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A Convex Combination Approach for Mean-Based
Variants of Newton’s Method
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Abstract: Several authors have designed variants of Newton’s method for solving nonlinear equations by
using different means. This technique involves a symmetry in the corresponding fixed-point operator. In
this paper, some known results about mean-based variants of Newton’s method (MBN) are re-analyzed
from the point of view of convex combinations. A new test is developed to study the order of convergence
of general MBN. Furthermore, a generalization of the Lehmer mean is proposed and discussed. Numerical
tests are provided to support the theoretical results obtained and to compare the different methods
employed. Some dynamical planes of the analyzed methods on several equations are presented, revealing
the great difference between the MBN when it comes to determining the set of starting points that ensure
convergence and observing their symmetry in the complex plane.

Keywords: nonlinear equations; iterative methods; general means; basin of attraction

1. Introduction

We consider the problem of finding a simple zero α of a function f : I ⊂ R → R, defined in an open
interval I. This zero can be determined as a fixed point of some function g by means of the one-point
iteration method:

xn+1 = g(xn), n = 0, 1, . . . , (1)

where x0 is the starting point. The most widely-used example of these kinds of methods is the classical
Newton’s method given by:

xn+1 = xn − f (xn)

f ′(xn)
, n = 0, 1, . . . . (2)

It is well known that it converges quadratically to simple zeros and linearly to multiple zeros. In the
literature, many modifications of Newton’s scheme have been published in order to improve its order
of convergence and stability. Interesting overviews about this area of research can be found in [1–3].
The works of Weerakoon and Fernando [4] and, later, Özban [5] have inspired a whole set of variants of
Newton’s method, whose main characteristic is the use of different means in the iterative expression.

It is known that if a sequence { xn}n≥0 tends to a limit α in such a way that there exist a constant
C > 0 and a positive integer n0 such that:

|xn+1 − α| ≤ C|xn − α|p, ∀n ≥ n0, (3)

Symmetry 2019, 11, 1106; doi:10.3390/sym11091106 www.mdpi.com/journal/symmetry
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for p ≥ 1, then p is called the order of convergence of the sequence and C is known as the asymptotic error
constant. For p = 1, constant C satisfies 0 < C ≤ 1.

If we denote by en = xn − α the exact error of the nth iterate, then the relation:

en+1 = Cep
n +O(ep+1

n ) (4)

is called the error equation for the method and p is the order of convergence.
Let us suppose that f : I ⊆ R → R is a sufficiently-differentiable function and α is a simple zero of f .

It is plain that:

f (x) = f (xn) +
∫ x

xn
f ′(t) dt. (5)

Weerakoon and Fernando in [4] approximated the definite integral (5) by using the trapezoidal rule
and taking x = α, getting:

0 ≈ f (xn) + 1/2(α − xn)( f ′(xn) + f ′(α)), (6)

and therefore, a new approximation xn+1 to α is given by:

xn+1 = xn − f (xn)

( f ′(xn) + f ′(zn))/2
, zn = xn − f (xn)

f ′(xn)
, n = 0, 1, . . . . (7)

Thus, this variant of Newton’s scheme can be considered to be obtained by replacing the denominator
f ′(xn) of Newton’s method (2) by the arithmetic mean of f ′(xn) and f ′(zn). Therefore, it is known as the
arithmetic mean Newton method (AN).

In a similar way, the arithmetic mean can be replaced by other means. In particular, the harmonic
mean MHa(x, y) = 2xy/(x + y), where x and y are two nonnegative real numbers, from a different point
of view:

MHa(x, y) =
2xy

x + y
= x

y
x + y︸ ︷︷ ︸

θ

+y
x

x + y︸ ︷︷ ︸
1−θ

, (8)

where since 0 ≤ y ≤ x + y, then 0 ≤ θ ≤ 1, i.e., the harmonic mean can be seen as a convex combination
between x and y, where every element is given the relevance of the other one in the sum. Now, let us
switch the roles of x and y; we get:

x
x

x + y
+ y

y
x + y

=
x2 + y2

x + y
= MCh(x, y), (9)

that is the contraharmonic mean between x and y.
Özban in [5] used the harmonic mean instead of the arithmetic one, which led to a new method:

xn+1 = xn − f (xn)( f ′(xn) + f ′(zn))

2 f ′(xn) f ′(zn)
, n = 0, 1, . . . , (10)

being zn a Newton step, which he called the harmonic mean Newton method (HN).
Ababneh in [6] designed an iterative method associated with this mean, called the contraharmonic

mean Newton method (CHN), whose iterative expression is:

xn+1 = xn − ( f ′(xn) + f ′(zn)) f (xn)

f ′(xn)2 + f ′(zn)2 , (11)

2
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with third-order of convergence for simple roots of f (x) = 0, as well as the methods proposed by
Weerakoon and Fernando [4] and Özban [5].

This idea has been used by different authors for designing iterative methods applying other means,
generating symmetric fixed point operators. For example, Xiaojian in [7] employed the generalized mean
of order m ∈ R between two values x and y defined as:

MG(x, y) =
( xm + ym

2

)1/m
, (12)

to construct a third-order iterative method for solving nonlinear equations. Furthermore Singh et al.
in [8] presented a third-order iterative scheme by using the Heronian mean between two values x and y,
defined as:

MHe(x, y) =
1
3
(x +

√
xy + y). (13)

Finally, Verma in [9], following the same procedure, designed a third-order iterative method by using the
centroidal mean between two values x and y, defined as:

MCe(x, y) =
2(x2 + xy + y2)

3(x + y)
. (14)

In this paper, we check that all these means are functional convex combinations means and develop
a simple test to prove easily the third-order of the corresponding iterative methods, mentioned before.
Moreover, we introduce a new method based on the Lehmer mean of order m ∈ R, defined as:

MLm(x, y) =
xm + ym

xm−1 + ym−1 (15)

and propose a generalization that also satisfies the previous test. Finally, all these schemes are numerically
tested, and their dependence on initial estimations is studied by means of their basins of attraction. These
basins are shown to be clearly symmetric.

The rest of the paper is organized as follows: Section 2 is devoted to designing a test that allows us to
characterize the third-order convergence of the iterative method defined by a mean. This characterization
is used in Section 3 for giving an alternative proof of the convergence of mean-based variants of Newton’s
(MBN) methods, including some new ones. In Section 4, we generalize the previous methods by using the
concept of σ-means. Section 5 is devoted to numerical results and the use of basins of attraction in order to
analyze the dependence of the iterative methods on the initial estimations used. With some conclusions,
the manuscript is finished.

2. Convex Combination

In a similar way as has been stated in the Introduction for the arithmetic, harmonic,
and contraharmonic means, the rest of the mentioned means can be also regarded as convex combinations.
This is not coincidental: one of the most interesting properties that a mean satisfies is the averaging
property:

min(x, y) ≤ M(x, y) ≤ max(x, y), (16)

where M(x, y) is any mean function of x and y nonnegative. This implies that every mean that satisfies
this property is a certain convex combination among its terms.

3
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Indeed, there exists a unique θ(x, y)) ∈ [0, 1] such that:

θ(x, y) =

{M(x,y)−y
x−y if x = y

0 if x = y
. (17)

This approach suggests that it is possible to generalize every mean-based variant of Newton’s
method (MBN), by studying their convex combination counterparts. As a matter of fact, every mean-based
variant of Newton’s method can be rewritten as:

xn+1 = xn − f (xn)

θ f ′(xn) + (1 − θ) f ′(zn)
, (18)

where θ = θ( f ′(xn), f ′(zn)). This is a particular case of a family of iterative schemes constructed in [10].
We are interested in studying its order of convergence as a function of θ. Thus, we need to compute

the approximated Taylor expansion of the convex combination at the denominator and then its inverse:

θ f ′(xn) + (1 − θ) f ′(zn) = θ f ′(α)[1 + 2c2en + 3c3e2
n + 4c4e3

n +O(e4
n)]+

+ (1 − θ) f ′(α)[1 + 2c2e2
n + 4c2(c3 − c2

2)e
3
n +O(e4

n)]

= f ′(α)[θ + 2θc2en + 3θc3e2
n + 4θc4e3

n +O(e4
n)]+

+ f ′(α)[1 + 2c2
2e2

n + 4c2(c3 − c2
2)e

3
n +O(e4

n)]+

− f ′(α)[θ + 2θc2
2e2

n + 4θc2(c3 − c2
2)e

3
n +O(e4

n)]

= f ′(α)[1 + 2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n]+

+ f ′(α)[(4θc4 + (1 − θ)4c2(c3 − c2
2))e

3
n +O(e4

n)];

(19)

where cj =
1
j!

f (j)(α)

f ′(α) , j = 1, 2, . . .. Then, its inverse can be expressed as:

f ′(α)−1
(

1 − [2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n + (4θc4 + (1 − θ)4c2(c3 − c2

2))e
3
n +O(e4

n)]+

+ [2θc2en + (2c2
2 + 3θc3 − 2θc2

2 + 3θc3)e2
n + (4θc4 + (1 − θ)4c2(c3 − c2

2))e
3
n +O(e4

n)]
2 − · · ·

)
= f ′(α)−1[1 − 2θc2en + (2θc2

2 − 2c2
2 + 4θ2c2

2 − 3θc3)e2
n − (4θc4 + (1 − θ)4c2(c3 − c2

2))e
3
n +O(e4

n)].

(20)

Now,
f (xn)

θ f ′(xn) + (1 − θ) f ′(zn)
= en + c2(1 − 2θ)e2

n + (4θ2c2
2 − 2c2

2 + c3 − 3θc3)e3
n +O(e4

n), (21)

and by replacing it in (18), it leads to the MBN error equation as a function of θ:

en+1 = −c2(1 − 2θ)e2
n − (4θ2c2

2 − 2c2
2 + c3 − 3θc3)e3

n +O(e4
n) =: Φ(θ). (22)

Equation (22) can be used to re-discover the results of convergence: for example, for the
contraharmonic mean, we have:

θ( f ′(xn), f ′(zn)) =
f ′(xn)

f ′(xn) + f ′(zn)
, (23)

where:
f ′(xn) + f ′(zn) = 2 f ′(α)[1 + c2en(c2

2 − 3/2c3)e2
n + 2(c2c3 − c3

2 + c4)e3
n +O(e4

n)], (24)

4
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so that:

1
f ′(xn) + f ′(zn)

= (2 f ′(α))−1[1 − c2en − 3/2c3e2
n + 4c3

2e3
n − 2c4e3

n + c2c3e3
n +O(e4

n)]

= (2 f ′(α))−1[1 − c2en − 3/2c3e2
n + (4c3

2 − 2c4 + c2c3)e3
n +O(e4

n)].
(25)

Thus, we can obtain the θ associated with the contraharmonic mean:

θ( f ′(xn), f ′(zn)) = [1/2 + c2en + 3/2c3e2
n + 2c4e3

n +O(e4
n)]·

· [1 − c2en − 3/2c3e2
n + (4c3

2 + c2c3 − 2c4)e3
n +O(e4

n)]

= 1/2 + 1/2c2en − c2
2e2

n + 3/4c3e2
n + 2c3

2e3
n + c4e3

n − 5/2c2c3e3
n +O(e4

n)

= 1/2 + 1/2c2en + (3/4c3 − c2
2)e

2
n + (2c3

2 + c4 − 5/2c2c3)e3
n +O(e4

n).

(26)

Finally, by replacing the previous expression in (22):

en+1 = (1/2c3 + 2c2
2)e

3
n +O(e4

n), (27)

and we obtain again that the convergence for the contraharmonic mean Newton method is cubic.
Regarding the harmonic mean, it is straightforward that it is a functional convex combination, with:

θ( f ′(xn), f ′(zn)) = 1 − f ′(xn)

f ′(xn) + f ′(zn)

= 1/2 + 1/2c2en + (c2
2 − 3/4c3)e2

n + (5/2c2c3 − 2c3
2 − c4)e3

n +O(e4
n).

(28)

Replacing this expression in (22), we find the cubic convergence of the harmonic mean Newton method,

en+1 = 1/2c3e3
n +O(e4

n). (29)

In both cases, the independent term of θ( f ′(xn), f ′(zn)) was 1/2; it was not a coincidence, but an instance
of the following more general result.

Theorem 1. Let θ = θ( f ′(xn), f ′(zn)) be associated with the mean-based variant of Newton’s method (MBN):

xn+1 = xn − f (xn)

M( f ′(xn), f ′(zn))
, zn = xn − f (xn)

f ′(xn)
, (30)

where M is a mean function of the variables f ′(xn) and f ′(zn). Then, MBN converges, at least, cubically if and only
if the estimate:

θ = 1/2 +O(en). (31)

holds.

Proof. We replace θ = 1/2 +O(en) in the MBN error Equation (22), obtaining:

en+1 = (4θ2c2
2 − 2c2

2 + c3 − 3θc3)e3
n +O(e4

n). (32)

Now, some considerations follow.

5
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Remark 1. Generally speaking,

θ = a0 + a1en + a2e2
n + a3e3

n +O(e4
n), (33)

where ai are real numbers. If we put (33) in (22), we have:

en+1 = −c2(1 − 2a0)e2
n − (4a2

0c2
2 − 3a0c3 − 2a1c2 − 2c2

2 + c3)e3
n +O(e4

n); (34)

it follows that, in order to attain cubic convergence, the coefficient of e2
n must bezero. Therefore, a0(u) = 1/2. On

the other hand, to achieve a higher order (i.e., at least four), we need to solve the following system:{
1 − 2a0 = 0

4a2
0c2

2 − 3a0c3 − 2a1c2 − 2c2
2 + c3 = 0

. (35)

This gives us that a0(u) = 1/2, a1(u) = −1/4(2c2
2 + c3)/(c2) assure at least a fourth-order convergence of the

method. However, none of the MBN methods under analysis satisfy these conditions simultaneously.

Remark 2. The only convex combination involving a constant θ that converges cubically is θ = 1/2, i.e., the
arithmetic mean.

The most useful aspect of Theorem 1 is synthesized in the following corollary, which we call
the “θ-test”.

Corollary 1 (θ-test). With the same hypothesis of Theorem 1, an MBN converges at least cubically if and only if the
Taylor expansion of the mean holds:

M( f ′(xn), f ′(zn)) = f ′(α)
[

1 +
1
2

c2en

]
+O(e2

n). (36)

Let us notice that Corollary 1 provides a test to analyze the convergence of an MBN without having
to find out the inherent θ, therefore sensibly reducing the overall complexity of the analysis.

Re-Proving Known Results for MBN

In this section, we apply Corollary 1 to prove the cubic convergence of known MBN via a convex
combination approach.

(i) Arithmetic mean:

MA( f ′(xn), f ′(zn)) =
f ′(xn) + f ′(zn)

2

=
1
2
(

f ′(α)[1 + 2c2 en +O(e2
n)] + f ′(α)[1 +O(e2

n)]
)

= f ′(α)[1 + c2 en +O(e2
n)].

(37)

(ii) Heronian mean: In this case, the associated θ-test is:

MHe f ′(xn), f ′(zn) =
1
3
(

f ′(α)[1 + 2c2en +O(e2
n)] + f ′(α)[1 + c2en +O(e2

n)] + f ′(α)[1 +O(e2
n)]
)

=
f ′(α)

3
[3 + 2c2en + c2en +O(e2

n)].
(38)

6
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(iii) Generalized mean:

MG( f ′(xn), f ′(zn)) =
( f ′(xn)m + f ′(zn)m)

2

)1/m

=
( f ′(α)m[1 + 2c2 en +O(e2

n)]
m + f ′(α)m[1 +O(e2

n)]
m

2

)1/m

= f ′(α)
(
[1 + c2 en +O(e2

n)]
m)1/m

= f ′(α)[1 + c2 en +O(e2
n)].

(39)

(iv) Centroidal mean:

MCe( f ′(xn), f ′(zn)) =
2( f ′(xn)2 + f ′(xn) f ′(zn) + f ′(zn))

3( f ′(xn) + f ′(zn))

=
2( f ′(α)2[1 + 2c2en +O(e2

n)] + f ′(α)2[2 + 4c2en +O(e2
n)])

3( f ′(α)[2 + 2c2en +O(e2
n)])

=
2( f ′(α)2[3 + 6c2en +O(e2

n)])

3( f ′(α)[2 + 2c2en +O(e2
n)])

= f ′(α)[1 + 2c2en +O(e2
n)][1 + c2en +O(e2

n)]

= f ′(α)[1 + c2en +O(e2
n)].

(40)

3. New MBN by Using the Lehmer Mean and Its Generalization

The iterative expression of the scheme based on the Lehmer mean of order m ∈ R is:

xn+1 = xn − f (xn)

MLm( f ′(xn), f ′(zn))
,

where zn = xn − f (xn)
f ′(xn)

and:

MLm( f ′(xn), f ′(zn)) =
f ′(xn)m + f ′(zn)m

f ′(xn)m−1 + f ′(zn)m−1 . (41)

Indeed, there are suitable values of parameter p such that the associated Lehmer mean equals the
arithmetic one and the geometric one, but also the harmonic and the contraharmonic ones. In what follows,
we will find it again, this time in a more general context.

By analyzing the associated θ-test, we conclude that the iterative scheme designed with this mean has
order of convergence three.

MLm ( f ′(xn), f ′(zn)) =
f ′(xn)m + f ′(zn)m

f ′(xn)m−1 + f ′(zn)m−1

=
f ′(α)m[1 + 2c2 en +O(e2

n)]
m + f ′(α)m[1 +O(e2

n)]
m

f ′(α)m−1[1 + 2c2 en +O(e2
n)]

m−1 + f ′(α)m−1[1 +O(e2
n)]

m−1

= f ′(α)[1 + mc2 en +O(e2
n)] · [1 −

(
(m − 1)c2 en +O(e2

n)
)
+
(
(m − 1)c2 en +O(e2

n)
)2

+ . . .]

= f ′(α)[1 + mc2 en +O(e2
n)] · [1 − (m − 1)c2 en +O(e2

n)]

= f ′(α)[1 + c2 en +O(e2
n)].

(42)
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σ-Means

Now, we propose a new family of means of n variables, starting again from convex combinations.
The core idea in this work is that, in the end, two distinct means only differ in their corresponding weights
θ and 1 − θ. In particular, we can regard the harmonic mean as an “opposite-weighted”mean, while the
contraharmonic one is a “self-weighted”mean.

This behavior can be generalized to n variables:

MCH(x1, . . . , xn) =
∑n

i=1 x2
i

∑n
i=1 xi

(43)

is the contraharmonic mean among n numbers. Equation (43) is just a particular case of what we
call σ-mean.

Definition 1 (σ-mean). Given x = (x1, . . . , xn) ∈ Rn a vector of n real numbers and a bijective map
σ : {1, . . . , n} → {1, . . . , n} (i.e., σ(x) is a permutation of x1, . . . , xn), we call the σ-mean of order m ∈ R

the real number given by:

Mσ(x1, . . . , xn) :=

n

∑
i=1

xi · xm
σ(i)

n

∑
j=1

xm
j

. (44)

Indeed, it is easy to see that, in an σ-mean, the weight assigned to each node xi is:

xm
σ(i)

n

∑
j=1

xm
σ(j)

=
xm

σ(i)
n

∑
j=1

xm
j

∈ [0, 1], (45)

where the equality holds because σ is a permutation of the indices. We are, therefore, still dealing with a
convex combination, which implies that Definition 1 is well posed.

We remark that if we take σ = �, i.e., the identical permutation, in (44), we find the Lehmer mean of
order m. Actually, the Lehmer mean is a very special case of the σ-mean, as the following result proves.

Proposition 1. Given m ∈ R, the Lehmer mean of order m is the maximum σ-mean of order m.

Proof. We recall the rearrangement inequality:

xny1 + · · ·+ x1yn ≤ xσ(1)y1 + · · ·+ xσ(n)yn ≤ x1y1 + · · ·+ xnyn, (46)

which holds for every choice of x1, . . . , xn and y1, . . . , yn regardless of the signs, assuming that both xi and
yj are sorted in increasing order. In particular, x1 < x2 < · · · < xn and y1 < y2 < · · · < yn imply that the
upper bound is attained only for the identical permutation.

Then, to prove the result, it is enough to replace every yi with the corresponding weight defined
in (45).

The Lehmer mean and σ-mean are deeply related: if n = 2, as is the case of MBN, there are only two
possible permutations, the identical one and the one that swaps one and two. We have already observed
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that the identical permutation leads to the Lehmer mean; however, if we express σ in standard cycle
notation as σ̄ = (1, 2), we have that:

Mσ̄(x1, x2) =
x1x2(xm

1 + xm
2 )

xm+1
1 + xm+1

2

=
x−m

1 + x−m
2

x−m−1
1 + x−m−1

2

= ML−m(x1, x2). (47)

We conclude this section proving another property of σ-means, which is that the arithmetic mean of
all possible σ-means of n numbers equals the arithmetic mean of the numbers themselves.

Proposition 2. Given n real numbers x1, . . . , xn and Σn denoting the set of all possible permutations of {1 . . . , n},
we have:

1
n! ∑

σ∈Σn

Mσ(x1, . . . , xn) =
1
n

n

∑
i=1

xi (48)

for all m ∈ R.

Proof. Let us rewrite Equation (48); by definition, we have:

1
n! ∑

σ∈Σn

Mσ(x1, . . . , xn) =
1
n! ∑

σ∈Σn

(∑n
i=1 xixm

σ(i)

∑n
j=1 xm

j

)
=

1
n

n

∑
i=1

xi (49)

and we claim that the last equality holds. Indeed, we notice that every term in the sum of the σ-means on
the left side of the last equality involves a constant denominator, so we can multiply both sides by it and
also by n! to get:

∑
σ∈Σn

( n

∑
i=1

xixm
σ(i)

)
= (n − 1)!

( n

∑
j=1

xm
j

)( n

∑
i=1

xi

)
. (50)

Now, it is just a matter of distributing the product on the right in a careful way:

(n − 1)!
( n

∑
j=1

xm
j

)( n

∑
i=1

xi

)
=

n

∑
i=1

(
xi ·

n

∑
k=1

(
(n − 1)!

)
xm

k

)
, (51)

If we fix i ∈ { 1, . . . , n}, in Σn, there are exactly (n − 1)! permutations σ such that σ(i) = i. Therefore, the
equality in (50) follows straightforwardly.

4. Numerical Results and Dependence on Initial Estimations

Now, we present the results of some numerical computations, in which the following test functions
have been used.

(a) f1(x) = x3 + 4x2 − 10,
(b) f2(x) = sin(x)2 − x2 + 1,
(c) f3(x) = x2 − ex − 3x + 2,
(d) f4(x) = cos(x)− x,
(e) f5(x) = (x − 1)3 − 1.

The numerical tests were carried out by using MATLAB with double precision arithmetics in a
computer with processor i7-8750H @2.20 GHz, 16 Gb of RAM, and the stopping criterion used was
|xn+1 − xn|+ | f (xn+1)| < 10−14.

We used the harmonic mean Newton method (HN), the contraharmonic mean Newton method (CHN),
the Lehmer mean Newton method (LN(m)), a variant of Newton’s method where the mean is a convex
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combination with θ = 1/3, 1/3N, and the classic Newton method (CN). The main goals of these
calculations are to confirm the theoretical results stated in the preceding sections and to compare the
different methods, with CN as a control benchmark. In Table 1, we show the number of iterations that
each method needs for satisfying the stopping criterion and also the approximated computational order of
convergence, defined in [11], with the expression:

ACOC =
ln (|xn+1 − xn|/|xn − xn−1|)

ln (|xn − xn−1|/|xn−1 − xn−2|) , n = 2, 3, . . . ,

which is considered as a numerical approximation of the theoretical order of convergence p.

Table 1. Numerical results. HN, the harmonic mean Newton method; CHN, the contraharmonic mean
Newton method; LN, the Lehmer–Newton method; CN, the classic Newton method.

Function x0 Number of Iterations ACOC

HN CHN LN(−7)(−7)(−7) 1/3 N CN HN CHN LN(−7)LN(−7)LN(−7) 1/3 N CN

(a)
−0.5 50 18 55 6 132 3.10 3.03 2.97 1.99 2.00

1 4 5 5 5 6 2.94 3.01 2.96 2.02 2.00
2 4 5 5 5 6 3.10 2.99 3.02 2.00 2.00

(b) 1 4 5 6 6 7 3.06 3.16 3.01 2.01 2.00
3 4 5 7 6 7 3.01 2.95 3.02 2.01 2.00

(c) 2 5 5 5 5 6 3.01 2.99 3.11 2.01 2.00
3 5 6 5 6 7 3.10 3.00 3.10 2.01 2.00

(d)
−0.3 5 5 5 6 6 2.99 3.14 3.02 2.01 1.99

1 4 4 4 5 5 2.99 2.87 2.88 2.01 2.00
1.7 4 4 5 5 5 3.00 2.72 3.02 2.01 1.99

(e)

0 6 >1000 7 7 10 3.06 3.00 3.02 2.01 2.00
1.5 5 7 7 7 8 3.04 3.01 2.99 2.01 2.00
2.5 4 5 5 5 7 3.07 2.96 3.01 1.99 2.00
3.0 5 6 6 6 7 3.04 2.99 2.98 2.00 2.00
3.5 5 6 6 6 8 3.07 2.95 2.99 2.00 2.00

Regarding the efficiency of the MBN, we used the efficiency index defined by Ostrowski in [12] as
EI = p

1
d , where p is the order of convergence of the method and d is the number of functional evaluations

per iteration. In this sense, all the MBN had the same EIMBN = 3
1
3 ; meanwhile, Newton’s scheme had the

index EICN = 2
1
2 . Therefore, all MBN were more efficient than the classical Newton method.

The presented numerical tests showed the performance of the different iterative methods to solve
specific problems with fixed initial estimations and a stringent stopping criterion. However, it is useful to
know their dependence on the initial estimation used. Although the convergence of the methods has been
proven for real functions, it is usual to analyze the sets of convergent initial guesses in the complex plane
(the proof would be analogous by changing the condition on the function to be differentiable by being
holomorphic). To get this aim, we plotted the dynamical planes of each one of the iterative methods on the
nonlinear functions fi(x), i = 1, 2, . . . , 5, used in the numerical tests. In them, a mesh of 400 × 400 initial
estimations was employed in the region of the complex plane [−3, 3]× [−3, 3].

We used the routines appearing in [13] to plot the dynamical planes corresponding to each method.
In them, each point of the mesh was an initial estimation for the analyzed method on the specific problem.
If the method reached the root in less than 40 iterations (closer than 10−3), then this point is painted in
orange (green for the second, etc.) color; if the process converges to another attractor different from the

10



Symmetry 2019, 11, 1106

roots, then the point is painted in black. The zeros of the nonlinear functions are presented in the different
pictures by white stars.

In Figure 1, we observe that Harmonic and Lehmer (for m = −7) means showed the most stable
performance, whose unique basins of attraction were those of the roots (plotted in orange, red, and green).
In the rest of the cases, there existed black areas of no convergence to the zeros of the nonlinear function
f1(x). Specially unstable were the cases of Heronian, convex combination (θ = ±2), and generalized
means, with wide black areas and very small basins of the complex roots.
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Figure 1. Dynamical planes of the mean-based methods on f1(x) = x3 + 4x2 − 10.

Regarding Figure 2, again Heronian, convex combination (θ = −2), and generalized means showed
convergence only to one of the roots or very narrow basins of attraction. There existed black areas of no
convergence to the roots in all cases, but the widest green and orange basins (corresponding to the zeros of
f2(x)) corresponded to harmonic, contra harmonic, centroidal, and Lehmer means.

Function f3(x) had only one zero at x ≈ 0.25753, whose basin of attraction is painted in orange color
in Figure 3. In general, most of the methods presented good performance; however, three methods did
not converge to the root in the maximum of iterations required: Heronian and generalized means with
m = ±2. Moreover, the basin of attraction was reduced when the parameter θ of the convex combination
mean was used.
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Figure 2. Dynamical planes of mean-based methods on f2(x) = sin(x)2 − x2 + 1.
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Figure 3. Dynamical planes of mean-based methods on f3(x) = x2 − ex − 3x + 2.

A similar performance is observed in Figure 4, where Heronian and generalized means with m = ±2
showed no convergence to only the root of f4(x); meanwhile, the rest of the methods presented good
behavior. Let us remark that in some cases, blue areas appear; this corresponded to initial estimations
that, after 40 consecutive iterations, had an absolute value higher than 1000. In these cases, they and the
surrounding black areas were identified as regions of divergence of the method. The best methods in this
case were associated with the arithmetic and harmonic means.
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Figure 4. Dynamical planes of mean-based methods on f4(x) = cos(x)− x.

In Figure 5, the best results in terms of the wideness of the basins of the attraction of the roots were for
harmonic and Lehmer means, for m = −7. The biggest black areas corresponded to convex combination
with θ = −2, where the three basins of attraction of the roots were very narrow, and for Heronian and
generalized means, there was only convergence to the real root.

14



Symmetry 2019, 11, 1106

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(a) Arithmetic

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(b) Harmonic

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(c) CHN

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(d) Heronian

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(e) −2N

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(f) 1/3N

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(g) 2N

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(h) Centroidal

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(i) Gen. m = − 2

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(j) Gen. m = 2

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(k) LN(−7)

-3 -2 -1 0 1 2 3

Re (z)

-3

-2

-1

0

1

2

3

Im
 (

z)

(l) LN(7)

Figure 5. Dynamical planes of mean-based methods on f5(x) = (x − 1)3 − 1.

5. Conclusions

The proposed θ-test (Corollary 1) has proven to be very useful to reduce the calculations of the
analysis of convergence of any MBN. Moreover, though the employment of σ-means in the context of
mean-based variants of Newton’s method is probably not the best one to appreciate their flexibility, their
use could still lead to interesting results due to their much greater capability of interpolating between
numbers than already powerful means, such as the Lehmer one.

With regard to the numerical performance, Table 1 confirms that a convex combination with a constant
coefficient could converge cubically if and only if it was the arithmetic mean; otherwise, as with this case,
it converged quadratically, even if it may have done so with less iterations, generally speaking, than CN.
Regarding the number of iterations, there were non-linear functions for which LN(m) converged with
fewer iterations than HN. In our calculations, we set m = −7, but similar results were achieved also for
different parameters. Regarding the dependence on initial estimations, the harmonic and Lehmer methods
were proven to be very stable, with the widest areas of convergence in most of the nonlinear problems
used in the tests.
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Abstract: In this manuscript, we propose several iterative methods for solving nonlinear equations
whose common origin is the classical Chebyshev’s method, using fractional derivatives in their
iterative expressions. Due to the symmetric duality of left and right derivatives, we work with
right-hand side Caputo and Riemann–Liouville fractional derivatives. To increase as much as
possible the order of convergence of the iterative scheme, some improvements are made, resulting in
one of them being of 3α-th order. Some numerical examples are provided, along with an study of the
dependence on initial estimations on several test problems. This results in a robust performance for
values of α close to one and almost any initial estimation.

Keywords: nonlinear equations; Chebyshev’s iterative method; fractional derivative; basin of
attraction

1. Introduction

The concept of fractional calculus was introduced simultaneously with the development of
classical one. The first references date back to 1695, the year in which Leibniz and L’Hospital came up
with the concept of semi-derivative. Other researchers of the time were also interested in this idea,
such as Riemann, Liouville, or Euler.

Since their early development in the XIX-th century until nowadays, fractional calculus has
evolved from theoretical aspects to the appearance in many real world applications: mechanical
engineering, medicine, economy, and others. They are frequently modeled by differential equations
with derivatives of fractional order (see, for example [1–4] and the references therein).

Nowadays, fractional calculus has numerous applications in science and engineering.
The fundamental reason for this is the greater degree of freedom of fractional calculation tools
compared to classical calculation ones. This makes it the most suitable procedure for modeling
problems whose hereditary properties must be preserved. In this sense, one of the most significant
tools of fractional calculation is the fractional (integral) derivative.

Many times, these kinds of problems are related with systems of equations, that can be nonlinear
if it is the differential equation. So, it is not strange to adapt iterative techniques for solving nonlinear
equations by means of fractional derivatives of different orders, and see which is the resulting effect
on the convergence. This has been studied in some previous works by Brambila et al. [5] holding
the original expression of Newton’s iterative method and without proving the order of convergence.
In [6], a fractional Newton’s method was deduced to achieve 2α-th order of convergence and showing
good numerical properties. However, it is known (see for example the text of Traub [7]) that in
point-to-point methods to increase the order of the iterative methods implies to add functional
evaluations of higher-order derivatives of the nonlinear function. Our starting question is: how

Symmetry 2019, 11, 1017; doi:10.3390/sym11081017 www.mdpi.com/journal/symmetry17
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affects this higher-order derivative when it is replaced by a fractional one to the global order of
convergence of the iterative method?

The aim of this work is to use the Chebyshev’s method with fractional derivative to solve f (x) = 0,
f : D ⊆ R → R. Let us consider x̄ ∈ R as the solution of the equation f (x) = 0, such that f ′(x̄) = 0.
First of all, we remind the standard Chebyshev’s method:

xk+1 = xk −
(

1 +
1
2

L f (xk)

)
f (xk)

f ′(xk)
, k = 0, 1, . . . (1)

being L f (xk) =
f (xk) f ′′(xk)

f ′(xk)2 , known as logarithmic convexity degree. Then, we will change the first

and second order integer derivatives by the notion of fractional derivative and see if is the order of
convergence of the original method is held.

Now, we set up some definitions, properties and results that will be helpful in this work (for more
information, see [8] and the references therein).

Definition 1. The gamma function is defined as

Γ(x) =
∫ +∞

0
ux−1e−udu,

whenever x > 0.

The gamma function is known as a generalization of the factorial function, due to Γ(1) = 1
and Γ(n + 1) = n!, when n ∈ N. Let us now see the notion of fractional Riemann-Liouville and
Caputo derivatives.

Definition 2. Let f : R → R be an element of L1([a, x]) (−∞ < a < x < +∞), with α ≥ 0 and n = [α] + 1,
being [α] the integer part of α. Then, the Riemann–Liouville fractional derivative of order α of f (x) is defined
as follows:

(
Dα

a+
)

f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(n − α)

dn

dxn

∫ x

a

f (t)
(x − t)α−n+1 dt, α /∈ N,

dn−1 f (x)
dxn−1 , α = n − 1 ∈ N∪ {0}.

(2)

Let us remark that definition (2) is consistent if the integral of the first identity in (2) is n-times
derivable or, in another case, f is (n − 1)-times derivable.

Definition 3. Let f : R −→ R be an element of C+∞([a, x]) (−∞ < a < x < +∞), α ≥ 0 and n = [α] + 1.
Thus, the Caputo fractional derivative of order α of f (x) is defined as follows:

(
CDα

a

)
f (x) =

⎧⎪⎪⎨
⎪⎪⎩

1
Γ(n − α)

∫ x

a

dn f (t)
dtn

dt
(x − t)α−n+1 , α /∈ N,

dn−1 f (x)
dxn−1 , α = n − 1 ∈ N∪ {0}.

(3)

In [9], Caputo and Torres generated a duality theory for left and right fractional derivatives,
called symmetric duality, using it to relate left and right fractional integrals and left and right fractional
Riemann–Liouville and Caputo derivatives.

The following result will be useful to prove Theorem 4.
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Theorem 1 ([8], Proposition 26). Let α ≥ 0, n = [α] + 1, and β ∈ R. Thus, the following identity holds:

Dα
a+(x − a)β =

Γ(β + 1)
Γ(β + 1 − α)

(x − a)β−α. (4)

The following result shows a relationship between Caputo and Riemann–Liouville
fractional derivatives.

Theorem 2 ([8], Proposition 31). Let α /∈ N such that α ≥ 0, n = [α] + 1 and f ∈ L1([a, b]) a function
whose Caputo and Riemann-Liouville fractional derivatives exist. Thus, the following identity holds:

CDα
a f (x) = Dα

a+ f (x)−
n−1

∑
k=0

f (k)(a)
Γ(k + 1 − α)

(x − a)k−α, x > a. (5)

As a consequence of the two previous results, we obtain that

CDα
x0
(x − x0)

k = Dα
x0
(x − x0)

k, k = 1, 2, . . .

Remark 1. In what follows, due to previous results and consequences, we work with Caputo fractional derivative,
since all our conclusions are also valid for Riemann–Liouville fractional derivative at the same extent.

The next result shows a generalization of the classical Taylor’s theorem by using derivatives of
fractional order.

Theorem 3 ([10], Theorem 3). Let us assume that CDjα
a g(x) ∈ C([a, b]), for j = 1, 2, . . . , n + 1, where 0 <

α ≤ 1. Then, we have

g(x) =
n

∑
i=0

CDiα
a g(a)

(x − a)iα

Γ(iα + 1)
+ CD(n+1)αg(ξ)

(x − a)(n+1)α

Γ((n + 1)α + 1)
(6)

being a ≤ ξ ≤ x, for all x ∈ (a, b], where CDnα
a =C Dα

a · . . . ·C Dα
a (n-times).

When the assumptions of Theorem 3 are satisfied, the Taylor development of f (x) around x̄,
by using Caputo-fractional derivatives, is

f (x) =
CDα

x̄ f (x̄)
Γ(α + 1)

[
(x − x̄)α + C2(x − x̄)2α + C3(x − x̄)3α

]
+O((x − x̄)4α), (7)

being Cj =
Γ(α + 1)
Γ(jα + 1)

CDjα
x̄ f (x̄)

CDα
x̄ f (x̄)

, for j ≥ 2.

The rest of the manuscript is organized as follows: Section 2 deals with the design of high-order
one-point fractional iterative methods and their analysis of convergence. In Section 3, some numerical
tests are made in order to check the theoretical results and we show the corresponding convergence
planes in order to study the dependence on the initial estimations of the proposed schemes. Finally,
some conclusions are stated.

2. Proposed Methods and Their Convergence Analysis

In order to extend Chebyshev’s iterative method to fractional calculus, let us define

CLα
f (x) =

f (x)CD2α
a f (x)

(Dα
a f (x))2 ,

that we call fractional logarithmic convexity degree of Caputo-type.
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Then, an iterative Chebyshev-type method using Caputo derivatives can be constructed.
The following result show the convergence conditions of this new method.derivative with 2α.

Theorem 4. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N and any
α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα

x̄ f (x) is continuous and non
zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using Caputo-type derivatives

xk+1 = xk − Γ(α + 1)
(

1 +
1
2

CLα
f (xk)

)
f (xk)

CDα
a f (xk)

, (8)

that we denote by CFC1, is at least 2α and the error equation is

eα
k+1 = C2

(
2Γ2(α + 1)− Γ(2α + 1)

2Γ2(α + 1)

)
e2α

k +O(e3α
k ), (9)

being ek = xk − x̄.

Proof. According to Theorems 1 and 3, we get that the Taylor expansion in fractional derivatives of
CDα f (xk) around x̄ is

CDα f (xk) =
CDα

x̄ f (x0)

Γ(α + 1)

[
Γ(α + 1) +

Γ(2α + 1)
Γ(α + 1)

C2eα
k +

Γ(3α + 1)
Γ(2α + 1)

C3e2α
k

]
+O(e3α

k ), (10)

where Cj =
Γ(α + 1)
Γ(αj + 1)

CDjα
x̄ f (x̄)

CDα
x̄ f (x̄)

, for j ≥ 2.

Then,
f (xk)

CDα
a f (xk)

=
1

Γ(α + 1)
eα

k +
(Γ2(α + 1))− Γ(2α + 1)

(Γ3(α + 1))
C2e2α

k +O(e3α
k ). (11)

On the other hand, it is clear, by identity (10), that

CD2α
x̄ f (xk) =

CDα
x̄ f (x̄)

Γ(α + 1)

[
Γ(2α + 1)C2 +

Γ(3α + 1)
Γ(α + 1)

C3eα
k

]
+ O(e2α

k ). (12)

Therefore,

f (xk)
CD2α

x̄ f (xk) =
( C Dα

x̄ f (x̄)
Γ(α+1)

)2
[

Γ(2α + 1)C2eα
k +

(
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3

)
e2α

k

]
+O(e3α

k )

and

(
CDα

a f (xk)
)2

=

(
(CDα

x̄ f )(x̄)
Γ(α + 1)

)2 [
(Γ(α + 1))2 + 2Γ(2α + 1)C2eα

k

+

(
(Γ(2α + 1))2

(Γ(α + 1))2 C2
2 + 2

Γ(α + 1)Γ(3α + 1)
Γ(2α + 1)

C3

)
e2α

k

+2
Γ(2α + 1)Γ(3α + 1)
Γ(α + 1)Γ(2α + 1)

C2C3e3α
k

]
+O(e4α

k ).

Let us now calculate the Taylor expansion of CLα
f (xk) around x̄,

CLα
f (xk) =

Γ(2α + 1)
Γ(α + 1)2 C2eα

k

+
1

Γ(α + 1)2

[
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3 − 2
1

Γ(α + 1)2 Γ(2α + 1)2C2
2

]
e2α

k +O(e3α
k ).
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As a consequence, we obtain that )

1 +
1
2

CLα
f (xk) = 1 +

Γ(2α + 1)
2Γ(α + 1)2 C2eα

k

+
1

2Γ(α + 1)2

[
C2

2Γ(2α + 1) +
Γ(3α + 1)
Γ(α + 1)

C3 − 2
1

Γ(α + 1)2 Γ(2α + 1)2C2
2

]
e2α

k +O(e3
k

Accordingly, a Chebyshev-like quotient can be obtained, and written in terms of the error at the
k-th iterate ek = xk − x̄.

f (xk)

(CDα
a f )(xk)

(
1 +

1
2

CLα
f (xk)

)
=

1
Γ(α + 1)

eα
k + C2

(
2Γ(α + 1)2 − Γ(2α + 1)

2Γ(α + 1)3

)
e2α

k +O(e3α
k ). (13)

Then, it is clear that, to make null the term of eα
k , a Caputo-fractional Chebyshev’s method should

include as a factor Γ(α + 1) to conclude that the error expression is (9).

Let us remark that, when α = 1, we get the classical Chebyshev method, whose order is 3.
However, the iterative expression defined in (8) does not achieve the required maximum order of
convergence 3α. The following theorem presents another Caputo-fractional variant of Chebyshev’s
method, defined by replacing the second order derivative with a fractional one, with order α + 1,
0 < α ≤ 1. Its proof is omitted, as it is similar to that of Theorem 4. We denote this Caputo-fractional
Chebyshev variant by CFC2.

Theorem 5. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N

and any α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα
x̄ f (x) is

continuous and non zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using
Caputo-type derivatives (CFC2)

xk+1 = xk − Γ(α + 1)
f (xk)

CDα
a f (xk)

(
1 +

1
2

CDα+1
a f (xk) f (xk)

CDα
a f (xk)CDα

a f (xk)

)
,

is at least 2α, being 0 < α < 1. On the one hand, if 0 < α ≤ 2
3 , the error equation is

eα
k+1 =

(
Γ(α + 1)2 − Γ(2α + 1)

Γ(α + 1)3 C2 +
1
2

1
Γ(α + 1)2

CDα+1
x̄ f (x̄)

CDα f (x̄)

)
e2α

k +O(e3α+1
k ).

On the other hand, if 2
3 ≤ α < 1, then

eα
k+1 =

(
Γ(α + 1)2 − Γ(2α + 1)

Γ(α + 1)3 C2 +
1
2

1
Γ(α + 1)2

CDα+1
x̄ f (x̄)

CDα f (x̄)

)
e2α

k +O(e3α
k ).

Can the order of fractional Chebyshev’s method be higher than 2α? In the following result it
is shown that it is possible if the coefficients in the iterative expression are changed. The resulting
fractional iterative scheme is denoted by CFC3. Again, the proof of the following result is omitted as it
is similar to that of Theorem 4.

Theorem 6. Let f : D ⊂ R −→ R be a continuous function with k-order fractional derivatives, k ∈ N

and any α, 0 < α ≤ 1, in the interval D. If x0 is close enough to the zero x̄ of f (x) and CDα
x̄ f (x) is
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continuous and non zero in x̄, then the local order of convergence of the Chebyshev’s fractional method using
Caputo-type derivatives (CFC3)

xk+1 = xk − Γ(α + 1)
f (xk)

CDα
a f (xk)

(
A + BCLα

f (xk)
)

, (14)

is at least 3α only if A = 1 and B =
Γ(2α + 1)− Γ(α + 1)2

Γ(2α + 1)
, being 0 < α < 1, and the error equation

eα
k+1 =

[
−Γ(2α + 1)

(
1 − Γ(2α + 1)

Γ4(α + 1)

)
C2 +

BΓ(2α + 1)
Γ3(α + 1)

(
2 − 3

Γ(2α + 1)
Γ2(α + 1)

)
C2

2 (15)

+
1

Γ(α + 1)

(
BΓ(3α + 1)
Γ3(α + 1)

− Γ(3α + 1)
Γ(2α + 1)Γ(α + 1)

+ 1
)

C3

]
e3α

k +O(e4α
k ),

being ek = xk − x̄.

According to the efficiency index defined by Ostrowski in [11], in Figure 1 we show that, with the
same number of functional evaluations per iteration than CFC2 and CFC1 but with higher order
of convergence, CFC3 has the best efficiency index, even compared with the fractional Newton’s
method CFN defined in [6]. In it, let us remark that incides of CFC1 and CFC2 coincide, as they have
the same order of convergence and number of functional evaluations iteration.
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Figure 1. Efficiency indices of used methods.

In the following section, we analyze the dependence on the initial guess of the different
Chebyshev-type fractional methods.

3. Numerical Performance of Proposed Schemes

In this section, we use Matlab R2018b with double precision for solving different kind of nonlinear
equations. The stopping criterium used is |xk+1 − xk| < 10−6 with at most 250 iterations. The Gamma
function is calculated by means of the routine made by Paul Godfrey (15 digits of accuracy along real
axis and 13 elsewhere in C. On the other hand, we use the program ml f of Mathworks for computing
Mittag-Lefler function that has a precission of 9 significant digits.

The first test function is f (x) = x3 + x, whose roots are x̄1 = 0, x̄2 = i and x̄3 = −i. In Tables 1–6,
we show the different solutions, the number of iterations, and the residual errors of the difference
between the two last iterations and the value of function f at the last iteration. In Tables 1 and 2
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we observe the performance of Caputo-fractional Chebyshev’s method CFC2 and CFC3 estimating
different roots with the initial guess x0 = 1.1.

Table 1. CFC2 results for f (x) = x3 + x with x0 = 1.1.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1274e-05+i4.6093e-04 9.2186e-04 4.6804e-04 250
0.91 −3.2556e-05+i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05+i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06+i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −1.6155e-08-i9.1923e-07 1.9214e-06 9.1937e-07 23
0.96 1.4985e-07-i7.7007e-07 1.9468e-06 7.8451e-07 13
0.97 3.4521e-07-i7.6249e-07 2.6824e-06 8.3699e-07 9
0.98 2.7084e-07-i3.4599e-07 1.9608e-06 4.3939e-07 7
0.99 −6.3910e-07+i2.1637e-07 6.4318e-06 6.7474e-07 5
1.00 −2.9769e-08+i0.0000e+00 3.0994e-03 2.9769e-08 3

Table 2. CFC3 results for f (x) = x3 + x with x0 = 1.1.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1270e-05+i4.6090e-04 9.2190e-04 4.6800e-04 250
0.91 −3.2560e-05+i2.0790e-04 4.1570e-04 2.1040e-04 250
0.92 −1.0630e-05+i7.7350e-05 1.5470e-04 7.8080e-05 250
0.93 −2.5980e-06+i2.1870e-05 4.3740e-05 2.2020e-05 250
0.94 −4.1180e-07+i4.0940e-06 8.1880e-06 4.1150e-06 250
0.95 −1.6680e-07+i9.2200e-07 1.9640e-06 9.3690e-07 22
0.96 −3.4850e-07+i7.2840e-07 2.0220e-06 8.0750e-07 12
0.97 5.5470e-07-i6.3310e-07 2.6850e-06 8.4180e-07 7
0.98 −3.1400e-07+i2.0370e-07 1.6820e-06 3.7430e-07 7
0.99 1.2990e-07-i8.4600e-08 1.2680e-06 1.5500e-07 6
1.00 −2.9770e-08+i0.0000e+00 3.0990e-03 2.9770e-08 3

As we know, when α is near to 1 the method needs less iterations and the evaluating of the last
iteration is smaller than in first values of the parameter α. Let us now compare our proposed schemes
with fractional Newton’s method designed in [6] (see Table 3).

Table 3. CFN results for f (x) with x0 = 1.1.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1275e-05-i4.6093e-04 9.2187e-04 4.6804e-04 250
0.91 −3.2556e-05-i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05-i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06-i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 2.8656e-08-i9.4754e-07 1.9837e-06 9.4797e-07 23
0.96 −3.2851e-07+i6.6774e-07 1.8538e-06 7.4418e-07 14
0.97 2.3413e-07-i4.2738e-07 1.5022e-06 4.8731e-07 11
0.98 2.0677e-07-i2.4623e-07 1.4017e-06 3.2154e-07 9
0.99 3.0668e-07-i2.2801e-07 3.3615e-06 3.8216e-07 7
1.00 1.2192e-16+i0.0000e+00 3.9356e-06 1.2192e-16 5

As we can see in Tables 1–3, there are no big differences in terms of convergence to the real
root but in the case of Caputo-fractional Newton’s method CFN, the number of iterations needed to
converge is higher than for CFC2 and CFC3.

To end, we show the convergence plane (see [12]) in Figures 2 and 3 where the abscissa axis
corresponds to the initial approximations and α appears in the ordinate axis. We use a mesh of
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400 × 400 points. Points painted in orange correspond to initial estimations that converge to x̄1 with
a tolerance of 10−3, a point is painted in blue if it converges to x̄2 and in green if it converges to x̄3.
In any other case, points are painted in black, showing that no root is found in a maximum of 250
iterations. The estimations point are located in [−5, 5], although convergence to the real root is found
in [−50, 50] paragraph has been moved, so that it can been seen before the figure 2 shows. please check
and confirm.
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Figure 2. Convergence plane of proposed methods and CFN on f (x).

We show the convergence plane of Chebyshev’ and Newton’s fractional methods. In Figure 2,
it can be observed that for any real initial estimation in the interval used, if α ≥ 0.89, both methods
converge to one of the zeros of f (x) and if α < 0.89, Newton’s and Chebyshev’s fractional methods do
not converge to any solution. However, the higher order of convergence of Chebyshev’s scheme can
make the difference.

However, we have got only convergence to the real root, by using real initial guesses. In what
follows, we use complex initial estimations, of equal real and imaginary parts, x0 = λ + iλ λ ∈ R,
in order to calculate the corresponding convergence plane.
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Figure 3. Convergence plane of proposed methods and CFN on f (x) with complex initial estimation.

In Figure 3, we can observe that starting with complex initial values is more efficient to find all
the roots of the nonlinear equation. In it, orange color means convergence to the real root x̄1, blue color
is convergence to x̄2 and (x0, α) in green color converge to x̄3. It is observed that it is possible to
converge to x̄3 with lower values of α with CFC3 than using CFC1 or CFC2. Moreover, the methods
converge mostly to x̄3 when the real and complex part of the initial estimation is positive, meanwhile it
is possible to converge to any of the roots when the real and complex part of x0 is negative.

Iterations

Also in Tables 4–6 we see that, with the same initial estimation, it is possible to approximate all
the roots of the function by changing the value of α.
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Table 4. CFC2 results for f (x) with x0 = −1.3 − i1.3.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1274e-05-i4.6093e-04 9.2186e-04 4.6804e-04 250
0.91 −3.2556e-05-i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05-i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06-i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −1.1203e-07+i9.8331e-07 2.0799e-06 9.8967e-07 26
0.96 −3.2473e-09-i7.0333e-07 1.7375e-06 7.0333e-07 19
0.97 5.9619e-08-i7.4110e-07 2.3750e-06 7.4349e-07 18
0.98 4.7121e-07+i7.4115e-07 4.1416e-06 8.7826e-07 19
0.99 3.9274e-08-i3.9674e-07 3.5758e-06 3.9868e-07 14
1.00 3.9559e-08+i4.8445e-07 7.8597e-03 4.8606e-07 8

Table 5. CFC3 results for f (x) with x0 = −1.3 − i1.3.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1308e-05-i4.6100e-04 9.2200e-04 4.6811e-04 250
0.91 −3.2562e-05-i2.0789e-04 4.1577e-04 2.1042e-04 250
0.92 −1.0633e-05-i7.7355e-05 1.5471e-04 7.8082e-05 250
0.93 −2.5978e-06-i2.1870e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −9.6563e-08+i9.3217e-07 1.9628e-06 9.3716e-07 28
0.96 1.3446e-08-i7.0728e-07 1.7477e-06 7.0741e-07 22
0.97 −9.7497e-08+i1.0000e+00 1.7666e-06 2.1081e-07 15
0.98 −1.8598e-07-i1.0000e+00 5.5924e-06 4.4631e-07 15
0.99 −1.5051e-07+i5.1262e-07 4.9442e-06 5.3426e-07 13
1.00 3.9559e-08+i4.8445e-07 7.8597e-03 4.8606e-07 8

Table 6. Fractional Newton results for f (x) with x0 = −1.3 − i1.3.

α x̄ |xk+1 − xk| | f (xk+1)| Iterations

0.90 −8.1275e-05+i4.6093e-04 9.2187e-04 4.6804e-04 250
0.91 −3.2556e-05+i2.0787e-04 4.1575e-04 2.1041e-04 250
0.92 −1.0632e-05+i7.7354e-05 1.5471e-04 7.8081e-05 250
0.93 −2.5978e-06+i2.1869e-05 4.3739e-05 2.2023e-05 250
0.94 −4.1185e-07+i4.0939e-06 8.1878e-06 4.1145e-06 250
0.95 −9.1749e-08-i9.2392e-07 1.9434e-06 9.2846e-07 28
0.96 1.5946e-08+i1.0000e+00 6.4777e-07 1.0272e-07 12
0.97 1.2679e-07+i1.0000e+00 4.3336e-06 5.1715e-07 16
0.98 −5.1142e-07+i7.8442e-07 4.5155e-06 9.3641e-07 16
0.99 9.3887e-08-i1.0000e+00 4.7305e-06 1.8942e-07 11
1.00 −2.9297e-10-i1.0000e+00 1.4107e-05 5.9703e-10 9

4. Conclusions

In this manuscript, we have designed several Chebyshev-type fractional iterative methods,
by using Caputo’s fractional derivative. We have shown that the order of convergence can reach 3α,
0 < α ≤ 1, by means of an appropriate design in the iterative expression, including a Gamma function
as a dumping parameter, but also an specific treatment of the high-order derivative derivative. It has
been proven that the replacement of high-order integer derivatives by fractional ones must be carefully
done, as it is not obvious that the order of convergence will be preserved. The theoretical results have
been checked in the numerical section, with special emphasis on the dependence on the initial guess
(that is shown in the convergence planes), comparing Newton’ and Chebyshev’s fractional methods
performances. CFC3 method is not only the most efficient scheme (see Figure 1), but also converges to
any of the searched roots for values of α lower than those needed by CFC1 and CFC2.
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Abstract: Problems from numerous disciplines such as applied sciences, scientific computing, applied
mathematics, engineering to mention some can be converted to solving an equation. That is why,
we suggest higher-order iterative method to solve equations with Banach space valued operators.
Researchers used the suppositions involving seventh-order derivative by Chen, S.P. and Qian, Y.H.
But, here, we only use suppositions on the first-order derivative and Lipschitz constrains. In addition,
we do not only enlarge the applicability region of them but also suggest computable radii. Finally,
we consider a good mixture of numerical examples in order to demonstrate the applicability of our results
in cases not covered before.
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1. Introduction

One of the most useful task in numerical analysis concerns finding a solution κ of

Θ(x) = 0, (1)

where Θ : D ⊂ X → Y is a Fréchet-differentiable operator, X, Y are Banach spaces and D is a convex
subset of X. The L(X, Y) is the space of bounded linear operators from X to Y.

Consider, a three step higher-order convergent method defined for each l = 0, 1, 2, . . . by

yl = xl − Θ′(xl)
−1Θ(xl),

zl = φ
(

xl , Θ(xl), Θ′(xl), Θ′(yl)
)

,

xl+1 = zl − βA−1
l Θ(zl),

(2)

where α, β ∈ S, Al = (β − α)Θ′(xl) + αΘ′(yl), (S = R or S = C) and the second sub step represents
any iterative method, in which the order of convergence is at least m = 1, 2, 3, . . . . If X = Y = R,
then it was shown in [1]. The proof uses Taylor series expansions and the conditions on function Θ
is up to the seventh differentiable. These suppositions of derivatives on the considered function Θ
hamper the applicability of (2). Consider, a function μ on X = Y = R, D = [−0.5, 1.5] by

μ(t) =

{
0, t = 0
t3 ln t2 + t5 − t4, t = 0

.

