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Changes in the sea surface roughness are usually associated with a change in the sea surface wind
field. This interaction has been exploited to measure the sea surface wind speed by scatterometry.
A number of features on the sea surface associated with changes in roughness can be observed by
synthetic aperture radar (SAR) because of the change in Bragg backscatter of the radar signal by
damping of the resonant ocean capillary waves. With various radar frequencies, resolutions, and modes
of polarization, sea surface features have been analyzed in numerous campaigns, bringing various
datasets together, thus allowing for new insights in small-scale processes at a larger areal coverage.
This Special Issue aims at investigating sea surface features detected by high spatial resolution radars,
such as SAR.

Overview of Contributions

Rikka et al. [1] demonstrate an empirical method for estimating meteo-marine parameters over
the Baltic Sea. The empirical function CWAVE_S1-IW combines spectral analysis of Sentinel-1A/B
Interferometric Wide swath subscenes with wind data derived with common C-Band Geophysical
Model Functions. The estimated wave heights and wind speed agree with the wave model (WAM)
and in-situ data, respectively. Their methods are implemented in near-real-time service in the German
Aerospace Center’s ground station, Neustrelitz.

SAR is applied to tropical storm conditions in several contributed papers. Zhang and Perrie [2]
retrieve the wind field of Hurricane Bertha (2008) from the RADARSAR-2 cross-polarized SAR
images using the C-3PO (C-band Cross-Polarization Coupled-Parameters Ocean) hurricane wind
retrieval model and extract an axisymmetric double-eye structure from an idealized vortex model
called Symmetric Hurricane Estimates for Wind. Adding data from airborne measurements using
a stepped-frequency microwave radiometer reveal the hurricane’s internal dynamic process related to
the double-eye structure, which is consistent with past studies.

Zhang et al. [3] examine fetch- and duration-limited parametric models (H-models) using the
SAR-retrieved wind speed, Sentinel-1 SAR wave mode, and buoy data to estimate wind wave
parameters (wave height and period) generated by hurricanes or typhoons. The models provide an
effective method to obtain the wave parameters inside storms.

A paper by Shen et al. [4] introduces a hurricane wind quality index to evaluate SAR wind
retrievals from cross-polarization and co-polarization observations for storm conditions. The index
shows rain-contaminated wind cells, and it is used for wind correction under heavy rain-contaminated
areas. The proposed method improves the SAR-derived wind field under hurricane conditions.

Another wind retrieval model is proposed for the European Space Agency (ESA) Sentinel-1A
(S-1A) Extra-Wide swath mode VH-polarized images [5]. The new model is validated by comparing
the wind speeds retrieved from S-1A images with the wind speeds measured by Soil Moisture Active

Remote Sens. 2019, 11, 2026; doi: www.mdpi.com/journal/remotesensing1
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Passive (SMAP) radiometer under tropical cyclone conditions. The results suggest that the proposed
model can be used to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.

Sun et al. [6] develop ocean wind retrieval models for right circular-vertical and right
circular-horizontal polarizations from the compact-polarimetry mode of the RADARSAT Constellation
Mission (RCM), a set of three satellites just launched in 2019. The wind retrieval models are validated
and contribute to temporal oceanography or atmosphere dynamic research based on RCM SAR data.

A hybrid wind retrieval model is proposed by using two models: C-2PO (C-band cross-polarized
ocean backscatter) and CMOD4 (C-band model) [7]. Sets of SAR images over the Northwest Pacific off
the coast of China are used to establish a wind speed threshold (9.4 m/s). Ocean surface wind speeds
are retrieved by the C-2PO model as VH-polarized images when the wind speeds are higher than the
threshold, while the CMOD4 geophysical model function for VV-polarized images is used when the
wind speeds are less than or equal to the threshold.

Kammerer and Hackett [8] show that phase-resolved ocean wave fields are reconstructed from
X-band Doppler radar measurements of the ocean surface by proper orthogonal decomposition (POD)
more accurately than the conventional FFT-based dispersion curve filtering. The results indicate that
the group line (a linear feature at frequencies lower than the first order dispersion relationship in
wavenumber-frequency spectra of the ocean surface) influences the phase-resolved wave field.

Buono et al. [9] discover that under low-to-moderate wind conditions (≈ 3–12 m/s), SAR imaging
parameters have a stronger effect on the standard deviation of the co-polarized phase difference than
meteo-marine parameters; they use a theoretical model based on the tilted-Bragg scattering. The results
can support the improvement of the SAR algorithms for a variety of ocean applications including
object detection.

Tings et al. [10] propose an extension of their ship-wake detectability model by using a non-linear
basis that allows consideration of all the influencing parameters simultaneously. The parameters
affecting wake detectability include environmental conditions (wind speed, wind direction, sea state
height, sea state direction, and sea state wave length), ship properties (size, heading, and velocity), and
image acquisition settings (incidence angle, beam looking direction). The detectability model can be
applied to control an automatic wake-detection system.

An overview of the GeoFen-3 (GF-3), a Chinese C-band SAR satellite launched in August 2016,
is provided by Li et al. [11]. They demonstrate the capabilities of the GF-3 SAR in ocean and coastal
observations by presenting selected features (i.e., intertidal flats, offshore tidal turbulent wakes,
oceanic internal waves, sea surface winds, and waves). For more details and other applications of
GF-3, see MDPI journal Sensors Special Issue “First Experiences with Chinese Gaofen-3 SAR Sensor”
(https://www.mdpi.com/journal/sensors/special_issues/gaofen_3_SAR_sensor).
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Abstract: A method for estimating meteo-marine parameters from satellite Synthetic Aperture Radar
(SAR) data, intended for near-real-time (NRT) service over the Baltic Sea, is presented and validated.
Total significant wave height data are retrieved with an empirical function CWAVE_S1-IW, which
combines spectral analysis of Sentinel-1A/B Interferometric Wide swath (IW) subscenes with wind
data derived with common C-Band Geophysical Model Functions (GMFs). In total, 15 Sentinel-1A/B
scenes (116 acquisitions) over the Baltic Sea were processed for comparison with off-shore sea state
measurements (52 collocations) and coastal wind measurements (357 colocations). Sentinel-1 wave
height was spatially compared with WAM wave model results (Copernicus Marine Environment
Monitoring Service (CMEMS). The comparison of SAR-derived wave heights shows good agreement
with measured wave heights correlation r of 0.88 and with WAM model (r = 0.85). The wind speed
estimated from SAR images yields good agreement with in situ data (r = 0.91). The study demonstrates
that the wave retrievals from Sentinel-1 IW data provide valuable information for operational and
statistical monitoring of wave conditions in the Baltic Sea. The data is valuable for model validation
and interpretation in regions where, and during periods when, in situ measurements are missing.
The Sentinel-1 A/B wave retrievals provide more detailed information about spatial variability of
the wave field in the coastal zone compared to in situ measurements, altimetry wave products and
model forecast. Thus, SAR data enables estimation of storm locations and areal coverage. Methods
shown in the study are implemented in NRT service in German Aerospace Center’s (DLR) ground
station Neustrelitz.

Keywords: SAR; Sentinel-1; wave height; wind speed; Copernicus; CMEMS; Baltic Sea

1. Introduction

1.1. Meteo-Marine Parameters in the Baltic Sea in Relation to Synthetic Aperture Radar

Space-borne Synthetic Aperture Radar (SAR), known for its independence of daylight and weather,
can provide two-dimensional (2D) information about the ocean surface with global coverage [1,2]. It is
due to the Bragg scattering of the short capillary waves in the dimension of centimeters, produced by
wind stress, which allows extraction of wave and wind parameters from radar imagery [3–5].

The investigation of SAR ocean surface imaging mechanisms and the extraction of wave and
wind parameters started with the launch of L-band SAR onboard SEASAT in 1978 [3,4]. Since then,
numerous different algorithms have been developed over time to estimate oceanographic parameters
and ocean wave spectra from SAR imagery [6–8].

Remote Sens. 2018, 10, 757; doi:10.3390/rs10050757 www.mdpi.com/journal/remotesensing4
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The methods for sea state estimation are largely divided into two main groups; first one
being functions where image spectra are transferred into wave spectra using transfer functions
(e.g., [6,7,9,10]). These methods are suitable for estimations of swell’s spectra, and its output can
be assimilated into spectral wave models. The key to success is to understand the nonlinear SAR
imaging of the moving sea surface waves that can be incorporated in “transfer functions” [9]. This
approach requires SAR acquisitions with clearly visible wave patterns (e.g., Sentinel-1 Wave Mode
(WM) data, high resolution Stripmap Mode TerraSAR-X data). Otherwise, the waves are substantially
distorted and are not visible in the SAR images and thus are not represented in the image spectra.

The second group of sea state estimation algorithms use a direct estimation of the wave parameters
from the image spectrum with empirical functions (e.g., [11–14]). Although empirical methods for
C-band SAR exist, e.g., CWAVE_ERS and CWAVE_ENVI [12,14], they are only applicable to ERS-2
and Envisat-ASAR WM data. The most recent method for Sentinel-1 WM data by Stopa et al. [15]
uses neural network techniques to retrieve wave parameters. However, since Sentinel-1A/B WM data
is not available over the coastal areas of world ocean (including the Baltic Sea), moderate resolution
Interferometric Wide (IW) swath mode images are used for sea state parameter retrieval. Short windsea
waves produce unclear wave pattern in Sentinel-1 IW mode and are hardly distinguishable from ocean
clutter. The SAR images are being affected by strong non-linear distortions due to the defocusing
effects. Empirical functions, deduced from large sets of representative data, are proven to be more
suitable for the short windsea waves and noisy images. The direct estimation of wave parameters
from subscene spectra allows fast, straightforward, and reliable near-real-time (NRT) processing of
satellite scene while excluding only a fragment of the data [13,16].

For the semi-enclosed micro-tidal Baltic Sea with the absence of long swell waves and short
wave “memory” [17], and the significant wave heights remaining mostly between 0 and 2 m (rarely
exceeds 4 m [18,19]), the second type of mentioned methods is recommended [13,20,21]. Windsea
waves are short-crested and represent a considerable number of small, nonstable, fast, and erratically
moving targets for a SAR sensor. Such sea state is typically imaged similar to noise with radar echoes
of every scatterer blurred in azimuth and shifted randomly in range direction due to the individual
Doppler contribution. The resulting pattern is hardly recognized as a wave pattern. A strong windsea
contribution to the total wave height is therefore equivalent to more substantial uncertainties in
SAR imaging.

With the launch of C-band Sentinel-1A/B constellation, different methods to estimate
meteo-marine parameters, software realizations, and infrastructure open possibilities for NRT services
for oceanographic applications [16]. As shortly as 10 min after image downlink, information about
wave height, wind speed, as well as ice coverage, oil spills, and ship detection can be transferred to
interested institutions or weather services [13,20,22–24].

Sentinel-1A/B data is already used worldwide for different applications. For example, estimating
wave-induced orbital velocities from which elevation spectra is derived over ice-covered regions [25],
calculating significant wave height and mean wave period from Sentinel-1A/B StripMap images using
semi-empirical methods [26], or using neural network techniques on Sentinel-1 data to retrieve wave
height [15].

SAR-based wave products have also proven to be valuable in the open ocean applications for swell
tracking (e.g., [27,28]). In operational wave monitoring and forecasting, several organizations provide
relevant information on wave conditions in the Baltic Sea: Baltic Operational Oceanographic System
(BOOS), Copernicus Marine Environment Monitoring Service (CMEMS). However, the inclusion of
Sentinel-1 wave products over the Baltic Sea into the CMEMS product portfolio would improve the
service quality which currently provides only model wave forecast, altimetry wave products, and in
situ data [29–31].
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1.2. Sentinel-1A/B Data over the Baltic Sea

The Baltic Sea is situated in temperate latitudes between 53◦N to 66◦N and from 9◦E to 30◦E
which makes it one of the most frequently imaged locations by the Sentinel-1 satellites. Various parts
of the Baltic Sea are imaged by Sentinel-1A/B daily and often even twice a day by ascending and
descending orbits in the morning and in the evening correspondingly. The most suitable Sentinel-1A/B
relative orbit numbers are 22 paired with 29, 51 with 58, and 124 with 131 (Figure 1).

Figure 1. Sentinel-1A/B IW relative orbit overlays and corresponding orbit numbers over the Baltic
Sea. (a) ascending/morning orbits and (b) descending orbits in the evenings.

Similar usability of satellite SAR data in the Baltic Sea was available when Envisat/ASAR
(Advanced Synthetic Aperture Radar) was operational. With the launch of Sentinel-1A/B constellation
and the freely available data on the Copernicus Open Access Hub, all the services can be continued.
Different methods can be applied on the images to estimate meteo-marine parameters in the Baltic Sea
for operational maritime awareness applications. The Sentinel-1 IW level-1 products have 250 km wide
swath with 10 m pixel resolution to cover the length of the Baltic Sea with sequential SAR acquisitions.

1.3. Aim of the Study

The main purpose of this study is to assess current state-of-the-art method in estimating
meteo-marine parameters, such as wind speed or total significant wave height, in the Baltic Sea
from medium resolution Sentinel-1A/B IW swath mode satellite radar imagery. The main advantages
of the method as well as challenges are also brought out. The study focuses on the possibilities of
making the method available as a near-real-time service over the Baltic Sea using three examples of
different sea state in comparison to spectral wave model and available in situ measurements.

The specific objectives of the study are: (i) to validate CWAVE_S1-IW wave retrievals in the
Baltic Sea; (ii) to validate CMOD wind speed retrievals in the coastal zone of the Baltic Sea; (iii) to
demonstrate potential of Sentinel-1A/B SAR wave retrievals with CWAVE_S1-IW algorithm for
operational monitoring in coastal area.
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2. Data

2.1. In Situ Data

Wind measurement data from 39 coastal stations (357 collocations with SAR data) around the
Baltic Sea were used for statistical validation of Sentinel-1 wind retrievals (Figure 2). Sentinel-1 SAR sea
state retrievals were validated with in situ wave measurements from 5 offshore stations (52 collocations
with SAR data) (Table 1 and Figure 2).

Figure 2. The map of the Baltic Sea and locations of measurement stations used in the study. The
location of wave measurements—significant wave height, wave propagation direction, wave period
(red), and coastal wind measurements—speed, gusts, direction (blue) are indicated on the map; green
marks extra stations (virtual buoys).

Table 1. Overview of wave measurements used in the study. HS represents total significant wave height.

No. (Origin) Station Lat (◦N) Lon (◦E) Sensor Data Used

1 (FIN) Selkämeri 61.8001 20.2327 Waverider HS
2 (SWE) Finngrundet 61.0000 18.6667 Waverider HS
3 (FIN) NBP 59.2500 20.9968 Waverider HS
4 (EST) Vilsandi 58.4889 21.6333 Waverider HS
5 (SWE) Knolls grund 57.5167 17.6167 Waverider HS

6 NBP Extra 58.7500 20.8271 Virtual buoy HS
7 Södra Östersjön 55.9167 18.7833 Virtual buoy HS
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2.2. Sentinel-1A/B Data

The C-band SAR data from Sentinel-1A/B, namely IW mode data, are used for estimation of
meteo-marine parameters in this study. The IW mode allows combining large swath width of 250 km in
range direction with moderate geometric (5 × 20 m) resolution. Sentinel-1A/B products are available
in single (HH or VV) or dual polarizations (HH+HV, VV+VH). For the meteo-marine parameter
estimation, either one of the single polarization data is used. The Normalized Radar Cross Section
(NRCS) σ0 is firstly processed from image pixel digital number (DN):

σ0 =
DN2

k2
s

(1)

where ks is the calibration factor given in the products metadata. The process of estimating sea state
parameters is based on FFT (Fast Fourier Transform) of the subscene. Before the analysis, each pixel
value σ0(x, y) of the subscene is normalized resulting in a value σn(x, y):

σn =
σ0(x, y)− σ0

σ0
(2)

where σ0 is the mean value of σ0 in the subscene.
Images were processed with a 3 nautical mile grid with the FFT window of 1024 × 1024 pixels

with four-factor resampling and Gaussian smoothing. The processing was implemented for latitudes
up to 65◦N.

Although all the Sentinel-1A/B IW scenes (460 scenes) over the Baltic Sea from the beginning of
2015 until the end of 2016 were processed, only 15 overpasses (number of acquisitions per satellite
overpass ranged from 5 to 9) were selected for validation of the meteo-marine parameter retrieval
method as well as for analysis and comparison. All the selected data in Table 2 were acquired in
VV polarization. The SAR data for validation were selected to have equal representation of different
meteo-marine conditions (i.e., high and low sea states) (Table 2).

Table 2. Sentinel-1A/B acquisitions used for the study. Relative orbit numbers with acquisitions per
scene are listed. Mean and maximum significant wave height and wind speed calculated with the
methods described in Section 3 are shown with the number of collocations per overpasses.

Sentinel-1 UTC
Relative Orbit

no.
Images in

Scene
Mean/Max HS

per Scene
Mean/Max U10

per Scene
Collocations
(Wave/Wind)

11 January 2015 16:19 29 6 2.4/7.5 9.0/18.7 3/11
22 April 2015 16:28 102 6 0.3/1.7 2.6/11.8 2/3
04 June 2015 05:04 22 9 0.9/2.8 5.3/14.0 4/32
11 June 2015 04:56 124 9 0.6/2.1 4.1/11.5 5/28
25 June 2015 04:56 124 8 0.8/1.8 5.1/13.8 5/27
28 June 2015 05:04 22 9 0.6/2.2 3.4/8.7 4/25
05 July 2015 04:56 124 9 0.7/2.5 4.7/12.4 4/22
28 July 2015 04:56 124 9 0.9/2.4 6.6/14.4 5/25

08 August 2015 05:04 22 9 1.7/2.9 10.8/16.0 4/31
08 September 2015 16:19 29 6 1.3/2.7 8.5/17.3 3/19

02 October 2015 05:04 22 9 1.8/3.6 11.6/19.1 4/32
02 October 2015 16:19 29 5 2.5/4.8 13.2/18.2 1/16

02 November 2015 04:56 124 9 1.6/2.4 10.7/17.1 5/32
09 August 2016 16:19 29 6 1.9/3.7 9.7/13.8 1/28

14 December 2016 04:56 124 7 1.4/2.6 8.6/13.9 2/26
15 116 52/357

2.3. Spectral Wave Model

The wave model WAM [32] is a third-generation wave model which solves the action balance
equation without any a priori restriction to the evolution of spectrum. The action density spectrum N
is considered instead of the energy density spectrum E because in the presence of ambient currents,
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action density is conserved, but energy density is not. Action density is related to energy density
through the relative frequency [33]:

N(σ, θ) =
E(σ, θ)

σ
(3)

The variable σ is the relative frequency (as observed in a frame of reference moving with the
current velocity) and θ is the wave direction (the direction normal to the wave crest of each spectral
component). The action balance equation in Cartesian coordinates reads:

∂N
∂t

+

(
→
c g +

→
U
)
∇x,yN +

∂cσ N
∂σ

+
∂cθ N

∂θ
=

Swind + Snl4 + Swc + Sbot
σ

(4)

On the left-hand side of Equation (4) the first term represents the local rate of change of action
density in time; the second term denotes the propagation of wave energy in two-dimensional

geographical space, where
→
c g is the group velocity and

→
U is the ambient current. The third term

represents shifting of the relative frequency due to variations in depths and currents (with propagation
velocity cσ in σ space). The fourth term represents depth-induced and current-induced refraction (with
propagation velocity cθ in θ space). At the right-hand side of the action balance equation is the source
term that represents physical processes which generate, redistribute, or dissipate wave energy in the
WAM model. These terms denote, respectively, wave growth by the wind Swind, non-linear transfer of
wave energy through four-wave interactions Snl4 and wave dissipation due to whitecapping Swc and
bottom friction Sbot.

A pre-operational version of the WAM model which is since April 2017 used for the production of
CMEMS wave forecast over the Baltic Sea was used [29]. The model domain covers the Baltic Sea with
a grid resolution of one nautical mile, yielding 800 × 775 model grid points. The model was forced
with High Resolution Limited Area Model (HIRLAM) winds with a spatial resolution of 11 km and
temporal resolution of one hour. In winter, ice concentration data from the Finnish Meteorological
Institute’s Ice Service was used. Model grid points in which the ice concentration exceeds 30% are
excluded from the calculation. Data assimilation was not used in the wave model.

3. Methods

3.1. Wind

Sea state is strongly dependent on local wind characteristics which SAR data can provide. By
analyzing the roughness of the sea, wind speed is received using Geophysical Model Functions (GMF)
which relate the local wind conditions and sensor geometry to radar cross section values.

For Sentinel-1 IW data, separate GMFs are used for HH or VV polarizations. For HH, CMOD4
function, developed by Stoffelen et al. [34] is used, and for VV polarization CMOD5.N algorithms
shows the best results [35]. The selection of the respective GMF is based on an extensive comparison of
GMF performance in comparison with an advanced scatterometer (ASCAT), METOP-A, and METOP-B
satellite data performed by [36]. As stated in [36], Thompson polarization ratio [37] with α = 1 is
applied to HH polarized data. Also following the authors’ suggestion, a bias of 0.004 is subtracted
from VV polarized data, to achieve an overall better agreement with scatterometer data. In total,
an accuracy of approximately 1.5 m s−1 has been found in the comparison with the ASCAT data
within the validity range of 2–25 m s−1 of the two GMFs [36]. In the current processing procedure, no
information from the cross-polar channel is exploited, although a future application of a respective
GMF as e.g., proposed by [38] is foreseen to improve wind data reliability in storm situations. The
data analyzed in this paper is entirely in the validity range of the applied GMFs for co-polar channels.

In the common procedure, GMFs in general and thus also the CMOD algorithms are inversion
methods and require the local wind direction to reduce the number of free parameters in the forward
calculation. For the work presented in this paper, wind direction from Weather Research and
Forecasting Model (WRF) is used [39]. The model is run for the given area and time of the data
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acquisition. Initial and boundary conditions are adopted from the corresponding National Oceanic and
Atmospheric Administration Global Forecast System (NOAA GFS) analysis model values. For NRT
applications, NOAA GFS Forecast values are used instead and the model is run shortly prior to satellite
data downlink with a configuration based on the scene parameters (region and time) available in the
data processing system schedule. Finally, WRF model values for the wind direction are interpolated to
the sea state calculation grid and wind speeds are calculated directly within the sea state algorithm
procedure for a given subcell.

3.2. Sea State

An empirical algorithm CWAVE_S1-IW, developed by Pleskachevsky et al. [20], is used to estimate
integrated sea state parameters straight from SAR image spectra without transformation into wave
spectra. The method is chosen since traditional functions (image spectrum transfer to wave spectrum)
are not able to calculate total significant wave height from Sentinel-1 IW mode imagery in the Baltic
Sea. The main reasons are the relatively coarse resolution of Sentinel-1A/B and generally lower sea
state without long swell compared to the open ocean.

In comparison to e.g., TerraSAR-X/TanDEM-X StripMap scenes with about 3 m resolution, the
Sentinel-1A/B IW mode resolution is by an order of magnitude larger. In case of such Sentinel-1 SAR
imaging setting the wave structures, if visible, are disturbed by the vast amount of noise. In addition,
a standard FFT window of 1024 × 1024 pixels covers a relatively large area of 10240 × 10240 m.
To overcome the limitation, four-factor resampling and Gaussian smoothing were applied to selected
subscenes. The modified resolution becomes to 2.5 m with areal coverage of 2560 × 2560 m [20].

An important part of sea state estimation is pre-filtering of any natural or man-made objects from
subscene which yields to inaccuracies in wave height estimation. Such spectral perturbations result in
an integrated value which leads to the total image energy not connected to the sea state. The radar
signal disturbances can be divided into two main groups:

- radar signal much stronger than background backscatter from sea state produced mainly by ships
or offshore constructions. In these cases, the subscene is additionally analyzed with 100 × 100 m
sliding window. The statistics of each window σwin

0 is compared with σ0 of the subscene. In a
case of σwin

0 > qshipσ0 with tuned qship value of 2.3 (for 100 × 100 m window), the outliers in the
current window are replaced with the mean value of the subscene σ0 [20];

- radar signal much weaker than background backscatter from sea state produced, for example, by
oil spills, or commonly occurring algae blooms in the Baltic Sea [20]. In those cases, the filtering
algorithm was extended by employing σwin

0 > qspillsσ0 with tuned threshold coefficient qspills.

To obtain integrated wave parameters, FFT operation is applied to the radiometrically calibrated
subscene. Image power Spectrum IS

(
kx, ky

)
is calculated by integration over 2D wavenumber domain:

EIS =
∫ kmax

x

kmin
x

∫ kmax
y

kmin
y

IS
(
kx, ky

)
dkxdky (5)

The integration over wavenumber domain is limited by kmax = 0.003 and kmin = 0.201 which

correspond to wavelength of 2000 to 30 m, where wavenumber k =
√

k2
x + k2

y. In the Sentinel-1A/B
image spectra the wavenumber domain ~0.201 < k < 0.060 represents the clutter produced by waves
shorter than about 100 m. The domain ~0.060 < k < 0.010 represents long waves with wavelength of
~100 < Lp < 600 m, and the domain ~0.010 < k < 0.003 represents the longest structures such as wind
streaks [20].

During the algorithm’s development, it became clear that estimating sea state parameters based
only on image spectral properties is not accurate enough. Additional information about each subscene
is therefore acquired by using Grey Level Co-occurrence Matrix (GLCM) [40]. By using image texture
analysis, accuracy in low and high sea state was improved [20].
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The resulting function CWAVE_S1-IW for Sentinel-1A/B imagery to calculate total significant
wave height is expressed as:

HXWAVE_C
S = a0

√
B0EIStan(θ) +

n

∑
i=1

aiBi (6)

where θ is local incidence angle, ai are coefficients, and Bi are functions of spectral parameters, wind
and GLCM results.

The first term in Equation (6) connects the sea state and image spectra energy which contributes
the most in the case of long prominent waves with over 100 m wavelengths. The non-linearity of the
imaging mechanism is represented by the B0, which represents noise scaling of total image spectrum
energy EIS. The relation B0 = KE100

IS /E600
IS , where K serves as a constant found by collocating buoy

data, connects the spectrum energy between the wavelength domain of 30–100 m (noisy part of the
image spectrum) with the wavelength domain of 100–600 m (the area where wave-looking patterns
can be observed). The rest of the terms in Equation (6) represent a series of corrections and filtering of
different origins. For example, to consider the wind speed, the term a1B1, where B1 = U10, is used.
Full information about the function development, tuning and results can be found in [20].

3.3. Comparison Methods

The total significant wave height HS and wind speed U10 derived from SAR are used for
comparisons with collocated in situ measurements. The Sentinel-1A/B scenes were processed with
3 × 3 nautical miles posting with ~30 × 45 = ~1350 subscenes per IW image. The collocations were
done for five Sentinel-1A/B scenes with a time window of ±20 min and almost 30 min for one case.
For the rest of the nine cases, the time difference between the measurements or WAM model data and
SAR-derived values is less than 5 min (Table 2). For the spatial collocation, the closest SAR-subscenes
are used with a mean value between subscene centre and measurement equipment location or WAM
wave model grid point being 4.1 km and 0.7 km, correspondingly. In case the buoy location remains
outside the image, the results from the closest subscene to the SAR acquisition edge in the range of up
to 10 km was incorporated.

In the case of the wind speed comparison, the average distance between in situ measurement
location and the closest subscene centre is 7.7 km. The reason is that the majority of the stations are
at the coast (Figure 2) and the SAR subscenes which are close to the shore (contaminated by land
backscatter) are filtered out. The time difference remains the same as for wave height comparison,
mostly below 5 min.

The Root Mean Square Error (RMSE), Pearson correlation coefficient r, and Scatter Index (SI)
(where SI = RMSE/(average of observations)) are calculated for each collocated dataset for the statistical
comparisons. Standard deviation (STD) is used to measure variabilities of datasets. All collocated data
are presented in scatterplots for wave height and wind speed.

4. Results

4.1. Validation

The inter-comparison and the scatter plots in Figure 3 show a good general agreement of SAR
wave retrievals and WAM model fields with in situ wave measurements. The corresponding correlation
coefficients are 0.88 to 0.89 (Table 3). Also, the RMSE of SAR-derived wave heights and WAM model
wave heights are very similar, 0.40 m and 0.39 m correspondingly (Table 3). Slightly poorer statistics
(r = 0.81 and RMSE = 0.47 m) are observed when the SAR wave is compared with WAM model data
(based on 52 collocated observations), which indicates that SAR and model data resolve distinct aspects
of the observed wave parameters. Therefore, SAR and model data could both provide complementary
information for accurate description of the wave field. The benefits of multiple data sources for
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understanding wave field variations are discussed in Sections 4.2 and 5.1 based on characteristic
examples of wave conditions.

 

Figure 3. (a) Scatterplot for sea state for available collocated data acquired over the Baltic Sea including
15 Sentinel-1A/B scenes (overflights/events/days) with 116 individual Sentinel-1 IW mode images and
52 buoy collocations. The correlation coefficient between SAR and in situ measurements is 0.88, RMSE
is 0.40 m, and Scatter Index is 0.37. (b) Scatterplot for surface wind speed for all available collocated
data acquired over the Baltic Sea. The correlation coefficient r is 0.91, RMSE is 1.43 m s−1, and SI is
0.19. (c) Histogram plot for all the collocated SAR versus WAM results. The bin size for histogram
calculations is 0.2 m. The statistics between the datasets are as follows: r = 0.86, RMSE = 0.47 m, and
SI = 0.33.

Table 3. Overview of inter-comparison of significant wave height and wind speed: correlation
coefficient (r), root mean square error (RMSE), scatter index (SI), and number of collocations (n).
The values in brackets in the 3rd column represent the statistics when all collocated data of Synthetic
Aperture Radar (SAR) and wave model (WAM) wave fields were used (49,315 colocations).

Parameter
SAR vs. In Situ

Wave Height
SAR vs. WAM
Wave Height

SAR vs. In Situ
Wind Speed

WAM vs. In Situ
Wave Height

r 0.88 0.81 (0.86) 0.91 0.89
RMSE 0.40 0.47 (0.47) 1.43 0.39

SI 0.37 0.42 (0.33) 0.19 0.36
n 52 52 (49314) 357 52

Scatter plot on Figure 3b shows the collocated in situ data comparison with estimated wind speed
results from the corresponding CMOD algorithm. The wind speed varied from 2 m s−1 to 17 m s−1

with the mean wind speed value of all 357 collocations being 7.53 m s−1. The correlation coefficient
between SAR wind retrievals and coastal wind speed measurements was 0.91 (Table 3).

Figure 3c shows the wave height histogram plot of all 49314 SAR-derived values and the
corresponding WAM results. Figure 3c clearly indicates that most values are around 1 m. The
statistics between the two methods in the case of a larger dataset (49,314 collocations) is slightly
better compared to the dataset that was collocated with 52 observations—r = 0.86 and RMSE = 0.47 m
(Table 3).

4.2. Case Studies: High, Medium, and Low Sea State

A high sea state example from 11 January 2015 (16:19 UTC) is presented in Figure 4a–c.
Considering the general Baltic Sea wave conditions, high significant wave height values (up to
7.5 m) were observed along the Polish and Lithuanian coasts. Both the SAR-derived results and
WAM model field show good general agreement in the wave height values and location of maximum
(r = 0.91). The area of the storm on the SAR image is smaller and does not spread as much to the
north as in the WAM results. The maximum significant wave height from SAR is about 0.5 m higher
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(Figure 4b, Table 4). Another region with some differences between the wave fields retrieved with
the two different methods is seen in the Bothnia Sea area, where SAR-derived wave height along the
Swedish coast is about two meters lower compared to the model data.

