-axis, and σ represent the standard deviation of the Gaussian distribution.

3.4. Connected Component Labeling (CCL)

In connected components labeling (CCL) [31], all pixels are scanned and adjacent pixels
with similar connectivity values are combined. Eight neighbors of each pixel were considered when
analyzing connected components.

The expanded and overlapped objects from the Gaussian smoothing were actually grouped
together in this step. The labeled objects will be further calculated using geometric attributes (e.g., area
and perimeter) based on landscape metrics (LMs) as described in the next section.

3.5. False Road Object Removal (LMs)

After smoothing and labeling the objects, we compute the shape complexity of the objects through
the shape index (as seen in Equation (3)), one of the landscape metrics for measuring arrangement
and composition property of spatial objects. The resulting objects along with their shape scores
are shown in Figure 3. As seen in Figure 3, the geometrical characteristics of roads were captured
and differentiated from other spatial objects in the given image. Other geometry metrics can also be
used such as rectangular degree, aspect ratio, etc. More information on other landscape metrics can be
found in [32,33].

shape index =
e(i)

4x
√

A(i)
(3)

where e(i) and A(i) denote the perimeter and area for object i, respectively.

3.6. Road Object Sharpening (CRFs)

Conditional random fields (CRFs) have traditionally been implemented to sharpen noisy
segmentation maps [18]. These models are generally composed of energy terms comprising nodes
in the neighborhood, causing false assignments of pixels that are in close proximity. To resolve these
spatial limitations of short-range CRFs, the fully connected CRFs are integrated into our system [19].
Equation (4) expresses the energy function of the dense CRFs.

In the last step, we extended the ELU-SegNet-LMs model to ELU-SegNet-LMs-CRFs to enhance
the network performance by adding explicit dependencies among the neural network outputs.
Particularly, we added smoothness terms between neighboring pixels to our model, which can
eliminate the need to learn smoothness from remotely-sensed images. Using the resulting models
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as part of the post-processing significantly increases the overall performance of the network over
unstructured deep neural networks.

E(x) = ∑
i

θi(xi) + ∑
ij

θij(xi, xj) (4)

where x denotes the label assignment for pixels. A unary potential used is θi(xi)) = −logP(xi), while
P(xi) denotes the label assignment probability at pixel i as computed by a DCNN.

Figure 3. Illustration of shape index scores on each extracted road object. Any objects with shape index
score lower than 1.25 are considered as noises and subsequently removed.

The inference can be efficiently established in the pair-wise potentials when using
the fully connected graph. We treated the unary potential as local classifiers which are defined
by the output of the ELU-SegNet-LMs model, which is a probability map for each class in each of the
pixels. The pairwise potentials depict the interaction of pixels in the neighborhood and are influenced
by the color similarity. In the DeepLab CRF model [19], the dense CRFs (instead of neighboring
information) are used as a means to identify relationships between pixels. Furthermore, they define
the following pairwise potentials as shown in Equation (5).

θij(xi, xj) = μ(xi, xj)[w1 exp(−‖ pi − pj ‖
2σ2

α

2

− ‖ Ii − Ij ‖
2σ2

β

2

) + w2 exp(−‖ pi − pj ‖2

2σ2
γ

)] (5)

where μ(xi, xj) = 1 i f xi �= xj and zero otherwise, which, as in the Potts model, means that only
nodes with distinct labels are penalized. The remaining expression uses two Gaussian kernels
in different feature spaces; the first, ’bilateral’ kernel depends on both pixel positions (denoted as p)
and red-green-blue (RGB) color (denoted as I), and the second kernel only depends on pixel positions.
The hyperparameters σα, σβ and σγ control the scale of Gaussian kernels. The first kernel forces pixels
to similar color and position to have similar labels, while the second kernel only considers spatial
proximity when enforcing smoothness.

In summary, the first term of pairwise potentials depends on both pixel positions and color
intensities whereas the second term depends solely on the pixel positions [18,19]. Although the dense
CRFs can have billions of edges (which is technically infeasible to solve), it was recently found that the
inference/maximum posterior can be approximated by the mean-field algorithm.

4. Experimental Data Sets and Evaluation

In our experiments, two types of data sets are used: aerial images and satellite images.
Table 1 shows one aerial data set (Massachusetts) and five satellite data sets (Nakhonpathom,
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Chonburi, Songkhla, Surin, and Ubonratchathani). All experiments are evaluated based on precision,
recall, and F1.

Table 1. Numbers of training, validation, and testing sets.

Training Set Validation Set Testing Set

Massachusetts 1108 14 49
Nakhonpathom 200 14 49

Chonburi 100 14 49
Songkhla 100 14 49

Surin 70 14 49
Ubonratchathani 70 14 49

4.1. Massachusetts Road Data Set (Aerial Imagery)

This data set (made publicly available by [7]) consists of 1171 aerial images of the state
of Massachusetts. Each image is 1500 × 1500 pixels in size, covering an area of 2.25 square kilometers.
We randomly split the data into a training set of 1108 images, a validation set of 14 images and a testing
set of 49 images. The samples of this data set are shown in Figure 4. The data set covers a wide variety
of urban, suburban, and rural regions with a total area of over 2600 square kilometers. With our test
set alone, it covers more than 110 square kilometers which is by far the largest and most challenging
aerial image labeling data set.

(a) (b)

Figure 4. Two sample aerial images from the Massachusetts road corpus, where a row refers to each
image (a) Aerial image and (b) Binary map, which is a ground truth image denoting the location of
roads.
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4.2. THEOS Data Sets (Satellite Imagery)

In this type of data, the satellite images were separated into five data sets—one for
each province. The datasets were obtained from the Thailand Earth Observation System
(THEOS), also known as Thaichote, an Earth observation satellite of Thailand developed by EADS
Astrium SAS, France. This data set consists of 855 satellite images covering five provinces:
263 images of Nakhonpathom, 163 images of Chonburi, 163 images of Songkhla, 133 images of Surin,
and 133 images of Ubonratchathani. Some samples of these images are shown in Figure 5.
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Figure 5. Sample satellite images from five provinces of our data sets; each row refers to a single
sample image from one province (Nakhonpathom, Chonburi, Songkhla, Surin, and Ubonratchathani)
in a satellite image format (a) and in a binary map (b), which is served as a ground truth image denoting
the location of roads.

4.3. Evaluation

The road extraction task can be considered as binary classification, where road pixels are
positives and the remaining non-road pixels are negatives. Let TP denote the number of true
positives (the number of correctly classified road pixels), TN denote the number of true negatives
(the number of correctly classified non-road pixels), FP denote the number of false positives
(the number of mistakenly classified road pixels), and FN denote the number of false negatives
(the number of mistakenly classified non-road pixels).

The performance measures used are precision, recall, and F1 as shown in Equations (6)–(8).
Precision is the percentage of correctly classified road pixels among all predicted pixels by the classifier.
Recall is the percentage of correctly classified road pixels among all actual road pixels. F1 is
a combination of precision and recall.

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 =
2×Precision×Recall

Precison + Recall
(8)

5. Experimental Results and Discussions

This section illustrates details of our experiments. The proposed deep learning network is based
on SegNet with three improvements: (1) it employs the ELU activation function; (2) it uses LMs to
filter incorrect detected roads; and (3) it applies CRFs to sharpen broad roads. Thus, there are three
variations of the proposed methods as shown in Table 2.

Table 2. Variations of our proposed deep learning methods. LM: landscape metric; CRF: conditional
random field.

Abbreviation Description

ELU-SegNet SegNet + ELU activation
ELU-SegNet-LMs SegNet + ELU activation + Landscape Metrics

ELU-SegNet-LMs-CRFs SegNet + ELU activation + Landscape Metrics + CRFs

For the experimental setup, there are three experiments on two remotely-sensed data sets: the
Massachusetts road data set and THEOS data sets (details in Section 4). The experiments aim to
illustrate that each proposed strategy can really improve the performance. First, ELU-SegNet is
compared to SegNet for the ELU strategy. Second, ELU-Segnet-LMs is compared to ELU-SegNet
for the LM strategy. Third, the full proposed technique (ELU-Segnet-LMs-CRFs) is compared
to existing methods for the CRF technique.

The implementation is based on a deep learning framework, called “Lasagne”, which is extended
from Theano. All experiments were conducted on a server with Intel Core i5-4590S Processor (6M
Cache, up to 3.70 GHz), 32 GB of memory, Nvidia GeForce GTX 960 (4 GB), and Nvidia GeForce GTX
1080 (8 GB). Instead of using the whole image (1500 × 1500 pixels) to train the network, we randomly
cropped all images to be 224 × 224 as inputs of each epoch.
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5.1. Results on Aerial Imagery (Massachusetts Data Set)

In this sub-section, the experiment was conducted on the Massachusetts aerial corpus. To achieve
the highest accuracy, the network must be configured and trained many epochs until all parameters
in the network are converged. Figure 6a illustrates that the proposed network has been properly
set and trained until it really is converged. Furthermore, Figure 6b shows that the higher number
of epochs tends to show a better F1-score. Thus, the number of chosen epochs based on the validation
data is 29 (the best model for this data set).

(a) (b)

Figure 6. Iteration plot on Massachusetts aerial corpus of the proposed technique,
ELU-SegNet-LMs-CRFs; x refers to epochs and y refers to different measures. (a) Plot of model
loss (cross entropy) on training and validation data sets, and (b) Performance plot on the validation
data set.

The result is shown in Table 3 by comparing between baselines and variations of the proposed
techniques. It shows that our network with all strategies (ELU-SegNet-LMs-CRFs) outperforms
other methods. More details will be discussed to show that each of the proposed techniques
can really improve an accuracy. Only in this experiment, there are four baselines, including
Basic-model, FCN-no-skip, FCN-8s, and SegNet. Note that SegNet has been implemented and tested
on the experimental data set, while the results of other three baselines are carried from the original
paper [2].

Table 3. Results on the testing data of Massachusetts aerial corpus between four baselines and three
variations of our proposed techniques in terms of precision, recall, and F1. FCN: fully convolutional
network.

Model Precsion Recall F1

Baselines

Basic-model [2] 0.657 0.657 0.657
FCN-no-skip [2] 0.742 0.742 0.742

FCN-8s [2] 0.762 0.762 0.762
SegNet 0.773 0.765 0.768

Proposed Method
ELU-SegNet 0.852 0.733 0.788

ELU-SegNet-LMs 0.854 0.861 0.857
ELU-SegNet-LMs-CRFs 0.858 0.894 0.876

5.1.1. Results of Enhanced SegNet (ELU-SegNet)

Our first strategy aims to increase an accuracy of the network by using ELU as an activation
function (ELU-SegNet) rather than the traditional one, ReLU (SegNet). Details are shown in Section 3.2.
From Table 3, F1 of ELU-SegNet (0.788) outperforms that of SegNet (0.768); this yields higher F1
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at 2.6%. The main reason is due to higher precision, but slightly lower recall. This can imply that ELU
is more robust than ReLU to detect road pixels.

5.1.2. Results of Enhanced SegNet with Landscape Metrics (ELU-SegNet-LMs)

Our second mechanism focuses on applying LMs (details in Section 3.5) on top
of ELU-SegNet to filter false road objects. From Table 3, the F1 of ELU-SegNet-LMs (0.857) is superior
to that of ELU-SegNet (0.788) and SegNet (0.768); this yields higher F1 at 6.9% and 8.9%, consecutively.
Although LM is specifically designed to increase precision, the result shows that it can increase
both precision (0.854) and recall (0.861). It is interesting that recall is also improved since all noises
in the training images have been removed by the LMs filtering technique resulting in a better quality
of the training data set.

5.1.3. Results of All Modules (ELU-SegNet-LMs-CRFs)

Our last strategy aims to sharpen road objects (details in Section 3.6) by integrating CRFs into our
deep learning network. From Table 3, F1 of ELU-SegNet-LMs-CRFs (0.876) is the winner; it clearly
outperforms not only the baselines, but also all previous generations. Its F1 is higher than SegNet
(0.768) at 10.8%. Also, the result illustrates that CRFs can enhance both precision (0.858) and recall
(0.894).

Figure 7 shows two sample results from the proposed method. By applying all strategies,
the images in the last column (Figure 7e) look very close to the ground truths (Figure 7b). Furthermore,
F1-results are improved for each strategy we added to the network as shown in Figure 7c–e.

(a) (b) (c) (d) (e)

Figure 7. Two sample input and output aerial images on Massachusetts corpus, where rows refer
different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

5.2. Results for Satellite Imagery (THEOS Data Sets)

In this sub-section, the experiment was conducted on THEOS satellite images. There are five data
sets referring to different provinces: Nakhonpathom, Chonburin, Songkla, Surin, and Ubonratchathani;
therefore, there are five learning models. Figure 8 shows that each model is properly set up and trained
until it is converged and obtained the best F1. The best epochs (models) for each province are 25, 15,
30, 21, and 20, respectively.

The results are shown in Tables 4–6 for measures in terms of F1, precision, and recall, respectively.
It is interesting that the proposed network with all strategies (ELU-SegNet-LMs-CRFs) is the winner
showing the best performance on any measures and provinces. Also, an improvement in the
satellite images is higher than that in the aerial images. More details on each proposed strategy
will be discussed.

12



Remote Sens. 2017, 9, 680

N
a

k
h

o
n

p
a

th
o

m
C

h
o

n
b

u
ri

S
o

n
g

k
h

la
S

u
ri

n
U

b
o

n
ra

tc
h

a
th

a
n

i

(a) (b)

Figure 8. Iteration plot on THEOS satellite data sets of the proposed technique, ELU-SegNet-LMs-CRFs.
x refers to epochs and y refers to different measures. Each row refers to different data set (province).
(a) Plot of model loss (cross entropy) on training and validation data sets; and (b) Performance plot
on the validation data set.
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Table 4. F1 on the testing data of the Thailand Earth Observation System (THEOS) satellite data sets
between baseline (SegNet) and three variations of our proposed techniques; columns refer to five
different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.422 0.572 0.424 0.501 0.406 0.465

Proposed

Method

ELU-SegNet 0.463 0.690 0.497 0.591 0.534 0.555
ELU-SegNet-LMs 0.488 0.732 0.526 0.625 0.562 0.587

ELU-SegNet-LMs-CRFs 0.550 0.775 0.607 0.707 0.608 0.649

Table 5. precision on the testing data of THEOS satellite data sets between baseline (SegNet) and three
variations of our proposed techniques; columns refer to five different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.435 0.668 0.456 0.598 0.601 0.552

Proposed

Method

ELU-SegNet 0.410 0.702 0.478 0.840 0.852 0.656
ELU-SegNet-LMs 0.494 0.852 0.557 0.770 0.867 0.708

ELU-SegNet-LMs-CRFs 0.535 0.909 0.650 0.786 0.871 0.751

Table 6. recall on the testing data of THEOS satellite data sets between baseline (SegNet) and three
variations of our proposed techniques; columns refer to five different provinces (data sets).

Model Nakhon. Chonburi Songkhla Surin Ubon. Avg.

Baseline SegNet 0.410 0.499 0.395 0.431 0.306 0.408

Proposed

Method

ELU-SegNet 0.532 0.678 0.517 0.456 0.389 0.515
ELU-SegNet-LMs 0.483 0.642 0.498 0.526 0.416 0.513

ELU-SegNet-LMs-CRFs 0.566 0.676 0.570 0.643 0.467 0.584

5.2.1. Results of Enhanced SegNet (ELU-SegNet)

The ELU activation function can increase the performance of the network. In terms of F1, Table 4
shows that ELU-SegNet outperforms the traditional network (SegNet) for all provinces. It performs
better than SegNet by 9.08% on average for all provinces, where Ubonratchathani and Chonburi show
the highest F1-improvement, at over 10%. For precision and recall, Tables 5 and 6 illustrate that almost
all data sets can be improved employing the ELU function with improvements of 10.48% and 10.68%
on average for all provinces, respectively, .

5.2.2. Results of Enhanced SegNet with Landscape Metrics (ELU-SegNet-LMs)

The LMs filtering strategy aims to remove all inaccurately extracted roads (false positives: FP)
resulting in higher precision and F1, but this might imply a slight loss in recall. Comparing to the
previous generation (ELU-SegNet), there are improvements by LMs on average for all provinces of
5.2% and 3.2% in terms of precision (Table 5) and F1 (Table 4), respectively, with a slight loss of −0.22%
in terms of recall (Table 6). Compared to the baseline, LMs outperforms SegNet on all performance
measures.

5.2.3. Results of All Modules (ELU-SegNet-LMs-CRFs)

To further improve the performance, CRFs is integrated into the network from the previous
section. This is considered to use all proposed modules: ELU, LMs, and CRFs. From Tables 4–6,
the results show that ELU-SegNet-LMs-CRFs is the winner compared the previous generations and
baseline (SegNet) on any of the measures (precision, recall, and F1). As of F1 average of all provinces,
it outperforms ELU-SegNet-LMs, ELU-SegNet, and SegNet by 6.28%, 9.44% and 18.44%, respectively.
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Figures 9–13 show sample results from the proposed method on five provinces. The results
of the last column look closest to the ground truth in the second column.

(a) (b) (c) (d) (e)

Figure 9. Two sample input and output THEOS satellite images on the Nakhonpathom data set,
where rows refer different images. (a) Original input image; (b) Target road map (ground truth);
(c) Output of ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 10. Two sample input and output THEOS satellite images on the Chonburi data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 11. Two sample input and output THEOS satellite images on the Songkhla data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.
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(a) (b) (c) (d) (e)

Figure 12. Two sample input and output THEOS satellite images on the Surin data set, where rows
refer different images. (a) Original input image; (b) Target road map (ground truth); (c) Output of
ELU-SegNet; (d) output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

(a) (b) (c) (d) (e)

Figure 13. Two sample input and output THEOS satellite images on Ubonratchathani data set,
where rows refer different images. (a) Original input image; (b) Target road map (ground truth);
(c) Output of ELU-SegNet; (d) Output of ELU-SegNet-LMs; and (e) Output of ELU-SegNet-LMs-CRFs.

5.3. Discussions

In terms of accuracy (F1-measure), the results have shown that our proposed framework with all
strategies (ELU-SegNet-LMs-CRFs) outperforms the state-of-the-art algorithm, SegNet. On the aerial
imagery, our F1 (0.876) is greater than SegNet’s F1 (0.768) by 10.8%. On the satellite imagery, our F1
(0.6494) is greater than SegNet’s F1 (0.465) by 18.44% on average for all five provinces. In terms of the
computational cost, our framework requires slightly additional training time compared to the baseline
approach, SegNet, by about 6.25% (2–3 h). In our experiment, SegNet’s training procedure took
approximately 48 h per data set, and finished after 200 epochs with 864 s per epoch. Our framework
is built on top of SegNet. There is no additional time required by changing an activation function
from ReLU to ELU. The LMs and CRF processes took around 1–2 h and 1 h, consecutively, so there are
approximately 2–3 additional hours required on top of SegNet (48 h).

Although our work does not solely rely on the color feature like previous attempts in road
extraction, it is recommended for application to high- and very-high resolution remotely-sensed
images. It is difficult to identify roads from low- and medium-resolution images, even by humans.

6. Conclusions and Future Work

In this study, we present a novel deep learning network framework to extract road
objects from both aerial and satellite images. The network is based on the deep convolutional
encoder–decoder network (DCED), called “SegNet”. To improve the network’s precision, we
incorporate the recent activation function, called the exponential linear unit (ELU), into our proposed
method. The method is also further improved to detect more road patterns by utilizing landscape
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metrics and conditional random fields. Excessive detected roads are then eliminated by applying
landscape metrics thresholding. Finally, we extend the SegNet network to ELU-SegNet-LMs-CRFs.
The experiments were conducted on a Massachusetts road data set as well as THEOS (Thailand)
road data sets, and compared to the existing techniques. The results show that our proposed
(ELU-SegNet-LMs-CRFs) outperforms the original method on both aerial and satellite imagery for F1
as well as for all other baselines.

In future work, more choices of image segmentation, optimization techniques and/or other
activation functions will be investigated and compared to obtain the best DCED-based framework
for semantic road segmentation.
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The following abbreviations are used in this manuscript:

CCL connected component labeling
CNN convolutional neural network
CRFs conditional random fields
DCED deep convolutional encoder-decoder
DCNN deep convolutional neural network
DL deep learning
ELU exponential linear unit
FCIS fully convolutional instance-aware semantic segmentation
FCN fully convolutional network
FN false negative
FP false positive
GISTDA geo-informatics and apace technology development agency
HR high resolution
LMs landscape metrics
PASCAL VOC pascal visual object classes
R-CNN region-based convolutional neural network
ReLU rectified linear unit
RGB red-green-blue
SGD stochastic gradient descent
TN true negative
TP true positive
VGG visual geometry group
VHR very-high resolution
VOC visual object classes
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Abstract: A new convolution neural network (CNN) architecture for semantic segmentation of
high resolution aerial imagery is proposed in this paper. The proposed architecture follows an
hourglass-shaped network (HSN) design being structured into encoding and decoding stages.
By taking advantage of recent advances in CNN designs, we use the composed inception module
to replace common convolutional layers, providing the network with multi-scale receptive areas
with rich context. Additionally, in order to reduce spatial ambiguities in the up-sampling stage, skip
connections with residual units are also employed to feed forward encoding-stage information directly
to the decoder. Moreover, overlap inference is employed to alleviate boundary effects occurring
when high resolution images are inferred from small-sized patches. Finally, we also propose a
post-processing method based on weighted belief propagation to visually enhance the classification
results. Extensive experiments based on the Vaihingen and Potsdam datasets demonstrate that the
proposed architectures outperform three reference state-of-the-art network designs both numerically
and visually.

Keywords: semantic labeling; convolutional neural networks; remote sensing; deep learning;
aerial images

1. Introduction

Semantic segmentation in remote sensing aims at accurately labeling each pixel in an aerial
image by assigning it to a specific class, such as vegetation, buildings, vehicles or roads. This is a
very important task that facilitates a wide set of applications ranging from urban planning to change
detection and automated-map making [1]. Semantic segmentation has received much attention for
many years, and yet, it remains a difficult problem. One of the major challenges is given by the
ever-increasing spatial and spectral resolution of remote sensing images. High spatial resolutions bring
the great benefit of being able to capture a large amount of narrow objects and fine details in remote
sensing imagery. However, increasing spatial resolutions incurs semantic segmentation ambiguities
due to the presence of many small objects within one image and brings along a high imbalance of
class distribution, huge intra-class variance and small inter-class differences. For example, a road in
the shadows of buildings is similar to buildings with dark roofs, whereas the colors of cars may vary
widely, which could cause confusions for the semantic classifiers. High spectral resolutions provide
abundant information for Earth observations, but selecting, fusing and classifying hyperspectral
images remain significant research challenges in remote sensing [2,3].
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Semantic segmentation is often viewed in a supervised learning setting. Like many other
supervised learning problems, the general approach for supervised semantic segmentation consists
of four main steps: (i) feature extraction; (ii) model design and training; (iii) inference; and
(iv) post-processing. In this paper, we focus on the semantic segmentation of high-resolution
aerial images and propose a CNN-based solution by following this generic design methodology
for supervised-learning.

In the literature, supervised methods have focused much on the feature extraction step and
proposed to use a variety of hand-crafted descriptors. Classical methods focus on extracting spatial or
spectral features using low-level descriptors, such as GIST [4], ACC [5] or BIC [6]. These descriptors
capture both the global color and texture features. In hyperspectral imagery, salient band selection
can help feature extraction by reducing the high spectral-resolution redundancy. Lately, mid-level
descriptors have became more and more popular in computer vision. One of the most successful
descriptors is the bag-of-visual-words (BoVW) descriptor [7,8]. Thanks to its effectiveness, the
BoVW descriptor has been widely used in remote sensing in scene recognition and semantic labeling.
Sub-space learning techniques were proposed to automatically determine the feature representation
of a given dataset by optimizing the feature space [9–11]. By making use of a broad variety of
descriptors, an image can be represented by many different features. Each feature has its own
advantages and drawbacks; hence, selecting the best features for a specific type of data is particularly
important. To achieve this goal, several feature selection frameworks were proposed, such as that of
Tokarczyk et al. [12], who designed a boosting-based method to select optimal features in the training
process from a vast randomized quasi-exhaustive (RQE) set of feature candidates.

In recent years, the focus was put on feature learning and using learned features for semantic
segmentation. Cheriyadat [13] proposed to use sparse coding to guide feature learning. In [14],
an improved object detection performance is reached by using a spatial sparse coding bag-of-words
model. Recently, the rapid development in deep learning, especially in convolutional neural networks,
has brought unified solutions for both feature learning and semantic classification of remote sensing
images. Having started as a breakthrough in image classification [15], CNNs have proven to be able to
significantly improve state-of-the-art performance in numerous computer vision domains [16]. For
example, CNNs with a ResNetarchitecture [17] have won the ILSVRC2015 competition with an error
rate of 3.6%, which even surpasses human performance for image classification. For pixel-wise vision
tasks like semantic segmentation, CNNs also outperform classical methods [18,19]. In remote sensing,
more and more research has been focused on designing and applying CNNs for semantic segmentation.
Paisitkriangkrai et al. applied both patch-based CNNs and hand-crafted features to predict the label of
each pixel [20]. In addition, conditional random field (CRF) processing follows prediction to provide
a smooth final result. Kampffmeyer et al. applied a fully-convolutional network structure to solve
pixel-wise labeling of high resolution aerial images in an end-to-end fashion [21]. A weighted loss
function was used in their network to address the class imbalance problem. Volpi et al. proposed
to apply several learnable transpose convolutional layers to up-sample the scores to the input size,
trying to avoid the possible spatial information loss during the up-sampling stage [22]. Nevertheless,
existing methods in the literature, especially deep learning-based methods, suffer from two major
problems, namely the insufficient spatial information in the inference phase and the lack of contextual
information. These problems result in poor segmentations around object boundaries, as well as in
other difficult areas, such as shadow regions.

To overcome these problems, in this paper, we introduce a novel hourglass-shaped network
architecture for pixel-wise semantic labeling of high-resolution aerial images. Our network is
structured into two parts. These parts, namely encoding and decoding, perform down-sampling
and up-sampling respectively to infer class maps from input images. Compared to existing designs,
our novel contributions are as follows:

• We leverage skip connections with residual units and an inception module in a generic
CNN encoder-decoder architecture to improve semantic segmentation of remote sensing data.
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This combination benefits multi-scale inference and forwards spatial and contextual information
directly to the decoding stage.

• We propose to apply overlapped inference in semantic segmentation, which systematically
improves classification performance.

• We propose a weighted belief-propagation post-processing module, which addresses the border
effects and smooths the results. This module improves the visual quality, as well as the
classification results on segment boundaries.

Extensive experiments on two well-known high resolution remote sensing datasets demonstrate
the effectiveness of our proposed architecture compared to state-of-the-art network designs.

The remainder of the paper is organized as follows. A brief review of convolutional neural networks
is given in Section 2, followed by an analysis of existing architectures for semantic segmentation in
remote sensing. Section 3 presents our proposed hourglass-shaped network architecture and details the
training and inference methods. Experimental settings and results are presented in Section 4. Section 5
discusses the proposed approach and experimental results, while Section 6 concludes our work.

2. Convolutional Neural Networks

Convolutional neural networks [15] stem from conventional neural network designs. CNNs
consist of layers of neurons, where each neuron has learnable weights and biases. The whole
network serves as a complex non-linear function, which transforms the inputs into target variables.
The difference with respect to conventional networks is that CNNs comprise specific types of layers
and composing elements dedicated to perform specific functions, such as computing convolution,
down-sampling or up-sampling operations.

In this section, we first present a short overview of the common layer types employed in
CNN architectures. This is subsequently followed by a summary of existing CNN architectures
for semantic segmentation.

2.1. Composition Elements

In this section, we present the four basic types of layers that are used in CNNs for semantic
segmentation: the convolutional layer, transposed convolutional layer, non-linear function layer
and the spatial pooling layer. These are detailed next.

2.1.1. Convolutional Layer

The convolutional layer is the core of CNNs. It can be seen as a bank of simple filters with
learnable parameters. As illustrated in Figure 1a, the layer takes the input X of size W1 × H1 × C1

and convolves it with the filter bank by sliding of stride S and padding the border with P units. The
result of this operation is an output volume Y with size W2 × H2 × C2. Equation (1) formulates the
calculation of the output at spatial position (i, j) as:

Yij = W × Nij + b (1)

where (W, b) are the learnable parameters (weights and bias) of the layer, Nij is the corresponding
receptive field (or a window surrounding Xij) and W × N denotes the dot product between W and N.

The spatial dimensions of the output of the convolutional layer are given by W2 = (W1 −
F + 2P)/S + 1, H2 = (H1 − F + 2P)/S + 1 where F is the size of the receptive field, which also
corresponds to the spatial size of the filters. In general, each filter can take different widths and heights,
but conventionally, most CNN architectures employ filters with square masks of dimension F. In our
work, we consider only filters with square masks.
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(a) Convolutional layer: the input size is
W1 = H1 = 5; the receptive field F = 3;
the convolution is performed with stride S = 1
and no padding (P = 0). The output Yis of size
W2 = H2 = 3.

(b) Transposed convolutional layer: input size
W1 = H1 = 3; transposed convolution with stride S = 2;
padding with P = 1; and a receptive field of F = 3.
The output Yis of size W2 = H2 = 5.

Figure 1. Illustration of elementary modules for the convolutional layer. (a) Convolutional layer and
(b) Transposed convolutional layer.

Neurons in the output volume Y can be considered as filters of size F × F × C1. Intuitively,
each neuron looks for a specific pattern in the input volume X. Since we want to look for the
same pattern across all spatial locations in the input volume, the learnable weights and bias for all
neurons in a channel of Y are shared. This is often called parameter sharing, and by doing this, the
output volume Y consists of the values obtained when applying C2 filters on the input volume X.
The parameter sharing also reduces the number of weights of a convolutional layer to C2 × F × F × C1,
which is much smaller than that of a fully-connected layer. This helps mitigate the problem of
overfitting in neural network training.

2.1.2. Transposed Convolutional Layer

The transposed convolutional layer, also known as the deconvolution layer, was first introduced
in [23]. An example of the transposed convolutional layer is shown in Figure 1b. This layer is
commonly employed for up-sampling operations in CNNs [18]. As shown in Figure 1b, the input
is first up-sampled by a factor of stride S and padded spatially with P units if necessary. After that,
convolution is applied to the up-sampled input with a filter bank that has a receptive field of size F.
Transposed convolution can be thought of as the inverse operation of convolution. Filter parameters
can be set to follow conventional bilinear interpolation [18] or can be set to be learned.

2.1.3. Non-Linear Function Layer

The convolution layer is often followed by a non-linear function layer, also called an activation
function. The role of this layer is similar to that of a fully-connected layer in traditional neural
networks. This layer introduces non-linearity in the network and enables the network to express a
more complex function. Common activation functions include the Sigmoid function, the Tanh function,
the rectified linear unit (ReLU) function [24] and the leaky ReLU function [25]. Among these functions,
the ReLU function f (x) = max(0, x) is the most commonly used in deep-learning research. In our
proposed network design, we also select ReLU as the activation function due to its efficiency and light
computational complexity.

2.1.4. Spatial Pooling Layer

The spatial pooling layer is used to spatially reduce the size of the input volume [26]. A small
filter (typical size: 2 × 2 or 3 × 3) is used to slide through the volume to carry out a simple spatial
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pooling function. Common pooling functions include max, mean and sum functions. One notes that it
is also possible to use the convolutional layer to replace the pooling layer [27]. However, this practice
does not necessarily lead to performance benefits and would cost extra memory and training effort [28].
Among the common pooling functions, the max function is most commonly used in the literature. We
also employ the max pooling function in our network design.

2.2. CNN Architectures for Semantic Segmentation of Remote Sensing Images

In the literature, there are two basic approaches for semantic segmentation, namely patch-based
and pixel-based approaches. In this section, we present an analysis of both categories.

2.2.1. Patch-Based Methods

Patch-based approaches infer the label of each pixel independently based on its small surrounding
region. In these approaches, a classifier is designed and trained to predict a single label from a small
image patch. In the inference phase, a sliding window is used to extract patches around all pixels in
the input image, which are subsequently forwarded through the classifier to get the target labels [29].
Several techniques have been proposed to achieve high performance with patch-based approaches.
For instance, replacing the fully-connected layer in the network with convolutional layers can lead to
more efficient algorithms by avoiding overlapping computations [22,29]. Multi-scale inference and
recurrent refinements can also lead to performance gains [30,31]. Nevertheless, patch-based approaches
are often outperformed by pixel-based methods in remote sensing semantic segmentation tasks [21,22].
As a result, in this work, we put more emphasis on the pixel-based approach and follow such a
paradigm in our design.

2.2.2. Pixel-Based Methods

Unlike patch-based approaches, pixel-wise methods infer the labels for all of the pixels in the
input image at the same time. One of the first CNN architectures for pixel-wise semantic segmentation
is the fully-convolutional network (FCN) method introduced by Long et al. in [18]. In this method,
a transposed convolutional layer is employed to perform up-sampling. This operation is essential in
order to produce outputs of the same spatial dimensions as the inputs.

The FCN architecture was recently employed for semantic segmentation of remote sensing images
in [21]. Its architecture, shown in Figure 2, can be divided into two parts, namely encoding and
decoding. The latter is depicted within the dotted-line box in the figure. The encoding part follows the
same architecture as the VGG-net of [32], which is one of the most powerful architectures for image
classification. In Figure 2, the layers A, B, C and D are convolutional layers; their configurations (width,
height, depth) are shown in Table 1. Each convolutional layer is followed by a batch normalization
layer [33] and ReLU activation function. The final convolutional layer of Type D is followed by a
1 × 1 convolution, producing an output with scores for each classes. Layer E is a max pooling layer
with size F = 2 and stride S = 2. It performs a down-sampling operation with a factor of two in each
dimension. Layer F is a transposed convolutional layer, with filter size F = 16 and stride number
S = 8. It up-samples the scores to original image size. It should be noted that after each pooling layer,
the number of filters in the next convolutional layers is doubled to compensate the spatial information
loss. To train the network, a median frequency weighted softmax loss layer (Layer G) is appended
after the last transposed convolutional layer.

In this FCN design [21], the transposed convolutional layer up-samples the score by a large
factor of eight in each dimension. This incurs the risk of introducing classification ambiguities in
the up-sampled result. To mitigate this problem, in [22], Volpi et al. proposed to use multiple
transposed convolutional layers to progressively up-sample the classification scores. This design
is named full patch labeling by learned up-sampling (FPL) [22], its architecture being depicted in
Figure 2. Similar to FCN, the FPL network also consists of encoding and decoding modules. However,
unlike the FCN design, which incorporate unique layer types in each convolutional module, in FPL,
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the convolutional modules consist of all four different convolutional layer types, A, B, C and D (see
Figure 2). Their configurations are shown in Table 1. Each convolutional module is followed by a
max pooling layer, batch normalization layer and leaky ReLU activation. In Figure 2, the pooling
and leaky ReLU layers in FPL are grouped together and shown as Layer E. In the decoding stage,
three transposed convolutional layers (Type F) are stacked sequentially to spatially up-sample the
score to the input image size. They all have an up-sampling factor of two in each spatial dimension.
For training, a softmax loss layer (Type G) is appended at the end of the network. The FCL design aims
at improving the output classification result by allowing the transpose convolutional layers to learn
to recover the fine spatial details. Semantic segmentation results on the Vaihingen dataset reported
in [22] show that the FPL network outperforms the FCN design in terms of overall accuracy.

Figure 2. The fully-convolutional network (FCN) [21], SegNet [19] and full patch labeling (FPL) [22]
network designs. A, B, C and D are convolutional layers; E is a pooling layer; F is a transposed
convolutional layer or unpooling layer (in SegNet); G is a loss layer.

Table 1. Configurations of convolutional and transposed convolutional layer types in the FCN [21],
SegNet [19] and FPL [22] architectures.

Layer ID A B C D F

FCN 3 × 3, 64 3 × 3, 128 3 × 3, 256 3 × 3, 512 16 × 16, 6
SegNet 3 × 3, 64 3 × 3, 128 3 × 3, 256 3 × 3, 512 Unpooling

FPL 7 × 7, 64 5 × 5, 64 5 × 5, 128 5 × 5, 256 2 × 2, 512

Besides using the transposed convolutional layer for up-sampling in the decoding stage, Vijay et al.
proposed to use unpooling in SegNet [19] for pixel-wise segmentation tasks. The encoder part of
SegNet (see Figure 2) consists of consecutive convolution layers with uniform 3 × 3 size filters,
followed by ReLU activations and pooling layers. The detailed network parameter settings are given
in Table 1. The decoder uses pooling indices computed in the max-pooling step of the corresponding
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encoder to perform non-linear up-sampling (via an unpooling Layer F), followed by mirror-structured
convolution layers to produce the pixel-wise full size label map. Finally, a loss Layer G is attached
for network training. The SegNet design aims at preserving the essential spatial information by
remembering the pooling indices in the encoding part, which produces state-of-the-art accuracy in
generic image segmentation tasks.

Both FCN and FPL architectures suffer from two problems, namely the insufficient spatial
information in the decoding stage and the lack of contextual information. Due to the first problem,
the FCN and FPL networks often mislabel small objects like cars and produce poor results around
object boundaries. Due to the second problem, the lack of contextual information makes it difficult
for these architectures to correctly infer classes in difficult areas, such as shadow regions projected by
high-altitude buildings and trees.

SegNet effectively mitigates the insufficient spatial information problem by adopting unpooling
layers in the decoder part, but it may also suffer from the lack of contextual information. Furthermore,
as shown in Table 2, SegNet has three-times more trainable weights than FCN and FPL, making the
training phase much more difficult. In this paper, we propose a novel network architecture to address
these issues.

Table 2. Trainable weight counts in the FCN [21], SegNet [19], FPL [22] and the proposed
HSN architectures.

Network FCN SegNet FPL HSN

#Trainable weights 7.82M 15.27M 5.66M 5.56M

3. Proposed CNN Architecture for Semantic Segmentation

In this section, we present our novel CNN architecture for semantic segmentation of remote
sensing images. The section details first the network design, followed by the training and inference
strategies, our post-processing technique and a brief analysis.

3.1. Proposed Hourglass-Shaped Convolutional Neural Network

Our CNN follows a pixel-wise design paradigm, which has been shown to produce state-of-the-art
results in semantic segmentation. However, as mentioned in Section 2.2, existing pixel-wise network
architectures suffer from the spatial-information loss problem. To overcome this problem, we propose
a novel hourglass-shaped network (HSN) architecture. Our HSN design was partially inspired from
recent important works in deep learning research [17,34,35].

3.1.1. Network Design

Similar to FCN and FPL, our HSN architecture follows the generic encoder-decoder paradigm,
as illustrated in Figure 3. In the figure, the encoder and decoder parts are delimited by continuous
and dashed rectangular boxes, respectively. As mentioned in Section 2.2, one key point is to use
transposed convolutional layers to progressively up-sample the pixels’ class scores to the original
spatial resolution of the input image. However, novel components are brought in the network design.
Inspired by the hourglass-shaped network introduced for human pose estimation [36] and image
depth estimation [35], we propose a network that features (i) multi-scale inference by using inception
modules [34] replacing simple convolutional layers and (ii) forwarding information from the encoding
layers directly to decoding ones by skip connections.
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Figure 3. The proposed hourglass-shaped network (HSN) architecture. A and B are convolutional
layers; C and D are inception modules; E is the max pooling layer; F is the transposed convolutional
layer; G is the residuals modules; H is the loss layer.

The network starts with two layers of A and two layers of B, which are common convolutional
layers with filter size F = 3. The number of filters are 64 and 128 for Layers A and B, respectively.
Each convolution layer is followed by a batch normalization layer and ReLU activation. Layer E is a
max pooling layer, with a down-sampling factor of two. Layers C and D are composed of inception
modules, as shown in Figure 4a. The configurations of convolutional layers in the inception modules
are shown in Table 3. As can be seen from the table, filters of different sizes are assembled in one
inception module to enable multi-scale inference through the network.

In the encoding part, after the second Layer B and after Layer C, two skip branches are made with
Layer G, forwarding information directly to the corresponding layers in the decoding part. Layer G
is a residual module inspired by ResNet [17]. The residual module is shown in Figure 4b, where
conv1_1 is a bank of 128 filters with size 1 × 1, and conv1_2 is another bank of 128 filters with size
3 × 3. The input of the module is directly element-wise added to the output of conv1_2. It is worth
mentioning that, due to the use of filters with size 1 × 1, the number of trainable weights for the whole
network is significantly reduced. As shown in Table 2, the total number of trainable weights of HSN is
comparable to that of FPL and nearly three-times less than that of SegNet.

In the decoding part, Layer F serves as the transposed convolutional layer, with the same
up-sampling factor of two. After the first and second up-sampling, data directly forwarded from the
encoding part are concatenated with the outputs of the transposed convolutional layers. Finally, Layer
H, which is a weighted softmax layer, is used in the training phase of the network.

(a) Inception module (b) Residual module

Figure 4. Composition modules in the proposed HSN architecture. (a) Inception module;
(b) Residual module.

Table 3. Configurations of convolutional layers in the inception modules.

Layer ID conv1_1 conv1_2 conv2_1 conv2_2 conv3_1 conv3_2 conv4

C 1 × 1, 128 3 × 3, 128 1 × 1, 64 5 × 5, 32 1 × 1, 32 7 × 7, 32 1 × 1, 64
D 1 × 1, 256 3 × 3, 384 1 × 1, 64 5 × 5, 32 1 × 1, 32 7 × 7, 32 1 × 1, 64
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3.1.2. Median Frequency Balancing

We train our network using the cross-entropy loss function, which is summed over all of the
pixels. Nevertheless, the ordinary cross-entropy loss can be heavily affected by the imbalance of the
class distribution when applied to high-resolution remote sensing data. To address this problem,
the loss for each pixel is weighted based on the median frequency balancing [21,37] technique. The
weighted loss for a pixel i is calculated as:

L(i) = −
C

∑
c=1

[yi = c]log( p̂(c)i )× wc (2)

where yi is the ground-truth class of pixel i, wc is the weight for class c, fc is the pixel frequency of the
class and:

wc =
median( fc|c ∈ C)

fc
(3)

3.2. Training Strategy

We train the network to optimize the weighted cross-entropy loss function using mini-batch
stochastic gradient descent (SGD) with momentum [38]. The parameters are initialized following [39].
The learning rate is set to step down 10-times from 1 × 10−5 every 50 epochs, with momentum
set to 0.99. The batch size is set to fit the memory. Data augmentation is carried out to mitigate
overfitting. The image patches are extracted with size 256 × 256 with 50% of overlap and flipped
horizontally and vertically. Each patch is also rotated at 90 degree intervals. In total, this produces
eight augmentations for each overlapping patch. We train our network from scratch until the loss
converges. Batch normalization is employed, similar to existing network architectures. The training
and testing processes are performed on a desktop machine equipped with Nvidia GeForce Titan X
(12 Gb vRAM).

3.3. Overlap Inference

In the inference stage, due to the memory limit, the input high-resolution images can be sliced
into small non-overlapping patches to feed-in the network. However, this may cause inconsistent
segmentation across the patch borders and hence result in degraded accuracy.

To address such boundary effects, overlap inference is employed whereby input images are
split into overlapped patches. At the output of the network, the class scores in overlapped areas are
averaged. We experimentally justify the benefit of this strategy compared to non-overlapping inference
in Section 4.

3.4. Post-Processing with Weighted Belief Propagation

Semantic segmentation for high-resolution remote sensing imagery often requires accurate and
visually clear results to serve further automatic processing or manual investigations. However, the
raw network output may feature zigzag segment borders and incorrect blobs. Some examples are
shown in Figures 5–7. To address this problem, we propose to use weighted belief propagation for
post-processing the raw network outputs.

In the proposed HSN architecture, the semantic label for a pixel at an arbitrary position
i is determined as L(i) = arg maxc fi(c), where fi(c) denotes the score of class c for pixel i.
This corresponds to the top one class prediction, i.e., the class label with the highest score. Similarly,
the top two prediction for any arbitrary pixel is defined as the set of class labels when taking the best
two scores for that pixel. We experimentally observed that the top two prediction accuracy for the
validation data is around 97% on the Vaihingen dataset. This shows that most of the time, the right
labels lie in the top two scores determined by the network.
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Let di = fi(c1)− fi(c2), in which fi(c1) and fi(c2) refer to the top two scores, i.e., the highest
and second highest class scores for pixel i, respectively. Intuitively, for a trained network, the higher
di is, the more confident the network is about its prediction. Therefore, di can be thought of as the
confidence of the output at position i.

We consider post-processing as a pixel labeling problem and formulate a Markov random field
(MRF) model to solve it. A node i in our MRF model corresponds to a pixel in the original image I,
which is directly connected to its four spatial neighbors Ni. yi denotes the class label assigned to node i.
We find the optimal labels for the whole image by minimizing the following energy function:

E = ∑
i∈I

Ed(yi) + ∑
i,j∈I

Es(yi, yj) (4)

where Ed, defined in Equation (5), refers to the data energy term describing how confident the estimated
label yi is; Es is the smoothness energy defined in Equation (6), which penalizes the inconsistency
between node i and its neighbors Ni:

Ed(yi) =
exp fi(yi)

Σj∈Cexp fi(j) (5)

Es(yi, yj) = v2 exp(−1− δ(yi − yj)

T
) (6)

where v2 and T are hyper-parameters, which are set empirically, and δ(x) is the Dirac delta function.
We employ the weighted belief propagation algorithm (WBP) [40,41] to iteratively minimize the energy
function E. At each iteration, the update rule of WBP is expressed by Equations (7) and (8) below:

mij(yj) = wi

C

∑
yi

Es(yi, yj)Ed(yi) ∏
yk∈Ni\yj

mki(yi) (7)

bi(yi) = Ed(yi) ∏
yk∈N(yi)

mki(yi) (8)

in which mij(yj) is the message passed from node i to node j; wi is the weight for node i, which is set to
its confidence value di; bi(yi) is the belief, which represent how confident the node i is to take label yi.

The messages are updated until convergence. The final label ŷi at node i is determined by
ŷi = arg maxyi

bi(yi).

4. Experimental Results

We carried out extensive experiments to assess the effectiveness of our proposed HSN architecture.
We employed two well-known datasets in the semantic segmentation literature, namely the Vaihingen
and Postdam datasets [42,43]. In this section, we describe our experimental settings and report
quantitative and qualitative results. We evaluate the benefits of each of the components in our proposed
method and compare our results to those of the FCN [21], SegNet [19] and FPL [22] networks. It should
be noted that, as Kampffmeyer et al. [21] do not provide their trained model, we strictly followed their
network design and training configuration to reproduce their results. For FPL [22], we have carried
out experiments using the original FPL network, which was trained on the Vainhingen and Potsdam
datasets and was publicly made available by its authors. Concerning SegNet, it was originally devised
and tested on generic image datasets; to produce the results, we employed the network provided by
the authors and trained it from scratch using the aforementioned remote sensing datasets.
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4.1. Datasets

4.1.1. Vaihingen Dataset

The Vaihingen dataset consists of thirty three very high-resolution true orthophoto (TOP) tiles
and their corresponding digital surface models (DSMs). Normalized DSMs (nDSMs), which limit
the effects of varying ground height, are also provided by Gerke et al. [44]. The tiles have a spatial
resolution of 2949 × 2064, with the number of pixels varying from three million to 10 million pixels.
Each TOP image is composed of three channels: near-infrared (NIR), red (R) and green (G), with
a spatial resolution of 9 cm. Ground-truth labeled images for sixteen out of thirty three tiles were
provided by ISPRS. In these images, pixels are labeled as one of the six classes: impervious surfaces,
building, low vegetation, tree, car and clutter/background. Examples of the TOP, nDSMs and the
corresponding ground truth images are shown in Figure 6.

Following the same training and testing procedures as set by FCN [21] and FPL [22], we used the
sixteen annotated tiles in our experiments. Eleven tiles (areas: 1, 3, 5, 7, 13, 17, 21, 23, 26, 32, 37) were
selected for training, while the other five tiles (areas: 11, 15, 28, 30, 34) were reserved for testing.

4.1.2. Potsdam Dataset

The Potsdam 2D segmentation dataset includes 38 tiles of high resolution remote sensing images.
All of them feature a spatial resolution of 5 cm and have a uniform resolution of 6000 × 6000 pixels.
For each tile, five channels are provided, namely near-infrared (NIR), red (R), green (G), blue (B),
together with the digital surface models (DSMs). The normalized DSMs (nDSMs) are also made
available by Gerke et al. [44]. Twenty four tiles are provided with ground-truth pixel labels, using
the same six classes as in the Vaihingen dataset. In our experiments, we employed all five channels,
namely NIR-R-G-B and the nDSMs as inputs to the networks. Following the practice in [22], six tiles
(02_12, 03_12, 04_12, 05_12, 06_12, 07_12) were selected as testing set, while the other eighteen among
the annotated tiles were used for training.

4.2. Evaluation Metrics

To compare our results with the state-of-the-art, we strictly use the same evaluation metrics
as in [20–22,42]. Besides the conventional pixel-wise ground truth, in both datasets, border-eroded
ground-truth label images are also available. In these images, borders between classes are eroded with
a disk radius of three pixels [42,43]. We report our results for both ground-truth versions. All pixels
are considered for the conventional pixel-wise ground-truth version, while for the eroded version,
border pixels are not accounted for.

We evaluate the performance of the different methods based on three criteria, namely, per-class
F-score, overall accuracy and average F-score. The F-score is defined as:

F-score = 2× precision × recall
(precision + recall)

(9)

The overall accuracy is the total number of correctly-labeled pixels divided by the total number
of pixels. In the Vaihingen dataset, the clutter class only accounts for an extremely small number of
pixels. As a result, following the common practice [20–22], we neglect the clutter class when reporting
the result for this dataset. For the Potsdam dataset, we report the results on all six classes.

Confusion matrices are also provided in the Appendix A for the experiments based on the eroded
ground-truth for both datasets. We averaged the values in the confusions matrices across all tested
tiles and reported the results for the proposed HSN and the reference techniques.

It is also worth mentioning that ambiguities and mislabeling exist in the provided dataset [20].
There are also some errors for the input normalized DSM [44].
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4.3. Overlap Inference Size

Table 4 reports the experimental results obtained on the Vaihingen dataset with four different
overlap inference sizes, namely 0%, 25%, 50% and 75%. The results are organized into two groups,
corresponding to the two ground-truth versions used in the evaluation: the eroded version (indicated
by erGT) and the original version (denoted by GT). It can be observed that the classification
performance improves when increasing the overlap size. Overlap inference solves potential border
effects at tile boundaries and returns the final classification results by performing a multi-hypothesis
prediction of pixel classes instead of single-hypothesis prediction performed in the non-overlapped
case. Further increasing the overlap size beyond 75% does not lead to significant improvements in
classification performance.

Table 4. Experimental results for different overlap sizes for the Vaihingen dataset.

Overlap Percent Imp.Surf Buildings Low Veg Tree Car
Average
F-score

Overall
Accuracy

erGT

0% 90.89 94.51 78.83 87.84 81.87 86.79 88.32
25% 91.18 94.60 79.57 88.19 83.23 87.35 88.67
50% 91.23 94.64 79.54 88.20 83.74 87.47 88.70
75% 91.32 94.66 79.73 88.30 83.60 87.52 88.79

GT

0% 87.57 92.20 75.03 84.44 75.16 82.88 84.92
25% 87.88 92.30 75.69 84.76 76.20 83.37 85.27
50% 87.92 92.34 75.64 84.77 76.61 83.46 85.29
75% 88.01 92.37 75.83 84.86 76.50 83.51 85.38

4.4. Skip Connections and Inception Modules

We further analyze the influence on the performance of our key design components by performing
the following experiments: firstly, we remove all skip connections from HSN to study the possible
benefit brought by the residual modules; secondly, we keep the residual modules, but replace all of
the inception layers with normal convolutional layers to check the influence of inception modules.
The results are reported in Table 5 for the first and second set of experiments denoted as HSN-NS
(no skip) and HSN-NI (no inception), respectively.

Table 5. Experimental results on the effect of skip connections (Vaihingen dataset). erGT, eroded
ground-truth; NS, no skip; NI, no inception.

Network Imp. Surf Buildings Low Veg Tree Car
Average
F-Score

Overall
Accuracy

erGT
HSN 90.89 94.51 78.83 87.84 81.87 86.79 88.32

HSN-NS 89.40 93.68 78.90 87.57 62.17 82.34 87.48
HSN-NI 85.63 92.83 74.60 85.74 62.18 80.17 84.89

GT
HSN 87.57 92.20 75.03 84.44 75.16 82.88 84.92

HSN-NS 85.94 91.25 74.78 84.08 56.26 78.46 83.92
HSN-NI 82.34 90.56 71.05 82.31 55.76 76.41 81.52

From Table 5, it can be observed that both residual and inception modules critically contribute
in the HSN design. When removing the residual module, corresponding to the HSN-NS results,
a sharp drop in the F-score of the car class is observed. Replacing the inception module with normal
convolutional layers leads to a nearly 4% drop in overall accuracy when compared to the eroded
ground truth (see NSN-NI results in Table 5).
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Visually, from Figure 5, we can observe that the segmentation result of HSN is more coherent
compared to the results of HSN-NI and HSN-NS. For instance, when removing the inception layers,
there are mislabeled artifacts on the bottom of the image or on the building on the right up corner,
the result of HSN being more clean. When removing skip connections, the same effect can also be
observed on the road segmentation in the middle bottom of the image.

(a) Ground truth (b) HSN (c) HSN-NS (d) HSN-NI

Figure 5. Full tile prediction for tile No. 34. Legend on the Vaihingen dataset: white: impervious
surface; blue: buildings; cyan: low vegetation; green: trees; yellow: cars; red: clutter (best viewed
in color). (a) Ground truth; (b) HSN; (c) HSN-NS; (d) HSN-NI.

4.5. Performance Evaluations

In this section, we report extensive experimental results obtained with the proposed HSN and
other networks, namely FCN [21], SegNet [19] and FPL [22], which serve as baselines. The HSN
applied in this section includes both the inception layers and residual modules. Overlap inference
with 75% overlapping size and post-processing with weighted belief propagation are also integrated
to demonstrate their effectiveness.

4.5.1. Vaihingen Dataset

Numerical results

Table 6 reports the experimental results obtained in the Vaihingen dataset. The results are
organized in the same manner as in Table 4. From the table, it can be observed that the proposed
HSN network outperforms the other networks in terms of overall performance. For all classes, except
the buildings class, HSN reaches a better performance. Especially in the car class category, HSN
significantly outperforms FCN and FPL by more than 10%, and outperforms SegNet by around
5%. Further, by consulting the confusion matrix provided in Table A1, we find that the car class
is often mislabeled as impervious surface; trees and low vegetation are also easily confused by the
network. It can also be observed that the augmentation in HSN’s average F-score is mainly due to the
improvement in the car class. Overlap inference (OI) systematically improves the prediction accuracy
for each class, bringing up the average F-score to 87.52%. This proves the effectiveness of overlap
inference. Post-processing with WBP slightly improves the overall accuracy to 88.82%.

In case border pixels are taken into account (GT), all of the networks perform worse than in
the case in which the border pixels are ignored (erGT). This is due to the ambiguities around object
boundaries. In case the original GT is used as the reference, post-processing with WBP shows minor
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performance degradation in some classes, such as car, impervious surface and buildings; yet, the
overall accuracy is not affected, and the visual results are improved, as we will see next.

In both cases, all of the networks have high accuracy on the building class thanks to the provided
normalized DSM.

Table 6. Experimental results on the Vaihingen dataset [42]. OI, overlap inference.

Methods Imp. Surf Buildings Low Veg Tree Car
Average
F-Score

Overall
Accuracy

erGT

FCN [21] 89.41 93.80 76.46 86.63 71.32 83.52 86.75
SegNet [19] 90.15 94.11 77.35 87.40 77.31 85.27 87.59

FPL [22] 90.43 94.62 78.11 86.81 66.81 83.36 87.70
HSN 90.89 94.51 78.83 87.84 81.87 86.79 88.32

HSN + OI 91.32 94.66 79.73 88.30 83.60 87.52 88.79
HSN + OI + WBP 91.34 94.67 79.83 88.31 83.59 87.55 88.82

GT

FCN [21] 85.82 91.27 72.39 83.30 63.10 79.18 83.18
SegNet [19] 86.68 91.74 73.22 83.99 71.36 81.40 84.07

FPL [22] 86.62 92.03 73.73 82.73 57.68 78.56 83.69
HSN 87.57 92.20 75.03 84.44 75.16 82.88 84.92

HSN + OI 88.01 92.37 75.83 84.86 76.50 83.51 85.38
HSN + OI + WBP 88.00 92.34 75.92 84.86 75.95 83.41 85.39

Table 7 shows the average inference time per image on the test dataset (five images in total).
As the proposed HSN employs a more complex architecture, it takes 15.87 s (3.17 s per image) to finish
inference on the five test images with an average size of 2563 × 1810 pixels. While HSN gives the
best overall accuracy, it almost doubles the inference time when compared to SegNet, which shows
the trade-off between performance and time efficiency. We also note that in [22], the authors of FPL
report an average time of 6.2 seconds for inference on the same dataset; this longer inference time for
FPL may be caused by the implementation of the network (FCN, SegNet and the proposed HSN are
implemented based on the Caffe framework, while FPL is provided in MatConvNet).

Table 7. Average inference time per image tile (on Vaihingen test set) for CNNs.

Network FCN SegNet FPL HSN

Average inference time (s) 0.78 1.54 6.2 3.17

Qualitative Results

As semantic segmentation often serves other remote sensing applications, visual output quality
plays also an important role besides pixel-wise accuracy. For a visual demonstration, Figure 6 shows
the labeling results for a complete tile, while Figure 7 zooms into certain areas showing the details of
the outputs.

From the figures, it can be seen that the shadows from tall buildings or trees pose great difficulties
for semantic labeling. For example, in Figure 7d, we can observe that the road on the left of the
building is completely shadowed by the buildings in the middle. In this case, both FCN and FPL
methods label this part as the low vegetation class. SegNet managed to detect the road existence, but
the segmentation accuracy is quite low. The proposed HSN managed to roughly tag the road. We argue
that the inception module design may contribute to this advantage, since using filters of different sizes
in one layer allows the network to access multi-scale receptive areas. This aids the network to acquire
richer contextual information, which is essential to predict pixels in occluded or shadowed regions.
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(a) TOP (b) nDSM (c) GT

(d) FCN (e) SegNet (f) FPL

(g) HSN (h) HSN + WBP

Figure 6. Full tile prediction for No. 30. Legend on the Vaihengen dataset: white: impervious
surface; blue: buildings; cyan: low vegetation; green: trees; yellow: cars; red: clutter (best viewed
in color). (a) TOP, true orthophoto; (b) nDSM, normalized DSM; (c) GT, Ground truth labeling; (d–g) the
inference result from FCN, SegNet, FPL and HSN respectively; (h) HSN + WBP, HSN inference result
after WBP post-processing.
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Figure 7. Semantic segmentation results for some patches of Vaihingen dataset. white: impervious
surface; blue: buildings; cyan: low vegetation; green: trees; yellow: cars; red: clutter (best viewed
in color). Four different tiles from Vaihingen are included: (a) a narrow passage; (b) shadowed areas
from trees and buildings; (c) cars in the shadow; and (d) building roofs with depth discontinuities.

The car class is quite difficult to deal with, since in the images, cars have various colors leading to
a large intra-class difference, whereas dark colored cars are quite similar to the road under shadows
(see Figure 7c, for example). FPL fails to label most of the cars, as shown in Figure 7c, due to shadows.
HSN successfully detects most of the cars, and the pixel-wise labeling is clear and precise compared to
the ground truth. One notes that, since the cars are rather small objects compared to the other classes
like buildings, they take fewer pixels in total which in general leads to the class imbalance problem.
Median frequency balancing puts a larger weight on the loss for the car class, compensating for its
lower occurrence rate in the training phase.

Due to limitations in GPU memory, the high resolution remote sensing image is often split
into small-sized patches to perform network inference. As explained in Section 3.3, this practice
may possibly introduce erroneous artifacts in the result. For example, in Figure 7d, in the center
of the building, both the raw results of HSN and SegNet show artifacts by mislabeling part of the
building as low vegetation. However, overlap inference effectively solves this problem by performing
multi-hypothesis prediction, whereby the class for each pixel is identified in several overlapping
patches. This always leads to more robust results compared to single-hypothesis prediction performed
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when using non-overlapping inference. Moreover, each patch provides different contextual information
for classification, which again contributes to improved classification accuracy compared to the
raw HSN.

The provided normalized DSMs help the segmentation of the buildings and trees, as for all of the
results, the building segmentation is coherent with the ground-truth. FCN results show obvious zigzags
on the class boundaries, while HSN produces sharper and more accurate boundaries (for example,
see in Figure 7d the building segment boundaries). Both the hourglass design and post-processing
with WBP contribute to this improvement. Thanks to the skip connections with residual modules,
information from the encoding stage can be passed directly to the decoding stage. In the early layers
of encoding, the data maintain high spatial resolution. Hence, when being fed forward directly
to the decoding stage, this information helps with reducing the spatial ambiguities. The WBP in
the post-processing stage encourages continuity by propagating the class confidences across pixels
throughout the output, hence making the results smoother and correcting small erroneous blobs.

4.5.2. Potsdam Dataset

Numerical Results

Table 8 shows experimental results for the Potsdam dataset. The results are organized similar to
those reported in Table 6 for the Vaihengen dataset. The F-score for each class and overall performance
are shown respectively for erGT and GT.

Table 8. Experimental results on the Potsdam dataset [42].

Methods Imp. Surf Buildings Low Veg Tree Car Clutter
Average
F-Score

Overall
Accuracy

erGT

FCN [21] 89.73 94.87 84.24 76.67 81.64 28.39 75.92 87.40
SegNet [19] 90.44 95.34 83.48 78.49 84.84 25.81 76.41 88.37

FPL [22] 90.59 95.34 83.54 75.58 85.62 17.59 74.71 88.12
HSN 91.39 95.49 83.91 78.86 86.28 17.77 75.62 88.97

HSN + OI 91.63 95.65 84.28 79.42 87.47 17.95 76.07 89.29
HSN + OI + WBP 91.77 95.71 84.40 79.56 88.25 17.76 76.24 89.42

GT

FCN [21] 87.36 93.83 81.73 74.06 76.63 29.01 73.77 85.04
SegNet [19] 88.10 94.37 81.05 75.76 79.40 24.72 73.90 86.02

FPL [22] 88.55 94.31 81.13 72.90 80.52 16.30 72.29 85.93
HSN 89.01 94.42 81.18 76.09 81.05 15.35 72.85 86.56

HSN + OI 89.26 94.60 81.54 76.63 82.08 15.36 73.25 86.89
HSN + OI + WBP 89.45 94.66 81.67 76.78 82.97 15.12 73.44 87.05

From the table, it can be seen that the raw HSN outperforms FCN [21], SegNet [19] and FPL [22]
in terms of accuracy for all but the clutter class. In terms of overall accuracy, the proposed HSN
outperforms the reference techniques, but SegNet outperform HSN in terms of average F-score and
F-score in the clutter class. Overlap inference and WBP help further improve the accuracy, leading to
higher overall performance compared to the other three network architectures.

In the Potsdam dataset, the clutter class accounts for a higher percentage of pixels than in the
Vaihingen dataset, making it non-negligible. Nevertheless, various types of objects like pedestrian,
fence, playground, constructions sets, etc., are all labeled as clutter. This high intra-class variance
makes it challenging for the networks to correctly classify clutter pixels (see Figures 8 and 9). As can
been seen from Table 8, all of the networks, except FCN and SegNet, give a F-score with values below
20 in the clutter class; Table A2 also shows that the clutter class is often mislabeled as impervious
surface and buildings. In contrast, for the building class, all networks reach a high accuracy of more
than 95%. We claim that this saturation is due to the provided nDSM channel as the height of the
surface gives a strong indication of buildings when combined with other channels’ information.
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Generally, all of the networks perform better in the Potsdam dataset compared to the Vaihingen
dataset, since the images in the Potsdam dataset have a higher spatial resolution (of 5 cm) and an extra
blue channel is available. In addition, more data are available in the Potsdam dataset, which leads to
better training of the networks.

Qualitative Results

Full tile prediction results from different networks are depicted in Figure 8. Certain clips are
selected and shown in Figure 9 to illustrate and analyze the performance of the networks.

(a) TOP (b) nDSM (c) GT

(d) FCN (e) SegNet (f) FPL

(g) HSN (h) HSN + WBP

Figure 8. Full tile prediction for tile No. 04_12. Legend on the Potsdam dataset: white: impervious
surface; blue: buildings; cyan: low vegetation; green: trees; yellow: cars; red: clutter (best viewed
in color). (a) TOP, true orthophoto; (b) nDSM, normalized DSM; (c) GT, Ground truth labeling; (d–g) the
inference result from FCN, SegNet, FPL and HSN respectively; (h) HSN + WBP, HSN inference result
after WBP post-processing.
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Figure 9. Semantic segmentation results for some patches of Potsdam dataset.white: impervious
surface; blue: buildings; cyan: low vegetation; green: trees; yellow: cars; red: clutter (best viewed
in color). Four tiles from Potsdam are included: (a) buildings with backyards; (b) parking lot;
(c) rooftops; and (d) low vegetation areas.

The buildings are always well labeled thanks to the aid provided by the nDSM channel, as shown
in Figure 8. However, in Figure 9c, the building roofs show a complex pattern, which leads to partial
mislabeling for FCN and FPL. For HSN, the inception module mitigates this problem, as it provides the
network with multi-scale contextual information. The same effect can be also observed in Figure 9b.
The label maps from both SegNet and FCN are quite noisy, with low vegetation class scattered among
the road. FPL provides better results, but still with some mislabeling, like part of the small car in the
center is labeled as tree. HSN provides a more accurate and visually improved result.

FPL infers pixel labels using a patch with a smaller size of 64 × 64 compared to the other
networks, which may lead to a restricted receptive area. As shown in Figure 9a, the court yard
behind the buildings is mislabeled as buildings, while the other two networks label the yard correctly.
As shown in Figure 9, for all three network structures, the clutter areas are hard to accurately label;
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from the same figure, we can also observe smoother borders in the class map obtained with the
proposed networks.

It is also worth mentioning that, in the Potsdam dataset, most trees are not covered with
leaves, which causes difficulties for the networks to detect and segment them accurately. As shown
in Figure 9d, trees can be barely distinguished from the surrounding grasses. All reference networks
mislabeled nearly half a part of the tree class, but HSN can still correctly distinguish the tree class from
the low vegetation.

5. Discussion

The experimental results in Section 4 prove that state-of-the-art performance on well-known
remote sensing datasets is achieved with our approach. On the Vaihingen dataset, the proposed
approach outperforms reference methods by substantial margins in terms of both average F-score and
overall accuracy. On the Potsdam dataset, it is marginally worse than SegNet in term of average F-score,
but noticeably better in terms of overall accuracy. Besides, the proposed approach systematically
performs better than FCN and FPL on this dataset. In addition, this high performance is achieved with
relatively low complexity. The number of trainable parameters in our network is just slightly higher
than that of FPL while being far lower than those of FCN and especially SegNet, which has three-times
more parameters than the proposed network.

We argue that the effectiveness of the propose approach comes from the highly complementary
characteristics of different components in the architecture. Firstly, the use of skip connection with
residual modules helps with transferring spatial information from the encoder directly to the decoder,
improving the segmentation around object borders. Secondly, the use of inception provides the decoder
with richer contextual information. This helps the network to label difficult areas such as roads, which
are shadowed and which can be correctly inferred if enough surrounding contexts are available. Richer
spatial and contextual information in the decoder also resolves the class ambiguities, especially in
high resolution images. Thirdly, the weight balancing employed during training mitigates the class
imbalance problem and improves the labeling of classes that account for a small number of pixels,
e.g., the car class. This is of particular significance when working with remote sensing data of high
resolutions. Fourthly, overlapped inference, which returns the final segmentation making use of
multi-hypothesis prediction, diminishes the patch border effects and improves the robustness of the
results. Finally, post-processing based on weighted belief propagation corrects the object borders and
erroneous small blobs and systematically improves the segmentation results both quantitatively and
visually. Combining all of these components, especially the skip connections and inception module
in the CNN, mitigates the two problems of existing approaches in the literature, namely insufficient
spatial information and lack of contextual information.

Possible directions for future research include: reducing the memory consumption while keeping
efficiency and enough spatial and contextual information for high quality segmentation; improving
the generalizability of the network by employing more data augmentation. This will be highly relevant
in some applications in which large datasets are impossible or expensive to obtain.

6. Conclusions

In this paper, we propose a novel hourglass-shape network architecture for semantic segmentation
of high-resolution aerial remote sensing images. Our architecture adopts the generic encoder-decoder
paradigm and integrates two powerful modules in state-of-the-art CNNs, namely the inception and
residual modules. The former assembles differently-sized filters into one layer, allowing the network
to extract information from multi-scale receptive areas. The latter is employed together with the
skip connection, feeding forward information from the encoder directly to the decoder, making use
more effectively of the spatial information. Furthermore, our solution for remote sensing semantic
segmentation employs (i) weighted cross-entropy loss to address the class imbalance problem in the
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training phase, (ii) overlap processing in inference phase and (iii) weighted belief propagation for
post-processing.

Extensive experiments on well-known high-resolution remote sensing datasets demonstrate the
effectiveness of our proposed approach. Our hourglass-shaped network outperforms state-of-the-art
networks on these datasets in terms of overall accuracy and average F-score while being relatively
simpler in terms of the number of trainable parameters.
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Appendix A. Confusion Matrices for Vaihingen and Potsdam Datasets

In this section, we report the confusion matrices for both the proposed HSN and the reference
techniques tested on the Vaihingen and Potsdam datasets. The values are given in percentages, and
the diagonal elements are highlighted in bold.

Appendix A.1. Vaihingen Dataset

Table A1. Confusion matrix on the Vaihingen dataset.

Reference→ Predictions↓ Imp. Surf Buildings Low Veg Tree Car

FCN

Imp. Surf 88.99 3.14 5.39 1.09 1.38
Buildings 3.89 93.21 2.22 0.57 0.11
Low Veg 5.88 2.47 74.11 17.32 0.22

Tree 0.92 0.37 9.36 89.35 0.01
Car 15.60 1.71 1.00 0.57 81.11

SegNet

Imp. Surf 91.68 2.46 3.87 1.18 0.81
Buildings 4.16 93.22 2.02 0.55 0.55
Low Veg 6.62 2.44 73.63 17.22 0.09

Tree 1.09 0.34 0.90 97.66 0.01
Car 17.31 0.80 0.90 0.72 80.27

FPL

Imp. Surf 91.66 2.24 4.47 3.96 1.24
Buildings 3.24 93.46 2.74 4.14 1.40
Low Veg 6.47 1.75 76.21 15.50 0.07

Tree 1.32 0.51 9.87 88.28 0.03
Car 10.06 1.54 2.69 0.3 85.67

HSN

Imp. Surf 92.64 2.54 3.71 0.65 0.46
Buildings 3.50 94.11 2.18 0.18 0.03
Low Veg 6.73 2.44 78.09 12.67 0.08

Tree 1.24 0.35 10.96 87.44 0.01
Car 15.91 1.96 1.22 0.32 85.59
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Appendix A.2. Potsdam Dataset

Table A2. Confusion matrix on the Potsdam dataset.

Reference→ Predictions↓ Imp. Surf Buildings Low Veg Tree Car Clutter

FCN

Imp. Surf 85.52 2.36 4.84 1.80 1.09 4.39
Buildings 1.69 93.79 1.59 1.55 0.30 1.08
Low Veg 2.24 0.74 87.19 8.30 0.12 1.41

Tree 4.01 0.88 15.06 78.54 0.87 0.64
Car 0.65 0.87 0.13 0.20 96.74 1.41

Clutter 16.87 17.99 12.83 2.87 8.27 41.17

SegNet

Imp. Surf 87.42 1.81 6.72 1.81 0.80 1.43
Buildings 2.33 94.19 1.96 0.84 0.14 0.54
Low Veg 2.22 0.57 89.44 7.34 0.04 0.38

Tree 2.97 0.94 16.04 79.07 0.81 0.17
Car 1.39 1.07 1.30 0.32 95.73 1.37

Clutter 27.13 17.68 2.18 2.87 7.54 22.60

FPL

Imp. Surf 92.08 2.54 2.42 1.00 0.29 1.66
Buildings 2.56 95.21 0.71 0.42 0.15 0.95
Low Veg 5.79 0.91 85.45 6.84 0.01 1.00

Tree 7.05 2.36 16.33 73.12 0.21 0.92
Car 4.74 2.56 0.34 2.36 83.14 6.85

Clutter 44.03 13.67 8.42 1.93 1.59 30.37

HSN

Imp. Surf 90.69 2.05 4.92 0.60 0.59 1.14
Buildings 2.45 95.06 1.13 0.66 0.20 0.51
Low Veg 4.26 0.70 87.17 7.56 0.06 0.25

Tree 3.31 0.95 17.70 77.05 0.92 0.07
Car 1.04 1.87 0.08 0.11 96.81 0.08

Clutter 37.60 26.33 12.72 2.22 7.36 13.75
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Abstract: Semantic image segmentation has recently witnessed considerable progress by training
deep convolutional neural networks (CNNs). The core issue of this technique is the limited capacity
of CNNs to depict visual objects. Existing approaches tend to utilize approximate inference in
a discrete domain or additional aides and do not have a global optimum guarantee. We propose the
use of the multi-label manifold ranking (MR) method in solving the linear objective energy function
in a continuous domain to delineate visual objects and solve these problems. We present a novel
embedded single stream optimization method based on the MR model to avoid approximations
without sacrificing expressive power. In addition, we propose a novel network, which we refer to
as dual multi-scale manifold ranking (DMSMR) network, that combines the dilated, multi-scale
strategies with the single stream MR optimization method in the deep learning architecture to further
improve the performance. Experiments on high resolution images, including close-range and remote
sensing datasets, demonstrate that the proposed approach can achieve competitive accuracy without
additional aides in an end-to-end manner.

Keywords: semantic segmentation; deep convolutional neural networks; manifold ranking;
single stream optimization; high resolution image

1. Introduction

Semantic image segmentation, which aims to classify each pixel into one of the given categories,
is an important task for understanding [1–3] and inferring objects [4–6] and their observed relations in
a scene. As a bridge towards high-level tasks, semantic segmentation is adopted in various applications
in computer vision and remote sensing areas, such as autonomous vehicle driving [2,7,8], human pose
estimation [9–11], remote sensing image interpretation [12–16], and 3D reconstruction [17–19]. Over the
last five years, remarkable success in the semantic scene labeling area has been gained through the
usage of convolutional neural networks (CNNs) [20–26] in dense prediction. Naturally, the ability to
express the complex input–output relationships and the efficiency of integrated into the end-to-end
learning framework are attributed to fully convolutional neural networks (FCNs).

Generally, recent semantic segmentation methods have often been formulated to convert
the architecture of existing CNNs to FCNs [22,23,27–29]. Coarse pixel-wise labeling is obtained
by multi-scale and dilation strategies, whereas the fine segmentation is conducted by optionally
integrating contextual information into the output map. Although active research has been conducted
on these aspects, semantic image segmentation remains a challenging issue because of the complexity
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of balancing contextual information and pixel-level accuracy [24,26,29–31]. Contextual relationships
model the interactions between predicted labels and provide structured cues for dense prediction.
In addition, various approaches in formulating compatible relations within contextual information
have been proposed for performance improvement. A dominant paradigm for modeling contextual
relationships advocates the use of the conditional random field (CRF), which computes unary and
pairwise potentials for further refinement, on top of CNNs [25,26,32]. By combining CRF and FCNs,
the interactions between the predicted labels and the contextual information are well counterpoised.
A few of these approaches utilize the pairwise or higher order CRF [33,34] as a post-process on FCN
output to preserve sharp boundaries, while others formulate pixel-wise labeling problems with the
CRF in conjunction with FCNs [26,35] in a unified framework and train in an end-to-end manner.

These leading approaches perform dense prediction in a discrete domain, and hence end with
learning approximate mean-filed inference or graph model optimization in a fixed number of iterations.
However, these methods require additional aides and do not guarantee the convergence of the inference
process to the global or even local optimum [26,35]. Therefore, the efficiency of the expressive power
might be lost if the uncertainty of the predicted label increases in each iteration.

In this paper, we propose a novel approach to address the issues mentioned. In contrast to the
approaches optimized in the discrete domain, we formulate the pixel-wised labeling issue as a special
case of manifold ranking (MR) problem in a continuous domain on top of CNNs. Motivated by [36–39],
we observe that the MR model has a unique global optimal solution and is guaranteed to converge as
a type of graphical model. Moreover, global optimum can be efficiently obtained by solving a linear
equation. Unlike the Gaussian graphical models [26,35] that are performed in unary and pairwise
streams in the sub-networks, we use the embedded manifold ranking optimization method only on
a single stream by constructing the Laplacian matrix generated from possible pairs of vertices.

Numerous strategies without CRF optimization have been established to improve the semantic
segmentation accuracy in the FCN or deconvolution manner, and each of them has its own
superiorities [25–27,29,35,40]. In order to take these advantages, we propose a framework called dual
multi-scale manifold ranking (DMSMR) network to estimate the predicted labels in an end-to-end
fashion. In each scale, the dilated and non-dilated convolution layers are jointly optimized by MR.
With the dual multi-scale contextual information, the combined results achieve competitive accuracy
without any additional aides. An overview of our proposed approach is illustrated in Figure 1.

We conduct experiments on high spatial resolution remote sensing and close-range images to
validate the effectiveness of the proposed approach. Both high spatial resolution remote sensing
and close-range images are rich in details, such as texture and color information. The close-range
images can be viewed as a special kind of high-resolution images and can guide us to find better CNN
architectures to deal with high-resolution remote sensing images. In summary, the main contributions
of our work are as follows:

(1) Multi-label MR graphical model for semantic segmentation. Unlike existing approaches
that utilize the CRF as the post-processing or approximate inference in the discrete domain, we propose
to model the MR method for semantic segmentation in a continuous domain. Our model is end-to-end
optimization that can be linearly solved and guarantee a global optimal solution.

(2) Embedded feedforward single stream optimization method. In contrast to Gaussian
graphical models, we propose an embedded single stream technique that requires only the Laplacian
matrix obtained from pairs of vertices, which makes the gathering of the low-level cues as the contextual
information more efficient.

(3) Dual multi-scale manifold ranking network. We adopt the multi-scale strategy to construct
the dual-dilated and non-dilated networks and jointly optimize them with MR in a unified framework
for semantic image segmentation. Our model is the first work to back propagate through manifold
ranking and integrate it to deep learning architecture in the area of remote sensing.
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Figure 1. Dual multi-scale manifold ranking (DMSMR) network overview. For each dilated convolutional
layer, a non-dilated convolution layer is applied following the pooling layer in each scale. The dilated and
non-dilated convolution layers form a dual layer, in which the corresponding layers are optimized with the
embedded feedforward single stream manifold ranking network. The scale factor is implicitly represented
by the pooling layer in each block. Figure 2 illustrates how to embed the manifold ranking optimization
method into the single stream network (marked with orange color in this figure). The optimized outputs
of each scale, that is, F̂l generated in each scale, are combined by Equation (17).

2. Related Work

In the past decade, convolutional networks have been driving advances in object recognition.
Therefore numerous semantic segmentation tasks have preferred to conduct dense prediction based
on CNNs in both computer vision and remote sensing areas.

In [21,41,42], each semantic object is refined from region proposals by CNN features. In contrast
to these instance-awarded methods, Mostajabi et al. [20] and Dai et al. [43] sought to preserve the shape
information for dense labeling from superpixel-wise proposal segments. Unlike these approaches,
Farabet et al. [44] trained on the entire image with a multi-scale strategy and labeled each pixel with
the category of the object to which it belongs. A remarkable breakthrough was recently made by
Shelhamer et al. [22]. In their approach, the contemporary classification networks are converted
into fully convolutional networks (FCNs) and the fully connected layers in standard CNNs are
viewed as convolutional layers with large receptive filed. Yu et al. [23] presented a dilated module
to the FCNs to further broaden the receptive filed on the convolution layer. Instead of adopting the
“convolution by pooling” schema in the classification task, they used a dilated rectangular prism on the
convolution layer to preserve the receptive field. Similar strategies were proposed by Chen et al. [24,45]
in the DeepLab framework. With the “hole” algorithm, a fast dense prediction is allowed on
modern GPUs. More recently, Bearman et al. [46] exploited a point-wise annotation for semantic
segmentation, which creatively makes a better trade-off between training annotation cost and accuracy.
In the area of remote sensing, Camps-Valls and Romero et al. [47,48] proposed the use of greedy
layer-wise unsupervised pre-training that learns sparse features for remote sensing image classification.
Tschannen et al. [49] introduced a structured CNNs that employed Haar wavelet-based trees for
identifying the semantic category of every pixel of remote sensing image. Piramanayagam et al. [50]
further exploited a multi-path CNNs that support both true ortho photo and digital surface model
(DSM) for land cover classification. Marcu et al. [51] presented a dual path, that is VGG-Net path and
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AlexNet path, to learn local and global representations of aerial images. Yuan et al. [52] also conducted
a dual clustering approach to select optimal bands for hyperspectral remote sensing images. A few of
these approaches are derived from basic FCNs model and utilize different strategies, such as multi-scale
pyramid pooling, dilated convolution, dual-path representations and symmetric structures, to improve
the inner stability of CNNs. Nevertheless, these networks still need to be properly initialized from
pre-trained model or additional aides and may lack of contextual information.

As special extensions to basic FCNs, the symmetric encoder/decoder structures are further
exploited by numerous recent approaches. The symmetric structures are able to delineate finer details
of the upsampled output. In [27,53], Kendall and Badrinarayanan et al.presented a novel semantic
pixel-wise segmentation architecture called SegNet. The architecture comprises an encoder that
corresponds to the 13 convolutional layers in the VGG-16 [54] model and a decoder that maps
the final features up to the full original image resolution. A similar schema was proposed by
Hong and Hyeonwoo et al. [28,55]. The deconvolution network is composed of convolution and
unpooling layers, thereby mitigating the limitations of the existing methods based on FCNs and
handling the object in multi-scale space. Such symmetric structures were also applied to remote
sensing image processing. Audebert et al. [56] exploited the symmetric encoder-decoder structure to
detect, segment and classify different varieties of wheeled vehicles from aerial images. Huang et al. [57]
further presented two symmetric encoder-decoder structures to fine-tune the networks from RGB
and NRG bands. Audebert et al. [58] combined the SegNet with SVM to generate the geometrically
corrected orthophoto. These symmetric structures reduce possible loss in the uppooling procedure of
CNNs. However, these approaches may suffer from the bottleneck of GPU memory and contextual
information embedding in terms of training remote sensing images.

To overcome the above issues, various recent approaches use discrete CRF models on top of
CNNs. The CRF is an effective optimization method that can further boost the performance of semantic
segmentation. By exploiting more contextual information, the rough segments are able to infer the
relationship with their surround pixels. In [32], dense CRF [33,40] was proposed for the first time
to improve accuracy by utilizing CRF as a post-process with more contextual information for fine
predictions on top of CNNs. To make better use of contextual cues, Lin et al. [29] exploited an efficient
“patch-patch” and “patch-background” schema to improve the performance by the CRF optimization
framework. Unlike [24], Zheng et al. [25] introduced a mean-filed approximate inference for CRF
that has the advantages of CNNs and CRF and is easily incorporated to the CNNs. Furthermore,
Vemulapalli et al. [35] and Chandra et al. [26] proposed the use of simple Gaussian conditional random
field (G-CRF) for the task of structured prediction. In [59], CNN features and hand-crafted features
were combined to parse remote sensing images. Alam et al. [60] further introduced a framework
that combined with mean-field CRF inference and performed superpixel-level labellings on remote
sensing images. Sherrah [60] exploited the effectiveness of CRF post-processing approaches on top of
CNNs and analyzed the major differences between close-range and remote sensing images in terms
of contextual information. However, these methods either serve as a post-process or end up with
mean-filed approximation and do not guarantee a global optimum.

Hence, we combine CNNs with the MR method, which guarantees a global optimum in a
unified framework without additional aides. The multi-scale, dilated convolution strategies are also
incorporated on top of CNNs to better delineate visual objects in remote sensing images. The MR
method presented in [36,37,39] is an effective graph-based ranking method that aims to find the
underlying cluster or manifold structure from the given datasets. For a query data, MR seeks to rank the
neighborhood relevance to the query. Unlike the CRF, the optimal ranking solution is linearly solved by
constructing the Laplacian matrix [61] from the neighbor contextual information, guaranteeing a global
optimal solution in the continuous domain. Quan [62] et al. exploited such characteristics and utilized
the MR based co-segmentation strategy to find the common objects contained in a set of relevant
images. Wang et al. [63] presented an effective approach for salient band selection for hyperspectral
image classification via MR. They put the band vectors in a more accurate manifold space and treats the
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salient band selection problem from a ranking perspective. Moreover, the MR method has been applied
to estimate the status of many other complex low-level vision tasks, such as saliency detection [38,64],
image retrieval [65,66] and visual tracking [67]. Considering that the semantic segmentation task also
has a manifold structure, in which each pixel is first assigned several probabilities (ranking) that belong
to the given categories (underlying clusters) and then the maximum probability is obtained from
them, we apply the MR method embedded in CNNs to exploit the efficient global optimal solution to
semantic segmentation. Combined with dilated, multi-scale strategies, the MR method, which can
further establish the foundation of the dense prediction task in an end-to-end manner, is introduced
into this field.

3. Manifold Ranking Formulation

The goal of graph based manifold ranking is to find the rank of a neighborhood relevance to the
query node. Learning the objective function, which defines the relevance of neighbor nodes and query,
is necessary to achieve this goal. In this section, we briefly describe the manifold ranking algorithm
in a binary case and further extend it to multi-label situations that can be applied to the semantic
segmentation task.

3.1. Binary Manifold Ranking

In [65], a binary ranking method was presented to exploit the manifold structure of the dataset.
Given a set of data χ = {x1, x2, · · · xi · · · xn} ⊂ 	n, a graph G = (V, E) with vertices v ⊂ V and edges
e ⊂ E can be built on the dataset. The weight between two vertices vi ∈ V and vj ∈ V connected by
the edge eij ∈ E is denoted by wij, which is commonly obtained by the Gaussian weighting function,

that is wij = exp
(
−γ

∥∥xi − xj
∥∥2

)
. In addition, the degree of a vertex vi is given by di = ∑

j
wij. If we

let f : R2 → Rn as a ranking function that assigns each point xi two ranking scores f0 (xi), f1 (xi),
and y = [y1, y2, · · · yn]

T as a binary indication vector in which yi = 1 if f1 (xi) > f0 (xi) and yi = 0
otherwise, then the normalized Laplacian matrix L is computed as follows:

L = D− 1
2 WD− 1

2 , (1)

where D = diag{d1, d2, ..., dn}, W =
[
wij

]
and each element Lij in the normalized Laplacian matrix L

is given by

Lij =

⎧⎪⎪⎨⎪⎪⎩
−wij if i and j are connected

di if i = j

0 otherwise

. (2)

And the optimal ranking score vector is obtained by solving the following manifold ranking
energy function associated with f:

E (f) = arg min
f

∑
vi∈V

‖f (xi)− f∗ (xi)‖2 + λ ∑
eij∈E

wij
∥∥f (xi)− f

(
xj

)∥∥2, (3)

where f =
[

f (x1) f (x2) ... f (xi) ... f
(
xj

)
... f (xn)

]T
, f (xi) =

[
f0 (xi) f1 (xi)

]T
and

f∗ (xi) =
[

f0
∗ (xi) f1

∗ (xi)
]T

is the corresponding posterior probability for each point xi. The first
term in the energy function is a data term that encodes the intrinsic structure of the given dataset,
and the second term is a smoothness term that demonstrates the compatibility of the query data with
its neighbors. By minimizing the energy function, we obtain the optimal ranking scores f̂ through the
following close form
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f̂ = (I + 2λD− 2λW)−1f∗

= (I + 2λL)−1f∗
, (4)

where f̂ =
[

f̂ (x1) f̂ (x2) ... f̂ (xi) ... f̂
(
xj

)
... f̂ (xn)

]T
, f̂ (xi) =

[
f̂0 (xi) f̂1 (xi)

]T
,

f∗ =
[

f∗ (x1) f∗ (x2) ... f∗ (xi) ... f∗ (xn)
]T

, D is the degree of the vertices, W is the
compatibility matrix as mentioned in Equation (1), L is the unnormalized Laplacian matrix which is
calculated as L = D−W, λ is the regulation coefficient, and I is the identity matrix. Given the optimal
ranking score, the corresponding optimal indicator ŷi for each query point xi can be achieved by:

ŷi =

{
1 if f̂1 (xi) > f̂0 (xi)

0 otherwise
. (5)

3.2. Multi-Label Manifold Ranking

In the previous subsection, we introduced the basic optimal manifold ranking solution to a binary
label case in which each data has a unique binary indicator. In this section, we extend the binary MR
solution to a multi-label situation and apply it to the semantic image segmentation task. As previously
mentioned, given a set of pixels {pi}M×N

i=1 ∈ P in an image IM×N , the semantic segmentation task
aims to classify each pixel pi to one of the K possible classes. In other words, each pixel pi is assigned
to the index of the K variables that has the highest ranking score. If we let fk (pi) denote the ranking
score of the kth class, then the assigned label for pixel pi is

y∗l ( f ) = arg max
k∈{1,2....K}

fk (pi) , (6)

where k also stands for the index corresponding to the ranking score fk (pi) in each pixel.
Although our objective is to assign each pixel pi an optimal discrete label y∗l , we first find the

optimal ranking vector f̂ (pi) =
[

f̂1 (pi) f̂2 (pi) ... f̂i (pi) ... f̂ j (pi) ... f̂K (pi)
]T

and then

obtain the optimal ranking score fk
max (pi) = max { f̂1 (pi) , f̂2 (pi) , ..., f̂K (pi)} of each pixel pi in the

continuous domain. Once we find the maximum ranking score for each pixel , we can easily assign
each pixel pi a discrete label using Equation (6).