Then, we have that
μ′(t) = 3t2 ln t2 + 5t4 − 4t3 + 2t2,

Symmetry 2019, 11, 1002; doi:10.3390/sym11081002 www.mdpi.com/journal/symmetry28
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μ′′(t) = 6t ln t2 + 20t3 − 12t2 + 10t

and
μ′′′(t) = 6 ln t2 + 60t2 − 24t + 22.

Then, obviously the third-order derivative μ′′′(t) is not bounded on D. Method (2) studied in [1],
for X = Y = R suffers from several following defects:

(i) Applicable only on the real line.
(ii) Range of initial guesses for granted convergence is not discussed.

(iii) Higher than first order derivatives and Taylor series expansions were used limiting
the applicability.

(iv) No computable error bounds on ‖Ωl‖ (where Ωl = xl − κ) were given.
(v) No uniqueness result was addressed.

(vi) The convergence order claim by them is also not correct, e.g., see the following method 43 [1]

yl =xl − Θ(xl)

Θ′(xl)
,

zl =xl − 2Θ(xl)

Θ′(yl) + Θ′(xl)
,

xl+1 =zl − βΘ(zl)

αΘ′(yl) + (β − α)Θ′(xl)
.

(3)

It has fifth-order of convergence for α = β but α = β ∈ R provides fourth-order convergence.
But, authors claimed sixth-order convergence for every α, β ∈ R that is not correct. The new
proof is given in Section 2.

(vii) They can’t choose special cases like methods 41, 47 and 49 (numbering from their paper [1])
because Chen and Qian [1], consider yl = xl − f (xl)

f ′(xl)
in the proof of theorem. Additionally, it is

clearly mentioned in the expression of (21) (from their paper [1]).

To address all these problems, we first extend method (2) to Banach space valued operators.
The order of convergence is computed by using COC or ACOC (see remark 2.2(d)). Our technique
uses only the first derivative in the analysis of method (2), so we can solve classes of equations not
possible before in [1].

The remaining material of the paper is ordered as proceeds: Section 2 suggest convergence study
of scheme (2). The applicability of our technique appears in Section 3.

2. Convergence Analysis

We consider some scalars functions and constraints for convergence study. Therefore, we assume
that functions v, w0, w, ḡ2 : [0, +∞) → [0, +∞) are continuous and nondecreasing with
w0(0) = w(0) = 0 and α, β ∈ S. Assume equation

w0(t) = 1 (4)

has a minimal positive solution r0.
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Functions g1, h1, p and hp defined on [0, r0) as follow:

g1(t) =

∫ 1
0 w

(
(1 − η)t

)
dη

1 − w0(t)
,

h1(t) = g1(t)− 1,

p(t) = |β|−1
[
|β − α|w0(t) + |α|w0

(
g1(t)t

)]
, β = 0,

and

hp(t) = p(t)− 1.

Notice, that h1(0) = hp(0) = −1 < 0 and h1(t) → +∞, hq(t) → +∞ as t → r−0 . Then, by the
intermediate value theorem (IVT), the functions h1 and hp have roots in (0, r0). Let r1 and rp, stand
respectively the smallest such roots of the function h1 and hp. Additionally, we consider two functions
g2 and h2 on (0, r0) by

g2(t) = ḡ2(t)tm−1,

and

h2(t) = g2(t)− 1.

Suppose that
ḡ2(0) < 1, if m = 1 (5)

and
g2(t) → a (a number greater than one or + ∞) (6)

as t → r̄−0 for some r̄0 ≤ r0. Then, again by adopting IVT that function h2 has some roots (0, r̄0). Let r2

be the smallest such root. Notice that, if m > 1 condition (5) is not needed to show h2(0) < 0, since in
this case h2(0) = g2(0)− 1 = 0 − 1 = −1 < 0.

Finally, functions g3 and h3 on [0, r̄p) by

g3(t) =

(
1 +

∫ 1
0 v(ηg2(t)t)dη

1 − p(t)

)
g2(t),

and

h3(t) = g3(t)− 1,

where r̄p = min{rp, r2}. Suppose that

(1 + v(0))ḡ2(0) < 1, if m = 1, (7)

we get by (7) that h3(0) = (1 + v(0))ḡ2(0)− 1 < 0 and h3(t) → +∞ or positive number as t → r̄−p .
Let r3 stand for the smallest root of function h3 in (0, rp). Consider a radius of convergence r as

r = min{r1, r3}. (8)

Then, it holds
0 ≤ gi(t) < 1, i = 1, 2, 3 for each t ∈ [0, r). (9)

Let us assume that we have center z ∈ X and radius ρ > 0 of U(z, ρ) and Ū(z, ρ) open and
closed ball, respectively, in the Banach space X.
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Theorem 1. Let Θ : D ⊆ X → Y be a differentiable operator. Let v, w0, w, ḡ2 : [0, ∞) →
[0, ∞) be nondecreasing continuous functions with w0(0) = w(0) = 0. Additionally, we consider that
r0 ∈ [0, ∞), α ∈ S, β ∈ S − {0} and m ≥ 1. Assume that there exists κ ∈ D such that for every λ1 ∈ D

Θ(κ) = 0, Θ′(κ)−1 ∈ L(Y, X), (10)

‖Θ′(κ)−1(Θ′(λ1)− Θ′(κ)
)‖ ≤ w0(‖λ1 − κ‖). (11)

and Equation (4) has a minimal solution r0 and (5) holds.
Moreover, assume that for each λ1, λ2 ∈ D0 := D∩ U(κ, r0)

‖Θ′(κ)−1(Θ′(λ1)− Θ′(λ2)
)‖ ≤ w(‖λ1 − λ2‖), (12)

‖Θ′(κ)−1Θ′(λ1)‖ ≤ v(‖λ1 − κ‖), (13)

‖φ(λ1, Θ(λ1), Θ′(λ1), Θ′(λ2))‖ ≤ ḡ2(‖λ1 − κ‖)‖λ1 − κ‖m (14)

and
Ū(κ, r) ⊆ D. (15)

Then, for x0 ∈ U(κ, r)− {κ}, we have lim
l→∞

xl = κ, where {xl} ⊂ U(κ, r) and the following assertions

hold
‖yl − κ‖ ≤ g1(‖Ωl‖)‖Ωl‖ ≤ ‖Ωl‖ < r, (16)

‖zl − κ‖ ≤ g2(‖Ωl‖)‖Ωl‖ ≤ ‖Ωl‖ (17)

and
‖xl+1 − κ‖ ≤ g3(‖Ωl‖)‖Ωl‖ ≤ ‖Ωl‖, (18)

where xl − κ = Ωl and functions gi, i = 1, 2, 3 are given previously. Moreover, if R ≥ r

∫ 1

0
w0(ηR)dη < 1, (19)

then κ is unique in D1 := D∩ Ū(κ, R).

Proof. We demonstrate that the sequence {xl} is well-defined in U(κ, r) and converges to κ by
adopting mathematical induction. By the hypothesis x0 ∈ U(κ, r)− {κ}, (4), (6) and (13), we yield

‖Θ′(κ)−1(Θ′(x0)− Θ′(κ))‖ ≤ w0(‖Ω0‖) < w0(r) < 1, (20)

where Ω0 = x0 − κ and Θ′(x0)
−1 ∈ L(Y, X), y0 exists by the first two sub steps of method (2) and

∥∥Θ′(x0)
−1Θ′(κ)

∥∥ ≤ 1
1 − w0(‖Ω0‖) . (21)
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From (4), (8), (9) (for i = 1), (10), (12), (21) and the first substep of (2), we have

‖y0 − κ‖ = ‖Ω0 − Θ′(x0)
−1Θ(x0)− κ‖

=
∥∥∥Θ′(x0)

−1[Θ′(x0)(Ω0 − κ)− (
Θ(x0)− Θ(κ)

)]∥∥∥
=

∥∥∥∥[Θ′(x0)
−1Θ′(κ)

][
Θ′(κ)−1

(
Θ′(x0)(Ω0 − κ)− (

Θ(x0)− Θ(κ)
))]∥∥∥∥

≤ ‖Θ′(x0)
−1Θ(κ)‖

∥∥∥∥ ∫ 1

0

(
Θ′(κ)−1(Θ′(κ + η(Ω0 − κ))− Θ′(x0))(Ω0)

)
dη

∥∥∥∥
≤
∫ 1

0 w((1 − η)‖Ω0‖)dη‖Ω0‖
1 − w0(‖Ω0‖)

≤ g1(‖Ω0‖)‖Ω0‖ ≤ ‖Ω0‖ < r,

(22)

which implies (16) for l = 0 and y0 ∈ U(κ, r).
By (8), (9) (for i = 2) and (14), we get

‖z0 − κ‖ = ‖φ(x0, Θ(x0), Θ′(x0), Θ′(y0))‖
≤ ḡ2(‖Ω0‖)‖Ω0‖m

= g2(‖Ω0‖)‖Ω0‖ ≤ ‖Ω0‖ < r,

(23)

so (17) holds l = 0 and z0 ∈ U(κ, r).
Using expressions (4), (8) and (11), we obtain∥∥∥(βΘ′(κ))−1 [(β − α)(Θ′(x0)− Θ′(κ)) + α(Θ′(y0)− Θ′(κ))

]∥∥∥
≤ |β|−1 [|β − α|w0(‖Ω0‖) + |α|w0(‖y0 − κ‖)]
≤ |β|−1 [|β − α|w0(‖Ω0‖) + |α|w0(g1(‖Ω0‖)‖Ω0‖)]
= p(‖Ω0‖) ≤ p(r) < 1,

(24)

so
‖((β − α)Θ′(x0) + αΘ′(y0))

−1Θ′(κ)‖ ≤ 1
1 − p(‖Ω0‖) . (25)

and x1 is well-defined.
In view of (4), (8), (9) (for i = 3), (13), (22), (23) and (24), we get in turn that

‖x1 − κ‖ = ‖z0 − κ‖+ |β|
∫ 1

0
v(η‖z0 − κ‖)dη‖Ω0‖

≤
(

1 +
|β| ∫ 1

0 v(ηg2(‖Ω0‖))dη

|β|(1 − p(‖Ω0‖))

)
g2(‖Ω0‖)‖Ω0‖

= g3(‖Ω0‖)‖Ω0‖ ≤ ‖Ω0‖ < r,

(26)

that demonstrates (18) and x1 ∈ U(κ, r). If we substitute x0, y0, x1 by xl , yl , xl+1, we arrive
at (18) and (19). By adopting the estimates

‖xl+1 − κ‖ ≤ c‖Ωl‖ < r, c = g2(‖Ω0‖) ∈ [0, 1), (27)

so lim
l→∞

xl = κ and xl+1 ∈ U(κ, r).
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Now, only the uniqueness part is missing, so we assume that κ∗ ∈ D1 with Θ(κ∗) = 0. Consider,
Q =

∫ 1
0 Θ′(κ + η(κ − κ∗))dη. From (8) and (15), we obtain

‖Θ′(κ)−1(Q − Θ′(κ))‖ ≤ ‖
∫ 1

0
w0(η‖κ∗ − κ‖)dη

≤
∫ 1

0
w0(ηR)dη < 1,

(28)

and by
0 = Θ(κ)− Θ(κ∗) = Q(κ − κ∗), (29)

we derive κ = κ∗.

Remark 1.

(a) By expression (13) hypothesis (15) can be omitted, if we set

v(t) = 1 + w0(t) or v(t) = 1 + w0(r0), (30)

since,
‖Θ′(κ)−1 [(Θ′(x)− Θ′(κ)

)
+ Θ′(κ)

] ‖ = 1 + ‖Θ′(κ)−1(Θ′(x)− Θ′(κ))‖
≤ 1 + w0(‖x − κ‖)
= 1 + w0(t) for ‖x − κ‖ ≤ r0.

(31)

(b) Consider w0 to be strictly increasing, so we have

r0 = w−1
0 (1) (32)

for (4).
(c) If w0 and w are constants, then

r1 =
2

2w0 + w
(33)

and
r ≤ r1, (34)

where r1 is the convergence radius for well-known Newton’s method

xl+1 = xl − Θ′(xl)
−1Θ(xl), (35)

given in [2].

On the other hand, Rheindoldt [3] and Traub [4] suggested

rTR =
2

3w1
, (36)

where as Argyros [2,5]

rA =
2

2w0 + w1
, (37)

where w1 is the Lipschitz constant for (9) on D. Then,

w ≤ w1, w0 ≤ w1, (38)

so
rTR ≤ rA ≤ r1 (39)
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and
rTR
rA

→ 1
3

as
w0

w
→ 0. (40)

(d) We use the following rule for COC

ξ =
ln ‖xl+2−κ‖

‖xl+1−κ‖
ln ‖xl+1−κ‖

‖xl−κ‖
, for each l = 0, 1, 2, . . . (41)

or ACOC [6], defined as

ξ∗ =
ln ‖xl+2−xl+1‖

‖xl+1−xl‖
ln ‖xl+1−xn‖

‖xn−xl−1‖
, for each l = 1, 2, . . . (42)

not requiring derivatives and ξ∗ does not depend on κ.
(e) Our results can be adopted for operators Θ that satisfy [2,5]

Θ′(x) = P(Θ(x)), (43)

for a continuous operator P. The beauty of our study is that we can use the results without prior
knowledge of solution κ, since Θ′(κ) = P(Θ(κ)) = P(0). As an example Θ(x) = ex − 1, so we assume
P(x) = x + 1.

(f) Let us show how to consider functions φ, ḡ2, g2 and m. Define function φ by

φ(xl , Θ(xl), Θ′(xl), Θ′(yl)) = yl − Θ′(yl)
−1Θ(yl). (44)

Then, we can choose

g2(t) =

∫ 1
0 w((1 − η)g1(t)t)dη

1 − w0(g1(t)t)
g1(t). (45)

If w0, w, v are given in particular by w0(t) = L0t, w(t) = Lt and v(t) = M for some L0, L > 0, and
M ≥ 1, then we have that

ḡ2(t) =
L2

8(1−L0t)2

1 − L0Lt2

2(1−L0t)

,

g2(t) = ḡ2(t)t3 and m = 4.

(46)

(g) If β = 0, we can obtain the results for the two-step method

yl = xl − Θ′(xl)
−1Θ(xl),

xl+1 = φ(xl , Θ(xl), Θ′(xl), Θ′(yl))
(47)

by setting zl = xl+1 in Theorem 1.

Convergence Order of Expression (3) from [1]

Theorem 2. Let Θ : R → R has a simple zero ξ being a sufficiently many times differentiable function in an
interval containing ξ. Further, we consider that initial guess x = x0 is sufficiently close to ξ. Then, the iterative
scheme defined by (3) from [1] has minimum fourth-order convergence and satisfy the following error equation

el+1 =− c2
(
2c2

2 + c3
)
(α − β)

β
e4

l +
1

2β2

[
4βc4c2(β − α)− 4c4

2(2α2 − 8αβ + 5β2)

− 2c3c2
2(2α2 + αβ − 4β2) + 3βc2

3(β − α)
]
e5

l + O(e6
l ),

(48)
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where α, β ∈ R, el = xl − ξ and cj =
Θ(j)(ξ)
j!Θ′(ξ) for j = 1, 2, . . . 6.

Proof. The Taylor’s series expansion of function Θ(xl) and its first order derivative Θ′(xl) around
x = ξ with the assumption Θ′(ξ) = 0 leads us to:

Θ(xl) = Θ′(ξ)
[

6

∑
j=1

cje
j
l + O(e7

l )

]
, (49)

and

Θ′(xl) = Θ′(ξ)
[

6

∑
j=1

jcje
j
l + O(e7

l )

]
, (50)

respectively.
By using the Equations (49) and (50), we get

yl − ξ =c2e2
l − 2(c2

2 − c3)e3
l + (4c3

2 − 7c3c2 + 3c4)e4
l + (−8c4

2 + 20c3c2
2 − 10c4c2 − 6c2

3 + 4c5)e5
l

+ (16c5
2 − 52c3c3

2 + 28c4c2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6)e6
l + O(e7

l ).
(51)

The following expansion of Θ(yl) about ξ

Θ′(yl) =Θ′(ξ)
[
1 + 2c2

2e2
l + (4c2c3 − 4c3

2)e
3
l + c2(8c3

2 − 11c3c2 + 6c4)e4
l − 4c2(4c4

2 − 7c3c2
2 + 5c4c2 − 2c5)e5

l

+ 2
(
16c6

2 − 34c3c4
2 + 30c4c3

2 − 13c5c2
2 + (5c6 − 8c3c4)c2 + 6c3

3
)
e6

l

]
.

(52)

From Equations (50)–(52) in the second substep of (3), we have

zl − ξ =
(

c2
2 +

c3

2

)
e3

l +

(
−3c3

2 +
3c3c2

2
+ c4

)
e4

l +

(
6c4

2 − 9c3c2
2 + 2c4c2 − 3

4
(c2

3 − 2c5)

)
e5

l

+
1
2

(
−18c5

2 + 50c3c3
2 − 30c4c2

2 − 5
(

c2
3 − c5

)
c2 − 5c3c4 + 4c6

)
e6

l + O(e7
l ).

(53)

Similarly, we can expand function f (zl) about ξ with the help of Taylor series expansion, which is
defined as follows:

Θ(zl) =Θ′(ξ)
[ (

c2
2 +

c3
2

)
e3

l +

(
−3c3

2 +
3c3c2

2
+ c4

)
e4

l +

(
6c4

2 − 9c3c2
2 + 2c4c2 − 3

4
(c2

3 − 2c5)

)
e5

l

+

{
c2

(
c2

2 +
c3
2

)2
+

1
2

(
−18c5

2 + 50c3c3
2 − 30c4c2

2 − 5(c2
3 − c5)c2 − 5c3c4 + 4c6

)}
e6

l + O(e7
l )
]
.

(54)

Adopting expressions (49)–(54), in the last sub-step of method (3), we have

el+1 =− c2
(
2c2

2 + c3
)
(α − β)

β
e4

l +
1

2β2

[
4βc4c2(β − α)− 4c4

2(2α2 − 8αβ + 5β2)

− 2c3c2
2(2α2 + αβ − 4β2) + 3βc2

3(β − α)
]
e5

l + O(e6
l ).

(55)

For choosing α = β in (55), we obtain

el+1 =
(

2c4
2 + c3c2

2

)
e5

l + O(e6
l ). (56)

The expression (55) confirms that the scheme (3) have maximum fifth-order convergence for α = β

(that can be seen in (56)). This completes the proof and also contradict the claim of authors [1].

This type of proof and theme are close to work on generalization of the fixed point theorem [2,5,7,8].
We recall a standard definition.
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Definition 2. Let {xl} be a sequence in X which converges to κ. Then, the convergence is of order λ ≥ 1 if
there exist λ > 0, abd l0 ∈ N such that

‖xl+1 − κ‖ ≤ λ‖xl − κ‖λ for each l ≥ l0.

3. Examples with Applications

Here, we test theoretical results on four numerical examples. In the whole section, we consider
φ(xl , Θ(xl), Θ′(xl), Θ′(yl)) = xl − 2 f (xl)

f ′(yl)+ f ′(xl)
, that means m = 2 for the computational point of

view, called by (M1).

Example 1. Set X = Y = C[0, 1]. Consider an integral equation [9], defined by

x(β) = 1 +
∫ 1

0
T(β, α)

(
x(α)

3
2 +

x(α)2

2

)
dα (57)

where

T(β, α) =

{
(1 − β)α, α ≤ s,

β(1 − α), s ≤ α.
(58)

Consider corresponding operator Θ : C[0, 1] → C[0, 1] as

Θ(x)(β) = x(β)−
∫ α

0
T(β, α)

(
x(α)

3
2 +

x(α)2

2

)
dα. (59)

But ∥∥∥∥∫ α

0
T(β, α)dα

∥∥∥∥ ≤ 1
8

, (60)

and

Θ′(x)y(β) = y(β)−
∫ α

0
T(β, α)

(
3
2

x(α)
1
2 + x(α)

)
dα.

Using κ(s) = 0, we obtain

∥∥∥Θ′(κ)−1(Θ′(x)− Θ′(y)
)∥∥∥ ≤ 1

8

(
3
2
‖x − y‖ 1

2 + ‖x − y‖
)

, (61)

So, we can set

w0(α) = w(α) =
1
8

(
3
2

α
1
2 + α

)
.

Hence, by adopting Remark 2.2(a), we have

v(α) = 1 + w0(α) or v0(α) = M,

The results in [1] are not applicable, since Θ′ is not Lipschitz. But, our results can be used. The radii of
convergence of method (2) for example (1) are described in Table 1.

Table 1. Radii of convergence for problem (1).

α β m r1 rp r2 r3 r Methods

1 1 2 2.6303 3.13475 2.6303 2.1546 2.1546 M1
1 2 2 2.6303 3.35124 2.6303 2.0157 2.0157 M1
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Example 2. Consider a system of differential equations

θ′1(x)− θ1(x)− 1 = 0

θ′2(y)− (e − 1)y − 1 = 0

θ′3(z)− 1 = 0

(62)

that model for the motion of an object for θ1(0) = θ2(0) = θ3(0) = 0. Then, for v = (x, y, z)T consider
Θ := (θ1, θ2, θ3) : D → R3 defined by

Θ(v) =
(

ex − 1,
e − 1

2
y2 + y, z

)T
. (63)

We have

Θ′(v) =

⎡
⎢⎣ex 0 0

0 (e − 1)y + 1 0
0 0 1

⎤
⎥⎦ .

Then, we get w0(t) = L0t, w(t) = Lt, w1(t) = L1t and v(t) = M, where L0 = e − 1 < L = e
1

L0 =

1.789572397, L1 = e and M = e
1

L0 = 1.7896. The convergence radii of scheme (2) for example (2) are depicted
in Table 2.

Table 2. Radii of convergence for problem (2).

α β r1 rp r2 r3 r Methods x0 n ρ

1 1 0.382692 0.422359 0.321733 0.218933 0.218933 M1 0.15 3 4.9963
1 2 0.382692 0.441487 0.321733 0.218933 0.218933 M1 0.11 4 4.0000

We follow the stopping criteria for computer programming (i) ‖F(Xl)‖ and (ii) ‖Xl+1 − Xl‖ < 10−100 in
all the examples.

Example 3. Set X = Y = C[0, 1] and D = Ū(0, 1). Consider Θ on D as

Θ(ϕ)(x) = φ(x)− 5
∫ 1

0
xηϕ(η)3dη. (64)

We have that

Θ′(ϕ(ξ))(x) = ξ(x)− 15
∫ 1

0
xηϕ(η)2ξ(η)dη, for each ξ ∈ D. (65)

Then, we get κ = 0, L0 = 7.5, L1 = L = 15 and M = 2. leading to w0(t) = L0t, v(t) = 2 =

M, w(t) = Lt, w1(t) = L1t. The radii of convergence of scheme (2) for problem (3) are described in the Table 3.

Table 3. Radii of convergence for problem (3).

α β m r1 rp r2 r3 r Methods

1 1 2 0.0666667 0.0824045 0.0233123 0.00819825 0.00819825 M1
1 2 2 0.0666667 0.0888889 0.0233123 0.00819825 0.00819825 M1

Example 4. We get L = L0 = 96.662907 and M = 2 for example at introduction. Then, we can set
w0(t) = L0t, v(t) = M = 2, w(t) = Lt, w1(t) = Lt. The convergence radii of the iterative method (2) for
example (4) are mentioned in the Table 4.
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Table 4. Radii of convergence for problem (4).

α β m r1 rp r2 r3 r Methods x0 n ρ

1 1 2 0.0102914 0.0102917 0.00995072 0.00958025 0.00958025 M1 1.008 3 5.0000
1 2 2 0.0102914 0.010292 0.00995072 0.00958025 0.00958025 M1 1.007 4 3.0000

4. Conclusions

A major problem in the development of iterative methods is the convergence conditions. In the
case of especially high order methods, such as (2), the operator involved must be seventh times
differentiable according to the earlier study [1] which do not appear in the methods, limiting the
applicability. Moreover, no error bounds or uniqueness of the solution that can be computed are given.
That is why we address these problems based only on the first order derivative which actually appears
in the method. The convergence order is determined using COC or ACOC that do not require higher
than first order derivatives. Our technique can be used to expand the applicability of other iterative
methods [1–13] along the same lines.
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Abstract: Many problems in diverse disciplines such as applied mathematics, mathematical biology,
chemistry, economics, and engineering, to mention a few, reduce to solving a nonlinear equation or a
system of nonlinear equations. Then various iterative methods are considered to generate a sequence
of approximations converging to a solution of such problems. The goal of this article is two-fold:
On the one hand, we present a correct convergence criterion for Newton–Hermitian splitting (NHSS)
method under the Kantorovich theory, since the criterion given in Numer. Linear Algebra Appl.,
2011, 18, 299–315 is not correct. Indeed, the radius of convergence cannot be defined under the given
criterion, since the discriminant of the quadratic polynomial from which this radius is derived is
negative (See Remark 1 and the conclusions of the present article for more details). On the other
hand, we have extended the corrected convergence criterion using our idea of recurrent functions.
Numerical examples involving convection–diffusion equations further validate the theoretical results.

Keywords: Newton–HSS method; systems of nonlinear equations; semi-local convergence

1. Introduction

Numerous problems in computational disciplines can be reduced to solving a system of nonlinear
equations with n equations in n variables like

F(x) = 0 (1)

using Mathematical Modelling [1–11]. Here, F is a continuously differentiable nonlinear mapping
defined on a convex subset Ω of the n−dimensional complex linear space Cn into Cn. In general,
the corresponding Jacobian matrix F′(x) is sparse, non-symmetric and positive definite. The solution
methods for the nonlinear problem F(x) = 0 are iterative in nature, since an exact solution x∗ could be
obtained only for a few special cases. In the rest of the article, some of the well established and standard
results and notations are used to establish our results (See [3–6,10–14] and the references there in).
Undoubtedly, some of the well known methods for generating a sequence to approximate x∗ are the
inexact Newton (IN) methods [1–3,5–14]. The IN algorithm involves the steps as given in the following:

Symmetry 2019, 11, 981; doi:10.3390/sym11080981 www.mdpi.com/journal/symmetry39
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Algorithm IN [6]

• Step 1: Choose initial guess x0, tolerance value tol; Set k = 0
• Step 2: While F(xk) > tol × F(x0), Do

1. Choose ηk ∈ [0, 1). Find dk so that ‖F(xk) + F′(xk)dk‖ ≤ ηk‖F(xk)‖.
2. Set xk+1 = xk + dk; k = k + 1

Furthermore, if A is sparse, non-Hermitian and positive definite, the Hermitian and
skew-Hermitian splitting (HSS) algorithm [4] for solving the linear system Ax = b is given by,

Algorithm HSS [4]

• Step 1: Choose initial guess x0, tolerance value tol and α > 0; Set l = 0
• Step 2: Set H = 1

2 (A + A∗) and S = 1
2 (A − A∗), where H is Hermitian and S is skew-Hermitian

parts of A.
• Step 3: While ‖b − Axł‖ > tol × ‖b − Ax0‖, Do

1. Solve (αI + H)xl+1/2 = (αI − S)xl + b
2. Solve (αI + S)xl = (αI − H)xł+1/2 + b
3. Set l = l + 1

Newton–HSS [5] algorithm combines appropriately both IN and HSS methods for the solution
of the large nonlinear system of equations with positive definite Jacobian matrix. The algorithm is
as follows:

Algorithm NHSS (The Newton–HSS method [5])

• Step 1: Choose initial guess x0, positive constants α and tol; Set k = 0
• Step 2: While ‖F(xk)‖ > tol × ‖F(x0)‖

– Compute Jacobian Jk = F′(xk)

– Set

Hk(xk) =
1
2
(Jk + J∗k ) and Sk(xk) =

1
2
(Jk − J∗k ), (2)

where Hk is Hermitian and Sk is skew-Hermitian parts of Jk.
– Set dk,0 = 0; l = 0
– While

‖F(xk) + Jkdk,ł‖ ≥ ηk × ‖F(xk)‖ (ηk ∈ [0, 1)) (3)

Do
{

1. Solve sequentially:

(αI + Hk)dk,l+1/2 = (αI − Sk)dk,l + b (4)

(αI + Sk)dk,l = (αI − Hk)dk,l+1/2 + b (5)

2. Set l = l + 1

}
– Set

xk+1 = xk + dk,l ; k = k + 1 (6)
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– Compute Jk, Hk and Sk for new xk

Please note that ηk is varying in each iterative step, unlike a fixed positive constant value in used
in [5]. Further observe that if dk,�k

in (6) is given in terms of dk,0, we get

dk,�k
= (I − T�

k )(I − Tk)
−1B−1

k F(xk) (7)

where Tk := T(α, k), Bk := B(α, k) and

T(α, x) = B(α, x)−1C(α, x)

B(α, x) =
1

2α
(αI + H(x))(αI + S(x)) (8)

C(α, x) =
1

2α
(αI − H(x))(αI − S(x)).

Using the above expressions for Tk and dk,�k
, we can write the Newton–HSS in (6) as

xk+1 = xk − (I − T�
k )

−1F(xk)
−1F(xk). (9)

A Kantorovich-type semi-local convergence analysis was presented in [7] for NHSS. However,
there are shortcomings:

(i) The semi-local sufficient convergence criterion provided in (15) of [7] is false. The details are
given in Remark 1. Accordingly, Theorem 3.2 in [7] as well as all the followings results based on
(15) in [7] are inaccurate. Further, the upper bound function g3 (to be defined later) on the norm
of the initial point is not the best that can be used under the conditions given in [7].

(ii) The convergence domain of NHSS is small in general, even if we use the corrected sufficient
convergence criterion (12). That is why, using our technique of recurrent functions, we present
a new semi-local convergence criterion for NHSS, which improves the corrected convergence
criterion (12) (see also Section 3 and Section 4, Example 4.4).

(iii) Example 4.5 taken from [7] is provided to show as in [7] that convergence can be attained
even if these criteria are not checked or not satisfied, since these criteria are not sufficient too.
The convergence criteria presented here are only sufficient.

Moreover, we refer the reader to [3–11,13,14] and the references therein to avoid repetitions for
the importance of these methods for solving large systems of equations.

The rest of the note is organized as follows. Section 2 contains the semi-local convergence analysis
of NHSS under the Kantorovich theory. In Section 3, we present the semi-local convergence analysis
using our idea of recurrent functions. Numerical examples are discussed in Section 4. The article ends
with a few concluding remarks.

2. Semi-Local Convergence Analysis

To make the paper as self-contained as possible we present some results from [3] (see also [7]).
The semi-local convergence of NHSS is based on the conditions (A). Let x0 ∈ Cn and F : Ω ⊂ Cn −→
Cn be G−differentiable on an open neighborhood Ω0 ⊂ Ω on which F′(x) is continuous and positive
definite. Suppose F′(x) = H(x) + S(x) where H(x) and S(x) are as in (2) with xk = x.

(A1) There exist positive constants β, γ and δ such that

max{‖H(x0)‖, ‖S(x0)‖} ≤ β, ‖F′(x0)
−1‖ ≤ γ, ‖F(x0)‖ ≤ δ, (10)
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(A2) There exist nonnegative constants Lh and Ls such that for all x, y ∈ U(x0, r) ⊂ Ω0,

‖H(x)− H(y)‖ ≤ Lh‖x − y‖
‖S(x)− S(y)‖ ≤ Ls‖x − y‖. (11)

Next, we present the corrected version of Theorem 3.2 in [7].

Theorem 1. Assume that conditions (A) hold with the constants satisfying

δγ2L ≤ ḡ3(η) (12)

where ḡ3(t) := (1−t)2

2(2+t+2t2−t3)
, η = max{ηk} < 1, r = max{r1, r2} with

r1 =
α + β

L

(√
1 +

2ατθ

(2γ + γτθ)(α + β)2 − 1

)

r2 =
b −√

b2 − 2ac
a

(13)

a =
γL(1 + η)

1 + 2γ2δLη
, b = 1 − η, c = 2γδ,

and with �∗ = lim infk−→∞ �k satisfying �∗ > � ln η
ln((τ+1)θ �, (Here �.� represents the largest integer less than or

equal to the corresponding real number) τ ∈ (0, 1−θ
θ ) and

θ ≡ θ(α, x0) = ‖T(α, x0)‖ < 1. (14)

Then, the iteration sequence {xk}∞
k=0 generated by Algorithm NHSS is well defined and converges to x∗,

so that F(x∗) = 0.

Proof. We simply follow the proof of Theorem 3.2 in [7] but use the correct function ḡ3 instead of the
incorrect function g3 defined in the following remark.

Remark 1. The corresponding result in [7] used the function bound

g3(t) =
1 − t

2(1 + t2)
(15)

instead of ḡ3 in (12) (simply looking at the bottom of first page of the proof in Theorem 3.2 in [7]), i.e.,
the inequality they have considered is,

δγ2L ≤ g3(η). (16)

However, condition (16) does not necessarily imply b2 − 4ac ≥ 0, which means that r2 does not necessarily
exist (see (13) where b2 − 2ac ≥ 0 is needed) and the proof of Theorem 3.2 in [7] breaks down. As an example,
choose η = 1

2 , then g3(
1
2 ) = 1

5 , ḡ3(
1
2 ) = 1

23 and for ḡ3(
1
2 ) = δγ2L < g3(

1
2 ), we have b2 − 4ac < 0.

Notice that our condition (12) is equivalent to b2 − 4ac ≥ 0. Hence, our version of Theorem 3.2 is correct.
Notice also that

ḡ3(t) < g3(t) for each t ≥ 0, (17)

so (12) implies (16) but not necessarily vice versa.

3. Semi-Local Convergence Analysis II

We need to define some parameters and a sequence needed for the semi-local convergence of
NHSS using recurrent functions.

42



Symmetry 2019, 11, 981

Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1). Then, there exists μ ≥ 0 such that L = μL0.
Set c = 2γδ. Define parameters p, q, η0 and δ0 by

p =
(1 + η)μγL0

2
, q =

−p +
√

p2 + 4γL0 p
2γL0

, (18)

η0 =

√
μ

μ + 2
(19)

and

ξ =
μ

2
min{ 2(q − η)

(1 + η)μ + 2q
,
(1 + η)q − η − q2

(1 + η)q − η
}. (20)

Moreover, define scalar sequence {sk} by

s0 = 0, s1 = c = 2γδ and for each k = 1, 2, . . .

sk+1 = sk +
1

1 − γL0sk
[p(sk − sk−1) + η(1 − γL0sk−1)](sk − sk−1). (21)

We need to show the following auxiliary result of majorizing sequences for NHSS using the
aforementioned notation.

Lemma 1. Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1). Suppose that

γ2Lδ ≤ ξ (22)

and
η ≤ η0, (23)

where η0, ξ are given by (19) and (20), respectively. Then, sequence {sk} defined in (21) is nondecreasing,
bounded from above by

s∗∗ = c
1 − q

(24)

and converges to its unique least upper bounds s∗ which satisfies

c ≤ s∗ ≤ s∗∗. (25)

Proof. Notice that by (18)–(23) q ∈ (0, 1), q > η, η0 ∈ [
√

3
3 , 1), c > 0, (1 + η)q − η > 0, (1 + η)q − η −

q2 > 0 and ξ > 0. We shall show using induction on k that

0 < sk+1 − sk ≤ q(sk − sk−1) (26)

or equivalently by (21)

0 ≤ 1
1 − γL0sk

[p(sk − sk−1) + η(1 − γL0sk−1)] ≤ q. (27)

Estimate (27) holds true for k = 1 by the initial data and since it reduces to showing δ ≤
η

γ2L
q−η

(1+η)μ+2q , which is true by (20). Then, by (21) and (27), we have

0 < s2 − s1 ≤ q(s1 − s0), γL0s1 < 1

and

s2 ≤ s1 + q(s1 − s0) =
1 − q2

1 − q
(s1 − s0) <

s1 − s0

1 − q
= s∗∗.
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Suppose that (26),
γL0sk < 1 (28)

and

sk+1 ≤ 1 − qk+1

1 − q
(s1 − s0) < s∗∗ (29)

hold true. Next, we shall show that they are true for k replaced by k + 1. It suffices to show that

0 ≤ 1
1 − γL0sk+1

(p(sk+1 − sk) + η(1 − γL0sk)) ≤ q

or
p(sk+1 − sk) + η(1 − γL0sk) ≤ q(1 − γL0sk+1)

or
p(sk+1 − sk) + η(1 − γL0sk)− q(1 − γL0sk+1) ≤ 0

or
p(sk+1 − sk) + η(1 − γL0s1) + γqL0sk+1)− q ≤ 0

(since s1 ≤ sk) or

2γδpqk + 2γ2qL0δ(1 + q + . . . + qk) + η(1 − 2γ2L0δ)− q ≤ 0. (30)

Estimate (30) motivates us to introduce recurrent functions fk defined on the interval [0, 1) by

fk(t) = 2γδptk + 2γ2L0δ(1 + t + . . . + tk)t − t + η(1 − 2γ2L0δ). (31)

Then, we must show instead of (30) that

fk(q) ≤ 0. (32)

We need a relationship between two consecutive functions fk :

fk+1(t) = fk+1(t)− fk(t) + fk(t)

= 2γδptk+1 + 2γ2L0δ(1 + t + . . . tk+1)t − t

+η(1 − 2γ2L0δ)− 2γδptk − 2γ2L0δ(1 + t + . . . + tk)t

+t − η(1 − 2γ2L0δ) + fk(t)

= fk(t) + 2γδg(t)tk, (33)

where
g(t) = γL0t2 + pt − p. (34)

Notice that g(q) = 0. It follows from (32) and (34) that

fk+1(q) = fk(q) for each k. (35)

Then, since
f∞(q) = lim

k−→∞
fk(q), (36)

it suffices to show
f∞(q) ≤ 0 (37)
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instead of (32). We get by (31) that

f∞(q) =
2γ2L0δq

1 − q
− q + η(1 − 2γ2L0δ) (38)

so, we must show that
2γ2L0δq

1 − q
− q + η(1 − 2γ2L0δ) ≤ 0, (39)

which reduces to showing that

δ ≤ μ

2γ2L
(1 + η)q − η − q2

(1 + η)q − η
, (40)

which is true by (22). Hence, the induction for (26), (28) and (29) is completed. It follows that sequence
{sk} is nondecreasing, bounded above by s∗∗ and as such it converges to its unique least upper bound
s∗ which satisfies (25).

We need the following result.

Lemma 2 ([14]). Suppose that conditions (A) hold. Then, the following assertions also hold:

(i) ‖F′(x)− F′(y)‖ ≤ L‖x − y‖
(ii) ‖F′(x)‖ ≤ L‖x − y‖+ 2β

(iii) If r < 1
γL , then F′(x) is nonsingular and satisfies

‖F′(x)−1‖ ≤ γ

1 − γL‖x − x0‖ , (41)

where L = Lh + Ls.

Next, we show how to improve Lemma 2 and the rest of the results in [3,7]. Notice that it follows
from (i) in Lemma 2 that there exists L0 > 0 such that

‖F′(x)− F′(x0)‖ ≤ L0‖x − x0‖ for each x ∈ Ω. (42)

We have that
L0 ≤ L (43)

holds true and L
L0

can be arbitrarily large [2,12]. Then, we have the following improvement of Lemma 2.

Lemma 3. Suppose that conditions (A) hold. Then, the following assertions also hold:

(i) ‖F′(x)− F′(y)‖ ≤ L‖x − y‖
(ii) ‖F′(x)‖ ≤ L0‖x − y‖+ 2β

(iii) If r < 1
γL0

, then F′(x) is nonsingular and satisfies

‖F′(x)−1‖ ≤ γ

1 − γL0‖x − x0‖ . (44)

Proof. (ii) We have

‖F′(x)‖ = ‖F′(x)− F′(x0) + F′(x0)‖
≤ ‖F′(x)− F′(x0)‖+ ‖F′(x0)‖
≤ L0‖x − x0‖+ ‖F′(x0)‖ ≤ L0‖x − x0‖+ 2β.
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(iii)
γ‖F′(x)− F′(x0)‖ ≤ γL0‖x − x0‖ < 1. (45)

It follows from the Banach lemma on invertible operators [1] that F′(x) is nonsingular, so that
(44) holds.

Remark 2. The new estimates (ii) and (iii) are more precise than the corresponding ones in Lemma 2, if L0 < L.

Next, we present the semi-local convergence of NHSS using the majorizing sequence {sn}
introduced in Lemma 1.

Theorem 2. Assume that conditions (A), (22) and (23) hold. Let η = max{ηk} < 1, r = max{r1, t∗} with

r1 =
α + β

L

(√
1 +

2ατθ

(2γ + γτθ)(α + β)2 − 1

)

and s∗ is as in Lemma 1 and with �∗ = lim infk−→∞ �k satisfying �∗ > � ln η
ln((τ+1)θ �, (Here �.� represents the

largest integer less than or equal to the corresponding real number) τ ∈ (0, 1−θ
θ ) and

θ ≡ θ(α, x0) = ‖T(α, x0)‖ < 1. (46)

Then, the sequence {xk}∞
k=0 generated by Algorithm NHSS is well defined and converges to x∗, so that

F(x∗) = 0.

Proof. If we follow the proof of Theorem 3.2 in [3,7] but use (44) instead of (41) for the upper bound
on the norms ‖F′(xk)

−1‖ we arrive at

‖xk+1 − xk‖ ≤ (1 + η)γ

1 − γL0sk
‖F(xk)‖, (47)

where
‖F(xk)‖ ≤ L

2
(sk − sk−1)

2 + η
1 − γL0sk−1

γ(1 + η)
(sk − sk−1), (48)

so by (21)

‖xk+1 − xk‖ ≤ (1 + η)
γ

1 − γL0sk
[
L
2
(sk − sk−1) + η

1 − γL0sk−1
γ(1 + η)

](sk − sk−1) = sk+1 − sk. (49)

We also have that ‖xk+1 − x0‖ ≤ ‖xk+1 − xk‖+ ‖xk − xk−1‖+ . . . + ‖x1 − x0‖ ≤ sk+1 − sk + sk −
sk−1 + . . . + s1 − s0 = sk+1 − s0 < s∗. It follows from Lemma 1 and (49) that sequence {xk} is complete
in a Banach space Rn and as such it converges to some x∗ ∈ Ū(x0, r) (since Ū(x0, r) is a closed set).

However, ‖T(α; x∗)‖ < 1 [4] and NHSS, we deduce that F(x∗) = 0.

Remark 3. (a) The point s∗ can be replaced by s∗∗ (given in closed form by (24)) in Theorem 2.
(b) Suppose there exist nonnegative constants L0

h, L0
s such that for all x ∈ U(x0, r) ⊂ Ω0

‖H(x)− H(x0)‖ ≤ L0
h‖x − x0‖

and
‖S(x)− S(x0)‖ ≤ L0

s‖x − x0‖.
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Set L0 = L0
h + L0

s . Define Ω1
0 = Ω0 ∩ U(x0, 1

γL0
). Replace condition (A2) by

(A′
2) There exist nonnegative constants L′

h and L′
s such that for all x, y ∈ U(x0, r) ⊂ Ω1

0

‖H(x)− H(y)‖ ≤ L′
h‖x − y‖

‖S(x)− S(y)‖ ≤ L′
s‖x − y‖.

Set L′ = L′
h + L′

s. Notice that
L′

h ≤ Lh, L′
s ≤ Ls and L′ ≤ L, (50)

since Ω1
0 ⊆ Ω0. Denote the conditions (A1) and (A′

2) by (A′). Then, clearly the results of Theorem 2
hold with conditions (A′), Ω1

0, L′ replacing conditions (A), Ω0 and L, respectively (since the iterates {xk}
remain in Ω1

0 which is a more precise location than Ω0). Moreover, the results can be improved even further,
if we use the more accurate set Ω2

0 containing iterates {xk} defined by Ω2
0 := Ω ∩U(x1, 1

γL0
− γδ). Denote

corresponding to L′ constant by L′′ and corresponding conditions to (A′) by (A′′). Notice that (see also the
numerical examples) Ω2

0 ⊆ Ω1
0 ⊆ Ω0. In view of (50), the results of Theorem 2 are improved and under the

same computational cost.
(c) The same improvements as in (b) can be made in the case of Theorem 1.

The majorizing sequence {tn} in [3,7] is defined by

t0 = 0, t1 = c = 2γδ

tk+1 = tk +
1

1 − γLtk
[p(tk − tk−1) + η(1 − γLtk−1)](tk − tk−1). (51)

Next, we show that our sequence {sn} is tighter than {tn}.

Proposition 1. Under the conditions of Theorems 1 and 2, the following items hold

(i) sn ≤ tn

(ii) sn+1 − sn ≤ tn+1 − tn and
(iii) s∗ ≤ t∗ = limk−→∞ tk ≤ r2.

Proof. We use a simple inductive argument, (21), (51) and (43).

Remark 4. Majorizing sequences using L′ or L′′ are even tighter than sequence {sn}.

4. Special Cases and Numerical Examples

Example 1. The semi-local convergence of inexact Newton methods was presented in [14] under the conditions

‖F′(x0)
−1F(x0)‖ ≤ β,

‖F′(x0)
−1(F′(x)− F′(y))‖ ≤ γ‖x − y‖,

‖F′(x0)
−1sn‖

‖F′(x0)−1F(xn)‖ ≤ ηn

and
βγ ≤ g1(η),

where

g1(η) =

√
(4η + 5)3 − (2η3 + 14η + 11)

(1 + η)(1 − η)2 .
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More recently, Shen and Li [11] substituted g1(η) with g2(η), where

g2(η) =
(1 − η)2

(1 + η)(2(1 + η)− η(1 − η)2)
.

Estimate (22) can be replaced by a stronger one but directly comparable to (20). Indeed, let us define a
scalar sequence {un} (less tight than {sn}) by

u0 = 0, u1 = 2γδ,

uk+1 = uk +
( 1

2 ρ(uk − uk−1) + η)

1 − ρuk
(uk − uk−1), (52)

where ρ = γL0(1 + η)μ. Moreover, define recurrent functions fk on the interval [0, 1) by

fk(t) =
1
2

ρctk−1 + ρc(1 + t + . . . + tk−1)t + η − t

and function g(t) = t2 + t
2 − 1

2 . Set q = 1
2 . Moreover, define function g4 on the interval [0, 1

2 ) by

g4(η) =
1 − 2η

4(1 + η)
. (53)

Then, following the proof of Lemma 1, we obtain:

Lemma 4. Let β, γ, δ, L0, L be positive constants and η ∈ [0, 1
2 ). Suppose that

γ2Lδ ≤ g4(η) (54)

Then, sequence {uk} defined by (52) is nondecreasing, bounded from above by

u∗∗ = c
1 − q

and converges to its unique least upper bound u∗ which satisfies

c ≤ u∗ ≤ u∗∗.

Proposition 2. Suppose that conditions (A) and (54) hold with r = min{r1, u∗}. Then, sequence {xn}
generated by algorithm NHSS is well defined and converges to x∗ which satisfies F(x∗) = 0.

These bound functions are used to obtain semi-local convergence results for the Newton–HSS method as a
subclass of these techniques. In Figures 1 and 2, we can see the graphs of the four bound functions g1, g2, ḡ3 and
g4. Clearly our bound function ḡ3 improves all the earlier results. Moreover, as noted before, function g3 cannot
be used, since it is an incorrect bound function.
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Figure 1. Graphs of g1(t) (Violet), g2(t) (Green), ḡ3 (Red).
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Figure 2. Graphs of g1(t) (Violet), g2(t) (Green), ḡ3 (Red) and g4 (Blue).

In the second example we compare the convergence criteria (22) and (12).

Example 2. Let η = 1, Ω0 = Ω = U(x0, 1 − λ), x0 = 1, λ ∈ [0, 1). Define function F on Ω by

F(x) = x3 − λ. (55)

Then, using (55) and the condition (A), we get γ = 1
3 , δ = 1 − λ, L = 6(2 − λ), L0 = 3(3 − λ)

and μ = 2(2−λ)
3−λ . Choosing λ = 0.8., we get L = 7.2, L0 = 6.6, δ = 0.2, μ = 1.0909091, η0 =

0.594088525, p = 1.392, q = 0.539681469, γ2Lδ = 0.16. Let η = 0.16 < η0, then, ḡ3(0.16) = 0.159847474,
ξ = min{0.176715533, 0.20456064} = 0.176715533. Hence the old condition (12) is not satisfied, since
γ2Lδ > ḡ3(0.16). However, the new condition (22) is satisfied, since γ2Lδ < ξ. Hence, the new results expand
the applicability of NHSS method.

The next example is used for the reason already mentioned in (iii) of the introduction.
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Example 3. Consider the two-dimensional nonlinear convection–diffusion equation [7]

−(uxx + uyy) + q(ux + uy) = −eu, (x, y) ∈ Ω

u(x, y) = 0 (x, y) ∈ ∂Ω (56)

where Ω = (0, 1)× (0, 1) and ∂Ω is the boundary of Ω. Here q > 0 is a constant to control the magnitude of
the convection terms (see [7,15,16]). As in [7], we use classical five-point finite difference scheme with second
order central difference for both convection and diffusion terms. If N defines number of interior nodes along
one co-ordinate direction, then h = 1

N+1 and Re = qh
2 denotes the equidistant step-size and the mesh Reynolds

number, respectively. Applying the above scheme to (56), we obtain the following system of nonlinear equations:

Āu + h2eu = 0

u = (u1, u2, . . . , uN)
T , ui = (ui1, ui2, . . . , uiN)

T , i = 1, 2, . . . , N,

where the coefficient matrix Ā is given by

Ā = Tx ⊗ I + I ⊗ Ty.

Here, ⊗ is the Kronecker product, Tx and Ty are the tridiagonal matrices

Tx = tridiag(−1 − Re, 4,−1 + Re), Ty = tridiag(−1 − Re, 0,−1 + Re).

In our computations, N is chosen as 99 so that the total number of nodes are 100 × 100. We use α = qh
2 as

in [7] and we consider two choices for ηk i.e., ηk = 0.1 and ηk = 0.01 for all k.
The results obtained in our computation is given in Figures 3–6. The total number of inner iterations is

denoted by IT, the total number of outer iterations is denoted by OT and the total CPU time is denoted by t.
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Figure 3. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 600 and x0 = e.

50



Symmetry 2019, 11, 981

inner iterations
10 15 20 25 30 35 40 45 50

lo
g

(|
|F

(x
k
)|

|)

-25

-20

-15

-10

-5

0

5

η = 0.1
η = 0.01

outer iterations
0 2 4 6 8 10 12

lo
g

(|
|F

(x
k
)|

|)

-25

-20

-15

-10

-5

0

5

η = 0.1
η = 0.01

CPU time (inner iterations)
10 15 20 25 30 35 40 45 50 55

lo
g

(|
|F

(x
k
)|

|)

-25

-20

-15

-10

-5

0

5

η = 0.1
η = 0.01

(a) (b) (c)

Figure 4. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 2000 and x0 = e.
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Figure 5. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 600 and x0 = 6e.
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Figure 6. Plots of (a) inner iterations vs. log(‖F(xk)‖), (b) outer iterations vs. log(‖F(xk)‖), (c) CPU
time vs. log(‖F(xk)‖) for q = 2000 and x0 = 6e.
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5. Conclusions

A major problem for iterative methods is the fact that the convergence domain is small in
general, limiting the applicability of these methods. Therefore, the same is true, in particular
for Newton–Hermitian, skew-Hermitian and their variants such as the NHSS and other related
methods [4–6,11,13,14]. Motivated by the work in [7] (see also [4–6,11,13,14]) we:

(a) Extend the convergence domain of NHSS method without additional hypotheses. This is done
in Section 3 using our new idea of recurrent functions. Examples, where the new sufficient
convergence criteria hold (but not previous ones), are given in Section 4 (see also the remarks in
Section 3).

(b) The sufficient convergence criterion (16) given in [7] is false. Therefore, the rest of the results based
on (16) do not hold. We have revisited the proofs to rectify this problem. Fortunately, the results
can hold if (16) is replaced with (12). This can easily be observed in the proof of Theorem 3.2 in [7].
Notice that the issue related to the criteria (16) is not shown in Example 4.5, where convergence
is established due to the fact that the validity of (16) is not checked. The convergence criteria
obtained here are not necessary too. Along the same lines, our technique in Section 3 can be used
to extend the applicability of other iterative methods discussed in [1–6,8,9,12–16].
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Abstract: This article proposes a wide general class of optimal eighth-order techniques for
approximating multiple zeros of scalar nonlinear equations. The new strategy adopts a weight
function with an approach involving the function-to-function ratio. An extensive convergence
analysis is performed for the eighth-order convergence of the algorithm. It is verified that some of the
existing techniques are special cases of the new scheme. The algorithms are tested in several real-life
problems to check their accuracy and applicability. The results of the dynamical study confirm that
the new methods are more stable and accurate than the existing schemes.
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1. Introduction

Solving nonlinear problems is very important in numerical analysis and finds many applications
in physics, engineering, and other applied sciences [1,2]. These problems occur in a variety of areas
such as initial and boundary values, heat and fluid flow, electrostatics, or even in global positioning
systems (GPS) [3–6]. It is difficult to find analytical solutions for nonlinear problems, but numerical
techniques may be used to obtain approximate solutions. Therefore, iterative schemes provide an
attractive alternative to solve such problems. When we discuss iterative solvers for finding multiple
roots of nonlinear equations of the form f (x) = 0, where f (x) is a real function defined in a domain
D ⊆ R, we recall the classical modified Newton’s method [1,2,7] (also known as Rall’s algorithm),
given by:

xn+1 = xn − m
f (xn)

f ′(xn)
, n = 0, 1, 2, 3, . . . , (1)

where m is the multiplicity of the required solution. Given the multiplicity m ≥ 1, in advance,
the algorithm converges quadratically for multiple roots. We find one-point iterative functions in
the literature, but in the scope of the real world, they are not of practical interest because of their
theoretical limitations regarding convergence order and the efficiency index. Moreover, most of the
one-point techniques are computationally expensive and inefficient when they are tested on numerical
examples. Therefore, multipoint iterative algorithms are better candidates to qualify as efficient
solvers. The good thing about multipoint iterative schemes without memory for scalar nonlinear
equations is that we can establish a conjecture about their convergence order. According to the
Kung–Traub conjecture [1], any multipoint method without memory can reach its convergence order
of at most 2n−1 for n functional evaluations. A number of researchers proposed various optimal
fourth-order techniques (requiring three functional evaluations per iteration) [8–13] and non-optimal
approaches [14,15] for approximating multiple zeros of nonlinear functions. Nonetheless, a limited
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number of multipoint point iterative algorithms having a sixth-order of convergence were formulated.
Thukral [16] proposed the following sixth-order multipoint iteration scheme:

yn = xn − m
f (xn)

f ′(xn)
,

zn = xn − m
f (xn)

f ′(xn)

3

∑
i=1

( f (yn)

f (xn)

) i
m

,

xn+1 = zn − m
f (xn)

f ′(xn)

( f (zn)

f (xn)

) 1
m

[
3

∑
i=1

( f (yn)

f (xn)

) i
m

]2

.

(2)

Geum et al. [17] presented a non-optimal class of two-point sixth-order as follows:

yn = xn − m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn − Q(un, sn)
f (yn)

f ′(yn)
, (3)

where un = m

√
f (yn)
f (xn)

, sn = m−1

√
f ′(yn)
f ′(xn)

and Q : C → C is a holomorphic function in the neighborhood of

origin (0, 0). However, the main drawback of this algorithm is that it is not valid for simple zeros (i.e.,
for m = 1).

