
Financial 
Econometrics

Yiu-Kuen Tse

www.mdpi.com/journal/jrfm

Edited by

Printed Edition of the Special Issue Published in  

Journal of Risk and Financial Management

Journal of



Financial Econometrics





Financial Econometrics

Special Issue Editor

Yiu-Kuen Tse

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade



Special Issue Editor

Yiu-Kuen Tse

Singapore Management University

Singapore

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Journal of Risk and Financial Management (ISSN 1911-8074) form 2018 to 2019 (available at: https://

www.mdpi.com/journal/jrfm/special issues/financial econometrics)

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-626-0 (Pbk)

ISBN 978-3-03921-627-7 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Yiu-Kuen Tse

Editorial for the Special Issue on Financial Econometrics
Reprinted from: J. Risk Financial Manag. 2019, 12, 153, doi:10.3390/jrfm12030153 . . . . . . . . . . 1

Anders Eriksson, Daniel P. A. Preve and Jun Yu

Forecasting Realized Volatility Using a Nonnegative SemiparametricModel
Reprinted from: J. Risk Financial Manag. 2019, 12, 139, doi:10.3390/jrfm12030139 . . . . . . . . . . 3

Muhammad Farid Ahmed and Stephen Satchell

Some Dynamic and Steady-State Properties of Threshold Auto-Regressions with Applications
to Stationarity and Local Explosivity
Reprinted from: J. Risk Financial Manag. 2019, 12, 123, doi:10.3390/jrfm12030123 . . . . . . . . . 26

Hui Xiao and Yiguo Sun

On Tuning Parameter Selection in Model Selection and Model Averaging: A Monte Carlo Study
Reprinted from: J. Risk Financial Manag. 2019, 12, 109, doi:10.3390/jrfm12030109 . . . . . . . . . . 44

Zhongxian Men, Adam W. Kolkiewicz and Tony S. Wirjanto

Threshold Stochastic Conditional Duration Model for Financial Transaction Data
Reprinted from: J. Risk Financial Manag. 2019, 12, 88, doi:10.3390/jrfm12020088 . . . . . . . . . . 60

Constantino Hevia and Martin Sola

Bond Risk Premia and Restrictions on Risk Prices †

Reprinted from: J. Risk Financial Manag. 2018, 11, 60, doi:10.3390/jrfm11040060 . . . . . . . . . . 81

Galyna Grynkiv and Lars Stentoft

Stationary Threshold Vector Autoregressive Models
Reprinted from: J. Risk Financial Manag. 2018, 11, 45, doi:10.3390/jrfm11030045 . . . . . . . . . . 103

v





About the Special Issue Editor

Yiu-Kuen Tse is a Professor of Economics at the Singapore Management University. His research

interests are in econometric methodology, financial econometrics, risk management, and actuarial

science. He is currently working on a high-frequency estimation of large dimensional covariance

matrices, as well as several topics on empirical international finance. He has published a popular

textbook entitled ‘’Nonlife Actuarial Models”.

vii





Journal of

Risk and Financial
Management

Editorial

Editorial for the Special Issue on
Financial Econometrics

Yiu-Kuen Tse

School of Economics, Singapore Management University, Singapore 178903, Singapore; yktse@smu.edu.sg

Received: 16 September 2019; Accepted: 17 September 2019; Published: 19 September 2019

Financial econometrics has developed into a very fruitful and vibrant research area in the last
two decades. The availability of good data promotes research in this area, specially aided by online
data and high-frequency data. These two characteristics of financial data also create challenges for
researchers that are different from classical macro-econometric and micro-econometric problems.

This special issue is dedicated to research topics that are relevant for analyzing financial data.
We have gathered six articles under this theme. The paper by Eriksson et al. (2019) considers a
method to forecast realized volatility using a classical autoregressive model. Two modifications are
adopted to make this model suitable for nonnegative valued variables like volatility. First, they apply
Tukey’s power transformation to their data. Second, they allow the error distribution to be unspecified,
resulting in a semiparametric approach. While their model has forecasting volatility as the primary
motivation, it can be used for many nonnegative valued variables, thus extending the applicability of
their approach.

The empirical study of Eriksson et al. (2019) shows that their method compares very well against
some of the most commonly used forecasting models for volatility in terms of post-sample prediction.
As mentioned in their concluding remarks, it will be interesting to see how their approach works for
intra-day data and multivariate models.

Ahmed and Satchell (2019) consider a threshold autoregressive model with Markovian states.
These states may incorporate both explosive and stationary regimes. They investigate the characteristic
function of this process and derive analytic formula for their moments. Their approach can be applied
to processes for which the moment generating function does not exist. Thus, certain asset pricing
models with non-normal errors can be analyzed.

Xiao and Sun (2019) investigate the estimation of the tuning parameter for model selection and
averaging. Incorporating the shrinkage averaging estimator method and Mallow’s model averaging
method, they propose the shrinkage model averaging method, which can be used for averaging
high-dimensional sparse models. The method is applicable to a wide range of econometric models,
and extends beyond the financial econometrics arena. Their Monte Carlo study shows that their new
method performs well against other methods in averaging high-dimensional sparse models.

Men et al. (2019) propose a threshold stochastic conditional duration model that can be used to
analyze transaction financial data. They assume a latent AR(1) model, which may switch between
two regimes. The regimes are self-excited and are based on the observed duration. The model can be
estimated efficiently using a Markov-Chain Monte Carlo approach. Their empirical examples support
the desirable performance of their new model in forecasting transaction duration.

Hevia and Sola (2018) examine the effect of imposing over-identifying restrictions on affine term
structure models. In particular, they investigate the effects of inappropriate restrictions on some
risk measures. They argue that in certain cases, such restrictions may have a significant impact on
the estimated risk premium, and it is difficult to ascertain a priori the likely outcome. Due to this
uncertainty, they recommend using just-identified models when the purpose is to apply the affine
models to compute the risk premium.

JRFM 2019, 12, 153; doi:10.3390/jrfm12030153 www.mdpi.com/journal/jrfm1
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Grynkiv and Stentoft (2018) study the multivariate generalization of the threshold autoregressive
model. They assume the latent regime driver to follow a dichotomous structure, and one of the regimes
may be explosive. They derive conditions under which the overall distribution is stationary. They also
derive the unconditional distribution of the process for a special case of the threshold model and show
that it follows an infinite mixture-of-normal distribution.
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Abstract: This paper introduces a parsimonious and yet flexible semiparametric model to forecast
financial volatility. The new model extends a related linear nonnegative autoregressive model
previously used in the volatility literature by way of a power transformation. It is semiparametric in
the sense that the distributional and functional form of its error component is partially unspecified.
The statistical properties of the model are discussed and a novel estimation method is proposed.
Simulation studies validate the new method and suggest that it works reasonably well in finite
samples. The out-of-sample forecasting performance of the proposed model is evaluated against a
number of standard models, using data on S&P 500 monthly realized volatilities. Some commonly
used loss functions are employed to evaluate the predictive accuracy of the alternative models. It is
found that the new model generally generates highly competitive forecasts.

Keywords: volatility forecasting; realized volatility; linear programming estimator; Tukey’s power
transformation; nonlinear nonnegative autoregression; forecast comparisons

JEL Classification: C22; C51; C52; C53; C58

1. Introduction

Financial market volatility is an important input for asset allocation, investment, derivative pricing
and financial market regulation. Not surprisingly, how to model and forecast financial volatility has been
a subject of extensive research. Numerous survey papers are now available on the subject, with hundreds
of reviewed research articles. Excellent survey articles on the subject include Bollerslev et al. (1992);
Bollerslev et al. (1994); Ghysels et al. (1996); Poon and Granger (2003); and Shephard (2005).

In this vast literature, ARCH and stochastic volatility (SV) models are popular parametric
tools. These two classes of models are motivated by the fact that volatilities are time-varying.
Moreover, they offer ways to estimate past volatility and forecast future volatility from return
data. In recent years, however, many researchers have argued that one could measure latent
volatility by realized volatility (RV), see for example Andersen et al. (2001) (ABDL 2001 hereafter) and
Barndorff-Nielsen and Shephard (2002), and then build a time series model for volatility forecasting
using observed RV, see for example Andersen et al. (2003) (ABDL 2003 hereafter). An advantage of
this approach is that “models built for the realized volatility produce forecasts superior to those
obtained from less direct methods” (ABDL 2003). In an important study, ABDL (2003) introduced
a new Gaussian time series model for logarithmic RV (log-RV) and established its superiority for
RV forecasting over some standard methods based on squared returns. Their choice of modeling
log-RV rather than raw RV is motivated by the fact that the logarithm of RV, in contrast to RV itself,
is approximately normally distributed. Moreover, conditional heteroskedasticity is greatly reduced
in log-RV.

JRFM 2019, 12, 139; doi:10.3390/jrfm12030139 www.mdpi.com/journal/jrfm3
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Following this line of thought, in this paper we introduce a new time series model for RV.
For the S&P 500 monthly RV, we show that although the distribution of log-RV is closer to a normal
distribution than that of raw RV, normality is still rejected at all standard significance levels. Moreover,
although conditional heteroskedasticity is reduced in log-RV, there is still evidence of remaining
conditional heteroskedasticity. These two limitations associated with the logarithmic transformation
motivate us to consider a more flexible transformation, that is, the so-called Tukey’s power
transformation which is closely related to the well-known Box-Cox transformation. In contrast to the
logarithmic transformation, Tukey’s power transformation or the Box-Cox transformation is generally
not compatible with a normal error distribution as the support for the normal distribution covers
the entire real line.1 This well-known truncation problem further motivates us to use nonnegative
error distributions. The new model, which we call a Tukey nonnegative type autoregression (TNTAR),
is flexible, parsimonious and has a simple forecast expression. Moreover, the numerical estimation of
the model is very fast and can easily be implemented using standard computational software.

The new model is closely related to the linear nonnegative models described in Barndorff-Nielsen
and Shephard (2001) and Nielsen and Shephard (2003). In particular, it generalizes the discrete time
version of the nonnegative Ornstein-Uhlenbeck process of Barndorff-Nielsen and Shephard (2001)
by (1) applying a power transformation to volatility; (2) leaving the dependency structure and the
distribution of the nonnegative error term unspecified. Our work is also related to Yu et al. (2006) and
Gonçalves and Meddahi (2011) where the Box-Cox transformation is applied to stochastic volatility and
RV, respectively. The main difference between our model specification and theirs is that an unspecified
(marginal) distribution with nonnegative support, instead of the normal distribution, is induced by the
transformation. Moreover, our model is loosely related to Higgins and Bera (1992); Hentschel (1995)
and Duan (1997) where the Box-Cox transformation is applied to ARCH volatility, and to Fernandes
and Grammig (2006) and Chen and Deo (2004). Finally, our model is related to a recent study by
Cipollini et al. (2006) where an alternative model with nonnegative errors is used for RV. The main
difference here is that the dynamic structure for the transformed RV is linear in our model, whereas
the dynamic structure for the RV is nonlinear in theirs.

Our proposed model is estimated using a two-stage estimation method. In the first stage,
a nonlinear least squares procedure is applied to a nonstandard objective function. In the second stage
a linear programming estimator is applied. The finite sample performance of the proposed estimation
method is studied via simulations.

The TNTAR model is used to model and forecast the S&P 500 monthly RV and its out-of-sample
performance is compared to a number of standard time series models previously used in the
literature, including the exponential smoothing method and two logarithmic long-memory ARFIMA
models. Under various loss functions, we find that our parsimonious nonnegative model generally
generates highly competitive forecasts. While this paper considers the application of forecasting
RV, there are a number of applications beyond financial data for which our model may be useful.
For example, modeling and forecasting climatological or telecommunication time series may be
interesting alternative applications for our nonnegative model.

While our model is related to several models in the literature, to the best of our knowledge,
our specification is new in two ways. First, it is based on Tukey’s power transformation. Second,
the distribution and functional form of its error component are partially unspecified. Moreover,
the estimation method that we propose is new.

The rest of the paper is organized as follows. Section 2 motivates and presents the new model.
In Section 3 a novel estimation method is proposed to estimate the parameters of the new model.
In Section 4 the finite sample performance of the new method is studied via simulations. Section 5

1 Generally, the distribution of a Box-Cox transformed random variable cannot be normal as its support is bounded either
above or below.
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describes the S&P 500 realized volatility data and the empirical results. In the same section we also
outline the alternative models for volatility forecasting and present the loss functions used to assess
their forecast performances. Finally, Section 6 concludes.

2. A Nonnegative Semiparametric Model

Before introducing the new TNTAR model, we first review two related time series models
previously used in the volatility literature, namely, a simple nonnegative autoregressive (AR) model
and the Box-Cox AR model.

2.1. Related Volatility Models

Barndorff-Nielsen and Shephard (2001) introduced the following continuous time model for
financial volatility, σ2(t),

dσ2(t) = −λσ2(t)dt + dz(λt), λ > 0. (1)

In the above z is a Lévy process with independent nonnegative increments, which ensures the
positivity of σ2(t) (see Equation (2) in Barndorff-Nielsen and Shephard 2001). Applying the Euler
approximation to the continuous time model in (1) yields the following discrete time model

σ2
t+1 = ϕσ2

t + ut+1, (2)

where ϕ = 1 − λ and ut+1 = z(λ(t + 1))− z(λt) is a sequence of independent identically distributed
(i.i.d.) random variables whose distribution has a nonnegative support. A well known nonnegative
random variable is the generalized inverse Gaussian, whose tails can be quite fat. Barndorff-Nielsen
and Shephard (2001) discuss the analytical tractability of this model. In the case when ut+1 is
exponentially distributed, Nielsen and Shephard (2003) derive the finite sample distribution of a
linear programming estimator for ϕ for the stationary, unit root and explosive cases.2 Simulated paths
from model (2) typically match actual realized volatility data quite well. See, for example, Figure 1c in
Barndorff-Nielsen and Shephard (2001). Unfortunately, so far little empirical evidence establishing the
usefulness of this model has been reported.

Two restrictions seem to apply to model (2). First, since its errors are independent, conditional
heteroskedasticity is not allowed for. The second restriction concerns the ratio of two successive
volatilities. More specifically, from (2) it can be seen that σ2

t+1/σ2
t is bounded from below by ϕ, almost

surely, implying that σ2
t+1 cannot decrease by more than 100(1 − ϕ)% compared to σ2

t . Since the AR
parameter ϕ of the model typically is estimated using linear programming, in practice, this restriction
is automatically satisfied. For instance, the full sample estimate of ϕ in our empirical study is 0.262,
implying that σ2

t cannot decrease by more than 73.8% from one time period to the next. Indeed, 73.8%
is the maximum percentage drop in successive monthly volatilities in the sample, which took place on
November 1987.

In a discrete time framework, a popular parametric time series model for volatility is the lognormal
SV model of Taylor (2007) given by

rt = σtεt, (3)

log σ2
t = (1 − ϕ)μ + ϕ log σ2

t−1 + εt, (4)

where rt is the return, σ2
t is the latent volatility, and εt and εt are two independent Gaussian noises.

In this specification volatility clustering is modeled as an AR(1) for the log-volatility. The logarithmic
transformation in (4) serves three important purposes: First, it ensures the positivity of σ2

t . Second,
it removes heteroskedasticity. Third, it induces normality.

2 See Section 3 for a detailed discussion on the linear programming estimator.
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Yu et al. (2006) introduced a closely related SV model by replacing the logarithmic transformation
in Taylor’s volatility Equation (4) with the more general Box-Cox transformation (Box and Cox 1964),

h(σ2
t , λ) = (1 − ϕ)μ + ϕh(σ2

t−1, λ) + εt, (5)

where

h(x, λ) =

{
xλ−1

λ , λ �= 0,
log x, λ = 0.

(6)

Compared to the logarithmic transformation, the Box-Cox transformation provides a more flexible way
to improve normality and reduce heteroskedasticity. A nice feature of the Box-Cox AR model given by
(5) and (6) is that it includes several standard specifications as special cases, including the logarithmic
transformation (λ = 0) and a linear specification (λ = 1). In the context of SV, Yu et al. (2006) find
empirical evidence against the logarithmic transformation. Chen and Deo (2004) and Gonçalves and
Meddahi (2011) are interested in the optimal power transformation. In the context of RV, Gonçalves
and Meddahi (2011) find evidence of non-optimality for the logarithmic transformation. They further
report evidence of negative values of λ as the optimal choice for various data generating processes.
Our empirical results reinforce this important conclusion, although our approach is very different.

While the above discrete time models have proven useful for modeling volatility, there is little
documentation on their usefulness for forecasting volatility. Moreover, the Box-Cox transformation is
known to be incompatible with a normal error distribution. This is the well-known truncation problem
associated with the Box-Cox transformation in the context of Gaussianity.

2.2. Realized Volatility

In the ARCH or SV models, volatilities are estimated parametrically from returns observed at
the same frequency. In recent years, however, it has been argued that one can measure volatility in a
model-free framework using an empirical measure of the quadratic variation of the underlying efficient
price process, that is, RV. RV has several advantages over ARCH and SV models. First, by treating
volatility as directly observable, RV overcomes the well known curse-of-dimensionality problem in
the multivariate ARCH or SV models. Second, compared to the squared return, RV provides a more
reliable estimate of integrated volatility. This improvement in estimation naturally leads to gains in
volatility forecasting.

Let RVt denote the RV at a lower frequency (say daily or monthly) and p(t, k) denote the log-price
at a higher frequency (say intra-day or daily). Then RVt is defined by

RVt =

√√√√ N

∑
k=2

[p(t, k)− p(t, k − 1)]2, (7)

where N is the number of higher frequency observations in a lower frequency period.3

The theoretical justification for RV as a volatility measure comes from standard stochastic process
theory, according to which the empirical quadratic variation converges to integrated variance as the
infill sampling frequency tends to zero (ABDL 2001; Barndorff-Nielsen and Shephard 2002; Jacod 2017).
The empirical method inspired by this consistency has recently become more popular with the availability
of high-frequency data.

3 In ABDL (2003) RV is referred to as the realized variance, ∑N
k=2[p(t, k)− p(t, k − 1)]2. Although the authors build time series

models for the realized variance, they forecast the realized volatility. In contrast, the present paper builds time series models
for and forecasts, the realized volatility, which seems more appropriate. Consequently, the bias correction, as described in
ABDL (2003), is not required.

6
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In a recent important contribution, ABDL (2003) find that a Gaussian long-memory model
for the logarithmic daily realized variance provides more accurate forecasts than the GARCH(1,1)
model and the RiskMetrics method of J.P. Morgan (1996). The logarithmic transformation is used
since it is found that the distribution of logarithmic realized variance, but not raw realized variance,
is approximately normal. In Table 1 we report (to 3 decimals) some summary statistics for monthly RV,
log-RV and power-RV for the S&P 500 data in our empirical study over the period Jan 1946–Dec 2004,
including the skewness, kurtosis, and p-value of the Jarque-Bera test statistic for normality.4 For RV,
the departure from normality is overwhelming. While the distribution of log-RV is much closer to a
normal distribution than that of RV, there is still strong evidence against normality.

Table 1. Summary statistics for S&P 500 monthly RV, log-RV and power-RV over the period Jan
1946–Dec 2004. JB is the p-value of the Jarque-Bera test under the null hypothesis that the data are from
a normal distribution.

Mean Median Maximum Skewness Kurtosis JB

RV 0.004 0.003 0.026 3.307 28.791 0.000
log-RV −5.687 −5.726 −3.666 0.389 3.657 0.000
power-RV 4.894 4.912 6.908 0.032 3.288 0.259

To compare the conditional heteroskedasticities, in Figure 1 we plot squared OLS residuals
(ε̂2

it, i = 1, 2, 3), obtained from AR(1) regressions for RV, log-RV and power-RV, respectively, against
each corresponding explanatory variable (lagged RV, log-RV and power-RV). For ease of comparison,
superimposed are smooth curves fitted using the LOESS method. It is clear that while the logarithmic
transformation reduces the conditional heteroskedasticity there is still evidence of it in the residuals.
The power transformation further reduces the conditional heteroskedasticity of RV. While the
logarithmic transformation reduces the impact of large observations (extreme deviations from the
mean), the second plot of Figure 1 suggests that it is not as effective as anticipated. In contrast,
the power transformation with a negative power parameter is able to reduce the impact of large
observations further. Thus, the results indicate that there is room for further improvements over the
logarithmic transformation. A more detailed analysis of the S&P 500 data is provided in Section 5.

4 The power parameter is −0.278 which is the estimate of λ in our proposed TNTAR model obtained using the entire S&P 500
monthly RV sample. See Sections 3 and 5 for further details.
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Figure 1. Plots of squared ordinary least squares (OLS) residuals, obtained from AR(1) regressions
for RV, log-RV and power-RV, respectively, against each corresponding explanatory variable.
Superimposed are smooth curves fitted using the LOESS method.

2.3. The Model

In this paper, our focus is on modeling and forecasting RV. To this end, let us first consider the RV
version of model (5),

h(RVt, λ) = α + βh(RVt−1, λ) + εt, (8)

where εt is a sequence of independent N(0, σ2
ε ) distributed random variables and h(x, λ) is given

by (6).
If λ �= 0, we may rewrite (8) as

RVλ
t = (1 + λα) + β(RVλ

t−1 − 1) + λεt, (9)

where RVλ
t is a simple power transformation. A special case of (9) is a linear Gaussian AR(1) model,

obtained when λ = 1:
RVt = (1 + α − β) + βRVt−1 + εt. (10)

If λ = 0 in (8), we have the log-linear Gaussian AR(1) model previously used in the literature:

log RVt = α + β log RVt−1 + εt. (11)

8
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While the specification in (8) is more general than the log-linear Gaussian AR(1) model (11), it has a
serious drawback. In general, solving for RVt, the right hand side of (9) has to be nonnegative with
probability one or almost surely (a.s.). This requirement is violated since a normal error distribution
has a support covering the entire real line.

This drawback motivates us to explore an alternative model specification for RV. Our proposed
nonnegative TNTAR model is of the form

RVλ
t = ϕRVλ

t−1 + ut, t = 2, 3, . . . (12)

with the power parameter λ �= 0, AR parameter ϕ > 0 and (a.s.) positive initial value RV1. The errors
ut driving the model are nonnegative, possibly non-i.i.d., random variables. In the simplest case, ut

is assumed to be a sequence of m-dependent, identically distributed, continuous random variables
with nonnegative support [η, ∞), for some unknown η ≥ 0.5 It is assumed that m ∈ N is finite
and potentially unknown. Hence, the distribution and functional form of ut is partially unspecified.
We expect ϕRVλ

t−1 to be the dominating component in (12) and do not model ut parametrically.
The power transformation RVλ

t is closely related to John W. Tukey’s ladder of power
transformations for linearizing data (Tukey 1977), partially illustrated in (13) below:

1
x3

1
x2

1
x

1√
x

log x
√

x x x2 x3. (13)

The nonnegative restriction on the support of the error distribution ensures the positivity of RVλ
t .

Hence, our model does not suffer from the truncation problem of the classical Box-Cox model (8).
As the distribution of ut is left unspecified, some very flexible tail behavior is allowed for. Consequently,
the drawback in the Box-Cox AR model (8) is addressed in the proposed TNTAR model (12).

In the classical Box-Cox model, the transformation parameter λ is required to induce linearity
and normality and at the same time eliminate conditional heteroskedasticity. These are too many
requirements for a single parameter. In our model, the role of the Tukey-type power transformation is
to improve linearity and reduce conditional heteroskedasticity, not to induce normality. To illustrate
this, suppose that a square root transformation is applied with λ = 1/2 in (12), then RVt = ϕ2RVt−1 +

2ϕ
√

RVt−1ut + u2
t and the conditional variance of raw RV is time-varying.6 An intercept in the

model is superfluous because the support parameter η can be strictly positive. Our model echoes (8),
with the normal distribution replaced by a nonnegative distribution. If λ = 1 and its errors are i.i.d.,
our model becomes the discrete time version of Equation (2) in Barndorff-Nielsen and Shephard (2001).
In general, the distributional and functional form is not assumed to be known for the error component.
Hence, the TNTAR model combines a parametric component for the persistence with a nonparametric
component for the error. On the one hand, the new model is highly parsimonious. In particular, there
are only two parameters that need to be estimated for the purpose of volatility forecasting, namely ϕ

and λ. On the other hand, the specification is sufficiently flexible for modeling the error.
As mentioned earlier, there exists a lower bound for the percentage change in volatility in

model (2). A similar bound applies to our model. It is easy to show that RVt/RVt−1 ≤ ϕ1/λ if λ < 0
(upper bound) and RVt/RVt−1 ≥ ϕ1/λ if λ > 0 (lower bound). Typical estimated values of ϕ and λ

in (12) for our empirical study are 0.639 and −0.278, respectively, suggesting that RVt cannot increase
by more than 500% from one time period to the next. As we will see later, our proposed estimator for
λ depends on the ratios of successive RV’s and hence the bound is endogenously determined.

5 Some common m-dependent specifications include ut = εt + ψεt−1 (m = 1) and ut = εt + ψεt−1εt−2 (m = 2), where εt is an
i.i.d. sequence of random variables.

6 More generally, suppose that λ = 1/n for some natural number n, then RVt =
(

ϕ n
√

RVt−1 + ut
)n

=

∑n
k=0 (

n
k)ϕn−kRV(n−k)/n

t−1 uk
t .

9
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3. Robust Estimation and Forecasting

In this section we consider the estimation of the parameters ϕ and λ and a one-step-ahead forecast
expression, for the TNTAR model. First, we consider the special case when λ is assumed to be known.
Some common power transformations include λ = 1/n (the nth root transformation) and its reciprocal,
λ = −1/n. Second, we consider the more general case when both ϕ and λ are unknown and need
to be estimated. We then examine the finite sample performance of the proposed estimation method
via simulations.

3.1. Robust Estimation of ϕ

If the true value of the power transformation parameter is known, a natural estimator for ϕ in (12)
given the sample RV1, . . . , RVT of size T and the nonnegativity of the errors is

ϕ̂T = min

{
RVλ

2

RVλ
1

, . . . ,
RVλ

T
RVλ

T−1

}
= ϕ + min

{
u2

RVλ
1

, . . . ,
uT

RVλ
T−1

}
. (14)

The estimator ϕ̂T in (14) can be viewed as the solution to a linear programming problem.
Because of this, we will refer to it as a linear programming estimator (LPE). This estimator is also
the conditional (on RV1) maximum likelihood estimator (MLE) of ϕ when the errors in (12) are
i.i.d. exponentially distributed random variables, cf. Nielsen and Shephard (2003). Interestingly,
the LPE is strongly consistent for more general error specifications, including heteroskedasticity
and m-dependence. It is robust in the sense that its consistency conditions allow for certain model
misspecifications in ut. For example, the order of m-dependence in the error sequence and the
conditional distribution of RVt may be incorrectly specified. Moreover, the LPE is strongly consistent
even under quite general forms of heteroskedasticity and structural breaks. For a more detailed
account of the properties of the LPE, see Preve (2015).

Like the ordinary least squares (OLS) estimator for ϕ, the LPE is distribution-free in the sense
that its consistency does not rely on a particular distributional assumption for the error component.
However, the LPE is in many ways superior to the OLS estimator. For example, its rate of convergence
can be faster than Op(T−1/2) even for ϕ < 1, whereas the rate of covergence for the OLS estimator is
faster than Op(T−1/2) only for ϕ ≥ 1, see Phillips (1987). Furthermore, unlike the OLS estimator the
consistency conditions for the LPE do not involve the existence of any higher order moments.

Under additional technical conditions, Davis and McCormick (1989) and Feigin and Resnick (1992)
obtain the limiting distribution of a LPE for which (14) appear as a special case when λ = 1 and the errors
are i.i.d.. The authors show that the accuracy of the LPE depends on the index of regular variation at zero
(or infinity) of the error distribution function. For example, for standard exponential errors, the index of
regular variation at zero is 1 and the LPE converges to ϕ at the rate of Op(T−1). In general, a difficulty in
the application of the limiting distribution is that the index of regular variation at zero appears both in a
normalizing constant and in the limit. Datta and McCormick (1995) avoid this difficulty by establishing the
asymptotic validity of a bootstrap scheme based on the LPE.

It is readily verified that the LPE in (14) is positively biased and stochastically decreasing in T,
that is, ϕ < ϕ̂T2 ≤ ϕ̂T1 a.s. for any T1 < T2.7 Hence, the accuracy of the LPE either remains the same or
improves as the sample size increases (cf. Figure 2).

To illustrate the robustness of the LPE, consider a covariance stationary AR(1) model

RVt = ϕRVt−1 + ut, t = 0,±1,±2, . . . ,

7 Whenever necessary we use the subscript T to emphasize on the sample size.
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under the possible misspecification

ut = εt +
m

∑
i=1

ψiεt−i,

where εt is a sequence of non-zero mean i.i.d. random variables. For m > 0 the (identically distributed)
errors ut are serially correlated. In this setting the OLS estimator for ϕ is inconsistent while the
LPE remains consistent. In the first panel of Figure 2 we plot 100 observations simulated from the
nonnegative ARMA(1,1) model, RVt = ϕRVt−1 + εt + ψεt−1 with ϕ = 0.5, ψ = 0.75 and standard
exponential noise. In the second panel of Figure 2 we plot the sample paths of the recursive LPEs
and OLS estimates for ϕ obtained from the simulated data. In each iteration, a new observation is
added to the sample used for estimation. It can be seen that the LPEs quickly approach the true value
ϕ, whereas the OLS estimates do not. Moreover, the OLS estimates fluctuate much more than the LPEs
when the sample size is small, suggesting that the LPE is less sensitive to extreme deviations from the
mean than the OLS estimator in small samples.

1 25 50 75 100
0

5

10

t

1 3 25 50 75 100
0

0.5

0.743

1

T

Figure 2. The top panel displays a time series plot of data simulated from the nonnegative ARMA(1, 1)
process RVt = ϕRVt−1 + εt + ψεt−1 with ϕ = 0.5, ψ = 0.75 and i.i.d. standard exponential noise εt.
The bottom panel displays the sample paths of the recursive LPEs and OLS estimates for ϕ in the
misspecified AR(1) model RVt = ϕRVt−1 + ut, obtained from the sample RV1, . . . , RVT for T = 3, . . . , 100.
The solid line represents the LPEs and the dash-dotted line the OLS estimates.

We now list simple assumptions under which the consistency of the LPE in (14) holds. More
general assumptions, allowing for an unknown number of unknown breaks in the error mean and
variance, under which the LPE converges to ϕ for a known λ are given in Preve (2015).

Assumption 1. The power transformation parameter λ �= 0 in (12) is known. The AR parameter ϕ > 0,
and the initial value RV1 is a.s. positive. The errors ut driving the autoregression form a sequence of m-dependent,
identically distributed, nonnegative continuous random variables. The order, m, of the dependence is finite.

Assumption 1 allows for various kinds of m-dependent error specifications, with m ∈ N

potentially unknown. For example, serially correlated finite-order MA specifications. Since the
functional form and distribution of ut are taken to be unknown, the formulation is nonparametric.

Assumption 2. The error component in (12) satisfies P(c1 < ut < c2) < 1 for all 0 < c1 < c2 < ∞.

11
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It is important to point out that Assumption 2 is satisfied for any error distribution with
unbounded nonnegative support.

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then the LPE in (14) is strongly consistent for ϕ in (12).
That is, ϕ̂T converges to ϕ a.s. as T tends to infinity.

The convergence of ϕ̂T is almost surely (and, hence, also in probability). Our interest is in
forecasting raw RV, not the power transformation of RV in (12). Let R̂VT+1 denote a forecast of RVT+1

made at time T. A simple approximation to the optimal mean squared error, one-step-ahead, forecast
of RVT+1 at time T is given by the sample average

R̂VT+1 =
1

T − 1

T

∑
i=2

(
ϕ̂T RVλ

T + ûi

)1/λ
,

where ûi = RVλ
i − ϕ̂T RVλ

i−1 converges to ui in distribution as T tends to infinity under Assumptions 1
and 2.

3.2. Estimation of ϕ and λ

In practice, we usually do not know the true value of λ. In this section we propose an LPE based
two-stage estimation method for ϕ and λ in the TNTAR model (12). In doing so, we also establish a
general expression for its one-step-ahead forecast. The estimators are easily computable using standard
computational software such as MATLAB.

Joint estimation of ϕ and λ is non-trivial, even under certain parametric and simplifying
assumptions for ut. For example, even in the simple case when ut is a sequence of independent
exponentially distributed random variables it appears that the MLEs of ϕ and λ are inconsistent.
Because of this we propose an estimation method based on the LPE for ϕ.

In our LPE based two-stage estimation method, we first choose λ̂T to minimize the sum of squared
one-step-ahead prediction errors:

λ̂T = min
l

1
T − 1

T

∑
t=2

[
RVt − R̂Vt(l)

]2
, (15)

where

R̂Vt(l) =
1

T − 1

T

∑
i=2

[
ϕ̂T(l)RVl

t−1 + ûi(l)
]1/l

,

with

ϕ̂T(l) = min

{
RVl

t

RVl
t−1

}T

t=2

and ûi(l) = RVl
i − ϕ̂T(l)RVl

i−1,

respectively. Although our estimator for λ looks like the standard nonlinear least squares (NLS)
estimator of Jennrich (1969), the two approaches are quite different because in our model an explicit
expression for E(RVt | RVt−1) is not available. In fact, the NLS estimators of λ and ϕ, that minimizes
∑T

t=2(RVl
t − pRVl

t−1)
2, always take values of 0 and 1, respectively and hence are inconsistent.

The intuition behind the proposed estimation method is that we expect R̂Vt(λ̂T) to be close to
E(RVt | RVt−1) for large values of T. This is not surprising since the TNTAR model (12) implies that

RVt =
(

ϕRVλ
t−1 + ut

)1/λ
,

and hence

E(RVt | RVt−1) = E
[(

ϕRVλ
t−1 + ut

)1/λ | RVt−1

]
.

12
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In the second stage, we use the LPE to estimate ϕ. More specifically,

ϕ̂T = ϕ̂T(λ̂T) = min

⎧⎨⎩ RVλ̂T
t

RVλ̂T
t−1

⎫⎬⎭
T

t=2

. (16)

while we minimize the sum of squared one-step-ahead prediction errors when estimating λ, other
criteria, such as minimizing the sum of absolute one-step-ahead prediction errors, can be used. We have
experimented with absolute prediction errors using the S&P 500 data and found that our out-of-sample
forecasting results for the TNTAR model are quite insensitive to the choice of the objective function in
the estimation stage. However, the objective function with squared prediction errors performs better
in simulations.

It is beyond the scope of this paper to derive asymptotic properties for the two-stage estimators.
However, under primitive assumptions, the consistency of λ̂T and ϕ̂T can be established using the
fundamental consistency result for extremum estimators. Moreover, under high-level assumptions,
the martingale central limit theorem can be used to establish the asymptotic distribution of λ̂T .