Figure 4. Examples of spatially collocated SAR wind (a,d,g) fields, SAR wave fields (b,e,h) and WAM
wave fields (c,f,i) during three characteristic situations over the Baltic Sea: high sea state on 11 January
2015 at 16:19 (a–c), medium sea state on 2 October 2015 at 04:56 (d–f) and low sea state on 5 July 2015
at 04:56 (g–i)).

The second example depicts medium sea state conditions in the Baltic Proper and the Gulf of
Bothnia on 2 October 2015 (Figure 4d–f). Again, a good general match between wave fields (considering
the wave height and spatial pattern) estimated from SAR data and the WAM model outcome can be
observed. SAR-derived wave height field is more variable (STD from 1.14 m to 1.51 m) than the model
field (STD from 0.17 m to 1.48 m), which is the case for all examples (Table 4). Also, there are some
differences in the wave field pattern along the Swedish coast where the wave height is underestimated
by WAM model data compared to SAR-derived fields.
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Table 4. Statistics between Sentinel-1 HS retrievals and WAM numerical model outputs.

Time UTC Variable Sentinel-1 WAM

11 January 2015 16:19:22
High sea state

Mean (m) 2.41 3.02
Maximum (m) 7.47 6.97

STD (m) 1.51 1.48
r 0.91

RMSE (m) 1.02

02 October 2015 05:04:47
Medium sea state

Mean (m) 1.82 1.68
Maximum (m) 3.62 2.65

STD (m) 1.32 0.57
r 0.51

RMSE (m) 0.39

05 May 2015 04:56:28
Low sea state

Mean (m) 0.57 0.33
Maximum (m) 1.84 1.02

STD (m) 1.14 0.17
r 0.51

RMSE (m) 0.41

Most commonly occurring, the low sea state [19] example on 5 July 2015 over the Baltic Sea
(HS is around 1 m) is presented in Figure 4g–i. Although WAM wave model results are smoother
and lower than SAR-derived values, they represent a very similar large-scale pattern. One can notice
the increased wave height values to the north and to the south of Gotland Island. A similar pattern
from both datasets is also observed in Bothnia Sea region. The low sea state conditions might not be
the most relevant from a safe navigation point of view and operational monitoring/forecasting of
the wave conditions is not as critical as during storm conditions. Nevertheless, it is still relevant for
routine environmental monitoring and therefore noteworthy that during the low sea state, most of
the wave field variability is lost in the model outcome compared to SAR-derived values. A similar
example from TerraSAR-X satellite data is presented in Rikka et al. [21], where during low sea state
conditions the local wave height increases by 0.5–1 m in kilometre-size “islands” (small local area with
elevated wave height values). In Sentinel-1A/B (Figure 4g–i), the size of the observed “island” is larger
due to larger SAR resolution and processing grid step which does not allow retrieving such fine scale
variations as in the case of TerraSAR-X data. Similarly, Romeiser et al. [41] showed that in hurricane
situations, the wavelength is analogously retrieved in island-like fashion from C-band satellite radar.

The case studies showed good general agreement between the SAR-derived and WAM model
wave fields. However, there are some differences between the results obtained with the two methods:
(i) the area and the location of the storm might be different; (ii) the wave height variability of WAM
model fields is lower compared to the SAR-derived fields. The variation in WAM model fields is lost
mostly due to wind forcing fields (HIRLAM) used in the wave modelling which have 1 h temporal
resolution and 11 km spatial resolution. Therefore, the forcing fields do not include local fine-scale
wind field variations and gusts that influence the radar backscatter and related wave field pattern on
SAR imagery.

5. Discussion

The current study, as well as previous studies [13,15,21–25] demonstrate the advantages of SAR
data in general and Sentinel-1 A/B IW data in particular for the operational sea state monitoring
(downstream) services. The meteo-marine parameters derived from Sentinel-1 A/B IW data provide
added value to operational monitoring/forecasting services (NRT open source data with high
spatial resolution and large spatial coverage; frequency of acquisitions) and statistical analysis (large
dataset with sufficient spatial coverage in the coastal zone). Together with the unrestricted access to
operational in situ data collected by various Baltic Sea countries and model forecast (e.g., CMEMS,
BOOS), the SAR-derived meteo-marine parameters form a basis for improving maritime situation
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awareness. Furthermore, other applications in the Baltic Sea region, e.g., oil spill detection (impact of
wave-wind conditions on detection accuracy), sea ice monitoring (waves under ice), wave-circulation
coupling [42], etc. will benefit from incorporation of the Sentinel-1 A/B sea state products in these
service chains [29,43].

5.1. Benefits of Sentinel-1A/B IW Wave Field Data for Operational Services

An independent time series from 1 August 2016 until the end of 2016 from four separate locations
demonstrate the benefits of using SAR-derived significant wave height retrievals (Figure 5).

 

Figure 5. A timeseries from 1 August 2016 until the end of 2016 from four stations. Two
stations—Selkämeri and NBP (Figure 2, Table 1)—include all the data: measurement, WAM, and
SAR-derived results; other two stations—NBP Extra (58.7500◦N, 20.8271◦E; no. 6 in Figure 2) and Södra
Östersjön (55.9167◦N, 18.7833◦E; no. 7 in Figure 2) include WAM result and SAR-derived significant
wave height. Highlighted areas indicate some benefits of using SAR data over the Baltic Sea: “case 1”
and “case 3” bring out the variability aspect of SAR-derived values whereas “case 2” shows missing
measurements that can be replaced with SAR data.

In areas where average significant wave height is very low, for example, Selkämeri station in
Figure 5a, the SAR-derived results (r = 0.79) are not as accurate as the results over the open part of the
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Baltic Sea in the NBP station (r = 0.92) on Figure 5b. It is known from previous studies that dominant
wave height in the Baltic Sea is around 1 m [19] and relatively low spatial resolution of Sentinel-1 IW
mode data might complicate the accurate wave height estimation.

In Figure 5b,c three cases highlighted in green are brought out to explain the benefits of using SAR
data. In “case 1” of Figure 5b, one can observe that both WAM wave model results and SAR-derived
results match closely with the in situ measurements of the NBP station. However, in Figure 5c
which represents a location 60 km away from NBP, a mismatch between SAR and WAM results
can be seen in the “case 1” region. The reason could be that since SAR represents better detailed
spatial variability/pattern, the actual significant wave height was lower than WAM had predicted
at the specific time and location. “Case 3” in Figure 5b,c shows good general match between in situ
measurements, SAR-derived wave height, and WAM output in separate places, suggesting that the
wave field was spatially more uniform. In general, SAR-derived results could be used as validation
data for wave models.

Since the Baltic Sea is seasonally ice-covered, in situ measurement devices are removed for the
winter period. Similarly, when the buoys have technical problems (e.g., no data connection) or during
their maintenance, highly valuable information is lost. Moreover, wave models may also have short
periods with technical problems when no wave forecast is provided. These situations can be observed
in “case 2” in Figure 5c, where SAR-derived results become the only source of wave information.

Figure 5d demonstrates the added benefit of using SAR data to retrieve wave information over the
poorly sampled area. Although Södra Östersjön station (55.9167◦N, 18.7833◦E) is included into BOOS
measurement stations, the last unrestricted access measurement data was received in 2011. However,
Southern Baltic Sea is a location where the highest waves occur [18,19]. As no in situ measurements
are carried out in the region, the SAR-derived results would be highly valuable for model validation
and/or assimilation into the wave model.

5.2. Statistical Mapping of Coastal/Regional Wave Field: Comparison with Altimetry

Although Sentinel-1A/B are not able to cover the extent of the Baltic Sea (or any sea in that matter)
as frequently as wave models can, the SAR data can be as valuable as any other satellite-based wave
product (e.g., altimetry products). Altimetry products validations have shown reliable performance
(RMSE less than 0.5 m) in the open ocean [44–47] and in the coastal sea (RMSE up to 0.37 m) [48–52].
However, the spatial coverage of altimetry products is limited and restricted to offshore areas (30–70 km
from coast) [53]. The low-resolution altimetry wave products/algorithms and open ocean SAR wave
mode products (not available for the coastal areas, including Baltic Sea) are not sufficient for local and
regional applications in the complex coastal environment, such as Baltic Sea. The sea state products
derived from Sentinel-1 SAR IW data provide information over a large area, including the coastal zone
with similar product accuracy (r = 0.88, RMSE = 0.40 m, Table 3) to the altimetry products. Thus, the
high-resolution SAR wave data would provide added value for user communities dealing with coastal
processes. Moreover, SAR wave products enable to resolve detailed spatial variability while in situ
data describes detailed temporal variability in a limited number of locations (Figures 4 and 5).

Besides NRT, an example of SAR data benefits is the statistical analysis of wave conditions (e.g.,
wave climate). Figure 6 represents the average wind speed and significant wave height values from
Sentinel-1A/B IW data over the 2015 and 2016 interpolated onto WAM wave model grid. The average
significant wave height values over the two-year period (Figure 6c) generally represent similar values
to previous studies that used either model data reanalysis or altimetry products over a longer period
(up to 23 years) (e.g., Figure 6 in Tuomi et al. [19]; Figure 2 in Kudryavtseva et al. [54]). There are
clearly higher average wave height values in the open parts of the Baltic Sea (around 1.8 m) and
lower values in the Gulf of Riga (up to 1.0 m in the open part; below 0.8 m in the coastal areas) or
the Bothnian Sea (from 0.7 m to 1.2 m). However, from Figure 6a we can conclude that more than
100 points would be necessary for calculating average values since a limited number of samples may
cause artificial features and improbable wind speed/wave height fields (e.g., in Southern Baltic Sea
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(Figure 6b). Considering the long-term objectives of the Copernicus program and the revisit cycle of
the Sentinel-1 mission, the statistical bases for wave mapping will improve over time.

Figure 6. (a) Number of SAR points; (b) average wind speed; and (c) average significant wave height
over 2015–2016 interpolated to WAM model grid.

Compared to altimetry, SAR data have a benefit of much higher resolution and larger coverage.
For example, Kudryavtseva et al. [54] calculated average significant wave height maps for the Baltic
Sea over the period of 23 years using approximately 660,000 data points with the end-resolution of
0.2 × 0.1◦. To retrieve the analogous map from SAR data, over 3 billion data points can be obtained
from a two year period (using the 3 nm processing step). Furthermore, SAR data provides much
greater detail, especially in the coastal zones where the vicinity of the coastline influences the altimetry
signal and the related wave height retrievals.

6. Conclusions

A method for sea state parameter and marine wind estimation from Sentinel-1 IW SAR imagery
in the Baltic Sea (proposed by Pleskachevsky et al. [20]) was validated. The sea state parameters were
retrieved from image spectrum using an empirical algorithm CWAVE_S1-IW to estimate integrated sea
state parameters directly from SAR image spectra without transformation into wave spectra. The study
shows that wave field retrievals from Sentinel-1 IW SAR data correlate with in situ data (r = 0.88,
RMSE = 0.40) as well as with WAM wave model (r = 0.86, RMSE = 0.47). Furthermore, the wind speed
retrievals that were derived with the CMOD algorithm correlated with the values recorded at the
coastal meteorological stations (r = 0.91, RMSE = 1.43).

The advantages of Sentinel-1 SAR IW mode wave products in Baltic Sea were demonstrated.
The free/open data, high spatial resolution, large spatial coverage, and frequent acquisitions of
Sentinel-1 A/B IW images leads to the following improvements that Sentinel-1 can offer to operational
wave field monitoring and forecasting: (i) improved description of spatial variability of significant
wave height; (ii) improved estimation of the area and the location of the storms during high sea state.

Considering the advantages, the operational wave product retrieved from Sentinel-1 A/B IW
mode data by a dedicated algorithm for the coastal ocean (including Baltic Sea) would be valuable
for many communities dealing with wave modelling, operational monitoring, and forecasting, etc.
The SAR wave field retrievals would improve the downstream of monitoring services by improving
the forecast accuracy, thus enabling a better understanding of coastal processes.

This work contributes to the uptake of Sentinel-1 A/B IW data in the fully automated operational
service for meteo-marine parameter retrieval in the Baltic Sea. Implementation of Sentinel-1 sea state
products for assimilation into an operational wave model and usage for model forecast quality checking

17



Remote Sens. 2018, 10, 757

would improve general marine awareness. All the SAR processing methods presented in the study are
running as NRT services in the German Aerospace Center’s (DLR) ground station, Neustrelitz.
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Abstract: Internal dynamical processes play a critical role in hurricane intensity variability. However,
our understanding of internal storm processes is less well established, partly because of fewer
observations. In this study, we present an analysis of the hurricane double-eye structure imaged
by the RADARSAT-2 cross-polarized synthetic aperture radar (SAR) over Hurricane Bertha (2008).
SAR has the capability of hurricane monitoring because of the ocean surface roughness induced
by surface wind stress. Recently, the C-band cross-polarized SAR measurements appear to be
unsaturated for the high wind speeds, which makes SAR suitable for studies of the hurricane internal
dynamic processes, including the double-eye structure. We retrieve the wind field of Hurricane Bertha
(2008), and then extract the closest axisymmetric double-eye structure from the wind field using an
idealized vortex model. Comparisons between the axisymmetric model extracted wind field and SAR
observed winds demonstrate that the double-eye structure imaged by SAR is relatively axisymmetric.
Associated with airborne measurements using a stepped-frequency microwave radiometer, we
investigate the hurricane internal dynamic process related to the double-eye structure, which is
known as the eyewall replacement cycle (ERC). The classic ERC theory was proposed by assuming an
axisymmetric storm structure. The ERC internal dynamic process of Hurricane Bertha (2008) related
to the symmetric double-eye structure here, which is consistent with the classic theory, is observed by
SAR and aircraft.

Keywords: hurricane internal dynamical process; synthetic aperture radar (SAR); eyewall
replacement cycles; ocean winds

1. Introduction

Accurate observations of surface winds of a tropical cyclone (hurricane or typhoon), particularly
the high-resolution structures, play a critical role in improving hurricane dynamic readiness and
understanding of its evolution process. Over the past 25 years, prediction skill for hurricane intensity
has had comparatively few improvements because of limited knowledge regarding the hurricane
internal dynamical processes, whereas its track forecasts errors have steadily declined [1]. Moreover,
determinations of hurricane inner core structures and surface winds remain considerable operational
challenges to the hurricane dynamic studies [2]. Routinely, surface winds of hurricanes are measured
by the airborne Stepped Frequency Microwave Radiometer (SFMR) along flying track. Then, hurricanes
are assumed to be axisymmetric. Based on this axisymmetric assumption, hurricane internal dynamics
have been analyzed using the SFMR measurements, i.e., the vortex Rossby wave dynamics [3], eyewall
replacement cycles (ERCs) [4], and hurricane pressure-wind model [5]. However, the actual hurricane
structure, whether axisymmetric or not, is difficult to discern, only based on the aircraft reconnaissance
low-level SFMR data. The surface wind fields of hurricanes have high azimuthal asymmetries,
and these asymmetries are hard to measure by the aircraft, which typically flies at roughly fixed
azimuths with time legs [5–7].
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Compared with optical satellite sensors, the spaceborne synthetic aperture radar (SAR) is suitable
for two-dimensional ocean surface wind field observations, for its advantages of a high spatial
resolution, relatively large spatial swath, and its ability to work day-and-night under almost all-weather
conditions. Additionally, hurricanes have been frequently observed by spaceborne SAR images,
since the first spaceborne SAR image became available in 1978 [8]. Over the last few decades, SAR
observations have been adopted in much research on hurricane readiness [9], morphology [8,10],
precipitation [11], ocean surface current [12], and hurricane internal dynamic processes [13]. In this
study, we present an analysis of one cross-polarized ScanSAR image from C-band RADARSAT-2 over
Hurricane Bertha (2008) containing a double-eye structure.

To estimate the hurricane double-eye core structure from observed SAR surface winds,
the idealized surface wind structure model, known as the Symmetric Hurricane Estimates for Wind
(SHEW) model, is extended from a single-eye to double-eye structure. The double-eye SHEW model
is the successor of approaches that we proposed in 2014 and 2017 [10,14]. To simplify the process,
we present the SHEW model for the double-eye structure based on three assumptions: (1) both
the hurricane eyewalls containing the maximum winds are circular-shaped; (2) the maximum wind
speeds on either eyewall are axisymmetric; and (3) the wind speed within a hurricane is a function of
the radius.

The theory for ERCs related to the hurricane double-eye structure was originally presented
by Willoughby et al. (1982) [15]. This theory suggests that any secondary eyewall will shrink
and contract due to the presence of annular convective heating. The circulation in a hurricane is
changed by the axisymmetric outer eyewall heating, which results in cutting off the boundary layer
inflow to the primary eyewall. Then, the hurricane is weakened by the outage of boundary layer
inflow [15,16]. Based on an analysis of 79 Atlantic basin hurricanes observed by aircraft reconnaissance,
Sitkowski et al. (2011) [4] demonstrated that the maximum wind speed of the primary core decreases
significantly after the formation of the outer eyewall in a general ERC process. The RADARSAT-2
VH-polarized ScanSAR image over Hurricane Bertha (2008) provides us with a chance to study the sea
wind field of a double-eye structure and its relationship to the ERC internal dynamic process.

The modified SHEW model for a double-eye structure is based on the one-dimensional modified
Rankine vortex functions [3,4,17] and double circles for the eyewalls containing maximum wind
speeds. We organize the remainder of this paper as follows. The data sets of cross-polarized SAR
observations from C-band RADARSAT-2 and the respective aircraft SFMR measurements, as well as
the double-eye SHEW model, are presented in Section 2. Then, we show the extracted double-eye
structure of Hurricane Bertha (2008) in the SHEW model in Section 3 and discuss the respective ERC
process with the aircraft measurements in Section 4. Finally, we present conclusions in Section 5.

2. Materials and Methods

Bertha (2008) was an early season category 3 hurricane and the longest-lived Atlantic July tropical
cyclone on record. In this study, a hurricane wind speed retrieval model is employed and an idealized
vortex model for a symmetric double-eye hurricane structure is proposed.

2.1. Data Sets

To study the role of the symmetric secondary eyewall, we adopt one Cross-polarized
(VH-polarized) ScanSAR image from C-band RADARSAT-2 in dual-polarized (VV and VH) mode
(acquired at 10:14 UTC, 12 July 2008) over Hurricane Bertha (2008). To show the respective ERC process,
the aircraft SFMR (stepped-frequency microwave radiometer) measurements acquired at times close to
the SAR image are also employed. We show the SAR image, aircraft tracks, and the SAR location with
respect to the Best Track of Hurricane Bertha (2008) in Figure 1.

The VH-polarization SAR image from C-band RADARSAT-2 used here is in ScanSAR wide swath
mode. Its medium resolution is 50 m and the swath width is about 450 km. To reduce the image
speckle noise, we calibrated the SAR image and then downscaled the spatial resolution to 1 km using
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the boxcar averaging method [18]. As shown in Figure 1, the SAR image here captured the whole core
structure of Hurricane Bertha (2008). We retrieved the wind speeds directly from the SAR image using
the C-3PO (C-band Cross-Polarization Coupled-Parameters Ocean) hurricane wind retrieval model,
which was developed for cross-polarization SAR wind speed retrieval [19]. The operational surface
winds measured by the SFMR radar on board the research aircrafts of NOAA (National Oceanic and
Atmospheric Administration) WP-3D and U.S. Air Force are adopted. The SFMR radar can potentially
provide along-track mapping of wind speeds at relatively high temporal (1 Hz) and spatial (~120 m)
resolutions. The root-mean-square errors of the SFMR winds are less than 4 m/s~5 m/s [17,20], with
validations of the measurements from dropwindsonde and an in situ instrument.

Figure 1. VH-polarized SAR image from C-band RADARSAT-2 over Hurricane Bertha (10:14 UTC,
12 July 2008), as well as flight tracks of SFMR measurements relative to the same hurricane internal
dynamic processes and the Best Track (BT) of Hurricane Bertha (2008). RADARSAT-2 Data and Product
MacDonald, Dettwiler, and Associates Ltd., All Rights Reserved.

2.2. C-3PO Hurricane Wind Retrieval Model

We retrieved the sea surface wind from the knowledge of normalized radar cross section
(NRCS) imaged by SAR, using the C-3PO hurricane wind retrieval model. The C-3PO hurricane
high-wind-speed retrieval model is [19]:

σ0[dB] = [0.2983·u10 − 29.4708]·
[

1 + 0.07· θind − 34.5
34.5

]
(1)

where u10 is the surface wind speed (at 10 m reference height), σ0 is the NRCS of the radar signal with
the units of dB, and θind is the SAR incidence angle.

The C-3PO model was developed from a theoretical analysis and a database including 650 sets of
wind vectors, VH-polarized NRCSs, and the associated incidence angles [19]. This database was built
based on five RADARSAT-2 VH-polarized SAR images covering five different hurricanes, as well as
the collocated wind vectors measured by the aircraft SFMR. The SFMR wind vectors were selected
during the 30-mintute windows with respect to the SAR acquired time. As the aircraft measured the
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rain rate simultaneously with the wind vector, we removed the measurements with rain rates higher
than 10 mm/hr. Then, we collocated the VH-polarized NRCSs with the wind vectors by considering
the hurricane movements and rotations.

The incidence angles should play a role in the cross-polarized (VH/HV) SAR wind retrieval.
However, the dependences of the wind induced cross-polarized NRCSs on the incidence angles are
difficult to extract because of a lack of observational data. Based on this limited database, we [19]
developed a wind retrieval model (C-3PO), including the incidence angles, by a theoretical analysis.
In fact, in that study, we proposed a theoretical model for the C-band Cross-polarization based on
two existing theoretical models developed for the Co-polarizations (VV and HH). We simulated a
relationship between the VH-polarized NRCSs and the incidence angles for various wind speeds.
We show the C-3PO hurricane wind retrieval model and the database in Figure 2.

Figure 2. C-3PO hurricane wind retrieval model. The magenta line is for the middle incidence angle
(34.5◦), as well as the bars for the incidence angle ranges (from 19.5◦ to 49.5◦) of the RADARSAT-2
ScanSAR mode.

2.3. SHEW Idealized Vortex model

For the symmetric double-eye structure estimation, our SHEW model [10] is modified using the
double modified Rankine vortex functions [4,17]. Using a given hurricane center (HE) location, we
firstly transfer the geographical coordinates to a polar coordinate system in the modified SHEW model:

{
r = distance(grid, HE)
θ = azimuth(grid, HE)

(2)

In this model, θ = 0 means east and rises counter-clockwise. Then, we propose the symmetric
double-eye SHEW model as:
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where u1(θ) and u2(θ) are the maximum wind speeds for the inner and outer vortexes, respectively;
r1(θ) and r2(θ) are the radius of the maximum wind (RMW) for the inner and outer vortexes, respectively;
and α1 and α2 are the decay parameters for the two vortexes, respectively. Moreover, a specific
pivot position between the two vortexes is labeled (umoat,rmoat). For symmetric hurricane structures,
the maximum wind speeds and RMWs are set as constants, (u1, u2) and (r1, r2), respectively. In Figure 3,
we provide an example for the symmetric double-eye hurricane structure using the SHEW model
with the following values of (u1 = 35 m/s, r1 = 15 km, α1 = 0.5) for the inner vortex, and (u2 = 35 m/s,
r2 = 45 km, α2 = 0.5) for the outer vortex, as well as (umoat = 25 m/s, rmoat = 33 km) for the pivot position.

Figure 3. An example of the SHEW symmetric double-eye hurricane structure. The maxima wind
speeds for two eyes are both 35 m/s, the RMW for the inner core is 15 km and for the secondary core is
45 km, and the two decay parameters are both 0.5.

To estimate the double-eye structure of Hurricane Bertha (2008), we display the procedures in the
flowchart (Figure 4) needed to use the modified SHEW. Firstly, we give an initial hurricane center to
start the procedures. With various parameters, we fit the winds relative to the radius from the SHEW
model to the SAR winds using the least-squares approximation. We note that the parameters of the
SHEW model are independent.
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Figure 4. Flowchart for the modified SHEW model to estimate the hurricane double-eye structure.

3. Results

In Figure 5a, we show the time-series of hurricane Bertha’s intensity from the Best Track database
and the corresponding SAR image. In Figure 5b, we show the wind fields retrieved from the
VH-polarized SAR image by employing the C-3PO model (Equation (1)). Relative to the hurricane
center, identified by very low wind speeds, two high wind speed rings are obviously separated by
relatively low wind areas. Following the flowchart in Figure 4, we estimate the closest idealized
axisymmetric hurricane structure, as shown in Figure 5c, by fitting the symmetric double-eye SHEW
model (Equations (2) and (3)) to wind field retrieved from SAR. Although the maximum wind speed
of the inner eyewall is much smaller than the outer eyewall, the outline of the inner core is very clear
in the wind speed field. The detected intensity of the inner core is 20.9 m/s and for the secondary
eyewall, 27.9 m/s. The RMW for the primary vortex is 13 km and for the secondary vortex, 52 km.
Within the estimated axisymmetric framework (Figure 5c), we show the storm-centered wind field
of Hurricane Bertha (2008) observed by SAR in Figure 5d. Using the wind fields reconstructed by
the modified SHEW model (Figure 5c) and imaged by SAR (Figure 5d), we compute the standard
deviation between the closest idealized axisymmetric structure and the ‘real’ wind field as 2.45 m/s,
as well as the correlation coefficient as 0.827. The confidence interval of the correlation coefficient is
higher than 99%. In a related hurricane study, Zhang et al. (2017) [10] demonstrated that correlation
coefficients between the idealized structure by the SHEW model and ‘real’ wind imaged by SAR are
routinely between 0.60 to 0.85. By comparison, the correlation coefficient here of 0.827 implies that the
double-eye structure of Hurricane Bertha (2008) observed by SAR is close to symmetric.
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Figure 5. Hurricane Bertha (2008): (a) SAR captured time respective to the time series of Best Track
Intensities; (b) retrieved sea surface wind speed from SAR images acquired at 10:14 UTC, 12 July 2008;
(c) SHEW estimated closest idealized structure; and (d) storm-centered wind field of hurricane core.

In the axisymmetric framework for storm internal dynamic processes, Willoughby et al. (1982) [15]
suggested that the hurricane intensity decreases as a result of the outage of boundary layer inflow to
the primary eyewall, which is cut off by a negative tendency induced by the secondary eyewall heating.
According to the classic ERC theory, the symmetric double-eye structure of Hurricane Bertha (2008)
observed by SAR suggests that the secondary eyewall would contract and replace the primary eyewall.

As the SAR imagery of hurricane Bertha (2008) captures a double-eye structure (Figure 5), we
address two points consistent with the classic theories for the ERC internal dynamic process: (1) the
structure of the sea surface wind field is axisymmetric, and (2) the intensity of the inner eyewall is
smaller than the outer eyewall.

4. Discussion

Routinely, tangential wind profiles are used for the aircraft measurements in applications for
studies on the hurricane internal dynamic processes [14]. We adopt the four profiles associated with
the SAR image which should be seen during one ERC process. Based on an analysis of 79 Atlantic
basin hurricanes observed by aircraft reconnaissance, Sitkowski et al. (2011) [4] demonstrated that the
process of replacing an inner eyewall with an outer eyewall lasts for an average of 36 h, in a general
ERC process. They [4] also suggested that the maximum wind speed of the primary core decreases
significantly after the formation of the outer eyewall. The maximum difference between the time of
SAR observation and SFMR winds used here is no more than 10 h. Therefore, they are supposed to be
part of the same ERC process.

To analyze the axisymmetric double-eye structure, we adopt the definition of the complete
profile [13], which contains two continuous normal profiles across the hurricane center (one is flying
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into the hurricane and the other is flying out). As shown in Figure 6b, there are two complete profiles
composited by four normal profiles. Although only four normal profiles were measured by SFMR, these
measurements allow us to present a clear display of the hurricane evolution with the axisymmetric
double-eye structure in Figure 6. In Figure 6a, we show a time-series composed of intensities for the
two eyewalls observed by spaceborne SAR and airborne SFMR. The hurricane intensities from SAR
are derived from the SHEW model, and the intensities of SFMR are extracted from the profiles using
the maximum wind speeds. An outline of the ERC internal dynamic process of Hurricane Bertha
(2008) is shown by the two complete profiles with the axisymmetric double-eye structure (Figure 6b–d).
In Figure 6b, we show the distributions of SFMR wind speeds along the flight tracks.

In Figure 6c, we show a complete wind profile, which was captured about seven hours after the
SAR image (hereafter “the 7 h profile”). Additionally, “the 7 h profile” is the first SFMR measurement
of the same secondary eyewall as that detected from the ScanSAR imagery. By comparing the
storm-centered SAR wind field (Figure 5d) to the aircraft flying tracks (Figure 6b) of “the 7 h profile”,
the double-eye structure measured by SFMR is also axisymmetric, which indicates that this structure
lasts more than seven hours. In Figure 6d, the other complete profile was measured about 8.5 h after the
SAR image (hereafter “the 8.5 h profile”), which should be related to the same ERC process. We cannot
distinguish the secondary eyewall in “the 8.5 h profile”, which demonstrates that the inner eyewall
was replaced by the outer eyewall during the period from 7 h to 8.5 h after the SAR image.

Figure 6. ERC dynamic process of Hurricane Bertha measured by aircraft SFMR: (a) hurricane
intensities of the double-eye structure, (b) flight tracks, as well as (c), (d) the respective complete
profiles along radius.

Recent studies [21] have suggested that symmetric heating appears to be the dominant factor for
hurricane intensity change, although asymmetries controlled by the large-scale shearing environment
may also be important. As is typical of hurricane processes during the axisymmetric framework,
an early study of [16] demonstrated that a negative tendency for the tangential winds inside the
secondary eyewall can be induced by the symmetric eyewall heating, which cuts off the boundary layer
inflow to the primary eyewall and further weakens the hurricane intensity. Finally, towards the end of
this progression, the primary eyewall was replaced by the secondary eyewall. Using two-dimensional
observations of SAR with a high spatial resolution, one can see that the double-eye structure of
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Hurricane Bertha (2008) is relatively axisymmetric. Associated with the airborne SFMR measurements,
we provide the relative ERC process. Therefore, the role of the axisymmetric double-eye structure
in the ERC dynamic process is verified as consistent with the classic theory [15,16]. Moreover, many
hurricanes are detected not to significantly weaken after the formation of the secondary eyewall [22],
which may be a result of the asymmetric hurricane structure [13]. As Hurricane Bertha (2008)
is relatively axisymmetric, the SFMR observed in one-dimension is supposed to represent the
surface wind.

5. Conclusions

A one cross-polarized (VH) ScanSAR image from C-band RADARSAT-2 over Hurricane Bertha
(2008) provides us with a chance to research the axisymmetric double-eye structure effects on the
hurricane intensity change. In this study, we employ the C-3PO hurricane wind retrieval model
and modify the SHEW idealized vortex model for the double-eye structure. By comparing the wind
fields simulated by the symmetric double-eye SHEW model and observed by SAR, we compute the
correlation coefficient of 0.827 with a confidence interval higher than 99% and the standard deviation
of 2.45 m/s. In a related hurricane study, Zhang et al. (2017) [10] demonstrated that correlation
coefficients between the idealized structure by the SHEW model and ‘real’ wind imaged by SAR
are routinely between 0.60 to 0.85, which implies that the double-eye structure of Hurricane Bertha
(2008) observed by SAR is symmetric. To analyze the ERC process related to the double-eye structure
captured by SAR, we employ two complete tangential wind profiles measured by airborne SFMR.
After about 7 h from the SAR observation, the profile appears to capture the double-eye structure; but
8.5 h later, the primary eyewall should be replaced by the secondary eyewall.