In 2016, Geum et al. [18] developed another non-optimal family of three-point sixth-order
techniques for multiple zeros consisting of the steps:

yn = xn − m
f (xn)

f ′(xn)
, m ≥ 1,

wn = yn − mG(un)
f (xn)

f ′(xn)
, (4)

xn+1 = wn − mK(un, vn)
f (xn)

f ′(xn)
,

where un = m

√
f (yn)
f (xn)

and vn = m

√
f (wn)
f (xn)

. The weight functions G : C → C and K : C2 → C are analytic

in the neighborhood of zero and (0, 0), respectively. It can be seen that (3) and (4) require four function
evaluations to achieve sixth-order convergence. Therefore, they are not optimal in the sense of the
Kung and Traub conjecture [1]. It is needless to mention that several authors have tried to develop
optimal eighth-order techniques for multiple zeros, but without success to the authors’ best knowledge.
Motivated by this fact, Behl et al. [19] introduced an optimal eighth-order iterative family for multiple
roots given by:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − unQ(hn)
f (xn)

f ′(xn)
,

xn+1 = zn − unvnG(hn, vn)
f (xn)

f ′(xn)
,

(5)

where Q : C → C is analytic in the neighborhood of (0) and G : C2 → C is holomorphic in the

neighborhood of (0, 0), with un =
(

f (yn)
f (xn)

) 1
m , hn = un

a1+a2un
, and vn =

(
f (zn)
f (yn)

) 1
m . Moreover, a1 and a2

and free disposable real parameters.
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Zafar et al. [20] presented an optimal eighth-order family using the weight function approach
as follows:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun H(un)
f (xn)

f ′(xn)
,

xn+1 = zn − unvn(A2 + A3un)P(vn)G(wn)
f (xn)

f ′(xn)
,

(6)

where A2 and A3 are real parameters and the weight functions H, P, G : C → C are analytic in the

neighborhood of zero, with un =
(

f (yn)
f (xn)

) 1
m , vn =

(
f (zn)
f (yn)

) 1
m , and wn =

(
f (zn)
f (xn)

) 1
m .

It is clear from the above review of the state-of-the-art that we have a very small number of
optimal eighth-order techniques that can handle the case of multiple zeros. Moreover, these types
of methods have not been discussed in depth to date. Therefore, the main motivation of the current
research work is to present a new optimal class of iterative functions having eighth-order convergence,
exploiting the weight function technique for computing multiple zeros. The new scheme requires only
four function evaluations

(
i.e., f (xn), f ′(xn), f (yn) and f (zn)

)
per iteration, which is in accordance

with the classical Kung–Traub conjecture. It is also interesting to note that the optimal eighth-order
family (5) proposed by Behl et al. [19] can be considered as a special case of (7) for some particular
values of the free parameters. In fact, the Artidiello et al. [21] family can be obtained as a special case
of (7) in the case of simple roots. Therefore, the new algorithm can be treated as a more general family
for approximating multiple zeros of nonlinear functions.

The rest of the paper is organized as follows. Section 2 presents the new eighth-order scheme and
its convergence analysis. Section 2.1 discuss some special cases based on the different choices of weight
functions employed in the second and third substeps of (7). Section 3 is devoted to the numerical
experiments and the analysis of the dynamical behavior, which illustrate the efficiency, accuracy, and
stability of (7). Section 4 presents the conclusions.

2. Construction of the Family

In this section, we develop a new optimal eighth-order scheme for multiple roots with known
multiplicity m ≥ 1. Here, we establish the main theorem describing the convergence analysis of the
proposed family with the three steps as follows:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun
f (xn)

f ′(xn)
H(tn),

xn+1 = zn − unvn
f (xn)

f ′(xn)
G(tn, sn),

(7)

where the weight functions H and G are such that H : C → C is analytic in the neighborhood of origin

and G : C2 → C is holomorphic in the neighborhoods of (0, 0), with un =
(

f (yn)
f (xn)

) 1
m , tn = un

b1+b2un
,

vn =
(

f (zn)
f (yn)

) 1
m , and sn = vn

b3+b4vn
, bi ∈ R (for i = 1, 2, 3, 4) being arbitrary parameters.

In the following Theorem 1, we demonstrate how to construct weight functions H and G so that
the algorithm arrives at the eighth order without requiring any additional functional evaluations.
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Theorem 1. Assume that f : C → C is an analytic function in the region enclosing the multiple zero x = α

with multiplicity m ≥ 1. The iterative Equation (7) has eighth-order convergence when it satisfies the conditions:{
H(0) = 1, H′(0) = 2b1, G00 = m, G10 = 2mb1, G01 = mb3,

G20 = m(H′′(0) + 2b2
1), G11 = 4mb1b3, G30 = m(H(3)(0) + 6b1H′′(0)− 24b3

1 − 12b2
1b2),

(8)

where Gij =
∂i+jG
∂ti∂sj

∣∣∣
(t=0,s=0)

, i, j ∈ {0, 1, 2, 3, 4}.

Proof. Let x = α be a multiple zero of f (x). Using the Taylor series expansion of f (xn) and f ′(xn) in
the neighborhood of α, we obtain:

f (xn) =
f (m)(α)

m!
em

n

(
1 + c1en + c2e2

n + c3e3
n + c4e4

n + c5e5
n + c6e6

n + c7e7
n + c8e8

n + O(e9
n)

)
(9)

and:

f ′(xn) =
f m(α)

m!
em−1

n

(
m + c1(m + 1)en + c2(m + 2)e2

n + c3(m + 3)e3
n + c4(m + 4)e4

n + c5(m + 5)e5
n

+ c6(m + 6)e6
n + c7(m + 7)e7

n + c8(m + 8)e8
n + O(e9

n)

)
,

(10)

respectively, where en = xn − α, ck =
1
k!

f (k)(α)
f ′(α) , and k = 1, 2, 3, . . ..

Using the above Equations (9) and (10) in the first substep of (7), we get:

yn − α =
c1e2

n
m

+
(−(1 + m)c2

1 + 2mc2)e3
n

m2 +
5

∑
j=1

Γje
j+3
n + O(e9

n), (11)

where Γj = Γj(m, c1, c2, . . . , c8) are given in terms of m, c1, c2, c3, . . . , c8 for 1 ≤ j ≤ 5. The explicit
expressions for the first two terms Γ1 and Γ2 are given by Γ1 = 1

m3 {3m2c3 + (m + 1)2c3
1 − m(3m +

4)c2c1} and Γ2 = 1
m4 {(m + 1)3c4

1 − 2m(2m2 + 5m + 3)c2c2
1 + 2m2(2m + 3)c3c1 + 2m2(c2

2(m + 2) −
2c4m)}.

Using the Taylor series expansion again, we obtain:

f (yn) = f (m)(α)e2m
n

[ ( c1
m
) m

m!
+

(2c2m − c2
1(m + 1))

( c1
m
)m en

c1m!
+
( c1

m

)1+m 1
2m!c3

1

{
(3 + 3m + 3m2 + m3)c4

1

− 2m(2 + 3m + 2m2)c2
1c2 + 4(−1 + m)m2c2

2 + 6m2c1c3
}

e2
n +

5

∑
j=1

Γ̄je
j+3
n + O(e9

n)

] (12)

and:

un =
c1en

m
+

(2c2m − c2
1(m + 2))e2

n
m2 + γ1e3

n + γ2e4
n + γ3e5

n + O(e6
n), (13)

where:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

γ1 =
1

2m3

[
c3

1(2m2 + 7m + 7) + 6c3m2 − 2c2c1m(3m + 7)
]
,

γ2 = − 1
6m4

[
c4

1(6m3 + 29m2 + 51m + 34)− 6c2c2
1m(4m2 + 16m + 17) + 12c3c1m2(2m + 5) + 12m2(c2

2(m + 3)

− 2c4m)
]
,

γ3 =
1

24m5

[− 24m3(c2c3(5m + 17)− 5c5m) + 12c3c2
1m2(10m2 + 43m + 49) + 12c1m2{c2

2(10m2 + 47m + 53)

− 2c4m(5m + 13)} − 4c2c3
1m(30m3 + 163m2 + 306m + 209) + c5

1(24m4 + 146m3 + 355m2 + 418m + 209)
]
.

(14)

Now, using the above Equation (14), we get:

tn =
c1

mb1
en +

4

∑
i=1

Θje
j+1
n + O(e6

n), (15)

where Θj = Θj(b1, b2, m, c1, c2, . . . , c8) are given in terms of b1, b2, m, c1, c2, . . . , c8, and the two

coefficients Θ1 and Θ2 are written explicitly as Θ1 = − b2c2
1+b1((2+m)c2

1−2mc2)

m2b2
1

, Θ2 = 1
2m3b3

1
[2b2

2c3
1 +

4b1b2c1((2 + m)c2
1 − 2mc2) + b2

1{(7 + 7m + 2m2)c3
1 − 2m(7 + 3m)c1c2 + 6m2c3}].

Since we have tn =
un

b1 + b2un
= O(en), it suffices to expand weight function H(tn) in the

neighborhood of origin by means of Taylor expansion up to the fifth-order term, yielding:

H(tn) ≈ H(0) + H′(0)tn +
1
2!

H′′(0)t2
n +

1
3!

H(3)(0)t3
n +

1
4!

H(4)(0)t4
n +

1
5!

H(5)(0)t5
n, (16)

where H(k) represents the kth derivative. By inserting the Equations (9)–(16) in the second substep
of (7), we have:

zn − α =
(m − H(0))c1

m2 e2
n +

2m(m − H(0))b1c2 −
(

H′(0) + (m + m2 − 3H(0)− mH(0))b1
)

c2
1

m3b1
e3

n

+
5

∑
s=1

Ωses+3
n + O(e9

n),
(17)

where Ωs = Ωs(H(0), H′(0), H′′(0), H(3)(0), H(4)(0), m, b1, b2, c1, c2, . . . , c8), s = 1, 2, 3, 4, 5.
From the error Equation (17), it is clear that to obtain at least fourth-order convergence,

the coefficients of e2
n and e3

n must vanish simultaneously. This result is possible only for the following
values of H(0) and H′(0), namely:

H(0) = m, H′(0) = 2mb1, (18)

which can be calculated from the Equation (17).
Substituting the above values of H(0) and H′(0) in (17), we obtain:

zn − α =
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c3
1 − 2m2b2

1c1c2

2m4b2
1

e4
n +

4

∑
r=1

Lres+4
n + O(e9

n), (19)

where Lr = Lr(H′′(0), H(3)(0), H(4)(0), m, b1, b2, c1, c2, . . . , c8), r = 1, 2, 3, 4.
Using the Taylor series expansion again, we can write:

f (zn) = f (m)(α)e4m
n

[
2−m

m!

(
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c3
1 − 2m2b2

1c1c2

m4b2
1

)
m +

5

∑
s=1

P̄ses
n + O(e6

n)

]
, (20)
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and:

vn =
(m(9 + m)b2

1 − H′′(0) + 4mb1b2)c2
1 − 2m2b2

1c2

2m3b2
1

e2
n + Δ1e3

n + Δ2e4
n + Δ3e5

n + O(e6
n), (21)

where Δ1 = 1
3m4b3

1
[3H′′(0)b2c3

1 − 12mb2
1b2c1((3 + m)c2

1 − 2mc2) +

3b1
(
((3 + m)H′′(0)− 2mb2

2)c
3
1 − 2mH′′(0)c1c2

) − mb3
1{(49 + 27m + 2m2)c3

1 − 6m(9 + m)c1c2 +

6m2c3}].
Now, using the above Equation (21), we obtain:

sn =
vn

b3 + b4vn
=
(−H′′(0) + (9 + m)b2

1 + 4b1b2)c2
1 − 2mb2

1c2

2m3b2
1b3

e2
n + σ1e3

n + σ2e4
n + σ3e5

n + O(e6
n), (22)

where σi = σi(m, b1, b2, b3, b4, H′′(0), H(3)(0), c1, c2, c3, c4, c5) for 1 ≤ i ≤ 3, with the explicit coefficient
σ1 written as:

σ1 =
1

6m3b3
1b3

[(
H(3)(0) +

(
98 + 54m + 4m2

)
b3

1 − 6H′′(0)b2 + 24(3 + m)b2
1b2 − 6b1

(
(3 + m)H′′(0)− 2b2

2

))
c3

1

−12mb1

(
−H′′(0) + (9 + m)b2

1 + 4b1b2

)
c1c2 + 12m2b3

1c3

)
].

From Equations (15) and (22), we conclude that tn and sn are of orders en and e2
n, respectively.

We can expand the weight function G(t, s) in the neighborhood of (0, 0) by Taylor series up to
fourth-order terms:

G(tn, sn) ≈ G00 + G10tn + G01sn +
1
2!
(
G20t2

n + 2G11tnsn + G02s2
n
)
+

1
3!
(
G30t3

n + 3G21t2
nsn + 3G12tns2

n + G03s3
n
)

+
1
4!
(
G40t4

n + 4G31t3
nsn + 6G22t2

ns2
n + 4G13tns3

n + G04s4
n
)
,

(23)

where Gij =
∂i+j

∂ti∂sj G(t, s)
∣∣∣
(t=0,s=0)

, i, j ∈ {0, 1, 2, 3, 4}.

Using the Equations (9)–(23) in (7), we have:

en+1 =
(G00 − m)c1((H′′(0)− (m + 9)b2

1 − 4b1b2)c2
1 + 2mb2

1c2)

2b2
1m4

e4
n +

4

∑
i=1

Riei+4
n + O(e9

n), (24)

where Ri = Ri(m, b1, b2, b3, b4, H(0), H′(0), H′′(0), H(3)(0), c1, c2, . . . , c8), i = 1, 2, 3, 4.
To obtain at least sixth-order convergence, we need to adopt G00 = m. Furthermore, substituting

G00 = m in R1 = 0, one obtains:
G10 = 2b1m. (25)

Inserting G00 = m and G10 = 2b1m in R2 = 0, we obtain the following relations:

G01 − mb3 = 0, G20 − mH′′(0)− 2mb2
1 = 0, (26)

which further yield:
G01 = mb3, G20 = mH′′(0) + 2mb2

1. (27)

By substituting the values of G00, G10, G01, and G20 in R3 = 0, we obtain the following two
independent equations:

G11 − 4b1b3m = 0,

3G11 H′′(0)− (G30 − mH(3)(0))b3 + 12m(7 + m)b3
1b3 − 6b1

(
2G11b2 + mH′′(0)b3

)− 3b2
1 (G11(9 + m)− 12mb2b3) = 0,

(28)
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which further give:

G11 = 4b1b3m, G30 = m(H(3)(0) + 6b1H′′(0)− 24mb3
1 − 12mb2

1b2). (29)

Now, in order to obtain eighth-order convergence of the proposed scheme (7), the coefficients
of e4

n, R1, R2, R3 defined in (24) must be equal to zero. Therefore, using the value of G00 = m and
substituting the values of Rs

i (i = 1, 2, 3) from Relations (25)–(29) in (7), one gets the following error
equation:

en+1 =
1

48m8b5
1b2

3

[
c1(4b2c2

1 + b1((9 + m)c2
1 − 2mc2)

][
− 24G21b1b2b3c4

1 + (−G40 + mH(4)(0))b2
3c4

1 − 24b3
1b2c2

1((
G02(9 + m)− m(23 + 3m)b2

3 − 2m(9 + m)b3b4
)

c2
1 + 2m

(
− G02 + 3mb2

3 + 2mb3b4

)
c2

)
− 6b2

1

(
4b2

2

(
2G02

− 3mb2
3 − 4mb3b4

)
c4

1 + G21b3c2
1

(
(9 + m)c2

1 − 2mc2

))
+ b4

1

((
− 3G02(9 + m)2 + 2m

(
431 + 102m + 7m2

)
b2

3

+ 6m(9 + m)2b3b4

)
c4

1 − 12m
(
− G02(9 + m) + 2m(17 + 2m)b2

3 + 2m(9 + m)b3b4

)
c2

1c2 + 12m2
(
− G02

+ 2mb2
3 + 2mb3b4

)
c2

2 + 24m3b2
3c1c3

)]
e8

n + O(e9
n).

(30)

The consequence of the above error analysis is that (7) acquires eighth-order convergence using
only four functional evaluations (viz. f (xn), f ′(xn), f (yn) and f (zn)) per full iteration. This completes
the proof.

2.1. Some Special Cases of the Proposed Class

In this section, we discuss some interesting special cases of the new class (7) by assigning different
forms of weight functions H(tn) and G(tn, sn) employed in the second and third steps, respectively.

1. Let us consider the following optimal class of eighth-order methods for multiple roots, with the
weight functions chosen directly from Theorem 1:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun
f (xn)

f ′(xn)

[
1 + 2tnb1 +

1
2

t2
n H′′(0) + 1

3!
t3
n H(3)(0) +

1
4!

t4
n H(4)(0) +

1
5!

t5
n H(5)(0)

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
m + 2mb1tn + mb3sn +

1
2!

(
(H′′(0)m + 2mb2

1)t
2
n + 8mb1b3tnsn + G02s2

n

)
+

1
3!

{
(H(3)(0) + 6H′′(0)b1 − 24b3

1 − 12b2
1b2)mt3

n + 3G21t2
nsn + 3G12tns2

n + G03s3
n

}
+

1
4!

(
G40t4

n + 4G31t3
nsn + 6G22t2

ns2
n + 4G13tns3

n + G04s4
n

)]
,

(31)

where bi (i = 1, 2, 3, 4), H′′(0), H(3)(0), H(4)(0), H(5)(0), G02, G12, G21, G03, G40, G31, G22, G13 and
G04 are free parameters.

Subcases of the given scheme (31):

(a) Let us consider H′′(0) = H(3)(0) = H(4)(0) = H(5)(0) = G02 = G12 = G21 = G03 =

G31 = G22 = G13 = G04 = 0 in Equation (31). Then, we obtain:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
m + msnb3 + 2tnmb1(1 + 2snb3)− 4t3

nmb3
1 + t2

nmb2
1(1 − 2tnb2) +

G40t4
n

24

]
.

(32)
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2. Considering H′′(0) = H(3)(0) = H(4)(0) = H(5)(0) = G12 = G03 = G31 = G22 = G13 = G04 = 0
and G21 = 2m in Equation (31), one gets:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
msnt2

n +
G02

2
s2

n + m
(

1 − 4b3
1t3

n + b2
1

(
t2
n − 2b2t3

n

)
+ b3sn + 2b1(tn + 2b3tnsn)

)]
.

(33)

3. A combination of polynomial and rational functions produces another optimal eighth-order
scheme as follows:

yn = xn − m
f (xn)

f ′(xn)
,

zn = yn − mun
f (xn)

f ′(xn)

[
1 + 2tnb1

]
,

xn+1 = zn − unvn
f (xn)

f ′(xn)

[
k1t2

n + k2sn +
k3t2

n + k4tn + k5sn + k6
k7tn + sn + 1

]
,

(34)

where: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 =
m
(−24b3

1 + 6b2
1(−2b2 + k7)

)
6k7

,

k2 =
m (b1(2 + 4b3) + b3k7)

k7
,

k3 =
m
(
24b3

1 + 12b2
1b2 + 12b1k2

7
)

6k7
,

k4 = m (2b1 + k7) ,

k5 =
m (−2b1(1 + 2b3) + k7)

k7
,

k6 = m.

(35)

Remark 1. It is important to note that the weight functions H(tn) and G(tn, sn) play a significant role in the
construction of eighth-order techniques. Therefore, it is usual to display different choices of weight functions,
provided they satisfy all the conditions of Theorem 1. Hence, we discussed above some special cases (32), (33),
and (35) having simple body structures along with optimal eight-order convergence so that they can be easily
implemented in numerical experiments.

Remark 2. The family (5) proposed by Behl et al. [19] can be obtained as a special case of (7) by selecting
suitable values of free parameters as, namely, b1 = a1, b2 = a2, b3 = 1, and b4 = 0.

3. Numerical Experiments

In this section, we analyze the computational aspects of the following cases: Equation (32) for
(b1 = 1, b2 = −2, b3 = 1, b4 = −2, G40 = 0) (MM1), Family (33) for (b1 = 1, b2 = −2, b3 = 1, b4 =

−2, G02 = 0) (MM2), and Equation (35) for (b1 = 1, b2 = −2, b3 = 1, b4 = −2, k7 = − 3
10 ) (MM3).

Additionally, we compare the results with those of other techniques.
In this regard, we considered several test functions coming from real-life problems and linear

algebra that represent Examples 1–7 in the follow-up. We compared them with the optimal
eighth-order scheme (5) given by Behl et al. [19] for Q(hn) = m(1 + 2hn + 3h2

n) and G(hn, tn) =

m
(

1+2tn+3h2
n+hn(2+6tn+hn)

1+tn

)
and the approach (6) of Zafar et al. [20] taking H(un) = 6u3

n − u2
n + 2un + 1,

P(vn) = 1 + vn, and G(wn) = 2wn+1
A2P0

for (A2 = P0 = 1) denoted by (OM) and (ZM), respectively.
Furthermore, we compared them with the family of two-point sixth-order methods proposed by
Geum et al. in [17], choosing out of them Case 2A, given by:
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yn = xn − m
f (xn)

f ′(xn)
, m > 1,

xn+1 = yn −
[

m + b1un

1 + a1un + a2sn + a3snun

]
f (yn)

f ′(yn)
,

(36)

where a1 = − 2m(m−2)
(m−1) , b1 = 2m

(m−1) , a2 = 2(m − 1), and a3 = 3.
Finally, we compared them with the non-optimal family of sixth-order methods based on the

weight function approach presented by Geum et al. [18]; out of them, we considered Case 5YD, which
is defined as follows:

yn = xn − m
f (xn)

f ′(xn)
, m ≥ 1,

wn = xn − m
[
(un − 2) (2un − 1)
(un − 1) (5un − 2)

]
f (xn)

f ′(xn)
,

xn+1 = xn − m
[

(un − 2) (2un − 1)
(5un − 2) (un + vn − 1)

]
f (xn)

f ′(xn)
.

(37)

We denote Equations (36) and (37) by (GK1) and (GK2), respectively.
The numerical results listed in Tables 1–7, compare our techniques with the four ones described

previously. Tables 1–7, include the number of iteration indices n, approximated zeros xn, absolute
residual error of the corresponding function | f (xn)|, error in the consecutive iterations |xn+1 − xn|, the
computational order of convergence ρ ≈ log | f (xn+1)/ f (xn)|

log | f (xn)/ f (xn−1)| with n ≥ 2 (the details of this formula can be

seen in [22]), the ratio of two consecutive iterations based on the order of convergence
∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣
(where p is either six or eight, corresponding to the chosen iterative method), and the estimation of

asymptotic error constant η ≈ lim
n→∞

∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣ at the last iteration. We considered 4096 significant

digits of minimum precision to minimize the round off error.
We calculated the values of all the constants and functional residuals up to several significant

digits, but we display the value of the approximated zero xn up to 25 significant digits (although
a minimum of 4096 significant digits were available). The absolute residual error in the function
| f (xn)| and the error in two consecutive iterations |xn+1 − xn| are displayed up to two significant
digits with exponent power. The computational order of convergence is reported with five significant

digits, while
∣∣∣∣ xn+1 − xn

(xn − xn−1)p

∣∣∣∣ and η are displayed up to 10 significant digits. From Tables 1–7, it can be

observed that a smaller asymptotic error constant implies that the corresponding method converged
faster than the other ones. Nonetheless, it may happen in some cases that the method not only had
smaller residual errors and smaller error differences between two consecutive iterations, but also larger
asymptotic error.

All computations in the numerical experiments were carried out with the Mathematica 10.4
programming package using multiple precision arithmetic. Furthermore, the notation a(±b) means
a × 10(±b).

We observed that all methods converged only if the initial guess was chosen sufficiently close to
the desired root. Therefore, going a step further, we decided to investigate the dynamical behavior
of the test functions fi(x), i = 1, 2, . . . , 7, in the complex plane. In other words, we numerically
approximated the domain of attraction of the zeros as a qualitative measure of how the methods
depend on the choice of the initial approximation of the root. To answer this important question on the
behavior of the algorithms, we discussed the complex dynamics of the iterative maps (32), (33), and
(35) and compared them with the schemes (36), (37), (5), and (6), respectively.

From the dynamical and graphical point of view [23,24], we took a 600 × 600 grid of the square
[−3, 3]× [−3, 3] ∈ C and assigned orange color to those points whose orbits converged to the multiple
root. We represent a given point as black if the orbit converges to strange fixed points or diverges after
at most 25 iterations using a tolerance of 10−3. Note that the black color denotes lack of convergence
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of the algorithm to any of the roots. This happened, in particular, when the method converged to a
strange fixed point (fixed points that were not roots of the nonlinear function), ended in a periodic
cycle, or went to infinity.

Table 8 depicts the measures of convergence of different iterative methods in terms of the average
number of iterations per point. The column I/P shows the average number of iterations per point
until the algorithm decided that a root had been reached, otherwise it indicates that the point was
non-convergent. The column NC(%) shows the percentage of non-convergent points, indicated as
black zones in the fractal pictures represented in Figures 1–14. It is clear that the non-convergent
points had a considerable influence on the values of I/P since these points contributed always with
the maximum number of 25 allowed iterations. In contrast, convergent points were reached usually
very quickly because we were working with multipoint iterative methods of higher order. Therefore,
to minimize the effect of non-convergent points, we included the column IC/C, which shows the
average number of iterations per convergent point.

Example 1. We considered the van der Waals equation of state [25]:(
P +

an2

V2

)
(V − nb) = nRT,

where a and b explain the behavior of a real gas by introducing in the ideal equations two parameters, a and b
(known as van der Waals constants), specific for each case. The determination of the volume V of the gas in terms
of the remaining parameters required the solution of a nonlinear equation in V:

PV3 − (nbP + nRT)V2 + an2V − abn2 = 0.

Given the constants a and b that characterize a particular gas, one can find values for n, P, and T, such
that this equation has three roots. By using the particular values, we obtained the following nonlinear function
(see [26] for more details)

f1(x) = x3 − 5.22x2 + 9.0825x − 5.2675,

having three zeros, so that one is x = 1.75, of multiplicity of two, and the other x = 1.72. However, our desired
root was x = 1.75.

The numerical results shown in Table 1 reveal that the new methods MM1, MM2, and MM3 had
better performance than the others in terms of precision in the calculation of the multiple roots of
f1(x) = 0. On the other hand, the dynamical planes of different iterative methods for this problem are
given in Figures 1 and 2. One can see that the new methods had a larger stable (area marked in orange)
than the methods GK1, GK2, OM, and ZM. It can also be verified from Table 8 that the three new
methods required a smaller average number of iterations per point (I/P) and a smaller percentage
of non-convergent points (NC(%)). Furthermore, we found that MM1 used the smallest number of
iterations per point (I/P =5.95 on average), while GK1 required the highest number of iterations per
point (I/P =14.82).

63



Symmetry 2019, 11, 837

T
a

b
le

1
.

C
on

ve
rg

en
ce

be
ha

vi
or

of
se

ve
n

di
ff

er
en

ti
te

ra
ti

ve
m

et
ho

ds
on

th
e

te
st

fu
nc

ti
on

f 1
(x
).

M
e

th
o

d
s

n
x n

|f
(x

n
)|

|x n
+

1
−

x n
|

ρ
∣ ∣ ∣x n

+
1
−

x n
(x

n
−

x n
−

1
)8

∣ ∣ ∣
η

G
K

1

0
1.

8
2.

0(
−4

)
4.

9(
−2

)
1

1.
75

08
95

25
85

80
09

15
35

64
12

80
2.

5(
−8

)
9.

0(
−4

)
6.

38
56

91
22

0(
+

4)
3.

53
65

22
62

0(
+

7)
2

1.
75

00
00

00
00

14
29

97
61

41
52

71
6.

1(
−2

4)
1.

4(
−1

1)
2.

77
73

96
48

4(
+

7)
3

1.
75

00
00

00
00

00
00

00
00

00
00

00
2.

7(
−1

17
)

3.
0(
−5

8)
5.

98
16

3.
53

65
22

62
0(
+

7)

G
K

2

0
1.

8
2.

0 (
−4

)
5.

0(
−2

)
1

1.
75

03
88

17
27

93
89

15
59

74
12

73
4.

6(
−9

)
3.

9(
−4

)
2.

60
32

37
30

3(
+

4)
3.

21
50

20
57

6(
+

6)
2

1.
75

00
00

00
00

00
01

03
43

22
46

37
3.

2(
−3

0)
1.

0(
−1

4)
3.

02
34

68
13

8(
+

6)
3

1.
75

00
00

00
00

00
00

00
00

00
00

00
4.

6(
−1

57
)

3.
9(
−7

8)
5.

99
59

3.
21

50
20

57
6(
+

6)

O
M

0
1.

8
2.

0 (
−4

)
4.

9(
−2

)
1

1.
75

03
88

17
23

19
82

35
75

36
36

80
9.

9(
−9

)
5.

7(
−4

)
1.

59
95

94
29

5(
+

7)
1.

46
28

34
36

2(
+

11
)

2
1.

75
00

00
00

00
00

00
13

56
33

66
29

5.
5(
−3

2)
1.

4(
−1

5)
3.

75
08

57
33

9(
+

11
)

3
1.

75
00

00
00

00
00

00
00

00
00

00
00

8.
4(
−2

18
)

1.
7(
−1

08
)

7.
99

03
1.

46
28

34
36

2(
+

11
)

Z
M

0
1.

8
2.

0(
−4

)
5.

0(
−2

)
1

1.
75

03
88

17
23

19
82

35
75

36
36

80
4.

6(
−9

)
3.

9(
−4

)
1.

05
76

51
89

2(
+

7)
1.

17
83

94
34

7(
+

11
)

2
1.

75
00

00
00

00
00

00
00

51
60

85
67

8.
0(
−3

5)
5.

2(
−1

7)
1.

00
12

10
27

3(
+

11
)

3
1.

75
00

00
00

00
00

00
00

00
00

00
00

1.
1(
−2

40
)

5.
9(
−1

20
)

7.
99

28
1.

17
83

94
34

7(
+

11
)

M
M

1

0
1.

8
2.

0 (
−4

)
5.

0(
−2

)
1

1.
75

00
83

04
69

50
29

18
53

33
15

87
2.

1(
−1

0)
8.

3(
−5

)
2.

15
44

63
51

9(
+

6)
2.

54
52

24
62

3(
+

9)
2

1.
75

00
00

00
00

00
00

00
00

00
00

06
9.

5(
−4

9)
5.

6(
−2

4)
2.

49
36

63
47

6(
+

9)
3

1.
75

00
00

00
00

00
00

00
00

00
00

00
2.

0(
−3

55
)

2.
6(
−1

77
)

7.
99

93
2.

54
52

24
62

3(
+

9)

M
M

2

0
1.

8
2.

0 (
−4

)
5.

0(
−2

)
1

1.
75

00
71

03
80

18
75

08
02

89
62

48
1.

5(
−1

0)
7.

1(
−5

)
1.

63
93

76
11

6(
+

6)
1.

74
14

69
47

9(
+

9)
2

1.
75

00
00

00
00

00
00

00
00

00
00

01
3.

7(
−5

0)
1.

1(
−2

4)
1.

71
20

46
10

3(
+

9)
3

1.
75

00
00

00
00

00
00

00
00

00
00

00
4.

9(
−3

67
)

4.
0(
−1

83
)

7.
99

94
1.

74
14

69
47

9(
+

9)

M
M

3

0
1.

8
2.

0(
−4

)
4.

9(
−2

)
1

1.
75

05
70

07
19

50
78

16
72

22
07

02
1.

5(
−8

)
7.

0(
−4

)
2.

00
21

34
74

0(
+

7)
2.

56
93

37
27

7(
+

10
)

2
1.

75
00

00
00

00
00

00
13

56
33

66
29

4.
6(
−3

2)
1.

2(
−1

5)
2.

17
42

78
59

1(
+

10
)

3
1.

75
00

00
00

00
00

00
00

00
00

00
00

5.
9(
−2

20
)

1.
4(
−1

09
)

7.
99

04
2.

56
93

37
27

7(
+

10
)

64



Symmetry 2019, 11, 837

z

(a) GK1
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(b) GK2
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(d) ZM

Figure 1. Dynamical plane of the methods GK1, GK2, OM, and ZM on f1(x).

z

z

(a) MM1
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z

(b) MM2

z

(c) MM3

Figure 2. Dynamical plane of the methods MM1, MM2, and MM3 on f1(x).

Example 2. Fractional conversion in a chemical reactor:
Let us consider the following equation (see [27,28] for more details):

f2(x) =
x

1 − x
− 5 log

[
0.4(1 − x)
0.4 − 0.5x

]
+ 4.45977. (38)

In the above equation, x represents the fractional conversion of Species A in a chemical reactor. There is no
physical meaning of Equation (38) if x is less than zero or greater than one, since x is bounded in the region
0 ≤ x ≤ 1. The required zero (that is simple) to this problem is x ≈ 0.757396246253753879459641297929.
Nonetheless, the above equation is undefined in the region 0.8 ≤ x ≤ 1, which is very close to the desired zero.
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Furthermore, there are some other properties of this function that make the solution more difficult to obtain.
In fact, the derivative of the above equation is very close to zero in the region 0 ≤ x ≤ 0.5, and there is an
infeasible solution for x = 1.098.

From Figures 3 and 4, we verified that the basin of attraction of the searched root (orange color)
was very small, or does not exist in most of the methods. The number of non-convergent points that
corresponds to the black area was very large for all the considered methods (see Table 8). Moreover,
an almost symmetric orange-colored area appeared in some cases, which corresponds to the solution
without physical sense, that is an attracting fixed point. Except for GK1 (not applicable for simple
roots), all other methods converged to the multiple roost only if the initial guess was chosen sufficiently
close to the required root, although the basins of attraction were quite small in all cases. The numerical
results presented in Table 2 are compatible with the dynamical results in Figures 3 and 4. We can see
that the new methods revealed smaller residual error and a smaller difference between the consecutive
approximations in comparison to the existing ones. Moreover, the numerical estimation of the order of
convergence coincided with the theoretical one in all cases. In Table 2, the symbol ∗ means that the
corresponding method does not converge to the desired root.

z

z

(a) GK1

z

(b) GK2

z

z

(c) OM

z

(d) ZM

Figure 3. Dynamical plane of the methods GK1, GK2, OM, and ZM on f2(x).
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Figure 4. Dynamical plane of the methods MM1, MM2, and MM3 on f2(x).

Example 3. Continuous stirred tank reactor (CSTR) [20,29]:

In this third example, we considered the isothermal continuous stirred tank reactor (CSTR) problem.
The following reaction scheme develops in the reactor (see [30] for more details):

A + R → B

B + R → C

C + R → D

C + R → E,

(39)

where components A and R are fed to the reactor at rates of Q and q − Q, respectively. The problem was analyzed
in detail by Douglas [31] in order to design simple feedback control systems. In the modeling study, the following
equation for the transfer function of the reactor was given:

KC
2.98(x + 2.25)

(s + 1.45)(s + 2.85)2(s + 4.35)
= −1, (40)

where KC is the gain of the proportional controller. The control system is stable for values of KC, which yields
roots of the transfer function having a negative real part. If we choose KC = 0, then we get the poles of the
open-loop transfer function as roots of the nonlinear equation:

f3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0 (41)

such as x = −1.45, −2.85, −2.85, −4.35. Therefore, we see that there is one root x = −2.85 with
multiplicity two.

The numerical results for this example are listed in Table 3. The dynamical planes for this example
are plotted in Figures 5 and 6. For methods GK1, GK2, and ZM, the black region of divergence was
very large, which means that the methods would not converge if the initial point was located inside
this region. This effect can also be observed from Table 8, where the average number of iterations per
point and percentage of non-convergent points are high for methods GK1 (I/P = 13.71 on average),
GK2 (I/P = 12.18 on average), and ZM (I/P = 12.50 on average), while the new methods have a
comparatively smaller number of iterations per point. The results of method OM closely follow the
new methods with an average number of 7.29 iterations per point.
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z
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Figure 5. Dynamical plane of the methods GK1, GK2, OM, and ZM on f3(x).
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Figure 6. Dynamical plane of the methods MM1, MM2, and MM3 on f3(x).
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Example 4. Let us consider another nonlinear test function from [2], as follows:

f4(x) = ((x − 1)3 − 1)50.

The above function has a multiple zero at x = 2 of multiplicity 50.

Table 4 shows the numerical results for this example. It can be observed that the results were
very good for all the cases, the residuals being lower for the newly-proposed methods. Moreover,
the asymptotic error constant (η) displayed in the last column of Table 4 was large for the methods
OM and ZM in comparison to the other schemes. Based on the dynamical planes in Figures 7 and
8, it is observed that in all schemes, except GK1, the black region of divergence was very large. This
is also justified from the observations of Table 8. We verified that ZM required the highest average
number of iterations per point (I/P = 17.74), while GK1 required the smallest number of iterations
per point (I/P =6.78). All other methods required an average number of iterations per point in the
range of 15.64–16.67. Furthermore, we observed that the percentage of non-convergent points NC(%)

was very high for ZM (56.04%) followed by GK2 (45.88%). Furthermore, it can also be seen that the
average number of iterations per convergent point (IC/C) for the methods GK1, GK2, OM, and ZM
was 6.55, 8.47, 9.58, and 8.52, respectively. On the other hand, the proposed methods MM1, MM2, and
MM3 required 9.63, 9.67, and 10.13, respectively.

z

z

(a) GK1

z

z

(b) GK2

z

(c) OM

z

z

(d) ZM

Figure 7. Dynamical plane of the methods GK1, GK2, OM, and ZM on f4(x).
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z

(a) MM1

z

(b) MM2

z

(c) MM3

Figure 8. Dynamical plane of the methods MM1, MM2, and MM3 on f4(x).

Example 5. Planck’s radiation law problem [32]:

We considered the following Planck’s radiation law problem that calculates the energy density within an
isothermal blackbody and is given by [33]:

Ψ(λ) =
8πchλ−5

e
ch

λBT − 1
, (42)

where λ represents the wavelength of the radiation, T stands for the absolute temperature of the blackbody,
B is the Boltzmann constant, h denotes Planck’s constant, and c is the speed of light. We were interested in
determining the wavelength λ that corresponds to the maximum energy density Ψ(λ).

The condition Ψ′(λ) = 0 implies that the maximum value of Ψ occurs when:

ch
λBT e

ch
λBT

e
ch

λBT − 1
= 5. (43)

If x = ch
λBT , then (43) is satisfied when:

f5(x) = e−x +
x
5
− 1 = 0. (44)

Therefore, the solutions of f5(x) = 0 give the maximum wavelength of radiation λ by means of the
following formula:

λ ≈ ch
αBT

, (45)

where α is a solution of (44). The desired root is x = 4.9651142317442 with multiplicity m = 1.

The numerical results for the test equation f5(x) = 0 are displayed in Table 5. It can be
observed that MM1 and MM2 had small values of residual errors and asymptotic error constants
(η), in comparison to the other methods, when the accuracy was tested in multi-precision arithmetic.
Furthermore, the basins of attraction for all the methods are represented in Figures 9 and 10. One can
see that the fractal plot of the method GK1 was completely black because the multiplicity of the desired
root was unity in this case. On the other hand, method GK2 had the most reduced black area in
Figure 9b, which is further justified in Table 8. The method GK2 had a minimum average number
of iterations per point (I/P = 2.54) and the smallest percentage of non-convergent points (1.40%),
while ZM had the highest percentage of non-convergent points (15.36%). For the other methods,
the average number of iterations per point was in the range from 4.55–5.22 and the percentage of
non-convergent points lies between 12.32 and 12.62.
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z
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(a) GK1

z

(b) GK2

z

(c) OM

z

(d) ZM

Figure 9. Dynamical plane of the methods GK1, GK2, OM, and ZM on f5(x).

z

(a) MM1

z

(b) MM2

z

(c) MM3

Figure 10. Dynamical plane of the methods MM1, MM2, and MM3 on f5(x).
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Example 6. Consider the following 5 × 5 matrix [29]:

B =

⎡
⎢⎢⎢⎢⎢⎣

29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3

⎤
⎥⎥⎥⎥⎥⎦ .

The corresponding characteristic polynomial of this matrix is as follows:

f6(x) = (x − 2)4(x + 1). (46)

The characteristic equation has one root at x = 2 of multiplicity four.

Table 6 shows the numerical results for this example. It can be observed in Figures 11 and 12 that
the orange areas dominate the plot. In fact, they correspond to the basin of attraction of the searched
zero. This means that the method converges if the initial estimation was located inside this orange
region. All schemes had a negligible black portion, as can be observed in Figures 11 and 12. Moreover,
the numerical tests for this nonlinear function showed that MM1, MM2, and MM3 had the best results
in terms of accuracy and estimation of the order of convergence. Consulting Table 8, we note that
the average number of iterations per point (I/P) was almost identical for all methods (ranging from
3.25–3.52).

z

z

(a) GK1

z

(b) GK2

z

(c) OM

z

z

(d) ZM

Figure 11. Dynamical plane of the methods GK1, GK2, OM, and ZM on f6(x).

76



Symmetry 2019, 11, 837

Table 6. Convergence behavior of seven different iterative methods on the test function f6(x).

Methods n xn | f (xn)| |xn+1 − xn| ρ
∣∣∣ xn+1−xn
(xn−xn−1)8

∣∣∣ η

GK1

0 2.5 2.2(−1) 5.0(−1)

1 2.000000762961482937437254 1.0(−24) 7.6(−7) 4.882998197(−5) 1.120047678(−4)

2 2.000000000000000000000000 7.1(−163) 2.2(−41) 1.120046114(−4)

3 2.000000000000000000000000 8.6(−992) 1.3(−248) 6.0000 1.120047678(−4)

GK2

0 2.5 2.2(−1) 5.0(−1)

1 2.000000228864153793460042 8.2(−27) 2.3(−7) 1.464734607(−5) 2.813143004(−5)

2 2.000000000000000000000000 8.0(−178) 4.0(−45) 2.813142103(−5)

3 2.000000000000000000000000 6.8(−1084) 1.2(−271) 6.0000 2.813143004(−5)

OM

0 2.5 2.2(−1) 5.0(−1)

1 2.000000024064327301586022 1.0(−30) 2.4(−8) 6.160470161(−6) 2.026132759(−5)

2 2.000000000000000000000000 8.1(−263) 2.3(−66) 2.026132634(−5)

3 2.000000000000000000000000 1.4(−2119) 1.5(−530) 8.0000 2.026132759(−5)

ZM

0 2.5 2.2(−1) 5.0(−1)

1 2.000000015545259122950984 1.8(−31) 1.6(−8 3.979587325(−6) 1.501808114(−5)

2 2.000000000000000000000000 2.1(−269) 5.1(−68) 1.501808045(−5)

3 2.000000000000000000000000 7.7(−2173) 7.1(−544) 8.0000 1.501808114(−5)

MM1

0 2.5 2.2(−1) 5.0(−1)

1 2.000000000897064386120835 1.9(−36) 9.0(−10) 2.296484861(−7) 6.104911033(−7)

2 2.000000000000000000000000 1.3(−314) 2.6(−79) 6.104911022(−7)

3 2.000000000000000000000000 4.8(−2540) 1.1(−635) 8.0000 6.104911033(−7)

MM2

0 2.5 2.2(−1) 5.0(−1)

1 2.000000000657603174893603 5.6(−37) 6.6(−10) 1.683464145(−7) 4.360650738(−7)

2 2.000000000000000000000000 1.6(−319) 1.5(−80) 4.360650732(−10)

3 2.000000000000000000000000 7.9(−2580) 1.3(−645) 8.0000 4.360650738(−7)

MM3

0 2.5 2.2(−1) 5.0(−1)

1 2.000000013818852989402478 1.1(−31) 1.4(−8) 3.537627147(−6) 9.122481344(−6)

2 2.000000000000000000000000 6.5(−272) 1.2(−68) 9.122481086(−6)

3 2.000000000000000000000000 1.0(−2193) 4.3(−549) 8.0000 9.122481344(−6)

z

(a) MM1

z

(b) MM2

z

z

(c) MM3

Figure 12. Dynamical plane of the methods MM1, MM2, and MM3 on f6(x).

Example 7. Global CO2 model by McHugh et al. [34] in ocean chemistry:
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In this example, we discuss the global CO2 model by McHugh et al. [34] in ocean chemistry (please see [35]
for more details). This problem leads to the numerical solution of a nonlinear fourth-order polynomial in the
calculation of pH of the ocean. The effect of atmospheric CO2 is very complex and varies with the location.
Therefore, Babajee [35] considered a simplified approach based on the following assumptions:

1. Only the ocean upper layer is considered (not the deep layer),
2. Neglecting the spatial variations, an approximation of the ocean upper layer carbon distribution by perfect

mixing is considered.

As the CO2 dissolves in ocean water, it undergoes a series of chemical changes that ultimately lead to
increased hydrogen ion concentration, denoted as [H+], and thus acidification. The problem was analyzed by
Babajee [35] in order to find the solution of the following nonlinear function:

p([H+]) =
4

∑
n=0

δn[H+]n, (47)

so that: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

δ0 = 2N0N1N2PtNB,

δ1 = N0N1PtNB + 2N0N1N2Pt + NW NB,

δ2 = N0N1Pt + BNB + NW − ANB,

δ3 = −NB − A,

δ4 = −1.

(48)

where N0, N1, N2, NW, and NB are equilibrium constants. The parameter A represents the alkalinity, which
expresses the neutrality of the ocean water, and Pt is the gas phase CO2 partial pressure. We assume the values
of A = 2.050 and B = 0.409 taken by Sarmiento and Gruyber [36] and Bacastow and Keeling [37], respectively.
Furthermore, choosing the values of N0, N1, N2, NW, NB and Pt given by Babajee [35], we obtain the following
nonlinear equation:

f7(x) = x4 − 2309x3

250
− 65226608163x2

500000
+

425064009069x
25000

− 10954808368405209
62500000

= 0. (49)

The roots of f7(x) = 0 are given by x = −411.452, 11.286, 140.771, 268.332. Hereafter, we pursue the
root −411.452 having multiplicity m = 1.

The numerical experiments of this example are given in Table 7. The methods MM1, MM2, and
MM3 had small residual errors and asymptotic error constants when compared to the other schemes.
The computational order of convergence for all methods coincided with the theoretical ones in seven
cases. Figures 13 and 14 show the dynamical planes of all the methods on test function f7(x). It can be
observed that all methods showed stable behavior, except GK1, as can also be confirmed in Table 8.
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z

z

(a) GK1

z

(b) GK2

z

(c) OM

z

(d) ZM

Figure 13. Dynamical plane of the methods GK1, GK2, OM, and ZM on f7(x).

z

(a) MM1

z

(b) MM2

z

(c) MM3

Figure 14. Dynamical plane of the methods MM1, MM2, and MM3 on f7(x).
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Table 8. Measures of convergence of the seven iterative methods for test functions fi(x) = 0,
i = 1, . . . , 7.

f (x) Methods I/P NC (%) IC /C f (x) Methods I/P NC (%) IC /C
f1(x) GK1 14.82 38.57 8.43 f5(x) GK1 0.99 99.99 0.00

GK2 12.06 36.09 4.75 GK2 2.54 1.40 2.30
OM 6.79 0.12 6.77 OM 4.86 12.32 2.84
ZM 11.08 9.15 9.67 ZM 4.55 15.36 2.58

MM1 5.95 0.04 5.95 MM1 5.17 12.41 2.92
MM2 5.99 0.03 5.99 MM2 5.19 12.62 2.90
MM3 6.60 0.04 6.59 MM3 5.22 12.50 2.98

f2(x) GK1 1.00 100 6.32 f6(x) GK1 3.48 0.00 3.48
GK2 8.93 99.58 1.6 GK2 3.52 0.00 3.52
OM 11.05 99.99 1.6 OM 3.25 0.00 3.25
ZM 10.23 99.98 2.15 ZM 3.52 0.01 3.53

MM1 11.72 99.99 1.6 MM1 3.32 0.00 3.32
MM2 11.87 99.99 1.6 MM2 3.32 0.00 3.32
MM3 11.82 99.99 1.6 MM3 3.32 0.00 3.32

f3(x) GK1 13.71 42.03 5.52 f7(x) GK1 1 100 ∗∗
GK2 12.18 38.63 4.11 GK2 1 0 1
OM 7.29 1.13 7.09 OM 1 0 1
ZM 12.50 22.31 8.91 ZM 1 0 1

MM1 6.97 0.71 6.84 MM1 1 0 1
MM2 6.99 0.63 6.88 MM2 1 0 1
MM3 6.84 0.62 6.73 MM3 1 0 1

f4(x) GK1 6.78 1.25 6.55
GK2 16.05 45.88 8.47
OM 15.77 40.18 9.58
ZM 17.74 56.04 8.52

MM1 15.64 39.12 9.63
MM2 15.67 39.16 9.67
MM3 16.41 42.22 10.13

** stands for indeterminate.

4. Conclusions

This paper developed a wide general three-step class of methods for approximating multiple zeros
of nonlinear functions numerically. Optimal iteration schemes having eighth order for multiple zeros
have been seldom considered in the literature. Therefore, the presented methods may be regarded as a
further step in this area. Weight functions based on function-to-function ratios and free parameters
were employed in the second and third steps of the family. This strategy allowed us to achieve the
desired convergence order of eight. In the numerical section, we considered a large variety of real-life
problems. The seven examples confirmed the efficiency of the proposed technique in comparison
to the existing robust methods. From the computational results, we found that the new methods
showed superior performance in terms of precision, the average number of iterations per point, and
the percentage of non-convergent points for the considered seven test functions. The straightforward
structure and high convergence order of the proposed class make it relevant both from the theoretical
and practical points of view.
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Abstract: A number of higher order iterative methods with derivative evaluations are developed
in literature for computing multiple zeros. However, higher order methods without derivative for
multiple zeros are difficult to obtain and hence such methods are rare in literature. Motivated by
this fact, we present a family of eighth order derivative-free methods for computing multiple zeros.
Per iteration the methods require only four function evaluations, therefore, these are optimal in the
sense of Kung-Traub conjecture. Stability of the proposed class is demonstrated by means of using
a graphical tool, namely, basins of attraction. Boundaries of the basins are fractal like shapes through
which basins are symmetric. Applicability of the methods is demonstrated on different nonlinear
functions which illustrates the efficient convergence behavior. Comparison of the numerical results
shows that the new derivative-free methods are good competitors to the existing optimal eighth-order
techniques which require derivative evaluations.

Keywords: nonlinear equations; multiple roots; derivative-free method; optimal convergence
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1. Introduction

Approximating a root (say, α) of a function is a very challenging task. It is also very important in
many diverse areas such as Mathematical Biology, Physics, Chemistry, Economics and also Engineering
to mention a few [1–4]. This is the case since problems from these areas are reduced to finding α.
Researchers are utilizing iterative methods for approximating α since closed form solutions can not
be obtained in general. In particular, we consider derivative-free methods to compute a multiple root
(say, α) with multiplicity m, i.e., f (j)(α) = 0, j = 0, 1, 2, ..., m − 1 and f (m)(α) = 0, of the equation
f (x) = 0.

A number of higher order methods, either independent or based on the Newton’s method ([5])

xk+1 = xk − m
f (xk)

f ′(xk)
(1)

have been proposed and analyzed in literature, see [6–24]. Such methods require the evaluation
of derivative. However, higher order derivative-free methods to handle the case of multiple roots
are yet to be investigated. Main reason of the non-availability of such methods is due to the
difficulty in obtaining their order of convergence. The derivative-free methods are important in
the situations where derivative of the function f is complicated to evaluate or is expensive to obtain.
One such derivative-free method is the classical Traub-Steffensen method [1] which actually replaces

Symmetry 2019, 11, 766; doi:10.3390/sym11060766 www.mdpi.com/journal/symmetry84
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the derivative f ′ in the classical Newton’s method by a suitable approximation based on finite
difference quotient,

f ′(xk) � f (xk + β f (xk))− f (xk)

β f (xk)
= f [wk, xk]

where wk = xk + β f (xk) and β ∈ R− {0}. In this way the modified Newton’s method (1) becomes
the modified Traub-Steffensen method

xk+1 = xk − m
f (xk)

f [wk, xk]
. (2)

The modified Traub-Steffensen method (2) is a noticeable improvement of Newton’s iteration,
since it preserves the order of convergence without using any derivative.

Very recently, Sharma et al. in [25] have developed a family of three-point derivative free methods
with seventh order convergence to compute the multiple zeros. The techniques of [25] require four
function evaluations per iteration and, therefore, according to Kung-Traub hypothesis these do not
possess optimal convergence [26]. According to this hypothesis multipoint methods without memory
based on n function evaluations have optimal order 2n−1. In this work, we introduce a family of
eighth order derivative-free methods for computing multiple zeros that require the evaluations of four
functions per iteration, and hence the family has optimal convergence of eighth order in the sense of
Kung-Traub hypothesis. Such methods are usually known as optimal methods. The iterative scheme
uses the modified Traub-Steffensen iteration (2) in the first step and Traub-Steffensen-like iterations in
the second and third steps.

Rest of the paper is summarized as follows. In Section 2, optimal family of eighth order is
developed and its local convergence is studied. In Section 3, the basins of attractors are analyzed to
check the convergence region of new methods. In order to check the performance and to verify the
theoretical results some numerical tests are performed in Section 4. A comparison with the existing
methods of same order requiring derivatives is also shown in this section. Section 5 contains the
concluding remarks.

2. Development of Method

Given a known multiplicity m > 1, we consider the following three-step scheme for multiple roots:

yk = xk − m
f (xk)

f [wk, xk]

zk = yk − mh(A1 + A2h)
f (xk)

f [wk, xk]

xk+1 = zk − mutG(h, t)
f (xk)

f [wk, xk]
(3)

where h =
u

1 + u
, u = m

√
f (yk)

f (xk)
, t = m

√
f (zk)

f (yk)
and G : C2 → C is analytic in a neighborhood of (0, 0).

Note that this is a three-step scheme with first step as the Traub-Steffensen iteration (2) and next two
steps are Traub-Steffensen-like iterations. Notice also that third step is weighted by the factor G(h, t),
so this factor is called weight factor or weight function.

We shall find conditions under which the scheme (3) achieves eighth order convergence. In order
to do this, let us prove the following theorem:

Theorem 1. Let f : C → C be an analytic function in a domain enclosing a multiple zero (say, α) with
multiplicity m. Suppose that initial guess x0 is sufficiently close to α, then the local order of convergence of
scheme (3) is at least 8, provided that A1 = 1, A2 = 3, G00 = 1, G10 = 2, G01 = 1, G20 = −4, G11 = 4,
G30 = −72, |G02| < ∞ and |G21| < ∞, where Gij =

∂i+j

∂hi∂tj G(h, t)|(0,0), i, j ∈ {0, 1, 2, 3, 4}.
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Proof. Let ek = xk − α, be the error in the k-th iteration. Taking into account that
f (j)(α) = 0, j = 0, 1, 2, . . . , m − 1 and f m(α) = 0, the Taylor’s expansion of f (xk) about α yields

f (xk) =
f m(α)

m!
em

k
(
1 + C1ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k + C6e6

k + C7e7
k ++C8e8

k + · · · ), (4)

where Cn = m!
(m+n)!

f (m+n)(α)

f (m)(α)
for n ∈ N.

Using (4) in wk = xk + β f (xk), we obtain that

wk − α = xk − α + β f (xk)

= ek +
β f (m)(α)

m! em
k
(
1 + C1ek + C2e2

k + C3e3
k + C4e4

k + C5e5
k + C6e6

k + C7e7
k + C8e8

k + · · · ). (5)

Expanding f (wk) about α

f (wk) =
f m(α)

m!
em

wk

(
1 + C1ewk + C2e2

wk
+ C3e3

wk
+ C4e4

wk
+ · · · ), (6)

where ewk = wk − α.
Then the first step of (3) yields

eyk = yk − α

= C1
m e2

k +
−(1+m)C2

1+2mC2
m2 e3

k +
(1+m)2C3

1−m(4+3m)C1C2+3m2C3
m3 e4

k

− (1+m)3C4
1−2m(3+5m+2m2)C2

1C2+2m2(2+m)C2
2+2m2(3+2m)C1C3

m4 e5
k

+ 1
m5

(
(1 + m)4C5

1 − m(1 + m)2(8 + 5m)C3
1C2 + m2(9 + 14m + 5m2)C2

1C3

+m2C1((12 + 16m + 5m2)C2
2 − m2C4)− m3((12 + 5m)C2C3 + m2C5)

)
e6

k
−P1e7

k + P2e8
k + O(e9

k),

(7)

where

P1 =
1

m6

(
(1 + m)5C6

1 − 2m(1 + m)3(5 + 3m)C4
1C2 + 6m2(1 + m)2(2 + m)C3

1C3

+ m2(1 + m)C2
1(3(8 + 10m + 3m2)C2

2 − 2m2C4)− m3C1(4(9 + 11m + 3m2)C2C3

+ m2(1 + m)C5) + m3(−2(2 + m)2C3
2 + 2m2C2C4 + m(3(3 + m)C2

3 + m2C6))
)
,

P2 =
1

m7

(
(1 + m)6C7

1 − m(1 + m)4(12 + 7m)C5
1C2 + m2(1 + m)3(15 + 7m)C4

1C3

+ m2(1 + m)2C3
1(2(20 + 24m + 7m2)C2

2 − 3m2C4)− m3(1 + m)C2
1(3(24 + 27m

+ 7m2)C2C3 + m2(1 + m)C5) + m3C1(−(2 + m)2(8 + 7m)C3
2 + 2m2(4 + 3m)C2C4

+ m((27 + 30m + 7m2)C2
3 + m2(1 + m)C6)) + m4((36 + 32m + 7m2)C2

2C3

+ m2(2 + m)C2C5 − m2(3C3C4 + mC7))
)
.

