
Remote Sensing 
of Evapotranspi-
ration (ET)

Pradeep Wagle and Prasanna H. Gowda

www.mdpi.com/journal/remotesensing

Edited by

Printed Edition of the Special Issue Published in Remote Sensing

remote sensing  



Remote Sensing of 
Evapotranspiration (ET)





Remote Sensing of 
Evapotranspiration (ET)

Special Issue Editors

Pradeep Wagle

Prasanna H. Gowda

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editors

Pradeep Wagle

USDA-ARS, Grazinglands Research

Laboratory

USA

Prasanna H. Gowda

USDA-ARS, Southeast Area

USA

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Remote Sensing (ISSN 2072-4292) from 2018 to 2019 (available at: https://www.mdpi.com/journal/

remotesensing/special issues/rs-ET)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-602-4 (Pbk)

ISBN 978-3-03921-603-1 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Pradeep Wagle and Prasanna H. Gowda

Editorial for the Special Issue “Remote Sensing of Evapotranspiration (ET)”
Reprinted from: Remote Sens. 2019, 11, 2146, doi:10.3390/rs11182146 . . . . . . . . . . . . . . . . . 1

Yongmin Yang, Jianxiu Qiu, Renhua Zhang, Shifeng Huang, Sheng Chen, Hui Wang, 
Jiashun Luo and Yue Fan

Intercomparison of Three Two-Source Energy Balance Models for Partitioning Evaporation and 
Transpiration in Semiarid Climates
Reprinted from: Remote Sens. 2018, 10, 1149, doi:10.3390/rs10071149 . . . . . . . . . . . . . . . . . 8

Carla Grosso, Gabriele Manoli, Marco Martello, Yann H. Chemin, Diego H. Pons, 
Pietro Teatini, Ilaria Piccoli and Francesco Morari

Mapping Maize Evapotranspiration at Field Scale Using SEBAL: A Comparison with the FAO 
Method and Soil-Plant Model Simulations
Reprinted from: Remote Sens. 2018, 10, 1452, doi:10.3390/rs10091452 . . . . . . . . . . . . . . . . . 28

Shijie Li, Guojie Wang, Shanlei Sun, Haishan Chen, Peng Bai, Shujia Zhou, Yong Huang, 
Jie Wang and Peng Deng

Assessment of Multi-Source Evapotranspiration Products over China Using Eddy 
Covariance Observations
Reprinted from: Remote Sens. 2018, 10, 1692, doi:10.3390/rs10111692 . . . . . . . . . . . . . . . . . 45

Zhenyan Yi, Hongli Zhao and Yunzhong Jiang

Continuous Daily Evapotranspiration Estimation at the Field-Scale over Heterogeneous 
Agricultural Areas by Fusing ASTER and MODIS Data
Reprinted from: Remote Sens. 2018, 10, 1694, doi:10.3390/rs10111694 . . . . . . . . . . . . . . . . . 73

Sulochan Dhungel and Michael E. Barber

Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy 
Balance Model
Reprinted from: Remote Sens. 2018, 10, 1695, doi:10.3390/rs10111695 . . . . . . . . . . . . . . . . . 94

Emilie Delogu, Gilles Boulet, Albert Olioso, Sébastien Garrigues, Aurore Brut, 
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Abstract: Evapotranspiration (ET) is a critical component of the water and energy balances, and the
number of remote sensing-based ET products and estimation methods has increased in recent years.
Various aspects of remote sensing of ET are reported in 11 papers published in this special issue.
The major research topics covered by this special issue include inter-comparison and performance
evaluation of widely used one- and two-source energy balance models, a new dual-source model (Soil
Plant Atmosphere and Remote Sensing Evapotranspiration, SPARSE), and a process-based model
(ETMonitor); assessment of multi-source (e.g., remote sensing, reanalysis, and land surface model) ET
products; development or improvement of data fusion frameworks to provide continuous daily ET at
a high spatial resolution (field-scale or 30 m) by fusing the advanced space-borne thermal emission
reflectance radiometer (ASTER), the moderate resolution imaging spectroradiometer (MODIS),
and Landsat data; and investigating uncertainties in ET estimates using an ET ensemble composed of
36 land surface models and four diagnostic datasets. The effects of the differences among ET products
on water resources and ecosystem management were also investigated. More accurate ET estimates
and improved understanding of remotely sensed ET products can help maximize crop productivity
while minimizing water loses and management costs.

Keywords: data fusion; evapotranspiration partitioning; land surface model; process-based model;
water stress

1. Introduction

Evapotranspiration (ET), a critical and major component of the water and energy balances, is a
key variable for linking ecosystem functions and climate feedbacks [1], determination of crop water
or irrigation requirements and crop coefficients [2], and estimation of productivity and water use
efficiency of ecosystems [3,4]. Although the eddy covariance (EC) technique has been widely used for
continuous measurements of ET in recent decades [5,6], it is not possible to measure ET by the EC
technique at all places all the time and especially over heterogeneous landscapes. Thus, a wide range
of remote sensing-based ET products at the global and regional scales has been developed in recent
decades to complement the limited land surface coverage of the ground-based ET measurements [7–9].
These ET products include numerous remote sensing reanalysis-based [10–12], land surface model
(LSM)-based [13,14], surface energy balance (SEB)-based [15–17], and empirical up-scaling of in situ ET
observations [18,19]. The SEB-based models are gaining increased popularity because remote sensing
in the thermal infrared provides information not only on the partitioning of the available energy to
sensible and latent heat fluxes, but also on the predicting water stress levels [17,20]. However, a major
shortcoming of SEB-based models is that they rely on available land surface temperature (LST) data
from satellite observations. Consequently, SEB modeling estimates are not available for cloudy days.
Thus, the process-based ET models are gaining more acceptance to generate continuous ET estimates

Remote Sens. 2019, 11, 2146; doi:10.3390/rs11182146 www.mdpi.com/journal/remotesensing1
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by utilizing a variety of biophysical parameters derived from microwave and optical remote sensing
observations [21,22]. It is also recognized that there are large differences among a wide range of ET
products. Validations and inter-comparisons of various ET models or ET products under diverse
ecosystems and agrometeorological conditions are needed due to different levels of uncertainties and
accuracies that vary over space and time [23,24].

Although several remote sensing-based ET products are available, these datasets cannot generally
provide ET data at both higher spatial and temporal resolutions to derive field-scale ET estimates over
heterogeneous landscapes due to satellite orbital dynamics and physical limitations of the satellite
sensors. Thus, downscaling and data fusion approaches have been employed to improve the higher
spatial and temporal resolutions of remote sensing-based ET products [25–28].

Accurate ET estimates are crucial to manage water resources and to assess the impacts of climate
on agriculture and food security [29]. High uncertainty in ET estimates is a major obstacle to examine
spatial and temporal variability in regional hydrology [30]. Thus, understanding the uncertainty of ET
estimates can help to better determine water availability for agriculture and livelihoods.

This special issue compiles contributions on research related to the above-mentioned various
aspects of remote sensing of ET. The major topics covered by the 11 papers in this special issue include
inter-comparison and performance evaluation of several ET models or products, data fusion approach to
generate higher spatial and temporal resolution ET products, model development and/or improvement,
and investigating uncertainties in ET estimates. A short summary of the varied contributions to this
special issue is presented in the next section.

2. Overview of Contributions

2.1. Inter-Comparison and Performance Evaluation of Several ET Models or Products

Yang et al. [31] compared three Two-Source Energy Balance (TSEB) models for estimating ET
and its components (evaporation, E and transpiration, T) in semiarid climates of China. Those three
TSEB models were: TSEB model with the Priestley–Taylor equation (TSEB-PT), TSEB model with the
Penman–Monteith equation (TSEB-PM), and TSEB model using component temperatures derived from
vegetation fractional cover and land surface temperature (VFC/LST) space (TSEB-TC-TS). The study
provided valuable insights into understanding the performances of TSEB models with different
temperature decomposition methods since they were responsible for the observed discrepancies in the
partitioned E and T fluxes. Based on the soil wetness isoline in the VFC/LST space, the VFC/LST-based
temperature decomposition method can add a further constraint on vegetation T. This could also be
used as a substitution for the interactive procedure adopted in the TSEB model.

Grosso et al. [32] employed the Surface Energy Balance Algorithm for Land (SEBAL) in a
salt-affected and water-stressed maize field using Landsat images to map the spatial structure of
water fluxes and crop yield. The SEBAL results were compared with ET estimates of the Food and
Agriculture Organization (FAO) method and three-dimensional soil–plant simulations. The study
highlighted that the integration of SEBAL with field observations and soil–plant simulations could be
beneficial for precision agriculture practices (e.g., precision irrigation).

Li et al. [33] evaluated four popular global ET products: Global Land Evaporation
Amsterdam Model version 3.0a (GLEAM3.0a), Modern Era Retrospective-Analysis for Research
and Applications-Land (MERRA-Land), Global Land Data Assimilation System version 2.0 with
the Noah model (GLDAS2.0-Noah), and EartH2Observe ensemble (EartH2Observe-En) over China
using a stratification method, six validation criteria, and EC measurements at 12 sites. The model
performances were evaluated by biome, elevation, and climate regime as well. The study recommended
the use of multi-source ET datasets since no ET product consistently performed best for the selected
validation criterion.

Delogu et al. [34] assessed the model predictions of water stress and ET components for the
two proposed versions (the “patch” and “layer” resistances network) of the new dual-source Soil
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Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE) model over 20 in situ datasets
encompassing diverse vegetation and climate conditions. The SPARSE model showed good estimates
of latent and sensible heat fluxes and water stress over a large range of leaf area indexes and contrasting
water stress levels.

Zheng et al. [22] used ETMonitor, a process-based model, with satellite earth observation datasets
as main inputs to derive daily ET by utilizing surface soil moisture from microwave remote sensing
and LST from thermal remote sensing. Estimated daily ET showed good agreement with EC-measured
ET in Northeastern Thailand.

Khand et al. [35] developed an automated modeling framework to construct daily time series of
ET maps, addressing the challenges related to processing and gap filling of non-continuous satellite
data using the moderate resolution imaging spectroradiometer (MODIS) imagery and the Surface
Energy Balance System (SEBS) model. The daily ET maps generated by this modeling framework
captured the spatial and temporal variations (2001–2014) of ET across Oklahoma, USA. The proposed
ET modeling framework provided a pathway to construct daily time series of ET maps at a regional
scale and highlighted a range of potential applications for making informed decision and policies.

Lu et al. [36] evaluated the effects of differences among five representative ET products
(Australian Water Availability Project (AWAP) as a reference, ET product developed by Commonwealth
Scientific and Industrial Research Organization (CSIRO), LSM-based ET product from GLDAS, remote
sensing-based ET product from MODIS, and water budget-based ET product from TerraClimate) on
water resources and ecosystem management in the Murrumbidgee River catchment in Australia. Large
differences in ET budgets among these five ET products propagated into the estimates of mean annual
runoff, soil water storage, and irrigation demands.

2.2. Data Fusion Approach to Generate Higher Spatial and Temporal Resolution ET Products

Considering the lack of concurrent higher spatial and temporal resolution ET products, Yi et al. [37]
employed a data fusion framework for predicting continuous daily ET at the field-scale over
heterogeneous agricultural areas of Northwest China by fusing the advanced space-borne thermal
emission reflectance radiometer (ASTER) and the MODIS data. Through a combination with the linear
unmixing-based method, the spatial and temporal adaptive reflectance fusion model (STARFM) was
modified to generate high-resolution ET estimates over heterogeneous areas. As compared with the
original STARFM, the modified STARFM showed a significant improvement in daily ET estimation,
preserved more spatial details for heterogeneous agricultural fields, and provided field-to-field
variability in water use.

Wang et al. [38] proposed an improved ET fusion method— the Spatio-temporal Adaptive Data
Fusion Algorithm for EvapoTranspiration mapping (SADFAET)—by introducing critical surface
temperature (the corresponding temperature to determine soil moisture), importing the weights of
surface ET-indicative similarity (the influencing factor of ET), and modifying the spectral similarity (the
differences in spectral characteristics of different spatial resolution images) for the Enhanced Spatial
and Temporal Adaptive Reflectance Fusion Model (ESTARFM). The study successfully fused daily
MODIS and periodic Landsat 8 ET data in the SADFAET for producing ET at high spatial (30 m) and
temporal (daily) resolutions.

2.3. Model Development and/or Improvement

Considering the knowledge gaps in differences among final ET estimates resulting from subjectivity
in selecting “hot” and “cold” pixel pair, Dhungel and Barber [39] tested the assumption of low
variability of surface properties by first applying an automated calibration pixel selection process
for a SEB model—Mapping EvapoTranspiration at high Resolution with Internalized Calibration
(METRIC). Consequently, they computed vertical near-surface temperature differences (dT) vs. surface
temperature (Ts) relationships at all pixels, which could potentially be used for model calibration
to explore ET variance among the outcomes from multiple calibration schemes where normalized
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difference vegetation index (NDVI) and Ts variability are intrinsically negligible. Significant variability
in ET (ranging from 5% to 20%) and a high and statistically consistent variability in dT suggested that
additional surface properties, which were not captured when using only NDVI and Ts, affected the
calibration process. This approach of quantifying ET variability based on candidate pixel selection
helps to quantify the biases inadvertently introduced by user subjectivity as well as to improve the
model’s usability and performance.

Zheng et al. [22] developed and applied a new scheme in ETMonitor, a process-based model,
to take advantage of thermal remote sensing. In the improved scheme, the evaporation fraction was
obtained by LST-vegetation index triangle method to estimate ET in clear days. The soil moisture
stress index (SMSI) was defined to express the impact of soil moisture on ET. Clear sky SMSI, retrieved
according to the estimated clear sky ET, was interpolated to cloudy days to obtain the SMSI for
all sky conditions. Finally, interpolated spatio-temporal continuous SMSI was used to derive daily
time-series ET.

Wang et al. [38] developed an improved ET fusion method (SADFAET) based on ESTARFM.
The improvements in SADFAET were as follows: consideration of soil moisture by introducing
the critical surface temperature while selecting similar pixels, use of multiple spectral bands,
and introduction of the surface ET-indicative similarity to calculate the weights of similar pixels.
This new method can effectively fuse ET at high and low spatial resolutions.

2.4. Investigating Uncertainties in ET Estimates

Jung et al. [40] investigated uncertainties in ET estimates over five different climatic regions in West
Africa using an ET ensemble composed of 36 LSM experiments and four diagnostic datasets (GLEAM,
ALEXI, MOD16, and FLUXNET). The LSM-based ET values had greater uncertainty estimates and
larger seasonal variations than the diagnostic ET datasets. The LSM formulations and parameters had
the largest impact on ET in humid regions (contributing to 90% of the ET uncertainty estimates), while
precipitation contributed to the ET uncertainty primarily in arid regions. The results indicated that
assimilating diagnostic ET datasets into LSMs or hydrological models could improve the accuracy of
ET estimates.

3. Conclusions

The 11 papers published in this special issue highlight a variety of topics related to remote sensing
of ET. This special issue provides valuable insights into understanding the performances of different
ET models and products under diverse ecosystems and agrometeorological conditions. In addition,
improvements on the ET models have also been proposed. Proposed ET data fusion approaches
provide unique means of monitoring continuous daily ET at higher spatial resolutions (e.g., field-scale
or less) over heterogeneous landscapes. More accurate ET estimates and improved understanding of
remotely sensed ET products are crucial to maximize crop productivity while minimizing water losses
and management costs.
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Abstract: Evaporation (E) and transpiration (T) information is crucial for precise water resources
planning and management in arid and semiarid areas. Two-source energy balance (TSEB) methods
based on remotely-sensed land surface temperature provide an important modeling approach
for estimating evapotranspiration (ET) and its components of E and T. Approaches for accurate
decomposition of the component temperature and E/T partitioning from ET based on TSEB
requires careful investigation. In this study, three TSEB models are used: (i) the TSEB model
with the Priestley-Taylor equation, i.e., TSEB-PT; (ii) the TSEB model using the Penman-Monteith
equation, i.e., TSEB-PM, and (iii) the TSEB using component temperatures derived from vegetation
fractional cover and land surface temperature (VFC/LST) space, i.e., TSEB-TC-TS. These models are
employed to investigate the impact of component temperature decomposition on E/T partitioning
accuracy. Validation was conducted in the large-scale campaign of Heihe Watershed Allied
Telemetry Experimental Research-Multi-Scale Observation Experiment on Evapotranspiration
(HiWATER-MUSOEXE) in the northwest of China, and results showed that root mean square
errors (RMSEs) of latent and sensible heat fluxes were respectively lower than 76 W/m2 and
50 W/m2 for all three approaches. Based on the measurements from the stable oxygen and hydrogen
isotopes system at the Daman superstation, it was found that all three models slightly overestimated
the ratio of E/ET. In addition, discrepancies in E/T partitioning among the three models were
observed in the kernel experimental area of MUSOEXE. Further intercomparison indicated that
different temperature decomposition methods were responsible for the observed discrepancies in
E/T partitioning. The iterative procedure adopted by TSEB-PT and TSEB-PM produced higher
LEC and lower TC when compared to TSEB-TC-TS. Overall, this work provides valuable insights
into understanding the performances of TSEB models with different temperature decomposition
mechanisms over semiarid regions.

Keywords: component temperature decomposition; evapotranspiration partitioning; two-source
energy balance model
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1. Introduction

Evapotranspiration (ET) observations and modeling are crucial in water cycle studies [1–4].
Water scarcity is one of the main factors constraining agricultural development in arid or semiarid
areas. The knowledge of ET, as well as the mechanism of ET partitioning into evaporation (E) and
transpiration (T), is very important for precise quantification of the water balance in water resources
planning and management, optimizing crop production, identifying crop stress and drought impacts,
and evaluating the effects of climate change on water yields [5–9]. As satellite remote sensing is widely
used to obtain information on the regional water and heat balance, it has been used to derive several
global multi-decadal ET datasets that arouse extensive concern [10–15].

Over the last few decades, several remote sensing-based ET models have been proposed to
estimate regional surface heat fluxes via satellite-derived land surface temperature (LST) [5,6,16–20].
Specifically, a one-source model, such as the Surface Energy Balance Algorithm for Land
(SEBAL) [16,17], Simplified Surface Energy Balances Index (S-SEBI) [21], Surface Energy Balance
System (SEBS) [20,22], and Mapping EvapoTranspiration at high Resolution with Internalized
Calibration (METRIC) [5,6], often use LST and empirical resistance corrections to estimate surface heat
fluxes. Two-source models, such as the two-source energy balance model (TSEB) [19], the two-source
time-integrated model (TSTIM) [23], Pixel Component Arranging and Comparing Algorithm
(PCACA) [24], and the enhanced two-source evapotranspiration model for land (ETEML) [25] were
developed to make use of LST to estimate a sensible heat flux (H) and latent heat flux (LE) for the
soil and canopy separately. Other alternative practical approaches have been proposed based on
vegetation fractional cover and LST (VFC/LST) space [26,27]. Related research includes the work by
Moran et al. [28], Jiang and Islam [29,30], Stisen et al. [31], and Shu et al. [32]. Extensive reviews of
remote sensing-based methodologies on surface heat flux estimation can be found in the works of
Courault et al. [33], Kalma et al. [34] and Li et al. [35].

As an appealing modeling scheme, two-source energy balance models can estimate
evapotranspiration (ET), evaporation (E), and transpiration (T) of vegetated surfaces, which has
important applications in water resources management for irrigated crops in arid and semiarid
areas [36]. To estimate E and T separately, the soil temperature (TS) and canopy temperature (TC)
need to be accurately measured or derived, making temperature decomposition the core of the
two-source modeling approach. Generally, four categories of methods have been developed to
decompose remotely-sensed temperature into soil and canopy temperatures. (1) The first category
calculates soil and vegetation component temperatures using dual- or multi-angular thermal infrared
measurements [37]. For instance, a dual-source model using bi-angular thermal infrared measurements
was developed by Jia [38] and Jia et al. [39]. However, currently limited sensors have bi- or
multi-angular thermal infrared channels and thus constrained the availability of remote sensing data
source in this category of method. (2) The second category assumed that LST is the sum of vegetation
and soil temperatures weighted by the vegetation fractional cover (f c), i.e., LST ≈ fcTC + TS(1 − fc).
This kind of method assumed that the LST of a highly vegetated pixel in the neighborhood would
be a reasonable approximation of TC, and a selected neighborhood area of the target pixel based on
certain thresholds in the corresponding NDVI image [40,41]. As TC is approximately determined,
TS can be derived accordingly using TS = (LST − fcTC)/(1 − fc). (3) The third category retrieves
component temperatures using an iterative procedure based on an energy balance and resistance
network. Typically, the TSEB model proposed by Norman et al. [19] uses a system of temperature
gradient-resistance equations that are solved by an iterative procedure, in which an initial estimate of
plant transpiration is determined by the Priestley-Taylor equation (TSEB-PT). The procedure terminates
when soil evaporation (LEs) exceeds zero, and Tc and Ts are recalculated until energy balance closure
is reached. Recently, TSEB was revised by Colaizzi et al. [42] and Colaizzi et al. [43] using the
Penman-Monteith equation (TSEB-PM) instead of the Priestley-Taylor equation in order to characterize
vegetation transpiration, and this revised version was found to be more applicable for advective
semiarid climates. (4) The fourth category derives component temperatures based on VFC/LST
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space [24,28,44,45]. Moran et al. [28] introduced a water deficit index (WDI) based on the VFC/LST
trapezoid space and extended the application of a crop water stress index (CWSI) over fully- to
partially-vegetated surface areas. Zhang et al. [24] proposed a method to retrieve land surface
component temperatures based on the interpretation of soil wetness isolines within a VFC/LST
trapezoidal space. The main assumption of this method is that the isolines in the VFC/LST trapezoid
space is mainly controlled by soil water availability and the isolines within a VI/LST trapezoidal
space are used to decompose the composite temperature into component temperatures. This method
was recently revised and adopted by Sun et al. [46], Long and Singh [47], Yang and Shang [48],
Yang et al. [25], and Sun [49] to develop two-source models.

Combined with satellite remote sensing, the TSEB models have been extensively used to
estimate regional ET. However, how the accuracy of ET estimations from TSEB models is affected
by its component temperature estimation and E/T partitioning are rarely reported, and requires
careful study. The objective of this study is to evaluate the capabilities of three TSEB models in
predicting surface fluxes under various ranges of soil moisture contents, and then analyze how
the different performances of three models are attributed to the different adopted schemes in
component temperature decomposition and E/T partitioning. Section 2 presents the description
of the three two-source models: TSEB-PT, TSEB-PM, and TSEB-TC-TS. Section 3 introduces the
pertinent experiment campaign in the study area, i.e., Heihe Watershed Allied Telemetry Experimental
Research-The Multi-Scale Observation Experiment on Evapotranspiration (HiWATER-MUSOEXE)
Campaign, remotely-sensed data used for driving the TSEB models, and the ground measurements for
the models’ assessment. Section 4 first reports the fluxes estimation accuracies from three TSEB models
with retrievals from ASTER imagery. In Section 4.2, E/T partitioning is intercompared within three
models and evaluated against the benchmark obtained using the stable oxygen and hydrogen isotopes
technique. In the remainder of Section 4, intercomparison using component temperatures generated
from three models was conducted to further investigate the uncertainty in E/T partitioning. Section 5
discusses the advantages and limitations in this work, and the final section provides a conclusion.

2. Theory and Methodology

2.1. TSEB-PT Model

The TSEB model was originally developed by Norman et al. [19] to make use of remotely-sensed
radiometric surface temperatures to estimate soil evaporation and canopy transpiration. This model
has been modified by Kustas and Norman [50,51] through improving the soil surface resistance
formulation and net radiation partitioning between the soil and canopy components. The net radiation
is partitioned between the vegetated canopy and soil, and can be expressed as:

Rn = Rns + Rnc = H + LE + G (1)

where Rn is net radiation (W/m2), Rns and Rnc are the net radiation for soil and vegetation canopy
(W/m2), respectively; H and LE are the sensible and latent heat fluxes (W/m2), respectively, and G is
the soil heat flux (W/m2). The energy balance for the soil and vegetated canopy can be expressed as:

Rns = Hs + LEs + G (2)

Rnc = Hc + LEc (3)

where Hs and Hc are the sensible heat fluxes for the soil and canopy respectively (W/m2), LEs and
LEc are the latent heat fluxes for the soil and canopy, respectively (W/m2). G is parameterized with
the phase-difference approach proposed by Santanello and Friedl [52]:

G = Rns

{
a· cos

[
2π
b
(t + c)

]}
(4)
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where t is the solar time angle (s), a is the amplitude parameter (dimensionless), b is the period length
(s), and c is the shift (s). In this study, parameters a, b, and c take the values of 0.3, 86,400, and 10,800
following Colaizzi et al. [43] and Song et al. [53].

In this study, the series resistance network form was applied, in which Hc, Hs, and the sum of
both terms are calculated as:

Hc = ρCP
TC − TAC

rx
(5)

Hs = ρCP
TS − TAC

rs
(6)

H = ρCP
TAC − TA

rA
(7)

where ρ is the air density (kg/cm3), CP is the specific heat of air (J/kg/K), TS is the soil temperature
(K), TC is the canopy temperature (K), TAC and TA are the air temperature within the canopy boundary
layer and air temperature (K), respectively, rA is the aerodynamic resistance (s/m), rx is the resistance
in the boundary layer near the canopy (s/m), and rs is the resistance to heat flux in the boundary layer
above the soil surface (s/m). rA, rx, and rs are calculated according to Norman et al. [19] and Kustas
and Norman [50].

The TSEB-PT model uses a modified Priestley-Taylor formulation to parameterize the canopy
transpiration:

LEc = αPT fG
Δ

Δ + γ
Rnc (8)

where αPT is the Priestley-Taylor parameter (dimensionless), fG is the fraction of green vegetation
(dimensionless), Δ is the slope of the saturation vapor pressure versus temperature curve (kPa/◦C),
and γ is the psychrometric constant (kPa/◦C). An initial estimate of TC can be derived as follows:

Tc = TA +
RncrA

ρCP

[
1.0 − αPT fG

Δ
Δ + γ

]
(9)

Accordingly, TS is calculated with an initial estimate of TS, and then rs can be estimated
with the temperature gradient between the soil and canopy described in Kustas and Norman [51].
From Equations (5) to (8), the component sensible heat flux HS can be calculated and latent heat
fluxes from canopy LEC and soil surface LES are solved as residual terms. In order to obtain a realistic
estimation of surface heat fluxes under water stressed conditions, the αPT is iteratively decreased
until LEs exceeds zero. The detailed description of the TSEB model and the parameterization of the
resistance network can be found in Norman et al. [19] and Kustas and Norman [51].

2.2. TSEB-PM Model

The TSEB model was revised by Colaizzi et al. [42] and Colaizzi et al. [43] using the
Penman-Monteith equation instead of the Priestley-Taylor formulation to account for the impact
of advection over semiarid climates. This revised version of the TSEB model is termed TSEB-PM.
The effects of varying the vapor pressure deficit can thus be taken into account in the TSEB-PM model.
The canopy transpiration is characterized using the Penman-Monteith equation:

LEc = fG

(
ΔRnc

Δ + γ∗ +
ρCP(es − ea)

rA(Δ + γ∗)

)
(10)

and Tc is initialized as follows:

TC = TA +
RncrAγ∗

ρCP(Δ + γ∗)
− es − ea

Δ + γ∗ (11)
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where γ∗ = γ(1 + rc/rA), rc is the bulk canopy resistance (s/m), rA is the aerodynamic resistance
between the canopy and the air above the canopy (s/m), and ea and es are the actual and saturation
vapor pressure of the air (kPa), respectively. Similar to TSEB-PT, the TSEB-PM model was iteratively
implemented as described in Section 2.1. During the iterative procedure, rc increases from 10 s/m with
an increment of 20 s/m and terminates at 5000 s/m, or until LEs exceeds zero. The comprehensive
introduction of the TSEB-PM can be found in Colaizzi et al. [42] and Colaizzi et al. [43].

2.3. TSEB-TC-TS Model

TSEB was modified by Kustas and Norman [54] to calculate turbulent heat fluxes using canopy
and soil component temperatures that were measured or derived from other methods. This modified
TSEB model is called TSEB-TC-TS in this study. The Priestley-Taylor iteration procedure is not applied
in TSEB-TC-TS, but the remainder of the physical framework of TSEB-TC-TS is identical to that of
TSEB-PT. The within-canopy temperature (TAC) is estimated from derived component temperatures
as follows:

TAC =

TA
rA

+ Ts
rs
+ TC

rx
1

rA
+ 1

rs
+ 1

rx

(12)

Consequently, the component sensible heat fluxes HS and HC are directly calculated from
Equations (5) and (6), and the component latent heat fluxes LEC and LES are calculated as residual
terms from Equations (2) and (3).

The VFC/LST space is adopted to retrieve component temperatures by Zhang et al. [24],
Zhang et al. [55], Sun et al. [40], Merlin et al. [44], and Merlin et al. [45]. Based on the theoretical
determination of the dry and wet edges of the VFC/LST space, this method was further revised
and adopted by Long and Singh [47] and Yang and Shang [48] to develop two-source models. In the
traditional method, the VFC/LST trapezoid is mainly determined manually based on the 2-D VFC/LST
scatter plot, which would cause great uncertainty. Recently, Yang et al. [25] improved this method
and proposed to make use of the VFC/LST trapezoid space for each pixel. Different from traditional
method, the four theoretical points for each pixel are determined based on an energy balance model
and the Penman-Monteith equations. In this study, this pixel-wise surface temperature decomposition
method is adopted. The employed VFC/LST space is determined with four theoretical points using
the following equations from Moran et al. [28].

For the vertex of dry bare soil, the difference between LST and Ta can be derived as follows:

(TS − Ta)max =
[
ra(Rn − G)/ρaCp

]
(13)

For the vertex of saturated bare soil,

(TS − Ta)min =
[
(ra(Rn − G))/

(
ρaCp

)
][γ/(Δ + γ)]−[VPD/(Δ + γ)

]
(14)

For the vertex of well-watered fully-cover vegetation,

(TC − Ta)min =
[
(ra(Rn − G))/

(
ρaCp

)][
γ
(
1 + rcp/ra

)
/
(
Δ + γ

(
1 + rcp/ra

))
]− [VPD/

(
Δ + γ

(
1 + rcp/ra

))]
(15)

For the vertex of water-stressed fully-cover vegetation,

(TC − Ta)max =
[
(ra(Rn − G))/

(
ρaCp

)]
[γ(1 + rcx/ra)/(Δ + γ(1 + rcx/ra))]− [VPD/(Δ + γ(1 + rcx/ra))] (16)

where VPD (kPa) is the vapor pressure deficit of the air at temperature Ta, γ is the psychrometric
constant (kPa/◦C), and ra is aerodynamic resistance (s/m) estimated with the equations proposed by
Thom [56]. rcp is the canopy resistance at potential evapotranspiration (s/m), and rcx is the maximum
canopy resistance (s/m). As such, a VFC/LST trapezoid space is determined for each pixel and the
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measurements of (LST-Ta) and the fractional vegetation cover would be located within the trapezoid
space.

Based on the VFC/LST trapezoid space determined above, the composite radiometric surface
temperature of each pixel can be decomposed to soil and canopy component temperatures [24,25,55]:

TS − Ta = (LST − Ta)− Ks ∗ fc (17)

TC − Ta = Ks ∗ (1 − fc) + (LST − Ta) (18)

where Ks is the slope of the isoline that passes through the point located in VFC/LST space, and can be
derived by interpolating the slope of the warm edge and that of the cold edge. The detailed description
of this method can be found in Yang et al. [25]. Once TS and TC are determined, the component fluxes
in TSEB-TC-TS can be estimated.

In addition to TS and TC, TSEB models can estimate evaporation (E) and transpiration (T) of
vegetated surface, such information can be used to calculate component water stress of vegetation
and soil. Following the equations from Yang et al. [25], the crop water stress index for the canopy
component (CWSIc) and soil water deficit index for soil component (SWDIS) are calculated as follows:

CWSIC = 1 − LEc/EPc (19)

SWDIs = 1 − LEs/EPs (20)

EPc and EPs are the potential transpiration rate and potential soil evaporation rate, respectively.

3. Study Area and Data Processing

3.1. HiWATER-MUSOEXE Campaign and Ground-Based Measurements

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) was performed at the
Heihe River Basin of northwestern China with airborne, satellite-borne, and ground-based remote
sensing experiments at various scales during 2012–2015 [57]. As one of most important thematic
experiments of the HiWATER, the Multi-Scale Observation Experiment on Evapotranspiration
(MUSOEXE) over the Zhangye oasis provided multiscale data sets of meteorological elements and land
surface parameters that facilitate the development and validation of ET models over heterogeneous
surfaces [58,59]. Figure 1 shows the distribution of flux towers and the land use classifications in
the MUSOEXE.

MUSOEXE involved a multi-scale observation campaign over heterogeneous surfaces by using
an observation matrix composed of 21 stations. Each station was equipped with a set of eddy
covariance (EC) system and automatic weather system (AWS). Turbulent heat fluxes are measured
with EC system and the raw data were processed using EdiRe software and averaged over 30 min.
Wind speed, wind direction, air temperature, vapor pressure, net radiation, and atmospheric pressure
were measured in AWS with 10-min intervals. The soil heat fluxes were measured using three heat
flux plates located 6 cm below the ground’s surface at each site. In order to better represent the surface
soil heat flux, the Thermal Diffusion Equation and Correction (TDEC) method proposed by Yang
and Wang [60] was applied to correct the observed soil heat flux with the observed soil moisture and
temperature profile. The residual method [61] was adopted to adjust sensible and latent heat fluxes by
forcing the energy balance closure.

The isotopic composition of atmospheric water vapor provided rich information on the
hydrological cycle and gaseous exchange processes between the terrestrial vegetation and atmosphere.
Due to technical and instrumental limitations, the measurements of the isotopic composition of water
vapor were limited to discrete campaigns and discrete samples. During the HiWATER program,
the isotopic composition of water vapor from the surface air was measured in a corn cropland
(100.3722◦E, 38.8555◦N) at Daman superstation using a flux gradient method, using a cavity ring-down
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spectroscopy (CRDS) water vapor isotope analyzer. Considering water vapor as a mixture of ET
from an ecosystem that carried unique isotopic signals from plant transpiration and soil evaporation
separately, the measured isotopic composition of water was used to partition ET into evaporation and
transpiration. Details of the isotope experiment and its calibration procedure are given by Huang and
Wen [62] and Wen et al. [63]. In this study, the ratio of T over ET was collected to evaluate the reliability
of three TSEB models on evaporation and transpiration partitioning.

Figure 1. The distribution of flux towers and the land use classifications in MUSOEXE over the Zhangye
oasis. The yellow rectangular in the left shows the kernel experimental area in MUSOEXE, and the
subset figure in the lower right shows the location of MUSOEXE (marked in red triangle) in the Heihe
River Basin (marked by pink polygon) and in China.

3.2. Remote Sensing Data and Derivation of Related Variables

In this study, nine scenes from the Advance Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) on board Terra during the experiment period were collected. These nine scenes
were acquired on 15 June, 24 June, 10 July, 2 August, 11 August, 18 August, 27 August, 3 September,
and 12 September of 2012 (DOYs: 167, 176, 192, 215, 224, 231, 240, 247, 256, respectively). The LST and
the land surface albedo were provided by “Heihe Plan Science Data Center, National Natural Science
Foundation of China” (http://www.heihedata.org). The LST data were retrieved by Li et al. [64] using
a temperature/emissivity separation (TES) algorithm proposed by Gillespie et al. [65], combined with
the water vapor scaling atmospheric correction method [66]. Land surface albedo was retrieved from a
Charge Coupled Device (CCD) camera on HJ-1 satellite by Sun et al. [67].

Three data sets including the visible, near-infrared (NIR) bands of ASTER and albedo from
HJ-1, were all re-sampled to 90 m to be consistent with the thermal infrared band in spatial
resolution. In addition, the leaf area index (LAI), crop height, and fractional vegetation cover for
HiWATER-MUSOEXE were derived based on the empirical relationships proposed by Yang et al. [68].

4. Results

4.1. Validation of Three TSEB Models over MUSOEXE

TSEB-PT, TSEB-PM, and TSEB-TC-TS were applied to the Zhangye oasis using ground-based and
satellite-derived observations introduced in Section 3, and the model performances were evaluated
using flux measurements from the MUSOEXE observation matrix. As a first step of model validation,
the flux estimates were averaged over the upwind source area for each flux tower [69], and flux
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measurements were linearly interpolated to temporally match the time of satellite overpass. Figure 2
shows the validation scatter plot for each energy balance component (Rn, G, LE, and H) from
TSEB-PT, TSEB-PM, and TSEB-TC-TS estimations. Validation statistics comparing the three models’
performances are summarized in Table 1. Results show that estimated Rn from all three models
were in good agreement with tower observations, and the absolute mean biases in estimated Rn

for three models are all below 10 W/m2. Besides, all models slightly overestimated G, with the
RMSEs all slightly exceeding 37 W/m2. Despite the different parameterization schemes used in three
models (for instance, both TSEB-PT and TSEB-PM use the iterative procedure to calculate component
surface temperatures, whereas TSEB-TC-TS employs the theoretical VFC/LST trapezoid for component
temperature decomposition), they all exhibited comparable skills in estimation of H and LE, which
can be indicated by the similar RMSEs (≈44.9–47.9 W/m2 for H, and ≈61.8–75.3 W/m2 for LE) from
Table 1.

 

Figure 2. Validation of energy balance components of TSEB-PT, TSEB-PM, and TSEB-TC-TS during
the HiWATER experiment at times of ASTER overpass. Energy balance components are (a) Rn, (b) G,
(c) LE and (d) H.

Table 1. Validation statistics of TSEB-PM, TSEB-PT and TSEB-TC-TS estimations.

Flux
Component

TSEB-PM TSEB-PT TSEB-TC-TS

RMSE
(W/m2)

Bias
(W/m2)

R
RMSE
(W/m2)

Bias
(W/m2)

R
RMSE
(W/m2)

Bias
(W/m2)

R

Rn 37.6 −8.5 0.84 37.4 −7.2 0.84 35.5 −5.7 0.76
G 37.9 11.5 0.37 37.5 12.8 0.34 37.7 12.7 0.33
LE 70.6 −2.1 0.86 75.3 −0.2 0.85 61.8 3.2 0.82
H 44.9 −14.3 0.84 47.5 −16.2 0.83 47.9 −8.6 0.81

The spatial distributions of H and LE over the Zhangye oasis based on TSEB-PT, TSEB-PM,
and TSEB-TC-TS for the satellite overpass on July 10 of 2012 are shown in Figure 3. Generally, the spatial
patterns of surface fluxes were similar between the three models. In addition, the contrasting features
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over the oasis and the surrounding sandy and Gobi desert were clearly observed from all three models.
Specifically, the Zhangye oasis, which mainly comprises of irrigated farmland, exhibited an average LE
over 400 W/m2. On the contrary, across the sandy and Gobi desert, LE was typically below 300 W/m2

and H was over 100 W/m2.

 

Figure 3. The spatial distributions of LE (first row) and H (second row) over the Zhangye oasis based
on TSEB-PT, TSEB-PM, and TSEB-TC-TS for the satellite overpass time on 10 July 2012.

In summary, all three employed models performed similarly in estimating H and LE despite using
different schemes for modeling canopy transpiration and deriving component surface temperatures.
With substantial ground observations from the tower-based network, the performances of the three
models over MUSOEXE were proven reliable. The difference in derived component temperatures
and partitioned evaporation and transpiration among the three models are analyzed in the following
two sections.

4.2. Intercomparison of E/T Partitioning from Three TSEB Models

The spatial distributions of canopy transpiration (LEc) and soil evaporation (LEs) based on
TSEB-PT, TSEB-PM, and TSEB-TC-TS on 10 July of 2012 are shown in Figure 4. The spatial patterns of
LEc and LEs derived from the three models are similar, and the range of LEc for irrigated farmland
was about ≈350–500 W/m2. With respect to LEs, the difference derived from the three models can be
visually discerned from Figure 4. In comparison with TSEB-PT and TSEB-PM, TSEB-TC-TS tended to
produce higher LEs, especially over the sparsely vegetated area around the residential area and the
sandy Gobi desert.

In this study, both CWSIc and SWDIs were further derived to compare the performances of
the three TSEB models on detecting vegetation and soil water stresses. The spatial distributions of
CWSIc and SWDIs on 10 July 2012 based on three models are shown in Figure 5. The sandy and
Gobi desert pixels are masked in CWSIc images in order to more clearly reveal the difference of the
three TSEB models in detecting vegetation water stress over the oasis. TSEB-PM and TSEB-PT show
similar performances regarding the detection of vegetation stress with both CWSIc values close to zero.
On the contrary, TSEB-TC-TS seemed to detect a higher level of vegetation water stress, with a CWSIc
peak at 0.45. In addition, the spatial heterogeneity was more prominent in TSEB-TC-TS, since the
CWSIc gradient in the oasis and urban areas are clearly seen from the upper right subplot of Figure 5.
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With respect to SWDIs, the spatial distributions were quite similar between the three TSEB models.
The SWDIs values for the oasis was smaller than the surrounding sandy and Gobi desert, and the
contrasting features over the oasis and the surrounding sandy and Gobi desert were clearly observed
from SWDIs subplots from all three models.

 

Figure 4. The spatial distribution of LEc (first row) and LEs (second row) over the Zhangye oasis based
on TSEB-PT, TSEB-PM, and TSEB-TC-TS for the satellite overpass time on 10 July 2012.

Figure 5. The spatial distribution of CWSIc (first row) and SWDIs (second row) over the Zhangye oasis
based on TSEB-PM, TSEB-PT, and TSEB-TC-TS for the satellite overpass time on 10 July 2012. The white
areas correspond to the sandy and Gobi desert, and these pixels are masked.
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The ratios of LEC/LE (i.e., T/ET) measured using the stable oxygen and hydrogen isotopes
technique during HiWATER-MUSOEXE are utilized to evaluate the performances of three TSEB
models on partitioning E and T. Figure 6 shows the intercomparison of LEC/LE between the three
models and ground measurements. The ratios of LEC/LE were underestimated on DOYs of 176, 192,
215, 224, 231, and 240, while slight overestimation of LEC/LE occurred on DOYs of 247 and 256 in
all three models. The LEC/LE ratios derived from three models were very close in most cases at this
site. The mean observed LEC/LE ratio was 84.7%, while the mean estimated LEC/LE ratios were
76.7%, 76.9% and 77.0% for TSEB-PT, TSEB-PM, TSEB-TC-TS. All three models seemed to slightly
underestimate the LEC/LE ratio. However, the observed LEC/LE ratios exhibited a decline during
September (DOYs of 247 and 256), mainly due to leaf senescence, which was not characterized by all
three models.

 

Figure 6. Comparison of LEC/LE (%) between the three TSEB models and ground measurements by
stable oxygen and hydrogen isotopes technique at Daman superstation.

In order to further investigate the difference regarding E and T partitioning between the three
models, a pixel-based comparison of LEC and LES in the kernel experimental area of MUSOEXE
was conducted and shown in Figure 7, with color shading indicating pixel density. The statistics
for a pixel-based comparison of LEC and LES in the kernel experimental area are summarized in
Table 2. Most points are under the 1:1 line in Figure 7a,b, which suggests that TSEB-PM tended
to produce higher LEC than TSEB-PT and TSEB-TC-TS. The mean differences (MDs) for the pairs
of TSEB-PT/TSEB-PM and TSEB-TC-TS/TSEB-PM were 2.9 W/m2 and 18.1 W/m2, respectively
(mean differences were calculated by subtracting the former model of the pair from the latter
model). LEC estimated from TSEB-PT was comparatively higher than that from TSEB-TC-TS, with MD
being 15.2 W/m2 for the TSEB-TC-TS/TSEB-PT pair. Correspondingly, comparing to TSEB-PT and
TSEB-TC-TS, TSEB-PM tended to underestimate LEs as shown in Figure 7e,f, with MDs of −4.2 W/m2

and −2.8 W/m2 for the pairs of TSEB-PT/TSEB-PM and TSEB-TC-TS/TSEB-PM, respectively. The LES

estimations from TSEB-PT and TSEB-TC-TS for the kernel experimental area were similar, with a
correlation coefficient R being approximately 1.0, MD being 1.4 W/m2, and the mean absolute
difference (MAD) being 6.2 W/m2. Since the component temperature decomposition has a major
impact on E/T partitioning, to explore the mechanism underlying the observed difference on LEC (LES)
from three models, a further intercomparison on the derived component temperature is conducted in
the next section.
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Figure 7. The intercomparison of LEC (first row) and LES (second row) derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area on 10 July 2012. The intercompared LEC pairs are (a)
TSEB-PM vs. TSEB-PT; (b) TSEB-PM vs. TSEB-TC-TS; (c) TSEB-PT vs. TSEB-TC-TS. The intercompared
LEs pairs are (d) TSEB-PM vs. TSEB-PT; (e)TSEB-PM vs. TSEB-TC-TS; (f) TSEB-PT vs. TSEB-TC-TS.

Table 2. Statistics summarizing the intercomparison of LEC and LES derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area.

TSEB-PT vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PT

LEc

RMSE (W/m2) 18.8 33.9 23.2
MD * (W/m2) 2.9 18.1 15.2
MAD (W/m2) 13.2 24.6 16.5

R 1.00 0.98 0.99

LEs

RMSE (W/m2) 10.8 16.2 7.6
MD (W/m2) −4.2 −2.8 1.4

MAD (W/m2) 6.1 11.1 6.2
R 0.99 0.99 1.00

* MD is calculated by subtracting the former model of the pair from the latter model.

4.3. Intercomparison of Tc and Ts Derived from Three TSEB Models

Intercomparison of the component temperatures derived from the three models is shown in
Figure 8. The TC derived from TSEB-PM showed a relatively homogenous pattern over the Zhangye
oasis and the average of TC approximated 301 K. On the contrary, TC derived from TSEB-PT
and TSEB-TC-TS showed a much larger spatial variability, and the contrast between farmland and
residential area is more discernable in both models. However, the spatial contrast between farmland
and residential area was less significant for the TSEB-TC-TS derived Ts (Figure 8).
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Figure 8. The spatial distribution of TC (first row) and Ts (second row) over HiWATER-MUSOEXE
derived from TSEB-PT, TSEB-PM, and TSEB-TC-TS on 10 July 2012.

A pixel-based comparison of decomposed TC and TS in the kernel experimental area was
conducted and is shown in Figure 9. It is noticed that the component temperatures were much
more scattered compared to the component fluxes in the scatter plot of Figure 7. The statistics
for the pixel-based comparison of TC and TS in the kernel experimental area are listed in Table 3.
Generally, TSEB-TC-TS estimates higher TC compared to TSEB-PT and TSEB-PM, and TSEB-PT tended
to overestimate TC in relation to TSEB-PM, with the MD of TSEB-PT/TSEB-PM pair being −0.2 K.

Table 3. Statistics summarizing the intercomparison of TC and TS derived from TSEB-PT, TSEB-PM,
and TSEB-TC-TS in the kernel experimental area.

TSEB-PT vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PM TSEB-Tc-Ts vs. TSEB-PT

Tc

RMSE (K) 1.4 2.4 1.0
MD (K) −0.2 −0.48 −0.3

MAD (K) 0.8 1.5 0.6
R 0.13 −0.09 0.97

Ts

RMSE (K) 2.0 3.4 1.6
MD (K) −0.6 −0.3 0.3

MAD (K) 1.5 2.7 1.3
R 0.95 0.80 0.94

Different strategies for deriving TC and TS were responsible for the observed differences in surface
fluxes between the three modeling approaches. As previously stated, both TSEB-PT and TSEB-PM
applied an iterative approach to derive component temperatures. Although the identical temperature
decomposition method was applied to TSEB-PT and TSEB-PM, the component temperatures derived
from both models showed a significant difference, with correlation coefficient R being only 0.13 for TC.
Different from TSEB-PT and TSEB-PM, TSEB-TC-TS adopted the VFC/LST trapezoid space to estimate
the component temperatures, which would explain the distinct characteristics shown in Figure 8.
Specifically, for the irrigated farmland, the component temperatures derived from TSEB-TC-TS were
comparable to those derived from the other two models. Due to the lack of constraint on adjusting the
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canopy transpiration, the vegetation component temperature from TSEB-PT and TSEB-PM would be
very close to pixels in well-watered and fully-covered vegetation areas.

 

Figure 9. Intercomparison of Tc (first row) and Ts (second row) derived from TSEB-PT, TSEB-PM,
and TSEB-Tc-Ts in the kernel experimental area on 10 July 2012. The intercompared Tc pairs are (a)
TSEB-PM vs. TSEB-PT; (b) TSEB-PM vs. TSEB-TC-TS; (c) TSEB-PT vs. TSEB-TC-TS. The intercompared
Ts pairs are (d) TSEB-PM vs. TSEB-PT; (e)TSEB-PM vs. TSEB-TC-TS; (f) TSEB-PT vs. TSEB-TC-TS.

The scientific rationale can be explained as follows. Based on the VFC/LST space, Figure 10
illustrates the temperature decomposition methods adopted in TSEB-PT, TSEB-PM, and TSEB-TC-TS.
Both TSEB-PT and TSEB-PM applied an iterative approach to derive the component temperatures
and this approach assumed vegetation transpiration at the potential rate as an initial value. Due to
the lack of constraint on adjusting the canopy transpiration, the vegetation component temperature
from TSEB-PT and TSEB-PM would be very close to Point C (Figure 10) in well-watered and fully
vegetated areas. Among TSEB-PM and TSEB-PT, the former employs the Penman-Monteith equation
to consider the varying VPD under advective semiarid climates, and this would lead to higher LEC

compared to TSEB-PT. Consequently, the soil component temperature from TSEB-PM was higher
than that from TSEB-PT. Different from TSEB-PM and TSEB-PT, TSEB-TC-TS adopted the VFC/LST
trapezoid space to estimate component temperatures. TSEB-TC-TS assumed that the vegetation and
soil share the same water pool, and the slope of each isoline in the VFC/LST space could be derived
by interpolating the slopes of both dry and cold edges. The temperature decomposition methods
adopted in the three TSEB models is illustrated in Figure 10, the soil surface temperatures derived
from TSEB-PM, TSEB-PT, and TSEB-TC-TS are denoted by Ts1, Ts2, and Ts3, and the vegetation canopy
temperatures derived from the same three models are denoted by Tv1, Tv2, and Tv3. It is clear that Tv1

and Tv2 were underestimated compare to Tv3, and this led to a higher T/ET partition for TSEB-PM
and TSEB-PT compared to TSEB-TC-TS, which consequently overestimated LEC when compared to
TSEB-TC-TS. A component temperatures decomposition method based on isolines in the VFC/LST
space provided a further constraint for vegetation transpiration and would be a good substitution for
an iterative approach.
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Figure 10. Illustration of the temperature decomposition methods adopted in the three TSEB
models. Ts1, Ts2, and Ts3 denote the soil surface temperatures derived from TSEB-PM, TSEB-PT,
and TSEB-TC-TS, respectively, and Tv1, Tv2, and Tv3 denote the vegetation canopy temperatures
derived from the same three models.

5. Discussion

5.1. Reliability of the Employed TSEB Models in Estimating Surface Fluxes

The HiWATER–MUSOEXE data have been used extensively to validate the land surface flux
models, including one-source and two-source models [70–72]. Using the same set of ground-based
observations, Ma et al. [70] applied a revised SEBS model to estimate regional heat fluxes in the Heihe
River Basin, and their assessment indicates that the RMSEs of the modeled H and LE are 56.9 W/m2

and 74.8 W/m2, respectively. Huang et al. [71] integrated a Normalized Difference Water Index
(NDWI) as a water stress index into SEBS through the modification of the parameter kB−1, and showed
RMSEs of 79.8 W/m2 in H and 84.1 W/m2 in LE for the revised SEBS. In this study, three two-source
models were applied to the middle reach of the Heihe River Basin. The RMSEs of H and LE from
TSEB-PT are 47.5 and 75.3 W/m2, respectively, the RMSEs of H and LE from TSEB-PM are 44.9 and
70.6 W/m2, respectively, and the values from TSEB-TC-TS are 47.9 and 61.8 W/m2, respectively.
Overall, the performances of two-source modeling approaches were reliable in relation to previously
published studies.

5.2. Discrepancies in E/T Partitioning between the Three TSEB Models

Despite the comparable skills of ET estimations within the three TSEB models, different
assumptions and formulations were adopted by the three different models, and discrepancies in
E/T partitioning among the three models were observed in the kernel experimental area of MUSOEXE.
In this study, both CWSIC and SWDIS were derived to compare the performances of three models
regarding the detection of vegetation and soil water stresses. The results indicated that different from
TSEB-PT and TSEB-PM, TSEB-TC-TS had the potential to detect vegetation water stress. In addition,
the E/T partitioning efficacies of the three TSEB modeling approaches were evaluated using the
measurements from the stable oxygen and hydrogen isotopes system. It was found that all three models
tended to slightly underestimate the ratio of T/ET at the Daman site. Aside from the intercomparison
between the three two-source models, it was found that TSEB-PM tended to generate a higher LEc
estimation than the other two models, especially for the partially vegetated areas. LES derived from
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TSEB-PT and TSEB-TC-TS were quite similar. The differences in component temperatures derived from
the three models, as well as the aerodynamic resistance, were responsible for this divergence. Besides,
the declined LEC/LE ratios observed due to leaf senescence by the end of the growing season was
not well characterized by all three models. This indicated the necessity of adding a green vegetation
fraction in the future work, as suggested by Kustas et al. [73].

5.3. Impact of Temperature Decomposition Accuracies on ET Estimations

To separately estimate E and T, component temperatures are indispensable in the TSEB modeling
approach and the temperature decomposition method is the core in E/T partitioning process. In this
study, two categories of temperature decomposition methods were intercompared: (1) an iterative
procedure based on an energy balance resistance network; and (2) a VFC/LST space method with the
assumption that the isolines could be used to decompose composite temperatures. The iterative
procedure is commonly adopted in the TSEB model and this approach is verified by different
researchers [69,74,75]. The VFC/LST-based approach and related contextual-based method are applied
by different researchers, such as Zhang et al. [24], Zhang et al. [55], Merlin et al. [44], Merlin et al. [45],
Long and Singh [47], Yang et al. [48], Song et al. [53], and Sun [49].

Further intercomparison indicated that the differences in component temperatures derived from
two categories of models were responsible for the discrepancy in ET estimates. As there was no
constraint for canopy transpiration to terminate the procedure when LES exceeded zero in the iterative
procedure, this procedure adopted by TSEB-PT and TSEB-PM may have derived a higher LEc and
lower Tc compared to TSEB-TC-TS. This is consistent with the findings of Anderson et al. [76],
who pointed out the same case under conditions of moderate stomatal closure for TSEB model. In this
study, we found the temperature decomposition based on VFC/LST added a further constraint on
vegetation transpiration, and this category of method could be a substitute for the iterative method.
Besides, it was found that TSEB-TC-TS performed better at detecting the vegetation stress than the
other two models. Although a similar temperature decomposition approach was applied to TSEB-PT
and TSEB-PM, a significant difference was observed between them. For instance, the R between the
two models was only 0.13 for the derived TC. Two reasons may be responsible for this: (1) TSEB-PM
applied the Penman-Monteith equation to characterize the canopy transpiration and thus took into
account the effect of varying VPD over different underlying surfaces, which was a different case than
in TSEB-PT. (2) Resistances were involved in the iterative procedure and the resistance would impact
the temperature decomposition. In this study, the theoretically defined VFC/LST trapezoid space was
adopted to estimate the component temperatures in TSEB-TC-TS. A small amount of points may have
been located outside the trapezoid, and this was mainly caused by ill-parameterized aerodynamic
resistance. However, this portion was limited to 1% of the total pixels. Future studies are required to
further investigate the influence of resistance on the component temperature decomposition.

6. Conclusions

In this study, three two-source modeling approaches were evaluated using the ground-based
observations from the HiWATER-MUSOEXE campaign. Validated with tower observations, the RMSEs
of H and LE were lower than 50 W/m2 and 76 W/m2, respectively, and the results demonstrated that
the three TSEB models were capable of predicting reliable surface heat fluxes. The measurements from
the stable oxygen and hydrogen isotopes system were used to evaluate the capabilities of three models
in E and T partitioning, and it was found that all three models appeared to slightly underestimate the
ratio of T/ET.

A further intercomparison of the component temperature decomposition among the three models
was conducted to explore the underlying mechanism for the observed differences. Results indicated
that the interactive methods applied in TSEB and TSEB-PM may have produced higher LEC and
lower TC compared to TSEB-TC-TS due to lack of constraint on vegetation transpiration. Based on the
soil moisture isoline in the VFC/LST space, the VFC/LST-based temperature decomposition method

23



Remote Sens. 2018, 10, 1149

added a further constraint on vegetation transpiration, and could be used as a substitution for the
interactive procedure adopted in the original TSEB model.
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Abstract: The surface energy balance algorithm for land (SEBAL) has been successfully applied
to estimate evapotranspiration (ET) and yield at different spatial scales. However, ET and yield
patterns have never been investigated under highly heterogeneous conditions. We applied SEBAL
in a salt-affected and water-stressed maize field located at the margin of the Venice Lagoon, Italy,
using Landsat images. SEBAL results were compared with estimates of evapotranspiration by the
Food and Agriculture Organization (FAO) method (ETc) and three-dimensional soil-plant simulations.
The biomass production routine in SEBAL was then tested using spatially distributed crop yield
measurements and the outcomes of a soil-plant numerical model. The results show good agreement
between SEBAL evapotranspiration and ETc. Instantaneous ET simulated by SEBAL is also consistent
with the soil-plant model results (R2 = 0.7047 for 2011 and R2 = 0.6689 for 2012). Conversely,
yield predictions (6.4 t/ha in 2011 and 3.47 t/ha in 2012) are in good agreement with observations
(8.64 t/ha and 3.86 t/ha, respectively) only in 2012 and the comparison with soil-plant simulations
(8.69 t/ha and 5.49 t/ha) is poor. In general, SEBAL underestimates land productivity in contrast to
the soil-plant model that overestimates yield in dry years. SEBAL provides accurate predictions under
stress conditions due to the fact that it does not require knowledge of the soil/root characteristics.