Compared to the previous studies [4,15,16,22], we find three characteristics consistent with the
classic ERC theory as follows: (1) the structure of the sea surface wind field is axisymmetric; (2) the
intensity of the primary eyewall is smaller than the secondary eyewall; and (3) the primary eyewall is
replaced by the secondary eyewall. We suggest that the axisymmetric structure plays a major role in
the ERC dynamic process.
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Abstract: The wide-swath mode of synthetic aperture radar (SAR) is a good way of detecting
typhoon/hurricane winds with a cross-polarization mode. However, its ability to detect wind waves
is restricted because of its spatial resolution and nonlinear imaging mechanisms. In this study, we
use the SAR-retrieved wind speed, Sentinel-1 SAR wave mode and buoy data to examine fetch-
and duration-limited parametric models (denoted H-models), to estimate the wave parameters
(significant wave height Hs, dominant wave period Tp) generated by hurricanes or typhoons. Three
sets of H-models, in total 6 models, are involved: The H-3Sec model simulates the wave parameters
in 3 sections of a given storm (right, left and back); H-LUT models, including the H-LUTI model and
H-LUTB model, provide a better resolution of the azimuthal estimation of wind waves inside the
storm by analyzing the dataset from Bonnie 1998 and Ivan 2004; and the third set of models is called
the H-Harm models, which consider the effects of the radius of the maximum wind speed rm on the
wave simulation. In the case of typhoon Krovanh, the comparison with wave-mode measurements
shows that the duration-limited models underestimate the high values for the wind-wave Hs, while the
fetch models’ results are more accurate, especially for the H-LUTI model. By analyzing 86 SAR wave
mode images, it is found that the H-LUTI model is the best among the 6 H-models, and can effectively
simulate the wind-wave Hs, except in the center area of the typhoon; root mean square errors (rmse)
can reach 0.88 m, and the coefficient correlation (R2) is 0.86. The H-Harm models add rm as an
additional factor to be considered, but this does not add significant improvement in performance
compared to the others. This limitation is probably due to the fact that the data sets used to develop
the H-Harm models have only a limited coverage range, with respect to rm. Applying H-models to
RADARSAT-2 ScanSAR mode data, we compare the retrieved wave parameters to collected buoy
measurements, showing good consistency. The H-LUTI model, using a fetch-limited function, does
the best among these 6 H-models, whose rmse and R2 are 0.86 m and 0.77 for Hs, and 1.06 s and
0.76 for Tp, respectively. Results indicate the potential for H-models to simulate waves generated by
typhoons/hurricanes.

Keywords: synthetic aperture radar (SAR); typhoon/hurricane-generated wind waves; fetch- and
duration-limited wave growth relationships

1. Introduction

Wind-waves generated by extreme weather, such as typhoons or hurricanes, are among the most
important dynamic elements of the marine environment [1–5]. A well-known example is the Perfect
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Storm in October 1991, which is sometimes known by wave researchers as the Halloween Storm, which
generated maximum waves in excess of 30 m [6]. The development of remote sensing has greatly
motivated the studies of large storm waves [7–9], as in situ observations are spatially sparse and
expensive undertakings [10–13]. Because of its ability to make measurements under almost all weather
conditions, day or night, synthetic aperture radar (SAR) is an important way to monitor marine winds
and waves.

Over the past decades, studies concerning SAR wave detection and the inversion algorithm
methodologies have achieved some developments. Originally, Hasselmann et al. (1991) suggested
a wave spectrum inversion algorithm for SAR imaging of waves [14]. On the basis of that approach,
many successive nonlinear wave spectral algorithms were proposed, such as SPRA (Semi-Parametric
Algorithm) [15], PFSM (Parameterized First-guess Spectrum Method) [16–18] and PARSA (Partition
Rescaling and Shift Algorithm) [19]. These algorithms need to build a first guess wave spectrum,
based on the additional wave information, which might be provided by a numerical wave model
or parametric wave spectrum model. However, because SAR imaging of ocean waves is affected by
nonlinear imaging mechanisms causing distortion of shorter waves [20,21], it is difficult to observe
short wind waves, which is a key problem in observations of storm-generated waves.

Instead of using an image-to-wave spectra inversion scheme, alternative approaches were
developed to empirically estimate integral wave parameters, such as significant wave heights or
wave periods, from SAR images. CWAVE_ERS [21] and CWAVE_ENVI [22] are empirical models for
ERS-2 and Envisat ASAR wave mode images. Based on the Sentinel-1 SAR wave mode, Stopa et al.
proposed CWAVE-S1A and Fnn models to retrieve significant wave heights and dominant wave
periods by using cut-off wavelength and other SAR image parameters [23]. The imaging range of
the SAR wave mode is quite small (~20 km), making it impractical for large-scale monitoring of a
wide range of observations of storm generated waves. Alternatively, ScanSAR mode images have
a larger swath-width for observations, for example as much as 500 km for RADARSAT-2, making
it applicable for monitoring large scale fields of storm winds and waves. However, its low spatial
resolution, ranging from 60–100 m for RADARSAT-2, limits its observational ability for short wind
waves [24–27].

Despite the complicated spatiotemporal distribution characteristics of the wind fields associated
with storms, many studies show that most of measured 1-D wave spectra under storms are monomodal
and suggest that the associated surface waves follow the same similarity concept as the waves that grow
in response to steady winds in fetch-limited conditions [28–32]. Young [29] suggested that the nonlinear
wave-wave interactions play a central role in stabilizing the shape of unimodal spectrum [33,34].
This is achieved by the transfer of wave energy within the spectrum, from high frequencies to low
frequencies, and the other way around, from low to high frequencies [35,36], although the wind input
and dissipation by breaking may also be important at this stage of wave growth [11,31,37]. Many
parametric models were built on the assumption of the fetch-limited condition, particularly in the
1970s and 1980s [38], providing a rapid means to explore the general characteristics of waves generated
by storms, especially the asymmetry of the wave field [39–41] and energy [32] inside the storms. Based
on the fetch- or duration-limited wind wave growth relations, Hwang et al. [42–44] proposed three sets
of wind wave models for storms, denoted as the H-models, which use the wind field to estimate the
significant wave heights Hs and dominant wave periods Tp directly for the wind waves. Parameters
of the wind waves can be estimated in three separate sectors (left, right, and back) of the storm by
the H-3Sec model [42]. After analyzing more wind and wave spectral data generated by hurricanes
and collected by the Scanning Radar Altimeter (SRA), Hwang and Walsh [43] proposed the H-LUT
model, which provides a better azimuthal resolution for estimating the wind wave parameters inside
storms. In addition, by considering the influence of the radius of maximum storm winds on the wave
estimation, Hwang and Fan [44] further developed the H-Harm models.

At present, SAR has been widely applied for observations of typhoon wind fields, especially
the cross-polarization SAR [45–50] which appears to be able to largely resolve the signal saturation

32



Remote Sens. 2018, 10, 1605

problem at high winds, experienced in co-polarization SAR and scatterometer observations [51].
Therefore, by combing the relatively accurate storm winds determined from cross-polarization SAR
measurements, with the H-models, it is possible to obtain the wind waves generated by typhoon and
hurricane environments.

The remainder of the paper is organized as follows: Section 2 describes the Sentinel-1 SAR
wave mode, RADARSAT-2 ScanSAR mode and the fetch- and duration-limited wind wave models
(H-models). Section 3 shows the detailed validations of H-models for estimating significant wave
heights for typhoon Krovanh and other typhoons using Sentinel-1 SAR wave mode wind and
wind-wave data. By combing the buoy wave data and RADARSAT-2 ScanSAR mode winds, the
H-models are applied to estimate significant wave heights and dominant wave periods for six
additional hurricanes. Discussion follows in Section 4, and Conclusions in Section 5.

2. Data and Methods

2.1. Sentinel-1 SAR Wave Mode

Sentinel-1 (S1A) Level-2 Ocean Products, OCN, can provide wind speed and significant wave
height from SAR wave mode. Significant wave heights for wind waves are calculated from the
nonlinear part of the SAR image through the cross spectrum methodology [52] combined with the
SPRA inversion algorithm [15]. S1A was launched on April 2014 and was the first satellite with a SAR
observation system among the ESA Sentinel series. The S1A SAR wave mode was put into service
in July 2015 for observations of waves over the global ocean. This SAR wave mode has 4 m spatial
resolution, with a small imaging range (20 km × 20 km). In addition, S1A operates in the C-Band at two
incidence angles, 23◦ and 36◦, alternating along the satellite orbital direction at 100 km intervals. Thus,
the S1A SAR wave mode can provide almost continuous sampling, collecting abundant simultaneous
wind and wave measurements under storm conditions.

2.2. RADARSAT-2 ScanSAR Mode

RADARSAT-2 is a C-band spaceborne SAR, which was launched on 14 December 2007.
The satellite has the capability to provide single-, dual- and quad-polarization SAR imaging mode
data, day or night, in almost all-weather, with multi-spatial resolution of the sea surface. We focus on
measurements from RADARSAT-2 cross-polarization ScanSAR mode, which provides wide swath
(450 km) images and has a pixel spacing of 50 m, which is high potential for hurricane/typhoon
monitoring over a relatively large spatial scale.

The wind speeds used to calculate waves are retrieved by the C-2POD (C-band cross-polarized
ocean surface wind retrieval model) model [46]. The wind speed range of the fit for C-2POD is
3.7–39.7 m/s, which is an important motivation for using C-2POD to retrieve the wind speeds from
dual-polarization SAR images. The model was previously validated against SFMR measurements and
H*wind, and the comparisons showed good agreement.

2.3. The Fetch- and Duration-Limited Wind Wave Models (H-Models)

According to recent studies, the fetch- and duration-limited wind wave growth relations
derived from steady wind forcing conditions appear to be applicable for waves generated by
typhoon/hurricane winds [28–41], which conforms the essential role of nonlinear wave-wave
interactions in maintaining the shape of wave spectrum. Based on this assumption, Hwang et al.
successively proposed three sets of models for wind waves generated by hurricanes [42–44], which
are summarized here. The fetch- and duration-limited wind wave growth relations, in terms of the
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dimensionless variance η# and dimensionless frequency ω# as functions of significant wave height Hs

and wave period Tp, can be represented as equations of dimensionless fetch x#:

{
η# = 6.19 × 10−7x0.81

#

ω# = 11.86x−0.24
#

(1)

where η# = H2
s g2(16U4

10
)−1, ω# = 2πU10

(
Tpg

)−1, dimensionless fetch is x# = x f gU−2
10 and wind

speed at 10 m height is U10. In the same way, the equations of dimensionless duration t# are:

{
η# = 1.27 × 10−8t1.06

#

ω# = 2.94t−0.34
#

(2)

where dimensionless duration is t# = tdgU−1
10 . The xf and td are fetch and duration respectively.

All of the parameters in (1) and (2) above are the functions of wind-wave triplets: Hs, Tp and U10.
Substituting these relations into Equations (1) and (2) leads to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2
s g2

16U4
10

= 6.19 × 10−7(
x f g

U2
10
)

0.81

2πU10

Tpg
= 11.86(

x f g

U2
10
)
−0.24 (3)

and ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

H2
s g2

16U4
10

= 1.27 × 10−8(
tdg
U10

)
1.06

2πU10

Tpg
= 2.94(

tdg
U10

)
−0.34 (4)

As shown by these equations, given fetch xf or duration td, Hs and Tp can then be directly
calculated from the wind field U10. Wave height and wave period calculated from the fetch-limited
growth functions are denoted by FHs and FTp respectively. Wave height and wave period calculated
from duration-limited growth functions are denoted by DHs and DTp respectively.

The key to estimating wind-wave information with these growth relations is to first determine
the fetch and duration. For a finite water body with a well-defined land-water interface, the fetch and
duration can be defined easily according to their definitions. However, it is difficult to directly obtain
fetch and duration under inhomogeneous or unsteady wind situations, like storms. By making use of
Equations (3) or (4), the equivalent fetch and equivalent duration inside the typhoon/hurricane can also
be obtained from the wind-wave triplets. Based on SRA (Scanning Radar Altimeter) measurements of
Hs, Tp and U10, Hwang et al. [42–44] proposed three groups of typhoon/ hurricane fetch and duration
models. They are:

(1) H-3Sec model

Using 60 wave spectra of hurricane Bonnie (1998), Hwang [42] gives the empirically formulas in
terms of the fetch (unit: km) and duration (unit: h) for the three sectors of the storm (left, right, back).
They are functions of the radial distance r (unit: km) from the hurricane center

xηx =

⎧⎪⎨
⎪⎩

−0.26r + 259.79, right
1.25r + 58.25, le f t
0.71r + 30.02, back

, xωx =

⎧⎪⎨
⎪⎩

0.21r + 170.00, right
2.25r + 24.85, le f t
0.50r + 14.16, back

(5)

tηt =

⎧⎪⎨
⎪⎩

−0.0069r + 11.88, right
0.066r + 3.78, le f t
0.040r + 2.20, back

, tωt =

⎧⎪⎨
⎪⎩

0.010r + 8.56, right
0.110r + 2.12, le f t
0.031r + 1.28, back

(6)
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The subscripts ηx, ωx, ηt and ωt indicate the variables derived from the equations for
η#(x#), ω#(x#), η#(t#), ω#(t#), respectively. This model is hereafter denoted as the H-3Sec model.

(2) H-LUT model

Hwang and Walsh [43] analyzed the full set of the SRA wave measurements collected during
hurricane Bonnie (1998), which contains 233 spectra along 10 transect flights radiating from the
hurricane center, and improved the ability of the H-3Sec model to simulate surface waves in the
azimuthal and radial directions under storms. The fetch and duration relations are represented as

xηx(r, φ) = sηx(φ)r + Iηx(φ), xωx(r, φ) = sωx(φ)r + Iωx(φ) (7)

tηt(r, φ) = sηt(φ)r + Iηt(φ), tωt(r, φ) = sωt(φ)r + Iωt(φ) (8)

The slopes sηx, sωx, sηt, sωt and intercepts Iηx, Iωx, Iηt, Iωt in the equations are functions of
azimuth angle φ, which is referenced to the direction of the hurricane motion. The convention is
that the angles are positive counterclockwise. Similarly, an alternative set of empirical coefficients
is obtained through analyzing the data from hurricane Ivan (2004). The corresponding parametric
models above are denoted as the ‘H-LUTB’ model and ‘H-LUTI’ model, respectively.

(3) H-Harm model

By considering the influence of the radius of the maximum wind speed in storms in the fetch- and
duration-limited simulations, the third set of models was proposed [44]. Similar to the H-LUT model,
fetch and duration are also expressed with radial components r and φ, like Equations (7) and (8).
The slope and intercept can be decomposed as Fourier series,

q = a0 + 2
N

∑
n=1

(an,q cos nφ + bn,q sin nφ) (9)

where q represents the slopes sηx, sωx, sηt, sωt and the intercepts Iηx, Iωx, Iηt, Iωt. The harmonic
parameters an,q and bn,q exhibit a systematic quasi-linear variation with the radius of maximum
wind speed,

Y = P1Yrm + P2Y (10)

where Y represents amplitudes and bn,q; and P1Y and P2Y are empirical coefficients. Given the storm
wind field, an,q and bn,q can be calculated by Equation (10), using the radius of maximum wind speed
rm. Inserting these variables into Equation (9), the slopes and intercepts in Equations (7) and (8) can be
computed. Thus, with the wind speed input, we can determine the equivalent fetches and durations
for any point inside the storms by (7) and (8).

Please note the value of N in the Fourier series (9) might affect the results. We denote the models
with N = 1, 2, 3 as ‘H-Harm1’, ‘H-Harm2’, and ‘H-Harm3’ respectively. In addition, because of the
lack of wave period data in S1A Level-2 products, we can only make comparisons with the significant
wave heights for typhoon/hurricane–generated waves using wind measurements of S1A SAR wave
mode data.

3. Results

3.1. Validation of H-Models by Sentinel-1A SAR Wave Mode Wind and Wave Data

3.1.1. Typhoon Krovanh

Between 14 and 21 September 2015, Sentinel-1A (S1A) tracks passed over typhoon Krovanh
(2015) three times, acquiring 17 SAR wave mode images (Figure 1a). On 14 September, Krovanh
proceeded to the east of the Mariana Islands, and then moved northwest. As S1A moved along its
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descending track on 15 September, S1A captured 6 SAR wave mode images of Krovanh. Because
this acquisition occurred within a minute, the measurements of the SAR wave mode images can be
regarded as instantaneous sampling relative to the typhoon time scales. The corresponding typhoon
center is shown as a red cross in Figure 1a, and the radius of maximum wind speed and the maximum
wind speed are 61.7 km and 21.4 m/s, respectively, at that moment. Under the typhoon reference
frame (Figure 1b), it is shown that the SAR measurements occurred in the rear portions of both the left
and right regions. As Krovanh continued to move northwest, the maximum wind speed continued to
increase, up to 33 m/s on 16 September. Thereafter, S1A captured additional four SAR images around
Krovanh. The sampling areas are located on the right side of the typhoon. The maximum wind speed
reached 40.1 m/s, with radius reduced to 27 km, while the air-sea exchange remained relatively strong.
The last sampling by S1A of typhoon Krovanh occurred on September 20, as the typhoon began to
dissipate. At that time, the maximum wind speed decreased to 20.6 m/s and the radius increased to
74.08 km. The typhoon track, maximum wind speed and radius of maximum wind speed are provided
by the Join Typhoon Warning Centre (JTWC).

Figure 1. (a) The best track for typhoon Krovanh. The maximum wind speed (m/s) is denoted by the
color of circles. Red crosses represent the typhoon centers as S1A passed through. The colored squares
represent the SAR wave mode images observed by S1A (1st pass: blue; 2nd pass: green; 3rd pass:
red). (b) SAR wave mode images in the typhoon reference frame (colored squares). The corresponding
radius of maximum wind speed is denoted by dashed line. In (b), the coordinates (x, y) are rotated
such that the typhoon heading is toward the top of the page. The x and y present the left-right and
front-back distances with respect to the typhoon center, respectively.

By comparing H-model simulation results (FHs and DHs) to significant wave heights from S1A
Level-2 products (Figure 2), it is found that Hs is underestimated to different extents by each model.
Values from fetch models FHs are typically slightly larger than those from duration models DHs, and are
closer to those measured by S1A. Each H-model has a better performance for the simulation of Hs less
than 5 m. However, these models have large differences when simulating regions where the high waves
dominate. In particular, estimates from the H-3Sec model seriously underestimate Hs in cases larger
than 4 m. Secondly, the set of H-Harm models all have similar simulation performances, although in
regions of higher significant wave heights, results from H-Harm2 and H-Harm3 appear to perform
slightly better than the simulation by the H-Harm1 model. We conclude that the H-LUT models work
best in these sets of models; and the H-LUTI model is clearly better than the H-LUTB model.

In Figure 2, the measurements by S1A are marked with three different colors (of squares),
corresponding to those shown in Figure 1a (1st pass: Blue; 2nd pass: Green; 3rd pass: Red), which
occurred at different stages of the typhoon development: Generation stage, full maturity stage
and decay stage. The highest values of Hs occurred during the typhoon decay stage. Accordingly,
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the deviations in simulations for these H-models are largest during this stage. Although the maximum
wind speed and radius of maximum wind speed during the generation stage are quite similar to
those during the collapse of the typhoon, the values for Hs in this former stage are relatively smaller.
Of course, this follows the processes that form the growth and development of the waves as the storm
progresses through the stages of its life cycle. Thus, the performance of the Hs simulation models
is good during the generation stage. The main areas with large deviations are near the radius of
maximum wind speed (r = 78.19 km, φ = 104◦). Previous studies [53] have shown that wider angles
between wind and wave propagation directions are always in the left regions of the typhoon, which
indicates that the wave field is dominated by swell. However, H-modes are based on the wind-wave
growth relationships, which perform poorly in the left regions of the typhoons.

Figure 2. Radial (a,c,e,g,i,k) and azimuthal (b,d,f,h,j,l) variations of Hs provided by S1A Level-2
products (colored squares) and modeled by H-models (FHs: magenta solid points; DHs: black solid
points). The colors of the squares denote the sampling sequence (1st pass: blue; 2nd pass: Green; 3rd
pass: red).

3.1.2. 12 Pacific Typhoons

From July 2015 to December 2016, S1A acquired 86 SAR wave modes from 12 typhoons in the
Northwest Pacific. Those SAR images are located less than 400 km from the typhoon center. For our
selection condition, the maximum wind speed of the typhoon is relaxed to 20 m/s, including some
conditions related to measurements in the generation and decay stages of the typhoon. Comparing the
H-model simulation results to significant wave heights estimated by S1A, the scatter plots for wave
heights (Figure 3) show that the models underestimate Hs to various extents, depending on the specific
model; the deviations for results from DHs are generally greater than those from FHs.

The deviation of Hs from H-3Sec appears to be the most significant, especially for DHs. The root
mean square error (rmse) reaches to 1.86 m. The models in the H-LUT group have a much finer
resolution in the azimuthal direction and therefore better represent the surface wave development
inside the typhoon than the H-3Sec model. Essentially, the results from H-LUTI model using the
fetch-limited function have a bias of −0.71 m and rmse of 1.20 m, which are better than results from
H-LUTB model. The H-Harm model group doesn’t perform very well in terms of the simulation error,
though it is the only group of models that consider the impact of the radius of maximum wind speed.
By increasing the number of components N in the Fourier series in Equation (9), the deviation and
root mean square error of the associated models are reduced slightly. The model with N = 3, namely
H-Harm3 appears to have the best performance among this group of models, corresponding to a
deviation and rmse of −0.89 m and 1.45 m, respectively.
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With respect to the correlation coefficient (R2) for the model results, H-3Sec and the H-LUT group
have similar performances, with high values for R2 (about 0.84). They demonstrate that these models
can simulate the Hs spatial distribution inside the typhoon well. The third set of models, H-Harm, has
relatively poor correlation coefficients (average, 0.68). H-Harm3 is the best among this group with a
correlation coefficient of 0.75 for FHs, and 0.71 for DHs. Therefore, based on this analysis, the H-LUTI
model (with fetch) produces the most reliable spatial distribution of Hs, for a given wind speed, and
has the least bias among these models.

Figure 3 compares estimates of Hs, as modeled by the H-models, with respect to measurements
from S1A. The color bar represents the normalized radial distance r/rm from the typhoon center.
Higher values of r/rm represent greater distance from the center of the typhoon. All model results
show similar characteristics, namely that simulations close to the center of the typhoon have greater
deviation from the Hs, compared to locations farther from the typhoon center. Taking the results
from FHs of the H-LUTI model as an example, the spatial distribution of simulation errors in waves
generated by typhoons is further discussed below.

Figure 3. Comparison of Hs provided by S1A measurements and modeled by H-models. The color
represents the normalized distance from the typhoon center (r/rm). For reference, the red lines
correspond to 1:1 (solid line) and 1:1.25 (1.25:1) (dashed lines).

The relative deviations of wave height biasr = |Hs − FHs|/Hs for the H-LUTI model are shown,
with the typhoon reference frame in Figure 4a. Overall, the simulated FHs values by H-LUTI model
are in good agreement with significant wave heights from S1A. However, the relative deviation of
the model is larger near the typhoon center and our results are in good agreement with those of
Hwang et al. [42–44]. They suggested that these deviations may result from the presence of swell
contamination, which may also be complicated by the processes in the typhoon centers and not
resolved by relatively simple models. The biasr values are shown as a function of normalized radial
distance in Figure 4b. The H-LUTI model has maximum relative deviation (about 60%) near the radius
of maximum wind speed. Moreover, biasr constantly decreases with increasing normalized radial
distance, until r/rm is more than 2.5, when the biasr is kept within about 25%.
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Figure 4. (a) The relative bias of FHs modeled by H-LUTI shown in the typhoon reference frame, with
the typhoon center located at the center of the figure and the coordinates showing the distance to the
typhoon center scaled by the radius of the maximum wind speed rm. The propagation direction of
typhoon is toward the top of the page. The color and size of the solid circles correspond to biasr and Hs,
respectively. The larger concentric dashed-line cycles indicate r/rm =2, 4 and 8. (b) the relative bias as
the function of r/rm. The color denotes the values for Hs as measured by S1A. The solid line marks the
biasr = 0.25.

Without including the area near the typhoon center, where r/rm is less than 2.5, the deviation
and rmse for FHs simulated by H-LUTI model are reduced to −0.43 m and 0.88 m, respectively.
The corresponding correlation coefficient reaches 0.86. Moreover, other H-models also are significantly
improved, as shown in Figure 5.

Figure 5. As Figure 4 but for comparison of Hs provided by S1A measurements to modeled estimates
provided by 6 H-models except near the eye region (r/rm < 2.5).

In summary, other than the area near the typhoon center, significant wave heights can be estimated
well by using the H-models, driven by of SAR-derived wind speed data. Of all the models, the best
one is H-LUTI, which agrees well with the wave heights obtained from S1A measurements.
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3.2. Wind Waves from RADARSAT-2 ScanSAR Mode Hurricane Winds

3.2.1. Validation by Wave Buoys

We collected 6 RADARSAT-2 cross-polarization (VH) SAR images covering six hurricanes acquired
during the 2007–2017, collocated with 7 National Data Buoy Center (NDBC) buoys in the Gulf of
Mexico and northwest Atlantic. The 6 SAR images include the centers of these hurricanes, as shown
in Figure 6. Thus, these ScanSAR mode images capture part or the entire hurricane core, not as the
wave mode images discussed above which only captured a small-range measurement of the hurricane.
The best track data of the hurricanes was provided by NOAA, by the Extended Best Track Dataset.
For each hurricane, SAR measurements are required to be within a 30-min window. Since a hurricane
continues to move and rotate during this time window, we define the location of hurricane center by
interpolation of the time series. A summary of the information for these hurricanes, including the
locations of the hurricane center, maximum wind speeds and their radii, is given in Table 1. By using
the C-2POD model, we directly obtained the wind speeds from these images, as shown in Figure 7.

Table 1. Basic information of hurricanes, Bill 2009, Earl 2010, Igor 2010, Ingrid 2013, Arthur 2014 and
Ana 2015. The um and rm represent maximum wind speed and radius of maximum wind speed.

Hurricane
Names

Date
(yyyy-mm-dd)

Time (UTC)
Center

um (m/s) rm (km)
Latitude Longitude

Bill 2009-08-23 10:40:56 41.89◦N −65.82◦E 36.57 74.08
Earl 2010-08-30 09:57:38 18.36◦N −62.69◦E 52.26 49.45
Igor 2010-09-19 10:11:24 29.24◦N −65.48◦E 38.58 92.60

Ingrid 2013-09-15 00:20:59 21.62◦N −94.73◦E 38.58 37.04
Arthur 2014-07-03 11:13:56 31.68◦N −78.84◦E 40.49 39.41

Ana 2015-05-09 23:24:12 33.06◦N −78.27◦E 23.15 74.08

The red circles in Figures 6 and 7 show the locations of the buoys. A total of 7 buoys collected
hourly wind speed and the wave spectra. Because H-models only apply to the wind waves,
the wind waves are separated from wave spectra S(f) by the wave steepness method [54] developed
by NDBC, in order to validate the models with buoy data. The significant wave heights of the wind

sea Hs = 4
√∫ fu

fs
S( f )d f are used to validate the H-models’ results, where fu is the upper frequency

limit for wave spectra measurements and fs is the estimated separation frequency. All buoy wind
speeds measured at different heights were adjusted to a reference level 10 m following [55]. To match
the observation time of SAR images and buoys, the wave parameters and wind speeds are averaged
over hourly intervals.

The C-2POD model is utilized to retrieve the hurricane wind fields from the SAR images, which
also shows good agreement with the buoy wind measurements in this study (Figure 7g). Using
the retrieved wind, the wave height and peak period can be estimated by 6 H-models with fetch-
and duration- limited growth functions. Figure 8 presents the wave height comparisons between
buoy measurements and retrievals from these SAR winds. The comparison with buoy wave heights
supports some conclusions from the wave mode analysis. The computed wave heights using the fetch
models are more accurate than those using the duration models, with smaller rmse and greater R2.
The duration computations contain more underestimates, causing a negative bias in many H-models.
Moreover, the H-3Sec model and the set of H-LUT models are considerably better than H-Harm
models (rmse values of 0.67 m to 0.98 m vs. 1.00 m to 1.21 m; correlation coefficients of 0.73 to 0.89
vs. 0.67 to 0.75). The H-LUTI model using the fetch-limited function has rmse of 0.86 m and R2 of 0.77
here. It is also found that H-Harm3 with a higher value of N in the Fourier series (9) does the best
simulation among the H-Harm models, whose rmse is 1.00 m and R2 is 0.75 for the fetch model result.

In Figure 9, the retrieved Tp is compared with buoy data. The negative bias for each of the
H-models implies a tendency of those models to slightly underestimate the wave period. Similar
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to the results for the wave heights, the fetch models have better behavior in simulating Tp than the
duration models, with rmse of 1.06 s to 1.40 s. The simulated FTp of H-LUTI model has the least rmse of
1.06 s and the highest R2 of 0.76 among the 6 H-models, which illustrates that the H-LUTI model is
effective to simulate the dominant wave periods using the fetch-limited function. The wavelengths
can be estimated from the dominant wave periods (approximately from 6 s to 10 s) according to
the dispersion relationship, taking the water depths of the buoys into account. Thus, wind waves
corresponding to 6 s~10 s, with wavelengths less than 150 m, can be retrieved, although they cannot
be imaged directly by SAR because of the limited spatial resolution [24] and because of the cutoff
caused by velocity bunching [14,15], especially in high sea states typical of tropical storms (e.g., larger
than 450 m) [23]. The good agreement with buoy measurements is encouraging and indicates the
possibilities for H-models to calculate dominant wave periods under hurricane conditions.

Figure 6. The RADARSAT-2 ScanSAR images for selected hurricanes with the best track data set;
the 7 buoys covered by SAR images are presented as red circles.

Figure 7. Cont.
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Figure 7. (a–f) Hurricane wind speeds retrieved by C-2POD wind retrieval model for the 6 SAR images
shown in Figure 6. The superimposed arrows show the hurricane heading direction with the root of the
arrow at the hurricane center. The length of the arrows represents the velocity of forward movement of
hurricanes: (a) 55.19 km/h (b) 23.40 km/h (c) 23.40 km/h (d) 11.85 km/h (e) 18.65 km/h (f) 9.25 km/h.
(g) Comparisons of retrieved wind speeds with collected buoys measurements.

Since buoys tend to have reduced observational capabilities when the wind speeds approach
hurricane force conditions, there were few buoys that were able to still function and to be captured in
SRA images when hurricanes pass. Although buoys used to validate the H-models are quite limited,
the results for the H-models robustly agree well with the buoy measurements. Therefore, H-models
can potentially be used to retrieve the wave heights and peak periods from winds retrieved from
RADARSAT-2 ScanSAR images, for example with application of the C-2POD model, taking advantage
of cross-polarization SAR with its good sensitivity to higher wind speeds.

Figure 8. Comparison of Hs retrieval from SAR-derived winds, using fetch- (a,c,e,g,i,k) or duration-limited
(b,d,f,h,j,l) growth models, and the buoy observations. Results for 6 models are presented: H-3Sec,
H-LUTB, H-LUTI, H-Harm1, H-Harm2, and H-Harm3.
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Figure 9. Comparison of Tp retrieved from SAR-derived winds, using fetch- (a,c,e,g,i,k) or duration-limited
(b,d,f,h,j,l) growth models, and the buoy observations. Results for 6 models are presented: H-3Sec,
H-LUTB, H-LUTI, H-Harm1, H-Harm2, and H-Harm3.

3.2.2. 2-Dimensional Application

Figure 10a shows a RADARSAT-2 SAR image (only VH-channel image) acquired in ScanSAR
mode with a 500 km swath for hurricane Gustav (2008). On basis of the VH-polarization SAR
image, we can generate a wind map (Figure 10b) using a newly developed wind-retrieval algorithm,
Symmetric Hurricane Estimates for Wind (SHEW) model [49]. The 2D hurricane winds are plotted,
with the hurricane heading direction pointing toward the top of the page (unit: km). We only show
the main area controlled by the hurricane, with the wind field calculated according to the symmetry
of hurricane.