Expanding f (yk) about α, we have that

f (yk) =
f m(α)

m!
em

yk

(
1 + C1eyk + C2e2

yk
+ C3e3

yk
+ C4e4

yk
+ · · · ). (8)

86



Symmetry 2019, 11, 766

Also,

u =
C1

m
ek +

(−(2 + m)C2
1 + 2mC2)

m2 e2
k +

(7 + 7m + 2m2)C3
1 − 2m(7 + 3m)C1C2 + 6m2C3

2m3 e3
k

− 1
6m4

(
(34 + 51m + 29m2 + 6m3)C4

1 − 6m(17 + 16m + 4m2)C2
1C2 + 12m2(3 + m)C2

2

+12m2(5 + 2m)C1C3
)
e4

k +
1

24m5

(
(209 + 418m + 355m2 + 146m3 + 24m4)C5

1 − 4m(209 + 306m

+163m2 + 30m3)C3
1C2 + 12m2(49 + 43m + 10m2)C2

1C3 + 12m2C1((53 + 47m + 10m2)C2
2

−2m(1 + m)C4)− 24m3((17 + 5m)C2C3 + m2C5)
)
e5

k + O(e6
k)

(9)

and

h =
C1

m
ek +

(−(3 + m)C2
1 + 2mC2)

m2 e2
k +

(17 + 11m + 2m2)C3
1 − 2m(11 + 3m)C1C2 + 6m2C3

2m3 e3
k

− 1
6m4

(
(142 + 135m + 47m2 + 6m3)C4

1 − 6m(45 + 26m + 4m2)C2
1C2 + 12m2(5 + m)C2

2

+24m2(4 + m)C1C3
)
e4

k +
1

24m5

(
(1573 + 1966m + 995m2 + 242m3 + 24m4)C5

1 − 4m(983

+864m + 271m2 + 30m3)C3
1C2 + 12m2(131 + 71m + 10m2)C2

1C3 + 12m2C1((157 + 79m
+10m2)C2

2 − 2m(1 + m)C4)− 24m3((29 + 5m)C2C3 + m2C5)
)
e5

k + O(e6
k).

(10)

By inserting (4)–(10) in the second step of (3), we have

ezk = zk − α

= − (−1+A1)C1
m e2

k −
(1+A2+m−A1(4+m))C2

1+2(−1+A1)mC2
m2 e3

k
+∑5

n=1 δnen+3
k + O(e9

k),

(11)

where δn = δn(A1, A2, m, C1, C2, C3, . . . , C8), n = 1, 2, 3, 4, 5. Here, expressions of δn are not being
produced explicitly since they are very lengthy.

In order to obtain fourth-order convergence, the coefficients of e2
k and e3

k should be equal to
zero. This is possible only for the following values of A1 and A2, which can be calculated from the
expression (11):

A1 = 1 and A2 = 3. (12)

Then, the error Equation (11) is given by

ezk =
(19 + m)C3

1 − 2mC1C2

2m3 e4
k +

4

∑
n=1

φnen+4
k + O(e9

k),

where φn = φn(m, C1, C2, C3, . . . , C8), n = 1, 2, 3, 4.
Expansion of f (zk) about α leads us to the expression

f (zk) =
f m(α)

m!
em

zk

(
1 + C1ezk + C2e2

zk
+ C3e3

zk
+ C4e4

zk
+ · · · ).

and so t = m

√
f (zk)
f (yk)

yields

t =
(19 + m)C2

1 − 2mC2

2m2 e2
k −

(163 + 57m + 2m2)C3
1 − 6m(19 + m)C1C2 + 6m2C3

3m3 e3
k

+
1

24m4

(
(5279 + 3558m + 673m2 + 18m3)C4

1 − 12m(593 + 187m + 6m2)C2
1C2

+24m2(56 + 3m)C1C3 + 12m2(3(25 + m)C2
2 + 2mC4)

)
e4

k −
1

60m5

(
(47457 + 46810m

+16635m2 + 2210m3 + 48m4)C5
1 − 20m(4681 + 2898m + 497m2 + 12m3)C3

1C2 + 60m2(429
+129m + 4m2)C2

1C3 + 60m2C1((537 + 147m + 4m2)C2
2 − 2mC4)− 60m3(2(55 + 2m)C2C3

+m(1 + m)C5)
)
e5

k + O(e6
k).

(13)
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Expanding G(h, t) in neighborhood of origin (0, 0) by Taylor’s series, it follows that

G(h, t) ≈ G00 + G10h + G01t +
1
2!
(G20h2 + 2G11ht + G02t2)

+
1
3!
(
G30h3 + 3G21h2t + 3G12ht2 + G03t3)

+
1
4!
(
G40h4 + 4G31h3t + 6G22h2t2 + 4G13ht3 + G04t4),

(14)

where Gij =
∂i+j

∂hi∂tj G(h, t)|(0,0), i, j ∈ {0, 1, 2, 3, 4}.
By using (4), (6), (9), (10), (13) and (14) in third step of (3), we have

ek+1 = − (G00 − 1)C1((19 + m)C2
1 − 2mC2)

2m4 e4
k +

4

∑
n=1

ψnen+4
k + O(e9

k), (15)

ψn = ψn(m, G00, G10, G01, G20, G11, G02, G30, G21, C1, C2, . . . , C8), n = 1, 2, 3, 4.
It is clear from the Equation (15) that we will obtain at least eighth order convergence if we choose

G00 = 1, ψ1 = 0, ψ2 = 0 and ψ3 = 0. We choose G00 = 1 in ψ1 = 0. Then, we get

G10 = 2. (16)

By using G00 and (16) in ψ2 = 0, we will obtain

G01 = 1 and G20 = −4. (17)

Using G00, (16) and (17) in ψ3 = 0, we obtain that

G11 = 4 and G30 = −72. (18)

Inserting G00 and (16)–(18) in (15), we will obtain the error equation

ek+1 = − 1
48m7

(
C1((19 + m)C2

1 − 2mC2)((3G02(19 + m)2 + 2(−1121

−156m − 7m2 + 3G21(19 + m)))C4
1 − 12m(−52 + G21 − 4m

+G02(19 + m))C2
1C2 + 12(−2 + G02)m2C2

2 − 24m2C1C3)
)

e8
k + O(e9

k).

(19)

Thus, the eighth order convergence is established.

Remark 1. It is important to note that the weight function G(h, t) plays a significant role in the attainment of
desired convergence order of the proposed family of methods. However, only G02 and G21 are involved in the error
Equation (19). On the other hand, G12, G03, G40, G31, G22, G13 and G04 do not affect the error Equation (19).
So, we can assume them as dummy parameters.

Remark 2. The error Equation (19) shows that the proposed scheme (3) reaches at eighth-order convergence by
using only four evaluations namely, f (xk), f (wk), f (yk) and f (zk) per iteration. Therefore, the scheme (3) is
optimal according to Kung-Traub hypothesis [26] provided the conditions of Theorem 1 are satisfied.

Remark 3. Notice that the parameter β, which is used in the iteration wk, does not appear in the expression (7)
of eyk and also in later expressions. We have observed that this parameter has the appearance in the terms em

k and
higher order. However, these terms are difficult to compute in general. Moreover, we do not need these in order to
show the eighth convergence.
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Some Particular Forms of Proposed Family

(1) Let us consider the following function G(h, t) which satisfies the conditions of Theorem 1

G(h, t) = 1 + 2h + t − 2h2 + 4ht − 12h3.

Then, the corresponding eighth-order iterative scheme is given by

xk+1 = zk − mut
[

1 + 2h + t − 2h2 + 4ht − 12h3
]

f (xk)

f [wk, xk]
. (20)

(2) Next, consider the rational function

G(h, t) =
1 + 2h + 2t − 2h2 + 6ht − 12h3

1 + t

Satisfying the conditions of Theorem 1. Then, corresponding eighth-order iterative scheme is
given by

xk+1 = zk − mut
[

1 + 2h + 2t − 2h2 + 6ht − 12h3

1 + t

]
f (xk)

f [wk, xk]
. (21)

(3) Consider another rational function satisfying the conditions of Theorem 1, which is given by

G(h, t) =
1 + 3h + t + 5ht − 14h3 − 12h4

1 + h
.

Then, corresponding eighth-order iterative scheme is given by

xk+1 = zk − mut
[

1 + 3h + t + 5ht − 14h3 − 12h4

1 + h

]
f (xk)

f [wk, xk]
. (22)

(4) Next, we suggest another rational function satisfying the conditions of Theorem 1, which is
given by

G(h, t) =
1 + 3h + 2t + 8ht − 14h3

(1 + h)(1 + t)
.

Then, corresponding eighth-order iterative scheme is given by

xk+1 = zk − mut
[

1 + 3h + 2t + 8ht − 14h3

(1 + h)(1 + t)

]
f (xk)

f [wk, xk]
. (23)

(5) Lastly, we consider yet another function satisfying the conditions of Theorem 1

G(h, t) =
1 + t − 2h(2 + t)− 2h2(6 + 11t) + h3(4 + 8t)

2h2 − 6h + 1
.

Then, the corresponding eighth-order method is given as

xk+1 = zk − mut
[

1 + t − 2h(2 + t)− 2h2(6 + 11t) + h3(4 + 8t)
2h2 − 6h + 1

]
f (xk)

f [wk, xk]
. (24)

In above each case yk = xk − m f (xk)
f [wk,xk]

and zk = yk − mh(1 + 3h) f (xk)
f [wk,xk]

. For future reference the
proposed methods (20), (21), (22), (23) and (24) are denoted by M-1, M-2, M-3, M-4 and M-5, respectively.
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3. Complex Dynamics of Methods

Our aim here is to analyze the complex dynamics of new methods based on graphical tool the
basins of attraction of the zeros of a polynomial P(z) in complex plane. Analysis of the basins of
attraction gives an important information about the stability and convergence of iterative methods.
This idea was floated initially by Vrscay and Gilbert [27]. In recent times, many researchers used this
concept in their work, see, for example [28–30] and references therein. To start with, let us recall some
basic dynamical concepts of rational function associated to an iterative method. Let φ : R → R be
a rational function, the orbit of a point x0 ∈ R is defined as the set

{x0, φ(x0), . . . , φm(x0), . . .},

of successive images of x0 by the rational function.
The dynamical behavior of the orbit of a point of R can be classified depending on its asymptotic

behavior. In this way, a point x0 ∈ R is a fixed point of φ(x0) if it satisfies φ(x0) = x0. Moreover, x0 is
called a periodic point of period p > 1 if it is a point such that φp(x0) = x0 but φk(x0) = x0, for each
k < p. Also, a point x0 is called pre-periodic if it is not periodic but there exists a k > 0 such that φk(x0)

is periodic. There exist different type of fixed points depending on the associated multiplier |φ′(x0)|.
Taking the associated multiplier into account, a fixed point x0 is called: (a) attractor if |φ′(x0)| < 1,
(b) superattractor if |φ′(x0)| = 0, (c) repulsor if |φ′(x0)| > 1 and (d) parabolic if |φ′(x0)| = 1.

If α is an attracting fixed point of the rational function φ, its basin of attraction A(α) is defined as
the set of pre-images of any order such that

A(α) = {x0 ∈ R : φm(x0) → α, m → ∞}.

The set of points whose orbits tend to an attracting fixed point α is defined as the Fatou set.
Its complementary set, called Julia set, is the closure of the set consisting of repelling fixed points,
and establishes the borders between the basins of attraction. That means the basin of attraction of
any fixed point belongs to the Fatou set and the boundaries of these basins of attraction belong to the
Julia set.

The initial point z0 is taken in a rectangular region R ∈ C that contains all the zeros of a polynomial
P(z). The iterative method when starts from point z0 in a rectangle either converges to the zero P(z) or
eventually diverges. The stopping criterion for convergence is considered as 10−3 up to a maximum of
25 iterations. If the required tolerance is not achieved in 25 iterations, we conclude that the method
starting at point z0 does not converge to any root. The strategy adopted is as follows: A color is
allocated to each initial point z0 in the basin of attraction of a zero. If the iteration initiating at z0

converges, then it represents the attraction basin with that particular assigned color to it, otherwise if it
fails to converge in 25 iterations, then it shows the black color.

To view complex geometry, we analyze the basins of attraction of the proposed methods M-I
(I = 1, 2, ...., 5) on following polynomials:

Test problem 1. Consider the polynomial P1(z) = (z2 − 1)2 having two zeros {−1, 1} with
multiplicities m = 2. The basin of attractors for this polynomial are shown in Figures 1–3, for different
choices of β = 0.01, 10−6, 10−10. A color is assigned to each basin of attraction of a zero. In particular,
to obtain the basin of attraction, the red and green colors have been assigned for the zeros −1 and 1,
respectively. Looking at the behavior of the methods, we see that the method M-2 and M-4 possess
less number of divergent points and therefore have better convergence than rest of the methods.
Observe that there is a small difference among the basins for the remaining methods with the same
value of β. Note also that the basins are becoming larger as the parameter β assumes smaller values.

90



Symmetry 2019, 11, 766

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4
� �

�

M-5

Figure 1. Basins of attraction for methods M-1 to M-5 (β = 0.01) in polynomial P1(z).
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Figure 2. Basins of attraction for methods M-1 to M-5 (β = 10−6) in polynomial P1(z).
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Figure 3. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P1(z).

Test problem 2. Let P2(z) = (z3 + z)2 having three zeros {−i, 0, i} with multiplicities m = 2. The basin
of attractors for this polynomial are shown in Figures 4–6, for different choices of β = 0.01, 10−6, 10−10.
A color is allocated to each basin of attraction of a zero. For example, we have assigned the colors:
green, red and blue corresponding to the basins of the zeros −i, i and 0, From graphics, we see
that the methods M-2 and M-4 have better convergence due to a lesser number of divergent points.
Also observe that in each case, the basins are getting broader with the smaller values of β. The basins
in methods M-1, M-3 are almost the same and method M-5 has more divergent points.
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Figure 4. Basins of attraction for methods M-1 to M-5 (β = 0.01) in polynomial P2(z).
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Figure 5. Basins of attraction for methods M-1 to M-5 (β = 10−6) in polynomial P2(z).
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Figure 6. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P2(z).

Test problem 3. Let P3(z) = (z2 − 1
4 )(z

2 + 9
4 ) having four simple zeros {− 1

2 , 1
2 ,− 3

2 i, 3
2 i, }. To see the

dynamical view, we allocate the colors green, red, blue and yellow corresponding to basins of the zeros
− 1

2 , 1
2 , − 3

2 i and 3
2 i. The basin of attractors for this polynomial are shown in Figures 7–9, for different

choices of β = 0.01, 10−6, 10−10. Looking at the graphics, we conclude that the methods M-2 and M-4
have better convergence behavior since they have lesser number of divergent points. The remaining
methods have almost similar basins with the same value of β. Notice also that the basins are becoming
larger with the smaller values of β.

� �

�

�

M-1
� �

�

�

M-2
� �

�

�

M-3
� �

�

�

M-4
� �

�

M-5

Figure 7. Basins of attraction for methods M-1 to M-5 (β = 0.01) in polynomial P3(z).
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Figure 8. Basins of attraction for methods M-1 to M-5 (β = 10−6) in polynomial P3(z).
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Figure 9. Basins of attraction for methods M-1 to M-5 (β = 10−10) in polynomial P3(z).

From these graphics one can easily evaluate the behavior and stability of any method. If we
choose an initial point z0 in a zone where distinct basins of attraction touch each other, it is impractical
to predict which root is going to be attained by the iterative method that starts in z0. Hence, the choice
of z0 in such a zone is not a good one. Both the black zones and the regions with different colors are
not suitable to take the initial guess z0 when we want to acquire a unique root. The most adorable
pictures appear when we have very tricky frontiers between basins of attraction and they correspond
to the cases where the method is more demanding with respect to the initial point and its dynamic
behavior is more unpredictable. We conclude this section with a remark that the convergence nature of
proposed methods depends upon the value of parameter β. The smaller is the value of β, the better is
the convergence of the method.
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4. Numerical Results

In this section, we apply the methods M1–M5 of family (3) to solve few nonlinear equations,
which not only depict the methods practically but also serve to verify the validity of theoretical results
that we have derived. The theoretical order of convergence is verified by calculating the computational
order of convergence (COC) using the formula (see [31])

COC =
ln |(xk+2 − α)/(xk+1 − α)|

ln |(xk+1 − α)/(xk − α)| for each k = 1, 2, . . . (25)

Performance is compared with some existing eighth-order methods requiring derivative
evaluations in their formulae. For example, we choose the methods by Zafar et al. [19] and
Behl et al. [23,24]. These methods are expressed as follows:

Zafar et al. method (ZM-1):

yk = xk − m
f (xk)

f ′(xk)

zk = yk − muk

(1 − 5u2
k + 8u3

k
−2uk + 1

) f (xk)

f ′(xk)

xk+1 = zk − mukvk(1 + 2uk)(vk + 1)(2wk + 1)
f (xk)

f ′(xk)
.

Zafar et al. method (ZM-2):

yk = xk − m
f (xk)

f ′(xk)

zk = yk − muk
(
6u3

k − u2
k + 2uk + 1

) f (xk)

f ′(xk)

xk+1 = zk − mukvkevk e2wk (1 + 2uk)
f (xk)

f ′(xk)

where uk =
(

f (yk)
f (xk)

) 1
m

, vk =
(

f (zk)
f (yk)

) 1
m

and wk =
(

f (zk)
f (xk)

) 1
m

.
Behl et al. method (BM-1):

yk = xk − m
f (xk)

f ′(xk)

zk = yk − m
f (xk)

f ′(xk)
uk(1 + 2uk − u2

k)

xk+1 = zk + m
f (xk)

f ′(xk)

wkuk
1 − wk

[
− 1 − 2uk + 6u3

k −
1
6
(85 + 21m + 2m2)u4

k − 2vk

]
.

Behl et al. method (BM-2):

yk = xk − m
f (xk)

f ′(xk)

zk = yk − m
f (xk)

f ′(xk)
uk(1 + 2uk)

xk+1 = zk − m
f (xk)

f ′(xk)

wkuk
1 − wk

[1 + 9u2
k + 2vk + uk(6 + 8vk)

1 + 4uk

]

where uk =
(

f (yk)
f (xk)

) 1
m

, vk =
(

f (zk)
f (xk)

) 1
m

, wk =
(

f (zk)
f (yk)

) 1
m

.
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Behl et al. method (BM-3):

yk = xk − m
f (xk)

f ′(xk)

zk = yk − mu
f (xk)

f ′(xk)

1 + γu
1 + (γ − 2)u

xk+1 = zk − m
2

uv
f (xk)

f ′(xk)

[
1 − (2v + 1)(2u(2γ − γ2 + 4γu + u + 4)− 2γ + 5)

2γ + 2(γ2 − 6γ + 6)u − 5

]

where u =
(

f (yk)
f (xk)

) 1
m

, v =
(

f (zk)
f (yk)

) 1
m

and γ = 1
3 .

All computations are performed in the programming package Mathematica [32] in PC with
Intel(R) Pentium(R) CPU B960 @ 2.20 GHz, 2.20 GHz (32-bit Operating System) Microsoft Windows 7
Professional and 4 GB RAM using multiple-precision arithmetic. Performance of the new methods
is tested by choosing value of the parameter β = 0.01. Choice of the initial approximation x0 in the
examples is obtained by using the procedure proposed in [33]. For example, the procedure when
applied to the function of Example 2 in the interval [2, 3.5] using the statements

f[x_ ]=xˆ 9-29xˆ 8+349xˆ 7-2261xˆ 6+8455xˆ 5-17663xˆ 4+15927xˆ 3+6993xˆ 2-24732x+12960;
a=2; b=3.5; k=1; x0=0.5*(a+b+Sign[f[a]]*NIntegrate[Tanh[k *f[x]],{x,a,b}])

in programming package Mathematica yields a close initial approximation x0 = 3.20832 to the
root α = 3.

Numerical results displayed in Tables 1–6 contain: (i) values of first three consecutive errors
|xk+1 − xk|, (ii) number of iterations (k) needed to converge to the required solution with the stopping
criterion |xk+1 − xk|+ | f (xk)| < 10−100, (iii) computational order of convergence (COC) using (25)
and (iv) the elapsed CPU-time (CPU-time) in seconds computed by the Mathematica command
“TimeUsed[ ]”. Further, the meaning of a × e ± b is a × 10±b in Tables 1–6.

The following examples are chosen for numerical tests:

Example 1. We consider the Planck’s radiation law problem [34]:

ϕ(λ) =
8πchλ−5

ech/λkT − 1
(26)

which determines the energy density with in an isothermal black body. Here, c is the speed of light, λ is the
wavelength of the radiation, k is Boltzmann’s constant, T is the absolute temperature of the black body and h is
the Planck’s constant. Suppose, we would like to calculate wavelength λ which corresponds to maximum energy
density ϕ(λ). From (26), we get

ϕ′(λ) =
( 8πchλ−6

ech/λkT − 1

)( (ch/λkT)ech/λkT

ech/λkT − 1
− 5

)
= AB.

It can be seen that a maximum value for ϕ occurs when B = 0, that is, when

( (ch/λkT)ech/λkT

ech/λkT − 1

)
= 5.

Then, setting x = ch/λkT, the above equation becomes

1 − x
5
= e−x. (27)
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We consider this case for four times and obtained the required nonlinear function

f1(x) =
(

e−x − 1 +
x
5

)4
. (28)

The aim is to find a multiple root of the equation f1(x) = 0. Obviously, one of the multiple root x = 0
is not taken into account. As argued in [34], the left-hand side of (27) is zero for x = 5 and right-hand side is
e−5 ≈ 6.74 × 10−3. Hence, it is expected that another multiple root of the equation f1(x) = 0 might exist near
to x = 5. The calculated value of this multiple root is given by α ≈ 4.96511423 with x0 = 3.5. As a result, the
wavelength (λ) corresponding to which the energy density is maximum is approximately given as

λ ≈ ch
(kT)4.96511423

.

Numerical results are shown in Table 1.

Example 2. Finding eigen values of a large sparse matrix is a challenging task in applied mathematics and
engineering. Calculating even the roots of a characteristic equation of square matrix greater than 4 is another big
challenge. So, we consider the following 9× 9 matrix (see [23])

M =
1
8

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−12 0 0 19 −19 76 −19 18 437
−64 24 0 −24 24 64 −8 32 376
−16 0 24 4 −4 16 −4 8 92
−40 0 0 −10 50 40 2 20 242
−4 0 0 −1 41 4 1 2 25
−40 0 0 18 −18 104 −18 20 462
−84 0 0 −29 29 84 21 42 501
16 0 0 −4 4 −16 4 16 −92
0 0 0 0 0 0 0 0 24

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic polynomial of the matrix (M) is given as

f2(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960.

This function has one multiple zero at α = 3 of multiplicity 4. We find this zero with initial approximation
x0 = 3.2. Numerical results are shown in Table 2.

Example 3. Consider an isentropic supersonic flow along a sharp expansion corner (see [2]). Then relationship
between the Mach number before the corner (i.e., M1) and after the corner (i.e., M2) is given by

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2 − tan−1
(M2

1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

where b = γ+1
γ−1 , γ is the specific heat ratio of the gas.

For a special case study, we solve the equation for M2 given that M1 = 1.5, γ = 1.4 and δ = 100. In this
case, we have

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)− tan−1
(1

2

√
5
6

))
− 11

63
= 0,

where x = M2.
We consider this case for ten times and obtained the required nonlinear function

f3(x) =
[

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1 (√ x2 − 1
6

)− tan−1
(1

2

√
5
6

))
− 11

63

]10
.

95



Symmetry 2019, 11, 766

The above function has zero at α = 1.8411027704926161 . . . with multiplicity 10. This zero is calculated
using initial approximation x0 = 2. Numerical results are shown in Table 3.

Example 4. The van der Waals equation-of-state

(
P +

a1n2

V2

)
(V − na2) = nRT,

explains the behavior of a real gas by introducing in the ideal gas equations two parameters, a1 and a2, specific
for each gas. Determination of the volume V of the gas in terms of the remaining parameters requires the solution
of a nonlinear equation in V.

PV3 − (na2P + nRT)V2 + a1n2V = a1a2n3.

Given the parameters a1 and a2 of a particular gas, one can obtain values for n, P and T, such that this
equation has three real zeros. By using the particular values (see [23]), we obtain the nonlinear equation

x3 − 5.22x2 + 9.0825x − 5.2675 = 0,

where x = V. This equation has a multiple root α = 1.75 with multiplicity 2. We further increase the
multiplicity of this root to 8 by considering this case for four times and so obtain the nonlinear function

f4(x) = (x3 − 5.22x2 + 9.0825x − 5.2675)4.

The initial guess chosen to obtain the solution 1.75 is x0 = 1.5. Numerical results are shown in Table 4.

Example 5. Next, we assume a standard nonlinear test function from Behl et al. [17] which is defined by

f5(x) =
(
−
√

1 − x2 + x + cos
(πx

2

)
+ 1

)6
.

The function f5 has multiple zero at α = −0.728584046 . . . of multiplicity 6. We select initial
approximation x0 = −0.76 to obtain zero of this function. Numerical results are exhibited in Table 5.

Example 6. Lastly, we consider another standard test function which is defined as

f6(x) = x(x2 + 1)(2ex2+1 + x2 − 1) cosh2
(πx

2

)
.

This function has multiple zero α = i of multiplicity 4. Let us choose the initial approximation x0 = 1.5i
to compute this zero. The computed results are displayed in Table 6.

Table 1. Performance of methods for example 1.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 2.13 4.82 × 10−8 4.27 × 10−67 4 8.000 0.608
ZM-2 6.43 5.30 × 10−7 6.10 × 10−59 4 8.000 0.671
BM-1 1.03 × 10−1 3.34 × 10−6 9.73 × 10−20 5 3.000 0.687
BM-2 1.03 × 10−1 3.35 × 10−6 9.82 × 10−20 5 3.000 0.702
BM-3 1.85 2.44 × 10−8 1.15 × 10−69 4 8.000 0.640
M-1 1.65 1.86 × 10−8 3.08 × 10−70 4 8.000 0.452
M-2 9.64 × 10−1 1.86 × 10−9 5.08 × 10−78 4 8.000 0.453
M-3 1.64 1.81 × 10−8 2.80 × 10−70 4 8.000 0.468
M-4 9.55 × 10−1 1.84 × 10−9 5.09 × 10−78 4 8.000 0.437
M-5 1.65 1.86 × 10−8 3.29 × 10−70 4 8.000 0.421
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Table 2. Performance of methods for example 2.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 2.24 × 10−1 3.06 × 10−8 3.36 × 10−62 4 8.000 0.140
ZM-2 6.45 × 10−1 1.99 × 10−6 5.85 × 10−48 4 8.000 0.187
BM-1 9.85 × 10−3 4.51 × 10−7 4.14 × 10−20 5 3.000 0.140
BM-2 9.86 × 10−3 4.52 × 10−7 4.18 × 10−20 5 3.000 0.140
BM-3 1.97 × 10−1 5.21 × 10−9 4.23 × 10−69 4 8.000 0.125
M-1 2.07 × 10−1 6.58 × 10−8 5.78 × 10−59 4 8.000 0.125
M-2 1.21 × 10−1 2.12 × 10−9 1.01 × 10−70 4 8.000 0.110
M-3 2.05 × 10−1 6.68 × 10−8 7.64 × 10−59 4 8.000 0.125
M-4 1.20 × 10−1 2.24 × 10−9 1.79 × 10−70 4 8.000 0.109
M-5 2.07 × 10−1 8.86 × 10−8 7.65 × 10−58 4 8.000 0.093

Table 3. Performance of methods for example 3.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 3.19 × 10−2 2.77 × 10−16 0 3 7.995 2.355
ZM-2 7.25 × 10−2 5.76 × 10−14 0 3 7.986 2.371
BM-1 5.84 × 10−4 1.78 × 10−11 5.08 × 10−34 4 3.000 2.683
BM-2 5.84 × 10−4 1.78 × 10−11 5.09 × 10−34 4 3.000 2.777
BM-3 3.07 × 10−2 4.39 × 10−17 0 3 8.002 2.324
M-1 3.05 × 10−2 4.52 × 10−16 0 3 7.993 1.966
M-2 1.96 × 10−2 2.65 × 10−17 0 3 7.996 1.982
M-3 3.04 × 10−2 5.46 × 10−16 0 3 7.993 1.965
M-4 1.96 × 10−2 3.05 × 10−17 0 3 7.996 1.981
M-5 3.05 × 10−2 5.43 × 10−16 0 3 7.992 1.903

Table 4. Performance of methods for example 4.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 2.21 × 10−1 1.83 × 10−1 7.19 × 10−3 6 8.000 0.124
ZM-2 Fails – – – – –
BM-1 1.15 1.06 5.83 × 10−2 7 3.000 0.109
BM-2 2.44 × 10−2 4.15 × 10−3 5.41 × 10−4 7 3.000 0.110
BM-3 2.67 × 10−2 3.06 × 10−3 9.21 × 10−4 5 7.988 0.109
M-1 3.55 × 10−2 2.32 × 10−3 1.42 × 10−10 5 8.000 0.084
M-2 3.05 × 10−2 7.06 × 10−3 2.94 × 10−3 6 8.000 0.093
M-3 3.30 × 10−2 5.82 × 10−4 4.26 × 10−5 5 8.000 0.095
M-4 2.95 × 10−2 1.22 × 10−2 6.70 × 10−3 6 8.000 0.094
M-5 5.01 × 10−2 1.20 × 10−2 5.06 × 10−6 5 8.000 0.089

Table 5. Performance of methods for example 5.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 1.02 × 10−2 1.56 × 10−14 0 3 7.983 0.702
ZM-2 2.40 × 10−2 5.32 × 10−14 7.45 × 10−89 4 8.000 0.873
BM-1 2.55 × 10−4 7.84 × 10−11 2.26 × 10−30 5 3.000 0.920
BM-2 2.55 × 10−4 7.84 × 10−11 2.26 × 10−30 5 3.000 0.795
BM-3 9.57 × 10−3 2.50 × 10−15 0 3 7.989 0.671
M-1 9.44 × 10−3 2.07 × 10−14 0 3 7.982 0.593
M-2 5.96 × 10−3 1.02 × 10−15 0 3 7.990 0.608
M-3 9.42 × 10−3 2.48 × 10−14 0 3 7.982 0.562
M-4 5.95 × 10−3 1.18 × 10−15 0 3 7.989 0.530
M-5 9.44 × 10−3 2.62 × 10−14 0 3 7.982 0.499
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Table 6. Performance of methods for example 6.

Methods |x2 − x1| |x3 − x2| |x4 − x3| k COC CPU-Time

ZM-1 1.38 × 10−2 5.09 × 10−4 2.24 × 10−27 4 8.000 1.217
ZM-2 3.13 × 10−2 4.80 × 10−3 7.00 × 10−20 4 7.998 1.357
BM-1 4.76 × 10−5 1.26 × 10−36 0 3 8.000 0.874
BM-2 4.76 × 10−5 2.57 × 10−36 0 3 8.000 0.889
BM-3 1.37 × 10−2 4.98 × 10−4 3.38 × 10−28 4 8.000 1.201
M-1 7.34 × 10−6 1.14 × 10−41 0 3 8.000 0.448
M-2 8.25 × 10−6 4.84 × 10−41 0 3 8.000 0.452
M-3 7.71 × 10−6 2.09 × 10−41 0 3 8.000 0.460
M-4 8.68 × 10−6 8.58 × 10−41 0 3 8.000 0.468
M-5 8.32 × 10−6 4.03 × 10−41 0 3 8.000 0.436

From the numerical values of errors we examine that the accuracy in the values of successive
approximations increases as the iteration proceed. This explains the stable nature of methods.
Also, like the existing methods the new methods show consistent convergence nature. At the stage
when stopping criterion |xk+1 − xk|+ | f (xk)| < 10−100 has been satisfied we display the value ‘ 0 ’ of
|xk+1 − xk|. From the calculation of computational order of convergence shown in the penultimate
column in each table, we verify the theoretical eighth order of convergence. However, this is not
true for the existing eighth-order methods BM-1 and BM-2, since the eighth order convergence is not
maintained. The efficient nature of proposed methods can be observed by the fact that the amount of
CPU time consumed by the methods is less than that of the time taken by existing methods. In addition,
the new methods are more accurate because error becomes much smaller with increasing n as compare
to the error of existing techniques. The main purpose of implementing the new derivative-free methods
for solving different type of nonlinear equations is purely to illustrate the exactness of the approximate
solution and the stability of the convergence to the required solution. Similar numerical experiments,
performed for many other different problems, have confirmed this conclusion to a good extent.

5. Conclusions

In the foregoing study, we have proposed the first ever, as far as we know, class of optimal
eighth order derivative-free iterative methods for solving nonlinear equations with multiple roots.
Analysis of the local convergence has been carried out, which proves the order eight under standard
assumptions of the function whose zeros we are looking for. Some special cases of the class are
presented. These are implemented to solve nonlinear equations including those arising in practical
problems. The methods are compared with existing techniques of same order. Testing of the numerical
results shows that the presented derivative-free methods are good competitors to the existing optimal
eighth-order techniques that require derivative evaluations in their algorithm. We conclude the work
with a remark that derivative-free techniques are good options to Newton-type iterations in the cases
when derivatives are expensive to compute or difficult to evaluate.
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Abstract: The purpose of this paper is to introduce a new algorithm to approximate a common
solution for a system of generalized mixed equilibrium problems, split variational inclusion problems
of a countable family of multivalued maximal monotone operators, and fixed-point problems of
a countable family of left Bregman, strongly asymptotically non-expansive mappings in uniformly
convex and uniformly smooth Banach spaces. A strong convergence theorem for the above
problems are established. As an application, we solve a generalized mixed equilibrium problem,
split Hammerstein integral equations, and a fixed-point problem, and provide a numerical example
to support better findings of our result.

Keywords: split variational inclusion problem; generalized mixed equilibrium problem; fixed point
problem; maximal monotone operator; left Bregman asymptotically nonexpansive mapping;
uniformly convex and uniformly smooth Banach space

1. Introduction and Preliminaries

Let E be a real normed space with dual E∗. A map B : E → E∗ is called:

(i) monotone if, for each x, y ∈ E, 〈η − ν, x − y〉 ≥ 0, ∀ η ∈ Bx, ν ∈ By, where 〈·, ·〉 denotes
duality pairing,

(ii) ε-inverse strongly monotone if there exists ε > 0, such that 〈Bx − By, x − y〉 ≥ ε||Bx − By||2,
(iii) maximal monotone if B is monotone and the graph of B is not properly contained in the graph of

any other monotone operator. We note that B is maximal monotone if, and only if it is monotone,
and R(J + tB) = E∗ for all t > 0, J is the normalized duality map on E and R(J + tB) is the range
of (J + tB) (cf. [1]).

Let H1 and H2 be Hilbert spaces. For the maximal monotone operators B1 : H1 → 2H1 and
B2 : H2 → 2H2 , Moudafi [2] introduced the following split monotone variational inclusion:

f ind x∗ ∈ H1 such that 0 ∈ f (x∗) + B1(x∗),
y∗ = Ax∗ ∈ H2 solves 0 ∈ g(y∗) + B2(y∗),

Symmetry 2019, 11, 722; doi:10.3390/sym11050722 www.mdpi.com/journal/symmetry101
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where A : H1 → H2 is a bounded linear operator, f : H1 → H1 and g : H2 → H2 are given operators.
In 2000, Moudafi [3] proposed the viscosity approximation method, which is formulated by considering
the approximate well-posed problem and combining the non-expansive mapping S with a contraction
mapping f on a non-empty, closed, and convex subset C of H1. That is, given an arbitrary x1 in C,
a sequence {xn} defined by

xn+1 = αn f (xn) + (1 − αn)Sxn,

converges strongly to a point of F(S), the set of fixed point of S, whenever {αn} ⊂ (0, 1) such that
αn → 0 as n → ∞.

In [4,5], the viscosity approximation method for split variational inclusion and the fixed point
problem in a Hilbert space was presented as follows:

un = JB1
λ (xn + γn A∗(JB2

λ − I)Axn);

xn+1 = αn f (xn) + (1 − αn)Tn(un), ∀n ≥ 1, (1)

where B1 and B2 are maximal monotone operators, JB1
λ and JB2

λ are resolvent mappings of B1 and B2,
respectively, f is the Meir Keeler function, T a non-expansive mapping, and A∗ is the adjoint of A,
γn, αn ∈ (0, 1) and λ > 0.

The algorithm introduced by Schopfer et al. [6] involves computations in terms of Bregman
distance in the setting of p-uniformly convex and uniformly smooth real Banach spaces. Their iterative
algorithm given below converges weakly under some suitable conditions:

xn+1 = ΠC J−1(Jxn + γA∗ J(PQ − I)Axn), n ≥ 0, (2)

where ΠC denotes the Bregman projection and PC denotes metric projection onto C. However,
strong convergence is more useful than the weak convergence in some applications. Recently,
strong convergence theorems for the split feasibility problem (SFP) have been established in the
setting of p-uniformly convex and uniformly smooth real Banach spaces [7–10].

Suppose that

F(x, y) = f (x, y) + g(x, y)

where f , g : C × C −→ R are bifunctions on a closed and convex subset C of a Banach space, which
satisfy the following special properties (A1)− (A4), (B1)− (B3) and (C):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(A1) f (x, y) = 0, ∀x ∈ C;

(A2) f is maximal monotone;

(A3) ∀x, y, z ∈ C and t ∈ [0, 1] we have lim supn→0+( f (tz + (1 − t)x, y) ≤ f (x, y));

(A4) ∀x ∈ C, the function y �→ f (x, y)is convex and weakly lower semi-continuous;

(B1) g(x, x) = 0 ∀ x ∈ C;

(B2) g is maximal monotone, and weakly upper semi-continuous in the first variable;

(B3) g is convex in the second variable;

(C) for fixed λ > 0 and x ∈ C, there exists a bounded set K ⊂ C

and a ∈ K such that f (a, z) + g(z, a) + 1
λ (a − z, z − x) < 0 ∀x ∈ C\K.

(3)

The well-known, generalized mixed equilibrium problem (GMEP) is to find an x ∈ C, such that

F(x, y) + 〈Bx, y − x〉 ≥ 0 ∀ y ∈ C,
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where B is nonlinear mapping.
In 2016, Payvand and Jahedi [11] introduced a new iterative algorithm for finding a common

element of the set of solutions of a system of generalized mixed equilibrium problems, the set of
common fixed points of a finite family of pseudo contraction mappings, and the set of solutions of the
variational inequality for inverse strongly monotone mapping in a real Hilbert space. Their sequence
is defined as follows:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

gi(un,i, y) + 〈Ciun,i + Sn,ixn, y − un,i〉+ θi(y)− θi(un,i)

+ 1
rn,i

〈y − un,i, un,i − xn〉 ≥ 0 ∀y ∈ K, ∀i ∈ I,

yn = αnvn + (1 − αn(I − f )PK(∑∞
i=0 δn,iun,i − λn A ∑∞

i=0 δn,iun,i) ,

xn+1 = βnxn + (1 + βn)(γ0 + ∑∞
j=1 γjTj)PK(yn − λn Ayn)n ≥ 1,

(4)

where gi are bifunctions, Si are ε− inverse strongly monotone mappings, Ci are monotone and Lipschtz
continuous mappings, θi are convex and lower semicontinuous functions, A is a Φ− inverse strongly
monotone mapping, and f is an ι−contraction mapping and αn, δn, βn, λn, γ0 ∈ (0, 1).

In this paper, inspired by the above cited works, we use a modified version of (1), (2) and (4)
to approximate a solution of the problem proposed here. Both the iterative methods and the
underlying space used here are improvements and extensions of those employed in [2,6,7,9–11]
and the references therein.

Let p, q ∈ (1, ∞) be conjugate exponents, that is, 1
p + 1

q = 1. For each p > 1, let g(t) = tp−1 be
a gauge function where g : R+ −→ R+ with g(0) = 0 and limt→∞ g(t) = ∞. We define the generalized
duality map Jp : E −→ 2E∗

by

Jg(t) = Jp(x) = {x∗ ∈ E∗; 〈x, x∗〉 = ‖x‖‖x∗‖, ‖x∗‖ = g(‖x‖) = ‖x‖p−1}.

In the sequel, a ∨ b denotes max{a, b}.

Lemma 1 ([12]). In a smooth Banach space E, the Bregman distance �p of x to y, with respect to the convex
continuous function f : E → R, such that f (x) = 1

p‖x‖p, is defined by

�p(x, y) =
1
q
‖x‖p − 〈Jp(x), y〉+ 1

p
‖y‖p,

for all x, y ∈ E and p > 1.

A Banach space E is said to be uniformly convex if, for x, y ∈ E, 0 < δE(ε) ≤ 1, where δE(ε) =

inf{1 − ‖ 1
2 (x + y)‖; ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε, where 0 ≤ ε ≤ 2}.

Definition 1. A Banach space E is said to be uniformly smooth, if for x, y ∈ E, limr→0(
ρE(r)

r ) = 0 where
ρE(r) = 1

2 sup{‖x + y‖+ ‖x − y‖ − 2 : ‖x‖ = 1, ‖y‖ ≤ r; 0 ≤ r < ∞ and 0 ≤ ρE(r) < ∞}.
It is shown in [12] that:

1. ρE is continuous, convex, and nondecreasing with ρE(0) = 0 and ρE(r) ≤ r
2. The function r �→ ρE(r)

r is nondecreasing and fulfils ρE(r)
r > 0 for all r > 0.

Definition 2 ([13]). Let E be a smooth Banach space. Let �p be the Bregman distance. A mapping T : E −→ E
is said to be a strongly non-expansive left Bregman with respect to the non-empty fixed point set of T, F(T),
if �p(T(x), v) ≤ �p(x, v) ∀ x ∈ E and v ∈ F(T).

Furthermore, if {xn} ⊂ C is bounded and lim
n→∞

(�p(xn, v)−�p(Txn, v)) = 0, then it follows that

lim
n→∞

�p (xn, Txn) = 0.
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Definition 3. Let E be a smooth Banach space. Let �p be the Bregman distance. A mapping T : E −→ E is
said to be a strongly asymptotically non-expansive left Bregman with {kn} ⊂ [1, ∞) if there exists non-negative
real sequences {kn} with limn→∞ kn = 1, such that �p(Tn(x), Tn(v)) ≤ kn �p (x, v), ∀(x, v) ∈ E × F(T).

Lemma 2 ([14]). Let E be a real uniformly convex Banach space, K a non-empty closed subset of E, and T :
K → K an asymptotically non-expansive mapping. Then, I − T is demi-closed at zero, if {xn} ⊂ K converges
weakly to a point p ∈ K and lim

n→∞
‖Txn − xn‖ = 0, then p = Tp.

Lemma 3 ([12]). In a smooth Banach space E, let xn ∈ E. Consider the following assertions:

1. limn→∞ ‖xn − x‖ = 0
2. limn→∞ ‖xn‖ = ‖x‖ and limn→∞〈Jp(xn), x〉 = 〈Jp(x), x〉
3. limn→∞ �p(xn, x) = 0.

The implication (1) =⇒ (2) =⇒ (3) are valid. If E is also uniformly convex, then the assertions
are equivalent.

Lemma 4. Let E be a smooth Banach space. Let �p and Vp be the mappings defined by �p(x, y) = 1
q‖x‖p −

〈Jp
Ex, y〉+ 1

p‖y‖p for all (x, y) ∈ E × E and Vp(x∗, x) = 1
q‖x∗‖q − 〈x∗, x〉+ 1

p‖x‖p for all (x, x∗) ∈ E × E∗.
Then, �p(x, y) = Vp(x∗, y) for all x, y ∈ E.

Lemma 5 ([12]). Let E be a reflexive, strictly convex, and smooth Banach space, and Jp be a duality mapping
of E. Then, for every closed and convex subset C ⊂ E and x ∈ E, there exists a unique element Πp

C(x) ∈ C,
such that �p(x, Πp

C(x)) = miny∈C �p(x, y); here, Πp
C(x) denotes the Bregman projection of x onto C,

with respect to the function f (x) = 1
p‖x‖p. Moreover, x0 ∈ C is the Bregman projection of x onto C if

〈Jp(x0 − x), y − x0〉 ≥ 0

or equivalently
�p(x0, y) ≤ �p(x, y)−�p(x, x0) f or every y ∈ C.

Lemma 6 ( [15]). In the case of a uniformly convex space, E, with the duality map Jq of E∗, ∀x∗, y∗ ∈ E∗

we have

‖x∗ − y∗‖q ≤ ‖x∗‖q − q〈Jq(x∗), y∗〉+ σ̄q(x∗, y∗), where

σ̄q(x∗, y∗) = qGq

∫ 1

0

(‖x∗ − ty∗‖ ∨ ‖x∗‖)q

t
ρE∗

(
t‖y∗‖

2(‖x∗ − ty∗‖ ∨ ‖x∗‖)
)

dt (5)

and Gq = 8 ∨ 64cK−1
q with c, Kq > 0.

Lemma 7 ([12]). Let E be a reflexive, strictly convex, and smooth Banach space. If we write �∗
q(x, y) =

1
p‖x∗‖q − 〈Jq

E∗x∗, y∗〉+ 1
q‖y∗‖q for all (x∗, y∗) ∈ E∗ × E∗ for the Bregman distance on the dual space E∗ with

respect to the function f ∗q (x∗) = 1
q‖x∗‖q, then we have �p(x, y) = �∗

q(x∗, y∗).

Lemma 8 ([16]). Let {αn} be a sequence of non-negative real numbers, such that αn+1 ≤ (1 − βn)αn + δn,
n ≥ 0, where {βn} is a sequence in (0, 1) and {δn} is a sequence in R, such that

1. lim
n→∞

βn = 0, ∑∞
n=1 βn = ∞;

2. limsup
n→∞

δn
βn

≤ 0 or ∑∞
n=1 |δn| < ∞.

Then, lim
n→∞

αn = 0.
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Lemma 9. Let E be reflexive, smooth, and strictly convex Banach space. Then, for all x, y, z ∈ E and x∗, z∗ ∈ E∗

the following facts hold:

1. �p(x, y) ≥ 0 and �p(x, y) = 0 iff x = y;
2. �p(x, y) = �p(x, z) +�p(z, y) + 〈x∗ − z∗, z − y〉.

Lemma 10 ([17]). Let E be a real uniformly convex Banach space. For arbitrary r > 1, let Br(0) = {x ∈ E :
‖x‖ ≤ r}. Then, there exists a continuous strictly increasing convex function

g : [0, ∞) −→ [0, ∞), g(0) = 0

such that for every x, y ∈ Br(0), fx ∈ Jp(x), fy ∈ Jp(y) and λ ∈ [0, 1], the following inequalities hold:

‖λx + (1 − λ)y‖p ≤ λ‖x‖p + (1 − λ)‖y‖p − (λp(1 − λ) + (1 − λ)pλ)g(‖x − y‖)

and
〈x − y, fx − fy〉 ≥ g(‖x − y‖).

Lemma 11 ([18]). Suppose that ∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ C} < ∞. Then, for each y ∈ C, {Tny}

converges strongly to some point of C. Moreover, let T be a mapping of C onto itself, defined by Ty = lim
n→∞

Tny

for all y ∈ C. Then, lim
n→∞

sup{‖Tz − Tnz‖ : z ∈ C} = 0. Consequently, by Lemma 3, lim
n→∞

sup{�p(Tz, Tnz) :

z ∈ C} = 0.

Lemma 12 ([19]). Let E be a reflexive, strictly convex, and smooth Banach space, and C be a non-empty,
closed convex subset of E. If f , g : C × C −→ R be two bifunctions which satisfy the conditions (A1) −
(A4), (B1)− (B3)and(C), in (3), then for every x ∈ E and r > 0, there exists a unique point z ∈ C such that
f (z, y) + g(z, y) + 1

r 〈y − z, jz − jx〉 ≥ 0 ∀ y ∈ C.

For f (x) = 1
p‖x‖p, Reich and Sabach [20] obtained the following technical result:

Lemma 13. Let E be a reflexive, strictly convex, and smooth Banach space, and C be a non-empty, closed,
and convex subset of E. Let f , g : C × C −→ R be two bifunctions which satisfy the conditions (A1) −
(A4), (B1) − (B3)and(C), in (3). Then, for every x ∈ E and r > 0, we define a mapping Sr : E −→ C
as follows;

Sr(x) = {z ∈ C : f (z, y) + g(z, y) +
1
r
〈y − z, Jp

Ez − Jp
Ex〉 ≥ 0∀y ∈ C}. (6)

Then, the following conditions hold:

1. Sr is single-valued;
2. Sr is a Bregman firmly non-expansive-type mapping, that is,

∀x, y ∈ E〈Srx − Sry, Jp
ESrx − Jp

ESry〉 ≤ 〈Srx − Sry, Jp
Ex − Jp

Ey〉

or equivalently
�p(Srx, Sry) +�p(Sry, Srx) +�p(Srx, x) +�p(Sry, y) ≤ �p(Srx, y) +�p(Sry, x);

3. F(Sr) = MEP( f , g), here MEP stands for mixed equilibrium problem;
4. MEP( f , g) is closed and convex;
5. for all x ∈ E and for all v ∈ F(Sr), �p(v, Srx) +�p(Srx, x) ≤ �p(v, x).
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2. Main Results

Let E1 and E2 be uniformly convex and uniformly smooth Banach spaces and E∗
1 and E∗

2 be
their duals, respectively. For i ∈ I, let Ui : E1 → 2E∗

1 and Ti : E2 → 2E∗
2 , i ∈ I be multi-valued

maximal monotone operators. For i ∈ I, δ > 0, p, q ∈ (1, ∞) and K ⊂ E1 closed and convex,
let Φi : K × K → R, i ∈ I, be bifunctions satisfying (A1)− (A4) in (3), let BUi

δ : E1 → E1 be resolvent
operators defined by BUi

δ = (Jp
E1

+ δUi)
−1 Jp

E1
and BTi

δ : E2 → E2 be resolvent operators defined by

BTi
δ = (Jp

E2
+ δTi)

−1 Jp
E2

. Let A : E1 → E2 be a bounded and linear operator, A∗ denotes the adjoint of A
and AK be closed and convex. For each i ∈ I, let Si : E1 → E1 be a uniformly continuous Bregman
asymptotically non-expansive operator with the sequences {kn,i} ⊂ [1, ∞) satisfying lim

n→∞
kn,i = 1.

Denote by Υ : E∗
1 → E∗

1 a firmly non-expansive mapping. Suppose that, for i ∈ I, θi : K → R are convex
and lower semicontinuous functions, Gi : K → E1 are ε− inverse strongly monotone mappings and
Ci : K → E1, are monotone and Lipschitz continuous mappings. Let f : E1 → E1 be a ζ−contraction
mapping, where ζ ∈ (0, 1). Suppose that Πp

AK : E2 → AK is a generalized Bregman projection onto
AK. Let Ω = {x∗ ∈ ∩∞

i=1SOLVIP(Ui); Ax∗ ∈ ∩∞
i=1SOLVIP(Ti)} be the set of solution of the split

variational inclusion problem, ω = {x∗ ∈ ∩∞
i=1GMEP(Gi, Ci, θi, gi)} be the solution set of a system of

generalized mixed equilibrium problems, and � = {x∗ ∈ ∩∞
i=1F(Si)} be the common fixed-point set

of Si for each i ∈ I. Let the sequence {xn} be defined as follows:
⎧⎪⎪⎨
⎪⎪⎩

Φi(un,i, y) + 〈Jp
E1

Gn,ixn, y − un,i〉+ 1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉 ≥ 0∀y ∈ K,

∀i ∈ I,

xn+1 = Jq
E∗

1

(
∑∞

i=0 αn,iB
Ui
δn

(
Jp
E1

xn − ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

))
,

(7)

where Φi(x, y) = gi(x, y) + 〈Jp
E1

Cix, y − x〉+ θi(y)− θi(x).
We shall strictly employ the above terminology in the sequel.

Lemma 14. Suppose that σ̄q is the function (5) in Lemma 6 for the characteristic inequality of the uniformly
smooth dual E∗

1 . For the sequence {xn} ⊂ E1 defined by (7), let 0 = xn ∈ E1, 0 = A, 0 = Jp
E1

Gn,ixn ∈ E∗
1 and

0 = ∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i ∈ E∗

2 , i ∈ I. Let , for λn,i > 0 and rn,i > 0, i ∈ I be defined by

λn,i =
1

‖A‖
1

‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖

, and (8)

rn,i =
1

‖Jp
E1

Gn,ixn‖
, respectively. (9)

Then for μn,i =
1

‖xn‖p−1 ,

2qGq‖Jp
E1

xn‖pρE∗
1
(μn,i) ≥

⎧⎨
⎩

1
q σ̄q(Jp

E1
xn, rn,i J

p
E1

Gn,ixn)

1
q σ̄q

(
Jp
E1

xn, ∑∞
i=0 βn,iλn A∗ ∑∞

i=0 βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i

)
,

(10)

where Gq is the constant defined in Lemma 6 and ρE∗
1

is the modulus of smoothness of E∗
1 .

Proof. By Lemma 12, (6) in Lemma 13 and (7), for each i ∈ I, we have that un,i = Jq
E∗

1
(Υrn,i (Jp

E1
xn −

rn,i J
p
E1

Gn,ixn)). By Lemma 6, we get

1
q

σ̄q(Jp
E1

xn, rn,i J
p
E1

Gn,ixn) = Gq

∫ 1

0

(‖Jp
E1

xn − trn,i J
p
E1

Gn,ixn‖ ∨ ‖Jp
E1

xn‖)q

t
×

ρE∗

(
t‖rn,i J

p
E1

Gn,ixn‖
(‖Jp

E1
xn − trn,i J

p
E1

Gn,ixn‖ ∨ ‖Jp
E1

xn‖)

)
dt, (11)

f or every t ∈ [0, 1].
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However, by (9) and Definition 1(2), we have

ρE∗
1

(
t‖rn,i J

p
E1

Gn,ixn‖
(‖Jp

E1
xn − trn,i J

p
E1

Gn,ixn‖ ∨ ‖Jp
E1

xn‖)

)
≤ ρE∗

1

(
t‖rn,i J

p
E1

Gn,ixn‖
‖xn‖p−1

)

= ρE∗
1
(tμn,i). (12)

Substituting (12) into (11), and using the nondecreasing of function ρE∗
1
, we have

1
q

σ̄q(Jp
E1

xn, rn,i J
p
E1

Gn,ixn) ≤ 2qGq‖xn‖pρE∗
1
(μn,i). (13)

In addition, by Lemma 6, we have

1
q

σ̄q

(
Jp
E1

xn,
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i

)

= Gq

∫ 1

0

(∥∥∥Jp
E1

xn − ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥ ∨ ‖Jp
E1

xn‖
)q

t
×

ρE∗

⎛
⎝ t‖∑∞

i=0 βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i‖(∥∥∥Jp

E1
xn − ∑∞

i=0 βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥ ∨ ‖Jp
E1

xn‖
)
⎞
⎠ dt, (14)

f or every t ∈ [0, 1].

However, by (8) and Definition 1(2), we have

ρE∗
1

⎛
⎝ t

∥∥∥∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥(∥∥∥Jp
E1

xn − t ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥ ∨ ‖Jp
E1

xn‖
)
⎞
⎠

≤ ρE∗
1

⎛
⎝ t

∥∥∥∑∞
i=0 βn,iλn,i A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥
‖xn‖p−1

⎞
⎠ = ρE∗

1
(tμn,i). (15)

Substituting (15) into (14), and using the nondecreasing of function ρE∗
1
, we get

1
q

σ̄q

(
Jp
E1

xn,
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i

)

≤ 2qGq‖xn‖pρE∗
1
(μn,i). (16)

By (13) and (16), the result follows.