In order to compute the optimal ranking score vector f̂ (pi) for the multi-label situation, we extend
the Equation (3) to the generalized energy function as follows:

E
(

f̃
)
=arg min

f̃

∑
vi∈V

μi

∥∥∥f̃ (pi)− f̃
∗
(pi)

∥∥∥2
+λ ∑

eij∈E
wij

∥∥∥f̃ (pi)− f̃
(

pj
)∥∥∥2

, (7)

where f̃ =
[

f̃ (p1) f̃ (p2) ... f̃ (pi) ... f̃
(

pj
)

... f̃ (pn)
]T

, f̃ (pi) =
[

f̃1 (pi) f̃2 (pi) ... f̃K (pi)
]T

and

f̃
∗
(pi) =

[
f̃ ∗1 (pi) f̃ ∗2 (pi) ... f̃ ∗K (pi)

]T
is the posterior probability vector for each pixel pi.

The corresponding cost function in matrix form is

L
(

F̃
)
= 2λTrace

(
F̃

T
(

D̃− W̃
)

F̃
)
+Trace

((
F̃− F̃

∗)T
Dμ

(
F̃− F̃

∗))
= 2λTrace

(
F̃

T
L̃F̃

)
+Trace

((
F̃− F̃

∗)T
Dμ

(
F̃− F̃

∗))
,

(8)

where D̃ and W̃ are the matrices accounting for the degree of the vertices and the compatibility for the
multi-label case, L̃ = D̃ − W̃ denotes the unnormalized Laplacian matrix in a multi-label situation,
Dμ = diag{μ1, μ2, ..., μn} is a diagonal matrix containing the regulation coefficients μi for the data
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term, and F̃ ∈ 	(M×N)×K and F̃
∗ ∈ 	(M×N)×K are built from the ranking score vectors f̃ (pi) ∈ 	K and

f̃
∗
(pi) ∈ 	K, respectively.

The solution is optimal if the derivative of F̃ ∈ 	(M×N)×K yields zero in the Equation (8). Specifically,

dL
(

F̃
)

dF̃
= 4λF̃

T
L̃ + 2

(
F̃− F̃

∗)T
Dμ = 0. (9)

Therefore, the optimal solution to Equation (8) is

F̂ =
(

2λ
(

D̃− W̃
)
+ Dμ

)−1
DμF̃

∗

=
(

2λL̃ + Dμ

)−1
DμF̃

∗
.

(10)

4. Deep Multi-Scale Manifold Ranking Network

In order to incorporate the proposed multi-label manifold ranking algorithm into CNNs, we first
embed the single stream manifold ranking method in a feedforward schema [20] into the network.
Figure 2 shows how the MR optimization method is embedded to the single stream network.
By exploiting the derivative of the learned parameters with respect to the loss function in the
feedforward network, the required parameters can be trained in an end-to-end manner. Then,
a DMSMR network is constructed, in which the dilated [23] and non-dilated networks are jointly
optimized through the multi-scale feedforward manifold ranking method.

Figure 2. The embedded feedforward single stream manifold ranking optimization network.
The output of the convolutional features that upsample to full image resolution for each class, such as
road, sky and building, within the CamVid dataset [68,69] depicted in the figure, serves as the initial
manifold ranking score F̃

∗
to be optimized. By applying the feedforward MR inference with the

contextual information extracted from the input image, the optimal MR score F̂ of each class can
be obtained by Equation (10). The only requirement for the proposed network is the multi-label
neighborhood relationship, which is designed for constructing the Laplacian matrix L̃ in a single stream
rather than the unary and pairwise streams presented in [26,29].

4.1. Embedded Feedforward Single Stream Manifold Ranking Optimization

Calculating the derivative of the learned parameters with respect to the loss is necessary to train
the embedded multi-label MR network. In the following subsection, we describe the inference
procedure for the manifold ranking algorithm in detail and describe the mathematical form of
the derivatives.
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4.1.1. Manifold Ranking Inference

As previously mentioned, the key to manifold ranking is seeking the neighborhood relevance
to the query. For the semantic segmentation task, we model the neighborhood relevance, that is,
the smoothness term in Equation (7), as follows:

k
(

fi, f j

)
= wij

∥∥∥f̃ (pi)− f̃
(

pj

)∥∥∥2
=αk1

(
fi, f j

)
+βk2

(
fi, f j

)
=α exp

⎛⎜⎝−
∥∥∥pi − pj

∥∥∥2
+

∥∥∥Ii − Ij

∥∥∥2

2σ2
1

⎞⎟⎠+β exp

⎛⎜⎝−
∥∥∥pi − pj

∥∥∥2

2σ2
2

⎞⎟⎠ ,
(11)

where the first kernel (Here the notation “kernel” refers to Potts model.) k1
(

fi, f j
)

measures the color
likelihood nearby and the second term k2

(
fi, f j

)
weights the spatial position correlation. α and β

are the smoothness coefficients. Ii and Ij are the image intensities, pi and pj denote the position of
neighbor pixels, σ1 and σ2 are the degrees of nearness and similarity, respectively.

Our formulation is based on the energy hypothesis proposed in Equation (7), and the inference
to this energy function for semantic image segmentation is provided by Equation (10). Given the
smoothness relationship in Equation (11), we can easily setup a single stream manifold ranking neuron
from the compatibility matrix W̃. We only need to learn the smoothness coefficients α, β and the
compatibility matrix W̃ in a single stream rather than two streams in the network, that is, the unary
and pairwise streams presented in [26,29].

In our work, the preceding parameters are determined by the stochastic gradient descent (SGD)
algorithm [70]. The loss between the predicted label y∗l in Equation (6) and the ground truth y is
indicated by Ψ

(
y∗l , y

)
. Therefore, the derivative of y∗l with respect to Ψ

(
y∗l , y

)
can be represented as

∇Ψ =
∂Ψ

∂y∗l
. (12)

In our experiment, we use softmax loss as the loss function. In order to learn the smoothness
coefficients α, β and compatibility matrix W̃ via SGD, the derivatives of these parameters, that is, ∂Ψ

∂α ,
∂Ψ
∂β , ∂Ψ

∂W̃
, for loss function are necessary.

4.1.2. Derivative to Smoothness Coefficients

The derivative of loss function in terms of smoothness coefficients α, β can be obtained by the
chain rule shown below:

∂Ψ

∂α
= ∇Ψ · ∂y∗l

∂α
= ∇Ψ · δ · k1

(
fi, f j

)
(13)

∂Ψ

∂β
= ∇Ψ · ∂y∗l

∂β
= ∇Ψ · δ · k2

(
fi, f j

)
(14)

where δ is the delta function for the derivative result of F̃ with respect to y∗l , k1
(

fi, f j
)

and k2
(

fi, f j
)

are the smoothness kernels.

4.1.3. Derivative to Compatibility Matrix

Similar to the derivative to smoothness coefficients, the derivative of the compatibility matrix W̃

with respect to the loss function can be represented as

∂Ψ

∂W̃
= ∇Ψ · ∂y∗l

∂W̃
= ∇Ψ · δ · ∇Ψ ⊗ F̃, (15)

where F̃ is the linear solution to manifold ranking energy function in Equation (8), ⊗ denotes the
Kronecker product, and δ and ∇Ψ represent the same as those in Equation (14).
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4.2. Dual Multi-Scale Manifold Ranking Network

The recent works [23,26–28] shows that the CNNs have a remarkable capacity to implicitly
represent a feature in a multi-scale space. The capacity of CNNs to find objects is dramatically
improved by training the dataset with varying kernel sizes or pooling rates (i.e., in an atrous spatial
pyramid pooling (ASPP) [24] schema). Meanwhile, the dilated rectangular prism of convolution
layers [23] is a natural choice for boosting the performance and broadening the receptive field in
each layer.

In our proposed network, we use a dual approach to handle the scale variability for the semantic
image segmentation task. On the basis of the work presented in [71], the dual approach aims to
minimize the residual produced by dilated and non-dilated networks in each scale. Let F̂l : R → R

be a discrete function that denotes the optimized ranking score with scale factor of l in a given
convolutional layer and s : Ωs → R be the dilation filter in this layer. The objective function for the
DMSMR network can be represented as follows:

Δ = Θ
((

F̂l ∗ s
)
(x) , F̂l (x)

)
=

1
2

∥∥∥θ1

(
F̂l ∗ s

)
(x)− θ2F̂l (x)

∥∥∥2
,

(16)

where Θ (·) denotes the objective function that measures the output difference between the dilated and
non-dilated layers, x is the input obtained from the non-dilated convolutional layer with a scale factor
of l − 1, ∗ is the dilated convolution operator, and θ1 and θ2 represent the weights for the dual outputs,
that is, the dilated output

(
F̂l ∗ s

)
(x) and the non-dilated output F̂l (x), respectively. The objective

function in Equation (16) models how to combine the dilated and non-dilated layers in the l scale.
The final results from all the scales are fused by the following equation:

F =
1
N

N

∑
l=1

F̂l , (17)

where F is the fusion result for the multi-scale space, and N is the total number of scales. Figure 1
illustrates the corresponding relation.

5. Experiments

We have devised two groups of experiments on high resolution datasets, including close-range
images (PASCAL VOC dataset and CamVid dataset) and remote sensing images (ISPRS Vaihingen
dataset and EvLab-SS dataset), to validate the effectiveness of our model and find the approach that
can be potentially applied to remote sensing image processing. For fair evaluation, the first group,
which includes the PASCAL VOC dataset [72] and ISPRS Vaihingen dataset [73], is designed for
comparison with a few recent state-of-the-art methods whose results are publicly available online.
In this group, we evaluate our model by submitting the results to the server, wherein the ground
truth of testing images are not available to all researchers. The second group, which includes
the CamVid dataset [68,69] and the EvLab-SS dataset (See Section 5.2.2), is used to evaluate the
capacity of the proposed DMSMR approach by comparing the methods that employ only one of
the three strategies, namely, multi-scale convolution (MS), broader receptive field (Dilated) and MR
optimization (MR-opti) approaches. The detailed structures of the network with different strategies
are explained in the Appendix (See Figure A1 and Table A1).

In our DMSMR model, the first five blocks are developed from the standard VGG-16 [54]
structures, which comprise convolutional and non-dilated convolutional layers. The dilation kernel
sizes are 6, 4, 2, 2, and 1 pixels. For each scale, the pooling layer is followed by the non-dilated layers,
which comprise three convolutional layers. The parameters of our implementation are shown in detail
in Table 1. The dilated and non-dilated layers are optimized with single stream manifold ranking
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algorithm and fused by Equation (17). The structure is illustrated in Figure 1. In the table and figure,
the “ReLU” active function [74] is implicitly employed in each convolutional layer. In our model,
all layers are randomly initialized without using the pre-trained VGG-16 model. The hyper-parameters,
such as learning rate, momentum and weight decay, are confirmed via cross validation. The entire net
is trained in an end-to-end manner using SGD algorithm. σ1 and σ2 in Equation (11) are both set to 3.0
as in [32] in our experiments.

The proposed architectures are implemented using Caffe [75] in a Win7 x64 platform running on
an Intel I7-4790 CPU @ 3.6 GHz with a single GeForce GTX 1070 (8 GB RAM). Our model requires
only 5523 MB of GPU memory. The source code is implemented with C++ and the model is publicly
available at http://earthvisionlab.whu.edu.cn/zm/SemanticSegmentation/index.html.

Table 1. Detailed implementation of the DMSMR networks.

(a) Dilated Convolutional Layers

Scale (Block) Name Kernel Size Pad Dilation Stride Number of Output

0 input - - - - 3

1
conv1-1 3 × 3 6 6 1 64
conv1-2 3 × 3 6 6 1 64
pool1 3 × 3 1 0 2 64

2
conv2-1 3 × 3 4 4 1 128
conv2-2 3 × 3 4 4 1 128
pool2 3 × 3 1 0 2 128

3
conv3-1 3 × 3 2 2 1 256
conv3-2 3 × 3 2 2 1 256
pool3 3 × 3 1 0 2 256

4
conv4-1 3 × 3 2 2 1 512
conv4-2 3 × 3 2 2 1 512
pool4 3 × 3 1 0 1 512

5
conv5-1 3 × 3 2 2 1 512
conv5-2 3 × 3 2 2 1 512
pool5 3 × 3 1 0 1 512

- fc6 3 × 3 1 1 1 1024
fc7 1 × 1 0 1 1 1024

* fc8 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12

(b) Non-Dilated Convolutional Layers

Scale (Block) Name Kernel Size Pad Dilation Stride Output Size

1
pool1-conv-1 3 × 3 1 1 4 128
pool1-conv-2 1 × 1 0 1 1 128
pool1-conv-3 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12

2
pool2-conv-1 3 × 3 1 1 2 128
pool2-conv-2 1 × 1 0 1 1 128
pool2-conv-3 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12

3
pool3-conv-1 3 × 3 1 1 1 128
pool3-conv-2 1 × 1 0 1 1 128
pool3-conv-3 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12

4
pool4-conv-1 3 × 3 1 1 1 128
pool4-conv-2 1 × 1 0 1 1 128
pool4-conv-3 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12
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5.1. Experiment on Close-Range Dataset

As a special kind of high resolution image, close-range imagery is rich in details. Many of the
recent breakthroughs [12–14,49,50,76] in the remote sensing area used pre-trained models on this kind
of high resolution images. We adopt the PASCAL VOC dataset [72] and the CamVid dataset [68,69]
for training and testing and to evaluate the proposed approach on close-range images. The PASCAL
VOC dataset is a golden standard measurement for semantic segmentation evaluation. Meanwhile the
CamVid dataset comprises a small number of training images, and is a reasonable choice for evaluating
the intrinsic capacity of the network that employs different strategies.

5.1.1. Evaluation on PASCAL VOC

The PASCAL VOC 2012 segmentation dataset comprises 20 object classes and one background
class with 1464, 1449 and 1456 images for training, validation and testing, respectively. In our
experiment, we use the extra annotations provided by [77], thus obtaining a total of 10582 augmented
training images [77,78]. For our model, we resize the images to 321 × 321 pixels as in DeepLab
model [24] and evaluate the model by remotely submitting the predictions to the test server (Our result
on PASCAL VOC dataset is available at http://host.robots.ox.ac.uk:8080/leaderboard). The evaluation
metric is the standard Intersection-over-Union (IoU) averaged across the 21 classes. In our experiment,
we train the model with the initial learning rate, momentum and weight decay 1e-9, 0.9 and 0.0005,
respectively. The momentum and weight decay terms are utilized as suggested in FCNs framework [22].
In addition, the learning rate is confirmed via cross validation. The initial parameters for smoothness
coefficients α and β are set to 3 and 5, respectively. The drop-out layers are removed in our proposed
approach. Our network converges after 60,000 iterations with a mini-batch size of 8.

Numerous methods have been applied to the PASCAL VOC 2102 dataset and achieve the high
accuracy. However, the complexity has been increasing due to the gradual addition of aides, which
unfortunately does not reveal the true performance of the deep architecture as stated by Kendall et al. [27].
Our work in this benchmark do not aim to obtain the top score using additional aides, such as CRF
post-processing [24], region proposal [28], multi-stage inference [25], and pre-trained model from other
dataset (e.g., Microsoft COCO [79]). Instead, we seek to improve the performance by applying three
main strategies, which include multi-scale convolution, a broader receptive field, and a single stream MR
optimization method, to jointly upgrade the intrinsic structure of the network. The multi-scale strategy
has the advantage of deep architecture because the potential scale is implicitly expressed by a pooling
layer in the CNN. The broader receptive filed is captured by a dilated operation [28], thus preventing the
loss of resolution. By contrast, the feedforward single stream MR optimization method allows obtaining
the optimal solution without the complicated inference procedure and can be trained in an end-to-end
manner. Though we embed the feedforward MR optimization algorithm into the network, the optimal
solution can be solved linearly rather than in a multi-stage inference schema.

Table 2 presents the results of the comparison to recent methods, and a few of the corresponding
intuitive results are depicted in Figure 3. In the table, we compare our method with several models that
can be potentially applied to remote sensing area. We choose the listed models rather than all top scored
approaches for the following reasons. First, the model should utilize as less additional aides as possible.
Additional aides can hide the true performance of a network and are not easily transplanted to remote
sensing application. Several models on the table, such as FCN-8s [22], DeconvNet [28] and SegNet [27],
have been applied to process remote sensing images. Second, the selected model needs to be tested on
PASCAL VOC 2012 server and does not repeat with previous methods. Algorithms, such as DeepLab [24],
CRF-RNN [25], DilatedConv [28], and G-CRF [35], are milestones on PASCAL VOC 2012 benchmark and
satisfy such requirements. Third, training the model is not too much time consuming, especially when
dealing with remote sensing images, which are usually bigger than close range indoor/outdoor images.
The recent state-of-the-art approach, such as RefineNet [80], employs ResNet-101 structures that may
suffer from high GPU consumption and need MS-COCO dataset support. In the area of remote sensing,
however, we do not have the large number extensions of labeled samples for training.
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In the Table 2, the proposed DMSMR performs significantly (averaged approximately eight
points) better than the similar methods without additional aides (methods without qualifying
comments in Table 2). This is because our method is composed of the dilated, multi-scale strategies and
has characteristics that complement to a few basic networks, such as SegNet [27], dilated convolutional
network [28] and DeepLab-Msc [24]. Compared to recent methods, such as CRF-RNN [25] and
G-CRF [35], our method achieves a similar score by optimizing with a single stream MR algorithm in
an end-to-end manner. However, our approach does not require multi-stage inference or training two
streams (i.e., unary term and pairwise stream, with unary initialized by other networks). Furthermore,
some approaches, such as DeepLab [24], have a worse result when they do not use all of the
additional aides with a pre-trained model. However, our model yields superior results without
these pre-trained weights.

(a) Input (b) SegNet (c) FCN-8s (d) DeepLab-Msc (e) DilatedConv (f) DeconvNet (g) DMSMR (h) GT

Figure 3. Several semantic segmentation results on PASCAL VOC 2012 validation images. DMSMR:
Semantic segmentation result predicted by dual multi-scale manifold ranking network. GT: Ground Truth.

5.1.2. Evaluation on CamVid

CamVid dataset [68,69], which is captured from high-definition (HD) video sequences with high
quality, is designed for the road scene understanding. However, a relatively few number of images
exist for training purpose. The dataset comprises 367 training images, 101 validation images and
233 testing images. The challenge data contains 11 semantic object classes which are downsampled to
640× 480 pixels.

The overall training parameter settings for this dataset are as follows. The learning rate,
momentum and weight decay are set to 1e-3, 0.9 and 0.0005, respectively. The momentum and
weight decay terms are utilized as suggested in FCNs framework [22]. In addition, the learning rate is
confirmed via cross validation. The proposed network is trained at the default resolution of 640 × 480
with a mini-batch size of 2. The initial values for α and β are set to 3 and 5, respectively, through cross
validation. Our network converges after 40,000 iterations.
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We employ the pixel mean intersection over union (mIoU) measurement with respect to the
band width around the object boundaries as in [24] on the CamVid benchmark to analyze the
expressive power of the proposed DMSMR network. The experimental results are illustrated in
Figure 4. The comparisons between the DMSMR approach and the networks employing different
strategies are reported in Table 3. We also analyze the accuracy change with respect to boundary
in Figure 5. As shown in Figure 5a, we consider a narrow band, that is, trimap [81] boundary,
on CamVid dataset. A trimap divides an image into three regions of foreground, background and
unknown. Figure 5b shows boundary accuracy as the trimap width is varied. In this experiment,
we set the same parameters as those in the DMSMR model but with different strategies as previously
stated. The three strategies, namely, multi-scale convolution (MS), broader receptive field (Dilated)
and manifold ranking optimization (MR-Opti) approaches, are utilized for comparison. Obviously,
different strategies yield different performance for each of the classes. The MS and Dilated approaches
help boost the performance in the situation where color and texture are uniformly distributed.
In addition, the MR-Opti achieves a score that is approximately 2.5% better than those of the MS and
Dilated methods because more contextual information are considered. The results demonstrate that
the combination of MS, Dilated and MR-Opti approaches is possibly a better approach for semantic
segmentation task on close-range images. Figure 5 shows that improving the recognition of pixels
around the boundary helps delineate the object because the smoothness potentials of the correctly
detected pixels increase. Additionally, as can be seen from Table 3, the DMSMR method outperforms
the approaches that employ only one strategy, indicating that the DMSMR approach can improve the
semantic segmentation result further by combing these strategies in close-range situations.

(a) Input (b) Before (c) MS (d) Dilated (e) MR-Opti (f) DMSMR (g) GT

Figure 4. Semantic segmentation results on CamVid images. DMSMR: Semantic segmentation result
predicted by dual multi-scale manifold ranking network (DMSMR). GT: Ground Truth.
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Figure 5. Accuracy analysis with respect to boundary on CamVid dataset. (a) Trimap visualization on
CamVid dataset. Top-left: source image. Top-right: ground truth. Bottom-left: trimap with one pixel
band width. Bottom-right: trimap with three pixels band width. (b) Pixel mIoU with respect to band
width around object boundaries. We measure the relationship of our model before and after employing
the multi-scale (MS), dilated convolution (Dilated), single stream Manifold Ranking (MR-Opti) and
joint strategies (DMSMR).

Table 3. Quantitative evaluation of the semantic segmentation results on CamVid dataset [68,69].
The proposed DMSMR approach outperforms the methods employing only one strategy.

Building Tree Sky Car Sign Road Pedestrian Fence Pole Sidewalk Bicyclist Mean IoU

Before 45.5 73.5 78.0 23.7 14.5 87.2 11.3 36.9 2.5 74.3 13.1 41.9
MS 81.4 88.1 80.3 40.1 16.3 95.6 26.2 40.0 3.7 82.0 37.4 53.7

Dilated 59.8 82.8 79.5 29.0 19.4 91.0 17.5 48.0 6.7 81.2 44.7 50.9
MR-Opti 90.6 95.1 74.6 94.6 21.9 98.2 53.1 64.3 9.8 92.6 42.1 54.8
DMSMR 93.1 94.5 82.9 92.7 45.5 97.4 72.5 77.2 7.2 94.5 68.9 63.6

5.2. Experiment on High Resolution Remote Sensing Dataset

Compare to the close-range imagery, high resolution remote sensing images have a few special
features, which are different from that of commonly encountered indoor/outdoor close-range images
in the area of computer vision. High resolution remote sensing images are large and contain
a potentially-unlimited scene context (i.e., the road could possibly pass through the entire image).
In addition, the object scale on high resolution images dramatically varies when employing the training
dataset captured from different satellites (i.e., GF-1 with spatial resolution 2.1 m, QuickBird with spatial
resolution of 0.6 m), whereas the close-range images do not. In the following experiments, we adopt two
kinds of benchmarks: the ISPRS 2D Vaihingen dataset and EVLab-SS dataset. The ISPRS 2D Vaihingen
benchmark is a well-known high resolution aerial imagery semantic labeling database, whose spatial
resolution is 0.9 cm with uniform color and texture distributions. The EVLab-SS benchmark, which is
designed for evaluating the semantic segmentation results on remote sensing imagery, contains the
images captured from different platforms (both aerial and satellite images are included) with different
types of spatial resolutions (ranging from 0.1 m to 2 m). In addition, the images vary in color, gradient,
and texture.

5.2.1. Evaluation on Vaihingen Dataset

The Vaihingen dataset comprises 6 classes with 33 image tiles, out of which 16 are fully annotated
(tile numbers 1, 3, 5, 7, 11, 13, 15, 17, 21, 23, 26, 28, 30, 32, 34 and 37). The dataset is cropped from
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an aerial orthophoto mosaic (GSD 9 cm) with three spectral bands (i.e., red, green and near-infrared
bands) that are rich in detail. The categories to be classified for each pixel are impervious surfaces,
buildings, low vegetation, trees, and cars. In our experiment, we randomly sample 2932 patches of
480 × 360 pixels from annotated images by sliding window. All patches are reserved for training.
For the objective evaluation of the proposed approach, we submit the predicted results to the organizers
who keep the ground truth.

The training procedure is performed with the SGD algorithm. The mini-batch size is set to
8, and each batch contains the cropped images that are randomly selected from training patches.
These patches are resized to 321 × 321 pixels. We employ the “poly” learning policy, and the base
learning rate is 1e-7 with the power of 0.9. The momentum and weight decay are set to 0.9 and 0.0005,
respectively, as recommended by Krizhevsky et al. [82]. Smoothness coefficients α and β are set to
3 and 5, respectively. Our network converges after 50,000 iterations on this benchmark.

The experimental results on the Vaihingen testing images are available online (Our result on
Vaihingen dataset is available at http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_
4_Test_results/2D_labeling_vaih/2D_labeling_Vaih_details_Ano2/index.html). Figure 6 visualizes
the comparative results on a few testing images (tile numbers 2, 4, 6 and 8) with different methods.
The quantitative evaluations of the corresponding state-of-the-art methods and our proposed network
architecture are reported in Table 4. In this experiment, we employ the averaged F1 score and the
overall pixel-wise accuracy as the evaluation metrics.

(a) Input Image (b) SVL (c) ADL (d) UT_Mev (e) HUST (f) ONE (g) DLR (h) UOA (i) RIT (j) ETH_C (k) DST (l) DMSMR

Figure 6. Visualization of the comparative results on a few Vaihingen testing imagery (tile numbers 2,
4, 6 and 8). For each image, we generate the dense prediction results and corresponding error maps
(red/green image) with different approaches.

Figure 6 presents the visual comparison of these approaches. It can be seen from the error map that
the CRF post-processing method (ADL [59] and HUST [83]) indeed helps improve the performance.
Nevertheless, the upper left corner of the error map in the first row shows that even if the CRF
post-processing method is employed, more incorrectly classified pixels will exist if the initial predictions
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are poorly provided. In Table 4, we compare our approach with the methods using additional
aides, such as the VGG-16 pre-trained model [29,76,84], digital surface model (DSM) [49,85,86],
and the CRF post-processing [59,83]. We also compare our approach with traditional feature based
methods [87]. Recent advances in the area of computer vision have shown that very deep networks can
improve the semantic segmentation accuracy [27,54]. Therefore, our DMSMR approach reasonably
outperforms the “SVL” method by approximately 4% in overall pixel-wise accuracy and 6% on global
F1 score. Although additional aides help improve accuracy, they are not the core to segmentation
engine [53]. Our networks do not need these aides but achieve competitive scores compared with these
approaches. For the fine-tuned networks from the pre-trained VGG-16 model (ONE [84], DLR [76],
UOA [29], RIT [50]), their performances are not always steady compared to that of the proposed
DMSMR approach. Our overall accuracy varies approximately 0.1% (see Ano (Ano is available
at http://ftp.ipi.uni-hannover.de/ISPRS_WGIII_website/ISPRSIII_4_Test_results/2D_labeling_vaih/
2D_labeling_Vaih_details_Ano/index.html) and Ano2 in the ISPRS leader board. Ano and Ano2 are
initialized with the same hyper-parameters, but the weights and biases terms are randomly initialized.)
when tested on this benchmark. This is mainly caused by uncertainty of weights when trying to transfer
the VGG-16 classification networks into semantic segmentation task. The dense prediction problem,
such as semantic segmentation, is structurally different from image classification [23]. Thus these
performances are not as stable as expected. Our approach somehow utilizes the dual-dilated and
non-dilated convolutional layers to prevent such instability.

Table 4. Vaihingen dataset [88] results. We compare our proposed approach with a few recent
state-of-the-art methods listed on the ISPRS Vaihingen 2D contest leader board. Traditional approaches
and methods that employ additional aides (methods with qualifying comments) are referenced
for comparison.

Imp.surf. Building Low veg. Tree Car Overall F1 Overall Acc.

SVL [87] (Feature based) 86.1 90.9 77.6 84.9 59.9 79.88 84.7
ADL [59] (CRF post-processing) 89.0 93.0 81.0 87.8 59.5 82.06 87.3
UT_Mev [85] (DSM supported) 84.3 88.7 74.5 82.0 9.9 67.88 81.8

HUST [83] (CRF post-processing) 86.9 92.0 78.3 86.9 29.0 74.62 85.9
ONE [84] (VGG-16 pre-trained model) 87.8 92.0 77.8 86.2 50.7 78.90 85.9
DLR [76] (VGG-16 pre-trained model) 90.3 92.3 82.5 89.5 76.3 86.18 88.5
UOA [29] (VGG-16 pre-trained model) 89.8 92.1 80.4 88.2 82.0 86.50 87.6

RIT [50] (DSM supported, VGG-16 pre-trained model) 88.1 93.0 80.5 87.2 41.9 78.14 86.3
ETH_C [86] (DSM supported) 87.2 92.0 77.5 87.1 54.5 79.66 85.9

DST [49] (DSM supported) 90.3 93.5 82.5 88.8 73.9 85.80 88.7
DMSMR 90.4 93.0 81.4 88.6 74.5 85.58 88.4

5.2.2. Evaluation on EvLab-SS Dataset

The EvLab-SS benchmark (EvLab-SS dataset can be downloaded from our website http://
earthvisionlab.whu.edu.cn/zm/SemanticSegmentation/index.html.) is designed for the evaluation
of the semantic segmentation algorithms on real engineered scenes, which aims to find a good
deep learning architecture for the high resolution pixel-wise classification task in remote sensing area.
The dataset is originally obtained from the Chinese Geographic Condition Survey and Mapping Project,
and each image is fully annotated by the Geographic Conditions Survey (NO.GDPJ 01—2013) [89]
standards. The average resolution of the dataset is approximately 4500× 4500 pixels. The EvLab-SS
dataset contains 11 major classes, namely, background, farmland, garden, woodland, grassland, building,
road, structures, digging pile, desert and waters, and currently includes 60 frames of images captured by
different platforms and sensors. The dataset comprises 35 satellite images, 19 frames of which are
captured by the World-View-2 satellite [90] (re-sample GSD 0.2 m), 5 frames are captured by the GeoEye
satellite [91] (re-sample GSD 0.5 m), 5 frames are captured by the QuickBird satellite [92] (re-sample
GSD 2 m), 6 frames are captured by the GF-2 satellite [93] (re-sample GSD 1 m). The dataset also has
25 aerial images, 10 images of which with spatial resolution of 0.25 m and 15 images have a spatial
resolution of 0.1 m. In our experiment, we divide the dataset into 37 frames for training, 8 frames for
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validation, and 15 frames for testing. We produce the training dataset by applying the sliding window
with a stride of 128 pixels to the training images, thereby resulting in 48,622 patches with a resolution
of 640× 480 pixels. Similar methods are utilized on validation images, thus generating 13,539 patches
for validation. The Garden class, which is reserved for validating the expressive power of CNNs in
real scenes, is absent in our validation images.

In the training procedure, each iteration comprises a feed-forward pass in which the model
weights are adjusted by the SGD algorithm. Each training patch image in a batch is resized to 321× 321
pixels. The mini-batch size is set to 12 and the corresponding training patches are randomly selected.
We employ the “poly” learning policy and start with a learning rate 1e-7 with the power of 0.9.
Smoothness coefficients α and β are set to 3 and 5 in our experiments, respectively. The momentum
and weight decay are set to 0.9 and 0.0005, respectively, as recommended by Krizhevsky et al. [82].
Our network converges after 70,000 iterations on this dataset. In the following experiments, we set the
same learning parameters for the methods employing only one strategy (MS, Dilated or MR-Opti) as
the DMSMR approach.

Figure 7 is the visualization of the results on the validation patches with different methods.
Figure 8 illustrates the comparative results of employing different strategies with respect to the varying
trimap band width. Quantitative results are shown in Table 5. In our experiments, we adopt the
overall pixel-wise accuracy and mean intersection over union (mIoU) measurements to evaluate the
effectiveness of different approaches.

(a) Input Patch (b) Before (c) MS (d) Dilated (e) MR-Opti (f) DMSMR (g) GT

Figure 7. Semantic segmentation results with different strategies on the EvLab-SS validation patches.
Four kinds of image patches with different spatial resolutions and illuminations are depicted in the
figure. The first and second rows are the GeoEye and World-View 2 satellite images with resample
GSD of 0.5 m and 0.2 m. The third and the last rows are the aerial images with resample GSD of 0.25 m
and 0.1 m, respectively. MS: Predictions with multi-scale approach. MR-Opti: Semantic segmentation
results using manifold ranking optimization method. DMSMR: Segmentation result predicted by dual
multi-scale manifold ranking network. GT: Ground Truth.
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Figure 8. Accuracy analysis with respect to boundary on EvLab-SS dataset. (a) Visualization of trimap
for EvLab-SS dataset. Top-left: source patch. Top-right: ground truth. Bottom-left: trimap with one
pixel band width. Bottom-right: trimap with three pixels band width. (b) Pixel mIoU with respect
to band width around object boundaries. We measure the relationship for our model before and
after employing the multi-scale (MS), dilated convolution (Dilated), single stream Manifold Ranking
(MR-Opti) and joint strategies (DMSMR) on the EvLab-SS dataset.

Table 5. Quantitative evaluation of the semantic segmentation results on the EvLab-SS dataset.
The proposed DMSMR approach outperforms the methods that employ only one strategy.
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Before 75.16 35.73 0.0 51.65 8.99 66.59 35.12 46.19 19.05 3.56 3.13 49.76 21.35
MS 75.73 39.36 0.0 49.33 11.89 65.85 32.80 46.94 12.91 16.69 5.87 48.93 21.42

Dilated 40.59 29.18 0.0 46.48 11.36 61.74 40.46 42.54 18.10 11.57 19.84 46.8 19.03
MR-Opti 79.44 20.52 0.0 57.84 2.95 74.29 28.96 49.60 17.55 0.10 0.99 53.51 21.85
DMSMR 40.59 22.14 0.0 62.47 8.11 68.84 39.80 51.06 14.56 16.52 19.45 54.15 22.17

Compare to the 2D Vaihingen dataset provided by the ISPRS organization, the EvLab-SS dataset
is inconsistently distributed in terms shape, color, and texture. The resolutions of the images captured
from different sensors are dramatically varying. The buildings, roads and other classes are not obtained
in the same scale. Therefore, the EvLab-SS dataset poses more challenge to researchers. It intuitively
can be seen from Figure 7 that the DMSMR method can better delineate the boundary of an object.
The results demonstrate the superiority of the combination of multi-scale (MS), broader receptive
field (Dilated), and manifold ranking optimization (MR-Opti) strategies, which can more accurately
classify each pixel with varying spatial resolutions. Figure 8 shows that although the mIoU score of the
proposed DMSMR approach is relatively low with a small trimap width, it has become increasingly
stable and competitive. By contrast, the mIoU scores of the MS, dilated, and MR-Opti approaches
are unstable, even decreasing with a few small trimap widths. The main reason attribute to this
phenomena is that the spatial resolution is different in the training patches, which may be ignored by
only employing one strategy. In Table 5, the special class (Garden) is detected as 0.0% in all approaches,
indicating that these methods can preserve the intrinsic nature of CNNs well. For the real engineered
remote sensing data, the Dilated approach does not appear to boost performance and decreases in
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overall accuracy and mean IoU by approximately 2.96%, 2.32%, respectively. This can be attributed to
the numerous inhomogeneous objects in the training patches. For example, the road and buildings may
not be completely covered in a single patch, which renders training with dilation operations in some
layer meaningless. Although the MR-Opti approach improves the overall accuracy by approximately
4%, this approach may disregard a few classes, such as the Desert and Waters, due to insufficient
contextual information with varying illumination and color. However, the MS approach retains more
contextual information in each scale space but still suffers from the optimization problem in each scale,
resulting in 0.8% decrease in overall accuracy. Notably, the proposed DMSMR approach can take the
superior features of these strategies and overcome the drawbacks, achieving approximately 5% and
1% improvements in overall accuracy and mIoU score under the condition of limited training images
and varying spatial resolutions.

6. Conclusions

In this paper, we present a DMSMR network for semantic image segmentation in a continuous
domain. By extending the binary manifold ranking (MR) algorithm to a multi-label case, the assignment
of a discrete label to each pixel can be linearly solved and a unique global optimum can be guaranteed.
In addition, with the single stream MR method embedded into CNNs in a feedforward schema,
the required parameters can be trained in an end-to-end manner. Furthermore, we propose to utilize
dilated and non-dilated networks, which form dual layers to jointly optimize the results from the
single stream manifold ranking network rather than on two separate streams, that is, unary and
pairwise streams. Combined with multi-scale (MS), broader receptive field (Dilated) and manifold
ranking optimization (MR-Opti) strategies, the proposed DMSMR network enables training without
additional aides, such as multi-stage inference, region proposals, VGG-16 initialization, digital surface
model (DSM) and CRF post-processing. Two groups of experiments on close-range and remote
sensing high resolution datasets are designed to evaluate the performance. When discriminatively
trained by submitting the results to the server on PASCAL VOC and ISPRS Vaihingen benchmarks,
the proposed DMSMR network can achieve competitive results without additional aides compared
to recent methods. Our experiments on publicly available datasets, including CamVid and EvLab-SS
datasets, demonstrate the superior capacity of the proposed DMSMR approach over the methods that
employ only one strategy. For the real world application in remote sensing, the combined strategy
steadily boosts the performance even under limited training images and the varying spatial resolutions.

Nevertheless, the proposed approach may be further improved in the following ways. First,
more prior information, such as orientation and texture, is expected to be integrated into the
smoothness term in the multi-label manifold ranking objective function to delineate the visual objects
with varying illumination and spatial resolution. Second, the generative adversarial nets [94–96]
(GAN) can be introduced to boost the performance by combining the adversarial term in the loss
function with the limited number of training images. Third, model parallelism should be investigated
when incorporating more prior knowledge to our model. For example, buildings and roads are the
salient objects in remote sensing images that can guide the semantic contextual information. The prior
information might be parallel-trained in a distributed system. Finally, the superpixel segmentation can
be applied as a pre-processing step to reduce the number of optimization elements in the proposed
multi-label MR graphical model.
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Appendix A

In this section, we derive the rule of weights updating for learning the parameters mentioned
in the paper and detailedly depict the implementation structures of the networks, which include the
networks before and after employing the multi-scale (MS), dilated convolution (Dilated), and manifold
ranking optimization (MR-Opti) approaches.

Appendix A.1. Learning Parameter α and β

To compute the term ∂y∗l
∂α in Equation (13), we apply the chain rule through the following equation:

∂y∗l
∂α

=
∂y∗l

∂ f max
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· ∂ f max
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, and α are the symbols that have the same meaning as previously mentioned. S

is the simplified representation of the smoothness term in Equation (7), which is specifically denoted by
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Since the term ∂y∗l
∂ f max

k
is equal to delta function δ, the term

L(F̃)
∂S is equal to the identity matrix,

the term
∂L(F̃)

∂α and ∂L(F)
∂β are obviously represented by k1

(
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)
and k2

(
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)
. The derivative of α, β

with respect to y∗l are obtained by the following form:
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Appendix A.2. Learning Compatibility Matrix W̃

Similar to the derivative of smoothness parameters α and β, the derivative of compatibility matrix
W̃ with respect to y∗l can be denoted by:

∂y∗l
∂W̃

=
∂y∗l

∂ f max
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(A5)

As discussed in the main paper, the optimal solution to the multi-label manifold ranking method
is achieved by the following matrix form:

F̂ =
(

2λ
(

D̃− W̃
)
+ Dμ

)−1
DμF̃

∗

=
(

2λL̃ + Dμ

)−1
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∗
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(A6)
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From Petersen et al. [88], we recall that the derivative of the inverse of matrix A with respect to
A is

∂A−1

∂A
= −A−T ⊗ A−1. (A7)

For the preceding term
∂L(F̃)

∂W̃
, the corresponding matrix form can be represented by:
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(A8)

Therefore, the derivative of W̃ with respect to y∗l is

∂y∗l
∂W̃

= δ · ∇Ψ ⊗ F̃. (A9)

Appendix A.3. Network with Different Strategies

In this part, we explain in detail for the methods that employ only one of the three strategies,
namely, multi-scale convolution (MS), broader receptive field (Dilated) and MR optimization
(MR-opti) approaches. Figure A1 shows the general structures of these approaches and Table A1
presents the corresponding implementation parameters in each convolutional layer. In the table
and figure, the “ReLU” active function [74] is implicitly employed in each convolutional layer.
The network depicted in Figure A1a serves as the baseline convolutional network for comparison.
Figure A1c,d are the networks that use only the dilated convolutional kernel [23] and manifold
ranking optimization methods, respectively. The only difference between network in Figure A1a,c
is the dilation kernel. In our experiment, we set the kernel sizes in each block as 6, 4, 2, 2 and 1,
as illustrated in Table A1a. For the MR optimization layer embedded in the baseline network shown
in Figure A1d, initial parameters of α and β are set to 3 and 5, respectively. Figure A1b presents the
network with multi-scale strategy on the baseline network. After applying the pooling layer in each
block, a convlutional block is adopted with three convolutional layers (named as poolx-conv-y in
Table A1b. The scale is implicitly expressed in the pooling layer by factor 2.0.

(a)

Figure A1. Cont.

65



Remote Sens. 2017, 9, 500

(b)

(c)

(d)

Figure A1. The architectures of the networks with different strategies: (a) Convolutional networks
before employing the strategies (Before); (b) Networks using multi-scale strategy
(MS); (c) Networks using dilated method (Dilated); (d) Networks using manifold ranking
optimization (MR-Opti).
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Table A1. Implementation details of the networks with different strategies.

(a) Networks before Employing the Strategies (Before)

Block Name Kernel Size Pad Dilation Stride Number of Output

0 input - - - - 3

1
conv1-1 3 × 3 1 1 1 64
conv1-2 3 × 3 1 1 1 64
pool1 3 × 3 1 0 1 64

2
conv2-1 3 × 3 1 1 1 128
conv2-2 3 × 3 1 1 1 128
pool2 3 × 3 1 0 2 128

3
conv3-1 3 × 3 1 1 1 256
conv3-2 3 × 3 1 1 1 256
pool3 3 × 3 1 0 2 256

4
conv4-1 3 × 3 1 1 1 512
conv4-2 3 × 3 1 1 1 512
pool4 3 × 3 1 0 1 512

5
conv5-1 5 × 5 2 1 1 512
conv5-2 5 × 5 2 1 1 512
pool5 3 × 3 1 0 1 512

- fc6 3 × 3 1 1 1 1024
fc7 1 × 1 0 1 1 1024

* fc8 1 × 1 0 1 1 12

- output 1 × 1 0 1 1 12

(b) Networks Using Multi-Scale Strategy (MS)

Scale (Block) Name Kernel Size Pad Dilation Stride Number of Output

0 input - - - - 3

1
conv1-1 3 × 3 1 1 1 64
conv1-2 3 × 3 1 1 1 64
pool1 3 × 3 1 0 2 64

2
conv2-1 3 × 3 1 1 1 128
conv2-2 3 × 3 1 1 1 128
pool2 3 × 3 1 0 2 128

3
conv3-1 3 × 3 1 1 1 256
conv3-2 3 × 3 1 1 1 256
pool3 3 × 3 1 0 2 256

4
conv4-1 3 × 3 1 1 1 512
conv4-2 3 × 3 1 1 1 512
pool4 3 × 3 1 0 1 512

5
conv5-1 5 × 5 2 1 1 512
conv5-2 5 × 5 2 1 1 512
pool5 3 × 3 1 0 1 512

- fc6 3 × 3 1 1 1 1024
fc7 1 × 1 0 1 1 1024

* fc8 1 × 1 0 1 1 12

1
pool1-conv-1 3 × 3 1 1 4 128
pool1-conv-2 1 × 1 0 1 1 128
pool1-conv-3 1 × 1 0 1 1 12

2
pool2-conv-1 3 × 3 1 1 2 128
pool2-conv-2 1 × 1 0 1 1 128
pool2-conv-3 1 × 1 0 1 1 12

3
pool3-conv-1 3 × 3 1 1 1 128
pool3-conv-2 1 × 1 0 1 1 128
pool3-conv-3 1 × 1 0 1 1 12

4
pool4-conv-1 3 × 3 1 1 1 128
pool4-conv-2 1 × 1 0 1 1 128
pool4-conv-3 1 × 1 0 1 1 12

- output 1 × 1 0 1 1 12
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Table A1. Cont.

(c) Networks Using Dilated Method (Dilated)

Block Name Kernel Size Pad Dilation Stride Number of Output

0 input - - - - 3

1
conv1-1 3 × 3 6 6 1 64
conv1-2 3 × 3 6 6 1 64
pool1 3 × 3 1 0 2 64

2
conv2-1 3 × 3 4 4 1 128
conv2-2 3 × 3 4 4 1 128
pool2 3 × 3 1 0 2 128

3
conv3-1 3 × 3 2 2 1 256
conv3-2 3 × 3 2 2 1 256
pool3 3 × 3 1 0 2 256

4
conv4-1 3 × 3 2 2 1 512
conv4-2 3 × 3 2 2 1 512
pool4 3 × 3 1 0 1 512

5
conv5-1 3 × 3 2 2 1 512
conv5-2 3 × 3 2 2 1 512
pool5 3 × 3 1 0 1 512

- fc6 3 × 3 1 1 1 1024
fc7 1 × 1 0 1 1 1024

* fc8 1 × 1 0 1 1 12

- output 1 × 1 0 1 1 12

(d) Networks Using Manifold Ranking Optimization (MR-Opti)

Block Name Kernel Size Pad Dilation Stride Number of Output

0 input - - - - 3

1
conv1-1 3 × 3 1 1 1 64
conv1-2 3 × 3 1 1 1 64
pool1 3 × 3 1 0 1 64

2
conv2-1 3 × 3 1 1 1 128
conv2-2 3 × 3 1 1 1 128
pool2 3 × 3 1 0 2 128

3
conv3-1 3 × 3 1 1 1 256
conv3-2 3 × 3 1 1 1 256
pool3 3 × 3 1 0 2 256

4
conv4-1 3 × 3 1 1 1 512
conv4-2 3 × 3 1 1 1 512
pool4 3 × 3 1 0 1 512

5
conv5-1 5 × 5 2 1 1 512
conv5-2 5 × 5 2 1 1 512
pool5 3 × 3 1 0 1 512

- fc6 3 × 3 1 1 1 1024
fc7 1 × 1 0 1 1 1024

* fc8 1 × 1 0 1 1 12

- Manifold Ranking Optimization 12

- output 1 × 1 0 1 1 12
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Abstract: This article is concerned with the use of unsupervised methods to process very high
resolution satellite images with minimal or little human intervention. In a context where more and
more complex and very high resolution satellite images are available, it has become increasingly
difficult to propose learning sets for supervised algorithms to process such data and even more
complicated to process them manually. Within this context, in this article we propose a fully
unsupervised step by step method to process very high resolution images, making it possible to link
clusters to the land cover classes of interest. For each step, we discuss the various challenges and
state of the art algorithms to make the full process as efficient as possible. In particular, one of the
main contributions of this article comes in the form of a multi-scale analysis clustering algorithm that
we use during the processing of the image segments. Our proposed methods are tested on a very
high resolution image (Pléiades) of the urban area around the French city of Strasbourg and show
relevant results at each step of the process.

Keywords: very high resolution images; segmentation; multi-scale clustering

1. Introduction

The recent advances of remote sensing technologies for Earth observation have led to a surge in
the number of large and complex available data to process. For example, very high spatial resolution
(VHR) satellite images covering large areas are nowadays commonly delivered by remote sensors
(Pléiades, Worldview, Quickbird, Ikonos). The manual analysis of such images by experts to extract
useful information would be overwhelming, and the use of machine learning techniques is more than
ever necessary to obtain satisfactory results in a fair amount of time. However, the majority of popular
machine learning techniques for classification purposes (known as supervised learning) also require
human intervention in the sense that the computer can only learn to recognize things that have already
been learned and identified by humans based on similar data. In the case of VHR images, since they
have a high level of detail and deal with a wide variety of landscapes, such knowledge to feed the
machine learning algorithm is quite often unavailable or incomplete.

Within this context, in this article, we propose a complete methodology for an almost
fully-unsupervised analysis of VHR images requiring only minimal knowledge on the data and
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little human intervention. We will discuss the different steps and challenges of going from the raw
satellite image to the final segmented and clustered image where the different elements of interest
can be linked to expert classes. In particular, the main novelty of this work lies in the proposition of
a clustering algorithm that can process image segments and find multi-scale clusters matching the
different scales of interest that can be found on VHR images.

Furthermore, our algorithm also provides minimal semantic information that can be used to link
the clusters to land cover classes. Unlike the majority of methods in the literature, our proposed model
focuses on object-based image analysis (OBIA) rather than pixel-based analysis. Indeed, it makes
more sense to focus on objects rather than pixels that have little semantic value when using very high
resolution [1,2].

Works closely related to this article include other unsupervised algorithms that have been
proposed recently to process datasets built from the segments of non-hyperspectral VHR images:

• In [3], the authors propose an unsupervised algorithm that provides some low level semantic
information on the clusters. This algorithm is the base that we used for the multi-scale
method proposed in the learning step of this article. The improvements that we bring include
that our proposed method covers the segmentation step, while the original algorithm does
not. Furthermore, this algorithm was designed to produce a non-hierarchical hard partition,
whereas our method can find the object at several scales of interest and produces multi-scale
hierarchical clusters.

• In [4], the authors also tackle image data acquired from image segments. The method they used is
based on the self-organizing map (SOM) algorithm, a known unsupervised neural network used
for dimension reduction. While this methods considers dimension reduction aspects that our
proposed algorithm does not handle, it is also limited to the learning step and can only provide
hard partitions computed at a single scale of interest.

The remainder of this article is organized as follows: In Section 2, we present the different steps
involved in VHR image processing and discuss the various challenges and state of the art methods
for each step. In Section 3, we introduce the material and methods that we use in our experiments.
In particular, we give the details of the multi-scale clustering algorithm that we use to process our
data. Section 4 shows our experimental results and features various discussions on the results. Finally,
in Section 5, we give our conclusions on this work, as well as some perspective on future extensions.

2. State of the Art on Unsupervised VHR Images Processing

The fully-automated analysis of a satellite image can usually be decomposed into three steps:
(1) a pre-processing step during which the image is prepared from raw sources (merging pictures,
orthorectification, etc.); (2) a segmentation step that consists of grouping together adjacent pixels that
are similar given a certain homogeneity criterion; these groups, called segments, should ideally be
a good estimation of the geographical objects in the image [5,6]; (3) the segments created during Step 2
can then be fed to a supervised or unsupervised machine learning algorithm in order to recognize the
elements in the image.

This succession of steps, all dependent on the previous ones, is summed up in Figure 1. As one
can see, errors are quite likely to accumulate through the process.

In the next subsections, we will discuss the state of the art methods used during the segmentation
and clustering step: we will go into detail on explaining which difficulties are encountered during
each step and which techniques can be used to reduce the risk of error accumulation in order to ensure
the best possible final results.
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Figure 1. Step by step approach to image processing.

2.1. Image Segmentation

Image segmentation is the first critical step within the OBIA workflow and aims at finding
segments that will correspond to the objects of interest in the image. Indeed, poor quality segments
would likely lead to the computation of inaccurate and irrelevant descriptors, making the dataset
difficult or even impossible to exploit by machine learning techniques in further steps.

A wide range of segmentation approaches and their ad hoc variants devoted to specific
applications can be found in the literature. The reader interested in general segmentation approaches
may refer to [7] for a complete survey on this topic.

In the context of remote sensing imaging, the most popular approaches are mainly these relying
on region-based and spectral homogeneity paradigms. For instance, the mean-shift [8,9] applies
a technique for estimating local modes in a multivariate distribution [10] to a joint spatial and spectral
domain. For each pixel, local modes are computed with respect to a spectral and spatial similarity
ranges so that in the end, each pixel is associated with the local mode’s spectral signature and the
spatial location of its density probability distribution. Finally, pixels sharing the same local mode
are merged together to generate the segments. Region-growing approaches, such as [11,12], are also
commonly employed. They usually start by considering each pixel as a segment and then iteratively
merge similar pixels based on a given homogeneity criterion. Other constraints such as a minimum or
maximum segment size are often considered as well during the merging procedure. Other popular
segmentation algorithms are based on the watershed transformation [13,14]. The main idea consists of
considering the gradient image as a topographic surface. This surface is then flooded starting from
the local minima of the image gradient. When two different flooding basins are about to merge, the
process stops, and a watershed (segment boundary) is drawn. Finally, hierarchical strategies [15] are
based on graph theory and consider the image (and the segments being created) as a tree structure
in which lower level objects are close to the leafs and more abstract objects are at higher hierarchical
levels. This structure allows focusing on objects at different levels of resolution or semantics.

While few efforts have been made in this area, evaluating the quality of a segmentation remains
a key issue: image segmentation is an ill-posed problem, so almost any partition of the image
can be considered as a correct segmentation given the general definition of image segmentation
(i.e., partitioning the image by grouping similar pixels given a certain criterion). Thus, the definition of
segmentation quality is usually dependent on a given application. In a remote sensing context, a perfect
segmentation should map each segment to an object of interest in the image. Given this definition of
quality, it is possible to distinguish mainly two kinds of segmentation errors: over-segmentation where
objects are split into several segments; and under-segmentation where a single segment may contain
several objects. There exist mainly three families of quality criteria:

• Subjective criteria, which basically rely on a visual examination of segmentation results. This task
is long, tedious and does not provide an objective and quantitative evaluation.

• Supervised criteria [16,17], which consist of measuring the distance between one segmentation
and a gold-standard segmentation. However, such a ground-truth generally has to be manually
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generated. Thus, it is very rare to dispose of complete reference datasets in remote sensing
applications, making supervised metrics less reliable.

• Finally, unsupervised criteria [18], which consist of exploiting intrinsic segment and image
properties. It is then necessary to accurately define and model the notion of quality without
any external information. Many of these metrics rely on the number and size of segments [19],
as well as statistics, such as band mean values or the standard deviation [17,20], or on local
(per segment) quality estimation based on some homogeneity criterion in order to compute global
quality metrics by aggregation of the local scores [21].

In short, segmentation algorithms should be used along with different quality metrics so that the
produced segmentation has as few segmentation errors as possible. In practice, over-segmentation errors
are usually tolerated as they can be easily corrected by further analysis; however, under-segmentation has
to be avoided as much as possible, see Figure 2.

(a) (b)

Figure 2. Examples of over-segmentation and under-segmentation. (a) Example of an over-segmentation
on two houses that could be fixed during the clustering step: the algorithm may still detect that these two
segments are part of the same cluster; (b) example of an under-segmentation where the white object in
the middle of the lake was not detected during the segmentation step and will never be since it is now
merged with a lake segment.

2.2. Unsupervised Analysis of the Segments

The objects extracted from an image during the segmentation can be seen as regular data, where
each segment is described by several features from the original image, such as color attributes, as
well as new features created during the segmentation process: surface of the segments, perimeter and
elongation, shape information, color extrema, variance and average value of the attributes in the pixels
of a given segment, texture information, contrast with the neighboring segments, etc.

Because the segments and their attributes can vary greatly depending on the image or the
algorithm used for the segmentation process, it is very difficult to find similar data using the
same attributes that could be used to train a supervised classifier to process such a segment-based
dataset. Unsupervised methods are therefore most convenient to process such data acquired from
a segmentation. In particular, clustering techniques that consist of finding groups of similar data in
a dataset are usually a good choice since the clusters can be built without external knowledge and
can usually be easily linked to expert-defined classes once they have been built. These methods are
therefore popular for both object-based and pixel-based image analysis [22–25].

The main known weakness of unsupervised approaches for object identification in images is that
there is no warranty that the clusters found by the algorithms will end up being pertinent classes.
A first possible solution consists of using semi-supervised approaches instead of fully-unsupervised
ones: In the case of pixel-based analysis of VHR images, a solution proposed in the literature is to
guide the clustering process using ontologies [26,27], a tool commonly used in supervised process.
The results achieved using these methods are promising, but seem limited to a very low number of
clusters/classes. The second solution that is usually preferred in the context of OBIA is to use a mixed
clustering and Markov random field (MRF) approach [28–30] with the goal of using all of the extra
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attributes from the segmentation in the clustering process (shapes, texture, contrast), but also to use the
information from the neighborhood dependencies in order to influence the clustering of each segment
based on both its characteristics and the cluster to which the neighboring segments belong. Other
approaches have been attempted using topological clustering instead of MRF-based techniques [4]
for OBIA.

One advantage of MRF-based approaches is that these methods are used for both segmentation,
classification and clustering. In our case, we are particularly interested in the segmentation and
clustering uses. Using MRF-based methods has the advantage that it can deal with over-segmented
data just fine, thus reducing of error accumulation from the segmentation step during the clustering
step. In the remainder of this section, we will focus on the MRF-based approach, as it will be the basis
of our proposed method in the experiments.

The clustering task using MRF models can be seen as a graph partitioning problem, where each
segment is a node of the graph and the edges are represented by the neighborhood dependencies
between the segments. Assigning each segment to a cluster based on its features and its neighbors
(see Figure 3) is indeed equivalent to finding the optimal cuts in the graph to separate dissimilar
neighbor segments. This process will provide both the clusters and a new segmentation as a by-product.

Figure 3. Illustration of the MRF clustering problem with very few features: in this example, we try to
guess the cluster of the central segment based on five features and the clusters of its neighbor segments
(identified using the colors).

There are many methods in the literature to solve this kind of problem: the graph-cut
algorithm [31], the integer projected fixed point method [32], the graduated non-convexity and
concavity procedure [33], the iterated conditional modes (ICM) [34] and hybrid algorithms mixing the
principle of expectation-maximization and the ICM algorithm [35].

In the case of segments from VHR images, approaches with the lowest complexity are usually
preferred due to the expected large size of the graph. To this end, an adaptation of the hybrid EM-ICM
approach capable of assessing the affinities between neighbor segments of different pixel was proposed
in the form of a semantic-rich ICM [3] (SR-ICM). This algorithm is similar to what already existed for
semantic-rich pixel-based MRF models [36], but adapted to the case of segments that have an irregular
number of neighbors, instead of always four neighbors for pixel-based models.

To better explain this idea of adding semantics to the MRF model, in the case of Figure 3, using
a regular ICM approach, the neighborhood dependencies would encourage putting the central segment
in the light green cluster (which is the majority neighbor). However, using a semantic-rich ICM
algorithm, it may be possible to put this very same segment in any cluster having a good neighborhood
compatibility with the light green segment.

We will now give the details of this algorithm. Let us consider a dataset that contains N
segments: X = {x1, · · · , xN}, xi ∈ Rd where each xi represents a segment having d real-valued
features. We will denote Vxi ⊂ X the set containing all of the neighbor segments of any segment
xi. We suppose for now that we are looking for K hard clusters and that K is known in advance:
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we denote S = {s1, · · · , sN}, si ∈ [1 · · ·K] the clustering solution that links each of the N segments to
a cluster. We make the hypothesis that each cluster Ck can be represented as following a Gaussian
distribution of parameters θ = {πk, μk, Σk} where the πk are the mixing probabilities, the μk are the
mean of each cluster and the Σk the variance-covariance matrices of each cluster. Finally, we define
A = (aij)(K×K), aij ∈ [0, 1], ∀i ∑j aij = 1, the affinity matrix between neighbor segments [3,30], where
each aij denotes the probability for a segment of cluster Ci of having a neighbor segment belonging
to cluster Cj. Using these notations, the goal of the SR-ICM algorithm is to optimize the following
function:

{S, Θ, A} = Argmax
S,Θ,A

N

∏
n=1

(
πsnN (μsn , Σsn , xn)× ∏

v∈Vxn

(asv ,sn)
τx,v

)
(1)

where τx,v is the percentage of the border shared between neighbor segments (replaced by one when
this information is not available).

The optimization of Equation (1), where S, μ, π, Σ and A are unknown, is usually done in two
steps: the first step using the regular EM algorithm [37] for the Gaussian mixture model on the data
without the neighborhood dependencies. This step will be used to determine π, μ and Σ and to
initialize S and A. The second step using a maximization-maximization process analog with the EM
algorithm is then used to refine S and A with Θ fixed.

sn = Argmax
k

[
πk ×N (μk, Σk, xn)× ∏

v∈Vxn

aτx,v
sv ,k

]
(2)

aij =
∑xn∈Ci ∑v∈Vxn

δsv ,j

∑xn∈Ci ∑v∈Vxn
1

(3)

As one can see from Algorithm 1, the optimization is quite simple and has a linear complexity,
which makes it convenient to use with large datasets. The stopping criterion of this algorithm is the
trace of the affinity matrix A. This criterion comes from the idea that the original ICM algorithm is
a segmentation algorithm and tries to create large and homogeneous areas of elements in the same
cluster. Since the diagonal elements of the matrix contain the self-transition probabilities, the trace of
the matrix assesses the overall compactness of the newly-created area using the SR-ICM algorithm.

Algorithm 1: Semantic-rich ICM algorithm.
Find Θ and initialize S with the EM algorithm
Initialize A using Equation (3)
while Tr(A) is increasing do

Update S using Equation (2) over all of the data
Update A from the new distribution S using Equation (3)

end

return S and A

As stated in the Introduction, one of the main issues with the unsupervised analysis of VHR
data is that the lack of supervision sometimes makes it difficult to map the clusters to the expert
classes. One advantage of the SR-ICM algorithm is that in addition to providing a partition of the
data, it returns the affinity matrix A, which gives useful information on the relationship between the
clusters. The affinity matrix therefore serves a dual purpose: first it helps improve the clustering by
enriching the data with neighborhood compatibility information; second, it contains low semantic
level information on how the clusters relate to each other in the image. This information can either be
used to help identify the expert classes or simply be translated into a description of the image once the
clusters have been mapped to land cover classes.

Figure 4 shows an example of a simple affinity matrix with four clusters. In this figure, we can
see how each value can be interpreted. It is easy to see how such a matrix can then be translated into
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a description of the image. This would lead to sentences, such as: “urban areas are surrounded by area
of vegetation” or “urban areas are rarely in direct contact with water areas”, “water areas have a low
compactness”, and so forth. While this may not seem like much, even this low level of description is
not possible with other unsupervised algorithms.

Figure 4. Example of an affinity matrix: Diagonal values indicate whether or not the clusters are
forming compact areas (high value) or are scattered elements in the image (low value). Non-diagonal
elements indicate which clusters are often neighbors on the image (high value) or incompatible
neighbors (low value).

3. Material and Methods

3.1. Presentation of the Strasbourg Dataset

In this section, we present the data used in our experiments. The original set is an extract of
a multispectral VHR pan-sharpened image with 0.5-m spatial resolution and four spectral bands
(red, green, blue and near-infrared) from the Pléiades satellite Airbus, c©CNES, orthorectified and
geo-referenced in Lambert93, acquired on 14 August 2012 covering the metropolitan area of Strasbourg,
see Figure 5. In this article, we use only a subset of this image (9211×11,275 pixels), which is
multispectral and not hyperspectral.

The data were later enriched with a hierarchical land cover/use database featuring 15 classes
at the finest level (Level 4) from the metropolitan area of Strasbourg (Figure 6a). This database is
a combination of existing vector databases (buildings, roads, railways, bare soil, crops, water) and
a semi-automatic extraction of vegetation classes from several Pléiades images.

However, this hierarchical land cover/use database had to be modified because some classes
such as ‘grass’ and ‘urban grass’ or ‘bare soils’ and ‘winter crops’ cannot be distinguished from the
sky. Therefore, in order to propose a nomenclature adapted to an extraction from a VHR image, we
have proposed the modified hierarchical typology detailed in Figure 6b. This modified database can
be considered as the reference data for our research.

Nevertheless, some pre-processing was necessary in order to reduce the bias due to the
misalignments between the land cover polygons and the Pléiades image (Figure 7): the reference data
provide accurate labels, as well as very regular polygons (Figure 7a). However, when inspecting them
in detail, one realizes that the polygons are not well aligned with the represented objects (Figure 7b).
The misalignments are possibly due to orthorectification procedures during the pre-processing of the
image or because of a date difference between the geographic information system (GIS) data and the
image acquisition. Therefore, any comparison against these data would result in a difficult to quantify,
yet certain bias. In order to make these data more reliable to evaluate our results, it is necessary to find
a solution to improve their quality, especially in terms of segment alignment.
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Figure 5. (Left) the metropolitan area of Strasbourg (Spotimage c©CNES, 2012); (right) extract of the
Pan-sharpened Pléiades image (Airbus c©CNES, 2012).

(a) Hierarchical land cover/use thematic classes
proposed by experts

(b) Hierarchical nomenclature retained for the
experiments (+ expert classes in grey)

Figure 6. Expert classes (a) and hierarchical classes retained for the experiments (b).
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To cope with this issue of misaligned reference data, we propose hereafter a refining procedure
that consists of superposing an over-segmentation of the image with the GIS polygons in order to
propagate the GIS labels into the segments. The procedure goes as follows: for every segment si in
the over-segmentation, we find the set of GIS polygons intersecting si. Then, it is possible to assign
a single label to si by taking the label of the GIS polygon with the largest intersection area with respect
to si. By proceeding this way, we ensure that the new reference database and the segments are actually
aligned with the objects of interest, since the boundaries of the segments tend to align well with
actual object boundaries. It is also possible to reinforce the quality of the produced labels by adding
a threshold over the intersection area. Thus, one would only consider GIS polygons intersecting more
than 50% of the area of si, for example. Another possibility is to consider the labels of all intersecting
polygons and to construct a fuzzy reference dataset in which each class c is weighted by the intersection
area of GIS polygons labeled with class c.

(a) (b)

Figure 7. Example of reference data from geographic information systems (GIS). (a) GIS labeled data;
(b) contours of the GIS polygons.

In this paper, we opted to build a hard reference hybrid reference dataset using a simple
majority vote.

3.2. Segmentation and Feature Computation

For our experiments, we ran the multi-resolution image segmentation (MRIS) implemented in
the eCognition software c©Definens (2014) on the raw image. We chose this algorithm because it
gives good performance for the retrieval of land cover/use classes [38]. MRIS is an algorithm of
segmentation by “region growing”, where a scale parameter is used as the maximum heterogeneity
threshold during the fusion process [11]. This heterogeneity parameter includes a spectral criterion
and a shape one. Then, a level of segmentation with a scale parameter of 160 was chosen after several
runs based on a statistical method developed in [39]: this method relies on the potential of the local
variance to detect scale transitions in geospatial data. The tool detects the number of layers added to
a project and segments them iteratively with a multi-resolution segmentation algorithm in a bottom-up
approach, where the scale factor in the segmentation, namely the scale parameter, increases with
a constant increment. The average local variance value of the objects in all of the layers is computed
and serves as a condition for stopping the iterations: when a scale level records a local variance value
that is equal to or lower than the previous value, the iteration ends, and the objects segmented in the
previous level are retained.
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A wide range of features available in eCognition has been computed for each segment, including
spectral, textural and shape features that were exported in a CSV file. A total of 27 attributes have been
calculated for 187,057 segments and are shown in Table 1, where XS1 stands for blue, XS2 green, XS3
red, and XS4 near infra-red.

Table 1. The 27 attributes computed for the 187,057 segments.

Attribute Type Comments

Brightness Spectral
Max. difference Spectral
Mean XS1 Spectral Blue
Mean XS2 Spectral Green
Mean XS3 Spectral Red
Mean XS4 Spectral near-infrared
Standard deviation XS1 Spectral Blue
Standard deviation XS2 Spectral Green
Standard deviation XS3 Spectral Red
Standard deviation XS4 Spectral Near-infrared
Ratio XS1 Spectral Blue
Ratio XS2 Spectral Green
Ratio XS3 Spectral Red
Ratio XS4 Spectral Near-infrared
Mean Diff. to neighbors XS1 Spectral Blue
Mean Difference to neighbors XS2 Spectral Green
Mean Difference to neighbors XS3 Spectral Red
Mean Difference to neighbors XS4 Spectral Near-infrared

Area Shape in pixels
Elliptic fit Shape
Density Shape
Rectangular Fit Shape
Shape index Shape
Asymmetry Shape

Gray level co-occurrence matrix contrast (all dir.) Textural
Gray level co-occurrence matrix entropy (all dir.) Textural
Gray level co-occurrence matrix correlation (all dir.) Textural

3.3. Adaptation of MRF-Based Methods to a Multi-Scale Context

As we explained in the previous section, the clusters form a hierarchical structure depending on
the desired level of detail. It is obvious that exploiting these hierarchical relationship between the
clusters could lead to improved results and that hierarchical clustering would have the advantage
of directly providing several scales of interest [2]. However, most hierarchical clustering algorithms
in the literature do not handle neighborhood relationships between data and have an algorithmic
complexity that is between O(N2logN) and O(N3). Such high complexity does not scale for large
datasets typically used in VHR image analysis.

To solve this problem, in our experimental section, we propose to use a modified version of
the SR-ICM algorithm presented in Section 2.2. This modified version allows the user to search for
different number of clusters (different scales of interest) and then runs several SR-ICM in parallel
with a modified optimization function that encourages each algorithm to build hierarchical clusters
depending on the other algorithms’ partitions. To this end, let us consider J scales of interest, and let
us define Ωi,j the confusion matrix between any scales i with Ki cluster and j with Kj clusters so that:

Ωi,j =

⎛⎜⎜⎜⎝
ω

i,j
1,1 · · · ω

i,j
1,Kj

...
. . .

...
ω

i,j
Ki ,1

· · · ω
i,j
Ki ,Kj

⎞⎟⎟⎟⎠ where ω
i,j
a,b =

|Ci
a ∩ Cj

b|
|Ci

a|
(4)
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The confusion matrix from Equation (4) defines how each cluster of the SR-ICM algorithm at
scale i maps into the clusters of the SR-ICM algorithm at scale j. This matrix is in fact very similar to
the affinity matrix from the SR-ICM model and plays the same role as a multi-scale level instead of
a geographic one. From there, favoring the construction of hierarchical clusters is done by minimizing
the following entropy function:

H =
J

∑
i=1

J

∑
j �=i

−1
Ki × ln(Kj)

Ki

∑
l=1

Kj

∑
m=1

ω
i,j
l,m ln(ωi,j

l,m) (5)

To optimize Equation (5) while ensuring that the solutions remain coherent, we modify
Algorithm 1 as follows:

si
n = Argmax

k∈[1..Ki ]

[(
πi

k ×N (μi
k, Σi

k, xn)× ∏
v∈Vxn

aτx,v
sv ,k

)
×

J

∏
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ω
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]
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
μi

k =
1

|Ci
k |

∑N
n=1 si

n(k) · xn

Σi
k =

1
|Ci

k |
∑N

n=1 si
n(k) · (xn − μi

k)(xn − μi
k)

T

πi
k =

|Ci
k |

N

(7)

As one can see, Algorithm 2 is a simple parallelization of the SR-ICM algorithm presented in
Algorithm 1, with a slightly modified likelihood function to which an extra prior has been added
to account for the decisions made at the other scales of interest. The stopping criterion is also
slightly modified, and the new criterion is that the parallel solutions found by the algorithms must
be as compatible as possible. The main difference is that unlike in the original SR-ICM algorithms,
the parameter Θ is not fixed in our proposed method. As we will show bellow, this does not affect
the convergence properties and has the advantages of keeping up to date clusters when using the
hierarchical dependencies.

Algorithm 2: Parallel SR-ICM for hierarchical clusters.

Initialize all Si, Θi and Ai using Algorithm 1, and compute the confusion matrices Ωi,j

while H is decreasing do

for i ∈ [1..J] do
Update S using Equation (6) over all of the data
Update A using Equation (3)
Update Θi using the regular GMM rules from Equation (7)

end

Update the Ωi,j using Equation (5)
end

return all Si

This algorithm has a complexity of O(NJ) for a dataset of size N and J different scales of interest.
The convergence of the process is ensured because the algorithm optimizes the global log-likelihood
function of the whole system, whose form is shown in Equation (8). In this equation, Li(X, Θi, Si) is
a local log-likelihood for an algorithm at scale i, and H(Si, Sj) denotes the joint entropy between the
solutions at scales i and j.

L(S, Θ) =
J

∑
i=1

(
Li(X, Θi, Si)− ∑

j �=i
H(Si, Sj)

)
(8)
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Equation (8) can be transformed into Equation (9) by summing over all local likelihoods and
entropies to get a global likelihood over all local models and an entropy over the whole system. Please
note that H(S) is equivalent to the entropy in Equation (5).

L(S, Θ) = L(X, Θ, S)− H(S) (9)

Since we optimize Equation (9) using a maximization-maximization process over all algorithms,
this is equivalent to the variational EM algorithm proposed by Neal et al. [40] and has the same
convergence properties: we know that the system will converge in a finite time toward an optimum.
However, we have no warranty that it will be the global optimum.

4. Experimental Results

In this section, we present the results of the clustering done from the CSV files containing the
segments information, as well as the subsequent mapping to the expert classes. The experiments were
therefore done on the 187,057 segments acquired from the previous steps. Each segment is described
by its id, 27 geometric and radiometric attributes and its neighborhood dependencies.

Using the hierarchy established in Figure 6b, we ran three SR-ICM algorithms in parallel using
Algorithm 2 searching for 4, 6 and 10 clusters. The results are shown in the next subsection.

4.1. Numerical Results

We first propose an experimental setting in which we compare our proposed method with
three others from the literature: the EM algorithm using a diagonal variance-covariance matrix [37],
the ICM algorithm using the Gaussian mixture model and a regular prior [35], the regular non
multiscale SR-ICM algorithm [3] and the SOM algorithm for VHR images [4].

We ran a dozen simulations with each algorithm for the three scales of interest with
4, 6 and 10 clusters. In Table 2, we show the results of these simulation with the average values
for four different indexes:

• The Davies–Bouldin index [41]: It is a clustering index assessing that the clusters are compact and
well separated. Its value is better when it is lower and tends to be biased towards a lower number
of clusters.

• The silhouette index [42]: It is another clustering index assessing that each datum is closer to its
clusters centroid than from the other clusters’. It takes its values between −1 and one and is better
when closer to one.

• The Rand index [43]: It is an external index assessing the degree of similitude between two
vectors. In the case of this experiment, we compared our solution vectors with our GIS hybrid
reference data. It takes its values between zero and one, with one being a 100% match.

• An entropy measure assessing the entropy between each algorithm solutions and the GIS hybrid
reference data using the confusion matrix as shown in Equation (10). It takes its values between
zero and one, with zero being a 100% match and achievable only if the solution and the reference
data have the same number of classes/clusters. This measure is therefore better when close to
zero and is biased toward a greater number of clusters.

H =
−1

K ln(15)

K

∑
l=1

15

∑
k=1

ωS,GT
l,m ln(ωS,GT

l,m ) (10)

Note that in Equation (10), we use the value of 15, because there are 15 classes in the expert
reference data.

85



Remote Sens. 2017, 9, 495

Table 2. Comparative results of our proposed “multi-scale semantic-rich iterated conditional modes
(ms-SR-ICM)” approach with other methods of the literature using 2 internal indexes and 2 external
indexes. SOM, self-organizing map.

Algorithm Davies–Bouldin Index Silhouette Index Rand Index Entropy

EM (4 clusters) 2.09 0.23 0.69 0.64
EM (6 clusters) 2.10 0.19 0.72 0.62
EM (10 clusters) 2.59 0.11 0.70 0.61

GMM-ICM (4 clusters) 3.65 0.14 0.72 0.59
GMM-ICM (6 clusters) 2.52 0.16 0.73 0.58
GMM-ICM (10 clusters) 3.92 0.07 0.75 0.58

SR-ICM (4 clusters) 4.16 0.15 0.72 0.58
SR-ICM (6 clusters) 2.49 0.19 0.75 0.58
SR-ICM (10 clusters) 3.50 0.10 0.78 0.57

ms-SR-ICM (4 clusters) 4.27 0.14 0.72 0.57
ms-SR-ICM (6 clusters) 2.47 0.20 0.77 0.57

ms-SR-ICM (10 clusters) 3.33 0.10 0.80 0.55

SOM (6 clusters) 2.23 0.17 0.75 0.60
SOM (10 clusters) 4.04 0.05 0.75 0.63

From Table 2, we can draw several conclusions: First, if we look at the unsupervised indexes
(Davies–Bouldin and silhouette), we can see that the expectation-maximization algorithm mostly
outperforms all algorithms. This result was to be expected in the sense that both indexes assess the
quality of clusters and that the EM algorithm is the only “pure” clustering method that we used
here. All three variations of the ICM use spatial dependencies to bend the original clusters toward
more realistic classes, hence the degradation that we observe in the unsupervised indexes. It is
therefore logical that the EM algorithm has the best results for unsupervised indexes. It is followed
by the GMM-ICM and SR-ICM with their modified priors. Then comes the SOM algorithm. Finally,
our proposed multi-scale SR-ICM is lagging behind because it has two priors that further bend the
partitions away from the usual spherical and well-separated clusters.

This leads us to the interpretation of the supervised indexes (Rand index and entropy). Given the
final goal of our application, which is the automatic classification (and not the clustering) of objects in
very high resolution images, it is these two indexes that matter most for real applications. As one can
see, the results are reversed: our proposed ms-SR-ICM algorithm slightly outperforms both other ICM
algorithms; the SOM algorithm still has average performances; and the EM algorithm scores last.

In terms of performances, our proposed parallelized multi-scale version of the semantic-rich
ICM algorithm achieves the lowest entropies on the three scales of interest and up to an 80% match
with the reference data, which is approximately 2% ahead of the second best algorithm. We also note
that on the four clusters’ scale, there is no difference between the results of the three ICM algorithms.
There are two possible explanations for these results: First, with only four clusters compared with the
15 reference classes, the Rand Index may not be able to discriminate between the algorithms. Second,
multi-scale approaches are known to favor scales with more clusters: it is easier to check that clusters
have been properly divided from a scale with less clusters because there is less information dispersion
than checking that they have been properly merged from a scale with more clusters. Therefore,
our proposed method is mostly beneficial for the six clusters and 10 clusters scales.

Beyond the efficiency of our proposed method, this experiment highlights that there is a strong
disconnection between clustering indexes that are used by most unsupervised methods and the
supervised indexes that are used in real applications. This difficulty that we have been discussing
since the Introduction is a real challenge for the conception of future automated detection systems.

In Figure 8, we show the typical hierarchical clusters found by our proposed method.
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Figure 8. Expert classes in grey (right) and hierarchical clusters extracted from the confusion matrices
Ω found by our proposed method (left): The plain arrows highlight strong links, dashed arrows mild
links and dotted arrows weak links. The arrows and characters in red highlight potentially armful
errors in the clusters or their hierarchy when compared with the expected classes.

As one can see, the two main differences with Figure 6 come from the inclusion of road elements
grouped with bare soil areas at scales of four and six clusters and from the difficulty to properly
separate water from a dark building and then individual houses at the same scales. Our explanation
for the difference in the hierarchy is the following: Unlike in pixel-based clustering where only color
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attributes are considered, leading to easily separating water from the other classes, our OBIA approach
uses a larger number of non-color based attributes, which delay this separation. While color-based
attributes are still the most influential, since we use the Euclidean distance, in which all features have
the same weight, their discrimination power is significantly reduced. Consequently, our four first
clusters regroup elements that have close enough colors and shapes, thus regrouping the water (dark
blue) and some dark urban elements (dark grey and black) in the first cluster, brighter (light grey or
white) urban elements in another, roads and bare soil (brown and grey) in a third one and vegetation
(green) in the final cluster. Then, at the six clusters’ scale, the shape of the segments seems to become
significant enough to separate most large darker buildings from the water cluster.

On the other hand, small individual houses with blue tiled roofs or shadow areas have segments
whose shape is very similar to water areas. Furthermore, all three tend to be surrounded by a
similar vegetation environment, thus making the differentiation difficult even using the neighborhood
semantic matrix. Therefore, a decent separation of the water from the other elements is only achieved at
the 10 clusters’ scale. While this may be problematic in the sense that the supervised algorithm usually
learns first to detect water, in the case of unsupervised learning, this was to be expected, since there is
no supervision at all. Other unsupervised algorithms applied to OBIA suffer from the same issue as
satellite images [3,4], but our method still handles this problem when there are enough clusters.

Other minor flaws when comparing the clustering to what could have been expected from
a supervised algorithm include: The regrouping of roads and bare soil in the same cluster; the different
types of tree areas generally grouped in a single cluster. However, this matched with the reference data
and therefore is not really a problem; the confusions that occurs between some bare soil and vegetation
areas due to the fact that there may be patches of grass or crops in bare soil areas and patches of bare
soil in crops and low vegetation areas. This problem is in our opinion impossible to solve without
changing the segmentation.

Our proposed method also created some unexpected clusters, such as one containing large
modern buildings (mostly industrial buildings) and another one differentiating roads from parking
and pavements (based on the cluster’s shape and semantic surrounding). In fact, our method gives
three types of buildings where the expert found only one and where we expected to find only two.
Furthermore, except for the minor confusions between crops and low vegetation, the hierarchical tree
found by our method globally matches the one given in Figure 6.

4.2. Visual Results

In this section, we show some visual extracts of the results obtained by our method and the
algorithms used in the previous section. As such, the explanations that follow are purely based on our
interpretation of these visual results. To get the exact accuracy of the clusters displayed in Figures 9
and 10, you can refer to the “Rand index” column of Table 2.

In Figure 9, we show the visual result of our method looking for six clusters in the center area of
the city of Strasbourg. Our results are compared with these of two others algorithms from the literature.
We tried to use similar color codes for all figures despite the variety of classes and clusters: blue is
used for water, different scales of green and yellow for vegetation areas, grey for roads, pink and violet
for buildings.

If we first look at Figure 9b with the raw polygons and Figure 9c with the hybrid reference data,
we can see that the original GIS reference data of this area in Figure 9b have much less and more linear
objects than the segmentation Figure 9c. For this reason, the hybrid ground-truth shown in Figure 9c
features large homogeneous areas of the same class that clearly should be separated when we look at
the original image in Figure 9a. This is a visual confirmation that our ground-truth used for Table 2 is
not perfect and further explains why this hybrid ground-truth cannot be used for supervised learning.

Moving to Figure 9d–f, we can see a comparison between one of our SR-ICM results at the scale
with six clusters and the visualization of a result from the SOM algorithm [4] and EM algorithm using
the Gaussian mixture model for the same area. First, we can see in Figure 9d that our algorithm
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correctly detects the river, whereas the SOM algorithm (Figure 9e) only partially does so, and the
EM algorithm Figure 9f fails to do so. The same can be said for the stadium on the top right of
the image. We can see that all three algorithms mostly correctly identify vegetation areas, with the
EM algorithm making slightly more mistakes. Finally, all three algorithms make several confusions
between individual houses and water areas due to the roofs’ color as we had already mentioned when
commenting on Figure 8. This proves that this issue is not isolated to our method.

(a) (b)

(c) (d)

(e) (f)

Figure 9. Original image (extract), reference data images and results using different algorithms looking
for six clusters. (a) Original image, Pléiades c©Airbus, CNES 2012; (b) reference data c©EMS 2012:
raw polygons; (c) hybrid reference data; (d) multi-scale SR-ICM at the six clusters’ scale; (e) SOM
algorithm [4] with six clusters; (f) EM algorithm with six clusters.

In Figure 10, we show the result of our algorithms at scales of six and 10 clusters when applied
to a non-urban area of our satellite image. As we can see, while the confusion between water and
individual houses is less frequent at the 10 clusters’ scales, it remains present for several segments.
Nevertheless, several areas are correctly classified: roads, rivers and several types of vegetation areas.
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(a) (b)

(c) (d)

Figure 10. Original image (extract), reference data and our algorithm at scales of six and 10 clusters.
(a) Original image, Pléiades c©Airbus, CNES 2012; (b) hybrid reference data; (c) multi-scale SR-ICM at
the six clusters’ scale; (d) multi-scale SR-ICM at the 10 clusters’ scale.

4.3. Discussion

We now would like to conclude this experimental section. For the clustering step, our proposed
method uses a multi-scale analysis that is both adapted to this type of images, but also helps achieve
better results. We have compared our method with three other methods available from the literature,
and while we have seen that our method still has flaws (also found in other unsupervised methods),
our algorithm achieves better results in terms of supervised indexes, unsupervised indexes and also
visual results.

It is true that the results in terms of supervised and unsupervised indexes are not overwhelming
when compared to those of other methods, but the projection of our results on the original images
makes it clear that our method gives the best results. Furthermore, our algorithm has the advantage of
keeping both the semantic analysis aspect of the original SR-ICM algorithm and to add the description
of the cluster hierarchy at different scales. This latter addition is extremely valuable to interpret the
strengths and weaknesses of our method and helps to adjust the algorithms’ parameters to achieve the
best possible results.

Possible future works to improve the results of our method, both during the segmentation step
and the clustering step, could include a pre-selection of the attributes of interest based on saliency
criteria at the considered scale. To this end, several inspiring works exist in hyperspectral image
analysis [44,45] to select the optimal bands. These works could be adapted to weight attributes instead
of bands and may lead to improved results.

5. Conclusions

In this article, we have been concerned with the challenges and issues that lie with the
unsupervised analysis of very high resolution satellite images. After an overview of the different steps
to achieve this goal and a short summary of the methods available in the literature with their strengths
and weaknesses, we have proposed our own contribution in the form of a multi-scale version of the
semantic-rich ICM algorithm that covers the need for multi-scale algorithms to analyze very high
resolution images.
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In order to demonstrate the efficiency of our method, we have detailed the step by step processing
of a satellite image of the French city of Strasbourg, using methods available from the literature for
the cleaning and segmentation steps and then comparing our proposed method to others during the
unsupervised analysis of the images segments with the goal of finding the final classes of interests at
several scales. During these steps, we have highlighted the difficulties encountered by all methods
including ours.

In addition to its low computational complexity and the ease to choose the scales of interest to
which to apply a clustering process, our method has shown competitive performances when compared
to other state of the art algorithms. Furthermore, our proposed algorithm retains low level semantic
information that can be easily used to map the clusters to the expert classes of interest.

In our future work, we look forward to proposing similar multi-scale implementations during the
segmentation step of a satellite image with the goal of producing better segments, thus reducing the
accumulation of errors during the different steps of the image processing. It would also be interesting
to use feature selection criteria in order to better detect objects of interest at the different scales, but also
to avoid using redundant attributes.
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Abstract: Semantic segmentation is a fundamental task in remote sensing image processing.
The large appearance variations of ground objects make this task quite challenging. Recently,
deep convolutional neural networks (DCNNs) have shown outstanding performance in this task.
A common strategy of these methods (e.g., SegNet) for performance improvement is to combine
the feature maps learned at different DCNN layers. However, such a combination is usually
implemented via feature map summation or concatenation, indicating that the features are
considered indiscriminately. In fact, features at different positions contribute differently to the
final performance. It is advantageous to automatically select adaptive features when merging
different-layer feature maps. To achieve this goal, we propose a gated convolutional neural network
to fulfill this task. Specifically, we explore the relationship between the information entropy of the
feature maps and the label-error map, and then a gate mechanism is embedded to integrate the feature
maps more effectively. The gate is implemented by the entropy maps, which are generated to assign
adaptive weights to different feature maps as their relative importance. Generally, the entropy maps,
i.e., the gates, guide the network to focus on the highly-uncertain pixels, where detailed information
from lower layers is required to improve the separability of these pixels. The selected features are
finally combined to feed into the classifier layer, which predicts the semantic label of each pixel.
The proposed method achieves competitive segmentation accuracy on the public ISPRS 2D Semantic
Labeling benchmark, which is challenging for segmentation by only using the RGB images.