Keywords: surface energy balance algorithm for land (SEBAL); evapotranspiration; yield; remote
sensing; heterogeneous conditions

1. Introduction

The growing world population needs more food, possibly with less water available for
agriculture [1], making the wise management of water resources one of the great challenges of our
times. This problematic situation can improve only if water is managed more effectively leading
to increased crop yield per unit of water consumed (i.e., improving water use efficiency). In arid
and semiarid regions cropland irrigation is the major consumer of water and efficient and reliable
methods for determining water consumption by crops are crucial for sustainable management [2–5].
Evapotranspiration (ET) is the largest sink of irrigation water and, thanks to well-established
crop-specific relations between ET and yield [6,7], it provides a measure of both water demand

Remote Sens. 2018, 10, 1452; doi:10.3390/rs10091452 www.mdpi.com/journal/remotesensing28



Remote Sens. 2018, 10, 1452

and land productivity. Yield is thus the ultimate indicator to describe crop response to water resource
management [8] and the quantification of field scale ET is fundamental for managers to maximize
land productivity while minimizing water losses [9–11]. Crop yield is also a key element for rural
development and national food security. For these reasons, forecasting crop yield a few months before
harvest can be of paramount importance for timely initiation of the food trade, securing national
demand, and organizing food transport within countries [6,7,12].

The yield of many agricultural crops is generally predicted from the amount of water used by
the crop, i.e., ET [6,7]. Traditionally, ET from fields has been estimated according to the Food and
Agriculture Organization (FAO) method [13], i.e., by multiplying a weather-based reference ET0 by
a crop coefficient (Kc) determined according to crop type and growth stage. However, the suitability
of the idealized Kc coefficient to describe the actual vegetative and growing conditions, especially in
water limited areas, was questioned by many authors [14]. In addition, it is difficult to predict the
correct growth stage dates for large populations of crops and fields [15].

A viable alternative for mapping evaporation at field and regional scales is the use of satellite
images that can provide an excellent tool to detect the spatial and temporal structure of ET [16].
Remote sensing (RS) is a reliable and cost-effective method to forecast crop ET and yield over
large areas [17,18] and the integrated use of remote-sensing data and crop modeling for yield
prediction has been applied for many years [18]. Applications can be found in the literature
for different crop types and regions using various data assimilation schemes [19–21]. However,
these applications are based on medium resolution satellite data (MODIS, MERIS) and valid for
regional assessments only [18]. Common RS models are the surface energy balance algorithm for
land (SEBAL; [22]), mapping evapotranspiration at high resolution with internalized calibration
(METRIC; [15]), remote sensing of evapotranspiration (ReSET; [23]), analytical land atmosphere
radiometer model (ALARM; [24]) and surface aerodynamic temperature ([25]). Most of these models
use the land surface energy balance equation:

Rn = LE + G + H (1)

where Rn is net radiation, LE is the latent heat flux, G is the soil heat flux and H is the sensible heat
flux. When using satellite imagery, the sensed surface radiances are converted into surface properties
such as albedo, vegetation indices, surface emissivity and surface temperature. These products are
then used to estimate the various components of Equation (1) [26].

SEBAL is capable of estimating ET (from the latent heat flux) without prior knowledge of the
soil, crop and management conditions [27], and it has been used to estimate the surface energy
fluxes at different spatial and temporal resolutions in more than 30 countries [27–30] ET estimated
by SEBAL has been utilized to quantify spatial variation of soil moisture [31], biomass production
and crop yield [6] using high- and low-resolution satellite images within a field, across fields, and at
regional scale [32]. The energy balance model in SEBAL uses a near-surface temperature gradient,
dT, which eliminates the need for absolute surface temperature calibration, a “major stumbling block
in operational satellite ET” [15]. Typical accuracies of the estimated ET by SEBAL are 85%, 95%,
and 96% at daily, seasonal and annual timescales, respectively [27,30]. The advantages of using SEBAL
have already been highlighted by [30]: (1) it uses minimal ground-based data; (2) calculation of the
near-surface air temperature is not mandatory; and (3) a self-calibration process is automated in each
region of interest. Despite a recent version of SEBAL model (SEBAL2008) having incorporated major
refinements, such as correction of the advection effect or improved estimates of surface albedo and
soil heat flux [33], the ability of SEBAL to describe ET and yield patterns at field scale has never
been tested under highly heterogeneous conditions. The purpose of this study is to apply SEBAL for
calculating ET in a salt-affected and water-stressed maize field located at the margin of the Venice
Lagoon, Italy. SEBAL results are compared with ET estimates by the FAO method and the outcome of
a three-dimensional soil-plant model. The biomass production routine in SEBAL is then tested using
spatially distributed crop yield measurements and the soil-plant model results.
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2. Materials and Methods

2.1. Study Area

The study site (Figure 1) is a ca. 21 ha field located in Ca’ Bianca (45◦10′57”N, 12◦13′55”E), near the
town of Chioggia (Italy) at the southern margin of the Venice Lagoon. The area is in proximity to the
Brenta and Bacchiglione Rivers and approximately 5 km from the Adriatic Sea. With an elevation
ranging between 1 and 3.3 m below mean sea level, the site has a silt-clay soil with peat and sandy drifts
(i.e., paleochannels) [34,35] (Figure 2). The area is known to be affected by saltwater contamination
down to about 20 m depth with the presence of a first confined fresh-water aquifer 45–50 m below
mean sea level. The climate is continental with annual rainfall around 780 mm. Rainfall is more intense
in spring and autumn and snow is not very frequent during winter. The average daily temperature is
13.4 ◦C. Rainfed maize (Zea mais L.) was cultivated in 2011 (seeding 4 April and harvest 2 September),
and 2012 (seeding 21 March and harvest 11 September). Precipitation differed substantially over the
two growing seasons and was also quite unusual with respect to the average April-to-September
rainfall from 1993 to 2012, which amounts to 360 mm. Indeed, the two growing seasons were rather
dry (i.e., in the 1st quartile, 199.8 mm in 2011, 150.6 mm in 2012). Rainfall in 2011 was evenly spread
throughout the season. Contrarily, the low 2012 precipitation occurred almost exclusively during
the maize vegetative phase. No precipitation occurred during the early tassel and kernel blister
reproductive stages, which are known to be among the most critical stages of maize growth [36].
The daily average reference evapotranspiration (ET0) was 4.42 and 4.08 mm d–1, whereas the ET0 over
the entire season was 672 and 717 mm in 2011 and 2012, respectively. The study site was divided
into five site-specific management units (SSMUs, Figure 1b) by [35] according to the spatial variability
of soil characteristics and salinity (Figure 2) and has been extensively studied by soil sampling,
hydro-geophysical monitoring and soil-plant modeling [34–38]. More precisely, the classification
identified a peaty, acidic, moderately saline and sandy zone (SSMU 1); a very saline zone (SSMU 2);
a non-saline zone comprising the coarser portions of the paleochannels (SSMU 3); a zone with the
best conditions for maize growth (SSMU 4) with mid to low salinity, mid to low peat content and the
highest clay content; and a peaty, acidic, moderately saline and silty zone (SSMU 5) (Figure 3).

Figure 1. The study area: (a) aerial image of the study area at the southern edge of the Venice Lagoon, Italy;
(b) delineation of site-specific management units (SSMUs) based on [35] and monitoring stations (A, B, C,
D, E).
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Figure 2. Site characterization: (a) land and (b) water table elevation [m above sea level, masl],
average (c) soil texture (as sand percentage [%]), and (d) soil salinity (in terms of ECe [dS m−1]) in the
0–1.2 m soil profile.

Figure 3. Boxplots for (a) EC1:2, electrical conductivity of a soil extract with a soil to water ratio of 1:2,
(b) soil bulk density, (c) soil organic carbon content, and (d) clay content.

2.2. Data

2.2.1. Acquisition of Satellite Imagery

Satellite images of the study area were obtained from Landsat 7 ETM+ (Path = 192, Row = 029).
These images are made publicly available by the U.S. Geological Survey (at http://glovis.usgs.gov/
USGS) as GeoTIFF with a level correction 1T (terrain corrected), providing a systematic radiometric
and geometric accuracy through the use of point ground control (GCPs). For 2011, images were
available for the dates 16 and 25 April, 2 and 18 May, 21 July, 6 and 31 August, while for 2012
the images were obtained on 18 and 27 April, 4 May, 5 June, 7 and 16 July, 1, 8, 17 August and
9 September. All dates had favorable clear-sky weather conditions. Visible bands (bands 1–5, 7) were
used for albedo (α), and vegetation index calculations. Albedo was calculated by integrating surface
reflectivity values, using different weighting coefficients for each band [2]. A “top of atmosphere”
bidirectional reflectance was converted into at-surface reflectance, by using simple humidity and
sun-angle based algorithms [39]. This simple approach for atmospheric correction could originate
errors in albedo, which are anyway compensated by the internal calibration procedures of SEBAL [40].
Thermal band (band 6) was used for surface temperature (Ts), computed using a modified Plank
equation following [41], and sensible heat (H). The spatial resolution is 30 × 30 m on the visible bands
and 60 × 60 m on the thermal band.
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Due to the presence of gaps in ETM+7 scan-line corrector (SLC)–off, only images covering 100%
of the study area were considered. We decided not to fill the Landsat 7 gaps to avoid the risk of
generating additional uncertainties. Seasonal ET was calculated from the Landsat images using the
method for temporal integration implemented in the Geographic Resources Analysis Support System
Geographic Information System (GRASS GIS 7) [42].

2.2.2. Hydrological Monitoring

To assess the impact of water stress on crop productivity, five monitoring stations were set
up in the study site. Each station was equipped with capacitance-resistance probes (ECH2O-5TE,
Decagon Devices, Pullman, WA, USA) to measure water content and pore-water salinity [38],
and electronic tensiometers (T4e, UMS GmbH, Munich, Germany) to record soil-water potential
at 10, 30, 50, and 70 cm depths. The sensors were connected to a data logger and recorded hourly.
The water table level at each station was monitored every second week using phreatic wells. The five
monitoring stations were named A, B, C, D and E (Figure 1b). Unfortunately, since the SSMUs were
defined after station installation, SSMU 4 was not monitored by any of the stations, whereas two
stations (B and E) were located in SSMU 3.

2.2.3. Meteorological Data and Estimation of Evapotranspiration by the Food and Agriculture
Organization (FAO) Method (ETc)

In addition to satellite images, the SEBAL model requires the following input data: wind
speed, precipitation, air humidity (vapor pressure or dew point temperature), solar radiation,
air temperature, ET0, and meteorological station characteristics (height of wind measurement and
vegetation height). Hourly meteorological data were acquired from a nearby automatic station (Regional
Agency for Environmental Protection and Prevention of the Veneto) and used to calculate the reference
evapotranspiration ET0 with the FAO-56 method [13]. Crop evapotranspiration (ETc), which differs
distinctly from ET0 as it accounts for crop-specific ground cover, canopy properties and aerodynamic
resistance, is then estimated by means of the crop coefficient Kc, as ETc = Kc × ET0 [13].

Where field conditions differ from the standard conditions, correction factors are required to
adjust ETc. This adjustment reflects the fact that the real crop evapotranspiration often deviates
from ETc due to non-optimal field conditions such as the presence of pests and diseases, soil salinity,
low soil fertility, water shortage or waterlogging. The crop evapotranspiration under non-standard
conditions (ETc,adj) was calculated at the five monitoring stations by using a water stress coefficient
Ks [13]. The estimation of Ks was done by daily water balance computation for the root zone [13] each
SSMU using soil moisture data recorded at 10 to 70 cm depth. The field capacity and wilting point
were calculated from the soil characteristics [35] and for each SSMU using the “Rosetta” model [43].
Ks was finally calculated on a daily basis using the FAO-56 method [13] when Dr > TAW:

Ks=
TAW − Dr
(1 − p)TAW

(2)

where Dr is the root zone depletion, TAW the total available soil water in the root zone, and p
the fraction of TAW that a crop can extract from the root zone before reaching water stress.
Crop evapotranspiration under non-optimal conditions is then calculated as:

ETc,adj = KsKcET0 (3)

2.2.4. Yield Data

Maize grain yield was measured with a combine harvester equipped with a yield monitor
(Agrocom, Claas, Germany) and a differential global positioning system (DGPS). The harvester had
an 8-m bar and took yield measurements every 5 m [36].
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2.3. Surface Energy Balance Algorithm for Land (SEBAL) Method

The SEBAL model was developed using existing and newly created modules in the GRASS
open-source GIS [42,44]. SEBAL utilizes spectral raster images from the visible, near infrared and
thermal infrared energy spectrum to compute the energy balance on a pixel-by-pixel basis. In SEBAL,
Rn is computed from satellite-measured broad-band reflectance and surface temperature, while G is
estimated from Rn, surface temperature and vegetation indices. The sensible heat flux H is considered
proportional to the ratio between the surface-air temperature difference (dT) and bulk aerodynamic
resistance (rah) [22]. SEBAL uses the partitioning of H and LE as described in [22], where the evaporative
fraction (Λ) is calculated as:

Λ =
LE

Rn − G
=

Rn − G − H
Rn − G

(4)

The underlying assumption is that Λ is constant during the day or, in other words,
the instantaneous partition of LE and H is equal to the average diurnal partitioning ratio. The difference
between Λ at the moment of satellite overpass and Λ derived from the 24-h integrated energy balance
is considered as non-significant [45].

The latent heat flux is then calculated multiplying Λ by the diurnal net radiation at the land
surface (Rn,day) [42].

LE = Λ × Rn,day (5)

A fundamental advantage of SEBAL is the calibration of the result using pixels of extreme
meteorological conditions: a very wet pixel with negligible H (Hwet ~0) and a very dry pixel with
negligible LE (LEdry ~0).

The calibration is done by manually selecting a dry and wet pixel to define the range of vertical
temperature gradients (dT) above the ground surface [19]. The wet pixel was selected according to
the following criteria: low temperature, low albedo and high Normalized Difference Vegetation Index
(NDVI). The dry pixel was searched for in a dry and bare agricultural field, in poorly-vegetated areas
presenting a low NDVI, high temperature value and high albedo. For each image specific wet/dry
pixels were selected.

In the recent literature [42,46] a method was suggested for ET temporal integration. The fraction
ETrFj = ETSebal,j/ET0,j (where j refers to the satellite image acquisition date and ET0,j to the potential
evapotranspiration for day j) is considered constant for the time period between two consecutive
satellite images, and the seasonal ET (termed ETs) is computed using the following equation:

ETs = ∑
j

⎛
⎝ETrFj

tj+1

∑
i=tj

EToi

⎞
⎠ (6)

where tj and tj+1 delimit a short time period around the acquisition date j.
The above equation integrates the time component (ET0, estimated with the FAO-56 method [13])

and spatial component (ETrF) to describe the daily fluctuation of ETSebal across the study area during
the cropping season.

2.4. Biomass Production and Maize Yield

Crop biomass production was calculated from photosynthetically active radiation (PAR) data
using a GRASS GIS module [44,47]. Only a fraction of PAR is absorbed by the canopy (APAR) and used
for carbon dioxide assimilation. Biomass growth is therefore a function of APAR, light use efficiency
(e′) and a water stress index (the evaporative fraction Λ, defined in Equation (4)). The APAR/PAR
fraction (f PAR) can be directly estimated from the NDVI as:

f PAR = −0.161 + 1.257 × NDVI (7)
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Aboveground biomass production on a single image acquisition day, bio (kg/ha/d), is then
calculated as:

bio = e′ × Λ × f PAR × 0.84 (8)

where the light use efficiency factor e′ was set at 4 g/MJ [48]. Grain yield is obtained by multiplying
accumulated seasonal aboveground biomass production with a specific Harvest index (HI) for maize,
assumed constant at a value of 0.4 [36].

2.5. 3D Soil-Plant Model

ET and crop productivity simulated by a 3D soil-plant model [49] were also compared to the
SEBAL results. Given the lack of spatially distributed measurements of ET, model simulations provide
a viable tool to evaluate the spatial structure of water consumption estimated by SEBAL.

The soil-plant model simulates soil moisture dynamics, plant photosynthesis and transpiration and
it was calibrated and validated at the study site [49]. The transpiration flux is modeled in terms of water
potentials in the soil, root xylem and leaf, and is regulated by an optimal stomatal conductance that
maximizes carbon assimilation while minimizing water losses [50]. A detailed description of the soil-plant
model is given in [36] while the application at the study site is presented in [49]. Model simulations were
run for 2011–2012 with the same dataset as that used here for the SEBAL simulations.

3. Results and Discussion

Figure 4 shows the seasonal cycle of daily ET obtained by the two methods used in this
study. The comparison between evapotranspiration estimated by the FAO method (ETc) and SEBAL
(ETSebal) shows good agreement, with an R2 = 0.87 for 2011 and R2 = 0.89 for 2012. The cumulative
evapotranspiration from 16 April to 31 August, 2011 and 18 April to 9 September, 2012, as obtained
by spatially integrating the ETSebal seasonal values (Figure 5), was 515 mm and 472 mm, respectively.
A comparison between Figures 2 and 5 shows that soil texture was generally one of the main factors
controlling the ETSebal spatial distribution, with higher values found in fine soil areas. However,
the spatial patterns of ET are the results of complex interactions between crops, soil texture, water table
level, salinity and climate inter-annual variability. The average difference between ETc and ETSebal
over the whole season was 6.4% for 2011 and 21% for 2012. This comparison is satisfactory given
that the Kc coefficient method does not account for water stress factors, meaning that ETc represents
an accurate estimation of ET only under well-watered conditions.

Figure 4. Temporal variation of evapotranspiration (ET) (mm/day) computed by surface energy
balance algorithm for land (SEBAL) and Food and Agriculture Organization (FAO-56) approaches from
April to September: (a) 2011, (b) 2012. ETSebal versus ETc results: (c) 2011 and (d) 2012. Dotted lines
represent the identity line (1:1).
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Figure 5. Map of seasonal evapotranspiration (ETs) (mm) for the study site in 2011 (16 April–31 August)
and 2012 (18 April–9 September) as obtained by Equation (6). SSMUs are overlaid (white lines
and numbers).

The evapotranspiration reduction coefficient Ks was used to quantify water/salinity stresses
at the five monitoring stations during the 2012 growing season. Figure 6 shows daily ET for the
different images calculated by SEBAL and the FAO-56 method (ETc,adj). The comparison shows a good
agreement at stations B (R2 = 0.83), D (R2 = 0.78) and E (R2 = 0.85). The coefficient of determination
at stations A and C were smaller (0.33 and 0.56, respectively) due to a shift in time of the ET fluxes.
In station E, despite a high R2, SEBAL underestimated the ETc peak by about 30%.

Plants were affected by soil salinity stress at Stations A, C, and D. Because Station C had a very
shallow water table, the daily Ks was influenced only by salt stress, while both salinity and water
stress affected crop development at Stations A and D. Stations B and E were not affected by salt stress.
However, severe water stress was experienced at these stations because they were both located on
paleochannels in SSMU3 [36]. Consistent with other authors [51,52], SEBAL underpredicted ET with
respect to the FAO dual coefficient method, even if the difference was within 20% [53]. Note that
FAO-56 has been demonstrated to overestimate the actual ET values. Many authors (e.g., [54,55]) in
the last 15 years have shown that the FAO-56 Kc and Kcb tabulated coefficients, even if adjusted using
the specific procedure based on local meteorological, irrigation and crop data suggested by FAO-56,
tend to overestimate the observed crop coefficients and actual ET in humid and semi-humid regions.
Differences of up to ±40% especially during the middle growth cycle are reported in the literature,
mainly due to the complexity of the crop coefficient that actually integrates several physical and
biological factors [54,55]. Furthermore, other authors [56] questioned FAO-56 accuracy in estimating
soil salinity effect on ET in the different growth stages.

Spatial ET dynamics calculated by SEBAL was confirmed by the 3D soil-plant model. Because
of the different spatial resolution of SEBAL (30 m by 30 m) and the soil-plant model (20 m by 20 m),
ordinary kriging was used to resample the 3D model results on a common 30 m by 30 m grid
and compare evapotranspiration simulated by the 3D model (ETm) with ETSebal. Figure 7 shows
instantaneous ET (mm/s) calculated with both models. In general, good agreement is observed
between the two spatial patterns, with the lowest values in the southern sandy zone and the highest
in the northern fine-texture zone. A quantitative comparison of average ET at the times of satellite
overpass shows good agreement between the two methodologies with R2 = 0.70 in 2011 and R2 = 0.67
in 2012 (Figure 8). The cumulative ETm values computed by the model were in good agreement with
the values provided by SEBAL.
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Figure 6. Temporal variation of ETSebal and ETc,adj (mm/day) at the five monitoring stations: (a) Station
A, (b) Station B, (c) Station C, (d) Station D, (e) Station E. ETSebal versus ETc,adj: (f) Station A, (g) Station
B, (h) Station C, (i) Station D, (j) Station E.

36



Remote Sens. 2018, 10, 1452

Figure 7. Detailed map of instantaneous ET (mm/s) distribution at the study site as predicted by
SEBAL and the soil-plant model: (a) ETSebal Day of Year (DOY) 138 2011; (b) ETSebal DOY 157 2012;
(c) ETm DOY 138 2011; (d) ETm DOY 157 2012.

A further model validation was performed based on the results of biomass production and maize
yield. A comparison between the measured values and those simulated by the SEBAL biomass routine
and the 3D soil-plant model is provided in Figure 9a for the two years. In general, the SEBAL method
slightly underestimated land productivity, in contrast to the soil-plant model that overestimated
yield, especially under stress conditions (2012). Measured yield data in 2011 had higher average
(8.64 t/ha) and maximum (13.67 t/ha) values than in 2012 (average: 3.86 t/ha; maximum: 7.09 t/ha).
SEBAL results exhibit a similar behavior, i.e., higher average (6.4 t/ha) and maximum (8.2 t/ha) values
in 2011 than in the following dry year (average: 3.47 t/ha; maximum: 5.5 t/ha). Consistently, the 3D
soil-plant model provided 8.69 t/ha and 11.11 t/ha for the average and maximum values in 2011,
respectively, and 5.49 t/ha and 6.67 t/ha in 2012. Both methodologies are, therefore, sensitive to the
observed inter-annual climate variability, but comparisons are not always satisfactory.

37



Remote Sens. 2018, 10, 1452

Figure 8. Temporal variation of instantaneous ET (mm/s) calculated with SEBAL and the 3D soil-plant
model: (a) 2011, (b) 2012. Instantaneous ET from SEBAL versus that from the 3D soil-plant model:
(c) 2011, (d) 2012.

Figure 9. (a) Measured and computed average yield in 2011 and 2012. Measured and computed
average yield in the SSMUs in (b) 2011 and (c) 2012.
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The yield data in 2011 and 2012 were then classified at the scale of the management units
(Figure 9b,c, respectively). The results suggest that climate variability has a stronger impact on
productivity than soil characteristics, differences between years being higher than those among SSMs.
This is usually expected, even in areas characterized by contrasting soils [57].

The SEBAL model responded better in 2012 (average absolute error: 0.39 t/ha; average error: 10%)
than in 2011 (average absolute error: 2.24 t/ha, average error: 26%), a general performance that can be
evaluated as good according to [58]. It should be recalled that rainfall was spread evenly throughout
the season in 2011. On the contrary, no precipitation occurred in 2012 during the early tassel and kernel
blister reproductive stages, which are known to be among the most critical maize growth stages [37].

Maize yield showed high variability across the study site in both 2011 and 2012. The most
productive area in both years was SSMU 4, because of the mid to low salinity and the highest clay
content (Figure 10). Salinity affected maize yield in SSMU 2, which was the least productive area,
while yield was intermediate in the other SSMUs.

Figure 10. Maps of maize yield (t/ha) in the study area: (a–c): 2011 measured yield, SEBAL yield,
and 3D soil-plant model yield, respectively; (d–f): 2012 measured yield, SEBAL yield, and 3D soil-plant
model yield, respectively.

As noted by [49], model results (both SEBAL and the 3D model) provide a good estimate of field
productivity at large scales (i.e., field or SSMU) but are less effective at capturing the small-scale
heterogeneities in field crop yield (Figure 11). This can be explained by a resolution problem,
because both models operate on a ~10 m grid size, thus neglecting the sub-grid variability of input
data (e.g., soil characteristics). However, while the 3D model is outperformed during dry conditions,
due to a coarse representation of soil/root characteristics that are not required by SEBAL, this latter
underestimates productivity during the wet year, probably due to the uncertainties in the utilized
harvest index. In particular, even if HI may vary temporally and spatially (i.e., across the field), a single
value was used here for the whole field and for both 2011 and 2012. According to the results shown in
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Figure 9 and published in [36], SSMU 4 was the most productive area over the 2 investigated years.
This management unit may thus require a larger HI compared to the other SSMUs since it is the
zone with the best conditions for maize growth. It should be noted that the HI is an important factor
to estimate yield and a better knowledge on the relation between biomass production and HI will
improve the accuracy of yield maps [32]. In particular, future research should clarify the impact of soil
moisture conditions during flowering and crop nutrition on the harvest index [59].

Figure 11. Yield maps: absolute and relative errors in 2011 (a,b) and 2012 (c,d) using the SEBAL model.

4. Conclusions

In this study we used the SEBAL model in a salt-affected, water-stressed maize field in the
surroundings of the Venice Lagoon, Italy, to map the spatial structure of water fluxes and crop
yield. Due to the lack of measured ET data, SEBAL modeled data were not validated but only
compared with ET estimates by the FAO method and three-dimensional soil-plant simulations.
Nevertheless, results confirm that SEBAL is a viable tool for calculating ET at field scale even under
highly heterogeneous conditions. The comparison between daily ET estimated by the FAO method
and SEBAL shows good agreement in 2011 and 2012. However, in terms of crop production SEBAL
responds better in 2012 (dry year) than in 2011 (wet year). SEBAL is, therefore, outperformed by a 3D
soil-plant model in the case of wet conditions, but it provides far more accurate predictions in dry
periods due to the fact that it does not require knowledge of the soil/root characteristics (which are
crucial for soil-plant simulations, especially during drought). ET fluxes calculated at five monitoring
stations installed in the area also reveal that SEBAL provides better predictions under severe water
stress rather than soil salinity stress conditions.

These results suggest that the integration of SEBAL with field observations and soil-plant
simulations can be very beneficial for precision agriculture practices (e.g., precision irrigation),
particularly in environments where water availability is scarce or the quality of irrigation water
is poor. The method presented here can be used to design and optimize variable rate irrigation
strategies, thus maximizing land productivity while minimizing water losses and management costs.

40



Remote Sens. 2018, 10, 1452

However, further research is needed to improve crop yield predictions at high spatial resolution in
highly heterogeneous settings.
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Abstract: As an essential variable in linking water, carbon, and energy cycles, evapotranspiration (ET)
is difficult to measure. Remote sensing, reanalysis, and land surface model-based ET products
offer comprehensive alternatives at different spatio-temporal intervals, but their performance
varies. In this study, we selected four popular ET global products: The Global Land Evaporation
Amsterdam Model version 3.0a (GLEAM3.0a), the Modern Era Retrospective-Analysis for Research
and Applications-Land (MERRA-Land) project, the Global Land Data Assimilation System version 2.0
with the Noah model (GLDAS2.0-Noah) and the EartH2Observe ensemble (EartH2Observe-En). Then,
we comprehensively evaluated the performance of these products over China using a stratification
method, six validation criteria, and high-quality eddy covariance (EC) measurements at 12 sites.
The aim of this research was to provide important quantitative information to improve and apply
the ET models and to inform choices about the appropriate ET product for specific applications.
Results showed that, within one stratification, the performance of each ET product based on a
certain criterion differed among classifications of this stratification. Furthermore, the optimal ET
(OET) among these products was identified by comparing the magnitudes of each criterion. Results
suggested that, given a criterion (a stratification classification), the OETs varied among stratification
classifications (the selected six criteria). In short, no product consistently performed best, according
to the selected validation criterion. Thus, multi-source ET datasets should be employed in future
studies to enhance confidence in ET-related conclusions.

Keywords: evapotranspiration; eddy covariance observations; latent heat flux; a stratification method;
multi-source; China

1. Introduction

As an essential component of water balance, evapotranspiration (ET) can directly impact both
regional and global hydrological processes. Globally, ET has changed over recent decades, owing to
climate and vegetation changes, human activities, and other factors [1–3]. Additionally, ET plays a
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crucial role in the land–atmosphere interface, which is closely associated with various climate variables
(e.g., humidity, cloud information, temperature, and precipitation) given its link with water, energy, and
carbon cycles, thus further influencing the climate system [4,5]. Accurate estimation of ET is crucial to
comprehensively understand the changes in regional and global hydrological cycles (including extreme
events, such as floods and droughts) and climate, and to reasonably and accurately estimate ecosystem
productivity and agricultural irrigation needs [6–9]. More importantly, this information is of practical
significance for food security and sustainable development of the global socio-economy [10,11].

Despite its importance, direct and continuous measurements of ET are challenging [4,12,13].
With the development of theories on boundary layer meteorology and observation technology,
short-term ET measurements have become available based on porometry and lysimeters [14], energy
balance and micrometeorological techniques, such as the Bowen ratio [15], eddy covariance (EC)
techniques [16], and scintillometry [17]. Undoubtedly, these measurements provide necessary materials
for investigating ET processes and relevant mechanisms, as well as ET-related issues at specific locations
and periods; however, owing to the sparse distribution of the observation sites and the shorter time
span, the conclusions based on the limited ET observations may lack universality, especially for
long time periods and for a large spatial span [8,18]. To that end, numerous remote sensing [19–23],
reanalysis [24–27], and land surface model (LSM)-based ET products [28–30], as well as estimates from
empirical up-scaling of in situ observations [31] with different spatio-temporal resolutions and spans
have recently been developed. While these datasets provide an opportunity for use in long-term and
large spatial ET-related studies, validations and inter-comparisons of the data are necessary. Usually,
these ET products have different levels of uncertainties, which are associated with their distinct
purposes and applications [5,7,32–34]. It is reported that the accuracy of remote sensing-based ET
varies over space and time, with uncertainties between 15% and 30% [32,33]. Thus, to reduce the
impacts of ET product uncertainties on the degree of confidence for ET-related results (e.g., hydrological
cycle, land-atmosphere interaction, agriculture, and ecosystem), we should assess the suitability of the
ET products.

Eddy covariance (EC) ET has been used as the typical reference data for validating various ET
estimates at the site and pixel level (e.g., for a remote sensing-based product) or at grid (e.g., reanalysis-
and LSM-based products) scales [4,35,36]. Yet, EC measurements are commonly flawed, particularly
with respect to a lack of energy balance closure at some EC sites, relatively short periods, and sparse
spatial coverage [37]. Recently, many studies have quantified the performance of various ET products
across the globe [5,8,34,38–42]. For example, Michel et al. [40] used EC ET at 24 towers across the
world as benchmark data to assess four remote sensing-based ET products, and stated that all of the
products performed better in wet and moderately wet climate regimes than in dry regimes. Majozi et
al. [8] evaluated the accuracy and precision of four ET estimates over two eco-regions of South Africa,
and indicated that none of the ET products always performed better in the two biomes. Kim et al. [38]
found that the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD16 ET for forested
land cover of Asia was more accurate than for other biomes. Ershadi et al. [34] concluded that the
ET models in Europe and North America performed differently for certain biomes, and models with
relatively higher accuracy varied among biomes.

The climate in China has greatly changed in recent decades, with obvious variations in
precipitation, temperature, wind speed, sunshine duration or radiation, and humidity [43–51]. It is
worth quantifying how and by what magnitudes the ET processes responded to the climate change
in order to formulate climate change countermeasures (e.g., maintaining ecosystem health, planning
agricultural irrigation, and reducing natural disasters to the socio-economy). While a number of ET
products provide the necessary tools to examine this issue, the potential risks of inaccurate and even
incorrect conclusions are still large, owing to a lack of validations of these products. Recently, some
assessments have been conducted for various ET products, as well as the robustness of different ET
algorithms across China based on limited EC observations [39,52–57]. In the work of Yang et al. [42],
the validation results for the GLEAM ET showed that, relative to EC ET at eight sites, this product
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performed well, particularly for the grassland sites. On the basis of routine measurements at one EC
site in a semi-arid environment of north China, Schneider et al. [52] analyzed the capabilities of four ET
algorithms in estimating ET and suggested that the Hargreaves and Makkink methods outperformed
others. Yang et al. [56] evaluated the performance of three dual-source ET products in the Heihe River
Basin in Northwest China, and indicated that the MOD16 and HTEM (hybrid dual-source scheme and
trapezoid framework-based ET model) ET performed the worst and best, respectively.

Undoubtedly, ET processes and variations are of theoretical significance in the development of
disciplines and inter-disciplines and have practical application value for social sectors, especially
for China with exacerbating climate change. Therefore, evaluations of existing and newly released
ET products (e.g., the EartH2Observe ensemble) from various perspectives (e.g., performance in
various biomes and climate regimes and at various elevation levels) are essential for comprehensively
documenting the suitability of these available products and further improving them. Such evaluations
will provide more accurate ET estimates for ET-related studies, and thus, enhance the robustness
of ET-related results. For this purpose, we collected EC observations from 12 sites in China, which
generally cover common biomes, climate regimes and elevation levels, and four popular or new ET
global products (one remote sensing-based product, one LSM ensemble, and two reanalyzes-based
ET products). A stratification method using the whole of all of the EC sites, biomes, climate regimes,
and elevation levels was employed to comprehensively validate these products using EC ET as a
benchmark reference. Then, the corresponding optimal ET product (OET) was identified by comparing
the magnitude of each validation criterion. We will discuss the potential causes for the performance
outcomes, as well as various aspects of the product uncertainties.

2. Data and Methods

2.1. Global Land Evaporation Amsterdam Model ET

A remote sensing-based product, the Global Land Evaporation Amsterdam Model (GLEAM)
ET was among the products selected for this study. This model comprises a set of algorithms
with inputs of various satellite observations and reanalysis forcings (Table 1), whose rationale is to
maximize the recovery of information on ET contained in current satellite observations of climate and
environmental elements [58]. It separately estimates three sources of ET (transpiration, soil evaporation,
and interception) for bare soil, short vegetation, and vegetation with a tall canopy within each grid cell.
First, potential ET (PET) was calculated based on the Priestley-Taylor formula and measurements of
surface net radiation and near-surface temperature. For each fraction of bare soil, tall canopy, and short
canopy, the estimated PET was then converted into actual ET by applying a multiplicative stress factor,
which is a function of microwave vegetation optical depth (VOD; [59]) observations and soil moisture
(SM) estimates from a multi-layer running water balance. Specifically, to minimize uncertainties from
random forcing, satellite-based SM was assimilated into the soil profile. Regarding interception loss, a
Gash analytical model was employed by GLEAM. In contrast, ET for water bodies and regions covered
by ice and/or snow was obtained by a variant of the Priestley-Taylor equation. Three new datasets of
ET with different forcings and spatio-temporal coverage were produced by GLEAM version 3.0 (v3.0).
The GLEAM v3.0a (GLEAM3.0a) ET product was chosen because of the valuable potential of this data
in climate change studies, given that the datasets have the longest temporal and the largest spatial
spans of 1980–2014. This daily datasets have a spatial resolution of 0.25◦ × 0.25◦ and are based on
satellite-observed SM, VOD, and snow-water equivalent (SWE), reanalysis air temperature (T) and
radiation, and a multi-source precipitation product.
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Table 1. Overview of ET products, including their PET schemes, along with the number of soil layers,
precipitation and radiation datasets and other forcings.

ET Products PET Schemes
Major Forcing Datasets

References
Precipitation Radiation Others

GLEAM3.0a Priestley-Taylor MSWEP ERA-Interim

ESA GLOBSNOW and
NSIDC SWE, CCI-LPRM

VOD, CCI SM and
LIS/OTD LF

Martens et al. [58]

MERRA-Land Penman-Monteith CPC-U
MERRA

version 1.0
outputs

T, W, Q and SP Reichle et al. [60]

GLDAS2.0-Noah Penman-Monteith PUMFD PUMFD T, W, Q and SP Rodell et al. [28]

EartH2Observe-En Variable WFDEI WFDEI T, W, Q and SP Schellekens et al. [30]

Note: MSWEP: Multi-Source Weighted-Ensemble Precipitation; CPC-U: Climate Prediction Center Unified; ESA:
European Space Agency; NSIDC: National Snow and Ice Data Center; CCI-LPRM: Climate Change Initiative-Land
Parameter Retrieval Model; LIS/OTD LF: Lightning Imaging Sensor/Optical Transient Detector lighting frequency;
W: wind speed; Q: relative or specific humidity; SP: surface pressure. Among the EartH2Oberve models, the PET
schemes are different, including Penman-Monteith, Bulk ETP, Hamon (tier 1), modified Penman, Priestley-Taylor
and net radiation-based algorithms. A detailed description about these models can be found in Dutra et al. [61] and
their respective model papers (Table S1).

2.2. Modern Era Retrospective-Analysis for Research and Applications-Land ET

The Modern Era Retrospective-Analysis for Research and Applications (MERRA)-Land ET is a
reanalysis-based product. MERRA is an addition to the suite of global, long-term reanalysis products
generated by the National Aeronautics and Space Administration (NASA) Global Modeling, and
Assimilation Office (GMAO) with the Goddard Earth Observing System (GEOS-5; [62]). This system
combines the NASA Atmospheric General Circulation Model (AGCM) with a set of state-of-the-art
physics packages and the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical
Interpolation (GSI) assimilation package, and incorporates information from ground and satellite-based
observations of the atmosphere, including many modern satellite derivations (e.g., Atmospheric
Infrared Sounder (AIRS) radiances and scatterometer-based wind retrievals). In particular, MERRA
focuses on historical analyses of the hydrological cycle on a broad range of weather and climate time
scales, and thus introduces the innovative GEOS-5 Catchment LSM [63], which can explicitly address
the subgrid-scale SM variability and its impact on runoff and ET. Unlike common LSMs, this model
is run at the basic computational unit of the topographically determined hydrological catchment or
watershed. For the original MERRA, the precipitation is simulated from the system’s AGCM following
the assimilation of the atmospheric observations; however, significant errors exist in the amounts and
timing of the model-generated precipitation and negatively influence the land surface hydrological
variables [26]. To overcome this issue, offline, land-only reanalysis data (i.e., MERRA-Land) were
produced based on merging gauge-based data from the NOAA Climate Prediction Center with
MERRA precipitation and revised parameters in the original canopy precipitation interception model.
This supplemental land surface data of the original MERRA, as noted by Reichle et al. [60], stated
that the capability of MERRA-Land in the land hydrology estimates has been significantly improved.
The monthly MERRA-Land ET, with a horizontal grid of 0.67◦ longitude × 0.5◦ latitude, is used here
and covers the period from 1980–2016.

2.3. Global Land Data Assimilation System ET

The Global Land Data Assimilation System (GLDAS) is based on the North American Land Data
Assimilation System (NLDAS), and is a global, high-resolution, offline (uncoupled to the atmosphere)
terrestrial modeling system together with data assimilation techniques for producing fields of land
surface states and fluxes (e.g., ET, SM, and latent, sensible, and ground heat flux) in near-real time.
Importantly, for more optimal land surface products from different LSMs (i.e., Mosaic, Noah, the
Community Land Model, and the Variable Infiltration Capacity model), the satellite and ground-based
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observations are used as constraints in both model forcing (to avoid biases in atmospheric model-based
forcing) and parameterization (to curb unrealistic model states; [28]). To date, two versions of the
GLDAS product (i.e., GLDAS1.0 and GLDAS2.0) have been released. Recently, increasing evidence
has reported that GLDAS1.0 products have serious discontinuity issues owing to their forcing data
(e.g., with large precipitation and temperature errors in 1996 and 2000–2005, respectively) [64].
Therefore, we use the monthly ET from the GLDAS2.0 coupled with the Noah LSM (GLDAS2.0-NOAH),
which has a spatial resolution of 0.25◦ × 0.25◦. This product is simulated using the Princeton University
meteorological forcing dataset (PUMFD), which has been bias corrected via observation-based products
for the period 1948–2010 [65].

2.4. EartH2Observe ET

Aiming to develop a global water resources reanalysis for multi-scale water resource assessments
and research projects, the EartH2Observe project uses state-of-the-art meteorological reanalysis and
five global hydrological models (GHMs), a simple water balance model, and four LSMs with extended
hydrological schemes. These models run offline and are driven by the same reanalysis-based forcing
(i.e., WATCH (Water and Global Change FP7 project) Forcing Dataset ERA-Interim (WFDEI)) [66].
This dataset is based on the European Centre for Medium-Range Weather Forecasts (ECMWF)
ERA-Interim reanalysis and has been adjusted with the Climatic Research Unit (CRU) dataset by
a sequential elevation correction of surface meteorological elements plus monthly bias correction from
gridded measurements. The simulations were performed from 1979–2012 in a continuous run. It should
be noted that because of the different nature of the models, the spin-up procedures differed and were
performed respectively to match their requirements and reach the climatic equilibrium states [30];
detailed information about these models can be found in Dutra et al. [61] and in their respective model
papers. For an individual model, the daily and monthly simulations of the state of the surface water
storage and fluxes are provided at a spatial resolution of 0.5◦ × 0.5◦, as well as the 10-model arithmetic
mean (i.e., ensemble). The monthly multi-model ensemble (named EartH2Observe-EN) ET is used in
this study, which can mitigate the potential errors and uncertainties from a single model [67].

Notably, in order to make inter-comparison possible, all selected ET products were aggregated
to the same spatial resolution (0.25◦ × 0.25◦) with a widely used bilinear interpolation method and
temporal (monthly) resolutions. More information about these products is listed in Table 1.

2.5. Eddy Covariance ET

The observed ET (generally reflected by latent heat flux) at 12 EC sites (Table 2 and Figure 1),
commonly used to monitor CO2, water vapor, and energy exchanges between the biosphere and
atmosphere, were collected to examine the performance of the four ET products. Of these sites, one,
eight, and three are from National Climatological Observatory of China Meteorological Administration
(NCO-CMA), FLUXNET (http://fluxnet.fluxdata.org/), and ChinaFlux (http://www.chinaflux.org/),
respectively. While half-hourly observations were obtained, the time spans of the EC site observations
differed, ranging from 2 (24) to 4 years (48 months). Standardized procedures [68] and the gap-filled
method [69] were used for quality control of the EC measurements. To obtain consistent temporal
resolutions for the four ET products, we also aggregated the EC half-hourly measurements to monthly
and annual values at each site for the following analyses. These sites are distributed across different
International Geosphere-Biosphere Programme (IGBP)-based biomes (i.e., mixed forest (MF), evergreen
needleleaf forest (ENF), evergreen broadleaf forest (EBF), crop-land (CRO), grassland (GRA), and
wetland (WET)), climate regimes (arid and wet regions), and elevation levels (>500 m, 500–1500 m,
and <1500 m). Notably, the aridity index, which has been widely used to create climate divisions
over the globe (e.g., Reference [70]), is employed to define climate regimes here. Arid and wet
regions correspond to climatological aridity indices (CAI; climatological value of PET divided by
that of precipitation) above and below 1.0, respectively. In this study, CAI is computed based on the
gridded monthly PET and observational precipitation with a spatial resolution of 0.25◦ × 0.25◦. PET is
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calculated from the Food and Agriculture Organization (FAO)-56 Penman-Monteith equation [71]
with the gridded monthly meteorological observations (i.e., sunshine duration, wind speed at 2 m
height, and maximum and minimum temperatures, and relative humidity). The gridded datasets are
produced based on routine meteorological observations at 1211 weather sites of CMA using an inverse
distance weighted interpolation method.

Table 2. Overview of EC stations selected to validate ET products.

Full (Abbreviated)
Name

Lon (◦N) Lat (◦E)
Altitude

(m)
Time
Span

IGBP
Biomes

Precipitation
(mm)

PET
(mm)

CAI

Changbaishan (Cbs) a 128.10 42.40 738 2003–2005 MF 682.80 667.33 0.99
Qianyanzhou (Qyz) a 115.06 26.74 110.8 2003–2005 ENF 1517.2 995.29 0.65
Dinghushan (Dhs) a 112.54 23.17 300 2003–2005 EBF 1730 1064.2 0.63

Xishuangbanna (Xsbn)
b 101.27 21.95 750 2003–2005 EBF 1446.9 1130.1 0.83

Yucheng (Yc) b 116.57 36.83 28 2003–2005 CRO 531.61 822.85 1.49
Haibei Alpine Tibet

(Haa) a 101.18 37.37 3250 2002–2004 GRA 428.15 760.93 1.99

Haibei Shrub-land
(Has) a 101.33 37.61 3160 2003–2005 WET 433.08 755.62 1.85

Neimenggu (Nmg) b 116.67 44.53 1189 2004–2005 GRA 304.82 703.01 2.39
Dangxiong (Dx) a 91.07 30.50 4333 2004–2005 GRA 405.52 871.01 2.56
Changling (Cl) a 123.51 44.59 171 2007–2010 GRA 404.66 716.59 1.76

Duolun (Dl) a 116.28 42.05 1350 2006–2008 GRA 389.51 730.72 1.91
Shouxian (Sx) c 116.79 32.44 24 2007–2010 CRO 1021.1 918.35 0.92

Note: a, b and c denote that this site is from FLUXNET, ChinaFlux and NCO-CMA, respectively.

Figure 1. Locations of the twelve EC sites across China with the climatological aridity index (CAI).

To obtain the observed ET (mm/day), the daily EC latent heat flux (LE, W/m2) from the twelve
sites can be converted using the following equation [23,71,72]:

ET =
LE
λ

(1)

where λ is the LE of vaporization with a fixed value of 2.45 MJ/kg. In fact, this parameter changes with
temperature [22,73] and potentially influences the accuracy of the estimated EC ET with Equation (1).
To measure the impacts of λ, comparisons of the estimated EC ET, with the constant of 2.45 MJ/kg and
the variable λ (reflected by a function of temperature [73]), were conducted; detailed information is
presented in Table S2. Briefly, the differences between the two estimations for each site were much

50



Remote Sens. 2018, 10, 1692

smaller, implying that the impacts of the λ changes on the estimated EC ET are minimal. Thus, in
this study, we do not consider the impacts of the λ changes due to temperature differences among
sites. This study focuses on monthly and annual comparisons, and thus the daily EC ET estimates are
integrated into monthly and annual values before conducting validations.

2.6. Validation Criteria

Several validation criteria are employed to comprehensively evaluate the performances of the
four ET products. Mean Error (ME) provides a way to quantify the biases of the estimates relative
to measurements, while Root-Mean-Square-Error (RMSE) can describe the accuracy of estimations.
Due to spatio-temporal differences in ET magnitudes, it is difficult to directly compare ET products’
performances among regions and during study periods using ME and RMSE, and therefore their
relative values (i.e., RME and RRMSE) are also given. Alongside the criteria above, correlation
coefficient (R) and Taylor Score (TS, between 0 and 1.0 [74]) are computed to measure the capability of
capturing spatio-temporal ET variability, and the overall performance of each product, respectively.
In general, the higher the TS, the better the ET product performs [74]. These validation metrics are
expressed as:

ME =
1
n

n

∑
i=1

(Si − Oi) (2)

RME =
ME
O

(3)

RMSE =

√
∑n

i=1(Si − Oi)
2

n
(4)

RRMSE =
RMSE

O
(5)

R =
∑n

i=1[(Si − S)(Oi − O)]√
∑n

i=1 (Si − S)2
√

∑n
i=1 (Oi − O)2

(6)

TS =
4·(1 + R)(

σ + 1
σ

)2·(1 + R0)
(7)

where n represents the sample number; S is the mean of each ET product averaged among n samples,
while O is for the observed ET; i denotes the ith sample; R0 (=1.0 here) is the maximum theoretical R;
and σ indicates the standard deviation of a certain ET product normalized by the standard deviation
of the observed ET.

Furthermore, the mechanisms of energy and water exchanges between land and atmosphere are
complex, and are often accompanied with strong variability in both space and time. Considering
the relationships of ET with physical characteristics of land surface [75,76], it is necessary to conduct
comprehensive evaluations from various perspectives, e.g., biome, elevation level and climate regime,
which will enhance our knowledge on model performances, explaining possible causes and finally
improving models. Therefore, we will employ a stratification method using the whole of all of the
EC sites, biome, elevation level, and climate regime to conduct analyses of the four ET products in
the coming sections. For each stratification, it has different classifications, i.e., 14 (1 for all monthly
and annual data, and 12 for monthly data of 12 months) for the whole of all of the EC sites, 6 (MF,
ENF, EBF, CRO, GRA, and WET) for biome, 3 (<500 m, 500–1500 m and >1500 m) for elevation level
and 2 (wet and dry corresponding to CAI <1.0 and >1.0, respectively) for climate regime. Then, the
validation criteria are calculated for each stratification classification.
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3. Results

3.1. Validation by the Whole of All of the EC Sites

Figure 2a shows the intra-annual fluctuations of ET products and EC observations averaged over
all of the sites. Considering the site-averaged monthly EC ET, there exists an evident seasonality, which
is characterized by higher values (>40 mm) during April–September, with a peak in July of 83.69 mm.
Intuitively, all four products can effectively capture the intra-annual changes, with the maximum in July
ranging from 70.88 mm (EartH2Observe-En) to 97.76 mm (MERRA-Land). In Figure 3a–d, scatter-plots
of monthly EC ET against the products are shown based on all of the samples (n = 420 site months)
from the twelve sites. Except for EartH2Observe-En, the Rs of the other three products are all larger
than 0.80, indicating that their monthly ET estimates can effectively reproduce the spatio-temporal
variability of ET when taking all of the monthly data points as a whole. The fitted linear regression
equations suggest that, except for MERRA-Land, which always overestimates ET, the other products
underestimate ET. However, it should be noted that each product (excluding MERRA-Land) performs
differently in estimating lower and higher ET values, i.e., lower ranges are overestimated, but higher
ranges are underestimated. Moreover, MERRA-Land ET is overestimated for both lower and higher
values, implying that there are potential systemic problems within this product. To further quantify
product performance, various validation metrics were calculated against the EC data for the 420 site
months; results are presented in the top left corner of each panel of Figure 3a–d. Evidently, MEs
(RMEs) differ among these products, ranging between −5.48 mm (−12.55%) for EartH2Observe-En
and 9.93 mm (22.71%) for MERRA-Land, which are closely related to their different performances
in lower and higher ETs. For example, the negative ME of EartH2Observe-En is mainly because
of its underestimates in higher ET (Figure 3d), while the highest and the moderate ME (RME) for
MERRA-Land and GLEAM3.0a are closely associated with systemic biases (i.e., overestimates in
both lower and higher ETs) and overestimates in lower ET, respectively (Figure 3a,b). Regarding
the lowest ME (RME) of GLDAS2.0-Noah, it may be attributed to the bias offset (i.e., overestimates
and underestimates in lower and higher ETs, respectively; Figure 3c). Relative to ME (RME) for each
product, the RMSE (RRMSE) is much larger; this may be due to both random errors plus different signs
in biases, which can introduce additional randomness by aggregating EC sites from various ecosystems.
Interestingly, despite the smallest ME (RME), GLDAS2.0-Noah RMSE (RRMSE) is the largest (40.74 mm;
93.24%). Based on TS, the worst, the moderate, and the best overall performances in estimating
monthly ET were found to correspond to the MERRA-Land, GLDAS2.0-Noah and EartH2Observe-En,
and GLEAM3.0a products, respectively. On an annual scale (Figure 3e–h), lower (higher) values
are underestimated (overestimated) in GLEAM3.0a, MERRA-Land, and GLDAS2.0-Noah, whereas
EartH2Observe-En always tends to underestimate ET. The bias and error metrics indicate that the
rankings of annual performances of the ET products (Figure 3e–h) are consistent with those on the
monthly scale (Figure 3a–d). The lowest absolute value of ME (RME) exists in GLDAS2.0-Noah, but
GLEAM3.0a has the minimum value of RMSE (RRMSE). In addition, MERRA-Land outperforms the
other datasets in terms of annual R, which is in contrast to the largest R in GLEAM3.0a on the monthly
scale. This may result from the aggregation of monthly ET into annual values. Regarding the overall
performance on the annual scale, EartH2Observe-En and MERRA-Land, respectively, correspond to
the maximum and the minimum TS values.

52



Remote Sens. 2018, 10, 1692

 
Figure 2. Intra-annual fluctuations of ET averaged across all of the sites, and MF, ENF, EBF, CRO, GRA,
and WET sites.

 
Figure 3. Scatter-plots of monthly and annual ET products against EC ET aggregated for all of the
selected EC sites, accompanied by various validation criteria in the upper left corner of each panel.

As noted from the scatter-plots of ET products versus EC observation (not shown) and
quantitative validation indicators at each month (Figure 4), intra-annual differences in the ET
estimation performances are obvious among the four products. Within one year, MEs (in Figure 4a;
RMEs in Figure 4b) for MERRA-Land are always positive, corresponding to larger biases during
July–October (January–March and September–November). By contrast, EartH2Observe-En shows
negative MEs (RMEs) for each month, and larger biases occur during May–August (May–August
and November–January). Signs of ME or RME for the other two products vary among months,
e.g., a negative ME or RME of GLEAM3.0a (GLDAS2.0-Noah) in January, November, and December
(March–July) suggests underestimated ET in these months, while overestimated ET is found in the
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remaining months. Additionally, based on the magnitudes of ME (RME), GLEAM3.0a has larger
values during March–May (February–May and December), but larger values for GLDAS2.0-Noah
occur in March–May and September–December (March, April and October–January). Comparing the
magnitude of monthly ME (RME) for each product, the maximum bias always occurs in MERRA-Land,
excluding March–June and December; however, the ET product with the minimum bias changes among
months. As shown in Figure 4c, the monthly RMSE for each ET product is above 10 mm, particularly
in April–October, with a value larger than 20 mm. Except for January and December (June–September),
MERRA-Land (EartH2Observe-En) always corresponds to the largest (lowest) RMSE. Due to the
differences in ET magnitudes among months, intra-annual variation of RRMSE for each product differs
from that of RMSE, mainly characterized by larger values in January–May and October–December
(Figure 4d); the largest and the lowest RRMSEs in most months occur in MERRA-Land and
EartH2Observe-En, respectively. Regarding the R for each product, it sharply declines from January
and reaches the minimum (<0.25) in June, but increases rapidly from August (Figure 4e). Overall, all
of the products have a higher R during January–April and September–December, and particularly in
February and October with the largest value (>0.80). In January–July, GLDAS2.0-Noah (excluding
January and May) and EartH2Observe-En (excluding March), respectively, correspond to the maximum
and minimum R. By contrast, the smallest (largest) R during August–October exists in GLDAS2.0-Noah
(MERRA-Land), and R in November and December is the largest in EartH2Observe-En, but the smallest
in MERRA-Land. In Figure 4f, the monthly TS is above 0.50 for all of the products, particularly for
January–May and September–December, which are generally higher than 0.70. In January–May and
September–December, there are larger differences in TS among the products, and the maximum (~0.90)
and the minimum (<0.80) are found in EartH2Observe-En (excluding April in GLDAS2.0-Noah) and
MERRA-Land (excluding January in GLDAS2.0-Noah), respectively.

Figure 4. Validation criteria of ET products against EC ET for each month at all of the twelve sites.
(a–f) is for Mean Error (ME), Relative Mean Error (RME), Root-Mean-Square-Error (RMSE), Relative
Root-Mean-Square-Error (RRMSE), Correlation coefficient (R), and Taylor Score (TS), respectively.

54



Remote Sens. 2018, 10, 1692

3.2. Validation by Biome

The intra-annual ET variations of all biome types are illustrated in Figure 2b–g. Based on EC
ET, characteristics of intra-annual fluctuations suggest apparent differences for the six biome types,
i.e., two peaks for MF in June and August (Figure 2b), EBF in July and September (Figure 2d), and
CRO in May and August (Figure 2e), with one for the other three biomes in July (Figure 2c,f,g). In
spite of some differences in ET magnitude, intra-annual ET fluctuation can be well captured by each
product for ENF (Figure 2c), CRO (Figure 2e), GRA (Figure 2f), and WET (Figure 2g); however, for MF
(Figure 2b; EBF, Figure 2d), GLEAM3.0a and MERRA-Land (products excluding EartH2Observe-En)
cannot reproduce the two ET peaks. With the exception of GLDAS2.0-Noah (EartH2Observe-En),
which overestimates lower but underestimates higher ETs for ENF [Figure 5(b3); MF (Figure 5(a4))
and ENF (Figure 5(b4))], all of the ET products were generally overestimated for MF (Figure 5(a1–3)),
ENF (Figure 5(b1–2)), and EBF (Figure 5(c1–4)). In CRO, GLEAM3.0a near-perfectly estimated ET
(Figure 5(d1)), while MERRA-Land ET was generally overestimated (Figure 5(d2)); relative to the
EC measurement, both estimates from the other two products were larger and smaller in lower and
higher ETs, respectively (Figure 5(d3–4)). As depicted in Figure 5(e1–4) for GRA and Figure 5(f1–4)
for WET, ETs were underestimated by all of the products, especially for WET ET estimates from
GLDAS2.0-NOAH and EartH2Observe.

Quantitative validation results for different biome types are shown in the top left corner of each
panel of Figure 5. With the exception of Earth2Observe-En with smaller negative ME (RME) in MF,
the bias indicators for the other three products are close to or above 10 mm (30%; Figure 5(a1–4)).
Correspondingly, Earth2Observe-En RMSE (RRMSE) is the smallest, but the remaining products
present a comparable error. Based on R (TS), the ET products show no evident differences in
performance, with a value of 0.97 (0.95). As for ENF (Figure 5(b1–4)) and EBF (Figure 5(c1–4)), larger
differences in ME (RME) and RMSE (RRMSE) were observed among these products, respectively,
corresponding to a range of 7.39–34.76 mm (14.35–65.96%) and 17.72–41.38 mm (34.40–78.52%).
Moreover, the maximum for these four metrics always appeared in MERRA-Land, followed by
GLEAM3.0a. Despite that, R (TS) in ENF is nearly equal and above 0.85 among these products,
and this indicator in EBF is larger than 0.70, except for EartH2Observe-En (MERRA-Land). For
CRO (Figure 5(d1–4)), ME (RME) for the ET estimates is different in sign and magnitude (i.e.,
underestimation for GLEAM3.0a and EartH2Observe-En versus overestimation for MERRA-Land and
GLDAS2.0-Noah, and a larger magnitude in MERRA-Land and EartH2Observe-En versus a smaller
magnitude in GLEAM3.0a and GLDAS2.0-Noah). In contrast, excluding GLEAM3.0a with a lower
RMSE (RRMSE), the performances of the other three products are comparable based on these error
indicators (~19 mm; ~34%). Regarding R, the largest value is in GLEAM3.0a, and the next largest is in
MERRA-Land, but the other two products have the smallest R. For TS, each product corresponds to a
value of approximately 0.90. In GRA (Figure 5(e1–4)) and WET (Figure 5(f1–4)), MEs (RMEs) for all of
the products are below zero, accompanied by larger magnitudes for GRA and WET in GLDAS2.0-Noah
and EartH2Observe-En. Consistently, GLDAS2.0-Noah and EartH2Observe-En, and GLEAM3.0a
and MERRA-Land show larger and smaller errors for both GRA and WET, respectively. R for each
product is above 0.83 in GRA (0.92 in WET), of which the minimum is found in GLDAS2.0-Noah.
While all products perform differently with respect to the aforementioned five metrics for GRA, they
have a comparable TS value of around 0.90. In WET, there is a larger TS range between 0.42 in
EartH2Observe-En, and 0.96 in GLEAM3.0a.
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Figure 5. Scatter-plots of monthly ET products against EC ET aggregated for different biomes,
accompanied by various validation criteria in the upper left corner of each panel.