Lemma 15. For the sequence {xn} ⊂ E1, defined by (7), i ∈ I, let 0 = ∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i ∈ E∗

2 ,
0 = Jp

E1
Gn,ixn ∈ E∗

1 , and λn > 0 and rn,i > 0, i ∈ I, be defined by

λn =
1

‖A‖
1

‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖

(17)

and

rn,i =
1

‖Jp
E1

Gn,ixn‖
, (18)
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where ι, γ ∈ (0, 1) and μn,i =
1

‖xn‖p−1 are chosen such that

ρE∗
1
(μn,i) =

ι

2qGq‖A‖ × ‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖p

‖xn‖p‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖p−1

, (19)

and

ρE∗
1
(μn,i) =

γ〈Jp
E1

Gn,ixn, xn − v〉
2qGq‖xn‖p‖Jp

E1
Gn,ixn‖

. (20)

Then, for all v ∈ Γ, we get

�p(xn+1, v) ≤ �p(xn, v)

− [1 − ι]×
〈

∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i, ∑∞

i=0 βn,i(I − Πp
AKBTi

δn
)Aun,i

〉
‖A‖‖∑∞

i=0 βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i‖

(21)

and

�p(un, v) ≤ �p(xn, v)− [1 − γ]× 〈Jp
E1

Gn,ixn, xn − v〉
‖Jp

E1
Gn,ixn‖

, respectively. (22)

Proof. By Lemmas 13, 4 and 6, for each i ∈ I, we get that un,i = Jq
E∗

1
(Υrn,i (Jp

E1
xn − rn,i J

p
E1

Gn,ixn)),
and hence it follows that

�p(un,i, v) ≤ Vp(Jp
E1

xn − rn,i J
p
E1

Gn,ixn, v)

= −〈Jp
E1

xn, v〉+ rn,i〈Jp
E1

Gn,ixn, v〉

+
1
q
‖Jp

E1
xn − rn,i J

p
E1

Gn,ixn‖q +
1
p
‖v‖p. (23)

By Lemmas 6 and 14, we have

1
q
‖Jp

E1
xn − rn,i J

p
E1

Gn,ixn‖q

≤ 1
q
‖Jp

E1
xn‖q − rn,i〈Jp

E1
Gn,ixn, xn〉+ 2qGq‖Jp

E1
xn‖pρE∗

1
(μn,i). (24)

Substituting (24) into (23), we have, by Lemma 4

�p(un,i, v) ≤ �p(xn, v) + 2qGq‖Jp
E1

xn‖pρE∗
1
(μn,i)

− rn,i〈Jp
E1

Gn,ixn, xn − v〉 (25)

Substituting (18) and (20) into (25), we have

�p(un,i, v) ≤ �p(xn, v) +
γ〈Jp

E1
Gn,ixn, xn − v〉

‖Jp
E1

Gn,ixn‖
− 〈Jp

E1
Gn,ixn, xn − v〉
‖Jp

E1
Gn,ixn‖

= �p(xn, v)− [1 − γ]× 〈Jp
E1

Gn,ixn, xn − v〉
‖Jp

E1
Gn,ixn‖

.

Thus, (22) holds.
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Now, for each i ∈ I, let v = BUi
γ v and Av = BTi

γ Av. By Lemma 4, we have

�p (yn, v) ≤ 1
q

∥∥∥∥∥Jp
E1

un,i −
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥∥∥
q

+
1
p
‖v‖p

− 〈Jp
E1

un,i, v〉+
〈

∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i, v

〉
, (26)

where,〈
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i, v

〉

= −
〈

∞

∑
i=0

βn,iλn Jp
E2
(Πp

AKBTi
δn
− I)Aun,i, (Av −

∞

∑
i=0

βn,i Aun,i)−
∞

∑
i=0

βn,i(Π
p
AKBTi

δn
− I)Aun,i

〉

−
〈

∞

∑
i=0

βn,iλn Jp
E2
(I − Πp

AKBTi
δn
)Aun,i,

∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i

〉

+

〈
∞

∑
i=0

βn,iλn Jp
E2
(I − Πp

AKBTi
δn
)Aun,i, Aun,i

〉
.

As AK is closed and convex, by Lemma 5 and the variational inequality for the Bregman projection
of zero onto AK − ∑∞

i=0 βn,i Aun,i, we arrive at〈
∞

∑
i=0

βn,iλn Jp
E2
(Πp

AKBTi
δn
− I)Aun,i, (Av −

∞

∑
i=0

βn,i Aun,i)−
∞

∑
i=0

βn,i(Π
p
AKBTi

δn
− I)Aun,i

〉
≥ 0

and therefore, 〈
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i, v

〉

≤ −
〈

∞

∑
i=0

βn,iλn Jp
E2
(I − Πp

AKBTi
δn
)Aun,i,

∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i

〉

+

〈
∞

∑
i=0

βn,iλn Jp
E2
(I − Πp

ΓBTi
δn
)Aun,i, Aun,i

〉
. (27)

By Lemma 6, 14 and (27), we get

�p(yn, v) ≤ �p(un,i, v) + 2pGp‖Jp
E1

un,i‖pρE∗
1
(τn,i)

−
〈

∞

∑
i=0

βn,iλn Jp
E2
(I − Πp

AKBTi
δn
)Aun,i,

∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i

〉
. (28)

Substituting (17) and (19) into (28), we have

�p(yn, v) ≤ �p(un,i, v)− [1 − ι]

×
〈

∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i, ∑∞

i=0 βn,i(I − Πp
AKBTi

δn
)Aun,i

〉
‖A‖‖∑∞

i=0 βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i‖

.

Thus, (21) holds as desired.

We now prove our main result.
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Theorem 1. Let gi : K × K → R, i ∈ I, be bifunctions satisfying (A1) − (A4) in (3). For δ > 0 and
p, q ∈ (1, ∞), let (I − Πp

AKBTi
δ ), i ∈ I, be demi-closed at zero. Let x1 ∈ E1 be chosen arbitrarily and the

sequence {xn} be defined as follows;
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

gi(un,i, y) + 〈Jp
E1

Ciun,i + Jp
E1

Gn,ixn, y − un,i〉+ θi(y)− θi(un,i)

+ 1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉 ≥ 0 ∀y ∈ K, ∀i ∈ I,

yn = Jq
E∗

1

(
∑∞

i=0 αn,iB
Ui
δn

(
Jp
E1

un,i − ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

))
,

xn+1 = Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) + ∑∞

i=1 ηn,i J
p
E1
(Sn,i(yn))

)
n ≥ 1,

(29)

where rn,i =
1

‖Jp
E1

Gn,i xn‖ , μn,i =
1

‖xn‖p−1 and γ ∈ (0, 1) such that ρE∗
1
(μn,i) =

γ〈Jp
E1

Gn,i xn ,xn−v〉
2qGq‖xn‖p‖Jp

E1
Gn,i xn‖ ,

λn =

⎧⎪⎪⎨
⎪⎪⎩

1
‖A‖

1
‖∑∞

i=0 βn,i J p
E2
(I−Πp

AK B
Ti
δn
)Aun,i‖

, un,i = 0

1
‖A‖p

‖∑∞
i=0 βn,i J p

E2
(I−Πp

AK B
Ti
δn
)Aun,i‖p(p−1)

‖∑∞
i=0 βn,i J p

E2
(I−Πp

AK B
Ti
δn
)Aun,i‖p

, un,i = 0,
(30)

ι ∈ (0, 1) and τn,i =
1

‖un,i‖p−1 are chosen such that

ρE∗
1
(τn,i) =

ι

2qGq‖A‖ × ‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖p

‖un,i‖p‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖p−1

, (31)

with, lim
n→∞

ηn,0 = 0, ηn,0 ≤ ∑∞
i=1 ηn,i, for M ≥ 0, ηn−1,0 ≤ ∑∞

i=1 ηn−1,i ≤ ∑∞
n=1 ∑∞

i=1 ηn−1,i M < ∞,

∑∞
i=0 ηn,i = ∑∞

i=0 αn,i = ∑∞
i=0 βn,i = 1 and kn = max

i∈I
{kn,i}. If Γ = Ω ∩ ω ∩ � = ∅, then {xn} converges

strongly to x∗ ∈ Γ, where ∑∞
i=0 βn,iΠ

p
AKBTi

δn
(x∗) = ∑∞

i=0 βn,iB
Ti
δn
(x∗), for each i ∈ I.

Proof. For x, y ∈ K and i ∈ I, let Φi(x, y) = gi(x, y) + 〈Jp
E1

Cix, y − x〉 + θi(y) − θi(x). Since gi are
bi-functions satisfying (A1)− (A4) in (3) and Ci are monotone and Lipschitz continuous mappings,
and θi are convex and lower semicontinuous functions, therefore Φi(i ∈ I) satisfy the conditions
(A1)− (A4) in (3), and hence the algorithm (29) can be written as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Φi(un,i, y) + 〈Jp
E1

Gn,ixn, y − un,i〉+ 1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉 ≥ 0

∀y ∈ K, ∀i ∈ I,

yn = Jq
E∗

1

(
∑∞

i=0 αn,iB
Ui
δn

(
Jp
E1

un,i − ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

))
,

xn+1 = Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) + ∑∞

i=1 ηn,i J
p
E1
(Sn,i(yn))

)
n ≥ 1.

(32)

We will divide the proof into four steps.
Step One: We show that {xn} is a bounded sequence.
Assume that ‖∑∞

i=0 βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i‖ = 0 and ‖Jp

E1
Gn,ixn‖ = 0. Then, by (32), we have

Φi(un,i, y) +
1

rn,i

〈
y − un,i, Jp

E1
un,i − Jp

E1
xn

〉
≥ 0 ∀y ∈ K, ∀i ∈ I. (33)

By (33) and Lemma 13, for each i ∈ I, we have that un,i = Jq
E∗

1
(Υrn,i (Jp

E1
xn)). By Lemma 4 and for

v ∈ Γ and v = Υrn,i v, we have

�p(un,i, v) = Vp(Υrn,i (Jp
E1

xn), v) ≤ Vp(Jp
E1

xn, v) = �p(xn, v). (34)
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In addition, for each i ∈ I, let v = BUi
γ v. By Lemma 4 and for v ∈ Γ, we have

�p(yn, v) = Vp

(
∞

∑
i=0

αn,iB
Ui
δn

Jp
E1

un,i, v

)
≤ �p(un,i, v). (35)

Now assume that ‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖ = 0 and ‖Jp

E1
Gn,ixn‖ = 0. Then by (32), we

have that

Φi(un,i, y) +
1

rn,i

〈
y − un,i, Jp

E1
un,i − (Jp

E1
xn − rn,i J

p
E1

Gn,ixn)
〉
≥ 0 ∀y ∈ K, ∀i ∈ I. (36)

By (36) and Lemma 13, for each i ∈ I, we have un,i = Jq
E∗

1
(Υrn,i (Jp

E1
xn − rn,i J

p
E1

Gn,ixn)). For v ∈ Γ,
by (22) in Lemma 15, we get

�p(un,i, v) ≤ �p(xn, v). (37)

In addition, for each i ∈ I, v ∈ Γ, (21) in Lemma 15 gives

�p(yn, v) ≤ �p(un,i, v). (38)

Let un,i = 0. By Lemma 1, we have

�p(un,i, v) =
1
p
‖v‖p (39)

and by (27), (39), Lemmas 4 and 15, we have

�p(yn, v) ≤ 1
q

∥∥∥∥∥
∞

∑
i=0

βn,iλn A∗ Jp
E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥∥∥
p

+�p(un,i, v) + λn

〈
∞

∑
i=0

βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i, Aun,i

〉

− λn

〈
∞

∑
i=0

βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i,

∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i

〉
. (40)

However, by (30) and (40), we have

�p(yn, v)

≤ 1
q

1
‖A‖p

〈
∑∞

i=0 βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i, ∑∞

i=0 βn,i(I − Πp
AKBTi

δn
)Aun,i

〉p

∥∥∥∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i

∥∥∥p

+�p(un,i, v) + λn〈
∞

∑
i=0

βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i, Aun,i〉

− λn〈
∞

∑
i=0

βn,i J
p
E2
(I − Πp

AKBTi
δn
)Aun,i,

∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i〉

≤ �p(un,i, v)

− 1
‖A‖p

〈∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i, ∑∞

i=0 βn,i(I − Πp
AKBTi

δn
)Aun,i〉p

‖∑∞
i=0 βn,i J

p
E2
(I − Πp

AKBTi
δn
)Aun,i‖p

. (41)
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This implies that

�p(yn, v) ≤ �p(un,i, v). (42)

By (42) and (37), we get

�p(yn, v) ≤ �p(xn, v). (43)

In addition, it follows from the assumption ηn,0 ≤ ∑∞
i=1 ηn,i, (43), Definition 3, Lemmas 9 and 4

�p(xn+1, v)

= �p

(
Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Sn,i(yn))

)
, v

)

= Vp

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Sn,i(yn)), v

)

≤ ηn,0Vp

(
Jp
E1
( f (xn)), v

)
+

∞

∑
i=1

ηn,iVp

(
Jp
E1
(Sn,i(yn)), v

)
≤ ηn,0ζ �p (xn, v) + ηn,0(�p( f (v), v)

+ 〈Jp
E1

xn − Jp
E1

f (v), f (v)− v〉) +
∞

∑
i=1

ηn,ikn,i �p (yn, v)

≤ ηn,0

(
�p( f (v), v) + 〈Jp

E1
xn − Jp

E1
f (v), f (v)− v〉

)
+

(
ηn,0ζ +

∞

∑
i=1

ηn,ikn,i

)
�p (xn, v)

≤ ηn,0

(
�p( f (v), v) + 〈Jp

E1
xn − Jp

E1
f (v), f (v)− v〉

)
+

(
∞

∑
i=1

ηn,i(ζ + kn,i)

)
�p (xn, v)

≤ max

⎧⎨
⎩
(
�p( f (v), v) + 〈Jp

E1
x1 − Jp

E1
f (v), f (v)− v〉

)
ζ + k1,i

,�p(x1, v)

⎫⎬
⎭ . (44)

By (44), we conclude that {xn} is bounded, and hence, from (42), (34), (35), (44), (38), and (37),
{yn} and {un,i} are also bounded.
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Step Two: We show that lim
m→∞

�p (xn+1, xn) = 0. By Lemmas 1, 4, 10, and 7, we have, by the

convexity of �p in the first argument and for ηn−1,0 ≤ ∑∞
i=1 ηn−1,i,

�p(xn+1, xn) = �p(Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Sn,i(yn))

)
,

Jq
E∗

1

(
ηn−1,0 Jp

E1
( f (xn−1)) +

∞

∑
i=1

ηn−1,i J
p
E1
(Sn−1,i(yn−1))

)
)

≤ ηn,0 �∗
q (Jp

E1
( f (xn)), ηn−1,0 Jp

E1
( f (xn−1)) +

∞

∑
i=1

ηn−1,i J
p
E1
(Sn−1,i(yn−1)))

+
∞

∑
i=1

ηn,i �∗
q (Jp

E1
(Sn,i(yn)), ηn−1,0 Jp

E1
( f (xn−1)) +

∞

∑
i=1

ηn−1,i J
p
E1
(Sn−1,i(yn−1)))

≤ ηn,0

(
�∗

q (Jp
E1
( f (xn), Jp

E1
( f (xn−1)))

)
+

∞

∑
i=1

ηn−1,i

(
∞

∑
i=1

ηn,i
1
p
∥∥Sn−1,i(yn−1)

∥∥p
+ ηn,0 ‖ f (xn)‖

∥∥∥Jp
E1
(Sn−1,i(yn−1))

∥∥∥
)

+ ηn−1,0

(
ηn,0

1
p
‖ f (xn−1)‖p +

∞

∑
i=1

ηn,i
∥∥Sn,i(yn)

∥∥ ∥∥∥Jp
E1
( f (xn−1))

∥∥∥
)

+
∞

∑
i=1

ηn,i �∗
q

(
(Jp

E1
Sn,i(yn), Jp

E1
Sn−1,i(yn−1)

)

≤ (1 − ηn,0(1 − ζ))�p (xn, xn−1) +
∞

∑
i=1

ηn,i sup
n,n−1≥1

{�p(Sn,i(yn), Sn−1,i(yn−1))
}

+
∞

∑
i=1

ηn−1,i M, (45)

where
M = max {max{‖ f (xn))‖, ‖Sn−1,i(yn−1)‖}, max{‖ f (xn−1)‖, ‖Sn,i(yn)‖}} .

In view of the assumption ∑∞
n=1 ∑∞

i=1 ηn−1,i M < ∞ and (45), Lemmas 11 and 8 imply

lim
n→∞

�p (xn+1, xn) = 0. (46)

Step Three: We show that lim
n→∞

�p (Sn,iyn, yn) = 0.

For each i ∈ I, we have

�p(Si(yn), v) ≤ �p(yn, v).

Then,

0 ≤ �p(yn, v)−�p(Si(yn), v)

= �p(yn, v)−�p(xn+1, v) +�p(xn+1, v)−�p(Si(yn), v)

≤ �p(xn, v)−�p(xn+1, v) +�p(xn+1, v)−�p(Si(yn), v)

= �p(xn, v)−�p(xn+1, v) +�p

(
Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Si(yn))

)
, v

)

−�p(Si(yn), v)

≤ �p(xn, v)−�p(xn+1, v) + ηn,0 �p ( f (xn), v)− ηn,0 �p (Si(yn), v)

−→ 0 as n → ∞. (47)
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By (47) and Definition 2, we get

lim
n→∞

�p (Siyn, yn) = 0. (48)

By uniform continuity of S, we have

lim
n→∞

�p (Sn,iyn, yn) = 0. (49)

Step Four: We show that xn → x∗ ∈ Γ.
Note that,

�p (xn+1, yn) = �p(Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Sn,i(yn))

)
, yn)

≤ ηn,0 �p ( f (xn), yn) +
∞

∑
i=1

ηn,i �p (Sn,i(yn), yn)

≤ ηn,0(ζ �p (xn, yn) +�p( f (yn), yn) + 〈 f (xn)− f (yn), Jp
E1

f (yn)− Jp
E1

yn〉)

+
∞

∑
i=1

ηn,i �p (Sn,i(yn), yn)

≤ (1 − ηn,0(1 − ζ))�p (xn, yn)

+ ηn,0(�p( f (yn), yn) + 〈 f (xn)− f (yn), Jp
E1

f (yn)− Jp
E1

yn〉)

+
∞

∑
i=1

ηn,i �p (Sn,i(yn), yn). (50)

By (49), (50), and Lemma 8, we have

lim
n→∞

�p (xn, yn) = 0. (51)

Therefore, by (51) and the boundedness of {yn}, and since by (46), {xn} is Cauchy, we can assume
without loss of generality that yn ⇀ x∗ for some x∗ ∈ E1. It follows from Lemmas 2, 3, and (48) that
x∗ = Six∗, for each i ∈ I. This means that x∗ ∈ �.

In addition, by (31) and the fact that un,i → x∗ as n → ∞, we arrive at

(Jp
E1

un,i − Jp
E1

yn)− ∑∞
i=0 βn,iλn A∗ Jp

E2
(I − Πp

AKBTi
δn
)Aun,i

δn
∈

∞

∑
i=0

αn,iUi(yn). (52)

By (21), we have

‖
∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i‖ ≤

[�p(un,i, v)−�p(yn, v)
‖A‖−1[1 − ι]

]
−→ 0 as n → ∞, (53)

and by (41), we have

‖
∞

∑
i=0

βn,i(I − Πp
AKBTi

δn
)Aun,i‖ ≤

[�p(un,i, v)−�p(yn, v)
(p‖A‖)−1

] 1
p

−→ 0 as n → ∞. (54)

From (53), (54), and (52), by passing n to infinity in (52), we have that 0 ∈ ∑∞
i=0 αn,iUi(x∗).

This implies that x∗ ∈ SOLVIP(Ui). In addition, by (48), we have Ayn ⇀ Ax∗. Thus,
by (53), (54) and an application of the demi-closeness of ∑∞

i=0 βn,i(I − Πp
AKBTi

δn
) at zero, we have that

0 ∈ ∑∞
i=0 βn,iTi(Ax∗). Therefore, Ax ∈ SOLVIP(Ti) as ∑∞

i=0 βn,iΠ
p
AKBTi

δ (Ax∗) = ∑∞
i=0 βn,iB

Ti
δ (Ax∗).

This means that x∗ ∈ Ω.
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Now, we show that x∗ ∈ (∩∞
i=1GMEP(θi, Ci, Gi, gi). By (32), we have

Φi(un,i, y) + 〈Jp
E1

Gn,ixn, y − un,i〉+ 1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉 ≥ 0

∀y ∈ K, ∀i ∈ I,

Since Φi, for each i ∈ I, are monotone, that is, for all y ∈ K,

Φi(un,i, y) + Φi(y, un,i) ≤ 0

⇒ 1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉

≥ Φi(y, un,i) + 〈Jp
E1

Gn,ixn, y − un,i〉,

therefore,

1
rn,i

〈y − un,i, Jp
E1

un,i − Jp
E1

xn〉 ≥ Φi(y, un,i) + 〈Jp
E1

Gn,ixn, y − un,i〉.

By the lower semicontinuity of Φi, for each i ∈ I, the weak upper semicontinuity of G, and the
facts that, for each i ∈ I, un,i → x∗ as n → ∞ and Jp is norm − to − weak∗ uniformly continuous on
a bounded subset of E1, we have

0 ≥ Φi(y, x∗) + 〈Jp
E1

Gn,ix∗, y − x∗〉. (55)

Now, we set yt = ty + (1 − t)x∗ ∈ K. From (55), we get

0 ≥ Φi(yt, x∗) + 〈Jp
E1

Gn,ix∗, yt − x∗〉. (56)

From (56), and by the convexity of Φi, for each i ∈ I, in the second variable, we arrive at

0 = Φi(yt, yt) ≤ tΦi(yt, y) + (1 − t)Φi(yt, x∗)
≤ tΦi(yt, y) + (1 − t)〈Jp

E1
Gn,ix∗, yt − x∗〉

≤ tΦi(yt, y) + (1 − t)t〈Jp
E1

Gn,ix∗, y − x∗〉,

which implies that

Φi(yt, y) + (1 − t)〈Jp
E1

Gn,ix∗, y − x∗〉 ≥ 0. (57)

From (57), by the lower semicontinuity of Φi, for each i ∈ I, we have for yt → x∗ as t → 0

Φi(x∗, y) + 〈Jp
E1

Gn,ix∗, y − x∗〉 ≥ 0. (58)

Therefore, by (58) we can conclude that x∗ ∈ (∩∞
i=1GMEP(θi, Ci, Gi, gi). This means that x∗ ∈ ω.

Hence, x∗ ∈ Γ.
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Finally, we show that xn → x∗, as n → ∞. By Definition 3, we have

�p (xn+1, x∗)

= �p(Jq
E∗

1

(
ηn,0 Jp

E1
( f (xn)) +

∞

∑
i=1

ηn,i J
p
E1
(Gn,i(yn))

)
, x∗)

≤ ηn,0 �∗
q (Jp

E1
( f (un)), Jp

E1
x∗) +

∞

∑
i=1

ηn,i �∗
q (Jp

E1
(Gn,i(yn)), Jp

E1
x∗)

≤ ηn,0ζ �p (xn, x∗) + ηn,0(�p( f (x∗), x∗)

+ 〈Jp
E1

xn − Jp
E1

f (x∗), f (x∗)− x∗〉) +
∞

∑
i=1

ηn,ikn �p (yn, x∗)

≤ ηn,0

(
�p( f (x∗), x∗) + 〈Jp

E1
xn − Jp

E1
f (x∗), f (x∗)− x∗〉

)
+

(
1 −

∞

∑
i=1

ηn,i (1 − kn)

)
�p (xn, x∗). (59)

By (59) and Lemma 8, we have that

lim
n→∞

�p (xn, x∗) = 0.

The proof is completed.

In Theorem 1, i = 0 leads to the following new result.

Corollary 1. Let g : K×K → R be bifunctions satisfying (A1)− (A4) in (3). Let (I −Πp
AKBT

δ ) be demiclosed
at zero. Suppose that x1 ∈ E1 is chosen arbitrarily and the sequence {xn} is defined as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(un, y) + 〈Jp
E1

Cun + Jp
E1

Gnxn, y − un〉+ θ(y)− θ(un)

+ 1
rn
〈y − un, Jp

E1
un − Jp

E1
xn〉 ≥ 0 ∀y ∈ K,

yn = Jq
E∗

1

(
BU

δn

(
Jp
E1

un − λn A∗ Jp
E2
(I − Πp

AKBT
δn
)Aun

))
,

xn+1 = Jq
E∗

1

(
ηn Jp

E1
( f (xn)) + (1 − ηn)Jp

E1
(Sn(yn))

)
n ≥ 1,

(60)

where rn = 1
‖Jp

E1
Gnxn‖ , μn = 1

‖xn‖p−1 and γ ∈ (0, 1) such that ρE∗
1
(μn) =

γ〈Jp
E1

Gnxn ,xn−v〉
2qGq‖xn‖p‖Jp

E1
Gnxn‖ , and

λn =

⎧⎪⎪⎨
⎪⎪⎩

1
‖A‖

1
‖Jp

E2
(I−Πp

AK BT
δn
)Aun‖ , un = 0

1
‖A‖p

‖Jp
E2
(I−Πp

AK BT
δn )Aun‖p(p−1)

‖Jp
E2
(I−Πp

AK BT
δn
)Aun‖p , un = 0,

(61)

and ι ∈ (0, 1) and τn = 1
‖un‖p−1 are chosen such that

ρE∗
1
(τn) =

ι

2qGq‖A‖ × ‖Jp
E2
(I − Πp

AKBT
δn
)Aun‖p

‖un‖p‖Jp
E2
(I − Πp

AKBT
δn
)Aun‖p−1

, (62)

and lim
n→∞

ηn = 0, for M ≥ 0, ∑∞
n=1 ηn−1M < ∞, and ηn ≤ 1

2 . If Γ = Ω ∩ ω ∩ � = ∅, then {xn} converges

strongly to x∗ ∈ Γ, where Πp
AKBT

δn
(x∗) = BT

δn
(x∗).
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3. Application to Generalized Mixed Equilibrium Problem, Split Hammerstein Integral
Equations and Fixed Point Problem

Definition 4. Let C ⊂ Rn be bounded. Let k : C × C → R and f : C ×R → R be measurable real-valued
functions. An integral equation of Hammerstien-type has the form

u(x) +
∫

C
k(x, y) f (y, u(y))dy = w(x),

where the unknown function u and non-homogeneous function w lies in a Banach space E of measurable
real-valued functions. By transforming the above equation, we have that

u + KFu = w,

and therefore, without loss of generality, we have

u + KFu = 0. (63)

The split Hammerstein integral equations problem is formulated as finding x∗ ∈ E1 and y∗ ∈ E∗
1

such that
x∗ + KFx∗ = 0 with Fx∗ = y∗ and Ky∗ + x∗ = 0

and Ax∗ ∈ E2 and Ay∗ ∈ E∗
2 such that

Ax∗ + K′F′Ax∗ = 0 with F′Ax∗ = Ay∗ and K′Ay∗ + Ax∗ = 0

where F : E1 → E∗
1 , K : E∗

1 → E1 and F′ : E2 → E∗
2 , K′ : E∗

2 → E2 are maximal monotone mappings.

Lemma 16 ([21]). Let E be a Banach space. Let F : E → E∗, K : E∗ → E be bounded and maximal monotone
operators. Let D : E × E∗ → E∗ × E be defined by D(x, y) = (Fx − y, Ky + x) for all (x, y) ∈ E × E∗.
Then, the mapping D is maximal monotone.

By Lemma 16, if K, K′, and F, F′ are multi-valued maximal monotone operators then, we have
two resolvent mappings,

BD
δ = (Jp

E1
+ δJp

E1
D)−1 Jp

E1
and BD′

δ = (Jp
E2

+ δJp
E2

D′)−1 Jp
E2

,

where F : E1 → E∗
1 , K : E∗

1 → E1 are multi-valued and maximal monotone operators, D : E1 ×
E∗

1 → E∗
1 × E1 is defined by D(x, y) = (Fx − y, Ky + x) for all (x, y) ∈ E1 × E∗

1 , and F′ : E2 → E∗
2 ,

K′ : E∗
2 → E2 are multi-valued and maximal monotone operators, D′ : E2 × E∗

2 → E∗
2 × E2 is defined

by D′(Ax, Ay) = (F′Ax − Ay, K′Ay + Ax) for all (Ax, Ay) ∈ E2 × E∗
2 . Then D and D′ are maximal

monotone by Lemma 16.
When U = D and T = D′ in Corollary 1, the algorithm (60) becomes

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g(un, y) + 〈Jp
E1

Cnun + Jp
E1

Gnxn, y − un〉+ θ(y)− θ(un)

+ 1
rn
〈y − un, Jp

E1
un − Jp

E1
xn〉 ≥ 0 ∀y ∈ K,

yn = Jq
E∗

1

(
BDn

δn

(
Jp
E1

un − λn A∗ Jp
E2
(I − Πp

AKBD′
n

δn
)Aun

))
xn+1 = Jq

E∗
1

(
ηn Jp

E1
( f (xn)) + (1 − ηn)Jp

E1
(Sn(yn))

)
n ≥ 1;

and its strong convergence is guaranteed, which solves the problem of a common solution of a system
of generalized mixed equilibrium problems, split Hammerstein integral equations, and fixed-point
problems for the mappings involved in this algorithm.
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4. A Numerical Example

Let i = 0, E1 = E2 = R, and K = AK = [0, ∞), for Ax = x ∀x ∈ E1. The generalized mixed
equilibrium problem is formulated as finding a point x ∈ K such that,

g0(x, y) + 〈G0x, y − x〉+ θ0(y)− θ0(x) ≥ 0, ∀y ∈ K. (64)

Let r0 ∈ (0, 1] and define θ0 = 0, g0(x, y) = y2

r0
+ 2x2

r0
and G0(x) = S0(x) = 1

r0
x.

Clearly, g0(x, y) satisfies the conditions (A1) − (A4) and G0(x) = S0(x) is a Bregman
asymptotically non-expansive mapping, as well as a 1− inverse strongly monotone mapping. Since Υr0

is single-valued, therefore for y ∈ K, we have that

g0(u0, y) + 〈G0x, y − u0〉+ 1
r0
〈y − u0, u0 − x〉 ≥ 0

⇔ y2

r0
+

2u2
0

r0
+

1
r0
〈y − u0, u0〉 ≥ 0

⇔ y2

r0
+

2|yu0|
r

3
2
0

+
x2

r0
≥ 0. (65)

As (65) is a nonnegative quadratic function with respect to y variable, so it implies that the

coefficient of y2 is positive and the discriminant 4u2
0

r3
0
− 4x2

r2
0
≤ 0, and therefore u0 = x

√
r0. Hence,

Υr0(x) = x
√

r0. (66)

By Lemma 13 and (66), F(Υr0) = GEP(g0, G0) = {0} and F(S0) = {0}. Define

U0, T0 : R −→ R by U0(x) = T0(Ax)

{
(0, 1), x ≥ 0

{1}, x < 0,

P[0,∞) : R −→ [0, ∞) by P[0,∞)(Ax) =

{
0, Ax ∈ (−∞, 0)

Ax, Ax ∈ [0, ∞),

BU0
δ = BT

δ : R −→ R by BT
δ (Ay) = BU0

δ (y) =

⎧⎨
⎩

y
1+(0,δ) , y ≥ 0

y
1+δ , y < 0,

P[0,∞)B
T
δ : R −→ [0, ∞) by P[0,∞)B

T
δ (Ay) =

⎧⎨
⎩

Ay
1+(0,δ) , Ay ≥ 0

0, Ay < 0.

It is clear that U0 and T0 are multi-valued maximal monotone mappings, such that 0 ∈
SOLVIP(U0) and 0 ∈ SOLVIP(T0). We define the ζ−contraction mapping by f (x) = x

2 , δn = 1
2n+1 ,

ηn,0 = 1
n+1 , rn,0 = 1

22n and ζ = 1
2 . Hence, for

λn =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1+
(

0, 1
2n+1

)
∣∣∣un,0

(
1+

(
0, 1

2n+1

))
−un,0

∣∣∣ , un,0 > 0,

1, un,0 = 0,
1

|un,0| , un,0 < 0,
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

un,0 = 1
2n xn,

y1
n =

un,0

1+
(

0, 1
2n+1

) (un,0 − 1), un,0 > 0,

y2
n =

[
un,0

1+
(

0, 1
2n+1

)
]2

, un,0 = 0,

y3
n =

2n+1un,0
2n+1+1 (un,0 + 1), un,0 < 0,

xn+1 = xn
2(n+1) +

22nnyn
(n+1) , n ≥ 1,

we get,

xn+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xn
2(n+1) +

nx2
n−2nxn

(n+1)
(

1+
(

0, 1
2n+1

)) , xn > 0,

xn
2(n+1) +

nx2
n

(n+1)
(

1+
(

0, 1
2n+1

)) , xn = 0,

xn
2(n+1) +

n2n+1(x2
n+xn)

2n+1+1 , xn < 0.

In particular,

xn+1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xn
2(n+1) +

5(nx2
n−2nxn)

6(n+1) , xn > 0,
xn

2(n+1) +
5nx2

n
6(n+1) , xn = 0,

xn
2(n+1) +

n2n+1(x2
n+xn)

2n+1+1 , xn < 0.

By Theorem 1, the sequence {xn} converges strongly to 0 ∈ Γ. The Figures 1 and 2 below
obtained by (MATLAB) software indicate convergence of {xn} given by (32) with x1 = −10.0 and
x1 = 10.0, respectively.

Figure 1. Sequence convergence with initial condition −10.0.
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Figure 2. Sequence convergence with initial condition 10.0

Remark 1. Our results generalize and complement the corresponding ones in [2,7,9,10,22,23].
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Abstract: The principal motivation of this paper is to propose a general scheme that is applicable
to every existing multi-point optimal eighth-order method/family of methods to produce a further
sixteenth-order scheme. By adopting our technique, we can extend all the existing optimal
eighth-order schemes whose first sub-step employs Newton’s method for sixteenth-order convergence.
The developed technique has an optimal convergence order regarding classical Kung-Traub conjecture.
In addition, we fully investigated the computational and theoretical properties along with a main
theorem that demonstrates the convergence order and asymptotic error constant term. By using
Mathematica-11 with its high-precision computability, we checked the efficiency of our methods and
compared them with existing robust methods with same convergence order.

Keywords: simple roots; Newton’s method; computational convergence order; nonlinear equations

1. Introduction

The formation of high-order multi-point iterative techniques for the approximate solution of
nonlinear equations has always been a crucial problem in computational mathematics and numerical
analysis. Such types of methods provide the utmost and effective imprecise solution up to the specific
accuracy degree of

Ω(x) = 0, (1)

where Ω : C → C is holomorphic map/function in the neighborhood of required ξ. A certain
recognition has been given to the construction of sixteenth-order iterative methods in the last two
decades. There are several reasons behind this. However, some of them are advanced digital computer
arithmetic, symbolic computation, desired accuracy of the required solution with in a small number of
iterations, smaller residual errors, CPU time, smaller difference between two iterations, etc. (for more
details please see Traub [1] and Petković et al. [2]).

We have a handful of optimal iterative methods of order sixteen [3–9]. Among these methods
most probably are the improvement or extension of some classical methods e.g., Newton’s method
or Newton-like method, Ostrowski’s method at the liability of further values of function/s and/or
1st-order derivative/s or extra numbers of sub-steps of the native schemes.

In addition, we have very few such techniques [5,10] that are applicable to every optimal 8-order
method (whose first sub-step employs Newton’s method) to further obtain 16-order convergence
optimal scheme, according to our knowledge. Presently, optimal schemes suitable to every iterative

Symmetry 2019, 11, 691; doi:10.3390/sym11050691 www.mdpi.com/journal/symmetry122
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method of particular order to obtain further high-order methods have more importance than obtaining
a high-order version of a native method. Finding such general schemes are a more attractive and
harder chore in the area of numerical analysis.

Therefore, in this manuscript we pursue the development of a scheme that is suitable to every
optimal 8-order scheme whose first sub-step should be the classical Newton’s method, in order to
have further optimal 16-order convergence, rather than applying the technique only to a certain
method. The construction of our technique is based on the rational approximation approach. The main
advantage of the constructed technique is that it is suitable to every optimal 8-order scheme whose
first sub-step employs Newton’s method. Therefore, we can choose any iterative method/family
of methods from [5,11–25], etc. to obtain further 16-order optimal scheme. The effectiveness of our
technique is illustrated by several numerical examples and it is found that our methods execute
superior results than the existing optimal methods with the same convergence order.

2. Construction of the Proposed Optimal Scheme

Here, we present an optimal 16-order general iterative scheme that is the main contribution of
this study. In this regard, we consider a general 8-order scheme, which is defined as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zr = φ4(xr, wr),

tr = ψ8(xr, wr, zr),

(2)

where φ4 and ψ8 are optimal scheme of order four and eight, respectively.
We adopt Newton’s method as a fourth sub-step to obtain a 16-order scheme, which is given by

xr+1 = tr − Ω(tr)

Ω′(tr)
, (3)

that is non-optimal in the regard of conjecture given by Kung-Traub [5] because of six functional
values at each step. We can decrease the number of functional values with the help of following γ(x)
third-order rational functional

γ(x) = γ(xr) +
(x − xr) + b1

b2(x − xr)3 + b3(x − xr)2 + b4(x − xr) + b5
, (4)

where the values of disposable parameters bi(1 ≤ i ≤ 5) can be found with the help of following
tangency constraints

γ(xr) = Ω(xr), γ′(xr) = Ω′(xr), γ(wr) = Ω(wr), γ(zr) = Ω(zr). (5)

Then, the last sub-step iteration is replaced by

xr+1 = tr − Ω(tr)

γ′(tr)
, (6)

that does not require Ω′(tr). Expressions (2) and (6) yield an optimal sixteenth-order scheme. It is vital
to note that the γ(x) in (4) plays a significant role in the construction of an optimal 16-order scheme.

In this paper, we adopt a different last sub-step iteration, which is defined as follows:

xr+1 = xr − QΩ(xr, wr, zr), (7)

where QΩ can be considered to be a correction term to be called naturally as “error corrector”. The last
sub-step of this type is handier for the convergence analysis and additionally in the dynamics study
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through basins of attraction. The easy way of obtaining such a fourth sub-step iteration with a feasible
error corrector is to apply the Inverse Function Theorem [26] to (5). Since ξ is a simple root (i.e.,
γ′(ξ) = 0), then we have a unique map τ(x) satisfying γ(τ(x)) = x in the certain neighborhood of
γ(ξ). Hence, we adopt such an inverse map τ(x) to obtain the needed last sub-step of the form (7)
instead of using γ(x) in (5).

With the help of Inverse Function Theorem, we will yield the final sub-step iteration from the
expression (5):

x = xr − ϕ(x)− ϕ(xr) + b1

b2
(

ϕ(x)− ϕ(xr)
)3

+ b3
(

ϕ(x)− ϕ(xr)
)2

+ b4
(

ϕ(x)− ϕ(xr)
)
+ b5

, (8)

where bi, i = 1, 2, . . . , 5 are disposable constants. We can find them by adopting the following
tangency conditions

ϕ(xr) = Ω(xr), ϕ′(xr) = Ω′(xr), ϕ(wr) = Ω(wr), ϕ(zr) = Ω(zr), ϕ(tr) = Ω(tr). (9)

One should note that the rational function on the right side of (8) is regarded as an error corrector.
Indeed, the desired last sub-step iteration (8) is obtained using the inverse interpolatory function
approach meeting the tangency constraints (9). Clearly, the last sub-step iteration (6) looks more
suitable than (3) in the error analysis. It remains for us to determine parameters bi(1 ≤ i ≤ 5) in (8)

By using the first two tangency conditions, we obtain

b1 = 0, b5 = Ω′(xr). (10)

By adopting last three tangency constraints and the expression (10), we have the following three
independent relations

b2(Ω(wr)− Ω(xr))
2 + b3(Ω(wr)− Ω(xr)) + b4 =

1
wr − xr

− Ω′(xr)

Ω(wr)− Ω(xr)
,

b2(Ω(zr)− Ω(xr))
2 + b3(Ω(zr)− Ω(xr)) + b4 =

1
zr − xr

− Ω′(xr)

Ω(zr)− Ω(xr)
,

b2(Ω(tr)− Ω(xr))
2 + b3(Ω(tr)− Ω(xr)) + b4 =

1
tr − xr

− Ω′(xr)

Ω(tr)− Ω(xr)
,

(11)

which further yield

b2 = − θ1 + θ2
{

Ω(tr)(tr − xr) + Ω(wr)(zr − tr) + Ω(zr)(xr − zr)
}

θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(xr − zr)
,

b3 =

b2(Ω(wr)− Ω(zr))(Ω(wr)− 2Ω(xr) + Ω(zr)) +
Ω′(xr)

Ω(wr)− Ω(xr)
+

Ω′(xr)(2Ω(xr)− Ω(zr))

Ω(xr)(Ω(xr)− Ω(zr))
+

1
zr − xr

Ω(zr)− Ω(wr)

b4 =
b2Ω(xr)(Ω(wr)− Ω(xr))3 + b3Ω(xr)(Ω(wr)− Ω(xr))2 + Ω′(xr)Ω(wr)

Ω(xr)(Ω(xr)− Ω(wr))
,

(12)

where θ1 = Ω′(xr)(Ω(tr) − Ω(zr))(tr − xr)(xr − zr)
[
(Ω(xr) − Ω(wr))(Ω(tr)(Ω(zr) − 2Ω(xr)) +

Ω(xr)(Ω(wr) + 2Ω(xr) − 2Ω(zr))) + Ω(xr)(Ω(tr) − Ω(xr))(Ω(xr) − Ω(zr))
]
, θ2 = Ω(xr)(Ω(tr) −

Ω(xr))(Ω(xr)− Ω(wr))(Ω(xr)− Ω(zr)).
Let us consider that the rational Function (8) cuts the x – axis at x = xr+1, in order to obtain the

next estimation xr+1. Then, we obtain
ϕ(xr+1) = 0, (13)

which further yield by using the above values of b1, b2 and b3
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xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} , (14)

where θ3 = Ω′(xr)Ω(tr)Ω(zr)(Ω(tr)− Ω(zr))(tr − xr)(xr − zr)
[
(Ω(xr)− Ω(wr))

{− Ω(tr)(Ω(wr) +

2Ω(xr)− 2Ω(zr)) + Ω(wr)2 + (Ω(wr) + 2Ω(xr))(Ω(xr)− Ω(zr))
}
+ Ω(xr)(Ω(tr)− Ω(xr))(Ω(xr)−

Ω(zr))
]
.

Finally, by using expressions (2) and (14), we have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zr = φ4(xr, wr),

tr = ψ8(xr, wr, zr),

xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} ,

(15)

where θ2 and θ3 are defined earlier. We illustrate that convergence order reach at optimal 16-order
without adopting any additional functional evaluations in the next Theorem 1. It is vital to note
that only coefficients A0 and B0 from φ4(xr, wr) and ψ8(xr, wr, zr), respectively, contribute to its
important character in the development of the needed asymptotic error constant, which can be found
in Theorem 1.

Theorem 1. Let Ω : C → C be an analytic function in the region containing the simple zero ξ and initial
guess x = x0 is sufficiently close to ξ for guaranteed convergence. In addition, we consider that φ4(xr, wr) and
ψ8(xr, wr, zr) are any optimal 4- and 8-order schemes, respectively. Then, the proposed scheme (15) has an
optimal 16-order convergence.

Proof. Let us consider er = xr − ξ be the error at rth step. With the help of the Taylor’s series expansion,
we expand the functions Ω(xr) and Ω′(xr) around x = ξ with the assumption Ω′(ξ) = 0 which leads
us to:

Ω(xr) = Ω′(ξ)
[

er +
16

∑
k=2

ckek
r + O(e17

r )

]
(16)

and

Ω′(xr) = Ω′(ξ)
[

1 +
16

∑
k=2

kckek−1
r + O(e17

r )

]
, (17)

where cj =
Ω(j)(ξ)
j!Ω′(ξ) for j = 2, 3, . . . , 16, respectively.

By inserting the expressions (16) and (17) in the first sub-step (15), we have

wr − ξ = c2e2
r + 2(c3 − c2

2)e
3
r + (4c3

2 − 7c3c2 + 3c4)e4
r + (20c3c2

2 − 8c4
2 − 10c4c2

− 6c2
3 + 4c5)e5

r +
11

∑
k=1

Gkek+4
r + O(e17

r ),
(18)

where Gk = Gk(c2, c3, . . . , c16) are given in terms of c2, c3, . . . , ci with explicitly written two coefficients
G1 = 16c5

2 − 52c3c3
2 + 28c4c2

2 +(33c2
3 − 13c5)c2 − 17c3c4 + 5c6, G2 = 2

{
16c6

2 − 64c3c4
2 + 36c4c3

2 + 9(7c2
3 −

2c5)c2
2 + (8c6 − 46c3c4)c2 − 9c3

3 + 6c2
4 + 11c3c5 − 3c7

}
, etc.

The following expansion of Ω(wr) about a point x = ξ with the help of Taylor series

Ω(wr) = Ω′(ξ)
[
c2e2

r + 2(c3 − c2
2)e

3
r + (5c3

2 − 7c3c2 + 3c4)e4
r + 2(6c4

2 − 12c3c2
2

+ 5c4c2 + 3c2
3 − 2c5)e5

r +
11

∑
k=1

Ḡkek+4
r + O(e17

r
]
.

(19)
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As in the beginning, we consider that φ4(xr, wr) and φ8(xr, wr, zr) are optimal schemes of
order four and eight, respectively. Then, it is obvious that they will satisfy the error equations of the
following forms

zr − ξ =
12

∑
m=0

Amem+4
r + O(e17

r ) (20)

and

tr − ξ =
8

∑
m=0

Bmem+8
r + O(e17

r ), (21)

respectively, where A0, B0 = 0. By using the Taylor series expansion, we further obtain

Ω(zr) = Ω′(ξ)
[
A0e4

r + A1e5
r + A2e6

r + A3e7
r + (A2

0c2 + A4)e8
r + (2A0 A1c2 + A5)e9

r + {(A2
1 + 2A0 A2)c2

+ A6}e10
r + {2(A1 A2 + A0 A3)c2 + A7}e11

r + (A3
0c3 + 2A4 A0c2 + A2

2c2 + 2A1 A3c2 + A8)e12
r

+ (3A1 A2
0c3 + 2A5 A0c2 + 2A2 A3c2 + 2A1 A4c2 + A9)e13

r + H1e14
r + H2e15

r + H3e16
r + O(e17

n )
] (22)

and
Ω(tr) = Ω′(ξ)

[
B0e8

r + B1e9
r + B2e10

r + B3e11
r + B4e12

r + B5e13
r + B6e14

r + B7e15
r

+ (A2B2
0 + B8)e16 + O(e17

r
]
,

(23)

where H1 = 3A2 A2
0c3 + 2A6 A0c2 + 3A2

1 A0c3 + A2
3c2 + 2A2 A4c2 + 2A1 A5c2 + A10, H2 = A3

1c3 +

6A0 A2 A1c3 + 2(A3 A4 + A2 A5 + A1 A6 + A0 A7)c2 + 3A2
0 A3c3 + A11 and H3 = A4

0c4 + 3A4 A2
0c3 +

2A8 A0c2 + 3A2
2 A0c3 + 6A1 A3 A0c3 + A2

4c2 + 2A3 A5c2 + 2A2 A6c2 + 2A1 A7c2 + 3A2
1 A2c3 + A12.

With the help of expressions (16)–(23), we have

θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
}

= er − A0B0(5c4
2 − 10c2

2c3 + 2c2
3 + 4c2c4 − c5)c2e16

r + O(e17
r ).

(24)

Finally, we obtain

en+1 = A0B0(5c4
2 − 10c2

2c3 + 2c2
3 + 4c2c4 − c5)c2e16

r + O(e17
r ). (25)

The above expression (25) claims that our scheme (15) reaches the 16-order convergence.
The expression (15) is also an optimal scheme in the regard of Kung-Traub conjecture since it uses only
five functional values at each step. Hence, this completes the proof.

Remark 1. Generally, we naturally expect that the presented general scheme (15) should contain other terms
from A0, A1, . . . A12 and B0, B1, . . . , B8. However, there is no doubt from the expression (25) that the asymptotic
error constant involves only on A0 and B0. This simplicity of the asymptotic error constant is because of adopting
the inverse interpolatory function with the tangency constraints.

2.1. Special Cases

This is section is devoted to the discussion of some important cases of the proposed scheme.
Therefore, we consider

1. We assume an optimal eighth-order technique suggested scheme by Cordero et al. [13]. By using
this scheme, we obtain the following new optimal 16-order scheme
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zr = xr − Ω(xr)

Ω′(xr)

[
Ω(xr)− Ω(wr)

Ω(xr)− 2Ω(wr)

]
,

ur = zr −
Ω (zr)

(
Ω (xr)− Ω (wr)

Ω (xr)− 2Ω (wr)
+

Ω (zr)

2 (Ω (wr)− 2Ω (zr))

)
2

Ω′ (xr)
,

tr = ur − 3(b2 + b3)Ω (zr) (ur − zr)

Ω′ (xr) (b1 (ur − zr) + b2 (wr − xr) + b3 (zr − xr))
,

xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} ,

(26)

where b1, b2, b3 ∈ R, provided b2 + b3 = 0. Let us consider b1 = b2 = 1 and b3 = 2 in the above
scheme, recalled by (OM1).

2. Again, we consider another optimal 8-order scheme presented by Behl and Motsa in [11]. In this
way, we obtain another new optimal family of 16-order methods, which is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zn = wr − Ω(xr)Ω(wr)

Ω′(xr)(Ω(xr)− 2Ω(wr))
,

tr = zr −
Ω(xr)Ω(wr)Ω(zr)

(
1 − Ω(wr)

2Ω(xr)
− bΩ(xr)(Ω(wr) + 4Ω(zr))

2(2Ω(wr)− Ω(xr))(bΩ(xr)− Ω(zr))

)
Ω′(xr)(−2Ω(wr) + Ω(xr))(Ω(wr)− Ω(zr))

,

xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} ,

(27)

where b ∈ R. We chose b = − 1
2 in this expression, called by (OM2).

3. Let us choose one more optimal 8-order scheme proposed by Džuníc and Petkovíc [15]. Therefore,
we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zn = wr − Ω(wr)

Ω′(xr)

[
Ω(xr)

Ω(xr)− 2Ω(wr)

]
,

tr = zr +
Ω (xr)Ω (zr) (Ω (xr) + 2Ω (zr)) (Ω (wr) + Ω (zr))

Ω′ (xr)Ω (wr) (2Ω (xr)Ω (wr)− Ω (xr) 2 + Ω (wr) 2)
,

xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} .

(28)

Let us call the above scheme by (OM3).
4. Now, we pick another optimal family of eighth-order iterative methods given by Bi et al. in [12].

By adopting this scheme, we further have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wr = xr − Ω(xr)

Ω′(xr)
,

zr = wr − Ω(wr)

Ω′(xr)

[
2Ω(xr)− Ω(wr)

2Ω(xr)− 5Ω(wr)

]
,

tr = zr − Ω (xr) + (α + 2)Ω (zr)

Ω (xr) + αΩ (zr)

⎡
⎢⎢⎣ Ω(zr)

Ω[zr, wr] +
Ω[zr, xr]− Ω′(xr)

zr − xr
(zr − wr)

⎤
⎥⎥⎦ ,

xr+1 = xr +
θ2(Ω(tr)− Ω(wr))(Ω(tr)− Ω(zr))(Ω(wr)− Ω(zr))(tr − xr)(zr − xr)

θ3 + θ2Ω(wr)
{

Ω(tr)(tr − xr)(Ω(tr)− Ω(wr))− Ω(zr)(Ω(wr)− Ω(zr))(xr − zr)
} ,

(29)
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where α ∈ R and Ω[·, ·] is finite difference of first order. Let us consider α = 1 in the above
scheme, denoted by (OM4).
In similar fashion, we can develop several new and interesting optimal sixteenth-order schemes
by considering any optimal eighth-order scheme from the literature whose first sub-step employs
the classical Newton’s method.

3. Numerical Experiments

This section is dedicated to examining the convergence behavior of particular methods which
are mentioned in the Special Cases section. Therefore, we shall consider some standard test functions,
which are given as follows:

Ω1(x) = 10x exp
(−x2)− 1; [11] ξ = 1.679630610428449940674920

Ω2(z) = x5 + x4 + 4x2 − 15; [16] ξ = 1.347428098968304981506715

Ω3(x) = x4 + sin
(

π
x2

)
− 5; [18] ξ =

√
2

Ω4(x) = exp
(−x2 + x + 2

)
+ x3 − cos(x + 1) + 1; [20] ξ = −1

Ω5(x) = cos
(

x2 − 2x + 16
9

)
− log

(
x2 − 2x + 25

9

)
− 1; [4] ξ = 1 +

√
7

3 i

Ω6(x) = sin−1(x2 − 1)− x
2 + 1; [12] ξ = 0.5948109683983691775226562

Ω7(x) = x3 + log(x + 1); [6] ξ = 0
Ω8(x) = tan−1(x)− x + 1; [2] ξ = 2.132267725272885131625421

Here, we confirm the theoretical results of the earlier sections on the basis of gained results∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and computational convergence order. We displayed the number of iteration

indexes (n), approximated zeros (xr), absolute residual error of the corresponding function

(|Ω(xr)|), error in the consecutive iterations |xr+1 − xr|,
∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣, the asymptotic error constant

η = lim
n→∞

∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and the computational convergence order (ρ) in Table 1. To calculate (ρ),

we adopt the following method

ρ =

∣∣∣∣ (xr+1 − xr)/η

(xr − xr−1)

∣∣∣∣ , n = 1, 2, 3.

We calculate (ρ), asymptotic error term and other remaining parameters up to a high number of
significant digits (minimum 1000 significant digits) to reduce the rounding-off error. However, due
to the restricted paper capacity, we depicted the values of xr and ρ up to 25 and 5 significant figures,

respectively. Additionally, we mentioned
∣∣∣∣ xr+1 − xr

(xr − xr−1)16

∣∣∣∣ and η by 10 significant figures. In addition

to this, the absolute residual error in the function |Ω(xr)| and error in the consecutive iterations
|xr+1 − xr| are depicted up to 2 significant digits with exponent power that can be seen in Tables 1–3.

Furthermore, the estimated zeros by 25 significant figures are also mentioned in Table 1.
Now, we compare our 16-order methods with optimal 16-order families of iterative schemes that

were proposed by Sharma et al. [7], Geum and Kim [3,4] and Ullah et al. [8]. Among these schemes, we
pick the iterative methods namely expression (29), expression (Y1) (for more detail please see Table 1
of Geum and Kim [3]) and expression (K2) (please have look at Table 1 of Geum and Kim [4] for more
details) and expression (9), respectively called by SM, GK1, GK2 and MM. The numbering and titles
of the methods (used for comparisons) are taken from their original research papers.
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Table 1. Convergence behavior of methods OM1, OM2, OM3 and OM4 on Ω1(x)–Ω8(x).