Figure 10. (a) RADARSAT-2 ScanSAR image acquired over hurricane Gustav at 1128UTC 30 August
2008. (b) SAR-retrieved wind speed.

By using the H-LUTI model with the SAR-derived hurricane wind field, the significant wave
heights and wave periods can be estimated (Figure 11). The results show that the location of maximum
wave heights is within the right front regions, which is consistent with the previous studies of
Young [56]. Since the wind vectors tend to be approximately aligned with the direction of propagation
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of the hurricane, waves generated in this area tend to move forward with the hurricane and hence
remain in the intense wind regions for extended period of time (extended fetch), conversely, to the left
of the hurricane center. As a result, the spatial distribution of the wave field is not exactly symmetric.

The simulation of Tp is shown in Figure 11c,d. Although the simulation results from the H-LUTI
model can describe the wave distribution features well for the longer wave periods on the right front
side of the hurricane, the accuracy of the results still needs to be verified in additional studies with
more buoy measurements.

Figure 11. (a) Wave height from fetch-limited growth function FHs, (b) wave height from duration-limited
growth function DHs, (c) wave period from fetch-limited growth function FTp and (d) wave period
from duration-limited growth function DTp modeled by H-LUTI.

4. Discussion

All of the models are based on the implicit initial assumption regarding the essential role of
nonlinear wave-wave interactions in maintaining the wave spectrum similarity. Moreover, many
studies have shown that most of the spectra are monomodal under extreme conditions, similar to the
spectra generated under fetch-limited, steady wind conditions. However, bi-modal spectra are also
found in both measurements and model results under intense cyclone conditions [11,29,31], in which
case the accuracy of the parametric models used in this study can be degraded. For instance, this is the
case in the cyclone’s left forward quadrant where the direction of wind deviates considerably from the
wave direction [31]. As shown in a previous study [11], the analysis of directional spectra observed
by Extreme Air-Sea Interaction buoys shows that a variety of spectral geometries can exist close to
the eyes of typhoons. Thus, the effectiveness of the simple fetch-limited parametric models should be
further discussed, in terms of the cyclone quadrant under consideration, and the rate of development
or change the intensity of the storm.

In this context, we suggest that the H-LUTI model is the best among the three H-models.
Regarding the original studies that developed the H-models, it is not difficult to infer the reasons for
this result. Firstly, the H-LUT models simulate wind wave parameters along comparatively more
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transects radiating from the storm center, improving on the H-3Sec model’s ability to simulate the
development of the azimuthal and radial variations of the surface waves. Moreover, as shown in
Figure 1 of [44], the dataset from Ivan (2014) used to develop the H-LUTI model contains more
observational transects inside the storm coverage region than the dataset from Bonnie (1998) used
in development of the H-LUTB model, thus providing a better azimuthal resolution for fitting the
empirical model. Many previous studies [39–41,56] clearly demonstrate that the equivalent fetch
and duration of storm is associated with the relative position of the storm, the velocity of forward
movement of the storm, maximum wind speed and the radius of maximum wind speed. However,
for the third set of models, the H-Harm models, a systematic quasi-linear variation of the harmonic
parameters an,q and bn,q with the radius of maximum wind rm (Equation (10)) was established based on
only 4 storm datasets. These 4 datasets have different values for rm, which have only a limited coverage
range, leading to their relatively poor performance. Therefore, in future studies, it is particularly
important to collect a large number of simultaneous wind and wave measurements under conditions
appropriate for these storms in order to optimize the wave model.

5. Conclusions

Making use of the fetch- or duration-limited H-models, the basic typhoon/hurricane wind wave
parameters can be estimated by only using the SAR-derived wind field data. This approach provides
a new method for detecting typhoon/hurricane wind waves from SAR measurements. We show
that the H-models can effectively calculate the significant wave heights inside the typhoon based on
wind observations from Sentinel-1A (S1A) SAR images, except in the area near the typhoon center.
Comparing the results with wave heights measured by S1A, we show that the wave heights calculated
from the fetch-limited function (FHs) are always larger than those calculated by the duration-limited
function (DHs), and in good agreement with the S1A wave height estimates. Among the results of
these three set of H-models, the best one is the H-LUTI model using the fetch-limited function, which
has a root mean square error of 0.88 m, and correlation coefficient of 0.86. Operating in ScanSAR
mode, the H-models also have the potential to reliably simulate Hs and Tp for wind waves inside
hurricanes from RADARSAT-2 ScanSAR mode observations, based on similar statistical properties
derived from verifications by buoy data. The H-LUTI model is especially notable with results using
the fetch function that are good, with rmse of 0.86 m and R2 of 0.77 for Hs, and rmse of 1.06 s and R2 of
0.76 for Tp. Furthermore, this model works well to describe the high values of significant wave heights
and dominant wave periods in the right frontal regions of the typhoons/hurricanes.
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Abstract: Differences in synthetic aperture radar (SAR)-retrieved hurricane wind speeds from
co-polarization and cross-polarization measurements are found to be correlated with rain rate.
A quality index is proposed for the SAR-retrieved wind speed product to recognize heavy rain-
affected areas by taking account of the different imaging mechanisms of the radar backscattering
from the ocean surface via cross-polarization and co-polarization observations. A procedure is
proposed to rectify wind retrievals in the rain-contaminated areas within the hurricane core, based
on the theoretical physical profile for hurricanes. The effectiveness of the proposed methodology for
heavy rain area recognition and wind speed reconstruction in the rain-affected areas is validated
against step frequency microwave radiometer measurements from hurricane reconnaissance missions
and the hurricane surface wind analysis product (HWIND). The quality flags provide confidence
levels of hurricane surface winds from SAR, which together with the proposed method to correct
wind retrievals in rain-contaminated areas, can contribute to improved operational applications of
SAR-derived winds under hurricane conditions.

Keywords: synthetic aperture radar (SAR); hurricane; rain; wind; dual-polarization

1. Introduction

From the very first spaceborne synthetic aperture radar (SAR)-SEASAT (seafaring satellite), storm
signatures have been seen, mainly in the unique structure of storm-related rain footprints over the
ocean surface [1,2]. Unique mesoscale features such as rain bands [3], eye morphology [4], and
vortices [5] have also been observed by follow-on SAR missions. Significant efforts for the retrieval of
quantitative information from SAR have been conducted for ocean surface wind. After several decades
of development, the algorithms for SAR wind retrieval have reached operational applications for
routine sea conditions; for example, the Alaskan coastal SAR program [6] and the Canadian National
SAR Wind program [7]. These developments have especially benefited from large datasets of associated
microwave frequency band scatterometer wind products. Based on the continuous improvements
in wind speed retrieval under conventional wind conditions, it is appropriate to test the potential
capability of high wind speed retrieval from SAR, for hurricanes. The motivation is highlighted by the
critical demands for enhanced wind observations during hurricanes, especially over the ocean, before
storms make landfall.

Modern SAR instruments have a capability for multiple polarization measurements. Among these,
co-polarization (hereafter: co-pol), i.e., HH and/or VV polarization (H: Horizontal, V: vertical, with the
first letter standing for radar transmission polarization and the second letter for receiving polarization),
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is mostly used in ocean studies, especially in early satellite SAR missions e.g., Reference [6]. The
wind vector retrieval methods based on these co-pol SAR measurements have been successful, based
on a series of geophysical model functions (GMFs), such as CMOD5.N [8], for C-band SAR, which
are leading to the operational monitoring of wind fields under low to moderate wind conditions
(i.e., 0–35 m/s). For example, ocean wind products are operationally provided in the Sentinel SAR
L2 product data by the European Space Agency. Attempts to retrieve hurricane-force wind from co-pol
SAR have also been made, as shown in References [9,10]. Mathematically, it is straightforward to apply
the SAR wind algorithm derived for conventional wind conditions to SAR hurricane images, however,
challenges remain. For example, studies show that co-pol SAR signals suffer signal saturation under
high wind speeds e.g., Reference [8], which result in decreased sensitivity of radar backscattered signals
with increased wind speed. This is thought to be mainly induced by suppressed Bragg waves under
high wind conditions, due to sea spray [11] or changes in the atmospheric surface layer [12]; however,
the detailed mechanism is still unclear due to limited in situ observations. Under low radar incidence
angles (<30◦), the normalized radar cross section (NRCS) even appears to decrease as observed by
laboratory [13] and aircraft measurements [14], leading to speed ambiguity in SAR wind retrievals for
high wind speeds [15]. The CMOD5.N GMF captures this natural saturation effect; thus, an ambiguity
removal scheme needs to be applied so that hurricane-force wind speed can be obtained from co-pol
radar returns [16].

Meanwhile, the capability of cross-polarization (hereafter: cross-pol) measurements for high
wind speed retrieval has been revealed, benefiting from the high-quality radiometric calibration
performance of C-band RADARSAT-2 SAR. Compared to higher frequency microwave bands, for
example X-band, C-band radar is less influenced by rain, and thus more widely used for hurricane wind
retrieval. Studies show that cross-pol has increased sensitivity under high wind speeds, which makes
it especially suitable for high wind speed monitoring. Data analysis has revealed that the cross-pol
radar NRCS monotonically increases with wind speed, with no dependence on wind direction and
no or little dependence on radar incidence angle. Thus, by collocating observations of radar NRCS
with wind data from buoys, dropsondes, models etc., empirical GMFs have been developed [17–19].
For example, the authors of study [18] proposed a linear model between radar NRCS and wind speed
for quad-polarization SAR measurements; and the authors of study [19] proposed a piecewise linear
model with a noise suppression procedure for ScanSAR mode RADARSAT-2 SAR data, which is the
most widely used mode for hurricane observations [incidence angles, 20–49◦]. Since wind direction is
not needed in these models, wind speed can be directly retrieved from radar measurements without
additional information regarding wind direction as required for wind speed retrieval from co-pol
radar signals. These empirical GMFs have been successful in quantifying the relationship between
radar backscattered signals and wind speed, which can be difficult to establish for a theoretical model,
due to the complicated state of the ocean surface under high wind speeds, involving processes such as
wave breaking induced sea spray and foam.

Although empirical geophysical model functions are able to quantify the relationship between
the radar NRCS and wind vectors, and accommodate different wind-induced dynamical processes
implicitly, there are non-wind-induced external processes in the ocean which can contribute additional
radar backscattered signals [20] Rain is one of these processes. Naturally, heavy precipitation is
present in tropical storms and heavy rainfall-induced flooding is a major threat to human society. As
mentioned previously, the signatures of heavy rainfall have been observed from the very beginning of
SAR satellite remote sensing, e.g., Reference [2]. Many studies have focused mainly on the morphology
of rain signatures in SAR images. In 1994, Atlas [2] first explained these hurricane footprints in SAR
imagery as a result of rain downdrafts. A recent 2016 study by Alpers et al. [21] suggested a C-band
SAR imaging mechanism for rain under low to moderate wind conditions. The rain morphology [3]
apparent from SAR images indicates possible contamination to the retrieved wind speeds in affected
areas. Attempts to build a scattering model due to rain effects on the rough sea surface have also
been pursued e.g., References [22,23]. However, most of these studies rely on rain rate measurements
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from other sources. A method to retrieve wind and rain simultaneously from ERS scatterometer data
has been tested and is possible [24] under moderate wind conditions. Thus far, no GMF explicitly
includes rain estimation for wind retrieval under hurricane conditions. For hurricane-force wind, rain
can contribute up to 100% error ([25] Figure 2) for wind retrieval from airborne stepped frequency
microwave radiometer (SFMR) observations (incidence angles −40◦–+40◦). Compared to SFMR, wind
retrieval from SAR suffers similar apparent effects from heavy rain on the ocean surface, because
the presence of rain not only changes the brightness temperature which is measured by SFMR, but
also surface roughness which is captured by SAR. Thus it is necessary to consider the rain effect in
hurricane wind retrieval from SAR.

Finding a method to recognize rain-affected wind cells in SAR images is not a simple task. Because
of its antenna design, the scatterometer can assign a quality flag for each retrieved wind vector based
on the consistency of multiple measurements from different incidence angles [24,26]. SAR has only
one incidence angle for each observation, and thus it is difficult to make a similar quality assessment
based on its measurements, although the removal of directional ambiguity has been possible based on
the concentric wind structure that is generally followed for hurricanes [10].

However, similar to the multi-looking directional measurements from scatterometers, modern
SAR instruments have special multiple-polarization capabilities, such as RADARSAT-2 SAR, which is
able to conduct dual-polarization (dual-pol hereafter) and quad-polarization measurements. Dual-pol
mode can be operated at ScanSAR swath, with swath widths as much as 500 km, which is suitable
for observing hurricanes. The two polarization measurements of dual-pol mode are cross-pol (VH
or HV) and co-pol (VV or HH), which have different imaging mechanisms. For cross-pol, volume
scattering dominates, whereas for co-pol Bragg scattering is more important [19]. Study [21] indicated
that non-Bragg scattering may be a dominant scattering mechanism for rain cells. Therefore, the
combination of both measurements has been important for wind vector retrieval, in rain-free areas,
owing to the advantage of wind speed retrieval from cross-pol measurements and the wind direction
sensitivity of co-pol measurements [27]. This combination has also been shown to be useful for the
detection of various targets, for example, oil [28], wind turbines [29], macroalgae bloom patches [30]
etc. Under hurricane conditions, a recent study showed that both co- and cross-polarized SAR
measurements can be used for extreme wind retrieval. Using their combined geophysical model
functions, they obtained wind speeds up to 60 m/s [31].

In this paper, we extend the application of multiple polarization measurements for rain under
hurricane conditions. This is achieved by introducing the principle of rain recognition from
SAR described in Section 2, based on SAR measurements and co-located SFMR measurements.
In Section 3, results are given for SAR-retrieved hurricane wind speeds with a rain flag as a quality
index. A methodology to correct the rain-contaminated areas is introduced in Section 4 and the
rain-corrected wind field is validated by HWIND data from Risk Management Solutions (RMS;
www.rms.com/models/hwind), which are post-analysis winds based on objective analysis of best
available observations during the storm. Discussions of uncertainties and future plans are presented
in Section 5, followed by conclusions in Section 6.

2. Principle of Rain Recognition from SAR

Although microwave radar is able to penetrate through cloud and light rain, because of its long
wavelength as compared to the size of rain drops, heavy rainfall will modulate the radar signals
through various mechanisms [21,22]. Study [22] summarized the effect of rain into two categories:
In the atmosphere, raindrops induce volumetric scattering and attenuation of radar waves, whereas
on the ocean surface, rain alters the roughness of the ocean surface by the competitive functions of
rain damped ocean surface waves, and rain splashing enhanced ring waves. Although both negative
and positive effects exist in the atmosphere and in ocean surface components of radar backscattered
signals, the negative effects are dominant for high wind speeds [25]. A detailed quantification of
each component is complicated. Nevertheless, all these effects will eventually be combined together
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and represented by the radar NRCS. In contrast to the stronger NRCS caused by higher winds under
hurricane conditions, rain makes a relatively smaller contribution to the NRCS in high winds as
compared to that made under moderate wind conditions. Figure 1 shows an example of rain features
in Hurricane Patricia (2015), for moderate wind speeds (15 m/s), as compared to high wind speeds
(35 m/s), where rain features are more prominent in (a,b) than in (c,d).

 
(a) (b) 

 
(c) (d) 

Figure 1. Rain cells in the outer range areas of synthetic aperture radar (SAR) images of Hurricane
Patricia. Upper panels (a,b) are 125 km from the eye where the wind speed is 15 m/s. Lower panels
(c,d) are 40 km from the eye where wind speed is 35 m/s. Left panels (a,c) show VV normalized radar
cross section (NRCS). Right panels (b,d) show VH NRCS. Note the differences in the grayscale bars.

For solely wind-induced radar roughness, both the co-pol and the cross-pol radar NRCSs are
constrained by the geophysical model functions; radar measurements from either polarization or
combined can lead to wind speed retrieval. However, for radar roughness generated by other processes,
for example rain, it is hypothesized that the same rain rate causes different radar modulations for
co-pol radar as compared to cross-pol radar measurements. This is shown in Figure 1, and it results
from the different imaging mechanisms for cross-pol and co-pol SAR measurements, which will show
up as different wind speed retrievals in the rain-affected areas. These differences can potentially
lead to detection of non-wind-induced features in the SAR images themselves. This principle will be
explained in more detail in the following sections.

3. Rain Recognition from Dual-Pol SAR Imagery

In order to develop a methodology to recognize the rain contaminated ocean surface areas under
hurricane conditions, we studied RADARSAT-2 SAR imagery of the most intense winds observed in
Hurricane Patricia (2015), together with SFMR wind speeds and rain rate measurements from hurricane
reconnaissance missions. During 20–24 October 2015, Hurricane Patricia intensified from a tropical
storm to a Category 5 hurricane and made landfall on the Pacific coast of Mexico (Figure 2). According
to aircraft measurements conducted by the United States National Hurricane Center (NHC) of NOAA
(National Ocean and Atmosphere Administration), the lowest pressure was 879 mbar and maximum
sustained winds were 200 mph (~89 m/s) at 05:33PM UTC 23 October 2015, which confirms Hurricane
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Patricia as the most intense cyclone recorded in the western hemisphere in terms of barometric pressure,
and the most intense globally in terms of measured maximum sustained winds [32].

Figure 2. Track of Hurricane Patricia (2015).

RADARSAT-2 SAR measurements during the most intense phase of Hurricane Patricia took
place at 12:45PM UTC on 23 October 2015. RADARSAT-2 SAR has multiple imaging modes and
polarizations. Almost all the hurricane images taken by RADARSAT-2 SAR are in ScanSAR mode
with dual-polarizations (VV and VH). For ScanSAR, only signal intensity is recorded. For other
modes, phase information can be processed by request. The SAR measurements for Hurricane Patricia
(2015) were taken in dual-pol mode, and two images with co-pol VV polarization and cross-pol VH
polarization were captured. These two RADARSAT-2 SAR images are also notable for capturing the
most intense wind speed that has thus far been recorded by SAR measurements over the ocean surface.

Hurricane track data are from the NHC (www.nhc.noaa.gov/). The color of the track as indicated
with dots shows the strength of the maximum wind speeds. The square box shows the coverage of
the RADARSAT-2 SAR image at 12:45 UTC on 23 October 2015, and the black line shows the NOAA
43 SFMR track in the hurricane core area.

The flowchart of the proposed procedure to recognize rain areas from SAR is shown in Figure 3.
Firstly, RADARSAT-2 SAR dual-pol measurements are processed to obtain the radiometric calibrated
NRCS (dB). Hurricane wind speeds are then retrieved from the cross-pol mode image, using a VH
dual-pol GMF [19]. Similar to other cross-pol GMFs, this GMF [19] was developed by collocating SAR
measurements with data from in situ buoys. However, this model function targets VH dual-pol data
only instead of also including quad-pol data which has different radiometric accuracy. Since most, if
not all, of the cross-pol RADARSAT-2 SAR hurricane images are taken in the VH dual-pol mode, this
approach is expected to better fit the objectives of this study. In previous work [19], we also introduced
a noise removal scheme which significantly removed the apparent “seams” between different beams of
the ScanSAR mode image. The VH dual-pol GMF was further evaluated in Reference [33] by comparing
SAR winds with the state-of-art hurricane wind analysis product, HWND, from NOAA (now provided
by RMS). HWIND uses expertly standardized and quality controlled wind observations from multiple
platforms (aircraft, surface-based stations, buoys, remote sensing, etc.) in a storm-relative framework
to map a tropical cyclone’s wind field [34]. Validation results show that wind patterns retrieved from
the VH dual-pol GMF are consistent with HWIND, with SAR speed underestimates of −1.3 m/s over
the whole hurricane area, and −7.05 m/s in the hurricane core area (within 100 km of the hurricane
center). The root mean square difference is 4.5 m/s. Heavy rain may contribute to a larger bias in the
core area, which is a focus of the present paper.
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 Dual-pol SAR measurements 
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Figure 3. Flowchart of the hurricane wind quality index from SAR with proposed rain
correction procedure.

We simulated the co-pol radar NRCS based on wind speed retrieved from VH SAR measurements
(hereafter, VH wind speed), using the co-pol GMF CMOD5.N [8], which would be used for comparison
with the measured co-pol data. For the co-pol GMF, wind direction is required to be known a priori.
We adopted the hurricane sea surface inflow angle parameterization model from Reference [35] to
obtain the hurricane wind direction. To decrease any possible bias induced from uncertainty in the
wind direction away from the hurricane center, we focus on the wind field within 100 km of the
hurricane eye.

We then compared the simulated co-pol radar NRCS to the NRCS from observations. The
difference between the simulated and measured co-pol NRCS was taken as a quality index as
shown in Equation (1). To avoid possible errors induced by speed ambiguity from co-pol wind
retrieval under low incidence angles, we did not directly compare the wind retrievals from the two
polarization modes; instead, we used an alternate approach to quantify the rain-induced differences
in the dual-pol measurements. Note these attenuations are a natural phenomenon in NRCS for high
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winds measurements by co-pol SAR. We simulated the co-pol radar NRCS based on the wind speed
retrieved from the VH wind speed, using the co-pol GMF CMOD5.N.

When there was an apparent difference between the simulated co-pol radar NCRS and the
measurements, we labeled the corresponding areas as rain contaminated. Ideally, there should be
no difference between these areas and rain-free areas. However, there is always random noise in
SAR measurements. RADARSAT-2 SAR has a radiometric accuracy of 0.3 dB [36]; a SAR wind White
Paper [37] suggested that the radiometric error should be less than 0.5 dB in order to obtain high
resolution wind retrieval from SAR. By accommodating these factors, we set the threshold value for the
difference to be 0.5 dB. The low wind area (here <20 m/s) within the hurricane eye was not labeled for
quality assessment, based on two considerations: firstly, that the hurricane eye area may have complex
wind dynamics, for example mesovortices [38], thus the wind direction parametric model adopted
for co-pol simulation may not apply, as it was developed mostly for areas outside the eyewall [35];
and secondly, the eye area is usually cloud-free as observed from optical imagery, thus is not directly
affected by rain. For Hurricane Patricia (2015), this low wind eye area is within a 7 km radius of the
hurricane center.

Index =
∣∣∣σcmod5.N(U,ϕ,θ) − σSARobs

∣∣∣ (1)

where, σ is NRCS in dB, U is VH wind speed, φ is radar incidence angle, θ is wind direction.
SAR-retrieved wind speeds were compared with SFMR measurements from the NOAA hurricane

hunter mission. A storm-relative coordinate system was adopted by firstly adjusting the SAR hurricane
center to the SFMR observed hurricane center, and thus we retrieved SAR observations along the
SFMR track. The hurricane center from SAR is determined by fitting the position of the hurricane
maximum wind speed (eyewall) as retrieved from cross-pol image to an ellipse as in study [4]. The
center of the ellipse is taken as the center of hurricane. We note that Hurricane Patricia remained
relatively steady from 12:00PM to 06:00PM as indicated by the hurricane best track analysis by the
National Hurricane Center. The lowest surface pressure was estimated to be 872 mbar at around
12:00PM and 879 at 05:39PM, according to 43 SFMR measurements [30].

Figure 4 shows a comparison of both measurements along the SFMR track. The SAR-retrieved
wind speed from the cross-polarization data reaches 85 m/s, and the SFMR peak wind speed indicates
about 93 m/s, with simultaneous rain measurements showing strong precipitation in the hurricane
eyewall area, located to the right of the peak wind as indicated by SFMR observations (Figure 4a).
By adopting the hurricane inflow angle model [35] to CMOD5.N GMF, wind speed is also obtained
from co-pol SAR measurements; the peak wind speed obtained by co-pol SAR observations is over
100 m/s (Figure 4b). Generally, for the rain-free area, both estimates for SAR winds are consistent with
SFMR measurements. However, in the heavy rain area (>30 mm/h), the winds derived from co-pol
SAR data underestimate the wind speed by about 20–30 m/s, whereas the cross-pol observations seem
less affected. Figure 4 shows the underestimation of the SAR-derived winds in the heavy precipitation
area, which once again confirms the overall attenuation effect of rain under hurricane-force wind
conditions. This has previously been shown in the analysis of QuikSCAT measurements [24] and in
our data in Figure 1.

Figure 5a shows the performance of the co-pol backscattered signals along the SFMR tracks.
In the heavy precipitation area, the co-pol NRCS measurements decrease by 2–4 dB, compared to
the nearby rain-free observations. Comparing the two lines in Figure 4, it is found that the co-pol
data are more heavily affected by rain than the cross-pol data. Consequently, the rain leads to greater
underestimation of the wind speed retrieval from co-pol SAR measurements than from cross-pol
SAR measurements, with cross-pol showing no apparent underestimation of wind speed, and co-pol
showing an underestimation of wind speed of about ~20 m/s.
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(a) 

 
(b) 

Figure 4. SAR wind speed retrieved from (a) cross-polarization (cross-pol), and (b) co-polarization
(co-pol) profiles, overlaid with the rain rate along the airborne track of the NOAA43 stepped frequency
microwave radiometer (SFMR) measurements.

 
(a) 

(b) 

Figure 5. NRCS of (a) SAR co-pol, and (b) difference between SAR and simulated co-pol profiles,
overlaid with the rain rate along the airborne track of the NOAA43 SFMR measurement. The area in
the box corresponds to heavy rainfall in the eyewall. The lower panel also shows rain-induced co-pol
NRCS changes as recognized by SAR observations and model simulations.
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For areas with rain rates exceeding 30 mm/h, the wind difference between the two GMFs output
is larger than 10 m/s (Figure 4), which is more than three times the standard deviation of SAR-retrieved
winds in the 3 × 3 image pixels.

By applying the proposed rain flag methodology as expressed in Equation (1), we label the
rain-affected areas in the SAR image and compare them with the SFMR measured rain rate. Overall,
the retrieved rain area is consistent with the high rain rate domain as suggested by SFMR measurements
(Figure 5b). The two peak index values at ~−15 km and 40 km correspond to high rain rates (>20 mm/h)
in these areas. However, the index value does not monotonically increase with higher rain rates.
Outside the eyewall area, a larger index value is achieved, benefiting from the higher sensitivity to
rain in lower wind speed areas as shown previously in Figure 1. The relatively lower rain rate areas
(3–5 mm/h) at −40 km and 35 km also have high index values of 1.5–2 dB. The index values in these
areas are even higher than in the very high rain rate areas around the eyewall at around −10–−20 km,
where the rain rate reaches 50 mm/h. Figure 4 suggests that the wind speed in these corresponding
high rain rate areas is around >60 m/s, whereas the wind speed in the relatively low rain rate areas is
around <40 m/s.

Comparing this quality index with SFMR measurements suggests that the 0.5 dB threshold
corresponds to a 5 mm/h rain rate in hurricane eyewall areas and 2–3 mm/h in moderate wind speed
areas. In the full 2 Dimension spatial domain of the SAR image, Figure 6 presents results of the high
precipitation areas of Hurricane Patricia (2015). With the proposed index as a third dimension, this
figure shows the 3 Dimension view of possible rain contamination in the SAR image. A clearly evident
rain band stands out. This rain band is shaped like the number ‘6’, with a larger index value on
the left side of the hurricane eyewall. This is consistent with the radar reflectivity measurements
obtained from hurricane reconnaissance mission at 05:35PM 23 October 2015 (Figure 7a) which shows
a similar rain band pattern as revealed in Figure 6. The radar reflectivity shown in Figure 7a is from
the lower fuselage radar mounted on the NOAA WP-3D aircraft which operated at the same C-band as
RADARSAT-2 SAR (http://www.aoml.noaa.gov/hrd/about_hrd/HRD-P3_radar.html). The WP-3D
radar recognizes areas of strong precipitation by measuring radar reflectivity when flying through
hurricanes. In Figure 7a, the strong precipitation area is located at the hurricane eyewall; with another
strong precipitation area ~100 km away from the hurricane center and outside of the SAR image
coverage. The strong precipitation close to the eyewall is in a spatial pattern of the number ‘6’.

Figure 6. The rain index for Hurricane Patricia (2015) as derived from the proposed quality index
based on the difference of co-pol NRCSs between SAR observations and model simulation.
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Figure 7. Radar reflectivity measured on board NOAA 43 flight at 05:30PM 23 October 2015: (a,b) rain
flag of Hurricane Patricia at 12:45 UTC on 23 October 2015 as retrieved from SAR. Both figures show a
heavy precipitation pattern in the shape of the number “6” in Hurricane Patricia. The observed spatial
pattern in (a) is consistent with that of the rain index from SAR in figure (b).

We label the retrieved rain area by taking the absolute value of Equation (1) as an index of the
quality of the SAR-retrieved wind speed. The recognized rain area is given a quality flag of 1, which
indicates the presence of strong precipitation, and other areas are given a quality flag of 0, indicating
the absence of strong precipitation. Figure 7b shows the results of the quality flag corresponding to
Hurricane Patricia as shown in Figure 6. Figure 7b is a 2D view of Figure 6, where spatial locations of
possible rain areas are presented. Figure 7b may be directly compared to Figure 7a, as both figures
show the horizontal 2D structure of rain. Despite the time differences of the two measurements (~5 h),
recall that Hurricane Patricia (2015) maintains very strong intensity with relatively steady state during
12:00 and 06:00PM [39]. Moreover, the two datasets show the consistent spatial patterns of rain in the
shape of the number ‘6’. Figure 7b misses the high radar reflectivity area to the north of the hurricane
eye; this bias suggests areas for potential improvement for the proposed method, as discussed in the
following section. The quality flag presents quality assessments for each grid cell in a SAR image
indicating possible contamination by rain. This flag can be used as a reference when SAR-retrieved
wind is used in operational analyses.

4. Correction for Rain-Contaminated Wind Cells

The rain flag provides a valuable quality assessment for SAR-retrieved hurricane wind speed.
Since rain causes contamination for these flagged wind vector cells, caution is required when using
SAR-derived wind products in rain conditions. One way to resolve the problem is to mask all
the rain-flagged areas. However, the mask leaves a number of areas that are devoid of any wind
information, which may be filled by assimilating SAR winds into comprehensive numerical prediction
models (NWP). Sometimes it may be desirable to obtain quick estimations of the full hurricane wind
field, for example, in order to facilitate rapid decision making and response. Under these circumstances,
the following simple methodology may be used to quickly fill these missing values in a quality-flagged
wind field.

4.1. Hurricane Wind Radial Profile Model

A hurricane is a strong mesoscale atmospheric low pressure system, defined by a low pressure
center with low wind speeds and an eyewall with very high wind speeds, and maintains a unique
wind profile along the radial direction. There exists a strong physical relationship between such a
radial profile and the strength of the hurricane, which can be represented by a radial profile model, for
example [40,41]. Radial profile models have been widely used to represent and reconstruct hurricane
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wind fields from hurricane best tracks. As shown in Reference [40], a Rankine combined vortex
model shown in Equation (2) below can be used to simulate the hurricane wind profile along each
radial transect. More sophisticated models involving more parameters, such as pressure, and wind
measurements along the radial profile have been proposed by the authors of [41]. For this study,
we use Equation (2), which requires no additional information for input. Thus, we demonstrate the
methodology for wind correction for rain-contaminated wind cells. Wind speed is given by:

v =

{
vm(r/rvm) r < rvm

vm(rvm /r)0.5 r ≥ rvm

(2)

where v is the wind speed, rm is radial distance of maximum wind speed vm from the hurricane eye,
and r is the radial distance. Both rm and vm are parameters to be retrieved based on the VH wind
speed with the rain flag of 0, in each radial direction.