With an estimated λ and ϕ, a general one-step-ahead semiparametric forecast expression for the
TNTAR model is given by

R̂VT+1 =
1

T − 1

T

∑
i=2

(
ϕ̂T RVλ̂T

T + ûi

)1/λ̂T
,

where ûi = RVλ̂T
i − ϕ̂TRVλ̂T

i−1 is the residual at time i. Of course, in line with Granger and Newbold (1976),
several forecasts of RVT+1 may be considered. For example, one could base a forecast on the well known
approximation E[h(y)] ≈ h[E(y)] using h(y) = y1/λ. However, this approximation does not take into
account the nonlinearity of h(y).8

4. Monte Carlo Studies

We now examine the performance of our estimation method via simulations. We consider two
experiments in which data are generated by the nonnegative model

RVλ
t = ϕRVλ

t−1 + ut

ut = εt + ψεt−1,

with i.i.d. standard exponential driving noise εt.
In the first Monte Carlo experiment λ is assumed to be known and we only estimate ϕ using the

LPE in (14). In this case the consistency is robust to the first-order moving average specification of ut.
Hence, we simulate data from the model with the value of ψ being different from zero. Specifically,
the parameter values are set to λ = −0.25 and ψ = 0.75. The values of ϕ considered are 0.25, 0.5 and
0.75, respectively. In the second experiment λ is assumed to be unknown and is estimated together
with ϕ using the proposed two-stage method. The parameter values are λ = −0.5 and −0.25, ϕ = 0.5
and 0.75, and ψ = 0.

The values chosen for λ and ϕ in the two experiments are empirically realistic (cf. the results of
Section 5). We consider sample sizes of T = 200, 400 and 800 in both experiments. The sample size of
400 is close to the smallest sample size used for estimation in our empirical study, while the sample
size of 800 is close to the largest sample size in the study. Simulation results based on 100, 000 Monte
Carlo replications are reported in Tables 2 and 3. Several interesting results emerge from the tables.

8 For instance, if y ∼ N(0, σ2) and h(y) = y2 then E[h(y)] = σ2 �= h[E(y)] = 0.
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First, the smaller the value of T, the greater the empirical bias in ϕ̂T in the first experiment and in λ̂T
and ϕ̂T in the second experiment. Second, as T increases, the empirical mean squared error of ϕ̂T in the
first experiment, and those of λ̂T and ϕ̂T in the second experiment, decreases. It may be surprising to
see that the bias of ϕ̂T can be negative in the second experiment. Here the negative bias arises because
λ is estimated. In sum, it seems that the proposed estimation method works well, especially when T is
reasonably large.

Table 2. Simulation results for the LPE method. Summary statistics for ϕ̂T based on data generated by
the nonnegative process RV−0.25

t = ϕRV−0.25
t−1 + εt + 0.75εt−1 with i.i.d. standard exponential noise εt.

The values of ϕ considered are 0.25, 0.50 and 0.75, respectively. Bias and MSE denotes the empirical
bias and mean squared error, respectively. Results based on 100, 000 Monte Carlo replications.

T = 200 T = 400 T = 800

Parameter Estimator Bias MSE Bias MSE Bias MSE

ϕ = 0.25 ϕ̂T 0.047 0.003 0.033 0.001 0.023 0.001
ϕ = 0.50 ϕ̂T 0.028 0.001 0.020 0.001 0.014 0.000
ϕ = 0.75 ϕ̂T 0.013 0.000 0.009 0.000 0.006 0.000

Table 3. Simulation results for the proposed two-stage estimation method. Summary statistics for λ̂T

and ϕ̂T based on data generated by the nonnegative process RVλ
t = ϕRVλ

t−1 + εt with i.i.d. standard
exponential noise εt. Bias and MSE denotes the empirical bias and mean squared error, respectively.
Results based on 100, 000 Monte Carlo replications.

T = 200 T = 400 T = 800

Parameter Estimator Bias MSE Bias MSE Bias MSE

λ = −0.50 λ̂T −0.197 0.126 −0.113 0.069 −0.060 0.047
ϕ = 0.50 ϕ̂T −0.106 0.028 −0.069 0.018 −0.043 0.012

λ = −0.50 λ̂T −0.139 0.106 −0.062 0.067 −0.014 0.052
ϕ = 0.75 ϕ̂T −0.064 0.012 −0.038 0.006 −0.021 0.004

λ = −0.25 λ̂T −0.195 0.064 −0.136 0.033 −0.098 0.019
ϕ = 0.75 ϕ̂T −0.144 0.030 −0.106 0.017 −0.080 0.011

5. An Empirical Study

We also study the performance of the proposed model for forecasting actual RV relative to popular
existing models. Before we report empirical results, we first review some alternative models and
criteria to evaluate the performance of different models.

5.1. Alternative Models

Numerous models and methods have been applied to forecast stock market volatility. For example,
ARCH-type models are popular in academic publications and RiskMetrics is widely used in practice.
Both methods use returns to forecast volatility at the same frequency. However, since the squared
return is a noisy estimator of volatility ABDL (2003) instead consider RV and present strong evidence
to support time series models based directly on RV in terms of forecast accuracy. Motivated by their
empirical findings, we compare the forecast accuracy of the TNTAR model against four alternative
models, all based on RV: (1) the linear Gaussian AR(1) model (AR); (2) the log-linear Gaussian AR(1)
model (log-AR); (3) the logarithmic autoregressive fractionally integrated moving average (ARFIMA)
model; (4) the heterogeneous autoregressive (HAR) model. We also compare the performance of our
model against the exponential smoothing method, a RV version of RiskMetrics. The AR and log-AR
models are defined by (10) and (11), respectively. We now review the exponential smoothing method,
the ARFIMA model, and the HAR model.
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5.1.1. Exponential Smoothing

Exponential smoothing (ES) is a simple method of forecasting, where the one-step-ahead forecast
of RVT+1 at time T is given by

R̂VT+1 = (1 − α)RVT + αR̂VT = (1 − α)
T−1

∑
i=0

αiRVT−i, (17)

with 0 < α < 1.
The exponential smoothing formula can be understood as the RV version of RiskMetrics, where

the squared return, r2
T , is replaced by RVT . Under the assumption of conditional normality of the

return distribution, r2
T is an unbiased estimator of σ2

t . RiskMetrics recommends α = 0.94 for daily data
and α = 0.97 for monthly data.

To see why the squared return is a noisy estimator of volatility even under the assumption of
conditional normality of the return distribution, suppose that rt follows (3). Conditional on σt, it is
easy to show that (Lopez 2001)

P
(

r2
t ∈

[
1
2

σ2
t ,

3
2

σ2
t

])
= 0.259. (18)

This implies that with a probability close to 0.74 the squared return is at least 50% greater, or at
most 50% smaller, than the true volatility. Not surprisingly, Andersen and Bollerslev (1998) find that
RiskMetrics is dominated by models based directly on RV. For this reason, we do not use RiskMetrics
directly. Instead, we use (17) with α = 0.97, which assigns a weight of 3% to the most recently observed
RV. We remark that the forecasting results of Section 5 were qualitatively left unchanged when other
values for α were used.

5.1.2. ARFIMA(p, d, q)

Long range dependence is a well documented stylized fact for volatility of many financial time
series. Fractional integration has previously been used to model the long range dependence in
volatility and log-volatility. The autoregressive fractionally integrated moving average (ARFIMA) was
considered as a model for logarithmic RV in ABDL (2003) and Deo et al. (2006), among others. In this
paper, we consider two parsimonious ARFIMA models for log-RV, namely, an ARFIMA(0, d, 0) and an
ARFIMA(1, d, 0).

The ARFIMA(p, d, 0) model for log-RV is defined by

(1 − β1B − · · · − βpBp)(1 − B)d(log RVt − μ) = εt,

where the parameters μ, β1, . . . , βp and the memory parameter d are real valued, and εt is a sequence
of independent N(0, σ2

ε ) distributed random variables.
Following a suggestion of a referee, we estimate all the parameters of the ARFIMA model using

an approximate ML method by minimizing the sum of squared one-step-ahead prediction errors.
See Beran (1995), Chung and Baillie (1993), and Doornik and Ooms (2004) for detailed discussions
about the method and for Monte Carlo evidence supporting it. Compared to the exact ML method of
Sowell (1992), there are two advantages to the approximate ML method. First, it does not require d to
be less than 0.5. Second, it has smaller finite sample bias. Compared to the semi-parametric methods,
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it is also more efficient.9 The one-step-ahead forecast of RVT+1 at time T of an ARFIMA(p, d, 0) for
log-RV with p = 0 is given by

R̂VT+1 = exp

{
μ̂ −

T−1

∑
j=0

π̂j
(
log RVT−j − μ̂

)
+

σ̂2
ε

2

}
,

and with p = 1 by

R̂VT+1 = exp

{
μ̂ + β̂ (log RVT − μ̂) +

T−1

∑
j=1

π̂j

[
β̂
(
log RVT−j − μ̂

)− (
log RVT−j+1 − μ̂

)]
+

σ̂2
ε

2

}
,

where

π̂j =
Γ
(

j − d̂
)

Γ
(

j + 1
)
Γ
(− d̂

) ,

and Γ(·) denotes the gamma function.

5.1.3. HAR

The HAR model proposed by Corsi (2009) is one of the most popular models for forecasting
volatility. Given that we will forecast monthly RV in the empirical study, we modify the original HAR
model with monthly, quarterly and yearly components. The original HAR model was proposed to
model daily RV. We apply the modified model to raw RV (HAR) and to log-RV (log-HAR). The model
for raw RV can be expressed as

RVt = β0 + β1RVm
t−1 + β2RVq

t−1 + β3RVy
t−1 + εt, (19)

where the parameters β0, . . . , β3 are real valued, RVt is the realized volatility of month t,
and RVm

t−1 = RVt−1, RVq
t−1 = 1

3 ∑3
i=1 RVt−i, RVy

t−1 = 1
12 ∑12

i=1 RVt−i denote the monthly, quarterly
and yearly lagged RV components, respectively. This specification of RV parsimoniously captures the
high persistence observed in our empirical study. The one-step-ahead forecast of RVT+1 at time T is
given by

R̂VT+1 = β̂0 + β̂1RVT +
β̂2

3

3

∑
i=1

RVT+1−i +
β̂3

12

12

∑
i=1

RVT+1−i.

The corresponding forecast of the HAR model in (19) for log-RV is

R̂VT+1 = exp

{
β̂0 + β̂1 log RVT +

β̂2

3

3

∑
i=1

log RVT+1−i +
β̂3

12

12

∑
i=1

log RVT+1−i +
σ̂2

ε

2

}
,

where σ̂2
ε is the estimated variance of the independent N(0, σ2

ε ) distributed errors εt.

5.2. Forecast Accuracy Measures

It is not obvious which accuracy measure is more appropriate for the evaluation of the
out-of-sample performance of alternative time series models. Rather than making a single choice,
we use four measures to evaluate forecast accuracy, namely, the mean absolute error (MAE), the mean
absolute percentage error (MAPE), the mean square error (MSE) and the mean square percentage
error (MSPE). Let R̂Vit denote the one-step-ahead forecast of RVt at time t − 1 of model i and define

9 We also applied the exact ML method of Sowell (1992) and the exact local Whittle estimator of Shimotsu and Phillips (2005)
in our empirical study and found that the forecasts remained essentially unchanged.
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the accompanying forecast error by eit = RVt − R̂Vit. The four accuracy measures are defined,
respectively, by

MAE =
1
P

P

∑
t=1

|eit|, MAPE =
100
P

P

∑
t=1

∣∣∣ eit
RVt

∣∣∣, MSE =
1
P

P

∑
t=1

e2
it, MSPE =

100
P

P

∑
t=1

( eit
RVt

)2
,

where P is the length of the forecast evaluation period.
An advantage of using MAE instead of MSE is that it has the same scale as the data. The MAPE

and the MSPE are scale independent measures. For a comprehensive survey on these and other forecast
accuracy measures see Hyndman and Koehler (2006).

When calculating the forecast error, it is implicitly assumed that RVt is the true volatility at
time t. However, in reality the volatility proxy RVt is different from the true, latent, volatility.
Several recent papers discuss the implications of using noisy volatility proxies when comparing
volatility forecasts under certain loss functions. See, for example, Andersen and Bollerslev (1998);
Hansen and Lunde (2006) and Patton (2011). The impact is found to be particularly large when the
squared return is used as a proxy for the true volatility, but diminishes with the approximation error.
In this paper, the true (monthly) volatility is approximated by the RV using 22 (daily) squared returns.
As a result, the approximation error is expected to be considerably smaller than in the case of using a
single squared return.

5.3. Data

The data used in this paper consists of daily closing prices for the S&P 500 index over the period
2 January 1946–31 December 2004, covering 708 months and 15,054 trading days. We measure the
monthly volatility using realized volatility calculated from daily data. Denote the log-closing price on
the k’th trading day in month t by p(t, k). Assuming there are Tt trading days in month t, we define
the monthly RV as

RVt =

√√√√ 1
Tt

Tt

∑
k=2

[
p(t, k)− p(t, k − 1)

]2, t = 1, . . . , 708

where 1/Tt serves the purpose of standardization.
In order to compare the out-of-sample predictive accuracy of the alternative models, we split the

time series of monthly RV into two subsamples. The first time period is used for the initial estimation.
The second period is the hold-back sample used for forecast evaluation. When computing the forecasts
we use a recursive scheme, where the size of the sample used for parameter estimation successively
increases as new forecasts are made. The time series plot of monthly RV for the entire sample is shown
in Figure 3, where the vertical dashed line indicates the end of the initial sample period used for
estimation in our first forecasting exercise.

Table 4 shows the sample mean, maximum, skewness, kurtosis, the p-value of the JB test statistic
for normality, and the first three sample autocorrelations of the entire sample for RV and log-RV. For RV,
the sample maximum is 0.026 which occurred in October 1987. The sample kurtosis is 28.791 indicating
that the distribution of RV is non-Gaussian. In contrast, log-RV has a much smaller kurtosis (3.657)
and is less skewed (0.389). It is for this reason that we include Gaussian time series models for log-RV
in the exercise. However, a formal test for normality via the JB statistic rejects the null hypothesis
of normality of log-RV, suggesting that further improvements over log-linear Gaussian approaches
are possible.

Higher order sample autocorrelations are in general slowly decreasing and not statistically
negligible, indicating that RV and log-RV are predictable. To test for possible unit roots, augmented
Dickey-Fuller (ADF) test statistics were calculated. The ADF statistic for the sample from 1946 to
2004 is −5.69 for RV and −5.43 for log-RV, which is smaller than −2.57, the critical value at the 10%
significance level. Hence, we reject the null hypothesis that RV or log-RV has a unit root.
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Figure 3. S&P 500 monthly realized volatilities, Jan 1946-Dec 2004. The vertical dashed line
indicates the end of the initial sample period used for parameter estimation in our first out-of-sample
forecasting exercise.

Table 4. Summary statistics for the S&P 500 monthly RV data. JB is the p-value of the Jarque-Bera test
under the null hypothesis that the data are from a normal distribution, ρ̂i is the ith sample autocorrelation.

Mean Maximum Skewness Kurtosis JB ρ̂1 ρ̂2 ρ̂3

RV 0.004 0.026 3.307 28.791 0.000 0.576 0.477 0.408
log-RV −5.687 −3.666 0.389 3.657 0.000 0.683 0.595 0.511

5.4. Empirical Results

Each alternative model was fitted to the in-sample RV data and used to generate one-step-ahead
out-of-sample forecasts.10 Following a suggestion of a referee, we also included a standard
GARCH(1,1) (sGARCH) and a realized GARCH(1,1) with a log-linear specification (realGARCH),
Hansen et al. (2012).11 Since a forecast frequency of one month is sufficiently important in practical
applications, we focus on one-step-ahead forecasts in this paper. However, multi-step-ahead forecasts
can be obtained in a similar manner.

We perform two out-of-sample forecasting exercises. In both exercises, we use the recursive
scheme, where the size of the sample used to estimate the alternative models grows as we make
forecasts for successive observations.12 More precisely, in the first exercise, we first estimate all the
alternative models with data from the period January 1946–June 1975 and use the estimated models to
forecast the RV of July 1975. We then estimate all models with data from January 1946–July 1975 and use
the model estimates to forecast the RV of August 1975. This process (an expanding window of initial
size 354) is repeated until, finally, we estimate the models with data from January 1946–November
2004. The final model estimates are used to forecast the RV of December 2004, the last observation in
the sample.

10 The OX language of Doornik (2009) was used to estimate the two ARFIMA models. MATLAB code and data used in this
paper can be downloaded from http://www.mysmu.edu/faculty/yujun/research.html.

11 The sGARCH and realGARCH models were estimated using monthly log-returns and the rugarch R package
of Ghalanos (2019).

12 While we consider the recursive forecasting scheme one could, of course, also consider the rolling or fixed scheme.
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5.4.1. Sample including the 1987 Crash

In the first exercise, the first month for which an out-of-sample volatility forecast is obtained is
July 1975. In total 354 monthly volatilities are forecasted, including the volatility of October 1987 when
the stock market crashed and the RV is 0.026.

In Figure 4, we plot the monthly RV and the corresponding one-month-ahead TNTAR forecasts
for the out-of-sample period, July 1975 to December 2004. It seems that the TNTAR model captures the
overall movements in RV reasonably well. The numerical computation of the 354 forecasts is fast and
takes less than five minutes on a standard desktop computer.

1980 1985 1990 1995 2000
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Year

Figure 4. Realized volatility and out-of-sample TNTAR forecasts for the period Jul 1975–Dec 2004.
Dashed line: S&P 500 monthly realized volatility. Solid line: one-step-ahead TNTAR forecasts.

In Figure 5, we plot the recursive estimates, λ̂T and ϕ̂T . While λ̂T takes values from −0.45
to −0.28, ϕ̂T ranges between 0.58 and 0.64. It may be surprising to see that the path of ϕ̂T is
non-monotonic. This is because the estimates of the power transformation parameter, λ, are varying
over time. Our empirical estimates of λ seem to corroborate well with the optimal value of λ obtained
by Gonçalves and Meddahi (2011) using simulations in the context of a GARCH diffusion and a two
factor SV model. While ϕ̂T is quite stable, λ̂T jumps in October 1987.

For comparison, we also consider a TNTAR model with λ taken to be known. Visual inspection,
see Figure 6, shows that a power transformation with λ = −1/2 improves linearity considerably.13

We denote the corresponding TNTAR model TNTAR∗, and employ the LPE based forecasting scheme
proposed in Preve (2015): We first fit the TNTAR model

1√
RVt

=
ϕ√

RVt−1
+ ut,

using the LPE and calculate LP residuals

ût =
1√
RVt

− ϕ̂T√
RVt−1

.

13 We explored all non-zero λ-values on Tukey’s ladder of power transformations in (13) and found that λ = −1/2 produced
the strongest linear relationship (an increase in R2 from 0.341 to 0.410).
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Due to the robustness of the LPE, simple semiparametric forecasts in the (possible) presence of
structural breaks are then obtained by applying a one-sided moving median. More specifically, as a
simple one-month-ahead forecast we take R̂VT+1 = mT , where mT is the sample median of(

ϕ̂T√
RVT

+ ûT−11

)−2
, . . . ,

(
ϕ̂T√
RVT

+ ûT

)−2
,

the reciprocals of the by ϕ̂T/
√

RVT shifted, squared last 12 LP residuals.
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Figure 5. Recursive TNTAR parameter estimates for the first out-of-sample forecasting exercise. Solid
line: path of λ̂T . Dashed line: path of ϕ̂T .
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Figure 6. The left panel displays a plot of the target variable against the explanatory variable in
the AR model (10). The right panel displays a similar plot for the TNTAR model (12), with power
transformation parameter λ = −1/2. Superimposed are simple linear regression lines. Data for the
period January 1946-June 1975.

Table 5 reports the forecasting performance of the alternative models under the four forecast
accuracy measures of Section 5.2. Several results emerge from the table. First, the relative performances
of the alternative models are sensitive to the forecast accuracy measures. Under the MSE measure,
the two ARFIMA models rank as the best, followed by the log-HAR and TNTAR∗ models. ABDL (2003)
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found that their ARFIMA models perform well in terms of R2 in the Mincer-Zarnomitz regression.
Since the MSE is closely related to the R2 in the Mincer-Zarnomitz regression, our results reinforce their
findings. However, the rankings obtained under MSE are very different from those obtained under
the other three accuracy measures. The MAPE and the MSPE, for example, rank the TNTAR∗ model
the first and the TNTAR model the fourth. Second, the performances of the two ARFIMA models are
very similar under all measures. To understand why, we plotted the sample autocorrelation functions
of the ARFIMA(0, d, 0) residuals for the entire sample and found that fractional differencing alone
successfully removes the serial dependence in log-RV. Third, the improvement of ARFIMA(0, d, 0) over
TNTAR is 7.4% in terms of MSE. On the other hand, the improvement of TNTAR over ARFIMA(0, d, 0)
is 0.8%, 5.9% and 6.0% in terms of MAE, MAPE and MSPE, respectively. These improvements are
striking as we expect ARFIMA models to be hard to beat. Fourth, ES performs the worst in all cases.

Table 5. Forecasting performance of the alternative models under four different accuracy measures.
Results based on 354 one-step-ahead forecasts for the period Jul 1975–Dec 2004.

MAE × 103 MAPE MSE × 106 MSPE

Value Rank Value Rank Value Rank Value Rank

ES 1.268 9 31.04 11 3.862 11 15.30 9
AR 0.975 6 20.93 6 3.312 9 7.80 5
HAR 0.945 2 20.75 3 3.018 5 7.29 2
log-AR 0.954 4 20.74 2 3.076 8 7.56 4
log-HAR 0.937 1 20.90 5 2.866 3 7.33 3
sGARCH 1.101 8 27.23 9 3.344 10 12.43 7
realGARCH 1.089 7 28.05 10 3.026 6 12.93 8
log-ARFIMA(0, d, 0) 0.961 5 22.09 8 2.847 1 8.04 6
log-ARFIMA(1, d, 0) 0.961 5 22.08 7 2.851 2 8.04 6
TNTAR 0.954 4 20.78 4 3.075 7 7.56 4
TNTAR∗ 0.948 3 20.47 1 2.911 4 6.96 1

Table 6 reports p-values of the Diebold and Mariano (1995) test for equal predictive accuracy
of different models in Table 5 with respect to the benchmark TNTAR model. We compare forecast
differences using four different loss functions. Under absolute loss (MAE), the TNTAR delivers
superior forecasts in three cases. In six cases, the forecasts are not statistically different. For MAPE,
the TNTAR delivers superior forecasts in five cases. The forecasts are not statistically different in four
cases. Under square loss (MSE), the TNTAR delivers superior forecasts in two cases, the forecasts are
not statistically different in four cases and in three cases alternative models have the best performance.
Finally, for MSPE, the TNTAR delivers superior forecasts in three cases. In six cases, the forecasts are
not statistically different.

Table 6. p-values of the Diebold-Mariano test for equal predictive accuracy of different models with
respect to the benchmark TNTAR model under four different loss functions. Results based on 354
one-step-ahead forecasts for the period Jul 1975–Dec 2004.

MAE MAPE MSE MSPE

ES 0.000 0.000 0.001 0.001
AR 0.275 0.680 0.208 0.431
HAR 0.660 0.961 0.607 0.480
log-AR 0.898 0.754 0.973 0.968
log-HAR 0.418 0.824 0.003 0.482
sGARCH 0.001 0.000 0.057 0.000
realGARCH 0.001 0.000 0.709 0.000
log-ARFIMA(0, d, 0) 0.728 0.034 0.008 0.188
log-ARFIMA(1, d, 0) 0.725 0.035 0.008 0.184
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5.4.2. Sample Post the 1987 Crash

To examine the sensitivity of our results with respect to the 1987 crash and the 1997 crash due
to the Asian financial crisis, we redo the forecasting exercise so that the first month for which an
out-of-sample volatility forecast is obtained is January 1988 and the last month is September 1997.

In Figure 7, we plot the monthly RV and the corresponding one-month-ahead TNTAR forecasts for
the out-of-sample period, January 1988-September 1997. As before, forecasts from the TNTAR model
captures the overall movements in RV reasonably well. Table 7 reports the forecasting performance
of the alternative models under the four forecast accuracy measures. Since the RVs are smaller in
this subsample, as expected, the MAE and the MSE are smaller than before. However, the relative
performances of the alternative models obtained for the subsample are similar to those obtained for
the entire sample, although the HAR and log-HAR models now outperform the ARFIMA models also
in MSE. The TNTAR∗ model once again performs the best overall.
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Figure 7. Realized volatility and out-of-sample TNTAR forecasts for the period Jan 1988–Sep 1997.
Dashed line: S&P 500 monthly realized volatility. Solid line: one-month-ahead TNTAR forecasts.

Table 7. Forecasting performance of the alternative models under four different accuracy measures.
Results based on 117 one-step-ahead forecasts for the period Jan 1988–Sep 1997.

MAE × 103 MAPE MSE × 106 MSPE

Value Rank Value Rank Value Rank Value Rank

ES 1.077 10 35.38 11 1.707 11 20.18 11
AR 0.783 7 23.88 8 1.258 6 10.73 8
HAR 0.749 2 22.68 3 1.079 1 9.28 2
log-AR 0.779 6 23.38 4 1.272 8 10.53 6
log-HAR 0.750 3 22.45 2 1.123 2 9.37 3
sGARCH 0.963 8 32.90 9 1.387 9 18.77 9
realGARCH 0.991 9 33.73 10 1.480 10 19.51 10
log-ARFIMA(0, d, 0) 0.779 6 23.65 7 1.160 3 10.24 5
log-ARFIMA(1, d, 0) 0.778 5 23.61 6 1.162 4 10.22 4
TNTAR 0.777 4 23.45 5 1.260 7 10.58 7
TNTAR∗ 0.744 1 21.27 1 1.163 5 8.18 1

6. Concluding Remarks

In this paper, a simple time series model is introduced to model and forecast RV. The new TNTAR
model combines a nonnegative valued process for the error term with the flexibility of Tukey’s power
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transformation. The transformation is used to improve linearity and reduce heteroskedasticity while
the nonnegative support of the error distribution overcomes the truncation problem in the classical
Box-Cox setup. The model is semiparametric as the order of m-dependence, support parameter η and
functional form of its error term are left unspecified. Consequently, the proposed model is highly
parsimonious, having only two parameters that need to be estimated for the purpose of forecasting.
A two-stage estimation method is proposed to estimate the parameters of the new model. Simulation
studies validate the new estimation method and suggest that it works reasonably well in finite samples.

We empirically examine the forecasting performance of the proposed model relative to a number
of existing models, using monthly S&P 500 RV data. The out-of-sample performances were evaluated
under four different forecast accuracy measures (MAE, MAPE, MSE and MSPE). We found empirical
evidence that our nonnegative model generates highly competitive volatility forecasts.

Why does the simple nonnegative model generate such competitive forecasts? Firstly, as shown in
Section 2.2, the logarithmic transformation may not reduce heteroskedasticity and improve normality
as well as anticipated. A more general transformation may be required. Secondly, the nonnegative
model is highly parsimonious. This new approach is in sharp contrast to the traditional approach
which aims to find a model that removes all the dynamics in the original data. When the dynamics
are complex, a model with a rich parametrization is called for. This approach may come with the cost
of over-fitting and hence may not necessarily lead to superior forecasts. By combining a parametric
component for the persistence and a nonparametric error component, our approach presents an
effective utilization of more recent information.

Although we only examine the performance of the proposed model for predicting S&P 500
realized volatility one month ahead, the technique itself is quite general and can be applied in many
other contexts. First, the method requires no modification when applied to intra-day data to forecast
daily RV. In this context, it would be interesting to compare our method to the preferred method in
ABDL (2003). Second, our model can easily be extended into a multivariate context by constructing
a nonnegative vector autoregressive model. Third, while we focus on stock market volatility in this
paper, other financial assets and financial volatility from other financial markets can be treated in
the same fashion. Fourth, as two alternative nonnegative models, it would be interesting to compare
the performance of our model with that of Cipollini et al. (2006). Finally, it would be interesting to
examine the usefulness of the proposed model for multi-step-ahead forecasting. These extensions will
be considered in later work.
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Abstract: The purpose of this paper is to investigate the dynamics and steady-state properties of
threshold autoregressive models with exogenous states that follow Markovian processes. Markovian
processes are widely used in applied economics although their statistical properties have not been
explored in detail. We use characteristic functions to carry out the analysis, and this allows us to
describe limiting distributions for processes not considered in the literature previously. We also
calculate analytical expressions for some moments. Furthermore, we see that we can have locally
explosive processes that are explosive in one regime whilst being strongly stationary overall. This is
explored through simulation analysis, where we also show how the distribution changes when the
explosive state becomes more frequent although the overall process remains stationary. In doing so,
we are able to relate our analysis to asset prices which exhibit similar distributional properties.
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1. Introduction

The purpose of this paper is to investigate the dynamics and steady-state properties of threshold
autoregressive models with exogenous states that follow Markovian processes. These models fall within
the class of regime-switching models, which have become increasingly popular in applied economics
and finance. Initially introduced by Goldfeld and Quandt (1973) and Tong (1978), regime-switching
models have been used in economics and finance for a wide variety of applications including forecasting
exchange rates (Engel 1994), understanding price transmission (Goodwin and Harper 2000), detecting
bubbles in the art market (Knight et al. 2014), and providing a metric of market efficiency (Ahmed and
Satchell 2018). Hansen (2011) provides a concise summary of threshold autoregressive processes and
their applications.

Hamilton (1989, 1990, 2010) has made seminal contributions to the theory and application of
regime-switching models. As outlined above, this article discusses a particular class of regime-switching
models. The problems we discuss appear to have much in common with Markov switching models,
and Timmermann (2000) has provided a detailed analysis of moments and autocorrelations, which
would include our model as “MSIII” in his terminology. However, his analysis does not address
non-moment distributional properties or the non-existence of moment-generating functions (mgfs).

Indeed, Timmermann states in Appendix 1, page 103, that “The expressions for the cases where εt

follows a t-distribution or a normal distribution are based on the moment-generating distributions
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for these distributions”, and this is confusing as it is known that the t-distribution does not have a
moment-generating function. We therefore re-examine this model, allowing for the non-existence of
moment-generating functions, and use the characteristic function (which will always exist) to derive
various properties of the model.

Whilst we could carry out a similar analysis for the other models described in Timmermann (2000),
our focus is on threshold auto-regression and the elusive search for explicit steady-state distributions.
Prior to this article, Gonzalo and Gonzalez-Rozada (1997) described statistical properties of Threshold
Autoregressive models of order 1 (TAR(1)) models. However, their analysis was restricted to a
mixture of stationary and unit roots, whereas our analysis considers non-stationary roots as well.
Another important contribution relevant to our work is Pourahmadi (1988). In Theorem 3.1 in his
article, Pourahmadi (ibid.) discussed the covariance stationarity of a process similar to the threshold
autoregressive process we consider in Section 4, in that he analyzed processes with a unit root and a
zero root. However, the results derived in Section 2 below and the processes considered in Section 4
are applicable to a more general setting and we do not restrict ourselves to covariance stationarity.
We acknowledge Pourahmadi’s contributions while deriving our results in Section 2.

Caner and Hansen (2001) and Kapetanios and Shin (2006) also considered similar processes, but
their objective was to derive the distribution of unit root test statistics in the threshold autoregressive
framework rather than the distribution of the underlying process. Our results build upon the results of
Knight and Satchell (2011) and Ahmed and Satchell (2018): Both articles discussed theoretical moments
for threshold autoregressive models with exogenous triggers. While Ahmed and Satchell (2018)
only considered moments when the exogenous variable is independently and identically distributed,
Knight and Satchell (2011) also considered a Markovian exogenous variable.

In addition to deriving theoretical moments, we also use simulation analysis to show how the
distributions of threshold autoregressive models change when the process’s two states consist of
one stationary state and an explosive state. Our analysis focuses on these models for two reasons.
Firstly, we are able to derive a characteristic function for this case, thereby adding to the literature on
analytical results for threshold autoregressive models. We believe this is a significant contribution to
the statistical literature. Secondly, this class of models is of interest in the financial literature concerned
with explosive roots. In particular, Theorem 6 in Section 2 specifically refers to a special case that is
of interest to researchers working on asset pricing with some non-stationarity. The latter is what we
consider for our simulation analysis, and thus we consider it the most important contribution of the
current article. We also believe that these models can prove to be useful in the applied macroeconomic
literature. The simulation analysis presented in this article will help the reader appreciate how these
models can be useful in practice.

In applied Macroeconomics, for instance, Dynamic Stochastic General Equilibrium (DSGE) models
often model shocks as AR(1) processes (see Schmitt-Grohe and Uribe 2004). The literature came under
particular scrutiny after the financial crisis for its inability to simulate and thereby predict conditions
and outcomes that were observed during the crisis. In addition to the absence of financial markets,
such models are also restricted by their reliance on a stationary AR(1) model as a shock process, as
these processes can rarely be used to study the kind of macroeconomic shocks that led to the financial
crisis. On the other hand, these models will not have analytical or numerical solutions if the process
is non-stationary.

We postulate that using a TAR(1) shock process which is stationary but nevertheless can exhibit
locally non-stationary behavior can improve these models. Our work will enable calculation of moments
for such shocks (where such moments exist), allowing the user to work with analytical solutions, or,
if the user is deriving a numerical solution, ensuring that such a solution will exist. Indeed, some
work has already started relying on Markov-switching DSGE models (Foerster et al. 2016). This paper
complements the proposed methodology by enabling researchers to control and simulate shocks of
specific variances.
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There are further applications in the finance literature where TAR models have become popular.
The applications may extend to forecasting oil prices through threshold models or in modelling
exchange rate fluctuations. There are many areas where a TAR model and the characteristic functions
we derive can provide more depth to the underlying analysis. To use one recent example, Aleem and
Lahiani (2014) estimated a TAR model of exchange-rate pass through for Mexico. Their analysis was
limited to an estimation of the threshold above which the pass through is greater. The characteristic
functions from our article would have allowed them to estimate the volatility of exchange rates in
their model, improving both their model and the resulting predictions. Similarly, in Ahmed and
Satchell (2018), the empirical application relied on a Markovian exogenous trigger. The results from
this article would have allowed them to derive moments of their empirical TAR(1). Corollary 2 in
Section 2 offers one example of how the results of this article may contribute to applied and empirical
work in finance.

The rest of the article is organized as follows. In Section 2, we present the derivation and formulae
for characteristic functions of threshold autoregressive (1) models with exogenous Markovian triggers.
Section 3 outlines the simulation methodology. A separate section is necessary since obtaining a sample
from the steady-state distribution of a TAR model with a Markov-switching exogenous trigger is a
non-trivial exercise. Section 4 presents and discusses simulation results and Section 5 concludes.

2. Moment-Generating Functions of TAR(1) Models with Exogenous Markov-Triggers

In this section, we introduce the threshold autoregressive model with a Markov-switching
exogenous trigger. After introducing the model, we derive the moment-generating functions for
this model and present some interesting results. We shift to characteristic functions after Theorem 3,
where we do not have to assume the existence of all moments so that moment-generating functions
for such processes need not exist. Characteristic functions on the other hand will always exist
(Stuart and Ord 1994, chps. 3 and 4). Such processes are often used to model prices (particularly in
finance), therefore, we refer to our model as a price process indicated by pt.