Cases Ω(x) n xr |Ω(xr)| |xr+1 − xr|
∣∣∣∣ xr+1 − xr

(xr − xr−1)p

∣∣∣∣ η ρ

OM1 Ω1

0 1.7 5.5(−2) 2.0(−2)
1 1.679630610428449940674920 1.0(−26) 3.8(−27) 4.299293162 3.402712013 15.940
2 1.679630610428449940674920 1.6(−422) 5.8(−423) 3.402712013 16.000

OM1 Ω2

0 1.1 7.1 2.5(−1)
1 1.347428099532342545074013 2.1(−8) 5.6(−10) 2.858404704 0.6398089109 14.928
2 1.347428098968304981506715 2.5(−147) 6.7(−149) 0.6398089109 16.000

OM2 Ω3

0 1.3 1.2 1.1(−1)
1 1.414213562373095736525797 7.8(−15) 6.9(−16) 0.8202219879 0.1956950645 15.340
2 1.414213562373095048801689 5.5(−243) 4.9(−244) 0.1956950645 16.000

OM2 Ω4

0 −0.7 1.9 3.0(−1)
1 −1.000000000000007093884377 4.3(−14) 7.1(−15) 1.647949998(−6) 6.821618098(−6) 17.180
2 −1.000000000000000000000000 1.7(−231) 2.8(−232) 6.821618098(−6) 16.000

OM3 Ω5

0 0.9 + 0.8i 2.2(−1) 1.3(−1)
1 0.99999999 · · ·+ 0.88191710 . . . i 5.3(−17) 3.0(−17) 0.004949317501 0.04805746878 17.111
2 1.0000000 · · ·+ 0.88191710 . . . i 3.8(−266) 2.2(−266) 0.04805746878 16.000

OM3 Ω6

0 0.5 9.8(−2) 9.5(−2)
1 0.5948109683983691775226557 5.5(−25) 5.2(−25) 1.216280520(−8) 2.864980977(−8) 16.364
2 0.5948109683983691775226562 8.3(−397) 7.8(−397) 2.864980977(−8) 16.000

OM4 Ω7

0 0.5 5.3(−1) 5.0(−1)
1 0.00001072560410679202312616917 1.1(−5) 1.1(−5) 0.7031544881 0.1352418133 13.6218
2 4.148195228902998294111344(−81) 4.1(−81) 4.1(−81) 0.1352418133 16.000

OM4 Ω8

0 2.2 5.6(−2) 6.8(−2)
1 2.132267725272885131625421 6.7(−31) 8.1(−31) 4.147660854(−12) 6.197625624(−12) 16.1492
2 2.132267725272885131625421 1.9(−493) 2.3(−493) 6.197625624(−12) 16.000

It is straightforward to say that our proposed methods not only converge very fast towards the required zero,
but they have also small asymptotic error constant.

Table 2. Comparison of residual error on the test examples Ω9(x)–Ω12(x).

Ω(x) |Ω(xr)| SM GK1 GK2 MM OM1 OM2 OM3 OM4

Ω9

|Ω(x0)| 2.5(−1) 2.5(−1) ∗ 2.5(−1) # 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1) 2.5(−1)
|Ω(x1)| 3.7(−7) 2.8 ∗ 7.6(−2) # 1.7(−4) 8.1(−7) 9.3(−8) 1.2(−7) 2.1(−7)
|Ω(x2)| 8.1(−105) 2.0(−4) ∗ 1.9(−19) # 6.1(−62) 9.3(−99) 7.7(−116) 3.9(−112) 6.5(−110)

Ω10

|Ω(x0)| 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
|Ω(x1)| 7.9(−14) 7.6(−13) 3.0(−12) 4.4(−12) 4.1(−14) 2.7(−14) 3.4(−14) 2.1(−13)
|Ω(x2)| 7.3(−224) 5.3(−209) 2.1(−199) 1.1(−194) 4.0(−227) 3.7(−231) 2.1(−231) 3.1(−216)

Ω11

|Ω(x0)| 3.8(−1) 3.8(−1) 3.8(−1) 3.8(−1) 3.8(−1) 3.8(1−) 3.8(−1) 3.8(−1)
|Ω(x1)| 3.5(−12) 1.3(−12) 1.6(−10) 7.4(−11) 1.5(−12) 1.1(−12) 1.9(−12) 5.9(−13)
|Ω(x2)| 2.1(−186) 1.9(−193) 1.3(−156) 1.4(−163) 1.5(−193) 2.4(−195) 7.6(−192) 2.7(−199)

Ω12

|Ω(x0)| 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1)
|Ω(x1)| 2.3(−11) 8.6(−5) 1.7(−4) 2.8(−7) 5.4(−11) 8.4(−12) 1.3(−11) 1.5(−11)
|Ω(x2)| 1.4(−170) 1.2(−63) 9.3(−57) 1.0(−109) 5.5(−164) 2.6(−178) 2.2(−174) 3.1(−174)

Ω13

|Ω(x0)| 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1) 1.9(+1)
|Ω(x1)| 1.7(−26) 8.2(−26) 6.0(−23) 1.3(−28) 4.5(−26) 7.9(−28) 2.9(−26) 1.2(−29)
|Ω(x2)| 2.8(−459) 1.3(−446) 1.3(−398) 6.7(−501) 5.4(−452) 4.8(−484) 3.8(−455) 8.2(−517)

∗ and # stand for converge to undesired roots −1.89549 . . . and 0, respectively.
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Table 3. Comparison of error in the consecutive iterations on the test examples Ω9(x)–Ω13(x).

Ω(x) |xr+1 − xr| SM GK1 GK2 MM OM1 OM2 OM3 OM4

Ω9

|x1 − x0| 4.0(−1) 5.5 ∗ 1.7 # 4.0(−1) 4.0(−1) 4.0(−1) 4.0(−1) 4.0(−1)
|x2 − x1| 4.5(−7) 2.1 ∗ 1.5(−1) # 2.1(−4) 9.9(−7) 1.1(−7) 1.5(−7) 2.6(−7)
|x3 − x2| 9.9(−105) 2.4(−4) ∗ 3.8(−19) # 7.4(−62) 1.1(−98) 9.4(−116) 4.8(−112) 8.0(−110)

Ω10

|x1 − x0| 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1) 1.4(−1)
|x2 − x1| 1.2(−14) 1.2(−13) 4.6(−13) 6.7(−13) 6.3(−15) 4.1(−15) 5.2(−15) 3.2(−14)
|x3 − x2| 1.1(−224) 8.2(−210) 3.3(−200) 1.7(−195) 6.1(−228) 5.7(−232) 3.3(−232) 4.8(−217)

Ω11

|x1 − x0| 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1) 2.8(−1)
|x2 − x1| 3.0(−12) 1.2(−12) 1.4(−10) 6.4(−11) 1.3(−12) 9.6(−13) 1.6(−12) 5.1(−13)
|x3 − x2| 1.8(−186) 1.7(−193) 1.2(−156) 1.3(−163) 1.3(−193) 2.1(−195) 6.6(−192) 2.4(−199)

Ω12

|x1 − x0| 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1) 1.7(−1)
|x2 − x1| 2.3(−11) 8.5(−5) 1.7(−4) 2.8(−7) 5.4(−11) 8.4(−12) 1.3(−11) 1.5(−11)
|x3 − x2| 1.4(−170) 1.2(−63) 9.3(−57) 1.0(−109) 5.5(−164) 2.6(−178) 2.2(−174) 3.1(−174)

Ω13

|x1 − x0| 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1) 5.1(−1)
|x2 − x1| 4.5(−28) 2.2(−27) 1.6(−24) 3.5(−30) 1.2(−27) 2.1(−29) 7.9(−28) 3.1(−31)
|x3 − x2| 7.6(−461) 3.5(−448) 3.5(−400) 1.8(−502) 1.5(−453) 1.3(−485) 1.0(−456) 2.2(−518)

∗ and # stand for converge to undesired roots −1.89549 . . . and 0, respectively.

We want to demonstrate that our methods perform better than the existing ones. Therefore,
instead of manipulating the results by considering self-made examples or/and cherry-picking among
the starting points, we assume 4 numerical examples; the first one is taken from Sharma et al. [7]; the
second one is considered from Geum and Kim [3]; the third one is picked from Geum and Kim [4]
and the fourth one is considered from Ullah et al. [8] with the same starting points that are mentioned
in their research articles. Additionally, we want to check what the outcomes will be if we assume
different numerical examples and staring guesses that are not suggested in their articles. Therefore, we
assume another numerical example from Behl et al. [27]. For the detailed information of the considered
examples or test functions, please see Table 4.

We have suggested two comparison tables for every test function. The first one is associated
with (|Ω(xr)|) mentioned in Table 2. On the other hand, the second one is related to |xr+1 − xr|
and the corresponding results are depicted in Table 3. In addition, we assume the estimated zero of
considered functions in the case where exact zero is not available, i.e., corrected by 1000 significant
figures to calculate |xr − ξ|. All the computations have been executed by adopting the programming
package Mathematica 11 with multiple precision arithmetic. Finally, b1(±b2) stands for b1 × 10(±b2) in
Tables 1–3.

Table 4. Test problems.

Ω(x) x0 Root(r)

Ω9(x) = sin x − x
2 ; [7] 1.5 1.895494267033980947144036

Ω10(x) = sin
(

2
x

)
+ 3x2 + e−x2 − 3; [3] 0.65 0.7929384316301793741678596

Ω11(x) = e−x cos(3x) + x − 2; [4] 1.6 1.878179124117988404113719

Ω12(x) = e−x − cos x; [8] 1
6 0

Ω13(z) = (x − 2)2 − log x − 33x; [27] 37.5 36.98947358294466986534473

4. Conclusions

We constructed a general optimal scheme of 16-order that is suitable for every optimal 8-order
iterative method/family of iterative methods provided the first sub-step employs classical Newton’s
method, unlike the earlier studies, where researchers suggested a high-order version or extension of
certain existing methods such as Ostrowski’s method or King’s method [28], etc. This means that we can
choose any iterative method/family of methods from [5,11–21], etc. to obtain further optimal 16-order
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scheme. The construction of the presented technique is based on the inverse interpolatory approach.
Our scheme also satisfies the conjecture of optimality of iterative methods given by Kung-Traub.
In addition, we compare our methods with the existing methods with same convergence order on
several of the nonlinear scalar problems. The obtained results in Tables 2 and 3 also illustrate the
superiority of our methods to the existing methods, despite choosing the same test problem and same
initial guess. Tables 1–3 confirm that smaller |Ω(xr)|, |xr+1 − xr| and simple asymptotic error terms
are related to our iterative methods. The superiority of our methods over the existing robust methods
may be due to the inherent structure of our technique with simple asymptotic error constants and
inverse interpolatory approach.
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Abstract: Here, we propose optimal fourth-order iterative methods for approximating multiple zeros
of univariate functions. The proposed family is composed of two stages and requires 3 functional
values at each iteration. We also suggest an extensive convergence analysis that demonstrated
the establishment of fourth-order convergence of the developed methods. It is interesting to note
that some existing schemes are found to be the special cases of our proposed scheme. Numerical
experiments have been performed on a good number of problems arising from different disciplines
such as the fractional conversion problem of a chemical reactor, continuous stirred tank reactor
problem, and Planck’s radiation law problem. Computational results demonstrates that suggested
methods are better and efficient than their existing counterparts.

Keywords: Multiple roots; Optimal iterative methods; Scalar equations; Order of convergence

1. Introduction

Importance of solving nonlinear problems is justified by numerous physical and technical
applications over the past decades. These problems arise in many areas of science and engineering.
The analytical solutions for such problems are not easily available. Therefore, several numerical
techniques are used to obtain approximate solutions. When we discuss about iterative solvers for
obtaining multiple roots with known multiplicity m ≥ 1 of scalar equations of the type g(x) = 0,
where g : D ⊆ R → R, modified Newton’s technique [1,2] (also known as Rall’s method) is the most
popular and classical iterative scheme, which is defined by

xs+1 = xs − m
g(xs)

g′(xs)
, s = 0, 1, 2, . . . . (1)

Given the multiplicity m ≥ 1 in advance, it converges quadratically for multiple roots. However,
modified Newton’s method would fail miserably if the initial estimate x0 is either far away from
the required root or the value of the first-order derivative is very small in the neighborhood of the
needed root. In order to overcome this problem, Kanwar et al. [3] considered the following one-point
iterative technique

xs+1 = xs − m
g(xs)

g′(xs)− λg(xs)
. (2)

One can find the classical Newton’s formula for λ = 0 and m = 1 in (2). The method (2) satisfies the
following error equation:

es+1 =

(
c1 − λ

m

)
e2

s + O(e3
s ), (3)

Symmetry 2019, 11, 526; doi:10.3390/sym11040526 www.mdpi.com/journal/symmetry133
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where es = xs − α , cj =
m!

(m + j)!
g(m+j)(α)

g(m)(α)
, j = 1, 2, 3, . . .. Here, α is a multiple root of g(x) = 0

having multiplicity m.
One-point methods are not of practical interest because of their theoretical limitations regarding

convergence order and efficiency index. Therefore, multipoint iterative functions are better applicants
to certify as efficient solvers. The good thing with multipoint iterative methods without memory for
scalar equations is that they have a conjecture related to order of convergence (for more information
please have a look at the conjecture [2]). A large community of researchers from the world wide
turn towards the most prime class of multipoint iterative methods and proposed various optimal
fourth-order methods (they are requiring 3 functional values at each iteration) [4–10] and non-optimal
methods [11,12] for approximating multiple zeros of nonlinear functions.

In 2013, Zhou et al. [13], presented a family of 4-order optimal iterative methods, defined
as follows: ⎧⎪⎪⎨

⎪⎪⎩
ws =xs − m

g(xs)

g′(xs)
,

xs+1 =ws − m
g(xs)

g′(xs)
Q(us),

(4)

where us =
(

g(ws)
g(xs)

) 1
m and Q : C → C is a weight function. The above family (4) requires two functions

and one derivative evaluation per full iteration.
Lee et al. in [14], suggested an optimal 4-order scheme, which is given by

⎧⎪⎪⎨
⎪⎪⎩

ws = xs − m
g(xs)

g′(xs) + λg(xs)
,

xs+1 = xs − mHg(us)
g(xs)

g′(xs) + 2λg(xs)
,

(5)

where us =
(

g(ws)
g(xs)

) 1
m , Hg(us) =

us(1 + (c + 2)us + ru2
s )

1 + cus
, λ, c, and r are free disposable parameters.

Very recently, Zafar et al. [15] proposed another class of optimal methods for multiple zeros
defined by ⎧⎪⎪⎨

⎪⎪⎩
ws = xs − m

g(xs)

g′(xs) + a1g(xs)
,

xs+1 = ws − mus H(us)
g(xs)

g′(xs) + 2a1g(xs)
,

(6)

where us =
(

g(ws)
g(xs)

) 1
m and a1 ∈ R. It can be seen that the family (5) is a particular case of (6).

We are interested in presenting a new optimal class of parametric-based iterative methods having
fourth-order convergence which exploit weight function technique for computing multiple zeros.
Our proposed scheme requires only three function evaluations

(
g(xs), g′(xs), and g(ws)

)
at each

iteration which is in accordance with the classical Kung-Traub conjecture. It is also interesting to note
that the optimal fourth-order families (5) and (6) can be considered as special cases of our scheme for
some particular values of free parameters. Therefore, the new scheme can be treated as more general
family for approximating multiple zeros of nonlinear functions. Furthermore, we manifest that the
proposed scheme shows a good agreement with the numerical results and offers smaller residual
errors in the estimation of multiple zeros.

Our presentation is unfolded in what follows. The new fourth-order scheme and its convergence
analysis is presented in Section 2. In Section 3, several particular cases are included based on the
different choices of weight functions employed at second step of the designed family. In addition,
Section 3, is also dedicated to the numerical experiments which illustrate the efficiency and accuracy
of the scheme in multi-precision arithmetic on some complicated real-life problems. Section 4, presents
the conclusions.
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2. Construction of the Family

Here, we suggest a new fourth-order optimal scheme for finding multiple roots having known
multiplicity m ≥ 1. So, we present the two-stage scheme as follows:

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

zn = ws − mus
g(xs)

g′(xs) + λ2g(xs)
Q(ts),

(7)

where Q : C → C is the weight function and holomorphic function in the neighborhood of origin with

us =
(

g(ws)
g(xs)

) 1
m and ts =

us
a1+a2us

and being λ1, λ2, a1 and a2 are free parameters.
In the following Theorem 1, we illustrate that how to construct weight function Q so that it arrives

at fourth-order without consuming any extra functional values.

Theorem 1. Let us assume that g : C → C is holomorphic function in the region containing the multiple zero
x = α with multiplicity m ≥ 1. Then, for a given initial guess x0, the iterative expression (7) reaches 4-order
convergence when it satisfies

Q(0) = 1, Q′(0) = 2a1, λ2 = 2λ1, and |Q′′(0)| < ∞. (8)

Proof. Let us assume that x = α is a multiple zero having known multiplicity m ≥ 1 of g(x). Adopting
Taylor’s series expansion of g(xs) and g′(xs) about α, we obtain

g(xs) =
g(m)(α)

m!
em

s

(
1 + c1es + c2e2

s + c3e3
s + c4e4

s + O(e5
s )

)
(9)

and

g′(xs) =
gm(α)

m!
em−1

s

(
m + c1(m + 1)es + c2(m + 2)e2

s + c3(m + 3)e3
s + c4(m + 4)e4

s + O(e5
s )

)
, (10)

respectively. Here, es = xs − α and cj =
m!

(m + j)!
g(m+j)(α)

g(m)(α)
, j = 1, 2, 3, . . ..

From the Equations (9) and (10), we obtain

g(xs)

g′(xs) + λ1g(xs)
=

es

m
+

(−λ1 − c1)

m2 e2
s +

(
c2

1 + mc2
1 − 2mc2 + 2c1λ1 + λ2

1
)

e3
s

m3 +
L1

m4 e4
s + O(e5

s ), (11)

where L1 =
(−c3

1 − 2mc3
1 − m2c3

1 + 4mc1c2 + 3m2c1c2 − 3m2c3 − 3c2
1λ1 − 2mc2

1λ1 + 4mc2λ1 − 3c1λ2
1 − λ3

1
)
.

Now, substituting (11) in the first substep of scheme (7), we get

ws − α =
(λ1 + c1)

m2 e2
s −

(
c2

1 + mc2
1 − 2mc2 + 2c1λ1 + λ2

1
)

e3
s

m2 +
L1

m3 e4
s + O(e5

s ). (12)

Using again Taylor’s series, we yield

g(ws) =g(m)(α)e2m
s

[( λ1+c1
m

)
m

m!
−
(

c1+λ1
m

)
m ((1 + m)c2

1 − 2mc2 + 2c1λ1 + λ2
1
)

es

m! (c1 + λ1)
+

1
m!

(
c1(c1 + λ1)

(
λ1+c1

m

)m

m(
λ1 + c1

m

)m B1
2m (c1 + λ1) 2 +

B2
m (c1 + λ1)

)
e2

s + O(e3
s )

]
,

(13)
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where

B1 = (−1 + m)
(
(1 + m)c2

1 − 2mc2 + 2c1λ1 + λ2
1

)
2,

B2 = (1 + m)2c3
1 + 3m2c3 + (3 + 2m)c2

1λ1 − 4mc2λ1 + λ3
1 + c1

(
−m(4 + 3m)c2 + 3λ2

1

)
.

(14)

Moreover,

us =
(c1 + λ1) es

m
−
(
(2 + m)c2

1 − 2mc2 + 3c1λ1 + λ2
1
)

e2
s

m2 +
γ1e3

s
2m3 + O(e4

s ), (15)

where

γ1 =
((

7 + 7m + 2m2
)

c3
1 + 5(3 + m)c2

1λ1 − 2c1

(
m(7 + 3m)c2 − 5λ2

1

)
+ 2

(
3m2c3 − 5mc2λ1 + λ3

1

))
.

Now, using the above expression (15), we get

ts =
(c1 + λ1)

ma1
es +

2

∑
i=1

Θje
j+1
s + O(e4

s ). (16)

where Θj = Θj(a1, a2, m, c1, c2, c3, c4).

Due to the fact that ts =
us

a1 + a2us
= O(es), therefore, it suffices to expand weight function Q(ts)

around the origin by Taylor’s series expansion up to 3-order term as follows:

Q(ts) ≈ Q(0) + Q′(0)ts +
1
2!

Q′′(0)t2
s +

1
3!

Q(3)(0)t3
s , (17)

where Q(k) represents the k-th derivative.
Adopting the expressions (9)–(17) in (7), we have

es+1 =
Ω1

m
e2

s +
Ω2

ma2
1

e3
s +

Ω3

2m3a2
1

e4
s + O(e5

s ). (18)

where
Ω1 = (−1 + Q(0))(c1 + λ1),

Ω2 = (−a1(1 + m) + a1(3 + m)Q(0)− Q′(0))c2
1 − 2a1m(−1 + Q(0))c2

+ c1
(
(−2a1 + 4a1Q(0)− 2Q′(0))λ1 + a1Q(0)λ2

)
+ λ1 ((a1(−1 + Q(0))

−Q′(0))λ1 + a1Q(0)λ2
)

.

(19)

It is clear from error Equation (18) that in order to have at least 4-order convergence. The coefficients
of e2

s and e3
s must vanish simultaneously. Therefore, inserting Q(0) = 1 in (19), we have

Ω2 = (2a1 − Q′(0))c1 − Q′(0)λ1 + a1λ2. (20)

Similarly, Ω2 = 0 implies that Q′(0) = 2a1 and λ2 = 2λ1.
Finally, using Equations (19) and (20) in the proposed scheme (7), we have

es+1 =
(c1 + λ1)

((
4a1a2 + a2

1(9 + m)− Q′′(0)
)

c2
1 − 2a2

1mc2 + 2
(
7a2

1 + 4a1a2 − Q′′(0)
)

c1λ1 + (4a1(a1 + a2)− Q′′(0))λ2
1
)

e4
s

2a2
1m3

+ O(e5
s ).

(21)

The consequence of the above error analysis is that the family (7) acquires 4-order convergence by
consuming only 3 functional values (viz. g(xs), g′(xs), and g(ws)) per full iteration. Hence, the proof
is completed.
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Some Particular Cases of the Suggested Class

We suggest some interesting particulars cases of (7) by choosing different forms of weight
function Q(ts) that satisfy the constrains of Theorem 1.

Let us assume the following optimal class of fourth-order methods by choosing weight function
directly from the Theorem 1:

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws − mus
g(xs)

g′(xs) + 2λ1g(xs)

[
1 + 2a1ts +

1
2

t2
s Q′′(0) + 1

3!
t3
s Q(3)(0)

]
,

(22)

where ts =
us

a1+a2us
, λ1, a1, a2, Q′′(0) and Q(3)(0) are free disposable variables.

Sub cases of the given scheme (22):

1. We assume that Q(ts) = 1 + 2a1ts +
μ
2 t2

s , in expression (22), we obtain

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws − mus

[
1 + 2a1ts +

μ

2
t2
s

] g(xs)

g′(xs) + 2λ1g(xs)
,

(23)

where μ ∈ R.

2. Considering the weight function Q(ts) = 1+ α1ts + α2t2
s +

α3t2
s

1+α4ts+α5t2
s

in expression (22), one gets

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws − mus

[
1 + α1ts + α2t2

s +
α3t2

s
1 + α4ts + α5t2

s

]
g(xs)

g′(xs) + 2λ1g(xs)
,

(24)

where α1 = 2a1, α2, α3, α4 and α5 are free parameters.

Case 2A: Substituting α2 = α3 = 1, α4 = 15 and α5 = 10 in (24), we obtain

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws − mus

[
1 + 2a1ts + t2

s +
t2
s

1 + 15ts + 10t2
s

]
g(xs)

g′(xs) + 2λ1g(xs)
.

(25)

Case 2B: Substituting α2 = α3 = 1, α4 = 2 and α5 = 1, in (24), we have

ws = xs − m
g(xs)

g′(xs) + λ1g(xs)
,

xs+1 = ws − mus

[
1 + 2a1ts + α2t2

s +
t2
s

1 + α4ts + t2
s

]
g(xs)

g′(xs) + 2λ1g(xs)
.

(26)

Remark 1. It is worth mentioning here that the family (6) can be captured as a special case for a1 = 1 and
a2 = 0 in the proposed scheme (22).

Remark 2. Furthermore, it is worthy to record that Q(ts) weight function plays a great character in the
development of fourth-order schemes. Therefore, it is customary to display different choices of weight functions,
provided they must assure all the constrains of Theorem 1. Hence, we have mentioned above some special cases
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of new fourth-order schemes (23), (24), (25) and (26) having simple body structures so that they can be easily
implemented in the numerical experiments.

3. Numerical Experiments

Here, we verify the computational aspects of the following methods: expression (23) for
(a1 = 1, a2 = 1, λ1 = 0, μ = 13), and expression (25) for (a1 = 1, a2 = −1, λ1 = 0)
denoted by (MM1) and (MM2), respectively, with some already existing techniques of the same
convergence order.

In this regard, we consider several test functions coming from real life problems and linear
algebra that are depicted in Examples 1–5. We make a contrast of them with existing optimal 4-order
methods, namely method (6) given by Zafar et al. [15] for H(us) = (1 + 2us +

k
2 u2

s ) with k = 11
and a1 = 0 denoted by (ZM). Also, family (5) proposed by Lee et al. [14] is compared by taking

Hg(us) = us(1 + us)2 for (c = 0, λ = m
2 , r = 1), and Hg(us) =

us(1−u2
s )

1−2us
for (c = −2, λ = m

2 , r = −1).
We denote these methods by (LM1) and (LM2), respectively.

We compare our iterative methods with the exiting optimal 4-order methods on the basis of xn

(approximated roots), |g(xs)| (residual error of the considered function), |xs+1 − xs| (absolute error
between two consecutive iterations), and the estimations of asymptotic error constants according

to the formula
∣∣∣∣ xs+1 − xs

(xs − xs−1)4

∣∣∣∣ are depicted in Tables 1–5. In order to minimize the round off errors,

we have considered 4096 significant digits. The whole numerical work have been carried out with
Mathematica 7 programming package. In Tables 1–5, the k1(±k2) stands for k1 × 10(±k2).

Example 1. We assume a 5 × 5 matrix, which is given by

A =

⎡
⎢⎢⎢⎢⎢⎣

29 14 2 6 −9
−47 −22 −1 −11 13
19 10 5 4 −8
−19 −10 −3 −2 8

7 4 3 1 −3

⎤
⎥⎥⎥⎥⎥⎦ .

We have the following characteristic equation of the above matrix:

g1(x) = (x − 2)4(x + 1).

It is straightforward to say that the function g1(x) has a multiple zero at x = 2 having four multiplicity.
The computational comparisons depicted in Table 1 illustrates that the new methods (MM1), (MM2) and

(ZM) have better results in terms of precision in the calculation of the multiple zero of g1(x). On the other
hands, the methods (LM1) and (LM2) fail to converge.

Example 2. (Chemical reactor problem):
We assume the following function (for more details please, see [16])

g2(x) = −5 log
[

0.4(1 − x)
0.4 − 0.5x

]
+

x
1 − x

+ 4.45977. (27)

The variable x serve as the fractional transformation of the specific species B in the chemical reactor. There will be
no physical benefits of the above expression (27) for either x < 0 or x > 1. Therefore, we are looking for a bounded
solution in the interval 0 ≤ x ≤ 1 and approximated zero is α ≈ 0.757396246253753879459641297929.
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Table 1. Convergence study of distinct iterative functions on g1(x).

Methods n xs |g(xs)| |xs+1 − xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 0.5 ∗ ∗
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

LM2

0 0.5 ∗ ∗
1 ∗ ∗ ∗
2 ∗ ∗ ∗
3 ∗ ∗ ∗

ZM

0 0.5 7.6(+0) 4.3(+0)
1 4.772004872217151226361127 3.4(+2) 2.8(+0) 4.613629651(−2)
2 2.012505802018268992557295 7.4(−8) 1.3(−2) 2.156703982(−4)
3 2.000000000014282551529598 1.2(−43) 1.4(−11) 5.839284100(−4)

MM1

0 0.5 7.6(+0) 3.8(+0)
1 4.260708441594529218722064 1.4(+2) 2.3(+0) 8.619134726(−2)
2 2.009364265674733970271046 2.3(−8) 9.4(−3) 3.645072355(−4)
3 2.000000000008902251900730 1.9(−44) 8.9(−12) 1.157723834(−3)

MM2

0 0.5 7.6(+0) 4.4(+0)
1 4.907580957752597082443289 4.2(+2) 2.9(+0) 4.04329177(−2)
2 2.017817158679257202528994 3.0(−7) 1.8(−2) 2.554989145(−4)
3 2.000000000144841263588776 4.3(−39) 1.4(−10) 1.437270553(−3)

∗: denotes the case of failure.

We can see that the new methods possess minimal residual errors and minimal errors difference between the
consecutive approximations in comparison to the existing ones. Moreover, the numerical results of convergence
order that coincide with the theoretical one in each case.

Example 3. (Continuous stirred tank reactor (CSTR)):
In our third example, we assume a problem of continuous stirred tank reactor (CSTR). We observed the following
reaction scheme that develop in the chemical reactor (see [17] for more information):

K1 + P → K2

K2 + P → K3

K3 + P → K4

K4 + P → K5,

(28)

where the components T and K1 are fed at the amount of q-Q and Q, respectively, to the chemical reactor.
The above model was studied in detail by Douglas [18] in order to find a good and simple system that can control
feedback problem. Finally, he transferred the above model to the following mathematical expression:

KH
2.98(t + 2.25)

(t + 1.45)(t + 4.35)(t + 2.85)2 = −1, (29)

where KH denotes for the gaining proportional controller. The suggested control system is balanced with the
values of KH. If we assume KH = 0, we obtain the poles of the open-loop transferred function as the solutions of
following uni-variate equation:

g3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875 = 0 (30)

given as: x = −2.85,−1.45, −4.35, −2.85. It is straightforward to say that we have one multiple root
x = −2.85, having known multiplicity 2. The computational results for Example 3 are displayed in Table 3.
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Table 2. Convergence study of distinct iterative functions on g2(x).

Methods n xs |g(xs)| |xs+1 − xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 0.76 2.2(−1) 2.6(−3)
1 0.7573968038178290616303393 4.4(−5) 5.6(−7) 5.769200720(+18)
2 0.7573962462537538794608754 9.8(−20) 1.2(−21) 1.27693413(+4)
3 0.7573962462537538794596413 2.4(−78) −3.0(−80) 1.277007736(+4)

LM2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573964149978655308754320 1.3(−5) 1.7(−7) 2.018201446(+20)
2 0.7573962462537538794596446 2.6(−22) 3.3(−24) 4.015765605(+3)
3 0.7573962462537538794596413 3.6(−89) 4.5(−91) 4.15789304(+3)

ZM

0 0.76 2.2(−1) 2.6(−3)
1 0.757396052854315818682498 1.5(−5) 1.9(−7) 1.382402073(+20)
2 0.7573962462537538794596326 6.9(−22) 8.7(−24) 6.198672349(+3)
3 0.7573962462537538794596413 2.8(−87) 3.5(−89) 6.198509111(+3)

MM1

0 0.76 2.2(−1) 2.6(−3)
1 0.7573962756803076928764181 2.3(−6) 2.9(−8) 3.924476992(+22)
2 0.7573962462537538794596413 1.3(−25) 1.7(−27) 2.210559498(+3)
3 0.7573962462537538794596413 1.3(−102) 1.7(−104) 2.210597968(+3)

MM2

0 0.76 2.2(−1) 2.6(−3)
1 0.7573963165291620208634917 5.6(−6) 7.0(−8) 2.881309229(+21)
2 0.7573962462537538794596413 4.2(−25) 5.3(−113) 2.165675770(+2)
3 0.7573962462537538794596413 1.3(−101) 1.7(−103) 2.166423965(+2)

Table 3. Convergence study of distinct iterative functions on g3(x).

Methods n xs |g(xs)| |xs+1 − xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 −3.0 4.7(−2) 1.8(−1)
1 −2.817626610201641938500885 2.2(−3) 3.2(−2) 2.947357688(+4)
2 −2.849999804254456528880326 8.0(−14) 2.0(−7) 1.782172267(−1)
3 −2.850000000000000000000000 1.9(−55) 3.0(−28) 2.052962276(−1)

LM2

0 −3.0 4.7(−2) 1.8(−1)
1 −2.817286067962330455509242 2.2(−3) 3.3(−2) 2.856287648(+4)
2 −2.850000013787746242734760 4.0(−16) 1.4(−8) 1.203820035(−2)
3 −2.849999999999999818950521 6.9(−32) 1.8(−16) 5.009843150(+15)

ZM

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808068144375821316837 1.0(−5) 2.2(−3) 9.49657081(+7)
2 −2.850000238882998104304060 1.2(−13) 2.4(−7) 1.034398150(+4)
3 −2.850000000000000000000000 7.2(−58) 1.8(−29) 5.668907061(−3)

MM1

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808129810423347656086 1.0(−5) 2.2(−3) 9.497358601(+7)
2 −2.850000238869272754660930 1.2(−13) 2.4(−7) 1.034455136(+4)
3 −2.850000000000000000000000 7.2(−58) 1.9(−29) 5.682404331(−3)

MM2

0 −3.0 4.7(−2) 1.5(−1)
1 −2.847808157132816544128276 1.0(−5) 2.2(−3) 9.497713760(+7)
2 −2.850000238863191571180946 1.2(−13) 2.4(−7) 1.034480386(+4)
3 −2.850000000000000000000000 7.2(−58) 1.9(−29) 5.689152966(−3)

Example 4. We consider another uni-variate function from [14], defined as follows:

g4(x) =
(

sin−1 ( 1
x
− 1

)
+ ex2 − 3

)2
.

The function g4 has a multiple zero at x = 1.05655361033535, having known multiplicity m = 2.
Table 4 demonstrates the computational results for problem g4. It can be concluded from the numerical

tests that results are very good for all the methods, but lower residuals error belongs to newly proposed methods.
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Table 4. Convergence study of distinct iterative functions on g4(x).

Methods n xs |g(xs)| |xs+1 − xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 1.3 4.8(+0) 2.2(−1)
1 1.084514032248007059677119 2.7(−2) 2.8(−2) 4.571366396(+4)
2 1.056574385341714914084426 1.3(−8) 2.1(−5) 3.409239504(+1)
3 1.056553610335354902748667 2.0(−33) 8.1(−18) 4.373385687(+1)

LM2

0 1.3 4.8(+0) 2.3(−1)
1 1.065392954832001332413064 2.5(−3) 8.8(−3) 1.447890326(+6)
2 1.056553694873544532804184 2.2(−13) 8.5(−8) 1.384807214(+1)
3 1.056553610335354894601954 1.9(−53) 7.8(−28) 1.519374809(+1)

ZM

0 1.3 4.8(+0) 2.3(−1)
1 1.067135979311830779677125 3.6(−3) 1.1(−2) 8.438277939(+5)
2 1.056553548780121516047790 1.2(−13) 6.2(−8) 4.908212761(+0)
3 1.056553610335369488358073 6.6(−27) 1.5(−14) 1.016498504(+15)

MM1

0 1.3 4.8(+0) 2.3(−1)
1 1.073753193668000438771431 9.8(−3) 1.7(−2) 1.965340386(+5)
2 1.056553944712634749549453 3.5(−12) 3.3(−7) 3.821191729(+00)
3 1.056553610335354894601954 2.7(−54) 3.0(−28) 2.376288351(−2)

MM2

0 1.3 4.8(+0) 2.3(−1)
1 1.069121742029550523175482 5.1(−3) 1.3(−2) 5.037130656(+5)
2 1.056553743909213498922959 5.5(−13) 1.3(−7) 5.353737131(+00)
3 1.056553610335354894601954 3.9(−53) 1.1(−27) 3.547176655(+00)

Example 5. (Planck’s radiation law problem):

Here, we chosen the well-known Planck’s radiation law problem [19], that addresses the density of energy
in an isothermal blackbody, which is defined as follows:

Ω(δ) =
8πchδ−5

e
ch

δBT − 1
, (31)

where the parameters δ, T, h and c denote as the wavelength of the radiation, absolute temperature of the
blackbody, Planck’s parameter and c is the light speed, respectively. In order to find the wavelength δ, then we
have to calculate the maximum energy density of Ω(δ).

In addition, the maximum value of a function exists on the critical points (Ω′(δ) = 0), then we have

ch
δBT e

ch
δBT

e
ch

δBT − 1
= 5, (32)

where B is the Boltzmann constant. If x = ch
δBT , then (32) is satisfied when

g5(x) =
x
5
− 1 + e−x = 0. (33)

Therefore, the roots of g5(x) = 0, provide the maximum wavelength of radiation δ by adopting the
following technique:

δ ≈ ch
αBT

, (34)

where α is a solution of (33). Our desired root is x = 4.9651142317442 with multiplicity m = 1.
The computational results for g5(x) = 0, displayed in Table 5. We concluded that methods (MM1) and

(MM2) have small values of residual errors in comparison to the other methods.
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Table 5. Convergence study of distinct iterative functions on g5(x).

Methods n xs |g(xs)| |xs+1 − xs|
∣∣∣ xs+1−xs
(xs−xs−1)4

∣∣∣
LM1

0 5.5 1.0(−1) 5.3(−1)
1 4.970872146931603546368908 1.1(−3) 5.8(−3) 5.238466809(+6)
2 4.965114231914843999162688 3.3(−11) 1.7(−10) 1.55180113(−1)
3 4.965114231744276303698759 2.6(−41) 1.3(−40) 1.567247236(−1)

LM2

0 5.5 1.0(−1) 5.4(−1)
1 4.956468415831016632868463 1.7(−3) 8.6(−3) 1.547326676(+6)
2 4.965114231063736461886677 1.3(−10) 6.8(−10) 1.217950829(−1)
3 4.965114231744276303698759 5.0(−39) 2.6(−38) 1.213771079(−1)

ZM

0 5.5 1.0(−1) 5.3(−1)
1 4.965118934170088855124237 9.1(−7) 4.7(−6) 9.616878784(−15)
2 4.965114231744276303698759 1.0(−26) 5.2(−26) 1.059300624(−4)
3 4.965114231744276303698759 1.5(−106) 7.6(−106) 1.059306409(−4)

MM1

0 5.5 1.0(−1) 5.3(−1)
1 4.965119103136732738326681 9.4(−7) 4.9(−6) 8.650488681(+15)
2 4.965114231744276303698759 1.2(−26) 6.3(−26) 1.118336091(−4)
3 4.965114231744276303698759 3.4(−106) 1.8(−105) 1.118342654(−4)

MM2

0 5.5 1.0(−1) 5.3(−1)
1 4.965119178775304742593802 9.5(−7) 4.9(−6) 8.259734679(+15)
2 4.965114231744276303698759 1.3(−26) 6.9(−26) 1.147853783(−4)
3 4.965114231744276303698759 4.9(−106) 2.6(−105) 1.147860777(−4)

4. Conclusions

In this study, we proposed a wide general optimal class of iterative methods for approximating
multiple zeros of nonlinear functions numerically. Weight functions based on function-to-function
ratios and free parameters are employed at second step of the family which enable us to achieve
desired convergence order four. In the numerical section, we have incorporated variety of real life
problems to confirm the efficiency of the proposed technique in comparison to the existing robust
methods. The computational results demonstrates that the new methods show better performance
in terms of precision and accuracy for the considered test functions. Finally, we point out that high
convergence order of the proposed class, makes it not only interesting from theoretical point of view
but also in practice.
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Abstract: Many higher order multiple-root solvers that require derivative evaluations are available
in literature. Contrary to this, higher order multiple-root solvers without derivatives are difficult to
obtain, and therefore, such techniques are yet to be achieved. Motivated by this fact, we focus on
developing a new family of higher order derivative-free solvers for computing multiple zeros by
using a simple approach. The stability of the techniques is checked through complex geometry shown
by drawing basins of attraction. Applicability is demonstrated on practical problems, which illustrates
the efficient convergence behavior. Moreover, the comparison of numerical results shows that the
proposed derivative-free techniques are good competitors of the existing techniques that require
derivative evaluations in the iteration.
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1. Introduction

Solving nonlinear equations is an important task in numerical analysis and has numerous
applications in engineering, mathematical biology, physics, chemistry, medicine, economics, and other
disciplines of applied sciences [1–3]. Due to advances in computer hardware and software, the problem
of solving the nonlinear equations by computational techniques has acquired an additional advantage
of handling the lengthy and cumbersome calculations. In the present paper, we consider iterative
techniques for computing multiple roots, say α, with multiplicity m of a nonlinear equation f (x) = 0,
that is f (j)(α) = 0, j = 0, 1, 2, . . . , m − 1 and f (m)(α) = 0. The solution α can be calculated as a fixed
point of some function M : D ⊂ C → C by means of the fixed point iteration:

xn+1 = M(xn), n ≥ 0 (1)

where x ∈ D is a scalar.
Many higher order techniques, based on the quadratically-convergent modified Newton’s scheme

(see [4]):

xn+1 = xn − m
f (xn)

f ′(xn)
(2)

have been proposed in the literature; see, for example, [5–20] and the references therein. The techniques
based on Newton’s or the Newton-like method require the evaluations of derivatives of first order.
There is another class of multiple-root techniques involving derivatives of both the first and second
order; see [5,21]. However, higher order derivative-free techniques to handle the case of multiple roots
are yet to be explored. The main problem of developing such techniques is the difficulty in finding their
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Symmetry 2019, 11, 518

convergence order. Derivative-free techniques are important in the situations when the derivative of
the function f is difficult to compute or is expensive to obtain. One such derivative-free technique is the
classical Traub–Steffensen method [22]. The Traub–Steffensen method actually replaces the derivative
in the classical Newton’s method with a suitable approximation based on the difference quotient,

f ′(xn) � f (xn + β f (xn))− f (xn)

β f (xn)
, β ∈ R− {0}

or writing more concisely:
f ′(xn) � f [xn, tn]

where tn = xn + β f (xn) and f [xn, tn] =
f (tn)− f (xn)

tn − xn
is a first order divided difference. In this way,

the modified Newton’s scheme (2) assumes the form of the modified Traub–Steffensen scheme:

xn+1 = xn − m
f (xn)

f [xn, tn]
. (3)

The Traub–Steffensen scheme (3) is a noticeable improvement of Newton’s scheme, since it
maintains the quadratic convergence without using any derivative.

The aim of the present contribution is to develop derivative-free multiple-root iterative techniques
with high computational efficiency, which means the techniques that may attain a high convergence
order using as small a number of function evaluations as possible. Consequently, we develop a family
of derivative-free iterative methods of seventh order convergence that requires only four function
evaluations per full iteration. The scheme is composed of three steps, out of which the first step is
the classical Traub–Steffensen iteration (3) and the last two steps are Traub–Steffensen-like iterations.
The methodology is based on the simple approach of using weight functions in the scheme. Many
special cases of the family can be generated depending on the different forms of weight functions.
The efficacy of the proposed methods is tested on various numerical problems of different natures.
In the comparison with existing techniques requiring derivative evaluations, the new derivative-free
methods are observed to be computationally more efficient.

We summarize the contents of the rest of paper. In Section 2, the scheme of the seventh order
multiple-root solvers is developed and its order of convergence is determined. In Section 3, the basins
of attractors are presented to check the stability of new methods. To demonstrate the performance and
comparison with existing techniques, the new techniques are applied to solve some practical problems
in Section 4. Concluding remarks are given in Section 5.

2. Development of the Family of Methods

Given a known multiplicity m ≥ 1, we consider a three-step iterative scheme with the first step as
the Traub–Steffensen iteration (3) as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − m
f (xn)

f [xn, tn]

zn = yn − muH(u)
f (xn)

f [xn, tn]

xn+1 = zn − mvG(u, w)
f (xn)

f [xn, tn]

(4)

where u =
( f (yn)

f (xn)

) 1
m , v =

( f (zn)

f (xn)

) 1
m , and w =

( f (zn)

f (yn)

) 1
m . The function H(u) : C → C is analytic

in a neighborhood of 0, and the function G(u, w) : C×C → C is holomorphic in a neighborhood of
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(0, 0). Note that second and third steps are weighted by the factors H(u) and G(u, w), so these factors
are called weight factors or weight functions.

We shall find conditions under which the scheme (4) achieves convergence order as high as
possible. In order to do this, let us prove the following theorem:

Theorem 1. Let f : C → C be an analytic function in a region enclosing a multiple zero α with multiplicity
m. Assume that initial guess x0 is sufficiently close to α, then the iteration scheme defined by (4) possesses the
seventh order of convergence, provided that the following conditions are satisfied:{

H(0) = 1, H′(0) = 2 H′′(0) = −2, and |H′′′(0)| < ∞
G(0, 0) = 1, G10(0, 0) = 2, G01(0, 0) = 1, G20(0, 0) = 0 and |G11(0, 0)| < ∞

where Gij(0, 0) =
∂i+j

∂ui∂wj G(u, w)|(0,0).

Proof. Let the error at the nth iteration be en = xn − α. Using the Taylor expansion of f (xn) about α,
we have that:

f (xn) =
f (m)(α)

m!
em

n +
f (m+1)(α)

(m + 1)!
em+1

n +
f (m+2)(α)

(m + 2)!
em+2

n +
f (m+3)(α)

(m + 3)!
em+3

n +
f (m+4)(α)

(m + 4)!
em+4

n

+
f (m+5)(α)

(m + 5)!
em+5

n +
f (m+6)(α)

(m + 6)!
em+6

n +
f (m+7)(α)

(m + 7)!
em+7

n + O
(
em+8

n
)

or:

f (xn) =
f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)

(5)

where Ck =
m!

(m + k)!
f (m+k)(α)

f (m)(α)
for k ∈ N.

Using (5) in tn = xn + β f (xn), we obtain that:

tn − α = xn − α + β f (xn)

= en +
β f (m)(α)

m!
em

n
(
1 + C1en + C2e2

n + C3e3
n + C4e4

n + C5e5
n + C6e6

n + C7e7
n + O(e8

n)
)
.

(6)

Taylor’s expansion of f (tn) about α is given as:

f (tn) =
f (m)(α)

m!
(tn − α)m(1 + C1(tn − α) + C2(tn − α)2 + C3(tn − α)3 + C4(tn − α)4

+ C5(tn − α)5 + C6(tn − α)6 + C7(tn − α)7 + O((tn − α)8)
)
.

(7)

By using Equations (5)–(7) in the first step of (4), after some simple calculations, it follows that:

yn − α =
C1

m
e2

n +
2mC2 − (m + 1)C2

1
m2 e3

n +
1

m3

(
(m + 1)2C2

1 + m(4 + 3m)C1C2 − 3m2C3
)
e4

n +
3

∑
i=1

ωiei+4
n + O(e8

n) (8)

where ωi = ωi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7. The expressions of ωi are very
lengthy, so they are not written explicitly.

Taylor’s expansion of f (yn) about α is given by:

f (yn) =
f (m)(α)

m!

(C1

m

)m
e2m

n

(
1 +

2C2m − C2
1(m + 1)

C1
en +

1
2mC2

1

(
(3 + 3m + 3m2 + m3)C4

1

− 2m(2 + 3m + 2m2)C2
1C2 + 4(−1 + m)m2C2

2 + 6m2C1C3
)
e2

n +
4

∑
i=1

ω̄iei+2
n + O(e8

n)
) (9)
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where ω̄i = ω̄i(m, C1, C2, . . . , C7).
By using (5) and (9), we get the expression of u as:

u =
C1

m
en +

2C2m − C2
1(m + 2)

m2 e2
n +

5

∑
i=1

ηiei+2
n + O(e8

n) (10)

where ηi = ηi(m, C1, C2, . . . , C7) are given in terms of m, C1, C2, . . . , C7 with one explicitly-written

coefficient η1 =
1

2m3

(
C3

1(2m2 + 7m + 7) + 6C3m2 − 2C2C1m(3m + 7)
)
.

We expand the weight function H(u) in the neighborhood of 0 by the Taylor series, then we
have that:

H(u) ≈ H(0) + uH′(0) + 1
2

u2H′′(0) + 1
6

u3H′′′(0). (11)

Inserting Equations (5), (9), and (11) in the second step of Scheme (4) and simplifying,

zn − α = − A
m

C1e2
n +

1
m2

(− 2mAC2 + C2
1(−1 + mA + 3H(0)− H′(0))

)
e3

n

+
1

2m3

(− 6Am2C3 + 2mC1C2(−4 + 3Am + 11H(0)− 4H′(0)) + C3
1(2 − 2Am2

− 13H(0) + 10H′(0) + m(4 − 11H(0) + 4H′(0))− H′′(0))
)
e4

n +
3

∑
i=1

γiei+4
n + O(e8

n)

(12)

where A = −1 + H(0) and γi = γi(m, H(0), H′(0), H′′(0), H′′′(0), C1, C2, . . . , C7).
In order to attain higher order convergence, the coefficients of e2

n and e3
n should be simultaneously

equal to zero. That is possible only for the following values of H(0) and H′(0):

H(0) = 1, H′(0) = 2. (13)

By using the above values in (12), we obtain that:

zn − α =
−2mC1C2 + C3

1(9 + m − H′′(0))
2m3 e4

n +
3

∑
i=1

γiei+4
n + O(e8

n). (14)

Expansion of f (zn) about α leads us to the expression:

f (zn) =
f (m)(α)

m!
(zn − α)m(1 + C1(zn − α) + C2(zn − α)2 + O((zn − α)3)

)
. (15)

From (5), (9), and (15), we get the expressions of v and w as:

v =
(9 + m)C3

1 − 2mC1C2

2m3 e3
n +

4

∑
i=1

τiei+3
n + O(e8

n) (16)

and:

w =
(9 + m − H′′(0))C2

1 − 2mC2

2m3 e2
n +

5

∑
i=1

ςiei+2
n + O(e8

n) (17)

where τi and ςi are some expressions of m, H′′(0), H′′′(0), C1, C2, . . . , C7.
Expanding the function G(u, w) in the neighborhood of origin (0, 0) by Taylor series:

G(u, w) ≈ G00(0, 0) + uG10(0, 0) +
1
2

u2G20(0, 0) + w(G01(0, 0) + uG11(0, 0)) (18)
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where Gij =
∂i+j

∂ui∂wj G(u, w)|(0,0).

Then by substituting (5), (16), (17), and (18) into the last step of Scheme (4), we obtain the
error equation:

en+1 =
1

2m3

(
(−1 + G00(0, 0))C1

(
2mC1 − (9 + m − H′′(0))C2

1
))

e4
n +

3

∑
i=1

ξiei+4
n + O(e8

n) (19)

where ξi = ξi(m, H′′(0), H′′′(0), G00, G01, G10, G20, G11, C1, C2, . . . , C7).
It is clear from Equation (19) that we will obtain at least fifth order convergence if we have

G00(0, 0) = 1. Moreover, we can use this value in ξ1 = 0 to obtain:

G10(0, 0) = 2. (20)

By using G00 = 1 and (20) in ξ2 = 0, the following equation is obtained:

C1
(
2mC2 − C2

1(9 + m − H′′(0))
)(− 2mC2(−1 + G01(0, 0)) + C2

1(−11 + m(−1 + G01(0, 0))

− (−9 + H′′(0))G01(0, 0) + G20(0, 0))
)
= 0

which further yields:
G01(0, 0) = 1, G20(0, 0) = 0 and H′′(0) = −2.

Using the above values in (19), the final error equation is given by:

en+1 =
1

360m6

(
360m3((47 + 5m)C3

2 − 6mC2
3 − 10mC2C4

)
+ 120m3C1

(
(623 + 78m)C2C3

− 12mC5
)− 60m2C3

1C3

(
1861 + 1025m + 78m2 + 12H′′′(0)

)
+ 10mC4

1C2
(
32383

+ 9911m2 + 558m3 + 515H′′′(0) + 396G11(0, 0) + 36m
(
900 + 6H′′′(0) + G11(0, 0)

))
− 60m2C2

1

(
− 6m(67 + 9m)C4 + C2

2
(
3539 + 1870m + 135m2 + 24H′′′(0) + 6G11(0, 0)

))
− C6

1

(
95557 + 20605m + 978m4 + 2765H′′′(0) + 10890G11(0, 0) + m2(90305 + 600H′′′(0)

+ 90G11(0, 0)) + 5m(32383 + 515H′′′(0) + 396G11(0, 0))
))

e7
n + O(e8

n).

Hence, the seventh order convergence is established.

Forms of the Weight Function

Numerous special cases of the family (4) are generated based on the forms of weight functions
H(u) and G(u, w) that satisfy the conditions of Theorem 1. However, we restrict ourselves to simple
forms, which are given as follows:

I. Some particular forms of H(u)

Case I(a). When H(u) is a polynomial weight function, e.g.,

H(u) = A0 + A1u + A2u2.

By using the conditions of Theorem 1, we get A0 = 1, A1 = 2 and A2 = −1. Then, H(u) becomes:

H(u) = 1 + 2u − u2.
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Case I(b). When H(u) is a rational weight function, e.g.,

H(u) =
1 + A0u

A1 + A2u
.

Using the conditions of Theorem 1, we get that A0 =
5
2

, A1 = 1, and A2 =
1
2

. Therefore,

H(u) =
2 + 5u
2 + u

.

Case I(c). When H(u) is a rational weight function, e.g.,

H(u) =
1 + A0u + A1u2

1 + A2u
.

Using the conditions of Theorem 1, then we get A0 = 3, A1 = 2, and A2 = 1. H(u) becomes:

H(u) =
1 + 3u + u2

1 + u
.

Case I(d). When H(u) is a rational function of the form:

H(u) =
1 + A0u

1 + A1u + A2u2 .

Using the conditions of Theorem 1, we get A0 = 1, A1 = −1, and A2 = 1. Then,

H(u) =
1 + u

1 − u + 3u2 .

II. Some particular forms of G(u, w)

Case II(a). When G(u, w) is a polynomial weight function, e.g.,

G(u, w) = A0 + A1u + A2u2 + (A3 + A4u + A5u2)w.

Using the conditions of Theorem 1, then we get A0 = 1, A1 = 2, A2 = 0, and A3 = 1. Therefore,
G(u, w) becomes:

G(u, w) = 1 + 2u + (1 + A4u + A5u2)w

where A4 and A5 are free parameters.
Case II(b). When G(u, w) is a rational weight function, e.g.,

G(u, w) =
B0 + B1u + B2w + B3uw
1 + A1u + A2w + A3uw

.

Using the conditions of Theorem 1, we have B0 = 1, A1 = 2, B1 = 2, A2 = 0, and B2 = 1. Then,

G(u, w) =
1 + 2u + w + B3uw

1 + A3uw

where A3 and B3 are free parameters.
Case II(c). When G(u, w) is the sum of two weight functions H1(u) and H2(w). Let H1(u) = A0 +

uA1 + u2 A2 and H2(u) = B0 + wB1 + w2B2, then G(u, w) becomes:

G(u, w) = A0 + A1u + A2u2 + B0 + B1w + B2w2.
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By using the conditions of Theorem 1, we get:

G(u, w) = 1 + 2u + w + B2w2

where B2 is a free parameter.
Case II(d). When G(u, w) is the sum of two rational weight functions, that is:

G(u, w) =
A0 + A1u
1 + A2u

+
B0 + B1w
1 + B2w

.

By using the conditions of Theorem 1, we obtain that:

G(u, w) = 2u +
1

1 − w
.

Case II(e). When G(u, w) is product of two weight functions, that is:

G(u, w) =
A0 + A1u
1 + A2u

× B0 + B1w
1 + B2w

.

Using the conditions of Theorem 1, then we get:

G(u, w) = (1 + 2u)(1 + w).

3. Complex Dynamics of Methods

Here, our aim is to analyze the complex dynamics of the proposed methods based on the visual
display of the basins of attraction of the zeros of a polynomial p(z) in the complex plane. Analysis
of the complex dynamical behavior gives important information about the convergence and stability
of an iterative scheme. Initially, Vrscay and Gilbert [23] introduced the idea of analyzing complex
dynamics. Later on, many researchers used this concept in their work, for example (see [24–26] and
the references therein). We choose some of the special cases (corresponding to the above forms of H(u)
and G(u, w)) of family (4) to analyze the basins. Let us choose the combinations of special Cases II(c)
(for B2 = 1) and II(d) with I(a), I(b), I(c), and I(d) in (4) and denote the corresponding new methods by
NM-i(j), i = 1, 2 and j = a, b, c, d.

We take the initial point as z0 ∈ D, where D is a rectangular region in C containing all the roots of
p(z) = 0. The iterative methods starting at a point z0 in a rectangle either converge to the zero of the
function p(z) or eventually diverge. The stopping criterion considered for convergence is 10−3 up to a
maximum of 25 iterations. If the desired tolerance is not achieved in 25 iterations, we do not continue
and declare that the iterative method starting at point z0 does not converge to any root. The strategy
adopted is the following: A color is assigned to each starting point z0 in the basin of attraction of a zero.
If the iteration starting from the initial point z0 converges, then it represents the basins of attraction
with that particular color assigned to it, and if it fails to converge in 25 iterations, then it shows the
black color.