3.3. Validation by Elevation Level

Validation results by elevation level (Figure 6) indicate that elevation has an influence on the
performance of each ET product. For GLEAM3.0a and MERRA-Land, ET over sites below 1500 m
is consistently overestimated (Figure 6(a1–2,b1–2)), while there are different overestimations and
underestimations for lower and higher ETs at sites above 1500 m, respectively (Figure 6(c1–2)). For
GLDAS2.0-Noah (Figure 6(a3,b3,c3)), overestimated ET is found in the two elevation levels below
500 m (except for some data points with higher ET) and between 500–1500 m; however, evident
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and systematic underestimations appear at elevations higher than 1500 m. Lower and higher ETs
are, respectively, overestimated and underestimated by earth2Observe-En at a low elevation level
(Figure 6(a4)), while the other two zones show underestimated ET (Figure 6(b4,c4)), especially for
elevation levels above 1500 m.

 
Figure 6. Scatter-plots of monthly ET products against EC ET aggregated for different elevation levels,
accompanied by various validation criteria in the top left corner of each panel.

At elevation levels below 500 m (Figure 6(a1–4)), the MEs (RMEs) of all of the ET datasets are
positive, with a range between 0.52 mm (1.05%) in EartH2Observe-En and 13.99 mm (28.32%) in
MERRA-Land. Comparing RMSEs (RRMSEs) of the four ET products, MERRA-Land corresponds to
the largest value, while the other datasets have more similar values. Regarding R (TS), each product
has a value above 0.80, in particular for GLEAM3.0a and GLDAS2.0-Noah (GLDAS2.0-Noah and
EartH2Observe-En), which have values higher than 0.84 (0.90). Across the sites with an elevation of
500–1500 m (Figure 6(b1–4)), except for EartH2Observe-En with a slight negative ME (RME), the ET
biases of the other datasets are positive and maximized in MERRA-Land. Correspondingly, the largest
RMSE (RRMSE) is found in MERRA-Land, followed by the minimum value in EartH2Observe-En.
Regarding R (TS), ET products with values near 0.86 (higher than 0.83) perform similarly; moreover,
the maximum TS (0.93) occurs in EartH2Observe-En. Unlike the performance based on ME (RME) at
the sites below 1500 m, all of the products have a negative bias for high elevation levels (Figure 6(c1–4));
in addition, both GLDAS2.0-Noah and EartH2Observe-En show larger magnitudes, corresponding
to the larger RMSE (Figure 6(b3–4)). In spite of some differences in the bias and error metrics, these
datasets have an approximate R of 0.87. Comparing TS values, the maximum values (~0.90) are in
GLEAM3.0a and MERRA-Land, followed by the moderate (0.76) and the minimum (0.62) values in
GLDAS2.0-Noah and EartH2Observe-En, respectively.

3.4. Validation by Climate Regime

The performance of each ET product varies in different climate regimes, i.e., systematic
overestimations and underestimations in the wet (except for EartH2Observe-En, with overestimations
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and underestimations in lower and higher ETs, respectively) and the dry climate regimes, respectively
(Figure 7). In the wet climate regime (Figure 7(a1–4)), the maximum ME (RME) of 25.19 mm (48.87%)
occurs in MERRA-Land, while the smallest value of 3.11 mm (6.02%) exists in EartH2Observe-En. Of all
four datasets, GLEAM3.0a and MERRA-Land exhibit a larger RMSE (RRMSE), while GLDAS2.0-Noah
and EartH2Observe correspond to a smaller value. The R values indicate comparable performance
among the ET products. Except for MERRA-Land, with the minimum TS of 0.86, the remaining
products show a comparable TS of higher than 0.90. For the dry climate regime (Figure 7(b1–4)),
MERRA-Land and EartH2Observe-En correspond to the largest and the smallest magnitudes of MEs
(RMEs), respectively. For GLDAS2.0-Noah and EartH2Observe-En, RMSEs (RRMSEs) are larger
and close to each other, however, the other two datasets have smaller and approximate errors.
The performance in R (TS) obviously differs among these ET products (i.e., Rs (TS values) for
GLEAM3.0a and MERRA-Land larger than 0.85 (0.90), but those for the other products are near
0.78 (smaller than 0.90)).

 
Figure 7. Scatter-plots of monthly ET products against EC ET aggregated for wet (climatological aridity
index (CAI) < 1.0) and dry (CAI > 1.0) climate regimes.

3.5. Optimal ET Products

By comparing the magnitudes of each validation criterion among the four ET products, OET was
identified for all 12 EC sites, biomes, elevation levels, and climate regimes (Figure 8). Taking all of
the EC sites as a whole (Figure 8a), monthly OETs were GLDAS2.0-Noah (GLEAM3.0a) in view of
ME/RME (other four criteria); however, annual OETs vary among these criteria (i.e., GLDAS2.0-Noah,
GLEAM3.0a, MERRA-Land, and EartH2Observe-En based on ME/RME, RMSE/RRMSE, R, and
TS, respectively). For all 12 months, the ME/RME-based OETs were GLEAM3.0a during January,
November, and December; EartH2Observe-En in February–April and October; and GLDAS2.0-Noah
from May to September, while EartH2Observe-En as the RMSE/RRMSE-based OET occurred
in most months (January–May and October–December). In addition, most months show the
R-based OETs of MERRA-Land (February, March, May, September, and October) and GLEAM3.0a
(January and June and August), and the TS-based OETs of EartH2Observe-En (January–March and
October–December) and GLEAM3.0a (June–September). As illustrated in Figure 8b, EartH2Observe-En
were the ME/RMSE- and RMSE/RRMSE-based OETs for the forest biomes (i.e., MF, ENF, and
EBF), while the R-based (TS-based) OETs were found to be GLADAS2.0-Noah (GLEAM2.0a) for
MF and ENF and MERRA-Land (GLADAS2.0-Noah) for EBF. CRO and WET OETs (excluding the
ME/RME-based OET of MERRA-Land) were found in GLEAM3.0a, based on all the validation criteria.
Except for EartH2Observe-En (the R-based OET), GRA always had the OET for MERRA-Land for each
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validation criterion. Figure 8b shows that, given the six criteria, the performances of GLDAS2.0-Noah,
EartH2Observe-En, and MERRA-Land were identified as OETs at low, moderate, and high elevation
levels, respectively. Over the wet climate regime (Figure 8b), EartH2Observe-En (GLDAS2.0-Noah)
was the OET with the smallest ME/RME and RMSE/RRMSE (the highest R and TS), but the dry
climate regime had the ME/RME-based OET of MERRA-Land and the RMSE/RRMSE-, R-, and
TS-based OET of GLEAM3.0a.

The results noted above show that the performances of each ET product and the corresponding
OET differ among classifications of each stratification and among criteria for a certain stratification
classification. The differences may be caused by uncertainties of ET products due to simplifications,
incomplete hypotheses of model structures and parameterizations, inaccurate models inputs, and
uncertainties from the reference ET (i.e., EC ET). We will, therefore, discuss the potential causes of this
in the next section.

 
Figure 8. Validation criteria-based optimal ET products (OETs) for stratifications of (a) all of the 12
EC sites, and (b) biomes, elevation levels and climate regimes. Among the four ET datasets for one
classification of each stratification, the OET of a given validation criteria can be specified as one product
with the smallest (ME, RME, RMSE, and RRMSE) or the largest magnitude (R and TS) of this criteria.

4. Discussion

4.1. Sources of Uncertainties in ET Products

In the present study, we comprehensively compared and evaluated GLEAM3.0a, MERRA-Land,
GLDAS2.0-Noah, and EartH2Observe-En ET products over China based on the EC measurements at
twelve sites. From the perspective of all the EC sites, biome, elevation level, and climate regime, the
performance of these products varies. Various hypotheses and simplifications of the ET processes,
which control the land-atmosphere flux exchanges (e.g., water and energy), have been conducted for
each model. Diversities in the complexity of both model structures and parameterizations among
models are closely associated with specific applications and/or purposes. Moreover, a variety of
inputs are required to run ET models; however, owing to specific requirements for each model and the
availability of inputs, the number, types, and/or sources of inputs differ among models. Therefore, we
would like to present possible explanations of uncertainties of the ET products from the perspectives
of model structures and parameterizations and inputs [4,5,77–80].

4.1.1. Model Structures and Parameterizations

As shown in Table 1, different PET schemes for estimating ET are employed among the selected
models. Thus, the behaviors of the ET products are likely to be directly related to differences in these
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schemes, which commonly have different levels of capability for capturing PET magnitude and variability
given various structural complexities and parameterizations. Regarding the Penman-Monteith scheme,
which has been widely regarded as a physically-based expression [71,81], a critical assumption and
simplification is that the surface is a “big leaf”, and thus, rv (aerodynamic resistance to water transfer
from the surface to the atmosphere) can be separated into rc (canopy resistance) and rh (aerodynamic
resistance to heat transfer from the surface to the atmosphere). Even so, to directly run this equation is
difficult because of a lack of observed relevant parameters (vegetation–specific parameters, e.g., rc [82]).
Therefore, many diagnostic and physiological equations were proposed based on environmental and
biological controls (e.g., vapor pressure deficit, T, solar radiation incident on canopy, and SM) and then
was used to estimate these parameters among different biomes [83–85]. As for the Priestley-Taylor
scheme, it is a simplified variant of the Penman-Monteith equation, in which PET is linearly expressed
as a so-called Priestley-Taylor parameter (i.e., α) multiplied by energy available to evaporate water [32].
Generally, the α parameter is between 1.2–1.3 under water unstressed conditions, but it can vary from
1.0 to 1.5; this value is mainly dependent on the degree of coupling between ET processes and the
atmosphere, which can be reflected by W, vapor pressure deficit, and SM [4,32]. Komatsu [86] stated
that to obtain this parameter, detailed information on canopy and micrometeorological conditions was
required, but this knowledge could not be directly supplied, particularly for a larger spatial extent.
For this reason alone, α is often set as 1.26 for some widely-used models, while its values of 1.26 in both
short vegetation and bare soil fractions and 0.8 for the tall fraction are given by GLEAM3.0a [21,22].
In brief, both the Penman-Monteith and Priestley-Taylor PET schemes differ in their simplifications
of some critical parameters, thus resulting in uncertainties and different performances for various
ET datasets.

After employing the specified PET scheme for a model, it is vital to calculate the ET fractions
from soil and interception evaporation and transpiration, which are summed to estimate ET. Generally
speaking, their fractions are parameterized to be jointly controlled by various environmental factors,
such as soil properties, SM, vapor pressure deficit, and vegetation parameters (e.g., Leaf Area
Index, LAI, and Normalized Difference Vegetation Index, NDVI), and vary greatly among models
due to differences and uncertainties of model parameterizations and a lack of observation-based
constraints [4]. Taking transpiration (the largest overall contributor to terrestrial ET; [87,88]) as
an example, Jasechko et al. [89] pointed out that 90% of terrestrial ET was cycled via vegetation
transpiration based on isotope techniques. However, conclusions from Miralles et al. [90] stated that the
ratio of transpiration to terrestrial ET from the GLEAM3.0a product was 76% for the whole landmass.
This implies that fractions of transpiration have larger discrepancies among models, which possibly
propagate into the ET products; the same applies for the ratio of soil or interception evaporation,
despite the values being generally smaller [90]. It is particularly noteworthy that even the estimated
interception precipitation from the most popular applied approach of the Gash analytical model may
produce substantial errors, e.g., an annual overestimation of 39.8 mm in a subtropical evergreen forest
of Central-South China [91]; thus, this causes considerable uncertainties in interception evaporation.
Therefore, if inaccurate and even incorrect functions for constraining each ET component are used by
the models, questionable ET may be provided [4].

As an aside, errors within the estimated ET originate from the neglect of some components of
ET, such as night transpiration [92,93]. Based on the assumption that plant stomata is closed at night,
and thus transpiration stops, night ET can commonly be ignored for the terrestrial ecosystem; but
recent observations have provided evidence that night transpiration is of significance across a wide
range of biomes and climate regimes [92–97]. For example, Novick et al. [92] reviewed previous
studies and pointed out that the percentage of night transpiration accounting for the daily total was
basically 10–30%; however, this varied among plant functional groups (i.e., C3 and C4; [93]) and
SM conditions [94]. Despite there being no agreement on the mechanisms of night transpiration,
it is generally believed that the processes are closely related to W, vapor deficit, SM, and circadian
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regulation of stomatal conductance [93,97]. Hence, models with no or insufficient considerations of
night transpiration processes may lead to systematically underestimated ET.

4.1.2. Model Inputs

If a given ET model is ideally full-biophysical and, thus, can comprehensively describe the ET
processes, errors in the ET estimates and differences among the ET products are mainly dependent
on various inputs, especially for precipitation and radiation [36,54,60,75,76,79]. Studies have been
extensively performed to evaluate different precipitation products (e.g., gauge-based, and reanalysis
and remote sensing-related datasets) over the globe [98–102]. For example, Nair and Indu [99]
noted that the MSWEP products (input for GLEAM3.0a) in India showed large errors in higher
precipitation (i.e., >75th and >95th quantiles), which was confirmed by Alijanian et al. [98] in Iran.
Sun et al. [102] found that the CPC-U precipitation (input for MERRA-Land) averaged over the world
was underestimated for each season and correspondingly led to the annual value being the smallest
compared to other datasets. Moreover, because of relatively limited gauge observations, the CPC-U
dataset has overall potential to smooth the precipitation structure and miss local heavy precipitation
events [103]. Based on gauge data over the Adige Basin of Italy, the PUMFD precipitation (used by
GLDAS2.0-Noah) was assessed by Duan et al. [104], and the conclusions showed that the performance
of this precipitation product was the worst relative to others, with biases in the occurrence frequency of
daily precipitation for some intensity ranges and higher errors in winter. By comparing different daily
precipitation products over Canada, Wong et al. [105] suggested that the skills of the WFDEI (used
by EartH2Observe-En) dataset differed from region to region, with underestimation in the northern
and eastern parts and overestimation in the west. As shown in Table 1, net radiation used by the
four ET models came from different datasets, including ERA-Interim, MERRA version 1.0, PUMFD,
and WFDEI for GLEAM3.0a, MERRA-Land, GLDAS2.0-Noah, and EartH2Observe-En, respectively.
With respect to the radiation datasets, assessments have been conducted across the world [4,66,79,
106–112]. In Boilly and Wald [109], ERA-Interim radiation was overestimated overall to some degree
in Europe, Africa, and the Atlantic Ocean, whereas clear and cloudy sky conditions, respectively,
corresponded to overestimation and underestimation. Regarding MERRA version 1.0, it showed
significantly overestimated net radiation at the twenty-three EC sites and aggregated over the whole
of China; moreover, the net radiation was almost 2.8 times the Global Energy and Water Exchanges
(GEWEX) value [79], which might be caused by the overestimation of the occurrence of clear sky
conditions [107,109]. Tory and Wood [106] compared and evaluated gridded radiation products across
northern Eurasia and found that there were smaller biases for the PUMFD dataset on an annual scale,
but larger errors on a seasonal scale. For the WFDEI dataset, the downwelling shortwave radiation
is higher in northern Africa but lower in northern South America, despite the effects of interannual
changes in the atmospheric aerosol optical depths being considered [110]; thus, net radiation would be
overestimated. Apart from precipitation and radiation, other meteorological forcings (e.g., T, W, Q, and
SP) are also different for MERRA-Land, GLDAS2.0-Noah, and EartH2Observe-En (Table 1), integrated
with different accuracies [6,26,66]. These studies indicated evident discrepancies among the existing
meteorological datasets in both magnitude and variability on daily to annual scales (e.g., owing to the
number and spatial coverage of surface stations, satellite algorithms, and data assimilation systems);
meanwhile, their capabilities to capture meteorological conditions differed from region to region.

It is well known that descriptions of vegetation processes, definitions of land use/cover (LUC)
and relevant vegetation character parameters (e.g., NDVI, LAI, and/or VOD) are needed; thus, their
differences and uncertainties potentially propagate into the ET estimates [113]. There are a number
of available LUC (e.g., Table S3) and NDVI/LAI/VOD products derived from different data sources
(e.g., various satellite images), algorithms, and classification schemes [114,115]. It should be noted,
however, that these datasets were produced for specific purposes and applications, including analyses
of LUC and vegetation changes and their impacts on the climate, hydrology, and ecosystem, and
the developments of various geo-scientific models; thus, obvious discrepancies and even errors in
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these products have been reported, especially at the regional scale [115–125]. Therefore, without
considering the suitability of LUC and NDVI/LAI/VOD products, biases originating from raw data
and inconsistencies among the selected products and uncertainties owing to product selection and
processing can be of the same magnitude as those from the representation of the processes under
investigation [113,121,126–129]. For example, Branger et al. [126] investigated the impact of different
LUC datasets on the long-term water balance of the Yzeron peri-urban catchment of France and
stated that most water quantities (including ET) were sensitive to LUC selections. Liu et al. [113]
quantified uncertainties of simulated water fluxes using MODIS (MOD15), GLASS, and the Four-Scale
Geometric Optical Model (FSGOM)-based LAI, and concluded that LAI products could lead to
substantial uncertainties in the ET estimates. For these selected ET products, different LUCs and
vegetation character parameters are used and cause differences in performances and uncertainties of
the ET estimates.

4.2. Uncertainties of EC ET

Since the EC technique was first applied [130], it has been used extensively to directly measure
terrestrial carbon, water, and energy cycles, and taken as ground truth values for evaluating various
ET products [4,131]. Nevertheless, there are still uncertainties regarding EC observations. Especially
problematic is energy imbalance at EC sites, mainly characterized by the energy closure ratio
(i.e., the sum of observed latent and sensible heat divided by the difference of net radiation and
ground heat flux), not being equal to one [132]. Based on numerous previous conclusions, energy
balance non-closure can generally be attributed to the missed very low and/or high-frequency
fluctuations of fluxes, measurement errors associated with sensor separation, interference from
tower or instrument-mounting structures, not fully considering the storage term (e.g., canopy and
photosynthesis storage), mismatch between the scales of energy balance components, large-eddy
transport, or secondary circulations not captured by the EC technique [37,133]. It is reported that,
in general, the sum of observed latent and sensible heat is 10–30% smaller than the difference
between net radiation and ground heat flux at EC sites [32,132]; moreover, the closure error can
vary seasonally and inter-annually and from biome to biome [32,133–135]. Scholars have often
suggested that underestimation of latent heat has largely contributed to this energy non-closure of the
EC technique [136–138]. For instance, Finkelstein and Sims [136] indicated that the normalized errors
for sensible and latent heat were 10% and 25–30%, respectively.

In addition, the spatial context of the EC measurement is limited and defined within the footprint
of a turbulent flux measurement [131,139]. For a deployed turbulent flux sensor, its detected signals
reflect influences of the underlying surface on the turbulent exchange. Over a homogeneous surface
with enough spatial extent (i.e., at least ~1 km; [111]), the measured fluxes from all parts of the surface
are, by definition, equal. However, the surface is typically inhomogeneous; the EC measurement is
dependent on which part of the surface exerts the strongest impact on the sensor and consequently on
the location and size of its footprint [139]. To reduce the influence from the inhomogeneous surface
and, thus, enhance the spatial representation, many footprint models have been developed and used
to identify and parameterize the footprint of each EC site [139–141]. Despite that, the measured signals
in most cases involve influences from the untargeted surfaces within the footprint, indicating that the
observations at the EC site cannot perfectly reflect energy and gas fluxes from the targeted surface.
Notably, the spatial extent of the footprint is not unchangeable, but can vary with W and its direction,
stability, and measurement heights [4,142,143]; therefore, the fixed parameterization of the footprint
can also introduce uncertainties into the EC observations. Besides the energy imbalance and limited
spatial representativeness, errors of EC ET can result from missing data post-processing, which are
attributed to instrument failure, poor maintenance, instances of bad weather, and data rejection [131].
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4.3. Other Factors Influencing Validation Results

In addition to uncertainties from the ET models and the EC observations, impacts from other
factors (e.g., spatial scale problems among ET estimates and necessary inputs for running models,
and data aggregation) on the validation results should be considered. In this study, the selected four
ET products have different spatial resolutions and corresponding spatial extents much larger than
the footprint of the EC site. Given the larger grid, greater potential exists for spatial heterogeneity in
surface characteristics (e.g., LUC, vegetation parameters, and elevation) and meteorological inputs for
estimating ET. The estimated ET value by the models actually reflects the combination of influences
from different landscapes rather than any single landscape. By contrast, the EC measurement
corresponds to a relatively homogenous footprint (even though it is not perfectly uniform) and
represents the ET from a given landscape to a great extent. As a result, not considering impacts from
the spatial scale mismatch, conducting a direct comparison between the ET products and the EC
measurements is likely to influence the validation results [23,76,144]. To qualitatively compare the
impacts of different LUCs, we have collected most (i.e., GLEAM3.0a, MERRA-Land, GLDAS2.0-Noah,
and seven models within EartH2Observe-En) of the LUC maps used by these ET products, including
MODIS (i.e., MOD12Q1, MCD12Q1, and MOD44B), and the Global Land Cover Characterization
(GLCC) Version 2 and GlobCover 2009 v2.3 products, which are produced at different spatial
resolutions and classification systems (i.e., IGBP, Simple Biosphere 2 Model, and GlobCover legends).
Corresponding LUC types at 12 EC sites are identified (Table S3). As depicted in Figure 8b, GLEAM3.0a
ET outperforms other products in each validation criterion. This result may be related to the reasonable
treatment on vegetation types at Yc and Sx sites in GLEAM3.0a [i.e., dominant type of low vegetation
(e.g., grassland) versus IGBP CRO]. The EC sites with MF, ENF, or EBF correspond to the dominant
types of tall vegetation (except for Qyz) in GLEAM3.0a (Table S3). However, based on RME and
RRMSE (which can partly remove regional differences), the performance of GLEAM3.0a ET is better
than MERRA-Land, with smaller differences among the forest sites. This may be associated with the
GLEAM3.0a ET algorithms for tall vegetation. As another example, WET at the Has site is simply
specified as low vegetation, agriculture, or C3 grassland, and GRA by the ET products (Table S3).
As a result, the ETs are underestimated at this site due to large discrepancies of ET mechanisms
between WET and other vegetation types (i.e., generally there are no water limits for evaporation and
transpiration in WET). Because of the lack of detailed descriptions of the digital elevation model (DEM)
datasets used by some ET models, we would like to discuss the impacts of mismatch in elevation
levels from several popular DEM datasets (Table S4) on validation results. Obviously, there is perfect
agreement on elevation levels based on grid mean elevations over all the EC sites. However, we found
that within the 0.25◦ × 0.25◦ grid at the Qyz and Dhs sites, there exists larger spatial variability in
elevations for each DEM dataset compared to the corresponding grid mean values (the ratio between
mean and spatial variability is less than 2.5); this suggests that the representativeness of the topography
at these two sites is lower, and consequently influences the evaluation results at low elevation levels.
Generally, we found that elevations from EC metadata have limited impacts on the results at moderate
and high elevation levels; however, future studies should examine to what magnitude the higher
spatial variability of the elevation at the Qyz and Dhs sites impacts validations at low elevation levels.

To make a comparison and evaluation possible, all of the ET products were aggregated to the same
spatial (0.25◦ × 0.25◦) and temporal (monthly) resolutions, and the EC measurements were integrated
into monthly values. The aggregations of the ET products and EC ET can impact the comparisons and
often reduce the confidence in any subsequent model performance ranking [75,76,145]. Among the
ET models, we can find different spatial resolutions for the driving factors, which are dependent on
the specified requirements of the ET model. Several studies have examined the impacts of spatial
resolutions of inputs on the estimated ET [32,146,147]. McCabe and Wood [147] calculated the ET based
on the Surface Energy Balance method and necessary inputs derived from three satellite platforms
with different spatial resolutions, and compared the results with the flux tower ET on the Walnut
Creek watershed in Iowa. They found that despite the comparable accuracy of the regional mean
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MODIS-based ET relative to the other two higher resolution estimates, the MODIS-based retrievals
could not effectively reproduce the flux tower ET, mainly because the MODIS inputs were unable to
discriminate the influence of land surface heterogeneity at field scales. Thus, the influences of the
different spatial scales of the inputs for driving models would be reflected in the ET products.

5. Conclusions

In this study, we conduct point-scale evaluations of four ET global products [one remote
sensing-based product (GLEAM3.0a), two reanalysis-based product (MERRA-Land and GLDAS2.0-Noah),
and one LSM ensemble dataset (EartH2Observe-En)] at 12 EC sites across China, focusing on the
bias, error, and overall performance of the datasets, as well as their capabilities in capturing the
spatio-temporal variability of ET. The major results are summarized below:

• Validation using all of 12 EC sites: Generally, these products reproduce intra-annual ET
fluctuations but perform differently in view of each validation criterion. GLDAS2.0-Noah
(GLEAM3.0a) shows minimum monthly biases (annual errors). The highest monthly and annual
Rs (TS values) occur in GLEAM3.0a and MERRA-Land (GLEAM3.0a and EartH2Observe-En),
respectively. The metrics vary among all 12 months.

• Validation by biome: ETs in MF, ENF, and EBF are generally overestimated, but underestimated
in GRA and WET. In CRO, MERRA-Land, and GLDAS2.0a-Noah (remaining two products)
overestimate (underestimate) ET. Except for GLEAM3.0a and MERRA-Land in ENF and EBF,
and GLDAS2.0-Noah and EartH2Observe-En in WET, a comparable error exists among the six
biomes. Relative to EBF, the products in the remaining biomes (excluding GLDAS2.0-Noah and
EartH2Observe-En in WET) show higher Rs and TS values.

• Validation by elevation level: All products underestimated and overestimated ET, respectively,
for high and medium/low elevations (excluding EartH2Observe-En for moderate elevations).
Each product showed comparable error, except for the RMES values of MERRA-Land for low and
moderate elevations and errors of GLDAS2.0-Noah and EartH2Observe-En for high elevations.
Compared to low elevation levels, Rs for medium and high elevation levels were slightly
larger. Larger TS values were found in all elevation levels, except for GLDAS2.0-Noah and
EartH2Observe-En for high elevation levels.

• Validation by climate regime: ETs in wet (dry) regions were always overestimated
(underestimated). In wet regions, GLEAM3.0a and MERRA-Land (remaining two products)
show larger (smaller) errors, in contrast to dry regions. Excluding GLDAS2.0-Noah and
EartH2Observe-En in dry regions (MERRA-Land and EartH2Observe-En in wet and dry regions,
respectively), Rs (TS values) are larger for each climate regime.

• OETs: Overall, the OETs varied among stratification classifications (the selected six criteria).
In other words, no product always performed best in terms of the validation criteria.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/10/11/
1692/s1, Table S1: Members of Eearth2Observe-En ET product, with their PET schemes and references. Table
S2: Monthly comparisons of the estimated EC ET with the constant and the variable λ at 11 sites. Table S3:
Comparisons of LUC types used by the four ET products at EC sites. Table S4: Comparisons of elevation levels
from several popular digital elevation model (DEM) datasets at EC sites.
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Abstract: Continuous daily evapotranspiration (ET) monitoring at the field-scale is crucial for water
resource management in irrigated agricultural areas in arid regions. Here, an integrated framework
for daily ET, with the required spatiotemporal resolution, is described. Multi-scale surface energy
balance algorithm evaluations and a data fusion algorithm are combined to optimally exploit the
spatial and temporal characteristics of image datasets, collected by the advanced space-borne thermal
emission reflectance radiometer (ASTER) and the moderate resolution imaging spectroradiometer
(MODIS). Through combination with a linear unmixing-based method, the spatial and temporal
adaptive reflectance fusion model (STARFM) is modified to generate high-resolution ET estimates for
heterogeneous areas. The performance of this methodology was evaluated for irrigated agricultural
fields in arid and semiarid areas of Northwest China. Compared with the original STARFM,
a significant improvement in daily ET estimation accuracy was obtained by the modified STARFM
(overall mean absolute percentage error (MAP): 12.9% vs. 17.2%; root mean square error (RMSE):
0.7 mm d−1 vs. 1.2 mm d−1). The modified STARFM additionally preserved more spatial details than
the original STARFM for heterogeneous agricultural fields, and provided field-to-field variability in
water use. Improvements were further evident in the continuous daily ET, where the day-to-day
dynamics of ET estimates were captured. ET data fusion provides a unique means of monitoring
continuous daily crop ET values at the field-scale in agricultural areas, and may have value in
supporting operational water management decisions.

Keywords: evapotranspiration; field-scale; STARFM; unmixing-based method; MPDI-integrated SEBS

1. Introduction

Evapotranspiration (ET)—the sum of land surface evaporation, vegetation transpiration,
and evaporation of water intercepted by plant canopies—is a major component of the water cycle and
energy exchange in the soil-plant-atmosphere-climate system [1]. Continuous daily ET monitoring
at the field-scale can provide detailed information about crop water use and soil moisture status.
This information has long been a critical requirement for a wide range of applications, including
irrigation scheduling, increasing the efficiency of crop water use, and assessing the impacts of drought
on crop yields [2,3]. The spatiotemporal variation of ET in irrigated fields is particularly relevant in
arid and semiarid areas where water resources are scarce, such as in northern and western China [4–6].

Remote sensing (RS) has provided a suitable alternative for obtaining spatially distributed
estimates of the temporal evolution of ET over the growing season. During the last few decades, various
RS-based methods have been proposed to estimate ET. RS-based approaches now generally include
empirical and semi-empirical methods [7], surface energy balance models (e.g., the surface energy
balance algorithm for land (SEBAL), the surface energy balance system (SEBS), the mapping ET with
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internalized calibration (METRIC), the two-source energy balance model (TSEB) [8–11], the vegetation
index combined with the Penman-Monteith (PM) or Priestley-Taylor (PT) method [12,13], and data
assimilation combined with land surface models and hydrological models [14,15]. These approaches
have been developed and applied from local to global scales, at both the satellite overpass time and
daily time scales, achieving relative errors of 10–30% for different ecosystems around the world [16–18].

Local water management usually requires temporally continuous ET measurements at the
field-scale in order to understand the ET variation of crops, which is related to spatial heterogeneity
in crop type, phenological stage, meteorological conditions, and soil moisture conditions [19].
However, the estimation of ET values for croplands using remote sensing is particularly challenging
in heterogeneous landscapes, where agricultural plots are small. The 100 m resolution characteristic
of thermal infrared (TIR) imagery (e.g., Landsat series, ASTER (the advanced space-borne thermal
emission reflectance radiometer)), which we define as “moderate resolution” to distinguish from
high-resolution (meter scale) shortwave imagery, has proven critical in providing detailed information
about vegetation status, soil moisture, and surface temperature [20,21]. Moderate-resolution RS can be
used for ET estimates, because it typically enables the discrimination of individual agricultural fields.
However, the long revisit interval makes its application problematic in areas with high cloud cover
and dynamic land cover [22]. Although geostationary satellites (e.g., moderate resolution imaging
spectroradiometer (MODIS)) provide sources of ET information on a daily basis, their resolution is
too coarse (km-scale or above) to resolve individual fields in most irrigation districts [23]. Therefore,
exploiting the complementary spatial and temporal characteristics of different satellite sensors to
provide daily field-scale ET estimates could be significant for water resource management.

Some efforts have focused on combining imagery from different platforms to generate high-
resolution ET maps. Downscaling converts RS-based ET from a low- to a high-spatial resolution.
Singh et al. (2014) developed a linear regression method with zero intercept for downscaling
MODIS-based monthly ET maps to Landsat-scale ones [24]. Ke et al. (2016) used machine learning
algorithms, including support vector regression (SVR), cubist, and random forest (RF) to model the
relationship between Landsat indices and MODIS eight-day, one kilometer ET products, and then
predicted 30 m ET based on the model using Landsat-8 indices [25]. Although these downscaling
methods provide useful means to improve the coarse-resolution ET data to finer spatial resolutions,
they cannot simultaneously enhance their temporal resolution. Gao et al. (2006) proposed a data
fusion technique named the “spatial and temporal adaptive reflectance fusion model” (STARFM),
that simultaneously integrates the temporal advantage of MODIS-like images and the spatial advantage
of Landsat-like images [26]. This data fusion approach has lately received much attention, since
it can provide high-resolution vegetation indices and land surface temperature estimates [27–30].
This approach additionally appears to hold great utility for high-resolution TIR data for ET mapping.
Cammalleri et al. (2013) described the initial implementation and evaluation of the fusion of Landsat
and MODIS ET measurements using the STARFM model over corn and soybean fields in the Walnut
Creek watershed [31]. It was subsequently tested for corn and cotton fields in both rain-fed and
irrigated areas [32], a forest [33], and vineyards [34]. Additionally, Li et al. (2017) applied the STARFM
algorithm to fuse ASTER and MODIS images for continuous daily ET at the field-scale over irrigated
agricultural areas [35].

While the STARFM algorithm provides a useful tool to generate high-resolution daily ET estimates,
several limitations should be noted. If changes are transient and not recorded in at least one of
the base fine resolution images, it may not be possible to predict them in fine resolution by this
algorithm [26,29,36]. STARFM depends on the temporal information from pure homogenous pixels
(“similar pixel”) in the MODIS image [37,38]. And the predicted results can be misleading when
the homogeneous coarse-resolution pixels cannot be found in the search window, which happens
in heterogeneous landscapes such as agricultural areas. Many spatial-temporal fusion algorithms
have been developed for improving STARFM. For example, Hilker et al. (2009) developed the
spatial-temporal adaptive algorithm for mapping reflectance changes (STAARCH) based on STARFM,
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to detect the date on which land-cover change occurs, and to record this information in a Landsat image
to improve the final predicted result of the original STARFM approach [36]. Zhu et al. (2010) proposed
an enhanced STARFM (ESTARFM) algorithm, by introducing a conversion coefficient, retrieved from
the ratio of change between the MODIS pixels and Landsat endmembers, into STARFM to enhance
the prediction accuracy for heterogeneous landscapes [37]. Fu et al. (2013) modified the procedure
of similar pixel selection in ESTARFM, according to the standard deviation of the reflectance and the
number of land cover types within a local moving window [38]. Considering heterogeneous landscapes
with complex vegetation types, soil water, and meteorological conditions in small-scale agricultural
irrigation areas, Bai et al. (2017) applied ESTARFM to produce daily field-scale ET estimates based on
Landsat and MODIS images for different crops [39]. However, ESTARFM is more computationally
intensive, and requires at least two pairs of fine- and coarse-resolution images acquired at the same date
between two base dates, which increases the difficulty of data acquisition and limits its applicability.

The goal of this work was to obtain accurate continuous daily ET values at the field-scale for
heterogeneous agricultural areas. We developed a multiresolution modeling framework by combing
STARFM with a linear unmixing model (u-STARFM) to resolve the difficulties that STARFM presents
from the mixed pixel of MODIS in heterogeneous areas. The fusion methodology was applied to MODIS
and ASTER images acquired during a period of crop development from June to September, 2012, for an
oasis-desert agricultural region in the middle reaches of the Heihe River Basin. Instantaneous flux
retrievals and daily ET estimates were estimated by using an enhanced SEBS model, namely MPDI
(modified perpendicular drought index)-integrated SEBS, as proposed by Yi et al. (2018), thereby
allowing an improved mapping of ET under water-limited conditions [40]. The results were validated
for multiple land-cover types, including cropland, residential areas, woodland, water, desert, desert
steppe, and wetlands, using in situ observations from eddy covariance (EC) systems.

2. Experimental Region and Data

2.1. Study Area

The study area (97.1◦E–102.0◦E and 37.7◦N–42.7◦N) was located in an oasis-desert agricultural
region in the middle reaches of the Heihe River Basin (HRB) (Figure 1). The climate was continental,
with an average annual temperature of 7.5 ◦C, an average annual rainfall of 136.8 mm, and an average
annual potential evaporation of 1840 mm [41]. The dominant landscapes in the region were an artificial
oasis, the Gobi Desert, and transitional zones between oasis and desert. The central part of the study
area was a typical irrigated crop ecosystem, mainly covered by maize, vegetables, orchards, and wheat.
The agriculture in the HRB depended heavily on irrigation water extracted from the Heihe River or
from an aquifer. During the period of crop growth, the croplands were irrigated using flood irrigation
at an interval between 20 days and one month.

The Multi-Scale Observation Experiment on Evapotranspiration (MUSOEXE) for heterogeneous
land surfaces was conducted in the study area from May to September, 2012. This was the first thematic
experiment in the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project [42].
It involved a flux observation network composed of two nested matrices; one large experimental
area (30 km × 30 km) and one kernel experimental area (5.5 km × 5.5 km) (Figure 1). The accurate
quantification of ET in an irrigated oasis using remote sensing is one of the prime targets of the artificial
oasis experiment.
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Figure 1. The experimental region and field observation system.

2.2. Field Measurements

The large experimental area contained five stations that had differing underlying surfaces, being
the Gobi Desert (station #18), sandy desert (station #19), desert steppe (station #20), wetland (station
#21) and maize (station #15). The kernel experimental area contained 16 stations, 13 of which were
installed in seed maize plots, and the remaining three of which were installed in a vegetable plot
(station #1), a village (station #4), and an orchard plot (station #17). The field observation system of
the HiWATER mainly included an automatic weather station (AWS), an eddy covariance (EC), a soil
moisture and temperature measurement system with wireless sensor network (WSN). The details of
the meteorological and flux sites can be found in Xu et al. (2013) [43].

Each AWS was equipped with sensors to collect data including air temperature, wind speed and
direction, air pressure, the relative air humidity, precipitation, soil moisture profile, solar radiation,
four-component radiation, soil heat flux, and infrared temperature, every 10 min. The accurate
quantification of ET estimates depends on the reliability of input meteorological variables. In this
sense, the integrity and quality of these meteorological data were assessed through several quality
control tests, including range (fixed or dynamic) test, step test, internal consistency test, and persistence
test [44,45]. All variables were interpolated into a map, with a resolution of 90 m, covering the study
area, using Kriging method [46]. The turbulent fluxes were measured at 10 Hz sampling frequency by
EC. The fluxes of water vapor, latent heat, and sensible heat were processed into a half hour interval.
The Gaussian fitting method was used to interpolate the missing data [47]. The energy balance closure
was enforced into the EC system observations by using the Bowen ratio closure method [48].

2.3. Satellite Data

ASTER satellite images cover three visible to near-infrared (VNIR) bands with a resolution of 15 m,
six shortwave infrared (SWIR) bands with a resolution of 30 m, and five thermal infrared (TIR) bands
with a resolution of 90 m. During HiWATER-MUSOEXE, a total of eight ASTER Level-1 (ASTER L1A)
images with minimum cloud cover (<5% within the study area), taken between May and September,
2012 (DOY 151, 167, 176, 192, 215, 231, 240, and 247), were collected from the online EARTHDATA
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database (https://earthdata.nasa.gov/). All of these images were subjected to radiative, atmospheric,
and geometric corrections. The VNIR and SWIR bands of the chosen ASTER image were resampled to
a resolution of 90 m, consistent with the TIR resolution. The ASTER land surface temperature (LST)
was retrieved using the temperature and emissivity separation method [45].

The MODIS surface reflectance products (MOD09GA) and the LST products (MOD11A1) from
30 May (DOY 151) to 3 September (DOY 247), 2012, were collected from the online EARTHDATA
database. Cloud mask products (MOD35) were used to detect clear-sky pixels, assuming a threshold at
the 99% confidence interval. As a result of this data screening, the images for 54 days were considered
to be cloudy on the experimental fields, with an average actual average revisit interval of two days.
All of these MODIS products were projected to the UTM projection and resampled to a spatial resolution
of 90 m, using the MODIS reprojection tool (MRT). The monthly land-cover classification products (30
m) for the HRB were acquired from the Ecological and Environmental Science Data Center for Western
China (http://westdc.westgis.ac.cn). The leaf area index (LAI) was additionally calculated from ASTER
images, using a look-up table constructed by a unified model developed by Zhao et al. (2015) [49].

3. Model Descriptions

A schematic overview of the framework for retrieving continuous daily ET values at the field-scale
is illustrated in Figure 2, including inputs and image processing steps. The process consists of
three steps. The first step is to apply the MPDI-integrated SEBS model to retrieve ET values on
the day when satellites overpass for ASTER and MODIS, respectively. The coarse-resolution ET image
is then unmixed, based on a linear spectral mixture model, to obtain the ET of each land-cover
endmember. Finally, the unmixing of ET images is performed for the directly resampled MODIS
ET data, and STARFM is run to predict ASTER-like ET images. The daily ET, retrieved from the
MPDI-integrated SEBS and the fusion model, were all validated using ground measurements.

Figure 2. Schematic overview of the inputs and processing steps in the evapotranspiration (ET)
data fusion system. (NDVI: normalized difference vegetation index; LST: land surface temperature;
MPDI: the modified perpendicular drought index; MODIS: the moderate resolution imaging
spectroradiometer; ASTER: the advanced space-borne thermal emission reflectance radiometer;
STARFM: spatial and temporal adaptive reflectance fusion model; u-STARFM: the modified
STARFM model)
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3.1. A Brief Description of the MPDI-Integrated SEBS Model

The SEBS model is a single source model, and takes latent heat flux as the residual of the surface
energy balance. It is commonly used to estimate atmospheric turbulent fluxes on the basis of remote
sensing and meteorological data, which mainly consists of the estimation of land surface physical
parameters, the roughness length for heat transfer, the sensible heat flux (H), and the latent heat flux
(λET) [9]. The surface energy balance is normally written as:

λET = Rn − G − H (1)

Rn = (1 − α)Rswd+εRlwd−εδT4
s (2)

G = Rn[Γ c+(1 − f c)(Γ s−Γc)] (3)

where λET, Rn, G, and H are the latent heat flux, net radiation flux, soil heat flux, and sensible heat
flux (W m−2), respectively; Rswd and Rlwd are the downward solar radiation and longwave radiation
(W m−2), respectively; α and ε are the albedo and emissivity of land surface, respectively; δ is the
Stefan–Boltzmann constant (W m−2K−4); Ts is the land surface temperature (K); fc is the fraction of
canopy cover; and Γc = 0.05 for the full vegetation canopy and Γs = 0.315 for bare soil [50]. Su (2002)
detailed a set of equations for the estimation of the land surface physical parameters and variables.
H is derived from similarity theory along with a dynamic roughness height formulation for the heat
transfer. In the atmospheric surface layer (ASL), the similarity relationship for the profiles of mean
wind speed (u) and mean temperature (T0 − Ta) are usually described as:

u =
u∗

k
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(5)

where u is the mean wind speed, u* is the friction velocity (m s−1), k is the von Karman constant (0.4),
z is the height above the land surface where the meteorological observations were made (m), Cp is the
specific heat of air at constant pressure (J kg−1K−1), d0 is the zero plane displacement height (m), z0h
and z0m are the surface roughness heights for heat and momentum transport (m), Ψh and Ψm are the
stability correction functions for heat and momentum transport, L is the Obukhov length (m), T0 and
Ta are the temperature of the land surface and air (K), and ρ is the density of air (kg m−3). A set of
equations for the estimation of land surface physical parameters and variables are detailed in Su (2002).

The SEBS algorithm assumes that the information on the ratio of actual to potential evaporation is
implicitly embedded in the land surface temperature. This assumption is usually appropriate where
available energy is the limiting factor for ET, but there is a problem when water availability becomes
limiting for ET. Some recent studies have reported that SEBS can underestimate the sensible heat flux
and overestimate ET in arid and semiarid regions [51–53]. To reduce the overestimation of ET for
vegetation under water-limited conditions, Yi et al. (2018) proposed an enhanced SEBS model, namely
MPDI-integrated SEBS, that integrated MPDI, as an indicator of soil moisture, into SEBS through a
modified definition of the dimensionless k B−1 parameter. Here, we provide a brief description of the
MPDI-integrated SEBS model. The k B−1 value is modified using a scaling factor (SF) represented by a
reverse sigmoid function in the MPDI-integrated SEBS model:

k B−1
u = SF × k B−1 (6)

SF =

[
a +

1
(1 + exp (b − c/MPDI))

]
(7)
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where k B−1
u is the updated k B−1; and a, b, and c are the coefficients of the reverse sigmoid function.

MPDI represents the modified perpendicular drought index, which is based on the spatial distribution
features of soil moisture in NIR-Red spectral space [54]. To obtain the coefficients of the sigmoid
function (Equation (7)), we calibrated MPDI-integrated SEBS using an optimization by reducing the
error between the simulated sensible heat flux and EC measurements in 2015 [40]. The parameters a, b,
and c were determined to be 0.024, 3.1, and 1.6, respectively.

3.2. Description of the Scheme for Fusion of Daily ET Values at Different Resolutions

A sketch map of the fusion algorithm is shown in Figure 3. A pair of ASTER–MODIS ET for ts

(the basis date) and a MODIS ET for tp (the predicted date) were used as the inputs of the fusion
model. Firstly, the land cover components and their abundances were produced from a monthly
high-resolution classification map. A downscaled MODIS ET was then retrieved by resolving the linear
mixture model combined with the abundance of each land cover based on a least square method.
Finally, the downscaled ET maps for ts and tp, along with ASTER ET for ts, were inputted into STARFM
to produce the ASTER-like ET on the predicted date.

Figure 3. Schematic description of the data fusion procedure.

3.2.1. Unmixing the Coarse-Resolution Images

Due to the complexity of the land surface, most of the pixels in coarse-resolution images were
mixed pixels (i.e., covered by multiple classes of land cover). A mixed pixel is typically modeled as
a linear combination of endmembers and abundances [55,56]. Here, the ET value of a mixed pixel
was calculated as the sum of the mean ET values of different land-cover types within the pixel,
weighted by the corresponding abundance. A sliding window of [ω × ω] MODIS pixels was applied
to the land-cover image to record the endmember abundance matrix B, a [ω2 × g] matrix with
ω2 rows (one for each pixel within the neighborhood) and g columns (one for each endmember).
Abundances (i.e., land cover fractions) were the ratio of each endmember within the coarse-resolution
pixel. The abundance was defined as:
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fr(e, g) =
Q
N

, fr(e, g) ≥ 0, ∑ fr(e, g) = 1 (8)

where fr(e, g) denotes the fraction of the gth endmember (i.e., the gth land cover type) in the coarse
pixel e, Q denotes the total number of fine pixels for each land cover class in the pixel e, and N is the
total number of fine pixels in the coarse pixel e. The numbers fr(e, g) should strictly be non-negative,
and add to unity. The abundance of each land cover type was calculated every month from the monthly
land-cover classification products in the HRB between May and September, 2012. The aim of unmixing
was to solve for ETg, a [g × 1] column vector that contained each daily ET values for each land cover
type. ETM was a [ω2 × 1] column vector containing the daily ET values of each MODIS pixel in the
sliding window which was currently being unmixed. This was achieved by minimizing the residual
error (ε) of the linear model (Equation (9)) with an ordinary least square technique [57]:

ETM= BETg + ε (9)

3.2.2. STARFM

STARFM was originally designed by Gao et al. (2006) to fuse the surface reflectance of
high-spatial-resolution Landsat and high-temporal-resolution MODIS images. The algorithm is based
on the premise that both Landsat and MODIS imagery observe the same reflectance on the same
day, biased by an error. This error is constant, assuming that the land cover type and system errors
from satellites do not change over short time intervals. Hence, the error can be calculated if a base
Landsat-MODIS image pair is available for the same date (ts). The Landsat-like prediction images
can then be obtained from the MODIS image on the predicted day and the error. Here, we applied
STARFM to retrieve high-spatial-resolution ET maps at daily timesteps combining the spatiotemporal
characteristics of MODIS and ASTER.

STARFM data processing included three major processing steps. Firstly, a sliding window of
size ω × ω was applied to identify similar neighboring pixels. We added the monthly land cover
classification maps as an auxiliary for searching for similar neighboring pixels. The similar neighbor
pixels were determined by using the threshold of the standard deviation and the condition that the
candidate pixel had the same land cover type (V) as the central pixel of the sliding window for ts.
This rule can be described as follows:{ ∣∣ET(xi, yi, ts)− ET(xω/2, yω/2, ts)

∣∣ ≤ σ/N
V(x i, yi, ts) = V(xω/2, yω/2, ts)

(10)

where (xi, yi) is the location of the similar pixel; (xω/2, yω/2) is the location of the central pixel; σ is
the standard deviation of ET within the sliding window; and N presents the total number of land
cover types within the sliding window. Secondly, a normalized reverse distance (Wijq) was used as the
weight function combining three distances in Equation (11): (1) The ET difference between the base
MODIS-ASTER pair (Sijq); (2) the temporal difference between ET values of the MODIS images for
date ts and tp (Tijq); and (3) the spatial Euclidean distance between the central pixel (xω/2, yω/2) and
candidate pixel (xi, yj) for date tp (Dijq). The final step was to calculate the ET value of the central pixel
for tp. The algorithm is characterized in Equation (12):

Wijq =

1
Sijq×Tijq×Dijq

∑ω
i=1 ∑ω

j=1 ∑n
q=1

1
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(11)
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where ETA and ETM denote the fine-resolution (ASTER) and coarse-resolution (MODIS) ET,
respectively, and n is the total number of coarse pixels within the predefined window. For our
simulation, the sliding window size was set at 7 × 7 pixels for MODIS images. A more detailed
description of the STARFM algorithm can be found in Gao et al. (2006).

4. Results

4.1. Validating the Quality of Meteorological Data

Metrological variables that were validated included: Daily solar radiation (Rs), daily mean,
maximum and minimum air temperatures (Tm, Tmax, and Tmin, respectively), daily mean, maximum
and minimum relative humidity of the air (RHm, RHmax, and RHmin, respectively), and daily mean and
maximum wind speed data (Um and Umax, respectively). The percentage of flagged meteorological
data (discarding data) for each variable on all the AWS stations are summarized in Table 1. On average,
all the air temperature flagged data by the quality tests were below 2.0%. The persistence test for solar
radiation showed the average and maximum percentages of data flagged were 10.25% and 60.91%,
respectively. This was mainly due to constant values reported when there was a continuous sensor
failure in station #4. The highest percentage of data flagged by persistence test was obtained for RHmax,
with an average of 7.03%, and the highest fraction of 26.08% was detected in station #6. The maximum
fraction (36.82%) of data flagged for Um was detected in station #14.

Table 1. Percentage of flagged meteorological data by quality control tests (Max = maximum;
Avg = average; stdv. = standard deviation of total automatic weather station (AWS) data).
The percentages on each cell correspond to Max/Avg (stdv.).

Variables Range Test (Fixed)
Range Test
(Dynamic)

Step Test
Internal

Consistency Test
Persistency Test

Air temperature
Tm 1.01/0.08 (0.30) 0/0 (0) 1.23/0.40 (0.45) 0.99/0.20 (0.25) 0.31/0.05 (0.24)

Tmax 0.12/0.02 (0.03) 0/0 (0) 2.01/0.30 (0.36) 0.99/0.20 (0.25) 0.31/0.05 (0.24)
Tmin 0.06/0.01 (0.02) 0/0 (0) 0.50/0.21 (0.12) 0.42/0.09 (0.12)

Solar radiation Rs 2.8/0.30 (0.58) 56.02/13.29 (23.65) 60.91/10.25 (18.93)

Relative
humidity

RHm 0/0 (0) 1.52/0.21 (0.38) 17.26/2.02 (4.18)
RHmax 0.10/0.01 (0.03) 1.03/0.05 (0.21) 26.08/7.03 (8.54)
RHmin 0.82/0.03 (0.20) 1.35/0.18 (0.32) 15.28/6.10 (4.20)

Wind speed Um 1.23/0.08 (0.31) 1.34/0.22 (0.30) 36.82/9.05 (8.72) 34.18/8.03 (7.20)
Umax 0.13/0.05 (0.04) 0.24/0.03 (0.05) 30.27/4.89 (5.65)

4.2. Evaluating the Performance of the MPDI-Integrated SEBS Model

The MPDI-integrated SEBS model was validated with flux data from all 21 EC stations. Note that
some flux towers did not generate usable data for all the MODIS and ASTER dates. The scatter plots
in Figure 4 show comparisons between the modeled values of sensible heat flux and latent heat flux
from MPDI-integrated SEBS, and those observed from EC measurements. The results were further
corroborated by the statistical performance metrics derived for each flux, as summarized in Table 2.
The statistical metrics include mean bias error (Bias), root-mean-square error (RMSE), mean absolute bias
error (MAE), and mean absolute percentage error (MAP; i.e., the MAE divided by the observed flux).
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Figure 4. A comparison of the modeled and observed surface heat fluxes at the eight experimental sites
from 30 May to 12 September, 2012. (a) Shows scatter plots of the modeled and observed sensible heat
fluxes (H); and (b) shows scatter plots of the modeled and observed latent heat fluxes (λET). Red and
black symbols represent ASTER and MODIS data, respectively.

Table 2. The statistical differences between surface heat fluxes modeled by MPDI-integrated SEBS,
and observed surface heat fluxes.

Land Use Type
H (W m−2) λET (W m−2)

Bias MAE MAP RMSE Bias MAE MAP RMSE

(W m−2) (W m−2) (%) (W m−2) (W m−2) (W m−2) (%) (W m−2)

Overall 12.7 39.5 16.0 34.3 −4.8 40.9 10.9 40.0
Maize 10.1 43.7 15.6 38.5 −5.2 45.5 10.7 46.9

Orchard −0.5 27.0 17.5 18.7 −20.4 48.2 12.4 42.4
Vegetable 7.7 21.5 16.1 19.2 −12.1 35.5 11.6 15.3

Gobi Desert 30.4 41.2 14.0 39.0 −2.8 28.2 14.1 20.6
Sandy desert 22.9 35.7 13.3 29.2 −5.2 24.6 13.2 20.5
Desert steppe 31.2 43.5 14.5 36.0 −7.1 27.5 14.8 23.8

Village 28.2 32.3 25.7 25.2 23.1 30.0 18.9 31.1
Wetland 4.9 17.5 15.8 14.9 −3.3 28.3 10.2 31.9

H: Sensible heat flux; λET: Latent heat flux; Bias: Mean difference between modeled and observed heat fluxes;
MAE: Mean absolute bias error; MAP: The MAE divided by the observed flux; RMSE: Root-mean-square error.

The instantaneous sensible heat flux observations at satellite overpass times were compared with
the sensible heat flux values estimated by MPDI-integrated SEBS, using MODIS and ASTER data,
as shown in Figure 4a. The coefficient of determination (R2) was 0.88, indicating a strong correlation
between the modeled and measured values of H. The performance of MPDI-integrated SEBS for H
estimation was good for all land types, with 16.0% of overall MAP (32% in Li et al., 2017). Compared
to an earlier study (Huang et al., 2015), the accuracy of H estimation based on the MPDI-integrated
SEBS model was higher than that based on the original SEBS model, with an RMSE of 34.3 W m−2 and
a Bias of 12.7 W m−2 in the study area (the RMSE and Bias for H were 84.1 W m−2 and −24.9 W m−2,
respectively, in Huang et al., 2015). The difference between the modeled and observed values of H
was large at the village site, with Bias, MAE, RMSE, and MAP values of 28.2 W m−2, 32.3 W m−2,
25.7 W m−2, and 25.2%, respectively. The representativeness of the satellite pixels for the land surface
and vegetation parameters were likely responsible for the large errors at the village site, since the
village had a significant spatial variability with croplands adjacent to the village site.

A comparison between the latent heat flux observed from EC systems, and the values modeled
using the MPDI-integrated SEBS model using MODIS and ASTER data, is shown in Figure 4b.
The coefficient of determination (R2) was 0.90, which indicates a strong correlation between the
modeled and the measured values of λET. Other than the village site, almost all of the modeled values
of λET agree well with the observed values for all land-cover types, with MAP values ranging from
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10% to 15%. Compared to the original SEBS, the overestimation of λET was improved when MPDI
was integrated into SEBS, with an RMSE of 40.0 W m−2, a Bias of −4.8 W m−2, and a MAP of 10.9%,
respectively (an RMSE of 69.4 W m−2, a Bias of 117.8 W m−2, and a MAP of 14% in Huang et al., 2015).
Overall, the MPDI–SEBS integration model tended to outperform the original SEBS model, particularly
in arid and semiarid regions where water is limited.

4.3. Assessing the Performance of the Fusion Approach on Daily ET Retrievals over Heterogeneous Regions

The daily ET estimates by the u-STARFM and the original SEBS were compared with EC
measurements from the 21 observation stations in Figure 5, along with a statistical evaluation listed
in Table 3. Both of the data fusion algorithms successfully predicted ASTER-like daily ET values
from MODIS observations in homogeneous areas such as desert steppe, sandy desert, and the Gobi
Desert (Figure 5a–c). The performances of u-STARFM and STARFM in the prediction of daily ET were
consistent, with scatter points around the 1:1 line. They also had similar values of Bias, MAE, MAP,
and RMSE (e.g., for sandy desert, Bias: 0.04 mm d−1 vs. 0.05 mm d−1; MAE: 0.1 mm d−1 vs. 0.2 mm
d−1; MAP: 13.2% vs. 13.5%; RMSE: 0.2 mm d−1 vs. 0.3 mm d−1). As for the heterogeneous areas,
such as agricultural land and wetland, the predicted daily ET by u-STARFM more closely matched the
actual observations (1:1 line) than that of STARFM (Figure 5d–h). The prediction errors of u-STARFM
were lower than those of STARFM for all the EC sites covered by maize, orchard, vegetables, village,
the Gobi Desert, sandy desert, desert steppe, and wetland, with lower MAP and RMSE (Table 3). Taking
the maize plots for example, the RMSE and MAP decreased by 0.6 mm d−1 and 5.3%, respectively.
When the unmixed fraction data took place of the directly resampled MODIS data for STARFM, the
synthetic ASTER-like daily ET values had a higher accuracy than STARFM, with the overall MAP value
of 12.9% vs. 17.2%. This was due to the fact that the unmixed fraction data as basis for u-STARFM
were able to incorporate prior heterogeneity information, whereas the resampled MODIS data only
offer the STARM uniform spot without reflecting the heterogeneous land cover. Overall, the modified
STARFM had better performance than the STARFM in predicting high-resolution daily ET, particularly
in heterogeneous areas.