The price process has a switching AR(1) form:

pt = αt−1 + βt−1pt−1 + σt−1ηt (1)

where αt−1 is a switching drift, βt−1 is a switching coefficient term, and σt−1 is a switching variance
term for the error process. Let:

αt−1 = 〈α, zt−1〉 βt−1 =
〈
β, zt−1

〉
σt−1 = 〈σ, zt−1〉

where α is a vector containing all drift terms, β is a vector of coefficients, and σ is a vector of error
standard deviations. In general, all the above vectors are k × 1, but we illustrate them when k = 3 for
notational convenience. We assume that zt is Markovian and follows a multinomial distribution, and
that ηt has a moment-generating function ψ(u) which is assumed to be location-scale. zt determines
what state αt−1 and βt−1 are in. In particular,

α = (α1,α2,α3)
′ β = (β1, β2, β3)

′ σ = (σ1, σ2, σ3)
′ ηt ∼ iid(0, 1)

zt ∈ {e1, e2, e3} e1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
1
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ e2 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ e3 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
E[zt|zt−1] = Pzt−1, where P represents the Transition Matrix for the Markovian state variable zt. For
econometric purposes, we envisage an exogenous continuous random variable Zt and constants
ϑ0, . . . .ϑ3, so that zt = ej if ϑ j−1, ≤ Zt < ϑ j, i.e., when the continuous random variable Zt is between
thresholds ϑ j−1 and ϑ j, and the value of the Markovian variable zt is equal to ej. The nature of Zt

determines P and the kind of regime-switching model Zt is.
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Here, P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
p11 p12 p13

p21 p22 p23

p31 p32 p33

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ is the transition matrix, which describes the probability of switching

states. Note that i′P = i′, where i is a vector of ones, and Pπ = π where π is the vector of stationary
(steady-state) probabilities and i′π = 1.

pji = P
(
zt+1 = ej

∣∣∣zt = ei
)
= P
(
z1 = ej

∣∣∣z0 = ei
)

1 ≤ i, j ≤ 3

so that the Markov Chain is stationary. Whilst we can estimate P by counting frequencies, we can
also hypothesize a Markov process for Zt and then integrate over the appropriate rectangle of the
probability density function of (Zt, Zt+1).

We now consider exp(upt) in order to derive the moment-generating function for pt. Here, u ∈ R.
The moment-generating function of pt is defined by φt(u) = E[exp(upt)]. Our aim is to determine

a recursion for φt(u) ∈ R.
Now,

zt = Pzt−1 + νt ∈ R3 (2)

where,

E[νt|zt−1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0
0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ = 0 ∈ R3.

From (1), we have that:

exp (upt) = exp[u〈α, zt−1〉] exp[u
〈
β, zt−1

〉
pt−1] exp(u〈 σ, zt−1〉ηt)

Using iterated expectations, we find that the moment-generating function for pt is:

φt(u) = E(E(exp[u〈α, zt−1〉] exp[u
〈
β, zt−1

〉
pt−1] exp(u〈 σ, zt−1〉ηt

∣∣∣zt−1))

For functions F (pt−1, Zt−1), we note that:

E(F(pt−1, Zt−1)) = E
(∑k

j=1 F(pt−1, ej) π j
)

by the law of total probability.
Thus,

φt(u) =
∑k

j=1 π j
(
exp
[
u
〈
α, ej
〉]
φt−1
[〈
β, ej
〉
u
]
ψ
(〈
σ, ej
〉
u)
)

(3)

is a dynamic recursion for the moment-generating function of pt.

Steady-State Distribution under Markovian States

The above discussion leads to the following result.

Theorem 1. Assuming a steady state for prices, denote E(exp(upt) ) = φ(u) and E(exp( uηt) ) = ψ(u) as
the appropriate mgfs (or characteristic functions with a trivial definitional change). Then,

φ(u) =
∑k

j=1 exp
(
uα j
)
φ
(
β ju
)
π j ψ
(
σ ju
)

(4)

is the steady-state relationship.

We can use Theorem 1 to arrive at analytical expressions for different moments of the process, pt.
Define:

μB =
∑k

j=1 π jβ j ; μ2B =
∑k

j=1 π jβ
2
j ; σ2

B = μ2B − (μB)
2

μα =
∑k

j=1 π jα j ; μσ =
∑k

j=1 π jσ j; μαB =
∑k

j=1 π jβ jα j etc.
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We differentiate (4) once to obtain the first moment of pt, and we get:

E(pt) =
μα + μσE(ηt)

1− μB

Differentiating the mgf a second time gives us the second moment of pt:

E
(
p2

t

)
=

μ2α+2μαBE(pt)+2μσBE(ηt)E(pt)+2μασE(ηt)+μ2σE(η2
t )

1−μ2B
.

Further calculations and simplifications lead to an expression for the variance of pt:

Var(pt) = E(p2
t ) − (E(pt))

2

Var(pt) =
μ2α+2μαBE(pt)+2μσBE(ηt)E(pt)+2μασE(ηt)+μ2σE(η2

t )
1−μ2B

−
(
μα+μσE(ηt)

1−μB

)2

Various interesting results can be derived from Theorem 1 for plausible parameter values. We list
one case below, but other results can be regarded as special cases. Here, we are concerned with the
case where k = 2, α j = 0, β1 = β, β2 = 0, and σ2 = 0, so that the mgf function becomes:

φ(u) = φ(βu)(π+ (1−π)ψ(u)) (5)

Corollary 1. If ψ(u) is the moment-generating function of a negative exponential with parameter λ, and
α j = 0, σ1 = σ, σ2 = 0, and π = β where β1 = β2 = β which is less than 1, then φ(u) = λ

λ−u , i.e., a negative
exponential random variable with parameter λ.

Proof. To show that Equation (5) has a solution for some ψ(u), we consider the negative exponential
function, i.e., we assume that the disturbance term is distributed as a negative exponential with
parameter λ. The corresponding moment-generating function, φ(u), for this disturbance term is λ

λ−u if
we further assume that β = π and that 0 ≤ β < 1. Note that Equation (5) corresponds to the situation
where the β coefficient does not move across states, but the standard deviation of the disturbance term
does, i.e., σ1 = σ and σ2 = 0. Our result implies that σ = 1

λ . �

For our distributional assumption regarding the disturbance, the corresponding
moment-generating function is (taking into consideration the two states):

(π+ (1−π)ψ(u)) = π+
(1−π)λ
λ−u

Substituting this in (5) and using the trial solution, φ(u) = λ
λ−u , we have:

λ
λ−u =

(
λ

λ−βu

)(
π+

(1−π)λ
λ−u

)

If we further assume that β = π, the LHS and RHS are equal, thereby proving our result.
We recognize the solution as being a negative exponential auto-regression of degree 1 (NEAR(1)).

These models were investigated in detail by Gaver and Lewis (1980), which also included earlier
references to related models. We note that the same arguments could be applied to Gamma random
variables with integer degrees of freedom.

The attractiveness of these models is that they are AR(1) models where the underlying process
is always positive, and hence, can be used to model equity or bond prices in finance. Our version is
a slight extension of existing NEAR(1) models, in that Corollary 2 will be consistent with a Markov
process for the state process rather than an i.i.d. process, as in the current NEAR(1) literature.
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Furthermore, if Zt−1 is Markovian with transition matrix P such that π = Pπ, then:

π j =
k∑

m=1

πmPjm,

and
φ(u) =

∑k
j=1 exp

(
uα j
)
φ(β ju) ψ

(
σ ju
) ∑k

m=1 Pjm πm

Alternatively,
φ(u) =

〈
exp(uα)φ(βu) ψ(σu), Pπ

〉
(6)

There are a number of observations relevant to (4) and (6) which we present below:

Theorem 2. Since π = Pπ has multiple solutions for P given π, these different P′s do not change the solution to
Equation (6). As an example, for k = 2, suppose π = 0.5. It then follows that P11 = P22, but if P11 = 0.2 or 0.8
in this context, the steady-state distribution will be unaffected except through a change in position.

The steady-state values are equal (i.e., 0.5), and thus, such changes in the structure of the transition
matrix should not influence steady-state values. Note, however, that this does not say anything about
the speed at which the two processes in this example converge to the steady state. For more on speed
of convergence, refer to Rosenthal (1995). Since the processes converge to the steady state through
different paths, simulating the steady state becomes a non-trivial procedure, as explained in Section 3.

Theorem 3. Suppose that in Equation (6), α is zero, and φ(u) and ψ(u) are infinitely differentiable
moment-generating functions and that the variance of the error process is constant.

Theorem 4. I f φ(u) is symmetric, then ψ(u) is symmetric. The proof is trivial.

Theorem 5. If ψ(u) is symmetric, then φ(u) is symmetric (proof by induction on Taylors series terms).
We shall prove that all odd moments are zero:

Proof.

φ(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

φ
(
β ju
)
π j ψ(u)

⎞⎟⎟⎟⎟⎟⎟⎠
The coefficient of un for φ(u),

φn =
∑k

j=1 π j
∑n

s=0 φn−sβn−s
j ψs (7)

ψ1 = 0 implies that φ1 = 0. We now suppose that ψ2 j+1 = 0, which implies that φ2 j+1 = 0 for
j = 0, . . . , k and consider φ2 j+3. From (7), the inductive hypothesis and the properties of products of
odd and even numbers, the result follows. �

Theorem 6. Suppose that α j = 0, the variance of the error term is constant, and that we treat

φ(u) =

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

j=1

φ
(
β ju
)
π j ψ(u)

⎞⎟⎟⎟⎟⎟⎟⎠ (8)

as a statement about characteristic functions. Then, if at least one of the β j′s is greater than 1 and all of them are
non-negative, for some n, the nth moment will not exist. The proof follows from using (7) again and noting that
φn (the nth differential of φ(u)), which is proportional to the nth moment (if it exists), can be expressed as:
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φn

(
1−∑k

j=1 π jβ
n
j

)
=
∑k

j=1 π j
∑n

s=1 φn−sβn−s
j ψs

The requirement for the existence of φn is that
∑k

j=1 π jβ
n
j < 1, which cannot hold for a large

enough n under the assumptions of Theorem 6. This result links local explosivity to fat tails. Thus,
processes with locally explosive states will cease to have moments once n becomes sufficiently large.

Ahmed and Satchell (2018) derived similar conditions for the existence of a mean and variance
for a TAR(1) process with an independently distributed exogenous trigger for state switching. We
have generalized the result for the nth moment and for an exogenous trigger that is Markovian.
Pourahmadi (1988) arrived at a similar result in Section 2 of his article (see Equations (2.3)–(2.5)
in Pourahmadi (ibid.)), but he carried out his derivation in the context of doubly stochastic
processes, as opposed to the specific case of a threshold autoregressive process that we consider.
Secondly, Pourahmadi was mainly interested in second-order stationarity, while we present results
for the existence of all moments. Thus, we substantially improve upon the results contained in
Pourahmadi (1988) and Ahmed and Satchell (2018). Below, we consider a special case which will be of
particular interest to finance practitioners.

Corollary 2. Assume that α j = 0, and the variance of the error term is constant, i.e., σ1 = σ2 = σ.

Consider now the special case k = 2, β1 = 1, and β2 = 0. This is an important special case as it
gives us a random walk in one regime and white noise in the other. Substituting into (8), we see that:

φ(u) = (φ(u)π+ 1−π)ψ(u)

This can be re-arranged to yield:

φ(u) =
(1−π)ψ(u)
(1−πψ(u))

Since
∣∣∣ψ(u)∣∣∣ ≤ 1, π

∣∣∣ψ(u)∣∣∣ < 1 and φ(u) can be represented in terms of a valid series expansion
which can be analyzed term by term. Indeed,

φ(u) = (1−π)
∞∑

j=0

π jψ(u) j+1 (9)

The right-hand side is uniformly and absolutely convergent because of the Weirstrass M-test, and
thus we can integrate term by term. Pourahmadi (1988) also considered this as a special case in his
article and derives conditions for the existence of a variance and covariance (see Sections 3 and 4 in
his article).

We can now consider different choices for ψ(u).
Suppose we have a normally distributed error term with a mean of zero and a variance of σ2, i.e.,

ψ(u) = exp
(
−σ2u2

2

)
. Then, ψ(u) j+1 represents a normal random variable with a mean of zero and a

variance of (j + 1) σ2. We can identify the distribution of pt as an infinite weighted sum of normal
random variables of increasing variances, but whose relative importance declines with a power of π.
This process was analyzed in Knight and Satchell (2011) and extended in Grynkiv and Stentoft (2018).

Likewise, assume the variance of the error is constant. If we consider a mean corrected Poisson so
that ψ(u) = exp(θ(exp(iu) − 1− iu)) with mean parameter θ, we can identify the distribution of pt as
an infinite weighted sum of Poisson random variables of increasing means (j + 1) θ, but whose relative
importance declines with a power of π.
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This case can be extended to include intercepts, in which case,

φ(u) = (exp(iα1u)φ(u)π+ (exp(iα2u)(1−π))ψ(u)
φ(u) = exp(iα2u)(1−π)ψ(u)

1−exp(iα1u)πψ(u)

Since
∣∣∣exp(iα1u)πψ(u)

∣∣∣ < 1, the analysis proceeds as before, and:

φ(u) = (1−π) exp(iα2u)
∞∑

j=0

π jψ(u) j+1 exp(i jα1u)

We see that the jth component is as above, but has a mean augmented by jα1 + α2. For other
examples, we refer the interested reader to Pourahmadi (1988) Section 4, who derived marginal
distributions for different processes.

The results can be generalized to Vector threshold auto-regressions. These results are not presented
here but are available upon request. The interested reader may also refer to Grynkiv and Stentoft (2018)
for some discussion.

3. A Caveat on Simulating the Steady State

Simulating the steady state for processes similar to those considered in Section 2 is not as straight
forward as it may appear at first glance and warrants further consideration, which this section seeks
to provide. Generating a discrete Markov chain, which is essentially a variable that takes discrete
integer values of 0 or 1 depending on the transition matrix P, does not generate a steady-state Markov
chain, but rather a path to the steady state. It is common in this literature to simulate steady-state
paths rather than a steady-state Markov chain. Indeed, in our earlier work, we worked with paths and
not steady states, as did Timmerman in his article (see Figures 1–6 in his articles for example). While
simulating steady-state paths sufficed for our earlier work, we need to simulate the steady state in
order to corroborate our results from Section 2. Otherwise, the underlying moments of the simulated
series can be different even if they converge to the same steady state.

This path is dependent upon the transition matrix P. If states are persistent, as determined by
the transition probabilities of the process staying in the prevailing state (pii), this path may diverge
significantly from the steady state. On the opposite spectrum is a transition matrix with frequent
state switches, due to higher switching probabilities, which will take a different path to the steady
state. Although the steady-state probabilities of both paths are identical, the dynamics vary due to the
different paths taken by the processes.

We need to consider how discrete Markov chains converge to their steady states. The usual
definition is based on total variation distance, and considers the supremum, taken over measurable
subsets A, of the absolute difference between v(A) and u(A), where v() and u() are the two probability
measures (see Rosenthal 1995). Whilst our process will converge in this sense, it will almost surely not
converge along a sample path. Intuitively, it keeps moving from state to state.

We illustrate this by considering two different transition matrices that correspond to the steady-state

probability vector
[

0.5
0.5

]
. We consider a transition matrix with highly persistent states P1 =

(
0.9 0.1
0.1 0.9

)
and a transition matrix with frequent state switches P2 =

(
0.5 0.5
0.5 0.5

)
. While both

processes approach the same steady states, the simulated series have different probability distributions.
Specifically, persistence of the non-stationary process, corresponding to β j > 1, causes the path to
diverge far from the steady-state values, resulting in a process that has extreme values with significant
probability, which also obtains very high kurtosis. With frequent state switches, the simulated series
comes closer to a normally distributed process.
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To remedy this, each of the above paths was simulated for 10,000 periods and the process was
repeated 2000 times. The parameter values in the two switching states are 0 in state 1 and 1 in state 2.
We also carried out simulations when the switching states corresponded to values of 0.1 in state 1 and
1.1 in state 2. We recorded the average of the first four moments of both paths in Table 1. As mentioned
previously, the persistent path obtains a much higher kurtosis and standard deviation than the more
frequently switching path, even though both paths continue to be symmetrically distributed. An
alternative approach would be to write out the solution to Equation (1) and simulate directly by
taking long samples of the error term and the exogenous process. From Table 1, we observe that the
highest 2nd and 4th moments are obtained for the persistent state when β1 = 0.1 and β2 = 1.1. This is
despite the fact that this process also converges to a steady-state vector [0.50 0.50]. The moments are
significantly different for the alternative paths corresponding to P2.

Table 1. Moments of TAR(1) with Markov-switching exogenous variables.

Steady State Vector Transition Matrix δ Mean Stdev Skewness Kurtosis

[0.50 0.50] P1 =

(
0.9 0.1
0.1 0.9

)
0 0.0004 2.450 0.00289 8.786

[0.50 0.50] P1 =

(
0.9 0.1
0.1 0.9

)
0.10 −0.170 78.17 0.2761 424.7

[0.50 0.50] P2 =

(
0.5 0.5
0.5 0.5

)
0 −0.0001 1.4139 −0.0004 4.480

[0.50 0.50] P2 =

(
0.5 0.5
0.5 0.5

)
0.10 0.0000 1.6014 −0.0012 6.837

Table 1 reports the first four moments of simulated threshold autoregressive series with Markov-switching
exogenous variables. Each series is 10,000 observations long, and 2000 series were simulated for each set of values.
P represents the transition matrix and delta represents a parameter that determines the values of β j in the two states;
β1 = δ, β2 = 1 + δ.

Figures 1 and 2 below highlight the different distributions that result from the different paths,
along with cumulative probabilities corresponding to the normal probability density function’s quintile
values. Tail probabilities are much higher for the more persistent path, which also has more extreme
values, especially when the non-stationary state becomes explosive. Tail probabilities are 28.7% and
30.8% for δ = 0 and δ = 0.10, respectively, in Figure 1, which correspond to the more persistent
transition matrix, P1. In fact, the distribution corresponding to δ = 0.10 appears like a horizontal line
instead of a bell-shaped curve.

On the other hand, the distributions of simulated series corresponding to the more frequently
switching path (transition matrix P2) have lower tail probabilities and distributions that are closer to
the standard normal distribution. Figure 2 contrasts the distribution for the series corresponding to
path P2 to a standard normal. While this simulated distribution has heavier tails, as evident from
the higher probabilities corresponding to normal quintiles, its 2nd and 4th moments are much closer
to the normal than to the simulated series for path P1. Similarly, for the distributions in Figure 2,
corresponding to β1 = 0.10 and β2 = 1.10, path P2 look much closer to a normal distribution than to
their P1 counterparts in Figure 1.

Thus, we need a different approach to generate the steady-state distribution of the threshold
autoregressive process with Markovian triggers that are independent of the transition matrix, subject
to the same steady state. It is important to understand that the results derived in the section above
correspond to the steady state itself and not to the path of the process tending to a steady state, which,
as we have shown in this section, depends on the transition matrix. We describe how we simulate the
steady-state distribution in the next section.
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Figure 1. Simulated Distributions for TAR(1) with P1 as the transition matrix.

  

 

Figure 2. Simulated Distributions for TAR(1) with P2 as the transition matrix.
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4. Simulation Results

In order to simulate a distribution for the steady state, we observed the Markov chain 10,000
times. However, each observation was 1000 time periods or steps apart. Thus, the Markov chain
we simulated was 10,000,000 periods long, and the steady-state simulation was 10,000 observations
in length. We verified that each series simulated this way converges to the steady-state probability
vector while at the same time being independent of the transition matrix, P. We did this by simulating
steady states for different transition matrices P that shared the same steady states.1 Thus, the analysis
considered in this section depends only on the steady-state vector and not on the transition matrices.
The steady-state chain was then used to simulate the following threshold model:

yt = α+ βityt−1 + ηt

whereβit depends on the value taken by the exogenous discrete Markov state variable zi. Our simulations
assumed that ηt ∼ N(0, 1) and that α = 0. In order for our simulated series to have a steady-state
stationary distribution, we required that the criterion

∑2
i=1 πi ln

∣∣∣βi
∣∣∣ < 0 be satisfied. Since we considered

a two-state process, the criterion can alternatively be written as βπ1 β
1−π
2 < 1. The criterion is trivially

satisfied when β1 = 0 as ln(0) = −∞. When β1 = δ and β2 = (1 + δ), the criterion becomes
δπ(1 + δ)1−π < 1. Note, that the expression δπ(1 + δ)1−π is maximized for π = 0.

We considered a maximum δ of 0.10, and checked that the criterion was satisfied for all our
simulations and that a steady-state distribution does exist. For exposition, we included the value taken
by the criterion function for each set of simulations in column 7 of Table 2 below.

Steady-state distributions obtained this way can be analyzed through the results derived in
Section 2. For each set of steady-state vectors in Table 2, we simulated threshold autoregressive series
(as described above) 2000 times. The parameter values in the two switching states are δ in state 1 and
1 + δ in state 2. Thus, the first state is always stationary, while the second state is either a random walk
or explosive.

Some patterns are exhibited clearly. The distributions of the series appear to be centered on zero,
and statistically their skewness (column 5) is not significantly different from zero, which follows from
Theorem 3. Since the disturbance term has an even distribution, it follows that the distribution of our
simulated series will also be even, symmetric, and centered on zero, i.e., ψ(u) = ψ(−u) implies that
φ(u) = φ(−u).

The standard deviation (column 2), however, does appear to be much larger than the standard
deviation of the error process driving the threshold process. The series have excess kurtosis (column
6), which should not come as a surprise since the series display non-stationary behavior when βi ≥ 1.
This state leads to excess kurtosis and higher standard deviation. As we deviate from our base case,
(δ = 0), we note a clear pattern in the 2nd and 4th moments of the series. Both the standard deviation
and kurtosis start to increase, since this behavior is caused by the non-stationary state becoming
increasingly more explosive (βi = 1 + δ, when δ > 0). The pattern is repeated irrespective of the
steady-state vector chosen.

Unsurprisingly, the higher the steady-state probability of the stationary state (βi = δ), the closer the
process’s distribution is to a normal distribution. This is reflected in the first four moments. For instance,
when the stationary state occurs 90% of the time (as in rows 2–6 of Table 2), the standard deviation and
kurtosis are both lower compared to corresponding cases (i.e., same δ) when the stationary state occurs
less than 90% of the time. When δ = 0.05, the standard deviation and kurtosis respectively are 1.061
and 3.362 for π = 0.90, 1.134 and 3.762 for π = 0.80, 1.339 and 4.660 for π = 0.60, and 1.494 and 5.302
for π = 0.5. While all distributions appear symmetric and centered on 0, they become increasingly
leptokurtic as π falls.

1 These results have not been included but are available upon request.
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Table 2. Average moments of TAR(1) with changing Steady State Vectors.

Steady State Vector
[π 1−π]

δ Mean Stdev Skewness Kurtosis Criteria =
∑2

i=1πiln|βi|

[0.90 0.10] 0 0.0001 1.0544 −0.0012 3.306 −∞
[0.90 0.10] 0.01 −0.0007 1.0552 0.0004 3.311 −4.1437
[0.90 0.10] 0.03 0.0001 1.0583 −0.0008 3.336 −3.1529
[0.90 0.10] 0.05 0.0007 1.0608 −0.0006 3.362 −2.6913
[0.90 0.10] 0.10 0.0007 1.0714 −0.0007 3.442 −2.0628

[0.80 0.20] 0 0.0004 1.118 −0.002 3.597 −∞
[0.80 0.20] 0.01 −0.0000 1.121 −0.0007 3.630 −3.6821
[0.80 0.20] 0.03 0.0001 1.128 −0.0016 3.705 −2.7993
[0.80 0.20] 0.05 0.0005 1.134 0.003 3.762 −2.3868
[0.80 0.20] 0.10 0.0001 1.152 0.0003 3.967 −1.8230

[0.60 0.40] 0 0.0004 1.291 −0.003 4.195 −∞
[0.60 0.40] 0.01 −0.0011 1.300 −0.001 4.277 −2.7591
[0.60 0.40] 0.03 −0.0001 1.316 −0.005 4.421 −2.0921
[0.60 0.40] 0.05 −0.0007 1.339 −0.002 4.660 −1.7779
[0.60 0.40] 0.10 −0.0004 1.400 0.002 5.410 −1.3434

[0.50 0.50] 0 0.0017 1.413 0.0026 4.470 −∞
[0.50 0.50] 0.01 −0.0004 1.428 −0.0042 4.612 −2.2976
[0.50 0.50] 0.03 −0.0006 1.460 −0.0001 4.915 −1.7385
[0.50 0.50] 0.05 −0.0004 1.494 −0.0021 5.302 −1.4735
[0.50 0.50] 0.10 0.001 1.601 0.0227 6.720 −1.1036

Table 2 reports the first four moments of the simulated series along with the stationary criterion. Each row
corresponds to 2000 threshold autoregressive simulations with Markov triggers, 10,000 observations long; columns
3–6 report average moments.

We also plotted sample distributions for δ = 0 and δ = 0.10 for each set of steady-state
vectors (Figures 3–6) and carried out quintile analysis by calculating the weights in the distribution
corresponding to the quintile values of a normal distribution, i.e., we found P(yt) < q1, q1 < P(yt) <
q2, q2 < P(yt) < q3, q3 < P(yt)< q4, and P(yt) >q4, where qi corresponds to the normal distribution’s
quintile values. We note that tail probabilities, i.e., those corresponding to the 1st and 5th normal
quintile values, go up as the steady-state probabilities for the non-stationary state go up. They are also
dependent on the value of δ, and as we increase explosivity in the non-stationary state (by increasing δ),
tail probabilities increase and the distributions moves farther away from a normal. The symmetry of
the distribution is also reflected in these probabilities.

The results above depend only on the steady-state vector
[

π
1−π

]
and not on the transition

matrix (the dynamic path) that generates this steady-state vector. We note that all series generated this
way have excess kurtosis due to the presence of a non-stationary state.2 Below, we simulate probability
density functions for some of the cases considered in Table 2. The graphs only report the distribution
for δ = 0 and δ = 0.10, so we can analyze how far the distribution moves from a normal as we increase
δ and increase the probability of the non-stationary part of the distribution. We also draw a comparison
with a normal distribution for illustrative purposes.

It is worth mentioning at this point that δ = 0.10 may not present as interesting an empirical case as
say δ = 0.01 or δ = 0.03. In empirical work (e.g., Ahmed and Satchell 2018), estimates have suggested
that even with an explosive state in a threshold autoregressive model, the δ of the explosive state from
the random walk state does not extend beyond 0.03. Our analysis is thus meant to provide a graphical
view of how the distribution evolves as δ is varied, and this is most obvious when considering the two
extreme values. Distributional analysis for other values was also considered and is available upon

2 We have checked that the kurtosis exist by verifying that 1 − ∑2
j=1 π jβ4

j < 0. Indeed, for our most extreme
case (π1 = 0.5, pi2 = 0.5, β1 = 0.10, β2 = 1.1), the kurtosis does exist as the criterion for its existence is satisfied:
1−∑2

j=1 π jβ4
j = 0.7321.
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request. While results for other values of δ follow in the same direction as those considered here, the
differences are less stark as would be expected. For researchers interested in modelling non-stationary
behavior using threshold auto-regressions, a value of δ < 0.03 may be more appropriate.

From Figure 3a,b, we can see that when the stationary state is dominant (π = 0.90), the distribution
appears very close to a normal distribution, even if δ is increased from 0 to 0.10. Contrast this distribution
with Figure 6a,b, where the stationary and non-stationary states occur with equal probability. The
distributions in Figure 6a,b are significantly leptokurtic, with tail probabilities of 25.2% and 26.2%,
respectively, as opposed to tail probabilities of 20.8% and 21% in Figure 3a,b, respectively.

 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
20.81% 19.47% 19.41% 19.53% 20.78% 

(a) 

 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
21.00% 19.35% 19.23% 19.38% 21.03% 

(b) 

Figure 3. (a) Simulated Distributions for TAR(1) with π1 as the steady state vector and δ = 0.
(b) Simulated Distributions for TAR(1) with π1 as the steady state vector and δ = 0.10.
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These results are interesting, particularly for those relying on DSGE models. In finance, asset
prices often exhibit locally non-stationary behavior, which leads to leptokurtosis in the series. Similarly,
macroeconomists often consider different shock mechanisms in DSGE models. The results in this article
will assist macroeconomists in considering shock processes that follow threshold auto-regressions with
a non-stationary state. Since we have outlined a procedure for deriving analytical expressions, this
would enable macroeconomists to analyze locally explosive shock processes which nevertheless are
stationary overall and facilitate the implementation of numerical solutions.

 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
21.67% 18.95% 18.73% 18.94% 21.71% 

(a) 

 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
22.06% 18.70% 18.46% 18.70% 22.08% 

(b) 

Figure 4. (a) Simulated Distributions for TAR(1) with π2 as the steady state vector and δ = 0.
(b) Simulated Distributions for TAR(1) with π2 as the steady state vector and δ = 0.10.
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Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
23.84% 17.58% 17.12% 17.61% 23.85% 

(a) 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
25.58% 17.11% 16.63% 17.11% 24.56% 

( ) 

Figure 5. (a) Simulated Distributions for TAR(1) with π3 as the steady state vector and δ = 0.
(b) Simulated Distributions for TAR(1) with π3 as the steady state vector and δ = 0.10.
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Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
25.16 16.73 16.16 16.74 25.21 

(a) 

 

 

Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 
26.17 16.10 15.48 16.10 26.17 

(b) 

Figure 6. (a) Simulated Distributions for TAR(1) with π4 as the steady state vector and δ = 0.
(b) Simulated Distributions for TAR(1) with π4 as the steady state vector and δ = 0.10.

5. Conclusions

In this article, we have derived formulae for characteristic functions for threshold autoregressive
models of order 1, which have a Markovian state-switching variable. In doing so, we have not only
improved the results first considered in Timmermann (2000), but have also generalized the formulae to
a great degree. These formulae will allow readers, if they are so inclined, to derive analytical moments
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for TAR models in this class for a range of different error specifications. We believe that these will have
applications in both finance and applied macroeconomics, given increasing interest in these models.

Considering a special case of interest, we have also shown using simulation analysis that the
existence of a non-stationary state in a TAR model can cause the distribution of a particular series to
deviate significantly from normality. The further away the non-stationary state moves from a random
walk, the farther away the distribution is from that of a normal. Models for asset prices often consider
a mixture of stationary and non-stationary states, and we believe that this simulation analysis will
aid researchers in better understanding the behavior of asset prices that go through locally explosive
states. In Sections 1 and 2, we have further outlined how our results may be applicable to applied
macroeconomic and finance literatures.

Indeed, articles like Ahmed and Satchell (2018) would have found these results useful. While
Ahmed and Satchell (2018) provided an empirical example to estimate market efficiency using a
threshold autoregressive model, they were unable to calculate means and variances for their series.
Through the results in our article, they would have been able to compare the two asset price series
using well-known metrics in finance, such as Sharpe ratios. Similarly, any researchers modelling asset
prices through threshold autoregressive models with a Markov-switching variable will be able to
calculate moments and provide a more holistic narrative.

Furthermore, the contributions in the article will allow researchers to consider non-normal
distributions for asset price series. Normality or log-normality is often assumed in the asset pricing
literature to allow derivation of analytical expressions at the cost of accuracy. As we have shown, not
only are threshold autoregressive models better at capturing asset pricing-like behavior, but they also
allow for analytical solutions that can be useful in helping us better understand asset pricing behavior.

Another avenue worth considering from a statistical point of view will be to consider relevant
moment-generating functions for the error process, and analyzing the resulting distributions for the
underlying process, which we have referred to as the price process. Whilst we have considered the
standard normal and Poisson distributions, future research could consider other distributions, which
may inform future Finance and Economics research.

Thus, our article makes significant contributions to the existing literature on TAR models and
offers insights into how such models may be used in applied economics and finance.
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Abstract: Model selection and model averaging are popular approaches for handling modeling
uncertainties. The existing literature offers a unified framework for variable selection via penalized
likelihood and the tuning parameter selection is vital for consistent selection and optimal estimation.
Few studies have explored the finite sample performances of the class of ordinary least squares (OLS)
post-selection estimators with the tuning parameter determined by different selection approaches.
We aim to supplement the literature by studying the class of OLS post-selection estimators. Inspired
by the shrinkage averaging estimator (SAE) and the Mallows model averaging (MMA) estimator,
we further propose a shrinkage MMA (SMMA) estimator for averaging high-dimensional sparse
models. Our Monte Carlo design features an expanding sparse parameter space and further
considers the effect of the effective sample size and the degree of model sparsity on the finite
sample performances of estimators. We find that the OLS post-smoothly clipped absolute deviation
(SCAD) estimator with the tuning parameter selected by the Bayesian information criterion (BIC)
in finite sample outperforms most penalized estimators and that the SMMA performs better when
averaging high-dimensional sparse models.

Keywords: Mallows criterion; model averaging; model selection; shrinkage; tuning parameter choice

1. Introduction

Model selection and model averaging have long been the competing approaches in dealing with
modeling uncertainties in practice. Model selection estimators help us search for the most relevant
variables, especially when we suspect that the true model is likely to be sparse. On the other hand,
model averaging aims to smooth over a set of candidate models so as to reduce risks relative to
committing to a single model.

Uncovering the most relevant variables is one of the fundamental tasks of statistical learning,
which is more difficult if modeling uncertainty is present. The class of penalized least squares
estimators have been developed to handle modeling uncertainty. Fan and Li (2006) laid out a unified
framework for variable selection via penalized likelihood.

Tuning parameter selection is vital in the optimization of the penalized least squares estimators
for achieving consistent selection and optimal estimation. To select the proper tuning parameter,
the existing literature offers two frequently applied approaches, which are the cross-validation (CV)
approach and the information criterion (IC)-based approach. Shi and Tsai (2002) have shown that the
Bayesian information criterion (BIC), under certain conditions, can consistently identify the true model
when the number of parameters and the size of the true model are both finite. Wang et al. (2009)
further proposed a modified BIC for tuning parameter selection when the number of parameters
diverges with the increase in the sample size.

Although most of the penalized least squares estimators such as the adaptive least absolute
shrinkage and selection operator (AdaLASSO) by Zou (2006), the smoothly clipped absolute deviation
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penalty (SCAD) estimator by Fan and Li (2001), and the minimax concave penalty (MCP) estimator
by Zhang (2010) have been researched with well-documented finite sample performances, few
studies have focused on the finite sample performances of the class of ordinary least squares (OLS)
post-selection estimators with the tuning parameter choice determined by different tuning parameter
selection approaches.

Despite decent selection performance from the current penalized least squares estimators, there is
not yet a unified approach in estimating the distribution of such estimators, due to the complicated
constraints and penalty functions. Knight and Fu (2000), Pötscher and Leeb (2009) and Pötscher and
Schneider (2009) investigated the distributions of LASSO-type and SCAD estimators and concluded
that they tend to be highly non-normal. Hansen (2014) stated that the distribution for model selection
and model averaging estimators are highly non-normal but routinely ignored. This ushered in the
development of the class of post-selection estimators such as the OLS post-LASSO estimator by Belloni
and Chernozhukov (2013). Such a class of OLS post-selection estimators avoids the complicated
constraints and penalty functions when building inferences.