To view complex geometry, we analyze the attraction basins for the methods NM-1(a–d) and
NM-2(a–d) on the following two polynomials:

Problem 1. In the first example, we consider the polynomial p1(z) = (z2 − 1)2, which has zeros {±1} with
multiplicity two. In this case, we use a grid of 400 × 400 points in a rectangle D ∈ C of size [−2, 2]× [−2, 2]
and assign the color green to each initial point in the basin of attraction of zero ‘ − 1′ and the color red to each
point in the basin of attraction of zero ‘1′. Basins obtained for the methods NM-1(a–d) and NM-2(a–d) are
shown in Figures 1–4 corresponding to β = 0.01, 0.002. Observing the behavior of the methods, we see that
the method NM-2(d) possesses a lesser number of divergent points and therefore has better stability than the
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remaining methods. Notice that there is a small difference in the basins for the rest of the methods with the same
value of β. Notice also that the basins are becoming wider as parameter β assumes smaller values.
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� �

�

�

NM-1(b).
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Figure 1. Basins of attraction for NM-1 (for β = 0.01) in polynomial p1(z).
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Figure 2. Basins of attraction for NM-1 (for β = 0.002) in polynomial p1(z).
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Figure 3. Basins of attraction for NM-2 (for β = 0.01) in polynomial p1(z).
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Figure 4. Basins of attraction for NM-2 (for β = 0.002) in polynomial p1(z).

Problem 2. Let us take the polynomial p2(z) = (z3 + z)3 having zeros {0,±i} with multiplicity three. To see
the dynamical view, we consider a rectangle D = [−2, 2]× [−2, 2] ∈ C with 400 × 400 grid points and allocate
the colors red, green, and blue to each point in the basin of attraction of −i, 0, and i, respectively. Basins for
this problem are shown in Figures 5–8 corresponding to parameter choices β = 0.01, 0.002 in the proposed
methods. Observing the behavior, we see that again, the method NM-2(d) has better convergence behavior due to
a lesser number of divergent points. Furthermore, observe that in each case, the basins are becoming larger with
the smaller values of β. The basins in the remaining methods other than NM-2(d) are almost the same.
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Figure 5. Basins of attraction for NM-1 (for β = 0.01) in polynomial p2(z).

� �

�

NM-1(a).
� �

�

�

NM-1(b).
� �

�

NM-1(c).
� �

�

�

NM-1(d).

Figure 6. Basins of attraction for NM-1 (for β = 0.002) in polynomial p2(z).
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Figure 7. Basins of attraction for NM-2 (for β = 0.01) in polynomial p2(z).
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Figure 8. Basins of attraction for NM-2 (for β = 0.002) in polynomial p2(z).

From the graphics, we can easily observe the behavior and applicability of any method. If we
choose an initial guess z0 in a region wherein different basins of attraction touch each other, it is difficult
to predict which root is going to be attained by the iterative method that starts from z0. Therefore,
the choice of z0 in such a region is not a good one. Both black regions and the regions with different
colors are not suitable to assume the initial guess as z0 when we are required to achieve a particular
root. The most intricate geometry is between the basins of attraction, and this corresponds to the cases
where the method is more demanding with respect to the initial point. We conclude this section with a
remark that the convergence behavior of the proposed techniques depends on the value of parameter
β. The smaller the value of β is, the better the convergence of the method.
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4. Numerical Examples and Discussion

In this section, we implement the special cases NM-1(a–d) and NM-2(a–d) that we have considered
in the previous section of the family (4), to obtain zeros of nonlinear functions. This will not only
illustrate the methods’ practically, but also serve to test the validity of theoretical results. The theoretical
order of convergence is also confirmed by calculating the computational order of convergence (COC)
using the formula (see [27]):

COC =
ln |(xn+1 − α)/(xn − α)|
ln |(xn − α)/(xn−1 − α)| .

The performance is compared with some well-known higher order multiple-root solvers such as
the sixth order methods by Geum et al. [8,9], which are expressed below:

First method by Geum et al. [8]: ⎧⎪⎪⎨
⎪⎪⎩

yn = xn − m
f (xn)

f ′(xn)

xn+1 = yn − Q f (u, s)
f (yn)

f ′(yn)

(21)

where u =
( f (yn)

f (xn)

) 1
m and s =

( f ′(yn)

f ′(xn)

) 1
m − 1 , and Q f : C2 → C is a holomorphic function in the

neighborhood of origin (0, 0). The authors have also studied various forms of the function Q f leading
to sixth order convergence of (21). We consider the following four special cases of function Q f (u, s) in
the formula (21) and denote the corresponding methods by GKN-1(j), j = a, b, c, d:

(a) Q f (u, s) = m(1 + 2(m − 1)(u − s)− 4us + s2)

(b) Q f (u, s) = m(1 + 2(m − 1)(u − s)− u2 − 2us)

(c) Q f (u, s) =
m + au

1 + bu + cs + dus
,

where a =
2m

m − 1
, b = 2 − 2m, c =

2(2 − 2m + m2)

m − 1
, and d = −2m(m − 1)

(d) Q f (u, s) =
m + a1u

1 + b1u + c1u2
1

1 + d1s
,

where a1 =
2m(4m4 − 16m3 + 31m2 − 30m + 13

(m − 1)(4m2 − 8m + 7)
, b1 =

4(2m2 − 4m + 3)
(m − 1)(4m2 − 8m + 7)

,

c1 = −4m2 − 8m + 3
4m2 − 8m + 7

, and d1 = 2(m − 1).

Second method by Geum et al. [9]: ⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yn = xn − m
f (xn)

f ′(xn)

zn = xn − mGf (u)
f (xn)

f ′(xn)

xn+1 = xn − mK f (u, v)
f (xn)

f ′(xn)

(22)

where u =
( f (yn)

f (xn)

) 1
m and v =

( f (zn)

f (xn)

) 1
m . The function Gf : C → C is analytic in a neighborhood

of 0, and K f : C2 → C is holomorphic in a neighborhood of (0, 0). Numerous cases of Gf and K f
have been proposed in [9]. We consider the following four special cases and denote the corresponding
methods by GKN-2(j), j = a, b, c, d:

(a) Q f (u) =
1 + u2

1 − u
, K f (u, v) =

1 + u2 − v
1 − u + (u − 2)v
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(b) Q f (u) = 1 + u + 2u2, K f (u, v) = 1 + u + 2u2 + (1 + 2u)v

(c) Q f (u) =
1 + u2

1 − u
, K f (u, v) = 1 + u + 2u2 + 2u3 + 2u4 + (2u + 1)v

(d) Q f (u) =
(2u − 1)(4u − 1)

1 − 7u + 13u2 , K f (u, v) =
(2u − 1)(4u − 1)

1 − 7u + 13u2 − (1 − 6u)v

Computations were carried out in the programming package Mathematica with multiple-precision
arithmetic. Numerical results shown in Tables 1–4 include: (i) the number of iterations
(n) required to converge to the solution, (ii) the values of the last three consecutive errors
en = |xn+1 − xn|, (iii) the computational order of convergence (COC), and (iv) the elapsed CPU time
(CPU-time). The necessary iteration number (n) and elapsed CPU time are calculated by considering
|xn+1 − xn|+ | f (xn)| < 10−350 as the stopping criterion.

The convergence behavior of the family of iterative methods (4) is tested on the following problems:

Example 1. (Eigenvalue problem). Finding eigenvalues of a large square matrix is one of the difficult tasks in
applied mathematics and engineering. Finding even the roots of the characteristic equation of a square matrix of
order greater than four is a big challenge. Here, we consider the following 6× 6 matrix:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

5 8 0 2 6 −6
0 1 0 0 0 0
6 18 −1 1 13 −9
3 6 0 4 6 −6
4 14 −2 0 11 −6
6 18 −2 1 13 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The characteristic equation of the above matrix (M) is given as follows:

f1(x) = x6 − 12x5 + 56x4 − 130x3 + 159x2 − 98x + 24.

This function has one multiple zero at α = 1 of multiplicity three. We choose initial approximation
x0 = 0.25. Numerical results are shown in Table 1.

Table 1. Comparison of the performance of methods for Example 1.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 5.46 × 10−3 2.40 × 10−14 1.78 × 10−82 6.0000 0.05475
GKN-1(b) 4 5.65 × 10−3 3.22 × 10−14 1.13 × 10−81 6.0000 0.05670
GKN-1(c) 4 5.41 × 10−3 2.80 × 10−14 5.59 × 10−82 6.0000 0.05856
GKN-1(d) 4 7.52 × 10−3 4.85 × 10−13 3.78 × 10−74 6.0000 0.05504
GKN-2(a) 4 2.85 × 10−3 1.57 × 10−16 4.32 × 10−96 6.0000 0.07025
GKN-2(b) 4 9.28 × 10−3 1.58 × 10−12 4.13 × 10−71 6.0000 0.05854
GKN-2(c) 4 7.11 × 10−3 1.87 × 10−13 6.53 × 10−77 6.0000 0.06257
GKN-2(d) 5 1.03 × 10−5 3.87 × 10−30 1.07 × 10−176 6.0000 0.07425
NM-1(a) 4 1.62 × 10−3 1.79 × 10−19 3.58 × 10−131 7.0000 0.04675
NM-1(b) 4 1.62 × 10−3 1.85 × 10−19 4.63 × 10−131 6.9990 0.05073
NM-1(c) 4 1.62 × 10−3 1.96 × 10−19 5.92 × 10−131 6.9998 0.05355
NM-1(d) 4 1.60 × 10−3 1.02 × 10−19 4.36 × 10−133 6.9990 0.05077
NM-2(a) 4 1.37 × 10−3 5.56 × 10−20 1.02 × 10−134 6.9997 0.05435
NM-2(b) 4 1.37 × 10−3 5.77 × 10−20 1.35 × 10−134 6.9998 0.05454
NM-2(c) 4 1.38 × 10−3 5.98 × 10−20 1.77 × 10−134 6.9996 0.05750
NM-2(d) 4 1.34 × 10−3 2.97 × 10−20 8.00 × 10−137 6.9998 0.05175

Example 2. (Kepler’s equation). Let us consider Kepler’s equation:

f2(x) = x − α sin(x)− K = 0, 0 ≤ α < 1 and 0 ≤ K ≤ π.
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A numerical study, for different values of the parameters α and K, has been performed in [28]. As a

particular example, let us take α =
1
4

and K =
π

5
. Consider this particular case four times with same values of

the parameters, then the required nonlinear function is:

f2(x) =
(

x − 1
4

sin x − π

5

)4
.

This function has one multiple zero at α = 0.80926328 . . . of multiplicity four. The required zero is
calculated using initial approximation x0 = 1. Numerical results are displayed in Table 2.

Table 2. Comparison of the performance of methods for Example 2.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 5 1.90 × 10−25 2.55 × 10−76 1.19 × 10−228 3.0018 2.1405
GKN-1(b) 5 1.74 × 10−25 1.94 × 10−76 5.28 × 10−229 3.0018 2.1445
GKN-1(c) 5 2.31 × 10−25 4.56 × 10−76 6.79 × 10−228 3.0018 2.1835
GKN-1(d) 5 1.75 × 10−25 1.97 × 10−76 5.51 × 10−229 3.0018 2.1797
GKN-2(a) 5 3.52 × 10−19 5.28 × 10−117 1.22 × 10−233 1.1923 1.8047
GKN-2(b) 4 9.33 × 10−9 6.67 × 10−53 8.88 × 10−318 6.0000 1.4452
GKN-2(c) 4 3.74 × 10−9 9.33 × 10−56 2.27 × 10−335 6.0000 1.4415
GKN-2(d) 4 1.64 × 10−8 2.04 × 10−51 7.50 × 10−309 6.0000 1.4492
NM-1(a) 3 1.91 × 10−1 5.70 × 10−10 6.59 × 10−70 7.0000 0.9845
NM-1(b) 3 1.91 × 10−1 6.02 × 10−10 1.04 × 10−69 7.0000 0.9650
NM-1(c) 3 1.91 × 10−1 6.32 × 10−10 1.58 × 10−69 7.0000 0.9570
NM-1(d) 3 1.90 × 10−1 9.62 × 10−11 2.48 × 10−76 7.0540 0.8590
NM-2(a) 3 1.91 × 10−1 5.70 × 10−10 6.59 × 10−70 7.0000 0.9842
NM-2(b) 3 1.91 × 10−1 6.02 × 10−10 1.04 × 10−69 7.0000 0.9607
NM-2(c) 3 1.91 × 10−1 6.32 × 10−10 1.58 × 10−69 7.0000 0.9767
NM-2(d) 3 1.91 × 10−1 9.68 × 10−11 2.63 × 10−76 7.0540 0.7460

Example 3. (Manning’s equation). Consider the isentropic supersonic flow around a sharp expansion corner.
The relationship between the Mach number before the corner (i.e., M1) and after the corner (i.e., M2) is given by
(see [3]):

δ = b1/2

(
tan−1

(M2
2 − 1
b

)1/2 − tan−1
(M2

1 − 1
b

)1/2
)
−
(

tan−1(M2
2 − 1)1/2 − tan−1(M2

1 − 1)1/2
)

where b =
γ + 1
γ − 1

and γ is the specific heat ratio of the gas.

As a particular case study, the equation is solved for M2 given that M1 = 1.5, γ = 1.4, and δ = 100.
Then, we have that:

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1
(√ x2 − 1

6

)
− tan−1

(1
2

√
5
6

))
− 11

63
= 0

where x = M2.
Consider this particular case three times with the same values of the parameters, then the required

nonlinear function is:

f3(x) =
(

tan−1
(√5

2

)
− tan−1(

√
x2 − 1) +

√
6
(

tan−1
(√ x2 − 1

6

)
− tan−1

(1
2

√
5
6

))
− 11

63

)3

.

This function has one multiple zero at α = 1.8411027704 . . . of multiplicity three. The required
zero is calculated using initial approximation x0 = 1.5. Numerical results are shown in Table 3.
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Table 3. Comparison of the performance of methods for Example 3.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 2.17 × 10−8 4.61 × 10−25 1.01 × 10−151 6.0000 1.3047
GKN-1(b) 4 2.17 × 10−8 4.60 × 10−25 2.27 × 10−151 6.0000 1.2852
GKN-1(c) 4 2.11 × 10−8 4.21 × 10−25 1.03 × 10−151 6.0000 1.3203
GKN-1(d) 4 1.77 × 10−8 2.48 × 10−25 2.68 × 10−151 6.0000 1.2970
GKN-2(a) 4 4.83 × 10−7 1.36 × 10−41 6.84 × 10−249 6.0000 1.2382
GKN-2(b) 4 4.90 × 10−7 2.89 × 10−41 1.21 × 10−246 6.0000 1.2440
GKN-2(c) 4 4.88 × 10−7 2.22 × 10−41 1.98 × 10−247 6.0000 1.2422
GKN-2(d) 4 4.89 × 10−7 3.22 × 10−41 2.62 × 10−246 6.0000 1.2577
NM-1(a) 4 7.85 × 10−9 1.56 × 10−60 0 7.0000 1.0274
NM-1(b) 4 7.85 × 10−9 1.58 × 10−60 0 7.0000 1.0272
NM-1(c) 4 7.89 × 10−9 1.60 × 10−60 0 7.0000 1.0231
NM-1(d) 4 7.84 × 10−9 1.31 × 10−60 0 7.0000 1.0235
NM-2(a) 4 7.69 × 10−9 1.35 × 10−60 0 7.0000 1.0398
NM-2(b) 4 7.69 × 10−9 1.37 × 10−60 0 7.0000 1.0742
NM-2(c) 4 7.69 × 10−9 1.38 × 10−60 0 7.0000 1.0467
NM-2(d) 4 7.68 × 10−9 1.13 × 10−60 0 7.0000 1.0192

Example 4. Next, consider the standard nonlinear test function:

f4(x) =
(
−
√

1 − x2 + x + cos
πx
2

+ 1
)4

which has a multiple zero at α = −0.72855964390156 . . . of multiplicity four. Numerical results are shown in
Table 4 with initial guess x0 = −0.5.

Table 4. Comparison of the performance of methods for Example 4.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 7.20 × 10−6 1.80 × 10−30 4.39 × 10−178 6.0000 0.1017
GKN-1(b) 4 7.21 × 10−6 1.85 × 10−30 5.32 × 10−178 5.9999 0.0977
GKN-1(c) 4 7.42 × 10−6 2.52 × 10−30 3.84 × 10−177 5.9999 0.1055
GKN-1(d) 4 8.83 × 10−6 1.30 × 10−29 1.34 × 10−172 5.9999 0.1015
GKN-2(a) 4 2.15 × 10−5 8.22 × 10−28 2.60 × 10−162 5.9999 0.1132
GKN-2(b) 4 2.39 × 10−5 4.22 × 10−27 1.27 × 10−157 5.9999 0.1052
GKN-2(c) 4 2.33 × 10−5 2.57 × 10−27 4.61 × 10−159 5.9999 0.1055
GKN-2(d) 4 2.43 × 10−5 5.31 × 10−27 5.83 × 10−157 5.9999 0.1095
NM-1(a) 4 2.87 × 10−6 1.03 × 10−37 8.12 × 10−258 6.9999 0.0720
NM-1(b) 4 2.88 × 10−6 1.06 × 10−37 9.60 × 10−258 6.9999 0.0724
NM-1(c) 4 2.88 × 10−6 1.08 × 10−37 1.13 × 10−257 6.9999 0.0722
NM-1(d) 4 2.83 × 10−6 7.39 × 10−38 6.09 × 10−259 6.9999 0.0782
NM-2(a) 4 2.80 × 10−6 8.55 × 10−38 2.15 × 10−258 6.9999 0.0732
NM-2(b) 4 2.80 × 10−6 8.74 × 10−37 2.54 × 10−258 6.9999 0.0723
NM-2(c) 4 2.80 × 10−6 8.93 × 10−38 3.00 × 10−258 6.9999 0.0746
NM-2(d) 4 2.76 × 10−6 6.09 × 10−38 1.56 × 10−259 6.9999 0.0782

Example 5. Consider the standard function, which is given as (see [8]):

f5(x) =
(

x −
√

3x3 cos
πx
6

+
1

x2 + 1
− 11

5
+ 4

√
3
)
(x − 2)4.

The multiple zero of function f5 is α = 2 with multiplicity five. We choose the initial approximation
x0 = 1.5 for obtaining the zero of the function. Numerical results are exhibited in Table 5.
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Table 5. Comparison of the performance of methods for Example 5.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 1.20 × 10−5 6.82 × 10−31 2.31 × 10−182 6.0000 0.5820
GKN-1(b) 4 1.20 × 10−5 6.86 × 10−31 2.40 × 10−182 6.0000 0.5860
GKN-1(c) 4 1.21 × 10−5 7.72 × 10−31 5.18 × 10−182 6.0000 0.5937
GKN-1(d) 4 1.58 × 10−5 1.00 × 10−29 6.51 × 10−175 6.0000 0.5832
GKN-2(a) 4 3.17 × 10−5 1.64 × 10−28 3.21 × 10−168 6.0000 0.7120
GKN-2(b) 4 3.50 × 10−5 6.90 × 10−28 4.05 × 10−164 6.0000 0.6992
GKN-2(c) 4 3.41 × 10−5 4.42 × 10−28 2.09 × 10−165 6.0000 0.6915
GKN-2(d) 4 3.54 × 10−5 8.45 × 10−28 1.56 × 10−163 6.0000 0.6934
NM-1(a) 4 2.35 × 10−6 1.81 × 10−40 2.92 × 10−279 7.0000 0.3712
NM-1(b) 4 2.35 × 10−6 1.84 × 10−40 3.31 × 10−279 7.0000 0.3360
NM-1(c) 4 2.35 × 10−6 1.87 × 10−40 3.74 × 10−279 7.0000 0.3555
NM-1(d) 4 2.33 × 10−6 1.41 × 10−40 4.23 × 10−280 7.0000 0.3633
NM-2(a) 4 2.25 × 10−6 1.34 × 10−40 3.65 × 10−280 7.0000 0.3585
NM-2(b) 4 2.25 × 10−6 1.37 × 10−40 4.15 × 10−280 7.0000 0.3592
NM-2(c) 4 2.25 × 10−6 1.39 × 10−40 4.70 × 10−280 7.0000 0.3791
NM-2(d) 4 2.24 × 10−6 1.05 × 10−40 5.20 × 10−281 7.0000 0.3467

Example 6. Consider another standard function, which is given as:

f6(x) = sin
( xπ

3

)(
ex2−2x−3 − cos(x − 3) + x2 − 9

)(27e2(x−3) − x3

28(x3 + 1)
+ x cos

xπ

6

)
which has a zero α = 3 of multiplicity three. Let us choose the initial approximation x0 = 3.5 for obtaining the
zero of the function. Numerical results are shown in Table 6.

Table 6. Comparison of the performance of methods for Example 6.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 5.04 × 10−4 6.20 × 10−22 2.15 × 10−129 6.0000 3.8670
GKN-1(b) 4 9.53 × 10−4 4.36 × 10−20 3.98 × 10−118 6.0000 4.1287
GKN-1(c) 4 1.37 × 10−4 2.87 × 10−25 2.43 × 10−149 5.9999 3.8866
GKN-1(d) 4 2.53 × 10−3 5.53 × 10−17 6.03 × 10−99 6.0000 4.5195
GKN-2(a) 5 4.22 × 10−7 8.51 × 10−41 9.95 × 10−81 5.4576 5.5310
GKN-2(b) 4 7.24 × 10−3 4.58 × 10−14 2.94 × 10−81 6.0000 3.9647
GKN-2(c) 4 4.43 × 10−3 1.12 × 10−15 2.90 × 10−91 5.9995 3.7772
GKN-2(d) 8 8.78 × 10−10 1.75 × 10−55 1.09 × 10−329 6.0000 6.2194
NM-1(a) 4 8.78 × 10−3 1.35 × 10−15 2.76 × 10−105 7.0000 1.9372
NM-1(b) 4 3.50 × 10−6 4.38 × 10−41 2.10 × 10−285 7.0000 1.5625
NM-1(c) 4 3.57 × 10−6 5.15 × 10−41 6.69 × 10−285 7.0000 1.5662
NM-1(d) 4 1.83 × 10−6 2.66 × 10−43 3.70 × 10−301 7.0000 1.5788
NM-2(a) 4 3.42 × 10−6 3.63 × 10−41 5.51 × 10−286 7.0000 1.5900
NM-2(b) 4 3.50 × 10−6 4.36 × 10−41 2.05 × 10−285 7.0000 1.5585
NM-2(c) 4 3.57 × 10−6 5.13 × 10−41 6.53 × 10−285 7.0000 1.6405
NM-2(d) 4 1.82 × 10−6 2.62 × 10−43 3.30 × 10−301 7.0000 1.3444

Example 7. Finally, considering yet another standard function:

f7(x) =
(

cos(x2 + 1)− x log(x2 − π + 2) + 1
)3
(x2 + 1 − π).

The zero of function f7 is α = 1.4632625480850 . . . with multiplicity four. We choose the initial
approximation x0 = 1.3 to find the zero of this function. Numerical results are displayed in Table 7.
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Table 7. Comparison of the performance of methods for Example 7.

Methods n |en−3| |en−2| |en−1| COC CPU-Time

GKN-1(a) 4 6.61 × 10−5 8.80 × 10−25 4.90 × 10−144 6.0000 1.7305
GKN-1(b) 4 6.87 × 10−5 1.15 × 10−24 2.57 × 10−143 6.0000 1.7545
GKN-1(c) 4 6.35 × 10−5 7.67 × 10−25 2.38 × 10−144 6.0000 1.7150
GKN-1(d) 4 1.15 × 10−4 8.83 × 10−23 1.82 × 10−131 6.0000 1.7852
GKN-2(a) 4 5.57 × 10−6 8.57 × 10−32 1.14 × 10−186 6.0000 1.6405
GKN-2(b) 4 1.27 × 10−4 1.23 × 10−22 1.02 × 10−130 6.0000 1.7813
GKN-2(c) 4 7.49 × 10−5 2.89 × 10−24 9.62 × 10−141 6.0000 1.7382
GKN-2(d) 4 1.18 × 10−3 9.34 × 10−17 2.31 × 10−95 6.0000 1.9150
NM-1(a) 4 5.19 × 10−5 1.05 × 10−28 1.42 × 10−194 7.0000 1.0077
NM-1(b) 4 5.29 × 10−5 1.23 × 10−28 4.63 × 10−194 7.0000 0.9062
NM-1(c) 4 5.37 × 10−5 1.41 × 10−28 1.23 × 10−193 7.0000 1.0040
NM-1(d) 4 2.73 × 10−5 7.07 × 10−31 5.57 × 10−210 7.0000 1.0054
NM-2(a) 4 5.14 × 10−5 9.79 × 10−29 8.91 × 10−195 7.0000 0.8867
NM-2(b) 4 5.24 × 10−5 1.16 × 10−28 3.02 × 10−194 7.0000 0.9802
NM-2(c) 4 5.33 × 10−5 1.34 × 10−28 8.30 × 10−194 7.0000 0.9412
NM-2(d) 4 2.60 × 10−5 5.06 × 10−31 5.39 × 10−211 7.0000 0.9142

It is clear from the numerical results shown in Tables 1–7 that the accuracy in the successive
approximations increases as the iterations proceed. This shows the stable nature of the methods.
Moreover, the present methods like that of existing methods show consistent convergence behavior.
We display the value zero of |en| in the iteration at which |xn+1 − xn|+ |F(xn)| < 10−350. The values
of the computational order of convergence exhibited in the penultimate column in each table verify the
theoretical order of convergence. However, this is not true for the existing methods GKN-1(a–d) and
GKN-2(a) in Example 2. The entries in the last column in each table show that the new methods use
less computing time than the time used by existing methods. This verifies the computationally-efficient
nature of the new methods. Similar numerical tests, performed for many problems of different types,
have confirmed the aforementioned conclusions to a large extent.

We conclude the analysis with an important problem regarding the choice of initial approximation
x0 in the practical application of iterative methods. The required convergence speed of iterative
methods can be achieved in practice if the selected initial approximation is sufficiently close to the root.
Therefore, when applying the methods for solving nonlinear equations, special care must be given
for guessing close initial approximations. Recently, an efficient procedure for obtaining sufficiently
close initial approximation has been proposed in [29]. For example, the procedure when applied to the
function of Example 1 in the interval [0, 1.5] using the statements:

f[x_ ]=xˆ 6-12xˆ 5+56xˆ 4-130xˆ 3+159xˆ 2-98x+24; a=0; b=1.5;
k=1; x0=0.5*(a+b+Sign[f[a]]*NIntegrate[Tanh[k *f[x]],{x,a,b}])

in programming package Mathematica yields a close initial approximation x0 = 1.04957 to the root
α = 1.

5. Conclusions

In the present work, we have designed a class of seventh order derivative-free iterative techniques
for computing multiple zeros of nonlinear functions, with known multiplicity. The analysis of
convergence shows the seventh order convergence under standard assumptions for the nonlinear
function, the zeros of which we have searched. Some special cases of the class were stated. They were
applied to solve some nonlinear equations and also compared with existing techniques. Comparison
of the numerical results showed that the presented derivative-free methods are good competitors of
the existing sixth order techniques that require derivative evaluations. The paper is concluded with
the remark that unlike the methods with derivatives, the methods without derivatives are rare in the
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literature. Moreover, such algorithms are good options to Newton-like iterations in the situation when
derivatives are difficult to compute or expensive to obtain.
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Abstract: In this study, we present a new higher-order scheme without memory for simple zeros
which has two major advantages. The first one is that each member of our scheme is derivative free
and the second one is that the present scheme is capable of producing many new optimal family of
eighth-order methods from every 4-order optimal derivative free scheme (available in the literature)
whose first substep employs a Steffensen or a Steffensen-like method. In addition, the theoretical and
computational properties of the present scheme are fully investigated along with the main theorem,
which demonstrates the convergence order and asymptotic error constant. Moreover, the effectiveness
of our scheme is tested on several real-life problems like Van der Waal’s, fractional transformation in
a chemical reactor, chemical engineering, adiabatic flame temperature, etc. In comparison with the
existing robust techniques, the iterative methods in the new family perform better in the considered
test examples. The study of dynamics on the proposed iterative methods also confirms this fact via
basins of attraction applied to a number of test functions.

Keywords: scalar equations; computational convergence order; Steffensen’s method; basins of attraction

1. Introduction

In the last few years, several scholars introduced the concept of how to remove derivatives from
the iteration functions. The main practical difficulty associated with iterative methods involving
derivatives is to calculate first and/or high-order derivatives at each step, which is quite difficult
and time-consuming. Computing derivatives of standard nonlinear equations (which are generally
considered for academic purposes) is an easy task. On the other hand, in regard to practical problems
of calculating the derivatives of functions, it is either very expensive or requires a huge amount of
time. Therefore, we need derivative free methods, software or tools which are capable of generating
derivatives automatically (for a detailed explanation, please see [1]).

There is no doubt that optimal 8-order multi-point derivative free methods are one of the important
classes of iterative methods. They have faster convergence towards the required root and a better
efficiency index as compared to Newton/Steffensen’s method. In addition, one can easily attain the
desired accuracy of any specific number of digits within a small number of iterations with the help of
these iterative methods.

Symmetry 2019, 11, 239; doi:10.3390/sym11020239 www.mdpi.com/journal/symmetry161
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In recent years, many scholars have proposed a big number of 8-order derivative free schemes
in their research articles [2–18]. However, most of these eighth-order methods are the extensions or
modifications of particularly well-known or unknown existing optimal fourth-order derivative free
methods; for detailed explanations, please see [5,6,14,16,17]. However, there is no optimal derivative
free scheme in a general way that is capable of producing optimal eighth-order convergence from
every optimal fourth-order derivative free scheme to date, according to our knowledge.

In this paper, we present a new optimal scheme that doesn’t require any derivative. In addition,
the proposed scheme is capable of generating new optimal 8-order methods from the earlier optimal
fourth-order schemes whose first substep employs Steffensen’s or a Steffensen-type method. In this
way, our scheme is giving the flexibility in the choice of a second-step to the scholars who can pick
any existing optimal derivative free fourth-order method (available in the literature) unlike the earlier
studies. The construction of the presented scheme is based on a technique similar to Sharma et al. [19]
along with some modifications that can be seen in the next section. We tested the applicability of a
newly proposed scheme on a good variety of numerical examples. The obtained results confirm that
our methods are more efficient and faster as compared to existing methods in terms of minimum
residual error, least asymptotic error constants, minimum error between two consecutive iterations, etc.
Moreover, we investigate their dynamic behavior in the complex plane adopting basins of attraction.
Dynamic behavior provides knowledge about convergence, and stability of the mentioned methods
also supports the theoretical aspects.

2. Construction of the Proposed Scheme

This section is devoted to 8-order derivative free schemes for nonlinear equations. In order to
obtain this scheme, we consider a general fourth-order method η(vj, xj, yj) in the following way:

⎧⎪⎨
⎪⎩

yj = xj −
f (xj)

f [vj, xj]
,

zj = η(vj, xj, yj),

(1)

where vj = xj + λ f (xj), λ ∈ R and f [vj, xj] =
f (vj)− f (xj)

vj−xj
are the first-order finite difference. We can

simply obtain eighth-order convergence by applying the classical Newton’s technique, which is
given by

xj+1 =zj −
f (zj)

f ′(zj)
. (2)

The above scheme is non optimal because it does not satisfy the Kung–Traub conjecture [7].
Thus, we have to reduce the number of evaluations of functions or their derivatives. In this regard,
we some approximation of the first-order derivative For this purpose, we need a suitable approximation
approach of functions that can approximate the derivatives. Therefore, we choose the following rational
functional approach

Ω(x) = Ω(xj)−
(x − xj) + θ1

θ2(x − xj)2 + θ3(x − xj) + θ4
, (3)

where θi, i = 1, 2, 3, 4 are free parameters. This approach is similar to Sharma et al. [19] along with
some modifications. We can determine these disposable parameters θi by adopting the following
tangency constraints

Ω(xj) = f (xj), Ω(vj) = f (vj), Ω(yj) = f (yj), Ω(zj) = f (zj). (4)

The number of tangency conditions depends on the number of undetermined parameters. If we
increase the number of undetermined parameters in the above rational function, then we can also
attain high-order convergence (for the detailed explanation, please see Jarratt and Nudds [20]).
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By imposing the first tangency condition, we have

θ1 = 0. (5)

The last three tangency conditions provide us with the following three linear equations:

θ2(vj − xj)
2 + θ3(vj − xj) + θ4 =

1
f [vj, xj]

,

θ2(yj − xj)
2 + θ3(yj − xj) + θ4 =

1
f [yj, xj]

,

θ2(zj − xj)
2 + θ3(zj − xj) + θ4 =

1
f [zj, xj]

,

(6)

with three unknowns θ2, θ3 and θ4.
After some simplification, we further yield

θ2 =
f (vj) + θ4 f [xj, vj] f [xj, yj](yj − vj)− f (yj)

( f (vj)− f (xj))( f (xj)− f (yj))(vj − yj)
,

θ3 = − θ2( f (vj)− f (xj))(vj − xj) + θ4 f [xj, vj]− 1
f (vj)− f (xj)

,

θ4 =
( f (xj)− f (yj))( f (xj)− f (zj))(yj − zj)− a

f [xj, vj] f [xj, yj] f [xj, zj](vj − yj)(vj − zj)(yj − zj)
,

(7)

where a = ( f (vj)− f (xj))[( f (xj)− f (yj))(vj − yj) + ( f (zj)− f (xj))(vj − zj)] and f [· , ·] are the finite
difference of first order. Now, we differentiate the expression (3) with respect to x at the point x = zj,
which further provides

f ′(zj) ≈ Ω′(zj) =
θ4 − θ2(zj − xj)

2[
θ2(zj − xj)2 + θ3(zj − xj) + θ4

]2 . (8)

Finally, by using the expressions (1), (2) and (8), we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yj = xj −
f (xj)

f [vj, xj]
,

zj = η(vj, xj, yj),

xj+1 = zj −
f (zj)

[
θ2(zj − xj)

2 + θ3(zj − xj) + θ4
]2

θ4 − θ2(zj − xj)2 ,

(9)

where vj and θi, i = 2, 3, 4 was already explained earlier in the same section. Now, we demonstrate in
the next Theorem 1 how a rational function of the form (2) plays an important role in the development
of a new derivative free technique. In addition, we confirm the eighth-order of convergence of (9)
without considering any extra functional evaluation/s.

3. Convergence Analysis

Theorem 1. We assume that the function f : C → C is analytic in the neighborhood of simple zero ξ.
In addition, we consider that η(vj, xj, yj) is any 4-order optimal derivative free iteration function and initial
guess x = x0 is close enough to the required zero ξ for the ensured convergence. The scheme (9) reaches an
eighth-order convergence.
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Proof. We assume that ej = xj − ξ is the error at jth point. We expand the function f (xj) around the
point x = ξ by adopting Taylor’s series expansion. Then, we have

f (xj) = c1ej + c2e2
j + c3e3

j + c4e4
j + c5e5

j + c6e6
j + c7e7

j + c8e8
j + O(e9

j ), (10)

where cn = f (n)(ξ)
n! for n = 1, 2, . . . , 8.

By using the above expression (10), we further obtain

vj − ξ = (1 + λc1)ej + λ(c2e2
j + c3e3

j + c4e4
j + c5e5

j + c6e6
j + c7e7

j + c8e8
j ) + O(e9

j ). (11)

Again, we have the following expansion of f (vj) by adopting the Taylor’s series expansion

f (vj) = c1(1 + λc1)ej + c2

{
(1 + λc1)

2 + λc1

}
e2

j +
6

∑
m=1

Gmem+2
j + O(e9

j ), (12)

where Gm = Gm(λ, c1, c2, . . . , c8).
By using the expressions (10) and (12), we have

yj − ξ =

(
1
c1

+ λ

)
c2e2

j +
c1c3(λ

2c2
1 + 3λc1 + 2)− c2

2(λ
2c2

1 + 2λc1 + 2)
c2

1
e3

j

+
5

∑
m=1

Ḡmem+3
j + O(e9

j ).

(13)

Once again, the Taylor’s series expansion of f (yj) about x = ξ provide

f (yj) = c2(1 + λc1)e2
j +

c1c3(λ
2c2

1 + 3λc1 + 2)− c2
2(λ

2c2
1 + 2λc1 + 2)

c1
e3

j

+
5

∑
m=1

¯̄Gmem+3
j + O(e9

j ).
(14)

With the help of of expressions (10)–(14), we further obtain

f (xj)− f (vj)

xj − vj
= c1 + c2(2 + λc1)ej +

{
c3(λ

2c2
1 + 3λc1 + 3) + λc2

2

}
e2

j

+
6

∑
i=1

Hiei+2
j + O(e9

j )

(15)

and
f (xj)− f (yj)

xj − yj
=c1 + c2ej +

(
c2

2

(
1
c1

+ λ

)
+ c3

)
e2

j +
6

∑
i=1

H̄iei+2
j + O(e9

j ), (16)

where Hi and H̄i are the constant functions of some constants λ and ci, 1 ≤ i ≤ 8.
Since we assumed earlier that η(vj, xj, yj) is any 4-order optimal derivative free scheme, it is

therefore undeniable that it will satisfy the error equation of the following form

zj − ξ = τ1e4
j + τ2e5

j + τ3e6
j + τ4e7

j + τ5e8
j + O(e9

j ), (17)

where τ1 = 0 and τi (1 ≤ i ≤ 4) are asymptotic error constants which may depend on some constants
λ and ci, 1 ≤ i ≤ 8.

Now, we obtain the following expansion of f (zj) about z = ξ

f (zj) = c1τ1e4
j + c1τ2e5

j + c1τ2e6
j + c1τ3e7

j + (c2τ2
1 + c1τ4)e8

j + O(e9
j ). (18)
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By using (10), (17) and (18), we obtain

f (xj)− f (zj)

xj − zj
= c1 + c2ej + c3e2

j + c4e3
j + (c2τ1 + c5)e4

j + (c3τ1 + c2τ2

+ c6)e5
j + (c4τ1 + (c2 + c3) τ2 + c7)e6

j + (c5τ1 + c3τ2

+ c4τ2 + c2τ3 + c8)e7
j + O(e8

j ).

(19)

By using the expressions (10)–(19), we have

f (zj)
[
(zj − xj)

2θ2 + (zj − xj)θ3 + θ4
]2

θ4 − (zj − xj)2θ2
= τ1e4

j + τ2e5
j + τ3e6

j + τ4e7
j

− c2τ1
[
c3

1τ1 + (1 + λc1)
2(c2

1c4 + c3
2 − 2c1c2c3)

]
c4

1
e8

j + O(e9
j ).

(20)

Finally, by inserting the expressions (17) and (20) in the last sub step of scheme (9), we have

ej+1 =
c2τ1

[
c3

1τ1 + (1 + λc1)
2(c2

1c4 + c3
2 − 2c1c2c3)

]
c4

1
e8

j + O(e9
j ). (21)

It is straightforward to say from the expression (21) that the scheme (9) has 8-order convergence.
Since the scheme (9) uses only four values of function (viz. f (xj), f (vj), f (yj) and f (zj)) per step, this
is therefore an optimal scheme according to the Kung–Traub conjecture. A single coefficient τ1 from
η(xj, vj, yj) occurs in the above error equation and also plays an important role in the development of
our scheme. Hence, this completes the proof.

Remark 1. In general, it is quite obvious that one thinks that the asymptotic error constant in the error equation
of scheme (9) may rely on some other constants λ, ci, 1 ≤ i ≤ 8 and τj, 1 ≤ j ≤ 5. There is no doubt that the
expression (21) confirms that the asymptotic error constant is dependent only on λ, c1, c2, c3, c4 and τ1. This
clearly demonstrates that our current rational function approach with the tangency constraints contributes a
significant role in the construction of a new scheme with 8-order convergence.

4. Numerical Examples

Here, we checked the effectiveness, convergence behavior and efficiency of our schemes with
the other existing optimal eighth-order schemes without derivatives. Therefore, we assume that, out
of five problems, four of them are from real-life problems, e.g., a fractional conversion problem of
the chemical reactor, Van der Waal’s problem, the chemical engineering problem and the adiabatic
flame temperature problem. The fifth one is a standard nonlinear problem of a piecewise continuous
function, which is displayed in the following Examples (1)–(5). The desired solutions are available up
to many significant digits (minimum thousand), but, due to the page restriction, only 30 significant
places are also listed in the corresponding example.

For comparison purposes, we require the second sub-step in the presented technique. We can
choose any optimal derivative free method from the available literature whose first sub-step employs
Steffensen’s or a Steffensen-type method. Now, we assume some special cases of our scheme that are
given as below:
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1. We choose an optimal derivative free fourth-order method (6) suggested by Cordero and
Torregrosa [3]. Then, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj = xj −
f (xj)

2

f (xj + f (xj))− f (xj)
,

zj = yj −
f
(
yj
)

a f (yj)−b f (vj)
yj−vj

+
c f (yj)−d f (xj)

yj−xj

,

xj+1 = zj −
f (zj)

[
θ2(zj − xj)

2 + θ3(zj − xj) + θ4
]2

θ4 − θ2(zj − xj)2 ,

(22)

where a, b, c, d ∈ R such that a = c = 1 and b + d = 1. We consider a = b = c = 1 and d = 0 in
expression (26) for checking the computational behavior, denoted by (PM18).

2. We consider another 4-order optimal method (11) presented by Liu et al. in [8]. Then, we obtain
the following new optimal 8-order derivative free scheme⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj = xj −
f (xj)

2

f (xj + f (xj))− f (xj)
,

zj = yj −
f [yj, xj]− f [vj, yj] + f [vj, xj]

( f [yj, xj])2 f (yj),

xj+1 = zj −
f (zj)

[
θ2(zj − xj)

2 + θ3(zj − xj) + θ4
]2

θ4 − θ2(zj − xj)2 ,

(23)

Let us call the above expression (PM28) for computational experimentation.
3. Once again, we pick expression (12) from a scheme given by Ren et al. in [10]. Then, we obtain

another interesting family⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj = xj −
f (xj)

2

f (xj + f (xj))− f (xj)
,

zj = yj −
f (yj)

f [yj, xj] + f [vj, yj]− f [vj, xj] + a(yj − xj)(yj − vj)
,

xj+1 = zj −
f (zj)

[
(zj − xj)

2θ2 + (zj − xj)θ3 + θ4
]2

θ4 − (zj − xj)2θ2
,

(24)

where a ∈ R. We choose a = 1 in (30), known as (PM38).
4. Now, we assume another 4-order optimal method (12), given by Zheng et al. in [18], which

further produces⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj = xj −
f (xj)

2

f (xj + f (xj))− f (xj)
,

zj = yj −
[

f [yj, xj] + (p − 1) f [vj, yj]− (p − 1) f [vj, xj]− b(yj − xj)(yj − vj)

f [yj, xj] + p f [vj, yj]− p f [vj, xj] + a(yj − xj)(yj − vj)

]
× f (yj)

f [yj, xj]
,

xj+1 = zj −
f (zj)

[
θ2(zj − xj)

2 + θ3(zj − xj) + θ4

]2

θ4 − θ2(zj − xj)2 ,

(25)

where a, b, p ∈ R. We choose p = 2 and a = b = 0 in (31), called (PM48).

Now, we compare them with iterative methods presented by Kung–Traub [7]. Out of these,
we considered an optimal eighth-order method, called KT8. We also compare them with a derivative
free optimal family of 8-order iterative functions given by Kansal et al. [5]. We have picked expression
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(23) out of them, known as KM8. Finally, we contrast them with the optimal derivative free family
of 8-order methods suggested by Soleymani and Vanani [14], out of which we have chosen the
expression (21), denoted by SV8.

We compare our methods with existing methods on the basis of approximated zeros (xj),

absolute residual error (| f (xj)|), error difference between two consecutive iterations |xj+1 − xj|,
∣∣∣∣ ej+1

e8
j

∣∣∣∣,
asymptotic error constant η = lim

n→∞

∣∣∣∣∣ ej+1

e8
j

∣∣∣∣∣ and computational convergence order ρ ≈ ln |ěj+1/ěj |
ln |ěj/ěn−1| , where

ěj = xj − xn−1 (for the details, please see Cordero and Torregrosa [21]) and the results are mentioned
in Tables 1–5.

The values of all above-mentioned parameters are available for many significant digits (with
a minimum of a thousand digits), but, due to the page restrictions, results are displayed for some
significant digits (for the details, please see Tables 1–5 ). The values of all these parameters have been
calculated by adopting programming package Mathematica 9 for multiple precision arithmetic. Finally,
the meaning of a1(±a2) is a1 × 10(±a2) in the following Tables 1–5.

Table 1. Convergence performance of distinct 8-order optimal derivative free methods for f1(x).

Cases j xj | f (xj)| |xj+1 − xj| ρ
∣∣∣ xj+1−xj

(xj−xn−1)8

∣∣∣ η

KT8

1 0.75742117642117592668 2.0(−3) 2.5(−5)
2 0.75739624625375387946 1.0(−19) 1.3(−21) 8.387722076(+15) 8.409575862(+15)
3 0.75739624625375387946 4.0(−150) 5.1(−152) 7.9999 8.409575862(+15)

KM8

1 0.75739472392262620965 1.2(−4) 1.5(−6)
2 0.75739624625375387946 1.2(−34) 1.5(−36) 5.252005934(+10) 2.765111335(+10)
3 0.75739624625375387946 6.1(−275) 7.7(−277) 8.0093 2.765111335(+10)

SV8

1 0.75726839017571335554 1.0(−2) 1.3(−4)
2 0.75739624625375406009 1.4(−14) 1.8(−16) 2.529459671(+15) 1.540728199(+14)
3 0.75739624625375387946 1.4(−110) 1.7(−112) 8.1026 1.540728199(+14)

PM18

1 0.75739624679631343572 4.3(−8) 5.4(−10)
2 0.75739624625375387946 7.9(−60) 9.9(−62) 1.318011692(+13) 1.318013290(+13)
3 0.75739624625375387946 9.7(−474) 1.2(−475) 8.0000 1.318013290(+13)

PM28

1 0.75739624527627277118 7.8(−8) 9.8(−10)
2 0.75739624625375387946 5.3(−58) 6.7(−60) 8.002563231(+12) 8.002546457(+12)
3 0.75739624625375387946 2.5(−459) 3.1(−461) 8.0000 8.002546457(+12)

PM38

1 0.75739624669712714014 3.5(−8) 4.4(−10)
2 0.75739624625375387946 1.6(−60) 2.0(−62) 1.316590806(+13) 1.316592111(+13)
3 0.75739624625375387946 2.3(−479) 2.9(−481) 8.0000 1.316592111(+13)

PM48

1 0.75739625664695918279 8.3(−7) 1.0(−8)
2 0.75739624625375387946 1.7(−49) 2.1(−51) 1.522844707(+13) 1.522886893(+13)
3 0.75739624625375387946 4.1(−391) 5.2(−393) 8.0000 1.522886893(+13)
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Table 2. Convergence performance of distinct 8-order optimal derivative free methods for f2(x).

Cases j xj | f (xj)| |ej| ρ

∣∣∣∣ ej+1

e8
j

∣∣∣∣ η

KT8

1 1.9299358075659180242 7.7(−6) 9.0(−5)
2 1.9298462428478622185 9.2(−28) 1.1(−26) 2.570367432(+6) 2.580781373(+6)
3 1.9298462428478622185 3.7(−203) 4.3(−202) 7.9999 2.580781373(+6)

KM8

1 1.9300063313329939091 1.4(−5) 1.6(−4)
2 1.9298462428478622185 7.0(−26) 8.1(−25) 1.872886840(+6) 1.859196359(+6)
3 1.9298462428478622185 2.9(−188) 3.4(−187) 8.0002 1.859196359(+6)

SV8

1 1.9299298655571245217 7.2(−6) 8.4(−5)
2 1.9298462428478622185 2.6(−30) 3.0(−29) 1.272677056(+4) 5.345691399(+3)
3 1.9298462428478622185 3.4(−226) 3.9(−225) 8.0154 5.345691399(+3)

PM18

1 1.9298703396056890283 2.1(−6) 2.4(−5)
2 1.9298462428478622185 3.2(−33) 3.7(−32) 3.292189981(+5) 3.294743419(+5)
3 1.9298462428478622185 1.1(−247) 1.3(−246) 8.0000 3.294743419(+5)

PM28

1 1.9299039277100182896 5.0(−6) 5.8(−5)
2 1.9298462428478622185 1.5(−29) 1.7(−28) 1.415845181(+6) 1.419322205(+6)
3 1.9298462428478622185 1.0(−217) 1.2(−216) 8.0000 1.419322205(+6)

PM38

1 1.9298835516272248348 3.2(−6) 3.7(−5)
2 1.9298462428478622185 2.0(−31) 2.3(−30) 6.132728979(+5) 6.140666943(+5)
3 1.9298462428478622185 4.2(−233) 4.8(−232) 8.0000 6.140666943(+5)

PM48

1 1.9298454768935056951 6.6(−8) 7.7(−7)
2 1.9298462428478622185 1.6(−46) 1.9(−45) 1.600600022(+4) 1.600542542(+4)
3 1.9298462428478622185 2.3(−355) 2.7(−354) 8.0000 1.600542542(+4)

Table 3. Convergence performance of distinct 8-order optimal derivative free methods for f3(x).

Cases j xj | f (xj)| |ej| ρ

∣∣∣∣ ej+1

e8
j

∣∣∣∣ η

KT8

1 3.94856259325568 + 0.31584953607444i 2.8(−3) 2.7(−4)
2 3.94854244556204 + 0.31612357089701i 1.1(−21) 1.1(−22) 3.278944412(+6) 3.291035449(+6)
3 3.94854244556204 + 0.31612357089701i 5.5(−169) 5.5(−170) 7.999 3.291035449(+6)

KM8

1 3.94541341953964 + 0.28830540896626i 2.7(−1) 2.8(−2)
2 3.94854253806613 + 0.31612376121596i 2.1(−6) 2.1(−7) 5.611004628(+5) 1.267588109(+4)
3 3.94854244556204 + 0.31612357089701i 5.2(−49) 5.1(−50) 8.3214 1.267588109(+4)

SV8

1 3.94857741336794 + 0.31574108761478i 3.9(−3) 3.8(−4)
2 3.94854244556204 + 0.31612357089701i 9.1(−21) 9.0(−22) 1.895162520(+6) 1.896706799(+6)
3 3.94854244556204 + 0.31612357089701i 8.1(−162) 8.0(−163) 8.0000 1.896706799(+6)

PM18

1 3.94848048827814 + 0.31602117152370i 1.2(−3) 1.2(−4)
2 3.94854244556204 + 0.31612357089701i 2.5(−25) 2.5(−26) 5.923125406(+5) 5.903970786(+5)
3 3.94854244556204 + 0.31612357089701i 8.9(−199) 8.8(−200) 8.0001 5.903970786(+5)

PM28

1 3.94846874984553 + 0.31601667713734i 1.3(−3) 1.3(−4)
2 3.94854244556204 + 0.31612357089701i 5.1(−25) 5.0(−26) 6.241093912(+5) 6.214835024(+5)
3 3.94854244556204 + 0.31612357089701i 2.6(−196) 2.6(−197) 8.0001 6.214835024(+5)

PM38

1 3.94848290176499 + 0.31601668833975i 1.2(−3) 1.2(−4)
2 3.94854244556204 + 0.31612357089701i 3.1(−25) 3.1(−26) 6.078017700(+5) 6.059534898(+5)
3 3.94854244556204 + 0.31612357089701i 4.6(−198) 4.6(−199) 8.0001 6.059534898(+5)

PM48

1 3.94849208916059 + 0.31602400692668i 1.1(−3) 1.1(−4)
2 3.94854244556204 + 0.31612357089701i 1.4(−25) 1.4(−26) 5.704624073(+5) 5.691514905(+5)
3 3.94854244556204 + 0.31612357089701i 7.1(−201) 7.1(−202) 8.0000 5.691514905(+5)
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Table 4. Convergence performance of distinct 8-order optimal derivative free methods for f4(x).

Cases j xj | f (xj)| |ej| ρ

∣∣∣∣ ej+1

e8
j

∣∣∣∣ η

KT8

1 4305.3099136661255630 3.3(−19) 1.5(−20)
2 4305.3099136661255630 1.1(−179) 4.8(−181) 2.234387851(−22) 2.234387851(−22)
3 4305.3099136661255630 1.4(−1463) 6.3(−1465) 8.0000 2.234387851(−22)

KM8

1 4305.4966166546986926 4.2 1.9(−1)
2 4305.3099136647999238 3.0(−8) 1.3(−9) 8.978735581(−4) 1.132645694(−16)
3 4305.3099136661255630 2.4(−86) 1.1(−87) 9.5830 1.132645694(−16)

SV8

1 4305.3099136661255630 1.5(−19) 6.9(−21)
2 4305.3099136661255630 1.2(−182) 5.4(−184) 1.038308478(−22) 1.038308478(−22)
3 4305.3099136661255630 1.6(−1487) 7.1(−1489) 8.0000 1.038308478(−22)

PM18

1 4305.3099136661255630 3.5(−20) 1.6(−21)
2 4305.3099136661255630 2.1(−188) 9.3(−190) 2.393094045(−23) 2.393094045(−23)
3 4305.3099136661255630 3.1(−1534) 1.4(−1535) 8.0000 2.393094045(−23)

PM28

1 4305.3099136661255630 4.0(−20) 1.8(−21)
2 4305.3099136661255630 5.8(−188) 2.6(−189) 2.683028981(−23) 2.683028981(−23)
3 4305.3099136661255630 1.3(−1530) 5.6(−1532) 8.0000 2.683028981(−23)

PM38

1 4305.3099136690636946 6.6(−8) 2.8(−9)
2 4305.3099136661255630 8.8(−77) 3.9(−78) 7.055841652(−10) 7.055841652(−10)
3 4305.3099136661255630 8.8(−628) 3.9(−629) 8.0000 7.055841652(−10)

PM48

1 4305.3099136661255630 4.0(−20) 1.8(−21)
2 4305.3099136661255630 5.8(−188) 2.6(−189) 2.119306545(−23) 2.119306545(−23)
3 4305.3099136661255630 1.3(−1530) 5.6(−1532) 8.0000 2.119306545(−23)

Table 5. Convergence performance of distinct 8-order optimal derivative free methods for f5(x).

Cases j xj | f (xj)| |ej| ρ

∣∣∣∣ ej+1

e8
j

∣∣∣∣ η

KT8

1 1.4142135646255204265 6.4(−9) 2.3(−9)
2 1.4142135623730950488 2.8(−69) 9.8(−70) 1.483428355 1.483428382
3 1.4142135623730950488 3.7(−552) 1.3(−552) 8.0000 1.483428382

KM8

1 1.4141886104951680577 7.1(−5) 2.5(−5)
2 1.4142135641342028617 5.0(−9) 1.8(−9) 1.171425936(+28) 0.1339769256
3 1.4142135623730950488 3.5(−71) 1.2(−71) 14.972 0.1339769256

SV8

1 1.4142135639458229191 4.4(−9) 1.6(−9)
2 1.4142135623730950488 8.4(−71) 3.0(−71) 0.7923194647 0.7923194693
3 1.4142135623730950488 1.3(−564) 4.7(−564) 8.0000 0.7923194693

PM18

1 1.4142135629037874832 1.5(−9) 5.3(−10)
2 1.4142135623730950488 5.3(−75) 1.9(−75) 0.2966856754 0.2966856763
3 1.4142135623730950488 1.2(−598) 4.4(−599) 8.0000 0.2966856763

PM28

1 1.4142135630941303743 2.0(−9) 7.2(−10)
2 1.4142135623730950488 8.7(−74) 3.1(−74) 0.4230499025 0.4230499045
3 1.4142135623730950488 1.0(−588) 3.5(−589) 8.0000 0.4230499045

PM38

1 1.4142135672540404368 1.4(−8) 4.9(−9)
2 1.4142135623730950488 2.5(−66) 8.8(−67) 2.742159025 2.742159103
3 1.4142135623730950488 2.9(−528) 1.0(−528) 8.0000 2.742159103

PM48

1 1.4142135627314914846 1.0(−9) 3.6(−10)
2 1.4142135623730950488 1.5(−76) 5.2(−77) 0.1905635592 0.1905635596
3 1.4142135623730950488 2.8(−611) 1.0(−611) 8.0000 0.1905635596

Example 1. Chemical reactor problem:
In regard to fraction transformation in a chemical reactor, we consider

f1(x) =
x

1 − x
− 5 log

[
0.4(1 − x)
0.4 − 0.5x

]
+ 4.45977, (26)

where the variable x denotes a fractional transformation of a particular species A in the chemical reactor problem
(for a detailed explanation, please have a look at [22]). It is important to note that, if x ≤ 0, then the expression (26)
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has no physical meaning. Hence, this expression has only a bounded region 0 ≤ x ≤ 1, but its derivative is
approaching zero in the vicinity of this region. Therefore, we have to take care of these facts while choosing
required zero and initial approximations, which we consider as ξ = 0.757396246253753879459641297929 and
x0 = 0.76, respectively:

Example 2. Van der Waal’s equation:

(
P +

a1n2

V2

)
(V − na2) = nRT. (27)

The above expression interprets real and ideal gas behavior with variables a1 and a2, respectively.
For calculating the gas volume V, we can rewrite the above expression (27) in the following way:

PV3 − (na2P + nRT)V2 + a1n2V − a1a2n2 = 0. (28)

By considering the particular values of parameters, namely a1 and a2, n, P and T, we can easily get the
following nonlinear function:

f2(x) = 0.986x3 − 5.181x2 + 9.067x − 5.289. (29)

The function f2 has three zeros and our required zero is ξ = 1.92984624284786221848752742787.
In addition, we consider the initial guess as x0 = 2.