Figure 8 gives examples of the model (2) applied to the wind profile of Hurricane Patricia’s wind
field derived from the VH SAR image. The parameters in model (2) are obtained by applying a least
squares method to fit the model to the VH SAR wind data along each radial direction. The model
represents the pattern of the hurricane wind profile in the radial direction very well. Therefore, for
wind data with partly missing values, the model can be used to estimate and reconstruct the missing
values. Note that the model does not account for the high frequency variations shown in Figure 7b.

 
(a) (b) 

 
(c) (d) 

Figure 8. Wind speed in four radial profiles overlaid by Holland’s (1980) regression model in four
directions: (a) −45◦; (b) −135◦; (c) 45◦; and (d) 135◦. The red curve is the VH SAR wind with
rain-flagged values removed; the blue curve is with rain; black is the regression model.
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4.2. Wind Correction for Rain-Contaminated Cells

In Section 4.1, we have shown that the hurricane wind profile along the radial direction can be
used to rebuild the missing values due to the rain flag. In this section, we adopt this method to correct
the rain-contaminated wind retrievals from SAR. Based on the proposed quality index methodology,
the heavy rain-contaminated wind cells are flagged. We hereafter treat these rain- flagged areas as
pixels with missing values. Thus, we use this radial profile simulation method to rebuild the entire
wind profile as a best estimate for the wind field values in the heavy rain areas.

For Hurricane Patricia, Figure 9 presents the corrected wind field, as well as the original wind
retrievals from SAR with rain, and the results for rain-flagged winds. The strong underestimation
bias for wind speeds in the left and lower portions of the eyewall (Figure 9a) are recognized as
heavy rain-contaminated areas (Figure 9b). The results show a more consistent circular wind
pattern for Hurricane Patricia. The wind reconstruction method (Figure 3) takes advantage of all the
quality-controlled wind data, both outside the eyewall and within the eyewall. Therefore, the wind
radial profile can be reconstructed, and further used to correct underestimated wind retrievals due to
heavy rainfall contamination. Note that we take all the qualified SAR winds along the radial direction
to obtain estimates of the physical wind profile, rather than using the maximum wind speed along the
corresponding radial direction only. This is different from when the Holland model was originally
developed, as this was targeting limited hurricane parameters from forecasts, such as the maximum
wind radius etc. In fact, benefiting from the dense data points from high resolution SAR measurements,
the model has the ability to retrieve the maximum wind speed vm and the associated radius rm along
each radial direction. Therefore, the method does not assume symmetric hurricane wind structure,
which in principle is useful for all hurricane wind configurations.

  
(a) (b) (c) 

Figure 9. Wind field of Hurricane Patricia: (a) with rain; (b) with rain flagged; (c) after rain correction.

The rain flag and the rain correction method were evaluated against SFMR measurements along
the flight track (Figure 1). Figure 10 shows both original wind retrieval where rain is neglected, and rain
labeled/corrected wind results, as compared to SMFR measured wind speeds. As shown previously,
the quality index was able to flag the rain-contaminated areas as in Figure 10a,b. The reconstructed
wind field is able to somewhat correct the wind bias induced by the rain. Since the wind correction
model adopted all SAR winds along each of the wind profiles, the maximum wind speed also shows
somewhat better performance as compared to SFMR measurements. Figure 10c shows that most of the
corrections bring the scattered data closer to the line of equality. The root mean square difference (rms)
is reduced from 5.86 m/s to 3.78 m/s (Figure 10c).
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Figure 10. Comparisons of wind speed before and after rain flag along the NOAA flight. (a) Wind
speed along SFMR track, (b) rain rate from SFMR measurements and associated speed difference
from SAR, (c) scatterplot of wind speed before and after rain correction as compared to SFMR wind
measurements. Note: the capability of the proposed method to recognize the strong precipitation areas
is highlighted in the circled areas of (a,b).

Similar analysis was conducted for additional examples of hurricane measurements. Eight
more hurricane cases (Table 1) were studied. Although the limited number of SAR images is far
from a thorough validation, the objective here was to further demonstrate the effectiveness of the
method. The winds retrieved from cross-pol mode SAR images of these hurricanes have been studied
previously [33] without taking into account the possible rain contamination in the wind speed retrieval
algorithm. We used the rain flag and wind correction method introduced in this study for these
examples. Comparisons against hurricane surface wind analysis data HWIND [34] are summarized in
Table 1. Compared to previous studies when rain is not removed, the rain correction methodology
proposed in this study provides improved wind analysis, which confirms the influence of heavy rain
on wind retrieval from SAR.

Table 1. Statistics for VH SAR and HWIND wind speed before and after wind correction due to heavy
rain contamination: ‘a’ columns show results without rain correction, ‘b’ columns show results with
rain correction. The hurricane category is indicated following the Saffir-Simpson scale at the time of
the SAR observation.

ID Hurricane SAR Time
Hurricane
Category

Bias RMS Error R

A b a b a b

1 Gustav 11:27, 30 August 2008 3 −6.86 −3.67 4.05 4.01 0.85 0.91
2 Ike 23:54, 10 September 2008 2 −9.18 −5.66 4.73 3.25 0.42 0.56
3 Ike 23:56, 10 September 2008 2 −7.73 −3.39 4.49 2.46 0.40 0.71
4 Bill 22:27, 22 August 2009 1 −3.31 −2.57 3.73 1.99 0.53 0.67
5 Bill 10:40, 23 August 2009 1 −0.09 −2.33 2.56 2.27 0.81 0.86
6 Earl 22:59, 02 September 2010 2 −12.3 −2.09 4.97 2.38 0.85 0.89
7 Igor 10:11, 19 September 2010 1 −8.11 −6.13 3.97 1.92 0.79 0.88
8 Rina 11:30, 26 October 2011 2 −8.12 −4.28 3.85 2.48 0.61 0.89

5. Discussion

Reliable forecasts of hurricanes depend on accurate understanding of the physical processes
related to their formation and development and should be based on accurate observations. Although
the hurricane modeling community claims that the basic physics are well understood [42,43], estimating
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and forecasting hurricane winds is still challenging [44] due to the difficulty in obtaining accurate
hurricane observations, especially surface winds. SAR has been proven to be capable of obtaining
hurricane-force winds over the ocean surface from co-pol and cross-pol satellite measurements.

Despite the progress made on the methodology, and algorithms based on improved understanding
of hurricane imaging theory and advanced SAR instruments in the past decades, the operational
application of SAR-retrieved hurricane winds has still not been achieved. Many factors are at play
in this situation. For example, due to the high power requirements, SAR only acquires data when
ordered. Thus, temporal continuity and intervals separating data are irregular. This is different
from other conventional wind observation systems, such as scatterometer, with regular revisiting
periods. Another approach is Sentinel SAR, which continuously acquires images in the globally
pre-defined areas. Numerical models could benefit by assimilating these high resolution SAR time
series. However, hurricanes don’t necessarily occur in these pre-defined areas, and particular data
analysis and assimilation schemes are needed to enable these temporally irregular SAR observations
to help hurricane forecasting. Meanwhile, SAR’s capability to provide detailed wind structure within
the hurricane core makes it unique for capturing high frequency wind variations, such as strong wind
shear, hurricane-related atmospheric boundary layer rolls etc. [5]. Abrupt variations of wind speed
can happen on small spatial scales due to turbulence etc., which are important for hurricane-related
disaster assessment, risk management, insurance industries etc. Considering these advantages and
potential applications of SAR hurricane winds, it is of urgency to introduce these data into operational
applications. Such methodology has been shown to be useful [45] to improve the track and intensity
forecasting of Hurricane Isabel (2003) when SAR-retrieved hurricane wind vectors were assimilated
into a numerical weather prediction model.

In this paper, we developed a methodology to assess the quality of SAR-retrieved wind speed
based on two different modes of SAR observations. We demonstrated a capability to label poor-quality
wind retrievals where the two observation modes are inconsistent. The capability of SAR to recognize
strong precipitation areas in hurricanes is important, since it will not only lessen the dependence on
external measurements to obtain the corresponding information, but also presents a useful tool for
assessment of the quality of SAR-retrieved winds, in each wind cell. These differences in the rain
effect on SAR-retrieved wind speeds under co-pol and cross-pol measurements are due to the different
contributions of rain on the SAR Bragg-scattering and volume scattering mechanisms. Although
cross-pol is relatively weakly affected by rain, as compared to co-pol, the rain bias on wind speed is
still visible (Figure 9a). Thus, the difference in wind speeds retrieved from co-pol and cross-pol can
be linked to non-wind contributions. For hurricanes, this non-wind contribution is mostly due to the
contamination of heavy precipitation. Therefore, the methodology provides assessments of the validity
of SAR-retrieved wind speed, and can be used as a quality index for the SAR wind product. To the best
of our knowledge, this is the first time that a quality flag has been applied to SAR-retrieved wind speed,
which we hope will be helpful for the operational application of SAR wind products. The proposed
methodology is motivated by the quality flag for scatterometer wind products, where the product
quality flag is based on various measurements from different antenna [24], comparable to the different
polarizations of SAR dual-pol measurements that are applied here. Scatterometer data flagged as
poor-quality are often eliminated from wind estimation. For the specific processes considered here, i.e.,
hurricanes, a dynamically consistent wind profile along the radial direction is adopted to rebuild the
wind field for the rain-contaminated area, providing a tool for wind correction for poor quality SAR
wind data. This methodology takes advantage of the particular wind structure of hurricanes, which is
a robust physical mechanism for hurricanes. Such methodology has been successfully adopted for
deriving hurricane wind direction information from co-pol SAR [10], for removing the speed ambiguity
problem for high wind retrieval from co-pol SAR [16], and for rebuilding the full wind field of SAR
images that only partly cover hurricanes [46].

Optimal performance of the proposed quality index depends on the accuracy of GMFs for
wind retrieval from co-pol and cross-pol SAR measurements. With continued advancement in our
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understanding of the air-sea boundary layer physics underlying hurricanes, and more comprehensive
collocated datasets for SAR measurements and wind vectors, the related SAR wind GMFs are expected
to continuously improve. Thus, the quality of the proposed SAR winds index will be improved
accordingly. The hurricane wind profile model along the radial direction adopted here considers
a single eyewall hurricane only. For double or triple eyewall hurricanes, a different model would
be developed and applied to represent the radial wind profile. SAR may be used to discriminate
the unique multiple-eyewall structure based on its high-resolution imaging capability as shown in
Reference [4]. Our proposed method will benefit from future improvement of parametric hurricane
models for improved wind correction of rain-contaminated areas. The present study assumes consistent
radar returns from co-pol and cross-pol SAR measurements induced by the wind to recognize
non-wind-induced features by examining the inconsistent radar returns in the SAR measurements of
the two different polarizations. Even though the concept introduced here does not rely on the GMF
itself, the methodology and performance of the outcome would be affected by the accuracy of GMFs.
Therefore, future advancement in the development of GMFs will also be beneficial. By including
hurricane images with various spatial structures and at different stages, it will be possible to build a
generalized dataset, which can be used to optimize the concept and methodology into broad hurricane
conditions, and therefore provide improved, more robust accuracy assessments.

The threshold value of 0.5 dB was chosen based on comparisons between wind differences from
two measurements of SAR and the SFMR rain rate. Our study shows this threshold value corresponds
to rain rates higher than 5 mm/h in high wind areas, and 2–3 mm/h in moderately high wind speed
conditions. The index has increased sensitivity at lower wind speeds. This confirms the decreased
contamination of rain on radar backscattered signals as revealed by Figure 1. The threshold value is
also based on current state of radiometric calibration accuracy of this SAR instrument, and applies to
most of the current SAR instruments. Future SAR sensors might be able to achieve higher performance,
thus with more accurate GMFs for wind retrieval, a smaller threshold value might be achieved. For
hurricanes, the 0.5 dB threshold value should remain valid to detect rain areas, since rain is usually
heavy in hurricanes. Figures 5 and 6 present the relationship of the rain-induced NRCS difference
in regard to the rain rates; therefore, a formula for rain rate retrieval based on SAR imagery seems
possible in the future. In order to achieve this goal, a comprehensive dataset needs to be built with
SAR measurements and collocated simultaneous rain information. By recognizing the complicated
processes related to rain modulation of the ocean surface roughness, and the fact that the sensitivity
of the proposed quality index changes under different wind speeds, this may lead to a multi-factor
non-linear relationship.

Despite decades of efforts in improved monitoring of hurricane core structures, methods for
high resolution wind measurements are limited. The hurricane hunter radar reconnaissance missions
conducted by NHC NOAA provide valuable but limited data in a temporally and spatially changing
coordinate. Synthetic aperture radar, which is suitable for conducting high spatial resolution hurricane
monitoring, is capable of filling this gap. By conducting simultaneous wind measurements over
hurricanes, SAR captures fine-scale wind features within hurricanes. The comparison of SAR wind to
in situ measurements of high wind speeds is challenging. The time difference of the measurements
could be critical for highly dynamical hurricane processes. Future studies may consider developing an
enhanced dataset by pairing multiple SAR images with the collocated flight/buoy measurements at
SAR observation times. With more SAR platforms going into orbit, SAR-derived winds are expected
to play a key role in future hurricane prediction systems.

6. Conclusions

Synthetic aperture radar provides unique wind observations over the ocean surface under
hurricane conditions, with very high spatial resolution. Heavy precipitation can modify radar
backscattered signals and contaminate SAR wind retrievals, making it difficult to adopt SAR winds in
operational applications for hurricane forecasting. A hurricane wind quality index was developed
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to evaluate SAR wind retrievals from dual-pol SAR measurements. This index is used as a flag for
rain-contaminated wind cells, thus providing a reference for SAR wind data quality control.

A methodology for wind correction under heavy rain-contaminated cells was also developed,
based on the unique radial profile structure of hurricane winds. Therefore, the rain-contaminated
wind retrieval can be rebuilt, providing a reliable estimate of hurricane wind analysis from SAR. The
proposed methodologies are solely based on dual-polarization radar measurements, and do not rely
on any external dataset, which makes it feasible for them to be adopted into operational applications.

Looking to the future, the launch of future SAR missions, such as the RADARSAT Constellation
Mission (RCM), plus the combination of multiple satellites, will significantly improve the possibility
of SAR images that can observe hurricanes. With reliable quality control, the hurricane wind data
from SAR are expected to play a more important role in hurricane forecasting and related decision
making processes.
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Abstract: In contrast to co-polarization (VV or HH) synthetic aperture radar (SAR) images,
cross-polarization (CP for VH or HV) SAR images can be used to retrieve sea surface wind speeds
larger than 20 m/s without knowing the wind directions. In this paper, a new wind speed retrieval
model is proposed for European Space Agency (ESA) Sentinel-1A (S-1A) Extra-Wide swath (EW)
mode VH-polarized images. Nineteen S-1A images under tropical cyclone condition observed in
the 2016 hurricane season and the matching data from the Soil Moisture Active Passive (SMAP)
radiometer are collected and divided into two datasets. The relationships between normalized radar
cross-section (NRCS), sea surface wind speed, wind direction and radar incidence angle are analyzed
for each sub-band, and an empirical retrieval model is presented. To correct the large biases at the
center and at the boundaries of each sub-band, a corrected model with an incidence angle factor is
proposed. The new model is validated by comparing the wind speeds retrieved from S-1A images
with the wind speeds measured by SMAP. The results suggest that the proposed model can be used
to retrieve wind speeds up to 35 m/s for sub-bands 1 to 4 and 25 m/s for sub-band 5.

Keywords: Sentinel-1; cross-polarization; wind retrieval; SMAP

1. Introduction

A large number of geophysical model functions (GMF) have been presented to retrieve wind
speeds from co-polarization (VV or HH) SAR images. According to many C-band VV-polarized GMF
models, the normalized radar cross section (NRCS) is dependent upon the wind speed at 10-m height,
wind direction and radar incidence angle. However, wind speed retrieval from co-polarization SAR
images is known to have a number of limitations. First, due to the saturation of the backscattering
signal under strong wind condition, the retrieval results may have large error for wind speed higher
than 20 m/s [1,2]. Second, the difficulty to obtain a collocated high-resolution wind direction field often
leads to a decrease in the accuracy of wind speed retrieval [3–6]. Third, the co-polarization NRCS is
dampened at certain incidence angles, leading to a wind speed ambiguity problem [7].

The backscattering signals of both co-polarization and cross-polarization (CP for VH or HV)
are induced by the Bragg scattering from sea surface [8–10]. However, at moderate to high wind
conditions, the CP backscattering signal could trace the surface wave breaking efficiently, which causes
the non-Bragg contribution [11,12]. The NRCS of CP SAR image is barely dependent upon wind
direction and radar incidence angle. The CP signal remains sensitive to sea surface wind speed with
high signal-to-noise ratio under more extreme conditions [12–15]. Moreover, the CP NRCS in decibels
linearly increases with wind speed, indicating that it could potentially be used to retrieve tropical
cyclone winds. Comparing with co-polarization SAR images, the CP SAR images are more suitable for
high winds (>20 m/s) retrieval [2,12,16–18].
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With the development of the SAR technology, more and more wind retrieval models are proposed
for CP SAR images, promoting the progress of ocean wind retrieval by SAR. In some models, wind speed
is the only factor [15,16,18,19]. Based on Radarsat-2 (R-2) fine quad-polarization mode SAR images
and wind speed observations from National Data Buoy Center (NDBC), the C-band Cross-Polarization
Ocean model (C-2PO) is proposed as a linear relationship between VH-polarized NRCS and wind
speeds ranging from 8 to 26 m/s [18]. Compared with wind speeds from the H*Wind data, the retrieved
wind speeds by C-2PO have a bias of about −0.88 m/s and a root mean square error (RMSE) of
approximately 4.47 m/s. Monaldo et al. retrieved the wind speed field from a S-1A image of Typhoon
Lionrock utilizing the C-2PO model [2]. They found that the retrieval results in the near-range beam
(sub-band 1) seem to be higher than those in the other beams (sub-bands 2–5). In 2011, an empirical
model similar to the C-2PO model is proposed by Vachon et al., utilizing R-2 fine quad-polarization
mode images and wind measurements from operational weather buoys [15]. The highest wind
speed in their dataset is 22.5 m/s. In 2014, Zhang et al. presented a new linear wind speed retrieval
model (C-2POD) for R-2 dual polarization images, expanding the wind speed retrieval range up to
39.7 m/s [16]. Compared with the measurements from Quikscat, the retrieved wind speeds by C-2POD
have a bias of –1.21 m/s and a centered RMSE of 2.75 m/s. In 2014, van Zadelhoff et al. proposed a
wind speed retrieval model for strong-to-severe wind conditions (20–45 m/s) [19]. They found that the
relationship between VH-polarized NRCS and wind speeds has distinct characteristics in low-to-strong
(<20 m/s) and strong-to-severe (>20 m/s) wind regimes.

Some VH GMF models are considered to be functions of two parameters: wind speed and
incidence angle, e.g., H14, MS1A, and C-3POD [11,12,20]. In 2015, Hwang et al. presented a wind
speed retrieval model (H14) according to R-2 dual-polarization data and massive wind speed data from
buoys, the NOAA/Hurricane Research Division’s (HRD) Stepped-Frequency Microwave Radiometer
(SFMR), H*Wind and European Centre for Medium-Range Weather Forecasts (ECMWF) [11]. H14 is a
power law function relating VH-polarized NRCS in linear units to wind speeds (up to 56 m/s) and radar
incidence angle. In 2017, Mouche et al. presented the MS1A wind speed retrieval model, based on the
Soil Moisture Active Passive (SMAP) brightness temperature data and Sentinel-1A (S-1A) extra-wide
swath (EW) mode images for several hurricanes [12]. The MS1A model is a power law function similar
to the H14 model and works well for wind speeds higher than 25 m/s. Compared with the SMAP
measurements, the wind speeds retrieved by MS1A have a bias of 3.35 m/s and a standard deviation
(Std) of 4.85 m/s. Based on the Radarsat-2 data and the SFMR wind speeds, Zhang et al. proposed the
C-3PO wind speed retrieval model, which is an empirical function of VH-polarized NRCS, wind speed
and incidence angle [20]. It can be used to retrieve wind speeds up to 40 m/s. A validation was made
by comparing the retrieval results and SFMR observations, showing a RMSE less than 3 m/s.

In 2017, Huang et al. made a technical evaluation on Sentinel-1 Interferometric Wide swath (IW)
mode CP images and proposed an empirical retrieval model with three factors: wind speed, wind
direction and incidence angle [21]. Their model can be applied to retrieving wind speeds under 15 m/s.
Validating against the wind speed observations from ASCAT, the wind speeds retrieved by their model
have a bias of 0.42 m/s and a RMSE of 1.26 m/s.

The aim of this study is to develop a new wind speed retrieval model for S-1A EW mode
VH-polarized images according to the relationships between noise-free NRCS, sea surface wind speed
and radar incidence angle. In this paper, 19 S-1A EW mode VH-polarized images under tropical cyclone
conditions are studied. The SAR-collocated wind speed data are collected from SMAP radiometer
for model construction and validation. The samples cover low-to-severe wind regimes (2–35 m/s).
For each sub-band of the S-1A image, a basic retrieval model is proposed with VH NRCS and wind
speed. Based on incidence angle, a new correction methodology is proposed to improve the accuracy
of the basic model. The effect of incidence angle on VH NRCS under different wind conditions is
then simulated by proposing a modified wind speed and incidence angle coupled model. Due to the
ambiguous relationship between VH NRCS and wind direction, the wind direction parameter is not

68



Remote Sens. 2019, 11, 153

included in the proposed model. Finally, the proposed model is validated against dataset 2 to evaluate
the retrieval accuracy.

The remaining sections of this paper are organized as follows. Section 2 describes the S-1A images
and SMAP data. In Section 3, the relationships between VH-polarized NRCS, wind speed, wind
direction and radar incidence angle are analyzed. In Section 4, the basic wind retrieval model and the
corrected wind retrieval model are proposed. In Section 5, the two models are validated, compared
and discussed. Conclusions are summarized in Section 6.

2. Dataset

In this study, 19 Sentinel-1A VH-polarized EW mode images under tropical cyclone conditions
are collected. The matching SMAP radiometer wind speeds are collected for comparison and model
validation. The data are divided into two datasets. Dataset 1 is used for analyzing the relationships
between NRCS, wind vector and incidence angle and proposing model. Dataset 2 is used for validation
and comparison.

2.1. Sentinel-1A Data

The Sentinel-1A (S-1A) satellite is designed by the European Space Agency (ESA). The C-SAR
boarded on the S-1A satellite can provide single-polarization (HH or VV) and dual-polarization (VV,
VH or HH, HV) data with 4 sensor modes: the Stripmap (SM) mode, the Interferometric Wide swath
(IW) mode, the Extra-Wide swath (EW) mode and the Wave (WV) mode [21]. The Level-1 products can
be one of two product types, either Single Look Complex (SLC) or Ground Range Detected (GRD).

The SAR data analyzed in this study are the S-1A EW mode VH-polarized GRD products. The EW
mode image covers incidence angles from about 18.9 ◦ to 47.0 ◦ and is up to 410-km wide with a
spatial resolution of 93 m × 87 m (range by azimuth) and a pixel spacing of 40 m × 40 m. Each EW
mode image has five sub-bands in range direction. In this paper, the sub-bands are named sub-band 1,
sub-band 2, sub-band 3, sub-band 4, and sub-band 5 with increasing distance from the sub-satellite
point. Compared with VV-polarized signal, the VH-polarized signal does not saturate for wind speeds
as strong as 55 m/s and is insensitive to wind direction [20,22,23]. The GRD products consist of focused
SAR data that has been detected, multi-looked and projected to ground range.

The S-1A products are openly available from ESA. During the 2016 hurricane season, the Satellite
Hurricane Observation Campaign (SHOC) was designed by the ESA Sentinel-1 mission planning team
to gather hurricane images [12]. The S-1A data used in this paper are collected from the SHOC. Data
information is shown in Table 1.

Table 1. S-1A data information.

Tropical Cyclone Name Sensing Time (UTC) Number of Matching Points Dataset

Lester 2016-08-26 13:39 241 1
Lester 2016-08-30 14:45 202 1
Lester 2016-08-31 03:15 184 1
Gaston 2016-08-27 09:22 257 2
Gaston 2016-08-29 21:41 112 2
Gaston 2016-08-29 21:42 125 2
Gaston 2016-09-01 20:29 279 2

Lionrock 2016-08-27 20:52 225 1
Lionrock 2016-08-29 20:34 264 2
Lionrock 2016-08-29 20:35 263 1

Namtheum 2016-09-04 09:20 253 2
Hermine 2016-09-04 22:31 279 1
Hermine 2016-09-04 22:32 282 2
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Table 1. Cont.

Tropical Cyclone Name Sensing Time (UTC) Number of Matching Points Dataset

Karl 2016-09-23 22:22 176 1
Karl 2016-09-23 22:23 171 1
Karl 2016-09-24 10:25 154 1
Karl 2016-09-24 10:26 166 1
Karl 2016-09-24 10:27 183 1
Megi 2016-09-26 09:34 232 1

Figure 1 shows the Noise Equivalent Sigma Zero (NESZ) of the S-1A EW mode data in range
direction and the incidence angle ranges in different sub-bands. The distribution of NESZ in each
sub-band is different, showing a low level in the middle of each sub-band and a high level at the
inter-band boundaries, which may cause a discontinuity of the image [24]. In this study, Sentinel
Application Platform (SNAP) 4.0 is used for radiometric calibration. After radiometric calibration, all
measurement samples have higher decibel values than the NESZ values.

Figure 1. The distributions of NESZ and incidence angle in sub-bands 1 to 5.

Due to the difference in spatial resolution between the SAR data and the SMAP data, the NRCS is
averaged within each SMAP cell (27 km × 27 km) for data matching. However, the different number
of pixels for averaging (calculation resolution) might lead to homogeneity variation of SAR data in
a calculation cell. Based on dataset 1 and dataset 2, the Std variation of NRCS in a calculation cell
with calculation resolutions between 8 × 8 and 1048 × 1048 pixels is shown in Figure 2. The Std
increases from 1.23 dB to 1.51 dB within a SMAP cell, indicating that the homogeneity decreases with
calculation resolution. In this paper, to ensure the quality of the matching data, a calculation resolution
of 16 × 16 pixels is utilized for averaging.

Figure 2. The variation of NRCS Std with different calculation resolutions.
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2.2. SMAP Data

In this study, the Soil Moisture Active Passive (SMAP) Level-2 wind measurements are downloaded
from Remote Sensing Systems (RSS) as references for the wind vectors. The National Aeronautics and
Space Administration (NASA) SMAP winds are retrieved from brightness temperatures measured by
L-band passive radiometer, which are largely unaffected by rain [25]. The SMAP can provide excellent
sensitivity to wind speed even in very high winds [12,25,26]. The SMAP Level-2 wind dataset has a
spatial resolution of 0.25◦ × 0.25◦ (about 27 km × 27 km) and a swath width of 1000 km. The difference
between SMAP and WindSat wind speeds yields a global RMS of about 1.5 m/s for rain-free ocean
scenes [25]. In this study, to ensure the accuracy of the matching data, the sensing time differences
between SMAP and S-1A are controlled within one hour.

The S-1A images and SMAP references are divided into two datasets. Figure 3 shows the numbers
of matching points in different wind ranges and different sub-bands. Both datasets cover wind speeds
ranging from 5 to 35 m/s. There is a total of 4048 matching samples: 2476 in dataset 1 and 1572 in
dataset 2. Note that, the width of sub-band 1 is larger than the widths of sub-bands 2–5 in range
direction. For some images, there are no matching points in sub-bands 4 and 5. Therefore, the number
of matching samples decreases from sub-bands 1 to 5.

Figure 3. The numbers of matching points in different wind ranges and different sub-bands. D1 is an
abbreviation of dataset 1 and D2 is an abbreviation of dataset 2.

3. Data Analyses

As mentioned above, the NRCS of VH-polarized signal is mainly dependent on wind speed and is
barely dependent on wind direction and incidence angle, which makes VH-polarized images suitable
for high wind retrieval. In this section, based on dataset 1, the relationships between VH NRCS, wind
speed, wind direction, and incidence angle will be analyzed.

Figure 4 shows the relationships between VH NRCS and SMAP wind speed observations in
different sub-bands. The wind ranges are 2–32 m/s, 2–35 m/s, 2–31 m/s, 7–32 m/s, and 7–24 m/s for
sub-bands 1–5, respectively. The NRCS samples with different incidence angles cover the whole wind
range in each sub-band.

As shown in Figure 4, the NRCS increases with wind speed in all sub-bands. For sub-bands 1–3,
the NRCS increases linearly. For sub-bands 4 and 5, the slopes decrease in the entire wind ranges.
Compared with sub-band 1, sub-bands 2–5 have lower NRCS levels under the same wind speed.
The correlation coefficients (r) between NRCS and wind speed are 0.86, 0.91, 0.82, 0.76, and 0.78 for
sub-bands 1–5, respectively. Based on the strong dependence of NRCS on wind speed, wind speed
retrieval model will be presented in Section 4 for each sub-band.
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(a)                                       (b) 

(c)                                       (d) 

 

(e) 

Figure 4. Relationships between VH NRCS and SMAP wind speed for (a) sub-band 1, (b) sub-band 2,
(c) sub-band 3, (d) sub-band 4, and (e) sub-band 5. N is the number of matching points and r stands for
the correlation coefficient.

The relationships between the VH-polarized NRCS and the incidence angle under different wind
speeds are shown in Figure 5. For S-1A EW mode data, the incidence angles are about 19.75–27.55◦,
27.55–32.55◦, 32.55–37.95◦, 37.95–42.85◦, and 42.85–46.95◦ for sub-bands 1–5, respectively.

The features of NESZ mentioned above can also be found in Figure 5. For sub-band 1, the NRCS
under the same wind speed has three peaks: one in the middle of the band and two at the boundaries.
For sub-bands 2-5, the NRCS has a low level in the middle of the band and a high level at the inter-band
boundaries. As is shown in Figure 5, the incidence angle has a strong influence on NRCS under low
wind speed (<10 m/s). In addition, under the same wind speed level, the fluctuation of NRCS is up to
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5 dB, which may influence the precision of the NRCS simulation and wind retrieval. According to the
role of incidence angle in backscattering, the corrected functions of NRCS will be proposed in Section 4.

Figure 5. The relationship between VH NRCS and incidence angle under different wind speeds.

In GMF, the wind direction is the radar relative wind direction, which is the angle between the
sea surface wind direction and radar azimuth look direction. Based on dataset 1, the scatterplots in
Figure 6a–e show the distributions of NRCS for wind speeds at 5, 10, 15, 20, and 25 m/s with a range of
± 2.5 m/s in each sub-band. Then, the NRCS samples are averaged for wind speeds at 5, 10, 15, 20,
and 25 m/s with a range of ± 2.5 m/s. The relationships between NRCS and wind direction under
different wind speeds are shown in Figure 6f. The average NRCS values are calculated at different
wind directions within a range of 15◦.

As shown in Figure 6, the NRCS increases with wind speed and has an irregular fluctuation with
the change of wind direction. The fluctuations under wind speeds 5 and 10 m/s are stronger than the
fluctuations under wind speeds 15, 20, and 25 m/s. Since the incidence angle has a stronger influence on
NRCS under low wind speeds, as shown in Figure 5. These phenomena indicate that the dependence
of NRCS on incidence angle is stronger than on wind direction. Note that for the whole wind direction
range (0–360◦), the amount of matching data in dataset 1 is not enough to indicate the correlations
between NRCS and wind direction under every incidence angles. Therefore, the dependence of NRCS
on wind direction is assumed to be weak. In this paper, the wind direction factor is not considered in
the construction of the model.

(a)                                       (b) 

Figure 6. Cont.
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(c)                                       (d) 

    

(e)                                       (f) 
Figure 6. The relationships between VH NRCS and wind direction under different wind speeds for
(a) sub-band 1, (b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5. (f) The variation of
average VH NRCS with wind direction under different wind speeds.