Model averaging is applied to hedge against the risks stemming from the possible specification
errors of a single model. For this paper, we attempt to combine the model selection and model
averaging approaches to deal with modeling uncertainty. Therefore, inspired by the shrinkage
averaging estimator (SAE) by Schomaker (2012) and the Mallows model averaging (MMA) criterion by
Hansen (2007), we further propose a shrinkage Mallows model averaging (SMMA) estimator to reduce
the asymptotic risks in high-dimensional sparse models from possible specification errors. Briefly,
the existing model averaging methods lack a systematic rule in selecting candidate models, while
penalty estimation methods are sensitive to the choice of tuning parameters. The shortcomings of
these two methods motivate us to propose our SMMA estimator, which effectively combines these two
methods to address such weaknesses. That is, our estimator provides a data-driven approach to select
the candidate models for averaging, while at the same time, the usage of a set of data-driven tuning
parameters relieves the sensitivity problem of the shrinkage estimators. Finite sample performances
from the SMMA will be compared with some of the existing model averaging estimators.

The Monte Carlo design is similar to that of Wang et al. (2009), which features an expanding sparse
parameter space as the sample size increases. Our Monte Carlo design further considers the effect of
changes in the effective sample size and the degree of model sparsity on the finite sample performances
of model selection and model averaging estimators. We find that the OLS post-SCAD(BIC) estimator
in finite samples outperforms most of the current penalized least squares estimators. In addition,
the SMMA performs better given sparser models. This supports the use of the SMMA estimator when
averaging high dimensional sparse models.

The rest of the paper is organized as follows. Section 2 gives a brief review of the existing model
selection and model averaging estimators in the literature. Section 3 introduces our proposed SMMA
estimator. Section 4 reports the finite sample performances of the OLS post-selection estimators and
compares the finite sample performance of the SMMA with those of the existing model averaging
estimators. Section 5 concludes.

2. Literature Review

In this section, we will review some of the frequently applied model selection and model averaging
estimators in the existing literature. We start by defining a simple linear model from which the
corresponding model selection and model averaging estimators will be defined, respectively, in the
following subsections. Consider a simple linear model given by

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (1)

where Xi is a p × 1 vector of exogenous regressors, and β is a p × 1 parameter vector with only p0

number of nonzero parameters. We further assume that p0 < p and that the error term εi ∼ i.i.d (0, σ2).

45



JRFM 2019, 12, 109

The literature on model selection and model averaging is large and continues to grow with time. Our
review below is limited to the most frequently used model selection and model averaging estimators.

2.1. Model Selection

The traditional best subsets approach predating the class of penalized least squares estimators
is generally computationally costly and highly unstable due to the discrete nature of the selection
algorithm, as pointed out in Fan and Li (2001). The subsequent stepwise approach, which is essentially
a variation of the best subsets approach, frequently fails to generate a solution path that leads to
the global minimum. In addition, both approaches assume all variables are relevant, even if the
underlying true model might have a sparse representation. Then came the class of penalized least
squares estimators, which minimize the loss function subjected to some forms of penalty. Some of the
frequently applied penalized least squares estimators include the ridge estimator, the LASSO-type
estimators, the SCAD estimator, and the MCP estimator.

Hoerl and Kennard (1970) introduced the original ridge estimator with an l2 penalty. The ridge
estimator is defined as

β̂ridge = argmin
β

‖y − Xβ‖2 + λ
p

∑
k=1

β2
k, (2)

where λ is the so-called tuning parameter.
Tibshirani (1996) introduced an l1 -penalty and constructed the LASSO estimator as follows:

β̂LASSO = argmin
β

‖y − Xβ‖2 + λ
p

∑
k=1

|βk|. (3)

Compared to the best subsets approach, where all possible subsets need to be evaluated for
variable selection, both of the ridge and LASSO estimators conduct the selection and estimation
of the parameters simultaneously, thus gaining computational savings. However, both estimators
fail to satisfy the oracle properties, due to inconsistent selection and asymptotic bias. The oracle
properties describe the ability of an estimator to perform the same asymptotically, as if we knew the
true specification of the model beforehand. In the high-dimensional parametric estimation literature,
an oracle efficient estimator is therefore able to simultaneously identify the nonzero parameters and
achieve optimal estimation of the nonzero parameters. However, Fan and Li (2001) and Zou (2006),
among others, questioned whether the LASSO satisfies the oracle properties.

Thus, various LASSO-type estimators have been developed since then to overcome the selection
bias of the original ridge and LASSO estimator. Zou and Hastie (2005) introduced the elastic net
estimator by averaging between the l1 penalty and l2 penalty. Specifically, the elastic net estimator is
defined as

β̂ElasticNet = argmin
β

‖y − Xβ‖2 + λ1

p

∑
k=1

|βk|+ λ2

p

∑
k=1

β2
k, (4)

where depending on the choices of the two tuning parameters, λ1 and λ2, the elastic net
estimator combines the properties of the ridge estimator and the LASSO estimator and enjoys the
oracle properties.

Zou (2006) further introduced a LASSO-type estimator, namely the adaptive LASSO estimator,
which is defined as

β̂AdaLASSO = argmin
β

‖y − Xβ‖2 + λ
p

∑
k=1

ŵk|βk|, (5)

where the adaptive weights ŵk = |β̂∗
k |
−γ

with γ > 0, and β̂∗ denotes any root-n consistent estimator
for β. The adaptive LASSO estimator also fulfills the oracle properties.
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Fan and Li (2001) proposed the smoothly clipped absolute deviation (SCAD) penalty estimator,
which features a symmetric non-concave penalty function that leads to sparse solutions. The SCAD
estimator is defined as

β̂SCAD = argmin
β

‖y − Xβ‖2 +
p

∑
k=1

F(|βk|; λ, γ), (6)

where the continuously differentiable penalty function F(|β|; λ, γ) is defined as

F(|β|; λ, γ) =

⎧⎪⎪⎨⎪⎪⎩
λ|β| if |β| ≤ λ
2γλ|β|−|β|2−λ2

2γ−1 if γλ > |β| > λ
λ2(γ+1)

2 if |β| ≥ γλ

, (7)

and γ defaults to 3.7 following the recommendation from Fan and Li (2001).
Zhang (2010) introduced the minimax concave penalty (MCP) estimator, which produces nearly

unbiased variable selection. The MCP estimator is defined as

β̂MCP = argmin
β

‖y − Xβ‖2 +
p

∑
k=1

F(|βk|; λ, γ), (8)

where the continuously differentiable penalty function F(|β|; λ, γ) is defined as

F(|β|; λ, γ) =

⎧⎨⎩λ|β| − |β|2
2γ , if |β| ≤ λγ

1
2 γλ2, if |β| > λγ

, (9)

and γ defaults to 3, as suggested by Breheny and Huang (2011).

2.1.1. Choice of Tuning Parameter

Tuning parameters play a crucial role in the optimization problem for the aforementioned
penalized least squares estimators to achieve consistent selection and optimal estimation. There exists
an extensive debate in the model selection literature regarding the proper choice for the tuning
parameter. Two of the frequently applied approaches used to select the tuning parameter are the
n-fold cross-validation (CV), or the generalized cross-validation (GCV) approach, and the information
criterion (IC)-based approach. In practice, the CV approach could also be computationally costly for
big datasets.

The traditional IC approaches have been modified for the selection of the tuning parameters in
the penalized least squares framework. Shi and Tsai (2002) have shown that the BIC, under certain
conditions, can consistently identify the true model when the number of parameters and the size of
the true model are finite. For scenarios where the number of parameters diverges with the increase in
the sample size, Wang et al. (2009) proposed a modified BIC for the selection of the tuning parameter.
This criterion yields consistent selection and reduces asymptotic risks. Fan and Tang (2013) further
introduced a generalized information criterion (GIC) for determining the optimal tuning parameters in
penalty estimators. They proved that the tuning parameters selected by such a GIC produce consistent
variable selection and generate computational savings.

Regarding the generation of the candidate tuning parameters in the penalized likelihood
framework, Tibshirani et al. (2010) first introduced the cyclical coordinate descent algorithm to compute
the solution path for generalized linear models with convex penalties such as LASSO and Elastic Net.
This algorithm helps generate a set of candidate tuning parameters to facilitate the selection of the
optimal tuning parameter. Breheny and Huang (2011) further applied this algorithm to calculate the
solution path for non-convex penalty estimators such as the SCAD and MCP estimators. They compared
the performances of some of the popular penalty estimators such as the LASSO, SCAD, and MCP
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estimators for variable selection in sparse models. Their simulation study and data examples indicated
that the choice of the tuning parameter greatly affects the outcome of the variable selection.

2.1.2. Post-Selection Estimators

Despite decent selection performance from the current mainstream penalized least squares
estimators, there is not yet a unified approach in estimating the distribution of such estimators, due to
the complicated constraints and penalty functions. Knight and Fu (2000), Pötscher and Leeb (2009)
and Pötscher and Schneider (2009), among others, investigated the distributions of LASSO-type and
SCAD estimators and concluded that they tend to be highly non-normal. This ushered in the burgeoning
development in post-model-selection inferential methods. Hansen (2014) stated that the distributions
for the model selection and model averaging estimators are highly non-normal but routinely ignored
in practice. Belloni and Chernozhukov (2013) proposed the OLS post-LASSO estimator, which, under
certain assumptions, outperforms the LASSO estimator in reducing asymptotic risks associated with
high-dimensional sparse models. The OLS post-LASSO estimator utilizes the LASSO estimator as a
variable selection operator in the first step and reverts back to the OLS estimator to produce parameter
estimates for the selected model in the second step. Such an estimator avoids the complicated penalty
functions in estimating the distribution of the estimator in the second step and thus yields easier access
to inference that is solely based on the OLS estimator. Inspired by the OLS post-LASSO estimator,
other post-selection estimators could be constructed with the tuning parameters in the penalty function
selected by either the BIC or GCV approach.

For example, an OLS post-SCAD(BIC) estimator can be constructed with the tuning parameter in
the penalty function selected by the BIC approach. More specifically, let Λ = {λ1, . . . , λq} be the set of
candidate tuning parameters and |Λ| = q with q ∈ Z+ .

Given any λ ∈ Λ and γ defaulting to 3.7, the SCAD estimator from Equation (6) evaluated at
λ gives

β̂λ = argmin
β

‖y − Xβ‖2 +
p

∑
k=1

F(|βk|; λ). (10)

The BIC evaluated at this λ is defined as BICλ, which is given by

BICλ = log

(∥∥∥y − Xβ̂λ
∥∥∥2

n

)
+ |Sλ| log(n)

n
Cn, (11)

where the values for λ originate from an exponentially decaying grid as in Tibshirani et al. (2010).
Let Sλ denote the set of nonzero parameters of the model when evaluated at λ, and more specifically,
Sλ = {k : β̂λ

k �= 0}. For any set S, let |S| represent its cardinality. Then, |Sλ| gives the number of
nonzero parameters of the model when evaluated at λ, and Cn is a constant. Shi and Tsai (2002) have
shown that the above BIC with Cn = 1 consistently identifies the true model when both p and p0

are finite.
The estimate of the optimal tuning parameter is denoted by λ̂BIC, which is the solution to the

following problem:
λ̂BIC = argmin

λ∈{λ1,...,λq}
BICλ. (12)

Consequently, β̂λ̂BIC
minimizes the SCAD penalized objective function given by Equation (6); i.e.,

β̂λ̂BIC
= argmin

β

‖y − Xβ‖2 +
p

∑
k=1

F(|βk|, λ̂BIC). (13)

48



JRFM 2019, 12, 109

Denoting S
λ̂BIC = {k : β̂λ̂BIC

k �= 0}, we define the OLS post-SCAD(BIC) estimator as

β̂BIC = argmin
β

∥∥∥∥∥∥y − ∑
l∈S

λ̂BIC

Xl βl

∥∥∥∥∥∥
2

, (14)

where Xl is an n× 1 vector, which is the lth column of the predictor matrix X, and βl is the lth parameter.
In the same vein, other OLS post-selection estimators such as the OLS post-MCP (BIC or GCV)

estimator could also be constructed for comparing the finite sample performances. The OLS post-MCP
(BIC or GCV) estimator minimizes, respectively, the BIC and the GCV in the estimation for the optimal
tuning parameter. It is worth pointing out that for the penalized estimators that are already oracle
efficient, post-selection estimators such as the OLS post-SCAD estimator do not outperform the SCAD
estimator asymptotically. That being said, there could be differences in the finite sample performances
between the penalized least squares estimators and the OLS post-selection estimators. Even for the
same estimator, different tuning parameter selection approaches could also yield different selection
outcomes.

2.1.3. Measures of Selection and Estimation Accuracy

To evaluate the performance of the shrinkage estimators, various measures for variable selection
and estimation accuracy have been introduced in the literature. Wang et al. (2009) used the model size
(MS), the percentage of the correctly identified true model (CM), and the median of relative model
error (MRME) to evaluate the finite sample performances of the adaptive LASSO and SCAD estimators
with tuning parameters selected either by the GCV or BIC approach.

The model size, MS, for the true model is defined as the number of nonzero parameters or
|S0| = p0, where p0 is the dimension for the nonzero parameters. For any model selection procedure,
ideally, the estimated model size |Ŝ| = p̂0 should tend to p0 asymptotically, and Ŝ = {k : β̂k �= 0}.
This measure evaluates the precision with which the said selection procedure estimates the number of
nonzero parameters from the data. In the context of Monte Carlo simulations, the average is taken
over all of the estimated MSs, which are generated per each round of simulation.

The correct model CM is revealed as the true model if the said model selection procedure
accurately yields the right nonzero parameters. The CM measure is defined as

CM =
{

β̂k �= 0 : k ∈ S0, β̂k = 0 : k ∈ S0
c
}

. (15)

An estimation of the model is only considered correct if the above criterion is satisfied, where
all of the non-zero and zero parameters are correctly identified. The higher the correction rate over a
number of simulation runs, the better the performance for an estimator.

The model prediction error (ME) for a model selection procedure is defined as

ME = (β̂ − β)TE[XTX](β̂ − β), (16)

where β̂ represents any estimator such as a penalized least squares estimator. The relative model error
(RME) is the ratio of the model prediction error to that of the naive OLS estimator of the model given
by Equation (1). For example, the RME for the SCAD estimator is given by

RME =
(β̂SCAD − β)TE[XTX]((β̂SCAD − β)

(β̂OLS − β)TE[XTX]((β̂OLS − β)
. (17)

For a given number of Monte Carlo replications, the median of the RME (MRME) is used to
evaluate the finite sample performance of the said model selection estimator.
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2.2. Model Averaging

On the other hand, an alternative to model selection in handling modeling uncertainties is model
averaging. In general, the model averaging estimator is defined as

β̂MA =
S
∑
s=1

ws β̂s, (18)

where ws represents the weight assigned to the sth model of an S number of candidate models, and
w =

[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+, such that

HS =
{

w ∈ [0, 1]S :
S
∑
s=1

ws = 1
}

. (19)

Over time, various estimators have been proposed for estimating the weight vector, w,
for averaging the candidate models. Buckland et al. (1997) proposed the smoothed information
criterion model averaging estimator, where the weight for the sth model, ws, can be estimated as

ŵIC
s =

exp(−Is/2)

∑S
s=1 exp(−Is/2)

, (20)

where Is, the information criterion evaluated at the sth model, is defined as

Is = −2log(L̂s) + Ps, (21)

with L̂s being the maximized likelihood value and Ps being the penalty term that takes the form of 2ps

for the smoothed Akaike information criterion (S-AIC) and ln(n)ps for the smoothed BIC (S-BIC).
Hansen (2007) proposed a Mallows model averaging (MMA) estimator whose weight choice is

estimated as

ŵMMA = argmin
w∈HS

(
y − μ̂(w)

)T(
y − μ̂(w)

)
+ 2σ2k(w), (22)

where the model averaging estimator μ̂(w) is defined as

μ̂(w) =
S
∑
s=1

wsPsy = P(w)y, (23)

and the projection matrix for model s is defined as

Ps = Xs
(
XT

s Xs
)−1XT

s . (24)

Moreover, the effective number of parameters, k(w), is defined as

k(w) =
S
∑
s=1

wsks, (25)

where ks equals the number of parameters in model s. The σ2 term can be estimated using the variance
of a larger model in the set of the candidate models according to Hansen (2007).

Under certain assumptions, Hansen (2007) showed that the MMA minimizes the mean squared
prediction error (MSPE), and Gao et al. (2016) showed that the MMA can produce smaller mean
squared errors (MSEs) than the OLS estimator. Wan et al. (2010) further relaxed the assumptions of
discrete weights and nested regression models that are required by the asymptotic optimality conditions
for the MMA to continuous weights without imposing ordering on the predictors.
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Hansen and Racine (2012) proposed the heteroskedasticity-consistent jackknife model averaging
(JMA) estimator. The weight choice for the JMA estimator is defined as

ŵJMA = argmin
w∈HS

1
n

ε̃(w)T ε̃(w), (26)

where ε̃(w) = ∑S
s=1 ws ε̃s with ε̃s being the leave-one-out residual vector from the sth model.

Schomaker (2012) further explored the role of the tuning parameters in the shrinkage averaging
estimator (SAE) post model selection. The SAE estimates β by averaging over a set of candidate
shrinkage estimators, β̂λ, which are calculated with a sequence of tuning parameters. For example,
an SAE that averages over an S number of candidate β̂LASSO

λs
from an S-fold cross-validation procedure

can be defined as

β̂SAE =
S
∑
s=1

wλs β̂LASSO
λs

, (27)

where λs ∈ {λ1, . . . , λS} as one of the S competing tuning parameters. The weights for the SAE are
calculated as follows:

ŵSAE = argmin
w∈HS

1
n

ε̃(w)T ε̃(w), (28)

where ε̃(w) = ∑S
s=1 wλs ε̃s(λs) with ε̃s(λs) being the residual vector for the sth cross-validation.

In this paper, we aim to explore the possibility of combining the model selection and model
averaging methods in dealing with modeling uncertainty. We expect that the specifications of the
candidate models guided by the appropriate choice of tuning parameter could significantly reduce
modeling uncertainty given sparse models.

3. The Shrinkage MMA Estimator

Inspired by the shrinkage averaging estimator (SAE) and the Mallows model averaging (MMA)
estimator, we further propose a shrinkage Mallows model averaging (SMMA) estimator to hedge
against the possible specification errors from model selection. The SMMA estimator is a two-stage
estimator. In the first stage, by applying different penalty estimators introduced in Section 2 with
optimal tuning parameters selected via the GCV or BIC method, we obtain a sequence of candidate
models. In the second stage, we apply the MMA to estimate β. The SMMA estimator compliments
the class of penalty estimators by allowing for more than one model selection outcome rather than
committing to a single model. In addition, this estimator also extends the current MMA framework
by introducing a reasonable way to select the set of candidate models to be averaged. The SMMA
is especially helpful for averaging high-dimensional candidate models when the generation of such
a set of candidate models would be computationally costly if not done via shrinkage approaches.
It would be difficult for the traditional MMA to exhaust all possible subsets of candidate models
for a high-dimensional dataset. This estimator also builds on the SAE by incorporating the tuning
parameter optimization problem, which is crucial to the variable selection process for each candidate
model. This estimator is essentially a variation of the MMA estimator, so the asymptotic properties
should be similar to those of the MMA.

Lehrer and Xie (2017) briefly mentioned the possibility of having a set of candidate
models first shrunk by the LASSO before applying MMA. There is a clear distinction between
Lehrer and Xie (2017) and our idea, since the candidate models for averaging are subjectively chosen in
Lehrer and Xie (2017), which is the same as the traditional literature on the MMA estimator. However,
the SMMA starts with a general, large model and applies different penalty methods to select the
candidate models for averaging.
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Below we explain the SMMA estimator in detail. Let ΛOpt be the set of optimal tuning parameters
selected either by the BIC or GCV for the model selection procedures introduced in Section 2, and a
typical element in ΛOpt is denoted as λ̂

Opt
s . Therefore ΛOpt is defined as

ΛOpt =
{

λ̂
Opt
1 , . . . , λ̂

Opt
s , . . . , λ̂

Opt
S

}
, (29)

where |ΛOpt| = S .
The SMMA estimator is solved as follows:

β̂SMMA(w; ΛOpt) =
S
∑
s=1

ŵs β̂(λ̂
Opt
s ), (30)

where the weight vector is estimated by the MMA criterion,

ŵ = argmin
w∈HS

(
y − μ̂(w; ΛOpt)

)T(
y − μ̂(w; ΛOpt)

)
+ 2σ2k(w; ΛOpt), (31)

and w =
[
w1, w2 . . . , wS

]
is a weight vector in the unit simplex in RS with S ∈ Z+ such that

HS =
{

w ∈ [0, 1]S :
S
∑
s=1

ws = 1
}

. (32)

The model averaging estimator μ̂(w) is defined as

μ̂(w; ΛOpt) =
S
∑
s=1

wsP(λ̂Opt
s )y = P(w; ΛOpt)y, (33)

where the projection matrix for model s is defined as

P(λ̂Opt
s ) = Xλ̂

Opt
s
(
Xλ̂

Opt
s

T
Xλ̂

Opt
s
)−1Xλ̂

Opt
s

T
, (34)

and the estimator for model s is given by

β̂(λ̂
Opt
s ) =

(
Xλ̂

Opt
s

T
Xλ̂

Opt
s
)−1Xλ̂

Opt
s

T
y. (35)

Let L index the largest model in dimension from the set of the candidate models, i.e.,

L = argmax
s∈S

|β̂(λ̂Opt
s )|, (36)

where |β̂(λ̂Opt
s )| equals the number of nonzero values in β̂(λ̂

Opt
s ).

Following Hansen (2007), the σ2 term will be estimated by σ̂2
L, which is given below:

σ̂2
L =

(y − XL β̂L)
T(y − XL β̂L)

n − kL
. (37)

The effective number of parameters k(w; ΛOpt) is defined as

k(w; ΛOpt) =
S
∑
s=1

wsk(λ̂Opt
s ), (38)

where k(λ̂Opt
s ) =|β̂(λ̂Opt

s )|.
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4. Monte Carlo Simulations

This section assesses the performance of the existing model selection and averaging estimators,
including the SMMA estimator proposed in this paper, via a small Monte Carlo simulation experiment.
Our data generating process (DGP) is

yi = XT
i β + εi, ∀i = 1, 2, . . . , n, (39)

where β is a p × 1 parameter vector with only p0 number of nonzero parameters.
We further assume that p0 < p and that the error term εi ∼ i.i.dN (0, 1). In addition, Xi is

randomly drawn from a p-dimensional multivariate normal distribution with zero mean and a
co-variance matrix as follows

Cov(Xl , Xj) =

{
1, if l = j

0.5, otherwise
. (40)

To investigate the effect of the number of parameters to sample size ratio (p/n) and the degree
of model sparsity (p0/p) on the performance of different estimation methods, we consider two data
examples in this section. The data example 1 from Section 4.1 considers the case where p/n is constant
while p0/p is decreasing. The data example 2 in Section 4.2 simulates the scenario where p0/p is
constant but p/n decreases as n increases.

4.1. Example 1. Constant p/n Ratio

Similar to the example given in Fan and Peng (2004), we set β =
(

11
4 ,− 23

6 , 37
12 ,− 13

9 , 1
3 , 0, . . . , 0

)T ∈
Rp with p = n × α for some constant α. The nonzero parameters, β0 , are defined as

β0 =
(11

4
,−23

6
,

37
12

,−13
9

,
1
3

)T
. (41)

We fix n = 1000 and allow α to vary in the interval of
[
0.02, 0.98

]
. Therefore, we consider a

case with an increasing number of redundant regressors while the true model remains fixed with
5 nonzero regressors as α increases from .02 to 0.98, where α = p/n ∈ {0.02, 0.05, 0.1, 0.5, 0.98} and
p ∈ {20, 50, 100, 500, 980}. If we measure the degree of sparsity by δ = 1 − p0/p, we see that the model
becomes sparser for larger α and p0/p ∈ {0.25, 0.1, 0.05, 0.01, 0.005}. Note that this design allows us to
further consider cases where the number of parameters drastically approaches the sample size.

4.2. Example 2. Decreasing p/n Ratio

The second example is similar to Wang et al. (2009), where the dimension of the true model also
diverges with the dimension of the full model as n increases. More specifically, p = [7n

1
4 ] where [a]

stands for the largest integer no larger than a and the size of the true model |S0| = p0 = [p/3] with
β0 ∼ U(0.5, 1.5). For sample size n ∈ {100, 200, 400, 800, 1600}, the respective sizes of the full model are
p ∈ {22, 26, 31, 37, 44}, and the respective sizes of the true model are S0 ∈ {7, 8, 10, 12, 14}. The number
of parameters to sample size ratio is p/n ∈ {0.22, 0.13, 0.07, 0.046, 0.027}, and the degree of model
sparsity is δ = 2/3. Different from the example given in Section 4.1, this data example maintains a
constant degree of model sparsity.

4.3. Monte Carlo Results

For the simulation studies, we investigated the finite sample performances of the estimators
introduced in Sections 2 and 3. In addition, we also considered the variants of the aforementioned
penalized estimators with the tuning parameters selected by the BIC rather than the conventional GCV.
To differentiate, we named the OLS post-SCAD with the the tuning parameters selected by the BIC as
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the OLS post-SCAD(BIC) estimator. We used the finite sample performance of the OLS estimator as the
benchmark for those of the model selection and model averaging estimators. For each data example,
a total of 500 simulation replications were conducted.

4.3.1. Model Selection Estimators

The penalized least squares estimators considered in the simulation studies are listed in
Table 1 below.

Table 1. Penalized Estimators.

Estimator

Ridge(GCV) Ridge(BIC)
OLS post-ridge(GCV) OLS post-ridge(BIC)

LASSO(GCV) LASSO(BIC)
OLS post-LASSO(GCV) OLS post-LASSO(BIC)

Elastic net(GCV) Elastic net(BIC)
OLS post-elastic net(GCV) OLS post-elastic net(BIC)

Adaptive LASSO(GCV) Adaptive LASSO(BIC)
OLS post-adaptive-LASSO(GCV) OLS post- adaptive LASSO(BIC)

SCAD(GCV) SCAD(BIC)
OLS post-SCAD(GCV) OLS post-SCAD(BIC)

MCP(GCV) MCP(BIC)
OLS post-MCP(GCV) OLS post-MCP(BIC)

Figures 1 and 2 below present the finite sample performances of the above penalized least squares
estimators with the tuning parameters selected by either GCV or BIC. To level the playing field, each
estimator was supplied with the same set of candidate tuning parameters Λ = {λ1, . . . , λq} as all the
other competing estimators, and |Λ| = q with q ∈ Z+. Since the conventional LASSO, SCAD, and MCP
estimators have already been studied extensively with well-documented finite sample performances,
we turn our focus to the finite sample performances of the class of OLS post-selection estimators.
For the elastic net estimator, the weights for the l1 penalty and l2 penalty were set to 0.5. For a cleaner
representation of comparison and to save space, we choose to report only the first six best-performing
OLS post-selection estimators among those listed in Table 1.

(a) β Root Mean Squared Error (RMSE) (b) Averge model size (MS)

Figure 1. Cont.
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(b) Percentage of correct model (CM) (c) Median of relative model error (MRME)

Figure 1. Example 1 model selection and estimation accuracy.

(a) β RMSE (b) Averge Model Size (MS)

(c) Percentage of Correct Model (CM) (d) Median of Relative Model Error (MRME)

Figure 2. Example 2 model selection and estimation accuracy.
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Table 2 below ranks the first six best-performing OLS post-selection estimators based on the
results from data example 1 and data example 2.

Table 2. Performance ranking for the OLS post-selection estimators.

Ranking Example 1 Example 2

1 OLS post-SCAD(BIC) OLS post-SCAD(BIC)
2 OLS post-MCP(BIC) OLS post-MCP(BIC)
3 OLS post-MCP(GCV) OLS post-MCP(GCV)
4 OLS post-SCAD(GCV) OLS post-SCAD(GCV)
5 OLS post-LASSO(BIC) OLS post-adaptive-LASSO(BIC)
6 OLS post-adaptive-LASSO(BIC) OLS post-adaptive-LASSO(GCV)

For both data examples, it is evident from Figures 1 and 2 above that in finite samples, the
OLS post-SCAD(BIC) estimator outperforms the competing estimators consistently by yielding lower
root mean squared error (RMSE) for β and higher selection accuracy. The performance of the OLS
post-SCAD(BIC) is also insensitive to the changes in the p/n ratio and the p0/p ratio. Therefore, as
long as p < n, our findings show that the OLS post-SCAD(BIC) outperforms the competing OLS
post-selection estimators regardless of the effective sample size and degree of model sparsity, which
are controlled by p/n and p0/p, respectively. The finite sample performances of the OLS post-LASSO
and the OLS post-adaptive-LASSO seem to be affected by changes in the degree of model sparsity and
the effective sample size. The simulation results support the conclusion in the literature that the choice
of the tuning parameter does play a vital role in the variable selection outcomes. The findings from the
two data examples above offer some guidance to empirical researchers who are weighing different
approaches for model selection.

4.3.2. Model Averaging Estimators

For the model averaging estimators, we mainly focused on the finite sample performances of
the S-BIC, Hansen’s MMA, SAE(LASSO) with LASSO as the shrinkage method, and the SMMA
estimator proposed in Section 3. The SMMA estimator averages the candidate models produced by
the penalized least squares estimators listed in Table 1. The specifications of the candidate models
are determined by the set of optimal tuning parameters ΛOpt, which consists of the optimal tuning
parameters selected by either the GCV or the BIC approach. For Hansen’s MMA, we only considered
the pure nested subset models due to the fact that all of the possible combinations of subset models are
not computationally feasible given the high-dimensional nature of our data examples. Since in Table 1
there are 24 estimators, which yield 24 candidate models, we also generated 24 candidate models
for the MMA, S-BIC, and SAE(LASSO). These candidate models were generated using the program
developed by Professor Hansen, and the program is available from Professor Hansen’s website. Similar
to Hansen (2007), we evaluated the finite sample performances of the model averaging estimators by
comparing the β RMSE and the adjusted R2 for the final averaged model. Due to the high-dimensional
sparse nature of the DGP, using the adjusted R2 helps us avoid the misleadingly high R2 from including
many more predictors that might have been irrelevant in the first place. The adjusted R2 can also
gauge whether the SMMA could better perform the task of identifying the most relevant regressors,
which is one of the fundamental goals for statistical learning.

Figure 3 above gives the finite sample performances of the model averaging estimators from
both data examples. For data example 1, where the degree of model sparsity increases while the
effective sample size decreases with the increase in the p/n, the SMMA outperforms the MMA in
terms of yielding a relatively lower β RMSE and slightly higher adjusted R2 if p/n < 0.5. As p/n
increases from 0.5 to 0.98, which causes p0/p to further decrease, resulting in a much sparser model,
the SMMA significantly outperforms the competing model averaging estimators in β RMSE and
adjusted R2. The sparser the model and the smaller the effective sample size, the better the SMMA
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performs. This supports the application of the SMMA estimator when averaging high-dimensional
sparse models against modeling uncertainty. Intuitively, a sparser model entails greater modeling
uncertainty, which could result from the lack of a unifying theory in guiding the exact specification of
the underlying model. Therefore, the SMMA can be a viable option for model averaging, especially
for high-dimensional sparse models when it is computationally infeasible to exhaust all possible
combinations of subset models.

For data example 2, where the degree of model sparsity is constant and the p/n decreases as
the sample size n increases, the SMMA still slightly outperforms other model averaging estimators
in β RMSE and adjusted R2. However, the finite sample performances of the SMMA and MMA
estimators tend to be very close as n increases, which indicates rather similar asymptotic properties for
both estimators. As a possible direction for future research, one could consider the derivation of the
asymptotic properties for the SMMA estimator. But this paper focuses on the numerical comparisons
of the SMMA, whose asymptotic properties will be for our future research.

(a) Example 1 β RMSE (b) Example 1 adjusted R2

(c) Example 2 β RMSE (d) Example 2 adjusted R2

Figure 3. Finite sample performance for model averaging estimators.
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5. Conclusions

In this paper, we reviewed some of the conventional model selection and model averaging
estimators, and we further proposed a shrinkage Mallows model averaging (SMMA) estimator. Using a
Monte Carlo study, we compared the finite sample performances of the reviewed model selection and
model averaging estimators. We also investigated the effect of the tuning parameter choice on variable
selection outcomes. We aimed to supplement the existing model selection literature by studying the
finite sample performances of the class of OLS post-selection estimators via different tuning parameter
selection approaches. Our Monte Carlo design further considered the effect of changes in the effective
sample size and the degree of model sparsity on the finite sample performances of model selection
and model averaging estimators.

The results from our data examples suggest that tuning parameter choice plays a vital role in
variable selection and optimal estimation. Given the same tuning parameter selection approach, for the
penalized estimators that are already oracle efficient, the corresponding OLS post-selection estimators
give a rather similar performance. However, for the same penalized estimators, the performances via
different tuning parameter selection approaches are markedly different. The OLS post-SCAD(BIC)
estimator gives the best finite sample performance, based on the data examples in our Monte Carlo
design. The SMMA performs better given sparser models. The sparser the model and the smaller the
effective sample size, the better the SMMA performs. This supports the use of the SMMA estimator
when averaging high-dimensional sparse models against modeling uncertainty. This paper is limited
by the absence of the derivation of the asymptotic properties for the SMMA estimator. We will leave
the derivations of the asymptotic properties for the SMMA estimator to our future studies.

Author Contributions: Both authors contributed to the project formulation and paper preparation.

Funding: This research received no external funding.

Acknowledgments: We thank the anonymous referees for their constructive comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

Belloni, Alexandre, and Victor Chernozhukov. 2013. Least squares after model selection in high-dimensional
sparse models. Bernoulli 19: 521–47. [CrossRef]

Breheny, Patrick, and Jian Huang. 2011. Coordinate descent algorithms for nonconvex penalized regression, with
applications to biological feature selection. The Annals of Applied Statistics 5: 232–53. [CrossRef] [PubMed]

Buckland, Steven T., Kenneth P. Burnham, and Nicole H. Augustin. 1997. Model Selection: An Integral Part of
Inference. Biometrics 53. [CrossRef]

Fan, Jianqing, and Heng Peng. 2004. Nonconcave penalized likelihood with a diverging number of parameters.
The Annals of Statistics 32: 928–61. [CrossRef]

Fan, Jianqing, and Runze Li. 2001. Variable Selection via Nonconcave Penalized Likelihood and Its Oracle
Properties. Journal of the American Statistical Association 96: 1348–60. [CrossRef]

Fan, Jianqing, and Runze Li. 2006. Statistical Challenges with High Dimensionality: Feature Selection in
Knowledge Discovery. arXiv. arXiv:math/0602133.

Fan, Yingying, and Cheng Yong Tang. 2013. Tuning Parameter Selection in High Dimensional Penalized Likelihood.
Journal of the Royal Statistical Society. Series B (Statistical Methodology) 75: 531–52. [CrossRef]

Gao, Yan, Xinyu Zhang, Shouyang Wang, and Guohua Zou. 2016. Model averaging based on leave-subject-out
cross-validation. Journal of Econometrics 192: 139–51. [CrossRef]

Hansen, Bruce. 2007. Least Squares Model Averaging. Econometrica 75: 1175–89.
Hansen, Bruce. 2014. Model averaging, asymptotic risk, and regressor groups. Quantitative Economics 5: 495–530.