Example 3. If we convert the fraction of nitrogen–hydrogen to ammonia, then we obtain the following
mathematical expression (for more details, please see [23,24])

f3(z) = z4 − 7.79075z3 + 14.7445z2 + 2.511z − 1.674. (30)

The f3 has four zeros and our required zero is ξ = 3.9485424455620457727 + 0.3161235708970163733i.
In addition, we consider the initial guess as x0 = 4 + 0.25i.

Example 4. Let us assume an adiabatic flame temperature equation, which is given by

f4(x) = ΔH + α(x − 298) +
β

2
(x2 − 2982) +

γ

3
(x3 − 2983), (31)

where ΔH = −57798, α = 7.256, β = 2.298 × 10−3 and γ = 0.283 × 10−6. For the details of this function,
please see the research articles [24,25]. This function has a simple zero ξ = 4305.30991366612556304019892945
and assumes the initial approximation is x0 = 4307 for this problem.

Example 5. Finally, we assume a piece-wise continuous function [5], which is defined as follows:

f5(x) =

{− (x2 − 2), if x <
√

2,

x2 − 2, if x ≥
√

2.
(32)

The above function has a simple zero ξ = 1.41421356237309504880168872421 with an initial guess being
x0 = 1.5.

5. Graphical Comparison by Means of Attraction Basins

It is known that a good selection of initial guesses plays a definitive role in iterative
methods—in other words, that all methods converge if the initial estimation is chosen suitably.
We numerically approximate the domain of attraction of the zeros as a qualitative measure of how
demanding the method on the initial approximation of the root is. In order to graphically compare
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by means of attraction basins, we investigate the dynamics of the new methods PM18, PM28, PM38

and PM48 and compare them with available methods from the literature, namely SM8, KT8 and KM8.
For more details and many other examples of the study of the dynamic behavior for iterative methods,
one can consult [26–29].

Let Q : C → C be a rational map on the complex plane. For z ∈ C, we define its orbit as
the set orb(z) = {z, Q(z), Q2(z), . . . }. A point z0 ∈ C is called a periodic point with minimal
period m if Qm(z0) = z0, where m is the smallest positive integer with this property (and thus
{z0, Q(z0), . . . , Qm−1(z0)} is a cycle). The point having minimal period 1 is known as a fixed point.
In addition, the point z0 is called repelling if |Q′(z0)| > 1, attracting if |Q′(z0)| < 1, and neutral
otherwise. The Julia set of a nonlinear map Q(z), denoted by J(Q), is the closure of the set of its
repelling periodic points. The complement of J(Q) is the Fatou set F(Q).

In our case, the methods PM18, PM28, PM38 and PM48 and SM8, KT8 and KM8 provide the
iterative rational maps Q(z) when they are applied to find the roots of complex polynomials p(z).
In particular, we are interested in the basins of attraction of the roots of the polynomials where the
basin of attraction of a root z∗ is the complex set {z0 ∈ C : orb(z0) → z∗}. It is well known that the
basins of attraction of the different roots lie in the Fatou set F(Q). The Julia set J(Q) is, in general,
a fractal and, in it, the rational map Q is unstable.

For a graphical point of view, we take a 512 × 512 grid of the square [−3, 3]× [−3, 3] ⊂ C and
assign a color to each point z0 ∈ D according to the simple root to which the corresponding orbit of
the iterative method starting from z0 converges, and we mark the point as black if the orbit does not
converge to a root in the sense that, after at most 15 iterations, it has a distance to any of the roots
that is larger than 10−3. We have used only 15 iterations because we are using eighth-order methods.
Therefore, if the method converges, it is usually very fast. In this way, we distinguish the attraction
basins by their color.

Different colors are used for different roots. In the basins of attraction, the number of iterations
needed to achieve the root is shown by the brightness. Brighter color means less iteration steps.
Note that black color denotes lack of convergence to any of the roots. This happens, in particular,
when the method converges to a fixed point that is not a root or if it ends in a periodic cycle or at
infinity. Actually and although we have not done it in this paper, infinity can be considered an ordinary
point if we consider the Riemann sphere instead of the complex plane. In this case, we can assign a
new “ordinary color” for the basin of attraction of infinity. Details for this idea can be found in [30].

We have tested several different examples, and the results on the performance of the tested
methods were similar. Therefore, we merely report the general observation here for two test problems
in the following Table 6.

Table 6. Test problems p1 and p2 and their roots.

Test Problem Roots

p1(z) = z2 − 1 1,−1
p2(z) = z2 − z − 1/z 1.46557, − 0.232786 ± 0.792552i

From Figures 1 and 2, we conclude that our methods, namely, PM18, PM38 and PM48, are
showing less chaotic behavior and have less non-convergent points as compared to the existing
methods, namely SM8 and KM8. In addition, our methods, namely, PM18, PM38 and PM48,
have almost similar basins of attraction to KT8. On the other hand, Figures 3 and 4 confirm that
our methods, namely, PM18, PM28 PM38 and PM48, have less divergent points as compared to the
existing methods, namely KT8 and KM8. There is no doubt that the SM8 behavior is better than all
other mentioned methods, namely, PM18, PM38 and PM48 in problem p2(z) in terms of chaos.
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Figure 1. The dynamical behavior of our methods namely, PM18, PM28, PM38 and PM48, respectively,
from left to right for test problem p1(z).

Figure 2. The dynamical behavior of methods SM8, KT8 and KM8, respectively, from left to right for
test problem p1(z).

Figure 3. The dynamical behavior of our methods namely, PM18, PM28, PM38 and PM48, respectively,
from left to right for test problem p2(z).

Figure 4. The dynamical behavior of methods SM8, KT8 and KM8, respectively from left to right for
test problem p2(z).

6. Conclusions

In this study, we present a new technique of eighth-order in a general way. The main advantages
of our technique are that is a derivative free scheme, there is a choice of flexibility at the second
substep, and it is capable of generating new 8-order derivative free schemes from every optimal
4-order method employing Steffensen’s or Steffensen-type methods. Every member of (9) is an optimal
method according to Kung–Traub conjecture. It is clear from the obtained results in Tables 1–5 that
our methods have minimum residual error | f (xj)|, the difference between two consecutive iterations
|xj+1 − xj|, and stable computational convergence order as compared to existing methods, namely,
SM8, KT8 and KM8. The dynamic study of our methods also confirms that they perform better than
existing ones of similar order.
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It is important to note that we are not claiming that our methods will always be superior to
these methods. One may obtain different results when they rest them on distinct nonlinear functions
because the computational results depend on several constraints, including initial approximation,
body structure of the iterative method, the considered test problem, configuration of the used system
and programming softwares, etc. In future work, we will try to obtain a new family of high-order
optimal derivative free iteration functions that depend on the rational functional approach.
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Abstract: In this paper we present a two-step solver for nonlinear equations with a nondifferentiable
operator. This method is based on two methods of order of convergence 1 +

√
2. We study the local

and a semilocal convergence using weaker conditions in order to extend the applicability of the solver.
Finally, we present the numerical example that confirms the theoretical results.
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convergence order; local and semilocal convergence

1. Introduction

A plethora of real-life applications from various areas, including Computational Science and
Engineering, are converted via mathematical modeling to equations valued on abstract spaces such
as n-dimensional Euclidean, Hilbert, Banach, and other spaces [1,2]. Then, researchers face the great
challenge of finding a solution x∗ in the closed form of the equation. However, this task is generally very
difficult to achieve. This is why iterative methods are developed to provide a sequence approximating
x∗ under some initial conditions.

Newton’s method, and its variations are widely used to approximate x∗ [1–14]. There are problems
with the implementation of these methods, since the invertibility of the linear operator involved is,
in general, costly or impossible. That is why secant-type methods were also developed which are

derivative-free. In these cases however, the order of convergence drops from 2 to
1 +

√
5

2
.

Then, one considers methods that mix Newton and secant steps to increase the order of
convergence. This is our first objective in this paper. Moreover, the study of iterative methods
involves local convergence where knowledge about the solution x∗ is used to determine upper bounds
on the distances and radii of convergence. The difficulty of choosing initial points is given by local
results, so they are important. In the semilocal convergence we use knowledge surrounding the initial
point to find sufficient conditions for convergence. It turns out that in both cases the convergence
region is small, limiting the applicability of iterative methods. That is why we use our ideas of
the center-Lipschitz condition, in combination with the notion of the restricted convergence region,
to present local as well as semilocal improvements leading to the extension of the applicability of
iterative methods.

The novelty of the paper is that since the new Lipschitz constants are special cases of older ones,
no additional cost is required for these improvements (see also the remarks and numerical examples).
Our ideas can be used to improve the applicability of other iterative methods [1–14].

By E1, E2 we consider Banach spaces and by Ω ⊆ E1 a convex set. F : Ω → E2 is differentiable
in the Fréchet sense, G : Ω → E2 is a continuous but its differentiability is not assumed. Then, we
study equation

H(x) = 0, for H(x) = F(x) + G(x). (1)

Symmetry 2019, 11, 128; doi:10.3390/sym11020128 www.mdpi.com/journal/symmetry175
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This problem was considered by several authors. Most of them used one-step methods for finding
an approximate solution of (1), for example, Newton’s type method [14], difference methods [4,5] and
combined methods [1–3,11].

We proposed a two-step method [6,10,12] to numerically solve (1)

xn+1 = xn −
[

F′
( xn + yn

2

)
+ Q(xn, yn)

]−1
(F(xn) + G(xn)),

yn+1 = xn+1 −
[

F′
( xn + yn

2

)
+ Q(xn, yn)

]−1
(F(xn+1) + G(xn+1)), n = 0, 1, . . .

(2)

with Q(x, y) a first order divided difference of the operator G at the points x and y. This method relates
to methods with the order of convergence 1 +

√
2 [7,13].

If Q : Ω × Ω → L(E1, E2), gives Q(x, y)(x − y) = G(x) − G(y) for all x, y with x = y, then,
we call it a divided difference.

Two-step methods have some advantages over one-step methods. First, they usually require
fewer number of iterations for finding an approximate solution. Secondly, at each iteration, they solve
two similar linear problems, therefore, there is a small increase in computational complexity. That is
why they are often used for solving nonlinear problems [2,6,8–10,12,13].

In [6,10,12] the convergence analysis of the proposed method was provided under classical and
generalized Lipschitz conditions and superquadratic convergence order was shown. Numerical results
for method (2) were presented in [10,12].

2. Local Convergence

Let S(x∗, ρ) = {x : ‖x − x∗‖ < ρ}.
From now on by differentiable, we mean differentiable in the Fréchet sense. Moreover, F, G are

assumed as previously.

Theorem 1 ([10,12]). Assume (1) has a solution x∗ ∈ Ω, G has a first order divided difference Q in Ω, and

there exist [T(x; y)]−1 =
[

F′
( x + y

2

)
+ Q(x, y)

]−1
for each x = y and ‖[T(x; y)]−1‖ ≤ B. Moreover,

assume for each x, y, u, v ∈ Ω, x = y

‖F′(x)− F′(y)‖ ≤ 2p1‖x − y‖, (3)

‖F′′(x)− F′′(y)‖ ≤ p2‖x − y‖α, α ∈ (0, 1], (4)

‖Q(x, y)− Q(u, v)‖ ≤ q1(‖x − u‖+ ‖y − v‖). (5)

Assume S(x∗, r∗) ⊂ Ω, where r∗ is the minimal positive zero of

q(r) = 1,
3B(p1 + q1)rq(r) = 1,

q(r) = B
[
(p1 + q1)r +

p2

4(α + 1)(α + 2)
r1+α

]
.

Then, the sequences {xn}n≥0, {yn}n≥0 for x0, y0 ∈ S(x∗, r∗) remain in S(x∗, r∗) with lim
n→∞

xn = x∗, and

‖xn+1 − x∗‖ ≤ B
[
(p1 + q1)‖yn − x∗‖+ p2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖, (6)

‖yn+1 − x∗‖ ≤ B(p1 + q1)
[
‖yn − x∗‖+ ‖xn − x∗‖+ ‖xn+1 − x∗‖

]
‖xn+1 − x∗‖. (7)
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The condition ‖[T(x; y)]−1‖ ≤ B used in [10,12] is very strong in general. That is why in what
follows, we provide a weaker alternative. Indeed, assume that there exists a > 0 and b > 0 such that

‖F′(x∗)− F′(x)‖ ≤ a‖x∗ − x‖, (8)

‖Q(x, y)− G′(x∗)‖ ≤ b(‖x − x∗‖+ ‖y − x∗‖) for each x, y ∈ Ω. (9)

Set c = (a + 2b)‖T−1∗ ‖, Ω0 = Ω ∩ S(x∗,
1
c
) and T∗ = F′(x∗) + G′(x∗). It follows, for each

x, y ∈ S(x∗, r), r ∈ [0,
1
c
] we get in turn by (8) and (9) provided that T−1∗ exists

‖T−1∗ ‖‖T(x; y)− T∗‖ ≤ ‖T−1∗ ‖
[
‖F′( x + y

2
)− F′(x∗)‖+ ‖Q(x, y)− G′(x∗)‖

]
≤ ‖T−1∗ ‖

[ a
2
(‖x − x∗‖+ ‖y − x∗‖) + b(‖x − x∗‖+ ‖y − x∗‖)

]
≤ ‖T−1∗ ‖( a

2
+ b

)
[‖x − x∗‖+ ‖y − x∗‖]

< ‖T−1∗ ‖
[( a

2
+ b

)
+
( a

2
+ b

)]1
c
= 1. (10)

Then, (10) and the Banach lemma on invertible operators [2] assure T(x; y)−1 exists with

‖T(x; y)−1‖ ≤ B̄ = B̄(r) =
‖T−1∗ ‖
1 − cr

. (11)

Then, Theorem 1 holds but with B̄, p̄1, q̄1, p̄2, r̄1, r̄2, r̄∗ replacing B, p1, q1, p2, r1, r2, r∗, respectively.
Next, we provide a weaker alternative to the Theorem 1.

Theorem 2. Assume x∗ ∈ Ω, exists with F(x∗) + G(x∗) = 0, T−1∗ ∈ L(E2, E1) and together with conditions
(8) and (9) following items hold for each x, y, u, v ∈ Ω0

‖F′(y)− F′(x)‖ ≤ 2p̄1‖y − x‖,

‖F′′(y)− F′′(x)‖ ≤ p̄2‖y − x‖α, α ∈ (0, 1],

‖Q(x, y)− Q(u, v)‖ ≤ q̄1(‖x − u‖+ ‖y − v‖).

Let r̄1, r̄2 be the minimal positive zeros of equations

q̄(r) = 1,
3B̄( p̄1 + q̄1)rq̄(r) = 1,

respectively, where

q̄(r) = B̄
[
( p̄1 + q̄1)r +

p̄2

4(α + 1)(α + 2)
r1+α

]
and set r̄∗ = min{r̄1, r̄2}. Moreover, assume that S(x∗, r̄∗) ⊂ Ω.

Then, the sequences {xn}n≥0, {yn}n≥0 for x0, y0 ∈ S(x∗, r̄∗) remain in S(x∗, r̄∗), lim
n→∞

xn = x∗, and

‖xn+1 − x∗‖ ≤ B̄
[
( p̄1 + q̄1)‖yn − x∗‖+ p̄2

4(α + 1)(α + 2)
‖xn − x∗‖1+α

]
‖xn − x∗‖, (12)

‖yn+1 − x∗‖ ≤ B̄( p̄1 + q̄1)
[
‖yn − x∗‖+ ‖xn − x∗‖+ ‖xn+1 − x∗‖

]
‖xn+1 − x∗‖. (13)

Proof. It follows from the proof of Theorem 1, (10), (11) and the preceding replacements.

Corollary 1. Assume hypotheses of Theorem 2 hold. Then, the order of convergence of method (2) is
1 +

√
1 + α.
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Proof. Let

an = ‖xn − x∗‖, bn = ‖yn − x∗‖, C̄1 = B̄( p̄1 + q̄1), C̄2 =
B̄p̄2

4(α + 1)(α + 2)
.

By (12) and (13), we get

an+1 ≤ C̄1anbn + C̄2a2+α
n ,

bn+1 ≤ C̄1(an+1 + an + bn)an+1 ≤ C̄1(2an + bn)an+1

≤ C̄1(2an + C̄1(2a0 + b0)an)an+1 = C̄1(2 + C̄1(2a0 + b0))anan+1,

Then, for large n and an−1 < 1, from previous inequalities, we obtain

an+1 ≤ C̄1anbn + C̄2a2
naα

n−1

≤ C̄2
1(2 + C̄1(2a0 + b0))a2

nan−1 + C̄2a2
naα

n−1

≤ [C̄2
1(2 + C̄1(2a0 + b0)) + C̄2]a2

naα
n−1. (14)

From (14) we relate (2) to t2 − 2t − α = 0, leading to the solution t∗ = 1 +
√

1 + α.

Remark 1. To relate Theorem 1 and Corollary 2 in [12] to our Theorem 2 and Corollary 1 respectively,

let us notice that under (3)–(5) B1 can replace B in these results, where B1 = B1(r) =
‖T−1∗ ‖
1 − c1r

,

c1 = 2(p1 + q1)‖T−1∗ ‖.
Then, we have

p̄1 ≤ p1,

p̄2 ≤ p2,

q̄1 ≤ q1,

c ≤ c1,

B̄(t) ≤ B1(t) for each t ∈ [0,
1
c1
),

C̄1 ≤ C1,

C̄2 ≤ C2

and
Ω0 ⊆ Ω

since r∗ ≤ r̄∗, which justify the advantages claimed in the Introduction of this study.

3. Semilocal Convergence

Theorem 3 ([12]). We assume that S(x0, r0) ⊂ Ω, the linear operator T0 = F′
( x0 + y0

2

)
+ Q(x0, y0), where

x0, y0 ∈ Ω, is invertible and the Lipschitz conditions are fulfilled

‖T−1
0 (F′(y)− F′(x))‖ ≤ 2p0‖y − x‖, (15)

‖T−1
0 (Q(x, y)− Q(u, v))‖ ≤ q0(‖x − u‖+ ‖y − v‖). (16)

Let’s λ, μ (μ > λ), r0 be non-negative numbers such that

‖x0 − x−1‖ ≤ λ, ‖T−1
0 (F(x0) + G(x0))‖ ≤ μ, (17)

r0 ≥ μ/(1 − γ), (p0 + q0)(2r0 − λ) < 1,
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γ =
(p0 + q0)(r0 − λ) + 0.5p0r0

1 − (p0 + q0)(2r0 − λ)
, 0 ≤ γ < 1.

Then, for each n = 0, 1, 2, . . .

‖xn − xn+1‖ ≤ tn − tn+1, ‖yn − xn+1‖ ≤ sn − tn+1,

‖xn − x∗‖ ≤ tn − t∗, ‖yn − x∗‖ ≤ sn − t∗,

where

t0 = r0, s0 = r0 − λ, t1 = r0 − μ,

tn+1 − tn+2 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1 − (p0 + q0)[(t0 − tn+1) + (s0 − sn+1)]
(tn − tn+1), (18)

tn+1 − sn+1 =
(p0 + q0)(sn − tn+1) + 0.5p0(tn − tn+1)

1 − (p0 + q0)[(t0 − tn) + (s0 − sn)]
(tn − tn+1), (19)

{tn}n≥0, {sn}n≥0 are non-negative, decreasing sequences that converge to some t∗ such that
r0 − μ/(1 − γ) ≤ t∗ < t0; sequences {xn}n≥0, {yn}n≥0 ⊆ S(x0, t∗) and converge to a solution x∗ of
equation (1).

Next, we present the analogous improvements in the semilocal convergence case. Assume that
for all x, y, u, v ∈ Ω

‖T−1
0 (F′(z)− F′(x))‖ ≤ 2p̄0‖z − x‖, z =

x0 + y0

2
(20)

and

‖T−1
0 (Q(x, y)− Q(x0, y0))‖ ≤ q̄0(‖x − x0‖+ ‖y − y0‖). (21)

Set Ω0 = Ω ∩ S(x0, r̄0), where r̄0 =
1 + λ( p̄0 + q̄0)

2( p̄0 + q̄0)
. Define parameter γ̄ and sequences {t̄n}, {s̄n} for

each n = 0, 1, 2, . . . by γ̄ =
(p0

0 + q0
0)(r̄0 − λ) + 0.5p0

0r̄0

1 − ( p̄0 + q̄0)(2r̄0 − λ)
,

t̄0 = r̄0, s̄0 = r̄0 − λ, t̄1 = r̄0 − μ,

t̄n+1 − t̄n+2 =
(p0

0 + q0
0)(s̄n − t̄n+1) + 0.5p0

0(t̄n − t̄n+1)

1 − ( p̄0 + q̄0)[(t̄0 − t̄n+1) + (s̄0 − s̄n+1)]
(t̄n − t̄n+1), (22)

t̄n+1 − s̄n+1 =
(p0

0 + q0
0)(s̄n − t̄n+1) + 0.5p0

0(t̄n − t̄n+1)

1 − ( p̄0 + q̄0)[(t̄0 − t̄n) + (s̄0 − s̄n)]
(t̄n − t̄n+1). (23)

As in the local convergence case, we assume instead of (15) and (16) the restricted Lipschitz-type
conditions for each x, y, u, v ∈ Ω0

‖T−1
0 (F′(x)− F′(y))‖ ≤ 2p0

0‖x − y‖, (24)

‖T−1
0 (Q(x, y)− Q(u, v))‖ ≤ q0

0(‖x − u‖+ ‖y − v‖). (25)
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Then, instead of the estimate in [12] using (15) and (16):

‖T−1
0 [T0 − Tn+1]‖ ≤

∥∥∥T−1
0

[
F′
( x0 + y0

2

)
− F′

( xn+1 + yn+1

2

)]∥∥∥+ ‖T−1
0 [Q(x0, y0)− Q(xn+1, yn+1)]‖

≤ 2p0

(‖x0 − xn+1‖+ ‖y0 − yn+1‖
2

)
+ q0(‖x0 − xn+1‖+ ‖y0 − yn+1‖)

= (p0 + q0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖) ≤ (p0 + q0)(t0 − tn+1 + s0 − sn+1)

≤ (p0 + q0)(t0 + s0) = (p0 + q0)(2r0 − λ) < 1, (26)

we obtain more precise results using (20) and (21)

‖T−1
0 [T0 − Tn+1]‖ ≤ ≤ 2p̄0

(‖x0 − xn+1‖+ ‖y0 − yn+1‖
2

)
+ q̄0(‖x0 − xn+1‖+ ‖y0 − yn+1‖)

≤ ( p̄0 + q̄0)(‖x0 − xn+1‖+ ‖y0 − yn+1‖)
≤ ( p̄0 + q̄0)(t̄0 − t̄n+1 + s̄0 − s̄n+1)

≤ ( p̄0 + q̄0)(t̄0 + s̄0) = ( p̄0 + q̄0)(2t̄0 − λ) < 1,

since

Ω0 ⊆ Ω,

p̄0 ≤ p0,

q̄0 ≤ q0,

p0
0 ≤ p0,

q0
0 ≤ q0,

γ̄ ≤ γ,

and r̄0 ≥ r0. (27)

Then, by replacing p0, q0, r0, γ, tn, sn, (26) with p0
0, q0

0 (at the numerator in (18) and (19)), or p̄0, q̄0

(at the denominator in (18) and (19)), and with r̄0, γ̄, t̄n, s̄n, (27) respectively, we arrive at the following
improvement of Theorem 3.

Theorem 4. Assume together with (17), (20), (21), (24), (25) that r̄0 ≥ μ(1 − γ̄), ( p̄0 + q̄0)(2r̄0 − λ) < 1
and γ̄ ∈ [0, 1]. Then, for each n = 0, 1, 2, . . .

‖xn − xn+1‖ ≤ t̄n − t̄n+1, ‖yn − xn+1‖ ≤ s̄n − t̄n+1, (28)

‖xn − x∗‖ ≤ t̄n − t∗, ‖yn − x∗‖ ≤ s̄n − t∗, (29)

with sequences {t̄n}n≥0, {s̄n}n≥0 given in (22) and (23) decreasing, non-negative sequences that converge to
some t∗ such that r0 − μ/(1 − γ̄) ≤ t∗ < t̄0. Moreover, sequences {xn}n≥0, {yn}n≥0 ⊆ S(x0, t̄∗) for each
n = 0, 1, 2, . . ., and lim

n→∞
xn = x∗.
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Remark 2. It follows (27) that by hypotheses of Theorem 3, Theorem 4, and by a simple inductive argument
that the following items hold

tn ≤ t̄n,

sn ≤ s̄n,

o ≤ t̄n − t̄n+1 ≤ tn − tn+1,

o ≤ s̄n − t̄n+1 ≤ sn − tn+1,

and t∗ ≤ t̄∗.

Hence, the new results extend the applicability of the method (2).

Remark 3. If we choose F(x) = 0, p1 = 0, p2 = 0. Then, the estimates (6) and (7) reduce to similar ones
in [7] for the case α = 1.

Remark 4. Section 3 contains existence results. The uniqueness results are omitted, since they can be found
in [2,6] but with center-Lipschitz constants replacing the larger Lipschitz constants.

4. Numerical Experiments

Let E1 = E2 = R3 and Ω = S(x∗, 1). Define functions F and G for v = (v1, v2, v3)
T on Ω by

F(v) =
(
ev1 − 1,

e − 1
2

v2
2 + v2, v3

)T ,

G(v) =
(|v1|, |v2|, |v3|

)T ,

and set H(v) = F(v) + G(v). Moreover, define a divided difference Q(·, ·) by

Q(v, v̄) = diag
( |v̄1| − |v1|

v̄1 − v1
,
|v̄2| − |v2|

v̄2 − v2
,
|v̄3| − |v3|

v̄3 − v3

)
if vi = v̄i, i = 1, 2, 3. Otherwise, set Q(v, v̄) = diag(1, 1, 1). Then, T∗ = 2diag(1, 1, 1), so ‖T−1∗ ‖ = 0.5.

Notice that x∗ = (0, 0, 0)T solves equation H(v) = 0. Furthermore, we have Ω0 = S(x∗,
2

e + 1
), so

p1 =
e
2

, p2 = e, q1 = 1, B = B(t) =
1

2(1 − c1t)
,

b = 1, α = 1, a = e − 1, p̄1 = p̄2 =
1
2

e
2

e+1 , q̄1 = 1
and Ω0 is a strict subset of Ω. As well, the new parameters and functions are also more strict than
the old ones in [12]. Hence, the aforementioned advantages hold. In particular, r∗ ≈ 0.2265878 and
r̄∗ ≈ 0.2880938.

Let’s give results obtained by the method (2) for approximate solving the considered system of
nonlinear equations. We chose initial approximations as x0 = (0.1; 0.1; 0.1)d (d is a real number) and
y0 = x0 + 0.0001. The iterative process was stopped under the condition ‖xn+1 − xn‖ ≤ 10−10 and
‖H(xn+1)‖ ≤ 10−10. We used the Euclidean norm. The obtained results are shown in Table 1.
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Table 1. Value of ‖xn − xn−1‖ for each iteration.

n d = 1 d = 10 d = 50

1 0.1694750 1.4579613 5.9053855
2 0.0047049 0.3433874 1.9962504
3 0.0000005 0.0112749 1.3190118
4 4.284 × 10−16 0.0000037 1.0454772
5 2.031× 10−14 0.4157737
6 0.0260385
7 0.0000271
8 1.389 × 10−12

5. Conclusions

The convergence region of iterative methods is, in general, small under Lipschitz-type conditions,
leading to a limited choice of initial points. Therefore, extending the choice of initial points without
imposing additional, more restrictive, conditions than before is extremely important in computational
sciences. This difficult task has been achieved by defining a convergence region where the iterates lie,
that is more restricted than before, ensuring the Lipschitz constants are at least as small as in previous
works. Hence, we achieve: more initial points, fewer iterations to achieve a predetermined error
accuracy, and a better knowledge of where the solution lies. These are obtained without additional cost
because the new Lipschitz constants are special cases of the old ones. This technique can be applied to
other iterative methods.
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mappings, and the hypotheses involve the derivative of order one. The convergence radius, error
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1. Introduction

In this work, B1 and B2 denote Banach spaces, A ⊆ B1 stands for a convex and open set,
and ϕ : A → B2 is a differentiable mapping in the Fréchet sense. Several scientific problems can be
converted to the expression. This paper addresses the issue of obtaining an approximate solution s∗ of:

ϕ(x) = 0, (1)

by using mathematical modeling [1–4]. Finding a zero s∗ is a laborious task in general, since analytical
or closed-form solutions are not available in most cases.

We analyze the local convergence of the two-step method, given as follows:

yj = xj − δϕ′(xj)
−1 ϕ(xj),

xn+1 = xj − A−1
j
(
c1 ϕ(xj) + c2 ϕ(yj)

)
,

(2)

where x0 ∈ A is a starting point, Aj = αϕ′(xj) + βϕ′
( xj+yj

2

)
+ γϕ′(yj), and α, β, γ, δ, c1, c2 ∈ S,

where S = R or S = C. The values of the parameters α, γ, β, and c1 are given as follows:

α = −1
3

c2(3δ2 − 7δ + 2), β = −4
3

c2(2δ − 1),

γ =
1
3

c2(δ − 2) and c1 = −c2(δ
2 − δ + 1), for δ = 0, c2 = 0.

Symmetry 2019, 11, 103; doi:10.3390/sym11010103 www.mdpi.com/journal/symmetry184
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Comparisons with other methods, proposed by Cordero et al. [5], Darvishi et al. [6], and Sharma [7],
defined respectively as:

wj = xj − ϕ′(xj)
−1 ϕ(xj),

xn+1 = wj − B−1
j ϕ(wj),

(3)

wj = xj − ϕ′(xj)
−1 ϕ(xj),

zj = xj − ϕ′(xj)
−1(ϕ(xj) + ϕ(wj)

)
,

xn+1 = xj − C−1
j ϕ(xj),

(4)

yj = xj − 2
3

ϕ′(xj)
−1 ϕ(xj),

xn+1 = xj − 1
2

D−1
j ϕ′(xj)

−1 ϕ(xj),
(5)

where:
Bj = 2ϕ′(xj)

−1 − ϕ′(xj)
−1 ϕ′(wj)ϕ′(xj)

−1,

Cj =
1
6

ϕ′(xj) +
2
3

ϕ′
( xj + wj

2

)
+

1
6

ϕ′(zj),

Dj = −I +
9
4

ϕ′(yj)
−1 ϕ′(xj) +

3
4

ϕ′(xj)
−1 ϕ′(yj),

were also reported in [8]. The local convergence of Method (2) was shown in [8] for B1 = B2 = Rm and
S = R, by using Taylor series and hypotheses reaching up to the fourth Fréchet-derivative. However,
the hypothesis on the fourth derivative limits the applicability of Methods (2)–(5), particularly because
only the derivative of order one is required. Let us start with a simple problem. Set B1 = B2 = R and
A = [− 5

2 , 3
2 ]. We suggest a function ϕ : A → R as:

ϕ(x) =

{
0, x = 0
x3lnx2 + x5 − x4, x = 0

,

which further yield:
ϕ′(x) = 3x2 ln x2 + 5x4 − 4x3 + 2x2,

ϕ′′(x) = 12x ln x2 + 20x3 − 12x2 + 10x,

ϕ′′′(x) = 12 ln x2 + 60x2 − 12x + 22,

where the solution is s∗ = 1. Obviously, the function ϕ′′′(x) is unbounded in the domain A. Therefore,
the results in [5–9] and Method (2) cannot be applicable to such problems or its special cases that
require the hypotheses on the third- or higher order derivatives of ϕ. Without a doubt, some of the
iterative method in Brent [10] and Petkovíc et al. [4] are derivative free and are used to locate zeros of
functions. However, there have been many developments since then. Faster iterative methods have
been developed whose convergence order is determined using Taylor series or with the technique
introduce in our paper. The location of the initial points is a “shot in the dark” in these references;
no uniqueness results or estimates on ‖xn − x∗‖ are available. Methods on abstract spaces derived
from the ones on the real line are also not addressed.

These works do not give a radius of convergence, estimations on ‖xj − s∗‖, or knowledge about
the location of s∗. The novelty of this study is that it provides this information, but requiring only
the derivative of order one for method (2). This expands the scope of utilization of (2) and similar
methods. It is vital to note that the local convergence results are very fruitful, since they give insight
into the difficult operational task of choosing the starting points/guesses.

Otherwise, with the earlier approaches: (i) use the Taylor series and high-order derivative; (ii) have
no clue about the choice of the starting point x0; (iii) have no estimate in advance about the number of

185



Symmetry 2019, 11, 103

iterations needed to obtain a predetermined accuracy; and (iv) have no knowledge of the uniqueness
of the solution.

The work is laid out as follows: we give the convergence of the iterative scheme (2) with the
main Theorem 1 is given in Section 2. Six numerical problems are discussed in Section 3. The final
conclusions are summarized in Section 4.

2. Convergence Study

This section starts by analyzing the convergence of Scheme (2). We assume that L > 0, L0 > 0,
M ≥ 1 and γ, α, β, δ, c1, c2 ∈ S. We consider some maps/functions and constant numbers. Therefore,
we assume the following functions g1, p, and hp on the open interval [0, 1

L0
) by:

g1(t) =
1

2(1 − L0t)
(Lt + 2M|1 − δ|),

p(t) =
L0

|α + β + γ|
(
|α|+ |β|

2

( |β|
2

+ |γ|
)

g1(t)
)

t, for α + β + γ = 0,

hp(t) = p(t)− 1,

and the values of r1 and rA are given as follows:

r1 =
2(M|1 − δ| − 1)

, rA =
2

L + 2L0
.

Consider that:
M|1 − δ| < 1. (6)

It is clear from the function g1, parameters r1 and rA, and Equation (6), that 0 < r1 ≤ rA < 1
L0

,

g1(r1) = 1, and 0 ≤ g1(t) < 1, for each t ∈ [0, r1) and hp(0) = −1 and hp(t) → +∞ as t → 1−

L0
.

On the basis of the classical intermediate value theorem, the function hp has at least one zero in the

open interval
(

0,
1
L0

)
. Let us call rp as the smallest zero. We suggest some other functions g2 and h2

on the interval [0, rp) by means of the expressions:

g2(t) =
1

2(1 − L0t)

[
Lt +

2M2(|α − 1|+ |β|+ |γ|)(|1 − c1|+ |c2|g1(t)
)

|α + β + γ|(1 − L0t)(1 − p(t))

+
2M

(|1 − c1|+ |c2|g1(t)
)

1 − L0t

]

and:
h2(t) = g2(t)− 1.

Suppose that:

M
(|1 − c1|+ c2M|1 − δ|)

(
1 +

M
(|α − 1|+ |β|+ |γ|)

|α + β + γ|

)
< 1. (7)

Then, we have by Equation (7) that h2(0) < 0 and h2(t) → +∞ as t → r−p by the definition of rp.
We recall r2 as the least zero of h2 on (0, rp).
Define:

r = min{r1, r2}. (8)

Then, notice that for all t ∈ [0, r):
0 < r < rA, (9)

0 ≤ g1(t) < 1, (10)

186



Symmetry 2019, 11, 103

0 ≤ p(t) < 1, (11)

0 ≤ g2(t) < 1. (12)

Assume that Q(x, δ) =

{
y ∈ B1 : ‖x − y‖ < δ

}
. We can now proceed with the local convergence

study of (2) adopting the preceding notations.

Theorem 1. Let us assume that ϕ : A ⊂ B1 → B2 is a differentiable operator. In addition, we consider that
there exist s∗ ∈ A, L > 0, L0 > 0, M ≥ 1 and the parameters α, β, γ, c1, c2 ∈ S, with α + β + γ = 0,
are such that:

ϕ(s∗) = 0, ϕ′(s∗)−1 ∈ L(B2, B1), (13)

‖ϕ′(s∗)−1(ϕ′(s∗)− ϕ′(x)‖ ≤ L0‖s∗ − x‖, ∀ x ∈ A. (14)

Set x, y ∈ A0 = A∩ Q
(

s∗, 1
L0

)
so that:

‖ϕ′(s∗)−1(ϕ′(y)− ϕ′(x)
)‖ ≤ L‖y − x‖, ∀ y, x ∈ A0 (15)

‖ϕ′(s∗)−1 ϕ′(x)‖ ≤ M, ∀ x ∈ A0, (16)

satisfies Equations (6) and (7), the condition:

Q̄(s∗, r) ⊂ A, (17)

holds, and the convergence radius r is provided by (8). The obtained sequence of iterations {xj} generated for
x0 ∈ Q(s∗, r)− {x∗} by (2) is well defined. In addition, the sequence also converges to the required root s∗,
remains in Q(s∗, r) for every n = 0, 1, 2, . . ., and:

‖yj − s∗‖ ≤ g1(‖xj − s∗‖)‖xj − s∗‖ ≤ ‖xj − s∗‖ < r, (18)

‖xn+1 − s∗‖ ≤ g2(‖xj − s∗‖)‖xj − s∗‖ < ‖xj − s∗‖, (19)

where the g functions were described previously. Moreover, the limit point s∗ of the obtained sequence {xj} is
the only root of ϕ(x) = 0 in A1 := Q̄(s∗, T) ∩A, and T is defined as T ∈ [r, 2

L0
).

Proof. We prove the estimates (18)–(19), by mathematical induction. Adopting the hypothesis
x0 ∈ Q(s∗, r)− {x∗} and Equations (6) and (14), it results:

‖ϕ′(s∗)−1(ϕ′(x0)− ϕ′(s∗))‖ ≤ L0‖x0 − s∗‖ < L0r < 1. (20)

Using Equation (20) and the results on operators by [1–3] that ϕ′(x0) = 0, we get:

‖ϕ′(x0)
−1 ϕ′(s∗)‖ ≤ 1

1 − L0‖x0 − s∗‖ . (21)

Therefore, it is clear that y0 exists. Then, by using Equations (8), (10), (15), (16), and (21), we obtain:

‖y0 − s∗‖ = ‖(x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)

)
+ (1 − δ)ϕ′(x0)

−1 ϕ(x0)‖
≤ ‖ϕ′(x0)

−1 ϕ′(s∗)‖‖
∫ 1

0 ϕ′(x∗)−1[ϕ′(s∗ + θ(x0 − s∗))− ϕ′(x0)
]
(x0 − s∗)dθ‖

+‖ϕ′(x0)
−1 ϕ′(s∗)‖‖

∫ 1
0 ϕ′(x∗)−1 ϕ′(s∗ + θ(x0 − s∗))(x0 − s∗)dθ‖

≤ L‖x0 − x∗‖2

2(1 − L0‖x0 − s∗‖) +
M|1 − δ|‖x0 − s∗‖
1 − L0‖x0 − s∗‖

= g1(‖x0 − s∗‖)‖x0 − s∗‖ < ‖x0 − s∗‖ < r,

(22)
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illustrating that y0 ∈ Q(s∗, r) and Equation (18) is true for j = 0.
Now, we demonstrate that the linear operator A0 is invertible. By Equations (8), (10), (14), and (22),

we obtain:
‖((α + β + γ)ϕ′(s∗)

)−1(A0 − (α + β + γ)ϕ′(s∗)
)‖

≤ L0
|α + β + γ|

[
|α|‖x0 − s∗‖+ |β|

2
(‖x0 − s∗‖+ ‖y0 − s∗‖

)
+ |γ|‖y0 − s∗‖

]

≤ L0
|α + β + γ|

[
|α|+ |β|

2

( |β|
2

+ |γ|
)

g1
(‖x0 − s∗‖

)‖x0 − s∗‖
]

= p(‖x0 − s∗‖) < p(r) < 1.

(23)

Hence, A−1
0 ∈ L(B2, B1),

‖A−1
0 ϕ′(s∗)‖ ≤ 1

|α + β + γ|(1 − p(‖x0 − s∗‖)) , (24)

and x1 exists. Therefore, we need the identity:

x1 − s∗ =x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)− ϕ′(x0)

−1((1 − c1)ϕ(x0) + c2 ϕ(y0)
)

+ ϕ′(x0)
−1(A0 − ϕ′(x0)

)
A−1

0
(
c1 ϕ(x0) + c2 ϕ(y0)

)
.

(25)

Further, we have:

‖x1 − s∗‖ ≤ ‖x0 − s∗ − ϕ′(x0)
−1 ϕ(x0)‖+ ‖ϕ′(x0)

−1((1 − c1)ϕ(x0) + c2 ϕ(y0)
)‖

+ ‖ϕ′(x0)
−1 ϕ′(s∗)‖‖ϕ′(s∗)−1(A0 − ϕ′(x0)

)‖‖A−1
0 ϕ′(s∗)‖‖ϕ′(s∗)−1(c1 ϕ(x0) + c2 ϕ(y0)

)‖
≤ L‖x0 − s∗‖2

2
(
1 − L0‖x0 − s∗‖

) + M
(|1 − c1|‖x0 − s∗‖+ |c2|‖y0 − s∗‖

)
1 − L0‖x0 − s∗‖

+
M2(|α − 1|+ |β|+ |γ|)(|1 − c1|+ |c2|g1(‖x0 − s∗‖)

)‖x0 − s∗‖
|α + β + γ|(1 − L0‖x0 − s∗‖)

(
1 − p(‖x0 − s∗‖)

)
≤ g2(‖x0 − s∗‖)‖x0 − s∗‖ < ‖x0 − s∗‖ < r,

(26)

which demonstrates that x1 ∈ Q(s∗ r) and (19) is true for j = 0, where we used (15) and (21) for the
derivation of the first fraction in the second inequality. By means of Equations (21) and (16), we have:

‖ϕ(s∗)−1 ϕ(x0)‖ = ‖ϕ′(s∗)−1(ϕ(x0)− ϕ(s∗)
)‖

=
∥∥∥ ∫ 1

0
ϕ′(s∗)−1 ϕ′(s∗ + θ(x0 − s∗))dθ

∥∥∥ ≤ M‖x0 − s∗‖.

In the similar fashion, we obtain ‖ϕ′(s∗)−1 ϕ(y0)‖ ≤ M‖y0 − s∗‖ ≤ Mg1(‖x0 − s∗‖)‖x0 − s∗‖ (by (22))
and the definition of A to arrive at the second section. We reach (18) and (19), just by changing x0,
z0, y0, and x1 by xj, zj, yj, and xj+1, respectively. Adopting the estimates ‖xj+1 − s∗‖ ≤ q‖xj − s∗‖ < r,
where q = g2(‖x0 − s∗‖) ∈ [0, 1), we conclude that xj+1 ∈ Q(s∗, r) and lim

j→∞
xj = s∗. To illustrate the

unique solution, we assume that y∗ ∈ A1, satisfying ϕ(y∗) = 0 and U =
∫ 1

0 ϕ′(y∗ + θ(s∗ − y∗))dθ.
From Equation (14), we have:

‖ϕ′(s∗)−1(U − ϕ′(s∗))‖ ≤ ‖ ∫ 1
0 L0|y∗ + θ(s∗ − y∗)− s∗‖dθ

≤ ∫ 1
0 (1 − t)‖y∗ − s∗‖dθ ≤ L0

2
T < 1.

(27)

It follows from Equation (27) that U is invertible. Therefore, the identity 0 = ϕ(y∗) − ϕ(s∗) =

U(y∗ − s∗) leads to y∗ = s∗.

188



Symmetry 2019, 11, 103

3. Numerical Experiments

Herein, we illustrate the previous theoretical results by means of six examples. The first two are
standard test problems. The third is a counter problem where we show that the previous results are
not applicable. The remaining three examples are real-life problems considered in several disciplines
of science.

Example 1. We assume that B1 = B2 = R3, A = Q̄(0, 1). Then, the function ϕ is defined on A for
u = (x1, x2, x3)

T as follows:

ϕ(u) =
(

ex
1 − 1, x2 − 1

2
(1 − e)x2

2, x3

)T
. (28)

We yield the following Fréchet-derivative:

ϕ′(u) =

⎡
⎢⎣ex1 0 0

0 (e − 1)x2 + 1 0
0 0 1

⎤
⎥⎦ .

It is important to note that we have s∗ = (0, 0, 0)T , L0 = e − 1 < L = e
1

L0 , δ = 1, M = 2, c1 = 1,

and ϕ′(s∗) = ϕ′(s∗)−1 =

⎡
⎢⎣1 0 0

0 1 0
0 0 1

⎤
⎥⎦. By considering the parameter values that were defined in Theorem 1,

we get the different radii of convergence that are depicted in Tables 1 and 2.

Table 1. Radii of convergence for Example 1, where L0 < L.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}
1 − 2

3
4
3

1
3 −1 0.382692 0.0501111 0.0501111

2 − 2
3

4
3 −100 1

100 0.382692 0.334008 0.334008
3 1 1 1 0 0.382692 0.382692 0.382692
4 1 1 1 1

100 0.382692 0.342325 0.342325
5 10 1

10
1
10

1
100 0.382692 0.325413 0.325413

Table 2. Radii of convergence for Example 1, where L0 = L = e by [3,11].

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}
1 − 2

3
4
3

1
3 −1 0.245253 0.0326582 0.0326582

2 − 2
3

4
3 −100 1

100 0.245253 0.213826 0.213826
3 1 1 1 0 0.245253 0.245253 0.245253
4 1 1 1 1

100 0.245253 0.219107 0.219107
5 10 1

10
1
10

1
100 0.245253 0.208097 0.208097

Example 2. Let us consider that B1 = B2 = C[0, 1], A = Q̄(0, 1) and introduce the space of continuous
maps in [0, 1] having the max norm. We consider the following function ϕ on A:

ϕ(φ)(x) = ϕ(x)− 5
∫ 1

0
xτφ(τ)3dτ, (29)
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which further yields:

ϕ′(φ(μ)
)
(x) = μ(x)− 15

∫ 1

0
xτφ(τ)2μ(τ)dτ, for each μ ∈ A.

We have s∗ = 0, L = 15, L0 = 7.5, M = 2, δ = 1, and c1 = 1. We will get different radii of convergence on
the basis of distinct parametric values as mentioned in Tables 3 and 4.

Table 3. Radii of convergence for Example 2, where L0 < L.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}
1 − 2

3
4
3

1
3 −1 0.0666667 0.00680987 0.00680987

2 − 2
3

4
3 −100 1

100 0.0666667 0.0594212 0.0594212
3 1 1 1 0 0.0666667 0.0666667 0.0666667
4 1 1 1 1

100 0.0666667 0.0609335 0.0609335
5 10 1

10
1
10

1
100 0.0666667 0.0588017 0.0588017

Table 4. Radii of convergence for Example 2, where L0 = L = 15 by [3,11].

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}
1 − 2

3
4
3

1
3 −1 0.0444444 0.00591828 0.00591828

2 − 2
3

4
3 −100 1

100 0.0444444 0.0387492 0.0387492
3 1 1 1 0 0.0444444 0.0444444 0.0444444
4 1 1 1 1

100 0.0444444 0.0397064 0.0397064
5 10 1

10
1
10

1
100 0.0444444 0.0377112 0.0377112

Example 3. Let us return to the problem from the Introduction. We have s∗ = 1, L = L0 = 96.662907,
M = 2, δ = 1, and c1 = 1. By substituting different values of the parameters, we have distinct radii of
convergence listed in Table 5.

Table 5. Radii of convergence for Example 3.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.00689682 0.000918389 0.000918389

2 − 2
3

4
3 −100 1

100 0.00689682 0.00601304 0.00601304

3 1 1 1 0 0.00689682 0.00689682 0.00689682

4 1 1 1 1
100 0.00689682 0.00616157 0.00616157

5 10 1
10

1
10

1
100 0.00689682 0.0133132 0.0133132

Example 4. The chemical reaction [12] illustrated in this case shows how W1 and W2 are utilized at rates
q∗ − Q∗ and Q∗, respectively, for a tank reactor (known as CSTR), given by:
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W2 + W1 → W3

W3 + W1 → W4

W4 + W1 → W5

W5 + W1 → W6

Douglas [13] analyzed the CSTR problem for designing simple feedback control systems. The following
mathematical formulation was adopted:

KC
2.98(x + 2.25)

(x + 1.45)(x + 2.85)2(x + 4.35)
= −1,

where the parameter KC has a physical meaning and is described in [12,13]. For the particular value of choice
KC = 0, we obtain the corresponding equation:

ϕ(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x + 51.23266875. (30)

The function ϕ has four zeros s∗ = (−1.45, −2.85, −2.85, −4.35). Nonetheless, the desired zero is
s∗ = −4.35 for Equation (30). Let us also consider A = [−4.5,−4].

Then, we obtain:

L0 = 1.2547945, L = 29.610958, M = 2, δ = 1, c1 = 1.

Now, with the help of different values of the parameters, we get different radii of convergence displayed in Table 6.

Table 6. Radii of convergence for Example 4.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.0622654 0.00406287 0.00406287

2 − 2
3

4
3 −100 1

100 0.0622654 0.0582932 0.0582932

3 1 1 1 0 0.0622654 0.0622654 0.0622654

4 1 1 1 1
100 0.0622654 0.0592173 0.0592173

5 10 1
10

1
10

1
100 0.0622654 0.0585624 0.0585624

Example 5. Here, we assume one of the well-known Hammerstein integral equations (see pp. 19–20, [14])
defined by:

x(s) = 1 +
1
5

∫ 1

0
F(s, t)x(t)3dt, x ∈ C[0, 1], s, t ∈ [0, 1], (31)

where the kernel F is:

F(s, t) =

{
s(1 − t), s ≤ t,

(1 − s)t, t ≤ s.

We obtain (31) by using the Gauss–Legendre quadrature formula with
∫ 1

0 φ(t)dt �
8

∑
k=1

wkφ(tk), where tk and

wk are the abscissas and weights, respectively. Denoting the approximations of x(ti) with xi (i = 1, 2, 3, ..., 8),
then it yields the following 8 × 8 system of nonlinear equations:
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5xi − 5 −
8

∑
k=1

aikx3
k = 0, i = 1, 2, 3..., 8,

aik =

{
wktk(1 − ti), k ≤ i,

wkti(1 − tk), i < k.

The values of tk and wk can be easily obtained from the Gauss–Legendre quadrature formula when k = 8.
The required approximate root is:

s∗ = (1.002096 . . . , 1.009900 . . . , 1.019727 . . . , 1.026436 . . . , 1.026436 . . . ,
1.019727 . . . , 1.009900 . . . , 1.002096 . . . )T .

Then, we have:

L0 = L =
3
40

, M = 2, δ = 1, c1 = 1

and A = Q(s∗, 0.11). By using the different values of the considered disposable parameters, we have different
radii of convergence displayed in Table 7.

Table 7. Radii of convergence for Example 5.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 8.88889 1.18366 1.18366

2 − 2
3

4
3 −100 1

100 8.88889 7.74984 7.74984

3 1 1 1 0 8.88889 8.88889 8.88889

4 1 1 1 1
100 8.88889 7.94127 7.94127

5 10 1
10

1
10

1
100 8.88889 7.54223 7.54223

Example 6. One can find the boundary value problem in [14], given as:

y′′ = 1
2

y3 + 3y′ − 3
2 − x

+
1
2

, y(0) = 0, y(1) = 1. (32)

We suppose the following partition of [0, 1]:

x0 = 0 < x1 < x2 < x3 < · · · < xj, where xi+1 = xi + h, h =
1
j
.

In addition, we assume that y0 = y(x0) = 0, y1 = y(x1), . . . , yj−1 = y(xj−1) and yj = y(xj) = 1. Now,
we can discretize this problem (32) relying on the first- and second-order derivatives, which is given by:

y′k =
yk+1 − yk−1

2h
, y′′k =

yk−1 − 2yk + yk+1

h2 , k = 1, 2, . . . , j − 1.

Hence, we find the following general (j − 1)× (j − 1) nonlinear system:

yk+1 − 2yk + yk−1 − h2

2
y3

k −
3

2 − xk
h2 − 1

h2 = 0, k = 1, 2, . . . , j − 1.

We choose the particular value of j = 7 that provides us a 6×6 nonlinear systems. The roots of this nonlinear system
are s∗ =

(
0.07654393 . . . , 0.1658739 . . . , 0.2715210 . . . , 0.3984540 . . . , 0.5538864 . . . , 0.7486878 . . .

)T, and
the results are mentioned in Table 8.
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Then, we get that:
L0 = 73, L = 75, M = 2, δ = 1, c1 = 1,

and A = Q(s∗, 0.15).
With the help of different values of the parameters, we have the different radii of convergence listed in Table 8.

Table 8. Radii of convergence for Example 6.

Cases
Different Values of Parameters That Are Defined in Theorem 1

α β γ c2 r1 r2 r = min{r1, r2}

1 − 2
3

4
3

1
3 −1 0.00904977 0.00119169 0.00119169

2 − 2
3

4
3 −100 1

100 0.00904977 0.00789567 0.00789567

3 1 1 1 0 0.00904977 0.00904977 0.00904977

4 1 1 1 1
100 0.00904977 0.00809175 0.00809175

5 10 1
10

1
10

1
100 0.00904977 0.00809175 0.00809175

Remark 1. It is important to note that in some cases, the radii ri are larger than the radius of Q(s∗, r). A similar
behavior for Method (2) was noticed in Table 7. Therefore, we have to choose all ri = 0.11 because Expression
(17) must be also satisfied.

4. Concluding Remarks

The local convergence of the fourth-order scheme (2) was shown in earlier works [5,6,8,15] using
Taylor series expansion. In this way, the hypotheses reach to four-derivative of the function ϕ in the
particular case when B1 = B2 = Rm and S = R. These hypotheses limit the applicability of methods
such (2). We analyze the local convergence using only the first derivative for Banach space mapping.
The convergence order can be found using the computational order of convergence (COC)or the
approximate computational order of convergence (ACOC) (Appendix A), avoiding the computation
of higher order derivatives. We found also computable radii and error bounds not given before using
Lipschitz constants, expanding, therefore, the applicability of the technique. Six numerical problems
were proposed for illustrating the feasibility of the new approach. Our technique can be used to study
other iterative methods containing inverses of mapping such as (3)–(5) (see also [1–9,11–45]) and to
expand their applicability along the same lines.
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Appendix A

Remark

(a) The procedure of studying local convergence was already given in [1,2] for similar methods.
Function M(t) = M = 2 or M(t) = 1 + L0t, since 0 ≤ t < 1

L0
can be replaced by

(16). The convergence radius r cannot be bigger than the radius rA for the Newton method
given in this paper. These results are used to solve autonomous differential equations.
The differential equation plays an important role in the study of network science, computer
systems, social networking systems, and biochemical systems [46].

In fact, we refer the reader to [46], where a different technique is used involving discrete
samples from the existence of solution spaces. The existence of intervals with common solutions,
as well as disjoint intervals and the multiplicity of intervals with common solutions is also shown.
However, this work does not deal with spaces that are continuous and multidimensional.

(b) It is important to note that the scheme (2) does not change if we adopt the hypotheses of
Theorem 1 rather than the stronger ones required in [5–9]. In practice, for the error bounds,
we adopt the following formulas [22] for the computational order of convergence (COC),
when the required root is available, or the approximate computational order of convergence
(ACOC), when the required root is not available in advance, which can be written as:

ξ =
ln ‖xk+2−s∗‖

‖xk+1−s∗‖
ln ‖xk+1−s∗‖

‖xk−s∗‖
, k = 0, 1, 2, 3 . . . ,

ξ∗ =
ln ‖xk+2−xk+1‖

‖xk+1−xk‖
ln ‖xk+1−xk‖

‖xk−xk−1‖
, k = 1, 2, 3, . . . ,

respectively. By means of the above formulas, we can obtain the convergence order without
using estimates on the high-order Fréchet derivative.
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