4. Wind Retrieval Model

4.1. Basic Model

According to the distribution of the data samples in Figure 4 and the strong correlation between
VH-polarized NRCS and wind speed, linear function and power law function are used to fit the points
for each sub-band. The fitting functions are linear functions for sub-bands 1–3 and power law functions
for sub-bands 4 and 5. The fitting results are shown in Figure 7 (red curves). These basic empirical
functions are proposed as:

f0(U10) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.26U10 − 26.58, sub-band 1
0.37U10 − 31.07, sub-band 2
0.39U10 − 31.80, sub-band 3
−50.74U−0.25

10 , sub-band 4
−49.38U−0.23

10 , sub-band 5

(1)

where f0 is the VH-polarized NRCS, U10 represents the sea surface wind speed in 10-m height. The units
of f0 and U10 are decibels and meters per second, respectively.

Based on the SMAP wind speeds in dataset 1, the NRCS values are simulated by the basic model
to make a comparison with the observed NRCS. The comparisons between the observed and the
simulated NRCS for each sub-band are shown in Figure 8 and Table 2. The correlation coefficients

74



Remote Sens. 2019, 11, 153

between the observed and the simulated NRCS are 0.83, 0.90, 0.82, 0.80, and 0.83 for sub-bands 1–5,
respectively. The biases between the observed and the simulated NRCS are 0.06, −0.03, −0.06, −0.07,
and 0.03 dB for sub-bands 1–5, respectively. The standard deviations (Std) between the observed and
the simulated NRCS are 1.19, 1.19, 1.63, 1.62, and 1.38 dB for sub-bands 1–5, respectively. Through
curve fitting, Equation (1) ensures that the bias of the simulation is minimized.

(a)                                    (b) 

     (c)                                    (d) 

 

(e) 
Figure 7. Fitting functions (red curves) between VH NRCS and SMAP wind speeds for (a) sub-band 1,
(b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5.
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(a)                                    (b) 

    (c)                                    (d) 

 

(e) 

Figure 8. Comparisons between simulated VH NRCS and observed VH NRCS for (a) sub-band 1,
(b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5. N, r, Std, Bias represents the number
of matching points, correlation coefficient, standard deviation, and bias between observed NRCS and
simulated NRCS with the proposed basic model.
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Table 2. Correlation coefficient, Std and bias between the observed NRCS and the simulated NRCS
with basic model.

Sub-Band r Std (dB) Bias (dB)

1 0.83 1.19 0.06
2 0.90 1.19 −0.03
3 0.82 1.63 −0.06
4 0.80 1.62 −0.07
5 0.83 1.38 0.03

4.2. Corrected Model

Based on the dependence of VH NRCS on radar incidence angle, the basic model is corrected in
this section. Trigonometric function and quadratic function are used to fit the variations of NRCS with
incidence angle for sub-band 1 and sub-bands 2–5, respectively. In this paper, the samples with wind
speeds higher than 20 m/s are only 14.7% of all samples, thus, the curve fitting is only carried out for
samples with wind speeds lower than 20 m/s. The fitting results are proposed as follows:

f1(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

24.05 sin(3.36θ+ 548.22) + 0.95 sin(84.56θ− 802.73), sub-band 1
0.24θ2 − 14.11θ+ 183.70, sub-band 2
0.32θ2 − 22.57θ+ 370.50, sub-band 3
0.32θ2 − 25.55θ+ 486.70, sub-band 4
0.21θ2 − 19.23θ+ 403.40, sub-band 5

(2)

where f1 is the VH-polarized NRCS, and θ represents the incidence angle. The units of f1 and θ are
decibels and degrees, respectively. The proposed fitting functions are shown in Figure 9.

(a)                                    (b) 

(c)                                    (d) 

Figure 9. Cont.
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(e) 

Figure 9. Fitting functions (red curves) between VH NRCS and incidence angle for (a) sub-band 1,
(b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5.

In this paper, the proposed basic model is based on the average distribution of the matching data.
Due to the fluctuation of NRCS with incidence angle, the retrieved wind speed from the basic model is
too high at the peak of NRCS and too low at the trough of NRCS, leading to a high Std of wind retrieval.
To minimize the Std, Equation (2) is used for making the fluctuation of NRCS as smooth as possible:

Std =

√∑N
i=1

(
σ0

Obs i − f1(θi) f2
)2

N
(3)

where N is the number of matching points for each sub-band in dataset 1, f2 is the correction factor,
σ0

Obs i and θi are the observed VH NRCS and incidence angles of the data samples. The units of σ0
Obs i

and θi are decibels and degrees, respectively. During the Std minimization, the f2 values are calculated
at 4, 6, 8, 10, 12, 14, 16 and 18 m/s bounded by ±1 m/s interval. Based on linear fitting, the empirical
function f2 is:

f2(U10) = a1U10 + a2 (4)

Figure 10 shows the f2 functions for each sub-band under different wind speeds. The correction
factor decreases linearly with U10. The parameters a1, a2 are reported in Table 3.

Figure 10. The empirical functions f2 for each sub-band under different wind speeds.

78



Remote Sens. 2019, 11, 153

Table 3. Parameters for Equation (4).

Sub-Band a1 a2

1 −0.06 1.71
2 −0.10 2.29
3 −0.09 2.04
4 −0.14 2.66
5 −0.11 2.47

Based on Equations (1)–(4), Equation (5) is established to eliminate the overflow of NRCS in the
process of Std minimization and decrease bias:

Bias =

∑N
i=1

(
σ0

Obs i − f1(θi) f2(U10 i) − f3
)

N
(5)

f3(U10) = b1U10 + b2 (6)

where U10 i is the SMAP wind speed in dataset 1. f3 is the correction factor which is a function of wind
speed. Linear functions are used to fit f3 for each sub-band. The fitting parameters b1, b2 are shown in
Table 4.

Table 4. Parameters for Equation (6).

Sub-Band b1 b2

1 −1.55 41.35
2 −2.63 61.28
3 −2.44 55.43
4 −3.70 72.42
5 −3.02 69.70

Finally, a Std-minimized and bias-corrected wind retrieval model is proposed:

σ0
VH(U10,θ) = f0(U10) + f1(θ) f2(U10) + f3(U10) (7)

which is referred to as the corrected model. This model can be used for simulating NRCS of S-1A
VH-polarized EW mode images or retrieving sea surface wind speeds up to 20 m/s from S-1A
VH-polarized EW mode images. Figure 11 is an example of comparison between the basic model and
the corrected model at 10 m/s wind speed.

Figure 11. The comparison between basic model and corrected model at 10 m/s wind speed.

79



Remote Sens. 2019, 11, 153

5. Validation and Discussion

As mentioned previously, the basic wind retrieval model is a function of VH-polarized NRCS and
sea surface wind speed. The corrected model is a function of VH-polarized NRCS, sea surface wind
speed, and radar incidence angle. Based on dataset 2, the proposed basic model and corrected model
are validated and discussed in this section.

5.1. Comparison of Basic Model and Corrected Model

Experiments are carried out to compare the retrieval performance of the basic model and the
corrected model for wind speeds lower than 20 m/s. The results of each sub-band are illustrated
in Figure 12 and Table 5. There are 489, 260, 209, 230, and 161 samples for sub-bands 1, 2, 3, 4,
and 5, respectively.

The blue points in Figure 12 illustrate the comparison of wind speeds retrieved by basic model
and wind speeds from SMAP. For sub-bands 1–5, the correlation coefficients are 0.68, 0.81, 0.87, 0.81,
and 0.81, the Std are 4.17, 3.89, 3.75, 3.39, and 3.20 m/s, and the biases are −0.04, −0.49, −0.39, −0.47 and
−0.35 m/s, respectively.

The comparison of retrieved wind speeds by the corrected model and the wind speeds from
SMAP is illustrated by the red points in Figure 12. For sub-bands 1–5, the correlation coefficients are
0.79, 0.83, 0.89, 0.81, and 0.82, the Std are 3.50, 3.50, 3.18, 3.17, and 3.11 m/s, and the biases are 0.55,
−0.81, −0.31, −0.10, and −0.46 m/s, respectively.

According to the retrieval results, the results of the basic model have smaller biases. However,
the wind speeds retrieved by the corrected model have larger correlation coefficients and smaller Std.
Due to the weaker dependence of NRCS on incidence angle in sub-bands 4 and 5, the decrease of Std is
smaller in sub-bands 4 and 5 than in sub-bands 1–3.

(a)                                  (b) 

(c)                                    (d) 

Figure 12. Cont.
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(e) 

Figure 12. SAR-retrieved wind speeds with basic model and corrected model vs SMAP wind speeds in
(a) sub-band 1, (b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5.

Table 5. Correlation coefficient, Std, and bias between wind speed from SMAP and retrieved wind
speed with basic model and corrected model.

Sub-Band

r Std (m/s) Bias (m/s)

Basic
Model

Corrected
Model

Basic
Model

Corrected
Model

Basic
Model

Corrected
Model

1 0.68 0.79 4.17 3.50 −0.04 0.55
2 0.81 0.83 3.89 3.50 −0.49 −0.81
3 0.87 0.89 3.75 3.18 −0.39 −0.31
4 0.81 0.81 3.39 3.17 −0.47 −0.10
5 0.81 0.82 3.20 3.11 −0.35 −0.46

A case study is carried out by retrieving wind speeds from the S-1A VH-polarized EW mode
image of Tropical Storm Lester on 26 August 2016. The retrieved wind speed fields using the basic
model and the corrected model are shown in Figure 13a,b. In Figure 13b, the wind speeds lower
than 20 m/s are corrected with incidence angles. The collocated SMAP wind observation is shown in
Figure 13c.

In Figure 13a, wind speeds are high at the boundaries of each sub-band and in the middle of
sub-band 1. In Figure 13b, for wind speeds lower than 20 m/s, such phenomena are not as obvious
as in Figure 13a, indicating the Std-minimization ability of the corrected model. In this case, the
maximum wind speed retrieved by the basic model is 38.7 m/s. According to the National Hurricane
Center (NHC)’s report, the maximum wind speed of Tropical Storm Lester was about 55–60 knots
(28.3–30.9 m/s) at the SAR sensing time. The maximum retrieved wind speed is much higher than
the NHC report. Therefore, the basic model is not recommended for retrieving wind speeds higher
than 30 m/s. More samples are needed to explore the wind speed retrieval model under severe wind
conditions in the future. In addition, the scalloping burstwise variation is maintained in the process of
wind retrieval, showing some periodic streaks in sub-band 1 in Figure 13a,b.
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(a) 

(b) 

Figure 13. Cont.
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(c) 

Figure 13. Retrieved sea surface wind speed of Tropical Storm Lester using (a) basic model, (b) basic
model and corrected model, and (c) SMAP wind observation.

5.2. Model Validation

In this section, the proposed model is compared with the MS1A model proposed by
Mouche et al. [12]. The MS1A model is established with Sentinel-1A VH-polarized data and collocated
wind speeds from SMAP:

σVH
0 (θ, |U10|) = An−1(θ)U

an−1
tn−1

(θ) (8)

An(θ) = An−1Uan−1−an
tn

, if n > 1 (9)

MS1A model is a power law function. σVH
0 stands for the NRCS in linear scale. Utn represents the

10-m height ocean surface wind speed corresponding to the transitions in the NRCS regime. An and an

are dimensionless coefficients. The correlation coefficients, Std, and biases between the SMAP winds
and the wind retrievals utilizing MS1A and the model proposed in this study are calculated for each
sub-band. The comparison results are illustrated in Figure 14 and Table 6, showing that the retrieved
wind speeds by the model proposed this study have higher correlation coefficients and lower Std and
biases in most sub-bands. The large difference of retrieval results of the two models is mainly caused
by the quality of the SMAP data and the SAR data used in the two studies. On one hand, Mouche et al.
used SMAP brightness temperature data to compute the wind speeds. In this paper, SMAP Level-2
data are downloaded and then used directly. On the other hand, the NRCS values they used seem to
be higher than ours. In [12], there are many NRCS observations below the NESZ values, leading to
higher retrieval results by MS1A as measured by the SMAP Level-2 dataset.
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(a)                                  (b) 

(c)                                  (d) 

 

(e) 

Figure 14. SAR-retrieved wind speeds by our model (red points) and MS1A model (blue points) vs
SMAP wind speeds in (a) sub-band 1, (b) sub-band 2, (c) sub-band 3, (d) sub-band 4, and (e) sub-band 5.
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Table 6. Correlation coefficient, Std and bias between wind speeds from SMAP and retrieved wind
speeds by our model and MS1A model.

Sub-Band
r Std (m/s) Bias (m/s)

Our Model MS1A Model Our Model MS1A Model Our Model MS1A Model

1 0.87 0.75 3.66 4.84 0.45 −7.38
2 0.87 0.70 3.79 5.35 −0.47 −3.85
3 0.92 0.87 3.10 3.41 −0.36 −3.47
4 0.88 0.88 3.56 2.67 −0.56 −3.52
5 0.85 0.83 3.43 2.45 −0.69 −3.73

5.3. Error Analyses

Under tropical cyclone conditions, low spatial resolution will lead to a smoothed wind field,
potentially missing small regions with high wind speeds. Due to the resolution difference between the
S-1A data and the SMAP data, the pixel number of S-1A image used for averaging might influence the
retrieval results. In order to evaluate the performance of the proposed model for datasets with different
pixel numbers, wind speeds are retrieved from dataset 2 with an averaging of 8 × 8, 16 × 16, 32 × 32,
64 × 64, 128 × 128, 256 × 256, and 512 × 512 pixels in one cell, respectively. Correlation coefficient, Std,
and bias between the retrieved wind speeds and the SMAP winds are illustrated in Table 7, showing
the stability of the proposed model. In addition, the number of matching data might influence the
experiment results, especially under strong-to-severe wind conditions in this study. The proposed
model can be improved when more observations with higher spatial resolution (for example SFMR or
H*Wind) become available in the future.

Table 7. Performance of the model for dataset with different pixel number.

Pixel Number r Std (m/s) Bias (m/s)

8 × 8 0.86 3.42 −0.31
16 × 16 0.88 3.51 −0.3
32 × 32 0.90 3.31 −0.38
64 × 64 0.89 3.20 −0.27

128 × 128 0.87 3.40 −0.30
256 × 256 0.88 3.59 0.12
512 × 512 0.92 3.63 0.09

In this paper, the methodology and the accuracy of data could influence the parameters of the
proposed model and the validation results. On one hand, the methodology of noise removal could
lead to an error of NRCS. The S-1A VH-polarized EW mode data have noise variation in the azimuth
direction, called azimuth scalloping [24]. The areas near the burst edges are brighter than those in
the burst center because of their higher noise power of azimuth scalloping. The azimuth scalloping
attenuates from sub-bands 1 to 5. In sub-band 1, the azimuth scalloping can lead to an error of NRCS
up to 1.5 dB. In this study, a large number of S-1A images are collected to minimize the azimuth
scalloping error.

On the other hand, tropical cyclones are always accompanied with rainfall which can strongly
dampen the NRCS, leading to significant underestimates in wind speeds [18,27]. In this study, there is
no matching data for precipitation. As mentioned in Section 3, the proposed model has a low slope
under strong-to-severe wind speeds for sub-bands 4 and 5. According to the proposed model, a NRCS
error of 1 dB might cause a wind retrieval error up to 5 m/s. In addition, the SMAP wind speeds
and WindSat observations have a global RMS of 1.5 m/s, which might influence the precision of the
proposed model.

Finally, the collocation time difference is very important for modeling and validation. Requiring
a smaller time difference may lead to a reduced, and insufficient quantity of data samples. In this
paper, if the time difference is restricted to 30 min, nearly half of the samples will be lost. It will be
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difficult to propose and validate the retrieval model, especially for high wind speeds. However, if the
time difference is increased to more than one hour or even two hours, the motion of tropical cyclones
and the variation of wind fields will influence the accuracy of wind retrieval. If more hurricane SAR
images could be acquired in the future, the time difference could be reduced. In addition, experiments
could also be made to test to what extent the collocation time difference influences modeling.

6. Conclusions

In this paper, a new model is developed for retrieving sea surface wind speed from S-1A EW mode
VH-polarized images. 19 noise-free S-1A images and matching data from SMAP radiometer under
tropical cyclone conditions are collected and analyzed. According to 12 S-1A images and matching
data, the VH NRCS has a strong correlation with wind the speeds in each sub-band of the S-1A images.
With the change of incidence angle, the VH NRCS has a high level at the boundaries of each sub-band
and in the middle of sub-band 1.

Based on the relationship between VH NRCS and wind speed, a basic model is proposed to
construct a wind retrieval model. In addition, a corrected model is proposed to improve the accuracy
of the basic model, according to the relationship between NRCS and incidence angle.

In order to validate the validity of the wind retrieval model, the wind speeds retrieved by the
corrected model are compared with the wind speeds retrieved by the basic model and the MS1A model
in 7 S-1A images. A case study is also carried out by retrieving the wind speed field from the S-1A
image of Tropical Storm Lester. Validating against the winds from SMAP, the wind speeds retrieved
by the corrected model are more accurate than the basic model for wind speeds lower than 20 m/s,
especially in the middle of the sub-band and at the inter-band boundaries.

For sub-bands 1–5, the correlation coefficients, Std, and biases between the retrieved winds
and the SMAP winds are 0.68–0.89, 3.11–4.17 m/s, and −0.81–0.55 m/s, respectively. The retrieval
results are fairly accurate, indicating that the proposed wind speed retrieval model is reliable. Finally,
error sources of the proposed model and our experiments are analyzed with respect to the proposed
methodology and the matching data.
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Abstract: We propose two new ocean wind retrieval models for right circular-vertical (RV) and right
circular-horizontal (RH) polarizations respectively from the compact-polarimetry (CP) mode of the
RADARSAT Constellation Mission (RCM), which is scheduled to be launched in 2019. For compact
RV-polarization (right circular transmit and vertical receive), we build the wind retrieval model
(denoted CoVe-Pol model) by employing the geophysical model function (GMF) framework and a
sensitivity analysis. For compact RH polarization (right circular transmit and horizontal receive),
we build the wind retrieval model (denoted the CoHo-Pol model) by using a quadratic function to
describe the relationship between wind speed and RH-polarized normalized radar cross-sections
(NRCSs) along with radar incidence angles. The parameters of the two retrieval models are derived
from a database including wind vectors measured by in situ National Data Buoy Center (NDBC)
buoys and simulated RV- and RH-polarized NRCSs and incidence angles. The RV- and RH-polarized
NRCSs are generated by a RCM simulator using C-band RADARSAT-2 quad-polarized synthetic
aperture radar (SAR) images. Our results show that the two new RCM CP models, CoVe-Pol and
CoHo-POL, can provide efficient methodologies for wind retrieval.

Keywords: compact polarization (CP); RADARSAT Constellation Mission (RCM); geophysical model
function (GMF); wind retrieval; CoVe-Pol and CoHo-Pol models; right circular horizontal polarization
model; right circular vertical polarization model

1. Introduction

The Canadian RADARSAT Constellation Mission (RCM) is scheduled for launch in early 2019
and will provide Compact-Polarimetry (CP) synthetic aperture radar (SAR) data. RCM is the evolution
of the RADARSAT Program and the successor of RADARSAT-2, which is a satellite constellation
carrying three identical C-band SAR satellites. The RCM CP mode consists of a right hand circular
transmit and linear/circular receive radar signal, namely right circular-vertical (RV) polarization,
right circular-horizontal (RH) polarization, right circular-right circular (RR) polarization and right
circular-left circular (RL) polarization. The CP configuration is designed for Earth observation;
compared with conventional linear dual-polarization SAR, compact polarimetry SAR can obtain
abundant high-resolution information with wider swath [1].
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Researchers have shown that CP SAR is an efficient imaging mode for ocean surface observation
and, therefore, elucidation of algorithms and models for retrieval of ocean surface features and
marine variables like wind is critically important [2]. Compact polarization SAR is a dual-polarization
radar system which transmits circular (or 45◦) components and receives two orthogonal polarization
components (V or H) with relative phase [3,4]. Accurate information of ocean surface can be obtained
from C-band radar data. The main process of physical mechanism is the interactions between the
microwaves and related surface water waves. The major interaction is denoted as Bragg scattering
when the wavelengths of ocean surface waves are of the same order of radar wavelength. For practical
application, wind retrievals from SAR images can be accomplished by C-band geophysical model
functions (GMFs), because radar measurements are sensitive to the ocean-surface roughness which is
determined by the surface wind field [5]. The GMF is a set of functions between wind vectors and
radar backscatter signals denoted as the normalized radar cross section (NRCSs) including dependence
on the radar incidence angles.

The C-band GMF model series (CMOD4, CMOD5 and CMOD5.N [5,6]) are used for vertical-vertical
(VV) polarization data. For horizontal-horizontal (HH) polarization, there are generally two ways
to achieve ocean wind retrieval: (1) conversion of the HH backscatter to VV by a polarization
ratio (PR) which is a ratio of VV-polarized NRCS to HH-polarized NRCS [7], or (2) construction
of a new relationship between wind vectors and radar backscatters [8]. In terms of C-band linear
cross-polarization (VH and HV) ocean backscatter data, C-2PO and C-3PO models are available for
wind retrieval [9,10]. For wind retrieval from CP SAR mode, recent studies have attempted to retrieve
wind speed by converting right circular-vertical (RV) polarization data into linear dual-polarization
data, taking advantage of CMOD5 and CMOD5.N models [11,12]. However, the configurations for RV
and VV polarizations are different and the CMOD model series were originally developed for C-Band
VV-polarized scatterometers rather than SARs. In view of this situation, we propose two new models
in this paper to retrieve wind from C-band RV-pol and RH-pol measurements.

CMOD is a well-behaved parameterization to retrieve wind speed, allowing the NRCS to be
dependent on the principal parameters, such as radar incidence angle, relative wind direction and
wind speed [5]. However, as there are 28 CMOD coefficients, the process of optimizing the CMOD
model to CP data sets to generate a new GMF (for CP SAR) is not feasible using normal computing
clusters, because of the requirement to adjust such large number of CMOD coefficients to represent the
CP parameters. In order to avoid excessive computation, a sensitivity analysis of the coefficients can
play a significant role in optimizing the generation of a new GMF for RV-polarization. The sensitivity
analysis is a method to adjust the models by changing the coefficients within a specific range of
variations in order to optimize the parameterization and simplify the computation [13,14]. Moreover,
another common method to generate a practical empirical algorithm is to fit a function relating the CP
variables and the wind parameters. In this study, we utilize these two methods to construct the wind
speed retrieval models for RV- and RH-polarization data.

RADARSAT-2 is beyond its 7-year design life, as it was launched in 2007. Thus the launch of RCM
is necessary, and application of CP SAR is a new application offering the advantages of full polarimetry
SAR mode, with the possibility of better wide-swath coverage. Based on the simulated CP parameters,
this study is a preparation for possible ocean wind retrievals from RCM which will be available in
the next year. The remainder of this paper is organized as follows: Section 2 describes the database
consisting of CP SAR NRCSs simulated by the RCM simulator using quad-polarized RADARSAT-2
SAR images, and collocated wind vectors observed by NCBC buoys. A new CMOD function for
RV-polarization data is proposed based on a sensitivity analysis [13], followed by a performance
evaluation, and we present a new model for RH polarization wind speed retrieval. Results and the
validations of the two new models are shown in Section 3. Discussion and conclusions are given in
Sections 4 and 5, respectively.
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2. Materials and Methods

In this section, two wind retrieval models are developed based on the collocated data sets. For the
compact RV polarization, we employ the CMOD framework to derive a new GMF by optimizing
each coefficient. The resultant formulation is denoted the CoVe-Pol model. In this derivation,
sensitivity analysis is used to avoid unnecessarily huge calculations [13]. Through the sensitivity
analysis, the computation efficiency of the process to generate the new GMF generation is increased
by more the 1020 times and the accuracy of computed NRCS reaches 10−2. For the compact RH
polarization, we propose the CoHo-Pol wind retrieval model which we derive by using a quadratic
regression function.

2.1. Datasets

The CP parameters were simulated from RADARSAT-2 quad-polarized data using the RCM
simulator, which is provided by the Canadian Space Agency [12]. To develop two new wind retrieval
models for RV- and RH-polarization data, we build a database consisting of simulated RV- and
RH-polarized NRCSs from RADARSAT-2 fine quad-pol SAR images and collocated wind vectors
measured by in situ buoys. The RADARSAT-2 quad-pol SAR images over the selected buoys are
acquired. Then, these RADARSAT-2 images are converted to RCM CP mode SAR images by using the
CP simulator. Finally, wind speed measured by buoy and the collocated simulated NRCS are paired.
The distributions of NRCSs and wind speeds are shown in Figure 1.

Figure 1. Simulated compact-polarimetry (CP)-polarized normalized radar cross-sections (NRCSs) vs.
in situ buoy-measured U10: (a) right circular-vertical (RV) polarization; (b) right circular-horizontal
(RH) polarization.

In this database, we have 267 RADARSAT-2 fine quad-pol SAR images, which are processed by a
RCM CP simulator to re-construct CP mode images [1]. The results of simulated CP configurations are
used as “ground truth” in this study. The RADARSAT Constellation Mission has several polarization
configurations: linear mono-polarized, dual linear-polarized (HH/HV, VV/VH, or VV/HH); dual
circular transmit-linear receive; and fully polarimetric [12]. The compact polarimetry SAR mode
provides four polarimetric datasets, which are RV, RH, right circular transmit and right circular receive
(RR) and right circular transmit and left circular receive (RL). In the medium resolution mode, the pixel
spacings in azimuth and range directions are about 100 m and the associated noise floor is about
−25 dB [15]. Data from eight National Data Buoy Center (NDBC) buoys collocated with the SAR
data are collected, at locations off the east and west coasts of Canada [16]. The buoy locations are
shown in Figure 2. At each buoy, the mean wind speed (at 10 m reference height, hereafter U10) and
direction are measured by two sensors, averaged over 8-min periods and reported hourly. The wind
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speeds observed by the buoys are converted to winds at 10 m reference height above the ocean surface
using the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment
(TOGA COARE) bulk flux algorithm [17], and the winds can be considered as neutral winds [6,18].
The temporal separation between the SAR data and the buoy data is restricted to less than 30 min [11].
The distribution of months is shown in Figure 3. As the SAR is active microwave, the effects of weather
and seasons are both almost negligible.

Figure 2. Distribution of buoy locations used in this study. We indicate the number of synthetic
aperture radar (SAR) images overlaying the respective buoys in the legend.

Figure 3. Distribution of months of the collocated data used in this study.

We divide the collected data randomly into two data groups (2/3 and 1/3 of the total number).
One contains 178 data which are used to generate the new models, and the other contains 89 data,
reserved for model testing.

2.2. CoVe-Pol Model for Right Circular-Vertical (RV) Polarization

Figure 4 shows the flowchart for the derivation process for the CoVe-Pol model for RV polarization
data. As with all GMF functions, an empirical functional relation is used to establish the dependency
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of the normalized backscatter on wind speed, wind direction, and the incidence angle [5]. The general
form of the CMOD function is summarized as:

σ0(θ, U10, ϕ) =

B0(c0, U10, θ)[1 + B1(c1, U10, θ) cos(ϕ) + B2(c2, U10, θ) cos(2ϕ)]1.6 (1)

where σ0 is the NRCS in linear units, ϕ is the relative wind direction, which is the angle between
local wind direction and radar look direction (both relative to north), U10 is the statistically neutral
wind referenced to 10 m height, θ is the incidence angle and B0, B1, B2 are coefficients depending on
U10, θ, the radar frequency and polarization. The dominant term, B0, sets the speed scale for a given
measurement. The upwind–crosswind asymmetry term B2 allows for a determination of the wind
direction, and B1 is used to resolve the remaining 180◦ ambiguity in the wind direction. Coefficients ci
complete the definition of the terms B0, B1, B2. Detailed expressions are shown in Appendix A.

Figure 4. Flowchart for building the CoVe-Pol model through adjustment of the C-band
geophysical model function (GMF) model series (CMOD) coefficients obtained by application of
a sensitivity analysis.

2.2.1. Sensitivity Analysis

As there are 28 CMOD coefficients (c1~c28) in the empirical model formulation, the sensitivity
analysis is used to reduce the computations and to allow a determination of the coefficients. We define
the sensitivity analysis factor (SAF) of the CMOD coefficients to make the adjustment process more
efficient:

SAF =
∣∣∣(δσ0/σ0)/(δci/ci)

∣∣∣ (2)

where σ0 represents the RV-polarized backscatter value (NRCS), the independent variable, and the ci
coefficients (c1~c28) are dependent variables. In this approach, SAFs indicate the degree of influence of
each coefficient on the CMOD parameterization. From equation (2), we know that for any particular
coefficient ci, the corresponding NRCS (σ0) can have multiple values, and in each case the ratio is
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indicative of the degree of influence, SAF. If SAF cannot provide the required computational accuracy,
the corresponding coefficients ci can be ignored. For any particular coefficient, the basis for this
decision is the magnitude of the degree of influence, SAF.

Average values of the SAFs under various wind speeds range from 1 m/s to 25 m/s as shown
in Figure 5, assuming typical conditions for radar incidence angles and wind directions. Thus, it is
shown that SAF values range widely from 0 to 101, which means the influence of different coefficients,
ci, vary greatly. As shown in Figure 5, very close to 0, most SAF values are less than 1 and only a few
have values exceeding 1, for three typical radar incidence angles (25◦, 35◦ and 45◦). Thus, we only
focus on coefficients ci, where SAF values indicate greater influence (>0.1) so that the parameterization
is simplified and a huge calculation can be avoided.

In this study, we can classify the coefficients by the orders of magnitude of the corresponding
SAFs, namely 100, 10−1 and less than 10−1. Thus, when we attempt to get the accuracy of computed
NRCS values to 100 order of magnitude, we don’t need to consider the coefficients with SAF values
less than 100, because their influence is negligible. Likewise, when we focus on the 10−1 order of
magnitude, the coefficients with SAF values lower than 10−1 can be ignored. Therefore, based on the
SAFs of each coefficient, ci, we firstly tune the coefficients whose SAF values have orders of magnitude
higher than 100, without considering other coefficients. Secondly, we tune the coefficients whose
SAF values have orders of magnitude higher than 10−1, without considering other coefficients. Then,
we tune the coefficients whose SAF values have progressively higher orders of magnitude than 10−1.
The reason for this approach is that coefficients whose SAF values have orders of magnitude lower
than 10−1 have essentially no effect on computed NRCSs derived from coefficients whose SAF values
have higher orders of magnitude.

Figure 5. The mean sensitivity factors vs. coefficients: (a) radar incidence angle is 25 degree; (b) radar
incidence angle is 35 degree; (c) radar incidence angle is 45 degree. The colors represent different wind
directions (15◦, 30◦, 45◦, 60◦, 75◦, 90◦).

We note that although the radar incidence angles can vary as shown in Figure 5, their influence
on the coefficients ci, and on the resultant NRCSs is quite minor. Thus, we combine the average SAFs
under different radar incidence angles, as shown in Figure 6. The extent of influence for incidence
angles on the coefficients ci for the SAF orders of magnitude 100 and 10−1 are shown in Figure 6a,b,
respectively. It is apparent that the coefficients can be divided into three groups according to their
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degrees of influence. The SAF values corresponding to coefficients c1, c7, c9 are more than 1. The SAF
values corresponding to coefficients c2, c3, c10, c11, c19, c21, c27, and c28 are in the range from 0.1 to 1,
and the remaining ci values are under 0.1. It is notable that the coefficients with higher SAF magnitudes
play a part in the adjustment process of the coefficients ci, for lower orders of magnitude; but this
influence does not work, if we put things the other way around. For example, assuming a SAF value of
1.3219, the corresponding ci coefficients cannot influence the computed NRCS values above 100 order
of magnitude, but these ci coefficients do influence NRCS values below 101 magnitude such as 100 and
10−1 magnitudes, as reported in this study. Moreover, because SAF values for typical wind directions
have similar orders of magnitude, we give the average SAF values for the ci coefficients in Table 1.