[CrossRef]
Hansen, Bruce, and Jeffrey Racine. 2012. Jackknife model averaging. Journal of Econometrics 167: 38–46. [CrossRef]
Hoerl, Arthur E., and Robert W. Kennard. 1970. Ridge Regression: Biased Estimation for Nonorthogonal Problems.

Technometrics 12: 55–67. [CrossRef]

58



JRFM 2019, 12, 109

Knight, Keith, and Wenjiang Fu. 2000. Asymptotics for lasso-type estimators. The Annals of Statistics 5: 1356–78.
[CrossRef]

Lehrer, Steven, and Tian Xie. 2017. Box Office Buzz: Does Social Media Data Steal the Show from Model
Uncertainty When Forecasting for Hollywood? Review of Economics and Statistics 99: 749–55. [CrossRef]

Pötscher, Benedikt M., and Hannes Leeb. 2009. On the Distribution of Penalized Maximum Likelihood Estimators:
The LASSO, SCAD, and Thresholding. Journal of Multivariate Analysis 100: 2065–82.

Pötscher, Benedikt M., and Ulrike Schneider. 2009. On the Distribution of the Adaptive LASSO Estimator. Journal
of Statistical Planning and Inference 139: 2775–90. [CrossRef]

Schomaker, Michael. 2012. Shrinkage averaging estimation. Statistical Papers 53: 1015–34.
Shi, Peide, and Chih-Ling Tsai. 2002. Regression model selection—A residual likelihood approach. Journal of the

Royal Statistical Society Series B 64: 237–52. [CrossRef]
Tibshirani, Robert. 1996. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society.

Series B (Methodological) 58: 267–88. [CrossRef]
Tibshirani, Rob, Trevor Hastie, and Jerome Friedman. 2010. Regularization Paths for Generalized Linear Models

via Coordinate Descent. Journal of Statistical Software 33: 1–22. [CrossRef]
Wang, Hansheng, Bo Li, and Chenlei Leng. 2009. Shrinkage Tuning Parameter Selection with a Diverging Number

of Parameters. Journal of the Royal Statistical Society. Series B (Statistical Methodology) 71: 671–83. [CrossRef]
Wan, Alan T. K., Xinyu Zhang, and Guohua Zou. 2010. Least squares model averaging by Mallows criterion.

Journal of Econometrics 156: 277–83. [CrossRef]
Zhang, Cun-Hui. 2010. Nearly unbiased variable selection under minimax concave penalty. The Annals of Statistics

38: 894–942. [CrossRef]
Zou, Hui, and Trevor Hastie. 2005. Regularization and Variable Selection via the Elastic Net. Journal of the Royal

Statistical Society. Series B (Statistical Methodology) 67: 301–20. [CrossRef]
Zou, Hui. 2006. The Adaptive Lasso and Its Oracle Properties. Journal of the American Statistical Association

101: 1418–29. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

59



Journal of

Risk and Financial
Management

Article

Threshold Stochastic Conditional Duration Model for
Financial Transaction Data

Zhongxian Men 1, Adam W. Kolkiewicz 1 and Tony S. Wirjanto 1,2,*

1 Department of Statistics and Actuarial Science, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada; zhongxianmen@gmail.com (Z.M.); wakolkie@uwaterloo.ca (A.W.K.)

2 School of Accounting and Finance, University of Waterloo, 200 University Avenue West,
Waterloo, ON N2L 3G1, Canada

* Correspondence: twirjant@uwaterloo.ca; Tel.: +1-(519)-888-4567 (ext. 35210)

Received: 15 April 2019; Accepted: 8 May 2019; Published: 14 May 2019

Abstract: This paper proposes a variant of a threshold stochastic conditional duration (TSCD) model
for financial data at the transaction level. It assumes that the innovations of the duration process
follow a threshold distribution with a positive support. In addition, it also assumes that the latent
first-order autoregressive process of the log conditional durations switches between two regimes.
The regimes are determined by the levels of the observed durations and the TSCD model is specified
to be self-excited. A novel Markov-Chain Monte Carlo method (MCMC) is developed for parameter
estimation of the model. For model discrimination, we employ deviance information criteria, which
does not depend on the number of model parameters directly. Duration forecasting is constructed by
using an auxiliary particle filter based on the fitted models. Simulation studies demonstrate that the
proposed TSCD model and MCMC method work well in terms of parameter estimation and duration
forecasting. Lastly, the proposed model and method are applied to two classic data sets that have
been studied in the literature, namely IBM and Boeing transaction data.

Keywords: stochastic conditional duration; threshold; Bayesian inference; Markov-Chain Monte
Carlo; probability integral transform; deviance information criterion
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1. Introduction

In this paper,1 we propose a threshold Stochastic Conditional Duration (TSCD) model, in which
the innovation of a financial duration process is assumed to follow a threshold distribution, where
the two component distributions have positive supports, while the log duration process is kept to be
the same as that in the classic Stochastic Conditional Duration (SCD) models introduced by Bauwens
and Veredas (2004). In addition, we also assume that the state (i.e., the logarithm of the conditional
durations) follows a threshold AR(1) process with the threshold level being driven by observed
duration processes. The regimes are determined by a threshold parameter, which is estimated from
the data. Suitable Markov-Chain Monte Carlo (MCMC) methods are developed within a Bayesian
framework in which the parameters of the model and the augmented parameters, being the latent
states, are estimated simultaneously by the estimation process. For the in-sample and out-of-sample
duration forecasting, we use an auxiliary particle filter (APF) proposed in Pitt and Shephard (1999),
from which the filter and predictive distributions of the latent states are approximated by samples
of particles from the corresponding distributions. The APF is an efficient method for calculating the

1 This paper is built from materials presented in several earlier working papers by the authors in Men et al. (2013, 2014, 2019).
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marginal likelihood of observed data. For model selection and comparison, we employ a deviance
information criterion (DIC) proposed by Spiegelhalter et al. (2002).

The remaining parts of this paper are organized as follows. Section 2 introduces the TSCD model.
In Section 3, we propose a suitable MCMC method for parameter estimation of the models with a
Gamma distribution or a Weibull distribution serving as the component distributions in the model.
The latent states are augmented as parameters and estimated as a by-product of the MCMC estimation
processes. We simulate the state variables by using a single-move Metropolis-Hastings (MH) algorithm
with a univariate normal distribution as the proposal. In Section 4, model diagnostics, model selection,
and duration forecasting are presented and discussed. In particular, model assessment is performed by
calculating probability integral transforms (PITs) produced from the fitted TSCD models. In Section 5,
we conduct simulation studies to assess the performance of the proposed TSCD models and developed
estimation methods, while in Section 6 we present empirical results from applications of the proposed
TSCD models to two classic/benchmark data sets of IBM and Boeing transactions. In this section,
restricted versions of the TSCD models are also estimated and analyzed. Concluding remarks are
made in Section 7.

2. Threshold Stochastic Conditional Duration Model

Let yt denote the observed duration at time t, t ≤ T, where T is a positive integer representing
the sample size. The duration process of yt is characterized by a product of two independent random
variables: a lognormal random variable Ht and a positive random variable εt. Then, following
Bauwens and Veredas (2004), we specify the following set of equations:

yt = Htεt, Ht = exp(ht), t = 1, ..., T, (1)

ht+1 = μ + φ(ht − μ) + σut+1, t = 1, ..., T − 1, (2)

h1 ∼ N (μ, σ2/(1 − φ2)), (3)

where εt and ut are assumed to be mutually independent shocks with ut ∼ N (0, 1). For the latent
AR(1) process in (2) to be weakly stationary, it is assumed that |φ| < 1. Bauwens and Veredas (2004)
assume that εt follows either a Gamma distribution or a Weibull distribution with scale parameters
equal to 1.

In our proposed model, we allow not only the innovation of the duration process to follow a
threshold distribution with two component distributions with positive supports, but also the latent
states to follow a threshold AR(1) process which switches between two regimes. These two regimes
are determined by the previously observed durations according to a threshold level. In particular,
the threshold distribution for the innovations of the measurement equation is given by{

εt ∼ D1(δ1), if yt−1 ≤ r,
εt ∼ D2(δ2), if yt−1 > r,

(4)

where D1(δ1) and D2(δ2) are two generic distributions with positive supports, and δ1 and δ2 are the
corresponding parameter vectors.

For the log conditional durations, ht, a threshold AR(1) process is defined as:{
ht+1 − μ1 = φ1(ht − μ1) + σ1u1,t+1, if yt ≤ r,
ht+1 − μ2 = φ2(ht − μ2) + σ2u2,t+1, if yt > r,

(5)

where u1,t+1 and u2,t+1 are two independent processes with a standard normal distribution. In the
threshold specification in (5), the latent states, ht, follow separate AR(1) processes in the two different
regimes determined by the previously observed duration yt and the threshold level r. The threshold
level r is treated as a free parameter to be estimated by our proposed MCMC method.
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For the components of the threshold distribution of εt, following Bauwens and Veredas (2004),
we use either a Gamma distribution or a Weibull distribution. With this assumption, the probability
density functions (pdfs) of εt are given respectively by{

f1(εt) =
1

Γ(γ1)
ε

γ1−1
t exp{−εt}, if yt−1 ≤ r,

f2(εt) =
1

Γ(γ2)
ε

γ2−1
t exp{−εt}, if yt−1 > r,

(6)

with the shape parameters γ1 > 0 and γ2 > 0, and the scale parameters are all set to 1, and{
f1(εt) = v1εv1−1

t exp{−εv1
t }, if yt−1,≤ r,

f2(εt) = v2εv2−1
t exp{−εv2

t }, if yt−1,> r,
(7)

with the shape parameters v1 > 0 and v2 > 0 and unit scale parameters. Under these assumptions, the
distribution of εt depends on the shape parameters. At time t, the observation yt affects not only the
distribution of εt+1, but also the distribution of ht+1. In other words, the observation, yt, contributes
to future durations through εt+1 and ht+1. The asymmetric property of the marginal distribution of
yt+1 is influenced by the previously observed duration according to the threshold level r. Importantly,
under the threshold distributional assumption, we no longer need to explicitly specify a correlation
structure between the observation and the latent process. In addition, as the variance of εt is not equal
to 1, the location parameters in the threshold AR(1) processes are no longer required as well.

Under the TSCD model setup, at each time t, the conditional distribution of yt is assumed to
depend on the previous observation yt−1 and the threshold parameter r, i.e., the distributions of
the observations will switch between the two regimes with the arrivals of the previously observed
durations. Similar to the arguments in De Luca and Gallo (2004, 2009), who work with Autoregressive
Conditional Duration (ACD) models, the two regimes can be interpreted as representing two
types of behavior of traders in the market, who are respectively informed and uninformed traders.
The informed and uninformed traders are assumed to respond differentially to bad news and good
news in the market over the sample period. The proposed TSCD models with two regimes are
constructed specifically to characterize these time dependent responses, giving rise to a desirably
asymmetric pattern in the marginal distributions of the model.

3. Bayesian Inference

In this section, we develop a suitable MCMC method for parameter estimation of the proposed
model. Following the literature, all the latent states, ht, are augmented as parameters and simulated or
estimated as a by-product of the derived estimators. For each specified TSCD model, the latent states
are simulated one at a time by the slice sampler introduced by Neal (2003).

In the following MCMC algorithm, we assume that the innovation of the mean equation follows a
threshold distribution with two, say Gamma, component distributions with θ = (φ1, σ1, φ2, σ2, γ1, γ2, r)
serving as the parameter vector. Given an observed duration time series of y = (y1, . . . , yT),
the conditional densities of yt are given by{

f (yt|yt−1, ht, r) = 1
Γ(γ1)

exp(−γ1ht)y
γ1−1
t exp

{− yt exp(−ht)
}

, if yt−1 ≤ r,

f (yt|yt−1, ht, r) = 1
Γ(γ2)

exp(−γ2ht)y
γ2−1
t exp

{− yt exp(−ht)
}

, if yt−1 > r.
(8)
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Therefore, the posterior density of (θ, h) can be conveniently split into two parts according to the
threshold parameter r,

f (θ, h|y) ∝
T

∏
t=2, yt−1≤r

[
1

Γ(γ1)
exp(−γ1ht)y

γ1−1
t exp

{− yt exp(−ht)
}]

×
T

∏
t=2, yt−1>r

[
1

Γ(γ2)
exp(−γ2ht)y

γ2−1
t exp

{− yt exp(−ht)
}]

, (9)

where h = (h1, ..., hT). Within the Bayesian inference, the posterior distributions of the parameters in θ,
and the latent states, h, can be readily derived from (9).

The TSCD model is completed by specifying prior distributions for all the parameters in θ.
For tractability, we assume that the prior distributions of the parameters in θ are mutually independent.
The persistence parameters φ1 and φ2 are assumed to have a univariate normal distribution
φi ∼ N(0, 5), i = 1, 2, truncated in the interval (−1, 1). Instead of sampling σ1 and σ2, we sample
σ2

1 and σ2
2 . The prior distributions of σ2

1 and σ2
2 are σ2

i ∼ IG(0.25, 5), i = 1, 2, which are inverse Gamma
distributions. For the shape parameters γ1 and γ2 we use the half-Cauchy distributions as their
prior distributions

f (γi) ∝
1

1 + γ2
i

, γi > 0, i = 1, 2. (10)

The half-Cauchy distribution is also used as the prior distribution for the shape parameters of the
Weibull components. For the threshold parameter r, we use a uniform distribution between the first
and third quartiles of the observations in y. The two quartiles are intended to ensure that there are
enough observations in each of the two regimes.

The algorithm of the MCMC estimation procedure for the TSCD model with a threshold Gamma
distribution, called TSCD-G model hereafter, is listed in Algorithm 1. The derivation of the full
conditionals for the parameters and individual latent state are given explicitly in Step 1 below, where
the full conditional of each parameter is defined as the conditional distribution given that other
parameters in the model have been sampled.

Algorithm 1: MCMC algorithm for the TSCD-G model.
Step 0. Initialize h, φi, σi, γi, i=1, 2, and r
Step 1. Sample ht, t = 2, ..., T
Step 2. Sample γ1 and γ2

Step 3. Sample r
Step 4. Sample φi and σ2

i , i = 1, 2
Step 5. Go to Step 1.

Step 0. Initialize h, φi, σi, γi and r. To start the MCMC algorithm, the initial values of the
parameters of the model are set as φ1 = 0.5, φ2 = 0.5, σ1 = 0.12, σ2 = 0.12, γ1 = 0.5, γ2 = 1.5, v1 = 0.5
and v2 = 1.5. The initial value of r is set as the mean of the observations, which falls into the interval
of the first and third quartiles of the observations. The initial values of h are generated from the latent
AR(1) process with the above initial parameters.

Step 1. Sample h. Here, we only give the full conditionals of ht, t = 3, ...T− 1. The full conditionals
of h2 and hT are easy to derive and, thus, omitted from this paper. The full conditional of ht depends
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on yt+1, yt, yt−1, ht+1, ht−1 and r. Given that r has been sampled previously, the full conditional of ht

can be calculated based on four cases: (i) If yt ≤ r and yt−1 ≤ r, the full conditional of ht is given by

f (ht|ht−1, ht+1, yt, θ−r, yt ≤ r, yt−1 ≤ r)

∝ f (yt|ht, θ−r, yt−1 ≤ r) f (ht|ht−1, yt−1 ≤ r, θ−r) f (ht|yt ≤ r, ht+1, θ−r)

∝ exp(−γ1ht) exp
{− yt exp(−ht)

}
× exp

{
−
(
ht − φ1ht−1

)2

2σ2
1

}
× exp

{
−
(
ht+1 − φ1ht

)2

2σ2
1

}

∝ exp
{− yt exp(−ht)

}× exp
{
−
(
ht − μt

)2

2σ2
t

}
, (11)

where

μt = −σ2
t γ1 +

φ1(ht+1 + ht−1)

1 + φ2
1

, σ2
t =

σ2
1

1 + φ2
1

.

Here θ−r defines as a collection of model parameters except for r. Thus, the full conditional of ht

can be sampled by the slice sampler.

Algorithm of the slice sampler for ht

SS1. Draw u1 uniformly from the interval (0, 1) and set u2 = u1 exp
{
−
(

ht−μt

)2

2σ2
t

}
. Let u2 <

exp
{
−
(

ht−μt

)2

2σ2
t

}
, then we have

μt −
√
−2σ2

t log(u2) < ht < μt +
√
−2σ2

t log(u2). (12)

SS2. Draw u3 uniformly from the interval (0, 1) and set u4 = u3 exp
{ − yt exp(−ht)

}
. Let u4 <

exp
{− yt exp(−ht)

}
then we have

ht > − log(− log(u4)/yt)

SS3. Draw ht uniformly from the interval determined by the inequalities in (11) and (12) such as

ht ∼ U
(

max
{
− log(− log(u4)/yt), μt −

√
−2σ2

t log(u2)
}

, μt +
√
−2σ2

t log(u2)

)
.

As a brief remark to the above algorithm, we note that in our approach, each ht is simulated
based on its conditional distribution. So conditionally μt is known in our situation. Also note that
yt+1’s are the only observations available to our model. As we subsequently perform a one-step-ahead
prediction for the fitted model, we only need to sample ht+1, and do not need to sample yt+1.

In each MCMC iteration, when we simulate ht, the sampled value of ht from the previous MCMC
step is set at the initial value. As the full conditionals of ht in each MCMC step are similar, this initial
value should provide a good starting point. As the slice sampler adapts to the form of the density
function of the underlying variable, it is more efficient than many other existing samplers. In addition,
under certain conditions, Roberts and Rosenthal (1999) also show that the slice algorithm is robust
and has geometric periodicity properties. Moreover, Mira and Tierney (2002) prove that the slice
sampler has a smaller second-largest eigenvalue, which ensures faster convergence to the underlying
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distribution. Indeed, in our study, we find that even with only five iterations of our slice algorithm, we
can feasibly and efficiently estimate the TSCD models by the MCMC.2

The single-move simulation method is popular in the literature and used in Jacquier et al. (2004);
Yu et al. (2006); Zhang and King (2008), Men et al. (2015, 2016a, 2016b) among others. The advantage
of the slice sampler is that five iterations can give us a point from the underlying distribution unlike
the MH algorithm where many generated points must be discarded.

The full conditional of ht, given (ii) yt > r and yt−1 ≤ r, is

f (ht|ht−1, ht+1, yt, θ−r, yt > r, yt−1 ≤ r)

∝ f (yt|ht, θ−r, yt−1 ≤ r) f (ht|ht−1, yt−1 ≤ r, θ−r) f (ht|yt > r, ht+1, θ−r)

∝ exp(−γ1ht) exp
{− yt exp(−ht)

}
× exp

{
−
(
ht − φ1ht−1

)2

2σ2
1

}
exp

{
−
(
ht+1 − φ2ht

)2

2σ2
2

}

∝ exp
{− yt exp(−ht)

}× exp
{
−
(
ht − μt

)2

2σ2
t

}
, (13)

where

μt = −γ1σ2
t +

a
b

, σ2
t =

1
b

with a =
φ1ht−1

σ2
1

+
φ2ht+1

σ2
2

, b =
1
σ2

1
+

φ2
2

σ2
2

.

The full conditional of ht is also sampled through the slice sampler. Under the other conditions
(iii) yt > r and yt−1 > r, and (iv) yt ≤ r and yt−1 > r, the full condition of ht can be calculated in the
same fashion, and the realized full conditionals of ht can be sampled through the slice sampler.

Step 2. Sample γ1 and γ2. Given that other parameters and the latent states have been sampled
from the previous iteration of the MCMC algorithm, the full conditionals of γi, i = 1, 2, are given
respectively by

f (γ1|y, h, θ−γ1) ∝
T

∏
t=2, yt−1≤r

(
exp(−γ1ht)

Γ(γ1)
yγ1−1

t

)
1

1 + γ2
1

, (14)

f (γ2|y, h, θ−γ2) ∝
T

∏
t=2, yt−1>r

(
exp(−γ2ht)

Γ(γ2)
yγ2−1

t

)
1

1 + γ2
2

. (15)

These distributions are not simple distributions that can be simulated directly. Our simple solution
to this is to use a random-walk MH method with a univariate normal distribution with mean zero and
non-unit variance. The variance can be fined tuned to obtain a reasonable acceptance rate for the MH
algorithm. Experience from our study suggests that an acceptance rate between 25% and 55% gives us
a more accurate estimate of r in the simulation studies.

2 For further efficiency considerations, Pitt and Shephard (1999) for instance proposes the use of block samplers for ht for a
stochastic volatility (SV) model. We have tried to apply this block sampling scheme to our variant of the TSCD models and
found the required computation to be highly intractable.
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Step 3. Sample r. The full conditional of r is

f (r|y, h, θ−r)

∝
T

∏
t=2, yt−1≤r

(
exp(−γ1ht)y

γ1−1
t

Γ(γ1)

) T

∏
t=2, yt−1>r

(
exp(−γ2ht)y

γ2−1
t

Γ(γ2)

)
. (16)

The full conditional of r is not a simple distribution either. Therefore, again, we use a random-walk
MH method to simulate this posterior distribution with a univariate normal distribution N(0, σ2

0 ),
where σ0 is fined tuned for the random-walk MH method to have a reasonable acceptance rate.

Step 4. Sample φ1, φ2, σ2
1 and σ2. The full conditionals of φi are univariate normal distributions

truncated in the interval (−1,1), which can be simulated by a slice sampler. The full conditionals
of σ2

i are inverse Gamma distributions from which the sampling is relatively easy to carry out.
The derivation of these full conditionals are not given in this paper, but they can be found for instance
in Men et al. (2016a) or any in prior studies on SV models such as Men et al. (2016b), where MCMC
algorithms are used.

To conduct a Bayesian inference in the TSCD model with threshold Weibull component
distributions, the estimation algorithm can be derived similarly. As a result, details of these derivations
are omitted from the paper.

4. Model Selection, Assessment and Duration Forecasting

4.1. Model Selection

Information criteria such as AIC due to Akaike (1987) and BIC due to Schwarz (1978) are often
used for model comparison. For instance, in the study of SV models, Lopes and West (2004) and
Zhang and King (2008) use the AIC and the BIC for model selection. It is well-known that the AIC
tends to choose a model with a larger number of parameters, while the BIC tends to prefer a model
with a smaller number of parameters. It is important to note that in the calculation of the AIC and the
BIC, we need to know the exact number of parameters of the model. For hidden Markov models such
as the TSCD models proposed in this paper, the number of parameters is difficult to determine since
all the latent states are augmented as parameters and highly correlated. For instance, when a TSCD-G
model is fitted to a data set with T observations, the number of parameters in the fitted model could
be (T + 7) or less. However, it is worth reiterating that the AIC and the BIC are functions of both the
number of parameters and the sample size. This indicates that the AIC and the BIC are not suitable for
discriminating hidden Markov models, including the TSCD models. A new criterion, called the DIC
proposed by Spiegelhalter et al. (2002) is used in this paper to discriminate between these models since
it does not depend on the number of parameters directly. The DIC is defined as follows:

DIC = D̄ + PD.

The first term

D̄(θ, h) = Eθ,h|y[D(θ, h)], where D(θ, h) = −2 log f (y|θ, h),

represents a Bayesian measure of a model fit. It is called the posterior mean of the deviance. The second
term is

PD = D̄ − D(θ̄, h̄)

= Eθ,h|y[D(θ, h)]− 2 log f (y|θ̄, h̄),

where D(θ̄, h̄) is the deviance of the posterior mean, and PD is the effective number of parameters,
which measures the complexity of the model. Thus, the DIC represents a trade-off between model
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adequacy and model complexity. When prior information is dominated by the likelihood, we have
pD = p + o(1), where p is the number of parameters in the model. In other words, when likelihood
information dominates, we expect that the observed-data DIC is not sensitive to different prior
distributions, and pD is close to p with the difference capturing the amount of prior information.

4.2. Duration Forecasting

To perform duration forecasting via the fitted TSCD models, we use the APF proposed in
Pitt and Shephard (1999). In our MCMC method, the conditional of ht depends on yt, ht−1 and ht+1,
while in the APF, the filtered distribution depends on yt and ht−1, and the predictive distribution of ht

depends on ht−1 and yt−1. In addition, the filtered distribution of ht is also represented by a sample of
the conditional distribution of ht|yt. APF is an efficient recursive algorithm to approximate the filtered
and one-step-ahead predictive distributions. The sample likelihood of a specified TSCD model via the
successive conditional decomposition is given by

f (y|θ) = f (y2|θ,F1)
T

∏
t=3

f (yt|Ft−1, θ), (17)

where Ft = (y1, . . . , yt) is the information known at time t. The conditional density of yt+1, given θ

and Ft, has the following expression

f (yt+1|Ft, θ) =
∫

f (yt+1|ht+1, θ,Ft)dF(ht+1|Ft, θ)

=
∫

f (yt+1|ht+1, θ,Ft) f (ht+1|ht, θ,Ft)dF(ht|Ft, θ). (18)

As it is impossible to obtain an analytical representation of this conditional density function,
numerical methods such as the APF method must be employed. The APF algorithm has been used
in the context of the SV models such as in Chib et al. (2006); Men et al. (2016b); and in the context
of the SCD models such as in Men et al. (2015, 2016a) and among others. It is given in Appendix A.
It should point out that the one-step-ahead in-sample and out-of-sample duration forecasting can be
constructed with the APF algorithm using the latent AR(1) process. Our experience shows that using
3000 particles is sufficient for our simulation studies and real stock transaction data used to illustrate
our estimation approach.

4.3. Model Assessment

There are several statistical tools that can be used to assess the overall model fit of our TSCD
model. Our approach in this paper is to analyze the PITs, which was proposed by Diebold et al. (1998).
If the fitted TSCD model agrees with the data, the PITs will follow a uniform distribution U(0, 1). The
Kolmogorov-Smirnov (KS) test, which is designed to examine whether realized observation errors
originated from the assumed distribution, is used to assess the distribution of the PITs.

Suppose that { f (yt|Ft−1)}T
t=1 is a sequence of conditional densities of yt and {p(yt|Ft−1)}T

t=1 is
the corresponding sequence of one-step-ahead density forecasts. The PIT of yt is defined as

u(t) =
∫ yt

−∞
p(z|Ft−1)dz. (19)

Under the null hypothesis that the sequence {p(yt|Ft−1)}T
t=1 coincides with { f (yt|Ft−1)}T

t=1,
the sequence {u(t)}T

t=1 corresponds to i.i.d. observations from the distribution U(0, 1). In our TSCD
model, the PITs can be calculated using the following formulas.
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The TSCD-G model: If yt−1 ≤ r then

u(t) ≈ 1
N

N

∑
i=1

∫ yt

−∞

1
Γ(γ1)

zγ1−1 exp(−γ1h(i)t ) exp
{
− z

exp(h(i)t )

}
dz

=
1
N

N

∑
i=1

1
Γ(γ1)

g(γ1, yt exp(−h(i)t )), (20)

where g(γ1, yt exp(−ht)) is the incomplete Gamma function, and N is the number of particles.
Similarly, if yt−1 > r then

u(t) ≈ 1
N

N

∑
i=1

1
Γ(γ2)

g(γ2, yt exp(−h(i)t )). (21)

The TSCD-W model: If yt−1 ≤ r then

u(t) ≈ 1
N

N

∑
i=1

∫ yt

−∞
v1zv1−1 exp(−v1h(i)t ) exp

{
−
(

z

exp(h(i)t )

)v1}
dz

= 1 − 1
N

N

∑
i=1

exp
{
−
(

yt

exp(−h(i)t )

)v1}
. (22)

Similarly, if yt−1 > r then

u(t) ≈ 1 − 1
N

N

∑
i=1

exp
{
−
(

yt

exp(−h(i)t )

)v2}
. (23)

In the computation of u(t), h(i)t are particles from the corresponding predictive distribution of ht

with weights 1/N.

5. Simulation Studies

In this section, we assess the performance of the TSCD models and the MCMC algorithms by
simulation studies. Since the component distributions can be either a Gamma or Weibull distribution,
we examine two types of the TSCD models. The values of parameters used to generate artificial duration
time series are listed in the second column of Table 1 in boldface. We generate 12,000 observations from
each TSCD model indexed by these parameters, where the first 10,000 observations are fitted by the
corresponding TSCD model and the fitted model is then used for the one-step-ahead in-sample and
out-of-sample duration forecasting. The estimated parameters as well as the corresponding standard
errors and Bayesian highest probability density (HPD) credible intervals, which can be calculated based
on the 2.5% and 97.5% quantiles of the sampled data, are also included in this table. With relatively
small standard deviations and narrow credible intervals, we conclude that the estimated parameters
are close to their true values.

One way to assess the goodness-of-fit of the TSCD models is to compare the empirical survival
function and the hazard function with those calculated from the fitted TSCD models visually. Denote
by f (y) and F(y) = p(Y < y) respectively the pdf and cumulative distribution function (cdf) of the
observed duration data. Then the survival function and the hazard function of the data are defined
as S(y) = 1 − F(y) and H(y) = f (y)/(1 − F(y)), respectively. As discussed in Bauwens and Veredas
(2004), both the f (y) and F(y) for a given duration data have to be calculated by using a numerical
method such as a kernel density fitting method, which can be found in Silverman (1986), pp. 11–13,
and Bowman and Azzalini (1997). In addition, numerical integration methods such as the Gaussian
quadrature method must be used for the calculation of F(y) as well.
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Table 1. True and estimated parameters of the TSCD models based on the simulated duration data.

Parameter True Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) component

φ1 0.94 0.9368 0.0080 (0.9209, 0.9521)
σ1 0.12 0.1298 0.0098 (0.1107, 0.1480)
φ2 0.80 0.8014 0.0206 (0.7699, 0.8499)
σ2 0.19 0.1819 0.0105 (0.1619, 0.2025)
r 3.5 3.5054 0.0035 (3.4978, 3.5106)

γ1 3.5 3.4677 0.0550 (3.3584, 3.5743)
γ2 5.0 4.9855 0.0582 (4.8654, 5.0953)

Panel B: With Weibull(v,1) component

φ1 0.94 0.9346 0.0062 (0.9221, 0.9465)
σ1 0.12 0.1201 0.0065 (0.1073, 0.1328)
φ2 0.80 0.7940 0.0139 (0.7668, 0.8213)
σ2 0.19 0.1841 0.0049 (0.1744, 0.1938)
r 0.8 0.7985 0.0014 (0.7956, 0.8005)

v1 3.5 3.4761 0.0546 (3.3694, 3.5823)
v2 5.0 4.9703 0.0931 (4.7910, 5.1526)

Given the highly comparable results reported in Table 1 for the Gamma and Weibull component
cases, for brevity, we focus only on the Weibull component case in the subsequent discussion.
The top panel in Figure 1 compares the empirical survival function of the simulated durations with
the conditional survival function based on the TSCD-W model, while the bottom panel plots the
corresponding empirical hazard of the simulated data together with the conditional hazard function.
It is observed in the presented figures that the empirical survival function and the hazard function
implied by the fitted TSCD-W model behave similarly to the empirical counterparts except that there
is a very small jump at the threshold value of 0.7983. The reason for this jump is presumably because
the threshold level of 0.8 was used in generating the artificial duration time series.

Figure 1. Top Panel: conditional survival function of the TSCD-W model for the simulated durations
and its empirical survival function. Bottom Panel: the corresponding conditional hazard function for
the simulated data and its empirical hazard rate.

To check the convergence of the MCMC algorithms, we plot the histogram and time series
of samples simulated from each posterior distribution of the parameters of the TSCD-W model in

69



JRFM 2019, 12, 88

Figures 2 and 3, respectively. It can be seen visually that the time series drawn from the full conditionals
of parameters are convergent. Subsequent statistical tests also confirm this conclusion.

Figure 2. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the AR(1) process of the TSCD-W model based on the simulated duration data.

Figure 3. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the Weibull component distributions of the TSCD model and the full conditional of threshold based
on simulated duration data.

To assess the overall model fit, we consider the PITs calculated from the fitted TSCD-W model.
Figure 4 includes the scatter and histogram plots of the PITs. The two horizontal lines in the histogram
plot are the 95% confidence intervals of the uniformity, constructed under the normal approximation
of a binomial distribution, the calculation of which is detailed in Diebold et al. (1998). It is evident that
the PITs originated from the uniform distribution U(0, 1). The KS test statistic for the PITs is calculated
as 0.0136 with the corresponding p-value of 0.8916. So, we do not reject the null hypothesis at any
reasonable level of significance that the fitted TSCD model with the threshold Weibull innovations
agrees with the generated duration data. Figure 5 graphs the cdf of the uniform distribution U(0, 1)
together with the empirical cdf of the PITs. The two cdfs appear to be very close with each other,
which confirms our earlier conclusion. Figure 6 compares the simulated durations with the filtered and
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one-step-ahead in-sample and out-of-sample forecasted durations, where the latter is separated by the
vertical dotted line. We observe that the forecasted durations resemble the true durations, indicating
that our TSCD-W model is again able to give a reasonably accurate forecast of future durations.

In applications to real data, although the true financial durations are not observable, we are
reasonably confident that the fitted TSCD-W model can do a good job for duration forecast. While the
above analysis is based on the TSCD-W model, we, unsurprisingly, also reach a very similar conclusion
for the TSCD-G model.

Figure 4. Goodness-of-fit test via the scatter plot (top) and the histogram (bottom) of the PITs produced
by the fitted TSCD-W model based on simulated transaction data. The two horizontal lines in the
histogram plot are the 95% confidence intervals of the uniformity, constructed under the normal
approximation of a binomial distribution, the calculation of which is detailed in Diebold et al. (1998).

Figure 5. Comparison between the empirical CDF of the PITs and the theoretical CDF of a uniform
distribution over the interval [0, 1] based on the TSCD-W model using simulated transaction data.
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Figure 6. Comparison between observed durations with the estimated and one-step-ahead forecasted
conditional durations based on the TSCD-W model using the simulated transaction data.

Overall, the simulation studies carried out above demonstrate that the TSCD models and MCMC
methods can recover the true parameters obtained by using the simulated duration data. In addition,
duration forecasting can also be adequately performed using the AFP.

6. Empirical Analysis

In this section, we apply the proposed TSCD model to the classic/benchmark IBM and Boeing
transaction data. Both data sets have been used previously in Knight and Ning (2008); Xu et al. (2011)
and Men et al. (2015, 2016a). The IBM transaction data cover the period from 1 November 1990
to 31 January 1991 with a total of 24,765 transactions, while the Boeing data covers the period
from 1 September 2001, to 31 October 2001 with a total of 90,136 observations. These datasets are
admittedly from several decades ago. However, the use of these datasets is intended to facilitate a direct
comparison between the results obtained from our models and methods with those in the literature
(including our own previous studies), which all have conveniently used these same benchmark datasets.
The frequency of the data is tick by tick, which records every single transaction that occurs in the
market. Its salient feature is irregularly spaced in time and is primarily caused by financial transactions
being clustered over time or occurring in a scattered fashion over time. The main implication of the
irregular spacing of these data is that the time between any two consecutive market events, which is
the financial duration, is a random variable.