Table 3. The statistical differences between the fused daily ET values, modeled by u-STARFM and
STARFM, and the observed daily ET values.

Cover Type

u-STARFM STARFM

Bias MAE MAP RMSE Bias MAE MAP RMSE

(mm d−1) (mm d−1) (%) (mm d−1) (mm d−1) (mm d−1) (%) (mm d−1)

Maize 0.4 0.5 12.5 0.8 −0.6 0.8 17.8 1.4
Orchard −0.5 0.8 14.0 0.9 0.2 1.0 19.1 1.2

Vegetable −0.4 0.6 12.6 0.7 −0.1 0.9 17.5 1.1
Gobi Desert −0.05 0.2 13.7 0.2 0.02 0.3 14.1 0.3
Sandy desert 0.04 0.1 13.2 0.2 0.05 0.2 13.5 0.3
Desert steppe −0.03 0.1 12.6 0.2 −0.04 0.1 12.1 0.2

Village 0.3 0.8 20.4 1.0 −0.2 0.9 21.8 1.1
Wetland −0.2 0.4 9.8 0.5 −0.1 0.6 12.0 0.6
Overall 0.3 0.5 12.9 0.7 −0.4 0.7 17.2 1.2
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Figure 5. Scatter plots of observed and simulated daily ET, by u-STARFM (blue dots) and STARFM
(black dots), for the Gobi Desert (a); desert steppe (b); sandy desert (c); wetland (d); village (e);
vegetable (f); orchard (g); and maize (h).

4.4. Spatial Patterns in Daily ET

The synthetic image at ASTER spatial resolution was simulated by one pair of adjacent MODIS
and ASTER images for the base date, and one MODIS image for the simulated date. The data fusion
model used the temporally-closest image base pair for the predictions. For example, the synthetic
ET images from 15 June (DOY 167), shown in Figure 6, were computed with input image pairs from
30 May (DOY 151), as well as the MODIS image acquired on 15 June. The synthetic ET images from
2 August (DOY 215), shown in Figure 8, were computed with input image pairs from 10 July (DOY
192), as well as the MODIS image acquired on 2 August. The performance was assessed by the ASTER
ET images from 15 June and 2 August. The mean and standard deviation (stdv.) of the daily ET values
are also marked. The mean represents the average strength of ET, and the standard deviation illustrates
the degree of the spatial variability of ET values in the study region.
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Figure 6 and Figure 8 show the prediction results in comparison with the inputs for: (a) MODIS ET
image; (b) unmixed MODIS ET image; (c) ASTER ET image; (d) predicted ET image based on STARFM;
and (e) predicted ET image based on u-STARFM, on 15 June and 2 August, respectively. The theoretical
basis of the algorithms caused STARFM and u-STARFM to produce ASTER-like ET values, and caused
the unmixing-based method to produce MODIS-like ET values. MODIS ET values remained relatively
high and had a uniform spatial ET distribution with a high mean value (15 June: 4.2 mm d−1; 2 August:
5.6 mm d−1) and low standard deviation (15 June: 1.4 mm d−1; 2 August: 1.7 mm d−1). However, the
unmixed MODIS ET provided relatively more spatial details, and mainly retained the characteristics
of the MODIS image (e.g., mean value: 4.2 mm d−1 vs. 3.9 mm d−1; stdv.: 1.4 mm d−1 vs 1.6 mm d−1,
on 15 June). The STARFM and u-STARFM algorithms accurately preserved most of the fine spatial
detail in the ASTER ET maps (i.e., stdv. for STARFM: 1.8 mm d−1 vs. 2.3 mm d−1; stdv. for u-STARFM:
2.1 mm d−1 vs. 2.3 mm d−1). Compared to STARFM, the prediction of u-STARFM had a closer value
to that of ASTER. The frequency of the difference between the predicted ASTER-like LST obtained
from the u-STARFM and ASTER ET values distributed in (−1, 1) was highest (Figure 7). Although
there was a larger time span for the predicted date of 2 August, the prediction of u-STARFM was also
able to describe the detailed ET information (mean: 4.8 mm d−1 vs 4.9 mm d−1; stdv.: 2.4 mm d−1

vs. 2.8 mm d−1) (Figure 8). Most of the difference, on 2 August, between the predicted ASTER-like
ET values based on the u-STARFM and the ASTER ET values, ranged from −1 mm d−1 to 1 mm d−1

(Figure 9d). The results of the fused ET indicate that u-STARFM can correctly predict the daily ET
values of small objects.

Figure 6. Spatial pattern, magnified view, and frequency distribution of ET maps, on 15 June, from:
(a) MODIS; (b) unmixing method; (c) ASTER; (d) fusion using STARFM; and (e) u-STARFM model.
Field boundaries were overlaid to compare inter- and intra-field variability in ET.
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Figure 7. Histograms for: (a) MODIS ET and ASTER ET; (b) unmixing ET; (c) ASTER-like ET based
on the STARFM model and ASTER ET; and (d) ASTER-like ET based on the u-STARFM model and
ASTER ET, on 15 June.

Figure 8. Spatial pattern, magnified view and frequency distribution of ET maps, on 2 August, from:
(a) MODIS; (b) unmixing; (c) ASTER; (d) fusion using the STARFM model; and (e) fusion using the
u-STARFM model. Field boundaries were overlaid to compare inter- and intra-field variability in ET.
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Figure 9. Histograms for: (a) MODIS ET and ASTER ET; (b) unmixing ET; (c) ASTER-like ET based
on the STARFM model and ASTER ET; and (d) ASTER-like ET based on the u-STARFM model and
ASTER ET, on 2 August.

The synthetic ASTER-like ET values based on u-STARFM also demonstrated that the spatial ET
patterns in the agricultural fields over the course of the growing season were varied and complex,
which could be the result of different crop types, irrigation practices, or soil characteristics, such as
texture and water holding capacity. As is shown in the magnified views in Figures 6 and 8, ET was
distributed relatively non-uniformly over the area. On 15 June, maize (i.e., stations #12, #13, #15,
and #16) was in the tillering or jointing stage, with a mean LAI < 2, and the ET of maize was relatively
low at around 3 mm d−1, whereas orchard (i.e., #17), with a LAI > 3, had higher ET values of around
5mm d−1. When all the crops were in the vigorous growth stage, on 2 August, with LAI > 5, ET was
relatively uniformly distributed over the study area, with high ET values (ET > 5 mm d−1) when the
background crops were in the vigorous growth stage.

4.5. Temporal Patterns in Daily ET

Both the ASTER and synthetic ASTER-like daily ET streams were gap-filled to be continuous
using a cubic spline interpolation. All ASTER-like results were compared with the observed ET
in Figure 10. The results indicate that a good agreement was obtained between interpolated daily
ET and observed daily ET, with RMSE, MAE, and MAP of 0.8 mm d−1, 1.1 mm d−1, and 13.4%,
respectively. Figure 11 shows the temporal variation of ASTER-only and ASTER-like results at each of
the eight flux tower sites. Clearly, ASTER, with a revisit period of 7–16 days, could hardly capture
the temporal variation of daily ET values and was expected to result in large uncertainties. The role
played by the MODIS ET in guiding the temporal interpolation of daily ET values between ASTER
overpasses was evident from the fused time series. The complete time series of ASTER-like ET
estimates generally produced reasonably accurate ET trends for all land-cover types. The day-to-day
fluctuations in the ET data stream emphasized the detailed behavior of water stress, crop growth
dynamics, and meteorological conditions at the different sites. For the sparsely vegetated sites (i.e.,
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the Gobi Desert, sandy desert, and desert steppe), ET values were less than 1 mm d−1, except for
on rainy days. Additionally, the sporadic peaks of daily ET always occurred after rainfall events at
these three sites, since the proportion of evaporation from bare soil was high. The fluctuations of
daily ET values in vegetated areas covered by maize, vegetables, orchard, wetland, and village were
clearly highly complex. Figure 6a–e highlights some significant differences among these sites for
different vegetated surfaces, where the individual effects of soil evaporation, soil moisture storage,
stomatal regulation, transpiration, and interception storage were all implicitly incorporated into the
resulting surface evapotranspiration [52]. The u-STARFM is better able to capture the response of ET
to rainfall and irrigation events. Spikes in ET usually occurred after rainfall or on days of irrigation.
When precipitation occurred, the daily values of ET at all sites were relatively low, whereas they were
relatively high after rainfall (DOY 174, 183, 193, 207). Additionally, peaks in ET values always occurred
on days of irrigation (DOY 176, 205, 223, 238).

Figure 10. A comparison of the continuous daily ET by interpolation and observed daily ET.
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Figure 11. Time series of observed ET (blue dots), daily ET estimates from u-STARFM (red line with
dots), and ASTER ET (black pentagram and line) from May to September, 2012. Rainfall and irrigation
events are shown as blue and grey bars, respectively.

5. Conclusions

Measurements of continuous daily evapotranspiration (ET) at the field-scale are of substantial
benefit for agricultural water management worldwide. The current lack of concurrent high spatial-
and temporal-resolution remote sensing (RS) data significantly limits the applicability of RS-based
methodologies. We proposed a data fusion framework for predicting continuous daily ET values at
the field-scale by optimally exploiting the combined datasets of MODIS and ASTER. The STARFM
algorithm, which was devised for producing Landsat surface reflectance time series, was modified and
improved using a linear unmixing method (u-STARFM) for generating continuous daily ET estimates
at the field-scale for heterogenous agricultural areas. In this study, an experiment was performed
from July to September, 2012, in the middle reaches of the Heihe River Basin, Northwest China.
Compared with the observed flux data, the synthetic fine-resolution daily ET estimates produced
by the u-STARFM model had higher accuracies than those produced by STARFM, especially for
heterogeneous agricultural areas.

Although the applications of data fusion to ET products from different satellite sensors is not
straightforward, previous research has emphasized the potential advantages of STARFM for generating
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daily ET products with a high spatial and temporal resolution. However, STARFM often relies on the
existence of “homogeneous” pixels at both fine- and coarse-resolution, which is more problematic
for ET estimation than for reflectance or vegetation indices. The u-STARFM model presents several
improvements over previous models. The most significant improvement is the ability to unmix
coarse-resolution MODIS ET maps based on the abundance of land-cover types, and to replace
the resampled MODIS ET values in the STARFM. The unmixed fraction of the unmixing data,
which incorporates prior information about the MODIS ET values of each endmember in heterogeneous
areas, can increase the probability of searching the “homogeneous” pixels and guarantee fusion
accuracy. And the u-STARFM tends to outperform the original STARFM in irrigated heterogeneous
agricultural areas, with overall MAP of 12.9% vs. 17.2%. Although many agricultural lands are smaller
than one MODIS pixel, u-STARFM can adjust the daily ET changes of mixed MODIS pixels to the
changes of internal ASTER pixels. Secondly, the land cover data was used as auxiliary information
for the selection of similar pixels, which allowed more accurate similar pixels to be obtained. Thirdly,
unlike ESTARFM, which requires at least two pairs of fine- and coarse-resolution images acquired on
the same day, the u-STARFM needs just one input pair. Accordingly, in some cloudy regions, where it is
difficult to acquire two high-quality input pairs simultaneously, u-STARFM may be more appropriate.

It should be noted that u-STARFM also contains a few limitations and constraints. Firstly,
it assumes that the land-cover type is unchanged during the predicted period. Similar to STARFM
and ESTARFM, u-STARFM cannot accurately predict transient changes that are not recorded in any of
the base fine-resolution images. Therefore, combining u-STARFM with the STAARCH algorithm may
be a feasible approach. Secondly, the size of the sliding window plays an important role in searching
for similar pixels, and directly affects their weight distribution. The determination of sliding window
size is not strictly regulated in the u-STARFM, being defined with an empirical or semi-quantitative
method. Different study areas may require setting up different values, and it is necessary to perform a
sensitivity analysis of different window sizes before the modeling.

In conclusion, u-STARFM improved the capability for producing daily ET products with
both high-spatial resolution and frequent coverage from multi-source satellite data, which capture
field-to-field variability in water usage. This information, if generated operationally, could be of utility
for irrigation managers at the scale of individual fields, as well as for the regional monitoring of water
use toward allocation and conservation efforts. Although the current study applied data fusion to
ASTER and MODIS images, the techniques described here could be easily applied to other sensors.
Further research could continue to analyze algorithm performance in various situations.
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Abstract: Computing evapotranspiration (ET) with satellite-based energy balance models such as
METRIC (Mapping EvapoTranspiration at high Resolution with Internalized Calibration) requires
internal calibration of sensible heat flux using anchor pixels (“hot” and “cold” pixels). Despite the
development of automated anchor pixel selection methods that classify a pool of candidate pixels
using the amount of vegetation (normalized difference vegetation index, NDVI) and surface
temperature (Ts), final pixel selection still relies heavily on operator experience. Yet, differences
in final ET estimates resulting from subjectivity in selecting the final “hot” and “cold” pixel pair
(from within the candidate pixel pool) have not yet been investigated. This is likely because surface
properties of these candidate pixels, as quantified by NDVI and surface temperature, are generally
assumed to have low variability that can be attributed to random noise. In this study, we test the
assumption of low variability by first applying an automated calibration pixel selection process
to 42 nearly cloud-free Landsat images of the San Joaquin area in California taken between 2013
and 2015. We then compute Ts (vertical near-surface temperature differences) vs. Ts relationships
at all pixels that could potentially be used for model calibration in order to explore ET variance
between the results from multiple calibration schemes where NDVI and Ts variability is intrinsically
negligible. Our results show significant variability in ET (ranging from 5% to 20%) and a high—and
statistically consistent—variability in dT values, indicating that there are additional surface properties
affecting the calibration process not captured when using only NDVI and Ts. Our findings further
highlight the potential for calibration improvements by showing that the dT vs. Ts calibration
relationship between the cold anchor pixel (with lowest dT) and the hot anchor pixel (with highest
dT) consistently provides the best daily ET estimates. This approach of quantifying ET variability
based on candidate pixel selection and the accompanying results illustrate an approach to quantify
the biases inadvertently introduced by user subjectivity and can be used to inform improvements on
model usability and performance.

Keywords: remote sensing; surface energy balance model; calibration; METRIC; Google Earth Engine

1. Introduction

Evapotranspiration (ET) is an essential part of any hydrologic investigation as it represents
the flux of water between soils, plants, and biosphere [1]. Since 75% of the world’s freshwater
withdrawals support agriculture [2], estimating ET as consumptive use accurately over a watershed is
crucial for efficient water resources planning [3]. ET can be assessed at different scales of observation
with multiple approaches and methods [4] such as the field-scale water balance approach using
weighing lysimeter [5], the field-scale energy balance approach using the Eddy Covariance (EC)
technique [6] and scintillometers [7], and the leaf- or plant-scale energy balance approach using
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Sap-flow techniques [8]. These methods vary in size of effective area measured, cost, complexity,
and accuracy. However, the footprint of field ET measured by these methods is smaller than the
watershed area, usually by orders of magnitude, which often creates significant discrepancies in
ET estimates at spatial scales larger than plot or field scales [9]. Most commonly, ET over an
agricultural region is measured by multiplying a weather-based estimate of reference ET by crop
coefficients (which can vary with crop type and crop growth stage) [10]. This method of estimating
ET is popular since it can be applied with ease. However, since crop growth and vegetative
stage can vary significantly even for the same crop in a watershed due to spatial variability in
soil, fertilization and irrigation practice, slope, basin orientation, temperature, and numerous other
factors [11], this method of estimating watershed ET requires multiple assumptions and increases
uncertainty in the results. Uncertainties can propagate directly or indirectly (i.e., through additional
hydrologic models) into decision-making processes of water right managers, water resource planners,
ecologists, and researchers, potentially causing issues such as inaccurate allocation of water rights,
higher redundancies or deficiencies in water infrastructure, and inaccurate estimates of ecological
flows [12–14].

To overcome these problems, remotely sensed data have been used in conjunction with surface
energy balance models to estimate ET [15]. Of the many surface-energy-balance-based remote
sensing models available, this work uses the Mapping EvapoTranspiration at high Resolution using
Internalized Calibration (METRIC) model since it was specifically designed for agricultural areas and
parameterized according to the factors most relevant to the characteristics of our study area. It was also
chosen since it uses freely available Landsat satellite imageries that are taken every 16 days, thereby
capturing the vegetation growth stages within a watershed.

ET is estimated in METRIC by taking the energy consumed by the ET process as a residual of
the surface energy balance equation [16]. This energy is called latent heat flux (LE) [W/m2] and is
represented by

LE = Rn − G − H (1)

where the net radiation, Rn, is the balance of all incoming and outgoing short-wave and long-wave
radiation [W/m2], G is the soil heat flux [W/m2], and H is the sensible heat flux [W/m2].

Although METRIC has been proven to be a powerful tool in estimating evapotranspiration
for larger areas, the accuracy and final results depend on user selection of parameters, submodels
for calculation of components in energy balance, and calibration pixels [16]. Acknowledging
this, Allen et al. [17] states that anchor pixel selection used in the calibration process
(called CIMEC—Calibration using Inverse Modeling at Extreme Conditions) can correct for lingering
biases in parameter selection associated with estimation of albedo, atmospheric correction, land surface
temperature, emissivity, soil heat flux, and net radiation. This makes calibration of METRIC one of
the most important steps in obtaining accurate ET estimates. The calibration process in METRIC
requires identifying a “hot” and “cold” anchor pixel pair based on extreme conditions within a
given image. In such an image, a well-irrigated pixel with maximum possible evapotranspiration
is considered to be “cold”, and a dry field with almost no evapotranspiration is “hot”. Selecting
these pixels, however, requires careful consideration of properties other than surface temperature
(Ts), including normalized difference vegetation index (NDVI), surface albedo, and land use type.
In the past, calibration pixel selection was completely dependent on expert judgement, but researchers
have recently begun creating processes to automatically identify a subset of pixels from which the
final selection is made [18,19]. Although METRIC has been used by water resource managers for a
variety of applications such as water rights management, water allocation, and estimation of water
yield, the need for expert judgement in the calibration process makes METRIC a complicated tool for
operational use. A calibration process that facilitates a completely automatic application of METRIC
would significantly expand its use as an operational model rather than primarily as a research tool.

One of these automatic pixel selection algorithms, a statistics-based procedure by Allen et al. [19],
simplifies the techniques traditionally requiring extensive knowledge of remote sensing processes and
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vegetation indices. Although their procedure significantly reduces the number of potential anchor
pixels, the final pair must still be selected using expert judgement. Furthermore, while the METRIC
model itself has been validated (e.g., Bhattarai et al. [20] using a process similar to the procedure
explained in Allen et al. [19]), no attempt has been made to evaluate ET results from the model
calibrated using pixels from automated calibration. Rather, previous evaluations of the automated
calibration pixel selection processes [18,19] have only compared the temperature of the anchor pixels
selected by an expert to the temperature of the pixels selected by the algorithm.

A study by Morton et al. [21] has, to a certain extent, evaluated calibration uncertainty in METRIC
ET results by applying a calibration process similar to that used by Allen et al. [19], and concluded that
automatic calibration processes can produce ET estimates very similar to time-intensive manual efforts.
Morton’s study used a distribution of reference ET fraction (ETrF) computed for the specific study area
using METRIC results from five trained users. Although Morton’s method would help in automating the
calibration of METRIC, two major limitations prevent the uptake of the method by a general METRIC user:
(1) it involves a computationally intensive procedure (Monte Carlo simulation), and (2) it requires a generic
cumulative distribution function (CDF) of ETrF for the study regions (which is usually lacking).

In this paper, with an objective of estimating the calibration variability in METRIC ET, we examine
the properties of anchor pixels selected by automatic procedures and identify additional properties
other than NDVI and Ts that affect calibration processes. To do so, five sets of calibration pixel
pairs, encompassing all possible combinations, were prepared using all available calibration pixel sets.
These calibration sets were then used to find the variation in ET. Previous studies suggest that, based on
the nature of the automatic calibration pixel selection process, only small and random variations of
final ET should occur when using this approach. However, our results indicated significant spatial
differences in ET across the study area. Furthermore, one of the five sets we investigated provided
consistently better results across multiple years, showing that NDVI and surface temperature alone
do not capture all relevant surface properties required for the calibration pixel selection process.
These results will be useful in operational aspects of METRIC calibration, allowing the user to be aware
of the variability in ET results caused by calibration pixel selection.

2. Materials and Methods

2.1. Study Area

This study focused on an agricultural area in San Joaquin—Sacramento River Delta area (Figure 1 and
Table 1). A U.S. AmeriFlux site with an EC flux tower in the area was used to compare and quantify the
variability in ET due to the calibration pixel selection process in METRIC. The farm plot (Twitchell Alfalfa)
has been used to farm alfalfa, with crop rotation occurring every 5–6 years. The alfalfa at the site is
harvested by mowing and bailing several times per year and is irrigated periodically by flooding ditches
around the field [22]. Based on the recommended procedure developed by Allen et al. [19], we selected
calibration pixels from a study area within a 30 km radius around the available weather station (Figure 1).

Table 1. Description of sites used in this study.

Site Descriptors Twitchell Island 140 US-Tw3

Latitude (N) 38.1217 38.1159
Longitude (W) 121.6745 121.6467
Elevation (m) 0 −9

Cover type Large Pasture Alfalfa
Data availability period 1998–current 2013–2015

Mean Annual temperature (◦C) 15 15
Mean Annual precipitation (mm) 382 421

Temporal resolution provided at (min) 60 30
Source of data CIMIS Baldocchi 1

1 http://dx.doi.org/10.17190/AMF/1246149 (last assessed: 10 Octobe 2017).
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Figure 1. Location of study area with AmeriFlux site and nearby California Irrigation Management
Irrigation System (CIMIS) weather station in California. A Red Green Blue (RGB) Landsat 8 image for
24 July 2014 is clipped and overlaid over the study area.

2.1.1. Measured ET Data

An Eddy Covariance (EC) system with GILL WM 1590 sonic anemometers and a LICOR LI-7500A
CO2/H2O gas analyzer was used at the flux site. Daily flux data from this site was postprocessed
and provided as 30 min average datasets [23]. The EC instruments were mounted at a height of 2.8 m
above the ground.

2.1.2. Landsat Images

We performed our analysis with Landsat images since this allows ET to be mapped at field scales.
Additionally, ET measured using an EC tower has a fetch of about 100 times [24] the station height,
so METRIC results using Landsat will give an accurate representation of the area around the station.

We used all available nearly cloud-free Landsat 7 (With Enhanced Thematic Mapper Plus or
ETM+ sensor) and Landsat 8 (with Operational Land Imager or OLI sensor) images covering the
station within the ET measurement period (Table 2). Even though the satellite images are captured
using different sensors, Kilic et al. [25] did not find significant differences in NDVI and ETrF computed
from these imageries. Therefore, we did not treat these images differently in our study. The cloud
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mask created using the CFMask algorithm [26], provided within the Landsat Collection 1 Level-1
Quality Assessment (QA) band, was used to determine cloudy pixels. Only images with less than
20% cloud coverage (by area) were used. To remove cloudy images not identified by CFMask and
QA bands, the weather station and validation site location in these images were visually inspected
using a contrast enhancement function provided by Google Earth Engine (GEE) [27] (see Section 2.3).
This function uses a Styled Layer Descriptor (SLD) to render red, green, and blue bands that produce
images with equal brightness levels. Rather than download Landsat imageries, we used GEE to access
and analyze Landsat data from the public catalog GEE provides.

Table 2. List of Landsat images used in this study. Path/row of the image was 044/033.

YearMonthDay
(YYYYMMDD)

Area Cloud Covered (%)
YearMonthDay
(YYYYMMDD)

Area Cloud Covered (%)

2013

Landsat 7 Landsat 8

20130713 2% 20130603 5%
20130729 4% 20130619 4%
20130814 2% 20130705 7%
20130830 3% 20130721 7%
20130915 3% 20130822 7%
20131001 2% 20130907 7%
20131017 3% 20130923 7%

20131009 7%
20131025 8%

2014

Landsat 7 Landsat 8

20140614 4% 20140505 13%
20141004 2% 20140606 9%

20140622 7%
20140724 7%
20140809 7%
20140825 9%
20141012 8%

2015

Landsat 7 Landsat 8

20150414 2% 20150422 8%
20150430 2% 20150508 12%
20150516 3% 20150524 8%
20150703 4% 20150625 8%
20150719 5% 20150711 7%
20150820 2% 20150727 7%
20150905 2% 20150812 7%
20150921 3% 20151031 8%
20151007 3%

2.1.3. Weather Data

Freely available hourly meteorological data from the California Irrigation Management
Information System (CIMIS) (last accessed 17/11/2017) was used for this study. Specifically, we used
CIMIS Station Number 140 (Twitchell Island) in Sacramento, CA since this is the only site that has data
for the complete study period.
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2.1.4. Land Cover Data

Land cover data available in the GEE catalog from the USGS National Land Cover Database
2011 were used to identify the agricultural land use pixels and pasture land use pixels required for
this study.

2.2. METRIC Model

METRIC is a satellite-based image processing model that computes ET as the residual of energy
balance as given in Equation (1) above. METRIC first computes available energy as (Rn − G), which is
then divided into LE and H. In our work, the components of energy balance needed to compute Rn

were estimated using the formulations provided in Allen et al. [16] and Allen et al. [17]. In these
studies, the formulations have been provided in detail for Landsat 5 and 7. However, since we also
included Landsat 8 for our studies, there were a few components which we had to formulate using
related newer studies.

These components include surface albedo, α, which was computed for Landsat 8 using weighing
coefficients based on Ke et al. [28]. They used the Simple Model of Atmospheric Radiative Transfer
of Sunshine (SMARTS) radiative transfer model to determine the weighing coefficients for Landsat
8 OLI sensors. This is similar to the procedure used in Tasumi et al. [29] to compute surface albedo
for Landsat 5 TM and Landsat 7 ETM+ sensors. Due to the consistency between the two methods of
calculating albedo using weights for each band of similar wavelengths across different satellite sensors,
significant biases in the reflected solar radiation were not introduced into the model [30].

Surface temperature was computed based on the single channel method outlined in
Sobrino et al. [31] for Landsat 5, Jimenez-Munoz et al. [32] for Landsat 7, and Yu et al. [33] for Landsat 8.
Of the two bands in Landsat 7 that can be used to compute radiometric surface temperature, we used
the high gain band (VCID_2) since our analysis required better estimates of temperature for vegetated
areas. Similarly, from the two Thermal Infrared Sensor (TIRS) bands of Landsat 8, band 10 was used
since band 11 is known to have larger calibration uncertainty [34]. In addition to thermal bands,
this method requires land surface emissivity (ε) and water vapor content (w) to compute surface
temperature. Water vapor content (w) was used from the weather station data and emissivity (ε) was
computed using the NDVI threshold method.

The remaining components of energy balance for the model were computed using Allen et al. [17].
Of the multiple soil heat flux relationships available, our study used the following relation which uses
net radiation (Rn) to compute soil heat flux [16,35,36]:

G
Rn

= (Ts − 273.15)(0.0038 + 0.0074 α)
(

1 − 0.98 NDVI4
)

. (2)

Sensible heat flux (H), which is one of the key components of METRIC, is estimated using a
one-dimensional bulk aerodynamic temperature-gradient-based method as

H =
ρ cpdT
rah 1,2

(3)

where ρ is the air density (kg/m3), cp is the air specific heat at constant pressure (J/kg K), rah1,2 is
the aerodynamic resistance (s/m) between two heights Z1 and Z2 above the zero-plane displacement
height of vegetation (zom) where endpoints of dT are defined, and dT is the vertical near-surface
temperature difference (K). The near-surface heights Z1 and Z2 are assumed to be 0.1 m and 2 m above
the zero-plane displacement height (zom).

The value of rah1,2 is calculated using wind speed extrapolated from some blending height
above the ground surface (typically 200 m) and using an iterative stability correction scheme based
on Monin–Obhukhov functions [37,38]. An iterative solution is needed because this aerodynamic
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resistance (rah1,2) is influenced by the buoyancy caused by surface heating which is driven in turn by
the sensible heat Flux (H), and both rah1,2 and H are unknown at a given pixel.

The parameter dT, which is the difference in temperature at two near-surface heights (usually
Tz1 = 0.1 + zom and Tz2 = 2.0 + zom), is difficult to compute directly because the temperatures at these
two levels estimated from satellite sensors will have uncertainties greater than their differences [16].
To overcome this issue, METRIC uses an approach developed by Bastiaanssen [35] that approximates
dT as a linear function of Ts given by

dT = a + bTs (4)

where a and b are regression coefficients. These coefficients are determined using a procedure that
first selects two extreme condition pixels in the image, one which represents maximum LE (cold pixel)
and the other which represents minimum or zero LE (hot pixel), then implements Equations (1) and
(3) on these pixels. Bastiaanssen [39] assumed that, at a cold pixel, all available energy is used up for
latent heating, so H ≈ 0. At a hot pixel, conversely, all available energy is used up for sensible heat flux,
so LE ≈ 0. For the METRIC application, it is assumed that the latent heat flux corresponds to the ET
value that is 5% more than the ASCE (American Society of Civil Engineers) standardized alfalfa-based
reference ET at a selected cold pixel. Similarly, it is assumed that, at a selected hot pixel, the latent heat
flux corresponds to the ET value that is bare soil ET due to prior precipitation events calculated using
the FAO-56 soil water evapotranspiration model [10,17]. An iterative solution approach is then applied
at these two “anchor” pixel locations to determine dT and, subsequently, the relationship between dT
and Ts. Readers are referred to Allen et al. [17] for more details on the iterative process.

2.3. Google Earth Engine for METRIC

We used Google Earth Engine (GEE) [27] and the associated Python API to develop and implement
METRIC in an entirely web-based environment that does not require download of any raster data
(Landsat, Digital Elevation Model (DEM), and land use) or use of a personal computational engine.
GEE is a cloud-based geospatial processing platform developed by Google Inc. and combines large
(petabyte scale) storage capabilities, which contain archived remotely sensed imageries, with a
powerful computational infrastructure optimized for parallel processing of large geospatial datasets.
It also supports charting, dynamic mapping, and table/image export features, making it easier to
visualize intermediate results without needing to download anything onto a personal computer.
Additionally, most of the GEE’s algorithms use per-pixel algebraic functions, making it ideal to apply
irrespective of the region or scale (provided that the data are available for the region).

2.4. Selection of Calibration Pixels

An overview of the modeling process with selection of calibration pixels for this study is presented
in Figure 2. We used the process outlined in Allen et al. [19] and Bhattarai et al. [18] to select the sets of
candidate calibration pixels. The selection of candidate calibration pixels using the method outlined by
Bhattarai et al. [18] provided a smaller subset from within those pixels selected using Allen et al. [19],
because we iteratively increased the window size in small increments for NDVI and Ts as suggested
by the authors. This resulted in a final window size which was much smaller for the former method
than the latter one. Although the selection method outlined by Bhattarai et al. [18] provides a smaller
set of calibration pixels and has been shown to perform with comparable accuracy in the final ET
results when compared to the method used by Allen et al. [19], we used the latter method since our
goal was to understand the variability in dT between candidate pixels due to small variations in Ts

and NDVI. Additionally, the calibration pixel selection process developed by METRIC developers
(i.e., Allen et al. [16]) is considered a standard method and has been recently used in Earth Engine
Evapotranspiration Flux (EEFlux) [40].

The study area for this work was selected following Allen et al. [19] who suggest an area with a
radius of 20–30 km around the weather station to be used for calibration of the model for the given
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image. Since the elevation around our weather station does not change drastically, we assume that the
elevation adjusted temperature, determined using a customized lapse rate (TsDEM), and wind speed
across the terrain [41], which is used for calibration, do not change drastically. Due to the minimal
elevation differences, we used an area with the maximum possible radius of 30 km suggested by
Allen et al. [19]. The corrections for temperature with elevation (TsDEM) and wind speed were, however,
performed for this study using Allen et al. [17] and Allen et al. [41]. If there are significant changes in
elevation which could affect TsDEM or wind speed, the area used for calibration needs to be divided
into regions with similar elevation and climate, and terrain corrections applied.

Figure 2. Methodology for computing variability in Mapping EvapoTranspiration at high Resolution
with Internalized Calibration (METRIC) evapotranspiration (ET) due to calibration pixel selection.

Within the 30 km radius area, we used pixels with land use (LU) classified as Pasture/Hay,
Cultivated Crops, and Grassland (LU codes 81, 82, and 71, respectively). The selected pixels were
filtered as recommended by Allen et. al [19] to eliminate effects of clouds, field edges for thermal
pixels, and Ts vs. NDVI relationships. For homogeneity in the thermal pixels, we filtered the image
using a 7 × 7 pixel cluster and rejected any pixels having a standard deviation greater than 1.5 K,
as recommended by Bhattarai et al. [18]. Similarly, to avoid too much variation in NDVI within
calibration polygons, we rejected pixels with coefficients of variation (Standard Deviation/Mean)
greater than 0.15 (per [19]). Some images had clouds not identified by the F-mask algorithm in QA
bands; these were manually delineated before calibration.

2.4.1. Hot and Cold Pixel Set Identification

Allen et al. [19] states that a cold pixel candidate can been found to lie in the coolest, most
vegetated 1% of areas within the image (the coldest 20% of the 5% highest vegetated pixels). Similarly,
a hot pixel candidate can been found to lie in the hottest, least vegetated 2% of the image (the warmest
20% of the 10% lowest pixels). So, we followed Allen et al. [19], which has been used successfully
for finding calibration pixels, so that the method of the calibration pixel selection process would
be consistent with other similar applications of METRIC [21,42]. Additionally, since the model is
used for estimating consumptive use in agricultural watersheds, we assume that there will be ample
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agricultural pixels during the growing season other than dry bare pixels, so a larger subset of hot
pixels was selected than of cold pixels for our analysis.

To identify cold pixels, the pixels with top 5% NDVI were first isolated. From these pixels, those with
the lowest 20% of Ts were further selected. This provided a sample of 1% of the coldest pixels having
the highest NDVI and lowest temperature. From this 1% set, the cold pixels were then chosen to be
within ±0.2 K of the average temperature and within ± 0.02 of the albedo threshold calculated using the
equation provided in Allen et al. [19], which was parameterized for Southern Idaho, as follows:

α = 0.001343 β + 0.3281 exp(−0.0188 β) (5)

where α is the albedo threshold and β is the sun angle above the horizon.
Computing the albedo threshold using Equation (5) resulted in most of the cold pixel albedo

values falling between 0.18 and 0.25, which is within the suggested range of albedo for a representative
reference alfalfa (0.23). Also, since the study was performed during growing seasons with higher β

values, we did not change the parameters of Equation (5).
Like NDVI, the Soil Adjusted Vegetation Index (SAVI) [43] is another common vegetation index

that provides useful information on vegetation growth. However, since NDVI has a more linear
means of specifying the reference ET fraction compared to SAVI [19], we only used NDVI during the
calibration pixel selection process. To verify this assumption, SAVI values were calculated for both cold
and hot candidate pixels. The distributions of these values are shown in the Supplementary Materials
section of this paper (Figure S1). The horizontal line where SAVI equals 0.69 indicates when Leaf Area
Index (LAI) becomes “saturated” (LAI ≥ 6.0). Above this, the leaf area does not vary significantly.
In Figure S1, we note that SAVI values can exceed the full LAI conditions. However, ETrF and crop
coefficients (Kc) tend to reach maximum values near full-cover conditions, same as the NDVI [44].
Thus, in this case, NDVI was the correct choice for the cold pixel selection process.

To identify hot pixels, the lowest 10% NDVI pixels isolated from the candidate pixels were first
selected. From these, the hottest 20% of Ts pixels were then selected. This provided a sample of 2% of
the hottest pixels with lowest NDVI from the candidate pixels. Hot pixels within ±0.2 K of the average
temperature were then chosen from this 2% set. The reference ETrF for this pixel was then computed
using ETrFbare from the water balance model provided in FAO-56 [10]. Hot pixels were selected from
regions of homogenous agricultural land use having bare soil conditions and, therefore, low values
of NDVI. Bare soil pixels in some cases have vegetation residue but still have low NDVI values [45].
These pixels with organic cover need to be removed from the calibration set because the insulation
provided by this cover can reduce soil heat flux (G) which may not be accurately captured by the
relationship developed to estimate G in our study. Some of these low NDVI pixels with vegetative
cover have higher albedo values than dry bare soil [46]. So, to remove pixels with organic cover within
our hot candidate calibration pixel set, we removed hot pixels which had albedo values higher than
0.30~0.35 [19]. The sets of hot and cold pixels were then used to determine the dT vs. Ts relation for
calibration of the model.

2.4.2. Determination of the dT vs. Ts Relationship from Selected Candidate Pixels

Values of dT computed from each hot and cold pixel selected from the step above were used to
plot dT vs. Ts and identify the variations possible in calibration relations. Five sets of calibration pixel
pairs were then selected from these possible calibration relations (Figure 3). These were selected so
that the intercept and slope of the calibration line (“a” and “b” from Equation (4)) would encompass
every possible relation within these available sets of calibration pixels.

The first set of calibration pixel pairs consists of a cold pixel with the lowest dT value and a
hot pixel with the lowest dT value (Figure 3). This pair of pixels is referred to as the “Min Min” set
hereafter (minimum cold pixel dT and minimum hot pixel dT). Similarly, the second pair of calibration
pixels consists of a cold pixel which produced the highest dT value and a hot pixel with the highest
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dT value—the “Max Max” set (maximum cold pixel dT and maximum hot pixel dT). The third pair of
calibration pixels consists of the cold pixel from the Min Min set and the hot pixel from the Max Max
set—the “Min Cold Max Hot” set (minimum cold dT and maximum hot dT). Similarly, the fourth set of
pair of calibration pixels consists of the cold pixel from the Max Max set and the hot pixel from the
Min Min set—the “Max Cold Min Hot” set (maximum cold dT and minimum hot dT). The fifth pair of
calibration pixels consists of the closest cold and hot pixels from the weather station—the “Closest” set.

Figure 3. dT vs. Ts relationship for each candidate hot and cold pixel. Five selected sets are drawn as
lines to encompass every possible combination for calibration of the model. (The locations of these
points are shown in Figure 6).

2.5. Determination of Daily ET

These five sets of anchor pixels were used individually to calibrate the model and determine
sensible heat flux (H). The reference ET fraction (ETrF, assumed constant within one day) was then
computed as the ratio of instantaneous ET to reference ET. We did not use sloping terrain corrections
since the study area was mostly level. Daily ET (ET24) was then computed as

ET24 = (ETrF)(ET24). (6)

Five sets of ET24 were computed by calibrating the model with each anchor pixel pair.
An evaluation of the effect of calibration pixel selection on the model was done based on the

model’s ability to accurately predict daily ET values at the flux tower; common model evaluation
criteria such as Pearson’s correlation coefficient squared (r2), Nash–Sutcliffe efficiency (NSE) [47],
Root-Mean-Squared Error (RMSE), and mean percent bias (PBias) [48] were used to evaluate
model performance.

Daily ET values from the flux tower were computed using the 30 min data provided through
US-AmeriFlux (http://ameriflux.lbl.gov/). Data filtering for spikes or instrument malfunctions,
cross wind and humidity correction for the sonic anemometer, and removal of fluxes for low friction
velocity were already performed before data distribution [22].

To correct daily flux data, which had an energy balance closure of ~15%, an energy balance
correction factor was computed using 30 min data having all energy balance components available.
This method of forcing was used in Twine et al. [49]. Since this method assumes that the Bowen ratio
is correct, we first filtered the flux data to remove data close to sunrise and sunset. When net radiation
was less than 50 W/m2, flux values were assumed to be close to sunset and sunrise and were not used
to find the correction factor. The correction factor (CF) is computed for every half hour as

CF =
(Rn_FT − G_FT)
(H_FT + LE_FT)

(7)
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where Rn_FT is the net radiation measured at the flux tower, G_FT is the soil heat flux measured at
the flux tower, H_FT is the sensible heat flux measured at the flux tower, and LE_FT is latent heat flux
measured at the flux tower. Any CF values outside 1.5 times the interquartile range were filtered and a
sliding window of ±15 days was used to compute the median value of CF. These values were first
used to compute the correct LE_FT, which was then used to compute daily ET values. These ET values
were in turn used as data points to evaluate METRIC ET results.

3. Results

3.1. Properties of Candidate Calibration Pixels

Given that METRIC calibration requires two anchor pixels which are usually selected based on the
NDVI and Ts of the image [50], NDVI and Ts values of the candidate hot and cold pixels are expected to
have low variability. Results reflect this, with the coefficient of variation (standard deviation × 100/mean)
of NDVI and Ts of candidate pixels (Figure 4) having low variability across the images used. However,
the variation of available energy within these candidate pixels is significantly greater than the variation of
NDVI and Ts, showing that the calibration process also depends on available energy (Rn − G). Scaling
the relative variability of the three properties between 0 and 1 clearly highlights this difference in the
coefficients of variation (scaled_NDVI, scaled_Ts, and scaled_Available_Energy; Figure 4).

Individual values in the boxplot (Figure 4) show the coefficient of variation in the candidate
pixel set for each image. An example from 24 July 2014 of what a value in this boxplot would denote
is presented in Figure 5. For this date, the coefficient of variation of scaled temperature is 0.3% for
the cold pixel set and 0.4% for the hot pixel set (the least variation compared to NDVI and available
energy). For the same date, the coefficient of variation of scaled NDVI is 1.3% for the cold pixel set and
9.4% for the hot pixel set. Finally, the coefficients of variation of scaled available energy are 20% for
the cold pixel set and 66% for the hot pixel set, both notably higher than for NDVI and Ts. Since the
calibration pixel selection process exclusively uses NDVI and Ts, these variables necessarily have low
variability across all the images, as shown in Figure 4. The figure also clearly illustrates that variability
within hot candidate pixels is generally higher than within cold candidate pixels.

Figure 3 shows that the cold pixel dT ranged from −1.2 ◦C to 0.1 ◦C and hot pixel dT ranged from
3.0 ◦C to 4.9 ◦C for 24 July 2014. The median value of dT was 0.5 ◦C for cold pixels and 4.8 ◦C for hot
pixels across all images.

Figure 5 shows the available energy for pixels which produced maximum and minimum dT values
in the calibration process, as well as the available energy for the closest pixel. Contrary to what might be
expected based on the nature of hot and cold pixels, the pixels with maximum and minimum dT values
among the set of calibration pixels did not precisely correspond respectively to the pixels with highest and
lowest values of available energy; the cold pixel with minimum dT is about 15 W/m2 greater than the
minimum available energy in this case. However, this is only 16% of the total variation in available energy.

Figure 4. Coefficient of variation of scaled values of normalized difference vegetation index (NDVI),
Ts, and Available Energy for hot (red) and cold (blue) pixels for all images.
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Figure 5. Variability in temperature, NDVI, and available energy within candidate anchor pixels
for 24-07-2014.

The location of these sets of calibration pixels from 24 July 2014 is presented in Figure 6, along
with the spatial distribution of NDVI, Ts, and available energy (Rn − G). From this figure, it can
be observed that the image has two distinct regions—a region with less vegetation, higher surface
temperature, and lower available energy (eastern side) and another region with more vegetation,
lower surface temperature, and higher available energy (western side). However, rather than being
concentrated in only these two regions, hot and cold pixels are scattered across the study area. In some
instances, where clouds were not filtered correctly, cold candidate pixels were sometimes concentrated
in areas with clouds and shadows due to lower temperatures around the area. So, each candidate pixel
selection result needs to be manually checked for such errors.

With the automated pixel selection process, there were a total of 47 hot and 38 cold candidate
pixels selected for this day. Manual inspection of these pixels in NDVI, RGB, and Ts images as
suggested by Allen et al. [19] and Bhattarai et al. [18] indicated that any of them could feasibly be
considered an anchor end-member pixel for calibration. That selection would depend subjectively on
the modeler.
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Figure 6. Location of hot and cold calibration pixel sets as polygons (24-07-2014). Inset shows a polygon
from which the cold calibration pixel was selected and has minimum dT.

3.2. Effect of Calibration Pixel Selection on ET

The effect of selecting various calibration pixel sets on ET within the study area was evident as
shown by the variability in ET in Figures 7 and 8. Figure 7 illustrates the spatial variability in daily ET
computed using the sets of calibration pixels for a specific date, while Figure 8 illustrates the frequency
distribution of these ET values. Together, these figures show that, in the study area, highest ET resulted
from the Min Min set (5.8 mm) and lowest ET resulted from the Max Max set (4.5 mm). This was an
expected result since the Min Min set calibrates using a low dT value, which would provide lower
H values and, thus, higher LE and ET values. Similarly, the Max Max set calibrates using higher dT,
which would provide higher H values and, thus, lower LE and ET values. The highest variability was
in the Max Cold Min Hot set with a standard deviation of 2.5 mm, while the least variability was in the
Min Cold Max Hot set with standard deviation of 1.8 mm.

The frequency distribution of these ET maps, along with their means and standard deviations,
is presented in Figure 8. The least variability is observed when the model was calibrated using the
Min Cold Max Hot set with a standard deviation of 1.8 mm, while the highest variability is observed
when the calibration was done using the Max Cold Min Hot set with a standard deviation of 2.5 mm.
The peaks for the Max Max set and the Min Cold Max Hot set occur at approximately 6.5 mm while the
peaks for the Min Min set and the Max Cold Min Hot set occur at approximately 7.5 mm. ET distributions
do not have a discernable scaling or skewing factor according to the calibration sets.
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Figure 7. Spatial variation in daily ET based on various calibration sets.

Figure 8. Frequency distribution of ET for different calibration sets for 2014-07-24. The values in the
legends are, respectively, [Mean, standard deviation].

The range of variability in ET due to calibration pixel selection can be seen through the coefficient
of variation of mean ET values (4% to 20%) computed using different calibration sets, as illustrated in
Figure 9. This figure also shows that variation in ET due to calibration pixel selection is not affected
by antecedent moisture conditions due to rainfall, but variability in ET due to calibration does have an
increasing trend with time within the growing season. This increase in the coefficient of variation could
possibly be attributed to higher variability in lower ET values later in the growing season (Figures 9 and 10).
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Figure 9. Coefficient of variation of mean ET calibrated by four sets of calibration pixels (Min Min,
Max Max, Min Max, and Max Min). Precipitation added to the plot shows that antecedent moisture
conditions did not affect the variability.

Figure 10. Comparison of 24-h ET computed using the selected five calibration schemes with eddy
covariance flux tower data for 2014, 2015, and 2016. With any of these calibration sets, the temporal
pattern of ET over the year is well captured. The line corresponding to “closest” presents results with
the traditional method of anchor pixel selection (closest to the weather station).

3.3. Evaluation of Daily ET Estimates from Different Calibration Sets

Comparisons of modeled results with ET estimated at the flux tower are presented in Table 3
and Figure 10. We selected daily ET for validation since daily values are considered to be more useful
than instantaneous ET, especially for agricultural applications [16]. Additionally, diurnal storage
of heat averages out over daily time scales, which causes better energy balance closure and thus
provides better estimates of ET [51]. The closest set results reflect what the values would be if the
anchor pixel were selected using the traditional method, closest to the weather station, as suggested by
Allen et al. [19] and Bhattarai et al. [18]. Additional results from Table 3 indicate that although r2 is
similar for all the sets for each year, ET computed using the cold pixel that provided the minimum
dT and the hot pixel that provided the maximum dT (the Min Cold Max Hot set) performed the best,
with higher NSE, lower RMSE, and lower Pbias. For the results of 2015, the Min Min set performed as
well as the Min Cold Max Hot set. The worst set for calibration was the Max Max set, which had lower
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r2, lower NSE, higher RMSE, and higher Pbias values. These results also indicate that METRIC overall
underestimated ET, resulting in negative biases for most cases.

At any date in the time series, the difference in ET between the flux tower value and ET from any
of the calibration sets was no more than ~70% (Figure 10), showing that the temporal pattern of ET is
well captured when using any of the calibration sets for computation of ET. The temporal pattern was
better captured for 2013 and 2015 with higher NSE values than 2014.

Table 3. Model evaluation results comparing 24-h ET estimates computed using five different calibration
schemes with measured ET at the AmeriFlux eddy covariance (EC) station. (NSE: Nash–Sutcliffe Efficiency,
RMSE: Root Mean Squared Error).

r2 NSE RMSE (mm) Pbias (%)

2013

Closest 0.78 0.75 0.87 −4.0
Min Min 0.85 0.79 0.80 18.0
Max Max 0.80 0.47 1.28 −25.0

Min Cold Max Hot 0.80 0.75 0.88 −4.0
Max Cold Min Hot 0.82 0.79 0.79 −1.0

2014

Closest 0.83 0.18 0.95 −7.0
Min Min 0.81 0.04 1.03 11.0
Max Max 0.72 −1.13 1.54 −29.0

Min Cold Max Hot 0.74 0.46 0.77 −4.0
Max Cold Min Hot 0.77 −0.82 1.42 −14.0

2015

Closest 0.62 0.44 1.13 −9.0
Min Min 0.68 0.57 0.99 8.0
Max Max 0.63 0.01 1.50 −28.0

Min Cold Max Hot 0.67 0.56 1.00 −9.0
Max Cold Min Hot 0.65 0.41 1.16 −10.0

4. Discussion

4.1. Candidate Calibration Pixel Properties

The variability in ET computed using different sets of anchor pixel pairs shows that there are
properties of candidate calibration pixels that cannot be completely quantified using only NDVI and
Ts. As the candidate pixels have very low variability in Ts for a consistent ET result across the study
area regardless of which candidate pixel pair is chosen, it was expected that the iterative calibration
process would converge to the same dT. Based on suggestions in previous studies, H could be expected
to absorb the biases introduced at earlier steps of the model run. However, our results indicate that not
all candidate pixel pairs converge to the same dT, and the differences in dT at these pixel locations are
large enough to have a significant effect on final ET results. Furthermore, calibration of the model using
a specific dT vs. Ts (Min Cold Max Hot) relation provided consistently better results across multiple
years despite little variation in Ts, and dT values coincide closely with available energy. Therefore,
it can be presumed that the large differences in dT among the candidate pixels were not random noise,
and that the inclusion of available energy into the calibration pixel selection process could potentially
improve the calibration process and provide better estimates of ET.

When comparing properties of candidate pixels, we see that cold pixel sets have lower variability
compared to the hot pixel set, which can be explained by the properties of the study area and the nature
of these extreme pixels. Cold pixels are more readily available than hot pixels because it is easier to
find well-watered agricultural pixels in a region having large areas of irrigated agriculture, since these
have a relatively consistent set of surface conditions. Hot pixels, on the other hand, lie within dry,
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bare agricultural areas with higher Ts, and can have more varied surface conditions [21]. The higher
variability in surface properties of hot candidate pixels leads to higher variability in dT.

The automated calibration processes in previous studies [18,19,21] have used a specific property of
pixels (surface temperature or Ts) to evaluate the performance of the candidate pixel selection process.
However, our study shows that evaluating the automated calibration process using temperature might
not be useful because of the small variation in Ts between candidate pixels. While the evaluation
performed by Bhattarai et al. [18] did compare daily ET to EC flux tower data, the final anchor pixel
selection in their work was based on a temperature window of 0.25 K with an NDVI window of 0.01
from which the closest pixel to weather station was chosen. Based on our analysis, these temperature
and NDVI windows are comparable to the variability within candidate pixels, meaning that ET
variability would not be reduced. As an example, in Figure 5, NDVI variability ranges between
0.05 and 0.07 while Ts variability ranges between 0.1 K and 0.4 K for cold and hot pixels, respectively.
This shows that ET computed with any pixels in the windows specified by Bhattarai et al. [18] should
have similar variability in ET as that shown in our work.

A surface property that affects the calibration process is the actual weather station surface
roughness. Any application of METRIC using past weather data requires us to estimate the surface
roughness of the weather station using remote sensing data. Given the wind speed at a specific known
height and an assumed logarithmic wind profile, this surface roughness is used to approximate the
wind speed at a height 200 m above the ground surface. This predicted wind speed is considered to
be constant throughout the image. Any error in this extrapolation can lead to error in the calibration
process and final ET results.

4.2. Model Performance

Other studies have attempted to investigate the variation in the end-member pixel’s impact on
model accuracy [21,50]. These studies explain that by selecting pixels that have increased (or decreased)
temperature of hot and cold extremes together, the values of evaporative fraction (EF) increase
(or decrease) with similar impact. These studies also explain that varying end-members should not
substantially affect the standard deviation of EF frequency distribution. Yet, as shown in our study,
there were differences not only in total ET, but also in standard deviation when end-members were
varied. Since METRIC’s performance depends strongly on candidate pixel selection, one would
expect differences in model performance with the five calibration pixel sets, and this is indeed what
we observe.

Higher ET values are expected at the lower end of the distribution when calibrated using a cold
pixel with minimum dT and lower ET values are expected at the higher end of the distribution when
calibrated using a hot pixel with maximum dT. However, ET values can vary around the center of the
distribution without discernable differences among results from various calibration sets.

As shown in the results, the model’s performance varied not only with calibration pixel selection,
but also with the analysis year. The poor performance of the model for 2014 could be due to the
error involved with estimating net solar radiation in METRIC, which was inspected using flux tower
data (Figure 11). Other models (e.g., SEBAL or Two Source Energy Balance) which use evaporative
fraction (EF) as the ratio of instantaneous LE to available energy (Rn − G) to compute daily ET might
perform better for conditions when the estimation of net radiation has larger biases. This effect
can be seen in Figure 12, which shows a comparison between instantaneous and daily EF and ETrF
values computed using flux tower energy balance components. The higher r2 value for ETrF than EF
(between instantaneous and daily measurements) shows that instantaneous values of energy balance
components transfer more consistently to daily scales when using ETrF. Consequently, the daily values
of ET are more sensitive to errors in instantaneous values. Gonzalez-Dugo et al. [52] also showed
that for models other than METRIC, use of EF improved the performance of the models as measured
by reduction of the root-mean-squared error and increases in r2 when compared to ETrF. However,
we expect that METRIC, although it does not use EF, performs better for most other cases since it uses

110



Remote Sens. 2018, 10, 1695

ETrF, which can capture advection. Significantly higher precipitation in 2014 than in the other years
(Figures 9 and 13) provides another possible explanation for the poor model performance that year.
This might have caused the adjustment offset (Tfac, which is subtracted from Ts when selecting the hot
pixel) to be erroneous since the relation used for Tfac in our work was developed for a drier location in
Southern Idaho during 2000.

Figure 11. Validation of net radiation for 2014.

Figure 12. Comparison between instantaneous and daily Evaporative Fraction (EF) and Reference
ET fraction (ETrF) computed using flux tower energy balance components. r2 values are presented
in parentheses.
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Figure 13. Total annual precipitation and evapotranspiration for the selected years.

4.3. Use and Limitations of This Approach to Estimate Variability in METRIC Due to Calibration Pixel Selection

The results obtained here suggest that there can be substantial variation in ET values within
calibration pixels when following the techniques outlined in Allen et al. [19]. The process outlined in
our work provides a simple method to estimate variability associated with model calibration. It can
now be more readily used by less experienced users since it requires much less expert intervention and
can allow for quicker analysis using an automated setting. These factors enable its use to compute ET
on an operational basis. Although the computational requirement might be higher with multiple results
of each individual imagery, using a cloud-based platform such as Google Earth Engine significantly
reduces the computational time and storage required.

There are some issues inherent to METRIC that remain challenges for successful application of the
approach. Naturally, the results can only be as good as the model inputs. Another major issue during
the calibration process remains accurately identifying clouds, shadows, and agricultural lands. Cloud
effects were particularly evident when selecting cold pixels, though filtering the clouds through a
7 × 7 filter helped avoid inaccurate identification of cold pixels close to the clouds. Overall, the F-mask
algorithm [26] identified clouds in most images, but some images still needed visual inspection to
identify and delineate the clouds.

Since each pixel property is important for calibration, the accuracy of the final ET results is highly
dependent on accurate agricultural area selection. Although we used USGS National Land Cover
Database (NLCD) 2011 agricultural land data for calibration pixel selection, various classification
algorithms can be used to first identify land cover types then use the classified land cover for calibration
of the model if no land use data is available.

Calibration of METRIC needs a range of pixels having a wide range of evaporative stresses and
assumes that there are areas of dry and of wet pixels. Using the approach outlined, different sets of
calibration pixels could be used for different climactic and ground conditions. As an example, if the
study area received high precipitation, a calibration relationship with lower dT values might perform
better owing to the lowered sensible heat flux.

An appropriate area selection for model calibration is important so that the calibration relation of
dT vs. Ts remains linear. The area should have contrasting hydrologic regions (with highly irrigated
and very dry areas), stable weather conditions, and relatively unchanging topography. For regions
that do not have well-irrigated fields, researchers [50] have suggested using water bodies for selection
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of a cold calibration pixel. However, since the storage term in the energy balance formulation could
have higher uncertainties, extra precaution and further study is needed prior to selecting a water body
as the cold pixel.

Most major limitations of this study are the ones within METRIC. There are other sources of
errors beyond calibration pixel selection, though Allen et al. [17] iterate that accurate calibration can
reduce biases and errors in model. However, since there is no easy, specific method for identifying
the accuracy of the calibration process, we assume that the calibration process reduced biases due to
parameter selection in empirical relations used prior to calibration.

5. Conclusions

This study aimed to provide an approach for measuring the variability of watershed-scale ET
estimates induced by human intervention in the calibration process. To do so, we examined the
effect of anchor pixels on the performance of a satellite-based remote sensing ET model, METRIC.
Differences resulting from anchor pixel set selection were shown to cause markedly different ET results,
and we showed that including available energy when selecting a candidate pixel could improve the
performance of the model. Based on this analysis, we demonstrate that the differences in ET, due to
selection of a set of anchor pixels after the automatic selection process, of candidate pixels can range
between 5% and 20%, based on the coefficient of variation. When compared to ET measurements
from an eddy flux tower, the model’s overall performance was best when the selected cold pixel had
the minimum dT and the selected hot pixel had the maximum dT (from among all candidate pixels).
Using these cold and hot pixels, ET results were more accurate than when using the traditional method
of selecting a set of anchor pixels closest to the weather station (again from within a pool of calibration
pixels). With an increasing volume of satellite image products, it can be expected that the use of models
like METRIC will expand from roles as merely investigative research tools to serving as operational
models for short-term and long-term decision-making. Our work aids in this transition by helping
extend the domain of the model from well-trained modelers and experts to inexperienced and new
users by providing a measure of uncertainty associated with the results. Models like METRIC must be
calibrated for each specific image and being able to calibrate expediently is therefore crucial. With our
study, a variability measure corresponding to selected calibration pixels around a specific weather
station is easier to automate. Since our method of calibration does not strictly depend on closeness to
a weather station, it can be more applicable for automating calibration of METRIC than the method
outlined by Allen et al. [19] for cases when the reference weather station is not present within the image.
It also provides a range of ET results that can be incorporated into uncertainty measures. Together,
these will ultimately allow better water resources planning and management decisions.