Figure 6. The sensitivity analysis factor (SAF) values for different orders of magnitude for computed
NRCSs: (a) SAF over 1; (b) SAF over 0.1. The colors represent different wind directions (15◦, 30◦, 45◦,
60◦, 75◦, 90◦).

Table 1. Average SAF values of the ci coefficients.

SAF of c1 1.8081 SAF of c8 0.0630 SAF of c15 0.0200 SAF of c22 0.0171
SAF of c2 0.6366 SAF of c9 3.7931 SAF of c16 0.0276 SAF of c23 0.0024
SAF of c3 0.1145 SAF of c10 0.2767 SAF of c17 0.0158 SAF of c24 0.6617
SAF of c4 0.0308 SAF of c11 0.1012 SAF of c18 0.0332 SAF of c25 0.0895
SAF of c5 0 SAF of c12 0.0724 SAF of c19 0.1381 SAF of c26 0.0056
SAF of c6 0.0399 SAF of c13 0.0335 SAF of c20 0.0774 SAF of c27 0.9411
SAF of c7 1.3219 SAF of c14 0.0262 SAF of c21 0.1697 SAF of c28 0.1344

2.2.2. Determination of the Coefficients for CoVe-Pol Model

We divide the coefficients into three groups according to the magnitude of corresponding SAFs,
which represent the degree of influence of every coefficient ci on the computed NRCSs. Thus, we adjust
the coefficients, proceeding from higher magnitudes of their degree of influence, to lower orders
of magnitude. Through this method, the computational accuracy of the CoVe model reaches 10−2,
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and calculation of the required adjustments in the coefficients ci can be achieved using a common
computer cluster because the computation has been significantly reduced.

As a first step, we change the values of coefficients c1, c7, c9, which determine the accuracy
of computed NRCSs at SAF order of magnitude 100. Thus, the NRCSs are computed by using the
conventional GMF formulation with input of the wind speed, incidence angles and wind direction
observed by buoys. Comparing the root mean square errors (RMSEs) between the resulting CMOD
parameterization and the simulated RCM data (computed and simulated values for NRCSs), there
is an optimal set of computed NRCSs with corresponding c1, c7, c9 values that minimize the RMSE,
as defined in (3) below.

Secondly, in order to achieve the CMOD adjustment at 10−1 order of magnitude coefficients,
we change the values of coefficients c2, c3, c10, c11, c19, c21, c27, c28 and c1, c7, c9 based on the new CMOD
obtained in the first step above. The optimal values of the coefficients are obtained in the same way as
previously. For the 10−2 order of magnitude, there are 25 sensitive coefficients which must be adjusted,
making the calculation too huge to be practical. Thus, we tune the ci coefficients empirically. Thus,
a GMF with new coefficients for compact RV-polarization SAR is proposed following this adjustment
procedure, as displayed in Table A1 in the Appendix A.

The RV-polarized NRCSs computed by the new GMF are in good agreement with simulated RCM
data, shown in Figure 7a. Additional details are given in Appendix A.

Figure 7. Comparisons of: (a) RV-polarized NRCSs between RADARSAT Constellation Mission (RCM)
simulated data and results computed by the new compact RV polarization GMF; and (b) SAR-retrieved
wind speeds from CoVe-Pol model and data measured by buoys.

The definitions of bias, RMSE, and correlation coefficient (R) are,

RMSE =

√
1
n

n

∑
i=1

(Gi − Di) (3)

bias =
(G − D)

n
(4)

R =
Cov(G, D)√

Cov(G, D)Cov(G, D)
(5)

where G represents the computed results from the GMF, D is the wind speed from the data sets, n is
the number of measurements.
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2.3. CoHo-Pol Model for Right Circular-Horizontal (RH) Polarization

To build the compact RH polarized wind speed retrieval model, denoted CoHo-Pol, we employ
the parameterization method from Komarov et al. [8]. Thus, we use a quadratic relationship in a
regression model between buoy wind speed, as a dependent variable, and RH-polarized NRCS, along
with incidence angles as independent variables:

V = a0 + a1σ0
RH + a2θ + a3

(
σ0

RH

)2
+ a4θ2 + a5σ0

RHθ (6)

where V is the wind speed (m/s), θ is the radar incidence angle (degree), and σ0
RH is the RH-polarized

NRCS (dB). Table 2 presents the parameters for the model.

Table 2. Regression coefficients for the horizontal-horizontal (HH) model.

a0 a1 a2 a3 a4 a5

−17.8296 0.9490 1.8640 0.0447 −0.0034 0.0525

2.4. Validation

As the coefficients CoVe-Pol models and CoHo-Pol models are obtained by training the first group
of data sets, additional verification tests are performed using the part of the collected data reserved for
model testing. We test the CoVe-Pol model for the NRCS values and wind speed. Thus, we substitute
the variables (NRCSs simulated, wind speed observed by buoys, radar incidence angles and wind
directions) into the CoVe-Pol model, and we compare the simulated NRCS values with the wind speeds
observed by the buoys. To provide additional testing of the RH model, CoHo-Pol, the retrieved wind
speeds are obtained by substituting σ0

RH and θ as given by the reserved data sets into the RH model.

3. Results

For wind retrieval, we use simulated compact polarization SAR data and parameters from
buoy observations to validate the new RV-polarized GMF, CoVe-Pol. Thus, the wind speed will
be determined after we substitute values for the RV-polarized NRCS, incidence angles and wind
directions. We compare the wind speeds retrieved by the CoVe-Pol model with the wind speeds
observed by buoys in Figure 7b. The bias is 0.07 m/s, the RMSE is 2.48 m/s and the correlation
coefficient is 81.3%. Although the accuracy of CoVe-Pol model appears encouraging, additional tests
and validation are still needed in the future, when RCM data is available.

The performance of the regression model for compact RH polarization data, CoHo-Pol, is shown
in Figure 8, which indicates that the model is an effective methodology for wind retrieval from RH
polarized data. Comparing model results to wind speeds observed by buoys, the RMSE is 2.37 m/s.

The wind retrieval models for RV and RH data are presented for compact polarimetry
measurements. We test CoVe-Pol model for the NRCS values and wind speed, in Figure 9a,b. The RMSE
for σ0

RV is only 1.28 dB and for wind speed, 2.36 m/s, and the values of the correlation coefficients are
97.9% and 82.4%. These results indicate that CoVe-Pol model is a potentially good method for wind
retrieval; the computed NRCSs and retrieved winds are in good agreement with the simulated NRCSs
and the independently measured buoy winds.

Comparing the retrieved wind speeds and the buoy observations, the RMSE for winds retrieved by
the CoHo-Pol model is 2.39 m/s, and the correlation coefficient is 81.5%, which is shown in Figure 10.

Validations demonstrate that the CoVe-Pol and CoHo-Pol models are reliable and useful retrieval
models for RV and RH polarized SAR data, respectively.
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Figure 8. SAR-retrieved wind speeds from RH polarization mode model denoted CoHo-Pol vs.
buoy-measured U10 for the reserved training subset.

Figure 9. Validation of CoVe-Pol model by inputting wind speed and RV-polarized NRCSs: (a) σ0
RV

from CoVe-Pol model vs. σ0
RV simulated by the RCM simulator; (b) wind speed retrieved by CoVe-Pol

model vs. wind speed measured by buoys.
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Figure 10. Wind speed retrieved by CoHo-Pol, the RH polarization mode model, vs. reserved wind
speeds observed by buoys; the test data subset.

4. Discussion

Based on the almost linear relationships between NRCSs of VV and RV polarizations, the C-band
RV-polarized wind retrieval model has been simply proposed using the C-band VV-polarized
wind retrieval model [11,12]. However, there are two factors should be further discussed: (1) the
VV-polarized wind retrieval models, routinely CMODs, are developed for scatterometer but not
SAR, and (2) the relationships between the two polarized NRCSs are almost linear but not accurately.
Therefore, this study aims to improve the CP mode wind retrieval accurate by tuning each parameter
in the CMOD frame. To reduce the large computations, we employ the sensitivity analysis. Lu et al.
(2018) developed a new wind retrieval model for C-band VV-polarization [19]. In the CMOD series,
including CMOD4, CMOD5, CMOD5.N, CMOD6, CMOD7 and et al., the equations are the same but
with different parameters [20,21]. We compare the results from CoVe-Pol models here and the method
proposed by Geldsetzer et al. (2015) based on the first data group [11], which is shown in Figure 11.
It is obvious that the new model CoVe-POL present better wind retrieval results.
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Figure 11. The comparsion of wind speed estimation results between using the linear realtionships
with CMOD5.N and using CoVe-Pol model: (a) wind speed estimation through the linear relationships
with CMOD5.N vs. wind speed measured by buoys; (b) wind speed retrieved by CoVe-Pol model vs.
wind speed measured by buoys.

Zhang et al. (2018) proposed a semi-empirical ocean surface model for RCM CP mode and the
simulated results suggest that the RV-polarization has a better potential capability for the ocean wind
retrieval than the RH-polarization [22]. This result is consistent with the wind retrieval results here.
As indicated by Zhang et al. (2018) [22], the noise floor should be a challenge for sea surface wind
retrieval. As shown in Figure 9a, the NRCSs are under-estimated by the new proposed wind retrieval
model when the values are around −25 dB. On one hand, this may be due to the errors of the model.
However, on the other hand, this should be caused by the noise floor which is designed as −25 dB in
the RCM. Therefore, the low wind retrieval from RCM RV and RH polarizations will be a challenge.
Moreover, the sea surface ice or oil spill can be detected by SAR due to covering the ocean surface and
changing the backscattering features [22]. The determination of oil spill from low wind condition is a
current issue from the existing SAR observations. As the noise floor for RADARSAT-2 is much lower
than the RCM, this would also be a problem for the sea ice or oil spill study using RCM in the future.

5. Conclusions

The estimation of ocean surface winds by SAR is an important research field of satellite remote
sensing. Because RCM will provide CP products which differ from the conventional polarimetry SAR,
the establishment of new specific models for potential wind retrieval from CP SAR parameters is an
urgent need.

In this paper, we propose two wind retrieval models for C-band RCM SAR CP model: (1) CoVe-Pol
model for RV polarization data, and (2) CoHo-Pol model for RH polarization data. The two models are
derived from collected data consisting of 267 RADARSAT-2 SAR quad-polarized images and collocated
buoy data. These two models can be applied to the real CP data when RCM will have been launched
and succeeds in providing data. The CP-polarized data sets are generated from quad-polarized SAR
data by a RCM simulator. We have divided these data randomly into two data groups: one for building
new models and the other reserved for model testing.

To develop CoVe-Pol model, we carried out a sensitivity analysis in the process of creating the new
GMF coefficients. We separate the derivation process for the coefficients into several steps. These steps
are designed according to a sequence determined by the orders of magnitude of the CMOD coefficients,
in order to reduce the required computations, so that the numerical process can be possible in terms of
available computer resources. Utilizing sensitivity analysis factors (SAFs) for the coefficients provides
an efficient methodology for building a new GMF for the RV polarization data, by adjustment of
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these coefficients. In this approach, when the new GMF is derived, the correlation coefficient between
RV-polarized computed NRCSs and simulated NRCSs reaches 97.1%, and the RMSE is only 1.29 dB.
The wind retrieval by the associated CoVe-Pol model parameterization is shown to have a good
performance based on the RV polarized SAR data. The RMSE is 2.48 m/s, and the bias is 0.07 m/s.

To produce the RH model for wind retrieval, we use a quadratic function in a regression model
to relate buoy wind speed to the RH NRCS data along with the radar incidence angles. Comparing
results with the winds measured by buoys, the RH model, denoted CoHo-Pol, is shown to behave well
in wind retrievals, with RMSE of 2.37 m/s. The model results indicate that the RH model is a useful
way to retrieve wind speed as a fast inversion methodology.

We test the two new models, CoVe-Pol and CoHo-Pol, with the reserved test data set, and show
that there is strong agreement between both the models and the data. Thus, these two new models
can potentially be applied to retrieve wind from CP C-band SAR measurements. In February 2019,
the three satellites of RCM are scheduled for launching together. Compared to what we have now with
the separated single SAR satellite (e.g., RADARSAT-2 or Sentinel-1), the three continuous observations
make the temporal studies of oceanography and/or atmosphere possible. Therefore, the ocean wind
retrieval models developed here would be important for temporal oceanography or atmosphere
dynamic research based on RCM SAR data.
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CP compact-polarimetry
GMF geophysical model function
HH horizontal-horizontal
HV horizontal-vertical
NDBC National Data Buoy Center
NRCSs normalized radar cross-sections
PR polarization ratio
RCM RADARSAT Constellation Mission
RH right circular transmit and horizontal receive
RL right circular transmit and left circular receive
RMSEs root mean square errors
RR right circular transmit and right circular receive
RV right circular transmit and vertical receive
SAF sensitivity analysis factor
SAR synthetic aperture radar
TOGA COARE Tropical Ocean and Global Atmosphere Response Experiment
VH vertical-horizontal
VV vertical-vertical
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Appendix A Cove-Pol Model Formulation and Coefficients

The form of the CoVe-Pol model parameterization:

σ0(θ, U10, ϕ) =

= B0(c0, U10, θ)[1 + B1(c1, U10, θ) cos(ϕ) + B2(c2, U10, θ) cos(2ϕ)]1.6 (A1)

where B0, B1 and B2 are functions of wind speed U10 and incidence angle θ, or alternatively,χ = (θ − 40)/25.
The B0 term is defined as:

B0 = 10a0+a1U10 f (a2U10, s0) (A2)

where,

f (s, s0) =

{
(s0)

αg(s0), s < s0
g(s), s > s0

(A3)

where,
g(s) = 1/(1 + exp(−s)), and α = s0(1 − g(s0)) (A4)

The functions a0, a1, a2, γ and s0 depend on incidence angle only:

a0 = c1 + c2x + c3x2 + c4x3

a1 = c5 + c6x
a2 = c7 + c8x

(A5)

γ = c9 + c10x + c11x2

s0 = c12 + c13x (A6)

The B1 term is modeled as follows:

B1 =
c14(1 + x)− c15v(0.5 + x − tanh[4(x + c16 + c17v)])

1 + exp(0.34(v − c18))
(A7)

The B2 term was chosen as,
B2 = (−d1 + d2v2) exp(−v2) (A8)

Here v2 is given by,

v2 =

{
a + b(y − 1)n , y < y0

y , y ≥ y0
y = v+v0

v0

(A9)

where,
y0 = c19 , n = c20 (A10)

a = y0 − (y0 − 1)/n , b = 1/
[
n(y0 − 1)n−1

]
(A11)

The quantities v0, d1 and d2 are functions of incidence angle only,

v0 = c21 + c22x + c23x2

d1 = c24 + c25x + c26x2

d2 = c27 + c28x
(A12)

The coefficients are given in Table A1.

Table A1. CoVe-Pol coefficients.

c1 −0.9200 c8 0.0159 c15 0.0064 c22 −3.2592
c2 −1.1935 c9 5.4536 c16 0.3141 c23 1.2905
c3 0.0321 c10 0.2633 c17 0.0117 c24 6.0876
c4 0.3421 c11 −2.2313 c18 45.4000 c25 2.3296
c5 0 c12 0.0472 c19 2.0293 c26 0.3168
c6 0.0040 c13 −0.0689 c20 2.9350 c27 4.0550
c7 0.0882 c14 0.0043 c21 16.7318 c28 1.5237
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Abstract: This work discusses the accuracy of C-2PO (C-band cross-polarized ocean backscatter) and
CMOD4 (C-band model) geophysical model functions (GMF) for sea surface wind speed retrieval
from satellite-born Synthetic Aperture Radar (SAR) images over in the Northwest Pacific off the
coast of China. In situ observations are used for comparison of the retrieved wind speed using two
established wind retrieval models: C-2PO model and CMOD4 GMF. Using 439 samples from 92
RADARSAT-2 fine quad-polarization SAR images and corresponding reference winds, we created
two subset wind speed databases: the training and testing subsets. From the training data subset, we
retrieve ocean surface wind speeds (OSWSs) from different models at each polarization and compare
with reference wind speeds. The RMSEs of SAR-retrieved wind speeds are: 2.5 m/s: 2.11 m/s
(VH-polarized), 2.13 m/s (HV-polarized), 1.86 m/s (VV-polarized) and 2.26 m/s (HH-polarized) and
the correlation coefficients are 0.86 (VH-polarized), 0.85(HV-polarized), 0.87(VV-polarized) and 0.83
(HH-polarized), which are statistically significant at the 99.9% significance level. Moreover, we found
that OSWSs retrieved using C-2PO model at VH-polarized are most suitable for moderate-to-high
winds while CMOD4 GMF at VV-polarized tend to be best for low-to-moderate winds. A hybrid
wind retrieval model is put forward composed of the two models, C-2PO and CMOD4 and sets of
SAR test data are used in order to establish an appropriate wind speed threshold, to differentiate
the wind speed range appropriate for one model from that of the other. The results show that the
OSWSs retrieved using our hybrid method has RMSE of 1.66 m/s and the correlation coefficient are
0.9, thereby significantly outperforming both the C-2PO and CMOD4 models.

Keywords: ocean surface wind speed retrieval; synthetic aperture radar (SAR); quad-polarized SAR

1. Introduction

Ocean surface wind speed (OSWS) plays a significant role in the global climate, directly
influencing energy transport between ocean basins, ocean water mass formations and circulation.
As a result, observations and monitoring of OSWS can improve our understanding of the physical
mechanisms of oceanic-atmospheric interactions, hurricane and severe storm predictions and decision
making and numerical weather predication (NWP) and marine forecasts [1].

In recent decades, with the development of satellite remote sensing, the reliability of OSWS
retrieved from various satellite sensors has matured and improved. Among various satellites,

Remote Sens. 2018, 10, 1448; doi:10.3390/rs10091448 www.mdpi.com/journal/remotesensing103



Remote Sens. 2018, 10, 1448

the microwave scatterometers (SCAT) play a vital role in getting coverage over the entire global
ocean. However, a major drawback for SCAT-derived wind speeds is the coarse resolution of the
data (12.5–50 km), which limits our ability to get a better understanding of the coastal oceans and
to study related processes in the lower atmospheric and oceanic boundary layers, such as surface
currents, waves, winds and their interactions [2]. Spaceborne synthetic aperture radar (SAR) can
mitigate this difficulty, because of its ability to retrieve OSWSs, day or night, in almost all-weather
conditions, at high spatial resolution and large areal coverage [3]. At this time, the retrieval of OSWS
at high (<1 km) resolution from quad-polarized spaceborne SAR images is a mature geophysical
application. Many efforts have been devoted to developing optimal reliable methodologies to elucidate
the geophysical relationship between the normalized radar cross section (NRCS) and OSWS and to
apply this relationship to accurately compute wind speeds [4–8].

OSWS retrieved from co-polarized (HH-and VV-polarized; horizontal transmit, horizontal receive
and vertical transmit, vertical receive, respectively) SAR data are normally computed employing
various empirical geophysical model functions (GMFs). For VV polarized SAR data, these GMFs were
initial developed from C-band scatterometer measurements. They are routinely called CMOD (C-band
model) GMFs and they relate the wind speeds and directions to the local incidence angle and NRCS.
Using radar incidence angle and wind direction, along with the NRCS at each pixel in the VV-polarized
channel from C-band SAR, the associated OSWS can be retrieved from various CMOD GMFs, such
as CMOD4 [9], CMOD-IFR2 [10], CMOD5 [11] and CMOD5.N [12]. Recently, the latest CMOD GMF,
called CMOD7, was developed in several steps from CMOD5.N for application to intercalibrate ERS
(ESCAT) and ASCAT scatterometers [13]. Although CMOD GMFs for VV-polarized have been widely
used, based on a large number of SAR data, however, no similarly well-developed GMF exists for
HH-polarized SAR imagery. To remedy this difficulty, hybrid model functions, called the polarization
ratios (PRs), were proposed to map the expected NRCS at VV-polarized mode to the HH-polarized
value for the same wind direction and speed. When these CMOD GMFs, as mentioned above, are
applied to HH-polarized SAR images, various PR models have to be used to convert HH-NRCS to
VV-NRCS before application for wind retrieval [14–18].

In conclusion, OSWSs retrieved at co-polarized channel are a mature technical achievement that
has been widely validated in different SAR systems. However, the NRCS value for co-polarized SAR
imagery exhibits data saturation when wind speeds exceed about 16 m/s for local incidence angle
under 35◦ [19]. Moreover, available experimental and theoretical evidence suggest that dampening
or single saturation of co-polarized channel radar backscatter occurs across a wide range of wind
speeds and radar frequencies [20,21]. In recent years, C-band cross-polarized (HV-and VV-polarized,
horizontal transmit, vertical receive and vertical transmit, horizontal receive, respectively) ocean
backscatter has been shown to be almost independent of incidence angle and wind direction and to
be quite linear with respect to the OSWS. This unique sensitivity for cross-polarized data is mainly
attributed to the contribution of breaking waves [22]. The relationship between the cross-polarized
NRCS and OSWS can directly provide wind speeds from SAR images, without the requirement of
wind direction or incidence angles. Some cross-polarized OSWS retrieval models have been developed
based on this relationship [23,24]. And more critically, the measured NRCS values for cross-polarized
SAR seem to be almost not saturated, even at very high speeds (up to 50 m/s), which indicates that
they can potentially be used to retrieve hurricane-generated winds [25–28].

Based on the above developments, it is apparent that OSWSs can be retrieved from cross-
and co-polarized SAR data using these established methods. The differing sensitivity between
contemporaneous cross and co-polarized SAR signals can be advantageously exploited to infer local
information about the wind fields. However, each model has its own wind speed application range;
for example, cross-polarized NRCS does not suffer from saturation effects at high wind speeds, which
are evident in the co-polarized NRCS. Moreover, retrieved OSWSs from cross-polarized SAR data
have better accuracy than winds retrieved from co-polarized NRCS at high wind speed regimes,
especially at wind speeds above 20 m/s [27,28]. La et al. [29] compare different retrieval models for
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OSWS based on empirical (EP) and theoretical electromagnetic (EM) approaches. They show that
OSWS estimates from CMOD5.N GMF and two-scale EM models (small-slope and resonant curvature
approximation) are very close, for low and moderate incidence angles, whereas retrieved OSWS from
EM models give overestimates for high wind speeds. Our objective in this paper is to validate and
elucidate the advantages and disadvantages of retrieval models for the cross- and co-polarized data
and their respective wind speed ranges for reliable applications. Based on our results, we attempt to
propose a new hybrid OSWS retrieval model, which can more accurately retrieve wind speed data
from C-band RS-2 quad-polarized SAR data. Two C-band OSWS retrieval GMFs, namely C-2PO and
CMOD4 and the SAR data are introduced at Section 2. Section 3 introduces the OSWS retrieval results
for quad-polarized RS-2 images. Discussion is given in Section 4 and conclusions, in Section 5.

2. Materials and Methods

2.1. RADARSAT-2 Quad-Polarized SAR Images

In this study, in order to retrieve OSWS from cross- and co-polarized SAR images, 92 RS-2 fine
quad-polarized model single-look complex (SLC) SAR images were used. The area covered by the
selected SAR images includes Chinese waters: the Yellow Sea, the East China Sea and the South China
Sea, covering the area from 14◦N to 38◦N and 110◦E to 130◦E between February 2011 and December
2015. The RS-2 satellite transit times for our research area are about 10:00 (Ascending) and 22:00
(Descending) Coordinate Universal Time (UTC). The range of local radar angles is between 20◦and 49◦

and the nominal incidence angles vary by about 1.5◦ across a swath of 25 km. RS-2 fine quad-polarized
model SLC data have the capability to provide C-band VV, HH, HV and HV polarized images with
a low noise floor. In addition, inter-channel cross talk is corrected in the processor to better than
−35 dB, which is appropriate for cross-polarized backscatter measurements, without contamination
from the co-polarized (HH- and VV-polarized) data.

For each individual SAR image with a specific beam mode, the spatial resolution (pixel spacing)
in range and azimuth is about 5 m. Direct calculation of OSWS from the original scene can result in
noisy patterns due to the presence of speckle noise in the raw SAR image. Therefore, the raw RS-2 SAR
data is preprocessed in order to obtain the orthorectified NRCS images at each polarization. Firstly,
the OSWS can only be retrieved from SAR images that are independent of ocean surface features that
are not due to the local wind. In order to exclude SAR scenes that contain features not associated with
the local wind, a filter is applied in this study. The filter is used to distinguish between inhomogeneous
and homogeneous SAR images and, additionally, to retrieve ocean waves and wind speeds [30,31].
In the next step, the calibrated 5-m spatial resolution image is degraded to 100-m resolution image.
To achieve this, we perform 20 × 20 pixel boxcar averaging of the NRCS in each polarization, so
that the reconstructed pixel spacing is 100 m. Finally, the radiometric correction method is used to
transform NRCS values from intensity units to decibel units. The conversion formula is expressed
as follows:

σ0 (dB) = 10· log10 σ0(no units) (1)

where σ0 is the NRCS value in decibels (dB).

2.2. ECMWF ERA-Interim Reanalysis Winds

Carvalho et al. [32] evaluated the performance of different reanalysis wind datasets and found
that ERA-Interim reanalysis provides the most realistic initial and boundary data for oceanographic
applications, therefore allowing the possibly for development of reliable retrieval models of OSWS
from spaceborne SAR data. Therefore, we select ERA-Interim wind field data as the reference wind
data for this study.

The ERA-Interim global atmospheric reanalysis daily wind speed of components U (east-west
direction) and V (south-north direction) at 10-m height with a high spatial resolution (up to 0.125◦) at
6-h intervals are provided by the European Center for Medium Range Weather Forecasts (ECMWF) [33].
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These data are available for the period from 1979 to the present. Figure 1 shows the wind speed in the
study areas in this paper. In order to validate the wind retrievals from SAR images with collocated in
situ measurements, ERA-Interim wind speeds were taken as reference values. However, the swaths
of RS-2 SAR scenes are about 25 km, which means that there are about 5–6 ERA-Interim grid cells
in each SAR image. In our study, the acquisition time for RS-2 SAR images is 1~2 h earlier than the
ERA-Interim data. For a viable comparison, the ERA-Interim wind grid cells at 12:00:00 and 24:00:00
UTC are interpolated to generate the wind vectors at the RS-2 acquisition time [34]. In addition,
conventional co-polarized CMOD GMFs have two unknown parameters, that is, wind direction and
speed which must be provided by external sources, prior to wind speed retrieval. Therefore, auxiliary
data for wind directions are necessary as inputs to these GMFs because wind directions are difficult to
directly measure from SAR images.

Figure 1. ERA-Interim wind speeds: (a) east-west direction and (b) south-north direction in Chinese
waters. The ERA-Interim wind products are acquired on 20 August 2012 at 12:00:00 UTC from
ECWMF website.

2.3. Creation of Wind Speed Databases

A general flowchart (Figure 2) for the establishment of the wind speed database for the developing
wind speed retrieval method is described in this section. Firstly, all available quad-polarized RS-2 SAR
images are preprocessed. Subsequently, we identify all existing ERA-Interim grid cells that are located
inside the corresponding SAR scenes. In our study, the ERA-Interim wind field data are available
at 0.125◦-resolution grids whereas our RS-2 imagery has a higher spatial resolution: 5.4 m in the
range direction and 8.0 m in the azimuth direction. The swath widths of RS-2 SAR scenes are about
25 km, which means that the number of ERA-Interim grid cells inside one SAR scene varies from
5 to 6. Thus, 439 samples are extracted from 92 SAR images. As the resolution of the ERA-Interim
wind data is 0.125◦, there are about one hundred pixels between the adjacent SAR measurements we
selected. These selected measurements can be treated as essentially independent. It is notable that
the locations (latitude and longitude) of ERA-Interim grid cells and SAR pixels are misalignment in
most cases. To obtain the radar incidence angles, NRCS at each polarization and other parameters, we
use the bilinear interpolation method rather than other downscaling approaches such as the nearest
grid-points [35].

Finally, we created two subset wind speed databases: the training subset and the testing subset.
Each subset contains SAR parameters (including NRCS at each polarization, radar incidence angles
and external wind directions) and ERA-Interim wind speeds at the same location. The training subset
contains 285 samples that are used for training different OSWS retrieval models at each polarization.
Based on the analyzed retrieval results, we build a hybrid wind speed retrieval method and employ
the testing subset (154 samples) to validate these algorithms.
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Figure 2. Flowchart for building a database for the developing wind speed retrieval method.

2.4. Quad-Polarized SAR Wind Speed Retrieval Algorithm

For the instruments operating at C-band and VV-polarized channel, several empirical GMFs,
for example, CMOD4, CMOD-IFR2, CMOD5 and CMOD5.N have been developed and validated
through a series of satellite scatterometer missions. Figure 3a shows the variations of SAR-simulated
VV-polarized NRCSs from CMOD GMFs with wind speed at a local radar incidence angle of 30◦, with
relative wind direction of 180◦. Clearly, all CMOD functions produce very similar results for wind
speeds below 20 m/s. In fact, C-band VV-polarized OSWS retrieval will always become saturated
under high wind conditions. Han et al. [36] retrieved OSWS based on CMOD4, CMOD-IFR2 and
CMOD5 using RS-2 SAR images of the East China Sea and the results suggested that CMOD4 is the
most promising GMF of these formulations.

Figure 3. (a) Dependence of VV-polarized normalized radar cross section (NRCS) from CMOD
geophysical model functions (GMFs) versus ocean surface wind speeds (OSWSs) at a local incidence
angle of 30◦ and wind direction relative radar look angle of 180◦. (b) Dependence of VV-polarized
NRCS from CMOD GMFs versus wind direction relative radar look angle at a local incidence angle of
30◦ and wind speed of 10 m/s.
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In this study, we selected CMOD4 GMF as the VV-polarized wind speed retrieve algorithm and
the general form is expressed as follows:

σ0
VV(θ, U10, φ) = A0(θ, U10)[1 + A1(θ, U10) cos φ + A2(θ, U10) cos 2φ]1.6 (2)

Here, σ0
VV is the VV-polarized NRCS, φ is the external wind direction ψ relative radar look angle.

The other parameters A0, A1 and A2 are coefficients which are dependent on the local radar incidence
angle θ. and OSWS at 10-m reference height U10. Moreover, the external wind direction, defined as ψ,
should be obtained from ERA-Interim data, whereas the local incidence angle θ and the NRCS can be
directly computed from the corresponding RS-2 SAR image.

To date, although many CMOD GMFs have been presented for VV-polarized data, no similar
well-developed, verified OSWS retrieval models exist to extract wind speed from HH-polarized SAR
images. To overcome this deficiency, the empirical PR models, which are related to local radar incidence
angles, were developed for application in retrieving OSWS using the HH-polarized SAR channel.
Following the usual notation, we define PR as

PR =
σVV

0

σHH
0

(3)

where σVV
0 and σHH

0 are the NRCSs of VV and HH polarizations, respectively. Various PR models have
been proposed as functions of incidence angles and several PR models are compared in the Figure 3.
Recently, using a nonlinear least squares algorithm to fit the collocated 877 RS-2 fine quad-polarization
PR and incidence angles, a new C-band PR incidence angle dependent model was proposed by
Zhang et al. [20], given as

PR = B1 exp(B2θ) + B3 (4)

where B1 = 0.2828, B2 = 0.0451, B3 = 0.2891 and R represent the polarization ration value, respectively.
In our study, we have selected Zhang’s PR model to retrieve OSWS from HH-polarized data, because
this PR model is based on RS-2 fine quad-polarization data which is the same as the data used in this
study. Moreover, for convenience, the OSWS retrieved from CMOD4 GMF using VV-polarized data
is denoted CMOD4+VV and the alternative, using converted HH-polarized data by the PR model,
is denoted CMOD4+HH+PR.