Keywords: semantic segmentation; CNN; deep learning; ISPRS; remote sensing; gate

1. Introduction

With the recent advances of remote sensing technologies for Earth observation, large number of
high-resolution remote sensing images are being generated every day. However, it is overwhelming to
manually analyze such massive and complex images. Therefore, automatic understanding of the remote
sensing images has become an urgent demand [1–3]. Automatic semantic segmentation is one of the
key technologies for understanding remote images and has many important real-world applications,
such as land cover mapping, change detection, urban planning and environmental monitoring [4–6].
In this paper, we mainly focus on the task of semantic segmentation in very high-resolution images
acquired by the airborne sensors. The target of this problem is to assign an object class label to each
pixel in a given image, as shown in Figure 1a,b.
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Figure 1. The strong relationship between segmentation error label map with entropy heat map.
(a) Input image; (b) Segmentation reference map; (c) Predicted label map; (d) Error map with white
pixels indicating wrongly classified pixels; (e) Corresponding entropy heat map.

Semantic segmentation in remote sensing images is a tough task due to several challenges.
First of all, one characteristic of these images is that they often contain a lot of complex objects with
various sizes. For example, there are huge buildings and blocks, as well as tiny cars and trees. This factor
makes it challenging to simultaneously segment all the objects of various sizes. Another difficulty lies
in that resolution improvement can make redundant object details (e.g., building shadow or branches
of tree) more clear, which increases the difficulty for semantic segmentation. In addition, high-resolution
images contain many objects with high intra-class variance and low inter-class variance [7,8]. Taking the
building for example, their roofs look very similar to the roads in term of the appearance. The fact is
also true for low vegetation vs. tree. Therefore, features at different levels need to be extracted and
jointly combined to fulfill the segmentation task. For one thing, high-level and abstract features are
more suitable for the semantic segmentation of large and confused objects, while small objects benefit
from low-level and raw features. For another, the ensemble of different level features will provide
richer information for semantic segmentation.

Deep convolutional neural network (DCNN) is a well-known model for feature learning. It can
automatically learn features of different levels and abstractions from raw images by multiple
hierarchically stacking convolutional and pooling layers. In the last few years, DCNN has been
extensively studied and demonstrated remarkable learning capability in many applications [9–11].
In the literature, it has also been utilized in the task of image segmentation. Typically, Long et al. [12]
adapted the typical DCNN into a fully convolutional network (FCN) for semantic segmentation.
FCN achieves pixel-wise classification and now becomes the basic framework for most of the recent
state-of-the-art approaches. However, FCN only uses the high-level feature maps (output of the upper
convolutional layer) to perform pixel-classification; the low-level feature maps (output of the lower
convolutional layer) with rich detailed information are discarded. Although the high-level feature
maps are more abstract, they lose a lot of details due to the pooling operation. As a result, FCN has
very limited capacity in dealing with small and complex objects. In order to address this issue, reusing
low-level feature maps becomes a popular solution as these maps possess rich spatial information
and fine-grained details. For example, U-Net [13] modifies and extends the FCN by introducing
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concatenation structures between the corresponding encoder and decoder layers. The concatenation
structure enables the decoder layers to reuse low-level feature maps with more details to achieve
a more precise pixel-wise classification. Compared with U-Net, SegNet [14] also records the pooling
indices in encoder and reuses them in decoder to enable precise segmentation. RefineNet [15], a recent
framework, also adopts this strategy, but uses sum operation and introduces many residual convolution
units both in the encoder and decoder path.

Basically, these successful models concatenate or sum feature maps without feature map selection.
In this study, we notice that only using subsequent convolutional layers for feature fusion might
make the network difficult to train. On the one hand, without feature map selection may introduce
redundant information into the network and result in over-segmentation when the model tends to
receive more information from lower layers. This is because low-level feature maps contain rich
detailed information (e.g., branches in trees). On the other hand, this may lose fine-grained details and
lead to under-segmentation when the network tends to receive more information from upper layers.
Therefore, it is a critical problem to automatically select adaptive features when merging low- and
high-level features.

To tackle the above problems, we propose a gated convolutional neural network for the semantic
segmentation in high-resolution images, called gated segmentation network (GSN). When combining
two feature maps, we introduce an input gate to adaptively decide whether to keep the corresponding
information. Generally speaking, our goal is to import extra low-level information at the positions
where the pixel labels are difficult to infer by only using the upper layer feature maps. Meanwhile,
we prevent low-level information from being imported into the combined features if the pixel labels
have already been determined. This is because over-segmentation may arise if we bring overmuch
details. The gate mechanism is implemented by calculating the information entropy of the feature
maps before the softmax layer (classifier). The generated entropy heat map has strong relationship
with the label-error map, as shown in Figure 1d,e. We summarize our contributions as follows:

• A gated network architecture is proposed for adaptive information propagation among feature
maps with different level. With this architecture, convolution layers propagate the selected
information into the final features. In this way, local and contextual features work with each other
for improving the segmentation accuracy.

• An entropy control layer is introduced to implement the gate. It is based on the observation
that the information entropy of the feature maps before the classifier are closely related to the
label-error map of the segmentation, as shown in Figure 1.

• A new deep learning pipeline for semantic segmentation is proposed. It effectively integrates
local details and contextual information and can be trained via an end-to-end manner.

• The proposed method achieves state-of-the-art performance among all the published papers on
the ISPRS 2D semantic labeling benchmark. Specifically, our method achieves a mean F1 score
of 88.7% on five categories (ranking 1st) and overall accuracy 90.3% (ranking 1st). It should be
noted that these results are obtained using only RGB images with a single model, without Digital
Surface Model (DSM) and model ensemble strategy.

The remainder of this paper is organized as follows: Section 2 presents the related work.
In Section 3.2, we introduce the proposed GSN architecture. Section 4 validates our approach
experimentally, followed the conclusions in Section 5.

2. Related Work

2.1. Deep Learning

In 2012, the AlexNet [16] won the ILSVRC contest, which is a key milestone in deep learning.
Since then, DCNNs have got an explosive development. VGG [17], GoogLeNet [18], ResNet [19]
have been proposed one after another. These frameworks are usually treated as feature extractor and
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play an import role in a wide range of computer vision tasks, such as object detection [20], semantic
segmentation [21] and scene understanding [22], etc.

2.2. Semantic Segmentation in Remote Sensing

Semantic segmentation is a significant branch in computer vision. There are a considerable number
of works focusing on the remote sensing imagery. Full reviews can be found in [23–25]. Generally,
these methods can be roughly classified into the pixel-to-pixel and image-to-image segmentation.
The pixel-to-pixel method determines a pixel’s label based on an image patch enclosing the
target pixel. Then other pixels are classified using a sliding window approach [26,27]. With the
development of deep learning on remote sensing images, image-to-image segmentation becomes
the mainstream. Sherrah and Jamie [8] proposed a deep FCN with no down-sampling to infer
a full-resolution label map. Their method employs the strategy of the dilated convolution in
DeepLab [21], which uses dilated kernel to enlarge the size of convolution output at the expense
of storage cost. Marmanis et al. [28] embedded boundary detection to the SegNet encoder-decoder
architecture. The boundary detection significantly improves semantic segmentation performance
with extra model complexity. Kampffmeyer et al. [29] focused on small object segmentation through
measuring the uncertainty for DCNNs. This approach achieves high overall accuracy as well as good
accuracy for small objects. For all the above methods, further improvements can be achieved by using
Conditional Random Fields (CRF) [30,31] or additional data (e.g., Digital Surface Model).

2.3. Gate in Neural Networks

Long short-term memory (LSTM) [32] is a famous framework in the natural language and speech
processing. Its success largely owes to the design of gate to control the message propagation. Recently,
Dauphin et al. [33] introduced the gated convolutional networks to substitute LSTM for language
modeling. A convolution layer followed by a sigmoid layer is treated as a gate unit. Similar to [33],
GBD-Net [34] also uses convolution layers with the sigmoid non-linearity as gate unit. GBD-Net is
designed for object detection. The gate units are used for passing information among features from
different RoIs (region of interest). Through analysis of related literature, embedding gate in neural
networks is a simple, yet effective way for both feature learning and feature fusion.

3. Method

This section starts with an important observation of DCNNs for semantic segmentation, which
motivates us to design the gated segmentation network (GSN). Then we introduce the GSN architecture
in detail, which largely improves the performance of semantic segmentation in remote sensing images.

3.1. Important Observation

When applying DCNNs for the semantic segmentation, the softmax (cross entropy) is usually
used as the classifier for the given feature maps. The output of the softmax represents a probability
distribution of each pixel over K different categories. With the estimated probabilities of pixel x,
we can calculate the corresponding entropy H(x) with

H(x) = E[− log2(pi(x))] = −
K

∑
i=1

pi(x) log2(pi(x)), (1)

where E[·] denotes expectation over all the K categories, and pi(x) is the probability of pixel x belonging
to category i.

We observe that the entropy heat map has strong relationship with the label-error map. As shown
in Figure 1d,e, there is a strong possibility that the pixels of high entropy are wrong classified. Generally,
entropy is a measure of the unpredictability of states [35]. When the entropy of pixel x is maximized,
p(x) approximates an uniform probability distribution, indicating that the network is unable to classify
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this pixel by using only existing information. At these positions, extra information is needed to help
the network to classify the pixels. On the contrary, when the network has a high confidence in the pixel
label, the entropy will become lower. According to this consideration, when we combine low-level
feature maps with high-level ones, the entropy heat map can be treated as a weight map of the low-level
feature maps.

3.2. Gated Segmentation Network

Based on the above observation, we propose a gated convolutional neural network for the
semantic segmentation in high-resolution images. An overview of the GSN architecture is shown
in Figure 2. Our architecture can be divided into two parts: encoder and decoder. In the encoder
part, ResNet-101 is applied for feature extraction. In this process, we can get low-level feature maps
containing detailed information from lower layers, as well as high-level feature maps containing
high-level contextual information from upper layers. In the decoder part, we first use the high-level
feature maps for semantic segmentation and get the entropy heat map. Then the generated entropy
heat map is treated as the input weight (pixel-to-pixel) of the low-level feature maps when merged
with high-level feature maps. A larger entropy value indicates higher uncertainty about the label
of the pixel. Consequently, a higher adoption of the low-level feature maps is necessary. We repeat
this operation until all the available low-level feature maps are combined. Additionally, residual
convolution module is introduced as the basic processing unit before and after the merging process for
better training the network. Finally, the combined feature maps containing both high- and low-level
information are fed into the softmax layer to obtain the segmentation result. The details are described
in the subsequent subsections.
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Figure 2. The overview of our gated segmentation network. In the encoder part, we use ResNet-101
as the feature extractor. Then the Entropy Control Module (ECM) are proposed for feature fusion in
decoder. In addition, we design the Residual Convolution Module (RCM) as a basic processing unit.
The details of RCM and ECM are shown in the dashed boxes.
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3.2.1. Entropy Control Module

The bottom-right corner of Figure 2 shows the structure of the proposed entropy control
module (ECM). It takes the feature maps f upper (already up-sampled) and f lower as input. The output
is represented by F f usion, which combines contextual information and details from f upper and f lower

respectively. This feature fusion process is implemented by a gate function, which can be summarized
as follows:

F f usion = (H[ f upper ⊗ w1∗1]� f lower)⊕ f upper, (2)

where ⊗, � and ⊕ stands for the convolution operator, the element-wise product operator, and the
element-wise sum operator respectively, and w1∗1 represents the 1 ∗ 1 convolutional kernel. As there
are K categories in our work setting, the output of the 1 ∗ 1 convolutional layer will contain K channels,
and each channel records the probabilities of pixels belonging to one of the K categories. In Equation (2),
H[·] stands for the entropy calculator, which yields the entropy heat map by Equation (1).

Based on Equation (2), one can see that the designed gate is a binary function, which takes the
entropy heat map and the low-level feature map f lower as its inputs. Functionally, it is actually a feature
selector on f lower , which is guided by the entropy heat map that is originated from the high-level
feature map f upper. Beyond simply fusing the f lower, in this way we build up a mechanism to select the
features with their importance for classification. In practice, an entropy control layer is introduced to
implement the gate. This layer is only used for calculating the entropy, thus it does not participate in
the process of back-propagation.

For clarity, we take Figure 1e as an example to explain our design. Actually, the entropy heat
map generated by H[·] offers very helpful information for classifying those pixels that are hard to
be classified. As can be witnessed in Figure 1e, most of the high-entropy pixels appear on the object
boundaries. Thus, with the gate operation, the information from lower layer will be passed and highly
weighted into the final F f usion (see Equation (2)). In contrast, the entropy inside the objects is usually
low. Sequentially, the information from lower layer at these positions (e.g., the chimney in the roof in
Figure 1e) will be blocked. As a result, over-segmentation can be avoided.

3.2.2. Residual Convolution Module

Inspired by ResNet, residual convolution module (RCM) is introduced as the basic processing unit
to ease the training of the network. As shown in the bottom-left corner of Figure 2, there is an identity
mapping between the input and output of the module. In the forward propagation, input message can
be delivered without loss, and network only needs to learn the residual mapping. In the backward
propagation, gradient can be directly propagated from top to bottom, which can settle the problem
of gradient vanishing. Compared with the residual blocks in ResNet, the RCM has two differences.
First, we removed the 1 ∗ 1 convolutional layer. Compute reduction layers have been added at the begin
of encoder. Numbers of feature channels are small in the decoder and compute reduction becomes
unnecessary. Second, batch normalization layer [36] is removed. Given that the model size is large,
we are limited to use small batch size to stay within the GPU memory capacity.

3.2.3. Model Optimization

In the field of neural networks, model optimization is driven by a loss function (also known as
objective function). Once the loss function is defined, we can train the network by back-propagation
errors [37] in conjunction with gradient descent. To train the proposed architecture, softmax loss
function, i.e., cross entropy loss, is adopted. We have a main loss at the end of network and
four auxiliary losses in four ECMs. For clarity, we only consider the main loss in the following
analysis. Specifically, the softmax function is defined as:

L(y, x, θ) = − 1
B · P

B

∑
b=1

P

∑
p=1

K

∑
k=1

1{yp
b = k} log pk(xp

b ), (3)
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where θ represents the parameters of the proposed GSN, B and P are the mini-batch size and number
of pixels in each image respectively, 1{·} is the indicator function, which takes 1 when 1{true} and 0
otherwise, xp

b is the p-th pixel in the b-th batch and yp
b is the corresponding label, and the probability

of pixel xp
b belonging to the k-th class is denoted by pk(xp

b ), which can be calculated by:

pk(x) =
exp(WT

k f (θC, x))

∑K
i=1 exp(WT

i f (θC, x))
, (4)

where Wk ∈ Rd is the j-th filter of the last 1 ∗ 1 conv layer, d is the feature dimension, θC are the rest
parameters except the 1 ∗ 1 conv layer, and f (θC, x) ∈ Rd denotes the learned deep features.

To train the GSN in an end-to-end manner, the stochastic gradient descent (SGD) is adopted
for the optimization. Thus, the derivatives of the loss to different convolutional layers need to be
calculated with chain rule. Taking the 1 ∗ 1 conv layer as an example, the partial derivative of the loss
with respect to Wk is acquired by

∂L
∂Wk

= − 1
B · P

B

∑
b=1

P

∑
p=1

f (θC, xp
b )(1{yp

b = k} − pk(xp
b )). (5)

We can get the partial derivative of loss with respect to the parameters in other layers by chain
rule. In Algorithm 1, we summarize the learning steps with SGD.

Algorithm 1 The training algorithm for the proposed GSN.
Input: Training data x, maximum iteration T.

Initialize the parameters θ in convolutional layers, learning rate αt, learning rate policy ploy.
Set the initialized iteration t ← 0.

Output: The leanred parameter θ.

1: while t < T do

2: t ← t + 1.
3: Call network forward to compute the output and loss L.
4: Call network backward to compute the gradients ∂L

∂θ .
5: Update the parameters θ by θt+1 = θt − αt · ∂L

∂θ .
6: Updates the αt+1 according to learning rate policy.
7: end while

3.3. Implementation Details

We fine-tune the model weights of ResNet-101 pre-trained on Imagenet [38] to our GSN model.
Five kinds of feature maps with different sizes (acquired from the outputs of branches in
[“res5c”, “res4b22”, “res3b3”, “res2c”, “conv1”]) are prepared to be merged in the decoder part.
The spatial sizes of these feature maps are [W/32 ×W/32, W/16 ×W/16, W/8 ×W/8, W/4 ×W/4,
W/2 × W/2] respectively, with input image IW×W . Dropout is applied after these feature maps
with ratio 0.5 to avoid overfitting [39]. Moreover, we further add a convolutional (conv) layer
after the dropout layer mainly to reduce the channels. The channels of the five branches are set
to [256, 128, 128, 64, 64] respectively. Intuitively, similar conv layers should be applied before the
up-sampled layers (2× up), since the channels are different between these branches.

The proposed GSN is implemented with Caffe [40] on GPU (TITAN X). Our loss function is the
sum of softmax loss, which comes from the final classification and four ECMs. Initial learning rate is
0.0004. We employ the “ploy” learning rate policy. Momentum and weight decay are set to 0.9 and
0.0005 respectively. The bath size is set to 1. The maximum iteration is 30 k. The total training time is
about 24 h, and the average testing time of one image (600 × 600) is about 100 ms.
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4. Experiments

4.1. Dataset

We evaluate the proposed method on the ISPRS 2D semantic labeling contest [41], which is
an open benchmark dataset. The dataset contains 33 very high-resolution true orthophoto (TOP) tiles
extracted from a large TOP mosaic as shown in Figure 3. Each tile contains around 2500 × 2000 pixels
with a resolution of 9 cm. The dataset has been manually classified into six most common land cover
classes, as shown in Figure 1. The clutter class includes water bodies and other objects that look very
different from other objects (e.g., containers, tennis courts, swimming pools). As previously done in
other methods, the class of clutter is not included in the experiments, as the pixels of the clutter class
only account for 0.88% of the total image pixels. ISPRS only provides 16 labeled images for training,
while the remaining 17 tiles are unreleased and used for the evaluation of submitted results by the
benchmark organizers. Following other methods, 4 tiles (image numbers 5, 7, 23, 30) are removed
from the training set as a validation set. Experimental results are reported on the validation set if
not specified.

0       0.1      0.2

Kilometers

Figure 3. Overview of the ISPRS 2D Vaihingen Labeling dataset. There are 33 tiles. Numbers in the
figure refer to the individual tile flag.

Dataset augmentation: The 16 training tiles are first rotated 90 and 180 degrees. Then, we sample
600 × 600 patches from original images with stride (300 pixels) to avoid the insufficiency of GPU
memory. Moreover, we also randomly process the input images at the training stage with the following
one or combined operations: mirror, rotated between −10 and 10 degrees, resize by a factor between
0.5 and 1.5, and Gaussian blur.

Evaluation: According to the benchmark rules, F1 score and overall accuracy are used to assess
the quantitative performance. F1 score is calculated by:

F1 = 2× precision × recall
precision + recall

(6)

where
precision =

tp
tp + f p

, recall =
tp

tp + f n
, (7)
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where tp, f p and f n are true positive, false positive and false negative respectively. These values
can be calculated by pixel-based confusion matrices per tile, or an accumulated confusion matrix.
Overall accuracy is the normalization of the trace from the confusion matrix.

4.2. Model Analysis

For the sake of convenient comparison, we use the result of GSN without entropy control module
(ECM) as our baseline, which uses the sum operation to merge the feature maps. As shown in Table 1,
the model with ECM outperforms the baseline by a significant margin. This proves that the ECM
can effectively control information propagation and integrate features of different level effectively.
One can also see that the auxiliary loss in ECM is helpful for model optimization (GSN vs. GSN_noL).
The auxiliary loss forces the network to learn accurate contextual feature before merging lower feature
maps with high-spatial. Moreover, we notice from the confusion matrix that the low_veg and car are
more likely to be classified into tree and imp_suf respectively. This motivates us to slightly increase
the weights of low_veg to 1.1 and car to 1.2 in the loss function without accurate selection (GSN vs.
GSN_w). Finally, we have reported the result with sliding window overlap and multi-scale input, i.e.,
GSN_w_mc. Averaging predictions on the overlap regions reduce the risk of error classification, since
the borders of one patch is difficult to predict due to the lack of context.

Table 1. The F1 scores of 5 categories on the validation set. GSN_noL represents that the auxiliary loss
in ECM does not participate in the back propagation of the network. GSN_w is the version that assigns
different weights to different classes in the loss function. GSN_w_mc represents we test GSN with
sliding window overlap and multi-scale input.

Method Imp Surf Building Low_veg Tree Car Overall Accuracy Mean F1 Score

baseline 87.6% 93.2% 73.3% 86.9% 54.1% 86.1% 79.0%
GSN 89.2% 94.5% 74.9% 87.5% 79.8% 87.9% 85.2%

GSN_noL 89.1% 94.3% 74.7% 87.4% 78.7% 87.8% 84.8%
GSN_w 89.5% 94.4% 75.9% 87.8% 80.9% 88.3% 85.7%

GSN_w_mc 90.2% 94.8% 76.9% 88.3% 82.3% 88.9% 86.5%

4.3. Comparisons with Related Methods

To show the effectiveness of the proposed method, we have performed comparisons against
a number of state-of-the-art semantic segmentation methods, as listed in Table 2. Deeplab-v2 [21]
and RefineNet [15] are the versions with ResNet-101 as their encoder. In particular, we re-implement
the RefineNet with Caffe, since the released code is built on MatConvNet [42]. We can see that
GSN significantly outperforms other methods on both overall accuracy and mean F1 score. Notably,
our approach outperforms the RefineNet, within which the feature map merging is implemented by
the sum operation. The comparison indicates that the promising performance of GSN can be ascribed
to the ECM, which selects low-level information in feature fusion.

Table 2. Comparisons between our proposed GSN with mainstream models.

Method Imp Surf Building Low_veg Tree Car Overall Accuracy Mean F1 Score

FCN-8s [12] 87.1% 91.8% 75.2% 86.1% 63.8% 85.9% 80.8%
SegNet [14] 82.7% 89.1% 66.3% 83.9% 55.7% 82.1% 75.5%

Deeplab-v2 [21] 88.5% 93.5% 73.9% 86.9% 84.7% 86.9% 83.5%
RefineNet [15] 88.1% 93.3% 74.0% 87.1% 65.1% 86.7% 81.5%

GSN 89.2% 94.5% 74.9% 87.5% 79.8% 87.9% 85.2%

102



Remote Sens. 2017, 9, 446

4.4. Model Visualization

To understand GSN better, we have also carried out feature map visualization to examine how
entropy gate affects the final performance. Four entropy control modules are embedded in GSN to
merge the five kinds of feature maps with different resolutions. In this section, we visualize the entropy
heat map, error map and prediction in each ECM.

At each iteration , the prediction will be more fine-grained by merging larger resolution feature
maps (ECM 1 → ECM 4). An illustration is provided in Figure 4. In ECM 1, we only get a coarse label
map, since only the smallest resolution maps are available. Successively merging features from lower
layers, we can refine the coarse label map. This is consistent with the analysis of upper-layer feature
maps containing more contextual information, and lower-layer feature maps containing more details.

Figure 4. Model visualization. We show the error maps, entropy heat maps, and predictions at
different iterations in the training procedure. Four rows at each iteration block correspond to four
ECMs, which are used to merge five kinds of feature maps with different resolutions.
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In addition, we also visualize the three kinds of maps at different iterations while training the
model. At the beginning, the entropy heat maps of four ECMs are almost the same, i.e., red images.
It shows that the value of entropy is very high at the beginning, and thus all the gates are at the
fully opened state. At this moment, the network has not learned the discriminative features and
needs additional information to determine the pixels’ labels. As the training proceeds, GSN learns
more discriminative features and starts to close the gates at some positions, as shown in 600 or 1 k
iterations. Towards the end of the training, we acquire a more satisfying prediction. As can be seen in
Figure 4, the positions of high entropy values (similar to error map) almost appear on the boundaries,
whose width is very thin. All the above observations once again demonstrate the effectiveness of the
proposed ECM.

4.5. ISPRS Benchmark Testing Results

We submitted the results on the unlabelled test images to ISPRS organizers for evaluation.
As shown in Table 3, GSN ranks 1st both in mean F1 score and overall accuracy, compared with
all the other published works. Visual performance among related methods is shown in Figure 5.
It should be noted that we only use the RGB source images. Neither the additional DSM images offered
by ISPRS nor the CRF for post-processing is used in the proposed method, both of which can further
improve the performance as described in these compared methods. This is based on the following
two considerations. First, we want to sufficiently mine the information contained in RGB images, which
will eliminate the need to acquire DSM data. Second, the operation of CRF is time-consuming. Therefore,
we manage to build a fast and simple architecture for sematic segmentation in high-resolution remote
sensing images. In addition, according to the evaluation of ISPRS, the boundaries of objects in testing
labeled images are eroded by a circular disc of 3 pixel radius. Those eroded areas are ignored during
evaluation in order to reduce the impact of uncertain border definitions. Thus the performance on
testing set is slightly better than that on validation set.

Table 3. Quantitative comparisons between our method and other related methods (already published)
on ISPRS test set.

Method Imp Surf Building Low_veg Tree Car Overall Accuracy Mean F1 Score

UPB [43] 87.5% 89.3% 77.3% 85.8% 77.1% 85.1% 83.4%
ETH_C [44] 87.2% 92.0% 77.5% 87.1% 54.5% 85.9% 79.7%
UOA [45] 89.8% 92.1% 80.4% 88.2% 82.0% 87.6% 86.5%

ADL_3 [26] 89.5% 93.2% 82.3% 88.2% 63.3% 88.0% 83.3%
RIT_2 [46] 90.0% 92.6% 81.4% 88.4% 61.1% 88.0% 82.7%
DST_2 [8] 90.5% 93.7% 83.4% 89.2% 72.6% 89.1% 85.9%

ONE_7 [47] 91.0% 94.5% 84.4% 89.9% 77.8% 89.8% 87.5%
DLR_9 [28] 92.4% 95.2% 83.9% 89.9% 81.2% 90.3% 88.5%

GSN 92.2% 95.1% 83.7% 89.9% 82.4% 90.3% 88.7%

4.6. Failed Attempts

Before creating entropy control module, many failed attempts have been made to find an effective
way for feature fusion. Motivated by [33,34], we once tried to create the gate by using convolutional
layer followed by sigmoid non-linearity, which make the information propagation rate in the range of
(0, 1). Three modules have been designed based on this idea. As shown in Figure 6, we have attempted
to add the gate in the output of the lower or upper layer. In the third module, gate on the output of
lower layer is created by the combination of lower and upper layers output. However, as shown in
Table 4, these modules are less effective than we expected. It is because they can not learn the right open
(or closed) state due to the lack of supervised information. One may consider adding auxiliary losses
in these modules to guide learning. However it is not feasible. Sigmoid is just an activation layer that
has nothing to do with the label-error map. There is no supervised information to guide the network
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training. Thus we cannot get the right gate states. In contrast, entropy has a strong relationship with
the label-error map, which is the supervised information for controlling the gate states. This is the
reason why ECM can effectively select features and improve the segmentation performance.

Figure 5. Visual comparisons between GSN and other related methods on ISPRS test set. Images come
from the website of ISPRS 2D Semantic Labeling Contest.
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Figure 6. Three failure modules. (a) Placing gate on the output of lower layer; (b) Placing gate both
on the output of lower layer and upper layers; (c) Gate on the output of lower layer is created by the
combination of lower and upper layers output.

Table 4. Performance of the failure models.

Model_1 Model_2 Model_3 GSN

overall accuracy 83.4% 60.0% 82.2% 86.1%
mean F1 score 75.3% 57.3% 74.8% 79.0%

5. Conclusions

In this paper, a gated convolutional neural network was proposed for the semantic segmentation
in high-resolution aerial images. We introduced entropy control module (ECM) to guide the message
passing between feature maps with different resolutions. The ECM can effectively help for integrating
contextual information from the upper layers and details from the lower layers. Extensive experiments
on the ISPRS dataset demonstrate that the proposed method achieve clear promising gains compared
with the state-of-the art methods. Our approach has the potential to perform better. Actually, the pixels
in a certain region are interrelated. However, we calculate the entropy map (gate) pixel-to-pixel,
which ignores the relationships between surrounding pixels. In the future work, we will try to
incorporate gaussian smoothing into the entropy map to further improve the performance. In addition,
we will also try to apply GSN to other fine-grained semantic segmentation tasks.

Acknowledgments: This work was supported in part by the National Natural Science Foundation of China under
Grants 91646207, 91338202, 91438105, and the Beijing Natural Science Foundation under Grant 4162064.

Author Contributions: Hongzhen Wang and Shiming Xiang designed the deep learning model; Hongzhen Wang
performed the experiments; Ying Wang analyzed the solution to the model; Shiming Xiang and Chunhong Pan
analyzed the data; Qian Zhang contributed the analysis tools and comparative methods; Hongzhen Wang and
Chunhong Pan wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, Q.; Lin, J.; Yuan, Y. Salient band selection for hyperspectral image classification via manifold ranking.
IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 1279–1289.

2. Cheng, G.; Zhu, F.; Xiang, S.; Wang, Y.; Pan, C. Accurate urban road centerline extraction from VHR imagery
via multiscale segmentation and tensor voting. Neurocomputing 2016, 205, 407–420.

3. Yuan, Y.; Lin, J.; Wang, Q. Dual-clustering-based hyperspectral band selection by contextual analysis.
IEEE Trans. Geosci. Remote Sens. 2016, 54, 1431–1445.

4. Matikainen, L.; Karila, K. egment-based land cover mapping of a suburban area—Comparison of
high-resolution remotely sensed datasets using classification trees and test field points. Remote Sens. 2011,
3, 1777–1804.

5. Tang, Y.; Zhang, L. Urban change analysis with multi-sensor multispectral imagery. Remote Sens. 2017, 9, 252.
6. Yuan, Y.; Lin, J.; Wang, Q. Hyperspectral image classification via multitask joint sparse representation and

stepwise MRF optimization. IEEE Trans. Cybern. 2016, 46, 2966–2977.

106



Remote Sens. 2017, 9, 446

7. Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal
DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329.

8. Sherrah, J. Fully convolutional networks for dense semantic labelling of highresolution aerial imagery. arXiv
2016, arXiv:1606.02585.

9. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 13–16 December 2015; pp. 1440–1448.

10. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y.
Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems,
Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680.

11. Yang, S.; Luo, P.; Loy, C.C.; Tang, X. From facial parts responses to face detection: A deep learning approach.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December
2015; pp. 3676–3684.

12. Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans.
Pattern Anal. Mach. Intell. 2015, 79, 1337–1342.

13. Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention, Munich, Germany, 5–9 October 2015; Springer: Cham, Switzerland, 2015; pp. 234–241.

14. Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for
image segmentation. arXiv 2015, arXiv:1511.00561.

15. Lin, G.; Milan, A.; Shen, C.; Reid, I. RefineNet: Multi-path refinement networks with identity mappings for
high-resolution semantic segmentation. arXiv 2016, arXiv:1611.06612.

16. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural
networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA,
3–6 December 2012; pp. 1097–1105.

17. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv
2014, arXiv:1409.1556.

18. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9.

19. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 27–30 June 2016; pp. 770–778.

20. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

21. Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation
with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv 2016, arXiv:1606.00915.

22. Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; Torralba, A. Learning deep features for discriminative
localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Seattle,
WA, USA, 27–30 June 2016; pp. 2921–2929.

23. Ghamisi, P.; Dalla Mura, M.; Benediktsson, J.A. A survey on spectral–spatial classification techniques based
on attribute profiles. IEEE Trans. Geosci. Remote Sens. 2015, 53, 2335–2353.

24. Bruzzone, L.; Demir, B. A review of modern approaches to classification of remote sensing data. In Land Use
and Land Cover Mapping in Europe; Springer: Dordrecht, The Netherlands, 2014; pp. 127–143.

25. Zhang, L.; Zhang, L.; Du, B. Deep learning for remote sensing data: A technical tutorial on the state of
the art. IEEE Geosci. Remote Sens. Mag. 2016, 4, 22–40.

26. Paisitkriangkrai, S.; Sherrah, J.; Janney, P.; van-Den Hengel, A. Effective semantic pixel labelling with
convolutional networks and Conditional Random Fields. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 36–43.

27. Audebert, N.; Le Saux, B.; Lefevre, S. How useful is region-based classification of remote sensing images in
a deep learning framework? In Proceedings of the IEEE Conference on Geoscience and Remote Sensing
Symposium, Beijing, China, 10–15 July 2016; pp. 5091–5094.

28. Marmanis, D.; Schindler, K.; Wegner, J.D.; Galliani, S.; Datcu, M.; Stilla, U. Classification with an edge:
Improving semantic image segmentation with boundary detection. arXiv 2016, arXiv:1612.01337.

107



Remote Sens. 2017, 9, 446

29. Kampffmeyer, M.; Salberg, A.B.; Jenssen, R. Semantic segmentation of small objects and modeling of
uncertainty in urban remote sensing images using deep convolutional neural networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA,
27–30 June 2016; pp. 1–9.

30. Arnab, A.; Jayasumana, S.; Zheng, S.; Torr, P.H. Higher order conditional random fields in deep neural
networks. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–16 October 2016; Springer: Cham, Switzerland, 2016, pp. 524–540.

31. Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang, C.; Torr, P.H. Conditional
random fields as recurrent neural networks. In Proceedings of the IEEE Conference on International
Conference on Computer Vision, Los Alamitos, CA, USA, 7–13 December 2015; pp. 1529–1537.

32. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780.
33. Dauphin, Y.N.; Fan, A.; Auli, M.; Grangier, D. Language modeling with gated convolutional networks. arXiv

2016, arXiv:1612.08083.
34. Zeng, X.; Ouyang, W.; Yan, J.; Li, H.; Xiao, T.; Wang, K.; Liu, Y.; Zhou, Y.; Yang, B.; Wang, Z.; et al. Crafting

GBD-Net for Object Detection. arXiv 2016, arXiv:1610.02579.
35. Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 5, 3–55.
36. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal

covariate shift. arXiv 2015, arXiv:1502.03167.
37. Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature

1986, 323, 533–536.
38. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.;

Bernstein, M. ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252.
39. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks

by preventing co-adaptation of feature detectors. Comput. Sci. 2012, 3, 212–223.
40. Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.; Girshick, R.; Guadarrama, S.; Darrell, T.

Caffe: Convolutional architecture for fast feature embedding. arXiv 2014, 675–678, arXiv:1408.5093 .
41. International Society for Photogrammetry and Remote Sensing (ISPRS). 2D Semantic Labeling Contest.

Available online: http://www2.isprs.org/commissions/comm3/wg4/semantic-labeling.html (accessed on
1 April 2015).

42. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd
ACM international conference on Multimedia, Brisbane, Australia, 26–30 October 2015, 2015; pp. 689–692.

43. Marcu, A.; Leordeanu, M. Dual local-global contextual pathways for recognition in aerial imagery. arXiv
2016, arXiv:1605.05462.

44. Tschannen, M.; Cavigelli, L.; Mentzer, F.; Wiatowski, T.; Benini, L. Deep structured features for semantic
segmentation. arXiv 2016, arXiv:1609.07916.

45. Lin, G.; Shen, C.; van den Hengel, A.; Reid, I. Efficient piecewise training of deep structured models for
semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Seattle, WA, USA, 27–30 June 2016; pp. 3194–3203.

46. Piramanayagam, S.; Schwartzkopf, W.; Koehler, F.; Saber, E. Classification of remote sensed images using
random forests and deep learning framework. In Proceedings of the SPIE Remote Sensing; International Society
for Optics and Photonics: Edinburgh, UK, 2016; p. 100040L.

47. Audebert, N.; Saux, B.L.; Lefèvre, S. Semantic segmentation of earth observation data using multimodal and
multi-scale deep networks. arXiv 2016, arXiv:1609.06846.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

108



remote sensing 

Article

A Novel Affine and Contrast Invariant Descriptor for
Infrared and Visible Image Registration

Xiangzeng Liu 1 ID , Yunfeng Ai 2,*, Juli Zhang 1 and Zhuping Wang 1

1 Xi’an Microelectronics Technology Institute, Xi’an 710068, China; lxzccy20062008@126.com (X.L.);
juli2320@sina.com (J.Z.); zxjwl@126.com (Z.W.)

2 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: aiyunfeng@ucas.ac.cn; Tel.: +86-10-8825-6564

Received: 2 April 2018; Accepted: 19 April 2018; Published: 23 April 2018

Abstract: Infrared and visible image registration is a very challenging task due to the large geometric
changes and the significant contrast differences caused by the inconsistent capture conditions. To address
this problem, this paper proposes a novel affine and contrast invariant descriptor called maximally stable
phase congruency (MSPC), which integrates the affine invariant region extraction with the structural
features of images organically. First, to achieve the contrast invariance and ensure the significance
of features, we detect feature points using moment ranking analysis and extract structural features
via merging phase congruency images in multiple orientations. Then, coarse neighborhoods centered
on the feature points are obtained based on Log-Gabor filter responses over scales and orientations.
Subsequently, the affine invariant regions of feature points are determined by using maximally stable
extremal regions. Finally, structural descriptors are constructed from those regions and the registration
can be implemented according to the correspondence of the descriptors. The proposed method has
been tested on various infrared and visible pairs acquired by different platforms. Experimental results
demonstrate that our method outperforms several state-of-the-art methods in terms of robustness and
precision with different image data and also show its effectiveness in the application of trajectory tracking.

Keywords: infrared image; image registration; MSER; phase congruency

1. Introduction

In recent years, the rapid development of sensor technology has made it possible to fully perceive
an object in complicated scenes. As the two most common visual sensors, infrared and visible sensors are
widely applied in various kinds of optoelectronic systems [1]. To make use of both sensors simultaneously,
a prerequisite is to achieve the image registration, which is a process of aligning two or more images of
a same scene captured by different sensors, at different times, or from distinct viewpoints [2]. The accuracy
of image registration has a significant impact on many computer vision tasks, such as image fusion [3],
image mosaic, visual-based navigation, and object recognition. In the registration field, infrared and
visible image registration is very challenging work mainly due to two reasons. First, as a result of the
differences in imaging mechanisms, the same scene’s content may be represented by different intensity
values, which means that images from two different sources have poor consistency in contrast. This makes
it difficult to find the correspondence based on their intensity or gradient values directly, which can
be seen from Figure 1. Second, he various intrinsic and extrinsic sensing conditions may lead to large
geometric deformations that exist between the images, which further increase the difficulty of registration.
A number of related methods have been proposed and applied successfully in the situation where the
geometric changes are small [4–8] or can be greatly alleviated according to the capture information [9,10].
However, automatic infrared and visible image registration has not been solved effectively in complicated
environments with large geometric changes and significant differences in contrast.
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Figure 1. Differences of contrast and viewpoints in input images. (a) Infrared image; (b) Corresponding
regions and their gradient images; and (c) Visible image.

This paper presents a novel affine and contrast invariant descriptor for the automatic registration
of infrared and visible images. The proposed method detects the significant feature points based on
moment ranking analysis and constructs structural features via merging phase congruency images in
multiple orientations. This embodies the significance of feature points maximally and makes structural
features to be contrast invariant. Descriptors of orientated phase congruency centered on the feature
points are constructed in the affine invariant regions detected by maximally stable extremal regions
(MSER), which ensures that the descriptors are affine invariant. This paper is organized as follows.
Related works in registration for infrared and visible images are described in Section 2. The proposed
registration method using a novel affine and contrast invariant descriptor is described in detail in
Section 3. Comparative and applied experimental results are discussed in Section 4. Finally, conclusions
are drawn, and future work is discussed in Section 5.

2. Related Works

At present, the registration methods for infrared and visible image can be classified into
two categories: global region-based methods and local features-based methods. Global region-based
methods obtain correspondence by using the whole image content in spatial domain or transform
domain, which mainly include mutual information (MI) [8,11,12], phase correlation (PC) [4], Fourier
transform [6,13], particle swarm optimization (PSO) [7], gradient information [5,14], and template
correlation matching [15,16]. Those methods can get remarkable performance for images with small
geometric changes or medical images with high correlation in global intensity. However, contrast
reversal, occlusion, uneven heated, and clutters occur frequently in some regions of input images,
which result in the global region-based methods being unable to achieve an accurate registration.

In contrast to global region-based methods, local feature-based methods utilize the extracted
features to establish correspondence, and they are generally divided into two groups: typical
features-based methods and structural features-based methods. In the first group, extracted typical
features include edges [17], lines [18–22], contours [23], gradient distribution [15,24], and their
variants [25–28]. Those methods above are robust in response to geometrical changes, occlusion,
background clutter, and noise. However, they treat all content equally, such that they are highly
sensitive to structural disparities caused by insignificant structures. This results in serious degradation
in matching performance when large differences in contrast appeared in input images. Two images
obtained from the same scene using different modalities may have significantly different intensity
characteristics but should have very similar structural features. Therefore, the structural features of
the disparate images can be compared in a direct fashion.

Compared with the typical features-based methods, structural features-based methods can
extract more robust common features from different modalities and are less sensitive to the
contrast differences. Due to these advantages, they have been successfully applied to multimodal image
registration [10,21,28–33]. As a valid structural feature extraction method, phase congruency was proposed
by Morrone et al. [34], which is the ratio of local energy to the overall path length taken by the local Fourier
components in reaching the endpoint. To improve the insensitivity of phase congruency to noise and
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provide good localization, Kovesi proposed a new sensitivity measure and noise compensation method
for phase congruency, which can locate the features that remain constant over scales [35]. Subsequently,
Kovesi presented a highly localized feature detector whose responses are invariant to image contrast [36].
These properties make local phase congruency an effective method for creating a structural representation
of the images. Wong and Orchard [29] constructed local phase-coherent representations of images and
applied their method to multimodal medical image registration successfully. Xia et al. [30] combined
phase congruency representations of images with scale-invariant feature transform (SIFT) to achieve
multimodal medical image registration. Recently, Liu et al. [31] proposed mean local phase angle (MLPA)
and frequency spread phase congruency (FSPC) by using local frequency information on Log-Gabor
wavelet transformation space, which improved the robustness compared with traditional multimodal
matching. Based on the structural properties of images, Ye et al. [10] developed the histogram of orientated
phase congruency (HOPC) descriptor, which outperforms several methods in matching performance.
These registration methods that relate to phase congruency are robust against complex nonlinear
radiometric differences and have good performance on image pairs with slight geometric changes.
However, they cannot obtain satisfactory results for image pairs with large geometric deformations.
Zhao et al. [21] proposed a novel multimodality robust line segment descriptor (MRLSD) and developed
a MRLSD matching method, which can deal with large-scale and rotation changes in image pairs, while the
registration results are poor when line segments or edges are deficient in some regions.

Motivated by the phase congruency-related methods [10,21,31], this paper develops an affine
and contrast invariant descriptor and presents a robust registration method based on that descriptor.
Firstly, feature points are extracted based on the moment analysis over orientations. Then, the coarse
description regions are estimated by Log-Gabor response over scales and orientations centered on the
feature points, and the descriptors are constructed by the orientations on the fine regions detected by MSER.
Finally, the registration is achieved according to the correspondence of descriptors between image pairs.
The whole process of the proposed method is shown in Figure 2.

Figure 2. Illustration of registration by using the proposed method.
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3. Methodology

The key issues in infrared and visible registration are what type of features should be detected
and how to extract the feature form input images. With the idea that feature points of high perceptual
significance coincide with points of high structural significance within an image, the salient feature
points (SFP) detection method based on the moment analysis in phase congruency images is presented
in Section 3.1. Then, the approach of construction for the maximally stable phase congruency (MSPC)
descriptor, using orientated phase congruency and MSER [37], is developed in detail in Section 3.2.
Finally, the algorithm of registration for infrared and visible image is described in Section 3.3.

3.1. Salient Feature Points Detection

The measure of phase congruency developed by Morrone et al. [34] is follows:

PC1(x) =
|E(x)|

∑n An(x)
, (1)

where An(x) is an amplitude of Fourier components at a location x in a signal, and |E(x)| is the
magnitude of the vector from the origin to the endpoint. From the definition above, if all the Fourier
components are in phase, all the complex vectors would be aligned, and PC1(x) would be 1. If there is
no coherence of phase, PC1(x) falls to a minimum of 0. Phase congruency provides a measure that is
independent of the overall magnitude of the signal, making it invariant to variations in image contrast.
Subsequently, Kovesi proposed an improved measure [35] as follows:

PC(x) =
∑n W(x)

⌊
An(x)(cos(fn(x)− f(x))−

∣∣∣sin(fn(x)− f(x))
∣∣∣)− T

⌋
∑n An(x) + ε

, (2)

where W(x) is a factor that weights for frequency spread, and An(x) is an amplitude of Fourier
components at a location x. fn(x) and f(x) are phase angle and weighted mean phase angle, respectively.
ε is a small constant, and T is a threshold that eliminates noise influence. The symbol � � denotes that
the enclosed quantity is equal to itself when its value is positive and zero otherwise. Based on the
measure, Kovesi presented a highly localized feature detector whose responses are invariant to image
contrast [36], which consists of the following steps:

(1) Compute the moment analysis equations at each point in the image as follows:

A = ∑ (PC(θ) cos(θ))2, (3)

B = 2∑ (PC(θ) cos(θ)) · (PC(θ) sin(θ)), (4)

C = ∑ (PC(θ) sin(θ))2, (5)

where PC(θ) refers to the phase congruency value determined at orientation θ.
(2) The minimum moment matrix m and principal axis matrix Φ are given by

m = (C + A−
√

B2−(A− C)2)/2, (6)

Φ = atan(B, A− C)/2. (7)

If the minimum moment of phase congruency is still large, then it means that the point should
be marked as a ‘corner’. The principal axis, corresponding to the axis about which the moment is
minimized, provides an indication of the orientation of the feature. Thus, the minimum moment is
used for detecting the feature points, and the principal axis matrix is used to guide the construct of the
structural feature image in Section 3.2.
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Therefore, the SFP extraction (MSFPE) based on salient ranking can be expressed as follows:

(1) Compute the minimum moment matrix m at each point in the input image using (2)–(6).
(2) To ensure the significance of feature points, candidate feature points FP are obtained by

filtering m:
FP = {(x, y)|m(x, y) >}, (8)

where Th = mean(m > 0.1) is the mean of values that are larger than 0.1 and adaptive to
matrix m.

(3) To make the feature points distributed uniformly, we extract MFP from FP by using
non-maximum suppress in the neighborhood of (x, y):

MFP =

{
(x + p̂, y + q̂)| argmax

p,q∈[−2,2]
(m(x + p, y + q))

}
. (9)

(4) The significance ranking space is built by sorting the positions in MFP according to corresponding
value in m from maximum to minimum.

(5) The top N of significance ranking space are selected as SFP.

In the above algorithm, the non-maximal suppression over a 5 × 5 neighborhood of a candidate
feature point is adopted to ensure the uniform distribution of feature points. An example for feature
points extraction using MSFPE is shown in Figure 3. It can be seen that the feature points are not only
significant, but also distributed uniformly in the whole image.

Figure 3. Feature points detection by the method of salient feature points extraction (MSFPE).

3.2. Maximally Stable Phase Congruency Descriptor

Salient feature points indicate that there are significant features around them. Hence, to improve
the robustness of feature matching, the description for structural features centered on the feature
points in an image is necessary. Consequently, a method of construction for structural features using
multi-orientation phase congruency is proposed, and the generation of the MSPC descriptor based on
the structural features is developed in this section.

3.2.1. Structural Features Extraction

The calculation model of phase congruency was improved by Kovesi [35] using Log-Gabor
wavelets over multiple scales and orientations. To make full use of multi-orientation phase congruency,
we construct the structural features from multiple phase congruency images over orientations
according to the principal axis information. The detailed calculation steps of the structural features
extraction (SFE) are shown as follows:

(1) Compute n different phase congruency images PCθ with θ ∈ OTS and the principal axis matrix
Φ from the input image using (2)–(7).

OTS = {(i− 1) ∗ π/n, i = 1, . . . , n}. (10)
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(2) To embody the significance of structural features over the image maximumly, structural features
image (SFI) is constructed from different PCθ according to the principal axis matrix Φ. The value
at (x, y) in SFI can be expressed as follows:

SFI(x, y) = PC
θ̃
(x, y), (11)

where
θ̃ = argmin

θ∈OTS
|Φ(x, y)− θ|, (12)

where PC
θ̃

is the phase congruency image corresponding to θ̃.

In the algorithm above, each value of SFI is from a special matrix PCθ, and θ is the closest
orientation to the corresponding value in Φ, which ensures that each point of SFI has a maximum
response in all orientations. The construction of structural features can be seen in Figure 4.

Figure 4. Structural features extraction using multi-orientation phase congruency.

3.2.2. Affine Invariant Structural Descriptor

In order to produce an affine invariant descriptor for a feature point, the coarse shape of the region
to be described centered on the feature point should be estimated first. Similar to SIFT [24], the coarse
shape can be determined by the feature point’s scale and orientation, which can be computed by the
responses of Log-Gabor wavelets over multiple scales and orientations.

In frequency domain, the Log-Gabor function is defined as

g(ω) = exp (
−(log(ω/ω0))

2

2(log(σω/ω0))
), (13)

where ω0 is the central frequency, and σw is the related width parameter. Let I denote the image,
LGe

n,θ and LGo
n,θ denote the even-symmetric and odd-symmetric component of Log-Gabor function

at the scale n and orientation θ, respectively. The responses of each quadrature pair of filters can be
expressed as

[en,θ(x), on,θ(x)] = [I(x) ∗ LGe
n,θ, I(x) ∗ LGo

n,θ]. (14)

The values en,θ(x) and on,θ(x) can be regarded as real and imaginary parts of a complex valued
frequency component. The amplitude and phase of the responses at the scale n and orientation θ are
given by

An,θ(x) =
√

en,θ(x)
2 + on,θ(x)

2, (15)

fn,θ(x) = atan(en,θ(x), on,θ(x)). (16)

The orientation for a point x in phase congruency is defined as

F(x) = ∑
θ

∑
n

en,θ(x), (17)
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H(x) = ∑
θ

∑
n

on,θ(x), (18)

Φ(x) = atan(F(x), H(x)). (19)

We can see that the results computed by (7) and (19) are the same. The coarse scale of a point x
can be obtained based on the responses of Log-Gabor filters, along with its orientation over scales in
phase congruency, which can be computed as follows:

σ̃(x) = argmax
n∈{1,2,...N}

An,θ̃(x), (20)

where θ̃ can be computed by (12) and is the closest orientation θ to the corresponding value in Φ(x).
Based on the coarse scale and orientation of a feature point x, the coarse rectangle shape of its
neighborhood can be estimated by

[R_size(x), R_ang] = [Initial_size ∗Mul_factor̂σ̃(x), Φ(x)], (21)

where R_size(x) is a two-dimensional (2D) vector that contains the length and width of the rectangle,
R_ang is the rotation angle, Initial_size is a given minimum size, and Mul_factor is the scaling factor
between successive Log-Gabor filters.

Because the scale of the feature point is approximate, the rectangle neighborhood is also imprecise.
Consequently, the fine ellipse region of a feature point is further obtained by MSER on the estimated
coarse rectangle neighborhood from SFI according to (21), which is the definitive description area
for the point and affine invariant in image content. Structural features computed by (11) indicate
the degree of phase congruency in some orientations; however, they cannot represent the significant
directions of feature variation [9]. Thus, it is insufficient to use only the amplitude of phase congruency
to construct robust feature descriptors. Therefore, we use orientated phase congruency that is weighted
by the amplitude of structural features to compute the descriptors. The construction process of the
maximally stable phase congruency (MSPC) descriptor can be expressed as follows.

(1) Compute the scale and orientation by using (14)–(20) for each feature point extracted by MSFPE.
(2) Estimate the coarse rectangle shape of the feature point’s neighborhood by (21).
(3) Get the fine ellipse region E for the feature point by applying MSER to the coarse rectangle region

on SFI obtained by (11).
(4) Normalize the ellipse region E to a circle region C according to the long axis to ensure the affine

invariance of the descriptor.
(5) Calculate the weighted statistical histogram with four orientations distributed in (00 − 1800) by

structural feature values in the circle region C, in which, the weight of a certain orientation θ can
be computed as follows:

C(θ) = {(x, y)|abs(Φ(x, y)− θ) ∈ [0,π/4)}, (22)

W(θ) = ∑
(x,y)∈C(θ)

SFI(x, y). (23)

(6) The orientation histogram is normalized as a descriptor by

Des = hi

/√√√√ 64

∑
i=1

hi . (24)

In the algorithm above, a circle region is divided into 4 × 4 small regions, and each small region
is computed in four directions. Therefore, a circle region can be described as a vector of 64 dimensions.
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In the process of description, we use both the orientation and amplitude of the phase congruency to
compute the descriptor in the ellipse region detected by MSER, which can effectively describe the
feature distribution in the orientation and strength of phase congruency and make the descriptors to
be affine invariant. The construction example of the descriptor is shown in Figure 5. From that, we can
see the descriptor is robust against contrast and geometrical distortion.

Figure 5. The construction of the maximally stable phase congruency (MSPC) descriptor from
input images. (a) Original patches around the feature points; (b) Rectangle regions from structural
features image (SFI) according to the scales and orientations of the feature points; (c) Fine ellipse regions
detected by maximally stable extremal regions (MSER) based on the rectangle regions; (d) Normalized
circle regions relate to the ellipse regions; (e) MSPC descriptors constructed in the circle regions.

3.3. Registration Using the MSPC Descriptor

After the extraction of salient feature points and the construction of the MSPC descriptors were
presented in Sections 3.1 and 3.2, the method of registration for infrared and visible images based on
those feature points and descriptors is proposed in this section.

The flow chart of the registration algorithm is shown in Figure 6, and the details are described
as follows.

(1) Compute the phase congruency images using Log-Gabor filters over the scales and orientations
from infrared and visible images, respectively.

(2) Extract the salient feature points based on the moment analysis of the phase congruency images
by the MSFPE algorithm proposed in Section 3.1.

(3) Construct the structural features using the multi-orientation phase congruency by the SFE
algorithm presented in Section 3.2.

(4) Generate the descriptors for the salient feature points using the construction algorithm of the
MSPC designed in Section 3.2.

(5) Find the matching points via the minimization of the Euclidean distances between the descriptors
and refine the matching with random sample consensus (RANSAC).

(6) Obtain the transformation from the matching and achieve the image registration.

In the registration algorithm above, the affine transformation model is used for describing the
geometric distortion between the input images, which can be expressed as follows:⎡⎢⎣ X

Y
1

⎤⎥⎦ =

⎡⎢⎣ a b e
c d f
0 0 1

⎤⎥⎦ ·

⎡⎢⎣ x
y
1

⎤⎥⎦, (25)

where a, b, c and d are the combination of scale, rotation, stretch, and twist, and e and f are the
translation in the horizonal direction and vertical direction, respectively. (x, y) and (X, Y) are the
coordinates of the corresponding points in the input images. The transformation parameters are
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estimated by applying the least squares on the corresponding point pairs in our algorithm. In addition,
the significance of the feature points is ensured by minimum moment analysis and significance ranking.
Affine and contrast invariance of the descriptors is guaranteed by the scale and orientation of the
feature points and MSER detection. Therefore, the proposed algorithm can achieve good performance
for infrared and visible images with significant contrast changes and large geometric deformation,
which will be seen in Section 4.

Figure 6. Flow chart of the proposed registration.

4. Experimental Results and Analysis

To test our method in terms of validity and efficiency, three different sets of images were used
in comparative and evaluative experiments in this section. There were four infrared and visible pairs
from computer vision center (CVC) datasets in the first set, which are used to evaluate the matching
performance of the proposed method via a comparison with multimodal-SURF (MM-SURF) [27], fast
visual salient and descriptor-rearranging (FVS-DR) [28], local frequency information (LFI) [31], MRSLD [21],
and HOPC [10]. The second image set contained 300 image pairs captured from electro-optical pod
(EOP) on unmanned aerial vehicle (UAV) with discontinuous focus length change from 25 to 300 mm in
a mid-wavelength infrared camera and from 6.5 to 130.2 mm in a visible camera. Those remote sensing
images were used to test the validity of our method for registration with significant contrast change
and large geometric distortion. Several registration results of our method have been given, and the
corresponding registration errors have been compared with those of the related methods. The third image
set contained one large Google image and 40 infrared images captured from EOP on UAV, which are used
to confirm the practicability of the proposed method in trajectory tracking.

For evaluating the matching performance, precision and repeatability are employed, which can
be expressed as follows:

Precision =
NCM
NTM

, (26)

Repeatability =
NCM

min(NFPref, NFPsen)
, (27)

where NCM and NTM are the number of correct matched and total correct matched point pairs,
respectively, and NFPref and NFPsen are the number of feature points extracted from the reference and
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sensed image, respectively. For each feature point in the reference image, we compare its mapped
point with the corresponding point in the sensed image. If the Euclidean distance is less than 3 pixels,
the match is considered to be correct.

To assess the registration results, root-mean-square error (RMSE) is used in the overlapped area
between the reference image and the transformed sensed image, which is calculated as follows:

RMSE =

√
(Xr

i − Xts
i )

2
+ (Yr

i − Yts
i )

2/N, i = 1, . . . , N, (28)

where (Xr
i , Yr

i ), (X
ts
i , Yts

i ) are the coordinates of pixels in the reference image and the transformed
sensed image, respectively, and N is the number of pixels in their overlapped area.

4.1. Comparative Experiments

To evaluate the matching performance of the proposed method, four multimodal stereo image pairs
from CVC datasets were used to compare with the related methods presented in [10,21,27,28,31] in terms of
precision and repeatability. The set of image pairs with size of 506×408 are shown in Figure 7, which have
large difference in contrast and small viewpoint changes. Matching results using the proposed method
for the image pairs in Figure 7 are shown in Figure 8. It can be seen that our method obtained a good
matching when significant difference contrast occurs in the image pairs. In addition to LFI, the other five
methods belong to local feature matching and contain the feature points detection steps. To compare the
proposed method with LFI conveniently, the feature points are extracted by the Harris corner detector first,
and then, the matching of regions is computed by LFI. The precision and repeatability of the matching
results of different methods are shown in Table 1. From that, we can see that the proposed method has
better performance than the other five related methods. The average precision of the proposed method for
the four image pairs is 93.32%, which is 5.79%, 10.43%, and 14.30% higher than that of HOPC, MRLSD,
and LFI, respectively. This is mainly due to the affine and contrast invariance of the MSPC constructed by
the proposed method. The average precision of both MM-SURF and FVS-DR is less than 75%, which is
due to the fact that simple intensity symmetry or reversal cannot eliminate the difference in contrast
completely. The average repeatability of our method for the four image pairs is 33.30%, which is 5.88%,
6.02%, and 10.64% higher than that of HOPC, MRLSD, and LFI respectively. This advantage is attributed
to the great significance of the extracted feature points in sequence and the high communization of the
constructed structural features in the proposed method.

Table 1. Matching performance of the related methods in Figure 8.

Image Pairs MM-SURF FVS-DR LFI MRLSD HOPC Our Method

Precision

(a) 40.72 75.36 80.22 85.58 87.13 91.85
(b) 35.14 77.81 82.56 88.72 93.37 97.78
(c) 22.31 73.30 77.28 82.15 91.26 96.65
(d) 9.84 69.81 75.95 78.31 81.54 90.21

Repeat-ability

(a) 10.83 20.48 28.47 35.19 32.24 39.60
(b) 5.77 14.63 25.23 33.64 35.79 42.80
(c) 3.23 11.12 21.41 20.33 23.82 26.00
(d) 2.18 6.42 15.52 19.97 17.82 24.80

Figure 7. Cont.
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Figure 7. (a–d) are different infrared and visible image pairs from CVC datasets.

Figure 8. Matching results using the proposed method for Figure 7. (a–d) are the matching results of
the Figure 7a–d respectively.

4.2. Validity Verification Experiments

To test the validity of the proposed method, the second set of images captured from EOP on UAV
were used in this section. Those images not only have scale differences caused by focus length changes,
but also have a variety of scenes with infrared and visible images with size 1024×768 and 640×512,
respectively, and several examples are shown in Figure 9. From that, we can see that (a), (b), (c), and (d)
have focus length changes of the visible camera with different scenes, while that of infrared camera
keeps to 25 mm. Figure 9e and f have focus length changes of the infrared camera with different scenes,
while that of visible camera keeps to 130.2 mm. The six image pairs not only contain large geometric
changes, but also have significant differences in contrast.

To ensure the attainment of salient structural features, eight orientations are adopted for different
phase congruency images, and Th = 0.1 is used to filter the minimum moment image in feature
points extraction. Figure 10 shows the matching results of the image pairs in Figure 9 by using the
proposed method. In those image pairs, we consider the image that has the larger field of view as
the reference image and the other one as the sensed image. It can be seen from those results that
the proposed method can achieve good performance whether images have rich texture information
(Figure 9a,c,d) or not (Figure 9e,f). In particular, in blurry situations (see Figure 9b) and with large
differences in scale (Figure 9e), the proposed method can still get enough correct matching point pairs,
while several of the state-of-art methods failed in those cases. For example, MRLSD failed for Figure 9b
due to the fact that there are not enough lines to be extracted from the images. MM-SURF and FVS-DR
failed for Figure 9e,f, because they cannot get the robust feature descriptors for textures. HOPC failed
for Figure 9e as result of the large geometric changes in the image pairs.
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Figure 9. (a–f) are the samples of image pairs captured from electro-optical pod (EOP) on UAV.

Figure 10. Cont.
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Figure 10. Matching results by the proposed method for Figure 9. (a–f) are the matching results of the
Figure 9a–f respectively.

The matching performance of the proposed method compared with MM-SURF, FVS-DR, LFI,
MRLSD, and HOPC are shown in Figure 11. From those results, we can see the proposed method
outperforms the other methods both in precision and repeatability. The average precision of our method
is higher than 89%, and the average repeatability is higher than 37%, while the average precision and
repeatability of the best performances in the other methods are lower than 85% and 33% (failures are
not calculated), respectively, which is because of large difference in scale and contrast between the
input images. The proposed method can achieve better performance, even in the cases where other
methods are invalid for Figure 9b,e,f. In addition to our method, both MRLSD and HOPC achieve
better performance (except for the failure case) than the rest of the methods due to the fact that they
use phase congruency information and structural features in the feature description. However, linear
features do not always exist in the images (Figure 9b) that result in the failure of MRLSD. HOPC cannot
deal with large geometric changes, so it failed for Figure 9e. LFI uses the differences of features as the
similarity measure directly, which resulted in a matching performance that was worse than our method.
Although FVS-DR and MM-SURF have a certain tolerance for geometric changes, they are less able to
deal with differences in contrast based on the reversal or symmetry of intensity; therefore, they had
a worse matching performance than the proposed method.

Figure 11. Comparison of matching performance by the related methods. (a) is the matching precision
for the six image pairs in Figure 9 by the related methods; (b) is repeatability for the six image pairs in
Figure 9 by the related methods.
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The registration results of using the proposed method for the image pairs in Figure 9 are shown in
Figure 12. It can be observed that our method achieves good performance whether the infrared image
is used as a reference or not, which indicates that our method is robust against the changes in geometry
and contrast. The RMSE of the registration results of using different methods are given in Table 2,
where MM-SURF and FVS-DR failed for Figure 10e and f and MRLSD and HOPC failed for Figure 10b,e,
respectively, because they could not get enough correct matched point pairs. The proposed method
can not only achieve the registration of all the image pairs, but also make the average RMSE less
than 2 pixels. Furthermore, the average RMSE in the registration of the second set with 300 images is
1.8 pixels, which is acceptable for practical application.

Figure 12. Registration results by the proposed method for Figure 9. (a–f) are the registration results of
the proposed method for Figure 9a–f respectively.

Table 2. Root-mean-square error (RMSE) of registration results of the related methods in Figure 9.

Image Pairs MM-SURF FVS-DR LFI MRLSD HOPC Our Method

(a) 2.61 2.44 3.54 1.57 2.11 0.82
(b) 3.36 2.88 2.72 —- 3.63 1.23
(c) 4.68 3.39 3.66 2.35 4.55 0.76
(d) 3.97 3.73 4.19 2.56 4.62 0.58
(e) —- —- 5.57 3.12 —- 1.37
(f) —- —- 4.81 3.38 2.26 1.41

Moreover, the experiments are implemented on computer with Intel Core i7-4810MQ CPU at 2.80
GHz, and the average registration times achieved by the related methods for the six image pairs in
Figure 9 are shown in Table 3. From that, we can see that the run time of the proposed method is
moderately fast, but the registration performance is significantly improved compared with the other
related methods.

Table 3. Average time of registration by the related methods in Figure 9.

Method MM-SURF FVS-DR LFI MRLSD HOPC Our Method

Run time 0.8S 1.85S 2.8S 2.5S 15.8S 2.1S
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4.3. Applied Experiments

Finally, we apply the proposed method to UAV trajectory tracking via the registration of the
real-time images and the reference image. The real-time images were captured by EOP on UAV, and the
reference image was downloaded from Google. To achieve fast registration, the sub-images (300×300)
from the real-time images were used to search the matching on the reference image. The reference
image (with 1.5 m resolution) is shown in Figure 13, and samples of the sub-image from the real-time
images are shown in Figure 14. From that, we can see there are large geometric changes and significant
contrast differences existing in those images.

Figure 13. Reference image download from Google.

Figure 14. Samples of the sub-images from the real-time images.

Several registration results of samples are given in Figure 15. We can see that the proposed
method can deal with large geometric changes, significant differences in contrast, and variance in
some structures. The tracking results are shown in Figure 16. It can be seen that the trajectory can
be tracked precisely and steadily. In the process of trajectory tracking, the registration time can be
shortened to 230 ms when the number of feature points is reduced to 150, which is acceptable in
this application. The average RMSE of the registration results is less than 2 pixels, which equals that
when the error of tracking is no more than 3 m. Therefore, the proposed method has the potential for
practical application.
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Figure 15. Several registration results of the samples in Figure 14 and the sub-regions of the reference
image in Figure 13.

Figure 16. UAV trajectory tracking results of our registration method.

5. Conclusions

In this paper, a robust registration method for infrared and visible image using structural features
extracted based on phase congruency is presented. The main contribution of the proposed method
is the development of a novel affine and contrast invariant descriptor (MSPC). MSPC firstly uses
moment ranking analysis to detect feature points, and then describes structural features by using
orientated phase congruency in the regions detected by MSER. Several groups of infrared and visible
pairs were used to test the validity and practicality of the proposed method. The experimental
results show that our method outperforms several state-of-the-art methods in terms of matching
performance and RMSE of registration and also demonstrate its effectiveness in the application of UAV
trajectory tracking. For the more than 300 infrared and visible images captured by UAV, the average
RMSE of the registration results of the proposed method was less than 2 pixels, which is acceptable for
practical application.

Improving the speed of the proposed method and implementing it in the embedded environment
is the direction of our future work.
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Abstract: Alignment of latitude and longitude for all pixels is important for geo-stationary
meteorological satellite (GSMS) images. To align landmarks and non-landmarks in the GSMS
images, we propose a geometry-based global alignment method. Firstly, the Global Self-consistent,
Hierarchical, High-resolution Geography (GSHHG) database and GSMS images are expressed
as feature maps by geometric coding. According to the geometric and gradient similarity of feature
maps, initial feature matching is obtained. Then, neighborhood spatial consistency based local
geometric refinement algorithm is utilized to remove outliers. Since the earth is not a standard
sphere, polynomial fitting models are used to describe the global relationship between latitude,
longitude and coordinates for all pixels in the GSMS images. Finally, with registered landmarks
and polynomial fitting models, the latitude and longitude of each pixel in the GSMS images can
be calculated. Experimental results show that the proposed method globally align the GSMS images
with high accuracy, recall and significantly low computation complexity.

Keywords: image alignment; feature matching; geostationary satellite remote sensing image;
GSHHG database

1. Introduction

In many applications, such as weather forecast, environmental monitoring and so on, determining
the latitude and longitude of each pixel in the GSMS images is of great importance. However, the GSMS
images have the characteristics of round-the-clock, all-weather, long range and high-resolution, which
bring new challenges to practical applications.

Remote sensing images matching algorithms are usually divided into two categories: area-based
methods and feature-based methods [1,2]. Area-based matching algorithm establishes correspondence
between two images by similarity measurements based on correlation functions. There is some classical
arithmetic such as cross-correlation [3] and root mean square error (RMSE) [4]. A rough-location
method [5] was proposed to locate the remote image with specific physiognomy. By matching
the remote sensing image and the digital map, researchers can roughly locate the remote images
and the location error is less than 10 km. However, the GSMS images are generally polluted by
illumination, scale variation, cloud influence and other factors, and those algorithms do not work well.
A feature-based matching algorithm is widely applied to remote sensing images [6–9] because of its
robustness. For example, scale-invariant feature transform (SIFT) [10,11] has an excellent performance
in most circumstances. However, few feature points can be extracted from the GSMS images with SIFT
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due to poor textures. In addition, feature-based alignment, which only uses local gradient distribution,
will lead to low precision because of too many similar features in the GSMS images.

The challenges of these points-matching methods are removing the outliers. The presence
of outliers will have a negative effect on the accuracy of the matching results [12,13]. To remove
outliers, many algorithms based on geometric constraint and spatial information are commonly used.
Among these algorithms, Random Sample Consensus (RANSAC) [14] is one of the most popular
algorithms. It selects a sample randomly from the consensus set in each iteration and finds the
largest consensus set to calculate the final model parameters. When the outlier is in the minority,
RANSAC performs well and robustly. When the outlier is in the majority, using RANSAC will be
time-consuming and unstable. By exploring the spatial relationship of matching points, a matching
strategy using spatial consistent matching [8] was proposed to remove outliers. In [15–17], the
authors proposed a spatial coding algorithm for image search, which relies on relative position
relationship between pairs of matching feature points. It takes into account all matching feature pairs
and encodes their coordinates to discover false matches between two images. However, the spatial
relationship consistency in this method is too strict for landmark alignment. Since the earth is not a
standard sphere, position deviation exists in the GSMS images. Spatial relationship consistency is
effective only in a small region, and it also causes lots of correctly matched features to be deleted
mistakenly. Furthermore, the number of landmarks is so large that it slows the process of removing
outliers. Aguilar et al. [18] proposed a method called Graph Transformation Matching (GTM). It
establishes a K-Nearest-Neighbor (KNN) graph to express neighbor geometric structures of the
feature points. The mismatching feature points are determined according to the differences between
KNN graph established in two images. Shi et al. [19] proposed an image registration algorithm
using point structure information. After obtaining robust initial matching point pairs, the final
matching results are estimated using GTM based on the local structure information of the point to
remove outliers from initial correspondences. On the basis of the GTM algorithm, Weighted Graph
Transformation Matching (WGTM) algorithm [20] was proposed. Utilizing the angular distances
between edges that connect a feature point to its KNN as the weight, WGTM algorithms can only
deal with pseudo isomorphic structures to a certain extent. This arises because angular distance is
only invariant with respect to scales and rotations, and shear deformations are not considered in
that case. Liu et al. [21] proposed the Restricted Spatial Order Constraints (RSOC) algorithm using a
filtering strategy based on two-way geometric order constraints and two decision criteria restrictions.
However, when the K-Nearest-Neighbor of the outliers are all the same, RSOC failed to remove
such outliers. Zhang et al. [22] proposed a triangle-area representation of the K nearest neighbors
(KNN-TAR). It utilizes the descriptor KNN-TAR to find the candidate outliers and removes the real
outliers by the local structure and global information. In [23], an algorithm based on integrated spatial
structure constraint (ISSC) was proposed for remote sensing image registration. First, a global structure
constraint is constructed for each correspondence out of the tentative set to increase the number of
inliers and raise the correct rate simultaneously. Then, a local structure constraint based on the triangle
area representation is utilized on the neighboring points of each correspondence to remove outliers.
Recently, Zhao et al. [24] proposed a vertex trichotomy descriptor. It utilizes the geometrical relations
between any of the vertices and lines, which are constructed by mapping each vertex into trichotomy
sets. A recovery and filtering vertex trichotomy matching (RFVTM) algorithm was designed to recover
some inliers based on identical vertex trichotomy descriptors and restricted transformation errors.

A lot of work has been done toward the images alignment problem. Previous works can be
classified in two main categories: direct [25] and feature-based methods [26,27]. Direct approaches
minimize pixel-to-pixel dissimilarities. While the feature-based approaches first locate a sparse
set of reliable features in the image and then recover the motion parameters considering their
correspondences. Miller et al. [28] proposed the congealing method by using an entropy measure
to align images with respect to the distribution of the data. Cox et al. [29] proposed a least squares
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congealing algorithm that minimizes the sum of squared distances between images. Minimization of
a log determinant cost function [30] is utilized to align images.

Inspired by these approaches, we propose a geometry-based global alignment method to align
GSMS remote sensing images. According to the geometric and gradient similarity of feature maps
from the GSHHG and GSMS images, initial feature matching is obtained. Then, feature refinement
with a neighborhood spatial consistent matching (NSCM) algorithm is used to remove outliers.
Finally, polynomial models are fitted to describe the offsets’ tendency according to the matched
points set. With the fitted polynomial models, the latitude and longitude of all pixels in the GSMS
images can be determined.

2. Materials and Methods

2.1. Local Feature Matching by Geometric Coding

The shorelines of the GSHHG database correspond to the edges of the GSMS images [31], which
means that shorelines can be used to simplify alignment of GSHHG and GSMS images.

Since the GSHHG database consists of polygon and line type, the size of the GSHHG database
is much smaller than other reference data such as digital elevation model and digital vector map.
With sub-satellite point (longitude α0, latitude γ0) and satellite height H, the landmarks in GSHHG
are mapped to a two-dimensional plane by perspective projection. Therefore, the GSHHG database
is quantized to a binary image. As shown in Figure 1a, the white pixels are the landmarks defined
in the GSHHG database.

The GSMS image is normalized [32,33] so that the GSHHG and GSMS images have the same
size. The edges of the GSMS image extracted by Structured Forests [34] are defined as the edge
probability image. As shown in Figure 1b, each element denotes the probability of the pixel being
an edge candidate. To distinguish edge candidates from noise, the probability image is binarized to
generate the edge binary image as depicted in Figure 1c.

(a) (b) (c)

(d)

Figure 1. The landmarks and GSMS images in the southern coastal area of Thailand and their initial
matching results. These points in circles are outliers. (a) landmarks; (b) edge probability image; (c) edge
binary image; (d) initial matching.
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For a landmark PG
i

(
xG

i , yG
i
)

in the GSHHG image, the neighborhood coding matrix W can be
constructed. For a pixel PS

i
(
xS

i , yS
i
)

in the edge probability image, the neighborhood coding matrix P
can be constructed. Similarly the neighborhood coding matrix P

′
can be generated with the edge

binary image. The matrix W, P and P
′

all have the same size (2K + 1) × (2K + 1).
Then, local features are matched by comparing their geometric similarity and gradient similarity.

The geometric similarity between a landmark PG
i

(
xG

i , yG
i
)

in the GSHHG image and a pixel PS
i

(
xS

i , yS
i
)

in the edge binary image can be calculated as follows:

Egeo(i, xS
i , yS

i ) =
K

∑
s=−K

K

∑
t=−K

Wi
s,t AND P′

s,t, (1)

where the Wi
s,t and P′

s,t separately denotes the s-th row and t-th column element in matrix W and P
′
.

Similarly, the gradient similarity between a landmark PG
i

(
xG

i , yG
i
)

in the GSHHG image and
a pixel PS

i
(

xS
i , yS

i
)

in the edge probability image can be calculated by:

Egra(i, xS
i , yS

i ) =
K

∑
s=−K

K

∑
t=−K

Wi
s,t × Ps,t. (2)

The number of landmarks located within the template is calculated as follows:

Cgeo(i, xG
i , yG

i ) =
K

∑
s=−K

K

∑
t=−K

Wi
s,t. (3)

Both geometric and gradient similarity are measured to match local features. The procedure of
local feature matching between the GSHHG and GSMS image is shown in Algorithm 1. Figure 1d
shows the result of initial feature points matching.

Algorithm 1: Local feature matching.

Input: W, P, P′; threshold t1, t2 (t1 is set as 0.5, t2 is set as 0.9 based on experience)
Output: the best matching pixel PS

i for landmark PG
i

Given landmark PG
i ;

if Max
{

Egeo(i, xS
i , yS

i )
} ≥ t1 × Cgeo(i, xG

i , yG
i ) then

if Max
{

Egeo(i, xS
i , yS

i )
} ≥ t2 × SecondMax

{
Egeo(i, xS

i , yS
i )

}
then

return the point having Max
{

Egeo(i, xS
i , yS

i )
}

as PS
i

else
calculate Egra for the two matching candidates who have bigger Egeo than the other and
return the one who gets bigger Egra

end

else
could not find the match pixel;

end

2.2. Feature Refinement with Neighborhood Spatial Consistent Matching (NSCM)

Since there are lots of similar features in the GSMS image, local feature matching will lead to
mismatching. The red circles in Figure 1d show mismatched features. The mauve circles in Figure 1d
present many-to-one matched features due to the aperture effect.

The geometric relationship between matched features should not change too much across images.
Based on this principle, we propose a neighborhood spatial consistent matching (NSCM) algorithm to
remove outliers whose offsets between matched features have sudden mutations.
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After Section 2.1, the matched set can be denoted as: M = (PG
i , PS

i ) = ((xG
i , yG

i ),(xS
i , yS

i )),
i = 1, 2, 3, · · · , N, where the superscripts “G” and “S” refer to the GSHHG and GSMS images,
respectively, (PG

i , PS
i ) denotes a pair of matched features and N is the number of matched features.

Giving one landmark PG
i

(
xG

i , yG
i
)

in the GSHHG image, the n nearest landmarks can be

represented as NG =
{

PG
ij

(
xG

ij , yG
ij

)
, j = 1, 2, 3, · · · , n

}
and their corresponding points in the GSMS

image are represented as NS =
{

PS
ij

(
xS

ij, yS
ij

)
, j = 1, 2, 3, · · · , n

}
. Their offsets are represented as

D =
{
(Dxij, Dyij), j = 1, 2, 3, · · · , n

}
and defined as below:{

Dxij = xG
ij − xS

ij,

Dyij = yG
ij − yS

ij.
(4)

The neighborhood offsets of the matched feature pair
(

PG
i , PS

i
)

can be formulated as:{
Dxi = ∑ μj · Dxij,

Dyi = ∑ μj · Dyij,
(5)

where μj = k · exp(−
∥∥∥PG

ij −PG
i

∥∥∥2

σ2 ) and is constrained to ∑ μj = 1. In addition, k is a constant normalizing
μj. When PG

ij is closer to PG
i , the scalar weight μj assigns higher weights to Dxij and Dyij .

The offsets between PG
i

(
xG

i , yG
i
)

and PS
i

(
xS

i , yS
i
)

in row and column can be calculated by the
following formula: { �xi = xG

i − xS
i ,

�yi = yG
i − yS

i .
(6)

For the given matched feature pair
(

PG
i , PS

i
)
, the neighborhood spatial consistent matching

indicates that the �xi and Dxi should not deviate too much. Similarly, the �yi and Dyi also should be
close. This constraint can be determined:{

|�xi − Dxi| < δ,

|�yi − Dyi| < ε,
(7)

where δ and ε are two thresholds controlling sensitivity on deformations. If their values are large, the
incorrect matched features are more likely to be regarded as inliers. They are both set to 0.5 according
to experimental results. If

(
PG

i , PS
i
)

satisfies the low distortion constraint, it is considered as an inlier.
Figure 2 is the illustration of mismatched features and many-to-one matched features. As shown

in Figure 2a, (point 3, point 3’) is a pair of mismatched features. The offsets between them in row and
column are −2 and −2. The offsets between other pairs in neighborhood are 1 and 2. Since the offsets
of (point 3, point 3’) are over thresholds, they are removed. In Figure 2b, (point 2, point 2’) and (point
3, point 3’) are pairs of many-to-one matched features. The offsets between point 3 and point 3’ in row
and column are 2 and 4. The offsets between other pairs in its neighborhood are 1 and 2. (point 3,
point 3’) is removed and (point 2, point 2’) is considered an inlier.

The details of the initial matching result and feature refinement in the southern coastal area of
Thailand are shown in Figure 3. Figure 3a,c present the details of the top red circles and mauve circles,
respectively, in Figure 1d. As shown in Figure 3b,d, these mismatched features are removed.
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(a) (b)

Figure 2. Illustration of mismatched features and many-to-one matched features.(a) mismatched
features; (b) many-to-one matched features.

(a) (b)

(c) (d)

Figure 3. The details of the initial matching and feature refinement in the southern coastal area of
Thailand. (a) initial matching; (b) feature refinement; (c) initial matching; and (d) feature refinement.

2.3. Pixel Alignment Based on Polynomial Fitting

The earth is not a standard sphere. When using the sphere model to describe the earth, the
further the pixel is away from the projection center point, the larger its distance distortion. In this case,
the transformation model between sphere and plane is not suitable to describe the projection model of
GSMS image.

However, the offsets between the GSHHG and GSMS images in rows and columns are smooth
without distortion. For the point PG

i
(
xG

i , yG
i
)

in the GSHHG image and its corresponding point
PS

i
(

xS
i , yS

i
)

in the GSMS image, the offsets between them in row and column are presented as �xi
and �yi according to Equation (6). In order to fit the tendency of offsets in rows and columns,
the polynomial functions are applied. Based on the m-th order polynomial function, the fitting
functions can be defined as:
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
f�xi (xG

i , yG
i ) =

m

∑
k=0

akxGk
i yG(m−k)

i + b0,

f�yi (xG
i , yG

i ) =
m

∑
k=0

ckxGk
i yG(m−k)

i + d0,
(8)

where a0 ∼ am, c0 ∼ cm, b0 and d0 are the coefficients treated as the independent variables.
The point PG

i
(

xG
i , yG

i
)

in the matched set and its corresponding �xi are used to estimate the
coefficients of polynomial fitting function f�xi (xG

i , yG
i ). The correlation coefficient and RMSE are

considered to select the optimal coefficients. The fitted function f�xi (xG
i , yG

i ) presents the offsets in
rows changing with the coordinate (xG

i , yG
i ). Similarly, the coefficients of polynomial fitting function

f�yi (xG
i , yG

i ) can also be estimated with the point PG
i

(
xG

i , yG
i
)

and its corresponding �yi. In addition,
the fitted function f�yi (xG

i , yG
i ) describes the offsets in columns changing with the coordinate.

The offsets of pixels between the GSHHG and GSMS images can be obtained by the
polynomial fitting functions f�xi (xG

i , yG
i ) and f�yi (xG

i , yG
i ). For each pixel (xG

i , yG
i ) in the GSHHG

image, the relationship between it and its corresponding point (xS′
i , yS′

i ) in the GSMS image can be
calculated as: {

xS′
i = xG

i − f�xi (xG
i , yG

i ),

yS′
i = yG

i − f�yi (xG
i , yG

i ).
(9)

For each pixel in the GSHHG image, the latitude and longitude information is already known.
Polynomial fitting functions align all pixels of GSHHG with GSMS images globally. Therefore, the
latitude and longitude of all pixels in the GSMS image can be obtained.

3. Results and Discussion

3.1. Dataset and Evaluation Criteria

The remote sensing images used in this experiment are from the FengyunII D meteorological
satellite whose sub-satellite point is near (86◦E, 0◦N). Concerning radial distortion, only landmarks
located within ±60◦ of longitude and ±60◦ of latitude around sub-satellite point are chosen as reference
data. The size of GSMS image is normalized to 10, 000 × 10, 000 pixels. Considering efficiency, both the
GSHHG and GSMS images are divided into patches [35–37] whose size is S1 × S2 pixels. Furthermore,
feature points are matched in each pair of patches. Some shorelines can not be detected in the GSMS
image due to the occlusion of clouds, causing difficulty in matching these shorelines. To reduce this
difficulty, 25 patches with relatively more edges in the GSMS image are selected to perform the local
feature matching and feature refinement with NSCM.

To evaluate the performance, the ground truth is manually selected from the points with the
maximum gradient within their neighborhood. For each landmark in the GSHHG image, we find its
corresponding point in the GSMS image as accurately as possible. Since the ground truth is labelled
manually, there may be very small errors. If the distance between ground truth and matched point
is no bigger than one pixel, this matched point is considered to be correct. Special attention is needed
so that our manually labelled ground truth does not contain those landmarks under the clouds and
fogs in the GSMS image.

In our experiments, three evaluation criteria including precision, recall and RMSE are mainly used:
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precision =
Ninliers

Ninliers + Noutliers
,

recall =
Ninliers

Ngroundtruth
,

RMSE =

√√√√ 1
Np

Np

∑
i=1

[∥∥Pi − P′
i

∥∥]2,

(10)

where Ninliers represents the number of inliers in the matched set, Noutliers represents the number
of outliers in the matched set, Ngroundtruth represents the number of points of the ground truth,
Np represents the number of matched pairs, Pi represents the matched points and P′

i represents
the matched points of the ground truth in the GSMS image.

3.2. Local Feature Matching by Geometric Coding

The size of the template is a key parameter for geometric coding based local feature matching.
Figure 4 shows the precision and recall with K varying from 20 to 40. If the size is too small, more points
are matched combined with more mismatched points. Therefore, the precision and recall are lower.
As K increases, the precision is increasing and finally tends to be stable. If the size is too large, the recall
is decreasing since the number of the obtained matched features is decreasing gradually. Considering
the tradeoff between precision and recall, K is set to 30 in our experiments.

Figure 4. Performance of local feature matching with different Ks.

3.3. Feature Refinement with Neighborhood Spatial Consistent Matching (NSCM)

The NSCM algorithm is applied to remove the outliers caused by similar features and
aperture effect. In the NSCM algorithm, the n nearest matched pairs are selected as neighborhood
reference pairs. As depicted in Figure 5, with the value of n increasing, more neighborhood spatial
consistent information is utilized and more outliers are removed. However, the spatial constraints also
become stricter and the recall is decreasing. Considering the tradeoff between precision and recall,
the value of n is set as 17 in the feature refinement process.
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(a) (b)

Figure 5. Mean precision and recall values of feature refinement with different ns (the number of
candidate matched pairs nearest the seed matched pair). (a) mean precision; and (b) mean recall.

3.4. Comparison among Feature Matching Algorithms

The proposed NSCM approach is compared with seven refinement algorithms: RANSAC [14],
GTM [18], WGTM [20], RSOC [21], KNN-TAR [22], ISSC [23] and RFVTM [24]. Figure 6 presents the
performance of these eight algorithms. In addition, the mean of experimental results are shown in
Table 1. Table 1 indicates that the average precision of NSCM is the highest and the recall of NSCM
algorithm ranks as medium. However, the subsequent processing can improve our recall on the basis
of high precision. The RMSE value of NSCM is the smallest as shown in Table 1.

Table 1. Mean precision, recall and RMSE values in NSCM, RANSAC, GTM, WGTM, RSOC, KNN-TAR,
ISSC and RFVTM.

Evaluation Criteria NSCM RANSAC GTM WGTM RSOC KNN-TAR ISSC RFVTM

precision (%) 96.2 95.2 95.3 96.0 94.2 95.7 95.6 95.2
recall (%) 50.8 61.9 49.5 67.4 61.8 42.8 47.4 63.7

RMSE (pixel) 1.14 1.18 1.15 1.16 1.40 1.34 1.38 1.44
time (s) 0.48 1.08 18.12 16.21 10.92 2.91 2.74 1.89

As shown in Table 1, NSCM significantly outperforms the other algorithms with respect to time
efficiency. Assuming that there would be N feature pairs in the matched results. In this paper, n is set
to 17, which is much smaller than N. Computation complexity of NSCM is O(n × N2) = O(N2).

3.5. Pixel Alignment Based on Polynomial Fitting

Based on the matched set obtained by feature refinement with NSCM, the offsets between the
GSHHG and GSMS images in rows and columns are fitted. The Interpolant, Lowess and Polynomial
fitting types are used to get an optimal solution by comparing their precision, recall and RMSE. Table 2
shows the statistical results of the three common fitting functions. The precision of Polynomial fitting
is slightly higher compared with Interpolant fitting and Lowess fitting. The recall of Polynomial
fitting is far larger than the others, and the RMSE is slightly smaller than the others. In conclusion,
the Polynomial fitting outperforms the other methods in all evaluation criteria.
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Table 2. Mean precision, recall and RMSE values in Interpolant fitting, Lowess fitting and Polynomial
fitting with m set to 3.