Tables 2 and 3 present the estimated parameters of the TSCD models based on the two data sets.
The proposed MCMC algorithms were iterated 100,000 times. After the first 50,000 sampled values are
discarded as the burn-in to eliminate initial value problems, the parameters and the states were then
estimated by sample means. Standard errors and Bayesian HPD intervals are also reported in the two
tables. The Bayesian HPD intervals are calculated by the 2.5% and 97.5% quartiles. The relatively small
standard errors of these Bayesian HPD intervals indicate that our estimation process is quite efficient.

We note that for the IBM transaction data, the two persistent parameter estimates (e.g., for the
TSCD-W model, φ̂1 = 0.9847 and φ̂2 = 0.8640) and, to a lesser extent, also the two volatility parameter
estimates (e.g., for the TSCD-W model, σ̂1 = 0.1369 and σ̂2 = 0.1397) of the latent threshold AR(1)
processes are quite different from each other. This indicates that at least two latent dynamic market
factors that affect the duration innovation in different scales can be captured by the TSCD model.
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In other words, the IBM transaction data can be adequately characterized by the two specified threshold
processes in the TSCD model. However, for the Boeing transaction data, the parameter estimates
between the two regimes are relatively closer to each other (e.g., for the TSCD-W model, φ̂1 = 0.9897
and φ̂2 = 0.9705, and σ̂1 = 0.0703 and σ̂2 = 0.0669).

Table 2. Parameter estimates based on TSCD models based on the IBM transaction data.

Parameter Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) components

φ1 0.9704 0.0061 (0.9588, 0.9818)
σ1 0.1788 0.0129 (0.1538, 0.2037)
φ2 0.8065 0.0322 (0.7431, 0.8667)
σ2 0.2096 0.0254 (0.1618, 0.2593)
γ1 1.0015 0.0135 (0.9768, 1.0278)
γ2 0.9528 0.0120 (0.9287, 0.9767)
r 1.0337 0.2010 (0.7377, 1.3145)

Panel B: With Weibull(v,1) components

φ1 0.9847 0.0043 (0.9766, 0.9933)
σ1 0.1369 0.0090 (0.1180, 0.1535)
φ2 0.8640 0.0290 (0.8223, 0.9018)
σ2 0.1397 0.0144 (0.1114, 0.1681)
v1 0.9664 0.0075 (0.9553, 0.9843)
v2 0.9280 0.0101 (0.9001, 0.9393)
r 0.9622 0.1756 (0.6711, 1.2980)

Table 3. Parameter estimates based on TSCD models based on the Boeing transaction data.

Parameter Est. Std. HPD CI(95%)

Panel A: With Gamma(γ,1) components

φ1 0.9979 0.0012 (0.9956, 1.0000)
σ1 0.0573 0.0036 (0.0501, 0.0640)
φ2 0.9923 0.0020 (0.9897, 0.9951)
σ2 0.0496 0.0040 (0.0430, 0.0599)
γ1 1.2697 0.0097 (1.2506, 1.2891)
γ2 1.2959 0.0067 (1.2832, 1.3089)
r 0.3420 0.1363 (0.2778, 0.4682)

Panel B: With Weibull(v,1) components

φ1 0.9897 0.0014 (0.9869, 0.9923)
σ1 0.0703 0.0038 (0.0636, 0.0780)
φ2 0.9705 0.0039 (0.9626, 0.9778)
σ2 0.0669 0.0060 (0.0559, 0.0787)
v1 1.1415 0.0043 (1.1332, 1.1499)
v2 1.1081 0.0064 (1.0960, 1.1208)
r 1.1775 0.0974 (0.0965, 1.3085)

Again, given the highly comparable results for the Gamma and Weibull component cases for
both datasets reported in Tables 2 and 3, for brevity and without much loss of generality, we focus our
ensuing discussion only for the Weibull component case, i.e., the TSCD-W model. However, the fitted
TSCD-G model will later be subjected to a formal model discrimination against the fitted TSCD-W
model for both datasets.

To check the convergence of the samples drawn from the full conditionals, we again plot the time
series and histograms for each parameter of the TSCD-W models based on the Boeing transaction
data in Figures 7 and 8. It is visually evident that these time series are convergent. Please note that
in our TSCD models, after 50,000 iterations, the generated time series typically converge. Figure 9
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compares the duration time series with the filtered (or, Bayesian estimated) durations, and with the
one-step-ahead in-sample and out-of-sample forecasted durations. It is observed that the forecasted
durations also resemble the true durations closely.

Figure 7. Time series and histograms of the samples drawn from the full conditionals of the parameters
in the AR(1) process of the double TSCD-W model based on the Boeing stock duration data.

Figure 8. Time series and histograms of the samples drawn from the full conditionals of the parameters
of the TSCD-W model based on the Boeing duration data.

74



JRFM 2019, 12, 88

Figure 9. Comparison between observed durations, estimated, and one-step-ahead forecasted
conditional durations based on the TSCD-W model using the Boeing stock transaction data.

As we did in the simulation studies, we compare in Figure 10 the empirical survival function of
the Boeing durations with the conditional survival function based on the estimated TSCD-W model.
The bottom panel plots the corresponding empirical hazard of the Boeing data together with the
conditional hazard function. It is observed that the empirical survival function and the hazard function
behave similarly to the counterparts implied by the fitted TSCD model except that there is a very small
jump at the threshold value of 1.1775 in the hazard function implied by the fitted model.

Figure 10. Top Panel: conditional survival function of the TSCD-W model for the Boeing durations
and its empirical survival function. Bottom Panel: the corresponding conditional hazard function for
the Boeing durations data and its empirical hazard rate.

To check the goodness-of-fit of the model, we plot the scatter and histogram plots of the PITs
originated from the fitted TSCD-W model in Figure 11, while Figure 12 plots the empirical cdf of the
PITs together with the theoretical cdf of the uniform distribution U(0, 1). The plots reveal that the
PITs do not appear to follow a uniform distribution over the interval (0,1). The results from the KS
test confirm this assertion. The reason for these unfavorable results can be understood by inspecting
Figures 11 and 12 where we see that the right tail of the marginal distribution of the data is well fitted,
but the left tail of the marginal distribution is less so. The intensity of small durations is around 0.18.
Bauwens and Veredas (2004); Feng et al. (2004) and Men et al. (2015, 2016a) also observed a similar
lack of fit for their SCD models to duration data. Fractional latent processes have been proposed to
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improve the fit of the model. Distributional assumptions for the innovations of the duration equation
other than the Gamma and Weibull distributions may also prove to be fruitful in this regard.3

Figure 11. Scatter plot (top) and the histogram (bottom) of the PITs produced by the fitted TSCD-W
model to the Boeing transaction data. The two horizontal lines in the histogram plot are the 95%
confidence intervals of the uniformity, constructed under the normal approximation of a binomial
distribution, the calculation of which is detailed in Diebold et al. (1998).

Figure 12. Comparison between the empirical CDF of the PITs and the theoretical CDF of a uniform
distribution over the interval (0,1) based on the TSCD-W model to the Boeing transaction data.

Given the above qualification, we next proceed to select a better TSCD model for each of the two
data sets of transactions by calculating the DIC values from the four fitted TSCD models. Berg et al.
(2004) propose that the DIC be calculated by using the conditional likelihood. It is referred to as the
conditional DIC. The conditional DIC is widely used for comparing SV models and is also used in the

3 Another potential source of rejection for the KS statistic may lie in the fact that it is calculated by using estimated parameters
in the empirical analysis. This alters the standard limiting distribution of the KS statistics to a non-standard one involving
functionals of Brownian bridges.
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earlier version of this paper. In this paper, we follow Celeux et al. (2006) in computing the DIC by
using an observed-data likelihood. This is referred to as an observed-data DIC. This observed-data
DIC is not computed in practice due to the difficulty in evaluating the observed-data likelihood.
However, despite its popularity, the Monte Carlo study reported by Chan and Grant (2016) shows
that the conditional DIC tends to pick overfitted models (often with negative values of pD, which is
difficult to justify), whereas the observed-data DIC is better able to choose the correct model. The
challenge associated with the computation of the observed-data DICs for the proposed TSCD models
is overcome by suitably modifying importance sampling algorithms proposed by Chan and Grant
(2016) for estimating the observed-data likelihoods for SV models.

The observed-data DIC measures are listed in Table 4. First, note that the computed values of
PD for both models are positive, suggesting a positive penalty for model complexity, which makes
sense. Second, for both the IBM and Boeing transaction data, the TSCD-G model is preferred given
that the two fitted TSCD-G models have smaller observed-data DIC values compared to the TSCD-W
counterparts.4

Table 4. Model selection by using the observed-data DIC criterion.

Data Model D(θ) PD DIC

IBM
TSCD-G 35,960.8 14.4 35,975.2

TSCD-W 36,305.7 19.6 36,325.3

Boeing
TSCD-G 146,155.6 15.4 146,171.0

TSCD-W 147,022.5 20.1 147,042.6

To undertake a further specification analysis, we pre-set φ1 = φ2 = φ, and σ1 = σ2 = σ to
arrive at a restricted TSCD (RTSCD) model.5 Thus, this RTSCD model is obtained by not allowing the
latent first-order autoregressive process of the log conditional duration process to switch between the
two regimes. However, it still permits the innovations of the duration process to follow a threshold
distribution with a positive support. To select a better fitted RTSCD models for the IBM and Boeing
transaction data, we compute the observed-data DICs from the models. The values of the observed-data
DICs are presented in Table 5. Among the observed-data DIC values, the smallest ones are from the
RTSCD-G model, which means that the RTSCD-G model is better suited than the RTSCD-W model for
the analysis of the real transaction data of the IBM and Boeing stocks.6 In addition, the computed DICs
for the unrestricted TSCD models are uniformly smaller than those for the RSTCD models, suggesting
that the unrestricted TSCD models are the preferred models for both datasets.7 Thus, for these datasets,
the latent first-order autoregressive process of the log conditional duration process switch between the
two regimes.

4 The conditional DICs for the TSCD-G model and the TSCD-W model are 35,669.5 and 36,025.1 for the IBM dataset and
145,874.4 and 146,749.1 for the Boeing dataset respectively. These results are comparable with those reported for the
unobserved-data DICs.

5 We thank one of the anonymous reviewers for this suggestion.
6 The conditional DICs for the RTSCD-G model and the RTSCD-W model are 33,252.8 and 33,557.9 for the IBM dataset

and 143,287.3 and 144,758.8 for the Boeing dataset respectively. These results are comparable with those reported for the
unobserved-data DICs but in all four cases the effective numbers of parameters, PD , are negative, implying a negative
penalty for model complexity, which is difficult to justify.

7 The conditional DICs for the RTSCD models are always smaller than those for the unrestricted TSCD models. This is because
the effective number of parameters that measures the model complexity is positive in the observed-data DIC, which is
expected, and negative in the conditional DIC, which is less plausible. This is consistent with the Monte Carlo study in
Chan and Grant (2016). At the same time, the posterior mean deviance, which is used as a Bayesian measure of the model
fit, is always negative in both methods.
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Table 5. Restricted model selection by using the observed-data DIC criterion.

Data Model D(θ) PD DIC

IBM
TSCD-G 35,981.9 10.7 35,992.6

TSCD-W 36,378.2 12.5 36,390.7

Boeing
TSCD-G 146,182.3 11.9 146,194.2

TSCD-W 147,064.6 16.3 147,080.9

What is the economic interpretation of the findings in this paper? The findings are consistent
with the prediction of the market micro-structure theory (MMT) in finance. The MMT suggests that
there are informed and uninformed traders in the financial market. The interaction between the two
trader types through information-revealing price formation processes is consistent with the observed
financial market behavior. The informed traders will buy if the market price of an asset is below the
true value (based on their information set). Conversely, they will sell, if the price is above the value.
However, information is not free to the traders, and there are traders who base their trading decisions
by observing the asset prices. As this latter trader type is a follower, its actions will be regulated by a
distinct innovation process. This difference in behavior is consistent with the introduction of the two
regimes for the innovation process in the TSCD model, since the instantaneous rate of transaction can
be seen as being different across the two trader types.

7. Concluding Remarks

In this paper, we have proposed a TSCD model to analyze financial duration time series.
The innovations of the duration process were assumed to follow a threshold distribution, where
component distributions could be either a Gamma distribution or a Weibull distribution. In addition,
we also assumed that the logarithm of the conditional durations followed a threshold latent AR(1)
process. In the specified TSCD model, we allowed for the informed and uninformed traders in the
market. Loosely speaking, these two types of traders have different trading behavior in response to the
information arriving in the market. Suitable MCMC methods were developed for Bayesian inference of
the parameters of the models in which the latent states were estimated as a by-product. Using the APF,
the one-step-ahead in-sample and out-of-sample duration forecasts were carried out in a relatively
straightforward way. Simulation studies and applications to two classic/benchmark data set of IBM
and Boeing transactions demonstrated that the threshold SCD models work reasonably well in terms
of parameter estimation and duration forecasting.

We have also considered a restricted version of the TSCD (RTSCD) model, in which the latent
first-order autoregressive process of the log conditional duration process does not switch between the
two regimes. We found that the RTSCD-G model performs better than the RTSCD-W model, when
they are applied to both the IBM and Boeing transaction data. In addition, the proposed, unrestricted
TSCD models uniformly outperform the restricted counterparts for both datasets.

Lastly, one important task remains outstanding at this juncture; i.e., we still need to further
improve the empirical fit of the left tail of the marginal distribution of financial duration data. This
entails a continued search for an ideal distribution of the financial duration data.
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Appendix A. The APF Algorithm for the TSCD Model

The question is how to sample (ht+1|Ft+1, θ, ) given that we have a particle sample from the filter
distribution of (ht|Ft, θ). Below we present an algorithm for the TSCD model based on the procedure
suggested by Chib et al. (2006):

PF1. Given a sample {h(i)t , i = 1, . . . , N} from (ht|Ft, θ), calculate the expectation ĥ∗(i)t+1 =

E(ht+1|h(i)t ,Ft) and

πit = f (yt+1|ĥ∗(i)t+1, θ,Ft+1), i = 1, . . . , N. (A1)

Sample N times with replacement the integers 1, . . . , N with probabilities given by π̂it =

πit/ ∑N
i=1 πit. Denote the sampled indexes by n1, . . . , nN and associate these with particles

{h(n1)
t , . . . , h(nN)

t }.
PF2. For each value ni from Step PF1, sample the values {h∗(1)t+1 , . . . , h∗(N)

t+1 } using

h∗(i)t+1 = φ1h(ni)
t + σ1ut+1, i = 1, . . . , N, if yt ≤ r, or (A2)

h∗(i)t+1 = φ2h(ni)
t + σ2ut+1, i = 1, . . . , N, if yt > r, (A3)

where ut+1 ∼ N (0, 1).
PF3. Calculate the weights of the values {h∗(1)t+1 , . . . , h∗(N)

t+1 } as

π∗
it =

f (yt+1|h∗(i)t+1, θ,Ft+1)

f (yt+1|ĥ∗(i)t+1, θ,Ft+1)
, i = 1, . . . , N, (A4)

and using these weights resample the values {h∗(1)t+1 , . . . , h∗(N)
t+1 } N times with replacement

to obtain a sample {h(1)t+1, . . . , h(N)
t+1} from the filter distribution of (ht+1|Ft+1, θ). In our

implementation we used N = 3000.
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Abstract: Researchers who estimate affine term structure models often impose overidentifying
restrictions (restrictions on parameters beyond those necessary for identification) for a variety of
reasons. While some of those restrictions seem to have minor effects on the extracted factors and
some measures of risk premia, such as the forward risk premium, they may have a large impact
on other measures of risk premia that is often ignored. In this paper, we analyze how apparently
innocuous overidentifying restrictions imposed on affine term structure models can lead to large
differences in several measures of risk premiums.
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1. Introduction

Understanding bond risk premia remains one of the central issues in empirical finance. Much of
this literature uses non-arbitrage affine term structure models (ATSM) to extract risk premium
components from bond prices. The purpose of this paper is to analyze how apparently innocuous
overidentifying restrictions imposed on ATSMs can lead to large differences in several measures of
bond risk premia.

Long-term interest rates can be decomposed into expectations of average future short rates and a
risk premium that investors demand for bearing long-term risk (the term premium). Forward interest
rates can be split into an expected future interest rate and a risk premium component (the forward
premium). Those are the measures of risk premia on which the literature has mostly focused. However,
there are other definitions of risk premia that are arguably equally or more relevant from the point
of view of market participants. An investor who buys a long-term bond financed by borrowing at a
shorter interest rate is exposed to a risk premium (the bond holding risk premium). The return for an
investor that writes a forward contract to buy a bond in the future, but closes the contract before the
settlement date is also exposed to a risk premium (the holding forward risk premium). The contribution
of this paper is to investigate to what extent different restrictions imposed on ATSMs, which often
imply modest differences in the term and forward premiums, could lead to large differences in the
bond holding and holding forward risk premiums.1

Since often the extracted factors, forward premiums and term premiums look similar across
restricted ATSM models, researchers tend to choose their preferred models based on the parsimony or
forecasting ability of future yields. Yet, overidentifying restrictions unsupported by the data can have

1 Although there is a large literature that has investigated the time variation in expected excess bond returns, it has mostly
been done in the context of documenting the failure of the expectations hypothesis. This literature is too large to summarize
here, but some widely-cited papers are Fama and Bliss (1987), Campbell and Shiller (1991) and Cochrane and Piazzesi (2005).
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a large impact on other measures of risk premia, such as the bond holding risk premium or the holding
forward risk premium, particularly at longer horizons. The reason is that small errors compound
and get amplified as the holding horizon increases. Therefore, if the objective of the analysis is to
understand bond risk premia, researchers should be very careful in not imposing overidentifying
restrictions unsupported by the data even though the more parsimonious model may produce similar
factors or predict better than the unrestricted model. Those restrictions can be harmful.

The main, and perhaps only, reason to consider affine models of bond prices is to understand risk
premia. As noted by Joslin et al. (2011) and Duffee (2011), if the objective of the analysis is to fit a yield
curve or to forecast bond yields, little is gained by imposing non-arbitrage restrictions. However, to
understand risk premia, non-arbitrage restrictions are of fundamental importance. Unfortunately, there
is no clear guidance in the literature on how to impose restrictions on risk prices. This issue has been
overlooked in the literature, and this paper is an attempt to fill this gap. To our knowledge, Bauer (2018)
is the only paper that studied restrictions on risk prices. He did so from a Bayesian perspective and
only focusing on the term premium and excess bond returns. This paper is complementary to Bauer’s
in that we also analyze restrictions on risk prices, but from a different perspective. In particular, besides
the term premium and excess returns, we analyze how restrictions on risk prices affect other measures
of risk premia.

We first analyze to what extent usual restrictions imposed on risk prices or factor dynamics
imply similar estimated term and forward premiums, but may lead to large differences in excess
holding returns and holding forward premiums. The different concepts of risk premia are related
among them, and small deviations in estimated forward premiums accumulate and can lead to large
differences in expected excess returns of long-term bonds. For example, the bond holding risk premium
is proportional to the forward risk premium, where the factor of proportionality increases with the
maturity of the bond. Small differences in the estimated one-month forward risk premium, which may
seem irrelevant if one focuses only on the forward premium, get amplified by about 120 times when
we compute the risk premium associated with holding a 10-year bond financed by borrowing at the
one-month interest rate.

Although the argument is general, we base our empirical investigation using the class of
arbitrage-free Nelson and Siegel models. The work in Nelson and Siegel (1987) proposed a flexible,
yet parsimonious functional form to model the cross-section of bond yields, which is widely used by
practitioners and researchers.2 The work in Christensen et al. (2011) showed that the Nelson and Siegel
parametric representation of the yield curve can be made arbitrage-free by including a maturity-specific
constant to the traditional Nelson and Siegel model. We use the Nelson and Siegel model because it is
easy to estimate, and it is sufficiently general to make our point. We analyze several restrictions on risk
prices and factor dynamics that are considered in the literature to analyze risk premia. Although the
estimated factors are virtually identical across models, the estimates of risk premia that they produce
often vary dramatically because the loadings on those factors change across models.

Using as a baseline the most general arbitrage-free Nelson and Siegel model, we evaluate to what
extent the econometric rejections of the restrictions on risk prices are economically relevant (in terms
of the estimated risk premia). For example, imposing a diagonal covariance matrix on the evolution of
the risk factors is comfortably rejected using standard econometric tests, but the estimated risk premia
are similar to those of the unrestricted model. On the other hand, imposing a diagonal matrix on the
lagged values of the vector autoregression representation of the risk factors is also rejected, but with a
much smaller likelihood ratio statistic. Yet, the estimated risk premiums in the restricted model are
very different from those of the unrestricted model.

2 For example, the arbitrage-free Nelson and Siegel model has been used in Christensen et al. (2010), Gürkaynak and Wright
(2012), Christensen and Rudebusch (2015), among many others. The reference Diebold and Rudebusch (2012) is a textbook
treatment of the dynamic Nelson and Siegel model.
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The main practical implication of these results is that, to analyze and forecast risk premia, it is
advisable to consider the just identified model. Imposing restrictions that are unsupported by the data
may lead to large errors in estimated and forecast measures of risk premia. These observations also have
policy implications: to the extent that fluctuations in risk premia have macroeconomic consequences,
a policy maker that reacts to spurious changes in risk premia may choose suboptimal policies.

Using an ex-ante empirical analysis, Cochrane and Piazzesi (2005, 2008) argued that excess returns
are a function of a single factor and built an affine term structure model imposing this assumption
on risk prices. Other papers used likelihood ratios to test whether certain risk prices are zero,
e.g., (Joslin et al. 2011). Some restrictions are often motivated on forecasting grounds. For example,
Christensen et al. (2011) argued that imposing a diagonal structure on the factor dynamics outperforms
a more general model in forecasting the yield curve. Even though this may be the correct procedure
when the objective of the exercise is to forecast yields, it may be counterproductive when the objective
is to understand risk premia. The reason is well known: even if the “true model” may contain
many parameters, it may be outperformed out-of-sample by invalid reductions in the number of
free parameters due to parameter uncertainty. When the issue is to understand the evolution and
determinants of risk premia, restrictions that are not supported by the data using standard testing
procedures may have damaging effects on the evaluation of risk compensation.3

The paper is organized as follows. Section 2 describes a general affine term structure model
and the four different concepts of risk premia that we consider. Section 3 provides a Nelson–Siegel
representation of the affine model that is used in the empirical section of the paper. Section 4 shows the
estimation results, and Section 5 analyzes the impact of imposing restrictions on risk prices. Section 6
concludes, and the Appendix contains some proofs.

2. An Affine Model of Bond Prices

Let Xt denote a k × 1 vector of unobserved risk factors that summarizes the information that
investors use to price discount bonds. The risk factors evolve as a first order vector autoregression:

Xt+1 = μ + ΦXt + Γut+1, (1)

where Γ is lower triangular and ut+1 ∼i.i.d.N(0, Ik).
Investors price nominal cash flows using the one-period stochastic discount factor:

ln Mt+1 = −δ0 − δ′1Xt − 1
2

Λ′
tΛt − Λ′

tut+1. (2)

The k × 1 vector Λt, referred to as the market price of risk, represents the compensation that
investors demand to face shocks to the state vector ut+1. The market price of risk is an affine function
of the factors:

Λt = λ0 + λ1Xt, (3)

where λ0 is a k × 1 vector and λ1 is a k × k matrix of coefficients.
The principle of no-arbitrage implies that bond prices satisfy the recursion:

P(n)
t = Et(Mt+1P(n−1)

t+1 ). (4)

3 One possible concern with the methodology used in this paper is that the 2008–2009 global crisis was characterized by
significant asymmetries in the relation between yield spreads and macroeconomic factors (Evgenidis et al. 2017). Clearly,
the affine model is unsuitable to study asymmetric responses to the business cycle. Yet, as shown in Hevia et al. (2015), it is
possible to extend the affine model of bond yields to allow for discrete changes in the state of the economy using a Markov
switching framework, thus capturing asymmetric responses during booms and recessions. The study of restrictions on risk
prices in such a context; however, it is beyond the scope of this paper.
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As shown by Ang and Piazzesi (2003), log bond prices, p(n)t = ln P(n)
t , are also an affine function

of the risk factors:
p(n)t = An + B′

nXt, (5)

where the coefficients An and Bn satisfy the recursions:

Bn+1 = Φ∗′Bn − δ1, (6)

An+1 = An + μ∗′Bn +
1
2

B′
nΓΓ′Bn − δ0, (7)

with A0 = 0, B0 = 0 and where μ∗ and Φ∗ are defined as:

μ∗ = μ − Γλ0

Φ∗ = Φ − Γλ1.

The continuously-compounded yield on an n-period discount bond is thus:

y(n)t = −p(n)t /n = an + b′nXt, (8)

with an = −An/n and bn = −Bn/n.
We are also interested in the expected returns from holding forward contracts on discount

bonds. Let F(s,n−s)
t denote the settlement price of a forward contract entered into at time t to buy an

(n − s)-period discount bond at time t + s, with n > s. Since two different ways of moving one dollar
from t to t + n must cost the same, the law of one price implies:

P(n)
t = P(s)

t F(s,n−s)
t . (9)

The log forward rate f (s,n−s)
t is the implicit continuously-compounded interest rate of a forward

contract with settlement price F(s,n−s)
t ,

F(s,n−s)
t = e−(n−s) f (s,n−s)

t .

In terms of bond prices, the log forward rate f (s,m−s)
t is thus:

f (s,n−s)
t =

1
n − s

[p(s)t − p(n)t ]. (10)

Therefore, the bond prices (5) imply that forward rates are affine functions of the factors,

f (s,n−s)
t = afs,n + bf ′s,nXt,

where afs,n = (As − An)/(n − s) and bfs,n = (Bs − Bn)/(n − s).
In what follows, we use different concepts of returns, all of which are measured on a monthly

basis. The h-period log holding return from buying an n-period discount bond at time t and selling it
as an (n − h)-period bond at time t + h is:

r(n)b,t→t+h =
1
h
(p(n−h)

t+h − p(n)t ).

Denote the h-period log return from holding the n-period bond in excess of the yield of an h-period
bond by:

rx(n)b,t→t+h = r(n)b,t→t+h − y(h)t .
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Suppose now that, at time t, an investor enters into a forward contract to buy at time t + s an
(n − s)-period discount bond, but closes the position at time t + h < t + s. Closing the position is
equivalent to writing a forward contract at time t + h on an (n − s)-period bond with settlement date
t + s. We define the h-period log holding return from holding the proposed forward as the difference
between the log-forward rates associated with each of the contracts,

r(s,n−s,h)
f ,t→t+h = f (s,n−s)

t − f (s−h,n−s)
t+h .

2.1. Bond Risk Premia

Our goal is to analyze how different restrictions on risk prices affect bond risk premia. However,
what risk premium? Risk premia in bond markets are usually defined in terms of deviations from the
expectational hypothesis. Four equivalent forms of the expectational hypothesis give rise to different,
but related concepts of risk premia,4

1. The forward premium: The time t forward rate for loans between times t + s and t + n is the
expected (n − s)-period yield at time t + s plus a risk premium,

f (s,n−s)
t = Et

[
y(n−s)

t+s

]
+ π

(s,n−s)
f ,t . (11)

2. The bond holding risk premium: The expected h-period log holding return of an n-period bond
measured on a monthly rate is the yield of an h-period bond plus a risk premium:

Et[r
(n)
b,t→t+h] = y(h)t + π

(n,h)
hb,t . (12)

3. The term premium: The n-period yield is the average of expected one-period yields plus a risk
premium,

y(n)t =
1
n

(
n−1

∑
j=0

Ety
(1)
t+j

)
+ π

(n)
y,t . (13)

4. The holding forward risk premium: Since buying or writing a forward contract costs zero,
any expected return from holding a forward contract is a risk premium,

Et

[
r(s,n−s,h)
f ,t→t+h

]
= π

(s,n−s,h)
hf ,t , (14)

for all h, s > h, and n > s + h.

The four definitions of risk premia are equivalent in the sense that if one of them is zero or
constant, so are the other three (see the Appendix A). For our purposes, it is useful to express the risk
premiums π

(n)
y,t , π

(n,h)
hb,t and π

(s,n−s,h)
hf ,t as a function of the forward premium π

(j,1)
f ,t ,

π
(n)
y,t =

1
n

h

∑
j=1

π
(j,1)
f ,t ,

π
(s,n−s,h)
hf ,t = π

(s,n−s)
f ,t − Et

[
π
(s−h,n−s)
f ,t+h

]
,

π
(n,h)
hb,t =

n − h
h

π
(h,n−h)
f ,t .

4 The work in Cochrane and Piazzesi (2008) considered the definitions of Risk Premia 1 through 3 below. We add the fourth,
which states that all expected log holding forward returns are risk premia.
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In particular, the bond holding risk premium π
(n,h)
hb,t is proportional to the forward premium π

(h,n−h)
f ,t ,

where the factor of proportionality increases with the maturity n of the bond for a given holding
period h. Small differences in the estimated forward premium due to invalid parameter restrictions,
which may seem irrelevant to the naked eye, accumulate and may drive large and economically
meaningful differences in the bond holding risk premium. For example, a 10 basis point difference
in the one-month forward premium (h = 1) can lead to differences as large as 12 percentage points
in the estimated one-month bond holding risk premium associated with holding a 10-year bond
(n = 120) financed by borrowing at the one-month rate. In this case, the factor of proportionality is
(n − h)/h = 119.

The closed form expressions of the risk premiums using the structure of the affine model are
the following,

π
(h,n−h)
f ,t = J(h,n−h)

f +
B′

n−s
n − s

[
μ(s−1) − μ∗(s−1) + (Φs − Φ∗s) Xt

]
, (15)

π
(n,h)
hb,t = J(n,h)

hb +
B′

n−h
h

[
μ(h−1) − μ∗(h−1) +

(
Φh − Φ∗h

)
Xt

]
, (16)

π
(n)
y,t = J(n)y +

B′
1

n

n−1

∑
j=0

[
μ(j−1) − μ∗(j−1) +

(
Φj − Φ∗j

)
Xt

]
, (17)

π
(s,n−s,h)
hf ,t = J(s,n−s,h)

hf +
B′

n−h − B′
s−h

n − s

[
μ(h−1) − μ∗(h−1) +

(
Φh − Φ∗h

)
Xt

]
, (18)

where we define μ(j) =
(

I + Φ + Φ2 + ... + Φj) μ; μ∗(j) =
(

I + Φ∗ + Φ∗2 + ... + Φ∗j) μ∗; and J(h,n−h)
f ,

J(n,h)
hb , J(n)y and J(s,n−s,h)

hf are time invariant Jensen inequality terms.5 Note that with risk neutrality
(when the physical and risk neutral measure coincide, Φ = Φ∗), risk premia collapse to the usual
Jensen inequality terms.

Even though different restrictions on the parameters of the affine model usually deliver similar
estimated risk factors Xt, the evolution of risk premia may vary across these models as long as the
matrices Φ and Φ∗ are different. Furthermore, for a given holding period h, the bond holding risk
premium π

(n,h)
hb,t is more sensitive to differences between Φ and Φ∗ than the forward risk premium the

longer is the maturity of the bond n. For example, when h = 1, the loading of the holding bond risk
premia on Xt is B′

n−1(Φ − Φ∗), while that of the forward premium is B′
n−1(Φ − Φ∗)/(n − 1). Thus,

for the bond with the longest maturity in our sample, n = 120, the loading of the forward premium on
Xt is almost 120 times smaller than that of the bond holding risk premium. Therefore, small differences
in the estimated coefficients may lead to very different estimates of bond holding risk premiums for
long maturity bonds even though the forward premiums may look similar.6

5 The Jensen inequality terms are given by:

J(h,n−h)
f =

s−1

∑
j=0

1
n − s

(
B′

j
ΓΓ′

2
Bj − B′

n−s+j
ΓΓ′

2
Bn−s+j

)

J(n,h)
hb =

h−1

∑
j=0

1
h

(
B′

j
ΓΓ′

2
Bj − B′

n−h+j
ΓΓ′

2
Bn−h+j

)

J(n)y = − 1
n

n−1

∑
j=1

B′
j
ΓΓ′

2
Bj

J(s,n−s,h)
hf =

n−s−1

∑
i=0

1
n − s

(
B′

s−h+i
ΓΓ′

2
Bs−h+i − B′

s+i
ΓΓ′

2
Bs+i

)
.

Proving Expressions (15) through (18) is not particularly difficult, but it is lengthy and tedious. We provide detailed proofs
upon request.

6 The result is reversed if n/h < h (so that n − h < h).
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3. A Nelson–Siegel Representation of the Affine Model

General unrestricted affine models with unobserved factors are unidentified because the
factors can be re-scaled, rotated and translated without affecting the empirical implications of
the model. There are several representations of affine models that are identified. We follow
Christensen et al. (2011) and use a representation of the arbitrage-free model in which the yield curve
adopts an augmented Nelson–Siegel parametrization of the cross-section of bond yields. As noted
by Christensen et al. (2011) and Hamilton and Wu (2012), the Nelson–Siegel model is a convenient
representation that is econometrically identified (subject to minor identification restrictions) and that
is easy to estimate using the method of maximum likelihood. This representation of the ATSM is
sufficiently general to make our point that imposing invalid overidentifying restrictions on risk prices,
which may look irrelevant from the point of view of some measures of risk premiums, could lead to
large differences in other measures of risk premia.

The dynamic Nelson–Siegel model is a three-factor model that fits the cross-section and time series
of yield remarkably well (Diebold and Li 2006). Yet, in its traditional representation, the Nelson–Siegel
model does not rule out arbitrage opportunities. The work in Christensen et al. (2011) showed that
one can augment the Nelson–Siegel model with a maturity-specific constant to render it arbitrage-free.
In particular, the yield y(n)t at any time t as a function of the maturity of the bond n is parametrized as:

y(n)t = an + ξ1t +

(
1 − e−θn

θn

)
ξ2t +

(
1 − e−θn

θn
− e−θn

)
ξ3t, (19)

where (ξ1t, ξ2t, ξ3t)
′ are latent variables interpreted as level, slope and curvature factors; and the

parameter θ determines the shape of the loadings on the factors.
In the traditional Nelson–Siegel model, an = 0 for all n. In the arbitrage-free Nelson–Siegel model,

the vector of risk factors is Xt = [ξ1t, ξ2t, ξ3t]
′, and the factor loadings and constant an are chosen to

satisfy the recursions (6) and (7). As shown by Christensen et al. (2011) in a continuous time setting,
rendering the Nelson–Siegel model arbitrage-free requires imposing restrictions on the risk-neutral
evolution of the state variables, Xt+1 = μ∗ + Φ∗Xt + Γη∗

t+1, where μ∗ = μ − Γλ0, Φ∗ = Φ − Γλ1

and η∗
t+1 ∼ N(0, I). The conditions are as follows: consider any 3 × 1 vector μ∗ and a risk-neutral

matrix on lagged values Φ∗ defined as:

Φ∗ =

⎡⎢⎣ 1 0 0
0 e−θ θe−θ

0 0 e−θ

⎤⎥⎦ , (20)

where θ > 0. Furthermore, let δ0 be any number and δ′1 =
[
1, 1−e−θ

θ , 1−e−θ

θ − e−θ
]
. Using these

assumptions, the recursions (6) imply:

bn = −Bn/n =
[
1, 1−e−θn

θ , 1−e−θn

θn − e−θn
]′

, (21)

precisely the factor loadings in the Nelson–Siegel representation (19). The maturity-specific constant
an is set to satisfy (7). Given these values, the parameters of the market price of risk λ0 and λ1 are
given by λ0 = Γ−1 (μ − μ∗) and λ1 = Γ−1(Φ − Φ∗).