Data Statement:

All raster data used in this study were obtained using from the GEE catalog and its functions.
Use of GEE and its catalog requires creating an account with Google. The catalog provides a short
description of the image, the bands available, and metadata or properties of the image. Images or
raster data are provided as Image collections. For our work we used the following collections:

Name Image Collection ID
Number
of Bands

1. USGS Landsat 7 Collection 1 Tier 1 Raw Scenes LANDSAT/LE07/C01/T1 10
2. USGS Landsat 7 Collection 1 Tier 1

top-of-atmosphere (TOA) Reflectance LANDSAT/LE07/C01/T1_TOA 10

3. USGS Landsat 7 Surface Reflectance (SR) Tier 1 LANDSAT/LE07/C01/T1_SR 11
4. USGS Landsat 8 Collection 1 Tier 1 Raw Scenes LANDSAT/LC08/C01/T1 12
5. USGS Landsat 8 Collection 1 Tier 1

top-of-atmosphere (TOA) Reflectance LANDSAT/LC08/C01/T1_TOA 12

6. USGS Landsat 8 Surface Reflectance Tier 1 LANDSAT/LC08/C01/T1_SR 12
7. USGS National Elevation Dataset 1/3 arc-second USGS/NED 1
8. NLCD: USGS National Land Cover Database USGS/NLCD 4
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Data extraction and use:

We present an example (using JavaScript in Earth Engine Code Editor at https://code.earthengine.
google.com) which shows how to obtain NDVI for a Landsat 8 image using the GEE catalog
and functionalities.

// Load a Landsat 8 ImageCollection for a single path-row.
var collection = ee.ImageCollection(‘LANDSAT/LC08/C01/T1_TOA’)
.filter(ee.Filter.eq(‘WRS_PATH’, 44))
.filter(ee.Filter.eq(‘WRS_ROW’, 34))
.filterDate(‘2015-06-25’, ‘2015-07-01’);
// Get the first image from the image collection
var img = ee.Image(collection.first());
// Define a function to compute NDVI.
var NDVI = function(image) {
return image.expression(‘float(b(“B5”) − b(“B4”)) / (b(“B5”) + b(“B4”))’);
};
// Use NDVI function
NDVI_img = NDVI(img);
// Display the NDVI image
Map.addLayer (NDVI_img, {min: 0, max: 1, palette: ‘red, yellow, green’}, ‘NDVI’);

Supplementary Materials: Aupplementary materials can be found at http://www.mdpi.com/2072-4292/10/11/
1695/s1, Figure S1: Distribution of SAVI values for hot and cold candidate pixels.
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Abstract: Using surface temperature as a signature of the surface energy balance is a way to quantify
the spatial distribution of evapotranspiration and water stress. In this work, we used the new
dual-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE)
based on the Two Sources Energy Balance (TSEB) model rationale which solves the surface energy
balance equations for the soil and the canopy. SPARSE can be used (i) to retrieve soil and vegetation
stress levels from known surface temperature and (ii) to predict transpiration, soil evaporation,
and surface temperature for given stress levels. The main innovative feature of SPARSE is that it
allows to bound each retrieved individual flux component (evaporation and transpiration) by its
corresponding potential level deduced from running the model in prescribed potential conditions,
i.e., a maximum limit if the surface water availability is not limiting. The main objective of the
paper is to assess the SPARSE model predictions of water stress and evapotranspiration components
for its two proposed versions (the “patch” and “layer” resistances network) over 20 in situ data
sets encompassing distinct vegetation and climate. Over a large range of leaf area index values
and for contrasting vegetation stress levels, SPARSE showed good retrieval performances of
evapotranspiration and sensible heat fluxes. For cereals, the layer version provided better latent heat
flux estimates than the patch version while both models showed similar performances for sparse
crops and forest ecosystems. The bounded layer version of SPARSE provided the best estimates
of latent heat flux over different sites and climates. Broad tendencies of observed and retrieved
stress intensities were well reproduced with a reasonable difference obtained for most of the points
located within a confidence interval of 0.2. The synchronous dynamics of observed and retrieved
estimates underlined that the SPARSE retrieved water stress estimates from Thermal Infra-Red data
were relevant tools for stress detection.

Keywords: evapotranspiration; water stress; model; partition; remote-sensing
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1. Introduction

Quantifying energy and water transfers throughout the soil-vegetation-atmosphere continuum
is an essential issue to understand a wide range of processes involved in hydrological modeling,
weather forecasting, and climate change impact assessment (Intergovernmental Panel on Climate
Change, 2014).

Remote sensing in the thermal infrared (TIR) provides information on the surface energy balance,
in particular, in relation to water stress level and on the partition of the available energy at the surface
between sensible and latent heat fluxes. Available energy at the land surface, defined as the difference
between net radiation (Rn) and soil heat flux (G), is mostly partitioned between sensible heat (H) and
latent heat (LE) fluxes. As water needs energy to evaporate, evapotranspiration (ET) which combines
evaporation from the soil and transpiration from the plants is a key component of the water and energy
budgets (ET = LE/L where L is the latent heat of vaporization).

Accurate estimates of soil latent heat flux (LEs) and vegetation latent heat flux (LEv) are needed
for eco-agrohydrological applications such as drought monitoring and irrigation scheduling [1,2].
Since soil evaporation is considered as a water loss that does not contribute to biomass production,
optimized management in agriculture consists in maximizing the crop transpiration:evaporation
ratio [3]. Separate measurements of soil evaporation and vegetation transpiration are challenging.
Accurate estimation of LE partitioning is also crucial to monitor and anticipate water stress which is
quantified as the complementary part to unity of the ratio between actual and potential LE [4,5]. LE in
potential conditions represents a theoretical value obtained if maximum LE is reached considering
actual meteorological and plant development conditions.

Numerous soil-vegetation-atmosphere transfer (SVAT) modeling approaches were developed
to estimate surface fluxes at leaf and canopy levels [6]. A SVAT model is based on the simultaneous
solutions of water and energy budgets to compute the temporal dynamics of various prognostic
variables, such as surface fluxes, temperatures, and water content profiles of the soil and the vegetation.
SVAT models require many input data such as meteorological forcing, water supply chronicles
(irrigation and rain) as well as information about thermal, hydraulic, optical, and biophysical surface
properties. At a local-scale, when all surface properties are generally known, they are expected to
perform well [7,8]. Nevertheless, SVAT models are more difficult to implement over large areas due
to uncertainties in the spatial distribution of water inputs (irrigation or rain) and soil properties at a
regional scale.

Estimates of ET can also be derived from the use of the remotely-sensed land surface temperature
(Trad) acquired from space in the TIR spectral domain. Conversely to SVAT models, most of these
methods do not require information on water supply chronicles (irrigation and rain) and soil
parameters. They rely on surface temperature, which is a relevant indicator of the water status
of the surface and which can be used to retrieve the actual evapotranspiration and soil moisture
status over large areas and various time scales [9]. Remotely-sensed ET products have reached a
fairly satisfying level of accuracy from canopy to regional scales [2,8]. Most of the TIR-based methods
employ instantaneous satellite data and compute an energy budget over the short integration period
of the satellite overpass. They usually derive ET as the residual component of the surface energy
balance. The most complex of these methods consider the soil and the vegetation as the two main
sources of heat exchange in order to account for the partitioning of total LE into LEs and LEv [10].
A new two-source model named Soil Plant Atmosphere and Remote Sensing Evapotranspiration
(SPARSE) based on the Two-Source Energy Balance (TSEB [10]) model rationale is proposed in [4].
The first innovative feature of SPARSE to the existing TSEB is similar to the post-processing step
in the single-source Surface Energy Balance System (SEBS) model [11] but separately for the two
components: soil and vegetation. It combines “retrieval” and “prescribed” modes by bounding each
retrieved individual flux component (LEs, LEv) to its corresponding potential level deduced from
running the model in prescribed potential conditions. This ensures that retrieved LEs and LEv values
are below potential values considered as absolute maxima. In the usual “retrieval” mode, as in TSEB,
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SPARSE solves the surface energy balance equations for the soil and the canopy, which means that
two unknowns (LEs and LEv) can be solved simultaneously. In the “prescribed” mode, both energy
balance equations are solved to compute transpiration and evaporation rates for given stress levels
(for example minimal LEs and LEv in fully stressed conditions and maximal LEs and LEv in potential
conditions). In the “prescribed” mode, the surface temperature is no longer an input of the model but
an output. A second key feature of SPARSE is that it provides a “patch” and a “layer” approach to
describe the soil–vegetation–atmosphere interactions [12], identical to TSEB. In the “layer” approach,
also referred to as the series approach, the air is well mixed within the canopy, the air temperature at
the aerodynamic level is homogeneous, and the vegetation layer uniformly covers the ground. Soil and
vegetation heat sources are fully coupled through a resistance network organized in series. There is
one aerodynamic resistance with the air above the canopy. In the “patch” approach, also referred to as
the “parallel” approach, the vegetation layer is discontinuous so that the soil interacts directly with
the air above the canopy, and soil and vegetation are modeled side by side. Soil and vegetation heat
sources are thermally uncoupled and fluxes are computed with a parallel resistance scheme. In the
“layer” or “series” approach, soil–vegetation radiative fluxes are taken into account whereas there are
no such radiation exchanges between the soil and the vegetation patches in the patch approach.

The main objective of this paper is to assess the SPARSE model predictions classically for
evapotranspiration components but also for water stress. It should be noted that good retrieval
values for the total latent heat flux do not guarantee that total water stress is correctly simulated. As the
detection of crop water stress is crucial for efficient irrigation water management, it appeared necessary
to evaluate SPARSE ability to model accurately the water status of soil and plant. We addressed four
major issues:

1. Patch vs. layer approach: Even though a “patch/parallel” approach was originally proposed
for sparsely vegetated semi-arid regions, and the “layer/series” approach for denser
vegetation [10,13,14], there is no consensus regarding which approach offers better results in
semi-arid sparse vegetation. The TSEB layer version was more robust than the TSEB patch
version even though layer and patch performances were close in [15,16]. This study will
bring insights on the performances of the “patch” vs. the “layer” approaches to estimate
evapotranspiration and its soil component over 20 irrigated and rainfed crops, including arable
crops and orchards, and various climate conditions, from temperate or Mediterranean to semi-arid
and tropical climates.

2. Benefit of bounding flux retrieval: The main improvement of SPARSE is the bounding
of the output fluxes by their theoretical limit values. We will test whether this
improves evapotranspiration retrieval performances by comparing bounded and unbounded
retrieval methods.

3. Water stress retrieval: Estimates of potential surface evapotranspiration rates are fairly
well constrained by soil and vegetation biophysical properties easily obtained from
visible/near-infrared remote sensing data and can explain a large amount of the information
contained in the actual ET. The added value of thermal infrared (TIR) data lies in the
adequate amount of information introduced by the surface temperature itself. TIR data
provides information on the difference between actual and potential evapotranspiration rates
(i.e., water stress) and thus soil moisture-limited evaporation and transpiration rates. We assessed
the capacities of the SPARSE model to monitor water stress by comparison to water stress index
chronicles derived from field data.

4. Impact of the time of overpass of a TIR satellite: One of the auxiliary goals of this paper was
to investigate the impact of the time of overpass of a TIR satellite on the performance of stress
retrievals in order to take into account the operational constraints imposed by the existing or
future satellite platforms. At present, specific studies are missing and no consensus has been
reached on the best time of overpass for stress detection.
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The paper is organized as follows: First, a brief description of the SPARSE model is presented,
as well as the data set used to assess the performance of the model. Then, the performances themselves
are described in a “result” section showing all criteria (total fluxes, water stress level, soil evaporation
efficiency). The implication for future use of the model is discussed in the last section.

2. Materials and Methods

2.1. The SPARSE Model

2.1.1. Model Description

The SPARSE model ([4] see equations in Appendix A) computes the instantaneous equilibrium
surface temperatures of soil (Ts) and vegetation (Tv) (for 30-min intervals in our study, corresponding
to the measurement frequency of the meteorological forcing). These temperatures are used as separate
signatures of the energy budget for the soil and the vegetation. SPARSE is a generalization of the TSEB
model approach which consists in linearizing the full set of energy budget equations. It implements
two approaches to describe the interactions between soil-vegetation-atmosphere, namely the ‘patch’
and ‘layer’ approach which correspond to fully uncoupled and fully coupled soil–vegetation–air
exchanges, respectively, using a combination equation for potential fluxes (potential transpiration and
potential evaporation) and expressions of the aerodynamic resistances scheme described in [17–19].

Five main equations are solved simultaneously, see Equation (1). The first two, express the
continuity (layer version) or the summation (patch version) of the latent and the sensible heat fluxes
from the soil and the canopy to the aerodynamic level and above. The third and fourth equations
represent the energy budget of the soil and the vegetation. The fifth equation describes the link between
the canopy radiative surface temperature Trad that can be related to remote sensing measurements
and the soil and the vegetation longwave radiative fluxes, which are related to the soil and the
vegetation temperatures. ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

H = Hs + Hv

LE = LEs + LEv

Rns = G + Hs + LEs

Rnv = Hv + LEv

σT4
rad = Ratm − Ras − Rav

(1)

Ratm is the atmospheric radiation (W m−2), Ra is the net component longwave radiation (W m−2),
Trad is the radiative surface temperature (◦K) as observed by the satellite (which is necessary to
account for the measurement waveband and the directionality of the measurements), and σ is the
Stefan–Boltzmann constant. LE is the latent heat flux, H is the soil sensible heat flux, Rn is the
net radiation, and G is the heat flux in the soil; indexes “s” and “v” designate the soil and the
vegetation, respectively.

For LEs and LEv retrieval, Trad is known and derived from in situ thermal infrared observations.
In order to compute the various fluxes of the energy balance, SPARSE follows the same approach
employed by TSEB to estimate the soil evaporation and the plant transpiration from the knowledge of
the sole surface temperature. As a first guess, the vegetation is supposed to transpire at a potential rate
(i.e., unstressed conditions) and the system is solved to estimate LEs. If a negative value is obtained
for LEs, the unstressed canopy assumption proves to be inconsistent. The vegetation is assumed to be
affected by soil water stress. Then, LEs is set to a minimum value of 30 W m−2 to take into account the
contribution of vapor transfer from the superficial soil layer [20]. The system is then solved to estimate
the vegetation latent heat flux (LEv). If LEv is negative, fully stressed conditions are imposed for both
the soil and the vegetation independently of Trad.

SPARSE can also be run in a forward mode from prescribed water stress conditions (from fully
stressed to non-water-limited conditions). Actual conditions are expressed from potential conditions
through the use of the efficiency coefficients which correspond to the ratio between actual and potential
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LE rates, βs and βv, and are functionally equivalent to surface resistances (“s” for soil, “v” for vegetation).
They range between 0 and 1. If βv = 1, then the vegetation transpires at the potential rate. If βs = 1,
the soil evaporation rate is that of a saturated surface. βv = 0 or βs = 0 correspond to a non-transpiring
or non-evaporating surface, respectively. This prescribed mode is implemented as a final step in the
retrieval mode to provide theoretical limits corresponding to maximum reachable levels of sensible
and latent heat for both the soil and the vegetation.

2.1.2. Model Implementation

In our study, no calibration was performed and the parameters were arbitrarily set to realistic
levels: The minimum stomatal resistance was set to 100 s m−1 for herbaceous vegetation and crops [21]
and 200 s m−1 for orchard and forest [22]. The G:Rns ratio is set to 40% for an arid climate and to 25%
for others [23]. The displacement height and the roughness length for momentum exchange depend
on the vegetation height. Soil albedo is set to a constant value for each site, see Table 1, depending on
the soil texture in accordance with the characteristics of each site.

Table 1. Main characteristics of the data set, including maximum measured LAI (leaf area index) and
number of identified stress periods. FR = France, TU = Tunisia, MO = Morrocco, NI = Niger.

Site Name
(Country)

Ecosystem
Studied

Year
Name Code

Maximal
Observed LAI

(m2 m−2)

Number
of Stress
Periods

Soil Type
(%Clay/%Sand)

Irrigation
(mm)

Soil
Albedo

Energy
Balance
Closure

Auradé (FR) Wheat 2006 Aur W 2006 3.1 1 32/21 0 0.25 93%
Auradé (FR) Sunflower 2007 Aur Su 2007 1.7 0 32/21 0 0.25 88%
Auradé (FR) Wheat 2008 Aur W 2008 2.4 0 32/21 0 0.25 89%

Lamasquère (FR) Wheat 2007 Lam W 2007 4.5 0 54/12 0 0.25 94%
Lamasquère (FR) Wheat 2009 Lam W 2009 1.7 0 54/12 0 0.25 92%
Lamasquère (FR) Wheat 2011 Lam W 2011 5.5 0 54/12 0 0.25 73%
Lamasquère (FR) Wheat 2013 Lam W 2013 3.6 0 54/12 0 0.25 93%

Avignon (FR) Peas 2005 Avi P 2005 2.8 0 33/14 100 0.25 95%
Avignon (FR) Wheat 2006 Avi W 2006 5.5 0 33/14 20 0.25 94%
Avignon (FR) Sorghum 2007 Avi So 2007 3.0 1 33/14 80 0.25 95%
Avignon (FR) Wheat 2008 Avi W 2008 1.9 2 33/14 20 0.25 95%
Avignon (FR) Wheat 2010 Avi W 2010 6.1 0 33/14 0 0.25 71%
Avignon (FR) Wheat 2012 Avi W 2012 1.1 3 33/14 0 0.25 96%
Avignon (FR) Sunflower 2013 Avi Su 2013 2.3 2 33/14 0 0.25 95%
Barbeau (FR) Oak forest 2015 Bar Oa 2015 5.5 1 19/32 0 0.15 69%

Kairouan (TU) Wheat 2012 Kai W 2012 2.1 0 31/40 0 0.25 60%
Kairouan (TU) Olive 2012–2015 Kai Ol 2013 0.2 4 8/88 0 0.29 55%
Haouz (MO) Wheat 2004 Hao W 2004 4.1 2 34/20 170 0.20 93%

Wankama-M (NI) Millet 2009 Wan M 2009 0.4 1 13/85 0 0.30 91%
Wankama-F (NI) Savannah 2009 Wan S 2009 0.3 0 13/85 0 0.30 91%

The SPARSE surface energy balance equations required a broadband brightness temperature.
When sites are not equipped with a device allowing a broadband brightness temperature measurement
(if not, specified in the experimental description below) but equipped with sensors measuring the
brightness temperature in the 8 to 14 μm spectral band (see below), the equations were adapted to
constrain the surface energy balance in the 8 to 14 μm spectral band. To do so, atmospheric radiation,
atmospheric emissivity, and surface temperature were calculated in the 8 to 14 μm atmospheric window
according to [24].

2.2. Experimental Data Sets Description

Twenty data sets collected over eight crop and forest sites, see Table 1, were used to assess the
performance of SPARSE. Half-hourly observations of air temperature and humidity, wind speed,
net radiation, and atmospheric pressure were continuously acquired above the ground or the canopy
from micro-meteorological stations over the different sites. Soil heat flux (G) was also measured at
each site. Sensible (H) and latent (LE) heat fluxes were computed every 30 min from eddy-covariance
systems. For sites with an energy balance closure of less than 80%, the closure was forced with the
residual method and LE was computed as Rn-H-G. For other sites with an energy balance closure over
80%, the half-hourly closure was achieved with the conservation of the Bowen ratio H/LE [25]; thus,
LE was computed as (Rn-G)/(1 + H/LE), see Table 1.
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2.2.1. Auradé and Lamasquère Data Sets

The two cultivated plots Auradé and Lamasquère are located in the Occitanie region in France
which exhibits a temperate climate. Data for Auradé were acquired in 2006 (wheat), 2007 (sunflower),
and 2008 (wheat) while the data in Lamasquère were acquired in 2007, 2009, 2011, and 2013 (wheat).
Surface radiative temperatures were measured with a precision infrared temperature sensor (IRTS-P,
Campbell Scientific Inc, Logan, UT, USA) at 2.8 m above ground in the 6 to 14 μm spectral band in
Auradé. Surface radiative temperatures were derived from longwave upwelling radiation measured
by a 4-component net radiometer (CNR1 manufactured by Kipp and Zonen) at 3.65 m above ground
in the 4.5 to 42 μm spectral band in Lamasquère. Leaf Area Index (LAI) was measured at key crop
phenological stages (five to six measurements per crop cycle) using destructive methods and sampling
schemes adapted to each crop. The leaf area was retrieved using a planimeter device. For a complete
description of the site characteristics and more information on these data sets, see [26].

2.2.2. Avignon Arable Crop Data Sets

The “remote sensing and flux site” of INRA (National Institute of Agronomic Research) Avignon is
located in South East France and characterized by a Mediterranean climate. Data were acquired in 2005
(peas), 2006 (wheat), 2007 (sorgho), 2008 (wheat), 2012 (wheat), and 2013 (sunflower). Surface radiative
temperatures were derived from longwave upwelling radiation measured by a 4-component net
radiometer (CNR1 manufactured by Kipp and Zonen) at 3 m above ground in the 4.5 to 42 μm spectral
band. LAI was measured at key crop phenological stages (five to six measurements per crop cycle)
using destructive methods and sampling schemes adapted to each crop. Leaf area was measured using
a planimeter device. For a full description of the site characteristics and more information on these
data sets, see [27].

2.2.3. Barbeau Forest Data Sets

Barbeau National Forest is a managed mature oak forest located 60 km southeast of Paris, France,
in continental climatic conditions. Data covers the year 2015. Surface radiative temperatures were
measured with an infrared temperature sensor (IR120, Campbell Scientific Inc., Logan, UT, USA) at
36 m above ground in the 8 to 14 μm spectral band. A complete description of the site characteristics is
available in [28,29].

2.2.4. Tunisian Rainfed Wheat Data Set

The rainfed wheat was grown in 2012 in a semi-arid climate in central Tunisia, west of Kairouan.
Surface temperature data were acquired with a nadir-looking Apogee thermoradiometer at 2.3 m
above ground in the 8 to 14 μm spectral band. LAI was estimated with hemispherical photographs
every 2 to 3 weeks depending on the phenological cycle. These data were evaluated using destructive
measurements during key stages (growth and full cover). More information on that data set is available
in [4].

2.2.5. Tunisian Olive Orchard Data Set

The olive orchard site is located in a semi-arid climate in central Tunisia, west of Kairouan. The site
was equipped with infrared temperature sensors over the bare soil and the canopy (IR120, Campbell
Scientific Inc, Logan, UT, USA) to measure the canopy and bare soil surface temperature at 9.8 m above
ground in the 8 to 14 μm spectral band from March 2012. Data are available on the SEDOO OMP
website with the assigned DOI: 10.6096/MISTRALS-SICMED.1479 [30].

2.2.6. Morocco Irrigated Wheat Data Set

Data for the irrigated wheat site were acquired during the 2004 growing season in the semi-arid
Haouz plain in Morocco (B124 site, [31]). Surface temperature data were acquired with a nadir-looking
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Apogee thermoradiometer at 2 m above ground in the 8 to 14 μm spectral band. LAI was estimated
with hemispherical photography every 2 to 3 weeks depending on the phenological cycle, validated by
destructive measurements during key stages (growth and full cover). For a complete description of the
site characteristics and more information on the data sets, see [31].

2.2.7. Niger Crop and Fallow Data Set

The study area is located 60 km east of Niamey in the South West of the Republic of Niger,
characterized by a tropical semi-arid climate. It consists of two plots of around 15 ha each in the
AMMA-CATCH observatory [32,33]. The two data sets used in this study were collected in 2009 over
a millet field and a fallow field. Surface temperature data were acquired with 10◦ incidence KT15
Heitronics at 2.9 m above ground in the 8 to 14 μm spectral band. LAI was derived from hemispherical
photographs. For a recent description of both the site and data set, see [34].

2.3. Assessment of Simulated Surface Water Stress

We evaluated the instantaneous estimation of water stress levels computed from SPARSE over
identified stress periods. The water stress index was defined as the ratio of the difference between
potential and actual evapotranspiration to potential evapotranspiration. It varies theoretically from 0
(unstressed surface) to 1 (fully stressed surface).

S =
LEpot − LEx

LEpot
(2)

where LEx refers to (i) LEobs which is the observed instantaneous latent heat flux to compute “observed”
water stress values or (ii) LESPARSE which is the simulated latent heat fluxes in actual conditions
to compute “retrieved” water stress values from SPARSE. LEpot is the simulated latent heat flux in
potential conditions. Potential evapotranspiration rates were generated from SPARSE in prescribed
conditions using the Penman–Monteith formulation.

The number of stress periods was determined for each data set, see Table 1. A water stress period
was identified on the following basis: Stress starts when a large deviation (>40%) between the potential
evapotranspiration LEpot and the measured actual evapotranspiration rates is observed away from
any rain event or any other income of water (i.e., irrigation) and ends with the next income of water.
When this deviation is observed for more than 4 days in a row, we arbitrarily defined the period as
stressed. As the ultimate goal of SPARSE is to retrieve ET from remotely-sensed TIR data, S was evaluated
at the two nominal acquisition times by MODIS on board of TERRA and AQUA, 10:30 and 13:30.

2.4. Soil Evaporation Estimates

Individual estimates of soil evaporation and plant transpiration were not available in any site
to evaluate the SPARSE simulations. Nevertheless, superficial soil moisture is a good proxy for soil
evaporation, although topsoil moisture does not always react to small rainfall events and is also
influenced by topsoil roots and capillarity rise of water from deeper layers. We evaluated the capacity
of the SPARSE model to retrieve soil evaporation efficiency defined as βs−SPARSE (LEsSPARSE/LEspot,
where LEsSPARSE and LEspot are the soil evaporation and the potential soil evaporation rate derived from
running SPARSE in retrieval and prescribed potential conditions) by comparison to an independent
estimation derived from the observed time series of superficial soil moisture θsurf (top 5 cm for Auradé,
Lamasquère, Avignon, Tunisia, and Morocco; top 10 cm for Niger). We used the efficiency model
proposed in [35] to derive the empirical soil evaporation efficiency (βs−e):

βs−e =

{
0.5 ×

[
1 − cos

(
π

θsur f

θsat

)]}p

(3)

where θsat is the in situ water content at saturation and p is fixed according to soil texture to 0.5 for clay
and 1 for loamy and sandy soils.
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βs−SPARSE relates LEs to LEspot and ranges from 0 for a non-evaporative surface to 1 when the soil
evaporation rate is equivalent to the flux from a saturated surface (see Appendix A).

LEs = βs−SPARSE
ρcp

γ

esat(Ts)− e0

ras
(4)

where ρcp is the product of air density and specific heat, γ the psychrometric constant, ras the soil
to aerodynamic level, esat(Ts) is the saturated vapor pressure at temperature Ts, and e0 is the partial
pressure of vapor at the aerodynamic level.

2.5. Experiment Design

Two sets of SPARSE simulations were derived for the layer and the patch versions of the model.
In the first set, outputs were not limited by potential flux values (unbounded set) and in the second
(bounded set), outputs were bounded by the potential (and fully stressed) flux rates LEspot and LEvpot,
considered as the absolute maximum reachable values for evaporation and transpiration, respectively.
Soil sensible and plant sensible heat fluxes were also bounded by the maximum rates in fully stressed
conditions. For both versions and both sets, the performances were calculated over the entire data set
for each site (from sowing to harvest for the crops; during a calendar year for others).

Total water stress estimates were also evaluated to assess the amount of information introduced
by the surface temperature. The inverse mode of SPARSE was used to assess the information on
moisture-limited evaporation and transpiration rates which was introduced by the surface temperature.
Retrieved and “observed” water stress indexes were generated over the 20 identified stress periods.

We also compared the retrieved soil evaporation efficiency from the layer version of SPARSE to
the independent empirical model (βs−e). As meteorological forcing can vary very quickly, LEpot and
Trad can fluctuate significantly from one day to another and βs−SPARSE retrievals were highly variable.
In order to smooth out the quick fluctuations of βs−e and the scale differences between the information
provided by the integrated soil moisture measurement (top 5 cm for Auradé, Lamasquère, Avignon,
Tunisia, and Morocco; top 10 cm for Niger) and the information provided by the surface temperature
(relative only to the first mm of the soil), 5-day moving averages were compared. This is consistent
with the potential data assimilation method of β or LE estimated from TIR data that could be used in a
SVAT model for example: A smoother is more likely to outperform a sequential assimilation algorithm
for short observation windows since the former will naturally smooth out the high-order fluctuations
due to high-order fluctuations of Trad.

2.6. Performance Metrics

The simulations were quantitatively evaluated, comparing measured and simulated LE, H, Rn,
and G from sowing to harvest for the seasonal crops and during the calendar year for others.

The simulation performance scores were quantified using the root mean square error (RMSE),
the bias (Bias), and the Nash-Sutcliff Index (NI).

3. Results

3.1. Energy Balance Component Estimates

The global retrieval performances for the four energy balance components are reported in Table 2.
For all data sets, the best LE estimates were obtained with the layer bounded version (global RMSE
of 58 W m−2). The performances of H estimations were almost similar in the four experiments
(similar RMSE and NI, but a smaller negative bias for the layer version).

RMSE, Bias, and Nash Index (NI) from the unbounded layer and patch versions for each site
(from sowing to harvest for crops; during a calendar year for others) are compared in Figure 1.
RMSE presented a large dispersion for LE from 30 W m−2 to 100 W m−2 depending on sites whatever
the version used. Half of the sites showed negative bias for LE, H, and Rn whereas both versions of
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the model were systematically overestimating G. Moreover, NI for G were almost always negative.
The layer unbounded version was not able to reproduce LE dynamics on the Barbeau forest site
(cross symbol) whereas performances of the patch version were relatively good. Conversely, for the
two wheat cultures of Lamasquère in 2007 and of Avignon in 2006, the layer version showed much
better performances than the patch version. Apart from over these particular sites, the two versions
showed very similar performances.

Figure 1. Performances of instantaneous retrievals from each unbounded model versions (patch vs.
layer) at 13:30 for net radiation (Rn), soil heat flux (G), total latent heat flux (LE), and total sensible
heat flux (H). (RMSE: root mean square error in W m−2; Bias: in W m−2; NI: Nash-Sutcliff efficiency
Index). Grey zone matches area containing most of the points. Square symbols = Lamasquère,
Circle symbols = Niger, Diamond symbols = Avignon, Triangle symbols = Tunisia, Cross symbol =
Barbeau, String symbol = Auradé, Star symbol = Morocco.

The bounded experiment provided slightly better LE estimates, with RMSE reduced by 6 W m−2,
compared to the unbounded sets for the layer versions, as shown in Table 2. RMSE, Bias, and NI
of the four energy balance components from the bounded layer and the unbounded layer versions
were compared in Figure 2. LE retrievals were significantly better for seven sites with the bounded
version compared to the non-bounded approach. LE dynamics of the Barbeau forest site were better
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reproduced with the bounded layer version (cross symbol). RMSE for Rn were often greater with
the bounded version but biases were generally reduced. Actually, the bounded version constrains
Rn with a prescribed value different of the observed one. Conversely, the unbounded version led
to a simulated Rn very close in value to the measured one as Rn only depends on the incoming
measured shortwave and longwave radiations and a linear expression of the surface temperature.
Table 3 shows the performances of the bounded layer version for LE during each season. The RMSE
and bias calculated over the fall and winter periods were the lowest over the year. These accurate
performances of the model can somehow be explained by the low LE fluxes measured during these
two seasons. Higher RMSE and bias were calculated over spring and, specifically, for the winter wheat
cultures of Auradé, Lamasquère, and Avignon. For those crops, there was a strong overestimation by
the model. In Table 3, NI were ranked into five classes to be interpreted as a non-parametric statistical
test. Over the 60 seasons studied (whatever the site), 5 provided NI under 0 and attested for very poor
retrievals, 14 reported between 0.25 and 0.5 (testifying for average performances), 20 reported between
0.5 and 0.75, and 15 reported over 0.75 (attesting for good to very good performances). NI showed that
for two-thirds of the seasons studied, the model predicted fairly well the dynamic of LE.

Figure 2. Performances of instantaneous retrievals from SPARSE bounded layer version vs. SPARSE
simple layer version at 13:30 for net radiation (Rn), soil heat flux (G), total latent heat flux (LE) and total
sensible heat flux (H). (RMSE: root mean square error in W m−2; Bias: in W m−2; NI: Nash-Sutcliff
efficiency Index). Square symbols = Lamasquère, Circle symbols = Niger, Diamond symbols = Avignon,
Triangle symbols = Tunisia, Cross symbol = Barbeau, String symbol = Auradé, Star symbol = Morocco.
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Table 2. Global performances (among all sites) of instantaneous retrievals from each model version
(patch vs. layer) at 13:30 for net radiation (Rn), soil heat flux (G), latent heat flux (LE), and sensible heat
flux (H) (RMSE: root mean square error in W m−2; NI: Nash-Sutcliff efficiency index).

LE

Boundings no yes

Performances RMSE
(W m−2) NI Bias

(W m−2)
RMSE

(W m−2) NI Bias
(W m−2)

SPARSE PATCH 61 0.62 10 59 0.65 2
SPARSE LAYER 64 0.58 8 58 0.66 −4

H

Boundings no Yes

Performances RMSE
(W m−2) NI Bias

(W m−2)
RMSE

(W m−2) NI Bias
(W m−2)

SPARSE PATCH 68 0.52 −15 68 0.51 −10
SPARSE LAYER 70 0.49 −11 70 0.48 −4

Rn

Boundings no Yes

Performances RMSE
(W m−2) NI Bias

(W m−2)
RMSE

(W m−2) NI Bias
(W m−2)

SPARSE PATCH 50 0.91 −6 56 0.88 −5
SPARSE LAYER 50 0.91 −3 52 0.89 −4

G

Boundings no Yes

Performances RMSE
(W m−2) NI Bias

(W m−2)
RMSE

(W m−2) NI Bias
(W m−2)

SPARSE PATCH 56 −0.19 39 56 −0.19 38
SPARSE LAYER 54 −0.09 35 54 −0.09 35

Table 3. Performances of instantaneous retrievals of total latent heat flux from the bounded layer
versions at 13:30 for each season: summer (DOY 172 to 264), fall (DOY 264 to 355), winter (DOY 355 to
80), and spring (DOY 80 to 172). RMSE: root mean square error in W m−2; NI: Nash-Sutcliff efficiency
index. NI > 0.75: underlined green; 0.50 < NI < 0.75: green; 0.25 < NI < 0.50: orange; 0.00 < NI < 0.25:
black; NI < 0.00: red.

Whole Year Summer Fall Winter Spring

RMSE NI Bias RMSE NI Bias RMSE NI Bias RMSE NI Bias RMSE NI Bias

Aur W 2006 63 0.65 −5 41 0.85 13 40 0.76 −3 80 0.56 6
Aur Su 2007 87 0.12 17 76 0.25 12 98 −0.01 22
Aur W 2008 59 0.34 16 48 0.42 16 48 0.42 17 65 0.26 18
Lam W 2007 60 0.65 7 42 0.77 2 34 0.81 −3 68 0.74 11
Lam W 2009 74 0.18 32 30 0.74 −15 47 0.46 26 73 0.53 28
Lam W 2011 32 0.22 −20 32 0.23 −20 24 0.00 −24 63 0.61 12
Lam W 2013 70 0.81 −41 55 0.83 −38 35 0.92 −9 85 0.83 59
Avi P 2005 72 0.62 17 46 0.74 3 87 0.57 3
Avi W 2006 56 0.70 2 60 0.42 −49 30 0.83 −1 84 0.70 51
Avi So 2007 93 0.84 −2 86 0.87 5 53 −0.49 21 104 0.81 −36
Avi W 2008 79 0.44 −29 62 0.54 −51 62 0.52 −31 86 0.54 38
Avi W 2012 52 0.86 7 34 0.79 −21 38 0.73 14 72 0.85 22
Avi Su 2013 86 0.12 −3 76 0.25 −18 98 −0.01 −24
Bar Oa 2015 64 0.67 −25 76 0.61 −28 37 0.88 −4 68 0.58 −37
Kai W 2012 44 0.76 −14 40 0.73 1 47 0.77 −26
Kai Ol 2013 36 0.49 −11 35 0.58 −13 37 0.39 −16 22 0.41 −1 43 0.39 −13
Kai Ol 2014 43 0.23 −25 44 0.26 −32 41 0.22 −21 43 −0.04 −6 49 0.21 −32
Kai Ol 2015 49 0.18 −14 57 0.14 −13 39 0.15 −15 41 0.10 −12
Hao W 2004 57 0.63 −19 49 0.74 −16 69 0.42 −23
Wan F 2009 55 0.68 −10 79 0.61 −55 32 0.76 8 45 0.70 15
Wan M 2009 65 0.45 9 62 0.71 12 51 0.36 −37 83 0.02 66

3.2. Water Stress Index Estimation

During dry-downs, water stress was better retrieved from 13:30 fluxes estimations: at 10:30 only
5 RMSE values were lower than 0.2 while there were 12 values lower than 0.2 at 13:30; RMSE values at
13:30 were lower than those obtained at 10:30 for 12 periods within 16, see Table 4. The quality of water

128



Remote Sens. 2018, 10, 1806

stress retrieval was highly dependent on the site and year. In general, water stress was fairly well
retrieved for wheat crops. For the semi-arid sites (Tunisia, Niger, Morocco), water stress level retrievals
showed RMSE values lower than 0.26 at 13:30. Figure 3 shows observed water stress estimates at 13:30
in grey and retrieved water stress estimates at 13:30 in black on four dry-downs, well-identified for
the Avignon wheat in 2012 and for the Tunisian olive orchard in 2013. Missing points are related to
missing data (observed data or/and inputs data). The overall magnitude of water stress is higher for
the semi-arid Tunisian olive orchard than for Avignon. For the wheat crop, the observation indicates
an abrupt change of stress between DOY 105 and 107, see Figure 3c whereas the SPARSE estimates
displayed a smoother evolution. SPARSE properly captures the timing of water stress but could
underestimate its magnitude compared to observations. For the Tunisian olive orchard, onsets of water
stress were synchronous between observed and retrieved estimates. However, stress magnitude was
lower for the simulated estimates, as shown in Figure 3d.

Figure 3. Evolution of the observed LE (W m−2) for (a) the wheat culture on Avignon in 2012 and
(b) the Tunisian olive orchard in 2013. Drydown periods are indicated in black. Parts (c,e) represent the
observed water stress estimate at 13:30 in grey and retrieved water stress estimates at 13:30 in black for
each of the two dry-downs observed for Avignon wheat 2012 and (d,f) the same for the Tunisian olive
orchard 2013. The thick line represents the daily accumulated rain. The x-axis referred to the day of year.

Table 4. Performances of water stress estimates retrieval over each stress period at 10:30 and 13:30.
RMSE: root mean square error. Statistics are calculated between observed water stress estimate and
retrieved water stress estimates.

Acquisition Time 10:30 13:30

RMSE RMSE

Auradé (FR) Wheat 2006 0.19 0.27
Avignon (FR) Sorghum 2007 0.28 0.22
Avignon (FR) Wheat 2008 0.15 0.10
Avignon (FR) Wheat 2008 0.21 0.14
Avignon (FR) Wheat 2012 0.35 0.11
Avignon (FR) Wheat 2012 0.25 0.19
Avignon (FR) Wheat 2012 0.25 0.24
Avignon (FR) Sunflower 2013 0.25 0.14
Barbeau (FR) Oak forest 2015 0.27 0.09
Sidi Rahal (MO) Wheat 2004 0.24 0.26
Sidi Rahal (MO) Wheat 2004 0.25 0.18
Niger C. (NI) Millet 2009 0.93 0.09
Kairouan (TU) Olive 2013 0.08 0.16
Kairouan (TU) Olive 2013 0.22 0.17
Kairouan (TU) Olive 2014 0.17 0.13
Kairouan (TU) Olive 2015 0.11 0.11

129



Remote Sens. 2018, 10, 1806

3.3. Soil Evaporation Efficiency

SPARSE showed reasonable performances for the total LE retrieval. Here, we analyze its ability
to retrieve the partitioning of LE between soil and vegetation fluxes. We focused the analysis on
the “layer” version which was proven to provide more accurate estimates of total LE flux. Figure 4
shows that soil evaporation efficiency amplitudes varied among crop sites (less than 0.4 for the
Tunisian olive orchard and from 0.3 to 1 for the Tunisian wheat crop for example). Figure 4 also
shows that SPARSE properly reproduced the seasonal magnitude, particularly the growing season
dynamics (e.g., Niger site). Wetting and drying cycles are fairly retrieved. However, in several
situations, there were large discrepancies in magnitude between observed and simulated efficiencies.
Auradé 2008 showed significant underestimation. For Avignon in 2005, the time evolution shown by
SPARSE predictions was opposite to the evolution displayed in the observations. The lower limit of
SPARSE evaporation efficiency (0) resulted from a negative soil latent heat flux (LEs) (obtained because
the assumption of an unstressed canopy proved to be inconsistent). In that case, the vegetation
was assumed to suffer from water stress, the soil surface was assumed to have already long dried,
and βs−SPARSE was zero.

Figure 4. Cont.
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Figure 4. Evolution of the Soil Plant Atmosphere and Remote Sensing Evapotranspiration (SPARSE)
layer retrieved evaporation efficiencies (black) compared to the empirical evaporation efficiency
calculated using observed topsoil moisture βs−e (red) for the different sites and years (Table 1) where the
5-cm top soil moisture was acquired. Vertical lines represent the daily accumulated rain (right y-axis).

4. Discussion

4.1. Overall Performance of the Dual-Source SPARSE Model

The performances of the SPARSE model for retrieving LE and its components from
remotely-sensed surface temperatures were assessed over multiple crops, including orchards,
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and multiple climates. Over a large range of LAI values and for contrasting vegetation stress levels,
the SPARSE model showed satisfactory retrieval performances of latent and sensible heat fluxes.
For most of the data sets, RMSE ranged between 40 and 80 W m−2 for LE (bounded layer version)
which is within the range of performances obtained by other models in the literature [15,36].

4.2. “Patch” vs. “Layer” Approach Performances

As expected for cereal covers, the layer version provided better estimates of LE than the patch
version. Currently, homogeneity of cereal crops is usually well represented by such a layer approach.
For sparse crops, such as orchards, or for the forest ecosystem, both patch and bounded layer schemes
showed similar performances. The geometry of very sparse vegetation is better represented by the
patch scheme [10] but interactions between soil and vegetation occur even for sparse vegetation [13].
A lot of usual land surface models such as CLM [37], ORCHIDEE [38], or SURFEX/MEB [39] are
also based on a layer scheme. For now, using a layer or patch scheme is strongly linked to the study
scale and needs to be specifically investigated to define the scale conditions corresponding to a patch
approach. The patch approach could be justified at the scale where a boundary layer is fully developed
over each patch and effects between patches are insignificant [40]. They also showed that the coupled
model represented by the layer approach is a simplification of more complex and realistic models and
that it is more widely applicable than the patch model.

4.3. Benefit of Bounding the Flux Estimates

Bounding fluxes by realistic limiting values based on potential conditions improved latent heat
flux estimates in many cases, as it allowed to correct values of evaporation and transpiration which were
sometimes retrieved beyond potential levels, especially in the layer approach. These inconsistencies
appeared in two types of situations: senescent vegetation and oasis effect.

• For cereals in senescent situations at the end of the season, specific SPARSE parameter values
in terms of canopy structure and stomatal conductance were not given. It is also essential to
take into account the contribution of green stem and ear to the plant transpiration, especially for
wheat [41,42]; this can explain the underestimation of transpiration for the Avignon and Auradé
sites, see Figure 2.

• In semi-arid areas, transpiration and particularly evaporation were retrieved beyond potential
levels during periods where the soil exhibits an important dry-down (in particular the Tunisian
site; Figure 2). Sensible heat transfer to the crop from drier surrounding zones led to a great
overestimation of transpiration by the model because of fully coupled soil–vegetation–air
exchanges in the layer version. In these situations, bounding the outputs by realistic limiting
flux values ensured model robustness and reduced LE RMSE values to 30 W m−2, resulting in a
reduction of global RMSE by 6 W m−2. The bounded layer version of SPARSE provided the best
estimates of LE over the different sites and climates.

4.4. Evaluation of the Capacity of SPARSE to Monitor Water Stress

The limit of stress retrieval from noisy TIR data was pointed out by previous studies [43,44].
The differences noticed between the observed and retrieved water stress intensities remained
reasonable and the dynamics were well reproduced by SPARSE, with most points located within a
confidence interval of 0.2. SPARSE could then be a relevant tool for stress detection, but the hypothesis
used to define water stress here did not take into account differences in the crops ability to continue to
grow in water stress conditions. Further studies would consist of assimilating the water stress efficiency
simulated by SPARSE in a SVAT model in order to evaluate continuous evapotranspiration rates.

Soil evaporation efficiency was evaluated amongst sites and compared to a reconstructed time
series relying on observed topsoil moisture. Overall, βs−SPARSE underestimated βs−e which was a
consequence of the two different approaches used to compute soil evaporation efficiencies. βs−SPARSE
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is not influenced by the same parameters as βs−e. Indeed, βs−e depends on the 5-cm topsoil moisture,
a time-continuous variable, whose dynamics are strongly linked to large rain events while βs−SPARSE is
mostly related to the porous network in direct contact with the atmosphere. Besides, βs−SPARSE and
LEpot are strongly impacted by a quick change in the meteorological forcing. Trad is very sensitive
to changes in atmospheric turbulence [45] whereas θ5cm, and then βs−e, are less reactive to these
fluctuations. In our study, no calibration was performed and the parameters were arbitrarily set to
realistic levels. This is consistent with the potential use of this model which aims at estimating LE and
retrieving water stress estimations routinely from remote-sensing data with no additional calibration.

An additional issue is related to the uncertainty in the input variable, Trad. Actually,
many uncertainties and errors are known to affect the remotely-sensed surface temperature,
including atmospheric correction and emissivity settings [24,46] in addition to the directional
dependence of Trad [47–49]. Particularly, angular emissivity effects can be important over
heterogeneous cover where emission depends on many different individual emitters with contrasting
emissivities. The TIR anisotropy comes from the heterogeneity of the observed object combined with a
particular viewing angle. For sparse vegetations, directional effects can be important due to the soil
contribution [48,49]. Moreover, Trad retrieval can be affected by surface layer turbulence which can
generate important temporal fluctuations [45]. At the end of almost every season (except for Niger,
Lamasquère 2009 and 2013 and Tunisian wheat 2012), βs−SPARSE differed greatly from the βs−e as it
remained close to the potential rate. This could be related to the estimation of transpiration during the
senescent period which is not properly simulated by SPARSE. Changes in soil-vegetation radiative
exchanges and in canopy stomatal conductance occurring during senescence can lead to confusion
over the transpiration:evaporation partition. Soil evaporation efficiencies derived from SPARSE were
reasonably well retrieved for very sparse vegetation sites (Niger sites and olive orchard). In those
sites, the coupling between surface temperature and evaporation reduction is properly simulated by
SPARSE independent of the assumption on the water status of the vegetation.

4.5. Potential to be Driven by Earth Observation Data

One of the goals of this paper was to investigate the impact of the overpass time of a TIR satellite
on the performance stress retrievals in order to take into account the operational constraints imposed
by existing or future satellite platforms. The optimum time of overpass between the two tested in this
work (10:30 and 13:30) was 13:30, which is in agreement with the theoretical study described in [43]
based on an analytical estimation of peak latent heat flux as a response to a sinusoidal radiation forcing.

5. Conclusions

SPARSE showed satisfactory retrieval performances of latent and sensible heat fluxes, and the
opportunity to bound fluxes by realistic limiting values based on potential conditions improved latent
heat flux estimates in many cases, especially, in the layer approach in senescent situations at the end of
the season and in semi-arid areas where transpiration and particularly evaporation were retrieved
beyond potential levels.

The soil evaporation efficiencies estimated by SPARSE should be tested in order to be used to
retrieve information on irrigation amount or precipitation inputs from TIR acquisitions.

Most models using information in the TIR domain like SPARSE rely on data acquired once
a day within the constraints of the time of the satellite overpass, the revisit frequency, and the
cloud cover. Consequently, the diurnal cycle of the energy budget is not accounted for and SPARSE
will compute an instantaneous energy budget at the time of the satellite overpass and provide a
single instantaneous latent heat flux. As a daily accumulation is usually required for hydrological
applications for monitoring water stress, daily and seasonal LE need to be reconstructed from these
retrieval instantaneous values. In order to encounter and evaluate the potential of SPARSE outputs
with TIR acquisitions for the reconstruction of a continuous data set, future work will assess the impact
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of uncertainty on SPARSE model performances over operational methods to reconstruct ET at a daily
and seasonal scale in order to fairly monitor water stress and irrigation.
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Appendix

Basic equations of the SPARSE “layer” model
Net solar radiation on the soil is:

Rgs =
(1 − αs)(1 − fc)

1 − fcαsαv
Rg

Net solar radiation on the vegetation is:

Rgv = (1 − αv) fc

[
1 +

αs(1 − fc)

1 − fcαsαv

]
Rg

Net longwave radiation for the soil is:

Ras = ansσT4
s + bnsσT4

v + cns

Net longwave radiation for the vegetation is:

Rav = anvσT4
s + bnvσT4

v + cnv

where:
ans = − εs [(1− fc)+εv fc ]

1− fc(1−εs)(1−εv)

bns = anv = εvεs fc
1− fc(1−εs)(1−εv)

cns =
(1− fc)εsRatm

1− fc(1−εs)(1−εv)

bnv = − fcεv

[
1 + εs+(1− fc)(1−εs)

1− fc(1−εs)(1−εv)

]
cnv = fcεvRatm

[
1 + (1− fc)(1−εs)

1− fc(1−εs)(1−εv)

]
(αs and εs are the albedo and the emissivity of the soil, αv and εv are the albedo and the emissivity of the
canopy, and Rg is the global incoming radiation; the vegetation cover fraction is fc = 1 − e−0.5LAI/ cos ϕ

where ϕ is the view zenith angle; atmospheric radiation is Ratm = 1.24(ea/Ta)
1/7σT4

a where Ta and ea

are the temperature and the vapor pressure of the air, respectively).
The various fluxes of the system of Equation (1) are expressed as:

Rns = Rgs + Ras; G = ξ Rns; Rnv = Rgv + Rav

Hs = ρcp
Ts−T0

ras
, Hv = ρcp

Tv−T0
rav

et H = ρcp
T0−Ta

ra

LEs =
ρcp
γ βs

esat(Ts)−e0
ras

, LEv =
ρcp
γ βv

esat(Tv)−e0
rav+rstmin

et LE =
ρcp
γ

e0−ea
ra

where ra, ras, and rav are aerodynamic resistances between the aerodynamic level and the reference
level, the soil and the aerodynamic level, and the vegetation and the aerodynamic level, respectively,
while rstmin is the minimum stomatal resistance; T0 and e0 are the temperature and the vapor pressure
at the aerodynamic level, respectively; the two unknowns, Ts and Tv, as well as the soil evaporation
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efficiency βs (or the transpiration βv if the retrieved βs is lower than a minimum value corresponding
to LEs = 30 W/m2), are solved simultaneously by inverting the system of Equation (1).
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Abstract: Thailand is characterized by typical tropical monsoon climate, and is suffering serious
water related problems, including seasonal drought and flooding. These issues are highly related
to the hydrological processes, e.g., precipitation and evapotranspiration (ET), which are helpful
to understand and cope with these problems. It is critical to study the spatiotemporal pattern of
ET in Thailand to support the local water resource management. In the current study, daily ET
was estimated over Thailand by ETMonitor, a process-based model, with mainly satellite earth
observation datasets as input. One major advantage of the ETMonitor algorithm is that it introduces
the impact of soil moisture on ET by assimilating the surface soil moisture from microwave remote
sensing, and it reduces the dependence on land surface temperature, as the thermal remote sensing is
highly sensitive to cloud, which limits the ability to achieve spatial and temporal continuity of daily
ET. The ETMonitor algorithm was further improved in current study to take advantage of thermal
remote sensing. In the improved scheme, the evaporation fraction was first obtained by land surface
temperature—vegetation index triangle method, which was used to estimate ET in the clear days.
The soil moisture stress index (SMSI) was defined to express the constrain of soil moisture on ET,
and clear sky SMSI was retrieved according to the estimated clear sky ET. Clear sky SMSI was then
interpolated to cloudy days to obtain the SMSI for all sky conditions. Finally, time-series ET at daily
resolution was achieved using the interpolated spatio-temporal continuous SMSI. Good agreements
were found between the estimated daily ET and flux tower observations with root mean square error
ranging between 1.08 and 1.58 mm d−1, which showed better accuracy than the ET product from
MODerate resolution Imaging Spectroradiometer (MODIS), especially for the forest sites. Chi and
Mun river basins, located in Northeast Thailand, were selected to analyze the spatial pattern of ET.
The results indicate that the ET had large fluctuation in seasonal variation, which is predominantly
impacted by the monsoon climate.

Keywords: ET; Thailand; ETMonitor; land surface temperature; Mun river basin; Chi river basin

1. Introduction

Under the context of climate change and rapid population development, water is increasingly
becoming a scarce resource worldwide. Coping with water scarcity and growing competition for
water among different sectors requires proper water management strategies and decision processes.
Evapotranspiration (ET), the primary process of water transfer from the land surface to the atmosphere,
is one of the most important components in hydrological cycle since it represents a loss of usable water
from the hydrological supply for agriculture and natural resource [1,2]. Hence, ET plays a crucial role in
understanding the response of water cycle to climate change and human activities ultimately emulating
the water resource management to cope with the serious water resource shortages. Plants usually open
their stomata under wet conditions, which are favorable for plant growth, while when the soil dries
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stomatal closure limits transpiration to prevent dehydration. And how to express the constrain of soil
moisture is the key to ensure the accuracy of evapotranspiration algorithms.

Northeastern Thailand is characterized by tropical monsoon climate, with the wet season from
May to October and the dry season from November to the next April. The annual mean air temperature
is 20 ◦C and the annual precipitation is approximately 1300 mm that mostly falls during the rainy
season (April to October). From the 2000s onwards, it is reported that the onset of the Asian monsoon
and the start of the wet season is delayed in the whole of Indo China Peninsula, in association with
El Nino Southern Oscillation (ENSO) events, and annual rainfall is likely to be reduced further [3].
This is followed by lowered normalized difference vegetation index (NDVI) values and higher surface
temperatures in the widespread tropical forests, which will further exert significant influences on
regional and global energy and water cycle [4]. Rain-fed paddy field, cassava and teak plantations
are widely spread in this region, and they cover large portions of land use over Chi and Mun basins.
The effects of climate change, including increasing temperatures, seasonal floods and droughts, severe
storms and sea level rise, has threatened Thailand’s agriculture for decades [5]. ET is one of the most
important variables for crop water requirement estimation to rationalize the water consumption in the
agricultural field under current and future climatic conditions. How to capture ET variation during
the dry season is one of the most challenge issues, since ET during the dry season is regulated by soil
moisture mostly rather than the meteorological variables. However, the spatiotemporal variation of ET
and its trend in the Thailand is still not well studied, most likely due to the lack of high accurate ET
dataset, which limit the local water resource management.

Several approaches have been developed to estimate land surface ET based on satellite earth
observation data, which has proven to be able to obtain ET information at different spatial scales
from regional to global coverage [6–15]. The widely used surface energy balance-based method is
accurate and relies on the available land surface temperature (LST) data from satellite observations,
and the basic theory is that LST could generally represent the land surface dry-wet condition. However,
its application is limited in the clear sky, and large uncertainty exists when upscaling to cloudy sky
conditions [16–18]. Thus, the process-based approach is more attractive to get the spatially and
temporally continuous ET products with the increasing earth observation dataset availability [7–10].
For example, the process-based ETMonitor model driven by satellite observation has proven to be
able to generate highly accurate ET estimation at the daily scale and 1 km spatial resolution in arid
and semi-arid land by utilizing a variety of biophysical parameters derived from microwave and
optical remote sensing observations [7]. One key process of ETMonitor is that it adopted soil moisture
from microwave remote sensing to estimate root zone soil moisture empirically, which is utilized to
estimate the canopy resistance with other climate variables, and it is crucial to ensure the estimation
accuracy. Previously, the parameters in ETMonitor were assigned to locally arid and semi-arid basin
based on related references, which should be carefully calibrated when applied to different regions.
When applying ETMonitor to the monsoon climate in Thailand, an operational method should be
developed to address the constrain of soil moisture on ET during the dry season. Considering the
complementary advantages of the LST-based method and the process-based method, we hypothesize
these two methods can be combined to take both advantages, and LST-based method can be utilized to
parameterize the constraint of soil moisture on ET in ETMonitor, to improve the ET estimation scheme
and obtain spatially and temporally continuous ET information.

In the current study, the ETMonitor algorithm was further improved to estimate ET in Thailand
based on earth observation products. An operational method was proposed to parameterize the constrain
of soil moisture on canopy resistance for ET estimation, mainly achieved based on the LST-based land
surface energy balance method. The result was further validated based on eddy covariance flux tower
observations to present the validity of current method. The spatial variation of ET was also analyzed
to improve the understanding of the local scale ET information for Northeastern Thailand.
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2. Materials and Methods

2.1. ET Estimation Scheme

The developed ET estimation scheme is a combination of process-based algorithm, ETMonitor,
and LST-based energy balance algorithm. Different from the original ETMonitor, which adopt
fixed parameters to estimate canopy resistance for ET estimation based on mainly soil moisture
retrieved from microwave remote sensing, the developed scheme in current study also assimilates
LST information retrieved by thermal remote sensing. For the clear sky, when both soil moisture and
LST data are available, LST-VI (vegetation index) method is adopted to estimate EF and ET, which is
taken to parameterize the regulation of soil moisture on the ET. This relationship between canopy
resistance and soil moisture during the clear sky is built by introducing a new parameter named soil
moisture stress index (SMSI), which is further interpolated and applied to cloudy days to estimate
canopy resistance when only soil moisture data is available. Details on SMSI will be described in
Sections 2.2 and 2.3. Hence, the canopy resistance time series is obtained and is finally applied to
estimate ET.