Evaluation Criteria Interpolant Fitting Lowess Fitting Polynomial Fitting

precision (%) 92.9 92.9 93.0
recall (%) 68.2 57.5 91.2

RMSE (pixel) 2.33 2.45 2.06

(a) (b)

(c)

Figure 6. Performance of eight algorithms on 25 images. NSCM is competitive with RANSAC, GTM,
WGTM, RSOC, KNN-TAR, ISSC and RFVTM in precision, recall and RMSE. (a) precision; (b) recall;
(c) RMSE.

Figure 7 shows the results of Polynomial fitting functions with different order m from 1 to 5.
As shown in Figure 7a,b, when m is smaller, the precision and recall are lower due to under-fitting.
However, high-order polynomial leads to over-fitting. When m becomes large, the precision and recall
suddenly become very low, but the RMSE becomes very high. Therefore, the third-order Polynomial
fitting functions are utilized to fit the offsets’ tendency.

136



Remote Sens. 2017, 9, 587

(a) (b) (c)

Figure 7. Mean precision, recall and RMSE values of Polynomial fitting with different ms (the order of
Polynomial function). (a) mean precision; (b) mean recall; and (c) mean RMSE.

Table 3 gives the three mean values including precision, recall and RMSE before and after pixel
alignment. The values of precision are close, but the recall after pixel alignment increases greatly.
Figure 8 shows the result of landmark alignment. All pixels in the GSMS remote sensing image are
precisely located.

Table 3. Mean precision, recall and RMSE values before and after pixel alignment.

Before After

precision (%) 96.2 93.0
recall (%) 50.8 91.2

RMSE (pixel) 1.14 2.06

Figure 8. Pixel alignment results.

With pixel alignment, the latitude and longitude of all pixels in the GSMS image can be calculated.
For each pixel pi, the intensity and longitude αi, latitude γi are achieved by NSCM and Polynomial
fitting. The coordinate of pi in the sub-satellite-based earth coordinate system can be represented as:⎧⎪⎪⎨⎪⎪⎩

Xi = Rsin(γi − γ0)cos(αi − α0),

Yi = Rsin(γi − γ0)sin(αi − α0),

Zi = Rcos(γi − γ0),

(11)
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where R is the radius of the earth; α0 and γ0 are the longitude and latitude of the sub-satellite point.
With the coordinate (Xi, Yi, Zi) and intensity, the GSMS image can be displayed as a 3D earth as shown
in Figure 9.

Figure 9. 3D earth.

4. Conclusions

In this paper, we implement global alignment of all pixels in the GSMS images. Before global
alignment, we do feature match between the landmarks of GSHHG and the edges of the GSMS images
by geometric and gradient similarity measurement. Using spatial consistency of the matched pairs,
feature refinement with a neighborhood spatial consistent matching algorithm is proposed to remove
outliers. According to the experimental results, compared with other methods, our algorithm can
achieve higher accuracy and lower RMSE while its time cost is significantly less than other methods.
Based on polynomial fitting, global pixel alignment is applied to obtain the latitude and longitude
of all pixels in the GSMS images and improve the recall significantly. The future work will focus on
three-dimensional spherical stitching of multi-view remote sensing images.
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Abstract: Improving the geo-localization of optical satellite images is an important pre-processing
step for many remote sensing tasks like monitoring by image time series or scene analysis after
sudden events. These tasks require geo-referenced and precisely co-registered multi-sensor data.
Images captured by the high resolution synthetic aperture radar (SAR) satellite TerraSAR-X exhibit an
absolute geo-location accuracy within a few decimeters. These images represent therefore a reliable
source to improve the geo-location accuracy of optical images, which is in the order of tens of meters.
In this paper, a deep learning-based approach for the geo-localization accuracy improvement of
optical satellite images through SAR reference data is investigated. Image registration between SAR
and optical images requires few, but accurate and reliable matching points. These are derived from a
Siamese neural network. The network is trained using TerraSAR-X and PRISM image pairs covering
greater urban areas spread over Europe, in order to learn the two-dimensional spatial shifts between
optical and SAR image patches. Results confirm that accurate and reliable matching points can be
generated with higher matching accuracy and precision with respect to state-of-the-art approaches.

Keywords: geo-referencing; multi-sensor image matching; Siamese neural network; satellite images;
synthetic aperture radar

1. Introduction

1.1. Background and Motivation

Data fusion is important for several applications in the fields of medical imaging, computer vision
or remote sensing, allowing the collection of complementary information from different sensors or
sources to characterize a specific object or an image. In remote sensing, the combination of multi-sensor
data is crucial, e.g., for tasks such as change detection, monitoring or assessment of natural disasters.
The fusion of multi-sensor data requires geo-referenced and precisely co-registered images, which are
often not available.

Assuming the case of multi-sensor image data where one of the images exhibits a higher absolute
geo-localization accuracy, image registration techniques can be employed to improve the localization
accuracy of the second image. Images captured by high resolution synthetic aperture radar (SAR)
satellites like TerraSAR-X [1] exhibit an absolute geo-localization accuracy in the order of a few
decimeters or centimeter for specific targets [2]. Such accuracy is mainly due to the availability of
precise orbit information and the SAR imaging principle. Radar satellites have active sensors onboard
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(emitting electromagnetic signals) and capture images day and night independently from local weather
conditions. The principle of synthetic aperture radar relates to collecting backscattered signal energy
for ground objects along the sensor flight path and compressing the signal energy in post-processing
for a significant increase of the spatial resolution [3]. The visual interpretation of SAR images is a
challenging task [4]: the SAR sensor looks sideways (angle typically between 25◦ to 60◦ with respect to
nadir direction) to be able to solve ambiguities in azimuth related to the targets on ground.

Contrary to radar systems that measure the signal backscattered from the reflecting target to the
sensor, optical satellite sensors are passive systems that measure the sunlight reflected from ground
objects with a strong dependence on atmospheric and local weather conditions such as cloud and
haze. Due to a different image acquisition concept with respect to SAR satellites (active vs. passive
sensor), the location accuracy of optical satellites also depends on a precise knowledge of the satellite
orientation in space. Inaccurate measurements of the attitude angles in space are the main reason for
a lower geo-localization accuracy of optical satellite data. For example the absolute geo-localization
accuracy of images from optical satellites like Worldview-2, PRISM or QuickBird ranges from 4 to 30 m.
TerraSAR-X images may therefore be employed to improve the localization accuracy of spatially high
resolution optical images with less than 5 m ground resolution.

The aim of enhancing the geo-localization accuracy of optical images could be achieved by
employing ground control points (GCPs). GCPs can be extracted from high resolution reference
images, e.g., from TerraSAR-X, to correctly model the generation process of optical images from the
focal plane location of the instrument pixel to the Earth surface location in terms of Earth bound
coordinate frames. In Reinartz et al. [5] promising results are archived by using GCPs extracted from
high precision orthorectified TerraSAR-X data. Nevertheless, the problem of multi-sensor image to
image registration is challenging, and in the specific the precise registration of images from radar and
optical sensors is an open problem.

Due to the different acquisition concepts (SAR: synthetic aperture with distance measurements;
optical: perspective projection), viewing perspectives (off-nadir; usually near-nadir), wavelengths
(radar signal wavelength in cm; optical wavelength in nm) and the speckle effect in SAR images,
it is difficult to find complementary features or reliable similarity measures when comparing optical
and SAR images. More precisely, the sideways-looking acquisition of SAR sensors causes typical
geometric distortion effects (layover, foreshortening) and shadowing for 3D objects such as buildings
or trees. These effects have a strong influence on the appearance of all objects above the ground
level in SAR images. As a consequence, the boundary of an elevated object in a SAR image does
not fit the object boundary in the optical image, even if the imaging perspective is the same for both
sensors. Additionally, the different wavelengths measured by the two kinds of sensors lead to different
radiometric properties in the optical and SAR images. This is due to the fact that the response of an
object depends on the signal properties (wavelength, polarization), the surface properties (roughness,
randomness of local reflectors and reflectance properties) and sensor perspective. The same object may
therefore appear with high intensity for one sensor and with low intensity in another. The speckle
effect further complicates the human and automatic interpretation of SAR imagery and, hence, the
matching of optical and SAR images. As an example, Figure 1 shows the difference of an optical and a
high resolution SAR image for a selected scene containing man-made structures and vegetation.
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Figure 1. Visual comparison of an optical (top) and SAR image (bottom) acquired over the same area.
Both images have a ground sampling distance of 1.25 m.

1.2. Related Work

To improve the absolute geo-location accuracy of optical satellite images using SAR images as
reference, the above-mentioned problems for SAR and optical image registration need to be dealt
with. Different research studies investigated the geo-localization accuracy improvement of optical
satellite images based on SAR reference data, e.g., [5–7]. The related approaches rely on suitable image
registration techniques, which are tailored to the problem of optical and SAR images matching.

The aim of image registration is to estimate the optimal geometric transformation between two
images. The most common multi-modal image registration approaches can be divided into two
categories. The first category comprises intensity-based approaches, where a transformation between
the images can be found by optimizing the corresponding similarity measure. Influenced by the
field of medical image processing, similarity measures like normalized cross-correlation [8], mutual
information [9,10], cross-cumulative residual entropy [11] and the cluster reward algorithm [12] are
frequently used for SAR and optical image registration. A second approach is based on local frequency
information and a confidence-aided similarity measure [13]. Li et al. [14] and Ye et al. [15] introduced
similarity measures based on the histogram of oriented gradients and the histogram of oriented phase
congruency, respectively. However, these approaches are often computationally expensive, suffer
from the different radiometric properties of SAR and optical images and are sensitive to speckle in the
SAR image.
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The second category comprises feature-based approaches, which rely on the detection and
matching of robust and accurate features from salient structures. Feature-based approaches are less
sensitive to radiometric differences of the images, but have problems in the detection of robust features
from SAR images due to the impact of speckle. Early approaches are based on image features like
lines [16], contours [17,18] or regions [19]. A combination of different features (points, straight lines,
free-form curves or areal regions) is investigated in [20]. The approach shows good performance for
the registration of optical and SAR images, but the features from the SAR images have to be selected
manually. As the matching between optical and SAR images usually fails using the scale-invariant
feature transform (SIFT), Fan [21] introduced a modified version of the algorithm. With the improved
SIFT, a fine registration for coarsely-registered images can be achieved, but the approach fails for
image pairs with large geometric distortions. To find matching points between area features, a level
set segmentation-based approach is introduced in [22]. This approach is limited to images that contain
sharp edges from runways, rivers or lakes. Sui et al. [23] and Xu et al. [22] propose iterative matching
procedures to overcome the problem of misaligned images caused by imprecise extracted features.
In [23], an iterative Voronoi spectral point matching between the line-intersection is proposed, which
depends on the presence of salient straight line features in the images.

Other approaches try to overcome the drawbacks of intensity and feature-based approaches
by combining them. A global coarse registration using mutual information on selected areas (no
dense urban and heterogeneous areas) followed by a fine local registration based on linear features is
proposed in [24]. As a drawback, the method highly depends on the coarse registration. If the coarse
registration fails, the fine registration will be unreliable.

Besides classical registration approaches, a variety of research studies indicate the high potential
of deep learning methods for different applications in remote sensing, such as classification of
hyperspectral data [25–27], enhancement of existing road maps [28,29], high-resolution SAR image
classification [30] or pansharpening [31]. In the context of image matching, deep matching networks
were successfully trained for tasks such as stereo estimation [32,33], optical flow estimation [34,35],
aerial image matching [36] or ground to aerial image matching [37]. In [38], a deep learning-based
method is proposed to detect and match multiscale keypoints with two separated networks. While the
detection network is trained on multiscale patches to identify regions including good keypoints, the
description network is trained to match extracted keypoints from different images.

Most of the deep learning image matching methods are based on a Siamese network
architecture [39]. The basic idea of these methods is to train a neural network that is composed
of two parts: the first part, a Siamese or pseudo-Siamese network, is trained to extract features from
image patches, while the second part is trained to measure the similarity between these features.
Several types of networks showed a high potential for automatic feature extraction from images, e.g.,
stacked (denoising) autoencoders [40], restricted Boltzmann machines [41] or convolutional neural
networks (CNNs) [42]. From these networks, CNNs have been proven to be efficient for feature
extraction and have seen successfully trained for image matching in [32,33,36–38,43–45]. A similarity
measure, the L2 distance [45] or the dot product [32,33], is applied on a fully-connected network
[43,44]. The input of the network can be single-resolution image patches [36,43,45], multi-resolution
patches [44] or patches that differ in size for the left and right branch of the Siamese network [32,44].

Summarizing, we are tackling the task of absolute geo-location accuracy improvement of optical
satellite images by generating few, but very accurate and reliable matching points between SAR and
optical images with the help of a neural network. These points serve as input to improve the sensor
models for optical image acquisitions. The basis of the approach is a Siamese network, which is trained
to learn the spatial shift between optical and SAR image patches. Our network is trained on selected
patches where the differences are mostly radiometric, as we try to avoid geometrical ones. The patches
for training are semi-manually extracted from TerraSAR-X and PRISM image pairs that capture larger
urban areas spread over Europe.

144



Remote Sens. 2017, 9, 586

2. Deep Learning for Image Matching

Our research objective is to compute a subset of very accurate and reliable matching points
between SAR and optical images. Common optical and SAR image matching approaches are often not
applicable to a wide range of images acquired over different cities or at different times of the year. This
problem can be handled using a deep learning-based approach. Through training a suitable neural
network on a large dataset containing images spread over Europe and acquired at different times of
the year, the network will learn to handle radiometric changes of an object over time or at different
locations in Europe. To avoid geometrical differences between the SAR and optical patches, we focus
our training on patches containing flat surfaces such as streets or runways in rural areas. This is not a
strong restriction of our approach as these features frequently appear in nearly every satellite image.

Inspired by the successful use of Siamese networks for the task of image matching, we adopt the
same architecture. A Siamese network consists of two parallel networks, which are connected at their
output node. If the parameters between the two networks are shared, the Siamese architecture provides
the advantage of consistent predictions. As both network branches compute the same function, it is
ensured that two similar images will be mapped to a similar location in the feature space. Our Siamese
network consists of two CNNs. In contrast to fully-connected or locally-connected networks, a CNN
uses filters, which are deployed for the task of feature extraction. Using filters instead of full or local
connections reduces the amount of parameters within the network. Less parameters lead to a speed
increase in the training procedure and a reduction in the amount of required training data and, hence,
reduce the risk of overfitting.

In comparison to common deep learning-based matching approaches, our input images are
acquired from different sensors with different radiometric properties. Due to speckle in SAR images,
the pre-processing of the images plays an important role during training and for the matching accuracy
and precision of the results. Our dataset contains images with a spatial resolution of 2.5 m, and
therefore exhibit a lower level of detail in the images compared to the ones used in [32,43–45]. In order
to increase the probability of the availability of salient features in the input data, we use large input
patches with at least a size of 201 × 201 pixels. The mentioned problems require a careful selection of
the network architecture to find the right trade-off between the number of parameters, the number of
layers and, more importantly, the receptive field size.

2.1. Dilation

In the context of CNNs, the receptive field refers to the part of the input patches, having an
impact on the output of the last convolutional layer. To achieve the whole input patch having an
impact on our network output, a receptive field size of 201 × 201 pixels is desired. Standard ways
to increase the receptive field size are strided convolutions or pooling (downsampling) layers inside
the neural network. Here, the word stride refers to the distance between two consecutive positions
of the convolution filters. This would introduce a loss of information as these approaches reduce the
resolution of the image features. In contrast, dilated convolutions [46] systematically aggregate
information through an exponential growth of the receptive without degradation in resolution.
The dilated convolution ∗d at a given position p in the image F is defined as:

(F ∗d k)(p) =
r

∑
m=−r

F(p − d · m)k(m), (1)

where k denotes the kernel/filter with size (2r + 1) × (2r + 1) and d denotes the dilation factor.
Instead of looking at local (2r + 1)× (2r + 1) regions as in the case of standard convolutions, dilated
convolutions look at [d · (2r + 1)]× [d · (2r + 1)] surrounding regions, which lead to an expansion of the
receptive field size. Beyond this, dilated convolutions have the same number of network parameters
compared to their convolution counterpart.
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2.2. Network Architecture

Our matching network is composed of a feature extraction network (a Siamese network) followed
by a layer to measure the similarity of the extracted features (the dot product layer). An overview
of the network architecture is depicted on the left side of Figure 2. The inputs of the left and right
branches of the Siamese network are an optical (left) and a SAR (right) reference image, respectively.
The weights of the two branches can be shared (Siamese architecture) or partly shared (pseudo-Siamese
architecture).
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2-DilatedConvBNReLU 5× 5 filter (32)

4-DilatedConvBNReLU 5× 5 filter (32)

ConvBN 5× 5 filter (64)

16-DilatedConvBNReLU 5× 5 filter (64)

8-DilatedConvBNReLU 5× 5 filter (64)

ConvBNReLU 5× 5 filter (64)

16-DilatedConvBNReLU 5× 5 filter (64)

CNN

Figure 2. Network architecture (left) and a detailed overview of the convolutional layers (right).
Abbreviations: convolutional neural network (CNN), convolution (Conv), batch normalization (BN)
and rectified linear unit (ReLU).

Each layer of the network consists of a spatial convolution (Conv), a spatial batch normalization
(BN) [47] and a rectified linear unit (ReLU). The purpose of the convolution layers is to extract spatial
features from the input data through trainable filters. The complexity of the features extracted by
the layers increases along with the depth. A normalization of the input data is often used as a
pre-processing step to increase the learning speed and the performance of the network. By passing the
input through the different layers of the network, the distribution of each single layer input changes.
Therefore, BN is used in every layer of the network to ensure the consistency in the distribution of
the layer inputs, as it provides a form of regularization and reduces the dependency of the network
performance on the initialization of the weights. Non-linear activation functions like ReLUs are needed
to introduce nonlinearities into the network (otherwise the network can only model linear functions).
An Advantage of ReLUs compared to other activation function is a more efficient and faster training of
the network.

We removed the ReLU from the last layer to preserve the information encoded in the negative
values. In all layers convolutions with a filter size of 5 × 5 pixels are employed. To overcome the
problem of our relatively large input patch size, we adopt dilation convolutions [46] for the layers three
to seven with a dilation factor d of 2, 4, 8 and 16 for the last two layers. This setup leads to the desired
receptive field size of 201 × 201 pixels. The number of filters used in layer one to four is 32 and for the
others is 64. The overall output is a predicted shift of the optical image within the SAR reference patch
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and is computed by taking the dot product of the output of the two branches. A detailed overview of
one branch of the Siamese network is the depicted on the right side of Figure 2.

2.3. SAR Image Pre-Processing

We use the probabilistic patch-based (PPB) filter proposed in [48] for the pre-processing of the
SAR images. This filter is developed to suppress speckle in SAR images by adapting the non-local
mean filter by Buades et al. [49] to SAR images. The idea of the non-local mean filter is to estimate the
filtered pixel value as the weighted average over all pixels in the image. The weights are measuring
the similarity between the pixel values of a patch Δs centred around a pixel s and the pixel values of
a patch Δt centred around a pixel t. The similarity between two patches is estimated through their
Euclidean distance. In [48], the noise distribution is modelled using the weighted maximum likelihood
estimator, in which the weights express the probability that two patches centred around the pixels
s and t have the same noise distribution in a given image. The results of applying this filter and a
comparison between SAR and optical patches are shown in Figure 3.

(a) (b) (c)

Figure 3. Visual comparison between optical (a), SAR (b) and despeckled SAR patches (c).

2.4. Matching Point Generation

We generate the matching points by training the network over a large dataset of optical and
SAR image patch pairs, which have been manually co-registered. More precisely, the network is
trained with smaller left image patches cropped from optical images and larger right images patches
cropped from SAR images. Note that given a fixed size b × h of the left image patch L, the output of
the network will depend on the size of the right image patch. The right image patch R has the size
(b + s)× (h + s), where s defines the range over which we perform our search. The output of the
network is a two-dimensional scoring map with size (s + 1)× (s + 1) over the search space S with
size (b + s)× (h + s).

The scoring map si for the i-th input image pair contains a similarity score si,j for each location qi,j
in the search space (j ∈ J = {1, . . . , |S|}, where |S| is the cardinality of S). The search space index J
is indexing the two-dimensional search space, where each position qi,j in S corresponds to a specific
two-dimensional shift of the left optical patch with respect to the larger SAR patch.

To get the similarity scores for every image pair, we first compute the feature vector fi for the
i-th optical training patch and the feature matrix hi for the corresponding i-th SAR patch. The feature
vector fi is the output of the left network branches and has a dimension of 64 (as the last convolution
layer has 64 filters). The feature matrix hi is the output of the right network branch with a dimension
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of |S| × 64 and is composed of the feature vectors hi,j for each location in the search space. We then
compute the similarity of the features vectors fi and hi,j for every position qi,j ∈ S.

To measure the similarity between the two vectors, we use the dot product and obtain the
similarity scores si,j = fi · hi,j for all j ∈ J. A high value of si,j indicates a high similarity between the
two vectors fi and hi,j at location qi,j (which is related to a two-dimensional pixel shift). In other words,
a high similarity score si,j indicates a high similarity between the i-th optical patch and the i-th SAR
patch at location qi,j in our search space. To get a normalized score over all locations within the search
space, we apply the soft-max function at each location qi,j ∈ S:

s̃i,j =
exp(si,j)

∑
j∈J

exp(si,j)
. (2)

This function is commonly used for multi-class classification problems to compute the probability
that a certain training patch belongs to a certain class. In our case, the normalized score s̃i,j can be
interpreted as a probability for the specific shift, which corresponds to location qi,j with index j. Thus,
the output of our network (the normalized score map) can be seen as a probability distribution with a
probability for every location (shift) of the optical patch within the SAR image patch.

By treating the problem as a multi-class classification problem, where the different classes
represent the possible shifts of an optical patch with respect to a larger SAR patch, we train our
network by minimizing the cross entropy loss:

min
w ∑

i∈I,j∈J
pgt(qi,j) log pi(qi,j, w) (3)

with respect to the weights w, which parametrize our network. Here, pi(qi,j, w) is the predicted score
for sample i at location qi,j in our search space, and pgt is the ground truth target distribution. Instead
of a delta function with non-zero probability mass only at the correct location qi,j = qgt

i , we are using a
soft ground truth distribution, which is centred around the ground truth location. Therefore, we set
pgt to be the discrete approximation of the Gaussian function (with σ = 1) in an area around qgt

i :

pgt(qi,j) =

⎧⎪⎨⎪⎩ 1
2π · e−

∥∥∥qi,j−q
gt
i

∥∥∥2

2
2 if

∥∥∥qi,j − qgt
i

∥∥∥
2
< 3

0 otherwise
, (4)

where ‖·‖2 denotes the L2 (Euclidean) distance. We use stochastic gradient descent with Adam [50] to
minimize our loss function (3) and, hence, to train our network to learn the matching between optical
and SAR patches.

After training, we keep the learned parameters w fixed and decompose the network into two
parts: the feature extractor (CNN) and the similarity measure (dot product layer). As the feature
extractor is convolutional, we can apply the CNN on images with an arbitrary size. Thus, during the
test time, we first give an optical patch as input to the CNN and compute the feature vector f . Then
we consider a larger SAR patch which covers the desired search space, and compute the feature matrix
h. Afterwards, we use the dot product layer to compute the normalized score map from f and h (in the
same way as for the training step). Applying this strategy, we can compute a matching score between
optical patches with arbitrary size and SAR images over an arbitrary search space. We obtain the
matching points (predicted shifts) by picking for every input image pair the points with the highest
value (highest similarity between optical and SAR patch) within the corresponding search space.
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2.5. Geo-Localization Accuracy Improvement

The inaccuracy of the absolute geo-localization of the optical satellite data in the geo-referencing
process arises mainly from inaccurate measurements of the satellite attitude and thermally-affected
mounting angles between the optical sensor and the attitude measurement unit. This insufficient
pointing knowledge leads to local geometric distortions of orthorectified images caused by the height
variations of the Earth’s surface. To achieve higher geometric accuracy of the optical data, ground
control information is needed to adjust the parameters of the physical sensor model. We are following
the approach described in [51] to estimate the unknown parameters of the sensor model from GCPs by
iterative least squares adjustment. In order to get a reliable set of GCP, different levels of point filtering
and blunder detection are included in the processing chain. In contrast to [51], where the GCPs are
generated from an optical image, we are using the matching points generated by our network.

3. Experimental Evaluation and Discussion

To perform our experiments, we generated a dataset out of 46 orthorectified optical (PRISM) and
radar (TerraSAR-X acquired in stripmap mode) satellite image pairs acquired over 13 city areas in
Europe. The images include suburban, industrial and rural areas with a total coverage of around
20, 000 km2. The spatial resolution of the optical images is 2.5 m, and the pixel spacing of the SAR
images is 1.25 m. To have a consistent pixel spacing within the image pairs, we downsampled the SAR
images to 2.5 m using bilinear interpolation.

As the ground truth, we are using optical images which were aligned to the corresponding SAR
images in the Urban Atlas project [52]. The alignment between the images was achieved by a manual
selection of several hundred matching points for every image pair. These matching points are used
to improve the sensor model related to the optical images. By using the improved sensor models to
orthorectify the optical images, the global alignment error could be reduced from up to 23 m to around
3 m in this project.

To minimize the impact of the different acquisition modes of PRISM and TerraSAR-X, we focus
on flat surfaces where only the radiometry between the SAR and optical images is different. Therefore,
patches are favored that contain parts of streets or runways in rural areas. The patches are pre-selected
using the CORINE land cover [53] from the year 2012 to exclude patches, e.g., containing street
segments in city areas. The CORINE layer includes 44 land cover classes and has a pixel size of
100 m. For the pre-selection, the following classes are chosen: airports, non-irrigated arable land,
permanently-irrigated land, annual crops associated with permanent crops and complex cultivation
patterns, land principally occupied by agriculture, with significant areas of natural vegetation. Note
that there are several current global land cover maps available, which enable a similar pre-selection
for images outside Europe. The pre-selection was refined manually to ensure that the patches contain
streets/runways segments that are visible in the optical and the SAR patches and to avoid patches
containing street segments through smaller villages or areas covered by clouds in the optical images.

3.1. Dataset Generation

The training, validation and test datasets are generated by randomly splitting the 46 images into 36
images for training, 4 for validation and 6 for testing. As a form of data augmentation, we use bilinear
interpolation to downsample the optical and SAR images, which are used for training, to a pixel spacing
of 3.75 m. This leads to a training set with a total number of 92 images for each sensor, where half of
the images have a resolution of 2.5 m and the other half of 3.75 m. Data augmentation is commonly
used to generate a larger training dataset and, hence, to prevent the network from overfitting.

The training, validation and test patches are cropped from the images of the corresponding sets.
The optical patches have a size of 201× 201 pixels, and the SAR patches have a size of 221× 221 pixels.
The final dataset contains 135,000 pairs of training patches, 5000 pairs of validation patches and
14,400 pairs of test patches, and the total number of search locations is 441. Note that the alignment
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error between the SAR and the optical image is expected to be not larger than 32 m. Therefore, a
21 × 21 pixel search space with a pixel spacing of 2.5 m in the validation and test case is assumed to be
large enough.

3.2. Training Parameters

Our network is trained with 100 rounds, where each round takes 200 iterations over a single
batch. The initial learning rate is set to 0.01, and we reduce it by a factor of five at iterations 60 and 80.
We train the network in parallel on two Titan X GPUs using a batch size of 100. The weights of the
network are initialized with the scheme described in [54], which particularly considers the rectifier
nonlinearities. The whole training process takes around 30 h.

3.3. Influence of Speckle Filtering

To find the right setup, we investigated the influence of speckle filtering during training time.
Figure 4a illustrates the matching accuracy of the validation set during training with two different
network architectures and with and without the speckle filter. Here, the matching accuracy is measured
as the percentage of matching points, where the Euclidean (L2) distance to the ground truth location is
less than or equal to 3 pixels. Figure 4b illustrates the average L2 distance of the matching points to
the ground truth location of the validation set in the training. Both images reveal that, independently
from the network architectures, speckle filtering helps the network at learning the similarity between
optical and SAR patches and, hence, at improving the accuracy of the generated matching points.

(a) (b)

Figure 4. Influence of the speckle filter and comparison of different network architectures during
training time (all results are generated from the validation set): (a) shows the matching accuracy during
training. Here, the matching accuracy is measured as the percentage of matching points, where the
L2 distance to the ground truth location is less than or equal to three pixels; (b) shows the average L2

distance between the matching points and the ground truth location during training.

3.4. Comparison of Network Architectures

The influence of partially-shared (pseudo-Siamese architecture) and shared weights (Siamese
architecture) between the two network branches during training was investigated. In the case of the
pseudo-Siamese architectures, the weights of the first three layers are different, whereas the remaining
layers share their weights. In the case of the Siamese architectures, all weights are shared. Figure 4
shows a comparison of the matching accuracy between the results of Siamese and pseudo-Siamese
architecture over the validation set. It can be seen that a full Siamese architecture learns slightly faster
and achieves higher matching accuracy in the end. In the following, the results are generated with the
best setup: speckle filtering combined with a Siamese architecture.
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3.5. Comparison to Baseline Methods

For a better evaluation of our results, we compare our method with three available baseline
methods: the similarity measure normalized cross-correlation (NCC) [55], the similarity measure
mutual information (MI) [56], and a MI-based method (CAMRI) which is tailored to the problem of
optical and SAR matching [10]. To ensure a fair comparison, we applied the pre-processing with the
speckle filter [48] to all baseline methods, except for CAMRI [10]. Here, a slightly different speckle filter
is implemented internally. Table 1 shows the comparison of our method with the baseline methods.
The expression “Ours (score)” denotes our method, where we used a threshold to detect outliers and
to generate more precise and reliable matching points (detailed explanation in the next section). “Ours
(scores)” achieves higher matching accuracy and precision than NCC, MI and CAMRI [10]. More
precisely, the average value over the L2 distances between the matching points and the ground truth
locations is the smallest (measured in pixel units) for our method. Furthermore, the comparison of the
matching precisions reveals that our matching points, with a standard deviation σ of 1.14 pixels, are
the most reliable ones. The running time of our method during test time is 3.3 m for all 14,000 test
patches on a single GPU. The baseline methods are running on CPU, which makes a fair comparison
difficult, but CAMRI [10] requires around three days to compute the matching points for the test set.

Table 1. Comparison of the matching accuracy and precision of our method with accuracies of
normalized cross-correlation (NCC), mutual information (MI) and CAMRI [10] over the test set. The
matching accuracy is measured as the percentage of matching points, having a L2 distance to the
ground truth location smaller than a specific number of pixels and as the average over the L2 distances
between the predicted matching points and the ground truth locations (measured in pixel units). The
matching precision is represented by the standard deviation σ (measured in pixel units).

Methods
Matching Accuracy Matching Precision

<2 pixels <3 pixels <4 pixels avg L2 (pixel) σ (pixel)

NCC 2.94% 7.92% 13.01% 9.92 4.04
MI 18.18% 38.60% 51.99% 4.89 3.64

CAMRI [10] 33.55% 57.06% 79.93% 2.80 2.86

Ours 25.40% 49.60% 64.28% 3.91 3.17
Ours (score) 49.70% 82.80% 94.70% 1.91 1.14

3.6. Outlier Removal

So far, we used the normalized score (after applying the soft-max) and we selected the locations
with the highest value (highest probability) within each search area as the predicted matching point
after a two-dimensional shift. Another possibility is to use the raw score (before soft-max) as an
indicator of the confidence of the prediction. Utilizing this information, we can aggregate the
predictions from the network to detect outliers and achieve higher matching performances. Therefore,
we investigated the influence of the raw score as a threshold as shown in Figure 5, which enables
the detection of correct predicted matching points. A higher threshold on the raw score leads to a
better accuracy in terms of correct prediction, as well as a smaller L2 distance between the predicted
matching points and the ground truth locations. Note that the rough shape at the right side of the
curves in Figure 5b,c is the result of an outlier. Here, an outlier has a strong influence, since these
numbers are computed from less than 20 test patches.

By using only the first 1000 matches with the highest raw score, the average over the L2 distances
between the matching points and the ground truth location can be reduced from 3.91 pixels (using
all matches) to 1.91 pixels, and the standard deviation (matching precision) from 3.37 to 1.14 pixels
(see Table 1). Note that a higher threshold results in a smaller number of valid matching points, which
are more reliable (in terms of the L2 distance). For a later application, a threshold does not have to
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be specified. Depending on the number of matching points x needed for an image pair, the best x
matching points can be chosen, based on the raw score.

(a) (b)

(c) (d)

Figure 5. Illustration of influence of the raw score as a threshold: (a) the relation between the predicted
score and the number of patches; (b) relation between the number of patches and the matching
accuracy; (c) relation between the predicted score and the matching accuracy; and (d) relation between
the predicted score and the average distance (L2) between the predicted matching points and the
ground truth location. The matching accuracy in Figure 5b is measured as the percentage of matching
points, where the L2 distance to the ground truth location is less than three pixels and in Figure 5c less
than 2, 3 and 4 pixels.

3.7. Qualitative Results

In Figure 6, we show a side by side comparison of the score maps of our approach with two
baseline methods of sample image patches. Note that CAMRI [10] does not provide a score map as
output. Therefore, we perform our search over a 51× 51 pixels search space, where the used patches
have a resolution of 2.5 m. The images in the first column are optical image patches and the images
in the last column the despeckled SAR image patches. To generate the images in column 2 to 4 we
perform the matching between the corresponding image pairs using NCC, MI and our method. Yellow
indicates a higher score, and blue indicates a lower score. The ground truth location is in the center of
each patch. Our approach performs consistently better than the corresponding baseline methods. More
precisely, the score maps generated with our approach show one high peak at the correct position,
except for the last example. Here, two peaks are visible along a line, which corresponds to a street in
the SAR patch. In contrast, both baseline methods show a relatively large area with a constantly high
score at the wrong positions for most examples.
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(a)Optical image (b)NCC (c)MI (d)Proposed method (e)SAR image

Figure 6. Side by side comparison between (a) optical patches (201× 201 pixels), (b) the score maps
of NCC, (c) MI, and (d) our method (51 × 51 pixels), and (e) the reference despeckled SAR patches
(251× 251 pixels).

In Figure 7, the checkerboard overlay of two optical and SAR image pairs is shown. The residual
alignment error between the uncorrected optical and SAR images is clearly visible in the easting
direction in Figure 7a. In contrast, the corrected optical and SAR image pair in Figure 7b seems to be
aligned. For the correction of the optical image, we used the obtained matching points from the neural
network to improve the parameters of the corresponding sensor model and, hence, to improve the
geo-location accuracy. In particular, we picked the best 153 matching points (with the highest raw
score and with at least a L2 spatial distance of 50 pixels to each other) as our ground control points
(GCPs). We set the empirical distance threshold to 50 pixels to ensure that the points are equally spread
over the whole image. Afterwards, the unknown parameters of the sensor model are estimated from
these GCPs by iterative least squares adjustment. During this process, a blunder detection removed
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11 GCPs. At the end, we used the improved sensor model to generate a new orthorectified optical
image with improved absolute geo-localization accuracy. The standard deviation for the remaining
142 GCPs is 1.04 pixels in the easting and 1.28 pixels in the northing direction.

(a)Before the geo-localization enhancement of the optical image.

(b)After the geo-localization enhancement of the optical image.

Figure 7. Checkerboard overlays of two optical and one SAR image with a pixel spacing of 2.5 m
and image tiles size of 100× 100 m: (a) shows the optical image before and (b) after the sensor model
adjustment (geo-localization enhancement) through the generated matching points.

3.8. Limitations

A drawback of the current network architecture is the restriction to input patches of size 201× 201
pixels for the left branch of the network. If we were to use the full resolution of the SAR images and
upsample the optical images to 1.25 m, our training and test dataset would contain a large amount of
image patches, containing just one straight line (street segment). These patches are ambiguous for our
two-dimensional search and, hence, not suitable for the training process. As a consequence, we need
larger image patches to reduce the amount of ambiguity. Therefore, we downsampled the optical and
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SAR images. Due to the memory limits of our available GPUs, it was not possible to increase the input
patch size and simultaneously keep a proper batch size. A possible solution could be the investigation
of a new network architecture, which enables the use of larger input patches. An alternative solution
could be a better selection process of the patches, e.g., only patches containing street crossings.

The processing chain for the generation of our dataset and the relatively small amount of training
data represent the main current weaknesses. The selection of the image patches for the dataset was
mainly done manually and is limited to one SAR and optical satellite sensor (PRISM and TerraSAR-X).
Through the usage of OpenStreetMap and/or a road segmentation network, the generation of the
dataset could be done automatically, and our datasets could be quickly extended with new image
patches. A larger dataset would help to deal with the problem of overfitting during training, and
further improve the network performance.

Additionally, the success of our approach depends on the existence of salient features in the
image scene. To generate reliable matching points, these features have to exhibit the same geometric
properties in the optical and SAR image, e.g., street-crossings. Therefore, the proposed method is not
trained to work on images without such features, e.g., images covering only woodlands, mountainous
areas or deserts.

3.9. Strengths

The results prove the potential of our method for the task of geo-localization improvement of
optical images through SAR reference data. By interpreting the raw network output as the confidence
for predicted matching points (predicted shifts) between optical and SAR patches, we are able to
generate matching points with high matching accuracy and precision. Furthermore, the high quality
of the matching points does not increase the computation time. After training, we can compute new
matching points between arbitrary optical and SAR image pairs within seconds. In contrast, a MI-based
approach like CAMRI [10] needs several hours or days to compute the matching points between the
same image patches, yielding in less accurate and precise results.

In contrast to other deep learning-based matching approaches, our network is able to match
multi-sensor images with different radiometric properties. Our neural network is extendible to images
from other optical or radar sensors with little effort, and it is applicable to multi-resolution images.
In contrast to other feature-based matching approaches, our method is based on reliable (in terms
of equal geometric properties in the optical and SAR image patches) features, e.g., streets and street
crossings, which frequently appear in many satellite images. Furthermore, through the variety in
our training image pairs, our method is applicable to a wide range of images acquired over different
countries or at different times of the year.

4. Conclusions

In this paper, the applicability of a deep learning-based approach for the geo-localization accuracy
improvement of optical satellite images through SAR reference data is confirmed for the first time.
For this purpose, a neural network has been trained to learn the spatial shift between optical and
SAR image patches. The network is composed of a feature extraction part (Siamese network) and
a similarity measure part (dot product layer). The network was trained on 134,000 and tested on
14,000 pairs of patches cropped from optical (PRISM) and SAR (TerraSAR-X) satellite image pairs over
13 city areas spread over Europe.

The effectiveness of our approach for the generation of accurate and reliable matching points
between optical and SAR images patches has been demonstrated. Our method outperforms
state-of-the-art matching approaches, like CAMRI [10]. Particular, matching points can be achieved
with an average L2 distance to the ground truth locations of 1.91 pixels and a precision (standard
deviation) of 1.14 pixels. Furthermore, by utilizing the resulting improved sensor model for the
geo-referencing and orthorectification processes, we achieve an enhancement of the geo-localization
accuracy of the optical images.
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In the future, we will further enhance the accuracy and precision of the resulting matching points
by using interpolation or polynomial curve fitting techniques to generate sub-pixel two-dimensional
shifts. Additionally, we are planning to investigate the influence of alternative network architectures,
similarity measures and loss functions on the accuracy and precision of the matching points, as well as
the applicability of an automatic processing chain for the dataset generation using OpenStreetMap
and a road detection network.
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Abstract: In this paper a non-parametric model based on Wasserstein CNN is proposed for color
correction. It is suitable for large-scale remote sensing image preprocessing from multiple sources
under various viewing conditions, including illumination variances, atmosphere disturbances,
and sensor and aspect angles. Color correction aims to alter the color palette of an input image
to a standard reference which does not suffer from the mentioned disturbances. Most of current
methods highly depend on the similarity between the inputs and the references, with respect to
both the contents and the conditions, such as illumination and atmosphere condition. Segmentation
is usually necessary to alleviate the color leakage effect on the edges. Different from the previous
studies, the proposed method matches the color distribution of the input dataset with the references
in a probabilistic optimal transportation framework. Multi-scale features are extracted from the
intermediate layers of the lightweight CNN model and are utilized to infer the undisturbed
distribution. The Wasserstein distance is utilized to calculate the cost function to measure the
discrepancy between two color distributions. The advantage of the method is that no registration
or segmentation processes are needed, benefiting from the local texture processing potential of the
CNN models. Experimental results demonstrate that the proposed method is effective when the
input and reference images are of different sources, resolutions, and under different illumination and
atmosphere conditions.

Keywords: remote sensing image correction; color matching; optimal transport; CNN

1. Introduction

Large-scale remote sensing content providers aggregate remote sensing imagery from different
platforms, providing a vast geographical coverage with a range of spatial and temporal resolutions.
One of the challenges is that the color correction task becomes more complicated due to the
wide difference in viewing angles, platform characteristics, and light and atmosphere conditions
(see Figure 1). For further processing purposes, it is often desired to perform color correction to the
images. Histogram matching [1,2] is a cheap way to address this when a reference image with no color
errors is available that shares the same coverage of land and reflectance distribution.

To gain a deeper insight, first we would like to place histogram matching in a broader context
as the simplest form of color matching [3]. These methods try to match the color distribution of the
input images to a reference, also known as color transferring. They can either work by matching
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low order statistics [3–5] or by transferring the exact distribution [6–8]. Matching the low order
statistics is sensitive to the color space selected [9]. The performances of both methods are highly
related to the similarity between the contents of the input and the reference. Picking an appropriate
reference requires manual intervention and may become the bottle neck for processing. A drawback
of such methods is that the colors on the edges of the targets would be mixed up [10–12]. Methods
exploiting the spatial information were proposed to migrate the problem, but segmentation, spatial
matching, and alignment are required [13,14]. Matching the exact distribution is not sensitive to the
color space selection, but has to work in an iterative fashion [8]. Both the segmentation and the iteration
increase the computation burden and are not suitable for online viewing and querying. For video
and stereo cases, extra information from the correlation between frames can be exploited to achieve
better color harmony [15,16]. The holography method is introduced into color transfer to eliminate
the artifacts [17]. Manifold learning is an interesting framework to find the similarity between the
pixels, so that the output color can be more natural and it can suppress the color leakage as well [18].
Another perspective to comprehend the problem is image-to-image translation. Convolutional neural
networks have proven to be successful for such applications [19], for example, the auto colorization
of grayscale images [20,21]. Recently, deep learning shows its potential and power in hyper-spectral
image understanding applications [22].

Figure 1. Color discrepancy in remote sensing images. (a,b) Digital Globe images on different dates
from Google Earth; (c,d) Digital Globe (bottom, right) and NASA (National Aeronautics and Space
Administration) Copernicus (top, left) images on the same date from Google Earth; (e) GF1 (Gaofen-1)
images from different sensors, same area and date.

Unfortunately, for large-scale applications, it is too strict a requirement that the whole reflectance
distribution should be the same between the reference image and the ones to be processed. As a result,
such reference histograms are usually not available and have greatly restricted the applications of
these sample-based color matching methods. In [23] the authors choose a color correction plan that
minimizes the color discrepancy between it and both the input image and the reference image. This
is a good solution in stitching applications. However, the purpose of this paper is to eliminate the
errors raised by atmosphere, light, etc., so that the result can be further employed in ground reflectance
retrieval or atmosphere parameters retrieval. We hope that the output is as close as possible to
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the reference images, rather than modifying the ground truth values as in [23]. Since it is usually
infeasible to find such a reference, a natural question is, can we develop a universal function which
can automatically determine the references directly according to the input images? Once this function
is obtained, we can combine it with simple histogram matching or other color transfer methods into
a very powerful algorithm. In this paper, a Wasserstein CNN model is built to infer the reference
histograms for remote sensing image color correction applications. The model is completely data
driven, and no registration or segmentation is needed in both the training phase and the inferring
phase. Besides, as will be explained in Section 2, the input and the reference can be of different
scales and sources. In Section 2, the details of the proposed method are elaborated in an optimal
transporting framework [24,25]. In Section 3, the experiments are conducted to validate the feasibility
of the proposed method, in which images from the GF1 and GF2 satellites are used as the input and
the reference datasets accordingly. Section 4 comprises the discussions and comparisons with other
color matching (correcting) methods. And finally, Section 5 gives the conclusion and points out our
future works.

2. Materials and Methods

2.1. Analysis

Given an input image I and a reference image I′ with Nc channels, an automatic color matching
algorithm aims to alter the color palette of I to that of I′, the reference. Some of the algorithms
require that the reference image is known, which are called sample-based methods. Of course
an ideal algorithm should work without knowing I′. The matching can be operated either in the
Nc-dimensional color space at once, or in each dimension separately [8,26]. The influence of the light
and the atmosphere conditions and other factors can be included into a function h(I′, x, y) that acts on
the grayscale value of the pixel located at (x, y). Under such circumstances, the problem is converted
to learning an inverse transfer function f (I, x, y) that maps the grayscale values of the input image I
back to that of the reference image I′, where (x, y) denotes the location of the target pixel inside I.

When the input image is divided into patches that each possess a relatively small geographical
coverage, the spatial variance of the color discrepancy inside each patch is usually small enough to be
neglected. Thus h(I′, x, y) should be the same with h(I′, x′, y′) as long as (x, y) and (x′, y′) share the
same grayscale values. Let ux,y and vx,y be the grayscale values of the pixels located at (x, y) in I and I′

accordingly, and h(I′, x, y) can be rewritten as h(I′, vx,y), because the color discrepancy function is not
related to the location of the pixel but only to its value. The three assumptions of the transformation
from the input images to the reference images are made as follows, and some properties which f
should satisfy can be derived from them.

Assumption 1: vx,y = vx′ ,y′ ⇒ ux,y = ux′ ,y′

Assumption 1 suggests that when two pixels in I′ have the same grayscale value, so do the
corresponding pixels in I. This assumption is straight forward since in general cases the cameras
are well calibrated and the inhomogeneity of light and atmosphere is usually small within a small
geographical coverage. It is true that when severe sensor errors occur this assumption may not hold,
however that is not the focus of this paper.

Assumption 2: ux,y = ux′ ,y′ ⇒ vx,y = vx′ ,y′

Assumption 2 indicates that when two pixels in I have the same grayscale, so are their
corresponding pixels in I′. The assumption is based on the fact that the pixel value the sensor
recorded is not related to its context or location, but only to its raw physical intensity.

Assumption 3: ux,y > ux′ ,y′ ⇔ vx,y > vx′ ,y′

Assumption 3 implies that the transformation is order preserving, or a brighter pixel in I should
also be brighter in I′, and vice versa.
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According to the above assumptions, we expect the transfer function f to possess the
following properties.

Property 1: ux,y = ux′ ,y′ ⇒ f (I, ux,y) = f (I, ux′ ,y′)

Property 2: ux,y > ux′ ,y′ ⇔ f (I, ux,y) > f (I, ux′ ,y′) , or f is order-preserving

Property 3: I1 �= I2 ⇒ f (I1, •) �= f (I2, •)

Consider that even when two pixels inside I1 and I2 share the same grayscale values, the corrected
values can still be different according to their ground truth values in the references. Property 3 is to say
that f should be content related. In other words, for different input images, the transfer function values
should be different to maintain the content consistency. To better explain the point, consider that two
input images having different contents, the grassland and the lake so to speak, happen to be of similar
color distributions. The pixel in the lake should be darker and the other pixel in the grassland should
be brighter in the corresponding reference images. If f is only related to the grayscale values while
discarding the input images (the contexts of the pixels), this cannot be done because similar pixels in
different input images have to be mapped to similar output levels.

An issue to take into account is whether the raw image or its histogram of the input and reference
images should be made use of for the matching. Table 1 lists all possible cases, each of which will
be discussed.

Table 1. Different color matching schemes according to the input form and the reference form.

Input Reference Scheme

Histogram Histogram A
Image Image B
Image Histogram C

Histogram Image D

Scheme A is the case when both the input and reference are histograms, and this is essentially
histogram matching. Many previous studies employ this scheme for simplicity, for example, histogram
matching and low order statistics matching in various color spaces. Since histograms do not contain
the content information, the corresponding histogram matching is not content related. Concretely
speaking, two pixels that belong to two regions with different contents but with the same grayscale fall
into the same bin of the histogram, and have to be assigned to the same grayscale value in the output
image, which does not meet Property 3. In order for one distribution with different contexts to be
correctly matched to different corresponding distributions, we cannot enclose different transformations
in one unified mapping (see Figure 2). This should not be appropriate for large scale datasets that
demand a high degree of automation.

Scheme B corresponds to the case where both the input and output are images, which is usually
referred to as image to image translation. The image certainly contains much more information than
its histogram, thus providing a possibility that the mapping is content related. Although Property 3
can be satisfied, this scheme emphasizes the content of the image, and the consequence is that the
pixels with same grayscales may be mapped to different grayscales as their contexts could be different,
and in this case Property 1 is violated (see Figure 3).
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Figure 2. Matching algorithms of “scheme A” take both input and reference in the form of histograms.
As this scheme is not content related, two similar distributions with different contexts could be not be
mapped to their corresponding reference with one unified mapping.

Figure 3. Matching algorithms of “scheme B” take both input and reference in the form of images.
Similar distributions could be mapped to different corresponding references, as the scheme is content
based. However, the same grayscales could be mapped to different grayscales when they are in
different contexts, violating Property 1.

Scheme C is the case where the input is an image and the output is a histogram. As mentioned
above, scheme A does not satisfy Property 3 because the context of the image is not used, while
scheme B violates Property 1. Mapping one image to another, with constraints that the pixels with the
same grayscales also have the same grayscale values in the output, is essentially a grayscale to grayscale
transforming process. Under such circumstances, the output of scheme B is always equivalent to
that of scheme C. Since scheme C automatically possesses Properties 1 and 3, the task has been now
converted to devise the algorithm so that it possesses Property 2 as well (see Figure 4). The task is
addressed under an optimal transporting framework, which will be elaborated in Section 2.2.
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Figure 4. Matching algorithms of “scheme C” take images as inputs and histograms as references in
the form of images. Similar distributions could be mapped to different corresponding references, as the
scheme is content related.

The scheme of type D corresponds to the case where the input is the histogram and the output is
the image. Since it is nearly impossible to determine a transformation mapping of a histogram to an
image, we do not take this case into consideration.

2.2. Optimal Transporting Perspective of View

Denote u and v as the input and the reference color distributions, then T : RNc → RNc is a
mapping that transforms u to v. The total cost of T(u, v) can be defined as C(u, v) [25–27]:

C(u, v) = inf
π∈Π(u,v)

∫
c(x, y) dπ(x, y) (1)

where c(x, y) is the cost of transporting one unit of mass from x to y, and π(u, v) is the joint probability
measure of RNc

+ ×R
Nc
+ , having u and v as its marginal distributions. Again, Nc indicates the number of

color channels and Π(u, v) is the collection of every feasible π(u, v).
When c(x, y) is defined as a distance d(x, y), the p-order Wasserstein distance can be defined

as [25,27]:

Wp(u, v) =
(

inf
π∈Π(u,v)

∫
d(x, y)pdπ(x, y)

)1/p
(2)

Finding the transformation T(u, v) that minimizes the total cost C(u, v) is known as the Monge’s
optimal transportation problem, or the MK problem. The solution to the problem is the gradient of
some convex function [25,27,28]:

T = ∇φ, where φ : RNc → R is convex (3)

Specifically in one dimensional cases, this statement is equivalent to monotonicity, as consequence
meets Property 2.

For high dimensional problems, the solution of the MK problem is intractable. In this paper,
the distributions of the Nc channels are matched separately. The Wasserstein distance between the
inferred values and the ideal values can be calculated in the following way: first sort the pixels on
a 1-D axis, and then calculate the distance between each pair of inferred pixels and the ideal pixels
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accordingly. This is equivalent to using a stacked histogram (see Figure 5). The Wasserstein distance
when p equals 2 can be formulated as:

W2 =

(∫ (
hpred( f )− hre f ( f )

)2
d f

)1/2
, where f is the cumulative frequency (4)

Figure 5. Calculation method of the Wasserstein distance between the inferred histograms and the
ground-truth reference. STEP 1: stack the histograms on the frequency axis; STEP 2: subtract the
stacked histograms, and integrate with respect to the cumulative frequency.

2.3. The Model Structure

The transformation can be fitted by a CNN model, where the Wasserstein distance plays the role
of the loss function. To reduce the memory and computation burden, we used a modified version of
Squeeze-net v1.1 [29] (see Figures 6 and 7). In this section we will first introduce the basic modules
and then go on to state the major modifications.

Figure 6. Structure of the “fire module” in the Squeeze-net.
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Figure 7. Model structure of the proposed model.

2.3.1. Basic Modules

The Squeeze-net is a light-weight convolutional neural network. The basic modules of
the squeeze-net are called the “fire” modules [29], and each consists of two convolution layers,
the “squeeze” layer and the “expand” layer. The kernels in the “squeeze” layers are all of 1 × 1 sizes
to maximally lessen the parameters inside the model and reduce the computational burden. Two types
of kernels, 1 × 1 and 3 × 3 filters, comprise the “expand” layer. The “fire” modules prove to be
computationally efficient, and also make the network less likely to be over fitted, as it “squeezes” the
amount of parameters to a much smaller scale. In our experiment, the final global average pooling
layer and the softmax layer of the squeeze-net was removed, and the rest of the parts were used to
extract the features from the raw input images.

2.3.2. The Multi-Scale Concatenation and the Histogram Predictors

As stated in Section 2.3.1, we used a modified version of Squeeze-net to extract features from
the input images. The layers at different levels in the CNN model extract features at different scales,
and each level has its own characteristics. In general, the former layers in the CNN model are more
associated with the raw pixels, while the latter ones are more meaningful in semantic senses [30,31].
Besides, the scales of the former feature maps are also different from the latter ones.

To utilize the information from different scales and semantic levels, we used a concatenating
structure. In order for the feature maps to be concatenated, average pooling and deconvolution
operations were applied to resize them to a unified shape (27 × 27). All the padding modes in the
pooling layers were “valid”, so that the residual parts which could not fill up the pooling kernel were
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discarded. The strides and kernel sizes within each pooling layer were the same. All the resized
shapes were 27 × 27, except for the input, whose output was 28 × 28. Its last row and column were
trimmed in order to be consistent with the other tensors to be concatenated. The concatenated feature
maps were then flattened into a 2-dimensional tensor of 725,355 length, and then was fed into three
fully-connected layers separately, one for each channel (blue, green, and red). The fully-connected
layer was then attached by a softmax head each to infer the corrected color distribution.

2.4. Data Augmentation

Data augmentation was performed on the original inputs to avoid over fitting as well as to enclose
more patterns of color discrepancy into the model. The augmentation operations include:

1. Random cropping: A patch of 227 × 227 is cropped at a random position from each 256 × 256
sample. It is worth noting that this implies that no registration is needed in the training process.

2. Random flipping: Each sample in the input batch is randomly horizontally and vertically flipped
by a chance of 50%.

3. Random color augmentation: The brightness, saturation, and gamma values of the input color
are randomly shifted. Small perturbations are added to each color channel. Figure 8 shows an
example of such transformation of the color distribution.

 

Figure 8. Color transforming curves in the random augmentation process.

2.5. Algorithm Flow Chart

The entire model can be trained in an end-to-end fashion with the gradient descent algorithm,
as displayed in Algorithm 1 ( Algorithm flow of the training process).

Algorithm 1. Training Process of the Automatic Color Matching WCNN, Our Proposed Algorithm.

Notations: θ, the parameters in the WCNN model; gθ , the gradients w.r.t. θ; h(•), the predicted color
distribution; r, the reference color distribution; Lw(•, •), the Wasserstein loss.
Required constants: α, the learning rate; m, the batch size.
Required initial values: θ0, the initial parameters.
1: while θ has not converged do

2: Sample
{

x(i)
}m

i=1
∼ Pin a batch from the input data

3: Sample
{

y(i)
}m

i=1
∼ Pre f a batch from the reference data

4: Apply random augmentation to
{

x(i)
}m

i=1

5: gθ←∇θ [
1
m

m
∑

i=1
Lw(h(xi), yi)]

6: θ←θ − α · SGD(θ, gθ)

7: end while

167



Remote Sens. 2017, 9, 483

3. Results

We had our algorithm evaluated with satellite images from GF1 and GF2 that cover the same
areas. The GF2 images were chosen as the reference. The parameters of the data are listed in Table 2.

Table 2. Parameters of the GF1 and GF2 data in the experiment.

Resolution
GF1 GF2

8 m 4 m

Band1 0.45–0.52 μm 0.45–0.52 μm
Band2 0.52–0.59 μm 0.52–0.59 μm
Band3 0.63–0.69 μm 0.63–0.69 μm

The direct outputs of WCNN are the inferred distributions (or histograms, see Figure 9) based
on the contents of the input images. The corrected images are obtained by histogram matching
(see Figure 10). The reference images are only used in the training process and are unnecessary in
practical applications, as the purpose of the WCNN model is to generate the reference histogram when
there are no available ones. It is worth noting that the patches were only roughly sliced according to
the longitude and the latitude information within the GeoTIFF files, so registration was not necessary,
and neither was pre-segmentation.

Figure 9. Results of matching the color palette of GF1 to GF2. Bars: histograms of input patches; solid
lines with color: predicted histograms of our model; dashed lines in black: histograms of reference
images; from top to bottom: histograms of images of the same area, but under different illumination
and atmospheric conditions.

168



Remote Sens. 2017, 9, 483

 
Figure 10. Color matching results of GF1 and GF2. From top to bottom: satellite images of the same
area, but under different illumination and atmospheric conditions; left: input images; middle: output
images with the predicted color palette; right: reference images, only needed in the training process to
calculate the loss function. The model is able to infer the corrected color palette based on the content of
the input images in the absence of a reference, when the model is fully trained.

4. Discussion

4.1. Comparison between KL Divergence and Wasserstein Distance

As has been mentioned in Section 2.2, the Wasserstein distance is a natural choice to represent
the difference between two color distributions. The Kullback–Leibler divergence (also known as KL
divergence) is another commonly used measure (but not a metric) in such circumstances. The definition
of KL divergence [27] is:

DKL(u ‖ v) =
∫

u(x) log
(

u(x)
v(x)

)
dx (5)
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and the definition of 2-Wasserstein distance is:

Wp(u, v) =
(

inf
π∈Π(u,v)

∫
‖x − y‖2dπ(x, y)

)1/2
(6)

Consider two simple distributions, u1 ∼ U(−0.5, 0.5) and u2 ∼ U(−0.5 + a, 0.5 + a), as shown in
Figure 11. The Kullback–Leibler divergence should be:

DKL(u1 ‖ u2) =

{
a i f |a| ≤ 1

+∞ i f |a| > 1
(7)

And the Wasserstein distance is:

W2(u1 ‖ u2) = a, where a ∈ [−∞,+∞] (8)

Because both the Wasserstein metric and the KL divergence are fully differentiable, there is
no difference in the back-propagation pipeline between the two losses. From the above discussion,
however, we could see that the Wasserstein distance is more numerically stable compared to the
KL divergence.

Figure 11. Two one-dimensional uniform distributions.

4.2. Connection and Comparison with Other Color Matching Methods

Histogram matching can be regarded as the simplest case of color matching. It is widely used in
seamless mosaic workflows. The method requires that a reference image is selected for each input,
which certainly puts restriction on the applications with large scale datasets. Wasserstein CNN is able
to directly predict the corrected color distribution, and the histogram matching is the final step in
the workflow of our proposed method (but not the only choice, other sample-based color matching
methods would also do).

Matching low order statistics faces similar problems. Its performance is closely related to
the similarity between the input images and the reference images. To handle low similarity cases,
the images may have to be segmented and the color needs to be transferred part to part. Besides,
for images with complex contents, color leakage on the edges could be a problem, and the image quality
will degrade. Considering these restrictions, such methods may not be appropriate for automatic
color matching in remote sensing applications. Matching the exact distribution is more precise than
just matching the low order statistics, but is also more complex and computationally expensive.
To match two non-Gaussian distributions, iterative approaches have to be exploited, as there are no
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closed-form solutions [8]. The Wasserstein CNN method is non-iterative, and is more suitable for large
scale processing.

Poisson image editing (PIE) is another well-known color matching method. Rather than directly
matching the color distributions, the PIE method tries to preserve the gradients of the input image and
matches the pixel values on the border to those in the reference image. The problem is equivalent to
solving a Poisson equation. However, in our case, this idea might not be very appropriate, because the
gradients between the input image and the reference image can be very different, especially when the
atmosphere visibility is low (see the PIE result in Figure 12).

Comparisons between the color matching methods are displayed in Figure 12. The ground truth
was not included in the training set, as it was supposed as an unknown in the color matching problem.
Because the PIE, statistics transferring, and the histogram matching methods are all sample-based,
an image must be selected from the training set to act as the reference. However, all that the WCNN
model needs is the input image, thus it can operate without selecting such a reference. As the reference
is not likely to be exactly the same as the ground truth, we can see the color discrepancy between the
output and the ground truth in the results of PIE, statistics transferring, and histogram matching in
Figure 12. Also, several features and descriptors were computed for all input images, output images,
and the ground truth images in the test set, including the Oriented FAST and Rotated BRIEF (ORB)
descriptor, the Scale-Invariant Feature Transform (SIFT) descriptor, and the Binary Robust Invariant
Scalable Keypoints (BRISK) descriptor. To be a representation of similarity, the distances between
the features of the output and the ground truth are computed, and are displayed in the boxplots
in Figure 13.

Figure 12. Comparisons between color matching methods.

From Figure 13 we can see that generally the processed images are closer to the ground truth,
in regards to the distances of the feature descriptors, except for the PIE method. One of the reasons
why PIE fails to generate high quality results is that the low atmosphere visibility may deteriorate
the gradients, resulting in a significant difference between the gradients of the input image and the
ground truth. The WCNN model results achieve the maximum similarity to the ground truth, and the
model is also the most stable one.
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Figure 13. Boxplots of L1-norm distances between the processed images and the ground truth with
respect to left: ORB; middle: SIFT, and right: BRISK feature descriptors. The distances represent the
dissimilarity between the processed results and the ground truth (the smaller the better). There are
five horizontal line segments in each patch, indicating five percentiles of the distances within the
processed images by the corresponding method; from top to bottom: the maximum (worst) distance,
the worst-25% distance, the median distance, the best-25% distance, and the minimum (best) distance.

4.3. Processing Time and Memory Comsumption

The processing time of 512 patches with a size of 227 × 227 × 3 on a single NVIDIA® GeForce®

GTX 1080 graphics processing unit is 0.408 s, or 0.8 × 10−3 s for a single patch, which means that
the method could handle images as large as 2000 × 2000 in real time. A total of 6990 MB memory is
consumed for 512 patches, or 13.7 MB for each.

5. Conclusions

This paper presents a nonparametric color correcting scheme in a probabilistic optimal transport
framework, based on the Wasserstein CNN model. The multi-scale features are first to be extracted from
the intermediate layers, and then are used to infer the corrected color distribution which minimizes
the errors with respect to the ground truth. The experimental results demonstrate that the method is
able to handle images of different sources, resolutions, and illumination and atmosphere conditions.
With high efficiency in computing speed and memory consumption, the proposed method shows its
prospects for utilization in real time processing of large-scale remote sensing datasets.

We are currently extending the global color matching algorithm to take the local inhomogeneity
of illumination into consideration, in order to enhance the precision. Local histogram matching of
each band could serve for reflectance retrieval and atmospheric parameter retrieval purposes, and the
preliminary results are encouraging.
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Abstract: This study proposes a novel method for image registration and fusion via commonly
used visible light and infrared integrated cameras mounted on medium-altitude unmanned aerial
vehicles (UAVs).The innovation of image registration lies in three aspects. First, it reveals how
complex perspective transformation can be converted to simple scale transformation and translation
transformation between two sensor images under long-distance and parallel imaging conditions.
Second, with the introduction of metadata, a scale calculation algorithm is designed according to
spatial geometry, and a coarse translation estimation algorithm is presented based on coordinate
transformation. Third, the problem of non-strictly aligned edges in precise translation estimation
is solved via edge–distance field transformation. A searching algorithm based on particle swarm
optimization is introduced to improve efficiency. Additionally, a new image fusion algorithm is
designed based on a pulse coupled neural network and nonsubsampled contourlet transform to meet
the special requirements of preserving color information, adding infrared brightness information,
improving spatial resolution, and highlighting target areas for unmanned aerial vehicle (UAV)
applications. A medium-altitude UAV is employed to collect datasets. The result is promising,
especially in applications that involve other medium-altitude or high-altitude UAVs with similar
system structures.

Keywords: image registration; image fusion; UAV; metadata; visible light and infrared
integrated camera

1. Introduction

1.1. Background

1.1.1. Medium-Altitude UAV and Multi-Sensor-Based Remote Sensing

Medium-altitude unmanned aerial vehicles (UAVs) are an important information acquisition
platform in the integrated Earth observation network [1]. UAVs offer the advantages of flexibility
and rapid response. Compared with manned aerial vehicles, medium-altitude UAVs can work in
high-risk areas to accomplish detection missions. They are also capable of flying long distances
and feature a wide detection range and an operation time that lasts longer than that of low-altitude
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UAVs. Medium-altitude UAVs play an irreplaceable role in normal observation, disaster monitoring,
and battlefield detection applications.

Visible light cameras and infrared cameras are the most commonly used imaging devices
in medium-altitude UAVs. Visible light imaging offers the advantages of intuitive impression,
rich information, and high resolution, but it is susceptible to low-visibility atmospheric conditions.
By contrast, infrared imaging is not significantly affected by atmospheric conditions, and it can identify
hidden or disguised heat source targets. Given the complementarity of these two types of cameras,
most UAVs are equipped with visible light and infrared integrated cameras.

1.1.2. Utility of Visible and Infrared Image Fusion

With the development of imaging sensors, image fusion has become a hot research topic in
image processing, pattern recognition, and computer vision. Image fusion combines different sets
of information from two or more images of a given scene acquired at different situations with one
or multiple sensors [2]. In the past decade, visible and infrared image fusion was widely used
in both military and civil applications. In the military, visible and infrared image fusion plays an
increasingly important role in UAV autonomous navigation [3], target detection [4], environment
perception [5], and military information monitoring [6]. In the civilian realm, many applications,
including national environmental protection [7], agricultural remote sensing [8], wildlife multispecies
remote sensing [9], safety surveillance [10], and saliency detection [11,12], significantly benefited from
information enhancement after visible and infrared image fusion.

1.1.3. Problems of Visible and Infrared Image Registration and Fusion for UAV Applications

Registration and fusion are two of the most crucial technologies in the applications of image
fusion mentioned.

Image registration [13] is the process of matching two or more images obtained at different times
by different sensors (imaging equipment) or under different conditions (weather, illumination, position,
and perspective); this technology has been widely used in computer vision, pattern recognition,
medical image analysis, and remote sensing image analysis. Compared with homologous image
registration, the registration of visible and infrared images involves certain difficulty and particularity.
First, the remote sensing images of the same area obtained by different sensors show different
resolutions, pixel values, spectral phases, and scene characteristics because of different imaging
mechanisms. Second, the particularity of medium-altitude UAV imaging brings some adverse effects
to image registration. Visible images may be degraded under long-distance imaging conditions because
of atmospheric effects, which could reduce the number of extracted image features. Large motion
between image frames could increase the time consumption of image search.

The purpose of image fusion is to process multi-source redundant data in space and time according
to certain algorithms, obtain more accurate and more abundant information than any single dataset,
and generate combination images with new space, spectrum, and time characteristics. Image fusion
is not only a simple combination of data, but it also emphasizes the optimization of information
to highlight useful and interesting information and eliminate or suppress irrelevant information.
Despite the availability of many image fusion algorithms, improving the resulting image resolution
and enhancing the saliency of interesting areas in images remain problematic.

1.2. Related Work

1.2.1. Image Registration

Popular registration methods usually depend on image information. These methods can be
divided into the following two categories according to various similarity measures: intensity-based
methods and feature-based methods. Intensity-based methods include gray information-based
methods and transform domain-based methods.
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Gray information-based methods measure similarity using the gray statistical information of an
image itself. These algorithms are convenient to implement, but the application scope is narrow, and the
computation is significantly large. The correlation method can match input images with similar scale
and gray information based on gray information [14,15]. A novel and robust statistic as a similarity
measure for robust image registration was proposed in [14]. The statistic is called the increment sign
correlation because it is based on the average evaluation of the incremental tendency of brightness
in adjacent pixels. Tsin and Kanade [15] extended the correlation technique to point set registration
using a method called kernel correlation. Another classical registration algorithm is based on mutual
information. Mutual information is obtained by calculating the entropy of two variables and their
joint entropy, which can be used in image registration. On the basis of traditional mutual information
registration, Zhuang et al. [16] proposed a novel hybrid algorithm that combines the particle swarm
optimization (PSO) algorithm and Powell search method to obtain improved performance in terms
of time and precision. In [17], a novel infrared and visual image registration method based on phase
grouping and mutual information of gradient orientation was presented. The visible and infrared
registration method proposed in [18] combines a bilateral filter and cross-cumulative residual entropy.

Image registration methods based on the transform domain mostly use Fourier transform.
They are limited by the invariance of the Fourier transform, which is only suitable for the images
of corresponding definitions (such as rotation, translation, etc.) in Fourier transform. Pohitand
Sharma [19] developed an algorithm based on Fourier slice theorem to measure the simultaneous
rotation and translation of an object in a 2D plane. Niu H. et al. [20] proposed a novel method based on
the combination of fractional Fourier transform (FRFT) and a conventional phase correlation technique.
Compared with conventional fast Fourier transform-based methods, the proposed method employs
called FRFT contains both spatial and frequency information. Li, Zhang, and Hu [21] proposed a
registration scheme for multispectral systems using phase correlation and scale invariant feature
matching. This scheme uses phase correlation method to calculate the parameters of a coarse-offset
relationship between different band images and then detects the scale invariant feature transform
(SIFT) points for image matching. In addition to the Fourier transform, a uniform space was used in a
new registration method for non-rigid images proposed in [22]. The key point is normalized mapping,
which transforms any image into an intermediate space. Under a uniform space, the anatomical feature
points of different images are matched via rotation and scaling.

Feature-based methods are the most common category in image registration. These methods
depend on image points [23–26], line segments [27,28], regions [29], and other features [30], and they
show a wide range of applications. SIFT [23,24] is one of the most widely used features with satisfactory
performance. Based on SIFT, several studies [25] conducted improved, extended, and in-depth research
on visible and infrared image registration. An image registration method based on speeded up robust
features was proposed in view of the slow speed of SIFT [26]. In [27], a new general registration method
for images of varying nature was presented. Edge images are processed to extract straight linear
segments, which are then grouped to form triangles. To solve the feature matching problem, wherein
the interest points extracted from both images are not always identical, Han et al. [28] emphasized the
geometric structure alignment of features (lines) instead of focusing on descriptor-based individual
feature matching. In [29], Liu et al. proposed an edge-enhanced, maximally stable extremal region
method in multi-spectral image registration. An image registration method based on visually salient
(VS) features was introduced [30]. A VS feature detector based on a modified visual attention model
was presented to extract VS points. This detector combines the information of infrared images and its
negative image to overcome the contrast reverse problem between visible and infrared images, thereby
facilitating the search for corresponding points on visible/infrared images.

Other new methods emerged in addition to these three methods, and they include diffusion
map-based method [31], alignment metric-based method [32], hybrid image feature-based method [33],
nonsubsampled contourlet transform (NSCT) and gradient mirroring-based method [34], and the
random projection and sparse representation-based method [35]. Some of these studies achieved good
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results in visible and infrared image registration and they provide new ideas to solve the problem of
multimodal image registration.

These studies achieved great successes in the area of image registration. However, most of
them are based only on image information and attempt to establish correspondence between visible
and infrared images, thereby establishing matching transformation between the two images. In fact,
they explore two vital issues of homonymy feature detection and feature matching. Given the different
spectra and imaging mechanisms, homonymy feature detection is a difficult problem for multimodal
images. From the aerial perspective, the transformation between two sets of image features is required
to meet perspective invariance, which increases the difficulty of image feature matching.

For UAV applications, image registration methods still depend on image information despite the
rapid development of visible and infrared sensors. Rich metadata from imaging sensors and other
equipment of UAV systems are insufficiently exploited.

1.2.2. Image Fusion

Image fusion can be conducted at three different levels, namely, the pixel layer, feature layer,
and decision level [36]. This study mainly explores pixel layer-based fusion methods.

Image fusion methods based on pixel levels are traditionally divided into spatial domain
methods and transform domain methods. Spatial domain-based methods operate directly on
the gray values of images; they mainly include the gray weighted method, principal component
analysis (PCA) method [37], color mapping method [38], contrast or gray adjustment method,
Markov random field method [39], Bayesian optimization method [40], double modal neural network
method [41], and pulse coupled neural network (PCNN) method [42]. In the transform domain
fusion, the images should be transformed into the transform domain space before the fusion of the
coefficients is conducted. This type of methods mainly include the Laplace pyramid transform-based
method [43], wavelet transform-based method [44], ridgelet transform-based method [45], contourlet
transform-based method [46], NSCT-based method [47], compressed sensing-based method [48],
and sparse representation-based method [49].

In recent years, several scholars introduced effective methods for multi-modality image fusion.
Zhang et al. [50] proposed a systematic review of sparse representation-based multi-sensor image
fusion literature, which highlighted the pros and cons of each category of approaches. Han et al. [51]
presented a saliency-aware fusion algorithm for integrating infrared and visible light images (or videos)
to enhance the visualization of the latter. The algorithm involves saliency detection followed by biased
fusion. The goal of saliency detection is to generate a saliency map for the infrared image to highlight
the co-occurrence of high brightness values and motion. Markov random fields are used to combine
these two sources of information. Liu et al. [52] introduced a novel method to fuse infrared and visible
light images based on region segmentation. Region segmentation is used to determine important
regions and background information in input images.

For UAV applications, visible light sensors can capture relatively abundant spectral information
with clear texture and high spatial resolution, but in poor light conditions, image quality declines
significantly. By contrast, infrared sensors can penetrate smoke and fog and perform effective detection
under poor light conditions; however, the obtained image shows low contrast, fuzzy scene, and poor
details. Based on the requirements of UAV applications, the fusion of visible and infrared images need
to combine the two types of image feature data. This method can obtain a high spatial resolution of
scene information and interesting target areas can be highlighted.

1.3. Present Work

This study aims to develop a method of visible and infrared image registration and fusion for
medium-altitude UAV applications. The research scope is applicable to widely used visible light and
infrared integrated cameras, which include two aspects of registration and fusion.
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In image registration, our method attempts to solve the problem from the UAV system level
instead of using image information alone. Three main problems are studied. The first problem is
the transformation between two images under long distance aerial imaging with visible light and
infrared integrated cameras. In addition to image information, the second problem is the use of the
rich metadata of UAV systems to estimate the transformation between visible and infrared images.
The third problem is the detection and matching of homonymy features in multimodal images to
obtain precise image registration with the aid of metadata.

Based on image registration, image fusion for UAV applications should not only obtain high
spatial resolution and extensive scene information and highlight interesting target areas. Thus, a new
pixel layer-based image fusion method using PCNN and NSCT is examined in this study.

2. Methodology

2.1. UAV System with a Visible Light and Infrared Integrated Camera

In this study, we employ a medium-altitude UAV, which is used in earthquake emergency and
rescue to collect images of disaster areas effectively and accurately with the aid of imaging devices
(Figure 1). The specific parameters are described in Table 1.

 

Figure 1. UAV system for earthquake emergency and rescue including: (1) unmanned aerial vehicle
(UAV); (2) ground control system; (3) information processing center; and (4) launcher.

Table 1. Main parameters of employed medium-altitude UAV.

Item Description

Wing Span 4.0 m
Length 1.85 m
Height 0.7 m
Service Ceiling 5000 m
Maximum Payload 5 kg
Maximum Takeoff Weight 35 kg
Flight Speed 80–140 km h−1

Control Radius 60 km
Endurance 5 h
ImagingDevice VisibleLight and Infrared
Control Mode Remote, Program or Autonomous
Takeoff Mode Catapulted Launching
Recovery Parachute
Engine Piston Engine
Navigation Mode BD2/GPS and INS
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A visible light and infrared integrated camera platform is mounted on the front belly of the UAV,
as shown in Figure 2. The two optical axes of the visible and infrared imaging sensors are parallel.
The visible image resolution is 1392 × 1040, and the infrared image resolution is 640 × 512. The UAV
features three degrees of freedom (DOF), and the imaging device features two DOF relative to the
UAV body. Equipped with GPS (Global Position System), INS (Inertial Navigation System), and an
altimeter, the UAV can measure position and orientation.

 
Figure 2. UAV airborne visible light and infrared integrated camera platform with two degrees
of freedom.

These types of visible light and infrared integrated cameras have been widely used for medium-
altitude UAVs. Therefore, our research shows extensive application potential and practical value.

2.2. Scheme of Visibleand Infrared Image Registration and Fusion

2.2.1. Long-Distance Integrated Parallel Vision

According to the visible light and infrared integrated camera of a medium-altitude UAV, this study
attempts to reveal the principle of integrated parallel vision. Most medium-altitude UAV systems
are mounted with visible light and infrared integrated cameras, which integrate two types of sensors,
as shown in Figure 2. In the integrated structure, the optical axes of the visible sensor and infrared
sensor are parallel to each other, and the imaging model can be approximated as a pinhole model [53]
under the condition of long-distance imaging over thousands of meters.

Figure 3 shows that the image planes of the two sensors are parallel to each other and the
two optical axes are also parallel. With camera rotation, the two sensors always point in the same
direction and they have a common field of view (FOV), which is reflected as an overlapping area in
the two images. In aerial images, this transformation between two image planes should be described
using a perspective transformation. However, under long-distance imaging conditions, only scale
transformation and translation transformation exist between the visible and infrared images obtained
from the integrated camera at the same moment.
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Figure 3. Visible light and infrared integrated camera, in which the two imaging axes are parallel to
each other.

The assumption is that the visible and infrared image planes are parallel to the ground, similar to
the imaging relationship principle. Line agbgcgdg represents the FOV of the two sensors, and line bgcg

is the common FOV. fv and fi are the focal lengths of the two sensors. Ov and Oi are the two foci. Da is
the distance between two imaging axes. Dvg and Dig denote the distances from the image plane to
the ground. Based on the pinhole imaging principle, Equations (1) and (2) are obtained according to
triangle similarity.

bgcg

cvbv
=

Dvg − fv

fv
(1)

bgcg

cibi
=

Dig − fi

fi
(2)

Dvg and Dig are approximately equal under long-distance imaging conditions. Dg could be
introduced to represent the distance from the image plane to the ground in Equation (3).

cibi

cvbv
=

Dg − fv

fv
× fi

Dg − fi
(3)

Then, Equation (4) can be inferred as{
cibi = kcvbv

k =
Dg− fv
Dg− fi

× fi
fv

(4)

where k is a constant. This equation proves that the overlapping regions of cibi and cvbv have the same
direction and scale size. Hence, only translation transformation and scale transformation exist between
the two image planes.

According to the above analysis, a complex perspective transformation of image registration could
be converted to scale and translation transformation under long-distance integrated parallel vision.
This principle is applicable to all of the visible light and infrared integrated cameras of medium-altitude
UAVs. This equation breaks the conventional problem of perspective transformation through a direct
solution via image feature detection and matching, which is difficult in most cases and sometimes
impossible due to the different imaging mechanisms of multimodal images.
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2.2.2. Visibleand Infrared Image Registration

According to the long-distance integrated parallel vision in Section 2.2.1, only scale
transformationand translation transformation exist between the visible image and infrared image.
The transformation from the infrared image to the visible image can be expressed as Equation (5){

Iv = MIi

M = MTMS
(5)

where Iv denotes a visible image and Ii denotes an infrared image. M is the transformation matrix
from the infrared image to the visible image; it is composed of two parts, namely, the scale matrix MS

and translation matrix MT, which are defined in Equations (6) and (7).

MS =

⎡⎢⎣ sx 0 0
0 sy 0
0 0 1

⎤⎥⎦ (6)

MT =

⎡⎢⎣ 1 0 tx

0 1 ty

0 0 1

⎤⎥⎦ (7)

where sx, sy, tx, and ty are transformation parameters. The translation matrix MT is solved in two steps
of Equation (8) to improve efficiency and accuracy.

MT = MTpMTc (8)

where MTc is the coarse registration matrix from the visible image to the infrared image based on
metadata and MTp is the precise registration matrix based on the image matching method.

Accordingly, the problem of visible and infrared image registration can be decomposed into scale
calculation, coarse translation estimation, and precise translation estimation. The overall solution
process is shown in Figure 4.

 

Figure 4. Process of visible and infrared image registration, including scale calculation, coarse
translation estimation, and precise translation estimation.

Scale calculation is based on spatial geometry using pixel size and the focal length of two sensors.
Translation calculation is divided into metadata-based coarse translation estimation and image-based
precise translation estimation. In coarse translation estimation, the transformation from the image
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plane to the ground plane is established according to the theory of photogrammetry and coordinate
transformation. We then attempt to detect the same name points of two images in the ground coordinate
system through geographical information and obtain the translation from the infrared image center to
the visible image center. Precise translation estimation is based on image features. Edge features are
selected for good structure expression in multimodal images to ensure the accuracy and computation
efficiency in registration.

2.2.3. Visible and Infrared Image Fusion

To meet the four requirements of UAV image fusion, namely, preserving color information, adding
infrared brightness information, improving spatial resolution, and highlighting target areas, this study
presents a new image fusion method based on NSCT and PCNN. The main features of the method
include the following:

1. The IHS transform is used to extract H and S to preserve the color information, and the NSCT
multi-scale decomposition is designed to resolve the declining resolution of fusion images caused
by the direct substitution of the I channel.

2. The lowpass sub-band of the infrared image obtained via NSCT decomposition is processed by
gray stretch to enhance the contrast between the target and the background and highlight the
interesting areas.

3. In view of the PCNN neuron with synchronous pulse and global coupling characteristics, which
can realize automatic information transmission and fusion, an algorithm of visible and infrared
bandpass sub-band fusion-based PCNN model is proposed.

The process of visible and infrared image fusion based on PCNN and NSCT is shown in Figure 5.

 

Figure 5. Process of visible and infrared image fusion based on PCNN and NSCT.

The fusion algorithm is implemented in seven steps: (1) IHS transform of visible image; (2) NSCT
transform of infrared image and I channel of visible image; (3) enhancement of lowpass subband of
infrared image; (4) lowpass subband fusion; (5) bandpass subband fusion; (6) NSCT inverse transform
using fusion lowpass subband and fusion bandpass subband; and (7) IHS inverse transform using
H channel, S channel, and new I channel.

2.3. Metadata-Based Scale Calculation

2.3.1. Metadata

Metadata represents a type of telemetry data produced simultaneously with images in a UAV
system. The most useful parameters are listed in Table 2. The parameter of terrain height is
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acquired from the geographic information system installed in a ground or airborne computer. Camera
installation translations are measured with special equipment before flight. Other parameters come
from airborne position and orientation sensors, such as GPS, INS, and altimeter.

Table 2. Useful metadata.

Name Notation Source Description Accuracy

Longitude L GPS Unit: ◦ 2.5 m
Latitude B GPS Unit: ◦ 2.5 m
Altitude Ha Altimeter Unit: m 0.1 m

Terrain Height Hg GIS Unit: m 1.0 m
Vehicle Heading hV INS Unit: ◦ 1◦

Vehicle Roll rV INS Unit: ◦ 0.2◦
Vehicle Pitch pV INS Unit: ◦ 0.2◦

Camera Installation Translation tx
C, ty

C, tz
C Measuring Equipment Unit: m 0.01 m

Camera Pan pC Camera Unit: ◦ 0.2◦
Camera Tilt tC Camera Unit: ◦ 0.2◦

Resolution u × v Camera u: Image Row
v: Image Column —

Focal Length f Camera Unit: m —
Pixel Size s Camera Unit: m —

2.3.2. Spatial Geometry-Based Scale Calculation

For image matching, one image should be scaled to the other. According to spatial geometry,
the scale transformation MS is only related to the pixel size and focal length, which can be expressed
as Equation (9)

MS =

⎡⎢⎣
si
sv
× fv

fi
0 0

0 si
sv
× fv

fi
0

0 0 1

⎤⎥⎦ (9)

where si and sv denote the pixel sizes of the infrared sensor and visible light sensor, respectively;
and fi and fv represent the two focal lengths. Using MS, the infrared image Ii(xi, yi) could be
transformed to the scale-transformed image IiS(xiS, yiS), which is on the same plane of the visible
image Iv(xv, yv), by employing Equation (10)

IiS = MS Ii (10)

2.4. Metadata-Based Coarse Translation Estimation

Based on the theory of coordinate transformation [54,55], this section proposes a method for
estimating the transformation between the visible image and the infrared image using image metadata.
This estimation is coarse, but it could eliminate the global motion between the frames, reduce the
matching range of image registration, and greatly improve the efficiency.

2.4.1. Five Coordinate Systems

Coordinate transformation is the key aspect in the whole process of coarse translation estimation.
The following five coordinate systems are used as basis, as shown in Figure 6.
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Figure 6. Five coordinate systems of coarse translation estimation.

• Image Coordinate System (ICS) OI − XIYIZI

ICS is defined as a rectangular coordinate system, which is related to pixels. The top left corner of
the image is considered the coordinate system origin. The values of xI, yI are related to the physical
size of the row u and column v of the image. The relationship is established by pixel size s. According
to different calculation modes, the value of zI could be set as the focal length of camera f or −f.

• Camera Coordinate System (CCS) OC − XCYCZC

CCS is the image coordinate system represented by physical units with respect to the center of
the image as the origin of the coordinate system, in which axis XC and axis YC are parallel to axis XI

and the axis YI. Axis ZC is upward along the optical axis direction. In this system, the unit is generally
in meters.

• Plane Coordinate System (PCS) OP − XPYPZP

The origin of the PCS is the center of the GPS device. In PCS, the direction of the axis XP is
positive when it points to the head of the plane, axis YP is perpendicular to axis Xp on the body plane,
and ZP is positive when it points upward.

• North–East–Up Coordinate System (NCS) ON − XNYNZN

The origin of the NCS is coincident with the origin of the PCS. The direction of axis XN is positive
when it points north, the direction of axis YN is positive when it points to the east, and axis ZN

points up.

• Ground Coordinate System (GCS) OG − XGYGZG

The Gauss–Kruger surface projection is used in the GCS. The coordinate system (xG, yG) is the
plane rectangular coordinate system in which national mapping involves the use of Gauss–Kruger
3
◦

or 6
◦

to project and zG is the absolute altitude. The system consists of a rectangular space and a
left-handed coordinate system.
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2.4.2. Metadata-Based Coordinate Transformation

Based on the five coordinate systems, the transformation from image II in the ICS to
image IG in the GCS should be implemented according to the coordinate system transformation.
The process is as follows: ICS → CCS → PCS → NCS → GCS. The transformations between
the above coordinate systems present translations and rotations, which can be expressed as
Equations (11) and (12), respectively.

T =

⎡⎢⎣ 1 0 Tx

0 1 Ty

0 0 1

⎤⎥⎦ (11)

R =

⎡⎢⎣ cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

⎤⎥⎦
⎡⎢⎣ cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

⎤⎥⎦
⎡⎢⎣ 1 0 0

0 cos(α) − sin(α)
0 sin(α) cos(α)

⎤⎥⎦ (12)

where Tx and Ty are translation parameters; and α, β, and γ are the three rotation parameters of the X,
Y, and Z axes.

The coordinate transformations in our UAV system are listed in Table 3. They can be calculated
with Equations (11) and (12) using relevant metadata.

Table 3. Coordinate transformations and relevant metadata.