Identification of the Nelson–Siegel model requires imposing simple restrictions on the parameter
δ0 and the risk-neutral intercept μ∗. As in Dai and Singleton (2000), we set δ0 = 0. Furthermore, since
in the recursion (7), μ∗′Bn is a scalar, we can identify a single parameter in μ∗. We set μ∗′ =

[
μ∗

1, 0, 0
]

and estimate μ∗
1 as a free parameter along with the other parameters of the model.

Let N > 3 denote the set of yield maturities observed by the econometrician. Since there are more
observed maturities than factors, the model is stochastically singular. One possibility is to assume that
three yields, or three linear combinations of yields, are perfectly priced by the model and then to impose
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classical measurement errors into the remaining yields (see (Hamilton and Wu 2012; Joslin et al. 2011)
among others). In contrast, the Nelson–Siegel literature, e.g., (Christensen et al. 2011), assumes that
all yields are measured with error, which is an appealing assumption to make since which yields are
perfectly priced or measured without error is arbitrary. We follow the latter approach and assume that
all yields are observed with uncorrelated measurement errors. Thus, for each yield y(n)t with n ∈ N ,
the arbitrage-free Nelson–Siegel model is represented by the following system of equations:

y(n)t = an + ξ1t +
1−e−θn

θ ξ2t +
(

1−e−θn

θn − e−θn
)

ξ3t + v(n)t , (22)

Xt+1 = μ + ΦXt + Γηt+1, (23)

where the state vector Xt = [ξ1t, ξ2t, ξ3t]
′ is unobserved, the intercept an satisfies the recursion (7) and

v(n)t ∼i.i.d. N(0, σ2
n).

Since the risk factors are unobserved, and it is not possible to recover Xt from the observed yields,
we use the Kalman filter to evaluate the prediction-error decomposition of the likelihood function.
In the unrestricted Nelson–Siegel model, we maximize the log-likelihood function numerically
choosing the free parameters μ, Φ, Γ, μ∗

1, θ and σ2
n for n ∈ N . In restricted versions of the Nelson–Siegel

model, we impose the appropriate restrictions on the free parameters.

4. Estimation Results

We used data on U.S. Treasury yields of fixed maturities of 3, 6, 12, 24, 36, 48, 60, 72, 84, 96, 108
and 120 months from January 1985 through December 2013. The shortest yield is the three-month
treasury constant maturity rate obtained from the Federal Reserve Bank of St. Louis (Series DGS3MO).
The remaining yields are from Cochrane (2015), who updated the data in Joslin et al. (2011) until
December 2013.

We begin by estimating the unrestricted unobserved factor model imposing the arbitrage-free
Nelson–Siegel parametrization discussed above. Using this model as a benchmark, we imposed
restrictions commonly used in the literature on the parameters that determined the evolution of
the risk factors under the physical measure. Those restrictions were often motivated in terms of
forecasting performance or simplicity grounds. In particular, in the baseline case, we did not restrict
any of the parameters of the model besides the aforementioned identifying restrictions. Since all the
restricted models that we consider are nested, we next tested whether the restrictions were supported
by the data using likelihood-ratio tests along with information criteria for in-sample comparisons.
More importantly, we assessed the economic relevance of the restrictions by investigating their impact
on estimated risk premia.

Table 1 shows the estimation results of the general model along with the log-likelihood value,
information criteria and estimated parameter θ of the different restricted models. The general model
corresponds to the Nelson–Siegel parametrization without imposing any restriction on the evolution
of the state variables. The restricted models impose different constraints on the state equation:
we considered a model with a diagonal Φ matrix, as in Christensen et al. (2011); a model with a
diagonal Γ matrix, as in Gürkaynak and Wright (2012); and a model in which only shocks that affect
the market price of level risk Λ1,t (the first element of Λt) are priced, in the spirit of Cochrane and
Piazzesi (2005, 2008). Under this last parametrization, the matrix λ1 had non-zeros only in the first
row, and only the first element of the vector λ0 was non-zero.7

7 Since Cochrane and Piazzesi (2005, 2008) developed a four-factor model (level, slope, curvature factors plus a return
forecasting) factor, their results and ours are not exactly comparable. Yet, after some pre-estimation analysis, they argued
that only shocks to their forecasting factor affected the market price of level risk Λ1,t. Since the forecasting factor captures
information of the level, slope and curvature of the yield curve (and possibly some other information), we captured their
restrictions on risk prices by allowing shocks to the three factors to affect only the market price of level risk and set all the
other elements of the matrix λ1 (the second and third rows) to zero.
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Table 1. Estimates of arbitrage-free Nelson and Siegel models.

Unrestricted Arbitrage-Free Nelson and Siegel Model

Parameters of the VAR(1) process for the yield curve factors (ξ1t, ξ2t, ξ3t)
μ (×1000) Φ Γ (×1000)⎡⎢⎢⎢⎢⎢⎢⎣

0.1654
(0.0630)
0.0079
(0.0716)
−0.4064
(0.1633)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0.967 −0.006 0.023
(0.014) (0.015) (0.011)
−0.016 0.960 0.027
(0.016) (0.016) (0.013)
0.096 0.055 0.901
(0.033) (0.034) (0.028)

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
0.274 0 0
(0.013)
−0.247 0.200 0
(0.016) (0.008)
−0.120 0.035 0.678
(0.045) (0.038) (0.029)

⎤⎥⎥⎥⎥⎥⎥⎦
Other parameters
θ = 0.0403 (0.001) μQ

1 (×1000) = 0.0094 (0.0009)

Log-likelihood = 33, 225.3 Akaike = −66, 386.5 Schwarz = −66, 263.2

Model with diagonal Φ matrix
Log-likelihood = 33,200.7 Akaike = −66,349.4 Schwarz = −66,249.2 θ = 0.0402

LRstatistic = 49.14 p-value = 0.000

Model with diagonal Γ matrix
Log-likelihood = 3,084.4 Akaike = −66,110.9 Schwarz = −65,999.2 θ = 0.0407

LR statistic = 281.61 p-value = 0.000

Model with only market price of level risk
Log-likelihood = 33,185.0 Akaike = −66,322.0 Schwarz = −66,229.6 θ = 0.0401

LR statistic = 80.47 p-value = 0.000

The likelihood ratio tests and the information criteria suggested that none of the models were
valid restrictions of the general model. Yet, the estimated risk factors Xt and the parameter θ, which
governed the evolution of the risk factors under the risk-neutral measure, were virtually the same
in all models (Figure 1 and Table 1). Since bond prices depend only on the parameters of the risk
neutral measure (determined only by θ and μ∗

1 in the Nelson–Siegel parametrization), the four models
provided a virtually identical characterization of the cross-section of bond yields. Risk premiums,
however, depend on the evolution of the risk factors under the physical measure, which did vary in
the different models. Alternatively, the estimated values of the parameters λ0 and λ1, displayed in
Table 2, differed substantially across models, often even with different signs.

Table 2. Estimated market prices of risk parameters.

Unrestricted model Diagonal Φ model

Γλ0(×1000) Γλ1 Γλ0(×1000) Γλ1⎡⎣ 0.156
0.008
−0.406

⎤⎦ ⎡⎣−0.0333 −0.0063 0.0233
−0.0159 −0.0004 −0.0119
0.0958 0.0553 −0.0592

⎤⎦ ⎡⎣ 0.010
−0.034
−0.033

⎤⎦ ⎡⎣−0.0030 0 0
0 0.0285 −0.0386
0 0 −0.0064

⎤⎦
Diagonal Γ model Only market price of level risk

Γλ0(×1000) Γλ1 Γλ0(×1000) Γλ1⎡⎣ 0.091
0.068
−0.359

⎤⎦ ⎡⎣−0.0184 0.0009 0.0116
−0.0266 −0.0066 −0.0001
0.0841 0.0628 −0.0617

⎤⎦ ⎡⎣ 0.135
−0.115
−0.062

⎤⎦ ⎡⎣−0.0273 0.0009 0.0150
0.0233 −0.0008 −0.0128
0.0125 −0.0004 −0.0068

⎤⎦
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Figure 1. Estimated unobserved factors and empirical level, slope and curvature.

5. Risk Premia and Restrictions on Risk Prices

In this section, we analyze how imposing different restrictions on the general model affects the
four measures of risk premium discussed above.

5.1. The Forward Risk Premium

The forward risk premium can be computed from forecasts of the future yield curve (Equation (11)).
To the extent that these forecasts are similar to those obtained from reduced form vector autoregression,
the forward risk premium would be almost model independent (see Joslin et al. 2011, Hamilton and
Wu 2012 and Duffee (2011)).

In Figure 2, we show the estimated forward premiums in the four versions of the model. The upper
left panel displays the premium associated with opening a forward contract with a settlement date
one year ahead (s = 1 using our notation) on a bond that matures in one year (n − s = 1). In general,
the notation s-for-(n − s) forward represents the premium associated with opening a forward contract
with settlement date s years ahead on a bond that matures in n − s years. Except for the factor model
in which only the market price of level risk matters, the forward premium is roughly similar across
models, particularly for longer term bonds. Although not shown in the figure, all forward premiums
move almost one-to-one with the slope factor ξ2t of the yield curve. In the following subsections,
we show how these small differences in the forward premium across models get amplified when
considering other definitions of risk premium.
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Figure 2. Forward premium: different models and bonds.

5.2. The Bond Holding Risk Premium

Given that the risk factors are virtually identical in the four models, differences in the estimated
risk premiums come from differences in the factor loadings. Therefore, looking at factor loadings is a
natural way to evaluate how sound the overidentifying restrictions are, we use Equation (16) to analyze
those factor loadings in the case of the bond holding risk premium for different bond maturities and
holding periods. Results are expressed in annualized percentage terms.

The three plots on the left panel of Figure 3 show the loadings on the factors (ξ1t, ξ2t, ξ3t),
respectively, of the one-month bond holding risk premium as a function the maturity of the bond (buy
and hold for one month an n period bond), for the four different models. The right panel displays the
same loadings, but holding the position for one year.

The restrictions imposed on the models are economically relevant. In the baseline (unrestricted)
model, and for both holding periods, the importance of the level factor ξ1t increases with the maturity
of the bond, while that of the slope factor ξ2t is maximized (in absolute value) at about 84 months
(seven years) when holding the bond for one month and is always decreasing in maturity when
holding the bond for one year. The loading on the curvature factor ξ3t is almost zero for bonds with
maturities up to 40 months and then becomes negative and decreasing for bonds of longer maturities.
In contrast, the model with a diagonal Φ matrix works quite differently: the contribution of the level
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factor ξ1t also increases (almost linearly) with the maturity of the bond, but by a much smaller rate
than in the baseline model. On the other hand, the contribution of the curvature factor ξ3t is now
positive and increasing with the maturity of the bond for both holding periods. Those differences are
economically relevant: a unit increase in the level factor leads to an increase in the one-month bond
premium of over two percentage points for a 10-year bond in the baseline model, but of less than
0.5 percentage points in the diagonal Φ model.
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Figure 3. Loadings on factors: one-month and one-year excess holding returns.

Perhaps surprisingly, the factor loadings of the model with a diagonal Γ matrix are quite different
from those of the baseline model. In the diagonal Γ model, the loading on the level factor is half of
that in the baseline model, the loading on the slope factor is twice as large and the loading on the
curvature factor is mostly positive, while that in the baseline model is mostly negative. Yet, as we
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show below, those differences in the loadings tend to cancel out, and the evolution of the bond holding
risk premium in the restricted model is similar to that in the baseline model.

The factor loadings of the model with only the market price of level risk (only the first row of
λ1 is non-zero) are very different from those of the baseline model. The influence of the slope factor
is virtually zero for all bond maturities and holding periods. This prediction is at odds with those of
the other models, in which the slope factor has a significant impact on all measures of risk premia.
Interestingly, for this restricted model, the importance of the level factor when holding long-term
bonds is not only very similar to that in the baseline model, but also dominates quantitatively the
influence of the other factors. This observation suggests that the evolution of the bond holding risk
premium will be very different from that of the baseline model when considering short maturity bonds,
but similar when considering longer term bonds.

We next evaluate the evolution over time of the bond holding risk premium derived from the four
models. If a restricted model is statistically rejected, but it generates an estimated risk premium that is
similar to that in the baseline model, one could claim that the statistical rejection is not economically
relevant.8 On the other hand, when a restricted model produces a risk premium that is substantially
different from that in the baseline model, we say that the statistical rejection also has economic relevance.

Figure 4 shows one-month bond holding excess returns for 1-year, 5-year, 7-year and 10-year
bonds for the different models. Consistent with the information in Figure 3, which shows that the
loadings on the level and slope factors increase in absolute value with the maturity of the bond,
we observe that the risk premia of long maturity bonds are substantially more volatile than those of
shorter maturity bonds. The excess return from holding one-year bonds reaches a peak of around two
percentage points, while those of the 5-, 7- and 10-year bonds are around six and 12 percentage points,
respectively. Comparing this results with those presented in Figure 1, it is apparent that excess holding
returns move closely with the slope factor, especially for longer maturity bonds.

The model with a diagonal Γ matrix is the one that displays the smaller differences in the bond
holding risk premium relative to the baseline model: the differences are centered on zero, and their
magnitudes are smaller than those of the other restricted models. Which model differs the most relative
to the baseline, however, depends on the maturity of the bond. For the one-year bond, the model
with only the market price of level risk is, by far, the most different from the baseline, with differences
reaching 100 percentage points of excess holding returns. This model, however, delivers risk premiums
similar to those of the baseline model for long-term bonds. As Figure 3 shows, in this model, the level
factor dominates the contribution of the other two factors, and in that sense, it is similar to the baseline
model. The second most different model is that with a diagonal Φ matrix. This model often produces
differences of about 200 percentage points larger or smaller relative to the baseline (for example,
in mid-2002).

8 Of course, those differences may be relevant in other dimensions such as forecasts of future yields. Nevertheless, models with
good forecasting performance, such as the diagonal Φ model (Christensen et al. 2011), may produce poor estimates of risk
premia in sample.
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Figure 4. One-month expected excess returns: different models and bonds.

Figure 5 displays the 6-month, 1-year, 5-year and 7-year excess returns from holding a 10-year
bond. A pattern that emerges from the figure is that the risk premiums associated with longer maturity
bonds are highly contemporaneously correlated with the slope factor ξ2t (see Figure 1). As with the
one-month excess holding returns, the model that is closest to the baseline is that with a diagonal
Γ matrix.
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Figure 5. Expected returns on a 10-year bond: different models and holding periods.

5.3. The Term Premium

The n-period term premium is difference between the yield on an n-period zero coupon bond
and the average of expected future short rates, where the average is taken between today and n − 1
periods ahead. Figure 6 shows, in the different panels, the evolution of the term premium using 1-year,
4-year, 6-year and 10-year bonds for the baseline and the restricted models. Two messages follow from
this plot. First, the term premium moves closely with the slope factor (ξ2t) especially for long maturity
bonds. Second, the violations of the expectational hypothesis, as represented by the volatility of the
term premium, become more apparent the longer the bond is under consideration. In particular, while
the 10-year term premium can be as high as four percentage points and very volatile, the one-year
term premium is smaller and less volatile, although it is far from constant and displays a decreasing
trend over time. As for restrictions on risk prices, we still find that the model with a diagonal Γ matrix
produces the term premium that is closest to the baseline.
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Figure 6. Term premium: different models and bonds.

5.4. The Holding Futures Risk Premium

Here, we consider the premium from holding a forward contract for a number of periods and
selling it before the settlement date. Figure 7 displays the factor loadings of the one-month (left
panels) and one-year (right panels) holding forward risk premium as a function of the settlement date,
for the different models. As in the case of the bond holding return, the shape of the loadings differ
substantially depending on the restrictions that we impose on the models. While the loadings on the
level and slope factors (ξ1t and ξ2t) have a U-shape in the baseline model, the loading on the level
factor in the model with a diagonal Γ matrix is flat and close to zero, and the loading on the slope
factor is negative and increases towards zero in the model with a diagonal Φ matrix. Likewise, in the
model with only market price of level risk, the loading on the level factor increases with the settlement
date, and that on the slope factor is virtually zero.
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Figure 7. Loadings on factors: one-month and one-year holding forward returns.

Figures 8 and 9 show the evolution of the one-month and one-year holding forward risk premiums.
Three patterns emerge from the figures. First, the holding forward risk premiums are much smaller
than the bond holding risk premiums (excess bond returns). Second, the holding forward premium is
also highly contemporaneously correlated with the slope factor ξ2t. Third, the difference between the
restricted models and the baseline tend to follow a pattern similar to the bond holding risk premium.
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Figure 8. One-month holding forward risk premium.
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Figure 9. One-year holding forward risk premium.

6. Final Remarks

In this paper, we analyzed how different restrictions on risk prices affect bond risk premia.
The model that imposes a diagonal Φ matrix and that with “only market price of level risk” are not
only statistically rejected, but also produce measures of risk premia that are very different from those
of the unrestricted model. Yet, there are models, such as that with a diagonal Γ matrix, that are also
rejected on statistical grounds, but that produce measures of risk premia very similar to those from
the baseline model. This result follows because restrictions on Γ have a minor impact on the market
price of risk parameters. Any difference with the baseline model is of second order and comes from
the indirect effect of the restrictions on the constants An, and because the estimates of the remaining,
common, parameters may be somewhat different.

In the baseline model, the forward premium is always positive, while the excess holding risk
premium is often negative. We found that the slope factor moves almost one-to-one with several
measures of risk premia, which suggests that looking at the empirical slope of the yield curve (which
is highly correlated with the slope factor that we extract from the model) gives an accurate description
of risk premia in bond markets. Furthermore, as has been documented many times, we find that the
expectational hypothesis of the term of the structure of interest rates is at odds with the data.
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In terms of how restrictions on risk prices affect risk premia, we found that the differences across
models in the estimated forward premium are modest, but they get amplified when considering excess
holding risk premiums. There are, however, cases in which the restricted models seem to work well.
For example, the one-month excess return of a 10-year bond for the model with “only market price of
level risk” is quite similar to that from the baseline model. This happens because the loading of the
risk premium on the level factor increases with the maturity of the bond and dominates movements in
risk premia relative to the contribution of the other factors, but only for long maturity bonds.

In sum, imposing overidentifying restrictions affect the evolution of risk premia dramatically
in some cases (such as when Φ is diagonal), but not so much in others (such as when Γ is diagonal).
Often, researchers impose overidentifying restrictions to reduce the number of parameters to estimate
or for other reasons, such as forecasting performance, even though they are statistically rejected.
Our exercises suggest that this practice is inappropriate, since it is difficult to know a priori when the
restrictions will have a significant impact on estimated risk premia. Of course, there is no harm in
imposing the restrictions if they are not statistically rejected. However, since there is no theoretical
guidance on how to impose them and one gains at best a few degrees of freedom by finding the
appropriate restrictions, we believe that it is advisable to focus on the just-identified case whenever
the objective of the study is to understand risk premia.
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Appendix A

In the text, we claim that the four concepts of risk premia π
(s,n−s)
f ,t , π

(n,h)
hb,t , π

(n)
y,t and π

(s,n−s,h)
hf ,t are

equivalent, in the sense that if one of them is zero or constant, so are the other three. That the risk
premiums π

(s,n−s)
f ,t , π

(n,h)
hb,t , and π

(n)
y,t are equivalent is a well-known result. Here, we prove that the

holding forward risk premium π
(s,n−s,h)
hf ,t is also equivalent to the other three.

Consider the equations that define the forward risk premium at times t and t + h,

f (s,n−s)
t = Et

[
y(n−s)

t+s

]
+ π

(s,n−s)
f ,t ,

f (s−h,n−s)
t+h = Et+h

[
y(n−s)

t+s

]
+ π

(s−h,n−s)
f ,t+h .

Taking expectations as of time t in the second equation gives:

Et

[
f (s−h,n−s)
t+h

]
= Et

[
y(n−s)

t+s

]
+ Et

[
π
(s−h,n−s)
f ,t+h

]
Subtracting this expression from the first equation, one obtains:

f (s,n−s)
t − Et

[
f (s−h,n−s)
t+h

]
= π

(s,n−s)
f ,t − Et

[
π
(s−h,n−s)
f ,t+h

]
.

However, since the holding forward risk premium is given by:

π
(s,n−s,h)
hf ,t = Et

[
f (s,n−s)
t − f (s−h,n−s)

t+h

]
,

it follows that:
π
(s,n−s,h)
hf ,t = π

(s,n−s)
f ,t − Et

[
π
(s−h,n−s)
f ,t+h

]
.

Therefore, if the forward risk premium π
(s,n−s)
f ,t is zero (or constant), so is the holding forward

risk premium π
(s,n−s,h)
hf ,t for any (s, n − s, h).
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Conversely, suppose that π
(s,n−s,h)
hf ,t is zero or constant for all (s, n − s, h). In particular, setting

s = h and n − s = 1 for any h, it follows that:

f (s,n−s)
t = Et

[
f (s−h,n−s)
t+h

]
+ π

(s,n−s,h)
hf ,

f (h,1)
t = Et

[
f (0,1)
t+h

]
+ π

(h,1,h)
hf .

However, f (0,1)
t+h = y(1)t+h, so that:

f (h,1)
t = Et

[
y(1)t+h

]
+ π

(h,1,h)
hf .

Rearranging and using the definition of π
(h,1)
f ,t gives π

(h,1)
f ,t = π

(h,1,h)
hf . Since π

(h,1,h)
hf is zero or

constant, so is π
(h,1)
f ,t for all h. However, using π

(n)
y,t = 1

n ∑h
j=1 π

(j,1)
f ,t , it then follows that if π

(h,1,h)
hf is zero

or constant, so is π
(n)
y,t for all n. Therefore, the holding forward risk premium is equivalent to the term

premium and, therefore, to the other two definitions of risk premium. This completes the proof that
the four definitions of risk premiums are equivalent.
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Abstract: This paper examines the steady state properties of the Threshold Vector Autoregressive
model. Assuming that the trigger variable is exogenous and the regime process follows a Bernoulli
distribution, necessary and sufficient conditions for the existence of stationary distribution are
derived. A situation related to so-called “locally explosive models”, where the stationary distribution
exists though the model is explosive in one regime, is analysed. Simulations show that locally
explosive models can generate some of the key properties of financial and economic data. They also
show that assessing the stationarity of threshold models based on simulations might well lead to
wrong conclusions.
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1. Introduction

Correct theoretical and empirical modelling of financial time series remains challenging. First of
all, the usual linear framework often falls short of properly describing the data, which, instead, exhibit
important nonlinear features. Secondly, economic theory regularly results in models with multiple
equilibria and asymmetries which the time series model should be able to accommodate. Finally,
data is often interconnected and hence simple univariate models generally fall short of appropriately
describing the complex nature of the data. The Global Financial Crisis in 2007–2008 demonstrated this
very clearly and reinforced the need to use a multivariate nonlinear framework in economic models,
in general, and in empirical finance, in particular.

Among the many possible candidate nonlinear models, threshold models are particularly
interesting and they have been extensively used in the existing empirical literature. These models
are straightforward generalizations of linear models. For example, the simple two regime Threshold
Autoregressive (TAR) model specifies a different autoregressive structure for each of the regimes and
a threshold variable that determines which regime is active. These models are therefore relatively
simple to estimate, and, since at time t the regime state is known, they are more suitable for forecasting
than other nonlinear models, in particular hidden Markov models. Finally, TAR models allow for
reasonably simple tests of the linear structure against nonlinear alternatives and to test the number
of regimes. The multivariate generalization of the TAR model instead uses vector autoregressive
structures in the regimes and is therefore naturally referred to as the Threshold Vector AutoRegressive
(TVAR) model (Hubrich and Teräsvirta 2013; Tsay 1998).

Empirical studies have used threshold models to explore the asymmetry of shocks and nonlinear
relationship between variables in financial markets and data from the real and monetary economy.
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For instance, TVAR models are widely used to study the asymmetric effect of fiscal and monetary
policies in different credit, interest rate and inflationary regimes (Balke 2000; Fazzari et al. 2015; Shen
and Chiang 1999). Balke (2000), for example, studies the propagation of shocks to output growth,
the Federal Funds rate, inflation and measures of credit conditions during “tight” and “normal” credit
market conditions using a TVAR framework with two regimes. The results suggest that shocks
have a larger effect on output in “tight” credit regimes and that contractionary monetary shocks are
more effective than expansionary ones. A similar approach is followed by Calza and Souza (2006)
to study the transmission of monetary shocks across two credit regimes in the EU area and by
Li and St-Amant (2010) to evaluate the effect of financial stress conditions on monetary policy
effectiveness in Canada.

Another important application of threshold models has been to study the business cycle.
For example, Altissimo and Violante (2001) study the joint dynamics of US output and unemployment
using a bivariate TVAR model for recessions and expansions. Here, the lagged feedback variable,
which measures the depth of the recession, defines the regime. The resulting model is a VAR with
a fixed number of lags when the economy is in expansion and a time varying lag order when
the economy is in recession. The authors find that nonlinearities are statistically significant only
for unemployment, but it transmits to output through cross-correlation. Further evidence on the
usefulness of threshold models for analysing the business cycle can be found in Koop and Potter (1999),
Peel and Speight (1998), Koop et al. (1996), and Potter (1995), amongst others.

Threshold models are also popular in financial markets studies to explore the asymmetric relation
between variables. In particular, a common application of TAR models includes determining the
threshold effect in price movements related to transaction cost (Yadav et al. 1994). The threshold
autoregressive conditional heteroskedastic class of models has been applied to study the nonlinear
effect in volatility processes (Rabemananjara and Zakoian 1993). Finally, multivariate threshold
models have been extensively used in studying the dynamics in stock prices, returns, volatilities,
inflation and economic activity (Barnes 1999; Griffin et al. 2007; Huang et al. 2005; Li et al. 2015).
Griffin et al. (2007), for example, study the joint dynamics of stock market turnover, returns and
volatility in 46 countries using a TVAR model with two regimes that are separated by the sign of the
past return. The authors conclude that small negative return shocks, rather than large ones, are the
drivers for the decrease in turnover after a decrease in returns. Li et al. (2015) study the interaction
between Shanghai and Shenzhen stock markets in a bivariate three regime TVAR model where the
threshold variable is the average difference of the log returns between the two markets. Their results
suggest that the strength of interaction between markets is regime dependent. In particular, the
Shanghai market leads most of the time, except for the third regime, where both markets interact
simultaneously. A detailed review of the application of threshold models in empirical economics can
be found in Hansen (2011).

One challenge with nonlinear time series models, in general, and by extension therefore also with
threshold models, in particular, is to assess model stationarity. Establishing stationarity is important
as it is a fundamental assumption in most theoretical research. Indeed, the asymptotic properties of
estimators in threshold models are generally established under a set of standard regularity conditions,
which include the existence of finite higher order moments and the strict stationarity of the data
generating process (Tsay 1998). Moreover, existing inference approaches assume stationarity of the
data generating process (Hansen 1996, 2000; Tsay 1998) and violation of this assumption might lead
to spurious nonlinearity (Calza and Souza 2006) and could invalidate the use of, e.g., Hansen (1996)
simulated p-values for inference.

While significant progress has been made to establish conditions which ensure stationarity for
the univariate threshold case under realistic assumptions (Brockwell et al. 1992; Chan and Tong
1985; Chen et al. 2011; Knight and Satchell 2011; Petruccelli and Woolford 1984), to the best of our
knowledge, very little is known about the multivariate extension. See Chen et al. (2011) for an extensive
review about recent findings regarding the stationarity of TAR models. If one was to use the general
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approach from this literature to establish the stationarity of TVAR models, it would require proving
the convergence of an infinite sum of products of random matrices. This is clearly difficult and likely
explains the absence of theoretical results for the TVAR model.

In this paper, we fill this gap in the existing literature and analyse the properties of the TVAR model
in detail. To achieve this, we assume that the trigger variable is exogenous and that the regime process
follows a Bernoulli distribution. We first derive necessary and sufficient conditions for second order
stationarity, which are not present in the previous literature, when the variance–covariance matrices of
the random vector and the error process are assumed to have full rank. Next, we characterize the joint
conditional distribution of the data generating process when the error vector follows a multivariate
normal distribution. Finally, we derive the unconditional distribution for a special case of the TVAR
model, and we demonstrate that, in this case, the distribution of the threshold model is an infinite
mixture of normals. This shows that TVAR models are very general and can accommodate many of
the stylized features of financial data.

As a first interesting application of our results, we consider the special case where the elements
of the random vector are positively correlated and we describe a model that is explosive in one
regime, but still allows for the existence of steady state distribution. A similar idea was introduced
in Knight et al. (2014) in the univariate case as a so-called “locally explosive model”. In particular,
they study the univariate threshold autoregressive model with exogenous trigger and its application to
bubble formation. We expand the notion of locally explosive models to the bivariate TVAR model. The
derived conditions for the existence of the stationary distribution have simple economic intuition and
are easy to interpret. In particular, our results show that, in the stationary model, there is a trade-off
between autoregressive dependence in the regime and the probability of the regime.

Next, we conduct an empirical analysis of the locally explosive models. In the absence of explicit
theoretical conditions that guarantee stationarity of the model, the previous literature suggested to
establish stationarity indirectly by demonstrating, using a simulation study, that the estimated model
does not appear to contradict the stability assumption. To assess this procedure, we simulate the
bivariate locally explosive TVAR model for different distributions of the regimes. Our results show
that a simulation study aimed at verifying stability of a particular model might give inconclusive or
even wrong results. Specifically, we show that the simulation exercise may very well fail to reject
stability of non-stationary TVAR models when the probability of the explosive regime is low.

Finally, we empirically document that the locally explosive TVAR model can be associated
with bubble formation processes. In fact, our simulated locally explosive models appear to possess
explosive and unit root behaviour while overall remaining stationary. These properties are implied by
the definition of bubbles prevailing in the current literature and formally described by Evans (1991)
and Phillips and Yu (2011). Our results, therefore, should encourage further research into multivariate
threshold models and their use to study the formation of and existence of bubbles in financial data.

The structure of the paper is as follows: In Section 2, we derive the necessary and sufficient
conditions for second order stationarity and for the existence of a stationary distribution for the TVAR
model. This section also derives closed form solutions for the stationary distribution. In Section 3,
we consider the so-called locally explosive models, in which the TVAR model is explosive in one
regime, while overall remaining stationary. This section also presents some interesting special cases
and reports the results from a simulation study. Finally, Section 4 concludes the paper. All proofs can
be found in Appendix A and Appendix B contains additional figures.

2. The Threshold Vector Autoregressive Model

Throughout this paper, we consider the threshold vector autoregressive model given by

Yt = Φ1 I(Xt−1 ∈ R1)Yt−1 + Φ2 I(Xt−1 ∈ R2)Yt−1 + εt, (1)
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where Yt is a (n × 1) random vector, Φ1 and Φ2 are (n × n) parameter matrices, where n is the number
of time series, I() is the indicator function, Xt is an iid random variable, which determines the regime,
and εt is a sequence of independent multivariate random vectors, such that E(εt) = 0 and Var(εt) = Σ,
∀t, where Σ is positive definite with full rank. We assume that E(εt|Xs) = 0 for all s ≤ t and that the
sequence (εt, Xt), t ≥ 1, is iid.

The regime process is defined as St = I(Xt ∈ R2), ∀t, where Prob(Xt ∈ R2) = π and
Prob(Xt ∈ R1) = 1 − π, with R1 ∪ R2 = R and R1 ∩ R2 = ∅. From this, it follows that St is an
iid Bernoulli variable with St = 0 with probability 1 − π and St = 1 with probability π. Using St,
Equation (1) can be rewritten as Yt = (Φ1 + St−1Φ0)Yt−1 + εt, where Φ0 = Φ2 − Φ1. If we further
denote by Bt = StΦ0 − πΦ0, where E(Bt) = 0, ∀t, the model in Equation (1) can be rewritten as a
Random Coefficient Model (RCM) (see Nicholls and Quinn (1982)) given by

Yt = (Φ + Bt−1)Yt−1 + εt, (2)

where Φ = Φ1 + πΦ0 = (1 − π)Φ1 + πΦ2.
In the following sections, we examine the TVAR model specified above in detail. First, we provide

the necessary and sufficient conditions under which the TVAR model is second order stationary. We
also derive expressions for the moments and the stationary solution to the model given in Equation (1).
Secondly, we derive the distribution associated with this data generating process. For simplicity, we
assume only two regimes in Equation (1). However, the theoretical results obtained here can easily be
generalized to multiple regimes.

2.1. Stationarity of the TVAR Model

Theorem 1 provides conditions under which the TVAR model above is second order stationary,
i.e., that E(Yt) is constant and Cov(Yt, Yt+h) depends only on the lag h.

Theorem 1. The process Yt, t = 0, 1, 2, ... defined in Equation (1) is second order stationary with positive
definite covariance matrix V = Var(Y0) if and only if:

1. μ = 0, where μ is a mean of the initial vector, μ = E(Y0),
2. the covariance matrix V solves V − ΦVΦ′ − E(Bt−1VB′

t−1) = Σ, and
3. | λ |< 1, where λ is the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2.

Proof. See Appendix A.

Condition 3 of Theorem 1 provides a simple and intuitive eigenvalue condition for establishing
second order stationarity of the TVAR model in Equation (1). We note that conditions similar to
what we present here have been derived previously, though this has been done using alternative and,
we believe, less realistic and empirically interesting assumptions (see, e.g., Nicholls and Quinn (1981),
Feigin and Tweedie (1985) and Saikkonen (2007)). In particular, Nicholls and Quinn (1981), Feigin
and Tweedie (1985) as well as Saikkonen (2007) assume independence of the error term, εt, and the
threshold variable, Xt. We do not have this assumption and instead make a, we believe, far less
restrictive assumption of the exogeneity of the threshold variable, Xt, i.e., E(εt|Xt), which does not
rule out, for example, the possibility that the threshold variable Xt could be a part of the εt process.

Condition 2 of Theorem 1 provides an expression for calculating the covariance matrix of the
second order stationary process Yt. Notice that, after vectorization of this expression, we can obtain a
closed form formula for this. Remark 1 provides this formula.

Remark 1. From vectorization of the expression V − ΦVΦ′ − E(Bt−1VB′
t−1) = Σ, the equation for the

variance of Yt can be obtained from

vecV = (I − Φ ⊗ Φ − π(1 − π)Φ0 ⊗ Φ0)−1vecΣ. (3)
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Theorem 2 provides an expression for the stationary solution to the model in Equation (1) and the
corresponding conditions for the existence of this solution. Theorem 2 also shows that this solution is
unique and strictly stationary.

Theorem 2. Assume that V is positive definite with full rank. Then, the TVAR model in Equation (1) has a
unique stationary solution given by

Yt = εt +
∞

∑
n=1

(
n

∏
k=1

Φ + Bt−k

)
εt−n, (4)

if and only if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2.

Proof. See Appendix A.

In Remark 2, we provide the restriction on the eigenvalues of the matrix Φ, which is necessary
for the stationary model in Equation (1) and follows from Theorems 1 and 2. This condition is more
tractable, and it is used in Section 3 to simplify the analysis of the stationary TVAR model with one
explosive regime.