The ETMonitor algorithm is designed to estimate the ET as the sum of different components,
including plant transpiration (Ec), soil evaporation (Es), canopy rainfall interception loss (Ei), open
water evaporation (Ew), and snow/ice sublimation (Ess). Due to the scarcity of snow and ice
in the study region, sublimation process has been eliminated from current study. Detail on the
parameterizations in ETMonitor can be found in [7]. Briefly, the canopy rainfall interception loss is
estimated using a revised Gash analytical model, open water evaporation is estimated by the classical
Penman equation. The soil evaporation and vegetation transpiration are calculated following the
Shuttleworth–Wallace dual-source model [19]:

Ec =
ΔRnc + ρcpVPD0/rc

a

λΔ + λγ(1 + rc
s/rc

a)
(1)

Es =
Δ(Rns − G) + ρcpVPD0/rs

a

λΔ + λγ(1 + rs
s/rs

a)
(2)

where Rns and Rnc represents the net radiation for soil and vegetation (W m−2), respectively; G is
the soil heat flux density (W m−2); rc

a and rs
a are the bulk boundary layer resistance of vegetation and

aerodynamic resistance between soil and canopy source height (s m−1), estimated according to the
canopy height; rc

s is the bulk stomatal resistance of canopy (s m−1), estimated by Jarvis-type model;
rs

s is the surface resistance of soil (s m−1); Δ is the slope of saturation vapor pressure curve of air
temperature (kPa K−1); 
 is the air density (kg m−3); cp is the specific heat of air at constant pressure
(J kg−1 K−1); λ is the latent heat of vaporization (MJ kg−1); γ is the psychrometric constant (kPa K−1);
VPD0 is the water vapor pressure deficit at canopy source height (kPa). Detail of these parameters
retrieval can be found in [7].

The total Rn (Rntot) is partitioned vertically as Rn for canopy rainfall interception loss (Rni), Rnc,
and Rns:

Rntot = Rni + Rnc + Rns (3)

where the value of Rni stays zero on days with clear sky. For rainy days, Rni is estimated according to
the interception loss by reversing the Penman-Monteith (PM) equation. Generally, Rntot is measured by
remote sensing and Rni is determined from the Penman-Monteith equation, and these are subsequently
used to determine Rnc and Rns for Equations (1) and (2). The sum of Rnc and Rns is estimated as the
residual of Rntot − Rni, and is partitioned as:

Rnc = Fc (Rntot − Rni) (4)

Rns = (1 − Fc)(Rntot − Rni) (5)
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where Fc is the fraction of vegetation cover.

2.2. Canopy Resistance

Canopy resistance is estimated as the reciprocal of the canopy conductance, which is upscaled from
the stomatal conductance of leaf. While the stomatal conductance was computed by the well-known
Jarvis type model [20], which expresses stomatal conductance as the product of constraining functions
of several environmental variables, including the solar radiation (Rd), vapor pressure deficit (VPD),
air temperature (Ta), and root zone soil moisture (θroot). These finally lead to the rc

s estimation equation
as follows:

rc
s = rs,min/

(
f (Rd) f (VPD) f (Ta) f (θroot)LAIe f f

)
(6)

where rs,min is the minimum stomatal resistance (s m-1) associated with different plant functional types;
LAIeff represents the effective leaf area index (LAI), which has been applied for upscaling from leaf to
canopy scale. LAIeff was estimated following [21]:

LAIe f f = LAI/(0.3LAI + 1.2). (7)

The constrain function of f (Rd), f (VPD), f (Ta), f (θroot), varying between 0 and 1, represent the constrains
of solar radiation, VPD, air temperature, and root zone soil moisture to the stomatal conductance,
expressed as:

f (Rd) = 1 − exp(−Rd/k1) (8)

f (VPD) = 1 − k2VPD (9)

f (Ta) =
(

Ta − Tmin
Topt − Tmin

)
(

Tmax − Tmin
Tmax − Topt

)
(Tmax−Topt)/(Topt−Tmin)

(10)

f (θroot) =

⎧⎪⎨
⎪⎩

0
(θroot − θmin)/(θmax − θmin)

1

f or θroot < θmin
f or θmin < θroot < θmax

f or θroot > θmax

(11)

where k1 and k2 are fitting parameters to describe the stomatal conductance sensitivity to radiation
and VPD. θmax and θmin represents the saturating and wilting point soil moisture at which the plant
stomata were totally open and close, respectively. Tmin, Tmax, and Topt are the minimum, maximum
and optimum air temperatures, respectively.

2.3. Parameterizing the Constrain of Soil Moisture

Since satellite soil moisture data can only provide surface soil moisture (θsurf), previous study
estimated θroot according to an empirical equation (θroot∝θsurf) and applied in Equation (11) for
obtaining f (θroot) [7]. f (θroot) is directly proportional to θsurf, hence SMSI is introduced in this study to
express this relationship:

SMSI = f (θroot)/θsur f . (12)

Since θsurf usually decreases rapidly compared to θroot after rainfall events until it reaches a relatively
stable level, SMSI is supposed to show decreasing trend with the decrease of θsurf from wet to dry
period. By introducing SMSI to expresses the sensitivity of f (θroot) to θsurf compared with the original
ETMonitor, the relationship between f (θroot) and θsurf is simplified.

Generally, θsurf can be obtained directly from microwave remote sensing soil moisture products,
while θroot can be estimated either from ground observation or soil water balance model, which could
apply Equation (11) to estimate f (θroot) given that θmax and θmin are known. Unfortunately, θmax and
θmin vary largely and depend on several factors including the soil characters, plant species, growing
phases, and root development, a mathematical fitting was suggested to obtain θmin based on field
experiment [22]. Hence, we suggest to reverse Equation (6) to retrieve f (θroot), which is feasible for
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clear sky when ET is estimated by the LST-based method. And SMSI under cloud covered days can be
interpolated linearly according to the clear sky SMSI. Accordingly, Equation (11) is rearranged as:

f (θroot) = min
{

1, max
(

0, θsur f ∗ SMSI
)}

. (13)

2.4. Clear Sky EF and ET Estimation

Different from the original ETMonitor, current study also utilize the LST-based energy balance
to retrieve clear sky ET, which was further used to retrieve clear day SMSI. The clear sky ET and
evaporative fraction (EF) were first estimated using LST-VI feature space method. The clear sky EF is
based on reference [23]:

EF = φ
Δ

Δ + γ
(14)

where φ is a combined parameter for aerodynamic resistance, and is directly derived from remotely
sensed data. The success of LST-VI triangle method for estimating EF and ET depends mainly on the
choice of dry and wet edges in the LST-VI triangle space.

2.5. Data Collection

Table 1 lists the remote sensing dataset collected for ET estimation. For MOD11A1 and MYD11A1
daily LST data, only those under the clear sky were collected. The 8-day composites of LAI and
albedo data were interpolated temporally to obtain daily 1 km LAI and albedo datasets. The 0.25◦

resolution precipitation and soil moisture products were spatially interpolated to a fine resolution of
1 km. The 500 m resolution MCD12Q1 land cover type data was resampled to 1 km.

Table 1. Main input remote sensing dataset for evapotranspiration (ET) estimation.

Input Variables Products Name Temporal Resolution Spatial Resolution

Land Cover Types MCD12Q1 Yearly 500 m
LST MOD11A1 & MYD11A1 Daily 1 km

NDVI MOD13A2 & MYD13A2 8 days 1 km
Albedo GLASS 8 days 1 km

LAI GLASS 8 days 1 km
Precipitation CMORPH Daily 0.25◦
Soil Moisture ESA CCI Daily 0.25◦

The gridded near-surface meteorological forcing data, including air temperature, air pressure,
dew point temperature, wind speed, downward short-wave and long-wave radiation fluxes were
retrieved from the ERA-Interim dataset (http://apps.ecmwf.int/datasets/). The meteorological forcing
data with 0.25◦ resolution was downscaled to 1 km using statistical downscaling approaches [7,24,25].

To validate the estimated ET, flux observation data from 6 eddy covariance sites were collected
(Table 2). The 30 min flux tower observed latent heat flux (LE) was summed to daily ET after careful
quality check.

Table 2. Flux observation sites information.

Site ID Description Lat (◦N) Lon (◦E) Period Reference

ctt007 Cassava field at Tak 16.90 99.43 2012–2015 [26]
dtt030 Diverse land surface at Tak 16.94 99.43 2003–2015 [26]
prt007 Paddy at Rachaburi 13.58 99.51 2011–2013 [26]
pst007 Paddy at Sukhothai 17.06 99.70 2004–2009 [26]
MKL Forest at Sakaerat 14.59 98.84 2003–2004 [4]
SKR Forest at Mae Klong 14.49 101.92 2001–2003 [4]
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2.6. Application of ET Estimation in Thailand

The ET estimation flowchart in current study is shown in Figure 1, and ET from 2001 to 2015 are
obtained for the study area.

For bare soil or water pixels, simple PM equation or classical Penman equation is applied to
estimate bare soil evaporation and open water evaporation. For the vegetation-soil pixels, detail steps
for ET estimation includes:

(1) The canopy rainfall interception loss during the rainy days estimated according a revised Gash
model [27–29];

(2) The net radiation is partitioned according to Equations (3)–(5), while during the rainy days in the
wet season Rni is estimated by reversing PM equation.

(3) Scatterplot of clear sky LST and NDVI is prepared, and triangle method is applied to retrieve clear
sky EF during the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS)
pass time according to Equation (15) in the dry season. The daily EF is assumed to be equal to the
EF during the satellite pass time, and daily ET is estimated according to the daily EF and daily
available energy;

(4) Daily rc
s and f (θroot) of clear days are obtained by reversing Equations (1) and (6), and SMSI is

estimated using Equation (12) during these clear days;
(5) SMSI time series is reconstructed by linear interpolation of the SMSI during clear days, hence

daily f (θroot) is obtained according to Equation (13) in the dry season; while in the wet season
SMSI is taken as constant;

(6) f (θroot) time series is then applied in Equation (6) to estimate daily canopy stomatal resistance,
and applied to Equations (1) and (2) to estimate plant transpiration and soil evaporation for all
sky conditions.

Finally, these ET components (plant transpiration, soil evaporation, canopy rainfall interception
loss, open water evaporation) are summed to total ET. And daily ET in Northeastern Thailand from
2001 to 2015 is achieved in current study.

 
Figure 1. ET estimation flowchart in current study. The left block stands for the land surface
temperature (LST)-based method to parameterize the regulation of soil moisture on the ET, while the
right block illustrates the interpolation to the cloudy days and the estimation of daily ET.
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3. Results

3.1. The Constriant of Soil Moisture on Canopy Resistance and ET

The interpolated daily SMSI for estimating daily canopy resistance was validated over MKL and
SKR sites at the dry season. For each site, soil moisture at 10 cm (θ10cm) and 50 cm (θ50cm) depths were
available, and surrogated for surface soil moisture and root zone soil moisture. θ50cm is applied in
Equation (11) to obtain the constrain of root zone soil moisture on the canopy resistance (f (θ50cm)),
which is taken as reference to further compare with f (θroot) by reversing Equations (1) and (6) further,
while f (θ50cm)/θ10cm (SMSI50cm) is considered as reference to compare with SMSI.

For the site scale application, when daily latent and sensible heat flux observation is available,
mainly in the clear sky, f (θroot) was first retrieved by reversing Equations (1) and (6) (f (θroot)clear day),
and SMSI was estimated (SMSIclear day) according to Equation (12). SMSIclear day was interpolated
linearly to obtain the daily SMSI (SMSIdaily), and applied in Equation (13) to obtain the estimated
f (θroot) (f (θroot)daily). Note that SMSIclear day and f (θroot)clear day are only for the days with valid latent and
sensible heat flux observations, while SMSIdaily and f (θroot)daily are temporal continuous during the dry
season (Figure 2).

Generally, in the beginning of wet-to-dry episode, the surface soil moisture drops down faster
compared to the root zone soil moisture (Figure 2). Several days (e.g., roughly 20 days) from the
beginning of dry season in 2003 for MKL site, θroot drop to the level below θmax, and f (θroot) start to
decrease, and the decreasing rate is linearly related to the decreasing trend of surface soil moisture.
This also lead the uneven decreasing rate of surface soil moisture and f (θroot). However, linear
relationship was found between surface soil moisture and f (θroot) during a wet-dry episode, which was
defined as the period between two rainy days (Figure 3). Hence, both SMSIdaily and f (θroot)daily could
match the temporal variation during the dry season (Figure 2), and both showed low root mean square
error (RMSE) and bias with the reference values (Figure 4), indicating the method to parameterize the
constrain of soil moisture on canopy resistance based on EF in current study is reasonable.

(A) 

(B) 

Figure 2. Time series of soil moisture stress index (SMSI) and f (θroot) at (A) MKL site and (B) SKR site.
Soil moisture at 10 cm (θ10cm) and 50 cm (θ50cm) depths are also shown.

The uncertainty of SMSI illustrated in Figure 4A will contribute to f (θroot) in Figure 4B. As we
can see in the Figure 4, RMSE of 0.31 in SMSI will result in RMSE of 0.09 in f (θroot), mostly because
f (θroot) is also regulated by surface soil moisture. This is also shown in Figure 2 that f (θroot)daily is very
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close to f(θroot), while SMSIdaily bias relative large with SMSIroot. Hence, this interpolation method is
considered valid and can be applied to estimate ET in the current study.

 
(A) (B) 

Figure 3. The relationship between soil moisture at 10 cm (θ10cm) and f (θ50cm) at (A) MKL site and
(B) SKR site at a wet-dry episode. Linear equations are used for fitting(y = 3.42 x − 0.28 with R2 = 0.99
from 27 October 2003 to 5 February 2004 and y = 0.12 x − 0.31 with R2 = 0.20 from 7 February 2004 to
14 March 2004 in MKL, y = 17.87 x − 1.87 with R2 = 0.96 from 3 November 2002 to 8 December 2002
and y = 4.80 x − 0.15 with R2 = 0.97 from 24 December 2002 to 24 February 2003 in SKR).

 
(A) 

 

(B) 

Figure 4. Scatterplot comparison of estimated (A) daily SMSI and (B) daily f (θroot) during dry season
at MKL and SKR sites.

3.2. Validating Clear Sky EF by MODIS

The clear sky EF was first derived by LST-VI triangle method, and Figure 5 shows an example of
the LST-VI scatter plot and the spatial variation of estimated EF for 20th January, of 2009. Generally,
the dry edge and wet edge are well estimated both by Terra and Aqua MODIS. Furthermore, the Terra
MODIS-based EF estimates is very close to that of the Aqua MODIS estimates (Figure 6), and both
were applied for ET estimation.

To further validate the estimated EF, the estimated EF values over the 6 flux observation sites
were extracted to compare with the ground observation, as shown in Figure 7. The observed EF at the
satellite pass time is obtained by interpolating the ratio of observed half-hour LE to half-hour available
energy to the Terra and Aqua MODIS pass time, while the daily EF is obtained as the ratio between
daily LE and available energy. Generally the estimated clear sky EF agree well with observed half-hour
and daily EF. Slight difference could be found in terms of RMSE and correlation coefficient, indicating
the reasonability of constant EF assumption.
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(A) (B) 

 
(C) (D) 

Figure 5. Example of LST-VI triangle scatterplot (A,C) and the spatial variation of estimated EF (B,D),
by Terra (A,B) and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) (C,D) at January
20 of 2009. Red line in the LST-VI triangle scatter is the dry edge where φ =1.26 × Fc, while the blue
line is the wet edge where φ = 1.26.

 
(A) 

 
(B) 

Figure 6. Comparison of EF based on Terra and Aqua MODIS on January 20 of 2009. (A) scatter plot
of EF based on Terra and Aqua MODIS data; (B) spatial variation of EF difference (EF based on Terra
minus that of the Aqua MODIS data).

3.3. Comparison of Estimated ET with Flux Tower Observations

The estimated daily ET agree well with the ground observations, with mean bias range from
−0.44 to 0.89 mm d−1 and root mean square error (RMSE) range from 1.08 to 1.58 mm d−1 (Figure 8).
The estimated ET could also catch the seasonal variations of ET (Figure 8). These indicate that the
estimated ET has relatively good accuracy. Generally, better agreement could be found in the cropland
sites than in the forest sites, most likely because significant seasonal variation of ET could be found in
cropland while ET in the forest sites showed much less seasonal variation.
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(A) (B) 

Figure 7. Comparison of estimated EF with (A) observed EF at satellite pass time and (B) daily EF
obtained by ground observation.

(A) 

(B) 

(C) 

(D) 

(E) 

(F) 

Figure 8. Comparison of ETMonitor estimated daily ET with flux tower based observations in (A) ctt007
site, (B) dtt030 site, (C) prt007 site, (D) pst007 site, (E) MKL site, and (F) SKR site.
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Current estimation is compared with the results by original ETMonitor by Hu and Jia (2015) at
daily time-step (Table 3). When original ETMonitor by Hu and Jia (2015) was applied, relatively large
bias and RMSE could be found, especially for the forest sites. The accuracy is improved by parameter
adapting for the forest area, resulting in reduction of RMSE from 1.92–2.12 mm d−1 to 1.16–1.39 mm d−1.
It also suggests the necessity to adapt model parameters regionally in the original ETMonitor when
applying to different regions to achieve accurate ET estimation. The method developed in current
study showed comparable accuracy with the regional adapted ETMonitor, indicating the developed
method could be adopted to obtain ET with higher accuracy. This method is operational, and it could
reduce the dependence of ground flux observation to calibrate the model parameters.

Table 3. Comparison of estimated daily ET by current improved ETMonitor and original ETMonitor by
Hu and Jia (2015) with ground observed ET. Values in the baskets represent the results after adapting
the parameters by Hu and Jia (2015) to the humid climate in Northeast Thailand.

Site ID

ETMonitor by Hu and Jia (2015) Current Study Estimation

R
Bias

(mm d−1)
RMSE

(mm d−1)
R

Bias
(mm d−1)

RMSE
(mm d−1)

ctt007 0.48 0.02 1.06 0.37 0.43 1.27
dtt030 0.62 (0.45) −1.70 (−0.77) 1.95 (1.25) 0.47 −0.3 1.12
prt007 0.45 −0.37 1.21 0.46 −0.44 1.16
pst007 0.51 −0.33 1.12 0.53 −0.26 1.08
MKL −0.02 (0.00) 1.59 (0.68) 1.92 (1.16) −0.06 0.65 1.16
SKR 0.14 (0.07) 1.67 (0.44) 2.12 (1.39) 0.13 0.89 1.58

Current estimation is also compared with the MOD16 ET product at 8-days resolution (Table 4 and
Figure 9). Overall, the RMSE of estimated ET (RMSE = 0.97 mm d−1) is much lower than MOD16 ET
(RMSE = 1.54 mm d−1) when compared with ground observation. Significant improvement is observed
over forest sites (MKL and SKR) where the RMSE are reduced from 2.69 mm d−1 and 1.99 mm d−1 to
1.04 mm d−1 and 1.20 mm d−1.

 
(A) (B) 

Figure 9. Comparison of (A) ETMonitor estimated 8 days ET in current study and (B) MOD16 ET with
ground observed ET.
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Table 4. Comparison of ETMonitor estimated 8 days ET and MOD16 8 days ET with ground
observed ET.

Site ID

ETMonitor 8-Days ET MOD16 8-Days ET

R
Bias

(mm d−1)
RMSE

(mm d−1)
R

Bias
(mm d−1)

RMSE
(mm d−1)

ctt007 0.59 0.44 0.94 0.30 0.36 1.19
dtt030 0.59 −0.31 0.92 0.50 −0.09 0.98
prt007 0.65 −0.37 0.82 0.23 −0.03 0.99
pst007 0.63 −0.45 0.97 0.59 −0.55 1.12
MKL 0.07 0.75 1.04 0.48 2.58 2.69
SKR 0.30 0.78 1.20 0.42 1.82 1.99

3.4. Spatial Variation of ET in Northeastern Thailand

Figure 10 shows the spatial variation of estimated annual mean ET, as well as the main ET
components including plant transpiration, soil evaporation, and canopy rainfall interception in
Northeastern Thailand from 2001 to 2015. The multi-annual mean ET in two largest river basins
in this area, Chi and Mun river basins, are 938.8 mm yr−1 and 1023.7 mm yr−1, respectively (Table 5).
These two basins are mainly dominant by cropland, which account for 82.16% and 87.45% respectively
according MCD12Q1 land cover classification data. Overall, annual precipitation and ET in the Mun
river basin is higher than the Chi river basin (Table 5).

 
(A) 

 
(B) 

 
(C) 

 
(D) 

Figure 10. Spatial variation of (A) plant transpiration, (B) soil evaporation, (C) canopy rainfall
interception, and (D) total ET (mm yr-1), in Northeastern Thailand from 2001 to 2015. The boundaries
of Chi river basin and Mun river basin are also plotted.

Table 5. Statistic information of Chi and Mun river basins.

Basin Area
(× 103 km2)

Annual Precipitation
(mm yr−1)

Annual ET
(mm yr−1)

Cropland
Coverage (%)

Forest
Coverage (%)

Chi river basin 40.58 1269.52 938.80 82.16 5.56
Mun river

basin 71.06 1374.50 1023.70 87.45 6.56
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Plant transpiration and soil evaporation account for 43.32% and 51.48% of the total ET respectively.
The canopy rainfall interception only account for 4.70% of total ET, since this region is mostly covered
by low canopy crop, and the area of cropland account for over 80% of the total area, while 80% of
the crop is paddy field. The forest only cover roughly 6% of the two basins, mostly located in the
Northwest of Chi river basin and Southwest of Mun river basin, where relative high transpiration and
interception could be found (Figure 10).

Figure 11 presents the spatial variation of wet season (April to October) and dry season (November
to next March) ET in Northeastern Thailand from 2001 to 2015. The wet season ET in Chi and Mun
river basins account for 62.30% and 61.27% of annual total ET, while dry season ET in Chi and Mun
river basins account for the rest 37.70% and 38.73%.

 
(A) (B) 

Figure 11. Spatial variation of (A) wet and (B) dry season ET (mm) in Northeastern Thailand from 2001
to 2015.

4. Discussion

The spatially and temporally continuous ET information will advance our knowledge on the
mean state and spatial and temporal variability of this significant component of the water cycle,
and is highly needed for understanding the interactions between land surface and atmosphere and
subsequently improving the water resource management [30]. The LST based surface energy balance
method has been proved to provide accurate ET information, but inefficient to produce time series ET
due to the cloud [31]. The process-based approach is better for obtaining the spatially and temporally
continuous ET products, e.g., the MOD16 ET algorithm. The procedure provided by current study
generally combines the advantage of LST-based energy balance method to improve the ET estimation
accuracy and the advantage of process model to achieve the spatially and temporally continuous ET
estimation, thus it can provide accurate ET estimation, as we showed that the RMSE of estimated ET is
low (Figures 8 and 9, Table 3).

It is generally accepted that the RMSE of estimated daily ET range from 1–2 mm d−1 based
on satellite forcing, and RMSE of about 50 W m−2 is common reported for latent heat flux (equal
to 1.75 mm d−1 ET) [7,10,32]. The RMSE of estimated daily ET in current study range from 1.08
to 1.58 mm d−1, with an averaged RMSE of 1.22 mm d−1, which is less compared to original
ETMonitor by Hu and Jia (2015) and MOD16 ET. Generally, MOD16 tend to overestimate forest
ET and underestimate cropland ET, which is consistent with several past studies [33–35], though
not to the same extent as found in this study. Several factors contribute to MOD16 ET uncertainties,
e.g., parameterizing soil moisture constrain by meteorological factors (not soil moisture or LST),
overestimating environmental stresses on canopy conductance, empirical parameter setting in
complementary relationship hypothesis [35,36]. ETMonitor first presented by Hu and Jia (2015)
is superior mostly because it is physical robustness, and it considers the impact of soil moisture on ET
by introducing the microwave remote sensing-based surface soil moisture and has been demonstrated
to be suitable to estimate ET at both regional and global scale [7,37,38]. Although the behavior of
original ETMonitor does not meet the expectation in current study, it could be improved by simply
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adapting its regional parameter to local condition for achieving accurate ET estimation, and is clearly
presented by the low RMSE of regional parameter adapted ETMonitor in Table 3. This also highlight the
necessity to calibrate parameters to obtain accurate ET estimation when applying locally. Previously,
empirical method or soil water balance model was adopted to estimate the root soil moisture based
on surface soil moisture, which was further applied to estimate the constrain of soil moisture (f (θroot))
based on fixed soil moisture sensitive parameter. Different from original ETMonitor presented by
Hu and Jia (2015), who adopted empirical method to express the constrain of soil moisture on ET,
the framework developed in current study provides an operational method to calibrate the algorithm
regionally by parameterizing the constrain of soil moisture. The developed framework utilized the
LST-VI triangle method to estimate the clear sky EF, which was further applied to estimate SMSI by
reversing the canopy resistance equation. It is an operational approach to obtain the canopy resistance
parameter for ETMonitor, and it could also be adopted by other ET algorithms.

It has been long recognized that the important variables to determine canopy resistance (or canopy
stomatal conductance) include air temperature, humidity, solar radiation, and soil moisture [39,40].
Plants usually open their stomata under wet conditions, which are favorable for plant growth,
while when the soil dries stomatal closure limits transpiration to prevent dehydration. Method
obtained to express the constrain of soil moisture and climate factors on canopy resistance and
evapotranspiration is the key to ensure the accuracy of evapotranspiration algorithms [8,41,42].
The accuracy of ETMonitor estimated ET is also sensitive to the canopy resistance parameter [7].
Different from the traditional calibration method, the developed approach utilized the clear sky EF
maps obtained by LST-VI triangle method to retrieve the canopy resistance parameter. One advantage
is that it can provide the pixel-to-pixel parameter. The traditional method usually relied on the
heavy field work to retrieve the plot scale canopy resistance parameter, which was further applied to
regional or global scale according to the land cover map [10]. Thus, traditionally a fixed parameter
was usually adopted for a land cover type. However, there exist strong variability in drought tolerance
across different plant species, sites, and environmental conditions, which limit the accuracy of global
land surface model to simulate the ecosystem response to the decreasing soil moisture, hence much
comprehensive calibration method should be addressed [42,43]. The SMSI retrieved by clear sky EF
maps obtained by LST-VI triangle method is based on satellite remote sensing image, and can capture
the spatial and temporal variation.

LST-VI method is chosen in this study mostly because of its simplicity and accuracy, making it
acceptable in the current study (Figure 7). It is also noted that LST-VI method may suffer from domain
dependence, and it may impact the accuracy of wet and dry boundary derivation [44]. This spatial-scale
effect is common in other anchor-based ET algorithm, e.g., surface energy balance algorithm for land
(SEBAL), and caution should be paid when applied to different images in extreme large regions [45,46].

For large regional application, e.g., continents scale, algorithm that is independent of domain
size is suggested as alternative. The uncertainty in the input data also contribute to the error of
estimated ET in current study. Former study already presented that remote sensing ET algorithms
are very sensitive to input variables, e.g., LST, Rn, NDVI, and meteorological variables, depending on
which algorithms are adopted [16,32,44,45]. The impact of land cover on ET estimation should also be
addressed in ETMonitor, since some sensitive parameters like the minimum stomatal resistance are set
according to land cover types. Hence, the uncertainty of land cover classification also contribute to the
error in estimated ET.

The linear interpolation of SMSI works well during a wet-dry episode since SMSI generally
presents monotonic deceasing trend. However caution should be paid when applying to the frequent
rainfall period when the monotonic trend will be disturbed by rainfall. Meanwhile, it is not suitable for
those regions where root-zone soil moisture and surface soil moisture are decoupled since the surface
soil moisture by satellite remote sensing generally cannot represent the surface wetness condition.
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5. Conclusions

ET in Northeastern Thailand was estimated by process-based ETMonitor algorithm based on
mainly satellite earth observation datasets. Meanwhile, a new scheme was developed and applied
in ETMonitor to take the advantage of LST-based energy balance method. In this scheme, the soil
moisture stress index (SMSI) was defined to express the sensitivity of canopy resistance to surface
soil moisture, and it was estimated by reversing the canopy resistance equation during the clear sky
when EF could be achieved by LST-based energy balance method. The clear sky SMSI was further
interpolated to the cloudy days to estimate canopy resistance based on temporal-continuous surface
soil moisture data for continuous ET estimation. The estimated daily ET generally agreed well with
the flux tower observation with RMSE ranging between 1.08 and 1.58 mm d−1. The RMSE values over
the forest sites are considerably lower compared to MOD16 products, indicating its better accuracy.
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Abstract: Surface energy balance models have been one of the most widely used approaches to
estimate spatially distributed evapotranspiration (ET) at varying landscape scales. However, more
research is required to develop and test an operational framework that can address all challenges
related to processing and gap filling of non-continuous satellite data to generate time series of ET
at regional scale. In this study, an automated modeling framework was developed to construct
daily time series of ET maps using MODIS imagery and the Surface Energy Balance System model.
The ET estimates generated from this modeling framework were validated against observations
of three eddy-covariance towers in Oklahoma, United States during a two-year period at each
site. The modeling framework overestimated ET but captured its spatial and temporal variability.
The overall performance was good with mean bias errors less than 30 W m−2 and root mean square
errors less than 50 W m−2. The model was then applied for a 14-year period (2001–2014) to study
ET variations across Oklahoma. The statewide annual ET varied from 841 to 1100 mm yr−1, with
an average of 994 mm yr−1. The results were also analyzed to estimate the ratio of estimated ET
to reference ET, which is an indicator of water scarcity. The potential applications and challenges
of the ET modeling framework are discussed and the future direction for the improvement and
development of similar automated approaches are highlighted.

Keywords: MODIS; Surface Energy Balance System; Oklahoma Mesonet; Eddy-covariance

1. Introduction

Time series of remotely sensed evapotranspiration (ET) maps have extensive applications in
agricultural, hydrological and environmental studies as they capture the spatiotemporal variability
of vegetation consumptive use from field to continental scales. For example, spatial ET data have
been used in agriculture sector for water right regulation, planning and monitoring [1], assessing
irrigation and drainage performance [2–4], closing water balance at irrigation scheme levels [5] and
managing agricultural water resources [6–8]. Recent studies have shown that remotely sensed ET can
be used effectively for monitoring agricultural droughts [9–11] with the future potential of improving
the performance of ET-integrated agricultural drought indices [12]. ET maps have been also used in
assessing crop water productivity [13–15] and crop yield analysis [16,17].

Numerous studies have demonstrated the use of time series ET maps for ecological applications,
such as capturing the progress of vegetation and wetland restoration [18], assessing the vulnerability of
forest to fire and drought [19] and accounting water use from riparian vegetation and invasive
species [20–23]. Remote sensing-based ET products have also been applied in improving the
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performances of hydrological models [24–26] and for climate studies to capture water feedbacks
associated with seasonal cycles and soil moisture deficit at regional scales [27].

Among different approaches developed for mapping ET, the surface energy balance (SEB)
approach has been widely used to acquire distributed ET at varying geographical scales [28–31].
Numerous SEB models have been proposed, including but not limited to Surface Energy Balance
Index (SEBI) [32], Two-Source Energy Balance (TSEB) [33,34], Surface Energy Balance Algorithm for
Land (SEBAL) [35], Simplified Surface Energy Balance Index (S-SEBI) [36], Surface Energy Balance
System (SEBS) [37], Mapping Evapotranspiration at high Resolution with Internalized Calibration
(METRIC) [38], Atmosphere-Land Exchange Inverse (ALEXI) [39], Regional ET Estimation Model
(REEM) [40], Remote Sensing Evapotranspiration model (ReSET) [41], Operational Simplified Surface
Energy Balance (SSEBop) [42] and Hybrid Dual-Source Scheme and Surface Energy Framework-Based
Evapotranspiration Model (HTEM) [43]. Some of these models such as SEBAL and METRIC use
manual selection of extreme pixels to compute sensible heat flux, which could result in variations
in estimated ET [44] and may add uncertainty and errors based on the user’s experience [45]. Other
models such as TSEB, SEBS and SSEBop do not require human intervention so that the associated
uncertainties are minimized. The selection of the SEB model and the quality of input data are likely
key factors to determine the accuracy of modeled ET [46].

Developing time series of ET maps requires complex, multi-step analyses to deal with issues
associated with pre-processing of remote sensing data and post-processing of resulting ET products.
The choice of the SEB model and satellite data could vary depending on intended applications of
ET maps, availability and requirements of input data and availability of resources (time, money and
expertise) to run the model. In general, the SEB-based ET estimation process can be divided into six
steps: (i) collation of remotely sensed and ground-based input data, (ii) quality assessment of collected
datasets and preparation of all necessary inputs for the selected SEB model, (iii) running the SEB model
(including all modules and algorithms) to obtain the instantaneous ET at the time of satellite overpass,
(iv) extrapolation of instantaneous ET to daily estimates, (v) filling the gaps due to cloud coverage
over a portion of the map and (vi) interpolation of daily ET between image acquisition dates to obtain
ET for longer time scales.

The first two steps are performed to ensure the quality of input data, a critical requirement for any
remote sensing data analysis. A thorough QA/QC procedure for weather data as presented in [47,48]
is necessary as the accuracy of final product depends on the quality of these datasets. The quality
assurance of weather dataset is even more critical in case of SEB models as they are sensitive to weather
parameters. For example, Webster et al. [49] found air temperature and wind speed as influential
inputs for HTEM and SEBS models, whereas, S-SEBI was less sensitive to meteorological inputs.

For small-scale applications with similar climatic conditions, weather data from a single ground
station are usually used as input in most SEB models. However, for regional applications with varying
climatic conditions, distributed datasets are required. Several recent studies [50,51] have applied
gridded weather datasets for mapping daily ET due to the ease of their application for regional
studies. However, users need to confirm the integrity of the datasets before processing the SEB model.
A study [52] found overestimation of reference ET due to biases in air temperature and wind speed in
the widely used reanalysis data—North American Land Data Assimilation System when compared
to reference ET estimates from the Texas High Plains ET Network [53]. The study recommended
using weather station datasets within agricultural settings, whenever possible, for precise applications
of time series ET information such as in irrigation scheduling. A few studies have explored the
applicability of developing distributed weather data from the point measurements of a network of
ground stations to account for the spatial variability of weather parameters [54].

The third step is to run the selected SEB model, which involves several sub-models to solve the
SEB equation as shown in Equation (1).

LE = Rn − G − H (1)
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where LE is latent heat flux, Rn is net radiation, G is soil heat flux and H is sensible heat flux.
All parameters are in units of W m−2. Based on the sensible heat flux computation approach, SEB
models can be categorized into single-source and two-source models. The sensible heat fluxes for soil
and vegetation are computed separately in two-source models, while a single value for each pixel is
computed in single-source models. Each approach has its own advantages and caveats. In theory,
two-source models could provide more accurate ET over sparse vegetation as they close the energy
balance separately for soil and vegetation. Timmermans et al. [44] found better accuracy from a TSEB
model compared to SEBS across sparsely vegetated grasslands in the Southern Great Plains. Kustas
et al. [55] reported that two-source performed better in sub-humid tallgrass prairie, whereas greater
accuracy was found for a single-source model in semiarid rangeland.

As mentioned before, some single-source models require an additional step in running the model,
which involves the manual selection of extreme hot and cold pixels by user. To remove the subjectivity
in the selection of extreme pixels in SEBAL, Long et al. [56] introduced a trapezoidal approach to define
boundary conditions for the selection of these pixels based on the relationship between vegetation
fraction and surface temperature. Automated approaches have been proposed in [57–59] to replace
human intervention. Alternative approaches are also applied by [60,61] to estimate ET from a cold
pixel as a function of normalized difference vegetation index when an ideal cold pixel is difficult to
find within a satellite image.

The fourth step is to extrapolate the instantaneous ET to daily values. Evaporative fraction
(Λ) [35,37,62,63] and ETrF (fraction of reference ET) [38,64] are the common methods to obtain daily
ET. Both of these methods assume the instantaneous Λ or ETrF is the same as the daily Λ or ETrF.
However, a study [65] reported that this assumption was not satisfied when the fractional vegetation
cover was close to a maximum. In the Texas Panhandle, Colaizzi et al. [66] found a better agreement of
ETrF method for cropland and Λ method for bare soil when compared with lysimeter measurements.
Chavez et al. [67] evaluated six extrapolation approaches on corn and soybean fields and found smaller
error from Λ method when compared with eddy covariance measurements. Another study [68] found
Λ method advantageous during several water stress events, whereas ETrF approach performed better
under advective conditions [38,64], which could be significant in arid environments.

The fifth step is to fill the gaps caused by cloud coverage over a portion of the daily ET
maps. One approach is to apply linear interpolation of nearest reliable values within an image [50].
This method is suitable when the nearest pixels are under the same land cover as that of missing
pixels. However, it may not be appropriate when the area with data gap is large and encompasses
heterogeneous terrain. Another approach includes the use of time-weighted interpolation of preceding
and following images [69]. This method adjusts the vegetation development using normalized
difference vegetation index (NDVI) across vegetated areas and residual soil moisture differences for
the areas with bare soil surface. Anderson et al. [39] applied the available water for the root zone
and soil surface layer to fill the gaps. The available water for the clear and cloudy days is used to
estimate the daily water depletion due to ET from the root zone and soil surface layer and the fraction
of available water is used to fill the gaps.

The final step is the interpolation of ET maps between consecutive satellite overpass dates
to construct daily ET time series. Several interpolation and data-fusion approaches have been
implemented for this purpose. A common approach is to apply linear interpolation of Λ or ETrF images
between consecutive satellite overpass dates [70]. Another approach is to apply a curvilinear function
using more than two Λ or ETrF images. For example, at least one cloud-free image for each month was
used for spline interpolation within METRIC to obtain monthly and seasonal ET [38,71,72]. Singh et
al. [70] evaluated the performance of several interpolation methods and found no significant difference
in seasonal ET among cubic spline, fixed ETrF and linear interpolations. A backward-average iterative
approach has been also proposed to estimate ET in between Landsat overpass dates [73].

While numerous studies have been conducted to address the issues related to specific steps
involved in generating remotely sensed ET time series based on SEB models, only a few have focused
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on developing automated modeling frameworks, covering all hierarchical steps mentioned above.
Such modeling frameworks, if validated, could have significant value in providing end-users with
daily ET time series for practical applications in improving land and water management. Furthermore,
a comprehensive and detailed documentation of the entire process of deriving daily ET maps at
regional scales could be a useful resource to potential end-users who currently need to understand
and select appropriate approaches for each of the six steps from many sources. Developing and
documenting a comprehensive framework that generates complete ET time series from raw input
data enables potential users outside the research community to utilize this framework for making
more informed decisions and policies. The main goal of this study was to develop and document a
modeling framework to construct daily time series of ET maps for the entire state of Oklahoma, USA.
The performance of this framework was also evaluated by comparing its results with ET estimates of
flux towers in Oklahoma. Finally, long-term variations in ET across Oklahoma were investigated.

2. Materials and Methods

2.1. Study Area

The study area covered the entire state of Oklahoma, USA, with an area of about 181,200 km2

(Figure 1). Oklahoma Climate is classified as humid subtropical at most parts of the state and cold
semi-arid at far west [74]. The state has nine climate divisions (CD) delineated based on precipitation
and temperature gradients. The normal (1981–2010) annual precipitation is about 925 mm yr−1,
with significant spatial variation across CDs. While southeast (CD9) receives the largest amount of
1301 mm yr−1 on average, the Panhandle (CD1) holds the smallest record of 520 mm yr−1. The normal
annual mean air temperature is 15.6 ◦C, with July and January being the hottest and coldest months,
respectively. The southcentral (CD8) has the maximum mean annual temperature of 16.7 ◦C, whereas
the Panhandle region has the minimum value at 13.6 ◦C. The top two land cover categories in Oklahoma
are grassland (36.4%) and pastureland (11.3%) [75]. The elevation varies between 88 m above mean
sea level at the southeast border with Arkansas and 1516 m at far-west border with New Mexico.

Figure 1. Map of Oklahoma and its nine climate divisions. The locations of Mesonet stations and flux
towers are also specified.

2.2. Modeling Framework

The modeling framework was designed to use daily images from the MODIS Terra satellite as
input data. The single-source SEBS model [37] was selected as the SEB model for estimating energy
fluxes. The main reason for the selection of SEBS over other SEB models was its applicability over
large areas with heterogeneous surfaces [31]. In addition, this model does not require intermittent
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human intervention, which facilitates the automation process. A graphical illustration of the proposed
framework is shown in Figure 2, followed by detailed explanation of specific approaches selected for
each of the six computational steps mentioned before.

 

Figure 2. A descriptive flow diagram of the daily time series of evapotranspiration (ET)
modeling framework.

2.2.1. Step 1: Collation of Input Data

The daily surface reflectance (MOD09GA, [76]), daily land surface temperature (LST) and
emissivity (MDO11A1, [77]) data were downloaded from the US Geological Survey Land Processes
Distributed Active Archive Center (https://lpdaac.usgs.gov/). Ground-based meteorological data
included hourly air temperature, relative humidity, incoming shortwave solar radiation, wind speed
and atmospheric pressure. These data were obtained from the Oklahoma Mesonet [78,79] weather
stations installed across the state (Figure 1). The Oklahoma Mesonet is a world-class environmental
monitoring network (https://www.mesonet.org/) consisting of 120 active stations with at least one
station at each of the 77 counties in Oklahoma.
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2.2.2. Step 2: Quality Assessment and Preparation of Inputs

The initial quality assessment of suitable MODIS images was based on cloud coverage. Images
with less than 10% cloud cover were selected for further processing. Hence, any day when the cloud
coverage was above 10% was assumed as a day with missing remotely sensed data. When the period
of missing imagery was more than 10 consecutive days, images with less than 15% cloud cover were
also included as acceptable quality. Then, cloud-covered pixels in each selected image were masked by
applying a threshold of LST smaller than 250 K. These steps were repeated for all selected reflectance,
LST and emissivity images. Since a single MODIS image tile was not sufficient to cover the entire state
of Oklahoma, two image tiles (h09v05 and h10v05) were merged.

The quality assessment of each weather variables was performed as described in [47,48]. The solar
radiation was checked against the upper limit under clear sky condition. Daily average temperature
was compared against the average extreme temperatures to ensure the difference between them was
within the acceptable range (2 ◦C) [48]. The quality of wind speed was maintained by considering gust
factor threshold of more than 1. Relative humidity data were considered when the values were less
than 100%. The missing weather data were filled by an average value of that parameter from four
nearest Mesonet stations. Hourly alfalfa reference ET (ETr) [48] was then computed at each station
during the study period using the Bushland ET Calculator [80]. Daily ETr estimates were obtained by
summing 24-hour ETr values. To incorporate the weather variability between the weather stations,
spatial input data were generated by applying inverse distance weighted interpolation for all weather
variables, including hourly and daily ETr. As mentioned in the previous section, the Oklahoma
Mesonet is a densely distributed weather station network, with about 1510 km2 per station. This is a
significantly finer spatial resolution than the 5000 km2 per station value recommended by the World
Meteorological Organization for evaporation stations on interior plains [81]. Hence, the adjustment of
meteorological parameters with elevation was not considered during interpolation.

2.2.3. Step 3: The SEB Model

As mentioned before, the Surface Energy Balance System (SEBS) model of [37] was selected as the
SEB model in the present study. However, other SEB models such as those reviewed in the Introduction
section can be used in this step based on user resources, availability of input data and desired accuracy.
Like other SEB models, SEBS estimates the latent heat flux (LE) as a residual of the land surface energy
balance as shown in Equation (1). The Rn was calculated by applying the surface radiation balance
equation:

Rn = (1 − α)Rs + εs εa σ T4
A − εs σ T4

S (2)

where RS is incoming shortwave solar radiation, α is surface albedo (dimensionless) estimated
following [82], εa and εs are emissivities (dimensionless) of atmosphere and surface, estimated
following [83,84], respectively. σ is the Stefan-Boltzmann constant (5.67 × 10−8 W m−2 K−4), TA is air
temperature (K) and Ts is the surface temperature (K), estimated as a ratio of brightness temperature
to εs

−0.25. The G was estimated by applying the relationship developed by [35]:

G
Rn

=
(Ts − 273.15)

100α

(
c1 α+ c2 α2

)(
1 − 0.98NDVI4

)
(3)

where c1 and c2 are calibration coefficients and were considered as 0.24 and 0.46, respectively.
SEBS uses similarity theories to estimate H: the bulk atmospheric similarity (BAS) theory

for atmospheric boundary layer (ABL) scaling [85] and the Monin-Obukhov similarity (MOS) for
atmospheric surface layer (ASL) scaling [86]. The ABL is a part of the atmosphere that is directly
impacted by earth’s surface and responds to surface forcing with a timescale of an hour or less, whereas
ASL is usually the bottom 10% of ABL [37]. During unstable conditions, an appropriate atmospheric
(BAS or MOS) scaling is determined as presented in [83]. For stable conditions, functions given
by [83,87] are used for ABL and ASL scaling, respectively. In the ASL, the similarity relationships for
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mean wind speed (u) and the difference between potential temperature profiles are derived using the
MOS theory as:

u =
u∗
k

[
ln
(

z − d0

z0m

)
−ψm

(
z − d0

L

)
+ψm

(z0m

L

)]
(4)

θ0 − θa =
H

k u∗ ρa Cp

[
ln
(

z − d0

z0h

)
−ψh

(
z − d0

L

)
+ψh

(z0h
L

)]
(5)

L = −ρaCpu3∗θv

kgH
(6)

where u* is the friction velocity (m s−1), k is the von Karman’s constant (0.41), z is the height above the
surface (m), d0 is the zero plane displacement height (m), z0m is the roughness height for momentum
transfer (m) estimated using an empirical relationship with NDVI [88], z0h is roughness height for heat
transfer (m), θ0 is the potential air temperature at surface (K), θa is the potential air temperature at z
(K), θv is the potential virtual temperature near the surface (K), ρa is the air density (kg m−3), Cp is the
specific heat capacity of air (1013 J kg−1 K−1) and g is the gravitational acceleration (9.8 m s−2). ψm

and ψh are the stability correction functions for momentum and sensible heat transfer, respectively
and L is the Monin–Obukhov length (m).

The scalar roughness height for heat transfer, z0h, is an important parameter to regulate the heat
transfer between the land surface and the atmosphere and estimated as:

z0h =
z0m

exp
(

kB−1
) (7)

where kB−1 is the Stanton number, a dimensionless heat transfer coefficient, estimated using a
formulation from [89] as:

kB−1 =
kCd

4Ct
u∗

u(h)

(
1 − e

−nec
2

) f2
c + 2 fc fs

k
(

u∗
u(h)

)( z0m
h

)
C∗

t
+ kB−1

s f2
s (8)

The heat transfer coefficient in Equation (8) was formulated to account for three different land
surface conditions. The first term follows the Choudhury and Monteith [90] model for full canopy,
the second term accounts for the interaction between the vegetation and soil surface and the third
term is for the bare soil surface given [83]. In this equation, fc and fs are canopy and soil fraction
coverage, respectively, Cd is the drag coefficient for the foliage with a value of 0.2; Ct and Ct

* are the
heat transfer coefficients of the leaf and soil, respectively. The value of Ct was taken as 0.03 and Ct

* was
computed from Prandtl number and roughness Reynolds number (Re*) [37]. The u(h) in Equation (8)
is the horizontal wind speed at the canopy top (m s−1) and h is canopy height (m) estimated as a ratio
of z0m to 0.136 [37]. The nec (within-canopy wind speed profile extinction coefficient) and Brutsaert
term kBS

−1 (for bare soil surface) were calculated as:

nec =
Cd LAI

2u2∗
u(h)2

(9)

kB−1
s = 2.46(Re∗)0.25 − ln(7.4) (10)

where LAI is the leaf area index and estimated as a functional relation with NDVI [91].
SEBS requires estimation of H for dry (Hdry) and wet (Hwet) boundary conditions. Under dry

conditions, the Hdry is equivalent to the available energy (Rn − G) as there is no evaporation due to
the limitation of water availability and Hwet is calculated using the Penman-Monteith equation [92,93].
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After computing H for boundary conditions, the relative evaporative fraction (Λr), the evaporative
fraction (Λ) and ET are estimated. The steps and explanation are detailed in [37]

2.2.4. Step 4: Extrapolation of Instantaneous to Daily ET

The SEBS uses the Λ approach for scaling instantaneous ET to daily ET, assuming the Λ at the time
of overpass is equal to the daily Λ. In this study, a modified approach was implemented where either
Λ or ETrF is used for extrapolation of each pixel based on its NDVI value as shown in Equation (15).

Λr = 1 − H − Hwet

Hdry − Hwet
(11)

Λ =
Λr(Rn − G − Hwet)

Rn − G
(12)

ETinst =

(
Rn − H − G

λ

)
× 3600 (13)

ETrF =
ETinst

ETr
(14)

ET24 = [Λ × ETr24 for NDVI < 0.30] or [ETrF × ETr24 for NDVI ≥ 0.30] (15)

where ETinst and ETr are the actual and reference ET at the hour of satellite overpass (mm h−1), λ is the
latent heat of vaporization (~2.45 MJ kg−1). ETr24 is the daily reference ET and ET24 is the daily actual
ET (mm d−1). This modification was made to take the advantage of Λ and ETrF approach to better
represent the water limited and energy limited conditions, respectively. The ETrF was estimated as a
ratio of ET obtained from Step 3 to reference ET at the satellite overpass time (MODIS Terra satellite
overpass local time around 10:30 AM).

2.2.5. Step 5: Filling the Gaps Due to Cloud Cover

Data-gaps due to cloud cover is a common issue in all space-borne satellites. In this study, crop
coefficient (Kc) was used to fill the data-gaps. The Kc maps were created for all images as the ratio
of ET24 and respective daily ETr. To fill the Kc of a cloud covered (missing) pixel for a specific image
date, the Kc value of the same pixel from the preceding image date was first used. If the same pixel
was missing in the preceding image, the Kc value was obtained from the next Kc map. The latter step
was repeated if the next day was missing until a date was found with a Kc value estimated for the
same pixel. This interpolation method was suitable to fill the data gaps as most of the selected images
were less than 10 days apart during the crop growing season (April to October).

2.2.6. Step 6: ET for Longer Periods

After filling the data gaps in daily ET maps due to clouds, the ET maps needed to be created for
days when the cloud coverage was more than 10% (or 15%) and thus no input imagery was available.
To fill these gaps, the average Kc of the preceding and following images closest to the image date of
interest was used. The Kc images were then multiplied with respective daily ETr to obtain complete
time series of daily ET maps. Construction of weekly, monthly, seasonal and annual ET maps was
accomplished by summation of daily ET maps over corresponding periods. The processing of all steps
was executed in Python language within ArcGIS environment.

2.3. Comparison with Flux Tower Data

Daily ET time series from the modeling framework explained above were compared against
observed ET from three flux towers: US-ARc (35.5464 N, 98.0400 W), US-ARb (35.5497 N, 98.0402
W) [94] and US-AR2 (36.6358 N, 99.5975 W) [95]. The US-ARc and US-ARb were located close to each
other over native grassland in central Oklahoma. The US-AR2 was located over planted switchgrass in
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northwest Oklahoma. The 30-minute flux data from the towers were downloaded from the AmeriFlux
data archive (http://ameriflux.lbl.gov/) for years 2005 and 2006 for US-ARc and US-ARb sites and
years 2010 and 2011 for the US-AR2 site. The flux tower data usually have the issue with energy balance
closure, therefore, the closure error was corrected by maintaining constant Bowen-ratio following [96].
The corrected 30-min data were averaged to obtain daily data. The daily observed ET was then
compared with the average values of 3 × 3 pixels (~1390 m × 1390 m) from the SEBS ET at the flux
tower locations. It should be noted that the three flux towers used for validating the performance of
the modeling framework in this study represent only two land covers (native and managed grassland).
Hence, the performance of the framework may be different from what is documented here over
different types of land covers not included in the present analysis.

For statistical analysis, correlation coefficient (r), the coefficient of determination (R2), mean
absolute error (MAE), mean bias error (MBE) and root mean square error (RMSE) were used:

MAE =
1
n

n

∑
i=1

|SEBS-ET − FT-ET| (16)

MBE =
1
n

n

∑
i=1

(SEBS-ET − FT-ET) (17)

RMSE =

√
1
n

n

∑
i=1

(SEBS-ET − FT-ET)2 (18)

where FT-ET is the observed flux tower daily ET and SEBS-ET is the estimated daily ET from the
SEBS model.

2.4. Application of the Modeling Framework

After evaluating the accuracy of the modeling framework, it was used to estimate annual ET maps
over the entire state of Oklahoma, as well as its nine climate divisions (CD), during the 2001–2014
period. The annual ET were also compared with publicly available MOD16 ET dataset [97,98] over
the same period, which covers the most recent drought episode of 2011–2014. The degree of water
availability for each pixel and CD within Oklahoma was assessed by estimating the ratio of annual
ET from the modeling framework and the reference ET. This ratio is an indication of the portion of
the atmospheric demand that is supplied at each pixel and CD. Areas with smaller ratios represent
water scarcity since the actual ET from the model is far from the potential limits of ET. The information
on annual ET variations and water availability across Oklahoma can assist state water managers
with making critical decisions based on long-term objective data from the implemented framework.
As mentioned before, the validation dataset only represented native and managed grassland. About
half (47%) of all lands in Oklahoma are under rangeland and grassland. With winter wheat being
the most dominant crop, the majority of croplands have similar canopy characteristics. Nevertheless,
the lack of representation of other land covers (e.g., 21% of forest in Oklahoma) should be considered
in applications and interpretations of the results of the modeling framework.

3. Results and Discussion

3.1. Comparison with Flux Tower Data

The comparison with flux tower data showed good agreement between daily SEBS-ET and FT-ET.
The modeling approach captured the spatial and temporal variations in ET. However, the model
overestimated ET at all sites and years (Figure 3), with average MBE of 20.1 W m−2. The range of MBE
was between 1.7 W m−2 at US-AR2 in 2011 and 29.3 W m−2 at US-ARb in 2006 (Table 1). The mean
MAE and RMSE were 33.0 W m−2 and 42.7 W m−2, respectively. The correlation coefficients varied
from 0.61 to 0.81 and R2 from 0.37 to 0.66.
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Figure 3. Comparison of daily ET from surface energy balances (SEBS) and flux tower (FT).

Table 1. Statistical indicators between SEBS and flux tower ET.

Site Year r R2 MAE (W m−2) MBE (W m−2) RMSE (W m−2)

US-ARc
2005 0.78 0.61 39.6 19.1 40.1
2006 0.77 0.59 36.7 27.5 49.2

US-ARb
2005 0.81 0.66 31.9 26.6 43.3
2006 0.78 0.61 35.9 29.3 47.7

US-AR2
2010 0.61 0.37 29.4 16.4 41.7
2011 0.62 0.39 24.7 1.7 34.1

The errors in the ET estimates of the modeling framework are due to errors generated in each
of the six steps outlined in previous section. A major step for error introduction is step three, that
is, the surface energy balance model. Previous studies have reported uncertain characterization
of kB−1 in water limited environments [99–101] and in low vegetation cover conditions [102].
Overestimating kB−1 under these conditions would lead to overestimating z0h, underestimating
H and consequently overestimating ET [99]. The overestimation errors observed in this study were
within the range of errors in previous studies when using MODIS as the input imagery to SEBS
model. For example, [103] reported ET overestimation with MBE of 6.1 W m−2; [104] found MBE of
20.1 W m−2 and RMSE of 34.7 W m−2; [105] reported MBE of 144.9 W m−2 when comparing SEBS-ET
from cropland and grassland with flux tower estimates; [106] found overall MBE of 31 W m−2 and
RMSE of 76 W m−2; and, [107] reported MBE of 95.1 W m−2 and RMSE of 122.2 W m−2 across several
land covers and climatic conditions. While several studies have reported overestimation error from
SEBS, the mean absolute error from the current study was smaller than the threshold of 50 W m−2

suggested by [108].
Errors in other steps of the framework can contribute to biases in final ET estimates. A common

source of error in estimating ET from satellite imagery is due to cloud contamination. A thin layer
of cloud or a shaded area due to cloud presence over nearby pixels can result in underestimation of
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LST and consequently, overestimation of ET. In practical applications, it is impossible to remove all
these contaminated pixels from the entire image even after applying the LST thresholds during quality
control. In this study, there were days with underestimated LST due to cloud presence. For example,
the LST at the flux tower pixel area dropped by 10.6 K from Day of Year (DOY) 113 to 114, while both
DOYs were identified as cloud-free and no precipitation was recorded. The instantaneous TA increased
by 3.2 K over the same period. The smaller LST on DOY 114 affected ET estimation for this day and
the following days until another cloud-free image was obtained for DOY 117 (Figure 3a).

A sensitivity analysis study [109] on SEBS model reported LST as the most sensitive parameter,
with up to 70% error in H from irrigated fields expected with 0.5 K bias in LST. Another study [110]
found that error in H varied between −41% and 152% when LST bias ranged from −4 K to 10 K. These
studies show that a small bias in LST can significantly impact H and ultimately ET. The magnitude
of error may depend upon the sensitivity of SEBS to LST, including other parameters such as TA, u,
Δt [111] and could vary depending on whether the wet or dry limits have been reached [110,112].

In this study, the filtering criteria of less than 15% cloud cover limited the availability of cloud-free
images. Applying this filter resulted in 125 and 154 cloud-free images for processing during 2005 and
2006, respectively. For the days with no cloud-free images, the ET estimate was dependent on the
Kc approach explained before. However, the Kc approach may fail to account for the variability in
pixel conditions, especially if land and weather conditions change dramatically during long periods
of gaps in imagery. In this study, 10 to 15 cloud-free images each month were available for most
months, which was assumed sufficient to capture general daily soil moisture and weather variations.
In other periods, however, it was not possible to keep the length of gap periods short. For example,
cloud-free images were not available for 17 consecutive days from DOY 270 to 286 in 2005, when larger
differences between FT-ET and SEBS-ET were observed (Figure 3a,c).

The combined impact of LST bias due to cloud contamination and unavailability of cloud-free
images significantly increase biases in ET estimation. The 15% cloud cover filter could be reduced to
reduce cloud contamination issue but this would come at the cost of increasing the length of periods
with no imagery at all. Increasing the filtering limit will have an opposite effect (more available
imagery with larger cloud contamination within each image). Another solution is to manually inspect
and select images. However, this increases the processing time and interrupts the automated nature of
the ET modeling framework. Another factor that could play a significant role in increasing ET errors
is the availability and quality of input weather data. Su et al. [113] reported about 40% increase in
RMSE (from 73 W m−2 to 102 W m−2) when using reanalysis dataset—Global Land Data Assimilation
System within SEBS instead of ground-based weather data. In this study, the impact of this source of
error is expected to be minimal since rigorous quality control was conducted on ground-based data
and only less than 2% of data were missing during the study period.

As highlighted before, the daily ET results, uncertainty and potential biases of the proposed ET
modeling framework were evaluated and discussed based on flux tower measurements over native
and managed grassland at central and northwest Oklahoma. Flux tower data across other land covers
were not available for comparison, thus the results from the framework may need further assessment
to warrant the similar level of accuracy and uncertainty while applying the results to different land
covers and climates across the state. In particular, the analysis and interpretation of results from
current study may differ for vegetation with different canopy structure compared to grassland.