Transformation Notation Description Relevant Metadata

ICS to CCS
RC

I Direction rotation of coordinate axis None
TC

I Translation of coordinate system center u, v, s

CCS to PCS
TP

C Translation of installation error tx
C, ty

C, tz
C

RP
C Rotation of two angles pC,tC

PCS to NCS RN
P Rotation of three angles hV, rV, pV

NCS to GCS TG
N Translation of coordinate system center L, B, Ha, Hg

Assuming that any ground point in the ICS, NCS, and GCS could be denoted as (xI, yI, zI),
(xN, yN, zN), and (xG, yG, zG), respectively, and the imaging center O in the ICS, NCS, and GCS are
denoted as (xO

I , yO
I , zO

I ), (xO
N, yO

N, zO
N), and (xO

G, yO
G, zO

G), respectively, the values can be computed via
coordinate transformation. Given that the NCS is parallel to the GCS, we can obtain the following
formula using the collinear equation according to the central projection model shown in Equation (13).⎡⎢⎣ xN − xO

N
yN − yO

N
zN − zO

N

⎤⎥⎦ =
1
λ

⎡⎢⎣ xG − xO
G

yG − yO
G

zG − zO
G

⎤⎥⎦ (13)

Then, we can obtain any point transformation from the ICS to the GCS via Equations (14) and (15).⎡⎢⎣ xG

yG

zG

⎤⎥⎦ = λMN
I

⎛⎜⎝
⎡⎢⎣ xI

yI

zI

⎤⎥⎦−

⎡⎢⎣ xO
I

yO
I

zO
I

⎤⎥⎦
⎞⎟⎠ + MG

I

⎡⎢⎣ xO
I

yO
I

zO
I

⎤⎥⎦ (14)

fT(XI) =
{

XG

∣∣∣XG = λMN
I

(
XI − XO

I

)
+ MG

I XO
I

}
(15)

where MN
I = RN

P RP
CTP

CTC
I RC

I , MG
I = TG

NRN
P RP

CTP
CTC

I RC
I , and ZI = − f . λ is a coefficient and could be

eliminated during computation. fT represents the transformation from image II in the ICS to image IG

in the GCS.
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2.4.3. Coordinate Transformation-Based Coarse Translation Estimation

Given the same mode of center projection, the coordinate transformation is applicable to both
the visible image and infrared image. According to the inverse process of Equation (16), we can
conveniently obtain the corresponding pixel positions in the visible image and infrared image of
any point in the GCS. The overlapping image of the two sensors in the GCS could be denoted as
Iiv
G (xiv

G , yiv
G ), and the corresponding visible image and infrared image in the ICS are denoted as Iv

I (xv
I , yv

I )

and Ii
I(xi

I, yi
I), respectively. The following equation could then be established as Equation (16):{

Iv
I (xv

I , yv
I ) = fTv

−1(Iiv
G (xiv

G , yiv
G ))

Ii
I(xi

I, yi
I) = fTi

−1(Iiv
G (xiv

G , yiv
G ))

(16)

where fTv
−1 and fTi

−1 represent the transform from the GCS to the ICS of the two sensors; they show
different expressions because of the different parameters of the two sensors. Accordingly, the coarse
translation estimation MTc from the scale-transformed infrared image to the visible image can be
calculated using Equation (17).

MTc =

⎡⎢⎣ 1 0 xv
I − xi

I
0 1 yv

I − yi
I

0 0 1

⎤⎥⎦ (17)

Based on the scale calculation in Section 2.3.2, MTc can be considered as the translation from the center
of the infrared scale-transformed image IiS

I (xi
I, yi

I) to the center of the original visible image Iv
I (x

v
I , yv

I ).

2.5. Image-Based Precise Translation Estimation

2.5.1. Edge Detection of Visible and Infrared Images

According to current studies, line and edge are robust features for the good representation of scene
structure information, and they are widely applied to scene registration and modeling. As described
in a study on video analysis [56], line features play an important role in fast 3D camera modeling.
In the present study, edge features are used in visible and infrared image registration. The Canny
operator [57] is one of the most popular edge detection algorithms. As the scene and illumination
of visible and infrared images change frequently, the high and low thresholds of the Canny operator
often change thereby leading to poor self-adaptation. In many cases, the conventional Canny operator
cannot obtain a satisfying detection result. In the present work, a self-adaptive threshold Canny
operator is used to detect enough real edges and avoid disconnected or false edges in detection [58].

2.5.2. Edge Distance Field Transformation of Visible Image

As a result of different imaging mechanisms, the edge features of visible and infrared images
show different characteristics. In the visible image, the edges appear relatively smooth, complete,
and less noisy. In the infrared image, the edges appear to be incomplete, rough, and noisy, as shown in
Figure 7. This characteristic indicates that the edges of the visible and infrared images are roughly the
same. However, some details are slightly biased, and they could be defined as the non-strictly aligned
characteristics of edges.

Figure 7. Non-strictly aligned characteristics of edges: (a) original visible image; (b) original infrared
image; (c) visible edge image; and (d) infrared edge image.
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To adapt to the non-strictly aligned characteristics of edges, this study proposes a new registration
method based on a Gaussian distance field. This method can extend the edge range with a certain
weight and convert the conventional edge-to-edge registration to the edge-to-field registration, which is
effective for non-strict matching.

Using the edge detection algorithm of Section 2.4.1, we can extract the edge feature image Ive

from the original visible image Iv, with the edge pixel value being 255 and the non-edge pixel value
being 0. In the edge feature image, the distance transformation of a point is defined as the distance
from the nearest edge point to the point itself, as shown in Equation (18).

D(p) = min
e

(d(p, pe)) (18)

where d(p, pe) represents the distance between two points of p in the distance field map of the visible
image and pe in the visible edge image Ive. Given that the points away from the edge exert little effect
on edge registration, distance transformation should only be performed in an edge-centered band
region. Specifically, the band threshold is set to R, and the distance transformation values of all pixels
larger than R are set to R + 1 via Equation (19).

D(p) =

{
R + 1 D(p) > R
D(p) D(p) ≤ R

(19)

In image matching, D(p) can be used to measure the similarity of the point in the infrared image
and the point in the visible image. A small value equates to great matching probability, which could
be expressed with a Gaussian model shown in Equation (20):

f(D(p)) =
1√
2πσ

e−
D2(p)

2σ2 (20)

where f(D(p)) represents the matching probability. Standard deviation is set to σ = R/3. In this paper,
R = 10, which could be different in specific situations. Based on Equation (20), the distance field map
Ivef of the visible image is established, as shown in Figure 8.

 
Figure 8. Edge distance field transformation based on Gaussian: (a) visible edge image; and (b) distance
field map of visible edge.
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2.5.3. Non-Strict Registration Based on the Edge Distance Field

Similarity for Registration

Assuming that the template image to be registered Iiet is extracted from the infrared edge image Iie,
then the similarity between Iiet and the corresponding template image Iveft from the visible distance
field map Ivef can be expressed using Equation (21):

S = ∑
∫ R

D(p)
f(D(p))d(D(p)) (21)

where p(x, y) is any point in Iiet, and f(D(p)) is the function of the distance field transformation [59].

Infrared Template Image Extraction

Given that the edge distribution of the infrared image is unknown, the infrared template
image Iiet should be automatically extracted for matching. The position of Iiet can be calculated
using Equation (22): {

xiet = ∑ x/N
yiet = ∑ y/N

(22)

where N is the number of edge pixels in the infrared edge map Iie and (x, y) is any edge point.
As shown in Figure 9, the width and height of Iiet are defined as w and h, respectively. On the

x-axis, the edge pixels of the interval [xiet − 0.5w, xiet + 0.5w] occupy a certain proportion of the total
pixels of Iie. The edge pixels of the interval [yiet − 0.5h, yiet + 0.5h] account for the same proportion on
the y-axis.

Figure 9. Infrared template image extraction and template image searching in the distance field map of
visible edge: (a) infrared edge image; and (b) distance field map of visible edge.

Searching Algorithm Based on Particle Swarm Optimization

As shown in Figure 9, a searching algorithm is used to find the best matching position in the
distance field map of visible edge Ivef according to the similarity of the template image Iiet and
the template image Iveft extracted from Ivef. The time-consuming performance of the algorithm
relative to conventional window searching should be improved, and the occasional accuracy deviation
of the metadata attributed to the large motion of the UAV body or camera should be addressed.
A novel searching algorithm with a time-varying inertia weight is proposed based on particle swarm
optimization (PSO) [60,61].

PSO is a relatively new population-based evolutionary computation technique. This approach
uses M particles to construct a group of particles and search for the optimal solution via iteration in the
D dimensional space. Each particle comprises several parameters, including current position, velocity,
and the best position found by the particles. For a D dimensional search space, these parameters are
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represented with D dimensional vectors. The position and velocity of the k particle are presented in
Equation (23): {

xk = (xk1, xk2, ..., xkD)

vk = (vk1, vk2, ..., vkD)
(23)

At the n iteration step, the position and velocity of particle i are updated according to Equation (24).{
xi(n) = xi(n − 1) + vi(n)

vk(n) = ωvk(n − 1) + c1r1(pi − xi(n − 1)) + c2r2(pg − xi(n − 1))
(24)

where ω is the inertia weight; r1 and r2 are two distinct random values between 0 and 1; c1 and c2 are
the acceleration constants known as cognitive and social scaling parameters, respectively; pi is the
best previous position of the particle itself; and pg denotes the best previous position of all particles of
the swarm. A large value of ω facilitates global exploration with increased diversity, whereas a small
value promotes local exploitation [62].

In terms of image registration, xk(xk1, xk2) is the center of image Iveft, and pg is the searching

result serving as the best matching position of image Iiet and image Iveft. As a result of the complex
motion of medium-altitude UAVs and cameras, the translational motion between the visible image and
the infrared image presents a certain vibration, which requires the search algorithm to automatically
adjust the inertia weight ω. A time-varying ω is then proposed in Equation (25):

ω(t) = ω0 + rω1 + (
∣∣xg1(t − 1)− xg1(t − 2)

∣∣+∣∣xg2(t − 1)− xg2(t − 2)
∣∣)/(4uv + 4vv) (25)

where t represents the time of image capture. The first item ω0 is the constant inertia weight, which
denotes the confirmed global and local searching ability. The second item rω1 is the stochastic
inertia weight. This item could allow the algorithm to jump out of local optimization to maintain
diversity and global exploration; r is a distinct random value between 0 and 1. The third item is
the motion adaptive inertia weight to balance global searching and local searching according to the
translation motion between the visible image and the infrared image. pt−1

g (xg1(t − 1), xg2(t − 1)) and
pt−2

g (xg1(t− 2), xg2(t− 2)) are the two best previous positions of all particles of the swarm at moments
t − 1 and t − 2, respectively. uv and vv are the row and column of the visible image, respectively.
In this study, ω0 = 0.5, and ω1 = 0.2.

As the result of the searching algorithm, pt
g(xg1(t), xg2(t)) is the best position at which the

similarity of image Iiet and image Iveft is the highest. The precise translation from scale and the coarse
translation-transformed infrared image to the visible image can then be expressed as Equation (26).

MTp =

⎡⎢⎣ 1 0 xg1(t)− xiet

0 1 xg2(t)− yiet

0 0 1

⎤⎥⎦ (26)

2.6. PCNN- and NSCT-Based Visibleand Infrared Image Fusion

2.6.1. Simplified PCNN Model

PCNN is a type of feedback network used to explain the characteristics of the neurons in the
visual cortex of a cat. As a result of synchronous pulse and global coupling, PCNN neurons can realize
automatic information transmission and achieve good results in the field of image fusion. PCNN is
connected by a number of neurons, and each neuron corresponds to a pixel of the image. Owing to
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the complexity of the original PCNN model, a simplified PCNN model [63] is adopted in this study.
The mathematical equation is described in Equation (27).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fij(n) = Iij(n)
Lij(n) = exp(−aL)Lij(n − 1) + ∑

p,q
Wij,pqYpq

Uij(n) = Fij(n)× (1 + βLij(n))

Yij =

{
1, Uij(n) > θij(n)
0, Uij(n) ≤ θij(n)

θij(n) = exp(−aθ)θij(n) + VθYij(n)

(27)

where n denotes the iteration times. Fij(n), Lij(n), and Yij(n) represent the feedback input, link input,
and output of the (i, j) neuron in the nth iteration, respectively. Iij, Uij, and θij are the external input
signal, internal activity term, and output of variable threshold function, respectively. β, W, Vθ , aL,
and aθ are the link strength, link weight coefficient matrix, threshold magnification factor, link input,
and time decay constant, respectively.

2.6.2. NSCT-Based Image Decomposition

Nonsubsampled contourlet transformation (NSCT) is developed based on contourlet
transformation. NSCT consists of two parts, namely, nonsubsampled pyramid filter banks (NSPFBs)
and nonsubsampled directional filter banks (NSDFBs). NSPFBs enable NSCT to acquire multiscale
characteristics. Through decomposition, the image can produce a lowpass subband and a bandpass
subband, and then each decomposition level is iterated on the lowpass subband. A nonsubsampled
directional filter bank (NSDFB) is a set of two channel nonsampled filter banks based on the sector
directional filter bank designed by Bamberger and Smit [64]. NSDFB can be used to carry out the
level direction decomposition of the bandpass subband gained by the NSPFB and obtain the direction
subband images with the same size as the original image. Three levels of NSCT transform are shown
in Figure 10. The number of subbands in each direction increases by up to two times.

 

Figure 10. NSPFB and NSDFB of NSCT transform. The left-hand portion is the image decomposition
based on NSPFB. The right-hand portion shows the decomposition of each subband in different
directions based on NSDFB.
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2.6.3. Fusion Algorithm

Based on PCNN and NSCT, the scheme of the visible and infrared image fusion algorithm is
introduced in Section 2.2.3. The specific steps of the method are as follows.

1. IHS transform of visible image.

The IHS transform is used to preserve the color information of visible images, which could convert
an image from the RGB color space to the IHS color space with the aid of Equations (28)–(30):⎛⎜⎝ I

v1

v2

⎞⎟⎠ =

⎛⎜⎝ 1/
√

3 1/
√

3 1/
√

3
1/
√

6 1/
√

6 −2/
√

6
1/
√

2 1/
√

2 0

⎞⎟⎠
⎛⎜⎝ R

G
B

⎞⎟⎠ (28)

H = tan−1(v2/v1) (29)

S =
√

v1
2 + v22 (30)

where I denotes intensity, H denotes hue, and S denotes saturation. H and S are preserved for finial
IHS inverse transform, and I is used to fuse with the infrared image.

2. NSCT transform of infrared image and I channel of visible image.

As the infrared sensor and visible light sensor can zoom individually, the spatial resolution of the
infrared image may be lower than that of the visible light image. Thus, the method of directly replacing
the I channel of the visible image with the infrared image may cause the spatial resolution of the fusion
image to decline. The NSCT multi-scale decomposition is used to solve this problem. The gray image
(8 bit) of the infrared image and the I channel (8 bit) of the visible image are decomposed by three
levels through the NSCT transform. One image can be decomposed into one lowpass sub-band and
some bandpass subbands. The lowpass represents the outline of the original image, and the bandpass
sub-bands represent the edges and textures of the image.

3. Enhancement of lowpass subband of infrared image

Based on NSCT transform, the lowpass subband of the infrared image is processed via histogram
equalization to enhance the contrast between the target and the background and to highlight the
interesting areas.

4. Lowpass subband fusion

During the lowpass sub-band fusion of the visible light and infrared image, the coefficients are
selected according to the principle of the maximum absolute value.

5. Bandpass sub-band fusion

The bandpass sub-band fusion of the visible light and infrared image is based on PCNN.
The method chooses the regional energy that can reflect the local phase characteristics of the image
as the link strength β of the neuron. Assuming that (i, j) is the center of the region size of M × N,
the regional energy Ek

ij is expressed as Equation (31):

Ek
ij = ∑

m∈M,n∈N

[
Dk

ij(i + m, j + n)
]2

(31)

where Dk
ij represents the bandpass subband coefficient of the kth level at (i, j) of the image.

6. NSCT inverse transform using fusion lowpass subband and fusion bandpass sub-band

New fusion lowpass sub-band and bandpass subbands are generated based on Equations (4) and (5).
Then, a new I channel can be obtained according to the NSCT inverse transform.
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7. IHS inverse transform using H channel, S channel, and new I channel

Using the new I channel and the preserved H channel and S channel, the fusion image of the RGB
color space can be calculated with Equations (32)–(34):⎛⎜⎝ R

G
B

⎞⎟⎠ =

⎛⎜⎝ 1/
√

3 1/
√

6 1/
√

2
1/
√

3 1/
√

6 −/
√

2
1/
√

3 −2/
√

6 0

⎞⎟⎠
⎛⎜⎝ I

v1

v2

⎞⎟⎠ (32)

v1 = S· cos(H) (33)

v2 = S· sin(H) (34)

3. Result and Discussion

3.1. Study Area and Dataset

The study area is located inland in Eastern China, as shown in Figure 11. The main types of
landforms include cities, villages, and open fields. After performing a number of flights, a database
that includes one hundred hours of visible light and infrared videos and metadata was established.

 

Figure 11. Study area and flight course covering about 300 km2 in Eastern China.

3.2. Spatial Geometry-Based Scale Calculation

According to Section 2.3.2, the scale transformation from the infrared image to the visible image
is determined by pixel size and focal length of the two sensors. In the visible light and infrared
integrated camera, the focal length of the visible light sensor can be varied continuously in a certain
range, whereas the focal length of the infrared sensor has only two fixed values of 540 mm and 135 mm.
In this section, three experiments with different focal lengthsare designed to test the performance of
the spatial geometry-based scale calculation. The source data are shown in Table 4, and the results are
shown in Table 5 and Figures 12–14.

Table 4. Source data for scale calculation.

Item Resolution Focal Length (mm) Pixel Size (μm)

Group ID 1 2 3 1 2 3 1 2 3

Visible image 1392 × 1040 172 65.4 50.4 4.65
Infrared image 720 × 576 540 135 135 25
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Table 5. Infrared image after scale transformation.

Group ID 1 2 3

Result image resolution 1042 × 834 1666 × 1333 1284 × 1027

 

Figure 12. First experiment of scale calculation: (a) original image; (b) original infrared image;
(c) scale-transformed result of image (b); and (d) fusion image of images (a) and (c).

 
Figure 13. Second experiment of scale calculation. (a) Original image; (b) original infrared image;
(c) scale-transformed result of image (b); and (d) fusion image of images (a) and (c).

 

Figure 14. Third experiment of scale calculation: (a) original image; (b) original infrared image;
(c) scale-transformed result of image (b); and (d) fusion image of images (a) and (c).

In Figures 12–14, Figures 12c, 13c and 14c are the scale-transformed result of Figures 12b, 13b and 14b,
respectively, which could be obtained with Equation (10) in Section 2.3.2. Based on the artificial
registration of Figures 12a, 13a, 14a and Figures 12c, 13c, 14c, the fusion images of Figures 12d, 13d, 14d
are obtained with Equation (35), with Cv and Ci, which represent R, G, and B channels of the visible
image and infrared image and with C representing the responding channel of the fusion image.

C = (Cv + Ci)/2 (35)

According to the fusion results, the two images maintain consistency in shape and size,
as indicated by the clarity and lack of aliasing in the overlapping pixels. This result proves the
validity of the spatial geometry-based scale calculation.
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3.3. Coordinate Transformation-Based Coarse Translation Estimation

After scale calculation, the infrared image is converted to the same plane of the visible image.
According to Section 2.4, coarse translation estimation can calculate the translation MTc from the
infrared scale-transformed image IiS to the original visible image Iv. Then, the infrared image after
coarse translation transformation can be obtained with Equation (36).

IiSTc = MTc IiS (36)

Figure 15 shows the fusion image of the coarse translation-transformed infrared image IiSTc and
the original visible image Iv obtained with Equation (36).

 

Figure 15. Fusion image of coarse translation-transformed infrared image and original visible image:
(a) first experiment image; (b) second experiment image; and (c) third experiment image.

As shown in Figure 15 and Table 6, the coarse translation shows a positive effect on the registration
of the infrared image and visible image, but the result fails to reach high levels of accuracy. Moreover,
the error has some fluctuations.

Table 6. Results of coarse translation estimation.

Image Sequence Translation

Group ID 1 2 3

Actual Translation (−31,−29) (−6,−15) (−21,11)
Translation Estimation (−36,−37) (−20,−10) (−8,2)

Error 9.43 14.87 15.81

3.4. Image Edge-Based Translation Estimation

Precise translation estimation is performed based on image edge features to achieve an accurate
registration. In such estimation, the coarse translation-transformed infrared image IiSTc is converted to
the precise translation-transformed image IiSTcTp with Equation (37).

IiSTcTp = MTp IiSTc (37)

where MTp can be obtained following the description in Section 2.5.
Figure 16 shows the fusion image of the precise translation-transformed infrared image IiSTcTp

and the original visible image Iv obtained with Equation (37).
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Figure 16. Fusion image of the precise translation-transformed infrared image and the original visible
image: (a) first experiment image; (b) second experiment image; and (c) third experiment image.

Comparing Figures 15 and 16 indicates that the fusion image based on precise translation is better
than the fusion image based on coarse translation because of its clear edges in the overlapping region
and absence of aliasing. As indicated in Table 7, image registration accuracy is significantly improved.

Table 7. Results of precise translation estimation.

Image Sequence Translation

Group ID 1 2 3

Actual Translation (−31,−29) (−6,−15) (−21,11)
Translation Estimation (−30,−27) (−8,−13) (−20,9)

Error 2.24 2.83 2.24

3.5. PCNN- and NSCT-Based Image Fusion

3.5.1. Fusion of Visible Image and Low Spatial Infrared Image

When the spatial resolution of the infrared image (Figure 17b) is low, the method of directly
replacing the I channel of the visible image (Figure 17a) with the infrared image causes the spatial
resolution of the fusion image to decline (Figure 17c). The proposed NSCT- and PCNN-based method
can generate a fusion image with satisfactory spatial resolution (Figure 17d). As shown in Figure 17,
the spatial resolution of Figure 17 dis higher than that of Figure 17c.

 

Figure 17. Fusion of visible image and low spatial infrared image: (a) Visible image; (b) infrared image;
(c) fusion image based on IHS; and (d) fusion image based on the proposed method.

3.5.2. Fusion of Interesting Areas

Another important purpose of image fusion is to highlight target information. Figure 18 shows
the saliency analysis between the original image and the fusion image in two scenes. Figure 18a,b,d,e
shows the original images. Figure 18c,f shows the fusion results of the proposed method. The yellow
frame area represents the low salient areas in the visible image. The fusion results show that these
areas become increasingly salient.
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Figure 18. Fusion of interesting areas in two scenes: (a,b,d,e) original image; and (c,f) fusion image
based on the proposed method.

3.6. Performance Analysis

3.6.1. Performance Analysis of Image Registration

In the performance test experiments, we choose 257 groups of images and corresponding metadata
with three typical types of motions: translation, rotation, and scale. Based on the result of the scale
transformation, we tested the performance of the five methods: the proposed method of integrated
parallel vision-based registration (IPVBR), alignment metric-based registration (AMBR) [32], mutual
information-based registration (MIBR) [16], peak signal-to-noise ratio-based registration (PSNRBR),
and structural similarity-based registration (SSIMBR). PSNRBR and SSIMBR are two registration
methods that use PSNR and SSIM as the similarity standard [65].

Under each motion condition, the values of root mean square error (RMSE) are calculated using
Equation (38): ⎧⎨⎩ RMSE =

√
E2

1+E2
2+......+E2

n
n

Ei =
√
(xa − xc)

2 + (ya − yc)
2(i = 1, 2, 3, . . . . . .)

(38)

where the measurement error Ei denotes the pixel distance from the corresponding calculated matching
point (xc, yc) to the actual matching point (xa, ya) in the visible image. The error analysis results of the
three experiments are shown in Figures 19–21.

Figure 19. Performance analysis of the first experiment under translation conditions.
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Figure 20. Performance analysis of the second experiment under rotation conditions.

 
Figure 21. Performance analysis of the third experiment under scale conditions.

The average RMSE values of the five methods in the three experiments are shown in Table 8.

Table 8. Average RMSE of the five methods.

Index
Test Data

(Frame Number)
AMBR
(RMSE)

MIBR
(RMSE)

PSNRBR
(RMSE)

SSIMBR
(RMSE)

Propose IVPBR
(RMSE)

1 Translation (86) 3.98 3.19 3.24 2.63 1.55
2 Rotation (80) 3.37 3.04 2.97 2.16 2.01
3 Scale (91) 3.00 2.61 2.94 1.90 1.54

Average RMSE 3.45 2.95 3.05 2.23 1.70

As shown in Figures 19–21, the RMSE curve of IPVBR remains stable and low. The four
other curves present different performances. The curve of SSIMBR presents good performance in
Experiments 2 and 3, but it shows high vibration in Experiment 1. The curve of PSNRBR always
maintains a certain vibration in Experiments1 and 3. The curve of AMBR indicates some high errors in
Experiment 2 and presents high vibrations in Experiments 1 and 3. The curve of MIBR shows no good
or bad performance. As shown in Table 8, the proposed IPVBR achieves the minimum average RMSE
in the three experiments. SSIMBP also has a low average RMSE, along with IPVBR.

Three points can be concluded from these three experiments.

1. Compared with the four other methods, the proposed IPVBR presents a stable and low MSER.
This result shows the high stability and precision of the proposed method.

2. SSIMBP is better than PSNRBP, which indicates that structure information is more reliable than
pixel information for multimodal image registration.

3. The two representative conventional methods of AMBR and MIBR fail to achieve good results
under the three motion conditions for medium-altitude UAV applications.

Three experiments are conducted based on the fact that all five algorithms can obtain nearly
correct results. In some cases, the compared image-based algorithms fail to solve the perspective
transform, and the proposed edge feature extraction and matching method is effective in translation
calculation. At this point, the result reflects the obvious advantages of the proposed method.
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3.6.2. Performance Analysis of Image Fusion

To analyze the performance, this study introduces three other methods: IHS transform-based
fusion (IHSBF), PCA-based fusion (PCABF) [66], and SIDWT-based fusion (SIDWTBF) [67].
These methods are compared with the proposed method in the experiment.

Using 10 sets of visible and infrared images of different scenes as the experiment data, we select
the average gradient (Equation (39)) and Shannon value (Equation (40)) as the evaluation indexes of
the four methods. The average gradient can sensitively reflect the ability of the image to express the
smallest details and can be used to evaluate the clarity of the image. A high average gradient equates
to a clear image. A high Shannon value equates to a large amount of information in the image:

G =
1

(M − 1)(N − 1)

M

∑
m=1

N

∑
n=1

√
( f (x + 1, y)− f (x, y))2 + ( f (x, y + 1)− f (x, y))2

2
(39)

where f (x, y) denotes the pixel value at (x, y) and M × N denotes the image resolution.

H = −
255

∑
0

Pi log2 Pi (40)

where i represents a sample in the image and Pi represents the probability of the sample.
The average gradient and Shannon results are shown in Figure 22, and the average values of the

four image fusion methods are listed in Table 9.

Figure 22. Average gradient and Shannon values of the four image fusion methods: (a) average
gradient; and (b) Shannon value.

Table 9. Average gradient and Shannon value of the four methods.

Index Evaluation Index IHSBF PCABF SIDWTBF Proposed

1 Average Gradient 1.67 1.59 1.78 1.97
2 Shannon 7.20 6.90 6.74 7.40

As shown in Figure 22a,b, the two group curves of our method are high and stable. Table 9 shows
that the average values of our method are higher than those of the other three methods. The results
also show that the fusion image obtained by our method has higher contrast, better details, and more
information than the images obtained with the other methods.

4. Conclusions

Visible and infrared image registration is a difficult problem in medium-altitude UAVs because
of different imaging mechanisms, poor image quality, and large amounts of motion in videos.
For the special requirements of UAV applications, an appropriate image fusion method becomes
a key technology.
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This study proposed a novel image registration method that uses both metadata and image
based on the imaging characteristic analysis of the most common visible light and infrared integrated
camera. The main contributions of this work are reflected in three aspects. First, we reveal the
principle of long-distance integrated parallel vision, which provides the theoretical foundation of
the conversion from a perspective transformation to scale and translation transformations. Second,
two new algorithms for scale calculation and coarse translation estimation are presented using the
image metadata of the UAV system according to spatial geometry and coordinate transformation.
Third, an edge distance field-based registration is proposed in precise translation estimation to solve
the non-strict edge alignment of the visible image and infrared image. A searching algorithm based on
PSO is also put forward to improve efficiency. In image fusion, this study designs a new method based
on PCNN and NSCT. This method can meet the four requirements of preserving color information,
adding infrared brightness information, improving spatial resolution, and highlighting target areas for
UAV applications.

A medium-altitude UAV is employed to collect experimental data, including three typical groups
of translation, rotation, and scale. Results show that the proposed method achieves encouraging
performance in image registration and fusion. These results can be applied to other medium-altitude
or high-altitude UAVs with a similar system structure. However, future work should focus on analysis
and experiments, such as the improved transformation of edge distance field and real time optimization
of image fusion.
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Abstract: In this paper, to break the limit of the traditional linear models for synthetic aperture
radar (SAR) image despeckling, we propose a novel deep learning approach by learning a non-linear
end-to-end mapping between the noisy and clean SAR images with a dilated residual network
(SAR-DRN). SAR-DRN is based on dilated convolutions, which can both enlarge the receptive
field and maintain the filter size and layer depth with a lightweight structure. In addition, skip
connections and a residual learning strategy are added to the despeckling model to maintain the
image details and reduce the vanishing gradient problem. Compared with the traditional despeckling
methods, the proposed method shows a superior performance over the state-of-the-art methods in
both quantitative and visual assessments, especially for strong speckle noise.

Keywords: SAR image; despeckling; dilated convolution; skip connection; residual learning

1. Introduction

A synthetic aperture radar (SAR) is a coherent imaging sensor, which can access a wide range of
high-quality massive surface data. Moreover, with the ability to operate at night and in adverse weather
conditions such as thin clouds and haze, SAR has gradually become a significant source of remote
sensing data in the fields of geographic mapping, resource surveying, and military reconnaissance.
However, SAR images are inherently affected by multiplicative noise, i.e., speckle noise, which is
caused by the coherent nature of the scattering phenomena [1]. The presence of speckle severely affects
the quality of SAR images, and greatly reduces the utilization efficiency in SAR image interpretation,
retrieval, and other applications [2–4]. Consequently, SAR image speckle reduction is an essential
preprocessing step and has become a hot research topic.

For the purpose of removing the speckle noise of SAR images, scholars firstly proposed spatial linear
filters such as the Lee filter [5], Kuan filter [6], and Frost filter [7]. These methods usually assume that the
image filtering result values have a linear relationship with the original image, through searching for a
relevant combination of the central pixel intensity in a moving window with a mean intensity of the
filter window. Thus, the spatial linear filters achieve a trade-off between balancing in homogeneous
areas and a constant all-pass identity filter in edge included areas. The results have confirmed that
spatial-domain filters are adept at suppressing speckle noise for some critical features. However,
due to the nature of local processing, the spatial linear filter methods often fail to integrally preserve
edges and details, which exhibit the following deficiencies: (1) unable to preserve the average value,
especially when the equivalent number of look (ENL) of the original SAR image is small; (2) the
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powerfully reflective specific targets like points and small surficial features are easily blurred or erased;
and (3) speckle noise in dark scenes is not removed [8].

Except for the spatial-domain filters above, wavelet theory has also been applied to speckle reduction.
Starck et al. [9] primarily employed ridgelet transform as a component step, and implemented curvelet
sub-bands using a filter bank of the discrete wavelet transform (DWT) filters for image denoising. For the
case of speckle noise, Solbo et al. [10] utilized the DWT of the log-transformed speckled image in
homomorphic filtering, which is empirically convergent in a self-adaptive strategy and calculated
in the Fourier space. In summary, the major weaknesses of this type of approach are the backscatter
mean preservation in homogeneous areas, details preservation, and producing an artificial effect that
is incorporated into the results, such as ring effects [11].

Aimed at overcoming these deficiencies, the nonlocal means (NLM) algorithm [12–14] has
provided a breakthrough in detail preservation in SAR image despeckling. The basic idea of the
NLM-based methods [12] is that natural images have self-similarity and there are similar patches
repeating over and over throughout the whole image. For SAR images, Deledalle et al. [13] modified
the choice of weights, which can be iteratively determined based on both the similarity between noisy
patches and the similarity of patches extracted from the previous estimate. Besides, Parrilli et al. [14]
used the local linear minimum mean square error (LLMMSE) criterion and undecimated wavelet
transform considering the peculiarities of SAR images, allowing for a sparse Wiener filtering
representation and an effective separation between original signal and speckle noise through
predefined thresholding, which has become one of the most effective SAR despeckling methods.
However, the low computational efficiency of the similar patch searching restricts its application.

In addition, the variational-based methods [15–18] have gradually been utilized for SAR image
despeckling because of their stability and flexibility, which break through the traditional idea of filters
by solving the problem of energy optimization. Then, the despeckling task is cast as the inverse problem
of recovering the original noise-free image based upon reasonable assumptions or prior knowledge of
the noise observation model with log-transform, such as the total variation (TV) model [15], sparse
representation [16], and so on. Although these variational methods have achieved a good reduction of
speckle noise, the result is usually dependent on the choice of model parameters and prior information,
and is often time-consuming. In addition, the variational-based methods cannot accurately describe
the distribution of speckle noise, which also constraints the performance of speckle noise reduction.

In general, although many SAR despeckling methods have been proposed, they sometimes fail to
preserve sharp features in domains of a complicated texture, or even create some block artifacts in the
speckled image. In this paper, considering that image speckle noise can be expressed more accurately
through non-linear models than linear models, and to overcome the above-mentioned limitations of the
linear models, we propose a novel deep neural network-based approach for SAR image despeckling,
learning a non-linear end-to-end mapping between the speckled and clean SAR images by a dilated
residual network (SAR-DRN). Our despeckling model employs dilated convolutions, which can both
enlarge the receptive field and maintain the filter size and layer depth with a lightweight structure.
Furthermore, skip connections are added to the despeckling model to maintain the image details and
avoid the vanishing gradient problem. Compared with the traditional despeckling methods in both
simulated and real SAR experiments, the proposed approach shows a state-of-the-art performance in
both quantitative and visual assessments, especially for strong speckle noise.

The rest of this paper is organized as follows. The SAR image speckling noise degradation model
and the related deep convolution neural network method are introduced in Section 2. The network
architecture of the proposed SAR-DRN and details of its structure are described in Section 3. Then,
the results of the despeckling assessment in both simulated and real SAR image experiments are
presented in Section 4. Finally, the conclusions and future research are summarized in Section 5.
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2. Related Work

2.1. SAR Image Speckling Noise Degradation Model

For SAR images, the main reason for the degradation of the image quality is multiplicative speckle
noise. Differing from additive white Gaussian noise (AWGN) in nature or hyperspectral images [19,20],
speckle noise is described by the multiplicative noise model:

y = x · n (1)

where y is the speckled noise image, x is the clean image, and n represents the speckle noise. It is
well-known that, for SAR amplitude images, the speckle follows a Gamma distribution [21]:

ρn(n) =
LLnL−1 exp(−nL)

Γ(L)
(2)

where L ≥ 1, n ≥ 0, Γ is the Gamma function, and L is the equivalent number of looks (ENL), as defined
in Equation (3), which is usually regarded as the quantitative evaluation index for real SAR image
despeckling experiments in the homogeneous areas.

ENL =
x

var
(3)

where x and var, respectively, represent the image mean and variance.
Therefore, for this non-linear multiplicative noise, choosing a non-linear expression for speckle

reduction is an important strategy. In the following, we briefly introduce the use of convolutional
neural networks (CNNs) for SAR image despeckling, considering both the low-level features as the
bottom level and the output feature representation from the top level of the network.

2.2. CNNs for SAR Image Despeckling

With recent advances made by deep learning for computer vision and image processing
applications, it has gradually become an efficient tool which has been successfully applied to many
computer vision tasks such as image classification, segmentation, object recognition, scene classification,
and so on [22–24]. CNNs can extract the internal and underlying features of images and avoid complex
priori constraints, organized in the j-th feature map O(l)

j (j = 1, 2, . . . M(l)) of l-th layer, within which

each unit is connected to local patches of the previous layer O(l−1)
j (j = 1, 2, . . . M(l−1)) through a set of

weight parameters W(l)
j and bias parameters b(l)j . The output feature map is:

L(l)
j (m, n) = F(O(l)

j (m, n)) (4)

And

O(l)
j (m, n) =

M(l)

∑
i=1

S−1

∑
u,v=0

W(l)
ji (u, v) · L(l−1)

i (m − u, n − v) + b(l)j (5)

where F(·) is the nonlinear activation function, and O(l)
j (m, n) represents the convolutional weighted

sum of the previous layer’s results, to the j-th output feature map at pixel (m, n). Besides, the special
parameters in the convolution layer contain the number of output feature maps j, and filter kernel
size S × S. Particularly, the network parameters W and b need to be regenerated through the
back-propagation (BP) algorithm and the chain rule of derivation [25].

To ensure that the output of the CNNs is a non-linear combination of the input, due to the
relationship between the input data and the output label usually being a highly nonlinear mapping,
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a non-linear function is introduced as an excitation function, such as the rectified linear unit (ReLU),
which is defined as:

F(O(l)
j ) = max(0, O(l)

j ) (6)

After finishing each process of forward propagation, the BP algorithm starts to perform for
update trainable parameters of networks, to better learn the relationships between label data and
reconstructing data. From the top layer of the network to the bottom, BP updates the trainable
parameters of the l-th layer through the outputs of the l + 1-th layer. The partial derivative of
loss function with respect to convolution kernels W(l)

ji and bias b(l)j of the l-th convolution layer is
respectively calculated as follows:

∂L

∂W(l)
ji

= ∑
m,n

δ
(l)
j (m, n) · L(l)

j (m − u, y − v) (7)

∂L

∂b(l)j

= ∑
m,n

δ
(l)
j (m, n) (8)

where the error map δ
(l)
j is defined as

δ
(l)
j = ∑

j

S−1

∑
u,v=0

W(l+1)
ji (u, v) · δ

(l+1)
j (m + u, n + v) (9)

The iterative training rule for updating the network parameters W(l)
ji and b(l)j is through the

gradient descent strategy as follows:

W(l)
ji = W(l)

ji − α · ∂L

∂W(l)
ji

(10)

b(l)j = b(l)j − α · ∂L

∂b(l)j

(11)

where α is a preset hyperparameter for the whole network, which is also named the learning rate in a
deep learning framework and controls the sampling interval of the trainable parameter.

For natural Gaussian noise reduction, a new method named the feed-forward denoising
convolutional neural network (DnCNN) [26] has recently shown excellent performances, in contrast
with the traditional methods which employ a deep convolutional neural network. DnCNN employs a
20 convolutional layers structure, a learning strategy of residual learning to remove the latent original
image in the hidden layers, and an output data regularization method of batch normalization [27],
which can deal with several universal image restoration tasks such as blind or non-blind image
Gaussian denoising, and single image super-resolution and JPEG image deblocking.

Recently, borrowing the thought of the DnCNN model, Chierchia et al. [28] also employed
a set of convolutional layers named SAR-CNN, along with batch normalization (BN) and ReLU
activation function, and a component-wise division residual layer to estimate the speckled image.
As an alternative way of dealing with the multiplicative noise of SAR images, SAR-CNN uses the
homomorphic approach with coupled logarithm and exponent transforms in combination with a
similarity measure for speckle noise distribution. In addition, Wang et al. [29] also used a similar
structure like DnCNN, with eight-layers of the Conv-BN-ReLU block, and replaced residual mean
square error (MSE) with a combination of Euclidean loss and total variation loss, which is incorporated
into the total loss function to facilitate more smooth results.

207



Remote Sens. 2018, 10, 196

3. Proposed Method

In this paper, rather than using log-transform [28] or modifying training loss function like [29],
we propose a novel network for SAR image despeckling with a dilated residual network (SAR-DRN),
which is trained in an end-to-end fashion using a combination of dilated convolutions and skip
connections with a residual learning structure. Instead of relying on a pre-determined image, a priori
knowledge, or a noise description model, the main superiority of using the deep neural network
strategy for SAR image despeckling is that the model can directly acquire and update the network
parameters from the training data and the corresponding labels, which need not manually adjust
critical parameters and can automatically learn the complex internal non-linear relations with trainable
network parameters from the massive training simulative data.

The proposed holistic neural network model (SAR-DRN) for SAR image despeckling contains
seven dilated convolution layers and two skip connections, as illustrated in Figure 1. In addition,
the proposed model uses a residual learning strategy to predict the speckled image, which adequately
utilizes the non-linear expression ability of deep learning. The details of the algorithm are described in
the following.

Figure 1. The architecture of the proposed SAR-DRN.

3.1. Dilated Convolutions

In image restoration problems such as single-image super-resolution (SISR) [30], denoising [31],
and deblurring [32], contextual information can effectively facilitate the recovery of degraded regions.
In deep convolutional networks, the contextual information is mainly augmented through enlarging
the receptive field. Generically, there are two ways to achieve this purpose: (1) increasing the network
depth; and (2) enlarging the filter size. Nevertheless, as the network depth increases, the accuracy
becomes “saturated” and then degrades rapidly. Enlarging the filter size can also lead to more
convolution parameters, which greatly increases the calculative burden and training times.

To solve this problem effectively, dilated convolutions were first proposed in [33], which can both
enlarge the receptive field and maintain the filter size. Let C be an input discrete two-dimensional
matrix such as an image, and let k be a discrete convolution filter of size (2r + 1)× (2r + 1). Then,
the original discrete convolution operator ∗ can be given as

(C ∗ k)(p) = ∑
i+j=p

C(i) · k(j) (12)

After defined this convolution operator ∗, let d be a dilation factor and let ∗d be equivalent to

(C ∗d k)(p) = ∑
i+d·j=p

C(i) · k(j) (13)

where ∗d is served as the dilated convolution or a d-dilated convolution. Particularly, the common
discrete convolution ∗ can be regarded as the l-dilated convolution. Setting the size of the convolutional
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kernel with 3 × 3 as an example, let kl be the discrete 3 × 3 convolution filters. Consider applying the
filters with exponentially increasing dilation as

Rl+1 = Rl ∗φ kl (14)

where l = 0, 1, . . . , n − 2, φ = 2l , and Rl represents the size of the receptive field. The common
convolution receptive field has a linear correlation with the layer depth, in that the receptive field size:
Rc

l = (2l + 1) × (2l + 1). By contrast, the dilated convolution receptive field has an exponential
correlation with the layer depth, where the receptive field size: Rd

l = (2l+1 − 1) × (2l+1 − 1).
For instance, when l = 4, Rc

l = 9 × 9, while Rd
l = 31 × 31 with the same layer depth. Figure 2

illustrates the dilated convolution receptive field size, which: (a) corresponds to the one-dilated
convolution, which is equivalent to the common convolution operation at this point; (b) corresponds
to the two-dilated convolution; and (c) corresponds to the four-dilated convolution.

 

(a) 1-dilated convolution. 

 

(b) 2-dilated convolution. 

 

(c) 4-dilated convolution. 

Figure 2. Receptive field size of different dilated convolution. (d = 1, 2, and 4, where the dark color
regions represent the receptive field).

In the proposed SAR-DRN model, considering that trade-off between feature extraction ability
and reducing training time, the dilation factors of the 3 × 3 dilated convolutions from layer 1 to layer 7
are respectively set to 1, 2, 3, 4, 3, 2, and 1, empirically. Compared with other deep neural networks,
we propose a lightweight model with only seven dilated convolution layers, as shown in Figure 3.

 

Figure 3. Dilated convolution in the proposed model.

3.2. Skip Connections

Although the increase of network layer depth can help to obtain more data feature expressions,
it often results in the vanishing gradient problem, which makes the training of the model much
harder. To solve this problem, a new structure called skip connection [34] has been created for
the DCNNs, to obtain better training results. The skip connection can pass the previous layer’s
feature information to its posterior layer, maintaining the image details and avoiding or reducing the
vanishing gradient problem. For the l-th layer, let L(l) be the input data, and let f (L(l), {W, b}) be its
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feed-forward propagation with trainable parameters. The output of the (l + k)-th layer with k-interval
skip connection is recursively defined as follows:

L(l+k) = f (L(l), {W, b}l+1→l+k) + L(l) (15)

For clarity, in the proposed SAR-DRN model, two skip connections are employed to connect
layer 1 to layer 3 (as shown in Figure 4a) and layer 4 to layer 7 (as shown in Figure 4b), whose effects
are compared with no skip connections in the discussion section.

 

(a) (b) 

Figure 4. Diagram of skip connection structure in the proposed model. (a) Connecting dilated convolution
layer 1 to dilated convolution layer 3. (b) Dilated convolution layer 4 to dilated convolution layer 7.

3.3. Residual Learning

Compared with traditional data mapping, He et al. [35] found that residual mapping can
acquire a more effective learning effect and rapidly reduce the training loss after passing through a
multi-layer network, which has achieved a state-of-the-art performance in object detection [36], image
super-resolution [37], and so on. Essentially, Szegedy et al. [38] demonstrated that residual networks
take full advantage of identity shortcut connections, which can efficiently transfer various levels
of feature information between not directly connected layers without attenuation. In the proposed
SAR-DRN model, the residual image ϕ is defined as follows:

ϕ = yi − xi (16)

As the layer depth increases, the degradation phenomenon manifests that common deep networks
might have difficulties in approximating identical mappings by stacked non-linear layers like the
Conv-BN-ReLU block. By contrast, it is reasonable to consider that most pixel values in residual image
ϕ are very close to zero, and the spatial distribution of the residual feature maps should be very sparse,
which can transfer the gradient descent process to a much smoother hyper-surface of loss to filtering
parameters. Thus, searching for an allocation which is on the verge of the optimal for the network’s
parameters becomes much quicker and easier, allowing us to add more trainable layers to the network
and improve its performance. The learning procedure with a residual unit is easier to approximate to
the original multiplicative speckle noise through the deeper and intrinsic non-linear feature extraction
and expression, which can better weaken the range difference between optical images and SAR images.

Specifically for the proposed SAR-DRN, we choose a collection of N training image pairs {xi, yi}N
from the training data sets as described in 4.1 below, where yi is the speckled image, and θ is the
network parameters. Our model uses the mean squared error (MSE) as the loss function:

loss(Θ) =
1

2N

N

∑
i=1

‖φ(yi, θ)− ϕ‖2
2 (17)
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In summary, with the dilated convolution, skip connections and residual learning structure,
the flowchart of learning a deep network for the SAR image despeckling process is described in
Figure 5. To learn the complicated non-linear relation between the speckled image y and original image
x, the proposed SAR-DRN model is employed with converged loss between the residual image ϕ and
the output φ(y, θ), then preparing for real speckle SAR image processing as illuminated in Figure 5.

Figure 5. The framework of SAR image despeckling based on deep learning.

4. Experimental Results and Analysis

4.1. Implementation Details

4.1.1. Training and Test Datasets

Considering that it is quite hard to obtain clean reference training SAR images without speckle
at all, we used the UC Merced land-use dataset [39] as our training dataset with different numbers of
looks for simulating SAR image despeckling, which contains 21 scene classes with 100 images per
class. Because the optical images and SAR images are statistically different, the amplitude information
of optical images is processed before training for single-polarization SAR data despeckling, to better
accord with the data distribution property of SAR images. To train the proposed SAR-DRN, we chose
400 images of size 256 × 256 from this dataset and set each patch size as 40 × 40 and stride equal
to 10. Then, 193,664 patches are cropped for training SAR-DRN with a batch size of 128 for parallel
computing. Additionally, the number of looks L was set to noise levels of 1, 2, 4, and 8 for adding
multiplicative speckle noise, respectively.

To test the performance of the proposed model, three examples of the Airplanes, Buildings,
and Rivers classes were respectively set up as simulated images. For the real SAR image despeckling
experiments, we used the classic Flevoland SAR image (cropped to 500 × 600), Deathvalley SAR image
(cropped to 600 × 600), and San Francisco SAR image (cropped to 400 × 400), which are commonly
used in real SAR data image despeckling.

4.1.2. Parameter Setting and Network Training

Table 1 lists the network parameters of each layer for SAR-DRN. The proposed model was trained
using the Adam [40] algorithm as the gradient descent optimization method, with momentum β1 = 0.9,
momentum β2 = 0.999, and ε = 10−8, where the learning rate α was initialized to 0.01 for the whole
network. The optimization procedure is given below.

mt = β1 · mt−1 + (1− β1) · ∂L
∂θt

(18)
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nt = β2 · nt−1 + (1− β2) · ( ∂L
∂θt

)
2

(19)

Δθt = −α · mt√
nt + ε

(20)

where θ is the trainable parameter in the network of the t-th iteration. The training process of SAR-DRN
took 50 epochs (about 1500 iterations), and after every 10 epochs, the learning rate was reduced through
being multiplied by a descending factor gamma = 0.5. We used the Caffe [41] framework to train the
proposed SAR-DRN in the Windows 7 environment, 16 GB-RAM, with an Nvidia Titan-X (Pascal)
GPU. The total training time costs about 4 h 30 min, which is less than SAR-CNN [28] with about
9 h 45 min under the same computational environment.

Table 1. The network configuration of the SAR-DRN model.

Layer Number Network Configurations

Layer 1 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 1, stride = 1, pad = 1
Layer 2 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 2, stride = 1, pad = 2
Layer 3 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 3, stride = 1, pad = 3
Layer 4 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 4, stride = 1, pad = 4
Layer 5 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 3, stride = 1, pad = 3
Layer 6 Dilated Conv + ReLU: 64 × 3 × 3, dilate = 2, stride = 1, pad = 2
Layer 7 Dilated Conv: 64 × 3 × 3, dilate = 1, stride = 1, pad = 1

4.1.3. Compared Algorithms and Quantitative Evaluations

To verify the proposed method, we compared the SAR-DRN method with four mainstream
despeckling methods: The probabilistic patch-based (PPB) filter [13] based on patch matching,
SAR-BM3D [14] based on 3-D patch matching and wavelet, SAR-POTDF [16] based on sparse
representation, and SAR-CNN [28] based on the deep neural network. In the simulated-image
experiments, the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) were employed as
the quantitative evaluation indexes. In the real-image experiments, the ENL was considered as the
smoothness of a homogeneous region after SAR image despeckling (the ENL is commonly regarded as
the quantitative evaluation index for real SAR image despeckling experiments), whose value is larger,
demonstrating that the homogeneous region is smoother, as defined in Equation (3).

4.2. Simulated-Data Experiments

To verify the effectiveness of the proposed SAR-DRN model in SAR image despeckling, four
different speckle noise levels of looks L = 1, 2, 4, and 8 were set up for the three simulated images for
PPB, SAR-BM3D, SAR-POTDF, SAR-CNN, and ours. The PSNR and SSIM evaluation indexes and
their standard deviations of the 10 simulated experiments with the three images are listed in Tables 2–4,
respectively, where the best performance is marked in bold.

Table 2. Mean and Stand Deviation Results of PSNR (dB) and SSIM for Airplane with L = 1, 2, 4, and 8.

Looks Index PPB SAR-BM3D SAR-POTDF SAR-CNN SAR-DRN

L = 1
PSNR 20.11 ± 0.065 21.83 ± 0.051 21.75 ± 0.061 22.06 ± 0.053 22.97 ± 0.052
SSIM 0.512 ± 0.001 0.623 ± 0.003 0.604 ± 0.003 0.623 ± 0.002 0.656 ± 0.001

L = 2
PSNR 21.72 ± 0.055 23.59 ± 0.062 23.79 ± 0.041 24.13 ± 0.048 24.54 ± 0.043
SSIM 0.601 ± 0.001 0.693 ± 0.004 0.686 ± 0.003 0.710 ± 0.002 0.726 ± 0.002

L = 4
PSNR 23.48 ± 0.073 25.51 ± 0.079 25.84 ± 0.047 25.97 ± 0.051 26.52 ± 0.046
SSIM 0.678 ± 0.003 0.755 ± 0.002 0.752 ± 0.002 0.748 ± 0.003 0.763 ± 0.002

L = 8
PSNR 24.98 ± 0.084 27.17 ± 0.064 27.56 ± 0.060 27.89 ± 0.062 28.01 ± 0.058
SSIM 0.743 ± 0.003 0.800 ± 0.003 0.794 ± 0.004 0.801 ± 0.002 0.819 ± 0.003
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Table 3. Mean and Stand Deviation Results of PSNR (dB) and SSIM for Building with L = 1, 2, 4, and 8.

Looks Index PPB SAR-BM3D SAR-POTDF SAR-CNN SAR-DRN

L = 1
PSNR 25.05 ± 0.036 26.14 ± 0.059 25.10 ± 0.035 26.25 ± 0.052 26.80 ± 0.044
SSIM 0.715 ± 0.002 0.786 ± 0.005 0.731 ± 0.001 0.775 ± 0.002 0.796 ± 0.003

L = 2
PSNR 26.36 ± 0.064 27.95 ± 0.046 27.44 ± 0.041 27.98 ± 0.058 28.39 ± 0.045
SSIM 0.778 ± 0.003 0.831 ± 0.004 0.811 ± 0.003 0.826 ± 0.003 0.838 ± 0.002

L = 4
PSNR 28.05 ± 0.053 29.84 ± 0.033 29.56 ± 0.066 29.96 ± 0.057 30.14 ± 0.048
SSIM 0.833 ± 0.002 0.879 ± 0.002 0.866 ± 0.002 0.869 ± 0.003 0.870 ± 0.002

L = 8
PSNR 29.50 ± 0.069 31.36 ± 0.070 31.55 ± 0.051 31.63 ± 0.054 31.78 ± 0.058
SSIM 0.871 ± 0.00 0.902 ± 0.001 0.900 ± 0.002 0.901 ± 0.002 0.901 ± 0.001

Table 4. Mean and Stand Deviation Results of PSNR (dB) and SSIM for Highway with L = 1, 2, 4, and 8.

Looks Index PPB SAR-BM3D SAR-POTDF SAR-CNN SAR-DRN

L = 1
PSNR 20.13 ± 0.059 21.12 ± 0.031 20.63 ± 0.047 21.07 ± 0.036 21.71 ± 0.024
SSIM 0.472 ± 0.002 0.558 ± 0.002 0.530 ± 0.002 0.552 ± 0.003 0.613 ± 0.003

L = 2
PSNR 21.40 ± 0.073 22.62 ± 0.028 22.51 ± 0.063 22.88 ± 0.062 22.96 ± 0.057
SSIM 0.572 ± 0.002 0.646 ± 0.002 0.637 ± 0.003 0.641 ± 0.002 0.644 ± 0.003

L = 4
PSNR 22.61 ± 0.037 24.29 ± 0.049 24.39 ± 0.071 24.46 ± 0.061 24.64 ± 0.063
SSIM 0.674 ± 0.002 0.765 ± 0.003 0.768 ± 0.004 0.762 ± 0.003 0.772 ± 0.002

L = 8
PSNR 24.90 ± 0.045 26.41 ± 0.075 26.37 ± 0.044 26.48 ± 0.058 26.53 ± 0.046
SSIM 0.764 ± 0.005 0.834 ± 0.002 0.837 ± 0.002 0.834 ± 0.003 0.836 ± 0.002

As shown in Tables 2–4, the proposed SAR-DRN model obtains all the best PSNR results and nine
of the twelve best SSIM results in the four noise levels. When L = 1, the proposed method outperforms
SAR-BM3D by about 0.9 dB/0.6 dB/0.6 dB for Airplane, Building, and Highway images, respectively.
When L = 2 and 4, SAR-DRN outperforms PPB, SAR-POTDF, SAR-BM3D, and SAR-CNN by at
least 0.5 dB/0.7 dB/0.3 dB and 0.4 dB/0.3 dB/0.2 dB for Airplane/Building/Highway, respectively.
Compared with the traditional despeckling methods above, the proposed method shows a superior
performance over the state-of-the-art methods in both quantitative and visual assessments, especially
for strong speckle noise.

Figures 6–8 correspondingly show the filtered images for the Airplane/Building/Highway images
contaminated by two-look speckle, four-look speckle, and four-look speckle, respectively. It can be
clearly seen that PPB has a good speckle-reduction ability, but PPB simultaneously creates many
texture distortions, especially around the edges of the airplane, building, and highway. SAR-BM3D
and SAR-POTDF perform better than PPB for the Airplane, Building, and Highway images, especially
for strong speckle noise such as L = 1, 2, or 4, which reveals an excellent speckle-reduction ability and
local detail preservation ability. Furthermore, they generate fewer texture distortions, as shown in
Figures 6–8. However, SAR-BM3D and SAR-POTDF also simultaneously result in over-smoothing,
to some degree, as they mainly concentrate on some complex geometric features. SAR-CNN also shows
a good speckle-reduction ability and local detail preservation ability, but introduces some radiation
distortions in homogeneous regions. Compared with the other algorithms above, SAR-DRN achieves
the best performance in speckle reduction, concurrently avoiding introducing radiation and geometric
distortion. In addition, from the red boxes of the Airplane and Building images in Figures 6–8,
respectively, it can be clearly seen that SAR-DRN also shows the best local detail preservation ability,
while the other methods either miss partial texture details or produce blurry results, to some extent.
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Figure 6. Filtered images for the Airplane image contaminated by two-look speckle. (a) Original
image. (b) Speckled image. (c) PPB [13]. (d) SAR-BM3D [14]. (e) SAR-POTDF [16]. (f) SAR-CNN [28].
(g) SAR-DRN.
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Figure 7. Filtered images for the Building image contaminated by four-look speckle. (a) Original
image. (b) Speckled image. (c) PPB [13]. (d) SAR-BM3D [14]. (e) SAR-POTDF [16]. (f) SAR-CNN [28].
(g) SAR-DRN.
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(a) (b) (c) (d) 

  
(e) (f) (g) 

Figure 8. Filtered images for the Highway image contaminated by four-look speckle. (a) Original
image. (b) Speckled image. (c) PPB [13]. (d) SAR-BM3D [14]. (e) SAR-POTDF [16]. (f) SAR-CNN [28].
(g) SAR-DRN.

4.3. Real-Data Experiments

As shown in Figures 9–11, we also compared the proposed method with the four state-of-the-art
methods described above for three real SAR images. These three SAR images are all acquired by the
Airborne Synthetic Aperture Radar (AIRSAR), which are all four-look data. In Figure 9, it can be clearly
seen that the result of SAR-BM3D still contains a great deal of residual speckle noise, while the results
of PPB, SAR-POTDF, SAR-CNN, and the proposed SAR-DRN method reveal a good speckle-reduction
ability. PPB performs very well in speckle reduction, but it generates a few texture distortions in the
edges of prominent objects. In homogeneous regions, SAR-POTDF does not perform as well in speckle
reduction as the proposed SAR-DRN. As for SAR-CNN, its edge-preserving ability is weaker than that
of SAR-DRN. Visually, SAR-DRN achieves the best performance in speckle reduction and local detail
preservation, performing better than the other mainstream methods; in Figure 10, all the five methods
can reduce the speckle noise well, but PPB obviously results in an over-smoothing phenomenon.
Besides, in Figure 11, the result of SAR-CNN still contains some residual speckle noise. Simultaneously,
PPB, SAR-BM3D, and SAR-POTDF also result in an over-smoothing phenomenon, to some degree, as
shown in the marked regions with complex geometric features. It can be clearly seen that the proposed
method has both a well speckled noise reduction ability and preserving detail ability for the edge and
texture information.

In addition, we also evaluated the filtered results, through ENL in Table 5 and EPD-ROA [15] in
Table 6 to measure the speckle-reduction and edge-preserving ability [42], respectively. Because it is
difficult to find homogeneous regions in Figure 11, the ENL values were respectively estimated from
four chosen homogeneous regions of Figures 9 and 10 (the red boxes in Figures 9a and 10a). Clearly,
SAR-DRN has a much better speckle-reduction ability than the other methods, which is consistent
with the visual observation.
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Figure 9. Filtered images for the Flevoland SAR image contaminated by four-look speckle. (a) Original
image. (b) PPB [13]. (c) SAR-BM3D [14]. (d) SAR-POTDF [16]. (e) SAR-CNN [28]. (f) SAR-DRN.
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Figure 10. Filtered images for the Deathvalley SAR image contaminated by four-look speckle. (a) Original
image. (b) PPB [13]. (c) SAR-BM3D [14]. (d) SAR-POTDF [16]. (e) SAR-CNN [28]. (f) SAR-DRN.
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Figure 11. Filtered images for the San Francisco SAR image contaminated by four-look speckle. (a) Original
image. (b) PPB [13]. (c) SAR-BM3D [14]. (d) SAR-POTDF [16]. (e) SAR-CNN [28]. (f) SAR-DRN.

Table 5. ENL results for the Flevoland and Deathvalley images.

Data Original PPB SAR-BM3D SAR-POTDF SAR-CNN SAR-DRN

Figure 9
Region I 4.36 122.24 67.43 120.32 86.29 137.63
Region II 4.11 56.89 24.96 38. 90 23.38 45.64

Figure 10
Region I 5.76 14.37 12.65 12.72 13.26 14.58
Region II 4.52 43.97 55.76 44.87 37.45 48.32

Table 6. EPD-ROA indexes for the real despeckling results.

Data PPB SAR-BM3D SAR-POTDF SAR-CNN SAR-DRN

Figure 9 0.619 0.733 0.714 0.748 0.754
Figure 10 0.587 0.714 0.702 0.698 0.723
Figure 11 0.632 0.685 0.654 0.621 0.673

4.4. Discussion

4.4.1. Dilated Convolutions and Skip Connections

As mentioned in Section III, dilated convolutions are employed in the proposed method, which
can both enlarge the receptive field and maintain the filter size and layer depth with a lightweight
structure. In addition, skip connections are also added to the despeckling model to maintain the
image details and reduce the vanishing gradient problem. To verify the effectiveness of the dilated
convolutions and skip connections, we implemented four sets of experiments in the same environment
as that shown in Figure 12: (1) with dilated convolutions and skip connections (the red line); (2) with
dilated convolutions but without skip connections (the green line); (3) without dilated convolutions
but with skip connections (the blue line); and (4) without dilated convolutions and skip connections
(the black line).
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(a) Training loss 

 
(b) Average PSNR 

Figure 12. The simulated SAR image despeckling results of the four specific models in (a) training loss
and (b) average PSNR, with respect to iterations. The four specific models were different combinations
of dilated convolutions (Dconv) and skip connections (SK), and were trained with one-look images in
the same environment. The results were evaluated for the Set14 [43] dataset.

As Figure 12 implies, the dilated convolutions can effectively reduce the training loss and enhance
the despeckling performance (the less training Loss and the best PSNR), which also testifies that
augmenting the contextual information through enlarging the receptive field is effective for recovering
the degraded image, as demonstrated in Section III for dilated convolution. Meanwhile, the skip
connections also accelerate the convergence speed of the network and enhance the model stability, as
is shown by the comparison with or without skip connection in Figure 12. Besides, the combination of
dilated convolution and skip connections can promote each other’s effect, up from about 1.1 dB in
PSNR compared with the combination of without dilated convolution and without skip connections.

4.4.2. With or without Batch Normalization (BN) in the Network

Unlike the methods proposed in [28,29], which utilize batch normalization to normalize the
output features, SAR-DRN does not add this preprocessing layer, considering that the skip connections
can also maintain the outputs of the data distribution in the different dilated convolution layers.
The quantitative comparison of the two structures for SAR image despeckling is provided in Section
IV. Furthermore, getting rid of the BN layers can simultaneously reduce the amount of computation,
saving about 3 h of training time in the same environment. Figure 13 shows that this modification
improves the despeckling performance and reduces the complexity of the model. Regarding this
phenomenon, we suggest that a probable reason is that the input and output have a highly similar
spatial distribution for this regression problem, while the BN layers normalize the hidden layers’
output, which destroys the representation of the original space [44].

 

Figure 13. The simulated SAR image despeckling results of the two specific models with/without
batch normalization (BN). The two specific models were trained with one-look images in the same
environment, and the results were evaluated for the Set14 [43] dataset.
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4.4.3. Runtime Comparisons

For evaluating the efficiency of despeckling algorithms, we make statistics of runtime under the
same environment with MALAB R2014b, as listed in Table 7. Distinctly, SAR-DRN exhibits the lowest
run-time complexity than other algorithms, because of the lightweight model with only seven layers
than other deep learning methods like SAR-CNN [28] with 17 layers.

Table 7. Runtime comparisons for five despeckling methods with an image of size 256 × 256 (s).

Method PPB SAR-BM3D SAR-POTDF SAR-CNN Ours

Runtime 10.13 16.48 12.83 1.13 0.38

5. Conclusions

In this paper, we have proposed a novel deep learning approach for the SAR image despeckling
task, learning an end-to-end mapping between the noisy and clean SAR images. Differently from
common convolutions operation, the presented approach is based on dilated convolutions, which can
both enlarge the receptive field and maintain the filter size with a lightweight structure. Furthermore,
skip connections are added to the despeckling model to maintain the image details and avoid the
vanishing gradient problem. Compared with the traditional despeckling methods, the proposed
SAR-DRN approach shows a state-of-the-art performance in both simulated and real SAR image
despeckling experiments, especially for strong speckle noise.

In our future work, we will investigate more powerful learning models to deal with the complex
real scenes in SAR images. Considering that the training of our current method performed for each
number of looks, we will explore an integrated model to solve this problem. Furthermore, the proposed
approach will be extended to polarimetric SAR image despeckling, whose noise model is much more
complicated than that of single-polarization SAR. Besides, for better reducing speckle noise in more
complex real SAR image data, some prior constraint like multi-channel patch matching, band selection,
location prior, and locality adaptive discriminant analysis [45–48], can also be considered to improve
the precision of despeckling results. In addition, we will try to collect enough SAR images and then
train the model with multi-temporal data [49] for SAR image despeckling, which will be sequentially
explored in future studies.
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Abstract: SAR (Synthetic Aperture Radar) imaging plays a central role in Remote Sensing due to,
among other important features, its ability to provide high-resolution, day-and-night and almost
weather-independent images. SAR images are affected from a granular contamination, speckle,
that can be described by a multiplicative model. Many despeckling techniques have been proposed
in the literature, as well as measures of the quality of the results they provide. Assuming the
multiplicative model, the observed image Z is the product of two independent fields: the backscatter
X and the speckle Y. The result of any speckle filter is X̂, an estimator of the backscatter X, based
solely on the observed data Z. An ideal estimator would be the one for which the ratio of the observed
image to the filtered one I = Z/X̂ is only speckle: a collection of independent identically distributed
samples from Gamma variates. We, then, assess the quality of a filter by the closeness of I to the
hypothesis that it is adherent to the statistical properties of pure speckle. We analyze filters through
the ratio image they produce with regards to first- and second-order statistics: the former check
marginal properties, while the latter verifies lack of structure. A new quantitative image-quality
index is then defined, and applied to state-of-the-art despeckling filters. This new measure provides
consistent results with commonly used quality measures (equivalent number of looks, PSNR, MSSIM,
β edge correlation, and preservation of the mean), and ranks the filters results also in agreement with
their visual analysis. We conclude our study showing that the proposed measure can be successfully
used to optimize the (often many) parameters that define a speckle filter.

Keywords: quality assessment; ratio images; Synthetic Aperture Radar (SAR); speckle; speckle filters

1. Introduction

Speckle reduction has occupied both the scientific literature and the production software
industry since the deployment of SAR platforms. Good speckle filters are expected to improve
the perceived image quality while preserving the scene reflectivity. The former requires, at the same
time, preservation of details in heterogeneous areas and constancy in homogeneous targets.

Early works assessed the performance of despeckling techniques by visual inspection of
the filtered images; cf. references [1,2]. Since then, speckle filtering has reached such a level of
sophistication [3] that forthcoming improvements are likely to be incremental, and assessing them
quantitatively is, at the same time, desirable and hard. Also, as filters are often defined with many
parameters, e.g., window size, thresholds, etc., finding an optimal setting is also an issue.

Remote Sens. 2017, 9, 389; doi:10.3390/rs9040389 www.mdpi.com/journal/remotesensing222
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The Equivalent Number of Looks (ENL) is among the simplest and most spread measures of
quality of despeckling filters. It can be estimated, in textureless areas and intensity format, as the ratio
of the squared sample mean to the sample variance, i.e., the reciprocal of the squared coefficient of
variation (see [4] for other methods for the estimation of ENL). Being proportional to the signal-to-noise
ratio, the higher ENL is, the better the quality of the image is in terms of speckle reduction. However,
it is well known that large ENL values are easily obtained just by overfiltering an image, which severely
degrades details and gives the filtered image an undesirable blurred appearance. In particular,
ENL = ∞ is obtained in completely flat areas where the sample variance is null. Testing a filter merely
by its performance over textureless areas, where a simple generic filter as the Boxcar, would perform
well, is bound to produce misleading results.

Other measures of quality commonly used for speckle filter assessment enhance certain
characteristics, but suffer from shortcomings. The proposal and assessment of a new filter is frequently
supported by a plethora of measures. As such, it is hard to used them to optimize the parameters that
often specify a filter.

An alternative approach for assessing the performance of despeckling methods is the analysis of
ratio images, as proposed in [4]. This is becoming a standard procedure in the SAR community [5–8].
It consists of checking by visual inspection whether patterns appear in the ratio image I = Z/X̂,
where Z is the original image and X̂ is its filtered version. Under the multiplicative model, the ratio
image from the ideal filter should be pure speckle with no visible patterns. The presence of geometric
structures, changes of statistical properties, or any detail correlated to the original image Z in I
indicates poor filter performance, i.e., not only speckle but also other possible relevant information
has been removed from the original image. The visual interpretation of ratio images, being subjective,
is qualitative and irreproducible.

Figure 1 illustrates this idea. This image is part of a single-look HH SAR data set obtained over
Oberpfaffenhofen, Germany, with textureless areas, bright scatterers, and urban areas with geometric
content as buildings and roads. Figure 1 (top) is the original speckled image, and below left is its
filtered version obtained with the SRAD (speckle anisotropic diffusion) filter [9]. The filtered image is
acceptable in terms of edge and details preservation: textureless areas look smooth, as expected after a
successful despeckling. The middle row right is the resulting ratio image, with a ROI (region of interest)
in the urban area. The third row of Figure 1 (left) presents a zoom of the highlighted area. It shows
remaining structures in the ratio image, an evidence that the SRAD filter is not ideal for this case.

The quantitative assessment of such residual geometrical content is a challenging task because,
besides being subtle, it has similar properties to the rest of the ratio image: brightness, marginal
distribution etc. That is, areas with and without geometrical structure (even narrow edges) are
extremely noisy and, therefore, simple algorithms as, for instance, those based on edge detection, fail at
detecting them; cf. the result of applying the Canny edge detector in the third row of Figure 1 (right).
Also, the better the filter is, the harder will be identifying and quantifying remaining structures in the
ratio image.

This work proposes a new measure of quality that does not require any ground reference.
Using only the original image, an estimate of its number of looks, and the filtered image, we measure
the deviation from the ideal filter as a combination of deviations from the ideal marginal properties
with a measure of remaining structure in the ratio image. We test this unassisted measure of quality in
both simulated data and on images obtained by an actual SAR sensor, and we show it is able to rank
with a single value the results produced by four state-of-the-art filters in a way that captures other
measures of quality. We also show it can be used to fine-tune filter parameters.

The remainder of this article is organized as follows. Section 2 recalls the basic assumptions
underlying this proposal: the multiplicative model. With this in view, we discuss the properties to
be measured in a ratio image. Section 3 presents our proposal of an unassisted quantitative measure
for assessing the quality of despeckling filters. In Section 4 we present the results observed on both
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simulated and actual SAR images, and show an example of filter parameter tuning. Section 5 concludes
the article.

Figure 1. (Top): original SAR image; (Middle): SRAD (T = 50) filtered image and ratio image;
(Bottom): zoom of a selected area within the ratio image and extracted edges by Canny’s edge detector.

2. SAR Image Formation and Ratio Images

Although we recognize the nature of SAR data depends of many system parameters, our work
starts by assuming the multiplicative model for the observations. Observations can be, thus, described
by the product of two independent variables, X and Y that model, respectively, the (desired but
unobserved) backscatter and the speckle noise. So, Z = XY models the observed data, and one aims at
obtaining X̂, a good estimator of X. Appendix B Extension to the Gaussian Additive Noise Model.

Without loss of generality, we will assume the available data is in intensity format, i.e., power.
Amplitude data should be squared before applying our method.

The usual assumption is that Y is a collection of independent identically distributed Gamma
random variables with unitary mean, and shape parameter equal to the number of looks.
The backscatter is constant in textureless areas, and otherwise can be described by another
random variable.

Our main aim is assessing the quality of despeckling filters by measuring how the ratio images
they produce deviate from the idealized result.

The perfect filtered image is X̃ = X and, thus, produces a ratio image Z/X̃ = Y which consists of
pure speckle. Based on this observation, our measure of quality captures departures from the following
hypothesis: “the perfect speckle filter leads to a ratio image formed by a collection of independent
identically distributed Gamma random variables with unitary mean and shape parameter equal to the
(equivalent) number of looks the original image has”.

In the following, we illustrate our idea with images and one-dimensional slices. We elaborate
three situations to make our point on the usefulness of ratio images for detecting the performance of
a speckle filter.

Firstly, we will see the effect of oversmoothing textured areas.
Figure 2a shows a step function in pink (the backscatter), and the observed return from this

backscatter in single look fully developed speckle, i.e., exponential deviates with mean equal to 11 (left
half) and 1 (right half).
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Figure 2b shows a similar situation, but when the backscatter is no longer constant. In this case,
the backscatter is textured with mean 11 and 1, as in the previous example, but varying according
to exponential deviates. The textured step backscatter is shown in pink. When speckle enters the
scene, modeled here again as unitary mean exponential random variables, the observed data obeys
a K distribution; shown in lavender.

(a) (b)

Figure 2. A step: constant and textured versions, and their return. (a) Constant step and speckled
return; (b) Textured step and speckled return.

What should the ideal filter return? It is our understanding that X̃ should be the underlying
backscatter, i.e., either the step function in the case where there is no texture, or the textured
observations without speckle (both depicted in pink in Figure 2).

A filter that returns the step function in the textured case (thin black line in Figure 2b) is
oversmoothing. Figure 3 shows, in semilogarithmic scale, the estimated speckle as produced by
the ideal filter (pink) and by oversmoothing (lavender); these are the resulting ratio images from the
ideal and a poor filter, respectively. This last estimate is the result of dividing the observed return from
Figure 2b by the step function.

Figure 3. Estimated speckle by the ideal filter and by overmoothing.
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The effect of oversmoothing is noticeable: the speckle produced by the ideal filter has less
variability than the one resulting from returning the step function as estimator. While the sample
variance of pure speckle is s2 = 0.80, that of the speckle with remaining structure is s2 = 2.12. Although
numerically detectable by first-order statistics, this effect is seldom visible.

Secondly, we will see how neglecting structures impacts on ratio images.
Figure 4 shows the situation of fully developed speckle, in this case with three looks. It affects

an structure seen as slowly-varying backscatter, the sine curve depicted in pink. The observed
return, obtained as the point-by-point product of the speckle with the backscatter is shown in
lavender; Figure 4a.

(a) (b)

Figure 4. Slowly varying backscatter, fully developed speckle, and estimated speckle.
(a) Slowly-varying mean value and its return; (b) Estimated speckle.

On the one hand if, as we postulate, the ideal filter retrieves the true backscatter, the ratio image
or estimated speckle will coincide with the true speckle (in pink in Figure 4b). On the other hand, if the
filter oversmooths the backscatter and returns a step function (in black in Figure 4a), the resulting
estimated speckle will retain part of the missing estructure; cf. Figure 4b in lavender.

Figures 3 and 4b also show that detecting departures from the ideal situation is a hard task.
Figure 5 shows how the ratio image obtained from neglecting the slowly varying structure looks
like. We postulate and show evidence that this remaining structure can be effectively detected and
quantified with second-order statistics.

Finally, we will see how a poor filter will render a ratio image with detectable structure when
dealing with edges.

Figure 6a shows a line of the strips image typical of articles that analyze the performance of
speckle filters with simulated data; cf. [10,11]. The strips take two values: 1 and 20 (pink), the speckle
is a collection of i.i.d. Gamma variates with three looks and unitary mean, and the observed data
(in lavender) is the product of the strips and speckle.

Figure 6b shows, again, the strips and the estimated backscatter as returned by a simple filter:
the local mean using eleven observations. The oversmoothing is noticeable. It not only degrades the
sharpness of the edges, but also reduces observed value. This last effect is more noticeable over narrow
strips (to the left of the figure).

226



Remote Sens. 2017, 9, 389

Figure 5. Ratio image resulting from neglecting a slowly varying structure under fully developed speckle.

(a) (b)

Figure 6. The effect of oversmoothing on an image of strips of varying width. (a) Strips and speckle;
(b) Filtered strips with oversmoothing.

The estimated speckle, as expected, will be affected by the poor result returned by the local mean
filter, as shown in Figure 7. The true speckle is shown in pink, while the one estimated using the
oversmoothed backscatter tends to have peaks where the smaller strips are (cf. the lavender signal).
This will affect the ratio images rendering data whose behavior departs from the ideal situation,
which is a collection of i.i.d. deviates from the a Gamma distribution with unitary mean and shape
parameter equal to the equivalent number of looks of the original image.

Figure 8 shows these effects in the strips image. Again, we postulate that identifying and
quantifying the departure from the ideal filter, i.e., the remaining structure visible in Figure 8c,
is feasible with both first- and second-order statistics.
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Figure 7. Estimated speckle: ideal and oversmoothing filters.

(a) (b) (c)

Figure 8. Speckled strips, result of applying a 5 × 5 BoxCar filter, ratio image. (a) Speckled strips;
(b) Filtered strips; (c) Ratio image.

3. Unassisted Measure of Quality Based on First- and Second-Order Descriptors

We propose an evaluation based on two components. A statistical measure of the quality
of the remaining speckle is the first-order component of the quality measure. This component is
comprised of two terms: one for mean preservation, and another for preservation of the equivalent
number of looks The second-order component measures the remaining geometrical content within the
ratio image. The three elements that comprise our measure of quality are relative, in order to make
them comparable.

As pointed out before, the usual approach to evaluate ratio images consists of, after the visual
inspection, to estimate the ENL within an homogeneous area. Then, the best filter is the one for which
the ratio image has the mean value closest to unity and the equivalent number of looks closest to the
ENL of the original (noisy) image (see for instance [5]).

To avoid user intervention, which is one of the requirements of our proposal, we automatically
select suitable textureless areas. First, we estimate the local mean and standard deviation on sliding
windows of side w over the original image. With these values, we compute the local ENL (ÊNLnoisy)
as the reciprocal of the squared coefficient of variation. Then, we also compute the local mean and
standard deviation on the ratio image with the same window, obtaining μ̂ratio and ÊNLratio.
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We select as textureless areas those where both ÊNLratio is close enough to ÊNLnoisy and μ̂ratio is
close enough to 1. We stipulate a tolerance for the absolute relative error, and with this we select n
areas. This procedure is illustrated in Figure 9.

Selection
1, . . . , n

μ̂

s
Z

1, . . . , nI0

ÊNLnoisy(1), . . . , ÊNLnoisy(n)

μ̂ratio(1), . . . , μ̂ratio(n)

ÊNLratio(1), . . . , ÊNLratio(n)

Figure 9. Selection of mean and ENL values for the first-order measure.

Then, for the n selected homogeneous areas, we calculate the first-order residual as

r
ÊNL,μ̂

=
1
2

n

∑
i=1

(
r

ÊNL
(i) + rμ̂(i)

)
, (1)

where, for each homogeneous area i,

r
ÊNL

(i) =
|ÊNLnoisy(i)− ÊNLratio(i)|

ÊNLnoisy(i)

is the absolute value of the relative residual due to deviations from the ideal ENL, and

rμ̂(i) = |1− μ̂ratio(i)|

is the absolute value of the relative residual due to deviations from the ideal mean (which is 1). An ideal
despeckling operation would yield r

ÊNL,μ̂
= 0.

We measure the remaining geometrical content with the inverse difference moment (also called
homogeneity) from Haralik’s co-ocurrence matrices [12,13]. Low values are associated with low
textural variations and vice versa. Let P(i, j) be a co-occurence matrix at an arbitrary position, and
p(i, j) = P(i, j)/K its normalized version, with K a constant. The homogeneity, our second-order
measure, is

h = ∑
i

∑
j

1
1 + (i − j)2 · p(i, j). (2)

This is computed for every coordinate, yielding measures of the remaining structure, but we need
a reference to compare it with.

The null hypothesis implies that the probability distribution of the ratio image I is invariant under
random permutations, i.e., if I1, I2, . . . , IM are independent identically distributed random variables,
also are g(I1, I2, . . . , IM), any random permutation. Applying this idea, we measure the geometric
content in a ratio image evaluating h on the ratio image and then on a shuffled versions of it. If there is
no structure in I, h will not change after shuffling, but if I has structure, then shuffling will tend to
destroy it.

Let ho and hg be the mean of all values of homogeneity obtained from the original ratio image Io

and from the result of randomly permuting all its values Ig, respectively. We use δh = 100|ho − hg|/ho,
the absolute value of the relative variation of ho in percentage as a measure of the departure from
the null hypothesis: the larger this variation is, the greater the amount of structure relies on the ratio
image. Here hg is the average over p ≥ 1 samples of Ig.
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Since the spatial structure is subtle in ratio images produced by state-of-the-art filters, δh requires
being scaled to be comparable with r

ÊNL
. After careful experimentation with both simulated data and

images from operational sensors, we found that 100 produces sensible and consistent results. This
value was then fixed as part of our proposal, requiring no further tuning. Note that δh provides an
objective measure for ranking despeckled results regarding solely the remaining geometrical content
within the related ratio images.

The proposed estimator combines the measures of the remaining structure and of deviations from
the statistical properties of the ratio image:

M = r
ÊNL,μ̂

+ δh. (3)

The perfect despeckling filter will produce M = 0, and the larger M is, the further the filter is
from the ideal.

In the following, we will show that the proposed measure of quality is expressive and able to
translate into a single value a number of measures of quality, both objective and subjective.

4. Experimental Setup

In this section we present the results of using the new metric for evaluating the quality of
widely-used despeckling filters. We employ both simulated data and images from operational SAR
systems, and we conclude with an application of our metric for filter optimization.

We used the following filters: E-Lee (Enhanced Lee [14]), SRAD (Speckle Reducing Anisotropic
Diffusion [9]), PPB (Probabilistic Patch Based [15]), and FANS (Fast Adaptive Nonlocal SAR [16]). All of
them provide good results and may be considered state-of-the art despeckling filters. E-Lee filter is an
improved version of the classical adaptive Lee filter [2]. SRAD belongs to the category of PDE-based
(Partial Differential Equations) filters, while the other two belong to the category of nonlocal means
filters. In particular, FANS employs a set of wavelet transforms in its collaborative filtering stage.

The filters were tuned to the recommended designs as provided by their authors, with slight
modifications (mask size and related threshold values) for PPB and FANS that yielded improved
mean and ENL preservation. This was done for a fair comparison with SRAD and E-Lee filters which
perform particularly well on preserving those features.

The E-Lee filter uses a 9 × 9 search window, and all the other parameters are as in [14].
The diffusion time for SRAD is T = 300, and the other parameters are as recommended in [9].
The PPB filter uses 7 × 7 patches and 21 × 21 search windows, and 25 iterations. The FANS filter
uses 8× 8 blocks, and 39 × 39 pixels search area; the remaining parameters are set as specified in [16].
The E-Lee and the SRAD filters are our own implementation. The source codes of PPB and FANS are
available at [17,18], respectively.

For all the experiments, the co-occurrence matrices were computed after quantizing the
observations to eight values, p = 100 independent samples were obtained for each image, and the
tolerance and window side for Equation (1) were set to 0.03 and w = 25, respectively. The window side
does not have a strong impact on the proposed measure; smaller windows will detect larger textureless
patches with less observations, while larger windows will produce the opposite effect.

We will show that usual measures of quality are unable to provide enough evidence for the choice
of a filter and, oftentimes, these quantities are conflicting in both simulated data and images from
a SAR sensor. We will also see that our proposed measure is able to provide a sensible score of filter
performance, and to guide in the choice of optimal parameters.

4.1. Simulation Results

Figure 10a shows the phantom with which we simulated images. This phantom has both large
flat areas, linear edges between them and small pointwise-like details of 2 × 4 and 4 × 4 pixels
(Appendix A). Figure 10b shows the result of injecting single-look speckle to this phantom.
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The mean, variance and ENL are also computed within the four squares and the background.
Good despeckling must preserve the mean value while significantly reducing the variance in these
textureless areas increasing, thus, ENL.

(a) (b)

Figure 10. Blocks and points phantom, and 500 × 500 pixels simulated single-look intensity image.
(a) Blocks and points phantom; (b) Speckled version, single look.

The data shown in Figure 10 allows measuring the ability of speckle filters at reducing noise
(it presents large textureless areas), and at preserving small details [14,19]. The background intensity
is 10, while that of the four squares is: 2 (top left), 40 (top right), 60 (bottom left), and 80 (bottom right).
There are two sets of bright scatterers (intensity 240): twenty of size 4× 4 along the horizontal direction,
and twenty of size 4 × 2 along the vertical. The simulated data are obtained by multiplying these
values by iid exponential deviates with unitary mean.

Figure 11 shows the results of applying the four filters on the simulated image, and their ratio
images (first and second column respectively).

The four filters perform well since they preserve edges and bright scatterers, and also make
textureless areas smoother. The ratio images reveal that the SRAD, and the E-Lee filters seem to be
the least effective in terms of remaining structure as the squares edges are still visible (more for the
SRAD filter). This remaining geometric content seems minimum for the PPB and FANS filter, although
a careful observation reveals structures in all ratio images. See details in Figure 12.

It is expected that this subjective assessment be confirmed by the quantitative results provided by
our proposal.

An objective assessment can be performed with respect to the ground reference. To that aim,
we computed the Mean Structural Similarity Index MSSIM [20], the Peak Signal-to-Noise Ratio PSNR,
and the measure of correlation between edges β [21].

MSSIM measures the similarity between the simulated and the despeckled images with local
statistics (mean, variance and covariance between the unfiltered and despeckled pixel values) [20,22].
This measure is bounded in (−1, 1), and a good similarity produces values close to 1. The β estimator
is useful for assessing edge preservation. It evaluates the correlation between edges in the ground
reference and the denoised images; edges are detected by either the Laplacian or the Canny filter. This
parameter ranges between 0 and 1, and the bigger it is, the better the filter is; ideal edge preservation
yields β = 1. PSNR is a global measure of quality, as it measures the ratio of the maximum value and
the square root of the total error. High PSNR indicates a well-filtered image.
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Figure 11. Results for the simulated single-look intensity data. Top to bottom, (left) results of applying
the SRAD, the E-Lee, the PPB and the FANS filters. Top to bottom (right), their ratio images.
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Figure 12. Zoom of the results for synthetic data: (top) Noisy image, (first row, left) SRAD filter,
(first row, right) E-Lee filter, (second row, left) PPB filter and, (second row, right) FANS filter.

Table 1 presents the measures of quality as estimated in the simulated image ROIs (four squares
and background), and also in the complete image. From this table, SRAD, E-Lee and PPB performances
are comparable and quite acceptable. However, FANS obtains most of the best scores (mainly for
variance reduction and ENL) while preserving reasonably well mean values. MSSIM and β are also
better (for instance, β = 0.40 for FANS and β = 0.22 for the E-Lee filter). The zoom in Figure 12
corroborates this numerical assessment.

Table 1 also shows the values for ENL and the estimated μ within the background of the ratio
image. All are close to the ideal (ENL ≈ 1, μ ≈ 1), although the best results are for FANS (ENL = 1.0028
and for E-Lee (μ = 1.0019)).

Table 2 shows that the proposed measure provides significantly different values for each filter.
According to M, FANS is the best filter, followed by SRAD, E-Lee and PPB. The results are consistent
with both the quantitative and qualitative visual assessment of the filtered images and their ratio.
Note that FANS is the one with least geometric content within the ratio image (δh = 6.26), and also
with lowest r

ÊNL,μ̂
residual. The opposite behavior is observed in PPB, although less residual content

is visible in the ratio image (compared to SRAD and E-Lee filters) it obtains the highest (worst) M
score (7.0371). Note that this result agrees with the commonly accepted criteria of evaluation of
a despeckling filter: mean and ENL must be preserved. Due to that high score in the r

ÊNL,μ̂
residual,

PPB is strongly penalized.
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Table 1. Quantitative evaluation of filters on the simulated SAR image (best values in boldface).