Remark 2. Let the process Yt, t = 0, 1, 2, ... defined in Equation (1) be stationary with positive definite
covariance matrix V. Then, the maximum eigenvalue of the matrix Φ is less than 1.

Proof. See Appendix A.

The results of Theorems 1 and 2 can be extended to TVAR models with more than one lag.
Corollary 1 presents the conditions for the stationarity of the TVAR model, which contains more than
one lag.

Corollary 1. Consider the following two-regime TVAR model with p lags in each regime

Yt = I(Xt−1 ∈ R1)
p

∑
j=1

Φ1jYt−j + I(Xt−1 ∈ R2)
p

∑
j=1

Φ2jYt−j + εt, (5)

where the properties of Xt and εt are those following Equation (1). This model has a unique stationary solution
given by

Zt = ηt +
∞

∑
n=1

(
n

∏
k=1

A + Dt−k

)
ηt−n, (6)

where Zt and ηt are np × 1 vectors given by Z′
t = [Y′

t , Y′
t−1, Y′

t−2, ...Y′
t−(p−1)] and ηt = [ε′t, 0, 0, .., 0],

respectively, and Dt = (St − π)A2 + (π − St)A1, with Ai, i = 1, 2, defined as

Ai =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Φi1 Φi2 Φi3 ... Φi(p−1) Φip

In 0 0 ... 0 0
0 In 0 ... 0 0
0 0 In ... 0 0
... ... ... ... ... ...
0 0 0 ... In 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

if | λ |< 1, where λ is the maximum eigenvalue of the matrix (1 − π)A1 ⊗ A1 + πA2 ⊗ A2, and only if
| λ1 |< 1, where λ1 is the maximum eigenvalue of the matrix A = (1 − π)A1 + πA2.

Proof. See Appendix A.
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The distinctive feature of the TVAR model is that it is a linear Vector Autoregresive Model (VAR) in
each of the regimes and an interesting question therefore is how the stability of each regime contributes
to the stationarity of the whole TVAR model. Knight and Satchell (2011) investigate this question in
detail for the univariate TAR model and Niglio et al. (2012) provide evidence that, when the univariate
TAR model is stationary in both regimes, the whole TAR model cannot explode. The more interesting
situation, however, occurs when the model in Equation (1) is explosive in one of the regimes.

The results of Theorems 1 and 2 can be used to analyse this particular situation, one in which the
TVAR model in Equation (1) is explosive in one of the regimes. For example, the following example
shows that the TVAR model can still be stationary in that case provided the probability to be in the
explosive regime is not too large. See also Section 3 for further analysis.

Example. Consider the model in Equation (1), where Φ1 =

(
0.70 0.21
0.31 0.80

)
, Φ2 =

(
0.20 0.32
0.10 0.25

)
and π = Prob(Xt ∈ R2) = 0.3. Since one of the eigenvalues of Φ1 is equal to 1.01, the
model is not stationary in regime one. On the other hand, (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 =⎛⎜⎜⎜⎝

0.36 0.12 0.12 0.0
0.16 0.41 0.06 0.14
0.16 0.06 0.41 0.14
0.07 0.18 0.18 0.47

⎞⎟⎟⎟⎠ , and its maximum eigenvalue λ = 0.78. Thus, overall the model is

stationary.

2.2. The Stationary Distribution

In this section, we describe the stationary distribution associated with the model in Equation (1).
Throughout this section, we assume that εt ∼ N(0, Σ) are independent random vectors. Let Yt be
defined by Equation (4) and let Sn(t) = ∏n

k=1(Φ + Bt−k), n ≥ 1, with S0(t) = 1. It then follows that

Yt = εt +
∞

∑
n=1

Sn(t)εt−n. (7)

From this, we have that

Yt|Sn(t) ∼ N(0, Σ +
∞

∑
n=1

Sn(t)ΣS′
n(t)), (8)

and from the definition of Sn(t) we notice that the stationary distribution of Yt is a complicated mixture
of Normal distribution. Since it is difficult to establish the distribution of Yt in general, we will derive
it under the assumption that Φ1 = 0. In this case, if Yt denotes returns, then prices follow a random
walk in regime 1.

From Equation (8), we see that the characteristic function of Yt conditioned on Sn(t) is given by

φ(t, Yt|Sn(t)) = exp

(
−1

2
tΣt′ − 1

2
t

∞

∑
n=1

Sn(t)ΣS′
n(t)t

′
)

. (9)

Notice that, when Φ1 = 0 and Φ2 = Ψ, then Bt = (St − π)Ψ and Φ = πΨ,
and hence Sn(t) = ∏n

k=1 St−kΨ. Note also that ∏n
k=1 St−kΨΣ ∏n

k=1 St−kΨ = ∏n
k=1 St−kΨΣ ∏n

k=1 Ψ′.
The conditional characteristic function in Equation (9) therefore becomes

φ(t, Yt|Sn(t)) = exp

(
−1

2
tΣt′ − 1

2
t

∞

∑
n=1

n

∏
k=1

St−kΦ2Σ
n

∏
k=1

Φ2′ t′
)

. (10)

Given the conditional characteristic function and the distribution of Sn(t), we can obtain the
unconditional characteristic function and the marginal stationary distribution of Yt. The results are
presented in Theorem 3.
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Theorem 3. The stationary distribution of the TVAR process with Φ1 = 0 and Φ2 = Ψ has the following
characteristic function

φ(t, Yt) = (1 − π)
∞

∑
K=0

πKexp

(
−1

2
t

K

∑
n=0

ΨnΣΨ′nt

)
. (11)

Moreover, the probability distribution function is given by

f (Yt) = (1 − π)
∞

∑
K=0

πK N

(
0,

K

∑
n=0

ΨnΣΨ′n
)

, (12)

where N(A, B) is the multivariate normal distribution function with mean A and covariance matrix B.

Proof. See Appendix A.

Theorem 3 is a generalization of a result for the univariate threshold autoregressive process
developed in Knight and Satchell (2011) and shows that when Φ1 = 0 the distribution function of Yt

given in Equation (12) is an infinite mixture of multivariate Normals. This type of distribution can
generate excess kurtosis. Such distributional characteristics are interesting when it comes to analysing
financial markets and economic problems, since it can accommodate the special features of this type of
data. For instance, the distributions of equity returns and typical measures of the realized volatility
are characterized by large kurtosis. Thus, the theorem shows that TVAR models can be used to study
these processes.

3. Locally Explosive TVAR Models

Threshold autoregressive models where one regime is non-stationary are related to the so-called
locally explosive models. Knight et al. (2014) defines the locally explosive model as a model in
which some regimes may be explosive, but the whole model has a stationary distribution. They study
univariate threshold models and apply the idea of locally explosive models to investigate the formation
of bubbles. In this section, we generalize the notion of locally explosive models to the bivariate setting.
In order to do so, we need to link the stationarity of the whole model in Equation (1) provided in
Theorems 1 and 2 to the stability of the model in each particular regime. Notice that the locally
explosive models considered in this paper are models, which are state explosive. When Xt = t instead
the TVAR model is related to the models derived in Phillips and Yu (2009) and Phillips et al. (2011)
where the explosive behaviour is defined in the time series context.

The derived conditions for the existence of a stationary solution are conditions on the matrix
(1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, and it is not in general possible to relate the eigenvalues of this matrix to
the eigenvalues of the parameter matrices Φ1 and Φ2 without adding extra structure. In the following
section, we therefore consider a bivariate TVAR model, where the parameter matrices Φ1 and Φ2 have
either positive entries only or are upper triangular. We first obtain the conditions on the parameter
matrices under which the locally explosive TVAR model remains stationary. We next provide a
simulation study to examine the characteristics of this model and show that graphically it is very
difficult to assess model stationarity using simulated data.

3.1. Special Cases of the TVAR Model

We consider the special case where Yt in Equation (1) is bivariate and the parameter matrices

have positive entries. We introduce the following additional notation for Φ1 =

(
φ1

11 φ1
12

φ1
21 φ1

22

)
and

Φ2 =

(
φ2

11 φ2
12

φ2
21 φ2

22

)
. The following corollary to Theorems 1 and 2 provides conditions in terms of the

individual φ’s, under which the TVAR model is second order stationary. These conditions do not rule
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out the possibility of an explosive regime, and, if we assume that one regime is explosive, we derive
the conditions on the coefficient matrix of the stationary regime.

Corollary 2. Let the matrices Φ1 and Φ2 have positive entries. If (1 − π)(φ1
j1 + φ1

j2)
2 + π(φ2

i1 + φ2
i2)

2 < 1,
∀i, j = 1, 2, then the model in Equation (1) is stationary. Moreover, if the model in Equation (1) is explosive in
one of the regimes x ∈ {1, 2}, then (φ−x

i1 + φ−x
i2 ) < 1, ∀i = 1, 2, where −x ∈ {1, 2} \ {x}.

Proof. See Appendix A.

Corollary 2 shows that if the model in Equation (1) is explosive in one regime, the persistence of
the variables in this regime is restricted by the probability of the regime and the persistence, defined
as the column sum of the coefficients of Φ1 or Φ2 respectively, of the variables in the other regime.
In other words, Corollary 2 states that there is a trade-off between how persistent a given regime can
be and the probability of this particular regime. In addition, when the conditions of Corollary 2 hold
and one of the regimes is explosive, the sum of the coefficients of the other regime’s matrix is naturally
bounded by one.

Corollary 2 provides sufficient conditions for stationarity of the model, even when the underlying
relationship is explosive in one of the regimes. We believe that the above finding might be useful for a
number of financial and macroeconomic models. In fact, the assumption of positive entries only in
Φ1 and Φ2 is not very restrictive for economic research and there are a variety of well documented
cases with positive relationships between variables and their lags. For example, it is documented to be
the case for asset returns and asset market illiquidity, consumption and GDP, volatility and trading
volume and inflation and stock volatility, among many other pairs (Amihud and Mendelson 1986;
Engle and Rangel 2008; Jagannathan et al. 2000; Wang and Yau 2000).

When we add slightly more structure and assume that Φ1 and Φ2 are triangular matrices
with nonnegative diagonal entries, we can derive the necessary conditions directly in terms of the
eigenvalues of Φ1 and Φ2. Corollary 3 summarizes these findings.

Corollary 3. Let the process Yt, t = 0, 1, 2, ... defined in Equation (1) be stationary. Then, the following
conditions hold:

1. λ2
1λ2

2 ≤ 1
π ,

2. λ1
1λ1

2 ≤ 1
(1−π)

,

3. λ1
1λ2

2 ≤
√

1
(1−π)π

, and

4. λ2
1λ1

2 ≤
√

1
(1−π)π

,

where λi
1 and λi

2 are the eigenvalues of the matrix Φi, i = 1, 2.

Proof. See Appendix A.

Since the eigenvalues of a triangular matrix are its diagonal entries, Corollary 3 could equivalently
be stated as follows.

Corollary 4. Let the process Yt, t = 0, 1, 2, ... defined in Equation (1) be stationary. Then, the following
conditions hold:

1. φ2
11φ2

22 ≤ 1
π ,

2. φ1
11φ1

22 ≤ 1
(1−π)

,

3. φ1
11φ2

22 ≤
√

1
(1−π)π

, and

4. φ2
11φ1

22 ≤
√

1
(1−π)π

.
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Corollaries 3 and 4 illustrate explicitly that there is a trade-off between how persistent a regime
in the TVAR model can be and the probability of that regime while ensuring the overall stationarity
of the process. Again, it is noteworthy that the stationarity of the TVAR model does not rule out the
possibility of an explosive regime, but it restricts the value of the own autoregressive coefficients.

3.2. Simulation

Second order stationarity implies that means, variances and covariances are time-invariant
and finite. If stationarity is not satisfied, however, it could be that shocks to the data generating
process could lead to a time series that have unbounded moments. Previously, and in the absence of
explicit stationarity conditions such as the ones derived in this paper, the literature instead suggested
to verify that the estimated model does not contradict stability assumptions by use of simulation
studies (Hubrich and Teräsvirta 2013). Specifically, the literature proposed to switch off the noise
and simulate the estimated model for different histories. If the generated series converge to the same
point, the natural conclusion would be that the simulated model is stationary. In contrast, finding
at least one starting point that leads to an explosive time series would be sufficient to invalidate the
stationarity assumption.

In this section, we perform a graphical analysis to “test” the stationarity of the TVAR model as
suggested in the existing literature for different locally explosive TVAR models. Our results show that
this “test” does not always allow us to draw the correct conclusion and the outcome of it is affected by
the distribution of the explosive regime and the persistence of this regime. To be specific, we simulate
the bivariate TVAR model in Equation (1) with different parameter values. We generate time series
from the model of length equal to n = 250, which is equivalent to one year of daily observations.
The number of simulations is equal to m = 200. The initial values of the time series, Y0, are equally
distributed over the interval given by [−0.15, 0.24] for the first series and equally distributed over the
interval given by [−0.17, 0.23] for the second series. In Appendix B, we report additional results when
n = 2000 to check the robustness of our result.

The parameter values used in the simulation study are shown in Table 1. As the table shows,
regime 2 is by construction always (locally) explosive and we vary the value of π, the probability of
regime 2, such that the overall TVAR model can be stationary or non-stationary. This is indicated by
the maximum eigenvalue of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, which is reported in column six
labelled λmax. In particular, we define three groups of models, such that models within each group
have the same coefficient matrices, but the probability to be in the explosive regime 2, π, varies.

Models 1–6 are more strongly related to lags in the explosive regime 2 than in regime 1. We contrast
our models such that the persistence of the models in the second regime is stronger in group 2 than
group 1. When the second regime is mildly explosive, like the models from group 1, this regime has to
occur very frequently, in order to make the whole TVAR model non-stationary. In contrast, model 6
is unstable even when the probability to be in the explosive regime is as low as 30%. This confirms
numerically that, when one regime is not stable, the distribution of the regimes is crucial for the
stationarity of the whole TVAR model.

Figure 1 shows the simulated paths from models 1–3. When π is fairly low (Panel a), the time
series appear stationary. When π gets larger and λ is closer to 1, the simulated model looks like a unit
root (Panel b). While models 1 and 2 generate spikes, the simulated series return to the initial level all
the time, a characteristic of stationary processes. When π = 0.7 (Panel c), the series is no longer stable
and this is also evident from the figure. This conclusion is also valid when n = 2000 (see Figure A1 in
Appendix B).

Figure 2 shows the simulated paths from models 4–6. These models are very persistent in regime 2
and they can generate huge spikes even when the probability of this regime is low (Panels a and b).
Both models 4 and 5 look like unit root models, which explode, though they return to the initial
level afterwards. Thus, the simulation exercise cannot reject stability of model 5, even though it is
non-stationary by construction. The simulation study though does reject stability of model 6, when the
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probability to be in the explosive regime increases to 50% (Panel c). Thus, the results of the simulation
might be misleading about non-stationary TVAR model with low probability of the explosive regime.
The result of the simulation of models 4–6 prevails when n = 2000 (see Figure A2 in Appendix B). It is
of course impossible to check all starting points in a simulation study and we might simply not be
lucky enough to have a starting point that allows rejecting stability of the model.

Table 1. Parameter values used in simulating the bivariate TVAR model.

Group Model
Regime 1, Regime 2, Probability of

λmax
Φ1 Φ2 Regime 2, π

1

1 0.2 0.3 0.3 0.8 0.3 0.720.3 0.4 0.5 0.8

2 0.2 0.3 0.3 0.8 0.5 0.950.3 0.4 0.5 0.8

3 0.2 0.3 0.3 0.8 0.7 1.180.3 0.4 0.5 0.8

2

4 0.2 0.3 1.1 1.2 0.1 0.840.3 0.4 1.2 1.05

5 0.2 0.3 1.1 1.2 0.3 1.80.3 0.4 1.2 1.05

6 0.2 0.3 1.1 1.2 0.5 2.80.3 0.4 1.2 1.05

3

7 0.9 0.05 0.3 0.8 0.1 0.950.7 0.3 0.2 0.8

8 0.9 0.05 0.3 0.8 0.3 0.990.7 0.3 0.2 0.8

9 0.9 0.05 0.3 0.8 0.5 1.030.7 0.3 0.2 0.8

Notes: This table shows the parameter values used in the simulated TVAR models. The distribution
of the regimes is Bernoulli with probability to be in regime 2 equal to π. Notice that regime 2 is not
stable in any of the models. In the right-hand column, we report the maximum eigenvalue of the matrix
(1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, λmax .
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(a) Model 1, π = 0.3

Figure 1. Cont.
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(b) Model 2, π = 0.5
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(c) Model 3, π = 0.7

Figure 1. Simulated paths represented by different colors from models 1–3 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to π.

Models 7–9 describe a type of relationship, where a particular time series is more strongly related
with its own lag in regime 1 and with the other time series in regime 2. These models are quite
persistent in regime 1, but still remain stationary in this regime. Figure 3 shows the simulated paths
from these models. The explosive performance of model 9 is evident from Panel c. The conclusion,
however, is not clear about model 8. This model is quite persistent in both regimes, thus it can generate
growing series, like those shown in Panel b, and simulation of model 8 may in fact lead to rejecting
the stability of a stationary model. However, we cannot reject stability of the model when n = 2000
(Panel b of Figure A3 in Appendix B). In fact, when the length of the simulated time series is increased
to n = 2000, the series from model 8 grows first but then returns to the initial level later on. Thus,
the results from simulating model 8 show that the conclusion from this type of simulation study may
also be sensitive to the sample size used in the simulation.

Figure 4 shows the simulated Y1t from TVAR models 4 and 5 specified in Table 1. We end this
section by noting that the simulated series of Yt shown could be associated with data generating
processes of financial or economic bubbles. Evans (1991) defines periodically collapsing explosive
processes of bubbles such that the explosive behaviour of this process prevails through the whole
sample, with non zero probability to collapse when it faces some threshold level. Phillips and Yu (2011)
suggest a locally explosive process of bubbles, where asset prices transit from a unit root regime to
an explosive regime and claim that this approach is consistent with other propagation mechanisms
in financial markets like rational bubbles, exuberant responses to economic fundamentals and herd
behaviour. Our simulation exercise shows that a simple bivariate locally explosive yet globally
stationary TVAR model can generate unit root or explosive behaviour, which is consistent with these
existing definitions of bubbles. An open question in the literature relates to how one can test for
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bubbles. In a recent paper, Ahmed and Satchell (2018) examine the performance of the Generalized
Sup Augmented Dickey Fuller test proposed by Phillips et al. (2015) for the detection of explosive
roots in univariate TAR models. They show that the power of the test drops considerably even though
locally explosive regimes continue to be present when the process has a stationary distribution. We
conjecture that this conclusion generalizes to the multivariate setting used in our paper.
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(a) Model 4, π = 0.1
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(b) Model 5, π = 0.3
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(c) Model 6, π = 0.5

Figure 2. Simulated paths represented by different colors from models 4–6 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to π.
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(a) Model 7, π = 0.1
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(b) Model 8, π = 0.3

(c) Model 9, π = 0.5

Figure 3. Simulated paths represented by different colors from models 7–9 for different set of histories
over a n = 250 period using m = 200 simulated paths. The parameters are those from Table 1 and the
probability to be in the explosive regime 2 is equal to π.
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Figure 4. Simulated paths of Y1t of model in Equation (1) represented by different colors with
parameters from models 4 and 5 for over n = 250 period, where εt ∈ N{0, 1} The parameters
are those from Table 1 and the probability to be in the explosive regime 2 is equal to π.

4. Conclusions

This paper derives the necessary and sufficient conditions for the existence of a stationary
distribution of the TVAR model with two regimes, when the regime process follows a Bernoulli
distribution. These results are, to the best of our knowledge, unavailable in the existing literature.
We further derive a closed form solution for the stationary distribution in the special case when there
is no autoregressive structure in one of the regimes.

When the variables of interest are positively related, we describe a bivariate TVAR model,
which is explosive in one regime, but allows for a stationary distribution along with finite moments.
These results are related to so-called locally explosive models and our results extend the notion of
locally explosive univariate processes to the bivariate case. We show that such models may remain
stationary and, to ensure this, there is a trade-off between the persistence in a given regime and the
probability of this regime.

In an empirical application, we simulate from various bivariate TVAR models, which are explosive
in one of the regimes. We show how these models can capture the unit root and explosive behaviour,
usually implied by the literature on bubble formation. We also demonstrate that a simulation study
may fail to reject the stability of non-stationary TVAR models, when the probability of the explosive
regime is low.
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Appendix A. Proofs

Proof of Theorem 1. We first prove necessity. Let Yt be second order stationary such that E(Yt) = μ.
Taking expectation of Equation (2), we have that μ = (1 − Φ)−1 ∗ 0 = 0. From Equation (2),
we have that

(Yt − μ)(Yt − μ)′ = (Bt−1μ + (Φ + Bt−1)(Yt−1 − μ) + εt)(Bt−1μ + (Φ + Bt−1)(Yt−1 − μ) + εt)
′. (A1)

116



JRFM 2018, 11, 45

Taking expectations on both sides of Equation (A1) and noticing that the expectation of cross products
are zero, we have

Var(Yt) = Var(Bt−1μ) + Var((Φ + Bt−1)(Yt−1 − μ)) + Var(εt), (A2)

which can be rewritten as

Var(Yt) = V = Var(Bt−1μ) + ΦVar(Yt−1)Φ′ + E(Bt−1Var(Yt−1)B′
t−1) + Var(εt), (A3)

or
V = ΦVΦ′ + E(Bt−1VB′

t−1) + Σ. (A4)

It then follows that,
V − ΦVΦ′ − E(Bt−1VB′

t−1) = Σ. (A5)

By definition, Σ is a positive definite matrix of full rank. Conlisk (1974) and Conlisk (1976) show there
is a unique positive definite V if and only if the maximum of the moduli of Φ ⊗ Φ + E(Bt−1 ⊗ Bt−1)

is less than 1. Notice that E(Bt−1 ⊗ Bt−1) = π(1 − π)Φ0 ⊗ Φ0 and Φ ⊗ Φ + π(1 − π)Φ0 ⊗ Φ0 =

πΦ2 ⊗Φ2 +(1−π)Φ1 ⊗Φ1. Thus, the conditions used in Conlisk (1974) and Conlisk (1976) transform
to | λ |< 1 , where λ is the maximum eigenvalues of the matrix πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1.

We now show sufficiency. Let conditions 1–3 hold. Taking expectation of Equation (2) at t = 1
shows that E(Y1) = E(Y0) = μ. Iterating further, it is possible to show that E(Yt) = μ, ∀t. Similarly,
calculating the variance of Equation (2) at t = 1 shows that Var(Y1) = ΦVΦ′ + E(Bt−1VB′

t−1) + Σ =

V = Var(Y0). Iterating further, it is possible to show that Var(Yt) = V, ∀t. Since λ < 1, it follows from
Conlisk (1974) and Conlisk (1976) that V is positive definite. Premultiplying Equation (2) by Yt+h and
taking expectations, we have

cov(Yt, Yt+h) = (πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)cov(Yt, Yt+h−1). (A6)

Iterating further, we have

cov(Yt, Yt+h) = (πΦ2 ⊗ Φ2 + (1− π)Φ1 ⊗ Φ1)hcov(Yt, Yt) = (πΦ2 ⊗ Φ2 + (1− π)Φ1 ⊗ Φ1)hV. (A7)

Thus, the process Yt, t = 0, 1, 2, ... is second-order stationary.

Proof of Theorem 2. Let Yt be stationary and defined by Equation (4), i.e., the moments of Yt exist and
they are finite. Then, from Equation (7), it follows that

E(YtY′
t ) = E

(
∞

∑
n=0

Sn(t)εt−nε′t−nS′
n(t)

)
.

We may rewrite this in vec form as

vecE(YtY′
t ) = vecE

(
∞

∑
n=0

Sn(t)εt−nε′t−nS′
n(t)

)

= E

(
∞

∑
n=0

Sn(t)⊗ Snvec(εt−nε′t−n)

)

= E

(
vec(εtε

′
t) +

∞

∑
n=1

n

∏
k=1

(Φ + Bt−n)⊗ (Φ + Bt−n)vec(εt−nε′t−n)

)
.
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Since ∏n
k=0 Ak ⊗ ∏n

k=0 Bk = ∏n
k=0 Ak ⊗ Bk for any matrices Ak and Bk whenever the matrix product

exists, the later can be rewritten as

vecE(YtY′
t ) =

∞

∑
n=0

(Φ ⊗ Φ + E(Bt−n ⊗ Bt−n))
nvecΣ.

Then,

vecV =
∞

∑
n=0

(πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)nvecΣ. (A8)

Furthermore, since (πΦ2 ⊗Φ2 + (1−π)Φ1 ⊗Φ1)vecV = ∑∞
n=1(πΦ2 ⊗Φ2 + (1−π)Φ1 ⊗Φ1)nvecΣ =

vecV − vecΣ, we have that

vecV − (πΦ2 ⊗ Φ2 + (1 − π)Φ1 ⊗ Φ1)vecV = vecΣ,

or
vecV − (Φ ⊗ Φ + E(Bt−n ⊗ Bt−n))vecV = vecΣ,

which is equivalent to
V − ΦVΦ − E(Bt−nVBt−n) = Σ. (A9)

Since V and Σ are both positive definite, the maximum eigenvalue of Φ ⊗ Φ + E(Bt−n ⊗ Bt−n) is less
than 1 (Conlisk 1974, 1976). Thus, the the maximum eigenvalue of (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, λ, is
less than 1.

We now prove sufficiency. Let all the eigenvalues of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 be
less than 1. Following Nicholls and Quinn (1982), we consider

Wr(t) = εt +
r

∑
n=1

n

∏
k=1

(Φ + Bt−k)εt−n =
r

∑
n=0

Sn−1(t)εt−n. (A10)

Given that the eigenvalues of the matrix (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 are less than 1, the limit W(t) of
Wr(t) exists in mean square and thus in probability. Moreover, W(t) = εt + ∑∞

n=1(∏
n
k=1 Φ + Bt−k)εt−n

satisfies Equation (2) and W(t) is stationary. Now, suppose U(t) is another stationary solution of
Equation (2) and define

X(t) = W(t)− U(t). (A11)

By definition, X(t) = (Φ + Bt−1)X(t − 1), E(X(t)) = 0 and X(t) is stationary. Then E(X(t)X′(t)) =
ΦE(X(t − 1)X′(t − 1)Φ′) + E(Bt−1E(X(t − 1)X′(t − 1))Bt−1). Since X(t) is stationary, and Φ ⊗
Φ + E(Bt−1 ⊗ Bt−1) = (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2, we have (I − ((1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗
Φ2)′)vecE(X(t)X′(t)) = 0. However, since the eigenvalues of (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2 are less
then 1, E(X(t)X′(t))=0. Thus, W(t) = U(t), and W(t) is the unique solution of Equation (2). Since
W(t) is the same for all t, it is also the strictly stationary solution of Equation (2).

Proof of Remark 2. Following Theorems 1 and 2, the maximum eigenvalue of Φ ⊗ Φ + E(Bt−n ⊗ Bt−n)

is less than 1. Consider S = Σ + E(Bt−nVBt−n) and K = V. S and K are positive definite, since Σ and
V are positive definite. From Equation (20), we have that

K − ΦKΦ = S.

From Barnett and Storey (1970), it follows that the maximum eigenvalue of Φ is less than 1.

Proof of Corollary 1. Given the definitions of Zt, ηt, and Ai, i = 1, 2, we can rewrite the model in
Equation (5) in its companion form

Zt = A1 I(Xt−1 ∈ R1)Zt−1 + A2 I(Xt−1 ∈ R2)Zt−1 + ηt. (A12)

118



JRFM 2018, 11, 45

Now, define A = (1 − π)A1 + πA2. Then, the model in Equation (A12) can be rewritten as a Random
Coefficient Model (Nicholls and Quinn 1982) given by

Zt = (A + Dt)Zt−1 + ηt, (A13)

where Dt = (St − π)A2 + (π − St)A1, such that EDt = 0.
The proof of sufficient conditions are similar to the proof of Theorem 2 and it suffices to show

necessity. Define Ω = varZt and assume it exists and that it is finite. Notice that η(t) = (1, 0, 0, .., 0)⊗
ε(t)=l ⊗ ε(t). Define H = ll′. Then, following the first part of the proof of Theorem 2, we have

vecΩ =
∞

∑
n=0

(A ⊗ A + EDt−n ⊗ Dt−n)
nvec(H ⊗ Σ). (A14)

Following the same strategy as in the proof of Theorem 2, it is straightforward to show that

Ω = AΩA + ED′
t−nΩDt−n + H ⊗ Σ. (A15)

Let z′ = [z′1, .....z′p] be the left eigenvector of the matrix A with corresponding eigenvalue λ and zi are
n × 1 vectors. Then,

(1 − λ2)z′Ωz = z′1Σz1 + z′ED′
t−nΩDt−nz.

Since Ω is positive semidefinite, ED′
t−nΩDt−n is positive semidefinite. Since Σ is positive definite,

| λ |< 1 when z1 �= 0. Now let z1 = 0. Since z′ is the left eigenvector of A with eigenvalue λ, we have
the following system of equations:

z′1Φi + z′i+1 = λz′i, ∀i = 1, .., p − 1,

and
z′1Φp = λz′p.

Since λ �= 0, zp = 0. Thus, zi = 0, ∀i = 1, .., p − 1. However, since z �= 0, this contradicts that
z1 = 0.

Proof of Theorem 3. The characteristic function of Yt is

φ(t, Yt) = ESn(t)

(
exp

(
−1

2
tΣt′ − 1

2
t

∞

∑
n=1

Sn(t)ΣS′
n(t)t

′
))

. (A16)

Thus, it is defined by the distribution of Sn(t). Since ∑∞
n=1 Sn(t) = ∑∞

n=1 ∏n
k=1 St−kΨ, the probability

space of ∑∞
n=1 Sn(t) is {0, ∑K

n=1 Ψn, K ≥ 1}, and ∑∞
n=1 Sn(t) has a Geometric distribution with

P(∑∞
n=1 Sn(t) = 0) = (1 − π) and P(∑∞

n=1 Sn(t) = ∑K
n=1 Ψn) = (1 − π)πK. It follows that

φ(t, Yt) = ESn(t)

(
exp

(
−1

2
tΣt′ − 1

2
t

∞

∑
n=1

n

∏
k=1

St−kΨΣ(
n

∏
k=1

St−kΨ)′t′
))

= (1 − π)exp
(
−1

2
tΣt′

)
+ (1 − π)

∞

∑
K=1

πKexp

(
−1

2
t

K

∑
n=1

ΨnΣΨ′nt′
)

= (1 − π)
∞

∑
K=0

πKexp

(
−1

2
t

K

∑
n=0

ΨnΣΨ′nt′
)

.

Integrating the above expression, we have that the probability distribution function of Yt is a weighted
average of normal distributions

119



JRFM 2018, 11, 45

f (t, Yt) = (1 − π)
∞

∑
K=0

πK N

(
0,

K

∑
n=0

ΨnΣΨ′n
)

,

where N(A, B) is the multivariate normal distribution with mean A and covariance matrix B.

Proof of Corollary 2. The Perron–Frobenius theorem states that, for a matrix X with positive entries,
there is a unique maximum eigenvalue λ such that mini ∑j xij ≤ λ ≤ maxi ∑j xij. Let λ2 be the
maximum eigenvalue of matrix Φ2. Then, 1 ≤ λ2 ≤ maxi∈{1,2}(φ2

i1 + φ2
i2). Let λ be the maximum

eigenvalue of (1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2. Then,

λ ≤ max
i∈{1,2}

Fi((1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2), (A17)

where Fi() denotes the column sum for each row i. From the last equation, we have that λ ≤
maxi∈{1,2} Fi((1 − π)Φ1 ⊗ Φ1 + πΦ2 ⊗ Φ2) ≤ (1 − π)maxi∈{1,2}(φ1

i1 + φ1
i2)

2 + π maxi∈{1,2}(φ2
i1 + φ2

i2).
Since the condition of the corollary holds for any i, j = 1, 2, we have that

(1 − π) max
i∈{1,2}

(φ1
i1 + φ1

i2)
2 + π max

i∈{1,2}
(φ2

i1 + φ2
i2) < 1. (A18)

Thus, λ < 1 and, from Theorems 1 and 2, the model in Equation (1) is stationary. Now, suppose the
model is explosive in regime 2 and let λ2 be the maximum eigenvalue of matrix Φ2. Then, from the
Perron–Frobenius theorem,

1 ≤ λ2 ≤ max
i∈{1,2}

(φ2
i1 + φ2

i2). (A19)

Equations (A18) and (A19) show that 1 ≤ (maxi∈{1,2}(φ2
i1 + φ2

i2))
2 < 1

π − (1−π)
π maxi∈{1,2}(φ1

i1 + φ1
i2)

2

and thus (φ1
i1 + φ1

i2) < 1 for any i = 1, 2.

Proof of Corollary 3. From Remark 2, we know that, if the model is stationary, then the eigenvalues of
the matrix Φ are less than 1. Let λ1 and λ2 be the eigenvalues of matrix Φ = (1 − π)Φ1 + πΦ2 where

Φ1 =

(
φ1

11 φ1
12

0 φ1
22

)
, Φ2 =

(
φ2

11 φ2
12

0 φ2
22

)
. Then it follows that,

λ1λ2 = det Φ = (1 − π)2λ1
1λ1

2 + π2λ2
1λ2

2 + π(1 − π)φ1
11φ2

22 + π(1 − π)φ1
22φ2

11. (A20)

Since φi
11 and φi

22, i = 1, 2 are nonnegative,

λ1λ2 ≥ (1 − π)2λ1
1λ1

2 + π2λ2
1λ2

2. (A21)

Now suppose λ2
1λ2

2 ≥ 1 and π ≥
√

1
λ2

1λ2
1
. Since Φ1 and Φ2 are upper triangular matrices with

nonnegative diagonal entries, we have that

λ1λ2 ≥ π2λ2
1λ2

2 ≥ 1. (A22)

Thus, there is an eigenvalue of Φ, which is greater than 1. From Theorem 2, it follows that the process
Yt, t = 0, 1, 2, ... is not stationary. Similarly, it can be shown that the process Yt is not stationary when
condition 2 of Corollary 3 does not hold.
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Appendix B. Additional Figures
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(a) Model 1, π = 0.3
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(b) Model 2, π = 0.5
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(c) Model 3, π = 0.7

Figure A1. Simulated paths represented by different colors from models 1–3 for a different set of
histories over an n = 2000 period using m = 200 simulated paths. The parameters are those from
Table 1 and the probability to be in the explosive regime 2 is equal to π.
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(a) Model 4, π = 0.1
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(b) Model 5, π = 0.3
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(c) Model 6, π = 0.5

Figure A2. Simulated paths represented by different colors from models 4–6 for a different set of
histories over a n = 2000 period using m = 200 simulated paths. The parameters are those from Table 1
and the probability to be in the explosive regime 2 is equal to π.
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(a) Model 7, π = 0.1
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(b) Model 8, π = 0.3
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(c) Model 9, π = 0.5

Figure A3. Simulated paths represented by different colors from models 7–9 for a different set of
histories over a n = 2000 period using m = 200 simulated paths. The parameters are those from Table 1
and the probability to be in the explosive regime 2 is equal to π.
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