3.2. Application of the Modeling Framework

The automated operational ET modeling framework proposed in this study was used to create
annual ET maps covering the entire state of Oklahoma for the period from 2001 to 2014. As expected,
the annual ET followed the precipitation pattern and increased from southeast to Panhandle (Figure 4).
When averaged over the entire 14 years, the southeast climate division (CD9) had the largest annual
ET of 1272 mm yr−1 and the Panhandle climate division (CD1) had the smallest annual ET of 588 mm
yr−1 (Table 2). The reference ET (ETr) had an opposite pattern, with CD1 having the largest amount
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at 2140 mm yr−1 and CD9 the smallest (1360 mm yr−1). This means that on average, about 94% of
atmospheric demand was fulfilled at southeast, compared to only 27% in the Panhandle during the
study period. In other words, water scarcity is a larger issue in CD1 compared to CD9 as available
resources were not sufficient to keep up with atmospheric demand. The statewide average annual ET
was 994 mm yr−1, about 57% of the average annual ETr of 1755 mm yr−1.

Figure 4. Annual ET maps (SEBS-ET) of Oklahoma from 2001 to 2014. The solid lines represent
boundaries of the nine climate divisions. It should be noted that CDs 6 and 9 in southeast have a
forested area of more than 29%. Hence, their ET estimates may not be accurate since the flux towers
used in validation did not include forest land cover.

Table 2. Average annual SEBS-ET, MOD16-ET, ETr and the ratio of SEBS-ET to ETr for all Oklahoma
climate divisions (CD) during the 2001–2014 period.

Climate Division SEBS-ET (mm yr−1) MOD16-ET (mm yr−1) ETr (mm yr−1) SEBS-ET ETr
−1

CD1 (Panhandle) 588 259 2140 0.27
CD2 (North Central) 918 364 1871 0.49

CD3 (Northeast) 1098 657 1521 0.72
CD4 (West Central) 790 338 2018 0.39

CD5 (Central) 1095 531 1700 0.64
CD6 (East Central) * 1175 736 1492 0.79

CD7 (Southwest) 845 363 2009 0.42
CD8 (South Central) 1163 599 1683 0.69

CD9 (Southeast) * 1272 798 1360 0.94
Oklahoma 994 516 1755 0.57

* These CDs have a forested area of more than 29%. The results presented in this table may not be accurate for these
CDs since the flux towers used in validation did not include forest land cover.

The average annual ET comparison between MOD16 and SEBS indicated large differences across
all Oklahoma CDs (Table 2). The differences between MOD16-ET and SEBS-ET varied between 37%
at CD9 to 60% at CD2, with an average of 48% lower ET rates from MOD16. Three eastern humid
CDs (CD3, CD6, CD9) had smaller differences between MOD16-ET and SEBS-ET compared to three
western CDs (CD1, CD4, CD7). The difference between SEBS-ET and MOD16-ET is possibly due to a
combination of overestimations from SEBS and underestimation from MOD16. The underestimation
of ET from MOD16 has been reported in previous studies, particularly in semi-arid and arid
climates [114,115].

The ratio of SEBS-ET to ETr can be estimated on a pixel wise basis to provide information on
water scarcity at a finer resolution for local water management and planning. This ratio is mapped in
Figure 5. The general patterns are similar to those presented in Table 2, with western parts of the state
under relatively larger water scarcity compared to the eastern parts. However, significant variability
can be observed within some CDs. In CD1, for example, the western half of CD (Cimarron and Texas
counties) had smaller ratios compared to the eastern half, suggesting a more severe water scarcity.
CD2 was similar in terms of variations in the ET ratios across the CD. The surface water resources
in western Oklahoma were visible in regions with a ratio value of more than 0.5. Examples include
the riparian areas of Cimarron and North Canadian rivers in southwest of CD2, as well as Canton
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Lake and Foss reservoir in CD4 and the five reservoirs in CD7 (Lugert-Altus, Tom Steed, Lawtonka,
Ellsworth and Fort Cobb). Maps similar to the one in Figure 5 can be developed at varying temporal
and spatial scales to monitor changes in water availability more closely. The ratio of actual ET to
reference or potential ET has been used in the past in monitoring water stress and drought, such as in
the Evaporative Stress Index [17].

Figure 5. The ratio of average annual SEBS-ET to ETr across Oklahoma during the period 2001–2014. It
should be noted that CDs 6 and 9 in southeast have a forested area of more than 29%. Hence, their ET
estimates may not be accurate since the flux towers used in validation did not include forest land cover.

The inter-annual variations in ET were also examined for each CD and for the entire state. Figure 6
demonstrates deviations in SEBS-ET as percentage of the average annual ET during the 2001–2014
period. The impact of the 2011–2014 drought in western Oklahoma can be observed in this graph,
with the maximum reduction in ET occurring in 2011 for the three western CDs of CD1, CD4 and
CD7. The percent deviations from average was −22%, −21% and −33% for the same CDs, respectively.
According to the U.S. Drought Monitor (USDM) [116], more than 80% of the three CDs was under
extreme drought (D3 category) from June. The drought condition worsened in July and remained
under D4 category until December 2011. The three eastern CDs of CD3, CD6 and CD9 were above
average in 2011, with percent deviations of 9%, 8% and 10%, respectively. The USDM indicated
almost no drought at CD3 in 2011, whereas CD6 and CD9 had less than 40% of their area under
extreme drought from August to November 2011. The middle three CDs registered close to long-term
average ET. The largest positive deviations for the three western CDs occurred in 2007, a year that was
characterized by above normal precipitation.

Figure 6. Annual ET deviation across climate divisions of Oklahoma from 2001 to 2014.
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The ET modeling framework proposed in this study can automatically generate time series of
daily ET maps on a continuous basis, with several applications beyond those mentioned in previous
sections. For example, ET maps over agricultural areas can be analyzed in conjunction with yield
data to evaluate the water use efficiency. However, this modeling framework has some limitations
that must be considered and improved in future applications. One limitation is the size of MODIS
pixels, which practically hinders the possibility of using the ET data at field scale. This limitation can
be overcome by modifying the framework to use satellite imagery at finer resolution (e.g., Landsat).
Another challenge is identifying and removing cloud contaminated pixels. The filters used in this
study were not always effective in identifying pixels that were covered by thin layers of cloud or
were in the shadow of a cloud. Thus, further investigation and application of robust methods to
examine cloud contamination are needed. Finally, there were periods when no images were available
for several days due to clouds covering the entire scene. This negatively affects the ability to capture
ET fluctuations during those periods. Data-fusion approaches can be implemented in the modeling
framework as a potential solution to improving ET interpolation for days with missing images.

4. Conclusions

An ET modeling framework was proposed to automatically construct daily time series of ET
maps across Oklahoma by integrating MODIS imagery, ground-based weather data and surface energy
balance model. The comparison of the results with daily observations at three flux towers (two years
of data at each site) showed good performance of the modeling framework with mean bias errors
less than 30 W m−2 and root mean squared errors less than 50 W m−2. The results were then used to
investigate spatial and temporal variations in ET across the state and its nine climate divisions (CD).
The statewide annual ET varied between 841 and 1100 mm yr−1 during the period from 2001 to 2014,
with an average of 994 mm yr−1. A large difference in ET was observed among CDs, with Oklahoma
Panhandle (CD1) having the smallest and southeast (CD9) the largest average annual ET of 588 and
1272 mm yr−1, respectively. The ratio of estimated ET to reference ET was used as an indicator of
water scarcity at pixel and CD levels. The deviations in annual ET from the 2001–2014 average ET
were also studied and found to be in good agreement with temporal and spatial variations in drought.
The proposed ET modeling framework provided a pathway to construct daily time series of ET maps
with potential for a range of applications. However, further improvements are necessary to resolve the
issues highlighted in the current study.
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Abstract: Continuous high spatio-temporal resolution monitoring of evapotranspiration (ET) is
critical for water resource management and the quantification of irrigation water efficiency at both
global and local scales. However, available remote sensing satellites cannot generally provide ET
data at both high spatial and temporal resolutions. Data fusion methods have been widely applied
to estimate ET at a high spatio-temporal resolution. Nevertheless, most fusion methods applied
to ET are initially used to integrate land surface reflectance, the spectral index and land surface
temperature, and few studies completely consider the influencing factor of ET. To overcome this
limitation, this paper presents an improved ET fusion method, namely, the spatio-temporal adaptive
data fusion algorithm for evapotranspiration mapping (SADFAET), by introducing critical surface
temperature (the corresponding temperature to decide soil moisture), importing the weights of
surface ET-indicative similarity (the influencing factor of ET, which is estimated from remote sensing
data) and modifying the spectral similarity (the differences in spectral characteristics of different
spatial resolution images) for the enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM). We fused daily Moderate Resolution Imaging Spectroradiometer (MODIS) and periodic
Landsat 8 ET data in the SADFAET for the experimental area downstream of the Heihe River basin
from April to October 2015. The validation results, based on ground-based ET measurements,
indicated that the SADFAET could successfully fuse MODIS and Landsat 8 ET data (mean percent
error: −5%), with a root mean square error of 45.7 W/m2, whereas the ESTARFM performed slightly
worse, with a root mean square error of 50.6 W/m2. The more physically explainable SADFAET
could be a better alternative to the ESTARFM for producing ET at a high spatio-temporal resolution.

Keywords: evapotranspiration; fusion; multi-source satellite data; Landsat 8; MODIS; SADFAET

1. Introduction

Evapotranspiration (ET), including soil evaporation and vegetation transpiration, is defined
as the movement of water from the land surface into air and continuously acquiring ET at a high
spatio-temporal resolution at field or sub-field scales is of critical significance for agricultural and
hydrological cycle modelling, irrigation water efficiency quantification and agricultural water resource
management [1]. Satellite remote sensing has already been considered a reliable and efficient tool for
monitoring spatially distributed ET over large zones. However, a single satellite cannot provide ET at
a high spatio-temporal resolution due to the trade-off between the spatial and temporal resolutions of
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thermal bands in current satellite sensors. For instance, Landsat series imagery can be used to map ET
at a relatively high spatial resolution, while ET dynamics cannot be observed, due to the 16-day revisit
interval of a single Landsat platform. In contrast, moderate-resolution sensors, such as the Moderate
Resolution Imaging Spectroradiometer (MODIS), provide imagery for ET estimation on a daily basis
but the relatively coarse spatial resolution hinders the application of ET for the quantification of
irrigation water efficiency and water resource management at field, local or basin scales.

To overcome this limitation, previous studies have proposed several methods, mainly including
traditional downscaling methods and data fusion methods [2]. Downscaling methods comprise a
scaling process of converting coarse spatial resolution images into finer spatial resolution images;
however, these methods cannot simultaneously enhance the temporal resolution of the sensor [3]
and have rarely been used in recent years [4–6]. Data fusion methods use two or more images to
obtain fine spatial resolution images; thus, they can simultaneously improve the spatial resolution
and temporal coverage. To date, several data fusion methodologies, which were originally developed
to fuse land surface reflectance and spectral index data, have been utilized to attempt the estimation
of ET at a fine spatio-temporal resolution from ET at a high spatial resolution and high temporal
resolution [7–24]. These data fusion methods can be divided into two categories: (1) fuse intermediate
variables to estimate ET and (2) fuse ET data. For the first category, ET at a high spatio-temporal
resolution is estimated by different ET models using intermediate variables that are closely related
to ET, such as the reference ET fraction (ETrF), normalized differential vegetation index (NDVI)
and land surface temperature (LST). These intermediate variables can be fused using a regression
model [12,25] or different spatio-temporal data fusion models [23,26,27]. For the second category,
different spatio-temporal data fusion models are directly applied to fuse ET. For example, Ke et al. [26]
and Ma et al. [28] applied the spatial and temporal adaptive reflectance fusion model (STARFM) and
the enhanced spatial and temporal adaptive reflectance fusion model (ESTARFM), respectively, to fuse
multi-source ET data, while a research group at the U.S. Department of Agriculture (USDA) used the
STARFM to fuse ET at the GEOS Imager-derived 3 km–10 km, MODIS 1 km and Landsat 30 m scales
from the Atmosphere-Land Exchange Inverse (ALEXI) model and the associated flux disaggregation
model (DisALEXI) [7–11,13,18,29,30]. For either the first or second category, the most widely and
successfully used spatio-temporal data fusion models are the STARFM and ESTARFM, respectively.
However, it should be noted that existing methods also have the following limitations: most fusion
methods applied to ET are initially used to integrate the land surface reflectance, spectral index and
LST; thus, these methods cannot completely consider the influencing factor of ET including remote
sensing and atmospheric characteristics [31] (especially some critical issues, such as soil moisture [32]
and vegetation distribution) [33,34].

The objectives of this paper are twofold: (1) to develop a spatio-temporal adaptive data fusion
algorithm for evapotranspiration mapping (SADFAET) for producing ET at a fine resolution and (2) to
fuse ET using Landsat 8 and MODIS image data and validate the fused ET data with ground-based
measured data collected downstream of the Heihe River basin. The SADFAET improves on the original
ESTARFM algorithm by introducing the critical surface temperature (the corresponding temperature to
decide soil moisture) to select similar pixels, importing the weight for surface ET-indicative similarity
(the influencing factor of ET which is estimated from remote sensing data) and modifying the spectral
similarity (the differences in spectral characteristics between different spatial resolution images) by
incorporating the shortwave infrared bands. Section 2 presents the background and the methodology
on how the SADFAET was derived. Section 3 describes the study site, the ground-based meteorological
and energy flux measurements, satellite data and data preprocessing. Section 4 provides the results
and discussion. The conclusions are finally made in Section 5.
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2. Methods

2.1. A Brief Overview of the ESTARFM

The ESTARFM was developed to fuse the land surface reflectance by Zhu et al. [35], which
was based on the STARFM [36] and the two methods are the most common remote sensing data
fusion methods that obtain fine spatial resolution images on a specified date from coarse spatial
resolution images on the same date and one or more additional fine-coarse resolution pair. These
methods can accurately predict fine-resolution images for heterogeneous landscapes and are the most
common remote sensing data fusion methods. In ESTARFM, unknown fine-resolution reflectance on
the predicted date tp can be fused using the known fine-resolution reflectance acquired on the reference
date tm (right before tp) and tn (right after tp) together with the corresponding coarse-resolution
reflectance on tm, tn and tp by introducing similar pixels (i.e., spectrally similar and homogeneous
neighboring pixels within the moving window), a conversion coefficient and a weighting coefficient.
Although the ESTARFM and the STARFM were originally designed to produce reflectance data, they
were also used to produce high spatial resolution NDVI, LST and ET data [7–9,13,18,26,28,37,38].
Similar to the ESTARFM, Weng et al. [3] proposed a spatio-temporal adaptive data fusion algorithm
for temperature mapping (SADFAT), corresponding to deriving the ESTARFM by nonlinear methods,
which was proven to accurately predict fine-resolution radiance products. Since both reflectance
and radiance contribute to the variation in ET and the ESTARFM was proven to accurately fuse
reflectance and radiance data, this study developed a spatio-temporal adaptive data fusion algorithm
for evapotranspiration mapping (SADFAET) by introducing ET, which has a greater influence, into
the ESTARFM.

2.2. Theoretical Basis of the SADFAET

The SADFAET, which improves on the original ESTARFM algorithm by introducing the critical
surface temperature (T*) the corresponding temperature when surface soil moisture availability in
the upper soil layer for each pixel decreases to 0 and vegetation becomes soil water-stressed, which
is defined in the work of Tang & Li [39] to decide soil moisture, importing the weight for surface
ET-indicative similarity and modifying the spectral similarity by incorporating the shortwave infrared
bands (representing soil moisture), is developed to fuse different spatial-temporal resolution ET
products to estimate fine-resolution ET data. In the SADFAET, the calculation of fine-resolution
ET is modified from that of the ESTARFM algorithm and the ET over a fine-resolution pixel at the
prediction time can be calculated by the sum of the fine-resolution ET data at the reference time and
coarse-resolution ET data at the reference and prediction times. Similar to the ESTARFM, the moving
window is used to search similar pixels within the window and information of similar pixels is then
integrated into fine-resolution ET calculation. Unknown fine-resolution ET data of the central pixel
(xw/2, yw/2) on the predicted date tp in the SADFAET can be computed using the known fine-resolution
ET data acquired on the reference date tm and tn together with the corresponding coarse-resolution ET
data on tm, tn and tp:

ETF
w/2,w/2,tp = Tm × ETF,m

w/2,w/2,tp + Tn × ETF,n
w/2,w/2,tp (1)

ETF,k
w/2,w/2,tp = ETF

w/2,w/2,tk + Γ(Wi,j,tk × Vi,j,tk × (ETC
i,j,tp − ETC

i,j,tk ), (k = m, n) (2)

Tk =
1/

∣∣∣Γ(ETC
i,j,tk − ETC

i,j,tp)
∣∣∣

∑k=m,n (1/
∣∣∣Γ(ETC

i,j,tk ETC
i,j,tp)

∣∣∣) (3)

where the subscript C represents the coarse-resolution pixel and the subscript F represents the
fine-resolution pixel. w represents the side length of the moving window, which is used to search
similar pixels and is determined by the spatial resolution of the input image. The co-ordinate location
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of the similar pixel is (i, j) and (w/2, w/2) is the coordinate location of the central pixel. Wi,j,tk represents
the weight of the similar pixel computed from the surface ET-indicative similarity, the improved
spectral similarity and the distance weight between the similar pixel and the central pixel. Vi,j,tk
represents the conversion coefficient of the similar pixel, which can be obtained by linear regression
analysis for each similar pixel on the reference date tm and tn [35]. Tk represents the temporal weight.
The operator Γ(X) represents ∑w

i=1 ∑w
j=1(X).

There are 4 major steps, including the selection of similar neighboring pixels, the calculation of
the weights of similar pixels, the calculation of the conversion coefficient and the calculation of the
temporal weight for ET fusion. The SADFAET improves the selection of similar neighboring pixels
and the calculation of the weight of similar pixels but follows the work of Zhu et al. [35] to determine
the window size, temporal weight and conversion coefficient.

2.2.1. Selection of Similar Neighboring Pixels

According to the original ESTARFM models, two methods were used to obtain similar pixels,
including the setting threshold and unsupervised classification. However, these two methods mainly
consider spectral similarity rather than the ET similarity between the central pixel and other pixels
within the search window, while the number of classes limits the automated fusion processing
and reduces the accuracy of the similar pixel selection. Note that soil moisture is an important
environmental factor that can significantly influence ET. In the SADFAET, the new method is therefore
to take into account soil moisture in order to select similar neighboring pixels more reasonably by
first introducing a critical surface temperature (T*) and then judging how T* and the remotely sensed
surface temperature vary. The T* corresponds to the surface temperature when the surface soil moisture
availability in the upper soil layer decreases to 0 and the vegetation becomes soil water-stressed [39]
and it can be estimated using the theoretical surface temperature at 2 hypothesized end-members, Tsd
with no soil water availability at the upper layer and with zero evaporation and Tvw with well-watered
vegetation with potential transpiration, from the following equations.

Tsd =
ras(Rn,s − Gs)

ρCp
+ Ta (4)

Tvw =
ravRn,v

ρCp

γ(1 + rvw/rav)

Δ + γ(1 + rvw/rav)
− VPD

Δ + γ(1 + rvw/rav)
+ Ta (5)

Fv = (
NDVI − NDVIMIN

NDVIMAX − NDVIMIN
)

2
(6)

T∗ = [T4
sd(1 − Fv) + T4

vwFv]
1/4

(7)

where Tsd and the Tvw represent the theoretical surface temperature of the dry soil and well-watered
vegetation, respectively. Cp represents the specific heat capacity at constant pressure (J/(m·K)).
ρ represents the density of air (kg/m3). Δ represents the slope of saturated vapor pressure versus air
temperature (kPa/◦C). VPD represents the vapor pressure deficit of the air (kPa). Ta represents the
near-surface air temperature (K). γ represents the psychrometric (kPa/◦C). rvw represents the canopy
resistances at the well-watered vegetation (s/m). ras represents the aerodynamic resistance at dry
soil (s/m).

When the actual LST (retrieved by remote sensing) for the pixel is lower than or equal to T*,
the vegetation component is considered to be potentially transpiring and the soil component is
considered to be evaporating at a rate between zero and its maximum value (i.e., the potential rate);
otherwise, no water is available to be evaporated for the soil component and the vegetation component
transpires with a certain degree of soil water stress. Below are the procedures of the proposed method
for selecting similar pixels.
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(1). For each fine-resolution pixel at tm and tn, record T* and the LST retrieved from remote sensing
data (TR).

(2). For a given pixel, if the remotely sensed TR at a fine resolution at tm is equal to or greater
than T* and TR at tn is equal to or greater than T* as well, this pixel is considered to fall into
CLASS 1, where no water is available to be evaporated for the soil component and the vegetation
component transpires with a certain degree of soil water stress between tm and tn.

(3). If TR at tm is greater than T* but TR at tn is less than T* at the same time, this pixel is considered to
fall into CLASS 2, where the surface soil moisture is increasing, and the vegetation transpiration
is increasing to the potential transpiration amount between tm and tn.

(4). If TR at tm is less than T* but TR at tn is greater than T* at the same time, the pixel is considered
to fall into CLASS 3, where the surface soil moisture decreases to zero while the vegetation
component transpires from a maximum value (i.e., the potential transpiration) to a certain degree
of soil water stress between tm and tn.

(5). If TR at tm is less than T* and TR at tn is less than T* as well, this pixel is considered to fall into
CLASS 4, where the vegetation component transpires potentially, and the surface soil moisture is
between zero and a maximum value between tm and tn.

(6). Finally, compare the class (CLASS 1 through CLASS 4) of the central pixel with the given
neighboring pixel. If the two pixels fall into the same class, the given neighboring pixel is
considered to be a similar neighboring pixel.

2.2.2. Calculation of the Weight of the Similar Pixel

After finishing the selection of a similar pixel, its weight (W) is calculated. However, the original
W cannot completely represent the ET; thus, Wi is modified in this paper and the improved weight is
computed from the spectral similarity, the surface ET-indicative similarity and the distance between
the similar pixel and the central pixel in the SADFAET.

Calculations of the spectral similarity need to consider the effects of surface soil
moisture and several indices derived from optical remote sensing observations have been
proposed for measuring soil moisture [40], such as the Shortwave Infrared Water Stress Index
(SIWSI) [41], the Shortwave-infrared Perpendicular Drought Index (SPDI) [42] and the Visible and
Shortwave-infrared Drought Index (VSDI) [43]. We can see that all of these indices use shortwave
infrared bands. However, in the ESTARFM and SADFAT, the spectral similarity is calculated using only
shortwave and thermal infrared bands; thus, we make an improvement to introduce the shortwave
infrared bands into the calculation of spectral similarity to indicate the changes in soil moisture and ET.
Here, the spectral similarity (Si,j,tk) is determined by the correlation coefficient of the spectral vector,
including shortwave bands (representing vegetation cover), shortwave infrared bands (representing
soil moisture) and thermal infrared bands (representing LST), between each similar pixel and its
corresponding coarse-resolution pixel with the following equations:

Si,j,tk =
E[Fijk − E(Fijk))(Cijk − E(Cijk))]√

D(Fijk) ·
√

D(Cijk)
(8)

Fijk =
{

BS,F
i,j,tm , BS,F

i,j,tm , BTIR,F
i,j,tm , BS,F

i,j,tn , BSWIR,F
i,j,tn , BTIR,F

i,j,tn
}

(9)

Cijk =
{

BS,C
i,j,tm , BS,C

i,j,tm , BTIR,C
i,j,tm , BS,C

i,j,tn , BSWIR,C
i,j,tn , BTIR,C

i,j,tn
}

(10)

where Fijk and Cijk represent the coarse and fine spatial resolution image spectral vectors respectively
at tk, including the reflectance of shortwave infrared bands (BSWIR), shortwave bands (BS) and the
radiance of thermal infrared bands (BNIR). For example, with the Landsat 8 data in this study, the BS
covers bands 2–5 (blue, green, red and NIR, respectively), BSWIR covers bands 6 and 7 (SWIR 1 and 2,
respectively) and the BNIR covers bands 10 and 11 (TIRS 1 and 2, respectively). E() represents the
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expected value and D() represents the variance value. Combining SWIR information can introduce soil
moisture into the fusion model and improve the accuracy of fused ET data.

The surface ET indicators include NDVI, LST, soil moisture and ET [44,45]. We can calculate
the changes in surface ET indicators for both the central pixel and the selected similar pixel between
tm and tn and determine the weights of different similar pixels to avoid the influence of the selected
useless pixel. The weight for the surface ET-indicative similarity of the ith similar pixel (WSCi,j,tk) can
be calculated from the correlation coefficient of the surface ET indicator vector as follows:

WSCi,j,tk =
E[SCijk − E(SCijk))(SCcentral − E(SCcentral))]√

D(SCijk) ·
√

D(SCcentral)
(11)

SCijk = (NDVIF
i,j,tk , LSTF

i,j,tk , SMF
i,j,tk , ETF

i,j,tk ) (12)

SCcenter = (NDVIF
w/2,w/2,tk , LSTF

w/2,w/2,tk , SMF
w/2,w/2,tk , ETF

w/2,w/2,tk ) (13)

where the subscripts “central” represent central pixels, respectively. SM represents the soil moisture.
The weight of a similar pixel (Wi,j,tk) is calculated can be given as follows:

Wi,j,tk = (1/Di,j,tk )/Γ(1/Di,j,tk ) (14)

Di,j,tk = (1 − Si,j,tk )(1 − WSCi,j,tk )× di,j,tk (15)

di,j,tk = 1 +
√
(w/2 − i)2 + (w/2 − j)2/(w/2) (16)

where Si,j,tk represents the spectral similarity between fine- and coarse-resolution pixels for the similar
pixels (i, j). WSCi,j,tk represents the weight of the surface ET-indicative similarity between the similar
pixels (i, j) and central pixel (w/2, w/2). di,j,tk represents the geographic distance between the ith similar
pixel and central pixel.

Figure 1 presents a schematic diagram of the SADFAET. This algorithm requires two pairs of fine-
and coarse-resolution images on the same date and a set of coarse-resolution images for the prediction
dates. Before implementing the SADFAET, the fine-resolution LST, NDVI, soil moisture and ET data at
the reference time must be retrieved. There are 6 major steps in the SADFAET implementation. First,
fine-resolution LST and T* data are used to select similar neighboring pixels. Second, the fine- and
coarse-resolution shortwave infrared bands, the shortwave bands and the radiance in the thermal
infrared bands are used to calculate the spectral similarity. Third, surface ET-indicative similarity is
estimated by fine-resolution LST, NDVI, soil moisture and ET data. Fourth, the geographic distance
and temporal weight are calculated. Fifth, the conversion coefficient is determined by linear regression.
Finally, the above weight, similarity and coefficient are used to calculate the ET at a fine resolution at
the predicted time.
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Figure 1. Schematic diagram of the spatio-temporal adaptive data fusion algorithm for
evapotranspiration mapping (SADFAET).

2.3. End-Member-Based Soil and Vegetation Energy Partitioning Model

The end-member-based soil and vegetation energy partitioning (ESVEP) model [39] was
developed for estimating soil and vegetation ET from remote sensing data by considering the differing
responses of the soil water content in the upper surface layer to soil evaporation and those in the deeper
root zone layer to vegetation transpiration. This model defines four hypothesized end-members,
including dry soil (i.e., no soil water availability in the upper layer and zero evaporation), dry
vegetation (i.e., no soil water availability and zero transpiration), wet soil (i.e., potential evaporation)
and well-watered vegetation (i.e., potential transpiration). Based on the difference in vegetation
height in different partially vegetated pixels, four end-member temperatures can be estimated
pixel-by-pixel. The actual surface temperature for the partially vegetated pixel consequentially falls
between the maximum and minimum of its hypothesized end-member temperature. When the
vegetation temperature and energy are separated from their soil components, the ESVEP abides by
two principles: (1) when soil evaporation is greater than zero, the vegetation transpiration equals the
maximum (potential transpiration) and (2) when vegetation is soil-water stressed, the soil evaporation
equals zero.

There are three major steps in the ESVEP model implementation. First, a physical algorithm [46]
is used to estimate the divergence in the surface net radiation and soil heat flux. Second, the
theoretical surface temperature at each of the four hypothesized end-members is calculated by the
surface energy balance equation and the Penman–Monteith equation. Finally, when the actual LST
(retrieved by remote sensing) for the pixel is lower than or equal to the critical surface temperature,
as presented in Equation (7), the vegetation component is considered to be potentially transpiring and
the soil component is considered to be evaporating at a rate between zero and the maximum value
(i.e., the potential rate). The vegetation and soil component latent heat flux (LEv and LEs, respectively)
under this condition are estimated as:

LEv = LEvw (17)

LEs =
Tsd − Ts

Tsd − Tsw
LEsw (18)

where Ts and Tsw represent the soil component temperature and theoretical surface temperature of the
saturated soil, respectively. LEvw and LEsw represent the theoretical latent heat flux in the well-watered
vegetation and saturated soil, respectively.
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Otherwise, when no water is available to be evaporated in the soil component and the vegetation
component transpires with a certain degree of soil water stress, the LEv and LEs are estimated as:

LEv =
Tvd − Tv

Tvd − Tvw
LEvw (19)

LEs = LEsd = 0 (20)

where Tv and Tvd represent the vegetation component temperature and the theoretical surface
temperature of dry vegetation, respectively. LEsd represents the theoretical LE of the dry soil.

The ESVEP model is demonstrated to be no more sensitive to meteorological, vegetation and
remote sensing inputs than other ET models and has great potential for producing reasonably good
surface energy fluxes. In our study, the fine- and coarse-resolution ET data at the reference time and
the fine-resolution ET data at the prediction time were estimated by the ESVEP model [39].

2.4. Validation of the SADFAET

The SADFAET algorithm was applied to the actual Landsat 8 and MODIS images, which aided in
understanding its accuracy and reliability. To avoid the impact of ET retrieval, the accuracy of the ET
estimates from the ESVEP was first evaluated. The performance of the SADFAET was then assessed
through retrieved ET from Landsat 8 data and ground-based measurements. The mean, maximum
and minimum ET, standard deviation and histogram of differences of SADFAET and Landsat 8 ET
were also used to validate the spatial patterns of fused ET. The fused ET was further compared with
the ground-based eddy covariance (EC) measurement to validate the accuracy of the SADFAET based
on the mean bias (MB), mean percent error (MPE) and root mean square error (RMSE). The MPE can
be calculated as:

MPE =
1
N

×
N

∑
i=1

Bi/Oi × 100% (21)

where Bi represents the bias of the ith datum. Oi represents the observation of the ith data. N represents
the number of data.

3. Materials

3.1. Test Sites and Ground-Based Data

The study area is downstream of the Heihe River basin (LU: 42.0333◦N, 101.1◦E, RL: 41.9667◦N,
101.1667◦E), which is an endorheic basin located in the arid and semiarid regions of Northwest
China. The annual mean temperature, relative humidity and wind speed are 9.4 ◦C, 33.7% and
3.2 m/s, respectively and the annual precipitation is approximately 50 mm. There are five ground
sites, namely, Sidaoqiao, Populus euphratica, Mixed Forest, Barren land and Cropland, in the study
area and the landscapes are comprised of Tamarix, populus euphratica, Populus euphratica and
Tamarix, bare land and melon, respectively (Table 1 & Figure 2). Ground-based half-hourly average
atmospheric variables (air temperature, wind speed, atmospheric pressure and relative humidity)
and downward solar radiation, which were collected from April 2015 to October 2015 at the five
ground sites, are used for this study and can be obtained from the Heihe Integrated Observatory
Network (http://www.heihedata.org/) [47,48]. The EC system and a large aperture scintillometer
(LAS) provided the measurements of turbulent fluxes downstream of the Heihe River basin, while
the sample frequencies are 10 Hz (for EC) and 1 min (for LAS) and the heights are 3.5 m (for EC at
the Cropland and Barren Land sites), 22 m (for EC at the Mixed Forest and Populus euphratica sites),
8 m (for EC at the Sidaoqiao site) and 22.5 m (for LAS). The LAS and EC flux data were processed and
screened according to the criteria suggested in Liu et al. [47]. The instantaneous ET was validated by
using 10-min flux measurements as ground-truth data.
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Table 1. Attributes of the test sites in the study area (Sidaoqiao).

Ground Sites Landscape Longitude Latitude Elevation (m)
Observation
Instrument

Sidaoqiao tamarix 101.1374 E 42.0012 N 873 LAS/EC
Populus euphratica populus euphratica 101.1239 E 41.9932 N 876 EC

Mixed Forest populus euphratica
and tamarix 101.1335 E 41.9903 N 874 EC

Barren Land bare land 101.1326 E 41.9993 N 878 EC
Cropland melon 101.1338 E 42.0048 N 875 EC

3.2. Satellite Data

Multi-source remote sensing data at different spatial and temporal resolutions were obtained
from Landsat 8 and Terra MODIS (Table 2). The spatial resolutions of Landsat 8 and MODIS are 30 m
and 500–1000 m, respectively, while the temporal resolutions are 8–16 days and 1 day, respectively.
Fifteen predominantly clear scenes (day of year [doy]: 96, 103, 135, 144, 160, 176, 199, 215, 231, 240,
247, 256, 288, 295 and 304) of Landsat 8 data from Path 133, Row 31 and Path 134, Row 31 acquired for
the period of April to October 2015 were collected from the United States Geological Survey (USGS)
(https://landsat.usgs.gov/). The shortwave reflectance band and the thermal band of the 15 scenes
were atmospherically corrected using the ENVI. The corresponding MODIS (Terra) datasets, including
the 1 km calibrated radiance product (MOD021KM), geolocation product (MOD03), precipitable water
product (MOD05_L2), surface reflectance product (MOD09GA), land surface temperature/emissivity
product (MOD11A1) and vegetation index product (MOD13A2), were obtained from the Land
Processes Distributed Active Archive Center (LP DAAC) (http://glovis.usgs.gov/).

Figure 2. The location of the test area over the Heihe Watershed Allied Telemetry Experimental
Research (HiWATER) experimental areas [49].
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Table 2. Terra, Moderate Resolution Imaging Spectroradiometer (MODIS) and Landsat 8 data (April to
October 2015) used in this study.

Data Type
MODIS (Horizontal 25, Vertical 04) Landsat 8 (Path 133/134, Row 031)

MOD09GA MOD021KM etc. OLI TIRS

Resolution 500 m 1000 m 30 m 30 m (resample)

Day of year (DOY) 096–304
096, 103, 135, 144, 160,
176, 199, 215, 231, 240,
247, 256, 288, 295, 304,

Before the implementation of the SADFAET, both Landsat 8 (OLI/TIRS) and MODIS data need
to be calibrated over the same coordinate system (Universal Transverse Mercator projection, UTM)
and resampled at the same spatial resolution (30 m). MODIS Reprojection Tools (MRTs) were used
to resample and re-project the MODIS data to the Landsat resolution and extent. Landsat 8 data
were calibrated and atmospherically corrected for the shortwave reflectance band using the ENVI.
Considering the landscape and land cover types of this area, the size of the search window was set as
30 Landsat 8 pixels.

Based on the 15 original Landsat-MODIS images, the dates with missing remote sensing or
meteorological data were excluded and the fusion strategy is shown in Table 3.

Table 3. Fusion strategy: day of year (DOY) of the input data and results.

DOY of MODIS ET (1 km) DOY of Landsat 8 ET (30 m) DOY of Fusion Results and Validation (30 m)

96/103/135 96/135 103
103/135/144 103/144 135
135/144/176 135/176 144
144/176/199 144/199 176
176/199/231 176/231 199
199/231/240 199/240 231
231/240/247 231/247 240
240/247/256 240/256 247
247/256/288 247/288 256
256/288/295 256/295 288

The input parameters at a spatial resolution of 30 m for the ESVEP model and the SADFAET were
derived from the Landsat 8 shortwave reflectance and thermal bands, while the input parameters at
a spatial resolution of 1 km were derived from MODIS products. Specifically, for the 1 km spatial
resolution data, MOD021KM was used to calculate the spectral similarity, MOD03, MOD09GA,
MOD11A1 and MOD13A2 were used to estimate the coarse-resolution ET data and MOD05_L2
provided the atmospheric water vapor content. For 30 m spatial resolution data, the 30 m resolution
NDVI was calculated using corrected OLI Band 4 and Band 5 reflectance data of Landsat 8. Soil
moisture at a 30 m resolution was retrieved from OLI Band 7 of Landsat 8 and the NDVI using the
OPtical TRApezoid Model (OPTRAM) [50]:

W =
id + sdNDVI − STR

id − iw + (sd − sw)NDVI
(22)

where STR can be estimated by SWIR reflectance; id and sd represent the intercept and slope of the
dry edge in the STR−NDVI space, respectively; and iw and sw represent the intercept and slope of
the wet edge in the STR−NDVI space, respectively. In this research, the dry edge and wet edge were
determined by the method in Sadeghi et al. [50].
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The LST at a 30 m resolution was retrieved from TIRS Band 10 of Landsat 8 using the widely
applied mono-window algorithm [51]:

LST =
[
K2(ϕ1 + ϕ2)T10 + (1 − ϕ1 − ϕ2)T2

10 − K2 ϕ2Ta

]
/K2 ϕ1 (23)

ϕ1 = ε10τ10, ϕ2 = (1 − τ10)[1 + (1 − ε10)τ10] (24)

where T10 represents the brightness temperature at Landsat 8 band 10. The surface emissivity (ε) is
estimated following an NDVI threshold method [52]. τ represents the atmospheric transmittance.
Ta represents the average atmospheric operating temperature, K. K2 is a constant (1321.08).

The main input data sources used in the SADFAET are outlined in Table 4.

Table 4. Summary of the primary inputs into the SADFAET (Landsat and MODIS).

Variable MODIS Landsat 8

NDVI MOD13A2 OLI Band 4, Band 5
LST MOD11A1 TIRS Band 10, mono-window algorithm [51]
SM - OLI Band 7, OPTRAM [50]

Landsat 8 OLI bands 4 and 5 were used to estimate the NDVI, band 7 was used to estimate the soil
moisture and band 10 was used to estimate the LST, while ET at a fine resolution, surface ET-indicative
similarity and spectral similarity can be estimated by these parameters.

4. Results and Discussion

4.1. Validation of ET Estimated by the ESVEP Model

Accurate estimates of ET from fine- and coarse-resolution satellite data are a prerequisite for
producing reliable fusion results. The accuracy of the ET estimates from the ESVEP was evaluated by
validating the LE (latent heat flux) retrievals against the EC/LAS observations at the five test sites.
At the Sidaoqiao site, the LAS measurement was used to validate the MODIS-based retrievals, while at
the other sites, the EC measurement was used to validate the Landsat-based retrievals. Figure 3 and
Table 5 show that the retrieved LEs agreed well with local measurements, with an overall low root
mean square error (RMSE) of 40.9 W/m2 at all sites and the average retrieved LEs were slightly lower
than the average observations; thus, the retrieved instantaneous ET is reliable as the input parameter
for data fusion.

Figure 3. Validation of the instantaneous LE estimations from the end-member-based soil and
vegetation energy partitioning (ESVEP) model for MODIS- and Landsat-based retrievals against
ground-based LAS (red symbols) and EC (blue symbols) measurements.
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Table 5. Error metrics of instantaneous LE estimates from MODIS and Landsat 8 data. Mean O: mean
observation; Mean P: mean prediction; MB: mean bias; MPE: mean percent error; RMSE: root mean
square error.

Ground Sites
Mean O
(W/m2)

Mean P
(W/m2)

MB
(W/m2)

MPE
(%)

RMSE
(W/m2)

Sidaoqiao 217.5 189.7 −27.8 −16 42.7
Populus euphratica 160.7 144.7 −16.0 −12 40.4

Mixed Forest 155.4 154.2 −1.2 −3 44.8
Barren Land 70.5 86.7 16.2 22 24.6

Cropland 135.1 120.3 −14.8 −14 31.8
Average 147.8 139.1 −8.7 −5 40.9

Statistics are also provided in Table 5 for different land cover types. The MPEs of the Sidaoqiao,
Populus euphratica, Mixed Forest, Barren Land, Cropland sites are −16%, −12%, −3%, 22% and −14%,
respectively. Only the LE at the Bareland site was overestimated, while the LEs at the other sites were
underestimated. The largest MPE (22%) appeared for the estimations of LE at the Barren Land site,
which was likely because the fractional vegetation cover of the bare land was too low, resulting in
large errors for the four end-members in the ESVEP.

4.2. Evaluation of the Spatial Pattern of ET Fused with the SADFAET Model

The performance of the SADFAET was first evaluated through the comparison of fused ET data
with the retrieved ET data by the ESVEP model using the Landsat 8 data on the 10 selected fusion
dates. Three typical pairs of the spatial pattern of fused ET and retrieved ET data over the study area
on May 15, July 18 and August 28, together with a histogram of the ET difference, are illustrated in
Figure 4. Table 6 illustrates the statistical measures of ET fused by the SADFAET and that retrieved
using the Landsat 8 data over the typical days. It could be found that over the study area, the fused
ET data were close to the retrieved ET data, with a smaller absolute value of the percent difference
varying between 1.0% and 5.6%. The fused ET data also had a standard deviation (SD) magnitude
similar to that of compared to the retrieved ET on each of the three typical days. The SD value over the
study area varied between 16.2 W/m2 and 48.2 W/m2 for the fused ET and between 17.6 W/m2 and
48.8 W/m2 for the retrieved ET. The mean values over the study area varied between 30.1 W/m2 and
74.6 W/m2 for the fused ET and between 28.5 W/m2 and 76.7 W/m2 for the retrieved ET.

It is clear that the image fused by the SADFAET was similar to that predicted directly using the
Landsat 8 image in terms of the overall spatial patterns of ET. The difference between SADFAET ET
and Landsat 8 ET is mostly ±10 W/m2. The fused ET images contained most of the spatial details
found in the Landsat 8 ET images, including surface features, such as buildings, barren lands (with
low ET values) and croplands (with high values).
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(c) 

Figure 4. Histogram (top panel) of the difference between fine-resolution LE data fused by the
SADFAET (right panel) and the estimates directly retrieved by the ESVEP model using Landsat 8 data
(left panel) on (a) May 15, (b) July 18 and (c) August 28.

Table 6. Comparison between instantaneous ET fused by the SADFAET and that directly retrieved by
the ESVEP model from Landsat 8 data on typical days (in spring, summer and autumn) over the study
area. Max: maximum ET; Min: minimum ET; SD: standard deviation; R: correlation coefficient.

DOY Item
Mean

(W/m2)
Max

(W/m2)
Min

(W/m2)
SD

(W/m2)
R

May 15 Fused ET 30.06 45.09 10.49 16.17
0.47Retrieved ET 28.48 40.84 12.76 17.58

July 18 Fused ET 74.61 99.26 38.29 38.85
0.49Retrieved ET 76.69 108.05 34.32 40.55

August 28 Fused ET 69.58 67.21 32.61 48.21
0.46Retrieved ET 68.90 83.09 29.21 48.78

4.3. Validation of ET Data Fused by the SADFAET Model Using Ground-Based Measurements

The instantaneous LE data fused by the SADFAET were further compared with the ground-based
EC measurement collected at the 5 test sites over the 10 selected days (see Figure 5). Table 7 illustrates
the statistical parameters between the fused LEs and measured LEs on the selected days for different
land cover types. The results show an overall reasonably good agreement between the instantaneously
fused LEs and measured LEs, with a slight underestimation of 13.1 W/m2 and a RMSE of 45.7 W/m2.
An overestimation of 18.0 W/m2 was found at the Barren Land site, with a RMSE of 25.1 W/m2, while
underestimations were shown at the other four sites, with mean errors varying from −27.5 W/m2 to
−18.3 W/m2 and RMSE varying from 41.4 W/m2 to 60.6 W/m2. The verification results at the site
scale show that the SADFAET can accurately fuse ET data over most surfaces, while the relatively
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larger error at the Barren Land site was possibly due to the poor accuracy of the instantaneously
retrieved LE.

Figure 5. Comparison of instantaneous LE predictions using the SADFAET and ESTARFM with LE
measured by EC.

Table 7. Error metrics of the LE fused by the SADFAET with the ground-based EC measurement.

Ground Sites Mean O (W/m2) MB (W/m2) MPE (%) RMSE (W/m2)

Sidaoqiao 250.0 −27.5 −11 60.6
Populus euphratica 174.2 −18.3 −11 50.7

Mixed Forest 179.6 −19.5 −11 50.5
Barren Land 81.9 18.0 22 25.1

Cropland 155.1 −18.6 −12 41.4
Average 168.2 −13.1 −5 45.7

4.4. Comparison of ET Data Fused by the SADFAET and ESTARFM

We compared the SADFAET with the original ESTARFM to verify the improvement in the
SADFAET. The scatter plots in Figure 5 also show the measured LE and ESTARFM LE at the 5 sites.
According to Figure 5, we can see that both the SADFAET and ESTARFM can accurately predict ET
at a high resolution, while the SADFAET LE data in the scatter plots fall closer to the 1:1 line. For all
the sites, the prediction precision of the SADFAET is higher than that of the original ESTARFM (MPE:
−5% vs. −8%; MB: −13.1 W/m2 vs. −18.6 W/m2; RMSE: 45.7 W/m2 vs. 50.6 W/m2). Statistics are
provided in Figure 6 for different sites for the ESTARFM and SADFAET. Similar to the SADFAET, only
fused ET data by the ESTARFM at the Barren Land site were overestimated, while fused ET data at
the other sites were underestimated. The greatest improvement in the SADFAET, in comparison to
the ESTARFM, appeared at the Cropland site (MPE: −12% vs. −17%), while at the Barren Land site,
there was almost no improvement (MPE: 22% vs. 22%). This may be because the SADFAET considers
the variation in soil moisture, while the soil moisture of the Bareland site has a low value and the soil
moisture of the Cropland site has significant variation during the crop growth season.
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(c) 

Figure 6. Statistical parameters between the instantaneous LE predictions using ESTARFM/ SADFAET
and the EC values: (a) RMSE; (b) MB; (c) MPE.

4.5. Discussion

4.5.1. Uncertainties in the SADFAET

Our results indicate that the SADFAET can accurately estimate ET at a high spatio-temporal
resolution by fusing ET at a high spatial resolution with that at a high temporal resolution. However,
there are some uncertainties are associated with the use of the algorithm and the uncertainty in the
fused ET method primarily results from (1) the retrieval of surface ET-indicative variables, (2) the fine-
and coarse-resolution ET data at the reference and prediction times and (3) the fusion algorithm itself,
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including the selection of similar neighbouring pixels, the calculation of the weights of these pixels and
the determination of the conversion coefficient and the temporal weight. For example, the uncertainties
in the remotely sensed and meteorological data could affect the calculation of instantaneous ET from
the ESVEP model. Validation results indicated that LE was underestimated at the Sidaoqiao site
(16%), Mixed Forest site (3%), Populus euphratica site (12%) and Cropland site (14%), while LE was
overestimated at the Barren Land site (22%). The uncertainty in the calculation of the critical surface
temperature could cause the inaccurate classification of similar pixels and the computation of the
weight of the similar pixel. In addition, the inherent uncertainties in the EC and LAS validation data
and the mismatch in the spatial scales between the predicted and fused ET and EC measurements
could also impact the fusion accuracy.

4.5.2. Improvements and Limitations of the SADFAET

The SADFAET has made several improvements to the original ESTARFM when it is used for
ET fusion. The most significant improvement is the introduction of the critical surface temperature
(T*) to consider the impact of soil moisture for the selection of similar pixels, which can solve the
problem that determining the number of classes limits automated processing and reduces the accuracy
of similar pixel selection in the ESTARFM. In the original ESTARFM, shortwave bands are used to
select similar pixels by setting a threshold and unsupervised classification without considering the
soil moisture. However, our SADFAET introduced T* to calculate the soil moisture variation between
the predicted time (tp) and reference times (tm and tn) of different pixels, which can ensure that the
correct similar pixels with similar ET variations are selected. Second, for the weight calculation of
each similar pixel, the SADFAET introduces surface ET-indicative similarity to consider the influences
of NDVI, LST, soil moisture and ET at tm and tn. Finally, ET may change rapidly with time and
using more bands will contribute to accurately computing the weight of the similar pixel; thus,
we introduced the shortwave bands (representing vegetation cover), shortwave infrared bands
(representing soil moisture) and thermal infrared bands (representing LST) between each similar
pixel and its corresponding coarse-resolution pixel for the calculation of spectral similarity. The ET
fusion estimates in the present study yielded an MPE of −11% to 22%, which was slightly better than
that from previous studies. For example, Ma et al. [28] reported MPE values of −14% to 29% in the
midstream region of the Heihe River basin when the ESTARFM was used to fuse ET retrieved from
Landsat 7 ETM+ and MODIS data. Semmens et al. [13] and Yang et al. [16] employed the original
STARFM combined with a multi-scale ET retrieval algorithm to compute 30 m resolution ET over a
mixed forested/agricultural landscape in North Carolina, USA and the mean absolute percent errors
of the fused ET were 20% to 23% and 19% to 30% respectively. For the same study area, the prediction
precision of the SADFAET is higher than that of the original ESTARFM (−14% to 22%) and the fused
ET images contained most of the spatial details found in the Landsat 8 ET images.

There are several limitations and constraints when using the SADFAET. First, similar to the
ESTARFM and STARFM [35,36], the SADFAET cannot accurately predict shape changes and may
cause boundary blurring. Second, when the soil moisture maintains a low value or exhibits slight
variation, the accuracy of the SADFAET may decrease. Finally, although the SADFAET solves the
problem whereby determining the number of classes limits automated processing in the ESTARFM,
the size of the moving window remains a restriction.

5. Conclusions

This research proposed a spatio-temporal adaptive data fusion algorithm for evapotranspiration
mapping (SADFAET) to estimate evapotranspiration (ET) at high spatial resolutions (30 m) and at
a high temporal frequency (daily). An experiment that predicted ET at a 30 m spatial resolution
on 10 dates in 2015 from April to October downstream of the Heihe River basin was performed
using Landsat 8 and MODIS datasets. The main advantage of SADFAET is the consideration of soil
moisture by introducing the critical surface temperature (T*) during the selection of similar pixels.
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The other improvement is the use of multiple spectral bands, including shortwave bands (representing
vegetation cover), shortwave infrared bands (representing soil moisture) and thermal infrared bands
(representing LST) and the introduction of the surface ET-indicative similarity to calculate the weights
of similar pixels.

The results showed an overall reasonably good agreement between the fused ET and measured
ET with a slight underestimation of 13.1 W/m2 and a RMSE of 45.7 W/ m2. The difference between
SADFAET ET and Landsat 8 ET was mostly ±10 W/m2 and the SADFAET ET images preserved most
of the original spatial details. The prediction precision of the SADFAET was higher than that of the
original ESTARFM (MPE: −5% vs. −8%; MB: −13.1 W/m2 vs. −18.6 W/m2; RMSE: 45.7 W/m2 vs.
50.6 W/m2). Therefore, our proposed SADFAET could effectively fuse ET at high and low spatial
resolutions and the method was better than that from previous studies and other common fusion
algorithms. Future work will be performed on the evaluation of the SADFAET on other regions that
are covered by different vegetation types and characterized by different climates.
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Abstract: An evapotranspiration (ET) ensemble composed of 36 land surface model (LSM) experiments
and four diagnostic datasets (GLEAM, ALEXI, MOD16, and FLUXNET) is used to investigate
uncertainties in ET estimate over five climate regions in West Africa. Diagnostic ET datasets
show lower uncertainty estimates and smaller seasonal variations than the LSM-based ET values,
particularly in the humid climate regions. Overall, the impact of the choice of LSMs and meteorological
forcing datasets on the modeled ET rates increases from north to south. The LSM formulations and
parameters have the largest impact on ET in humid regions, contributing to 90% of the ET uncertainty
estimates. Precipitation contributes to the ET uncertainty primarily in arid regions. The LSM-based
ET estimates are sensitive to the uncertainty of net radiation in arid region and precipitation in humid
region. This study serves as support for better determining water availability for agriculture and
livelihoods in Africa with earth observations and land surface models.

Keywords: evapotranspiration; uncertainty; land surface model; West Africa

1. Introduction

Accurately estimating evapotranspiration (ET) over West Africa is particularly important for water
resources management, weather monitoring and climate change impact assessment on agriculture
and food security due to a strong land-atmosphere coupling [1,2]. Also, ET, governed by the surface
water and energy budgets, plays an important role in West African monsoon development [3,4].
High uncertainty in ET estimates over West Africa from global models is an obstacle to investigate
temporal and spatial variability in the regional hydrology, especially in the context of climate change [5,6].
Understanding ET uncertainties can improve estimates of water availability for agriculture and
livelihoods in Africa. However, such a task is still a challenge in data-sparse regions [7–9]. Previously,
Kato et al. [10] performed a sensitivity study of land surface model (LSM) simulations, including ET,
under the Coordinated Enhanced Observing Period (CEOP) initiative, but none of the four reference
sites were located in West Africa.

Several intercomparisions of different model- and/or satellite-based ET estimates have been
carried out at different scales. At the global scale, the LandFlux-EVAL initiative [11,12] presented
the benchmark synthesis products based on the analyses of multiple global scale ET estimates from
LSMs, diagnostic (i.e., observation-based) datasets, and reanalyses. Other studies focused on Asia [13],
South America [14], Africa [8], West Africa [9,15,16], and smaller regions, such as the Volta basin [7,17]
and the Ouémé River basin [18]. In particular, the African Monsoon Multidisciplinary Analysis
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Land Surface Intercomparison Project (ALMIP) computed water budget components over the whole
West Africa in its first phase (ALMIP-1) [4] and smaller areas within the region in its second phase
(ALMIP-2) [19,20]. However, little is known about seasonal and regional ET uncertainty variations and
the impacts of the choice of LSM, radiation forcing datasets, and precipitation on the ET uncertainty
over West Africa. Few studies have only attempted to estimate annual ET uncertainties of regional
watershed basins (e.g., the Lake Chad basin and the Niger River basin) [5] and investigate uncertainties
and trends of global ET estimates using different combinations of ET models and meteorological
forcing datasets [6].

The ensemble of ALMIP-1 models revealed that total annual ET corresponds to 77% of the total
annual precipitation in West Africa and 85% in the Sahel [21]. The annual precipitation cycle is highly
subject to the West African monsoon [22]. Overall, the average precipitation rates increase southwards.
In the north, the hyper-arid, arid, and semi-arid regions are located within the Sahel region with
a single peak rainy season from July to September [8,23]. In the south, due to a north-south migration
of the Inter Tropical Convergence Zone (ITCZ), the sub-humid and humid regions are characterized by
two rainy seasons: the first rainy season from May to July and the second rainy season from August
to October. Although advances in climate modeling indicate oceans as the main contributor to the
recent drought persistence in the Sahel [24], Tian and Peters-Lidard [25] found that West African
land shows higher precipitation uncertainties associated with the ITCZ migration than its oceanic
counterpart. Also, Vinukollu et al. [6] revealed high ET uncertainties in the Sahel due to the high
variability of precipitation, radiation and other meteorological variables, leading to large differences
among the models.

Satellite-based ET datasets share some features with physical energy and water balance
descriptions of the LSM’s but are explicitly constrained by ‘diagnostic’ observations of surface
states (e.g., surface temperature, soil moisture, vegetation water contents or relative humidity) [26].
For better understanding of the characteristics of the ET uncertainties, we investigate 36 LSM-based
ET estimates and four diagnostic ET datasets from 2007 to 2011 during which all datasets overlap.
Using the diagnostic ET uncertainties to shed some additional light on the model ensemble uncertainty
can help give more insight to the variances and spread found among the ensemble of LSM-based
ET results, which can be useful in a multi-model ensemble approach. Also, in terms of individual
model spread across the different forcing data types, this study can offer some insights for assimilating
ET or soil moisture fields. In this study, evaluation of model performance and identification of
the primary sources of error in the ET estimates related to inaccurate forcing datasets and limited
model parameterizations are beyond the scope of this work. Ground-based ET observations are not
representative of LSM-based estimates due to spatial scale differences. The use of the satellite-based
reference datasets are more appropriate scale for the LSM ensemble and uncertainty evaluation

The objectives of this study are to: (1) quantify the uncertainty range of net radiation and
precipitation datasets as input parameters to estimate ET over West Africa; (2) compare spatial and
temporal characteristics between LSM-based and diagnostic ET estimates; (3) analyze the sensitivity of
LSMs in simulating ET to the uncertainty of net radiation and precipitation; and (4) investigate the
impact of the choice of the model parameterization, meteorological forcing dataset, and precipitation
on the LSM-based ET uncertainty. Because the annual precipitation has a latitudinal gradient in
West Africa, we divided the domain between 18◦W–25◦E and 5◦N–27◦N into five climate regions
(highlighted in Figure 1a). The classification of climate regions was based on similar aridity conditions
for the 1950–2000 period, as suggested in [27,28]. This study serves to offer further insight on improved
land surface modeling designs and better monitoring of water and energy budgets in West Africa.

197



Remote Sens. 2019, 11, 892

Figure 1. (a,b) Mean, (c,d) standard deviation (STD) maps, and (e,f) regional averages of the mean values
from three net radiation (RAD, unit: W·m−2) and five precipitation datasets (PRE, unit: mm· day−1)
for years, 2007–2011. The white lines in panel (a) delineate the five climate regions (i.e., I-hyper-arid,
II-arid, III-semi-arid, IV-sub-humid, V-humid, going from north to south).

2. Data and Methods

2.1. LSM-based ET Datasets

All LSM-based ET outputs were produced daily on a 0.25◦ spatial resolution domain. The NASA
Land Information System (LIS) [29] was used as the modeling platform. Table 1 lists the details of the
36 model experiments.
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Table 1. Overview of ET datasets used in this study. An “x” indicates the input not used by the model.

Category
Name

(Reference)
PET Scheme Met. Forcing Precip.

Spatial
Resolution

Temporal
Resolution

Time Period

Land Surface
Models

Noah
[30,31] Penman

GDAS
GDAS

0.25 deg Daily 01/2007–12/2011

TMPA

CHIRPS

MERRA2
MERRA2

TMPA

CHIRPS

Princeton
Princeton

TMPA

CHIRPS

NoahMP
[32,33]

Penman–Monteith

* **

VIC
[34] * **

CLSMF
[35,36] * **

Diagnostics

GLEAM
[37]

Priestley-Taylor

CFS-R MSWEP 0.25 deg Daily 01/1980–12/2015

ALEXI
[38] ERA-Interim X 0.05 deg Weekly 01/2007–12/2015

MOD16
[39] Penman–Monteith GMAO X 0.01 deg Monthly 01/2000–12/2012

FLUXNET
[40] X X X 0.50 deg Monthly 01/1982–12/2011

*, ** Each of the four LSMs was forced with three meteorological forcing datasets and two additional observation-based
precipitation datasets, generating a total of 9 experiments.