Simulated SAR Data True Simulated SRAD E-Lee PPB FANS

Background
μ 10 9.93 9.94 9.91 10.12 10.13
s 10 9.99 0.96 0.92 1.02 0.45

ENL 1 0.98 105.86 115.13 90.87 489.38

Top left square
μ 2 1.96 1.97 1.96 1.99 2.01
s 2 1.93 0.19 0.19 0.20 0.08

ENL 1 1.03 101.80 106.17 94.64 640.55

Top right square
μ 40 40.07 39.98 39.85 40.69 40.59
s 40 39.83 4.41 4.24 3.89 2.04

ENL 1 1.01 82.09 88.10 109.20 394.84

Bottom left square
μ 60 59.92 60.12 59.93 60.17 61.54
s 60 60.00 6.76 5.78 5.67 2.88

ENL 1 0.99 78.88 107.49 112.50 455.83

Bottom right square
μ 80 79.32 79.35 78.99 81.53 81.61
s 80 78.89 8.76 7.63 8.20 3.68

ENL 1 1.01 81.88 106.99 96.68 490.45

Whole image
PSNR — 73.87 80.30 78.72 79.07 77.85

MSSIM — 0.38 0.95 0.95 0.95 0.98
β — 0.14 0.22 0.27 0.30 0.40

Ratio image ÊNLratio 1 — 1.0744 1.0346 1.0858 1.0028
μ̂ratio 1 — 0.9914 1.0019 0.9775 0.9974

Table 2. Quantitative evaluation of ratio images for the simulated data (best value in boldface),
computed on n = 83 automatically detected homogeneous areas.

Filter ho hg δh r
ÊNL,μ̂

M
SRAD 0.3026 0.3023 9.41 4.6634 7.0371
E-Lee 0.3465 0.3460 14.30 2.8781 8.5910
PPB 0.5551 0.5543 14.56 5.7751 10.1704

FANS 0.3827 0.3829 6.26 2.0944 4.1816

4.2. Results for Actual SAR Images

We show the benefits of our proposal on two SAR images obtained by the AIRSAR sensor in HH
polarization, three looks in intensity format; cf. Figure 13.

(a)

1

2

1

2

(b)

Figure 13. Intensity AIRSAR images, HH polarization, three looks. (a) Flevoland; (b) San Francisco bay.
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Figure 13a shows a subregion of 500 × 500 pixels from the image of Flevoland, The Netherlands.
It corresponds to a flat area made up of reclaimed land used for agriculture and forestry. The image
contains numerous crop types grown in large rectangular fields which are very appropriate to evaluate
mean and variance values. There are also bright scatterers which allow evaluating the filters ability
at preserving them. Figure 14 shows the filtered images in the first column, and their ratio images in
the second.

Figure 14. Results for the Flevoland image. Top to bottom, (left) results of applying SRAD, E-Lee,
PPB and FANS filters. Top to bottom (right), their ratio images.
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As expected, the filters perform well in terms of variance reduction and edge and bright
scatterers preservation. FANS (bottom) provides the best visual result, outperforming the other filters:
homogeneous areas are notably more homogeneous. SRAD blurs a little the image. PPB gets a fine
visual result but it seems also overfiltered although patch homogeneity outperforms to the other filters.
Edge preservation is better for FANS too as it can be appreciated in the images shown in Figure 15.

FANS is also the best with respect to structural content in the ratio image, and SRAD is the one
leaving most structure within it. However, as for the simulated image, minute geometrical content still
remains after applying FANS.

Figure 15. Zoom of the results for Flevoland image: (top) Noisy image, (first row, left) SRAD filter,
(first row, right) E-Lee filter, (second row, left) PPB filter and, (second row, right) FANS filter.

Table 3 presents the mean, standard deviation and ENL values estimated in the boxed regions
identified in Figure 13 (left). FANS is the best with respect to the mean preservation in both regions,
although all filters obtain competitive values. The best variance reduction and ENL values are obtained
with PPB, notably in ROI-2.

The analysis of the ratio images (see Table 4) is not conclusive: no filter gets the best values for all
estimators. PPB produced a poor ENL result in both ROI-1 and ROI-2 (2.8048 and 3.8159, resp., instead
of 3). However, all results are acceptable with small differences and, based on the solely analysis
of these estimations within the ratio images one can hardly decide if a filter performs better than
the others.
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Table 3. Quantitative assessment of Flevoland filtered data in selected ROIs (best values in boldface).

Filter
ROI-1 ROI-2

μ̂ s ENL μ̂ s ENL

Original 0.0047 0.0030 2.5000 0.0208 0.0110 3.5441
SRAD 0.0047 7.3561 ×10−4 41.2367 0.0204 0.0012 283.7539
E-Lee 0.0047 7.4516 ×10−4 39.1870 0.0206 0.0012 276.1669
PPB 0.0048 3.3690 ×10−4 200.6540 0.0212 5.8933 ×10−4 1.2918 ×103

FANS 0.0047 5.0309 ×10−4 86.1449 0.0209 6.2295 ×10−4 1.1290 ×103

Table 4. Quantitative assessment of ratio images for Flevoland filtered data in selected ROIs
(best values in boldface).

Filter
ROI-1 ROI-2

μ̂ ENL μ̂ ENL

SRAD 0.9862 2.9836 1.0152 3.6287
E-Lee 0.9981 2.9824 1.0097 3.5755
PPB 0.9720 2.8048 0.9729 3.8159

FANS 0.9942 2.8822 0.9874 3.7082

In agreement with the visual inspection, FANS has the best M score (see Table 5). For these data,
E-Lee obtains the worst score (86.2818) showing also a high r

ÊNL,μ̂
residual (11.2636). It is interesting

to point out that, although the best preservation of r
ÊNL,μ̂

within the ratio image is provided by SRAD
(r

ÊNL,μ̂
= 8.2782), its final M score is heavily penalized by δh = 66.81 which accounts for the remaining

structural content, as expected. Notice that δh = 1.09 for FANS.

Table 5. Quantitative evaluation of ratio images for Flevoland data (best value in boldface), computed
on n = 8 automatically detected homogeneous areas.

Filter ho hg δh r
ÊNL,μ̂

M
SRAD 0.2043 0.2029 66.81 8.2782 37.5450
E-Lee 0.2247 0.2212 161.30 11.2636 86.2818
PPB 0.6210 0.6140 114.30 10.2211 5.6174

FANS 0.8944 0.8943 1.09 8.8547 4.9771

In the following, we present the results for the other AIRSAR image.
Figure 13b shows a subregion of 500 × 500 pixels from the three-look intensity AIRSAR, HH

polarization, over the San Francisco Bay. This image contains mostly urban areas and sea, parks and
hills covered by vegetation. There are few textureless areas except for the ocean.

Figure 16 presents the results obtained with SRAD, E-Lee, PPB and FANS (top to bottom, left).
The corresponding ratio images are also shown (second column).

SRAD clearly overfiltered and, consequently much structure is found within its ratio image.
Notice that we have applied the recommended filter parameters [9] that provided acceptable results for
the simulated case and for the previous actual case (Flevoland) but, as showed, another more suitable
set is required for this image. E-Lee preserves well the bright scatterers but parts of the image seem
also overfiltered (the forest and some building blocks); as a result, much geometric content is visible in
its ratio image. The PPB and FANS results are visually comparable, although some bright scatterers
due to buildings are lost by PPB. FANS is also better at edge preservation. Once again, FANS ratio
image resembles pure speckle, as seen in the bottom right image, while the structural contents in the
PPB ratio image are noticeable.
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Figure 16. Result for the San Francisco bay image. Top to bottom, (left) results of applying SRAD,
E-Lee, PPB and FANS. Top to bottom (right), their ratio images.
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Figure 17 shows a detail of those results. Notice that PPB and FANS results are visually acceptable
and quite similar.

Figure 17. Zoom of the results for San Francisco image: (top) Noisy image, (first row, left) SRAD filter,
(first row, right) E-Lee filter, (second row, left) PPB filter and, (second row, right) FANS filter.

Table 6 presents the mean, standard deviation and ENL estimated in the boxed regions identified
in Figure 13b. As with the Flevoland data, no conclusive results stem from those values. However,
FANS is consistently the best over ROI-2. A similar conclusion is reached for the estimators measured
on the ratio images shown in Table 7.

Table 6. Quantitative assessment of San Francisco bay filtered data in selected ROIs (best values
in boldface).

Filter
ROI-1 ROI-2

μ̂ s ENL μ̂ s ENL

Original 6.8327 ×10−4 3.8422 ×10−4 3.1625 0.0018 8.9834 ×10−4 4.1959
SRAD 7.0597 ×10−4 3.6942 ×10−5 365.2071 0.0021 8.1671 ×10−5 674.1768
E-Lee 6.8252 ×10−4 8.9163 ×10−5 58.5959 0.0020 1.7975 ×10−4 129.6569
PPB 6.9884 ×10−4 3.2459 ×10−5 463.5443 0.0020 1.5831 ×10−4 163.9516

FANS 6.9156 ×10−4 4.7095 ×10−5 215.6278 0.0020 3.5513 ×10−5 3.2947 ×103
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Table 7. Quantitative assessment of ratio images for San Francisco bay filtered data in selected ROIs
(best values in boldface).

Filter
ROI-1 ROI-2

μ̂ ENL μ̂ ENL

SRAD 0.9651 3.3477 0.8634 4.7106
E-Lee 0.9955 3.5834 0.8948 4.9673
PPB 0.9692 3.4437 0.9004 4.7289

FANS 0.9829 3.3819 0.9023 4.2443

Table 8 presents the proposed M metric. Again, FANS obtains the best score as expected from the
visual inspection of the ratio images. Although the best result for ENL value and μ preservation is for
the SRAD filter, due to the large amount of residual structure within its related ratio image, δh is large
enough to rank it to the last position among all despeckling filters discussed in this work.

Table 8. Quantitative evaluation of ratio images for San Francisco bay data (best value in boldface),
computed on n = 10 automatically detected homogeneous areas.

Filter ho hg δh r
ÊNL,μ̂

M
SRAD 0.5643 0.5368 487.26 0.2216 5.0942
E-Lee 0.5813 0.5586 390.35 0.3262 4.2297
PPB 0.7449 0.7419 40.65 0.5395 0.9460

FANS 0.7138 0.7141 5.10 0.4231 0.4741

The above results for actual SAR data support the use of our proposed M metric.

4.3. Using M for Filter Design

Next we show the use of M in fine-tuning the parameters of a despeckling filter on actual data.
We use FANS due to its already attested performance, and the Niigata Pi-SAR data as the image to
be despeckled.

Figure 18 (left) shows a subimage (300 × 300 pixels), in intensity format, one look and
HH polarization. The resolution of this image is 3 m× 3 m. The selected area includes urban and
forest patches.

As indicated in [16] FANS requires more than ten control parameters, although the authors also
mentioned that “All parameters have been set once and for all, obtaining always satisfactory results in the
experiments, so the user can forget about them and keep the default values”.

However, we show that some improvement can be achieved by a basic optimization strategy.
We selected three control parameters: S (size of rows and columns of neighborhood blocks),
PFA (false alarm probability related to wavelet thresholding for the classification process), and W
(wavelet transform used in the 2D spatial domain). The default values for these parameters are
S = 16, PFA = 10−3 and, the Daubechies-4 wavelet for the choice of W. These control parameters are
extensively discussed in [16], and they seem to have a strong impact on the filter performance.

The filter was optimized by exhaustive search: S ∈ [4, 20] with steps hS = 1, PFA ∈ [0.001, 0.01]
with steps hP = 0.001, and wavelet transforms from the ones suggested in the author’s Matlab
implementation: Meyer, DCT (discrete cosine transform), Haar, Daubechies-2, Daubechies-3,
Daubechies-4, biorthogonal-1.3, and biorthogonal-1.5.

The optimal values found were S = 4, PFA = 0.0041 and the Haar wavelet transform. With these,
eighteen 15× 15 homogeneous areas were detected.

The despeckled result by FANS with default parameters is shown in Figure 18 (middle) and the
result by using the optimized parameters is shown in the same figure (right). A seen, some artifacts
have been notably reduced and homogeneous areas, which seem more uniform with the optimized
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filter. The ratio images are depicted in Figure 19. A visual inspection suggests that there remains less
geometrical structure within the ratio image by filtering with the optimized parameters.

Figure 18. Intensity Pi-SAR, HH one look Niigata image (left); Results of applying FANS filters with
default parameters (middle) and with optimized parameters (right).

Figure 19. Ratio images for Niigata data; FANS with default parameters (left) and with optimized
parameters (right).

Table 9 presents the mean, standard deviation and ENL estimated in the boxed region identified
in Figure 18 (left). Best results for the three estimators are for the optimized FANS filter.

Table 9. Quantitative assessment of San Francisco bay filtered data in selected ROIs (best values
in boldface).

Filter μ̂ s ENL

Original 0.0283 0.0261 1.1757
FANS (default parameters) 0.0302 0.0106 8.1171

FANS (optimized parameters) 0.0295 0.0083 12.6325

Similar conclusion is reached for the estimators measured on the ratio images shown in Table 10.
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Table 10. Quantitative evaluation of ratio images for Niigata data (best values in boldface), computed
on n = 18 automatically detected homogeneous areas.

Filter μ̂ ENL

FANS (default parameters) 0.8627 2.2270
FANS (optimized parameters) 0.9006 1.8745

The proposed M metric is presented in Table 11.

Table 11. Quantitative evaluation of ratio images for Niigata data (best value in boldface), computed
on n = 18 automatically detected homogeneous areas.

Filter r
ÊNL,μ̂

δh M
FANS (default parameters) 0.4833 20.89 10.6867

FANS (optimized parameters) 0.3794 6.50 3.4397

From these results, it is clear that M can be applied to design a despeckling filter working on
actual data without the need of ground references.

5. Conclusions

We proposed a new image-quality index, M, to objectively evaluate despeckling filters. The
proposal operates only in the ratio image and requires no reference. The evaluation relies on measuring
deviations from the ideal statistical properties of the ratio image and their residual structural contents.
The last component is computed by comparing a textural measure in the ratio image with random
permutations of the data.

We have shown the expressiveness and adequacy of M using both simulated data and SAR
images, and we verified that it is consistent with widely used image-quality indices as well as with the
visual inspection of both filtered and ratio images. It has been also shown that the proposed unassisted
image quality index can also be embedded into the design of despeckling filters. Additionally,
the computational cost related to the proposed estimator is comparable to state-of-the art indexes.

The proposal is valid as long as the multiplicative model holds and provided that at least one
(even small) region can be detected as textureless. The user is required to input an estimate of the
number of looks. The index employs a random component, but it is reproducible once fixed the
platform, the random number generator, and the seed.
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Appendix A. Computational Platform

The code and data for reproducing the results here reported are available here http://www.
de.ufpe.br/raydonal/ReproducibleResearch/UNASSISTED/UNASSISTED-QUANTITATIVE.html.
The Matlab [23] language was used to simulate and analyze the data. Haralick’s textural features were
also computed by the available libraries in Matlab. The computational cost for the 500× 500 synthetic
data shown in this work (see Figure 10) with the parameters setting as mentioned in Section 4, is
around 20 s in an Intel Core i7 Q740 1.73 GHz machine.
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Appendix B. Extension to the Gaussian Additive Noise Model

The idea of using the residual image as a proxy for filter quality can be also used for the Gaussian
additive model. If the observed image is Z = X + Y, with X and Y independent fields, and Y
a collection of iid zero-mean Gaussian random variables, then the ideal filter will produce X̂ = X,
and the residual image I = Z − X̂ = Y should bear no structure and be formed by Gaussian deviates
with zero mean and the same variance. This idea was used by Hale [24] to attest to the superiority of a
new filter for seismic images. The analysis is visual, so there is room for research using, for instance,
the Anderson-Darling test for normality. Peng et al. [25] also analyze residuals as a measure of quality
of subspace clustering.
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Abstract: Hyperspectral image compressive sensing reconstruction (HSI-CSR) is an important issue
in remote sensing, and has recently been investigated increasingly by the sparsity prior based
approaches. However, most of the available HSI-CSR methods consider the sparsity prior in spatial
and spectral vector domains via vectorizing hyperspectral cubes along a certain dimension. Besides,
in most previous works, little attention has been paid to exploiting the underlying nonlocal structure
in spatial domain of the HSI. In this paper, we propose a nonlocal tensor sparse and low-rank
regularization (NTSRLR) approach, which can encode essential structured sparsity of an HSI and
explore its advantages for HSI-CSR task. Specifically, we study how to utilize reasonably the l1-based
sparsity of core tensor and tensor nuclear norm function as tensor sparse and low-rank regularization,
respectively, to describe the nonlocal spatial-spectral correlation hidden in an HSI. To study the
minimization problem of the proposed algorithm, we design a fast implementation strategy based
on the alternative direction multiplier method (ADMM) technique. Experimental results on various
HSI datasets verify that the proposed HSI-CSR algorithm can significantly outperform existing
state-of-the-art CSR techniques for HSI recovery.

Keywords: hyperspectral image; compressive sensing; structured sparsity; tensor sparse decomposition;
tensor low-rank approximation

1. Introduction

Hyperspectral image (HSI) is a three-dimension data cube by simultaneously capturing the
information over two spatial and one spectral dimensions. The abundant spatial-spectral information
is able to provide more accurate and reliable signature features on distinct materials, which
contributes to various applications such as scene classification [1], object detection [2], environmental
monitoring [3], etc. However, due to the large data sizes of HSI, the storage and transmission on
limited resource platform become a challenge problem. Although various methods, mainly including
wavelet transform [4–6], TDLT + KLT [7], DPCM [8] and JPEG2000 [9,10], have been proposed to
compress HSI effectively, they treat the HSI as a collection of single band images and neglect the
spatial-spectral knowledge redundancy. Thus, how to build rational and powerful HSI compressive
reconstruction models is still a worthy research issue.
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Remote Sens. 2019, 11, 193

Recently, the compressive sensing (CS) [11–13] theory offers a brand-new field for HSI acquisition
or compression, which only needs to capture a small number of incoherent measurements in the
imaging stage. Then, the acquired measurements can be employed to reconstruct the whole HSI.
For convenient application of CS on HSI, many well-known techniques [14–41] have been presented to
convert an HSI into a sparse signal. Although HSI CS can greatly reduce the resource consumption on
imaging, storage and transmission compared with those conventional compression methods, how to
reconstruct precisely the HSI from fewer measurements is still a challenging problem.

One of the main concerns to the ill-posed reconstruction problem is to convert HSI into sparse
description form via imposing some proper sparsity priors. For example, some effective sparsity
terms with l0, l1 and lp (0 < p < 1) norms [13–16] have been presented to characterize the sparsity for
signal recovery, but those methods neglect the underlying structure information. Regularization-based
approaches usually incorporate the prior knowledge into the observation model and develop a united
framework [17–20]. For those methods, one key issue is how to design a proper regularization term
to characterize the sparsity of HSI. The works in [21–23] mainly consider the sparsity of abundance
matrix by the linear unmixing of an HSI, and then HSI CS models are built using spectral unmixing
procedures. By introducing structured sparsity across spatial or spectral dimension, Zhang et al. [24–28]
extended the compression method based sparse representation/dictionary learning to HSI compression.
More recently, Meza et al. [29,30] explored the group sparsity based spatial/spectral redundancy
structure to achieve HSI compressive sensing reconstruction (HSI-CSR). The HSI CS model proposed
by Golbabaee et al. [31–34] utilized the piecewise smooth structure to explain the underlying gradient
sparsity of an HSI. However, as those techniques depict the HSI sparsity in vector space, the description
form of sparsity is treated as one vector without considering its multidimensional structure. It will
inevitably induce losses and distortions of useful structure information.

Tensor-based HSI-CSR approaches can improve remarkably the HSI recovery quality, since the
existing methods jointly take into account the spatial-spectral information, and reduce the losses and
distortions caused by HSI reshaping [35–44]. Karami et al. [35,36] exploited discrete wavelet transform
and Tucker decomposition (DWT-TD) to encode the spatial-spectral information of HSI. The core idea
behind those techniques is first to use DWT to effectively separate an HSI into different sub-images,
and then to apply TD on the DWT coefficients of HSI bands to compact the energy of sub-images.
Zhang et al. [37,38] compressed an HSI to the core tensor and the HSI could be reconstructed by
the multi-linear projection of the factor matrices. Those methods only consider an HSI as a whole
3D tensor while they are short of more potent constraints on spatial-spectral structure of an HSI.
Yang [39] employed nonlinear tensor sparse representation to recover an HSI from small number of
measurements, and some training examples are required. Wang [40] used the global spatial-spectral
correlation and local smoothness properties underlying in an HSI to enhance the HSI-CSR task,
in which the tensor Tucker decomposition and 3-D total variation jointly characterize the sparsity of
an HSI. Du [41] proposed a patch-based low-rank tensor decomposition for HSI-CSR algorithm that
combined the nonlocal similarity across the spatial domain and the low-rank property over spectral
domain in a united framework.

Although methods reported in [37,38,40,41] are considerably effective for HSI-CSR compared
with vector based approaches, it is difficult to estimate the accurate rank under tensor decomposition
and further acquire unique decomposition. Thus, the methods based on tensor decomposition cannot
provide an elaborate characterization on spatial-spectral information in HSI-CSR problem. In [42,43],
this reasonable usage of the global correlation across spectrum (GCS) and nonlocal self-similarity
over space (NSS) prior knowledge have led to quite powerful HSI denoising algorithms, and the
effectiveness of GCS and NSS for HSI-CSR has not been reported in the public literature. Such facts
inspire us to solve the challenging HSI-CSR problem by the structured sparsity based on GCS and NSS
in this paper, and a unified framework combining nonlocal tensor sparse representation and low-rank
regularization is proposed for HSI-CSR, as shown in Figure 1. The main contributions of this paper are
listed as follows.
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Figure 1. Flowchart of the proposed HSI-CSR algorithm, which consists of two steps: sensing and
reconstruction. First, it acquires the compressive measurement y by a random sampling matrix Φ.
Second, NTSRLR recovers an HSI from the measurements y = Φx.

1. To the best of our knowledge, we are the first to exploit GCS and NSS to construct the
nonlocal structure sparsity of HSI that is a faithfully structured sparsity representation form
for HSI-CSR task.

2. For each cube that is formed by grouping nonlocal similar cubes, the tensor representation based
on tensor sparse and low-rank approximation is introduced to encode the intrinsic spatial-spectral
correlation.

3. The HSI-CSR task is treated as an optimization problem; we resort to alternative direction
multiplier method (ADMM) [44] to solve it.

A preliminary version of this work has appeared in [45], which presents the basic approach. In [45],
we established the nonlocal structured sparsity from the perspective of the tensor low-rank property,
which adopts the two most commonly used tensor low-rank representation forms: tensor low-rank
approximation and tensor low-rank decomposition. In this paper, we depict the nonlocal structured
sparsity via the tensor low-rank approximation and sparse representation. Although the tensor
low-rank decomposition and sparse representation are derived from the Tucker decomposition model,
the former needs to preset the ranks along all dimension while the latter introduces an l1-based sparse
term on core tensor. In practical application, the latter possesses the reliable capability to represent
the high-dimension data by mitigating the tensor rank overfitting or underfitting. In addition, this
paper adds: (1) the detailed background of HSI-CSR; (2) the theoretical analysis of NTSRLR; and
(3) additional HSI-CSR experiments.

The remainder of this paper is organized as follows. Section 2 introduces the tensor notations and
operations commonly used in this paper, and background of CS. In Section 3, a novel algorithm for
HSI-CSR based on the NTSRLR model is proposed. Section 4 demonstrates the results of extensive
experiments and Section 5 draws the conclusion.

2. Notations and Background of HSI-CS

2.1. Notations

Throughout the paper, we denote scalars, vectors, matrices and tensors by non-bold letters, bold
lower case letters, bold upper case letters and calligraphic upper case letters, respectively. Besides,
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we introduce some necessary notations and preliminaries about tensor as follows. A tensor of order
N, which corresponds to a N-dimensional data array, is denoted as X ∈ R

I1×···×In×···×IN . Elements
of X are denoted as ai1···in ···iN , where 1 ≤ in ≤ In. Definitions of tensor terminologies in the paper
follow exactly the same description in [46]. Denote ‖X ‖F = 〈X ,X 〉 (∑i1i2,...,iN

|ai1i2,...,iN |2)1/2, ‖X ‖1 =

∑i1i2,...,iN

∣∣ai1i2,...,iN

∣∣ and ‖X ‖0 as the F-norm, l1 norm and l0 norm of a tensor X , respectively. ‖X ‖0 ≤
K means that K is the number of non-zero entries of X . It is convenient to unfold a tensor into
a matrix during the algorithm. The “unfold" operation along the mode-n on a tensor X is defined
as unfoldn(X ) := X(n) ∈ R

In×(I1×···×In−1 In+1×···×IN), and its opposite operation “fold" is defined as
foldn(X(n)) := X . The Kronecker product of matrices A ∈ R

I×J and B ∈ R
K×L is a matrix of size

IK×JL, denoted by A ⊗ B. The multiplication of a tensor X with a matrix Y ∈ R
Ik×Jk on mode-k is

denoted by X×kY = Z , which also can be defined in terms of mode-k unfolding as Zk = YXk.

Definition 1. (Tucker decomposition) [46]: The Tucker decomposition form of a tensor X is:

X = G×1U1×2 · · · ×NUN (1)

where G ∈ R
J1×J2×···×JN is the core tensor and it reflects the interaction between components along different

modes, and Un ∈ R
In×Jn is the orthogonal factor matrix in each mode. Thus, we can achieve the k-unfolding

form of Tucker decomposition in Equation (1)

X(n) = UnG(n)(UN ⊗ · · · ⊗ Un+1 ⊗ Un−1 ⊗ · · · ⊗ U1) (2)

2.2. Background of HSI-CS

For a given HSI X ∈ R
W×H×S (W × H spatial resolution and S spectral bands), x ∈ R

WHS denotes
the vector form of X . Let N = WHS, then the compressive measurement y ∈ R

M can be obtained
from the following CS model:

y=Φx (3)

where Φ ∈ R
M×N(M < N) denotes the compressive operator. The CS theory indicates that

a sufficiently sparse signal x can be exactly reconstructed from only a few observation y when the
compressive operator Φ satisfies the restricted isometry property (RIP) [11]. Under the RIP, the ill-posed
recovery problem can be formulated into following form by pursuing the sparsest signal x, i.e.,

x = min
x

‖x‖0, s.t. y=Φx (4)

where ‖ · ‖0 denotes l0 norm as a sparsity constraint. However, the l0 norm minimization in Equation (4)
is combinatorially NP-hard and unstable with the noise. For this reason, a feasible strategy is to replace
nonconvex l0 norm as a convex l1 counterpart [15,47] as follows:

x = min
x

‖x‖1, s.t. y=Φx (5)

The optimization for above l1-minimization CS problem can resort to iterative shrinkage
algorithm [48] and Bregman Split algorithm [49].

Since an HSI can be sparsely represented in a certain domain, many CS models have been
proposed for an HSI. Zhang et al. [21–23] unmixed the HSI into a spatially sparse abundance matrix
with an endmember matrix. Meza et al. [29–31] extracted the spatial/spectral redundancy structure
and then applied the group sparsity constraint. Golbabaee [34] used a wavelet basis to transform
the HSI into a sparse matrix, and then adopted the low-rankness and l1 norm to jointly encode
sparsity of the matrix. Zhang et al. [37,38] depicted the sparsity of an HSI in the core tensor domain,
instead of reshaped vector domain. Further works [39–41] employ the sparse tensor decomposition to
characterize sparsity of an HSI. However, those sparsity constraint terms are incapable of capturing
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the underlying structure in an HSI or handling the unwanted noise and artifacts in the CSR procedure.
In our method, we try to cope with those problems by introducing more refined prior knowledge of
an HSI to perfectly promote HSI-CSR performance.

3. The Proposed HSI-CSR via NTSRLR

Structured sparsity is of great importance to the HSI-CSR model that often reveals the rich
self-repetitive structures over spatial domain and the highly correlated bands across the spectral
domain. Several previous works exploiting nonlocal prior have indicated that the structured sparsity
based on nonlocal self-similarity is fairly effective for image restoration [18,19]. However, the
research works in HSI-CSR fields have not been documented. In this paper, we present a unified
framework for HSI-CSR using the structured sparsity via nonlocal tensor sparse representation and
low-rank approximation.

3.1. Non-Local Tensor Formula for Structure Sparsity

The proposed regularization model for structured sparsity consists of two steps: cube grouping
for characterizing GCS and NSS and tensor formulation for sparsity enforcement.

3.1.1. Non-Local Structure Sparsity Analysis

Concerning the GCS and NNS underlying an HSI, we provide an analysis for nonlocal tensor
sparsity and low-rankness, as illustrated in Figure 2. To begin with, for an initial third-order tensor
HSI X ∈ R

W×H×S (e.g., PaviaU dataset), we divide the HSI into a group of 3D full-band cubes (FBC)
{Pi,j}1≤i≤W−w+1,1≤j≤H−h+1 ∈ R

w×h×S(w < W, h < H) with overlaps. For the exemplar cube Pi,j
of size 8 × 8 × 60 located at spatial position (i, j) in Figure 2a marked in red, we first search K-1
(here, we set K = 80) similar cubes by k-NN within a local window (e.g., 70 × 70), shown as k-NN
clustering in Figure 2b. Then, to avoid destroying the high spectral correlation, we unfold a series
of 3D cubes into corresponding 2D matrices along the spectral modes (Figure 2c), and obtain a new
third-order tensor Yp of size 64 × 80 × 60 by stacking a series of similar items (Figure 2d), where
p = 1, . . . P, and P denotes the group number. Such constructed third-order tensor simultaneously
employ the spatial local sparsity (mode-1), the non-local similarity between cubes (mode-2) and strong
spectral correlation (mode-3). The outcome of such arrangement maximizes the benefit from nonlocal
tensor representation form. Next, we give a visual interpretation for the nonlocal tensor sparsity and
low-rank property.

First, by Tucker decomposition for a nonlocal similar cube group from PaviaU dataset, Figure 2e
shows the location of singular values in the core tensor, where redder and bluer colors of elements
represent large values and smaller values, respectively. To further understand the sparsity of tensor
core, Figure 2(e2)–(e4) present three typical slices of core tensor. It is easy to find that the core
tensor satisfies sparse property, with 82.59% of its elements being zeroes. Second, the low-rank
analysis is performed along its local spatial, nonlocal spatial, and global spectral modes, as shown
in Figure 2f. Evidently, the decaying trends of singular values on three curves (pink, blue and green
curves correspond to local spatial, nonlocal spatial, and global spectral modes, respectively) indicate
there are strong correlations in the three modes. Comparatively, the decaying trend of the curve in
mode-2 is most drastic, which is consistent with the nonlocal spatial low-rank theory of an HSI given
in [50]. According to the definition of the accumulation energy ratio (Aer) of top k singular values
in [50], we calculate Top 10 singular values of three modes and attain the Aers of 0.8029, 0.9031 and
0.8186. The quantitative values (i.e., Aers) also indicate that each cube by grouping nonlocal similar
cubes can possess strong low-rank correlation along the mode-2.
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Figure 2. Nonlocal tensor sparsity and low-rank property analysis in HSI.

3.1.2. Non-Local Structure Sparsity Modeling

In Figure 2f, we can observe that the formed FBCs possess the low-rank property, and
a tractable strategy is to use the mode-n rank(r1, . . . , rn) to estimate tensor rank by Tucker
decomposition [46]. For an Nth-order tensor X , the Tucker rank is defined as rank(X ): =

[rank(X(1)), rank(X(2)), . . . , rank(X(N))], where X(i) is the mode-i unfolding of X [51]. Motivated
by the practical applications that the nuclear norm is the convex envelope of the matrix rank within
the unit ball of the spectral norm, further tensor nuclear norm, ‖X ‖∗ = ∑N

n=1 αn

∥∥∥X(n)

∥∥∥∗ is defined
as weighting the unfolding matrix nuclear norm along each mode. Thus, we resort to the following
relaxation form for each Xp to characterize the low-rank property based on GCS and NSS:

L(Xp) = ∑3
i αi‖Xp(i)‖∗ (6)

where ‖Xp(i)‖∗ = ∑
min(m,n)
k=1 σk(Xp(i)) denotes the nuclear norm of matrix Xp(i) of size m × n.

In practice, {Yp}P
p=1 may contain some noise, the data Yp can be modeled as: Yp = Xp +Wp,

where Xp and Wp denote the low-rank component and the noise component, respectively. Hence, we
can estimate the low-rank tensor Xp via the following optimization problem:

Xp = min
Xp

L(Xp), s.t.
∥∥Yp −Xp

∥∥2
F ≤ ε (7)

where ε is associated with the noise level. The model in Equation (7) is similar to the matrix cases
in [18], the difference primarily reflected in that we consider the combination with the correlations
along local-nonlocal spatial modes and spectral mode, and measure the low-rankness of a third-order
tensor Xp by a weighted sum of the rank along each unfolding. Besides, considering the strong
nonlocal spatial low-rankness along mode-2 than two other modes, we set a larger weight for mode-2
in our experiments.

In addition, as shown in Figure 2e, we give a detailed analysis for another notable representation
form for the sparsity prior based on tensor sparse decomposition, which suggests that we can depict
the structured sparsity of an HSI from the perspective of core tensor. Some pioneering works are
presented in [42,43,52–54]. Here, we draw attention to the structured sparsity formulation of an HSI
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under tensor sparse representation framework, thus each third-order tensor Xp can be approximated
by following problem:

min
Gp ,U1p ,U2p ,U3p

S(Gp), s.t. Xp = Gp×1U1p×2U2p×3U3p, UT
ipUip = I(i = 1, 2, 3) (8)

where U1p, U2p, and U3p are factor matrices and S(Gp) is sparse constraint term, and we assume
S(Gp) =

∥∥Gp
∥∥

0 as suggested in [42,43,52]. However, the optimization problem based on l0 constraint
deduced by Equation (8) is non-convex, the research in [53,54] further relaxes the l0-based core sparsity
to l1 case as S(Gp) =

∥∥Gp
∥∥

1. The convex optimization problem corresponding to l1 case can be
represented in Lagrangian form as following:

min
Gp ,U1p ,U2p ,U3p

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1, s.t. UT

ipUip = I(i = 1, 2, 3) (9)

where λ1 and λ2 are the trade-off parameters. Essentially, all factor matrices are orthogonal
dictionaries along local–nonlocal spatial modes and spectral mode. It can be seen that the tensor
sparse representation model explores the GCS and NSS of HSIs in different dimensions by adaptive
multi-dictionaries learning. Compared with the matrix sparse representation technique [19,20],
the advantage of tensor modeling is that it not only characterizes the spatial-spectral correlation
but also the correlation over nonlocal similar cubes in an HSI.

3.2. Proposed Model

Based on the previous analysis, we now derive the following model for solving the
HSI-CSR problem:

min
x,Gp ,U1p ,U2p ,U3p

∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2S(Gp) + λ3L(Xp),

s.t.y = Φx, UT
ipUip = I(i = 1, 2, 3)

(10)

where λ3 is the regularization parameter. It is worth noting that the proposed model can fully exploit
the underlying prior over spatial-spectral domain in an HSI, and thus is expected to have a strong
ability to enhance HSI-CRS task.

3.3. Optimization Algorithm

For the proposed HSI-CSR model, we apply the ADMM [44], an effective strategy for solving
large scale optimization problems, to solve Equation (10). Firstly, we replace S(Gp) and L(Xp) with
the

∥∥Gp
∥∥

1 and
∥∥Xp

∥∥∗, respectively, and introduce P auxiliary tensors {Mp}P
p=1 and equivalently

reformulate Equation (10) as follows:

min
x,Mp ,Gp ,U1p ,U2p ,U3p

∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1 + λ3

∥∥Mp
∥∥∗,

s.t. y = Φx,Mp = Gp×1U1p×2U2p×3U3p, UT
ipUip = I(i = 1, 2, 3)

(11)

Then, its augmented Lagrangian function is:

L(Xp,Mp,Gp, U1p, U2p, U3p,Zp, Λ) = ∑P
p=1

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1

+ λ3
∥∥Mp

∥∥∗ + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉+ λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F

+ 〈Λ, y − Φx〉+ 1
2
‖y − Φx‖2

F

(12)
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where {Zp}P
p=1 and Λ are the Lagrange multipliers, λ4 is the positive scalars. We shall break

Equation (12) into five sub-problems and iteratively update each variable via fixing the other ones.

(a) U1p, U2p, U3p problem:

min
U1p ,U2p ,U3p

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉

+
λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F , s.t. UT
ipUip = I(i = 1, 2, 3)

(13)

which is equivalent to the following sub-problem:

min
U1p ,U2p ,U3p

∑P
p=1

∥∥G×1U1p×2U2p×3U3p −Op
∥∥2

F, s.t. UT
ipUip = I(i = 1, 2, 3) (14)

where Op =
λ1X p+∑3

i=1 (λ4Mi−Zi)

λ1+3λ4
can be easily solved by the method as suggested in [53,54].

(b) Gp sub-problem:

min
Gp

λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉

+
λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F + λ2
∥∥Gp

∥∥
1

(15)

It can be rewritten as

min
Gp

1
2

∥∥Op − Gp×1U1p×2U2p×3U3p
∥∥2

F + λ2
∥∥Gp

∥∥
1 (16)

It can be solved by the Tensor-based Iterative Shrinkage Thresholding Algorithm (TISTA) in [53,54].
(c) Mp sub-problem:

min
Mp

λ3
∥∥Mp

∥∥∗ + 〈Gp×1U1p×2U2p×3U3p −Mp,Zp〉+ λ4

2

∥∥G p×1U1p×2U2p×3U3p −Mp
∥∥2

F ,

(17)

It can be briefly reformulated as:

min
Mp

∑3
i=1

λ3αi
λ4

∥∥∥Mp(i)

∥∥∥∗ + 1
2
‖Bp +

Zp

λ4
−Mp‖2

F, (18)

where Bp = Gp×1U1p×2U2p×3U3p, its equivalent form is

min
Mp

∑3
i=1

λ3αi
λ4

∥∥∥Mp(i)

∥∥∥∗ + 1
2
‖Bp(i) +

Zp(i)

λ4
−Mp(i)‖2

F, (19)

As suggested in [51], its close-form solution is expressed as:

Mp(i) = foldi[Sαiλ3/λ4
(Bp(i) +

Zp(i)

λ4
)], (20)

For a given matrix X, the singular value shrinkage operator Sτ(X) is defined as Sτ(X): =

UXDτ(ΣX)VT
X , and where X = UXσXVT

X is the SVD of X and Dτ(A) = sgn(Aij)(
∣∣Aij

∣∣− τ)+.
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(d) x sub-problem:

min
X ∑P

p=1
λ1

2

∥∥Xp − Gp×1U1p×2U2p×3U3p
∥∥2

F + 〈Λ, y − Φx〉+ 1
2
‖y − Φx‖2

F , (21)

It is easy to observe that optimizing L with respect to x can be treated as solving the following
linear system:

λ1x + Φ∗(Φx) = Φ∗(y − Λ) + λ1vec(X − G×1U1×2U2×3U3), (22)

where G×1U1×2U2×3U3 = ∑P
p=1 Gp×1U1p×2U2p×3U3p, vec(·) denotes the vectorization operator

for a matrix or tensor, and Φ∗ indicates the adjoint of Φ. Obviously, this linear system can be
solved by well-known preconditioned conjugate gradient technique.

(e) Update the multipliers {
Zp = Zp + ρλ4(Bp −Mp)

Λ = Λ + ρ(y − Φx)
(23)

where ρ is a parameter associated with the convergence rate at values of, e.g., [1.05–1.1]. The whole
optimization procedure for the proposed HSI-CSR model can be summarized as Algorithm 1, and
we abbreviate the proposed method as NTSRLR.

Algorithm 1. HSI-CSR based NTSRLR.

Input: The compressive measurements y, measurement operator Φ, and the parameters of the algorithm.
1: Initialization: Initializing an HSI x(0) via a standard CSR method (e.g., DCT based CSR).
2: For l = 1 : L do

3: Extract the set of tensor {Xp}P
p=1 from x(0) via k-NN search the each exemplar cube;

4: For p = 1 : P do

5: Solve the problem (12) by ADMM;
6: Updating U1p, U2p, U3p by via Equation (14);
7: Updating Gp via Equation (16);
8: Updating Mp via Equation (20);
9: Updating the multipliers Zp via Equation (23);
10: End for

11: Updating x(l) via Equation (22);
12: Updating the multiplier Λ via Equation (23);
13: End for

Output: CS Reconstructed HSI x(L).

4. Experimential Results and Analysis

In this section, various experiments on real HSI datasets are executed to assess the performance
of the proposed NTSRLR method. We chose eight popular methods for comparisons, namely the
three classic CS methods including StOMP [55], BCS [56] and multidimensional signal based KCS [57];
total variation based methods with LRTV [34] and TVAL3 [58]; structured sparsity based HSI-CSR
methods with RLPHCS [24], SRPREC [25] and CSFHR [28]; and the recent joint tensor decomposition
regularization and total variation based method (JTRTV) [40]. These methods represent state-of-the-art
HSI-CSR, especially LRTV and JTRTV, which fully consider the HSI sparsity priors. In comparison
experiments, we used the default parameter settings of those compared methods described in the
reference papers. We adopted random measurement matrix as the sampling operator for all methods.

253



Remote Sens. 2019, 11, 193

4.1. Quantitative Metrics

To evaluate the HSI-CSR performances of all methods, five quantitative picture quality indices
(PQIs) were employed in experiments. The first index is mean peak signal-to-noise ratio (MPSNR),
which is defined as the average PSNR of all bands for HSI, e.g.

MPSNR(X , X̂ ) =
1
S ∑S

s=1 PSNR(X s, X̂ s), (24)

where X s and X̂ s denote sth band images of ground truth X ∈ R
W×H×S reconstructed HSI X̂ ∈

R
W×H×S, respectively, and both of them are scaled to the range [0; 255].

The second index, mean structure similarity (MSSIM), was used to evaluate the similarity between
the reconstructed HSI and the original HSI based on structural consistency, which is defined as average
SSIM [59] of all bands for HSI,

MSSIM(X , X̂ ) =
1
S ∑S

s=1 SSIM(X s, X̂ s), (25)

The third index, mean feature similarity (MFSIM), emphasizes the perceptual consistency with
the original image, which is defined as average FSIM [60] of all bands for HSI,

MFSIM(X , X̂ ) =
1
S ∑S

s=1 FSIM(X s, X̂ s), (26)

High values of these three measures MPSNR, MSSIM and MFSIM represent better
reconstructed results.

The fourth index is the spectral angle mapper (SAM) [61], which calculates the average angle
between spectrum vectors of the CS reconstructed HSI and the reference one across all spatial positions;
its definition is as follows:

SAM(X , X̂ ) = cos−1(
xTx̂√

xTx
√

x̂T x̂
), (27)

where x and x̂ denote vector form of the ground truth X reconstructed HSI X̂ , respectively.
The fifth index is the Erreur relative globale adimensionnelle desynthèse (ERGAS) [62],

which measures fidelity of the CS reconstructed HSI based on the weighted sum of MSE in each
band, defined as follows

ERGAS(X , X̂ ) = 100

√√√√∑S
s=1

MSE(X s, X̂ s)

μ2
X̂ s

, (28)

where MSE(X s, X̂ s) is the mean square error between X s and X̂ s, and μ2
X̂ s is the mean value of X̂ s.

Different from the former three PQI measures, smaller values of these two measures represent better
reconstruction performances.

4.2. Experiments on Noiseless HSI Datasets

All methods are evaluated on three HSIs, namely Toy from the CAVE dataset (http://www1.cs.co
lumbia.edu/CAVE/databases/multispectral/), PaviaU and corrected Indian Pines from hyperspectral
remote sensing scenes (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectra-Remote-Sen
sing-Scenes). The Toy is full spectral resolution reflectance data from 400 nm to 700 nm at 10 nm
steps (31 bands total), with spatial resolution 512 × 512. The PaviaU dataset contains 103 bands,
including 610 × 340 pixels. The Indian Pines is of size 145 × 145 with 10 m spatial resolution and
consists of 200 bands via removing 20 noisy bands polluted by water absorption, which covers the
wavelength in the range from 400 to 2500 nm by 10 nm spectral resolution. We conducted experiments
on the three HSI datasets mainly for the following reasons. (1) The three HSI datasets possess higher
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spatial-spectral resolutions and richer non-local similarity, which facilitates that the structured sparsity
across spatial-spectral domains is employed in our HSI-CSR model. (2) These HSIs are benchmark
testing datasets in HSI reconstruction, as presented in [21,22,24,25,40,42,43,45,50,53,54]. (3) We selected
the dataset with classification label, Indian Pines, which helps to compare all methods in term of
classification accuracy. For the experiment, we cropped a sub-region of 300 × 300 for all bands of Toy
and PaviaU, as shown in Figure 3. To validate the performance of proposed method, five different
sampling rates (SR), namely 0.02, 0.05, 0.10, 0.15 and 0.20, were considered.

(a) (b) (c)

Figure 3. HSIs employed in the compressive sensing experiments: (a) Toy; (b) PaviaU; and (c) Indian Pines.

4.2.1. Visual Quality Evaluation

To visually demonstrate the HSI-CSR performances of the proposed method, we present the
pseudocolor images with bands (25,15, 5), bands (55, 30, 5), and bands (23, 13, 3) of reconstructed
Toy, PaviaU and Indian Pines obtained by all methods under sampling rates of 0.20, 0.10 and 0.15
in Figures 4–6, respectively. We have the following observations. (1) All the competing methods
achieved relatively good reconstructed results. (2) The proposed method outperformed the other
methods, as shown by the enlarged subregion (delineated in a red box), where the large-scale sharp
edges and small-scale fine texture features are reconstructed well, as shown in Figures 4, 5 and 6j.
(3) The method StOMP produced serious noise during reconstruction and the details are blurred in
the results of BCS, KCS and CSFHR. Instead of l1-based sparsity term, the TVAL3 utilizes the TV
regularization based on gradient sparsity to preserve the more accurate edges but many details are lost.
Although LRTV simultaneously considers the gradient sparsity and low-rankness of the data, the lack
of an effective constraint for nonlocal spatial information will generate blurring artifacts. The JTRTV
method is a generalization of LRTV for high-dimensional data, although it can deal with the artifacts
problem generated by LRTV, it introduces unwanted noises. The RLPHCS and SRPREC consider the
structure sparsity based on the reweighted Laplace prior. Nevertheless, their reconstructed results
are unsatisfactory and the two methods appear to be virtually powerless for HSI-CSR. We provide
following justifications about poor performance of RLPHCS and SRPREC: (1) The two HSI-CSR
models use the maximum a posteriori framework to learn the hyperparameters; the accumulation of
estimated bias for parameters may lead to a poor HSI-CSR performance. (2) The collected dictionaries
in RLPHCS and SRPREC algorithms may not be overcomplete, which do not fully consider the
redundant structure over spatial and spectral domain. This demonstrates the effectiveness of NTSRLR
technique for HSI-CSR, greatly preserving the local details and structural information of the HSI.
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(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 4. Compressive sensing reconstructed results on pseudocolor images with bands (25,15, 5) of
the Toy image from different methods under sampling rate ρ = 0.20.

4.2.2. Quantitative Evaluation

In Tables 1 and 2, we provide the performance of all methods using MPSNR, MSSIM, MFSIM,
SAM and ERGAS results, over all the spectral bands in Toy, PaviaU and Indian Pines. We highlight the
best results for each case in bold in the current and following tables. The proposed method outperforms
the other approaches under all sampling rates and in particular the PQIs are better than the recent
JTRTV. At sampling rate ρ = 0.02, NTSRLR improves the MPSNR at least 10 dB more than JTRTV on
the Toy, 1.3 dB better on the PaviaU, and 2.7 dB better on the Indian Pines. For ρ = 0.20, the average gain
of MPSNR values of NTSRLR are more amplified compared with JTRTV, up to 14 dB on Toy, 8 dB on
PaviaU and 7 dB on Indian Pines. MSSIM, MFSIM, SAM and ERGAS values values under three HSI
datasets further confirm the robustness of the proposed method at all sampling rates. Although LRTV
is second best method, obviously it still is inferior to ours by visual quality evaluation. Since NTSRTR
explores the underlying nonlocal structure of an HSI by the tensor sparse representation and low-rank
modeling, it gives higher MPNSR, MSSIM, and MFSIM values, and smaller SAM and ERGAS than the
other methods, which only consider the local or single sparsity prior.
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(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 5. Compressive sensing reconstructed results on pseudocolor images with bands (55, 30, 5) of
the PaviaU image from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 6. Compressive sensing reconstructed results on pseudocolor images with bands (23, 13, 3) of
the Indian Pines image from different methods under sampling rate ρ = 0.15.
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The values of PSNR, SSIM and FSIM across all bands on Indian Pines under sampling rate ρ = 0.10
are presented in Figure 7. The proposed method achieves the best PSNR, SSIM and FSIM values in
most bands of the HSI, which also further validates the robustness of the proposed method over all
spectral bands. To further illustrate the superiority of proposed NTSRLR on spectrum reconstruction,
we chose four regions in Toy and PaviaU datasets shown Figure 8a,d; the average reflectance differences
were calculated between reconstructed spectra and original spectra across all bands. The curves of
those average reflectance differences are plotted in Figure 8b,c for Toy and Figure 8e,f for PaviaU. It is
obvious that the reflectance difference between the reference and the reconstruction by NTSRLR is
close to zero—much better than the other comparison methods.

(a) PSNR (b) SSIM (c) FSIM

Figure 7. PSNR, SSIM and FSIM values comparison of different methods for each band on Indian Pines
dataset under sampling rate ρ = 0.20.

(a) Toy (b) Cyan (c) Green

(d) PaviaU (e) Red (f) Blue

Figure 8. Comparison of spectra difference on Toy and PaviaU datasets: (b,c) the spectra difference
curves of different methods corresponding to the region marked by cyan and green rectangles of
Toy in (a) under sampling rate ρ = 0.05; and (e,f) the spectra difference curves of different methods
corresponding to the region marked by red and blue rectangles of PaviaU in (d) under sampling rate
ρ = 0.10.
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Table 1. MPSNRs, MSSIMs, and MFSIMs of different CSR methods on three selected HSIs under
different sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR

[55] [56] [57] [34] [58] [24] [25] [40] [28]

Results on Toy

0.02
MPSNR 25.27 18.45 23.39 22.08 22.91 13.19 14.40 17.19 25.87 27.81

MSSIM 0.7040 0.3499 0.6565 0.6651 0.6364 0.2089 0.2786 0.1601 0.6639 0.7322

MFSIM 0.8044 0.6937 0.7820 0.8061 0.7397 0.6651 0.6272 0.5033 0.8389 0.8484

0.05
MPSNR 29.35 24.63 26.93 26.51 27.63 13.22 13.89 22.65 29.96 34.22

MSSIM 0.8256 0.6672 0.7811 0.7873 0.7817 0.2372 0.1929 0.3374 0.7462 0.8930

MFSIM 0.9189 0.7837 0.8523 0.8783 0.8273 0.6493 0.5480 0.6233 0.8845 0.9423

0.10
MPSNR 29.71 28.24 29.94 32.06 31.81 13.06 15.92 29.93 32.35 40.12

MSSIM 0.8416 0.8072 0.8641 0.9233 0.8871 0.2034 0.1267 0.6860 0.8418 0.9640

MFSIM 0.9261 0.8563 0.8987 0.9517 0.9052 0.6163 0.4505 0.8466 0.9255 0.9814

0.15
MPSNR 30.90 29.40 31.88 34.99 33.46 13.69 27.79 31.47 34.99 44.52

MSSIM 0.8982 0.8429 0.9025 0.9427 0.9141 0.1993 0.7492 0.7673 0.8985 0.9848

MFSIM 0.9485 0.8777 0.9232 0.9669 0.9282 0.5642 0.9082 0.8894 0.9527 0.9928

0.20
MPSNR 31.75 31.63 33.26 40.54 37.65 13.71 25.74 33.39 38.53 47.86

MSSIM 0.9345 0.8845 0.9236 0.9808 0.9593 0.2495 0.7384 0.8504 0.9541 0.9925

MFSIM 0.9617 0.9094 0.9375 0.9876 0.9664 0.6182 0.8942 0.9307 0.9785 0.9965

Results on PaviaU

0.02
MPSNR 28.11 21.74 23.79 23.08 22.99 15.18 14.84 28.04 25.11 29.83

MSSIM 0.7603 0.4767 0.5486 0.6500 0.5014 0.1562 0.0990 0.6708 0.6923 0.8000

MFSIM 0.8246 0.6825 0.6743 0.7974 0.6429 0.6808 0.5758 0.8593 0.8095 0.8884

0.05
MPSNR 30.06 24.26 26.59 27.49 25.29 14.38 15.46 35.73 32.74 37.96

MSSIM 0.8571 0.5572 0.6783 0.8099 0.5914 0.1698 0.1266 0.9235 0.8756 0.9551

MFSIM 0.9371 0.7379 0.7854 0.8863 0.7132 0.7123 0.6379 0.9666 0.9442 0.9774

0.10
MPSNR 30.40 26.36 29.14 32.99 27.48 15.73 16.00 37.10 34.36 42.15

MSSIM 0.8223 0.6479 0.7871 0.9158 0.6907 0.1225 0.1157 0.9452 0.9062 0.9794

MFSIM 0.9409 0.7963 0.8606 0.9479 0.7894 0.5930 0.5461 0.9761 0.9583 0.9905

0.15
MPSNR 31.59 27.08 30.85 33.81 28.33 26.46 28.29 37.39 36.77 44.55

MSSIM 0.8707 0.6812 0.8422 0.9417 0.7268 0.6771 0.8567 0.9487 0.9417 0.9872

MFSIM 0.9523 0.8137 0.8981 0.9683 0.8165 0.8738 0.9255 0.9778 0.9741 0.9944

0.20
MPSNR 32.49 28.54 32.13 40.56 30.46 28.14 35.38 38.03 40.56 46.55

MSSIM 0.9020 0.7445 0.8745 0.9740 0.8057 0.7328 0.9547 0.9548 0.9705 0.9917

MFSIM 0.9594 0.8518 0.9198 0.9862 0.8745 0.8964 0.9800 0.9807 0.9871 0.9965

Results on Indian Pines

0.02
MPSNR 30.45 33.03 31.46 22.81 30.12 19.51 23.58 30.87 30.85 33.54

MSSIM 0.7487 0.7692 0.7385 0.4916 0.7839 0.2234 0.4025 0.8010 0.8089 0.8202

MFSIM 0.8299 0.8128 0.7337 0.8421 0.8026 0.7149 0.8327 0.8102 0.8500 0.8775

0.05
MPSNR 35.70 37.23 33.71 26.77 37.28 16.44 21.01 37.07 36.86 41.15

MSSIM 0.8693 0.8153 0.7763 0.8057 0.8221 0.0920 0.2944 0.9240 0.8671 0.9470

MFSIM 0.8639 0.8554 0.7983 0.8936 0.8517 0.4714 0.8125 0.9475 0.9210 0.9553

0.10
MPSNR 40.77 38.97 35.38 34.10 39.66 16.06 25.10 39.29 37.38 44.12

MSSIM 0.9395 0.8427 0.8165 0.9153 0.8606 0.0614 0.5336 0.9338 0.8798 0.9719

MFSIM 0.9420 0.8867 0.8491 0.9440 0.8919 0.3846 0.8317 0.9472 0.9439 0.9750

0.15
MPSNR 43.71 39.42 36.39 34.65 40.47 19.62 24.05 39.85 39.27 45.65

MSSIM 0.9465 0.8478 0.8417 0.9248 0.8743 0.4756 0.4416 0.9354 0.9197 0.9810

MFSIM 0.9794 0.8942 0.8743 0.9496 0.9056 0.7956 0.7804 0.9476 0.9569 0.9818

0.20
MPSNR 44.92 40.72 37.12 41.66 42.36 20.95 26.07 39.67 41.81 46.96

MSSIM 0.9350 0.8740 0.8601 0.9670 0.9052 0.5259 0.4957 0.9367 0.9475 0.9863

MFSIM 0.9772 0.9179 0.8907 0.9748 0.9349 0.8216 0.7966 0.9465 0.9706 0.9858
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Table 2. SAM and ERGAS comparisons of different CSR methods on three selected HSIs under different
sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR

[55] [56] [57] [34] [58] [24] [25] [40] [28]

Results on Toy

0.02
SAM 0.3040 0.6548 0.3062 0.5096 0.3888 0.9853 0.9707 0.6599 0.4014 0.2810

ERGAS 165.5 864.5 294.7 362.5 309.7 2411 2740 582.3 178.9 154.8

0.05
SAM 0.2500 0.2781 0.2351 0.3967 0.2886 0.9633 0.9210 0.6532 0.3401 0.2029

ERGAS 147.8 257.3 193.9 204.3 181.9 2064 2536 321.4 141.5 84.65

0.10
SAM 0.2318 0.1968 0.1894 0.2162 0.2080 0.6234 0.8382 0.4129 0.2750 0.1031

ERGAS 141.94 170.4 136.9 107.0 113.1 1273 1853 140.3 108.1 35.92

0.15
SAM 0.2629 0.1654 0.1635 0.1940 0.1828 0.4228 0.4562 0.3582 0.2151 0.0998

ERGAS 123.9 148.6 109.9 78.40 93.82 1262 1620 118.5 79.23 28.08

0.20
SAM 0.1123 0.1471 0.1478 0.1112 0.1294 0.3866 0.4250 0.2964 0.1599 0.0733

ERGAS 112.5 116.1 94.29 41.20 58.60 978 1305 95.77 53.85 20.86

Results on PaviaU

0.02
SAM 0.1819 0.2223 0.1931 0.1576 0.2460 0.9542 0.9950 0.1722 0.1248 0.1128

ERGAS 137.8 345.6 264.4 329.0 284.3 2537 3585 156.7 153.8 125.8

0.05
SAM 0.1542 0.1749 0.1512 0.1347 0.2021 0.8849 0.9646 0.0817 0.1019 0.0550

ERGAS 123.4 245.2 187.6 153.2 213.4 2079 2997 67.56 96.19 50.98

0.10
SAM 0.1447 0.1417 0.121 0.0862 0.1701 0.7069 0.8168 0.0725 0.0905 0.0389

ERGAS 118.7 188.0 138.7 90.35 165.2 1858 2425 58.58 80.19 32.53

0.15
SAM 0.1116 0.1326 0.1059 0.0708 0.1596 0.2914 0.2368 0.0708 0.0728 0.0315

ERGAS 103.6 173.3 113.96 77.17 149.8 1247 1921 56.68 61.15 24.90

0.20
SAM 0.0858 0.1178 0.0957 0.0462 0.1359 0.2407 0.0836 0.0674 0.0521 0.0260

ERGAS 93.40 146.2 98.66 38.73 117.7 1231 1427 52.63 41.26 19.74

Results on Indian Pines

0.02
SAM 0.1511 0.1622 0.1383 0.2774 0.1246 0.9166 0.9476 0.1075 0.1087 0.0821

ERGAS 143.2 161.8 138.6 759.7 126.5 1723 2297 129.7 198.7 116.0

0.05
SAM 0.1447 0.0830 0.1063 0.0832 0.0911 0.5668 0.8286 0.0553 0.0723 0.0382

ERGAS 89.48 88.69 119.2 233.2 87.85 1558 1988 64.84 152.6 49.62

0.10
SAM 0.0434 0.0728 0.0888 0.0587 0.0743 0.4821 0.6523 0.0515 0.0659 0.0282

ERGAS 38.77 74.77 96.91 43.08 68.53 1078 1323 58.37 127.4 35.96

0.15
SAM 0.0365 0.0714 0.0799 0.0498 0.0693 0.3914 0.4663 0.0505 0.0549 0.0229

ERGAS 34.98 72.32 86.24 37.45 62.99 917 1258 56.15 78.07 30.81

0.20
SAM 0.0295 0.0622 0.0741 0.0344 0.0586 0.2749 0.4590 0.0481 0.0553 0.0190

ERGAS 31.39 61.87 79.43 33.59 51.61 366 982 50.78 59.69 27.19

4.2.3. Classification Performance on Indian Pines Dataset

The classification accuracy of the HSI with different algorithms was employed to further verify
the effectiveness of the proposed method. Under the same circumstance, we chose the support vector
machine (SVM) [63] and overall accuracy (OA) as the classifier and evaluation index, respectively.
During the classification results with SVM algorithm, we used 16 ground-truth classes in Indian
Pines and 10% randomly generated training sets from each class to test the classification accuracy.
The classification results with different HSI-CSR methods under sampling rate ρ = 0.20 are revealed in
Figure 9a–j. The OA are given in Table 3. As shown in Figure 9j, the classification results in original HSI
appear continuous, and the OA is 86.37%. As shown in Figure 9i, the classification results of NTSRLR
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still show a continuous phenomenon, and the OA of NTSRLR is closer to the reference value. However,
the classification results of other methods are more fragmentary in most regions of the image, with
lower OA values.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original (l) 16 classes

Figure 9. Classification results for the Indian Pines image using SVM before and after CSR under
sampling rate ρ = 0.20.

Table 3. Classification performance comparison before and after CSR on Indian Pines under different
sampling rates.

SRs
StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR

NTSRLR Original
[55] [56] [57] [34] [58] [24] [25] [40] [28]

0.02 71.19% 50.64% 52.37% 60.96% 51.85% 29.61% 10.51% 20.03% 53.21% 73.69%

86.37%
0.05 75.70% 57.83% 56.18% 69.64% 57.83% 36.66% 13.32% 54.47% 59.17% 77.32%

0.10 76.32% 59.01% 62.01% 71.24% 60.92% 41.82% 14.62% 55.66% 62.98% 79.31%

0.15 78.41% 63.80% 65.80% 77.03% 62.70% 45.53% 45.53% 56.84% 65.24% 80.26%

0.20 80.28% 68.73% 70.73% 79.19% 65.73% 46.57% 57.83% 58.13% 67.70% 81.79%

4.3. Robustness for Noise Suppression during HSI-CSR

To further evaluate the effectiveness and robustness of proposed HSI-CSR method for noise
suppression, we chose the Urban dataset (http://www.tec.army.mil/hypercube) contaminated by
different degrees of mixture noise, which was with size of 307 × 307 and 4 m spatial resolution, and
covers the wavelength in the range from 400 to 2400 nm by 10 nm spectral resolution. Under same
competing methods, we removed 24 bands seriously affected by atmospheric attenuations and water
absorptions, and finally reserved 186 bands for the dataset.

We present the pseudocolor image with bands (186, 131, 1), in which the input data is polluted
by Gaussian noise and stripes, as shown in Figure 10k. The CSR results produced by StOMP, BCS,
CSFHR and TVAL3 could neither recover the original HSI nor perform the denoising task well.
Instead, the methods RLPHCS and SRPREC amplified the noise. Although the methods KCS, LRTV
and JTRTV could suppress the noise to some extent, they lost the edges and textural details when
compared to NTSRLR.

Furthermore, we present the quantitative comparisons by showing the horizontal mean profiles
of bands 1 and 186 in Urban dataset before and after CSR in Figures 11 and 12. The horizontal axis in
the figure denotes the row number, and the vertical axis represents the mean gray value of each row.
As shown in Figures 11k and 12k, the profiles have huge fluctuation due to the disturbance of noises.
After CSR, the fluctuation has been moderately alleviated. Evidently, the profiles with the proposed
NTSRLR method are more natural and smoother. The over-smooth profiles corresponding to BCS
are mainly due to the image blurring. This further substantiates the efficiency and robustness of the
proposed HSI-CSR method for noise suppression.
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(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 10. Compressive sensing reconstructed results on pseudocolor images with bands (186, 131, 1)
of the noisy Urban image from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 11. Horizontal mean profiles of compressive sensing reconstructed results on 1st band of real
noisy Urban HSI data from different methods under sampling rate ρ = 0.10.

(a) StOMP [55] (b) BCS [56] (c) KCS [57] (d) LRTV [34] (e) TVAL3 [58] (f) RLPHCS [24]

(g) SRPREC [25] (h) JTRTV [40] (i) CSFHR [28] (j) NTSRLR (k) Original

Figure 12. Horizontal mean profiles of compressive sensing reconstructed results on 186th band of real
noisy Urban HSI data from different methods under sampling rate ρ = 0.10.

Here, we give the theoretical analysis to explain why the proposed HSI-CSR algorithm is able to
suppress noise at the same time. The primary cause is that proposed NTSRLR contributes the noise
suppression to the joint tensor sparse and low-rank constraint on nonlocal cubes. The work in [64]
refers to the fact that the low-rank representation for those nonlocal similar patches to a given patch
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offer helpful remedy for its better image denoising. For tensor data, one can obtain the same results
when unfolding a tensor into a matrix along certain mode, and the nonlocal tensor low-rank term
of NTSRLR model can simultaneously provide complementary low-rank structures along all modes
to promote the denoising performance of tensor data. Therefore, the noise of HSI can be suppressed
to some extent. Besides, the research is [53,54] has demonstrated the effectiveness of tensor sparse
models in multi-dimensional signals denoising, which verifies the positive impact of NTSRLR on noise
suppression from the perspective of tensor sparse representation.

Note that we removed all noisy bands and preserved only 171 bands for quantitative assessment.
Table 4 presents MPSNR, MSSIM, MFSIM ERGAS and SAM of all methods under sampling rates 0.10,
0.15 and 0.20. It can be seen that our method not only recovered the structural and perceptual feature
of Urban dataset, but also preserved better spectral information.

Table 4. MPSNRs, MSSIMs, MFSIMs ERGAS and SAM of different CSR methods on Urban with
different sampling rates.

SRs PQIs

Methods

StOMP BCS KCS LRTV TVAL3 RLPHCS SRPREC JTRTV CSFHR NTSRLR

[55] [56] [57] [34] [58] [24] [25] [40] [28]

0.10

MPSNR 19.63 16.95 23.63 24.76 17.79 22.04 15.13 27.74 26.76 30.88

MSSIM 0.6523 0.4147 0.8152 0.8705 0.4423 0.8155 0.4245 0.8959 0.8933 0.9471

MFSIM 0.8841 0.6918 0.8916 0.9277 0.6562 0.9088 0.7711 0.9561 0.9279 0.9746

ERGAS 280.2 380.4 184.2 159.6 346.3 261.6 480.9 111.5 109.8 76.89

SAM 0.2884 0.2157 0.1551 0.1197 0.2644 0.2737 0.4775 0.1196 0.1252 0.0682

0.15

MPSNR 20.61 17.45 25.78 26.40 18.48 24.16 20.94 27.94 28.27 33.51

MSSIM 0.7088 0.4546 0.8740 0.9134 0.4924 0.8442 0.8306 0.8992 0.9064 0.9662

MFSIM 0.8972 0.7138 0.9242 0.9575 0.6946 0.9284 0.9016 0.9580 0.9582 0.9845

ERGAS 250.4 359.7 145.4 122.9 320.0 202.4 296.3 108.9 91.23 56.89

SAM 0.2461 0.2076 0.1310 0.1024 0.2518 0.2202 0.2885 0.1180 0.1075 0.0564

0.20

MPSNR 20.93 18.72 27.37 33.26 20.35 25.99 25.24 28.40 30.11 35.62

MSSIM 0.7274 0.5509 0.9051 0.9664 0.6133 0.8583 0.9034 0.9040 0.9275 0.9762

MFSIM 0.9011 0.7645 0.9418 0.9840 0.7810 0.9459 0.9445 0.9608 0.9705 0.9896

ERGAS 241.4 310.8 122.3 59.45 259.0 165.8 183.7 103.1 67.60 44.66

SAM 0.2323 0.1879 0.1156 0.0592 0.2207 0.1831 0.1859 0.1149 0.0828 0.0481

4.4. Effectiveness Analysis of Single NTSR or NTLR Constraint

To further demonstrate the effectiveness of nonlocal tensor sparse representation and low-rank
regularization in our model, we conducted two more experiments using the PaviaU dataset. The first
experiment was to perform CSR without the nonlocal tensor low-rank regularization term, and the
reconstructed HSI was achieved solely by nonlocal tensor sparse representation (NTSR). The second
experiment was a reconstruction with the nonlocal tensor low-rank regularization method, but without
NTSR, which is abbreviated as NTLR.

Figure 13 shows the comparison results of MPSNR, MSSIM and SAM of all methods under
sampling rates from 0.05 to 0.20 with interval 0.05. Compared with other methods, the proposed
NTSRLR obtained larger MPSNRs and MSSIMs, and smaller errors as measured by SAM under
different sampling rates. In particular, when the sampling rate is small, the results from NTSRLR are
significantly better than the NTSR and NTLR, which are based on a single constraint. This provides
additional evidence for the effectiveness of the proposed method from the perspective of having
integrated constraints with both non-local sparse representation and low rankness in our model.
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(a) MPSNR (b) MSSIM (c) SAM

Figure 13. MPSNR, MSSIM and SAM bars of different methods under sampling rates 0.05 to 0.20 with
interval 0.05 on PaviaU dataset.

4.5. Computational Complexity Analysis

For an input HSI X ∈ R
W×H×S, the number of FBCs is P = O(WH), the size of each FBC group

is wh × s × S, where s is number of FBCs in each group. The computation cost seems not very small
for quite large P. However, CSR on the P FBCs can be processed in parallel, each with relatively small
computational complexity. The computational complexity of the proposed algorithm that mainly lies
in the update of Mp(i) , Uip(i = 1, 2, 3). Updating Uip requires computing an SVD of Ii × Ii matrix, and
updating Mp(i) requires computing an SVD of Ii × (∏j �=i Ij) matrix. Relatively, the other variables
Gp, x and multipliers updating will not consume lots of running time.

4.6. Convergence Analysis

Lastly, we have conducted experiments to show the convergence of our method using the Toy and
Indian Pines dataset as examples under different sampling rates and different initializations. Figure 14
plots the PSNRs versus iteration numbers for the tested HSIs when the sampling rates are at 0.10 for
Toy and 0.15 for Indian Pines, when using initialization x = Φ∗y and DCT. As can be seen, the different
initialization ways can provide quite close solutions, which indicates the performance of proposed
algorithm is not sensitive to initialization. However, the two initialization ways possess different rates
of convergence, and, by contrast, the initialization via DCT requires only a small number of iterations
to get to the final PSNR. Therefore, we adopted the initialization strategy based on DCT to speed up
our algorithm. Besides, the value of PSNR will become a constant when the algorithm converges.
Thus, in the experiment, we set the maximum number of iterations for termination condition.

(a) ρ = 0.10 (b) ρ = 0.15

Figure 14. Verification of the convergence of the proposed method. Progression of the PSNRs for the
Toy and Indian Pines datasets under different sampling rates.
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4.7. Parameters Analysis

There are four parameters {λi}4
i=1 in the proposed model. Considering the different roles of

nonlocal tensor sparseness and low-rankness terms, we conducted two more experiments on PaviaU
dataset in Section 4.4. The results of MPSNR, MSSIM and SAM demonstrate the nonlocal tensor
low-rank regularization term plays a more important role in proposed model than nonlocal tensor
sparse representation term. It implies that the nonlocal tensor low-rankness term should be assigned
a greater weight to balance the two parts. Therefore, we set λ2= 1 and λ3= 10 in all our experiments.
Correspondingly, we can regard the other two parts with λ1 and λ4 tradeoff as loyalty terms of the
nonlocal tensor sparseness and low-rankness; it is reasonable to obtain a greater value for λ4, and we
set λ1= 0.02 and λ4= 250, as suggested in [42].

Besides, the spatial size of cube and the number of non-local similar cubes are two key parameters.
Some research [17,18,30,41] reports that the spatial size of cube and the number of non-local similar
cubes are dependent on sampling rates. The higher the sampling rate is, the more detailed information
of texture and structure the HSI loses. For this reason, the bigger spatial size and more non-local
similar cubes are beneficial to provide extra knowledge to further promote the HSI reconstruction
performance. Thus, according to the parameter setting principle in [17,18,30,41], we set spatial size
to 6 × 6, 7 × 7, 8 × 8, 9 × 9 and 10 × 10 for ρ = 0.20, 0.15, 0.10, 0.05 and 0.02, respectively; and the
corresponding number of non-local similar cubes are set to 50, 55, 60, 65 and 70.

5. Conclusions

In this paper, we propose a novel method for hyperspectral image compressed sensing
reconstruction by non-local tensor sparse representation and low-rank regularization. The proposed
method considers intrinsic structured sparsity, where the nonlocal similarity between spatial cubes
and the global correlation across all bands are considered fully. Each cube group contains similar
structures; its tensor-based sparsity and low-rank properties can be regarded as very valuable priors.
Experimental results reveal that the proposed methods outperform the state-of-the-art methods in
term of visual inspection, quantitative and classification accuracy assessment. The proposed method
is also superior in noise suppression. We also conclude that it is advantageous to have integrated
constraints using both non-local tensor sparse representation and low-rankness rather than using only
one of them in our model.
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Abstract: Endmember extraction (EE) is one of the most important issues in hyperspectral mixture
analysis. It is also a challenging task due to the intrinsic complexity of remote sensing images
and the lack of priori knowledge. In recent years, a number of EE methods have been developed,
where several different optimization objectives have been proposed from different perspectives.
In all of these methods, only one objective function has to be optimized, which represents a specific
characteristic of endmembers. However, one single-objective function may not be able to express all
the characteristics of endmembers from various aspects, which would not be powerful enough to
provide satisfactory unmixing results because of the complexity of remote sensing images. In this
paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO) is utilized to
tackle the problem of EE, where two objective functions, namely, volume maximization (VM) and
root-mean-square error (RMSE) minimization are simultaneously optimized. Experimental results on
two real hyperspectral images show the superiority of the proposed MODPSO with respect to the
single objective D-PSO method, and MODPSO still needs further improvement on the optimization
of the VM with respect to other approaches.

Keywords: hyperspectral remote sensing; endmember extraction; multi-objective; particle
swarm optimization

1. Introduction

Each pixel of hyperspectral image (HSI) has tens or hundreds of values corresponding to its
spectral bands, which can effectively represent the unique ground objects [1,2]. Hyperspectral images
have been successfully applied to a wide range of fields [3]. However, mixed pixels, constituting more
than one distinct material, may widely exist in the HSI due to the limited spatial resolution, which
makes one single pixel not pure and brings troubles to accurate precision analysis of HSIs [4–6]. Spectral
unmixing (SU) is an effective technique to resolve the mixed pixels problem, which decomposes the
mixed pixels into a collection of pure materials, named endmembers, as well as the corresponding
abundances [7]. SU has two tasks: EE and abundance estimation. It is usually assumed that there are
some pixels that contain only one kind of ground object in the image, and EE is to find out such pure
pixel for basic ground objects [8]. Abundance estimation is the process to estimate different proportion
of each endmember in a mixed pixel. This paper mainly focuses on the task of EE.

The studies of mixed pixels are mostly based on the linear mixture model (LMM) in which
each observed pixel in the image can be represented as the linear combination of a set of spectrally
pure constituent endmembers, weighted by the corresponding abundance coefficients that establish
the proportion of each endmember in the pixel [9]. Under the LMM, assuming that the image
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scene is dominated by P kinds of distinct materials with L bands, mathematically, a pixel vector
y = [y1, y2, · · · , yL]

T can be written as:

y =
P

∑
i=1

siai + n = As + e (1)

where A = [a1, a2, · · · , aP] is an L × P endmember matrix, with each column being an endmember
signature vector. The number of endmember P is a pre-defined parameter, which can be estimated
by existing methods, and the commonly used ones are the virtual dimensionality (VD) estimation
method [10] and the hyperspectral subspace identification (HySime) method [11]. s = [s1, s2, · · · , sP]

T

is a P-dimensional column vector composed of abundance coefficients of the corresponding
endmembers for the pixel, and e represents the L × 1 additive observation noise and error vector.
Generally, there are various kinds of noise in HSIs, and this work assumed that the error is represented
by the additive white Gaussian noise [12]. The LMM for all N observed pixels can be expressed by the
matrix notation:

Y = AS + E (2)

where Y = [y1, y2, · · · , yN ], S = [s1, s2, · · · , sN ], and E = [e1, e2, · · · , eN ]. Due to physical constraints,
the abundance vector is subject to the nonnegative constraint (ANC, si ≥ 0, i = 1, 2, · · · , P) and the
abundance sum-to-one constraint (ASC, 1Ts = 1).

With the LMM, the geometrical interpretation of the HSI is that if e = 0 and there are pure
pixels of all kinds of materials in the image (pure pixel assumption), all the pixels are contained in a
simplex whose vertices are corresponding to the endmembers [13]. Based on the convex geometry
theory, the EE problem can be converted into finding the simplex vertices. Typical methods include
the pixel purity index (PPI) [14], N-FINDR [15], the simplex growing algorithm (SGA) [16], vertex
component analysis (VCA) [17], as well as some new algorithms proposed in recent years [18–22].
However, the classic algorithms such as N-FINDR and VCA have been shown easily affected by noise
and outliers [23]. One progress in recent years lies on the intelligent optimization methods to enhance
the EE results in real HSIs [8,23–27]. Most of these algorithms [8,23–25] consider the EE problem as a
combination optimization problem, and seek the optimal endmember combination that minimizes
the root-mean-square error (RMSE) between the original image and its remixed image. It is showed
that intelligent optimization methods such as D-PSO can get a smaller RMSE compared to N-FINDR
and VCA [24]. Different from the above methods, the MOAQPSO method in [26] takes the VM as the
objective function, and the experimental results showed the conflicts between the RMSE minimization
and the VM objective functions. Specifically, the two objective functions did not achieve their best
values for the same endmember combination. If one method got the optimal endmember combination
in terms of the volume value, then there would be another method superior to it in terms of the
RMSE value. From the previous studies [23,26,28], although the RMSE minimization-based methods
can get superior results than the VM-based methods in terms of the RMSE value (or the VM-based
methods can get superior results than the RMSE minimization-based methods in terms of the volume
value), neither of them can prove completely superior to the other when comparing each one of those
endmember spectra with the reference. The VM-based methods have an obvious advantage over the
RMSE minimization-based methods when extracting rare endmembers, while in VM-based methods
the noises and outliers located within the bounds of the data simplex may be identified incorrectly as
endmembers; the RMSE minimization-based methods are more robust to noises and outliers, while
they usually ignore the rare endmembers. Effective EE results can be achieved if there is a good match
between the characteristic expressed by the objective function and the characteristic of the real image.
However, no a priori knowledge is provided in practice, and different complex hyperspectral remote
sensing images usually have different characteristics. It is concluded that the generalization ability
of one single objective function is poor, and it may not be enough to provide satisfactory EE results
for various images. Hence, it is natural to simultaneously optimize several objective functions so as
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to capture the different data characteristics. In this article, the two widely used objective functions,
the VM [13] and the RMSE minimization [24] objective functions, are integrated to be simultaneously
optimized. In this way, the problem of endmember extraction is transformed into multiobjective
optimization (MOO) problem.

Some MOO methods have been suggested to solve various multiobjective problems [29–32],
in which the PSO-based MOO methods have attracted a lot of attention, and this kind of method is
chosen as the optimization method of this paper due to the simplicity and good search ability of PSO.
Although the existing MOO methods have provided us some ideas on how to solve MOO problems,
to our knowledge, no previous works are reported for EE problem, and the difficulty lies on that
the distribution characteristics of search spaces and solution spaces of different problems are usually
different, so existing methods that are effective for other problems may not work while solving the EE
problem. In this paper, a multiobjective discrete particle swarm optimization algorithm (MODPSO)
is proposed to perform the task of EE for hyperspectral images. The work includes three aspects:
(1) The update strategy of particles’ velocity and position in D-PSO method [24] is selected as the
basic searching strategy for the proposed MOO method. Since the search space and solution space
of the EE problem are both discrete, the particle’s position and the velocity must also be discrete
to ensure the validity of the solution, so the update strategy of the particles should be modified to
make it suitable to the EE problem. (2) For the proposed MOO method, the two objective functions
often conflict with each other during the process of optimization, which means that finding a solution
that optimizes both objective functions at the same time is almost impossible during the process of
optimization [33]. This brings a trouble for the acquisition of the particle’s personal best position (pbest)
and the population’s global best position (gbest) in the multiobjective searching space. The nondominated
sorting algorithm [34] is used to determine pbest and gbest according to the multiobjective function values.
(3) Different from the single objective optimization, there is more than one gbest for the population in the
MOO, and all of the non-dominated solutions are gbests. This brings the problem to determine which
gbest should be chosen when updating the velocity of each particle. To solve the problem, the Sigma
method is utilized to find best local guides for each particle of the population [35]. With all of the
above works, the multiobjective discrete particle swarm optimization algorithm (MODPSO) is finally
formed to perform the task of endmember extraction for hyperspectral images. Like common EE
methods, MODPSO is based on the pure pixel assumption, and needs the number of endmembers as a
priori parameter.

As far as we know, this is the first attempt to use MOO for the purpose of EE. The remainder of
this paper is organized as follows. Section 2 gives a detailed description of the proposed MODPSO
algorithm for EE. Section 3 reports the experimental results of the MODPSO method and several
representative single objective optimization EE algorithms. Conclusions are drawn in Section 4.

2. MODPSO

The proposed MODPSO method implements the task of EE through a MOO technique, and it aims
at finding the Pareto-optimal solutions for simultaneously optimizing multiple objective functions.
Hence, the establishment of the objective functions and the optimization strategy for the multiple
objective functions are two key elements of the MODPSO method. In the following, we will introduce
them in detail.

2.1. Objective Functions for MODPSO

Two kinds of objective functions are elaborately chosen for the proposed algorithm. One is the
maximum volume objective function, which is based on the convex geometry theory, and the other
is to minimize the RMSE obtained after reconstructing the hyperspectral scene by only assuming
the presence of the additive white Gaussian noise [12], like almost all the unmixing methods do [36].
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We have transformed the VM into minimizing the volume inverse, so the two objective functions are
both minimization problems. The two objectives are listed below:

f1 =
1

volume(A)
=

(P − 1)!∣∣∣∣∣det

[
1 1 · · · 1
a1 a2 · · · aP

]∣∣∣∣∣
(3)

f2 = RMSE
(
Y, Ŷ

)
=

1
N

N

∑
i=1

√
1
L
‖yi − ŷi‖2

2 (4)

where L is the spectral dimensionality of the HSI, N is the total number of pixels, P is the number of
endmembers, A is the endmember matrix, and Y and Ŷ are the original image and the remixed image,
respectively. The abundances used to calculate Ŷ are estimated by Equation (5) rather than the fully
constrained least squares method (FCLS) for the sake of efficiency:

Ŝij = max

(
0,

((
ATA

)−1
ATY

)
ij

)
, 1 ≤ i ≤ P, 1 ≤ j ≤ N (5)

In most cases, these two objective functions will not obtain their optimal solution for the
same combination of endmembers, for considering that there usually exists noise or outlier in real
hyperspectral images. The strategy for optimizing the multiple objective functions in MODPSO will
help to find a number of endmember combinations, and none of the obtained solutions can be further
improved on the objective value without degrading another.

2.2. The Updating Strategy of the Particle’s Velocity and Position in MODPSO

MODPSO use particles to search in the feasible solution space. Each particle has two properties:
the position and the velocity. A particle moves along a trajectory depicted by its position and velocity
in the search space, to find an optimal solution. For the EE problem, the search space is discrete,
the particle’s position and the velocity must also be discrete to ensure the validity of the solution.
The Binary coding method used in the D-PSO method is employed here to make particles be able to
search in the discrete feasible solution space. The position of the ith particle at iteration time t can be
written as:

Xt
i =

{(
x1, · · · , xj, · · · , xN

)∣∣xj ∈ {0, 1} ,
N

∑
j=1

xj = P

}
(6)

where xj = 1 if yi ∈ A and xj = 0 if not. Explicitly, for the position of the ith particle Xt
i , all the

elements of it are composed of 0 and 1, and each element xj(j = 1, . . . , N) in it represents the attribute of
the corresponding pixel yj(j = 1, . . . , N), if the value of xj is 1, the pixel yj is selected as an endmember;
otherwise, the pixel yj is not selected as an endmember. Hence, P elements in each particle’s position
are 1, and the remaining elements are 0.

Vt
i is used to specify the ith particle’s velocity at time t. pbestt

i and gbestt are used to specify the
ith particle’s personal best position and all population’s global best position in history before time t.
The updating functions of position and velocity are:

Xt+1
i = Xt

i + Vt
i

Vt+1
i =

{
T
((

pbestt
i − Xt

i
)
+

(
gbestt − Xt

i
))

, rand() ≥ p
R

(
Xt

i
)
, rand() < p

(7)

where T and R are both random selection functions. The velocity obtained by T is based on
self-experience and social experience, while R generates velocity without considering past experiences.
Both T(X) and R(X) are vectors with the same dimension of X, and the calculation for them can be
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divided into three steps: (1) Predefine a random selection probability p, and randomly generate a
number between 0 and 1. (2) If the generated number is greater than or equal to p, select T to obtain
the velocity. First, we find the positive elements and the negative elements of X, respectively. Then,
randomly select one element from all the positive elements of X, and set the element of T(X) with the
same position of this randomly select one to 1. Next, randomly select another element from all the
negative elements of X, and set the element of T(X) with the same position of this randomly select one
to −1. The final velocity is obtained by setting the rest of the elements of T(X) to 0. (3) If the generated
number is less than p, select R to obtain the velocity. First, we find the zero elements and the positive
elements of X respectively. Then, randomly select one element from all the zero elements of X, and set
the element of R(X) with the same position of this randomly select one to 1. Next, randomly select
another element from all the positive elements of X, and set the element of R(X) with the same position
of this randomly select one to -1. The final velocity is obtained by setting the rest of the elements of
R(X) to 0. The acquisition of pbestt

i and gbestt will be introduced in the following part.

2.3. Strategy for Updating pbest and gbest for Optimizing the Multiple Objective Functions

Considering the minimization optimization problem, a MOO problem is of the form:

min f (z) = [ f1(z), f2(z), · · · , fm(z)] (8)

where the decision vectors z belong to the feasible space formed by some constraint functions. m(≥ 2)
conflicting objective functions are to be minimized simultaneously. A decision vector z1 is said to
dominate z2 if:

∀i ∈ [1, 2, · · · , m] fi(z1) ≤ fi(z2), ∃ fi(z1) �= fi(z2) (9)

A vector z1 is called Pareto-optimal if another z2 that dominates it does not exist. Figure 1 shows
the Pareto-optimal solutions when m = 2. There is no single optimal solution in MOO, but a set of
optimal solutions. The set containing all the optimal solutions is known as the Pareto front, and the
task of MOO is to achieve the Pareto front. It is obvious that the solutions in the Pareto front are
non-dominated solutions.

Figure 1. Feasible solutions for minimization optimization. Blue points stand for common solutions,
and red points stand for Pareto-optimal solutions.

One main step in MODPSO is to determine the personal and global best positions. They are easy to
be determined in single objective optimization by selecting the position best fits the objective function.
However, in MOO problems, it is hard to determine which position is better if the solutions represented
by two positions are not dominated by each other. To handle this problem, the nondominated sorting
algorithm [21] is used to update pbest and gbest. Among the population, different particles are
compared by the concept of Pareto domination. If the solution of one particle is not dominated by that
of all the other particles, then it is a Pareto-optimal solution.
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It should be noted that there is not only one gbest in MOO, all non-dominated solutions in the
optimization process are taken as gbest. For the update of gbest, all the pairwise comparisons of the
solutions are conducted by Pareto domination after each iteration, and all the non-dominated solutions
are kept as gbest. A set named global best archive (GBA) is used to store all these non-dominated
solutions (gbest).

For the update of pbest, the newly generated particle’s position Xt+1
i is compared with the pbest in

the history by Pareto domination, if Xt+1
i dominates pbestt

i , we set pbestt+1
i = Xt+1

i ; if pbestt
i dominates

Xt+1
i pbestt+1

i = pbestt
i ; if none of Xt+1

i and pbestt
i dominates the other one, then randomly choose one

from them as pbestt+1
i , as shown in Figure 2.

Figure 2. The update of the particle’s personal best position. The blue point stands for the current pbest
of one particle, and other points are possible locations of the particle at the next time. The plane can
be divided into four parts centered on the pbest. If the particle appears in the area where the purple
point located, then the pbest of the particle should remain unchanged; if the particle appears in the area
where the red point located, then the pbest of the particle will be updated by the red point; and if the
particle appears in the area where the cyan points located, then randomly select one point as the pbest.

2.4. Choose the Best Local Guide for Each Particle

In single objective optimization, there is only one gbest for the population, so all of the particles
use the same gbest to generate the new velocity. However, we have stated that there is not only one
gbest in MOO, all the solutions in GBA are taken as gbest. This brings an additional problem of which
gbest solution in GBA should be used to generate the velocity for each particle. To solve this problem,
The Sigma method [35] is utilized to select one best local guide gbestt

i from GBA for the ith particle.
In the Sigma method, a value σi is assigned to each point ( f1,i, f2,i), and the σ value is defined as:

σ =
f 2
1 − f 2

2
f 2
1 + f 2

2
(10)

According to Equation (10), all the points on the line f2 = a f1 have the same σ values.
By considering the objective space, finding the best local guide gbestt

i among GBA for the particle i at
iteration time t is as follows: in the first step, the σ values of each position in GBA is assigned. In the
second step, σi for particle i is calculated. Then the distances between σi and all the σ values of GBA
are calculated. Finally, the kth position in GBA which has the minimum σ value distance with particle i
is selected as the best local guide gbestt

i . Figure 3 shows this method for a two objective example.
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Figure 3. Selection of the best local guide among the global best archive (GBA) for each particle.
The squares stand for the GBA members, and circles stand for all the particles. The sigma values of all
the GBA members and particles are calculated and compared. For one particle, the GBA member that
has the closest sigma value with it is chosen as the best local guide for it.

2.5. The Framework of MODPSO for EE

The overall process of the proposed MODPSO for EE is shown in Figure 4.

Figure 4. The flowchart of the multiobjective discrete particle swarm optimization (MODPSO) method.

3. Experiments

Two real HSIs are used to test the performance of the proposed method. N-FINDR [15], VCA [17]
and D-PSO [24] are comparison algorithms. There are two reasons for selecting these three algorithms
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as comparing algorithms. One reason is that N-FINDR and VCA are two of the most popular
EE methods, and D-PSO is a representative method of the intelligent optimization based methods.
Furthermore, the objective functions used in MODPSO have been used in these three methods, so the
validity of the proposed method can be checked by comparing the objective values of these methods.
For both D-PSO and MODPSO, the maximum iteration number was set to 300, the number of particles
was set to 20, the random selection probability was 0.2, and the particles were randomly initialized.

3.1. HYDICE Washington DC Dataset

The first real image dataset was collected by the Hyperspectral Digital Imagery Collection
Experiment (HYDICE) sensor over Washington DC, and a subset of 150 × 150 was extracted from the
original image for this experiment. In the Washington DC dataset, there are 210 bands, which cover
the range of 0.4–2.5 um. Low-SNR and water-vapor absorption bands were removed before unmixing,
leaving 187 bands for the experiment. Figure 5 shows the false-color image composed of R-band 64,
G-band 52, and B-band 36. There are six distinct materials in the image [37], so the endmember number
is set to six.

Figure 5. Sub-scene extracted from the Washington DC dataset.

Since there are no standard references of endmembers and abundances for the real image, we
cannot directly conduct quantitative evaluation for the extracted endmembers. Considering the
following: (1) N-FINDR and VCA try to find the simplex vertices, it is suitable to use the volume of the
extracted endmembers to evaluate the searching ability of them; (2) D-PSO searches the endmember
combination that minimize the RMSE; and (3) MODPSO try to maximize volume and minimize RMSE
simultaneously, two metrics are used to evaluate the performance. (1) The volume inverse: obtained
by f1. (2) RMSE: Obtained by f2. The smaller f1 and f2 are, the better performance the method has.

Figure 6 shows the objective function value as a function of the number of iteration times of
MODPSO for the Washington DC dataset. It can be seen that the proposed method can converge to a
stationary point when reached the maximum iteration.
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(a) (b)

Figure 6. The objective function value as a function of the number of iteration times for the Washington
DC dataset: (a) the volume inverse; and (b) root-mean-square error (RMSE).

Figure 7a shows the obtained GBA by MODPSO, ten non-dominated solutions are finally
remained. The number of solutions in GBA is less than the number of particles, which indicates
that some different particles converge to the same solution. We can see in these results that no solution
has the minimum f1 and f2 values simultaneously. The non-dominated solution with the minimum
f1 has the largest f2 and vice versa. The ten results are uneven distributed in the objective function
value space, they can be easily divided into three parts: three solutions have relatively bigger f2 and
smaller f1, four solutions have relatively bigger f1 and smaller f2, the remaining three solutions have
the best tradeoff between the two objective functions. We have also calculated f1 and f2 values of the
other three methods according to their extracted endmembers. The results are put together with that
of MODPSO in Figure 7b, and the numerical results are shown in Table 1 as well as the computation
time of them. It can be seen that solutions of MODPSO dominate the result of D-PSO, so the search
ability of MODPSO is better than that of D-PSO. VCA and N-FIDNR achieved smaller f1 and larger
f2 than MODPSO, which indicates that the results with bigger volume are obtained by VCA and
N-FINDR, while the RMSE generated by them is larger. Since the results by VCA and N-FINDR are
non-dominated solutions compared with the results by MODPSO, it tells us that the Pareto front found
by MODPSO is not completed. In terms of the computation time, the two conventional EE methods are
more efficient than the two intelligent optimization based methods, especially for the VCA method.

(a)

Figure 7. Cont.
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(b)

Figure 7. The results of the Washington DC image: (a) the Pareto front obtained by MODPSO; and
(b) comparison of the results by four methods.

Table 1. The results of objective function values and computation time for the Washington DC Dataset.

f 1 = 1/volume (×10−3) f 2 = RMSE Time (sec)

MODPSO

1.553 0.0335

1556.736

1.585 0.0331
1.692 0.0321
2.017 0.0256
2.027 0.0254
2.064 0.0253
4.525 0.0248
4.683 0.0246
4.774 0.0239
4.950 0.0237

D-PSO 20.762 0.0378 1500.106

N-FINDR 0.414 0.0414 122.118

VCA 0.499 0.0471 0.936

For the HYDICE Washington DC dataset, the ground features are easy to distinguish by visual
interpretation; we manually select the endmembers of the six kinds of materials from the image by
referring to [37]. These spectra are taken as a rough reference to be shown together with the extracted
spectra. The extracted endmembers by the four algorithms and manually selected reference spectra are
shown in Figure 8, where the shown endmembers by MODPSO are the union set of the endmembers
in GBA. Among the ten sets of results in GBA, there are twelve different endmember spectra. We can
see from Figure 8 that N-FINDR and VCA missed the street’s spectra and extracted two different
paths’ spectra. The spectral shapes of the extracted endmembers by the four methods are similar to the
shapes of the reference spectra, while there are some differences in the scale, the endmember spectra by
D-PSO and MODPSO are more close to the manually selected reference spectra than that of N-FINDR
and VCA.
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(a) (b)

(c) (d)

(e) (f)

Figure 8. Endmember spectra manually selected from the image and automatically extracted by the
four methods for the Washington DC dataset: (a) grass; (b) path; (c) roof; (d) street; (e) tree; and
(f) water.

3.2. HYDICE Urban Dataset

The second real dataset was the Urban HYDICE HSI, as shown in Figure 9 by R-band 64, G-band 52,
and B-band 36. This image is of size 307× 307 and has 210 spectral bands in the range of 0.4–2.5 um.
A total of 162 bands remained after removing bands 1–4, band 76, band 87, band 111, bands 101–111,
bands 136–153 and bands 198–210. The number of endmembers is set to six [38].
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Figure 9. The Urban hyperspectral dataset.

Figure 10 shows the objective function value as a function of the number of iteration times of
MODPSO for the Urban dataset. It can be seen that the proposed method can converge to a stationary
point when it reached the maximum iteration, and the volume value reached the stationary point
earlier than the RMSE value.

(a) (b) 

Figure 10. The objective function value as a function of the number of iteration times for the Urban
dataset: (a) the volume inverse; and (b) RMSE.

The Pareto front by MODPSO is displayed in Figure 11a. Eleven non-dominated solutions finally
remained, which indicates that some different particles converge to the same solution. We can see
that a more uniform distribution of the non-dominated solutions is obtained by the Urban image than
the Washington DC image. The comparison results of four methods in Figure 11b and Table 2 are
similar to that of the Washington DC image: most of solutions of MODPSO dominate the result of
D-PSO; MODPSO and D-PSO have results with smaller RMSE than VCA and N-FINDR; and VCA and
N-FIDNR obtained bigger volume than MODPSO and D-PSO, which demonstrate the validity of the
MODPSO method. Meanwhile, the MOO result can be further improved. Seen from the computation
time, VCA is the most efficient method, while MODPSO and D-PSO are both time consuming.

The extracted endmembers and manually selected reference spectra of the Urban image are shown
in Figure 12. Half of the endmembers extracted by N-FINDR and VCA and one endmember extracted
by MODPSO cannot be matched with the manually selected reference spectra. Only the N-FINDR
algorithm extracted the sixth endmember, and the spectrum of the endmember is not so close to that
of the reference endmember. In general, the endmembers extracted by D-PSO and MODPSO are better
matched than that of N-FINDR and VCA.
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(a)

(b)

Figure 11. The results of the Urban image: (a) the Pareto front obtained by MODPSO; and
(b) comparison of the results by four methods.

Table 2. The results of objective function values and computation time for the Urban Dataset.

f 1 = 1/volume f 2 = RMSE Time (sec)

MODPSO

0.0054 0.0568

5544.243

0.0069 0.0548
0.0073 0.0482
0.0165 0.0474
0.0170 0.0417
0.0225 0.0415
0.0284 0.0376
0.0294 0.0367
0.0378 0.0365
0.0435 0.0358
0.0459 0.0356

D-PSO 0.0625 0.0522 5324.252

N-FINDR 0.0001 0.1934 502.744

VCA 0.0002 0.1291 3.588
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(a) (b)

(c) (d)

(e) (f)
 

(g)  

Figure 12. Endmember spectra manually selected from the image and automatically extracted by the
four methods for the Urban dataset: (a) Road#1; (b) Roof#1; (c) Grass; (d) Tree; (e) Road#2; (f) Roof#2;
and (g) spectra unmatched with the reference endmembers.
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4. Discussion

4.1. Review of Experimental Results

Experimental results of the Washington dataset showed that N-FINDR and VCA failed to extract
the fourth endmember, which resulted in a larger RMSE than the other two methods, while the volumes
obtained by N-FINDR and VCA were much larger than the other two methods. Considering the
fact that one of the objective functions of MODPSO is VM, we can infer that the searching ability of
MODPSO needs further improvement. In term of RMSE, MODPSO was superior to the other methods.
Experimental results of the Urban dataset showed that N-FINDR and VCA extracted several outliers,
which indicated that they were easy to be affected by outliers. MODPSO and D-PSO were more robust
to these interferences. We can infer that the RMSE objective function can play a key role when there are
interferences in the image. In both experiments, MODPSO can find better solution than D-PSO. This
may because the MOO mechanism of MODPSO (several gbest in MODPSO compared to one in D-PSO)
increased the diversity of particles and alleviated the premature convergence problem of D-PSO, thus
leading to a better optimization result. Time costs of the methods showed that the two intelligent
optimization based methods were time consuming, which mainly resulted from the calculation of the
RMSE objective function.

4.2. Generalization of MODPSO

In this work, MODPSO assumed that the error is represented by the additive white Gaussian
noise. In fact, there may have mixed noise in the HSI such as impulse noise, multiplicative noise or
vertical line strips [36,39]. It should be noted that the MODPSO method can also be applied when
considering other types of noise, as long as an objective function is built according to a certain type of
noise or mixed noise, the RMSE function can be replaced by the newly built one.

5. Conclusions and Future Work

This paper proposed a multiobjective optimization method MODPSO for endmember extraction.
In MODPSO, the volume maximization and RMSE minimization objective functions are simultaneously
optimized, and the multiobjective optimization framework is especially designed to solve the
multiobjective endmember extraction problem. Instead of obtaining one unique solution for one
implementation like other endmember extraction methods, the result by MODPSO is a set of
non-dominated solutions, and they can be regarded as solutions with different tradeoffs between
two objective functions. The experimental results show that the search ability of MODPSO method
is superior to that of the D-PSO method, and it can obtain result with smaller RMSE than N-FINDR
and VCA. However, the results of N-FINDR and VCA are not dominated by that of MODPSO for the
reason that the volume obtained by them is bigger than that of MODPSO, which indicates that the
Pareto front obtained by MODPSO is not complete, a part of non-dominated solutions are not founded
by them, which revealed the limitation of the MODPSO’s search ability.

Considering the future work, in our opinion, two contents are worthy of study. One is that there
exist other characteristics of the hyperspectral image that are not considered in this work, so the
objective functions can be replaced by others to study the effect of different combinations of objective
functions on the endmember extraction result. The other is that the multiobjective optimization method
with better search ability can be studied to achieve a Pareto front with higher quality.
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Abstract: The problem of mixed pixels negatively affects the delineation of accurate surface water in
Landsat Imagery. Linear spectral unmixing has been demonstrated to be a powerful technique for
extracting surface materials at a sub-pixel scale. Therefore, in this paper, we propose an innovative low
albedo fraction (LAF) method based on the idea of unconstrained linear spectral unmixing. The LAF
stands on the “High Albedo-Low Albedo-Vegetation” model of spectral unmixing analysis in urban
environments, and investigates the urban surface water extraction problem with the low albedo
fraction map. Three experiments are carefully designed using Landsat TM/ETM+ images on the three
metropolises of Wuhan, Shanghai, and Guangzhou in China, and per-pixel and sub-pixel accuracies
are estimated. The results are compared against extraction accuracies from three popular water
extraction methods including the normalized difference water index (NDWI), modified normalized
difference water index (MNDWI), and automated water extraction index (AWEI). Experimental
results show that LAF achieves a better accuracy when extracting urban surface water than both
MNDWI and AWEI do, especially in boundary mixed pixels. Moreover, the LAF has the smallest
threshold variations among the three methods, and the fraction threshold of 1 is a proper choice for
LAF to obtain good extraction results. Therefore, the LAF is a promising approach for extracting
urban surface water coverage.

Keywords: urban surface water extraction; threshold stability; sub-pixel; linear spectral unmixing;
Landsat imagery

1. Introduction

Worldwide mass migration to urban areas results in the land use/cover changes, changes in
climate and intensifying anthropogenic modifications to urban environments [1]. This directly brings
about more unexpected variations in urban surface water, especially in external morphological features
of the coverage. The urban surface water changes further impact relevant aquatic biodiversity, healthy
human life and even urban ecological balance [2]. Urban surface water deficiencies would aggravate
the urban heat island effect and disrupt the living environments of urban vegetation; conversely,
surface water inundation would result in flooding and even high fatality because of associated
waterborne diseases [3]. Therefore, figuring out the coverage of urban surface water is a crucial issue
for urban environments.

Remote sensing is a powerful data source for acquiring prior and comprehensive knowledge of
urban surface water [4,5]. It allows synoptic, permanent, and dynamic urban surface water monitoring
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and is clearly superior to conventional in-situ measurements [6,7]. Among current remote sensing
sensors, Landsat sensors have the greatest reputation in urban monitoring because of its advantages in
terms of free availability, and moderate spectral, temporal, and spatial resolutions. Therefore, in our
study, we implement Landsat imagery to investigate the urban surface water coverage problem.

Many studies have previously reported urban surface water extraction achievements using
Landsat images. Regular water extraction methods can be categorized into three main groups [8,9]:
(1) thematic classification methods [10–12]; (2) single-band thresholding methods [13,14]; and (3) water
index methods [15–17].

Thematic classification methods formulate urban surface water extraction into a regular binary
unsupervised or supervised classification problem on urban land cover types, and select surface water
as the exclusive thematic class for mapping [10]. The methods easily bring about low accuracy in
areas where the background land cover includes low albedo surfaces, such as asphalt roads and
building shadows in urban areas [11]. Moreover, they utilize a Boolean set to classify each pixel
as either water or non-water, and fail to achieve the desired accuracy, especially at the water-land
(i.e., non-water) interface [12]. Single-band thresholding methods select a single diagnostic spectral
band from Landsat images (e.g., band 5 from TM/ETM+) and delineate the urban surface water
coverage with a manually-defined threshold [18]. Accordingly, the subjectivity of the threshold
selection can lead to an overestimated or underestimated result and, moreover, the extracted surface
water is affected by shadow noise [16].

Different from the above two methods, water index methods combine two or more spectral
bands using algebraic operations to enlarge the divergence between water and non-water areas.
McFeeters proposed the normalized difference water index (NDWI) to delineate urban surface
water. The NDWI is implemented with a ratio model using the green band (i.e., band 2) and the
near-infrared band (i.e., band 4) from Landsat TM/ETM+ data [15]. An empirical value of 0 is
set as the threshold for extracting surface water from the raw Landsat images, and pixels with
positive NDWI values are regarded as belonging to surface water. Unfortunately, the obtained
NDWI surface water suffers from noise in built-up areas, and the threshold of 0 always results in
an over-estimation of the surface water [16]. Subsequently, Xu presented another surface water
index called modified normalized difference water index (MNDWI) [16]. MNDWI improves NDWI
by replacing the near-infrared band (i.e., band 4) with the middle-infrared band (i.e., band 5) from
Landsat TM/ETM+ images. MNDWI reduces the built-up area noise in NDWI, and it performs better
than NDWI in extracting urban surface water where built-up areas dominate in the image scene.
Nevertheless, the threshold of MNDWI is difficult to estimate because of their scene-driven features,
and the problem adversely impacts its realistic performance of MNDWI [8]. To address the instability
of MNDWI, the automated water extraction index (AWEI) was presented by combining multi-band
Landsat images (i.e., bands 2, 4, 5, and 7 of Landsat TM/ETM+ images) [9]. The AWEI argues that the
threshold of 0 is a good initialization for urban surface water extraction in the method.

The above three types of methods greatly benefit the studies of urban surface water extraction.
However, one big problem of mixed pixels still exists in the urban surface water extraction procedure
when using moderate spatial resolution Landsat images. In particular, the problem becomes more
pronounced when extracting accurate boundaries of surface water. A simple cause for this problem
is that the scale of urban land cover is often smaller than the field of view in the Landsat TM/ETM+
sensor (30 m) [19,20]. Subsequently, a few sub-pixel classifiers were presented to handle the mixed pixel
problem. Sethre proposed a sub-pixel classifier named analysis spectral analytical process (AASAP),
which aimed to expand the regular classifier into the sub-pixel field to detect the size and shape of
ponds [21]. The classifier focuses on sub-pixel wetlands or ponds and requires careful verifications
when implemented in the case of urban water extraction. Sun optimized the training samples with
mixed training samples and then combined them with the support vector machine (SVM) classifier
to improve the urban surface water extraction results [22]. However, the scheme suffers from slow
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computational speed and complicated manual operations, which seriously restricts its real-word
applications in other urban areas.

Spectral unmixing is an alternative technique that can be used to solve the mixed pixel problem
encountered in urban environments. It can be classified into linear spectral unmixing (LSU) and
nonlinear spectral unmixing (NLSU), according to different mathematical assumptions in mixing
patterns of urban land covers in the study area [23]. Numerous applications exploit the powerful
performance of LSU in converting spectral information into physical abundances of materials on
the earth’s surface [23]. Previously, researchers have made some trials related to the surface water
extraction problem using spectral unmixing. Zhou integrated a multiscale extraction scheme with
spectral mixture analysis techniques to improve water extraction in urban environments from moderate
spatial resolution satellite images [24]. The feature of this work is to adopt the multiscale scheme that
conducts surface water extraction in multiscale local regions in order to refine the result. Xie combined
the water index NDWI with LSU and proposed an automatic subpixel water mapping (ASWM) method
to map urban surface water at the sub-pixel scale [25]. Pure water extracted from NDWI and water
fractions of mixed water-land pixels estimated from LSU constitute the final urban surface water map.
As distinct from previous research, we propose a low albedo fraction (LAF) method based on LSU to
extract urban surface water from Landsat imagery. In comparison to all of the above methods, our
LAF methods have three major advantages, in the following:

(1) The LAF method stands on the H-L-V [23] (i.e., high albedo-low albedo-vegetation) spectral
mixture analysis of urban surface reflectances, and investigates the urban surface water extraction
problem with the low albedo fraction map. Accordingly, our idea is different from above water
extraction methods, especially sub-pixel classifiers and spectral unmixing methods by Zhou [24]
and Xie [25].

(2) The LAF method implements a steady initial threshold at 1 and that significantly reduces the
work of parameter tuning in LAF. By contrast, current spectral unmixing-based methods by Zhou
and Xie could not provide a stable threshold for fraction segmentation. The water index methods
also suffer from the unstable initial threshold problem. Therefore, the LAF is easier to implement
in real-word applications than other methods, such as spectral unmixing methods and water
index methods.

(3) The LAF method obtains high extraction accuracies of urban surface water, and it significantly
improves the accuracy of sub-pixel surface water extraction when compared against MNDWI
and AWEI.

2. Test Sites and Datasets

The test sites utilized in the study are located in three representative metropolises of China: Wuhan,
Shanghai, and Guangzhou. Different surface features of the urban environments (e.g., different spatial
patterns of land covers and different urban backgrounds) of the three sites render them good candidates
for testing the proposed LAF method. The Wuhan metropolis lies in one of the fastest-growing regions
in central China, and it is becoming a significant strategic center for the rejuvenation of the Chinese
nation. Wuhan is centered at the confluence of the Yangzi River and Han River, as shown in Figure 1a.
Shanghai is a famous international metropolis, and it is known for advanced economics, shipping, and
finance. The Huangpu River in Figure 1b is very important for the health and wellbeing of people
in Shanghai. Guangzhou is an important port in China. The Pearl River in Figure 1c runs around
Guangzhou city, and is a vital source of drinking water. Figure 1 illustrates the different surface
characteristics of all three metropolises, where it can be seen that they have similar land cover types,
including built-up surfaces, tall buildings, rivers, and vegetation.

Landsat images of the three metropolises were acquired from the website of the United States
Geological Survey (USGS) (available at http://www.glovis.usgs.gov) [26], and the subsets cover the
main urban background types and surface water for extraction. The downloaded Landsat imagery
belongs to a Level-1 precision- and terrain-corrected product (L1T). The utilized Landsat images are
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free of clouds in order to avoid any negative effects from cloud. A reference image was utilized to
determine the ground truth of water pixels in Landsat images, and it greatly helped in evaluating the
accuracies of extracted surface water, at either the pixel level or sub-pixel level. The original sources
of the reference data were high spatial-resolution pan-sharpened Quickbird images from the Digital
Globe Company, and the JPEG format image at 4m spatial resolution was exported from Google
Earth Pro (available at www.google.com). We selected high spatial-resolution images (HSRI) with
acquisition times as close as possible to the Landsat images, and tried our best to ensure that the
land-cover classes of the Landsat images and the Google Earth images were the same for the same site.
Table 1 lists detailed information about the reference data and Landsat images. Geo-referencing HSRI
data with Landsat images was implemented to unify spatial references of the corresponding pixels in
both datasets. The manual co-registration was carefully undertaken with a Root Mean Square Error
(RMSE) of no more than 0.3 pixels, and 19 control points were manually selected from each image.
The “true” boundaries of urban surface water at the test sites were manually digitized on screen from
the reference data, and were then rasterized at 4 m spatial resolution.

Figure 1. The images of Landsat data on three metropolises: (a) Wuhan; (b) Shanghai; and (c) Guangzhou.

Table 1. Description of Landsat images and their corresponding reference data.

Test Site Acquisition Date Sensors Path Row Source

Wuhan
Landsat data 13 September 2000 TM 123 39 USGS
Reference data 21 September 2000 Google Earth ©Digital globe

Shanghai Landsat data 27 November 2002 ETM+ 118 38 USGS
Reference data 28 December 2002 Google Earth ©Digital globe

Guangzhou Landsat data 2 January 2009 TM 122 44 USGS
Reference data 16 November 2008 Google Earth ©Digital globe

3. Methodology

3.1. The Procedure of LAF Method

The LAF method explores the urban surface water extraction problem from the perspective
of linear spectral unmixing and a three-endmember H-L-V (high albedo-low albedo-vegetation)
model [23]. It extracts urban surface water coverage through threshold segmentation on the fraction
map of the low albedo endmember. The overall procedure of extracting urban surface water using
LAF is shown in Figure 2 and includes the following steps:
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(1) The Landsat images are preprocessed with radiometric calibration.
(2) The three-endmember H-L-V linear mixture model is implemented to analyze surface reflectances

of urban land cover types.
(3) Endmembers covering high albedo, low albedo, and vegetation are carefully selected from

Landsat images using our multiple selection scheme.
(4) The unconstrained least square techniques are implemented to unmix Landsat images and

to estimate the fractions of all three endmembers at each pixel. Fraction maps of all three
endmembers are then obtained.

(5) The binary classification is implemented to segment the fraction map of low albedo endmember,
using a given threshold t. The pixels with low albedo fractions no less than t constitute the final
surface water map of LAF.

 

Figure 2. The overall procedure of the LAF method.

3.1.1. Preprocessing of Landsat Images

Radiometric calibration is used to transform the initial digital numbers (DNs) in Landsat images
into normalized exo-atmospheric reflectance. The procedure is implemented in ENVI 5.0 [27] with
the input of calibrated parameters obtained from the header file of Landsat images. Atmospheric
correction is not undertaken because previous studies have shown that the process has an unclear
influence on fraction maps when image-based endmembers are used in the LSU method [28,29].

3.1.2. Analyzing Urban Surface Reflectances Using Three-Endmember H-L-V Model

Generally, the three-endmember vegetation-impervious surface-soil (V-I-S) model is utilized for
urban landscape analysis from remote sensing data [30]. The model classifies urban land-cover classes
into fraction combinations of vegetation, impervious surfaces, and soil; and its typical application is to
extract urban vegetation [31]. The V-I-S model is, however, limited in urban surface water extraction
because the idea of a single endmember could not represent the complicated land cover types in urban
impervious surfaces. As a result, Wu and Murray (2003) separated impervious surfaces into high
albedo and low albedo surfaces, and modified the V-I-S model into a four-endmember model [32].
The difference between the four-endmember model and the three-endmember H-L-V model is whether
the model includes the soil endmember or not.
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In contrast to previous works, we implement the three-endmember H-L-V model. Previous
studies have demonstrated that the reflectance properties of land cover in urban environments can
be accurately described as linear combinations of three endmembers of high albedo, low albedo and
vegetation [33]. Moreover, the three-endmember H-L-V model avoids the misclassification of soil as
high albedo that exists in the four-endmember model. Furthermore, our preliminary experimental
results showed that the combination of the linear mixture model and H-L-V model is more suitable for
urban surface water extraction. The three-endmember H-L-V linear mixture model is represented as
follows [23]:

Ri =
3

∑
j=1

Ri,j f j + ei (1)

where Ri is the spectral reflectance in band i, Ri,j is the reflectance of endmember j in band i, f j is the
fraction of endmember j, and ei is the bounded approximation error in the model.

3.1.3. Selecting Proper Endmembers Using a Multiple Selection Scheme

The result of endmember selection closely correlates with the success of the linear mixture model
in urban surface water extraction. Moreover, a proper three-endmember H-L-V combination helps to
robustly estimate a good threshold for extracting urban surface water from the fraction map of the low
albedo endmember. In the study, we utilize a combination of different selection schemes to determine
the three appropriate H-L-V endmembers from Landsat images. Multiple selection schemes combine
the scatter plots of principal component analysis (PCA) transformation, image-based manual selection,
and endmember optimization using cross-validation. The image-based selection scheme is adopted
because of its advantages in terms of ease of operation and the same spectral response magnitude
of selected endmembers with image spectra. The multiple selection schemes are implemented in the
following procedures.

The first procedure is to implement PCA transformation to produce covariance-based principal
component (PC) rotation and normalize the eigenvalues. The PCA transformation is implemented
in ENVI 5.0 software with the input of Landsat images. For the H-L-V model, the two-dimensional
normalized eigenvalue distributions of Landsat images could quantify the partitions of reflectance
variance among all the PCs and formulate a triangular form with scatter plots of first two PCs [34].
The topology of triangular mixing space in Figure 3 is consistent with the mixing space of Landsat
images. The pixels at the vertexes of the triangular topology correspond to high albedo, low albedo
and vegetation endmembers [33]. The three vertex endmembers could accurately represent the most
important physical properties of the surface reflectance of urban land cover types.

Figure 3. The triangular topology from scatter plots of the first two PCs. The vertexes correspond to
three endmembers: high albedo (e.g., concrete), low albedo (e.g., water), and vegetation (e.g., grass).
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Meanwhile, because of the limits of spatial and spectral resolution in Landsat sensors, the Landsat
images could not discriminate the wide variety of reflectances present in the urban environments.
Accordingly, the three vertex endmembers in the triangular form might represent a variety of different
ground objects and that might adversely impact the accuracy of estimates for pixels with the three
endmember fractions. In particular, the high albedo endmember is the most compositionally variable
and the least constrained by the triangular topology. Figure 3 illustrates that a wide variety of spectra
exists near the high albedo vertex of the triangular topology of scatter plots. The fraction of the
high albedo vertex endmember does not necessarily provide an accurate estimate of the overall
albedo because of the non-linearity and dispersion of most mixing spaces near the high albedo vertex;
that is, the high albedo vertex endmember in the triangular form could not accurately represent
the wide variety of high albedo reflectances observed in the urban Landsat images. In contrast,
the vegetation and low albedo endmembers are generally well constrained in the triangular topology.
Therefore, the second procedure is to manually select endmembers from Landsat images, compare the
endmembers with the vertex endmembers of the triangular form, and optimize the selection result
via cross-validation.

The operation rules for three H-L-V endmembers via cross validation are listed in Table 2 and the
technique details are as follows:

(1) The low albedo endmember: The low-albedo endmembers correspond to deep dark shadow and
water [29]. In this study, water is the most important object. Therefore, we chose the low albedo
endmember from the deep dark water pixels, and the endmember has minimal brightness values
in the image scene via cross-validation. The low albedo endmember is easy to determine from
the image.

(2) The vegetation endmember: The vegetation usually corresponds to grass or dense agriculture.
The pixel with maximal normalized difference vegetation index (NDVI) values (dense grass
and pasture) in the image scene is chosen as the vegetation endmember, using cross-validation.
The vegetation endmember is also easily determined in the LAF method.

(3) The high albedo endmember: The high albedo endmember shows much greater sensitivity to the
selection method because it varies most greatly in amplitude within the triangular topology [29].
Therefore, we combine Landsat images with HSRI data to optimize the selection of the high
albedo endmember via cross-validation. The initial high albedo endmembers are manually
selected from building roofs, airport runways, and highway intersections in Landsat images,
with reference to corresponding land covers in the HSRI data. Next, these initial endmembers
are compared with the high-albedo vertex endmember in the scatter plots of PC1 and PC2.
The endmember located closest to the high albedo vertex of the triangular topology is finally
selected as the high albedo endmember [35].

Table 2. The operations of multiple selection schemes in three endmembers.

Endmembers Difficulty Level Key Words in Operation Candidate Sources

Low albedo Easy minimum brightness deep dark water

Vegetation Easy maximal normalized difference
vegetation index grass and pasture

High albedo Difficulty nearest to the high albedo vertex
in the triangular topology

building roofs, airport runway
and highway intersections

3.1.4. Spectral Unmixing and Binary Classification of the Low Albedo Fraction Map

Spectral unmixing is utilized to solve the three-endmember H-L-V linear mixture model in
Equation (1). Spectral unmixing was initially proposed for calculating land-cover fractions for
a pixel [36]. The least square techniques are implemented to estimate the fraction of each endmember
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at each pixel by minimizing the model errors. The techniques can be grouped into unconstrained
and constrained types. The differences between the two types are nonnegativity and sum-to-one
constraints in the fractions of each pixel [37].

In the study, we implement the unconstrained least square techniques, for two reasons. The first
is that the result of unconstrained least square techniques is only affected by the adopted model,
and the second is that our objective is to explore the relations between urban surface water and the
fraction map of low albedo endmember, and this purpose differs from current common applications
of constrained least square techniques. After spectral unmixing operation with unconstrained least
square techniques, the fractions of all three endmembers are estimated and the fraction maps are
then obtained.

From the above analysis, the low albedo spectrum dominates in the pixels of urban surface water,
and we accordingly extract them from the fraction map of the low albedo endmember. The binary map
of urban surface water is achieved by segmenting the low albedo fraction map with a given threshold
t, shown as follows:

LAF = flow−albedo ≥ t (2)

where flow−albedo is the fraction or abundance of the low albedo endmember in each pixel.
In LAF, we implement a cross-validation scheme to select an appropriate threshold. The scheme

is initialized with a manually-defined threshold, and we then interactively estimate the sub-pixel
accuracies (mentioned in Section 3.2) of urban surface water by tuning the threshold parameter from
the initial value. Finally, we select an appropriate threshold with the optimal sub-pixel extraction
accuracy that best balances over-estimation errors and under-estimation errors. It should be stressed
that a good initialization is important for the above scheme. From our trial experiments, we found
that, in the low albedo fraction map, pixels with fraction values clearly greater than 1 always belonged
to water; pixels with fraction values around 1 were boundary mixed pixels dominated by water; and
pixels with fraction values of less than 1 belonged to non-water. We also found that the pixels that
were mixed by building shadows and other ground objects had fractions of the low albedo endmember
smaller than 1. The shadows belong to non-water and their fractions do not affect the extraction result
of LAF in urban surface water. Therefore, we manually select the initial threshold of LAF as 1, and
implement the cross-validation scheme to achieve a proper binary classification map of urban surface
water. The binary map after thresholding segmentation includes water and non-water, and the image
is directly adopted as our final extraction result of urban surface without any filter operations, such as
removing isolated or partial water pixels.

3.2. Accuracy Assessment Schemes on the Per-Pixel and Sub-Pixel Levels

Considering the fact that the MNDWI and AWEI obtain a better accuracy of urban surface
water extraction than other current water extraction methods [8,9], the two methods are utilized to
make comparisons with the proposed LAF. The thresholds in the three methods were estimated via
cross-validation, and the best extraction results of urban surface water from all three methods were
adopted for the comparison.

The per-pixel accuracy and sub-pixel accuracy were estimated from the binary map to evaluate
the performance in extracting urban surface water. The per-pixel accuracy is to evaluate the overall
performance of the LAF binary classification map, with pure pixels and boundary mixed pixels of
surface water included. The ratio of spatial resolutions between the reference HSRI data and Landsat
images is 4:30, meaning that one pixel in Landsat images corresponds to about 50 HSRI pixels. Similar
to the idea expressed in [9], we regarded the pixels in Landsat imagery that consist predominantly
of water (>50% proportions, i.e., over 25 HSRI pixels) as true water pixels, and vice versa. Using the
random sampling scheme, the labels (water and non-water) of testing water pixels for overall per-pixel
accuracy evaluation was manually digitized from Landsat imagery, and then compared with their
true labels from reference data. The kappa coefficients (KC) were calculated and used to quantify the
overall extraction accuracy of all three methods.
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Different from overall per-pixel accuracy, the sub-pixel accuracy is to testify the specific
performance of all three methods in extracting water from mixed pixels, especially from boundary
pixels. The sub-pixel accuracy evaluation implemented the following four main steps.

(1) The actual water fractions of testing boundary pixels were manually estimated via the visual
overlay analysis of reference data and Landsat images. By overlaying the binary maps of extracted
surface water from all three methods (AWEI, MNDWI and LAF) with the HSRI data, the water
fraction of each boundary pixel from each method can be calculated. This was equal to the
percentages of water pixels in the total number of HSRI pixels that were fully contained within
the area of one pixel of Landsat imagery. For example, within the scene of one pixel from Landsat
imagery, if the water occupies 20 of the total 50 HSRI pixels, the water fraction of the targeted
boundary pixel is 40%. The process is repeated and the actual water fractions of all testing
boundary pixels resulting from the three methods were achieved.

(2) The testing boundary pixels were designated into six categories according to their true water
fractions. The true water fractions of all testing boundary pixels in the HSRI data can be classified
into six categories, 0–10%, 10–30%, 30–50%, 50–70%, 70–90% and 90–100%. For example, Figure 4
shows six categories of true water proportions in the testing boundary pixels of Shahu lake,
and the number of testing boundary water pixels is 106.

 

Figure 4. The category of true water proportions in testing boundary pixels in Shahu lake, Wuhan.

(3) The estimation errors (EEs) of all three methods on each testing boundary pixel were
estimated. The EEs for each testing boundary pixels at the sub-pixel level are the summation
of over-estimation error and under-estimation error, defined according to the following two
conditions: (a) if a testing boundary pixel in the binary classification map of each method
was classified as water, its complement of the true water fraction is regarded as the sub-pixel
over-estimation error; (b) in contrast, if the pixel was classified as non-water, its true water
fraction is quantified as the under-estimation error at the sub-pixel level.

(4) The average estimation errors (AEEs) in all six categories of testing boundary pixels were
calculated and the set of AEEs with six elements for all three methods were obtained to quantify
the sub-pixel water extraction accuracy of boundary mixed pixels at different water proportions.
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4. Experimental Results and Analysis

4.1. Water Extraction Maps and Per-Pixel Accuracy Assessment in Overall Result

The water extraction results using the three methods of MNDWI, AWEI, and LAF at the three
test sites are illustrated in Figure 5. A visual inspection of the figure indicates that LAF results in
a better (or at least comparable) accuracy of urban surface water mapping than the AWEI and MNDWI.
For the test sites of Wuhan and Shanghai, in particular, the LAF method performs better in suppressing
non-water surfaces. Unfortunately, at the test site in Guangzhou, a visual inspection of Figure 5 tells
us that the proposed method produces noisy results, as do the other two methods.

Figure 5. Comparison of water extraction results from all three methods on three test sites.

Table 3 lists extraction accuracies of urban surface water at the per-pixel level from the three
methods at the three test sites. For the overall per-pixel accuracy assessment, 400 testing samples
were randomly sampled from the image scene of each test sites. The results show that the KCs of
LAF outperform those of MNDWI and AWEI at the Wuhan and Shanghai test sites, whereas LAF
does not perform as well as MNDWI and AWEI at the Guangzhou test site. Therefore, from the above
observations, we can conclude that LAF achieves a better, or at least comparable, per-pixel extraction
accuracy for urban surface water than MNDWI and AWEI.

Table 3. List of extraction accuracies at the per-pixel level for the three methods at three test sites.

Water Extraction Methods
Kappa Coefficient (KC)

Wuhan Shanghai Guangzhou

LAF 0.97 0.93 0.91
AWEI 0.95 0.92 0.93

MNDWI 0.96 0.92 0.92
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4.2. Sub-Pixel Accuracy Assessment of LAF in Boundary Mixed Pixels

We also compare extraction accuracies at the sub-pixel level for the three methods. The experiment
aims to investigate the performance of LAF in extracting the water from boundary mixed pixels that
consist of mixtures of water and non-water components. Table 4 lists extraction errors of the three
methods for the boundary mixed pixels at all three test sites. For the sub-pixel accuracy assessment,
the testing samples on Wuhan, Shanghai and Guangzhou were randomly chosen along the boundary
of Shahu Lake, Huangpu River and Pearl River. The testing samples were mixed by water and concrete
pavement, vegetation and soil. The detailed information of three test sites for sub-pixel accuracy
assessment is listed in Table 5. The numbers of testing pixels on Wuhan, Shanghai and Guangzhou are
210, 198 and 201, respectively. The accuracies within each water fraction range are the average of AEEs
from three test sites.

Table 4. List of extraction errors at the sub-pixel level for the three methods with boundary mixed
pixels of all three test sites.

Water Extraction Methods
Extraction Errors of % Water in the Boundary Mixed Pixels

0–10% 10–30% 30–50% 50–70% 70–90% 90–100%

LAF 0.04 0.22 0.43 0.41 0.23 0.03
AWEI 0.04 0.30 0.49 0.47 0.34 0.03

MNDWI 0.04 0.33 0.48 0.49 0.37 0.03

Table 5. The detailed information of three test sites for sub-pixel accuracy assessment.

City
Name of

Water Bodies
Center Point

Coordinate (UTM)
Area (km)

Characteristics of
Water Bodies

Topography Climate

Wuhan Shahu lake 30◦34′04.30′ ′N,
114◦19′41.76′ ′E 3.04 Clear lake flat Subtropical wet

Shanghai Huangpu river 31◦14′33.18′ ′N,
121◦29′21.00”E 6.79 Turbid river flat Subtropical wet

Guangzhou Zhujiang river 23◦06′19.23′ ′N,
113◦14′17.30′ ′E 13.69 Turbid river flat Subtropical wet

The results are in agreement for the three methods in that boundary mixed pixels consisting of
0–10% and 90–100% water are correctly classified as non-water and water, respectively. However,
the performance of the three methods varies greatly in extracting water having proportions of 10–90%
in the boundary mixed pixels. For the 10–90% boundary pixels, AWEI and MNDWI obtain similar
extraction accuracies, with AWEI being slightly superior to MNDWI. The accuracy of LAF clearly
surpasses that of AWEI and MNDWI, and it reduces extraction errors by at least 5% in the 10–90%
proportion of the boundary pixels. Therefore, we conclude that LAF performs significantly better at
the sub-pixel level than AWEI and MNDWI.

4.3. Threshold Analysis

Section 3.1 describes that an initial threshold estimation is essential for the parameter tuning
of LAF. A good initialization reduces the computational complexity of threshold estimation in LAF,
thereby promoting the feasibility of LAF for real-word applications. This experiment therefore explores
the stability of the threshold in LAF.

Table 6 lists the parameter settings of the three water extraction methods that produces the best
extraction results in experiments 4.1 and 4.2. The standard deviation (Std) is adopted to quantify the
variation in threshold parameters of the three methods. The appropriate threshold for MNDWI at the
three test sites ranges from 0.35 to 0.515, giving the largest Std in parameter estimation. The appropriate
threshold for AWEI varies from 0.086 to 0.2, and the Std is smaller than that of MNDWI but is higher
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than that of LAF. The comparison shows that the appropriate threshold of LAF shows the smallest
variation across the three test sites, with the narrowest range from 1 to 1.08. The appropriate threshold
of LAF is close to its initial value of 1, with only slight tuning work required. Therefore, we conclude
from the above that the appropriate threshold in LAF has the smallest variation among all the three
methods at the three test sites, and the threshold value at 1 is a good and stable initial value for LAF in
extracting urban surface water.

Table 6. Stability analysis for the thresholds of all three water extraction methods.

Water Extraction Methods
Test Site Threshold Variability

Wuhan TM Shanghai ETM+ Guangzhou TM Std

LAF 1.000 1.080 1.000 0.046
AWEI 0.086 0.200 0.156 0.057

MNDWI 0.350 0.515 0.470 0.085

5. Discussion

In the above experiments, we implemented LAF to extract urban surface water from Landsat
imagery on three metropolises, Wuhan, Shanghai and Guangzhou. The extraction results were
evaluated on the aspects of per-pixel accuracy and sub-pixel accuracy and were compared with two
state-of-the-art methods, AWEI and MNDWI. All the experimental results demonstrate the superiority
of LAF to other two methods.

First, from per-pixel accuracy estimation experiment on three test sites, our LAF shows better
performance in differentiating urban surface water from other ground objects (e.g., building roofs,
roads, and vegetation), especially in the image scenes of Wuhan and Shanghai. The better per-pixel
accuracy results, in our estimation, from two main causes. The first is that the H-L-V linear mixture
model could explain reflectance features of land covers in Landsat imagery, while also avoiding
nonnegative effects from soil. The second is that multiple selection schemes maximize the divergence
of three endmembers of high albedo, low albedo and vegetation, and it guarantees three vertexes of
triangular topology in mixing space of all land covers of urban environments.

Second, with regard to sub-pixel accuracy estimation results on three test sites, our LAF behaves
better at recognizing water fractions from boundary mixed pixels. The LSU feature of our method
guarantees that it is better able to identify water fractions from boundary mixed pixels, using a fraction
threshold of low albedo. On the contrary, the AWEI and MNDWI could not avoid the large uncertainty
in boundary water pixels originating from the hard-binary classification of water and non-water at the
pixel level.

Finally, the threshold analysis explains that the LAF has a relatively more stable threshold than
other two methods. For many water extraction methods, the threshold value for binary classification
is difficult to estimate because of its data-driven nature [8]. Our LAF has the smallest variations in
the threshold on three test sites among all three methods, making the implementation of the method
simpler. It is essential to note that the different endmember selection scheme described in [38] would
also greatly affect the stability or value of the fraction threshold.

However, our work has several limitations that require further study. The first is that we could not
explain theoretical reasons for good behaviors of empirical threshold value as 1. The fraction relations
between water and other urban land covers should be carefully analyzed in further experiments
to explain the physical meanings of the recommended initial threshold. The second is that we
did not carefully investigate the water extraction problem in the presence of cloud and SLC-gaps.
Many algorithms including the multi-temporal linear regression algorithm [39] and the GNSPI
algorithm [40] have been proposed to detect the thick clouds and fill gap pixels in SLC-OFF Landsat
imagery. The combination of the above algorithms with our LAF would be a promising direction to
extend the LAF into urban water extraction of any archived Landsat images. The third is that the
H-L-V linear mixture model restricts the applications of LAF into other image scenes. It is not difficult
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to extend the LAF for the purposes of extracting urban wetlands and identifying water fractions
from mixed vegetation-water pixels. Unfortunately, the method would not directly apply to other
situations, such as open water or coastal wetlands, because the spectral features of their land covers do
not satisfy the H-L-V linear mixture model, especially the unavailability of high albedo reflectance
such as building roofs and airports. In such cases, other linear mixture models or nonlinear mixture
models might be a good addition to the proposed method. The fourth one is that the endmember
selection scheme involves too much manual operations and it might restrict the application of LAF
to too large an image scene. The automatic or intelligent scheme should be further investigated to
satisfy the demands from its complicated image scenes in massive Landsat datasets. The last one is
that most recently proposed methods including the enhanced water index (EWI) [39] and dynamic
surface water extent (DSWE) [40] have not been considered in comparisons with the LAF. Further
performance contrast with modifications of MNDWI and newly-proposed methods on more Landsat
images is essential to promote the LAF in real-word applications.

6. Conclusions

The main purpose of this study was to devise a method that improves the sub-pixel water extraction
accuracy and has a stable threshold value. Using Urban Landsat images, we presented the LAF method,
and then compared its per-pixel and sub-pixel extraction accuracies and threshold stability with those
of two state-of-the-art methods, AWEI and MNDWI, at three test sites including Wuhan, Shanghai,
and Guangzhou. The results show that LAF achieves a better sub-pixel water extraction accuracy
and reduces errors by at least 5% when compared to AWEI and MNDWI, and obtains better, or at
least comparable, extraction results at the per-pixel level than the other two methods. Moreover,
the method has the smallest variation in appropriate threshold, and the threshold at 1 is a good and
stable initialization for parameter tuning in LAF.
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Abstract: Recently, hashing-based large-scale remote sensing (RS) image retrieval has attracted much
attention. Many new hashing algorithms have been developed and successfully applied to fast RS
image retrieval tasks. However, there exists an important problem rarely addressed in the research
literature of RS image hashing. The RS images are practically produced in a streaming manner in many
real-world applications, which means the data distribution keeps changing over time. Most existing
RS image hashing methods are batch-based models whose hash functions are learned once for all
and kept fixed all the time. Therefore, the pre-trained hash functions might not fit the ever-growing
new RS images. Moreover, the batch-based models have to load all the training images into memory
for model learning, which consumes many computing and memory resources. To address the above
deficiencies, we propose a new online hashing method, which learns and adapts its hashing functions
with respect to the newly incoming RS images in terms of a novel online partial random learning
scheme. Our hash model is updated in a sequential mode such that the representative power of the
learned binary codes for RS images are improved accordingly. Moreover, benefiting from the online
learning strategy, our proposed hashing approach is quite suitable for scalable real-world remote
sensing image retrieval. Extensive experiments on two large-scale RS image databases under online
setting demonstrated the efficacy and effectiveness of the proposed method.

Keywords: hashing; remote sensing image retrieval; online learning

1. Introduction

With the rapid development of satellite and aerial vehicle technologies, we have entered an era
of remote sensing (RS) big data. Automatic knowledge discovery from massive RS data has become
increasingly urgent. Among emerging RS big data mining efforts, large-scale RS image retrieval has
attracted an increasing amount of research interest due to its broad applications in the RS research
community. For example, a fast and accurate retrieval of similar satellite cloud images can provide
valuable judging information for short-term weather forecasting. Besides, in the disaster rescue
scenario, a fast rescue and optimal resources allocating also depend on the real-time and precise
retrieval strategies for the photographs of disaster area.

In earlier RS image retrieval systems, RS image retrieval mainly relied on manual tags in terms of
sensor types, waveband information, and geographical locations of remote sensing images. However,
the manual generation of tags is quite time consuming and becomes especially prohibitive when the
volume of remote sensing images is oversized. As an effective method to manage a large number
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of images, content-based image retrieval (CBIR) can retrieve the interesting images according to
their visual content. In recent years, content-based RS image retrieval has been comprehensively
studied [1–4], in which the similarity of RS images is measured by different kinds of visual
descriptors. More specifically, local invariant [5], morphological [6], textural [7–9], and data-driven
features [10–13] have been evaluated in terms of content-based RS image retrieval tasks. To further
improve image retrieval performance levels, Li et al. [14] proposed a multiple feature-based remote
sensing image retrieval approach by combining handcrafted features and data-driven features via
unsupervised feature learning. Wang et al. [15] proposed a multilayered graph model for hierarchically
refining retrieval results from coarse to fine. Although some encouraging progress has been made,
there remains a great challenge for the content-based RS image retrieval tasks. For the aforementioned
visual descriptors, their dimensions can be in the hundreds or even thousands. Exhaustively comparing
the high dimensional feature descriptor of an inquiry remote sensing image with each image in the
retrieval set is computationally expensive and impossible to achieve on an oversized database. Besides,
the storage of the image descriptors is also a bottleneck for large-scale RS image retrieval problems.

Hashing technique is a potential solution to cope with big data retrieval due to its excellent
ability in compact feature representation. The hashing methods map the input images from the
high dimensional feature space to a low dimensional code space, i.e., hamming space, where each
image is represented by a short binary code. It is extremely fast to perform image retrieval over
such binary codes, because the hamming distance between binary codes can be efficiently calculated
with XOR operation even in a modern CPU. Moreover, binary code representation significantly
reduces the amount of memory required for storing the large-scale content information of images.
Existing hashing approaches can be broadly categorized as data-independent and data-dependent
schemes. Data-independent methods usually adopt random projections as hash functions without
using any training data. One representative data-independent method is Locality Sensitive Hashing
(LSH) [16–18], which projects data points to a random hyperplane and then conducts random
thresholding. Although this data-independent random scheme is quite computationally efficient,
it usually cannot achieve satisfactory retrieved results because it totally disregards the image
data structure. Moreover, to achieve a reasonable recall rate, the LSH based methods typically
require long codes and multiple tables, which degrade the search efficiency in practice. On the
contrary, data-dependent hashing methods attempt to learn good data-aware hash codes by
utilizing various machine learning techniques, which are usually demonstrated to be more effective
than data-independent LSH. Data-dependent hashing can further be divided into unsupervised
hashing [19–23] and supervised hashing methods [24–30]. For example, spectral hashing [19] and
Principal Component Analysis (PCA) based hashing methods [20] belong to the unsupervised category,
which does not utilize the label information of training images when learning the binary codes.
Supervised hashing approaches, such as kernel-based supervised hashing [25], supervised discrete
hashing [27] and deep hashing methods [29], incorporate the label information to learn semantic
hashing functions.

Due to the great success of hashing in the field of natural image retrieval, many efforts have
been devoted to develop efficient hashing methods for large-scale RS images retrieval tasks recently.
More specifically, kernel-based nonlinear hashing was first introduced into the remote sensing
community by Demir and Bruzzone [31]. Then, Li and Ren [32] proposed a novel unsupervised
hashing method named partial randomness hashing (PRH) for efficient hash function construction.
In [33], a novel large-scale RS image retrieval approach was proposed based on deep hashing neural
networks under the supervision of labeled images. Ye et al. [34] proposed a multiple-feature learning
framework for large-scale RS image hashing problem, which takes multiple complementary features
as the input and learns the hybrid hash functions.

Although the hashing-based RS image retrieval methods have achieved some improvements for
large-scale applications, there exist two important problems that are rarely exploited in the existing RS
image hashing approaches. (1) The existing RS image hashing methods are based on a batch learning
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fashion, which assume all training images are available in advance for training and the hash functions
keep unchanged once the learning procedure finished. However, in many real-world RS applications,
the RS images become available continuously in streaming fashion. For example, the satellite transmits
remote sensing images back to the data center every day. In such environments, the RS image database
is enriched by time and the new incoming images may have different distribution with the existing
images or even belong to a totally new category that has never been seen before. Thus, for the
batch-based hashing methods, the pre-learned hash functions may be inappropriate for the new
RS images over time. One solution is to accumulate all the available data and repeatedly do batch
learning to re-train new hash functions, which is a quite inefficient learning manner, especially for
time-consuming hashing methods. (2) The batch-based hashing methods usually have to load all
the training RS images into the memory for hash function learning. Thus, these methods make very
high demands on the computing hardware such as CPU and memory, which limits their practical
application on many mobile remote sensing devices. In addition, for many real large-scale RS image
databases, it is even impossible to load the whole training dataset into memory, let alone training hash
model. Therefore, batch-based hashing on large-scale data often results in a great deal of computational
time and memory cost, which does not satisfy the requirement of the real-world applications.

To overcome the above problems, we propose a novel online hashing method for fast and
scalable RS image retrieval in this paper. Online learning approaches are quite efficient for streaming
data modeling [35–37]. Specifically, we first formulate our hash model based on a partial random
auto-encoder and then develop a novel online hash function learning scheme to continuously update
the hash model such that it fits the sequentially arriving new images over time. Our online hashing
method only employs the new RS images to optimize the hash functions at each learning round and
do not need to revisit all the available data, which has greatly reduced the demands on computing
and memory costs. Even for the oversized RS image database that is difficult to handle using batch
hashing methods, one can divide the whole big dataset into many small chunks and then implement
binary code learning through our proposed online hashing method. As a result, our proposed method
is very suitable and efficient for scalable RS image retrieval tasks. The main contributions of this paper
are summarized as follows:

(1) A novel online hashing method is developed for scalable RS image retrieval problem. To the best
of our knowledge, our work is the first attempt to exploit online hash function learning in the
large-scale remote sensing image retrieval literature.

(2) By learning the hash functions in an online manner, the parameters of our hash model can be
updated continuously according to the new obtained RS images by time, which in contrast is one
main drawback of the existing batch hashing methods.

(3) The proposed online hashing approach reduces the computing complexity and memory cost
in the learning process compared with batch hashing methods. Experimental results show the
superiority of our online hashing for scalable RS image retrieval tasks.

The rest of the paper is organized as follows. In Section 2, the proposed online RS image hashing
method is described in detail. Extensive experiments are conducted in Section 3 to evaluate the
performance of our proposed method as well as other compared approaches. Finally, conclusions are
given in Section 4.

2. The Proposed Approach

Our proposed hashing approach contains two main steps: (1) hash model formulation, which defines
the form of hash model used in the paper; and (2) online hash function learning, which describes how to
update the hash functions dynamically based on the sequentially arriving data. The illustration of the
proposed online hashing approach for scalable RS image retrieval is shown in Figure 1.
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Figure 1. The illustration of the proposed online hashing approach for scalable remote sensing
image retrieval.

2.1. Hash Model Formulation

Suppose that the RS image dataset used for training contains n images. Specifically, xi ∈ Rd

is a d-dimensional feature vector for the i-th image and the feature vectors for all n images are
{x1, x2, · · · xn}. Denote X = [x1, x2, · · · , xn] ∈ Rd×n as the whole data matrix. The corresponding
binary code matrix for the dataset is H = [h1, h2, · · · , hn] ∈ {−1, 1}r×n, where r is the code length.
The hash code vector for the i-th image is a column of H and is denoted as hi. The goal of hashing is to
learn hash functions that encode the original RS images from the d-dimensional feature space into an
r-dimensional hamming space.

Our hash model is formulated by a partial random auto-encoder which includes both forward
and backward parameters. First, the whole data matrix is randomly projected from the d-dimensional
feature space to an r-dimensional relaxed hamming space with sigmoid activation function as follows:

P = g(XT · A + 1nb) (1)

where A ∈ Rd×r is a randomly generated projection matrix and b ∈ Rr is a randomly generated bias
row vector. g(x) = 1/(1 + e−x) is the sigmoid activation function and 1n denotes the n × 1 column
vector in which all the elements are equal to 1. P ∈ Rn×r is the projected data matrix. This is the
forward procedure, whose parameters are randomly generated.

Then, a linear model parameter βββ is employed to fit randomly projected data P back to the original
data X and βββ is learned by minimizing the following problem:

β̂̂β̂β = arg min
βββ

‖P · βββ − XT‖2 (2)

The optimal linear model parameter can be simply computed as follows:

β̂̂β̂β = P†XT (3)

where the superscript † denotes the Moore–Penrose generalized inverse of a matrix. P† can be
given by P† = (PTP)−1PT . This is the backward procedure, whose parameters are optimized
based on the training images. Our hash model is inspired by extreme learning machine (ELM)
approach [38], however supervised ELM computes forward to a target label matrix while our model
computes backward to the original feature data XT . Therefore, our method is in fact an unsupervised
data-dependent hashing scheme.
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Finally, the hash codes H for all the images in the training database can be simply obtained by
H = sign

(
XT β̂̂β̂βT

)
.

2.2. Online Hash Function Learning

It is easy to observe from Section 2.1 that the defined hash model is a batch-learning based hashing
approach, in which all the training images are assumed to be available in advance and the hash model
parameters keep fixed once the learning procedure is finished. However, as we have explained in
Section 1, such hashing methods are not well adapted to the scalable streaming RS images, which is a
common scenario in the real-world applications. For example, as more and more new RS images are
available, the pre-learned hash functions may become unsuitable or even fail for hash code generation.
Moreover, it is even impossible to load all the images into memory for learning when the training
dataset is oversized. In this part, we introduce a novel online hashing scheme which can update the
hash functions continuously so that it can fit the sequentially available RS images.

We assume that the new RS images are available in a stream form. Let Di denote the data
chunk received at round i, i = {1, 2, ...}. One highlight of online learning is that when learning new
information at round t, the algorithm should not access the previously seen image data D1, ..., Dt−1.
Given a chunk of initial training set D1, we can compute its hash code as H1 = sign

(
DT

1 β̂1β̂1β̂1
T
)

, where

β̂1β̂1β̂1 is obtained by the partial random hash model based on Equation (3) as β̂1β̂1β̂1 = Q−1
1 PT

1 DT
1 where

Q1 = PT
1 P1, and P1 is obtained based on Equation (1) as P1 = g(DT

1 · A + 1nb)
Suppose that we are given another chunk of data D2, the proposed method becomes minimizing

the following problem if considering both image datasets D1 and D2:

β̂2β̂2β̂2 = arg min
β2β2β2

∥∥∥∥∥
[

P1

P2

]
β2β2β2 −

[
DT

1
DT

2

]∥∥∥∥∥
2

(4)

where the optimized β̂2β̂2β̂2 can be given by

β̂2β̂2β̂2 = (

[
P1

P2

]T [
P1

P2

]
)−1

[
P1

P2

]T [
DT

1
DT

2

]
(5)

If we let (

[
P1

P2

]T [
P1

P2

]
) be denoted by Q2, then

Q2 = PT
1 P1 + PT

2 P2 = Q1 + PT
2 P2 (6)

and β̂2β̂2β̂2 can be rewritten as

β̂2β̂2β̂2 = Q−1
2 (PT

1 DT
1 + PT

2 DT
2 )

= Q−1
2 (Q1Q−1

1 PT
1 DT

1 + PT
2 DT

2 )

= Q−1
2 (Q1β̂1β̂1β̂1 + PT

2 DT
2 ) (7)

= Q−1
2 [(Q2 − PT

2 P2)β̂1β̂1β̂1 + PT
2 DT

2 )]

= β̂1β̂1β̂1 + Q−1
2 PT

2 (D
T
2 − P2β̂1β̂1β̂1)

From Equations (6) and (7), we can see that β̂2β̂2β̂2 can be expressed as a function of β̂1β̂1β̂1 based on the
new data chunk D2.
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Without loss of generality, we can easily get a recursive form for the streaming data chunk Di as
new images arrive. When the k-th chunk of image set is received, we have

Qk = Qk−1 + PT
k Pk (8)

β̂kβ̂kβ̂k = β̂k−1β̂k−1β̂k−1 + Q−1
k PT

k (D
T
k − Pkβ̂k−1β̂k−1β̂k−1) (9)

By recursively applying (8) and (9), the hash model parameter β̂̂β̂β is updated with respect to the
new available RS images and the learned hash codes for all the images are also improved continuously
with the streaming data. More importantly, we only have to handle the current data chunk without
needing to access the whole image set at each round. Therefore, our method is less constrained by the
computational and space cost limitation compared with the batch hashing approaches.

The learning process of the proposed online partial randomness hashing (OPRH) method is
summarized in Algorithm 1.

Algorithm 1 Online Binary Code Learning with OPRH

1: Input: Streaming image data chunk D1, D2, ..., Dk, code length r
2: Output: Hash codes H for all the images
3: Randomly generate a projection matrix A ∈ Rd×r and a bias row vector b ∈ Rr

4: Compute P1 by P1 = g(DT
1 · A + 1nb)

5: Compute Q1 = PT
1 P1 and β̂1β̂1β̂1 = Q−1

1 PT
1 DT

1
6: for i = 2 : k do
7: Compute Pi by Pi = g(DT

i · A + 1nb)
8: Update Qi with Equation (8)
9: Update β̂iβ̂iβ̂i with Equation (9)

10: end for

11: Compute the hash codes H for the whole database X = [D1, D2, ..., Dk] by H = sign
(

XT β̂̂β̂βT
k

)
2.3. Complexity Analysis

We analyze the complexity of our proposed online partial randomness hashing method.
Specifically, for a stream of data chunk D1, D2, ..., Dt, we update the hash model parameters at every
round i = 1, 2, ..., t. We analyze both the time and space complexity for hash function learning at
each round.

Time Complexity: The time complexity of computing Pk at each round is O(nkdr), where nk is
the number of images in the k-th chunk, d is the dimensionality of the original feature vectors and r is
the length for hash codes. The complexity of updating Qk and β̂̂β̂βk can be O(nkr2) and O(nkr3 + nkdr),
respectively. Thus, the overall time complexity for each round is O(nkr3 + nkdr).

Space Complexity: In our method, all the operations at each round are conducted on a data
chunk Dk without accessing the whole dataset, space overhead of which is O(nkd). The Qk and β̂̂β̂βk
updating steps occupy a space of O(nkr + r2) and O(dr) space is needed to store the final learned hash
model parameter β̂̂β̂βt. Thus, the overall space complexity is O(nkd + r2 + dr).

In the light of the above observations, our OPRH approach is quite suitable for scalable RS image
hashing and fast retrieval because the operated data chunk at each round is much smaller than the
whole large dataset. Especially when the RS image set is oversized and impossible to be loaded into the
memory, we can divide the whole image set into many small chunks and employ our OPRH method
for binary code learning, which can be easily finished even on a ordinary computer.
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3. Experiments

3.1. Datasets and Settings

In this section, we conduct extensive experiments to evaluate the performance of our proposed
OPRH. Two issues are verified in the following experiments: (1) large-scale RS image retrieval
performance of our method compared to state-of-the-art batch-based hashing algorithms; and (2)
the effectiveness and efficiency of the proposed OPRH method under online setting.

Two public large-scale satellite datasets are used in the experiments, i.e., SAT-4 and SAT-6 airborne
datasets [39], which contain 500,000 and 405,000 images, respectively. SAT-4 dataset contains four
classes and SAT-6 contains six classes. All the images in these two datasets are normalized to 28× 28
pixels in size. Some example images from the two datasets are shown in Figure 2. One thousand
images are randomly selected from each dataset as testing queries and the remaining images are used
for training and retrieval database. We extract a 512-dimensional GIST descriptor [40] for each image
as visual feature representation. Given an input image, a GIST descriptor is computed as follows:
(a) convolve the image with 32 Gabor filters at 4 scales and 8 orientations, producing 32 feature maps
of the same size of the input image; (b) divide each feature map into 16 regions (by a 4 × 4 grid),
and then average the feature values within each region; and (c) concatenate the 16 averaged values of
all 32 feature maps, resulting in a 16× 32 = 512-dimensional GIST descriptor. GIST summarizes the
gradient information (scales and orientations) for different parts of an image, which provides a rough
description of the scene.

We compare our approach with both batch-based hashing methods and online hashing methods.
The batch-based hashing methods include two recent RS image hashing methods, Partial Randomness
Hashing (PRH) [32] and Kernel Unsupervised Locality Sensitive Hashing (KULSH) [31], and four
hashing approaches, Inductive Hashing on Manifolds (IMH) [23], Isotropic Hashing (IsoHash) [22],
Iterative Quantization (ITQ) [20], and Spherical Hashing (SpH) [21], used in computer vision.
The compared two online hashing methods are Online Kernel-based Hashing (OKH) [35] and Online
Sketch Hashing (OSH) [36], which are used in the natural image processing literature, because our
proposed approach is the first online hashing method for large-scale RS image retrieval. For the
batch-based hashing methods, all the training images are used to learn the hash functions. For the
online hashing methods, we randomly divide the whole training set into 1000 different chunks to
simulate the online condition and the hash functions are updated in a streaming way.

To perform fair evaluations, we adopt the hamming ranking search commonly used in the
literature. All the images in the database are ranked according to their hamming distance to the query
and the desired neighbors are returned from the top of the ranked list. The retrieval performance
is measured with average precision of the top K returned examples and the overall precision–recall
curves. More specifically, precision and recall are defined as follows:

precision =
true positive

true positive + f alse positive
(10)

recall =
true positive

true positive + f alse negative
(11)

According to Equation (10), we get precision of the top K returned examples for a query image
if the correctly predicted samples divided by K. The average precision is obtained by averaging the
precision scores over all the test queries.
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Figure 2. Some sample images from: (a) SAT-4 dataset; and (b) SAT-6 dataset.

3.2. Results and Analysis

Tables 1 and 2 show the average precision of the Top-10 and Top-100 retrieved image samples
by different hashing methods on the two datasets. We can observe that the ITQ and PRH methods
achieve relative better results among the batch-based hashing methods under varied hash bits. For the
online hashing methods, the proposed OPRH achieves better results compared with the competitors in
most cases. By comparing our OPRH method with the batch-based hashing methods, we can find that
our OPRH obtains comparable performance to the batch methods on SAT-4 dataset while sometimes
achieves even better results than all of the other compared approaches on SAT-6 dataset, which has
indicated the effectiveness of the proposed online hashing method. The performance gain our OPRH
approach may be attributed to the backward learning procedure, which helps learn more accurate
projection parameter to enhance the representational ability of hash codes.

The average precision with respect to different retrieved samples and the precision-recall curves
of compared hashing methods on the two datasets are shown in Figure 3. Since too many cures will be
overlapped and hard to distinguish, we only keep the online hashing methods and the batch-based RS
hashing methods in the figure. In Figure 3a–c,g–i, we can observe that our OPRH method consistently
outperforms OSH and OKH methods when the retrieved images increase and the improvements are
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more notable for long code length. The reason may be that OSH and OKH have large quantization
error when generating binary codes while our OPRH can reduce the error in code binarization through
the backward decoder learning procedure. Precision–recall curve reflects the overall image retrieval
performance of different hashing approaches. In Figure 3d–f,j–l, we also find that our OPRH method
achieves the best results among the compared online hashing methods. The proposed OPRH method
has comparable overall performance to batch-based PRH method and much better than KULSH
approach on the two datasets.

Table 1. The comparison of mean precision of the top K returned examples for different methods on
the SAT-4 dataset with varied hash bits.

Methods
Top-10 Top-100

32-bits 48-bits 64-bits 32-bits 48-bits 64-bits

IMH 0.560 0.538 0.548 0.550 0.524 0.541
IsoHash 0.606 0.640 0.655 0.576 0.594 0.597

ITQ 0.636 0.653 0.662 0.609 0.607 0.610
SpH 0.596 0.623 0.658 0.563 0.588 0.607

KULSH 0.492 0.507 0.553 0.476 0.479 0.526
PRH 0.607 0.621 0.665 0.592 0.595 0.622
OKH 0.439 0.516 0.600 0.418 0.480 0.561
OSH 0.603 0.637 0.647 0.568 0.596 0.596

OPRH 0.608 0.630 0.656 0.598 0.594 0.616

Table 2. The comparison of mean precision of the top K returned examples for different methods on
the SAT-6 dataset with varied hash bits.

Methods
Top-10 Top-100

32-bits 48-bits 64-bits 32-bits 48-bits 64-bits

IMH 0.583 0.626 0.604 0.575 0.614 0.582
IsoHash 0.667 0.680 0.673 0.635 0.645 0.642

ITQ 0.672 0.691 0.681 0.649 0.660 0.653
SpH 0.642 0.664 0.694 0.616 0.631 0.657

KULSH 0.413 0.459 0.452 0.418 0.496 0.520
PRH 0.651 0.682 0.683 0.629 0.658 0.652
OKH 0.541 0.619 0.638 0.521 0.592 0.617
OSH 0.669 0.684 0.680 0.639 0.650 0.647

OPRH 0.645 0.699 0.705 0.631 0.672 0.677

To explicitly compare the online hash function updating process at each round for the online
hashing methods, we compute the the average retrieval precision of different methods after each round
and show it in Figure 4. It is obvious that the proposed OPRH method outperforms both OKH and
OSH approaches on the two datasets. Moreover, OKH has big fluctuations during the online learning
process and its performance even deteriorates as the number of received chunks increases on SAT-4
dataset, while our proposed OPRH achieves quite stable improvement when more and more new
image chunks are available for training. To show the online updating process of our approach more
intuitively, we give an visual example for image retrieval in Figure 5, which shows the first returned
16 samples to the query image by our method after different learning rounds. We can see that the
retrieval results become more and more accurate as the learning round increases. The reason is that
the learned hash functions improve continuously as new training images are obtained and thus the
generated hash codes also become more accurate. This also indicates that our proposed online hashing
method can fit the new available streaming data very well, which is the shortcoming of batch-based
hashing methods in contrary.
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Figure 3. The average precision with respect to different retrieved samples and precision-recall curves
for the compared methods on the two datasets: (a–f) SAT-4; and (g–l) SAT-6.

We also compare the learning efficiency of different hashing methods, which is shown in Table 3.
All experiments are implemented with MATLAB code and run on a PC with Intel Core-i5 2.3 GHz
CPU, 8 GB RAM. For the batch-based hashing methods, we report their total time on the whole
training image set and for the online hashing methods, we show both their average updating time at
each round and the accumulated time of total rounds. Among the batch-based methods, PRH and
IsoHash are much more efficient than other methods. Among the online hashing methods, our OPRH
approach has the fastest updating time at each round and more than 10 times faster than the compared
OSH method. The accumulated time of total 1000 rounds of our OPRH is still comparable to the
PRH method. For memory cost, the online hashing approaches are much lower than the batch-based
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hashing methods. This is easy to explain because the online hashing methods only have to handle a
small image chunk at each learning round while the batch-based methods have to load all the images
into the memory for training. More specifically, the PRH algorithm occupies about 1.2 GB RAM to
store the data and parameters in the learning process on SAT-6 dataset with 64-bits in our experiments
while only 1.8 MB RAM is needed for our OPRH method. SAT-6 dataset only has 405,000 images.
Imagine that, if we are given a RS image dataset consisting of a million or billion images, which is
impossible to be loaded into the memory for training, the batch-based hashing methods would not
work. However, our proposed online hashing method is still able to do hash function learning by
segmenting the whole database into many small chunks. Therefore, the proposed OPRH method is
quite suitable for hash code learning and fast image retrieval on oversized RS image sets, which is
expected in real-world applications.

Figure 4. Comparison of average precision at each round of the online hashing methods on: (a) SAT-4
dataset; and (b) SAT-6 dataset (64-bits).

Figure 5. Visualized retrieval example after different rounds by our OPRH method on SAT-6 dataset
with 64-bits. Top-16 returned image patches for the query are shown for each round and the false
positives are annotated with a red rectangle.
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Table 3. The comparison of training time (in seconds) and memory cost (MB) for different kinds of
hashing methods.

Methods
SAT-4 Dataset SAT-6 Dataset

Round Time Total Time Memory Cost Round Time Total Time Memory Cost

IMH - 67.6 3696 - 67.7 2990
IsoHash - 5.5 4915 - 5.8 3942

ITQ - 47.9 5857 - 61.1 5529
SpH - 196.3 5109 - 200 4177

KULSH - 10.3 3901 - 8.2 3143
PRH - 4.6 1556 - 5.0 1198

OKH 0.32 315.8 10.4 0.27 267 8
OSH 0.11 113.5 4.4 0.11 105.4 3.5

OPRH 0.01 12 2.3 0.009 8.7 1.8

To evaluate the large-scale RS image retrieval performance of our proposed hashing approach
and direct linear search strategy, we conduct image retrieval experiments with our OPRH method and
�2 linear scan. For our OPRH method, image retrieval is carried out with learned binary codes in the
hamming space. �2 linear scan directly does image retrieval in the original feature space based on the
Euclidean distance of feature vectors. Besides the GIST descriptor used in the previous experiments,
CNN feature is also adopted to evaluate the generalizing ability of our OPRH method. We choose
AlexNet as the CNN feature extraction model and the output 4096-dimensional feature of the fully
connected layer fc7 is extracted for each image. PCA is applied to reduce the dimensionality to 1024
and form the final feature vector for the images. The comparison of average search time per image and
mean precision of Top-100 retrieved samples is shown in Table 4. From the results, we can find that,
when using CNN feature instead of GIST descriptor, the average retrieval precision can be improved
by 30–40% on the two datasets. This is attributed to the powerful representation ability of CNN feature,
which is able to learn more high-level semantic information. For different image search strategies,
the direct search in the original image feature space can obtain higher accuracy than hashing-based
search methods in most cases. However, by sacrificing a little accuracy, the hashing approaches can
obtain much faster search speed than the traditional direct search method. For example, compared with
direct search in the CNN feature space, OPRH + CNN achieves more than 60 times speed acceleration
with only 1% drop in the retrieval accuracy on the SAT-6 dataset. The reason is that our OPRH approach
conducts image retrieval based on binary codes and the hamming distance between different codes
can be efficiently calculated with XOR operation, which is much more faster that the computation of
Euclidean distance in the feature space.

Table 4. The comparison of average search time (in seconds) and accuracy (mean precision of Top-100
retrieved samples) between our proposed hashing method in the hamming space (with 64-bits) and �2

linear scan in the original feature space based on different feature representations.

GIST �2 Scan CNN �2 Scan OPRH+GIST OPRH+CNN

Time Precision@100 Time Precision@100 Time Precision@100 Time Precision@100

SAT-4 1.93 0.60 4.01 1 0.06 0.61 0.06 0.98
SAT-6 1.67 0.69 3.15 0.98 0.05 0.67 0.05 0.97

Finally, to demonstrate the superiority of the proposed hashing approach for real-world large-scale
remote sensing image retrieval, we generate a synthetic dataset consisting of 100 million samples of
1000 dimension. Due to the size of the synthetic dataset, it exceeds the processing ability of traditional
batch-based hashing approaches and brute force linear search schemes. However, by dividing the
dataset into one million small chunks, our OPRH hashing approach only has to handle 100 samples
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at each round and can finish hash model training in 33 min on our ordinary PC. With learned binary
codes of 64-bits, fast image retrieval from 100 million samples can be carried out at the speed of 5 s per
image. These results demonstrate that the proposed OPRH is scalable to massive streaming remote
sensing data even on a common computer.

4. Conclusions

In this paper, we have proposed a novel online hashing method, named online partial randomness
hashing (OPRH), for retrieving scalable remote sensing image databases. Benefiting from the online
learning scheme, the hash model parameters can be updated continuously according to the streaming
image data, which is a common scenario in the real-world applications. Therefore, the hash codes
learned by our approach have better generalization ability compared with the batch-based hashing
approaches. More importantly, the batch-based hashing methods will face difficulties when handling
very large database due to the high complexity and space limitation while the proposed method can be
easily applied to oversized dataset by dividing it into several small chunks. Thus, our OPRH method
is very suitable for large-scale remote sensing image retrieval. Extensive experiments on two public
large-scale satellite datasets have demonstrated the effectiveness and efficiency of our approach.

Our proposed online hashing method can be used in many real-time remote sensing applications
due to its adapting ability to variations in datasets as they grow and diversify. For example, on-orbit
processing of satellite remote sensing images can be conducted through our online hashing method
to improve the efficiency of information processing. Real-time retrieval from huge historical satellite
cloud pictures with our proposed approach can provide the forecaster more effective information
for short-term weather forecasting. At the same time, there are also some challenging issues that
need to be addressed for our proposed online hashing approach. The hash functions of our approach
are updated gradually according to the changing database, but the updating frequency needs to be
well decided in real-world applications. Too high frequency is time-consuming while low updating
frequency may lead to unsatisfactory retrieval results. In addition, the hash code indexing must also
be frequently updated when hash functions change. This may cause inefficiencies in the real-world
systems. Therefore, solutions must be simultaneously developed to alleviate this particular problem in
future work.
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Abstract: Urban growth and its associated expansion of built-up areas are expected to continue
through to the twenty second century and at a faster pace in developing countries. This has the
potential to increase thermal discomfort and heat-related distress. There is thus a need to monitor
growth patterns, especially in resource constrained countries such as Africa, where few studies
have so far been conducted. In view of this, this study compares urban growth and temperature
response patterns in Freetown and Bo town in Sierra Leone. Multispectral Landsat images obtained
in 1998, 2000, 2007, and 2015 are used to quantify growth and land surface temperature responses.
The contribution index (CI) is used to explain how changes per land use and land cover class
(LULC) contributed to average city surface temperatures. The population size of Freetown was
about eight times greater than in Bo town. Landsat data mapped urban growth patterns with
a high accuracy (Overall Accuracy > 80%) for both cities. Significant changes in LULC were noted
in Freetown, characterized by a 114 km2 decrease in agriculture area, 23 km2 increase in dense
vegetation, and 77 km2 increase in built-up area. Between 1998 and 2015, built-up area increased by
16 km2, while dense vegetation area decreased by 14 km2 in Bo town. Average surface temperature
increased from 23.7 to 25.5 ◦C in Freetown and from 24.9 to 28.2 ◦C in Bo town during the same period.
Despite the larger population size and greater built-up extent, as well as expansion rate, Freetown
was 2 ◦C cooler than Bo town in all periods. The low temperatures are attributed to proximity to
sea and the very large proportion of vegetation surrounding the city. Even close to the sea and
abundant vegetation, the built-up area had an elevated temperature compared to the surroundings.
The findings are important for formulating heat mitigation strategies for both inland and coastal
cities in developing countries.

Keywords: urban heat island; land surface temperature; climate change; land use; land cover; Landsat;
remote sensing

1. Introduction

There has been an increase in the number of urban dwellers, together with an accompanying
expansion of built-up area globally [1]. Urban areas are strategic areas economically, as well as from
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an administrative perspective. They are important for issues such as the improvement of education and
health delivery of a nation. Despite their socio-economic importance, urban areas and characteristic
complex land use and land cover (LULC) spatial structure also pose a variety of environmental
changes [2–5]. According to Acharya et al. [5], the benefits of urban growth in developing countries
include opportunities for employment, specialization, and the better production of goods and services.
The challenges, however, include air pollution and water pollution in industrialized areas, while flash
flooding is prevalent in highly impervious areas. Another notable challenge of urban development is
temperature elevation, especially in densely built-up areas [6,7]. Studies have shown that urban areas
are comparatively warmer than undisturbed surroundings such as rural areas; a phenomenon called
Urban Heat Island (UHI) [8–12]. According to Gusso et al. [8], cities use construction materials such
as concrete and asphalt, which do not allow water to penetrate and absorb a large amount of heat,
thereby increasing urban temperatures. Elevated temperature results in increased outdoor and indoor
human thermal discomfort, as well as increased heat-related health risk [13–16]. Urban heat islands
have maximized the number of heat wave days and tropical-like night conditions in several main cities,
including Paris, Baltimore, Washington D.C., and Shanghai, during the summer [17–19]. Furthermore,
the Intergovernmental Panel on Climate Change (IPCC) [20] stressed that land cover changes have the
potential to raise air temperatures of urbanized areas by 4 ◦C by 2100. The changes and associated
adverse impacts seriously threaten the sustainable development of urban areas [21]. Urban land use
and land cover heterogeneity, as well as changes, result in the complex and varied spatial structure
of heat intensities which also vary from city to city. It is thus important to establish city specific land
surface temperature patterns in order to derive relevant mitigation and response strategies.

Remote sensing offers a variety of options for monitoring both LULC and LST spatial structure.
Unfortunately, space-borne sensors detect thermal infra-red at either a low (e.g., above 500 m such
as METEOSAT) or medium (e.g., 30–500 m such Landsat, ASTER and MODIS), but not high, spatial
resolution (e.g., below 30 m such as SPOT). This results in mismatch in the resolution between
retrieved LULC and LST maps. High resolution thermal data is often obtained from air-borne missions.
Generally, high spatial resolution datasets are expensive to gather, have a low temporal resolution,
usually lack a thermal infra-red component, and have very limited historical archives not sufficient
for long term analysis [22]. Medium resolution multi-spectral datasets are often reliable for urban
LULC and LST analysis. For example, Landsat has large stores of visible, infra-red, and thermal data
archives spanning from as early as 1972 to present [6,22]. Recently, studies showed that Landsat data
are effective and very accurate in mapping urban LULC distribution, as well as changes thereof [22–25].
For example, using Landsat data, Mushore et al. [9] retrieved LULC spatial and temporal patterns
in Harare between 1984 and 2015 at overall accuracies greater than 80%. Studies have also proved
the effectiveness of Landsat thermal data in mapping land surface temperature variations, including
those in complex urban settings [26–28]. Recently, multi-temporal Landsat data was used to develop
a model to predict future urban surface temperatures in Harare [29]. Mushore et al. [29], showed
that if historical growth patterns will persist, land surface temperatures will increase by as much as
5 ◦C by 2045. Therefore, the utility of medium resolution datasets in quantifying the impact of urban
growth on LST patterns needs to be continually exploited. This is necessary in cities of low Gross
Domestic Product countries such as in Africa, especially where similar studies have not yet been done;
for example, in Sierra Leone.

In Africa, the studies have been confined to a few cities mainly in South Africa, Zimbabwe,
and Nigeria. For example, Odindi et al. [7] investigated the impact of seasonality of urban greenery on
heat island patterns in the Ethkwini municipality in South Africa. However, although they used 30 m
multispectral Landsat 7 data for LULC mapping, surface temperatures were retrieved from course
resolution (1 km) MODIS thermal data. Other studies in Africa were also confined to a single city;
for example, Mushore et al. [9] only focused on Harare in Zimbabwe, while in West Africa, Abegunde
and Adedeji [30] focused on Ibadan in Nigeria. Given the projected urban growth which must be
faster in developing countries, there is thus a need to understand the implications in other parts of
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Africa [19]. While Odindi et al. [31] compared LST patterns in coastal cities of South Africa, there is
a general paucity of literature on comparing LST patterns between two cities of an African country.
Precisely, there is a lack of literature comparing LST patterns of two cities, especially with one being
inland and the other being coastal, such as Freetown and Bo town in Sierra Leone. As such, there is the
need for a novel study to understand urban growth patterns, as well as responses of LST, in Sierra
Leone, in West Africa. Such analysis is important for understanding both the differential effect of
urban growth and of global warming between a coastal and an inland city in West Africa. Adaptation
and mitigation strategies derived from such an analysis will take into account the position of a city
relative to the ocean. Furthermore, the Contribution Index (CI) has not yet been used to compare
growth patterns of two cities, as well as to explain the impacts of growth on surface temperatures
in West Africa. To the best of our knowledge, the index has only been successfully tested on the
African continent in South Africa [7,23,31] and in Zimbabwe [9]. Odindi et al. [31] used CI to compare
LULC and LST patterns between coastal cities of South Africa, but did not compare a coastal city
with an inland city. Although Odindi et al. [31] compared LST variations in two cities; they used
course resolution MODIS data, leaving a gap on comparison analysis using Landsat data in Africa.
Liu and Weng [32] also found the 30 m visible and infrared, as well as the 90 to 120 m resolution
thermal infra-red, Landsat data to be optimal in the analysis of the relationship between LULC and
LST patterns.

The objectives of this study are thus to (1) use remote sensing to determine urban growth patterns
in Sierra Leone; (2) quantify the effect of urban growth on spatial and temporal LST patterns in two
major cities of Sierra Leone using the CI; and (3) understand the differences in responses of LST to
urban growth and global warming between a coastal city (Freetown) and an inland city (Bo town) in
Sierra Leone. The study hypothesizes that urban growth patterns should differ between Freetown and
Bo town and thus influence LST spatial and temporal changes to differ between the two cities.

2. Materials and Methods

2.1. Study Area

The study was conducted in the two major cities of Sierra Lone; Freetown and Bo town (Figure 1).
Freetown is the major port city on the Atlantic Ocean and is located in the western area of Sierra Leone.
Bo town is the second largest city in Sierra Leone (after Freetown) and the biggest city in the Southern
Province. Bo town serves as the capital and administrative focus of Bo District in the Southern Province.
Freetown has a total area of 357 km2 and a population of 772,873, constituting 15.53% of the total Sierra
Leonean population [33]. From the projected population of local administrative data from 2005 to
2014 (http://statistics.sl), out of 6,348,350 populations in Sierra Leone, 27.14% lives in urban areas,
with 16.4% living in Freetown and 4% living in Bo [33]. In Sierra Leone, the national census should
be done once every 10 years. To date, five censuses have been conducted in 1963, 1974, 1985, 2004,
and 2015. Another census was supposed to be done between 1994 and 1995, but was postponed due to
the civil war which commenced in 1991 in the country. In order to ascertain that the population was
growing in the study area, we used all the available data from the five censuses, although focus was
on the period between 1998 and 2015. Census statistics are obtainable from Statistics Sierra Leone at
national, town, and chiefdom levels. Therefore, population statistics for Freetown and Bo town were
obtained at the town level.

Climate summaries were obtained from the Sierra Leone Meteorological Department under the
Ministry of Transport and Aviation (http://mta.sl/meteorological-department). Freetown and Bo town
experience a tropical climate, with a rainy season from May to October and a hot dry season from
November to April. Freetown has an average annual precipitation of more than 3500 mm. It receives
the highest amount of rainfall in the country due to its proximity to the Peninsula Mountains and
Atlantic Ocean. The average annual precipitation of Bo town is around 2616.6 mm. The annual average
minimum temperature for Freetown is around 23.8 ◦C, while the average maximum temperature
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is 29.9 ◦C. The annual mean minimum temperature for Bo town is 21.2 ◦C and the average maximum
temperature is 31.3 ◦C.

Figure 1. Location of Freetown and Bo town in Sierra Leone, West Africa.

The topography of Freetown is undulated. Elevation ranges between 100 m and 700 m, with slopes
exceeding 50 m and Bo town is 104 m above sea level. The prevailing winds are the south west monsoon
during the wet season and the northeastern harmattan, which is a dust laden wind from the Sahara
Desert, during the dry season. In this research, we have taken the most developed parts of Bo town
(10,808.57 ha or 108.08 km2) and the most developed parts of Freetown (51,896.79 ha or 518.97 km2),
as illustrated in Figure 1. The red bordered area of Freetown and Bo town (study areas) are the rapidly
developing areas. The period between November and April was selected for temperature analysis
because it is hot and dry, hence posing a threat to human thermal comfort.

2.2. Datasets

This study uses cloud free and geometrically corrected Landsat imagery from the Earth Resources
Observation and Science (EROS) center through the United States Geological Survey (USGS) Global
Visualization Viewer. The path/row was 202/54 for Freetown and 201/054 for Bo town. The image
scenes dated to 27 February 1998 (TM5), 3 February 2000 (ETM), and 23 February 2007 and 28 January
2015 (OLI) for Bo town, and 28 February 1998 (TM5), 3 February 2000 (ETM), 27 February 2007 (ETM),
and 4 February 2015 for Freetown. Apart from satellite imagery, several referenced datasets like
ground GPS data of different LULC categories, Population census data from the Statistics Sierra Leone,
and mean temperature and mean humidity from the Sierra Leone metrological Department were
used. High resolution contemporary satellite imagery (GEOEYE-1 and Google Earth historical image

319



Remote Sens. 2018, 10, 112

of 2015), administrative spatial datasets from the National Tourist Board and Environmental Protection
Agency, and ancillary secondary maps were also used as ground truth data for accuracy assessment.

2.3. Image Preprocessing

The remote sensing images are re-projected to the UTM WGS 84 N (UTM zone 29-North) following
a third order polynomial fit and nearest neighbor resampling techniques. Digital numbers (DN) of
TM5, ETM+, and OLI images are stored as 8 bit and 16 bit, respectively [34–36]. These DNs of each
image are converted to the top of atmospheric (TOA) spectral radiance using sensor specific calibration
parameters directly obtained from the image MTL (metadata) file following the standard spectral
radiance (Equation (1)).

L =

(
Aρ

1− ρeS

)
+

(
Bρe

1− ρeS

)
+ La (1)

where, ρ is the pixel surface reflectance, ρe is an average surface reflectance for the pixel and
a surrounding region, S is the spherical albedo of the atmosphere, La is the radiance back scattered by
the atmosphere, A and B are coefficients that depend on atmospheric and geometric conditions but not
on the surface, and L is the spectral radiance.