2.1.1. Land Surface Models

Four LSMs are used in this study to simulate the water and energy fluxes in West Africa,
including the Noah land surface model (Noah), version 3.3 [30,31], Noah land surface model with
Multi-Parameterization (NoahMP), version 3.6 [32,33], the Variable Infiltration Capacity (VIC), version
4.1.2 [34], and Catchment Land Surface Model (CLSM), version Fortuna 2.5 [35,36]. CLSM and
NoahMP were selected in this study because of their ability to explicitly represent groundwater and
high performance of data assimilation framework within the NASA LIS system [41,42]. Noah and VIC
were included to investigate the impact of different LSM parameterizations on modeling ET estimates
and to increase the number of ensemble members included in the uncertainty analysis

All four LSMs calculate ET as the sum of water loss from bare soil and canopy intercepted water
(i.e., evaporation) and transpiration via the canopy leaves. In each model, the actual ET is computed as
a modification of a potential value, using the Penman equation [43] for potential ET in Noah or the
Penman–Monteith [44] in the other three LSMs. The Noah model applies additional resistance factors
as a variation on Penman–Monteith [30]. The Penman–Monteith equation calculates actual ET typically
through scaling coefficients related to different vegetation or crop types. The Penman–Monteith is
more sensitive to vegetation specific parameters and allows for a composited plant stomatal resistance
to vapor transport, whereas the Penman equation assumes a continuously available water source and
no canopy resistance.

In addition to the ET formulation, model inputs and physics directly impacting ET estimates
include meteorological forcing data, precipitation, land cover, soil type, infiltration rates, and drainage
in the soil column. In this study, ET uncertainties attributable to these LSM formulations and
parameters in the modeled ET rates, except for meteorological forcing and precipitation, are considered
as ET uncertainty due to LSMs. For land cover classes, Noah and NoahMP use the International
Geosphere-Biosphere Programme (IGBP) classification from the NASA’s Terra Moderate Resolution
Imaging Spectroradiometer (MODIS) observations [45]. VIC and CLSM used the University of Maryland
classification from the Advanced Very High-Resolution Radiometer (AVHRR) observations [46].
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2.1.2. Meteorological Forcings

LSMs were driven with three meteorological forcing datasets: NCEP’s Global Data Assimilation
System (GDAS) [47], NASA’s Modern-Era Retrospective analysis for Research and Applications,
version 2 (MERRA2) [48], and the Princeton global meteorological forcing datasets (Princeton) [49].
As the sum of net short wave and long wave radiation, net radiation has the largest effect on LSM-based
ET estimates in relation to energy balance terms. In Figure 1, the mean of net radiation from the three
meteorological forcing datasets ranges from 50 W/m2 for the hyper-arid to 150 W/m2 for the humid
region. Standard deviations in net radiation are generally 10–20 W/m2, but coastal areas at longitudes
between −13◦ and 10◦ show higher variations. When considering the three meteorological datasets,
MERRA2 has the lowest net radiation of these datasets, whereas Princeton has the highest in both
hyper-arid and arid regions. GDAS has the highest values in semi-arid, sub-humid, and humid regions.

2.1.3. Precipitation

Additional experiments were conducted replacing the precipitation fields from the aforementioned
meteorological reanalysis forcings with two other precipitation datasets: the Tropical Rainfall Measuring
Mission Multi-Satellite Precipitation Analysis product 3B42, version 7 (TMPA) [50] and the Climate
Hazards group InfraRed Precipitation with Stations (CHIRPS) [51]. In Figure 1, the mean and standard
deviation of the five precipitation datasets increase linearly from north to south, associated with the
ITCZ precipitation band. The mean and standard deviation maps show a local effect at longitude 10◦
and latitude 5◦, showing higher values (than 10 mm/day in mean and 5 mm/day in standard deviation;
not shown in Figure 1). A comparison of the five precipitation datasets illustrates that GDAS and
CHIRPS provides lower precipitation rates in both arid and semi-arid regions, but higher rates in the
humid region.

2.2. Diagnostic ET Datasets

The four diagnostic ET datasets are used in this study, including the Global Land Evaporation
Amsterdam Model, v3.0a (GLEAM) [37], the Atmosphere-Land Exchange Inverse (ALEXI) [38],
the Moderate Resolution Imaging Spectroradiometer (MODIS) land ET product 16 (MOD16) [39],
and FLUXNET [40]. Our study time period is limited to the 5-year overlap between these datasets from
January 2007 to December 2011. Most of arid and hyper-arid regions in the ALEXI and MOD16 datasets
correspond to missing data as they are deemed unreliable. Diagnostic ET datasets were averaged to
monthly values and re-scaled to a 0.25-degree spatial resolution, whenever necessary.

For PET estimation, ALEXI and GLEAM use the Priestley-Taylor equation, whereas MOD16 uses
the Penman–Monteith equation. The Priestley-Taylor equation estimates evaporation from an extensive
wet surface under conditions of minimum advection by removing the aerodynamic terms from the
Penman–Monteith equation and adding an empirically derived constant factor [52]. Forcing inputs
for the Penman–Monteith equation (used in MOD16) include vapor pressure deficit, air temperature,
net solar radiation, wind speed and air pressure whereas the Priestly-Taylor equation (used in ALEXI
and GLEAM) uses only net radiation or solar irradiance. GLEAM includes a running water balance,
using precipitation input (i.e., the Multi-Source Weighted-Ensemble Precipitation) [53], assimilating soil
moisture observations, and combining them with microwave vegetation optical depth to parameterize
evaporative stress. ALEXI uses observed morning changes in temperature to diagnose the partitioning
of the surface energy balance between sensible and latent heats. MOD16 estimates the surface resistance
based on Leaf Area Index (LAI). FLUXNET is based on upscaling eddy-covariance flux measurements
of ET with satellite-based vegetation indices. The FLUXNET database is composed of regional and
global analysis of observations from over 750 micrometeorological tower sites, including two flux
towers over West Africa, starting in 2010, with a limited time period as provided with the latest version
of the FLUXNET 2015 Tier 1 dataset.
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2.3. Uncertainty Analysis

The evapotranspiration uncertainty analysis is performed separately on LSM-based and diagnostic
datasets to compare their spatial and temporal characteristics and quantify their uncertainty ranges.
The analysis is also performed separately for the five West African climate regions.

To compare the mean and standard deviation between LSM-based and diagnostic ET datasets,
the relative difference (RD) of the two ET products are computed as:

RD =
E1 − E2

E
× 100 (%) (1)

where E1 and E2 represent ETLSM and ETDIAG, respectively, and E is the mean of the products E1 and
E2. Also, to incorporate the bias-insensitive and multiple component nature of evaluation metrics for
a comprehensive comparison, the spatial efficiency metrics (SPAEF) [54,55] are computed as:

SPAEF = 1−
√
(α− 1)2 + (β− 1)2 + (γ− 1)2

α = corr(E1, E2), β = ( σE1
μE1

)/( σE2
μE2

) and γ =
∑n

j=1 min(Kj,Lj)∑n
j=1 Kj

(2)

where α is the Pearson correlation coefficient, β is the fraction of the coefficient of variation and γ is the
histogram intersection for the given histograms K and L of the E1 and E2 patterns, respectively.

The impact of the choice of LSM, meteorological forcing datasets (MET), and precipitation-only
(PRE) on the uncertainty in the LSM-based ET estimates (ETLSM) is estimated through the standard
deviation attributable to each of the three components at each grid cell location as follows:

σx
ET(LSM)

= sqrt

⎛⎜⎜⎜⎜⎜⎜⎝
∑T

t=1
∑L

l=1 σ
2
[
ETx,t,l

LSM1, . . . , ETx,t,l
LSM4

]
T × L

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

σx
ET(MET) = sqrt

⎛⎜⎜⎜⎜⎜⎜⎝
∑T

t=1
∑M

m=1 σ
2
[
ETx,t,m

MET1, . . . , ETx,t,m
MET3

]
T ×M

⎞⎟⎟⎟⎟⎟⎟⎠ (4)

σx
ET(PRE) = sqrt

⎛⎜⎜⎜⎜⎜⎜⎝
∑T

t=1
∑N

n=1 σ
2
[
ETx,t,n

PRE1, . . . , ETx,t,n
PRE5

]
T ×N

⎞⎟⎟⎟⎟⎟⎟⎠ (5)

where σ2 is variance, x is the grid cell, T (=60) is the total number of monthly time step t, for years
2007–2011. A number of the combined experiments (L = 9 from 3 METs times 3 PREs, M = 8 from
4 LSMs times 2 additional PREs, N = 12 from 4 LSMs times 3 METs) with the four LSMs, the three
METs, and the five PREs are used for each of the ET uncertainties σx

ET(LSM)
, σx

ET(MET), and σx
ET(PRE),

respectively. To separate the temporal ET variability from the uncertainty analysis, uncertainties
are estimated by averaging standard deviations over the ET datasets at the same time, t, and then
calculating the temporal average of the standard deviations.

3. Results and Discussion

3.1. Comparison of LSM-Based and Diagnostic ET Estimates

Figure 2 shows the spatial distribution maps of the mean, standard deviation, and relative
difference from the LSM-based and diagnostic ET datasets over West Africa for years, 2007–2011.
Overall, arid regions at the higher latitudes show lower values in mean ET rates and standard deviations
than for the humid regions at lower latitudes. Specifically, lower standard deviations are found in the
hyper-arid and arid regions when mean ET values are less than 1 mm/day. This threshold is reached in
the arid region, resulting in standard deviations of 0.2 mm/day and greater below 15◦N. Compared to
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diagnostic ET datasets, LSM-based ET datasets show the similar mean ET rates in West Africa except
at longitudes between −5◦ and 25◦ in the hyper arid region, ranging from −30 to −30 % in relative
difference. Overall, the LSM-based ET dataset has higher standard deviation values with positive
relative differences over West Africa, except for a part of the hyper-arid region. Comparing the four
LSMs demonstrates that Noah and NoahMP provides lower mean ET rates than CLSM and VIC for all
climate regions (Figure 2g). The order of the spatially averaged mean ET rates, from the highest to
the lowest, is CLSM, VIC, Noah, NoahMP. These results are likely due to the differences of the model
physics and parameters, including land cover datasets of IGBP classification (used in CLSM and VIC)
and UMD classification (used in Noah and NoahMP). For the diagnostic model datasets (Figure 2h),
ALEXI has the highest ET rate (except in the hyper-arid region), whereas MOD16 has the lowest ET
rates (except in humid region) for all climate regions. Also, it is noteworthy that GLEAM, in model
structure such as a running water balance driven with precipitation dataset, is more consistent with
FLUXNET-based observations. On the other hand, ALEXI and MOD16 are more pure diagnostic
estimates that do not use antecedent information (e.g., water balance estimates).

Figure 2. (a,b) Mean (mm·day−1), (d,e) standard deviation (mm·day−1), (c,f) relative difference (%)
maps, and (g,h) regional averages of the mean values of LSM-based and diagnostic (i.e., DIAG) ET
datasets combined.

Figure 3 shows monthly climatologies of mean, standard deviation and relative difference values
for the five West African climate regions. The LSM-based and diagnostic ET datasets show the similar
temporal variations of their mean ET rates. Compared to diagnostic datasets, LSM-based mean ET
rates show lower values during winter and spring, slightly higher during summer, and similar in
fall. This finding is consistent with that the LSMs tend to underestimate ET during winter and spring
seasons when local rainfall is not the primary source of water available for ET [26]. The hyper-arid
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region shows low mean ET rates over the year, whereas the arid region presents a range from 0.3 to
1.5 mm/day, mainly from June to October. The humid region shows a bimodal ET cycle with two peaks
with high ET rates (>3 mm/day) from April to November, whereas semi-arid and sub-humid regions
show one peak in September.

Figure 3. Monthly climatologies of the (a,b) mean (mm·day−1), (d,e) standard deviation (mm·day−1),
and (c,f) relative difference (%) from the LSM-based and diagnostic ET datasets for the five West African
climate regions. Values represent the average for each climate region.

For the standard deviation of monthly climatologies, the diagnostic ET datasets (Figure 3e) show
values lower than LSM-based ET estimates (Figure 3d), particularly in the semi-arid, sub-humid and
humid regions. The hyper-arid and arid regions show the standard deviation increasing with mean
ET and peaking in late summer or early fall. The semi-arid region shows more similar patterns of ET
uncertainty in the monthly climatology as humid regions than the other arid regions. This suggests
that the behavior of ET is dependent on water and energy budget variables, which can lead to
different characteristics than climate regions determined by similar annual precipitation cycle or aridity
condition. Compared to the LSM-based ET datasets, the diagnostic ET datasets show lower seasonal
variation in their standard deviations for the semi-arid, sub-humid, and humid regions. LSM-based ET
datasets show higher standard deviations for all four seasons than the diagnostic ET datasets in humid
region. Also, it is noteworthy that uncertainties of the LSM-based ET estimates increase during winter
for the humid region. This can be explained by the fact that CLSM generates the low peaks in ET rates
for April, lagging by two months behind the low peaks of the other LSMs, which occur in February for
the humid region.

Figure 4 shows SPAEF-based comparison of mean and standard deviation of the LSM-based and
diagnostic ET datasets combined. Compared to metrics of standard deviation (Figure 4b,d), all three
metrics (i.e., correlation coefficient, coefficient of variation, histogram match) and SPAFE values of the
spatially averaged mean ET rates (Figure 4a,c) are closer to the optimal condition, one. This supports
that larger difference between LSM-based and diagnostic ET datasets exists in their standard deviation
than the mean ET rates. Monthly climatologies of the mean ET rates (Figure 4e) show lower histogram
match between LSM-based and diagnostic ET datasets than those of the standard deviation (Figure 4f),
which leads to reduced SPAEF values despite high correlation coefficient and coefficient of variation
for all four seasons. This implies that seasonal variation of the mean ET rates between two different ET
datasets are not consistent as much as one spatially averaged for the whole time period 2007–2011.
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Figure 4. Comprehensive comparison of (a,c,e) mean and (b,d,f) standard deviation of the LSM-based
and diagnostic (i.e., DIAG) ET datasets. Correlation coefficient (CORR), coefficient of variation (CV),
histogram match (HistoMatch), SPAEF values are spatially averaged for (a–d) the 2007–2011 period
and (e–f) monthly climatologies.

3.2. Uncertainty Analysis of LSM-Based ET Estimates

Figure 5 shows the spatially distributed impacts of model parameterization, meteorological
forcing datasets, and precipitation uncertainties on the LSM-based ET uncertainty, as defined in
Equations (3)–(5). Overall, LSM-based ET uncertainties attributable to LSM, MET, and PRE increase
from north to south in West Africa. The ET uncertainties are mostly attributed to LSM, or the differences
in model physics and parameterizations, particularly in the two humid climate regions plus the
semi-arid region. This is consistent with a previous sensitivity study of land surface simulations against
1-year field measurements [10]. Arid regions with little precipitation have ET values much lower than
PET, whereas humid regions have ET values closer to PET values. This implies that the choice of PET
equations in LSMs provide more diversity in our ET estimations over West Africa as compared to the
forcing data. This is also supported by the evidence that the ET uncertainties between the potential

204



Remote Sens. 2019, 11, 892

evaporation products are higher than ones between the different actual evaporation products over the
African continent [8].

Figure 5. LSM-based ET uncertainties are calculated from standard deviations (mm·day−1) attributable
to (a) LSM, (b) MET, and (c) PRE for each grid cell location. The impacts of MET and PRE
uncertainties on LSM-specific ET estimates are shown for (d,e) CLSM, (f,g) Noah, (h,i) VIC, and
(j,k) NoahMP, respectively.

The impacts of MET and PRE uncertainties on LSM-specific ET estimates are also investigated.
In arid regions, the four LSMs show the similar impact of MET and PRE uncertainties on the modeled
ET estimates. However, CLSM and VIC in humid regions show higher effects from MET and PRE than
Noah and NoahMP with higher mean ET rates (see Figure 2g). MET and PRE uncertainties generate
a local effect in the modeled ET uncertainties, having higher values along the coast for CLSM and at
longitudes between −12◦ and −8◦ in humid region for VIC. This is related to the fact that CLSM and
VIC are more sensitive to high uncertainties of radiation and precipitation in these areas (shown in
Figure 1c,d) than Noah and NoahMP.

Figure 6 shows the sensitivity of ET uncertainties to the uncertainties of both radiation and
precipitation. The sensitivity is calculated by dividing the ET uncertainties (Figure 5b,c) by the uncertainty
of the radiation (Figure 1c) and precipitation (Figure 1d). From north to south, the sensitivity of ET
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uncertainties to the uncertainties of radiation decreases, whereas the sensitivity of ET uncertainties to
precipitation increases. This indicates that ET uncertainties in arid regions with little water are more
sensitive to the uncertainty of net radiation, whereas humid regions have a higher sensitivity of ET
uncertainties to the uncertainty of precipitation.

Figure 6. Sensitivity of modeled ET uncertainties to the uncertainties of the meteorological based
(a) net radiation (mm·day−1/W·m−2) and (b) precipitation (mm·day−1/mm·day−1).

When examining the monthly climatology of the impacts of the LSM, MET, and PRE uncertainties
on the LSM-based ET uncertainty, LSM shows the largest effect in Figure 7. This leads to the fact that
seasonal variation of standard deviations due to LSM shows the most similar seasonal variation of the
modeled ET uncertainty (shown in Figure 3d) with lower uncertainty values for all climate regions.
The standard deviations attributable to meteorological forcing datasets show clear seasonal variations
except in hyper-arid region. Interestingly, the standard deviations attributable to precipitation show
lesser seasonal variation in humid region with different peak seasons in June for sub-humid region
and in August for the other three arid regions.

Figure 7. Monthly climatology (mm·day−1) of the impacts of the LSM, MET, and PRE uncertainties on
the LSM-based ET uncertainty for the five West African climate regions. Values represent the average
for each climate region.

Figure 8 shows that LSM physics and parameters contribute to more than 90% of the uncertainty
of the LSM-based ET estimates for semi-arid (91%), sub-humid, (95%) and humid (97%) regions.
The impact of the choice of LSM includes the calibration process on inaccurate input data including
meteorological forcing datasets and precipitation. Thus, it implies that standard deviations attributable
to meteorological forcing dataset and precipitation can be reduced by the LMS physics. In arid regions,
precipitation forcing contributes to the ET uncertainties (>90%) primarily, and the meteorological
forcing datasets have the smallest impact on the ET uncertainty. This can be explained by the fact that
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ET estimates in arid regions are more governed by water availability (e.g., precipitation) than energy
availability (e.g., net radiation).

Figure 8. Regional average (unit: mm·day−1) of mean ET rates, standard deviations, and impacts of
LSM uncertainties (δET(LSM)), MET (δET(MET)), and PRE (δET(PRE)) on the LSM-based ET uncertainty.

4. Summary and Conclusions

We quantified evapotranspiration uncertainties for five West African climate regions for the
2007–2011 period. Uncertainty is defined as the standard deviations, and the analysis is performed
using four LSM-based and four diagnostic ET estimates. Results show clear regional ET uncertainty
variations, increasing southward from the hyper-arid to humid regions. Diagnostic ET datasets show
lower uncertainties and smaller seasonal variations than the LSM-based ET datasets, particularly in
the humid climate regions and semi-arid region. This suggests that assimilating diagnostic ET datasets
into LSMs or hydrological models could improve ET simulations. This finding is supported by a recent
study that assimilated MODIS-based actual ET data and showed improved simulated discharge [56].
The NASA LIS system incorporates a data assimilation (DA) framework and supports a variety of
model and DA type approaches, which could support future ET assimilation studies, accounting for
uncertainty in the model and observational ET reference-type datasets (e.g., MODIS products).

In addition to the ET uncertainty quantification, we demonstrated that LSMs have the biggest
impact in humid regions, contributing to more than 90% of simulated ET uncertainties. Also,
the seasonal variation of the ET uncertainties is mostly affected by the uncertainties attributable to
LSMs. Humid regions have ET values close to PET. This can be explained by the fact that the model
physics differentiate most in their parametrization of evaporative stress when conditions are closer to
potential ET. The precipitation uncertainty has higher influence on ET uncertainty in all West African
climate regions than the net radiation uncertainty. Specifically, in both hyper-arid and arid regions,
precipitation has the biggest effect on the modeled ET estimates. The sensitivity analysis reveals that
the modeled ET estimates are more sensitive to the uncertainty of net radiation in arid regions and
precipitation in humid regions, respectively.

Major rivers, wetlands, lakes, and floodplains flowing through arid regions, such as the Niger
River and, in particular, its inner delta, located in Mali, are main sources of evaporation. However,
this process is neglected in all LSM-based ET estimates used in this study. As a result, the actual
ET rates over West Africa could be higher than what has been reported in the literature and also in
this study. These limit our approach to quantify ET uncertainty and analyze error sources of our ET
datasets. Also, further studies based on more diversified LSM attributed from a choice of different
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land cover datasets, vegetation parameters, and soil physics are recommended to better quantify the
uncertainties of the model ET estimates.

Multiple land surface models are used in Land Data Assimilation Systems (LDAS) such as
Global LDAS (GLDAS), North American LDAS (NLDAS), and FEWS NET LDAS (FLDAS) to increase
simulation skill along with the use of hybrid forcing ensembles [57,58]. Also, a multi-model ensemble
framework is used to develop estimates of model uncertainty and understand the level of similarity
and dissimilarity between the constituent models. The utility of the multi-model ensemble can be
increased when sufficient dissimilarity among the constituent models is guaranteed. The results from
this study could suggest that by including certain LSMs to these LDAS, additional information would
be provided for enhancing the water availability monitoring for agriculture and livelihoods in Africa.
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Abstract: Evapotranspiration (ET) is a critical component of the water and energy balance of
climate–soil–vegetation interactions and can account for a water loss of about 90% in arid regions. It is
recognized that there are differences among different ET products, but it is not known what the range
of this difference is and to what extent it impacts on water resources and ecosystem management.
In this study, we assess the effects of value differences of five representative ET products on water
resources and ecosystem management in the Murrumbidgee River catchment in Australia. The
results show there are obvious differences in the annual and monthly ET values among these five
ET products, which lead to huge differences on the estimations of mean annual runoff, soil water
storage changes, and yearly irrigation water per area. Meanwhile, they result in different relationships
between the annual gross primary productivity and ET and different water-use efficiency values
for both forest and grassland, but the influence of ET variations on forest is less obvious than on
grassland. The effects of the variations among the ET products on water resources and ecosystem
management are remarkable and need to be the subject of more attention.

Keywords: evapotranspiration; remote sensing; Murrumbidgee River catchment; water resources
management; ecosystem management

1. Introduction

Water scarcity is one of the most serious global challenges [1,2]. Evidence shows that the changing
and uncertain climate in the future could lead to more uncertainty in water availability [3,4]. This
creates greater pressure on water resources and ecosystem management in arid and semi-arid regions
where there is often poor infrastructure and a fragile ecological environment [2]. Thus, to obtain
accurate information of water use is important for water resources and ecosystem management in
these regions [2,5].

Evapotranspiration (ET) is an essential component in catchment water balance since it is almost
the only water-extracting constituent in arid and semi-arid regions [6,7]. ET is the loss of water when
mitigating vegetation stress responses and the key variable for linking ecosystem functioning, carbon
and climate feedbacks [5]. Therefore, ET is commonly considered as a reference and indicator for water
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resources and ecosystem management. It is used for: the determination of irrigation requirements of
crops, evaluation of the hydrological effects of afforestation and deforestation, and the estimation of
the productivity and water-use efficiencies of ecosystems [5,8–10].

A wide range of global and regional ET products have been developed in recent decades for
monitoring water use and assisting in planning management. They can be broadly classified into three
categories: remote sensing (RS)-based ET products using vegetation index-based data or land surface
temperature (LST) (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS) ET, Advanced
Very High Resolution Radiometer (AVHRR) ET, Priestly-Taylor Jet Propulsion Laboratory (PT-JPL) ET
and Global Land Evaporation Amsterdam Model (GLEAM) ET), ET output from land surface models
(LSMs) (e.g., Global Land Data Assimilation System (GLDAS) ET, Modern-Era Retrospective analysis
for Research and Applications (MERRA) ET and European Centre for Medium-Range Weather Forecasts
Re-analysis (ERA)-interim ET), and ET from a water budget with measured precipitation, runoff and
total water storage change (e.g., TerraClimate ET and Gravity Recovery and Climate Experiment
(GRACE)-inferred ET) [5,11,12]. These ET products have been used to a varying degree for irrigation
water management [8], vegetation productivity estimation [9,10], calibration and optimization of
hydrological models and prediction of runoff in the ungauged basins [13,14], and water management
modes and water rights regimes [2,15,16]. However, these different ET products are of different
spatial-temporal scales, and differ in accuracy or uncertainty [11,17,18].

As ET is the largest water-use component in the catchment water balance in arid and semi-arid
regions, any variation of ET will cause corresponding errors in the estimation of runoff and soil water
storage, thus also large errors in the determination of water demand of irrigated agriculture and in the
estimation of productivity of water use in an ecosystem [19,20]. To date, most hydrologic studies, as
well as river basin management proposals, have tended to focus on supply elements e.g., precipitation,
snow, runoff, water storage soil moisture and groundwater, but have largely ignored the demand
side (e.g., ET) (Figure 1) [5]. This is mainly because of insufficient knowledge of ET at local to global
scales. The ground observations for ET (eddy covariance towers, Bowen ratio systems, and weighing
lysimeters) are poorly covered in many regions, furthermore there are uncertainties about the ET from
a water budget perspective which accumulate from errors in other hydrological components, and
uncertainties of the ET from land surface models and RS-based approaches due to differences in the
structures, resolutions, and inputs of the models and approaches. However, the range of these errors
caused by the variations of ET products is not yet clear. Without such knowledge, our capacity for
accurate water resource management, economic development and sustainable ecosystems would be
seriously compromised.

Figure 1. The access methods of the water balance components within a drainage basin.

This paper aims to analyse the chain effects of variations of several widely used ET products on
water resource and ecosystem management in which the Murrumbidgee River catchment (hereafter
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MRC) in Australia, a semi-arid and arid catchment with the intensified agriculture and declining
ecosystems, is taken as a case study area. The water balance in the MRC obtained from the Australian
Water Availability Project (AWAP) datasets from 2001–2016 will be used as the “reference” and
to compare the performance differences of four global representative ET products selected from
dozens of products: a RS-based ET product from MODIS, a LSMs-based ET product from GLDAS, a
water budget-based ET product from TerraClimate and the ET product developed by the Australian
indigenous research institute, the Commonwealth Scientific and Industrial Research Organisation
(CSIRO), and their effects on the other water balance components, irrigation, and gross primary
productivity (GPP) and water-use efficiency of forest and grassland are analysed.

2. Methods and Data

2.1. Study Area

The Murray–Darling Basin (hereafter MDB) is the most productive agricultural area in Australia
and a globally recognized epitome of successful water management. It covers around 14% of Australia’s
land, but produces about 40% of Australia’s gross value of agricultural production. As one of the most
important catchments in the MDB, the MRC has an area of 84,000 square kilometers and accounts
for about 7.9% of the MDB (Figure 2). It encompasses all of the Australian Capital Territory. The
Murrumbidgee River rises in the Snowy Mountains and flows 1690 km from east to west. The average
annual runoff is about 37.84 × 108 m3. The highest precipitation occurs in the eastern mountains of the
catchment and averages 1500 mm yr−1, while the average annual rainfall in the lower catchment is
about a fifth of this figure. The annual potential ET ranges from 1250 mm to 1500 mm. Most of the
precipitation losses are in the form of ET and account for up to 90%.

The MRC was opened to settlement in the 1830s and soon became an important farming area,
and now its irrigated area accounts for about 15% of the total in the MDB, especially the irrigated
rice area which is up to about two third of the total rice area in the MDB according to the statistical
data from Australian Bureau of Agricultural and Resource Economics and Sciences (ABARE). In the
MRC, agricultural land, grassland, and forest are the main land cover types, which accounts for about
60%, 15%, and 20%, respectively [21]. The Murrumbidgee River is one of the most regulated rivers in
Australia on which there are 26 water storage structures. Irrigation for agriculture is the greatest user
of water in the MRC, and the total volume of irrigation entitlements is approximately 28.0 × 108 m3,
which accounts for 74.0% of the average annual runoff [22]. However, with the development of the
farming practices, there is increasing deterioration of river health, thus, protection of the environment
is on the political agenda, along with a commitment not only to return water to rivers to nurse them
back to health, but also to help agricultural industries rise up to the challenge of a drier climate [23].
In such a catchment, precise and reliable water resources management is extremely important for
agricultural development and ecosystem management.
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Figure 2. The location of the Murrumbidgee River catchment (MRC) and its topography and land cover.

2.2. Data Sources and Processing

The AWAP datasets concern the terrestrial water balance across continental Australia and are
developed by the Australian Water Availability Project (AWAP, http://www.csiro.au/awap) Team
and the CSIRO Marine and Atmospheric Research using the WaterDyn model. They include a
long-term historical monthly time series (data set “Run 26m”, 1900 to 2017) of the conventional water
balance components at a spatial resolution of 0.05◦ [24]. These datasets have been widely used in
research on water resource management in Australia and can be viewed as referenced or observational
data to evaluate the other types of water balance components [25]. The water balance components
(in mm mon−1) of the MRC from 2001 to 2016, including precipitation, ET, runoff, and soil water
storage changes were obtained from these datasets.

The four other ET products selected for comparative analysis include ET from CSIRO, GLDAS,
MODIS, and TerraClimate. The CSIRO ET is a monthly global ET product developed by the CSIRO [26].
The estimates are computed through the observation-driven Penman–Monteith–Leuning (PML) model.
The GLDAS ET is the GLDAS-2.1 ET product, which is one of two components of the GLDAS Version
2 (GLDAS-2) dataset and is developed with the advanced land surface modeling and data assimilation
techniques utilising satellite and ground-based observational data products [27]. The MODIS ET is the
MOD16A2 Version 6 Evapotranspiration/Latent Heat Flux product and is an 8-day composite product
produced at 500-metrepixel resolution [28]. The algorithm used for the MOD16 data product collection
is based on the logic of the Penman–Monteith equation, which includes inputs of daily meteorological
reanalysis data along with MODIS remotely sensed data products such as vegetation property dynamics,
albedo, and land cover. The TerraClimate ET is the actual evapotranspiration of TerraClimate dataset
and is derived using a one-dimensional soil water balance model [29]. TerraClimate is a dataset of
monthly climate and climatic water balance for global terrestrial surfaces. It uses climatically aided
interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset,
with coarser spatial resolution of 2.5◦.

Other data used in this study include irrigation information, ecosystem data, and land cover data.
The irrigation information was obtained from farm survey reports from ABARE, which is the only
national farm survey information source in Australia. As one of the most important indicators of
ecosystem function and closely related to water use, the GPP was selected for ecosystem assessment.
The GPP data is the MOD17A3 V055 product, which provides information about annual GPP at 1 km
pixel resolution [30]. In addition, we used the current release of the second version of the Dynamic
Land Cover Dataset (DLCDv2.1) as a basis for water balance analyses [21]. The land cover classification
scheme conforms to the 2007 International Standards Organisation (ISO) land cover standard (19144-2).
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In this dataset Australian land covers are clustered into 22 classes, ranging from cultivated and
managed land cover to natural land cover. The data presents land cover information for every 250 m
by 250 m area of the country at a two-year interval. In accord with our research aim in this study,
we combined these 22 land cover types into 7 types: bare surface, water bodies/wet land, irrigated
agriculture, rain-fed agriculture, grassland, forest, and urban area. Then, we uniformly resampled and
adjusted resolution of the spatial data (except AWAP data set and CSIRO ET) to 500 m and projection
and temporal resolutions (annual and monthly) to make the data products comparable using the
Google Earth Engine (GEE). Manipulation of the AWAP data set and CSIRO ET, and reclassification
and combination of land cover data were conducted in the ArcGIS platform. We made the analysis
based on the land cover types in monthly and annual scales respectively using SPSS and Microsoft
Excel software.

All data used in this study including the water balances components from AWAP, the ET products
from CSIRO, GLDAS, MODIS, and TerraClimate, irrigation information, land cover, and GPP are
summarized in Table 1.

Table 1. The information of data used in this study.

Data Name Sources
Spatial

Resolution
Spatial Extent

Temporal
Resolution

Time Span Provider

Precipitation,
runoff, and water
storage changes

AWAP a 0.05◦ Australian Monthly 1900–2017 CSIRO

Evapotranspiration
(ET)

1. AWAP 0.05◦ Australian Monthly 1900–2017 CSIRO
2. CSIRO b 0.5◦ Global Monthly 1981–2012 CSIRO

3. GLDAS c 0.25◦ Global 3 h 2000–August
2018 NASA

4. MODIS d 500 m

Global (−60◦ to
80◦ Latitude;
−180◦ to 180◦

Longitude)

8 days 2001–September
2018

NASA LP DAAC at
the USGS EROS

Center

5.
TerraClimate 2.5◦ Global Monthly 1958–2017 University of Idaho

Irrigation ABARE e
Catchment and
administrative

area
Australian Yearly 2005–2017 ABARE

GPP f MOD17A3.055 1000 m Global Yearly 2000–2014
NASA LP DAAC at

the USGS EROS
Center

Land cover DLCDv2.1 g 250 m Australian Yearly 2001–2015 www.ga.gov.au

Note: a Australian Water Availability Project (AWAP), b Commonwealth Scientific and Industrial Research
Organisation (CSIRO), c Global Land Data Assimilation System (GLDAS), d Moderate Resolution Imaging
Spectroradiometer (MODIS), e Australian Bureau of Agricultural and Resource Economics and Sciences (ABARE),
f gross primary productivity (GPP), and g Dynamic Land Cover Dataset v2.1 (DLCDv2.1).

2.3. Comparison among These Five Evapotranspiration (ET) Products

The variations of ET among the products were quantified by comparing the four ET products
(comparison value) with the AWAP ET component (reference value). The percent bias (PBIAS)
and mean absolute error (MAE) were used [31] to assess the difference between the reference and
comparison ET values. PBIAS measures the average tendency of comparison values. Positive values
show overestimation and negative values indicate underestimation; low-magnitude values of PBIAS
are preferred and the optimal value is 0. MAE means the average value of the absolute errors between
the reference and comparison ET values and can better reflect the actual level of the comparison value
error. The smaller the MAE, the better the comparison value. They are calculated as follows:

PBIAS =

∑n
i=1(Q

sim
i −Qobs

i )∑n
i=1 Qobs

i=1

× 100% (1)
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MAE =
1
n

n∑
i=1

∣∣∣Qsim
i −Qobs

i

∣∣∣ (2)

The root mean square error (RMSE) and root mean square error observation standard deviation
ratio (RSR) were then used to derive statistical goodness of fit of the ET comparison values and to
evaluate the performance of the data product against reference values. RMSE is very sensitive to the
large errors in a group of data. RSR is used to standardise RMSE and integrate the advantages of error
statistics, and RSR ranges from 0 to 1. They are computed using the following equations:

RMSE =

√∑n
i=1

(
Qsim

i −Qobs
i

)2
n

(3)

RSR =

√∑n
i=1

(
Qsim

i −Qobs
i

)2
√∑n

i=1

(
Qobs

i −Qobs
avg

)2 (4)

Following on, the coefficient of determination (R2) value was computed to evaluate the linear
relationship between reference and comparison ET data. Along with R2, we also reported slope and
intercept values to provide useful information of the degree of bias at higher ET and intercept for
the magnitude of bias affecting lower comparison ET. R2 ranges from 0 to 1, and this represents the
proportion of the total variance in the reference data that can be explained, with higher R2 values
indicating better performance.

R2 =

(∑n
i=1

(
Qobs

i −Qobs
avg

)(
Qsim

i −Qsim
avg

))2
∑n

i=1

(
Qobs

i −Qobs
avg

)2∑n
i=1

(
Qsim

i −Qsim
avg

)2 (5)

Finally, the Nash–Sutcliffe efficiency (NSE) [32] was used to measure how well comparison values
represent the reference data, relative to a prediction made by using the average reference value. It is a
more stringent measure than R2. NSE ranges from −∞ to 1, with NSE = 1 being the optimal value.
NSE is calculated as:

NSE = 1−
∑n

i=1

(
Qsim

i −Qobs
i

)2
∑n

i=1

(
Qobs

i −Qobs
avg

)2 (6)

where Qi
sim is the comparison ET (other four ET products), and Qi

obs is the reference ET (AWAP ET)
at time step i, respectively, whereas Qavg

obs and Qavg
sim are the average reference and comparison ET

values, and n is the total number of data, and subscript i represents the time step (month or year).

2.4. The Effects of ET Variations on the Runoff and Water Storage Changes

The catchment water balance approach was used to analyse the effects of value differences in these
ET products on the runoff and water storage changes. The water balance approach, routinely used for
estimating mean annual ET, is based on the catchment water budget [33]. For a given watershed, the
instantaneous equation of the water mass balance is:

P = ΔW + ET + R (7)

where P, ΔW, ET, and R are precipitation, water mass storage changes, evapotranspiration, and runoff
respectively. These terms are generally expressed in terms of water mass (mm of equivalent water
height) per day. There are many transformations for the Equation (7) for different purposes and based
on different available data.
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To assess the effects of ET variations on runoff, other terms of the equations were set at AWAP
levels with ET values from the other four products were used respectively, and the equation can be
transferred into the following:

R = P− ET − ΔW (8)

To assess the impacts of ET variations on water storage changes, other terms of the equations were
set at AWAP levels with ET values from the four products were used respectively, and the equation
can be transferred into the following:

ΔW = P− ET −R (9)

2.5. The Chain Effects of ET Variations on Irrigation

For water catchments with intensive irrigation, irrigation water (I) as an external source should be
added to Equation (7). Then the equation of water mass balance is given as:

P + I = ΔW + ET + R (10)

I = ΔW + ET + R− P (11)

Because the detailed groundwater observational data is lacking and the main irrigation water
resources in this catchment is surface water, and the recharge to the groundwater through infiltration
of irrigation water is very small according to data drawn from ABARE’s farm survey reports, two
assumptions were made: only when the sum of ET and R was more than P, I was calculated by dividing
the P from the sum of the ET and R, and ΔW was viewed as 0 in Equation (12); and when the sum of
the ET and R was less than or equal to P, there was no irrigation, and ΔW was the difference between P
and the sum of the ET and R in Equation (13).

I = ET + R− P, when ET + R > P and ΔW = 0 (12)

I = 0, when ET + R < P and ΔW = P− ET −R (13)

2.6. The Chain Effects of ET Variations on Productivity and Water-Use Efficiency of Ecosystems

The large water consumption sectors in the ecological systems in the MRC include the grasslands
and forest. GPP, the most important indicator related to both the water cycle and carbon cycle, is
used to measure the effects of ET variations on terrestrial ecosystems because of the linear relationship
between GPP and ET at a regional scale [34]. In the MDB, it was modified from a linear relationship to
a quadratic relationship [10]. The function between annual GPP and ET is given in Equation (14).

GPP = a ∗ ET2 + b ∗ ET + c (14)

where ET is the total ET per unit area in mm yr−1, GPP is the total GPP in g C m−2 yr−1.
The water-use efficiency, reflecting the water stress under the different water conditions of the

ecosystem, is the ratio of the GPP to the ET, and can be calculated as:

WUE =
GPP
ET

= a ∗ ET + b + c ∗ ET−1 (15)

where WUE is the water use efficiency in g C m−2 per mm water or kg C m−3 H2O. The parameters a, b,
and c were determined with the observed GPP from 2001 to 2014 and the varying ET products.
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3. Results

3.1. ET Comparison among the Five ET Products

The fluctuations of the annual ET are obvious, where the minimum values appeared in 2006,
and the maximum values appeared in 2011 (except for the TerraClimate ET) (Figure 3a). Although
the change trends of all ET products are similar, the differences between their extreme annual values
are large. For example, the largest is up to 455.3 mm for the TerraClimate ET while the minimal is
only 214.7 mm for the MODIS ET. The minimum and maximum annual ET values are 324.7 mm and
617.8 mm (AWAP); 364.3 mm and 611.2 mm (CSIRO); 366.7 mm and 732.5 mm (GLDAS); 249.6 mm
and 464.3 mm (MODIS); and 257.8 mm and 713.1 mm (TerraClimate), respectively. Their ratios of the
maximum to the minimum annual ET values are 1.9, 1.7, 2.0, 1.9 and 2.8, respectively. Moreover, there
are differences among their average values (Table 2). The average value of GLDAS ET is 14% more
than the AWAP ET, while MODIS ET is 24% less than the AWAP ET. The CSIRO ET and TerraClimate
ET are very close to the AWAP ET. Their RMSE and MAE were smaller as RSR’s values were around
0.5, and the PBIAS values were close to 0.

Figure 3. The comparison of annual and monthly ET products: (a) the annual ET, (b) mean monthly ET
with the maximum and minimum values, and (c) the linear fit curves between AWAP ET and the other
four ET products.
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The mean, maximum, and minimum values of the monthly ET each year are shown in Figure 3b,
and the variations of the mean monthly ET are the same as the yearly ET, but the changes of maximum
and minimum values are very different. Compared with the AWAP ET, both the maximum and
minimum values of GLDAS ET are larger, while the maximum values of MODIS ET are less, and
its minimum values are less before 2010 and then almost the same since 2010. For the CSIRO and
TerraClimate ET, their maximum values are similar to the AWAP ET, but the minimum values are less
than the AWAP ET, and the TerraClimate ET is more obvious. The range of the monthly values are
from 14.0 mm to 99.2 mm (AWAP), 11.2 mm to 87.2 mm (CSIRO), 15.0 mm to 103.1 mm (GLDAS), 9.8
mm to 77.3 mm (MODIS), and 5.1 mm to 105.3 mm (TerraClimate). Their ratios of the maximum to the
minimum monthly ET values are up to 7.1, 7.8, 6.9, 7.9, and 20.6, respectively. Figure 3c shows the
scatter diagram between the monthly AWAP ET with the other ET products from 2001 to 2016, and
the performances of the fitting relationship between the GLDAS ET and CSIRO ET and AWAP ET are
better than the other two ET products, which can be reflected by the slopes of fitting lines around 1 and
correlation coefficients of more than 0.75 (Table 2). According to the other evaluation indicators, the
CSIRO ET is the best among the four ET products, because its NSE is the largest, while the RMSE, RSR,
and MAE are the smallest.

Table 2. Comparison of the four evapotranspiration (ET) products with the AWAP ET.

A_ET C_ET G_ET M_ET T_ET A_ET C_ET G_ET M_ET T_ET

Yearly Monthly

Mean (mm) 464.14 473.53 529.91 352.32 450.37 38.68 39.46 44.16 29.36 37.53
N 16 12 16 16 16 192 144 192 192 192

NSE h 1 0.84 0.07 −1.42 0.61 1 0.74 0.61 0.21 0.34
R2 1 0.87 0.93 0.82 0.87 1 0.77 0.82 0.49 0.52

RMSE i (mm) 0 33.45 71.90 116.25 46.43 0 9.31 11.21 15.84 14.50
RSR j 0 0.40 0.96 1.56 0.62 0 0.51 0.63 0.89 0.81

PBIAS k 0 0.03 0.14 −0.24 −0.03 0 0.03 0.14 −0.24 −0.03
MAE l (mm) 0 27.20 65.82 111.78 38.23 0 7.15 7.91 11.33 11.65

Note: h Nash–Sutcliffe efficiency (NSE), i root mean square error (RMSE), j root mean square error observation
standard deviation ratio (RSR), k percent bias (PBIAS), and l mean absolute error (MAE).

3.2. The Effects of ET Variations on Estimation of Runoff and Water Storage Changes

3.2.1. The Water Balance in the Murrumbidgee River Catchment (MRC) Using Australian Water
Availability Project (AWAP) Datasets

Figure 4 shows the annual and monthly water balance in the MRC using AWAP datasets. The
mean annual precipitation, ET, runoff, and water storage changes are 518.0 mm, 464.1 mm, 49.5 mm,
and 4.4 mm, respectively. The years of 2002, 2006, and 2009 were the dry years, while 2010, 2011, and
2016 were wet years. In most years, the precipitation is largely lost by ET, and in some years even the
latter is larger than the former due to relatively less precipitation and consumption of the soil water.
The runoff is low except in the very wet years, and the water storage is in a deficit condition. This
situation was most serious in 2006.

The precipitation and ET in the MRC are concentrated in the period from December to February.
The runoff only appeared in heavy rain years, for example, in 2010, 2011, and 2016. In some months,
ET is more than precipitation, which leads to water storage changes: a recharge in heavy rain years
and a deficit in drought years.
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Figure 4. The annual (a) and monthly (b) water balance in MRC.

3.2.2. The Effects of ET Variations on Runoff Estimation

Figure 5 shows the annual runoff estimated using the four ET products combining the AWAP
precipitation and water storage data. Compared with the AWAP runoff, the runoff estimated using
the MODIS ET is much larger, while the runoff estimated using the TerraClimate ET is larger in some
years and less in other years and even is negative in 2010. The runoff estimated using the GLDAS ET is
much less than the AWAP runoff and even becomes negative. The runoff estimated using the CSIRO
ET is complex, because it is larger or less than the AWAP runoff in some years but is negative in other
years. The mean annual runoff estimated using the ET products from AWAP, CSIRO, GLDAS, MODIS,
and TerraClimate are 49.5 mm, 34.4 mm, −16.3 mm, 161.3 mm, and 63.2 mm respectively. Application
of the CRISO and GLADS ET products results in the underestimation of runoff, on the contrary, the
MODIS and TerraClimate ET products result in the overestimation of runoff. The runoff estimated
using the GLDAS ET is negative, while the runoff estimated using the MODIS ET is more than triple
that of the AWAP runoff.
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Figure 5. The yearly runoff estimations using different ET products.

3.2.3. The Effects of ET Variations on Water Storage Estimation

Figure 6 shows the annual water storage estimations using the four ET products combining the
AWAP precipitation and runoff data. Compared with the AWAP water storage, the water storage
estimated using the MODIS ET is much larger and positive except for the negative value in 2006 which
was an extremely dry year, while the water storage estimated using the TerraClimate ET is larger
in most years and less in a few years. The water storage estimated using the GLDAS ET is much
less than the AWAP water storage and was negative in most years except in 2003, 2007, 2010, and
2016. The water storage estimated using the CSIRO ET is similar to the AWAP’s estimations, but the
former was negative while the latter was positive in 2009. The mean annual water storage estimated
using the ET products from AWAP, CSIRO, GLDAS, MODIS, and TerraClimate are 4.4 mm, −14.1 mm,
−61.5 mm, 116.1 mm, and 18.1 mm, respectively. The CSIRO and GLDAS ET products result in the
underestimation of water storage, which indicates that the water storage is in deficit. By contrast, the
MODIS and TerraClimate ET products result in the overestimation of water storage. The water storage
estimated using the MODIS ET is even up to 110 mm and more than the AWAP water storage.

 
Figure 6. The yearly water storage changes estimated using different ET products.

3.3. The Effects of ET Variations on Irrigation Estimation

Figure 7 shows the monthly and annual irrigation water estimated using the five ET products
combining the AWAP precipitation and runoff data in irrigated area in the MRC. There are significant
differences between them, and the average values of annual irrigation water estimated using the
AWAP, CSIRO, GLDAS, MODIS, and TerraClimate ET products are 87.0 mm, 114.2 mm, 154.6 mm,
115.7 mm, and 49.1 mm, respectively. The maximal one, estimated using MODIS ET, is more than
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three times of the minimal one estimated using TerraClimate ET. Compared with the annual irrigation
water estimated using the AWAP, the CSIRO’s are larger except in 2001, the GLDAS’s are larger, the
MODIS’s are larger in most years, and the TerraClimate’s are less except in 2010 and 2011. Although
the irrigation water estimated using CSIRO and MODIS ET are close, they are different both over
monthly and annual scales. The maximum values of the annual irrigation water using the AWAP,
CSIRO, and MODIS ET products appeared in 2006 and were 118.8 mm, 171.8 mm, and 196.6 mm,
respectively, while the maximum values using the GLDAS and TerraClimate ET products appeared in
2011 and were 256.5 mm and 110.9 mm, respectively.

Figure 7. The monthly (a) and annual (b) irrigation water estimated using different ET products.

3.4. The Effects of ET Variations on the Gross Primary Productivity (GPP) and Water-Use Efficiency of the
Grassland and Forest

The annual GPPs range is from 976.8 g C m−2 to 1279.5 g C m−2 for forest and 397.0 g C m−2

to 719.6 g C m−2 for grassland, and the annual ETs range is from 384.8 mm to 766.6 mm for forest
and 118.0 to 618.8 mm for grassland (Figure 8a,c). The points representing different ET products
overlap each other except for the MODIS ET for forest (Figure 8a), which indicates the ET products
are close. However, the points representing GLDAS ET and MODIS ET are located at the left and
right respectively, and the other three ET products are located in the middle and have some overlap
for grassland, which reflects the obvious differences among the ET products (Figure 8c). There are
significant quadratic relationships between the yearly GPP and all ET for forest and grassland, but the
quadratic functions are different from each other (Figure 8a,c). For forest, the mean water use efficiency
estimated using AWAP, CSIRO, GLDAS, and TerraClimate ET are close and about 1.9 kg C m−3 H2O,
while the water-use efficiency estimated using MODIS ET is up to 2.3 kg C m−3 H2O (Figure 8b).
For grassland, the mean water use efficiency estimated using AWAP, CSIRO, GLDAS, MODIS, and
TerraClimate ET are 1.5 kg C m−3 H2O, 1.5 kg C m−3 H2O, 1.2 kg C m−3 H2O, 2.4 kg C m−3 H2O, and

223



Remote Sens. 2019, 11, 958

1.6 kg C m−3 H2O (Figure 8d). The ranges of the annual water-use efficiency estimated using AWAP,
CSIRO, MODIS, and TerraClimate ET for forest are less than those for grassland, and the ranges using
GLDAS ET are the same.

Figure 8. The relationships between yearly GPP and ET and the water-use efficiency of forest and
grassland: (a,b) forest, and (c,d) grassland.

4. Discussion

4.1. The ET Variations among the Five Products

The results show that there are obvious differences in the annual and monthly ET values among
these five ET products. The possible reasons for these ET variations could be explained as follows.

(1) Different estimation approach. GLDAS ET is the simulation from a land surface model which
is upscaling of space- and ground-based observations with data assimilation techniques [27]. MODIS
ET is the terrestrial ET based on the logic of the Penman–Monteith equation, which includes inputs of
daily meteorological reanalysis data from the Global Modelling and Assimilation Office of NASA along
with MODIS remotely sensed data products [28]. TerraClimate ET is developed using a water balance
model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated
plant extractable soil water capacity, while the AWAP ET is also developed using a water balance
model, and their results are close except that there is a larger difference in grassland. This is because
the TerraClimate ET uses a simplified one-dimensional Thornthwaite–Mather water balance model
while AWAP employs a two-layer model to simulate the changes in the shallow (thickness 0–0.7 m)
and deep (0.2–1.5 m) soil layers, and the latter can depict the loss of the deep soil water [24,29].
Compared with the above three ET products, the CSIRO ET is similar to the AWAP ET, which is because
they share many basic input data in this catchment [24,26]. CSIRO ET uses an observation-driven
Penman–Monteith–Leuning (PML) model, supported with meteorological forcing data and along with
satellite derived vegetation forcing data, land cover data, emissivity, and albedo. This is similar with
the MODIS ET using the Penman–Monteith method and remotely sensed data, but their results are
different in the interannual change, annual change, average value of the ET, and the ET of each land
use type. This might be explained as the input datasets applied in CSIRO ET better represent the
characteristics of Australian territory [26,28].
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(2) Different inputs. There are obvious differences among inputs, such as meteorological forcing
data, vegetation forcing data, and land surface data. For example, the precipitation, a key factor
determining water availability and a basic component of the hydrological cycle, is different from each
other in these ET products. GLDAS ET uses the space- and ground-based precipitation observations
with data assimilation techniques, MODIS ET uses the daily meteorological reanalysis data, while
AWAP ET uses a gridded daily rainfall dataset, which can directly influence the ET [24,27,28].

(3) Different spatial-temporal scales. The spatial scale mismatch between finer vegetation data
and coarser meteorological forcing could result in large variations in ET products [11,35]. The spatial
resolutions of these five ET products are different from each other and range from 500 m of MODIS ET to
2.5◦ of the TerraClimate ET. Generalisation of surface features (such as land use/cover and terrain) leads
to the decreases of the resolution, thus the loss of details of surface features. The temporal resolutions
of these five ET products vary from 3 h to one month, which could result in the representation of
different meteorological processes and vegetation physiological processes in these ET products [14].

(4) The different expression of dynamics in vegetation index-based data could also cause differences
among ET products. Some ET estimation methods, based on remotely sensed data like MODIS, can
timely reflect the vegetation changes, but others cannot. If the vegetation growth process cannot be
truly expressed, the evapotranspiration of vegetation, as well as its photosynthesis and other related
hydrological processes (such as canopy interception and infiltration) will be affected [14].

4.2. The Effects of the Variations among the ET Products on Water Resources Management

ET is a significant climate variable that uniquely links the water cycle. It can help understand
both sides of the water supply-demand equation [5,36]. The model calibration, using ET products
combined with gaged runoff data, have effectively improved the performances of the hydrological
models; moreover, ET products are also attractively used to estimate the runoff in the ungauged
basins [5,13,14]. Thus, the value variations of ET could have a large influence on the other water
balance components. Compared with the gaged runoff data and the condition of the total water storage
changes estimated with the GRACE satellites from 2002 to 2014 [37], the runoff and water storage
change in the MRC provided by the AWAP are reasonable respectively. The results in this study
show the obvious influences of different ET products on the estimation of runoff and water storage
undoubtedly creates a challenge for the calibration of hydrological models with such large variations of
water balance components [13,14,19]. More importantly, such inaccurate information would seriously
influence the precision and reliability of the decision-making on regional water resources allocation and
regulation, which may artificially aggravate the unbalance of water allocation between different reaches
in catchments, and between human resource use and ecosystem protection. In addition, such large
variations of ET cast a shadow over the objective assessment of the effects of land use and cover change
and climate change on basin water cycles, which are attracting increasing global attention [38,39].

As the predominant variable for water management in agricultural food production, the
atmospheric demand for ET is a reference to irrigation [40,41]. In the MRC, the uncertainty of
water allocation and low water availability were the main impediments to irrigated farms including
dairy, broadacre and horticultural industries [42]. It was found in this study that the estimations of
annual irrigation with these five ET products range from 49.1 mm using TerraClimate ET to 154.6 mm
using GLDAS ET. Such a large range of estimated irrigation could lead to over-irrigation with water
loss via infiltration of groundwater or it could result in unnecessarily returning water to rivers for
environmental protection at the expense of necessary irrigation, resulting in lower crop yields due to
crops suffering the effects of insufficient water, especially during the growth stage of the crop.

4.3. The Influences of the Variations among the ET Products on Ecosystem Management

The latest research found that the global carbon sink anomaly was driven by growth of semi-arid
vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to
Australian ecosystems. This finding suggested that the higher turnover rates of carbon pools in
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semi-arid biomes were an increasingly important driver of inter-annual variability of global carbon
cycle [43]. ET is the loss of water when mitigating vegetation stress responses and becomes the indicator
of ecosystem function and health, such as productivity and carbon dioxide regulation [5]. In this study,
it was found that there are less differences between the five ET products when applied to forest than
when applied to grassland, thus there are also different relationships between GPP and different ET
products for forest and grassland. However, all of their relationships are in significantly quadratic
correlations. This means that we likely think that it is credible to predict the GPP using any of these
relationships and the related ET products, which will probably result in different GPP estimations
with different ET products. Water-use efficiency reflects the water stress of forest and grassland and
therefore is a very important indicator of ecosystem health. It is found in this study that the mean water
use efficiency of the forest using AWAP, CSIRO, GLDAS, and TerraClimate ET are about 1.9 kg C m−3

H2O and are all greater than the grasslands, from the 1.2 kg C m−3 H2O of GLDAS to 1.6 kg C m−3

H2O of TerraClimate ET. However, the water-use efficiency estimated using MODIS ET is 2.3 kg C m−3

H2O for forest, while grassland’s is up to 2.4 kg C m−3 H2O showing greater water use efficiency than
forest. These values are reasonable according to the previous findings reporting C3 species range
between 1.4 and 3.6 kg C m−3 H2O [44], but the large range of GPP estimation functions and WUE
among the five ET products could influence the precision in the assessment of the ecosystem function
(e.g., carbon dioxide regulation) and how terrestrial ecosystems respond to environmental changes
(e.g., a drier climate). Furthermore, the value variations of ET can seriously affect the allocation of
environmental flows, especially in arid regions where the water resource is even scarcer. It also can
affect the migration of water, salt and nutrient in the basin water quality modeling, then lead to the
inaccurate prediction and evaluation of salinization, eutrophication, and ecological degradation.

4.4. Limitations

It should be noted that there are limitations in the methods and data in this study. We used the
conventional water balance equation with fewer data requirements to assess the effects of ET variations
on each water balance component. It should be known that the physical hydrological models reflecting
the complex hydrological processes of the catchment could have more precise results. Meanwhile, we
estimated the irrigation water amount according to the ET without consideration of the influence of
different agricultural management practices, especially with the assumption of the unchanged water
mass storage under irrigation practices. Nevertheless, as the focus of this study was to compare the
effects of different ET products on runoff, water storage, and irrigation water amount, this simplified
method was good enough to address the research questions in this study.

5. Conclusions

In this study, we provided quantitative effects of the value variations of several widely used
ET products (AWAP, CSIRO, GLDAS, MODIS, and TerraClimate) on water resources management
and ecosystem assessment using a water balance equation and its transformations, the relationships
between GPP, WUE and ET. There are obvious differences of ET value among the five ET products in
the MRC at annual and monthly scales. This leads to huge differences in the estimations of annual
runoff (−16.3 to 161.3 mm) and annual water storage (−61.5 to 116.1 mm) and also for the annual
irrigation water per area requirements ranging from 49.1 mm to 154.6 mm. The ET products for forest
are relatively consistent among each other, but those for grassland present a large varying range.
There are different productivity predictions of the ecosystem with the same water use based on the
relationships between the annual GPP and varying ET for both forest and grassland, however, the
forest has a better capacity of dealing with water stress than the grassland according to the values and
the change amplitudes of their WUE. The effects of the variations among the ET products on water
resources and ecosystem management are remarkable and need to attract more attention.
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