The radiance of the reflective bands is then converted to a band interleaved by line (BIL) format to
make them efficient for the atmospheric correction process in order to reduce atmospheric effects like
water content, dust particles, aerosols, cloud, and varying sun angles, etc., which could significantly
influence optical images and thereby degrade their spectral information. Hence, these are subjected
to an atmospheric correction process to be applied to minimize those effects and produce corrected
surface reflectance. The Fast Line-of-sight Atmospheric Analysis of Hypercube (FLAASH) is applied
for the atmospheric correction process [37]. FLAASH is a first principle of atmospheric correction
tool which generally corrects wavelengths of visible, near-infrared, and shortwave infrared data.
It uses the MODTRAN radiation transfer code [38] for retrieving atmospheric noises like aerosols,
dusts, and water vapor content, etc., from dark land pixels in the scene based on a nearly fixed ratio
between reflectance from pixels at 660 nm and 2100 nm [39]. The overall FLAASH method takes input
from the radiance and provides an atmospherically corrected surface reflectance image output using
Equation (2).

Le ≈
(
(A + B)ρe

1− ρeS

)
+ La (2)

2.4. Urban Growth Assessment Using Remote Sensing and Census Data in Freetown and Bo Town

Land use and land cover (LULC) maps for 1998, 2000, 2007, and 2015 were obtained using
supervised image classification of multispectral Landsat data described in Section 2.2 above.
Supervised image classification involves the use of ground control points obtained from field surveys
or high resolution imagery to assist remote sensing software to assign LULC classes to pixels based on
multi-spectral images. In each classification procedure, thermal data were left out since the objective
was then to link LULC dynamics with LST derived from these data. The Support Vector Machine
(SVM) algorithm was used because it was found to perform better than other common classifiers
such as ANN, maximum likelihood, and Mahalanobis distance [22,40,41]. SVM also comparatively
requires very little training data. In each year, the ground truth LULC data collected from field work
and auxiliary data were split into 70% (for classification) and 30% (for accuracy assessment) following
the recommendation of Adelabu et al. [40]. The area is classified into built-up, dense vegetation, sparse
vegetation, water/wetlands, and agriculture land. A post classification change detection approach
was used to determine the effect of growth on the spatial distribution and areal coverage of LULC
types. According to Yu et al. [42], post classification is the most widely used change detection method.
Due to simplicity and ease of interpretation, in this study, we detect changes in area per class, as was
done by Salvati and Sabbi [43].
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In order to link remotely sensed spatial and temporal patterns in LULC with population growth,
census data for 1963, 1974, 1985, 2004, and 2015 were used. Although the study focuses on the time
interval from 1998 to 2015, the analysis of population dynamics includes time as far back as 1963 in
order to take advantage of data availability, as well as to obtain a clearly convincing description of the
population trends in the area.

2.5. LST Retrieval from Thermal Infrared Data

The steps as summarised by Weng et al. [26] and described in detail by Weng et al. [44] are followed
to retrieve the land surface temperature from Landsat’s thermal infrared data. The procedure involved
(i) conversion of digital numbers (DN) to spectral radiance; (ii) computation of satellite brightness
temperature from spectral radiance; and (iii) retrieval of land surface temperature from brightness
temperature (emissivity correction). Full details of the steps are described in the Sections 2.5.1
and 2.5.2 below.

2.5.1. Conversion from Digital Numbers to Brightness Temperature

The DNs of the TIR bands of each year’s ETM+ and TM5 images are converted to spectral radiance
using the formula adopted by Chander and Markham [45] (Equation (3)) and Landsat 8’s thermal
infrared images were converted using the USGS standard (Equation (4)).

Lλ = Lmin +
Lmax − Lmin

QCALmax − QCALmin
DN (3)

Lλ = ML × Qcal + AL (4)

In the above equations, Lλ is the spectral radiance in W/(m2 srμm) received by the sensor from
each pixel of the image. ML and AL are band specific multiplicative and additive rescaling factors
obtained from the image MTL file, Qcal is the DN of each image, and QCALmax is the maximum DN
(65535 for the 16-bit Landsat 8 and 255 for other Landsat missions). Lmax and Lmin are the maximum
and minimum top of atmospheric (TOA) radiances in W/(m2 srμm), respectively.

After the conversion of the DNs to the spectral radiance, the radiant images are converted to the
blackbody temperature using (Equation (5)).

Tb =
K2

ln
{(

K1
Lλ

)
+ 1

} (5)

where Tb is the effective at-sensor brightness temperature in Kelvin unit, Lλ is the spectral radiance in
W/(m 2 srμm), and K1 and K2 are prelaunch calibration constants in Kelvin unit obtained from the
image MTL file.

2.5.2. Surface Emissivity (ε) Retrieval

The land surface emissivity is retrieved using the Normalized Difference Vegetation Index (NDVI)
threshold method [45,46]. According to the method, when NDVI < 0.2, the pixels are considered as
bare lands and the emissivity is retrieved from the red spectral region. When NDVI > 0.5, the pixels are
considered as fully vegetation coverage and the emissivity value is assumed to be 0.99. When NDVI
ranges between 0.2 and 0.5, the pixels are considered as a mixture use of soil and vegetation. In this
case, emissivity is retrieved using Equation (6), as follows:

ε = εvPv + εs(1− Pv) + Δε (6)
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where εv is the emissivity of vegetation coverage, εs is the emissivity of soil surface, and, Pv is the
proportion of vegetation calculated from Equation (7),

Pv =

[
NDVI − NDVIs

NDVIv − NDVIs

]
2 (7)

where NDVIs is the NDVI value of pure soil and NDVIv is the NDVI value of pure vegetation
extracted from the NDVI image.

In Equation (6), the term Δε is the indication of the geometrical distribution of the natural surface,
as well as the internal reflection whose value is considered as negligible for the plain and homogenous
surfaces. However, in the case of a rough and heterogeneous surface, the value is assumed to be 2%
Sobrino et al. [46] and is expressed by the following (Equation (8)):

Δε = (1− εs)(1− Pv)Fεv (8)

where F is the shape factor whose mean value for different geometrical distributions is assumed to be
0.55 [45,46].

By summarizing Equations (6) and (8), the final equation for emissivity estimation is obtained by
Equation (9), as follows:

ε = mPv + n (9)

where m and n coefficients are calculated as:

m = εv − εs − (1− εs)Fεv and n = εs + (1− εs)Fεv (10)

Brightness temperatures assume that the earth is a blackbody, which it is not, and this can result
in errors in surface temperature. In order to minimize these errors, emissivity correction is necessary
and this is done to finally obtain the land surface temperature (LST) from Tb using Equation (11) [44].

LST =
Tb

1 +
{

λTb

(
K
ρ

)
× ln ε

} (11)

In the above equation, λ is the wavelength of emitted radiance (11.5 μm) [47,48], ρ = hc/σ (mK),
K is the Stefan–Boltzmann’s constant (1.38 × 10−23 JK−1), h is the Planck’s constant (6.26 × 10−34 Js),
c is the velocity of light (2.998 × 108 ms−1), and ε is the surface emissivity.

2.6. Linking Urban Growth to LST

The effect of LULC in the warming or cooling of an area depends on the LULC type and the
proportion of the total area occupied by each type. For example, vegetation cover and water/wetlands
have a surface cooling effect due to latent heat transfer. However, even though they have a cooling
effect, the overall value depends on the proportion of the total area they occupy [49]. The warming
or cooling extent of an LULC type taking into account the proportion of the total area it occupies is
quantified using the Contribution Index (CI). The CI is used to link spatial structure, as well as long
term changes in LULC, to LST intensities. The CI for each LULC type is computed for both cities using
Equation (12) for all the periods mentioned in Section 2.2 [7,31,48].

CI = Dt × S (12)

Dt is the difference between the average temperature of the entire study area and the average of
the LULC class type. Variable S is the proportional area of the LULC type, which is the ratio of the area
covered by the class to the total area of the study area. Positive values of CI indicate how much the
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LULC type contributes to raising the surface temperatures of an area, while negative values indicate a
heat mitigation value.

3. Results

3.1. Remote Sensing Based Urban Growth Assessment in Freetown and Bo Town

Visual inspection of Figure 2A–D indicates the expansion of built-up area in Freetown. This is
notable in the northern, eastern, and western parts of the city. Since 1998, the city has been characterized
by a tongue of dense vegetation occupying most of the central part of the city. This dense vegetation
area is not diminishing, even as built-up area is expanding. The growth of Freetown concentrated
along the northwestern and eastern margins is influenced by the ocean (Figure 2A–D). On the other
hand, the growth of Bo town since 1998 has been largely characterized by expansion from the central
to the southwestern areas of the city (Figure 2E–H). The growth of Bo town also infiltrated into densely
vegetated areas between 1998 and 2015.

Figure 2. Urban growth induced LULC changes in Freetown (A–D) and Bo town (E–H) between 1998
and 2015.

Table 1 indicates the overall accuracy (OA) and kappa coefficient (k) obtained in LULC
classification for different years in Freetown and Bo town. The overall accuracies were greater than
85% for both cities in all years. Accuracies per individual LULC class (i.e., user accuracy (UA) and
producer accuracy (PA)) are shown in Appendix A.

Table 1. Accuracy of multi-temporal LULC classifications in Freetown and Bo town.

Year
Freetown Bo Town

OA Kappa OA Kappa

1998 91.56 0.91 89.87 0.88
2000 95.56 0.95 89.44 0.87
2007 93.33 0.92 87.88 0.85
2015 89.44 0.87 88.33 0.86
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Between 1985 and 2015, the agriculture area has decreased by about 84 km2, while the built-up
area increased by almost 80 km2 in Freetown (Figure 3). Dense vegetation areas increased by 22 km2,
while sparse vegetation areas increased by 40 km2. The increase in vegetation areas could be part of
an explanation of why bare areas reduced in area by 28 km2. A difference was observed in Freetown
because, here, growth occurs along the coast away from the central zone of dense vegetation. Land use
and land cover changes in Bo town were not as marked as in Freetown. For example, built-up areas
increased by 15 km2, while areas with sparse vegetation increased by 7 km2 in Bo town. During the
same period, the dense vegetation and agriculture areas decreased by 14 km2 and 10 km2, respectively.

Figure 3. Urban growth induced LULC changes in Freetown and Bo town (1998 to 2015).

3.2. Census Based Urban Growth Patterns in Freetown and Bo town

The population increased by almost ten times in both Freetown and Bo town between 1963 and
2015 (Table 2). Population densities also changed from 246.5 to 2023.8 (people/km2) and from 246.2 to
1609.0 (people/km2) in Freetown and Bo town, respectively. The population size of Freetown has
always far exceeded that of Bo town, such that in 2015, the sizes were 1,050,301 and 173,905, respectively.

Table 2. Census-based population growth in Freetown and Bo town.

Year
Population Size

Freetown Bo Town

1963 127,917 26,613
1974 276,247 39,741
1985 469,776 59,768
2004 772,873 148,705
2015 1,050,301 173,905

3.3. Responses of LST to Growth Patterns in Freetown and Bo Town

High surface temperatures (above 30 ◦C) are most notable in the northern and western parts of
Freetown in 1998 (Figure 4A). Over the years, high surface temperatures have also been spreading
southward along the western margin of the city (Figure 4B–D). Low surface temperatures below
22 ◦C have remained characteristic of the central and southwestern parts of the city. On the contrary,
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since 1998, the high surface temperature has spread from the central parts of the city of Bo town,
especially towards the southwest (Figure 4E–H). Low temperature areas (below 20 ◦C) surround
this expanding hot spot and are shrinking in size. The shape of high surface temperature areas in
both Freetown and Bo town closely mimics that of the built-up area, indicating their strong warming
influence. Conversely, low surface temperature patterns also track areas with vegetation cover, being
low in dense vegetation areas in both cities. In both cities, average temperatures are rising with time
(Table 3).

Figure 4. Land surface temperature change in Freetown (A–D) and Bo town (E–H) between 1998
and 2015.

Table 3. Changes in the heat source/sink role of land use and land cover types in Freetown between
1998 and 2015. Green means vegetation.

1998 2000 2007 2015

DT (◦C) S (%) CI DT (◦C) S (%) CI DT (◦C) S (%) CI DT (◦C) S (%) CI

Built-up 2.67 9.92 0.26 3.17 13.16 0.42 2.15 17.84 0.38 2.92 24.73 0.72
Dense green −2.19 21.43 −0.47 −2.79 21.98 −0.61 −1.51 28.76 −0.43 −2.60 25.82 −0.67
Sparse green −1.15 29.52 −0.34 −1.28 34.55 −0.44 −0.48 22.57 −0.11 −0.37 37.29 −0.14
Agriculture 0.18 22.93 0.04 −0.48 17.16 −0.08 −0.42 13.85 −0.06 0.97 0.98 0.10
Bare/sand 1.70 10.46 0.18 1.21 7.61 0.09 1.43 10.60 0.15 1.74 5.24 0.09

Water −1.17 5.73 −0.07 −0.41 5.55 −0.02 −1.15 6.38 −0.07 −2.65 5.95 −0.16

3.4. Link between Long Term Changes in LULC and LST Dynamics

The agriculture area has a positive contribution index (CI) in Freetown, indicating that such places
increase heat in the city during the dry season (Table 3). Although the area under agriculture has
reduced between 1998 and 2015, the CI has remained positive and increased. The cooling contribution
of dense vegetation is increased as indicated by a CI of −0.47 in 1998 followed by −0.85 in 2015. Sparse
vegetation also has a significant cooling effect in Freetown, although its value has decreased slightly
between 1998 (CI = −0.34) and 2015 (CI = −0.24). The heat mitigation value of vegetation was also
noted in Texas, where woodlands were 1.5–3.9 ◦C cooler than neighboring areas. The cooling effect
of dense vegetation was more than that of sparse vegetation indicated for an example by a CI of
−0.67 compared to −0.13 in Freetown in 2015 for dense and sparse greenery, respectively. The built-up
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area in Freetown increased in terms of the warming effect by almost three times, as indicated by the CI
of 0.26 in 1998 and 0.72 in 2015.

In Bo town, the surface cooling effect of dense vegetation is increasing significantly (CI = −0.55 in
2000 and −0.85 in 2015). At the same time, bare areas and areas with sparse vegetation are decreasing
in terms of their warming and cooling effect, respectively (Table 4). The hot spot area expanding from
the centre of the city, mainly to the southeast, can thus be explained by the increasing warming effect of
the built-up area between 1998 (CI = 0.26) and 2015 (CI = 0.41). Although water bodies have a cooling
effect, their contribution has remained minimal over the years due to the low proportion of the cities
they occupy. In both cities, the CI for water has remained less than −0.2 in all the years.

Table 4. Changes in the heat source/sink role of land use and land cover types in Bo town between
1998 and 2015.

1998 2000 2007 2015

DT
(◦C)

S (%) CI
DT
(◦C)

S (%) CI
DT
(◦C)

S (%) CI
DT
(◦C)

S (%) CI

Built-up 3.65 5.08 0.19 2.78 7.38 0.21 2.58 12.69 0.33 2.09 19.79 0.41
Dense green −2.31 47.06 −1.09 −2.21 24.68 −0.55 −1.63 31.09 −0.51 −2.51 33.97 −0.85
Sparse green −1.44 19.91 −0.29 −1.48 49.14 −0.73 −0.83 31.39 −0.26 −0.93 26.11 −0.24
Agriculture 0.52 18.26 0.10 0.54 14.76 0.08 0.38 10.49 0.04 0.20 8.62 0.02
Bare/sand 1.25 7.96 0.10 1.56 3.72 0.06 0.78 11.15 0.09 1.29 9.69 0.13

Water −1.70 1.73 −0.03 −1.22 0.31 −0.01 −1.27 3.20 −0.01 −0.13 1.83 −0.01

Urban growth patterns in Freetown are unique, in that they are characterized by the expansion of
built-up and dense vegetation areas. Although Freetown is larger in size and growing faster, it was
about 2 ◦C cooler than Bo town in all periods.

4. Discussion

The study obtained a high classification accuracy both in a coastal city (Freetown) and an inland
city (Bo town). The overall classification accuracy reached the 85% recommendation by Anderson [49],
because even at a 30 m resolution of Landsat optical data, the mixed pixel problem did not significantly
affect the quality of the LULC maps produced. Despite the complexity of classification in urban areas
due to surface heterogeneity, the mapping accuracies are also higher than the 80% overall accuracy
recommended by Omran [50]. The high level of accuracy can be justified by Voogt and Oke [51],
who noticed that improvements that have occurred in satellite sensors over the years provide detailed
and accurate land surface representation at a low cost. The high classification accuracy could also be
attributed to the renowned performance of the Support Vector Machine algorithm [22,40,41]. According
to Jia et al. [41], the Support Vector Machine (SVM) algorithm was found to outperform other common
classifiers such as ANN, maximum likelihood, and Mahalanobis distance. The algorithm was also
used for multi-temporal Landsat-based classification in an urban setting in Harare, where overall
accuracies above 80% were also obtained. These findings show the value of freely available medium
resolution space-borne remotely sensed datasets for monitoring urban extent and growth, especially in
resource-constrained nations.

The population increased by almost ten-fold in both Freetown and Bo town between 1963 and
2015, while the population densities also increased. In all the periods considered, the population
size of Freetown has always far exceeded that of Bo town. Most of the economic and administrative
activities of Sierra Leone are concentrated in Freetown, hence the larger population size and faster
growth than Bo town. Furthermore, the beauty of the sea seems to make residents prefer to concentrate
along the coastal margins of Freetown than to spread further inland towards the dense vegetation
area. Besides increasing population sizes, built-up areas are also expanding in both cities. Growth
patterns observed in both cities agree with earlier observations and predictions that urban population
is growing, globally [19,52]. Expansion of the built-up area in Freetown has been mainly concentrated
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along the coast and is most notable in the northern, eastern, and western parts of the city. This growth
along the northern margins of Freetown explains why the dense vegetation area in the central part of
the city is not diminishing even as the built-up area is expanding. A different pattern is observed in
Bo town, where the built-up area is expanding from central locations outwards. Unlike in Freetown,
the growth of Bo town has led to a reduction in the area of the densely vegetated LULC category
between 1985 and 2015. As observed in Bo town, in most studies, the proportion of total area occupied
by dense vegetation decreases with continuous urban expansion [26,27,53,54]. Kamusoko et al. [54]
observed that the expansion of built-up areas in Harare Zimbabwe pushed most dense vegetation
locations outwards to the peripheries of the city.

As expected, temperature responded strongly to spatiotemporal dynamics of LULC in both
Freetown and Bo town. High temperatures in both cities were observed in built-up areas and their
extent increased with time as the cities were expanding. The influence of buildings explains why high
surface temperatures (above 30 ◦C) were recorded in northern and eastern parts of Freetown. Over the
years, surface temperatures in this regime have also been spreading southward along the western
margin of the city following the expansion of the built-up area. The shape of high surface temperature
areas in both Freetown and Bo town closely mimics that of the built-up area, indicating their strong
warming influence. This concurs with Sha and Ghauri [28], who observed that surface urban heat
island expands with expansion in a built-up area. Buildings reduce heat removal by advection and
reduce the sky view factor, thus limiting heat escape to space, while walls and pavements absorb
and emit heat [28,53,55,56]. This results in large amounts of stagnant heat and high temperatures,
especially in closely packed and high rise buildings. The warming in both cities could also be explained
by increased anthropogenic activities supported by an increasing population size in both cities over
time, which increases long wave radiation in the lower atmosphere. Nayak and Mandal [3] and
Grimmond [57] also attributed urban warming to both LULC changes and other anthropogenic effects
such as greenhouse gas emissions. The rising temperature in response to the growth of both cities can
be captured by the explanation that, as population grows, urbanization increases and the magnitude
of the urban heat island also expands [58]. Similar findings were obtained in Australia between 1951
and 2003, where land cover changes produced statistically significant warming [59].

Vegetation cover has been indicated to be a strong mitigation measure against the elevation of
surface temperatures in both cities. For example, in Freetown, low surface temperatures (below 22 ◦C)
remained characteristic of the central and southwestern parts of the city where buildings have not yet
replaced vegetation cover. Similarly, low temperature areas (below 20 ◦C) surround an expanding
hot spot in the central parts of the city of Bo town. The heat mitigation value of vegetation was also
captured by a strong negative Contribution Index (between −0.5 and −1) in areas with dense and
sparse vegetation. This concurs with Odindi et al. [7] who in the EThekwini municipality, South Africa,
showed that the temperature reduction effect of vegetation increases with the percentage of total
area covered. Although water bodies also have a cooling effect (negative Contribution Index [CI]),
their contribution has remained minimal over the years due to the low proportion of the cities they
occupy in both cities. Based on CI, the cooling effect of dense vegetation was more than of sparse
vegetation, which echoes the suggestion by Zhang et al. [60] that not only vegetation types but also
spatial structure affects LST distribution. Vegetation cover promotes surface cooling due to latent
heat transfer.

In both Freetown and Bo town, agriculture areas were causing warming of the city, as indicated
by a positive Contribution Index (CI) in all periods. This could be because, during the dry seasons,
agriculture areas will either be covered by drying crop residue or will be semi-bare/bare, thus absorbing
a considerable amount of heat. This is in agreement with the findings of Mushore et al. [61] in Harare,
which showed that, during the hot dry season, croplands act as a heat source as they absorb and release
large amounts of heat due to negligible evaporation. Although areas under agriculture have reduced
between 1998 and 2015, the CI has remained positive and increased, implying an increased warming
contribution to the city. This could be because the temperature of these areas has increased over the
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years with the changes attributed to global warming. Early planting of crops means that by the dry
season the residues will be completely dry, resulting in high heat absorption, which could also be
another explanation. However, the decrease in area under agriculture may indicate a shift of agriculture
to the secondary industry and services in both cities. In other cities such as Harare [9], growth is
also characterized by the major replacement of dense vegetation and agriculture areas with building
and impervious surfaces, resulting in warming. Therefore, the surface warming mostly of Freetown
between 1998 and 2015 can be attributed to global warming, the warming effect of dry agricultural
land, and increase in the built-up area which absorbs a significant amount of heat. This agrees with
Jiang and Tian [62], who demonstrated that the construction of buildings leads to the transition of an
area from a dense vegetation low temperature to sparse vegetation high temperature zone.

Even in coastal cities where the water table is presumed to be high and sea breezes cool the
atmosphere, a high density of buildings still causes warming. Although Freetown is larger in
population size as well as built-up extent and also growing faster, it was cooler than Bo town in
all periods (by about 2 ◦C). The difference could be a result of surface moisture and cold air advection
due to proximity to the sea. Surface wetness reduces the temperature of a surface due to increased
evaporation and latent heat transfer [56]. According to Rasul et al. [56], green areas and water bodies
act as urban cool islands, hence the low temperature of Freetown despite being larger in size than
Bo town. Besides being close to the sea, the proportion of dense vegetation cover is greater in Freetown
than Bo town, which reduces the average temperature of the city. According to Sithole and Odindi,
green spaces act as heat sinks, tend to be porous, and assimilate heat. Due to the influence of the sea,
dense buildings and high surface temperature are found along the coast in Freetown. This has also led
to the sustenance and expansion of a tongue of dense green area and low temperature in the central
part. Water and vegetation which surround the built-up area of Freetown act as a sink to these gases,
which may also explain the lower temperature there than in Bo town. According to Odindi et al. [7],
the heat contribution of dense vegetation is similar to that of water, hence Freetown is surrounded by
cool areas resulting a in lower mean surface temperature than Bo town.

5. Conclusions

We have compared urban growth and land surface temperature patterns between a coastal
city (Freetown) and an inland city (Bo town) in Sierra Leone in this paper. Multi spectral Landsat
data are used to quantify land use and land cover, as well as surface temperature, changes between
1998 and 2015. Based on the findings of the study, we conclude that multi-spectral Landsat data
and the Support Vector Machine algorithm retrieve LULC spatial patterns and urban growth with
a high accuracy. The growth patterns of Freetown are concentrated along city margins at the coast,
while Bo town expanded from the center outwards. The abundance of dense vegetation and proximity
to ocean makes Freetown cooler, although it is larger in population and is expanding in terms of
the built-up area faster than Bo town. However, even in cool areas such as at the coast, built-up
areas have warmer surface temperatures than non-built-up areas such as dense vegetation areas.
Expansion of the built-up area from the city core pushes out vegetation towards the margin, resulting
in a high temperature towards the center, as in Bo town. Overall, the built-up area expansion increases
urban temperature, in addition to the effect of global warming, while vegetation has a strong heat
mitigation effect. The Freetown-Bo town scenario has indicated that it is possible for a small city to be
warmer than larger and faster growing cities within the same country. Temperature patterns depend
heavily on position relative to ocean, as well as the size and spatial structure of dense vegetation area.
Therefore, even vegetation and water patches around a built-up area (not only those within) have
an influence on its temperature. Although the study managed to convincingly link urban growth
induced LULC changes with LST dynamics, future efforts must address some limitations which
could hamper the reliability of the findings. The study depended on medium spatial resolution
Landsat datasets, whose temporal resolution of 16 days is low. This, together with the cloud free
image requirement for surface analysis, resulted in a limited amount of data available for the study.
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In the presence of sufficient data, averages could have been computed to eliminate the effects of
randomness associated with the use of single date images to represent an entire month. Due to the
low temporal resolution of Landsat data, it is difficult to obtain in-situ meteorological data at the
exact time of satellite overpass for a comparison of temperatures obtained from remote sensing with
in-situ observations of air temperature in Sierra Leone. Meteorological operations in Sierra Leone are
still manned; taking observations at World Meteorological Organization (WMO) prescribed synoptic
hours which do not coincide with the overpass times of Landsat missions. Limited access to in-situ
meteorological data inhibited the analysis to test the validity of the findings of this study, although
they agreed with global trends. Reflective bands of Landsat are at a higher spatial resolution than the
thermal dataset (for example 30 m versus 100 m for Landsat 8). This mismatch has the potential to
increase the mixed pixel problem on LST retrievals, thus compromising the link between LULC (30 m
resolution) and LST (100 m), even though thermal data is downloaded at a resolution of 30 m after
resampling. Other factors which affect thermal properties such as differences in building material and
roof types between Freetown and Bo town were not investigated in this study.
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Appendix A

Table A1. Accuracy statistic for multi-temporal LULC classification.

Study Area
Year

Bo Town and Freetown Accuracy Assessment

LULC Category
Producer Accuracy User Accuracy Overall Accuracy

Khat
(%) (%) (%)

Freetown

1998

Agricultural land 92.31 89.75

91.56 0.91

Built-up area 96.57 94.87
Dense vegetation 96.77 93.33

Exposed land 89.98 91.65
Sparse vegetation 85.39 88.71

Waterbody 100 100

2000

Agricultural land 100 90

95.56 0.95

Built-up area 100 100
Dense vegetation 96.55 93.33

Exposed land 100 100
Sparse vegetation 87.1 90

Waterbody 90.91 100

2007

Agricultural land 97.11 86.67

93.33 0.92

Built-up area 95.33 86.67
Dense vegetation 93.33 93.33

Exposed land 96.77 100
Sparse vegetation 89.57 93.33

Waterbody 98.39 100

2015

Agricultural land 96.55 93.33

89.44 0.87

Built-up area 96.55 93.33
Dense vegetation 87.88 96.67

Exposed land 95.65 73.33
Sparse vegetation 85.71 80

Waterbody 78.95 100
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Table A1. Cont.

Study Area
Year

Bo Town and Freetown Accuracy Assessment

LULC Category
Producer Accuracy User Accuracy Overall Accuracy

Khat
(%) (%) (%)

Botown

1998

Agricultural land 89.78 87.87

89.87 0.88

Built-up area 93.22 91.33
Dense vegetation 95.67 92.89

Exposed land 89.89 86.78
Sparse vegetation 87.56 83.89

Waterbody 100 99.8

2000

Agricultural land 93.1 90

89.44 0.87

Built-up area 96.3 86.67
Dense vegetation 100 93.33

Exposed land 71.79 93.33
Sparse vegetation 92.31 80

Waterbody 90.32 93.33

2007

Agricultural land 96.15 83.33

87.78 0.85

Built-up area 96.67 96.67
Dense vegetation 100 90

Exposed land 68.57 80
Sparse vegetation 93.1 90

Waterbody 78.79 86.67

2015

Agricultural land 96.3 86.67

88.33 0.86

Built-up area 90.91 100
Dense vegetation 100 76.67

Exposed land 74.36 96.67
Sparse vegetation 86.21 83.33

Waterbody 89.66 86.67
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Abstract: Moderate Resolution Imaging Spectroradiometer (MODIS) data are effective and efficient
for monitoring urban dynamics such as urban cover change and thermal anomalies, but the spatial
resolution provided by MODIS data is 500 m (for most of its shorter spectral bands), which results in
difficulty in detecting subtle spatial variations within a coarse pixel—especially for a fast-growing
city. Given that the historical land use/cover products and satellite data at finer resolution are
valuable to reflect the urban dynamics with more spatial details, finer spatial resolution images, as
well as land cover products at previous times, are exploited in this study to improve the change
detection capability of coarse resolution satellite data. The proposed approach involves two main
steps. First, pairs of coarse and finer resolution satellite data at previous times are learned and then
applied to generate synthetic satellite data with finer spatial resolution from coarse resolution satellite
data. Second, a land cover map was produced at a finer spatial resolution and adjusted with the
obtained synthetic satellite data and prior land cover maps. The approach was tested for generating
finer resolution synthetic Landsat images using MODIS data from the Guangzhou study area. The
finer resolution Landsat-like data were then applied to detect land cover changes with more spatial
details. Test results show that the change detection accuracy using the proposed approach with the
synthetic Landsat data is much better than the results using the original MODIS data or conventional
spatial and temporal fusion-based approaches. The proposed approach is beneficial for detecting
subtle urban land cover changes with more spatial details when multitemporal coarse satellite data
are available.

Keywords: land cover change; downscaling; sub-pixel change detection; machine learning;
MODIS; Landsat

1. Introduction

Timely and accurate information about land cover dynamics is highly important for sustainable
urban development and better quality of life in cities. Compared with conventional data collection
methods like field surveying and aerial photography, satellite images have proven to be more effective
and efficient for land use/cover change monitoring at regional or global scales due to their timely,
consistent, repeatable, and cost-effective measurements [1,2]. Until now, a wide variety of change
detection approaches have been formulated, ranging from preclassification methods such as image
differencing, image ratioing [3], band analysis [4], principal component analysis [5], change vector
analysis [6], and composite analysis to postclassification comparisons [7].

The availability of satellite data with improved spatial and temporal resolutions makes it
possible to characterize land cover changes (LCCs) at higher spatial and temporal scales [8].
Some multitemporal coarse resolution (CR) sensors, such as the Moderate Resolution Imaging
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Spectroradiometer (MODIS), Advanced Very High Resolution Radiometer (AVHRR), the Medium
Resolution Imaging Spectrometer (MERIS), and SPOT-Vegetation, have been proven to be suitable for
land use/LCC and vegetation dynamics’ monitoring [9–11], with which the status and trend of land
cover transitions or vegetation dynamics are characterized. Consequently, a variety of multi-temporal
change detection approaches have been proposed [12–14].

CR data are effective for phenological change detection due to their high revisit frequencies,
but their low spatial resolutions limit their applications for accurate monitoring of urban growth
dynamics—especially for rapidly growing areas [7], where dynamic changes commonly occur in
sub-pixel scales (like fields, water areas, roads). To enhance the capability of remote sensing for
monitoring these dynamics at a sub-pixel scale, researchers have attempted to apply some unmixing
approaches to recover high spatial resolution (HR) data directly from CR data [7,8,14–17]. In particular,
Le Hégarat-Mascle et al. [8] proposed a statistically-based change detection model in which sub-pixel
LCCs are estimated by utilizing previous land cover information as a reminder. Ling et al. [15,16]
presented an improved sub-pixel mapping algorithm for change detection using prior land cover
percentages, with which temporal contextual information was used to conduct sub-pixel change
mapping. However, high-quality land cover percentages are required as input for this approach, which
limits its real value. Zurita-Milla et al. [17] presented an unmixing-based approach to downscale
multitemporal MERIS data for vegetation dynamics, but it is inappropriate for land cover-type changes.
Though soft classification approaches can estimate land cover proportions within a coarse pixel [18],
they fail to determine the spatial distribution of each class [19], and needless to say the detection of
sub-pixel changes.

Another possible solution for sub-pixel change detection is to explore data-fusion approaches to
obtain synthetic data with high spatial and temporal resolutions. These high-resolution synthetic data
generated are then used for LCC detection at a HR. In view of conventional data fusion approaches
(e.g., pan-sharpening, which integrates both spectral and spatial information rather than spatial and
temporal information), they are beneficial for improving spatial resolution, but not suitable for fast
change detection. Gao et al. [20] started a pioneering work to develop a spatial and temporal adaptive
reflectance data fusion model (STARFM) to obtain high-quality Landsat-like data, but the underlying
assumption of having no LCCs over time heavily limits its applications for seasonal change monitoring
of vegetation [11,21,22]. In the meantime, Hilker et al. [21,22] proposed an improved spatial and
temporal data fusion approach named STAARCH, in which an optimal Landsat was selected with a
defined forest disturbance index. It is efficient for detecting forest disturbance, but not very efficient
for complex LCCs in cities. Similarly, Zhu et al. [23] proposed an enhanced STARFM to extend the
applications of the original approach for complex areas with heterogeneous landscapes. Roy et al. [24]
presented a semiphysical fusion approach to characterize surface reflectance variation with the BRDF
spectral model parameters and the sun-sensor geometry over time, but it is still not efficient for the
fusion task with land cover-type changes.

To address the problem of mixed pixel within the remote sensing community, a superresolution
technique long studied by the computer science community has been proposed. Until now,
hundreds of superresolution approaches have been proposed, which can be grouped into three
categories: interpolation-based [25], construction-based [26], and learning-based [27]. The sparse
learning-based superresolution methods outperformed the others and were recognized as an
outstanding representative of the learning-based approach. The original one was developed by
Yang et al. [28], in which a pair of dictionaries was first learned from prior data, and then applied
for downscaling the CR data. Huang et al. [29] extended this approach for spatial and temporal
data fusion, and experimental results also show that it outperforms other spatial and temporal
data-fusion approaches when compared with actual observations with respect to reflectance fidelity.
However, its suitability for actual LCC detection has not been tested. To make use of multisource
data fusion for change detection, recent works investigated the use of prior land cover products for
generating better change detection results [30,31]. Finally, it is worth mentioning the work in [32],
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in which a learning-based approach was investigated to allow the achievement of high sub-pixel forest
mapping accuracy.

In this study, a novel learning-based approach will be presented to detect LCCs at finer spatial
resolution using multitemporal CR data. The proposed approach has two advantages. First, it is well
designed to learn the LCC dynamics from previous multisource multitemporal satellite data directly,
which indicates that the trained detector has a high capability in detecting high-quality LCC using
similar but CR satellite data. Second, the proposed approach makes use of the finer land cover product
to provide rich spatial details within a coarse pixel.

The remainder of this paper is organized as follows. In Section 2, the theoretical background and
the proposed approach are fully introduced. In Section 3, fused results are validated and applied for
LCC detection with actual images in the Guangzhou study area, China. The discussion and conclusions
are given in Sections 4 and 5, respectively.

2. Materials and Methods

The proposed approach includes two main steps. First, the CR satellite data at the predicted
time (t1) coupled with pairs of coarse and finer resolution satellite data at previous times (e.g., t0)
were used to produce a finer resolution synthetic data at the predicted time (t1). Second, the LCC was
detected at finer spatial resolution using the obtained finer resolution synthetic data and previous land
cover maps.

2.1. Learning-Based Approach for Generating Finer Resolution Synthetic Satellite Data

It is an extremely ill-posed problem to infer the HR data directly from CR data. In this study, we
will solve the problem from the perspective of LCC recovery. The recovered changed data were added
with the high-resolution satellite data at a previous time to obtain the final downscaled image at the
predicted time. Under a mild condition, it can be assumed that actual LCC from bitemporal satellite
images can be sparsely represented as a linear combination of different LCC bases. As the following
shows, a high-resolution LCC patch can be represented as a linear combination of LCC patterns with
respect to a dictionary.

ΔX ≈ Dhα where : |α|0 ≤ K (1)

where ΔX is an LCC patch with HR, Dh is a high-resolution dictionary, α is the sparse representation
coefficient, and K is the number of bases for the dictionary Dh.

It is further assumed that a high-resolution LCC patch can be degraded into a CR LCC patch with
respect to a projection matrix. Then, the degraded CR LCC patch can also be inferred to have sparse
representations with respect to a low-resolution dictionary, as the following formula shows:

ΔY ≈ AΔX = ADhα = Dlα where : |α|0 ≤ K (2)

where ΔY and ΔX are CR and HR LCC patches, respectively, A represents the projection matrix from
ΔX to ΔY, Dh and Dl are a pair of dictionaries, and α is the estimated coefficient.

Both HR and CR patches have the same sparse representations, and their co-occurrence can be
captured by using a pair of coupled dictionaries. Thus, the downscaling issue for estimating HR
data from CR data can be transformed into another issue, where both sparse coefficient and coupled
dictionaries need to be estimated. There are two main steps to achieving this target: (1) dictionary
learning—a pair of dictionaries was learned by using sample patch data from a pair of CR and HR
data, of which each column (base) represents a specific LCC pattern; (2) sparse representation—sparse
coefficients are estimated to reconstruct the HR LCC from CR LCC patches. The details are given below.
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2.1.1. Dictionary Learning

Because the individual sparse coding problem of LCC in the high-resolution and low-resolution
patches can be represented by the sparse linear combinations with respect to Dh or Dl, these two targets
(see Formulas (1) and (2)) can be combined to form a unique target as shown below:

min
{Dh , Dl ,α}

‖ΔX − Dhα‖2
2 + ‖ΔY − Dlα‖2

2 + γ‖α‖1 where : |α|0 ≤ K (3)

where ΔX is a change patch for HR data, Dh is the HR dictionary, α is the sparse representation
coefficient, and K is the number of bases for dictionary Dh.

With the same learning strategy as Yang et al. [28], sampled training image patch pairs are first
sampled from previously acquired low- and high-resolution data before a pair of dictionaries is jointly
trained with these sampled patches using the k-singular value decomposition algorithm [33].

2.1.2. Sparse Representation

Sparse representation was then used to estimate the sparse coefficient and finally recover the
HR LCC data. Based on the sparse representation of HR image patch shown in Formula (1), the
solution of the sparse coefficients of a specific HR patch (ΔXs) can be obtained via the following
optimization function:

ΔXs = Dh × α∗ (4)

where α∗ : min‖α‖1 s.t.
‖Dlα − ΔYs‖2

2 ≤ ε1

‖Dhα − W‖2
2 ≤ ε2

(5)

where ΔXs is a change patch for HR data at location s, Dh and Dl are trained dictionaries for both
HR and CR LCC, α is the sparse coefficient that needs to be estimated, and W is the overlap between
the current target patch and the previously reconstructed high-resolution patch. As recommended
in [27,29], the dictionary size used in this study was set to 256, and the patch size was set to 8 × 8.

The process is operated patch by patch. If the sparse coefficient for each patch is sufficiently
sparse, HR LCCs should then be recovered from the patches of CR LCCs with respect to the trained
dictionaries. To agree with the previously computed adjacent high-resolution patches, a balance term
(seen in the second term of Formula (3)) was used to preserve the fidelity of previous recovered LCC
patches. Once the sparse coefficient is estimated, then the finer LCC patch can be recovered with
Formula (4). Herein, the orthogonal matching pursuit algorithm was used to estimate the sparse
coefficient [34].

The above procedure can be used to estimate the HR LCCs. Finally, the recovered LCCs are added
with the HR image at the previous time to obtain the final downscaled image at the predicted time.

2.2. Sub-Pixel Change Detection with Synthetic Satellite Data

In the following, the obtained synthetic satellite data with a finer spatial resolution coupled with
the land cover product at a previous time were used to detect LCCs at a finer spatial resolution. Given
that the synthetic satellite data are not the real satellite data at the predicted time, the land cover map
from the synthetic Landsat data appears to be different from actual land cover patterns. Figure 1a
shows the initial land cover map obtained from synthetic data, and it appears to have some incorrect
classification results at a sub-pixel level (highlighted with red). Thus, in this step, the obtained land
cover map needs to be adjusted to ensure that it is consistent with prior land cover patterns as well as
finer land cover products at previous times. The change detection procedure involves the following
three steps. For more details, refer to [30].

First, a land cover map at the predicted time was produced from the obtained synthetic data
using a supervised classification method, then land cover proportions at a CR were estimated from the
obtained finer resolution land cover map.
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(a) (b)

Figure 1. Illustration of precise land cover mapping using synthetic Landsat data. (a) Synthetic
Landsat data and its land cover proportions; (b) Land cover map at the predicted time (t1) using the
proposed approach.

Second, based on the obtained land cover proportions, sub-pixel labels are initially randomly
allocated maintaining the proportions. After random initialization, the labels of sub-pixels are
iteratively swapped by counting their spatial correlations with surrounding pixels, and finally,
the labels of sub-pixels are consistent with their neighborhood. The surrounding pixels include
the nearby pixels at the current predicted time as well as neighboring pixels from land cover maps
at previous times. For example, Figure 1a shows the initial land cover map obtained from synthetic
data and its land cover proportions, while Figure 1b shows the final obtained land cover map at the
predicted time (t1) using both the land cover proportions and a finer resolution land cover product at a
previous time (t0).

Third, a refined land cover map at the predicted time was achieved via the above two steps.
A change detection result (t1–t0) can be made by comparing the land cover map at the predicted time
(t1) with the map from a previous time (t0).

3. Experiments and Result Analysis

The proposed approach was tested using actual data in the study area of Guangzhou, China (23◦N,
113◦E). This area has experienced a high percentage of land use/LCC during the past several decades,
where most of the farmlands and forestlands have been changed into built-up areas due to rapid
urbanization. The accurate monitoring of its rapid LCC is beneficial for the scientific management and
sustainable development of this area.

Three pairs of medium-resolution Landsat and CR MODIS data for 31 October 2000,
7 November 2002, and 3 October 2004 were acquired for this study area. In this study, the
MODIS reflectance products (MOD09GA) provided by NASA were adopted, and these products
have been atmospherically corrected to land surface reflectance. For the original Landsat-5 data,
they were atmospherically corrected into land surface reflectance using the atmospheric correction
tool FLAASH [20]. Moreover, the downloaded MODIS data products were geometrically corrected to
the same geographical area as the Landsat data, so both the MODIS and Landsat data cover the same
extent. Based on the acquired satellite data, the preprocessed pairs of Landsat and MODIS data for the
years 2000 and 2002 were used as training data, while the actual Landsat data for 2004 were used as
validation data.

3.1. Synthetic Data Generation and Sub-Pixel Change Detection

Synthetic Landsat-like data for 2004 were predicted via the following main steps. First, some
low- and high-resolution LCC patches were randomly sampled from the achieved difference image to
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train the dictionary, while the difference image reflects LCC from year 2000 to 2002 with the acquired
satellite data at years 2000 and 2002. Next, the sparse learning approach introduced in the above
section was used to recover HR LCCs from year 2002 to 2004 with respect to the coarse difference
image and a pair of dictionaries. Finally, high-quality synthetic Landsat data at the predicted time
were recovered by adding the predicted high-resolution difference data to previous Landsat data.

Based on a pair of Landsat and MODIS satellite data for the year 2002 (shown in Figure 2a,b)
and MODIS data for the year 2004 (shown in Figure 2d), the finer resolution Landsat-like data for
2004 using the proposed learning-based approach are given in Figure 2e. Using the synthetic Landsat
data for 2004, two sets of land cover maps (including the initial and final ones) were generated and
are shown in Figure 2f,g. To validate its performance in detecting LCC from year 2002 to 2004, the
synthetic Landsat data at year 2004 coupled with the prior land cover product from 2002 were used
to generate an LCC map from 2002 to 2004 (Figure 2h). It shows the change detection result using
the synthetic satellite data, in which white was used to reflect the correctly predicted LCC classes.
In comparison, the MODIS data at year 2004 were also used to generate a change detection result
(shown in Figure 2k based on the land cover map at CR (shown in Figure 2j). The actual LCC map
from year 2002 to 2004 provided in Figure 2l was used for validation.

 
(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

Figure 2. Test with the actual MODIS data for sub-pixel change detection using different downscaling
methods: (a) Landsat data for the year 2002 and the actual LCC from 2002 to 2004 (highlighted with
black); (b) MODIS data for 2002; (c) Landsat for 2004 as a reference; (d) MODIS data for 2004; (e) Fused
result for 2004 with the proposed approach; (f) Initial land cover map for 2004 with the fused result
shown in Figure 1e; (g) Final land cover map for 2004 with the initial land cover map using the proposed
approach; (h) Change detection result using the proposed approach; (i) MODIS data for 2004; (j) Land
cover map for 2004 with MODIS data; (k) Change detection result with MODIS data from 2002 to 2004;
(l) Actual LCC from 2002 to 2004 for validation.
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3.2. Accuracy Assessment

In the following, the accuracy of different change detection results using different approaches was
assessed. Five different scalars—namely, the Kappa statistic, the overall accuracy (OA), the commission
error (CE), the omission error (OE), and the correlation coefficient (CC)—were used to assess the change
detection accuracy. Other than the omission and commission errors, a higher value of each index
reflects a higher change detection accuracy.

Change detection accuracy statistics of the fused results using different approaches are given in
Table 1. Results using the simulated MODIS data are also provided for comparison, as shown on the
right side of Table 1. It is found that the change detection accuracy with the fused result is much better
than using the original MODIS data. Moreover, the proposed approach gives slightly better results
than the STARFM method for all scale factors used.

Table 1. Change detection accuracy for the fused result with different methods. STARFM: spatial and
temporal adaptive reflectance data-fusion model.

Actual Data Simulated Data (S = 16)

Soft STARFM Proposed Soft STARFM Proposed

Kappa 0.45 0.46 0.47 0.46 0.49 0.50
OA 83% 84% 85% 83% 85% 86%
CE 19% 18% 17% 18% 17% 17%
OE 32% 38% 37% 31% 36% 30%
CC 0.68 0.69 0.78 0.77 0.86 0.89

4. Discussion

4.1. Strengths

It is apparent that the fusion-based approaches—including STARFM and the proposed
one—perform better than the soft classification method when CR data are directly used based on the
accuracy statistics provided in Table 1. Let’s take the simulated satellite data as an example. Overall
accuracies for the results with the proposed and STARFM methods are 86% and 85%, respectively.
Varying 83% for the soft classification method is also obtained. Especially, the soft classification
approach tends to overestimate the actual LCC, while the fusion-based approach can improve it. When
the two downscaling approaches are compared with each other, it is found that the learning-based
approach performs slightly better than the conventional STARFM method in terms of all tested indices.
Results with the proposed approach, moreover, tend to have better CCs than STARFM. The advantage
of the proposed approach is that it can learn the change pattern or spatial texture information from
previous satellite data, which is better than the STARFM.

Compared with the conventional unmixing-based fusion approach, an optimized neighborhood
size is not required for the proposed approach. Because it is possible to achieve the desired result with
a patch covering the whole area of a coarse pixel, a patch size of 8 × 8 Landsat pixels was used in this
study. In addition, the number of land cover types is not required, as a large number of bases (chosen
as 256 in this study) is enough to reflect the whole LCC patterns in this study.

4.2. Scale Effect

To assess the impact of spatial scale of the proposed approach in monitoring LCC information,
a series of simulated data degraded from the actual Landsat data were used in this study. In our
experiment, the scale factors of 4, 8, and 16 were tested. Based on the simulated MODIS and Landsat
data, finer resolution fused satellite data and land cover/change maps at different scales were
generated. Figure 3h–k shows the results using the proposed approach, while Figure 3a–g show
the results using the original MODIS data and the conventional STARFM method for comparison,
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respectively. Accuracy statistics for all mapping results with different approaches are provided
in Table 2.

Figure 3. Sub-pixel change detection results with the simulated MODIS data using different methods
at a scaling factor of 16. The upper row shows the results using simulated MODIS data (s = 16):
(a) Simulated MODIS data for the year 2004; (b) Land cover map using simulated MODIS data; and
(c) Change detection result using simulated MODIS data. The middle row shows the results using the
conventional fusion-based method. (d) Synthetic Landsat data for 2004 using the STARFM method;
(e) Initial land cover map from the result shown in (d); (f) Final land cover map from synthetic Landsat
data using the STARFM method; and (g) Change detection result from 2002 to 2004 using the STARFM
method. The lower row shows the results using the proposed approach. (h) Synthetic Landsat data
for 2004 using the proposed approach; (i) Initial land cover map from the result shown in (h); (j) Final
land cover map using the proposed approach; (k) Change detection result from 2002 to 2004 using the
proposed approach.

Table 2. Change detection accuracy for the fused result with different methods under different scale
factors. OA: overall accuracy; CE: commission error; OE: omission error; CC: correlation coefficient.

Scale Factor = 4 Scale Factor = 8 Scale Factor = 16

Soft STARFM Proposed Soft STARFM Proposed Soft STARFM Proposed

Kappa 0.53 0.60 0.61 0.52 0.53 0.55 0.46 0.49 0.50
OA 86% 89% 90% 85% 87% 88% 83% 85% 86%
CE 15% 13% 15% 16% 15% 15% 18% 17% 17%
OE 23% 27% 16% 23% 30% 26% 31% 36% 30%
CC 0.89 0.92 0.93 0.88 0.89 0.92 0.77 0.86 0.89

According to the accuracy statistics provided in Table 2, three observations can be summarized
as below. First, the change detection accuracy decreases significantly as the scale factor increases.
Taking the results using the proposed approach as an example, the Kappa index decreased from 0.61
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to 0.50 when the scale factor increased from 4 to 16. Second, when the performances of different
approaches were compared, it was found that the fused-based approaches achieved better change
detection accuracy than results using the original MODIS data. In particular, the use of original MODIS
data tended to overpredict the actual LCC, while the fused-based approaches improved it. Third,
comparing the performance of STARFM and the proposed method, the proposed approach performed
better than STARFM, regardless of which scale factor was used. In particular, a much better CC
was achieved by the proposed learning-based approach compared with STARFM, indicating that the
learning-based approach is suitable for the downscaling of CR data.

4.3. Limitations

Although the proposed approach has been validated and proven suitable for sub-pixel LCC
detection using CR satellite data, there are still some limitations. First, misregistration errors between
multisource satellite data of the proposed approach may affect the final change detection results, and
thus using the simulated data can achieve better detection accuracy than using actual satellite data.
Second, the advantage of the proposed approach is obvious when the predicted LCC percentages
are compared with others by referring to the CC index. Nevertheless, the predicted LCCs still have
positional errors within a coarse pixel, which may offset its advantage for sub-pixel LCC detection
using the actual multisource satellite data. Lastly, it is a computationally expensive approach. Both
dictionary training and sparse coefficient estimation processes are computationally expensive.

5. Conclusions

In this paper, a learning-based downscaling method is presented to generate finer resolution
LCC results using prior LCC information and one CR data at the predicted time, in which prior LCC
patterns are learned and modeled using the popular sparse learning approach. Further experiments
demonstrate that it is better than the conventional downscaling approach STARFM when both
predicted synthetic data are applied for LCC detection. Experiments conducted at Guangzhou show
that the proposed learning-based approach outperforms both the conventional change detection
method and the fusion-based change detection method. According to the results with the proposed
approach using actual MODIS data, the overall LCC detection accuracy is 85%, which is better than
the results using a conventional soft classification method and fusion-based method (83% and 84%,
respectively). More importantly, it is found that high-quality LCC percentages—as indicated by the
CC index—can be achieved by the proposed approach, as the CC index for the proposed approach is
0.78, which is much better than the results using soft classification and fusion-based methods (0.68 and
0.69, respectively). This finding is meaningful for high-quality LCC detection at a sub-pixel level.

This study also investigated the effect of scale factor on sub-pixel change detection. In particular,
results from fusion-based approaches perform much better than when the original coarse satellite
data are used directly, regardless of the scale factor used. The soft classification method tends to
overestimate the actual LCC area, while the proposed approach tends to miss some actual LCC area.
When a large scale factor is adopted, the proposed approach performs slightly better than the STARFM
model. When compared with the use of the simulated MODIS data, the use of actual MODIS data
achieves a slightly lower LCC detection accuracy. The main reason may be due to the positioning error
between MODIS and Landsat data, which needs to be further investigated.
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Abstract: An object-based method is proposed in this paper for change detection in urban areas
with multi-sensor multispectral (MS) images. The co-registered bi-temporal images are resampled to
match each other. By mapping the segmentation of one image to the other, a change map is generated
by characterizing the change probability of image objects based on the proposed change feature
analysis. The map is then used to separate the changes from unchanged areas by two threshold
selection methods and k-means clustering (k = 2). In order to consider the multi-scale characteristics of
ground objects, multi-scale fusion is implemented. The experimental results obtained with QuickBird
and IKONOS images show the superiority of the proposed method in detecting urban changes in
multi-sensor MS images.

Keywords: multi-sensor; change feature analysis; object-based; multispectral images

1. Introduction

Change detection involves identifying the changed ground objects between a given pair of
multi-temporal (so-called bi-temporal) images observing the same scene at different times [1,2].
The existing change detection methods can be classified into two classes: supervised and unsupervised.
Supervised change detection relies on prior information about the ground changes, but unsupervised
change detection automatically generates the difference between bi-temporal images to locate [3–6],
and even distinguish, changes [5–8].

Most of the unsupervised change detection methods are implemented pixel-wise [9,10], and the
classic approach is differencing the bi-temporal images and regarding the pixels with a larger
difference as changed [4]. Subsequently, a large number of pixel-based change detection methods have
been proposed, including methods based on image transformation [11–17], soft clustering [18–20],
and similarity measurement [21]. However, all of these methods presume spatial independence
among the image pixels, which is not appropriate for high-resolution images. This is because,
in high-resolution images, most of the ground objects cover sets of neighboring pixels, and some
information reliance exists among these pixels. Aiming at this drawback of pixel-based change
detection in high-resolution images, some researchers have attempted to use the spatial information
in a fixed-size image unit, together with the spectrum, to detect ground changes. Examples of such
methods include texture extraction [22–24], structural information extraction by Markov random fields
(MRFs) [4,25,26], and morphological filtering [27,28].
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In order to adapt to the irregular distribution of ground objects, object-based theory has been
introduced into change detection for high-resolution images [29]. Object-based theory regards some
of the spatially-neighboring and spectrally-similar pixels as a union (a so-called object) to detect
whether they are changed. It makes use of the spatial information in the high-resolution image,
together with the spectrum, and reduces the salt-and-pepper effect. In recent years, a large number of
object-based unsupervised change detection methods [30–33] have been proposed and have improved
the accuracy of change detection for high-resolution images. However, most of the existing object-based
change detection methods focus on using bi-temporal images acquired by the same sensor. In the
case of massive high-resolution images acquired by different sensors, it is necessary to utilize them
simultaneously to improve the information extraction. In order to detect changes in multi-sensor
remote sensing images, some researchers have addressed change measurement [34,35], and other
researchers have focused on the classification of changed features [6,9,36]. Robust change vector
analysis (RCVA) was proposed for multi-sensor change detection with very-high-resolution optical
satellite data, and this approach improves the robustness of CVA to different viewing geometries or
registration noise [37]. Unfortunately, these methods do not consider the incompatibility between
different band widths in bi-temporal multispectral (MS) images (Table 1). Moreover, some of the
object-based statistical features between bi-temporal images might be affected in the change detection,
since changes always arise from ground objects’ expansion, reduction, or property variation.

Table 1. Comparison between the bandwidth and spatial resolution of QuickBird and IKONOS images.

Blue Band
(um)

Green Band
(um)

Red Band
(um)

Near Infrared
band (um)

Spatial Resolution
(nadir, m)

QuickBird MS image 0.45–0.52 0.52–0.60 0.63–0.69 0.76–0.90 2.44
IKONOS MS image 0.445–0.516 0.506–0.595 0.632–0.698 0.757–0.853 3.28

In this paper, a novel object-based change detection method is proposed for multi-sensor MS
imagery. The consistency of bi-temporal image objects is achieved by segmenting one image and
mapping this segmentation to the other. Instead of comparing the objects’ spectral bands in the
bi-temporal images, we summarize the possible distribution between any image object and its relevant
changed areas, and we analyze the statistical feature variation of the change-related objects and define
a change feature to represent the change probability of the image objects in the bi-temporal MS images.
In order to locate the changed areas, binarization of the change map is implemented by thresholding or
binary unsupervised classification. In addition, in view of the multi-scale characteristics of the ground
objects, multi-scale fusion is carried out.

The rest of this paper is organized as follows. Section 2 describes the proposed method.
The experimental results and a discussion are presented in Sections 3 and 4, respectively. Section 5
provides our conclusion and future work directions.

2. Object-Based Change Analysis

The processing flow of the proposed method is shown in Figure 1.
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Figure 1. Processing flow of the proposed method.

2.1. Preprocessing

In the preprocessing of the proposed method, image resampling is conducted to unify the size of
the multi-sensor bi-temporal images. The bilinear resampling method is adopted to suppress the image
heterogeneity, with a reasonable computation cost [38]. When the basis image is the one with a higher
spatial resolution, the other image needs to be interpolated by up-sampling. Otherwise, the image is
degraded by down-sampling to the lower resolution of the basis image.

2.2. Image Segmentation

Image segmentation is implemented to obtain image objects for the subsequent object-based
processes. In this paper, there are three objectives for the image segmentation: (1) the bi-temporal
image objects should be in one-to-one correspondence; (2) the spatial distribution between changed
objects and their relevant changed areas needs to be preserved for the subsequent change feature
analysis (Section 2.3); and (3) the objects obtained from slight under-segmentation are better able to
fit the edges of the changed areas in the other image. Therefore, we propose to segment one of the
bi-temporal images and map the segmentation to the other. These two segmentation processes are
introduced below.

2.2.1. Segmentation of One Image

The segmentation of one image should take into account the spectral and spatial features of the
ground objects. In addition, as mentioned above, the image objects should be slightly under-segmented
to fit the edges of the changed areas in the other image. In this paper, we use the fractal net
evolution approach (FNEA) [39] for the image segmentation. This approach involves calculating
the heterogeneity (S f ) between each pair of neighboring objects according to Equation (1), which is
a weighted sum of the spectral and spatial criteria:

S f = ωspect.hspect. +
(
1− ωspect.

)
hspac. (1)

where 0 ≤ ωspect. ≤ 1 is the user-defined weight of the spectral feature. The sum of the weights of
the spectral and spatial criteria equals 1. If the spectral feature is emphasized in the segmentation,
the value of ωspect. should be larger. Conversely, the value of

(
1− ωspect.

)
, which is the weight of

the spatial feature, should be larger when the spatial feature is more important. hspect. and hspac. are,
respectively, the spectral and spatial heterogeneity, whose definition can be found in [39].

At the beginning of the segmentation, every pixel is regarded as an individual object.
After calculating the heterogeneity (S f ) of each pair of neighboring objects, they are compared to the
value of the scale, which can be regarded as the threshold of the heterogeneity:

(1) If S f < scale, this pair of objects are merged;
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(2) Otherwise, the objects are preserved as two individual objects.

This procedure is repeated until no objects can be merged, and the object map is obtained.
The scale is critical to the segmentation as it determines the size of the objects.

Using FNEA, only the scale parameter needs to be selected to adjust the size of the image objects.
We can make use of Definiens software (Definiens, München, Germany) to simply implement this
method. On the premise of efficiency, other segmentation methods [40,41] could also be adopted in the
proposed method.

2.2.2. Segmentation Mapping to the Other Image

In this paper, we simply map the segmentation of one image to the other. In this way,
the bi-temporal image objects are in one-to-one correspondence. In addition, the spatial distribution
between changed objects and their relevant changed areas are also preserved, which is critical for the
following change feature analysis.

2.3. Change Feature Analysis

After mapping the segmentation of one image to the other, there will be different spatial
distributions between a changed object and its relevant changed area. Figure 2 shows the possible
distributions of a changed object and its relevant changed area, in which the bold object represents
a changed object, and the object above it is one of its neighboring objects. The shadow area represents
the relevant changed area. Through analyzing the six possible distributions in Figure 2, we can deduce
the statistical feature variation of the changed objects as follows:

Denoting the bi-temporal images as L1 and L2 and mapping the segmentation of L1 to L2,

(a) if the relevant changed area is contained in the changed object, the standard deviation of the
changed object in L2 is larger than L1 (Figure 2a);

(b) if the relevant changed area covers parts of the changed object and its neighborhood, the contrast
between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2b);

(c) if the relevant changed area exactly covers the changed object, the ratio of contrast between the
changed object and its neighboring pixels in L1 and L2 is not equal to 1 (Figure 2c);

(d) if the relevant changed area covers the whole changed object and parts of its neighborhood, the
contrast between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2d);

(e) if the relevant changed area exactly covers the changed object and its neighboring object, the
contrast between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2e); and

(f) if the relevant changed area exceeds the changed object and its neighboring object, the contrast
between the changed object and its neighboring pixels in L2 is less than L1 (Figure 2f).

   
(a) (b) (c)

  
 

(d) (e) (f)

Figure 2. Possible distributions of a changed object and its relevant changed area, whose statistical
feature variation is described as above (a–f).
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According to the above statistical feature variations of changed objects, we define a change feature
(Equations (2) and (3)) to describe the statistical features of the image objects in bi-temporal MS images.
The change feature adequately takes into account the statistical features of the image objects in the
bi-temporal images (acquired by the same or different satellites), which is an important innovation of
the proposed method.

If 0 < FiRatio−Ctr. < 1:

Fi =

FiRatio−Ctr. · ∑
∀(i,j)∈ObjNeii

FijCtr.

FiS.D.
(2)

otherwise:

Fi =

∑
∀(i,j)∈ObjNeii

FijCtr.

FiRatio−Ctr. · FiS.D.
(3)

where Fi is the change feature value for object i, and FiRatio−Ctr. is the ratio of contrast between object i
and its neighboring pixels in L1 and L2. FijCtr. is the contrast between object i and its neighboring pixel
(i, j), and FiS.D. is the standard deviation of object i. ObjNeii is the set of pixels adjacent to object i.

The ratio of contrast between the changed object and its neighboring pixels in L1 and L2 can be
defined as:

FiRatio−Ctr. =

∑
∀(i,j)∈ObjNeii

F1ijCtr.

∑
∀(i,j)∈ObjNeii

F2ijCtr.
(4)

where F1ijCtr. and F2ijCtr. represent the contrast between object i and its neighboring pixel (i, j) in L1
and L2, respectively.

The contrast between the changed object and one of its neighboring pixels can be defined as:

FijCtr. =
|μi − X(i, j)|
|μi + X(i, j)| (5)

where μi is the mean value of the pixels in object i, and X(i, j) is the value of the neighboring pixel (i, j).
The standard deviation of the changed object is defined as:

FiS.D. =

√√√√ 1
ni

∑
∀(i,j)∈Obji

(X(i, j)− μi)
2 (6)

where ni is the number of neighboring pixels in object i, and Obji is the set of pixels in object i.
According to the proposed change feature of image objects, there are three statistical factors

related to the changes:

(1) the ratio of contrast between any object and its neighboring pixels in L1 and L2;
(2) the sum of contrast between any object and each of its neighboring pixels; and
(3) the standard deviation value of any object.

In other words, if any image object is related to local changes, one of these three factors would
vary between the bi-temporal images, and the proposed change feature of this object in L2 would be
less in L1. Consequently, the change map in L2 can be generated by representing each object with the
change probability:

P2i = (F1i − F2i)/F1i (7)
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2.4. Combining the Change Maps

In order to preserve the change information as much as possible, the bi-temporal images take
turns to be segmented and mapped to each other. The pair of change maps is combined as:

Pcom.i = ω2 · P2i + ω1 · P1i (8)

where Pcom.i is the combined change probability of object i. P2i and P1i represent the change probabilities
of object i by respectively segmenting L1 and L2 and mapping them to each other. ω1 and ω2 are
the weights of the change maps. Subsequently, the combined change map can be used for locating
the changes. The combination ratio of change maps Rcom. is an important parameter in this method,
which is confirmed in the experiments (Section 3).

Rcom. = ω2/ω1 (9)

2.5. Change Locating

The changes are located by discriminating them from unchanged areas in the combined change
map. Since the combined change map represents the change probability of each gray-level image
object, the change locating can be realized by setting a threshold to divide the map into two parts,
or applying a binary unsupervised classification method. In this paper, two threshold selection
techniques, Otsu’s thresholding method [42] and “threshold selection by clustering gray levels of
boundary” [43], and k-means clustering [44] (k = 2) are used to extract the changes in the combined
change map. These methods could also be replaced by other thresholding or clustering methods [45–47],
in which [45] effectively improved the band selection of hyperspectral imagery concerning on dual
clustering. However, it is confirmed to have little effect on the proposed method (see Section 3).

(1) Otsu’s thresholding method

Otsu’s thresholding method is implemented by searching for the optimal threshold to maximize
the discrimination criterion and achieve the greatest separability of classes. The criterion is defined as:

C =
[μT · ω(k)− μ(k)]2

ω(k) · [1− ω(k)]
(10)

where C is the criterion value of an image unit (pixel or object), and μT is the mean of the gray levels
in the image. ω(k) and μ(k) are the zeroth- and first-order cumulative moments of the histogram up
to the k-th gray level, respectively. The optimal threshold is obtained by maximizing the value of C.
In this paper, Otsu’s thresholding method is used to find the optimal threshold to separate the changes
and unchanged areas in the combined change map.

(2) Threshold selection by clustering gray levels of boundary

The threshold selection by clustering gray levels of boundary method involves approximating
the mean of the discrete sample pixels lying on the boundary and separating the image into objects
and background. The image is divided into square grids, and classified into edge cells intersected by
boundary and non-edge cells. Mathematically, the boundary of the image can be represented as:{

l(x, y) = 0
‖Δ f (x, y)‖ ≥ Te

(11)

where l(x, y) and ‖Δ f (x, y)‖ are the Laplacian and gradient magnitude functions of pixel (x, y),
respectively. If any edge of an edge cell is intersected by the boundary, the edge has the
following properties:
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(a) its two vertices (p1 and p2) are a pair of zero-crossing points, namely, l(p1) · l(p2) < 0; and
(b) its two vertices (p1 and p2) both have high gradient values. For a predefined gradient threshold

T̃e, g(p1) + g(p2) ≥ 2 · T̃e.

In this way, the intersected pixels of edge cells on the boundary can be obtained. Their positions
and gray values are computed by linear interpolation of the two vertices on the edge. These intersected
pixels are regarded as the discrete sample pixels on the image boundary. The mean of their gray values
is used as the threshold for the image segmentation. In this study, in order to divide the combined
change map into changed and unchanged classes, this threshold selection method is used to find
a bi-level threshold in the feature map.

(3) K-means clustering

K-means clustering is a classical unsupervised classification method. It involves clustering image
pixels according to the similarity of their gray levels. The number of clusters depends on the specific
application and is defined by the user. In this paper, k-means clustering (k = 2) is used to classify the
combined change map—a gray-level image—into two classes of changed and unchanged areas.

2.6. Multi-Scale Fusion

Considering the multi-scale characteristic of ground objects, multi-scale fusion [30] is applied in
the proposed method. The multi-scale fusion is implemented by voting from the single-scale change
detection maps. Firstly, we choose an appropriate interval for the segmentation scale, which needs to
cover most of the image objects’ sizes. We repeat the processes of the proposed method from steps 2.1
to 2.5 (in Figure 1) by increasing the scale with a constant step size, and we obtain a set of single-scale
change detection maps. The image objects in these maps only have two values—0 and 1—which,
respectively, mean unchanged and changed objects. The sum of the single-scale change detection maps
is calculated as:

Mi =
n

∑
j=1

Sji (12)

where Sji is the value of object i in single-scale change detection map j. Mi is the sum of object i in all of
the single-scale change detection maps, and n is the number of single-scale change detection maps.
The multi-scale change detection map is defined as:

Fi =

{
1 If Mi > Tf
0 Otherwise

, Tf = 0, 1, . . . , n − 1 (13)

where Fi is the value of image object i in the multi-scale change detection map, in which 0 and 1,
respectively, mean unchanged and changed objects. Tf is the threshold of the multi-scale fusion.

In this way, if an image object is changed in more than Tf single-scale change detection maps, it is
recognized as changed after the multi-scale fusion. Especially, the changed areas after the multi-scale
fusion are the sum and the intersection of the changes in all the single-scale change detection maps,
when Tf is equal to 0 and 1, respectively.

In the experiments described in Section 3, the optimal result of the multi-scale fusion is the sum
of changes in all the single-scale change detection maps, in which Tf is equal to 0.

2.7. Accuracy Assessment

In this paper, false alarms, missed alarms, and overall errors are used to assess the accuracy of the
urban change detection. False alarms mean the ratio of unchanged pixels wrongly detected as changed,
and missed alarms are the ratio of changed pixels omitted in the change detection. Consequently,
overall errors, which is the integrated ratio of the wrongly detected and omitted changed pixels in the
image, estimates the effectiveness of the change detection method [30].
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Furthermore, in order to validate the effectiveness of the proposed method, it was compared with
some of the existing methods. The most important innovations of the proposed method are that it
takes into account the incompatibility between different bandwidths and uses an object-based change
measure in the multi-sensor MS images. Since there are no other object-based change detection methods
for multi-sensor images, we chose to compare the proposed method with the method proposed in [35],
which utilizes some features that are invariant to change in the illumination conditions to undertake
change detection in multi-sensor images.

3. Experiments

3.1. The First Study Area

The first study area covers the campus of Wuhan University in Hubei province of China.
The bi-temporal images were respectively acquired by the QuickBird satellite in April 2005 (L1)
and the IKONOS satellite in July 2009 (L2). In order to preserve the spectral information, the MS
images were used in the experiments. Although there were four bands in both images, their spectral
and spatial characteristics differed as they were acquired by different sensors (Table 1). Either L1 or L2
can be viewed as the basis image in the image resampling preprocessing.

1. L1 as the basis image

With L1 as the basis image, L2 was interpolated to the spatial resolution of L1. Figure 3 shows the
bi-temporal images after the interpolation, which are both 400 × 400 pixels. In order to avoid the effects
of vegetation phenology and solar elevation, the vegetation and shadow were extracted and masked out.

(a) (b) 

Figure 3. Interpolated bi-temporal images of the first study area. (a) Acquired by QuickBird in April
2005 (L1); and (b) acquired by IKONOS in July 2009 (L2).

By mapping the segmentation of L1 to L2, a change map was generated by calculating the
value of the change probability (Equation (7)) for each object. The other change map was obtained
by exchanging the order of the two images. With different ratios for combining these maps,
the characteristics of the combined changed maps varied.

In order to determine the change locations, it is crucial to discriminate the changes from the
unchanged areas in the combined change map. The two threshold selection techniques and k-means
clustering (k = 2) (introduced in Section 2.5) were used to analyze the combined change map. The results
of the three methods are shown in Table 2. In this table, the left, middle, and right parts, respectively,
show false, missed alarms, and overall errors among the three methods with different combining ratios
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of change maps. It can be seen that the overall errors of the three methods are similar. The k-means
clustering (k = 2) obtains the smallest number of errors, and the threshold selection by clustering
gray levels of boundary method performs a little better than Otsu’s thresholding method. Moreover,
with the increase of the combination ratio of the change maps, the overall errors of each method
decrease. This is because, in Equation (8), P2 and P1 represent the change probability of L2 and L1,
which was mapped from the segmentation of L1 and L2, respectively. As L2 was interpolated to
the spatial resolution of L1, the segmentation of L1 was more accurate than the segmentation of L2.
Therefore, a larger weight of P2 leads to a higher accuracy of change feature analysis.

Table 2. Comparison between the change detection results of the three thresholding and clustering
methods, with L1 as the basis image in the first study area (scale = 100).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-Means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-Means

Overall
Error

s_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-Means

1:9 1.47% 1.52% 2.04% 5.57% 4.88% 3.65% 7.04% 6.39% 5.69%
2:8 1.35% 1.41% 1.91% 5.54% 4.82% 3.43% 6.89% 6.23% 5.34%
3:7 1.28% 1.36% 1.89% 5.52% 4.80% 3.38% 6.80% 6.16% 5.27%
4:6 1.24% 1.31% 1.66% 5.38% 4.76% 3.24% 6.62% 6.07% 4.90%
5:5 1.15% 1.25% 1.69% 5.38% 4.70% 2.93% 6.54% 5.94% 4.63%
6:4 1.07% 1.13% 1.70% 4.95% 4.64% 2.88% 6.02% 5.77% 4.58%
7:3 0.98% 1.05% 1.72% 4.73% 4.34% 2.86% 5.70% 5.39% 4.59%
8:2 0.96% 1.08% 1.70% 4.55% 4.20% 2.77% 5.51% 5.27% 4.47%
9:1 0.94% 1.04% 1.66% 4.16% 3.86% 2.42% 5.10% 4.89% 4.08%

The results are visually compared in Figure 4, in which the white and black regions, respectively,
represent the changed and unchanged areas. The results of the three methods are similar, but the
number of false alarms for k-means clustering (k = 2) is slightly more than for the other two methods,
and the missed alarms are fewer in number, especially in the road areas.

According to the spatial resolution and the objects’ sizes in the bi-temporal images after
preprocessing, the scale interval and step size increase were set as [10, 150] and 10, respectively.
The results of the change feature analysis differ with the varying segmentation scales (Figure 5), and
the optimal scale is around 100. Considering the multi-resolution characteristics of ground objects,
multi-scale fusion is applied in the proposed method, and is realized by voting from the single-scale
binary change maps. Figure 6 shows the accuracy of the k-means clustering (k = 2) after the multi-scale
fusion. The overall errors are the lowest when Tf in Equation (13) is 0, which means that the optimal
multi-scale fusion is the sum of the changes in all of the single-scale change detection maps.

 
(a) (b)

Figure 4. Cont.
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(c) (d)

Figure 4. The change detection maps resulting from: (a) Otsu’s thresholding method, (b) threshold
selection by clustering gray levels of boundaries, and (c) k-means clustering (k = 2), compared with
(d) the reference image, with L1 as the basis image in the first study area (scale = 100).
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Figure 5. Overall errors of change detection with different segmentation scales, with L1 as the basis
image in the first study area.

The accuracies of both the single-scale and multi-scale proposed method are shown in Table 3.
As the multi-scale fusion integrates all the single-scale change maps, there are more false alarms
but fewer missed alarms than for the optimal single-scale method. Comparing the overall errors,
the multi-scale version is more accurate.

Table 3. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L1 as the basis image in the first study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Error_Kmeans

The optimal scale = 100 1.66% 2.42% 4.08%
Multi-scale: 10, 20, . . . , 150 2.53% 0.81% 3.33%
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Figure 6. Overall errors of change detection using different multi-scale fusion thresholds, with L1 as
the basis image in the first study area.

Moreover, in order to validate the effectiveness of the proposed change detection method for
multi-sensor MS imagery, it was compared with the method proposed in [35]. In Figure 7, the white
and black regions represent the changed and unchanged areas, respectively. It can be seen that the
proposed method effectively decreases the false alarms and suppresses the salt-and-pepper noise in
the changed areas. As there are great differences in the visual results, the quantitative assessment and
comparison are omitted. The time costs of the two methods were both less than two minutes using
MATLAB Software (Mathworks, Natick, MA, USA) on a personal computer with 1.80 GHz CPU and
8.00 GB RAM.

 
(a) (b)

Figure 7. Change detection maps resulting from (a) the proposed multi-scale k-means method and
(b) the method using varying geometric and radiometric properties [35], with L2 as the basis image in
the first study area (scale = 100).
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2. L2 as the basis image

In this experiment, L2 was used as the basis image in the preprocessing. Having a higher spatial
resolution, L1 was degraded to the same resolution as L2. Figure 8 shows the bi-temporal images
after the down-sampling, which are both 240 × 240 pixels. The vegetation and shadow were again
masked out.

 
(a) (b)

Figure 8. Degraded bi-temporal images of the first study area: (a) acquired by QuickBird in April 2005
(L1) and (b) acquired by IKONOS in July 2009 (L2).

In the analysis of the combined change map, the two threshold selection methods and k-means
clustering (k = 2) were again used. The results are shown in Table 4. In this table, the left, middle,
and right parts, respectively, show false, missed alarms, and overall errors among the three methods
with increasing ratio of P2. It can be seen that the overall errors of the three methods are again similar.
The k-means clustering (k = 2) obtains the least number of errors, and the threshold selection by
clustering gray levels of boundary method performs slightly better than Otsu’s thresholding method.
Figure 9 shows a visual comparison of the results, in which the white and black regions represent
the changed and unchanged areas, respectively. The results of the three methods are again similar,
and the k-means clustering (k = 2) obtains slightly fewer missed alarms than the two threshold selection
methods, which is the same as the result of the experiment with L1 as the basis image.

Table 4. Comparison between the change detection results of the three thresholding and clustering
methods, with L2 as the basis image in the first study area (scale = 50).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-means

Overall
Errors
_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-means

1:9 0.10% 0.10% 0.13% 1.20% 1.09% 0.73% 1.30% 1.19% 0.86%
2:8 0.10% 0.10% 0.13% 1.28% 1.11% 0.74% 1.38% 1.21% 0.87%
3:7 0.10% 0.10% 0.14% 1.28% 1.13% 0.80% 1.38% 1.23% 0.93%
4:6 0.12% 0.11% 0.14% 1.42% 1.28% 0.80% 1.53% 1.39% 0.94%
5:5 0.12% 0.10% 0.14% 1.47% 1.30% 0.81% 1.58% 1.40% 0.94%
6:4 0.12% 0.10% 0.14% 1.50% 1.31% 0.94% 1.62% 1.41% 1.07%
7:3 0.12% 0.11% 0.14% 1.52% 1.33% 1.02% 1.64% 1.44% 1.16%
8:2 0.13% 0.09% 0.17% 1.52% 1.39% 1.06% 1.65% 1.48% 1.23%
9:1 0.13% 0.10% 0.17% 1.52% 1.38% 1.09% 0.00% 1.48% 1.26%

However, it is worth noting that the overall errors increase with the decreasing combination ratio
of P1. This is probably because the down-sampling of L1 resulted in the loss of some valuable image
information. As a result, the change map of P1, which was generated by the change feature analysis of
L1 mapped from the segmentation of L2, was more accurate than the other change map. Therefore,
a larger weight of P1 in the combined change map leads to a higher accuracy. From the results of these
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experiments, we can conclude that the accuracy of the change analysis is improved by increasing the
weight of the change map which is generated by mapping the segmentation of the basis image.

 
(a) (b)

 
(c) (d)

Figure 9. The change detection maps resulting from (a) Otsu’s thresholding method, (b) threshold
selection by clustering gray levels of boundary, and (c) k-means clustering (k = 2), compared with
(d) the reference image, with L2 as the basis image in the first study area (scale = 50).

According to the spatial resolution and the objects’ sizes in the bi-temporal images after
preprocessing, the scale interval and step size increase were set as [10, 100] and 10, respectively.
Figure 10 shows the results of the proposed single-scale method using different segmentation scales.
The optimal scale is 50. As can be seen in Figure 6, the overall errors are the lowest when Tf in
Equation (13) is 0. In addition, Table 5 shows the improvement of the multi-scale fusion with Tf equal
to 0, which was realized by k-means clustering (k = 2).
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Figure 10. Overall errors of the change detection with different segmentation scales, with L2 as the
basis image in the first study area.
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Table 5. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L2 as the basis image in the first study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Errors_Kmeans

The optimal scale = 50 0.13% 0.73% 0.86%
Multi-scale: 10, 20, . . . , 100 0.15% 0.52% 0.67%

In Figure 11, the proposed method is compared with the method proposed in [35]. The white
and black regions represent the changed and unchanged areas, respectively. It can be seen that the
proposed method is better able to detect the changes in an urban area with multi-sensor MS images.
It suppresses the missed alarms in the changed areas and decreases the false alarms. As there is
a significant difference in the visual results, the quantitative assessment and comparison are omitted.
The time costs of the two methods were both about one minute using MATLAB Software (Mathworks,
Natick, MA, USA) on a personal computer with 1.80 GHz CPU and 8.00 GB RAM.

 
(a) (b)

Figure 11. Change detection maps resulting from (a) the proposed multi-scale k-means method and
(b) the method using varying geometric and radiometric properties [35], with L2 as the basis image in
the first study area (scale = 50).

Comparing the two sets of experiments in the first study area, the accuracy is higher in the results
with L2 as the basis image. This is probably due to the lower spatial resolution of the basis image.

3.2. The Second Study Area

In order to further verify the proposed method, it was also applied to images from another area
in the south of Wuhan, Hubei province, China. The bi-temporal images were respectively acquired
by QuickBird in April 2002 (L1) and by IKONOS in July 2009 (L2). L2, with the lower resolution,
was regarded as the basis image in the preprocessing, and L1 was degraded by down-sampling.
The images after reprocessing, with a size of 240 × 240 pixels, are shown in Figure 12. The vegetation
and shadow were, again, masked out to avoid the effects of vegetation phenology and solar elevation.

As the spatial resolutions were the same and the ground objects of the urban area were similar to
those of the first study area, the segmentation scale was again set to 50. The results of the two threshold
selection methods and k-means clustering (k = 2) are compared in Table 6, with a decreasing P1 ratio.
In this table, the left, middle, and right parts, respectively, show false, missed alarms, and overall
errors among the three methods with decreasing ratio of P1. The accuracies of the three change locating
methods are again similar. K-means clustering (k = 2) performs the best, and the threshold selection by
clustering gray levels of boundary method performs slightly better than Otsu’s thresholding method,
which is the same as the first study area. As with the results in the first study area, the accuracy of
the proposed method is improved by increasing the weight of P1, which is generated by mapping the
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segmentation of the basis image of L2. Therefore, it can be concluded that if the weight of the change
map, which is mapped from the segmentation of the basis image, is larger than the other, the accuracy
of the proposed method increases.

 
(a) (b)

Figure 12. Preprocessed bi-temporal images of the second study area: (a) acquired by QuickBird in
May 2002 (L1) and (b) acquired by IKONOS in July 2009 (L2).

Table 6. Comparison between the change detection results of the three thresholding and clustering
methods, with L2 as the basis image in the second study area (scale = 50).

Combination
Ratio of
Change
Maps

False
Alarm
_Otsu

False
Alarm
_Edge

False
Alarm

_K-Means

Missed
Alarm
_Otsu

Missed
Alarm
_Edge

Missed
Alarm

_K-Means

Overall
Errors
_Otsu

Overall
Errors
_Edge

Overall
Errors

_K-Means

1:9 0.30% 0.28% 0.36% 1.66% 1.52% 1.00% 1.95% 1.80% 1.37%
2:8 0.31% 0.38% 0.42% 1.67% 1.51% 1.02% 1.98% 1.89% 1.44%
3:7 0.35% 0.39% 0.40% 1.68% 1.50% 1.07% 2.03% 1.90% 1.47%
4:6 0.35% 0.38% 0.40% 1.72% 1.53% 1.08% 2.07% 0.00% 1.48%
5:5 0.36% 0.29% 0.35% 1.76% 1.67% 1.14% 2.11% 1.95% 1.50%
6:4 0.36% 0.36% 0.40% 1.82% 1.70% 1.10% 2.17% 2.06% 1.50%
7:3 0.36% 0.35% 0.40% 1.84% 1.74% 1.15% 2.20% 2.09% 1.54%
8:2 0.38% 0.35% 0.38% 1.89% 1.77% 1.20% 2.27% 2.12% 1.58%
9:1 0.44% 0.34% 0.39% 1.94% 1.81% 1.22% 2.38% 2.16% 1.61%

The binary change maps of the three methods are shown in Figure 13, in which the white and
black regions represent the changed and unchanged areas, respectively. Compared with the reference
image, the results of the three methods are similar, and the k-means clustering (k = 2) obtains the least
number of missed alarms.

As can be seen in Figure 6, the overall errors after the multi-scale fusion are the lowest when Tf in
Equation (13) is 0. Table 7 shows the improvement of the multi-scale fusion with Tf equal to 0, which
was realized by k-means clustering (k = 2). It can be concluded that the proposed multi-scale method
suppresses the missed alarms and keeps the false alarms to an acceptable level.

Table 7. Comparison between the change detection results of the single-scale and multi-scale proposed
method, with L2 as the basis image in the second study area.

False Alarms_Kmeans Missed Alarms_Kmeans Overall Errors_Kmeans

The optimal scale = 50 0.36% 1.00% 1.37%
Multi-scale: 10, 20, . . . , 100 0.55% 0.22% 0.84%

In Figure 14, the white and black regions represent the changed and unchanged areas, respectively.
Compared with the method proposed in [35], the proposed method is shown to be effective in detecting
changes in an urban area using multi-sensor MS images. It can effectively decrease the missed alarms
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in the changed areas while removing the false alarms. As there is a great difference in the visual results,
the quantitative assessment and comparison are omitted. The time costs of the two methods were both
about one minute using MATLAB Software (Mathworks, Natick, MA, USA) on a personal computer
with 1.80 GHz CPU and 8.00 GB RAM.

(a) (b)

(c) (d)

Figure 13. Change detection maps resulting from: (a) Otsu’s thresholding method, (b) threshold
selection by clustering gray levels of boundary, and (c) k-means clustering (k = 2), compared with
(d) the reference image, with L2 as the basis image in the second study area (scale = 50).

(a) (b)

Figure 14. Change detection maps resulting from (a) the proposed multi-scale k-means method and
(b) the method using varying geometric and radiometric properties [35], with L2 as the basis image in
the second study area (scale = 50).

4. Discussion

In this paper, we have described the experiments conducted with multi-sensor MS images
acquired by QuickBird and IKONOS in two different study areas. According to the results of the
experiments, the following conclusions can be made:

(1) In the preprocessing of the proposed method, using the image with a lower resolution as the
basis image can improve the change detection accuracy. This is probably because some redundant
information is removed in the image with lower resolution.

(2) We made use of commercial software (Definiens) to carry out the FNEA and adjust the scale of
the image objects to achieve slight under-segmentation. FNEA could be replaced by other segmentation
methods, whose results are similar to FNEA.
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(3) A change feature is defined to estimate the change possibility of image objects in bi-temporal
MS images. The change feature adequately takes into account the statistical features of the image
objects in the bi-temporal images (whether acquired by the same or different satellites), which is
an important innovation of the proposed method.

(4) In the combining of the change maps, greater precision can be achieved by increasing the ratio
of the map which is generated from mapping the segmentation of the basis image to the resampled one.
This is probably because the segmentation of the basis image is more precise than the resampled one.

(5) The results of both thresholding and clustering methods for the change locating in gray-level
images of the change probability are similar, which confirms that they have little effect on the
proposed method.

(6) The multi-scale fusion can effectively improve the accuracy by suppressing the missed alarms
and keeping the false alarms to an acceptable level. The overall errors after the multi-scale fusion
are the lowest when the changed areas are the sum of the changes in all the single-scale change
detection maps.

(7) Compared with the method proposed in [35], the proposed method can effectively detect the
changes in multi-sensor MS images by suppressing the missed and false alarms. Instead of utilizing
features invariant to different the illumination conditions, the proposed method takes into account
the incompatibility between different bandwidths and uses an object-based change measure with the
multi-sensor MS images.

5. Conclusions

In this paper, a novel object-based change detection method has been proposed for multi-sensor
MS imagery. After the resampling preprocessing, we segment one of the bi-temporal images and map
it to the other image, which not only achieves one-to-one correspondence between the bi-temporal
images but also preserves the spatial distribution between changed objects and their relevant changed
areas. Subsequently, by summarizing the possible distribution between any image object and its
relevant changed areas, a change feature is defined to represent the change probability of the image
objects in the bi-temporal MS images, whether they are acquired by the same or different satellites.
Consequently, thresholding or clustering methods are used to automatically locate the changes in
the gray-level image of change probability. Considering the multi-scale feature of ground objects,
multi-scale fusion is implemented by voting from the single-scale maps.

According to the experimental results, the urban change analysis method proposed in this paper
effectively overcomes the incompatibility between different band widths in bi-temporal (MS) images
and utilizes object-based statistical features to describe the changes of ground objects. The overall
errors of the proposed method are less than 3.5%. The proposed method makes full use of the spectral
and spatial information, and it estimates the change probability of image objects by the use of a novel
statistical feature. The object-based change detection method can effectively detect the changes in
multi-sensor MS images, and has been confirmed to perform better than the current methods.
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