Generally speaking, co-polarized scattering is the result of ocean surface scattering, whereas
cross-polarized scattering results from sea surface tilts or by volume scattering; thus, cross-polarized
scattering is less correlated than co-polarized scattering data. Studies show that the NRCS in
cross-polarized mode is essentially independent of radar incidence angle and wind direction but
has a linear relationship with respect to OSWS and thus generates a new potential capability to monitor
marine wind speed [24]. Using RS-2 fine quad-polarized mode SAR images and collocated buoy data,
via a nonlinear least squares method, two C-band cross-polarized ocean backscatter models (C-2PO)
relating to the equivalent neutral OSWS at 10 m height were presented by Vachon et al. [23] and
Zhang et al. [24], although only the latter specifically denote their model by the acronym, ‘C-2PO.’
These two C-2PO models are as follows:

σ0(cross − pol) = 0.580u10 − 35.652 (Zhang_model) (5)

σ0(cross − pol) = 0.595u10 − 35.60 (Vachon_model) (6)

where σ0, cross − pol is the HV- or VH-polarized NRCS and u10 is OSWS at the 10-m height. Figure 4b
shows the NRCSs simulated by both the Zhang_model and the Vachon_model, with OSWS. It can be
noticed that the NRCSs increase with increasing OSWS and there is little difference between these two
models. Here, we select Zhang’s C-2PO model as the cross-polarized OSWS retrieval algorithm in this
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study. In addition, for the sake of consistency and convenience, the C-2PO model at VH-polarization is
denoted VH-C2PO and the other, at HV-polarization is denoted HV-C2PO.

Figure 4. (a) Polarization ratio (PR) as a function of the radar incidence angle from the literature;
(b) The relationship between wind speed and cross-polarized NRCS.

3. Results

3.1. OSWS Retrieval Case

In the following discussion, we apply the above-mentioned quad-polarized SAR OSWS retrieval
algorithm to one case and we describe the calculation process in detail. This case is a RS-2 fine
quad-polarized SLC SAR image acquired on 27 August 2012, at 10:25:24 UTC. First, we reconstruct
the spatial resolution at 100 m and extract the corresponding NRCS and incidence angle from each
pixel at each polarization. Next, we compute how many ERA-Interim grid cells fall within the SAR
scene and then we interpolate the NRCSs and incidence angles at the coordinates for each grid cell.
With this calculation, the example shown in Figure 5 has 5 grid cells, indicated by numbers S1 to S5,
which fall within this SAR scene. For the cross-polarized channel, the procedure to retrieve OSWSs
from the C-2PO models is relatively simple because they are only related to VH- and HV-polarized
NRCS values. Figure 5 shows the SAR-retrieved wind speeds from VH- and HV-polarized image, and
the corresponding NRCS distribution, on a 100-m resolution scale, without need for radar incidence
angle or any external wind-direction inputs. Wind speed retrieval results can be seen in Table 1.

For co-polarized data, we first extract the external wind directions from ERA-Interim reanalysis
data on 27 August 2012, at 10:00:00 UTC. Specifically, the NRCS values of the HH-polarized data
need to be converted by the PR model before being input to the CMOD4 GMF. In this case, the radar
incidence angles are in the range from 41.04◦ to 42.42◦ and thus, the PR value can be directly computed
from Equation (4) at coordinates S1 to S5. Figure 6 shows the SAR-retrieved wind speeds from VV-
and HH-polarized image, and the corresponding NRCS distribution. Based on the above parameters,
wind speeds in the VV- and HH-polarized data can be calculated from CMOD4 and the results can be
seen in Table 1.
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Figure 5. C-band (a) VH- and (c) HV-polarized SAR images in the South China Sea waters from
RADARSAT-2 fine quad-polarization mode SLC SAR data acquired on 27 August 2012, at 10:25:24 UTC
(grayscale color bar denoted NRCS). OSWS retrieved from (b) VH- and (d) HV-C2PO model. Symbol
‘+’ denotes winds grid cells from ERA-Interim data. RADARSAT-2 Data and Product MacDonald,
Detweiler and Associates Ltd., All Rights Reserved.

Table 1. OSWSs retrieved from the RS-2 fine quad-polarized mode SAR images compared with
corresponding wind acquired from ERA-Interim daily (in units of m/s).

Sample Coordinate ERA-Interim VH HV VV HH

S1 116.625◦E
21.125◦N 7.3682 6.28 6.45 6.96 5.47

S2 116.50◦E
21.000◦N 7.9413 9.60 9.87 10.72 10.13

S3 116.625◦E
21.000◦N 7.3628 8.16 8.31 8.82 7.98

S4 116.50◦E
20.875◦N 7.2097 9.39 9.66 8.75 8.11

S5 116.625◦E
20.875◦N 7.3583 9.78 9.89 8.26 8.73
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Figure 6. C-band (a) VV- and (c) HH-polarized SAR images in the South China Sea waters from
RADARSAT-2 fine quad-polarization mode SLC SAR data acquired on 27 August 2012, at 10:25:24
UTC (grayscale and color bar denote NRCS). OSWS retrieved from CMOD using (b) VV and
(d) HH-polarized imagery. Red arrows denote wind directions from ERA-Interim data. RADARSAT-2
Data and Product MacDonald, Detweiler and Associates Ltd., All Rights Reserved.

3.2. OSWS Retrieval Using Training Database

The comparison results for OSWS are computed for each ERA-Interim grid cell at each polarization
using the training database. The overall training data are included in Figure 7, which compares the
results between SAR-retrieved winds and in situ ERA-Interim winds. As can be seen, winds from
all of the OSWS retrieval models exhibit a good agreement with ERA-Interim reanalysis winds at
both validations sites. The RMSEs of SAR-retrieved wind speeds are all below 2.5 m/s: 2.11 m/s
(VH-polarized), 2.13 m/s (HV-polarized), 1.86 m/s (VV-polarized) and 2.26 m/s (HH-polarized) and
the correlation coefficients are 0.86 (VH-polarized), 0.85 (HV-polarized), 0.87 (VV-polarized) and 0.83
(HH-polarized) which are statistically significant at the 99.9% significance level, respectively. For VH-
and HV-C2PO retrieval results (Figure 7a,b), the scatter plot and RMSE results are quite similar because
the NRCS values in these two polarizations are quite similar. In fact, because of the monostatic
property of the RADARSAT-2 SAR and the reciprocity theorem, the VH-polarized component is equal
to the HV-polarized component of the Polarimetric Scattering Matrix (PSM), specifically SVH = SHV.
Moreover, the NRCSs in the C-2PO model are calculated from the dual-channel intensity information of
the cross-polarized SAR images and thus, NRCSVH = NRCSHV. This also means that the wind speed
retrieval results from the C-2PO model for VH- and HV-polarized modes are consistent. Therefore,
in the next section, we only focus on VH-polarized OSWS retrieval in cross-polarized SAR data.
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In terms of OSWS retrieval from co-polarized SAR data, the VV-polarized retrieved wind speed
significantly outperforms the HH-retrieved winds, as the former produces a smaller RMSE value
of 1.86 m/s and correlation coefficient of 0.87 m/s, which is statistically significant at the 99.9%
significance level. In addition, the RMSE value of the HH-retrieved wind speed is much larger than
that reported in previous studies [20]. This fact indicates that the SAR OSWSs retrieved at these
locations in the Northwest Pacific are slightly inaccurate. The most important factor in this process is
the PR model. Theoretically, the most accurate PR model is that which can convert NRCSHH values
to exact NRCSVV values. The empirical PR model that we selected in this study is empirically fit to
877 RS-2 observed PR values and incidence angles off the East and West Coasts of USA and the Gulf
of Mexico, while the study area in this work is the Northwest Pacific near China. Another factor to
consider is that the reference wind speed data in previous studies [20] are from National Data Buoy
Center (NDBC) buoys whereas our reference wind speeds are from ERA-Interim reanalysis wind data.
To sum up, for co-polarized channel, whether VV-polarized or HH-polarized, both can use CMOD4
GMF to calculate OSWS from the SAR images. Therefore, in order to obtain better accuracy for OSWS
retrieval results, for co-polarized SAR data, we recommend retrieving OSWS using VV-polarized data.
Additional discussion is given in the next section.

Figure 7. (a) VH-, (b) HV-, (c) VV- and (d) HH-polarized OSWS values retrieved from SAR images
using corresponding GMF models compared to ERA-Interim winds data as the training database.
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3.3. Different between C-2PO and CMOD4 GMF OSWS Retrievals

In previous studies, Vachon et al. [23] used ‘their C-2PO model’ to compute OSWSs using the VH-
and HV-polarized channels to achieve a good agreement with wind data from NDBC buoys. However,
these good results benefit from relatively high wind speed observations, to a certain degree. Similarly,
Zhang et al. [24] retrieved OSWS from their C-2PO function and then compared their results with
NDBC buoy measurements. The retrieved wind speeds have essentially no bias (0.04 m/s) with an
RMSE of 1.39 m/s. Nevertheless, the OSWS values less than about 6 m/s are excluded in this retrieval
experiment. Thus, the C-2PO model using cross-polarized data seems to be not suitable for low wind
speeds but performs relatively well at moderate-to-high wind speeds. Thus far in this study, we have
assumed that 8 m/s is the wind speeds threshold according to the training dataset. Based on this
assumption, we retrieved OSWSs from C-2PO model for OSWSs greater than 8 m/s; and from CMOD4
GMF for OSWSs less than or equal to 8 m/s. Results show that the RMSEs of the SAR-retrieved OSWSs
are 2.53 m/s in the former case using VH-C2PO and 1.61 m/s in the latter case using CMOD4-VV,
when winds are less than or equal to 8 m/s. Similarly, the RMSEs of the SAR-retrieved OSWSs are
1.86 m/s (VH-C2PO) in the former case and 2.31 m/s (CMOD4+VV) in the latter case, when winds are
less than or equal 8 m/s.

4. Discussion

4.1. A Hybrid OSWS Retrieval Algorithm Using Quad-Polarized RS-2 SAR Data

4.1.1. Methodology for Precise OSWS Threshold Based on the Training Dataset

The preliminary, estimated OSWS threshold (8 m/s) in the above discussion was selected as an
empirical or test value. However, to better understand the appropriate scope of applications for C-2PO
and CMOD4 GMF, an accurate OSWS threshold value is essential. In the next section, we put forward
a method to find the best threshold, from the perspective of a quantitative analysis of the training
dataset. The procedure is as follows:

(1) Create three one-dimensional arrays of wind speeds (OSWS): ERA-Interim, retrieved from C-2PO
and retrieved from CMOD4. These three arrays have the same number of elements and one-to-one
correspondence to the ERA-Interim OSWS.

(2) Calculate the maximum, minimum and length of the ERA-Interim array and denote as max_ERA,
min_ERA and n, respectively;

(3) Set up OSWS threshold array from min_ERA to max_ERA in steps of 0.05 and with m as the
length of these arrays.

(4) Design a double loop program. The outer loop variable is j from 1 to m and the inner loop variable
is i from 1 to n;

(5) In the outer loop, the OSWS threshold value ranges from min_ERA to max_ERA in steps of
0.05 m/s. In the inner loop, we compute a new one-dimensional array when the threshold is
a constant, called the hybrid OSWS array, depending on the follow rule: we select CMOD4
retrieved OSWS when ERA-Interim OSWS less than or equal to the reference OSWS; otherwise, we
select the C-2PO retrieved OSWS, when ERA-Interim OSWS greater than the reference array; then,
compute RMSEs between ERA-Interim OSWS and the hybrid OSWS array.

(6) Find the position of the minimum RMSE value. The reference array element corresponding to
this position is the best threshold value. Figure 8 shows a sketch of this method.
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Figure 8. Design of a double loop program to find the best OSWS threshold value based on the
training data.

Next, we calculate the most appropriate OSWS threshold value using the above method, based
on our training dataset. Figure 9 shows the variation in RMSE between the ERA-Interim OSWS array
and the hybrid OSWS array. In addition, when the loop variable is equal to 1, the hybrid OSWS array
is the C2PO-retrieved OSWS array with RMSE of 2.07 m/s. Similarly, when the loop variable is equal
to 285, the hybrid array is the CMOD4-retrieved OSWS array with RMSE of 1.86 m/s. These results
are in complete conformity to Figure 7a,c. Finally, from Figure 9, we can estimate that the RMSE
reaches a minimum of 1.59 m/s when the loop variable equals 156. The corresponding wind speed
element is 9.4 m/s. Therefore, the most appropriate OSWS threshold value is 9.4 m/s based on our
training dataset.

Figure 9. Variation of RMSE with different wind speeds using our hybrid OSWS retrieval model.
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4.1.2. Establishment and Validation of the Hybrid OSWS Retrieval Model

According to the analysis presented previously, we computed the most appropriate OSWS
threshold (9.4 m/s) based on our training dataset. It is important to note that the C-2PO model
provides a relationship between the VH-polarized NRCS and OSWS which can be simplified as an
empirical linear equation. Thus, we can use the NRCSvh values as a discriminant, meaning that when
the OSWS is less than or equal to 9.4 m/s (corresponding NRCSvh is −30.2 dB), we select CMOD4+VV
as our OSWSs retrieval model. By contrast, when the wind speeds are higher than 9.4 m/s, we use
VH-C2PO as our OSWSs retrieval algorithm. Figure 10 shows the flowchart for the new hybrid wind
speed retrieval method.

Figure 10. Flowchart for the hybrid wind speed retrieval algorithm.

In the next test, we first use VH-C2PO and CMOD4+VV models to retrieve OSWSs based on
our empirical test database. The results are shown in Figure 11. Subsequently, the wind speeds
retrieved from our hybrid model using the same data are shown in Figure 12. The RMSEs of the
SAR-retrieved wind speeds are 1.92 m/s (VH-C2PO), 1.80 m/s (CMOD4+VV) and 1.66 m/s (Hybrid
model), respectively. Clearly, our hybrid OSWS model has the smallest RMSE and thus it can be
considered to be most suitable for wind speed retrievals at winds within the range from 1 to 16 m/s.

Figure 11. OSWSs retrieved from (a) VH-C2PO and (b) CMOD4+VV models from quad-polarized
RADARSAT-2 images.
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Figure 12. OSWSs retrieved from hybrid model in this study from quad-polarized RADARSAT-2 images.

4.2. Error Analysis of OSWS Retrieved Using C-2PO Model at Low-to-Moderate Winds

For low-to-moderate winds, OSWSs retrieved from the C-2PO model for VH- and HV-polarized
data have a relatively large RMSE which indicates that this model has a relatively poor retrieval
performance. However, SAR systems are quite complicated and thus the OSWS retrievals from SAR
images can depend on a number of factors. In this section, on the basis of the underlying mechanisms
for the SAR imagery, we propose three possible reasons to explain why the C-2PO model based on
cross-polarized data might have a poor performance for the retrieval of low-to-moderate winds.

4.2.1. Effect of Modeling the Data from C-2PO

Based on 546 RS-2 fine quad-polarized mode SAR images and in situ weather buoys maintained
by Environment Climate Change Canada (ECCC) and Fisheries and Oceans Canada (DFO) off the
east and west coasts of Canada, Vachon and Wolf [23] first proposed a new C-band cross-polarized
empirical model. This model, as yet unnamed, suggested that the relationship between NRCS and
OSWS is independent of wind direction and incidence angle and that there is no saturation effect at
high wind speeds and that it can directly retrieve OSWS. Note that the data source for the establishment
of this model is from higher wind speed observations which simplifies wind speed retrieval from SAR
imagery for sufficiently high wind speeds.

Within the following year, independent of Vachon’s work, Zhang and Perrie [24] developed
a C-band cross-polarization ocean model, which they denoted as C-2PO, using the RS-2 fine
quad-polarized mode SAR measurements for high (>20 m/s) wind retrievals. Zhang and Perrie
selected 534 RS-2 SAR images collocated with NDBC buoy measurements under different sea states
and retrieved wind speeds from C-2PO model. The retrieved wind speeds have essentially no bias
(0.04 m/s) with an RMS error of 1.39 m/s. However, these good results exclude the wind speeds less
than about 6 m/s. Thus, from the point of the modeling, the C-2PO model may not be suitable for low
wind speed retrievals from SAR images.
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4.2.2. Effect of the Noise Level

For the low wind speed retrieved from SAR data, VV-polarized CMOD4 GMF performs better
than the VH-polarized C-2PO model. The reasons are related to noise level are as follows: (1) the noise
level (floor) is the same value at VV- and VH-polarized mode in the same pixels, (2) VV-polarized
NRCS values are much stronger than the VH-polarized NRCS values under the same wind conditions
and (3) VH-polarized NRCS values are close to the noise level whereas VV-polarized NRCS values are
much larger that the noise level and thus the VH-polarized NRCS values are sometimes annihilated by
the noise level.

In terms of cross-polarized SAR wind speed retrieval, the C-2PO model is applied to the NRCSs
without removing the noise level because of the complicated relationship of the Signal-to Noise Ratio
(SNR) [24,26]. In fact, the NRCS values induced by local winds are close to the noise level values,
especially under low wind speed conditions (Figure 13). One reason is that the actual noise level for
RADARSAT-2 fine quad-polarized SAR data in an individual pixel is unknown and only the estimated
noise level is provided. The other reason is that the cross-polarized NRCSs induced by the low wind
might be above the actual noise level. However, sometimes, these NRCSs may be beneath the noise
level. If we remove the estimated noise level for all pixels, we cannot apply C-2PO model to retrieve
the wind speed.

Figure 13. Sigma naught versus in situ ERA-Interim wind speed for (a) cross- and (b) co-polarized data.

4.2.3. Effect of the Wind-Roughness Relationship

In previous studies focusing on linear polarizations [37], several EM mechanisms are relevant
to the radar backscatter denoted as the NRCS from the ocean surface: (1) Bragg resonance scattering,
(2) quasi-specular reflection and (3) diffraction of radio waves on sharp wedges. Generally speaking,
Bragg resonance scattering mechanisms, as related to ocean surface roughness and quasi-specular
reflection and diffraction of radio waves, are considered in relation to wave breaking.

Bragg resonance plays a main role in the VV-polarized NRCS but is negligible for the
VH-polarization NRCS [38]. In addition, non-Bragg scattering dominates the VH-polarized NRCS
but is negligible for the VV-polarized NRCS. A summary is shown in Table 2 for the roles of Bragg
and non-Bragg resonance scattering mechanisms with respect to the VH and VV polarizations. For
SAR imaging under the low wind speed conditions, VV-polarized NRCS values mainly depend on the
ocean surface roughness, which can be described by the Bragg resonance. The relationship among
winds, roughness and NRCS values is ‘stable’ and thus the VV-polarized NRCSs (CMOD4) apply
to low wind speed retrieval. The VH-polarized imaging depends on the wave breaking mechanism.
However, waves induced by winds are not easily broken at low wind speeds. The relationship among
winds, roughness and NRCS values is ‘instable’ and thus the VH-polarized NRCSs model (C-2PO) is
not suitable for low wind speed retrieval.
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Table 2. The roles of the two mechanisms with respect to the VH and VV polarizations.

Mechanisms VH-Polarized VV-Polarized

Bragg Resonance Negligible Main
Non-Bragg Main Negligible

4.2.4. Effect of the Reconstructed Spatial Resolution

Direct calculation of OSWSs from the original SAR scene can result in noisy patterns due to
the presence of speckle noise in the raw SAR images. Therefore, the raw RS-2 SAR data needs to be
preprocessed to reconstruct an appropriate spatial resolution. For this reason, we make a 20 × 20
pixel boxcar averaging of the NRCS, in each polarization, so that the reconstructed pixel spacing is
100 m. Previous research has suggested that the reconstructed spatial resolution has an effect on the
accuracy of OSWS retrieval with the C-2PO model for the cross-polarized channels from RS-2 fine
quad-polarized images [39]. To investigate this phenomenon thoroughly, we selected one SAR image
under very low wind speed conditions. This case is a RS-2 quad-polarized SLC SAR image acquired
on 29 April 2012, at 05:33:24 UTC and collocated with a NDBC buoy (#46035; 57◦1′33′′N, 177◦44′16′′W)
in the Bering Sea. In addition, most of the NDBC buoy anemometers are installed at a height of
5 m. Therefore, the OSWS from the 5-m anemometers is converted to OSWS at 10-m height using
the power-law wind profile method under near-neutral stability conditions [40]. Finally, the NDBC
buoy-measured 10-m OSWS is 2.93 m/s on 29 April 2012, at 05:30:00 UTC.

In the next step, we first reconstruct the spatial resolution at VH- and VV-polarized mode at
100, 600, 1100, 1600, 2100 and 3100 m, respectively. Various SAR data including NRCSs, incidence
angles and external wind directions are interpolated to the buoy location. VH-polarized wind speeds
retrieved from the C-2PO model can be directly computed from Equation (5). The results of the
SAR-retrieved wind speeds are 7.72 m/s (100 m), 6.18 m/s (600 m), 5.14 m/s (1100 m), 4.67 m/s
(1600 m), 6.46 m/s (2100 m) and 6.69 (3100 m) and the differences are 4.79 m/s (100 m), 3.25 m/s
(600 m), 2.21 m/s (1100 m), 1.64 m/s (1600 m), 2.33 m/s (2100 m) and 3.19 m/s (3100 m), respectively.
A more intuitive and straightforward assessment of the influence of influence of different spatial scales
is given in Figure 14., which shows the reconstructed SAR images and corresponding retrieved OSWS
at spatial resolutions of 100, 600, 1100, 1600, 2100 and 3100 m for the VH-polarized channel.

Obviously, the retrieved OSWS values from C-2PO model at 1600 m spatial resolution have
the smallest difference and thus the optimal resolution from VH-polarized data is 1600 m, in this
case. This phenomenon can be explained by the fact that the speckles in the SAR images have been
suppressed by averaging the pixel spacing to coarser resolution and the wind field is smoothed by the
increase in the wind cell spacing.

For VV-polarized data, the ERA-Interim reanalysis wind field are used as external wind directions
acquired on 29 April 2012, at 00:00:00 UTC. SAR retrieved wind speeds from CMOD4 GMF can be
taken from Equation (2). The results of the SAR-retrieved wind speeds are 6.6 m/s (100 m), 4.69 m/s
(600 m), 4.91 m/s (1100 m), 5.25 m/s (1600 m), 5.6 m/s (2100 m) and 5.95 m/s (3100 m) and the
differences are 3.67 m/s (100 m), 1.76 m/s (600 m), 1.98 m/s (1100 m), 2.32 m/s (1600 m), 2.67 m/s
(2100 m) and 3.02 m/s (3100 m), respectively. Similarly, Figure 15 shows the reconstructed SAR images
and corresponding retrieved OSWS values at spatial resolutions of 100, 600, 1100, 1600, 2100 and 3100
m for the VV-polarized channel. The CMOD4 GMF retrieves OSWS at 600 m spatial resolution has the
smallest difference and thus, the optimal resolution in VV-polarized mode is 600 m, in this case.
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Figure 14. VH-polarized SAR images at reconstructed spatial resolutions of 100, 600, 1100, 1600,
2100 and 3100 m and corresponding OSWSs retrieved from C2PO model. The in-situ buoy (#46035,
57◦1′33”N 177◦44′16”W) wind speed is 2.92 m/s. RADARSAT-2 Data and Product MacDonald,
Detteiler and Associates Ltd., All Rights Reserved.

Figure 15. VV-polarized SAR images at reconstructed spatial resolutions of 100, 600, 1100, 1600, 2100
and 3100 m and corresponding OSWSs retrieved from the C2PO model. The in-situ buoy (#46035,
57◦1′33”N 177◦44′16”W) wind speed is 2.92 m/s. RADARSAT-2 Data and Product MacDonald,
Detteiler and Associates Ltd., All Rights Reserved.
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Compared with OSWS retrieval from VV-polarized SAR mode data, OSWS can be retrieved with
better accuracy (at 1600 m) for the VH-polarized channel for low winds. However, the results appear
to exhibit ‘instability’ for cross-polarized OSWS retrieval with the C-2PO model for the RS-2 fine
quad-polarization data. The simple explanation is as follows: OSWSs retrieved from the SAR image
are based on the Bragg scattering theory and thus the accuracy of retrieved wind speeds are closely
related to the radar backscatter signal. In terms of the backscatter signal, the intensity at VH-polarized
channel is far less than the intensity at the VV-polarized channel. With increased pixel averaging,
the speckle is reduced. Although the SNR for the VH-polarized channel becomes stronger when the
noise is reduced, the changes are small because the backscatter signal intensity is itself quite weak.
As a result, OSWSs retrieved from C-2PO model for VH-polarized mode have ‘instability’, with the
change of spatial resolution (due to averaging) in low winds. For the VV-polarized channel, the signal
intensity is strong and thus the speckle noise has little effect, with the decrease in spatial resolution.
Therefore, OSWSs retrieved from the CMOD4 GMF for VV-polarized mode data are more accurate
with the change of spatial resolution due to appropriate averaging, in relatively low winds.

5. Conclusions

In this paper, ocean surface wind speed measurements made by RADARSAT-2 in cross-polarized
and co-polarized modes were analyzed, using 439 samples from 92 fine quad-polarization SAR images
and corresponding ERA-Interim winds in the Northwest Pacific in waters off the coast of China. We
first created two subset wind speed databases: the training and testing subsets. From the training data
subset, we retrieve OSWSs from different GMF models for different polarizations, as appropriate and
we compared the results with corresponding ERA-Interim winds. The RMSEs of SAR-retrieved wind
speeds are all below 2.5 m/s: specifically, 2.11 m/s (VH-polarized), 2.13 m/s (HV-polarized), 1.86 m/s
(VV-polarized) and 2.26 m/s (HH-polarized) and the correlation coefficients are 0.86 (VH-polarized),
0.85 (HV-polarized), 0.87 (VV-polarized) and 0.83 (HH-polarized), which are statistically significant at
the 99.9% significance level, respectively.

Through analysis of the SAR data considered in this study, we have presented the advantages
and disadvantages for SAR wind retrieval models for cross- and co-polarized data and the respective
wind speed ranges for reliable application. We found that OSWS retrieved using the C-2PO model
for VH-polarized data are most suitable for moderate-to-high winds while the CMOD4 GMF at
VV-polarized tends to be best for low-to-moderate winds. In addition, under higher wind conditions,
such as generated by hurricanes, many studies have suggested that the NRCS in cross-polarization
mode essentially does not saturate [19,23,25,26,28]. Thus, the cross-polarized channel is more
appropriate for retrieval of high winds, as may be generated by hurricanes. To better understand
the appropriate scope of applications for C-2PO and CMOD4 GMF, an accurate OSWS threshold
value algorithm is proposed based on our training dataset, from the perspective of a quantitative
analysis. According to the analysis results, a hybrid methodology is put forward and applied to
the test data subset. The results show that the accuracy of the retrieved OSWSs from our hybrid
method can significantly outperform C-2PO or the CMOD4 models, producing an RMSE of 1.66 m/s
and correlation coefficient of 0.9. Finally, we proposed four possible reasons to explain why the
C-2PO model based on the cross-polarized retrieved wind speeds has a rather poor performance at
low wind speeds. They are modeling, noise level, wind-roughness relationship and reconstructed
spatial resolution.

From the perspective of data analysis and physical mechanism, we put forward the hybrid OSWS
retrieval model, which provide readers a new idea to retrieve OSWS from C-band quad-polarized
SAR images. However, for OSWS retrieved from quad-polarized SAR images, there are still some
deficiencies in using reference wind speeds from the ERA-Interim winds data in this paper. For
example, the spatial resolution retrieved from SAR images may be not comparable to the resolution
of wind grid cells from the reference data. In future work, in order to set up a more accurate OSWS
retrieval model, we will take real in-situ (i.e., buoys) as our reference wind data. Besides, from a model
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perspective, whether C-2PO or CMOD GMFs are used, they are empirical formulations based on
relationships between the NRCSs and wind speed. In the future, we plan to make a more thorough
comparison of all the model functions and include comparisons using multiple remotely sensed
datasets and additional buoy measurements to improve results. There is hope that a new C-band wind
speed retrieval model will provide improved retrievals, without having to consider differing wind
intensities, such as low, moderate, high and so forth.
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Abstract: The wavenumber-frequency spectra of many radar measurements of the sea surface
contain a linear feature at frequencies lower than the first order dispersion relationship commonly
referred to as the “group line”. Plant and Farquharson, showed numerically that the group line is
at least partially caused by wave interference-induced breaking of steep short gravity waves. This
paper uses two wave retrieval techniques, proper orthogonal decomposition (POD) and FFT-based
dispersion curve filtering, to examine two X-band radar datasets, and compare wave orbital velocity
reconstructions to ground truth wave buoy measurements within the field of view of the radar.
POD allows group line energy to be retained in the reconstruction, while dispersion curve filtering
removes all energy not associated with the first order dispersion relationship. Results show that when
group line energy is higher or comparable to dispersion curve energy, the inclusion of this group line
energy in phase-resolved orbital velocity reconstructions increases the accuracy of the reconstruction.
This increased accuracy is demonstrated by higher correlations between POD reconstructed time
series with buoy ground truth measurements than dispersion curve filtered reconstructions. When
energy lying on the dispersion relationship is much higher than the group line energy, the FFT and
POD reconstruction methods perform comparably.

Keywords: Doppler radar; radar; sea surface roughness; air-sea interaction; proper orthogonal
decomposition; ocean surface waves; dispersion curve filtering; marine X-band radar; phase-resolved
wave fields

1. Introduction

In the last several decades, sea clutter has transitioned from a nuisance of operating radar
systems in marine environments to a useful tool for quantitative measurements of ocean surface waves.
This transition began with the seminal paper by Young et al. in 1985 [1], establishing the Fourier-based
dispersion curve filtering method. In the years since this paper was published, techniques derived from
Young et al. [1] for calculation of wave statistics have become well established [2–5]. However, methods
and validation for production of phased-resolved wave fields remains an open area of research [6–9].

Most wavenumber – frequency (k-ω) spectra of radar images of the sea surface exhibit a “group
line” feature: a low frequency feature below the first order dispersion relationship that passes through
the origin. Numerous explanations exist for the origin of this feature that are wave-related and
non-wave related, such as: shadowing, non-linear wave-wave interactions, contamination (e.g., hard
targets in the images), turbulence advected by winds, interference-induced wave breaking, and
non-linear scattering effects [10–16]. Recently, in their 2012 study, Plant and Farquharson provide
numerical evidence that interference induced wave breaking from the interaction of linear wave fields
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are a primary source of the group line feature [10]. They demonstrate that the superposition of wind
waves and swell can generate steep short gravity waves that break near the local maxima of surface
slope, resulting in Doppler measurements of the phase speed of these steep short gravity waves. Such
effects as noted by Plant and Farquharson as well as non-linear second order wave-wave interactions
may be features that should be accounted for in the generation of instantaneous (phase-resolved)
sea surface elevation maps produced by radar [9,13]. However, it is difficult to separate these wave
contributions to the group line feature to validate whether they are important to the reconstruction
of sea surface elevation maps because other non-wave related effects may also occupy the same
frequency-wavenumber space (e.g., shadowing).

In this study, we use a non-Fourier based method, proper orthogonal decomposition (POD),
to reconstruct ocean surface orbital velocities from X-band Doppler measurements of the sea
surface [17]. This method permits the inclusion of some of the spectral energy in the group line
feature in the reconstruction of instantaneous orbital velocities. The inclusion of the group line energy
is based on how much it contributes to the overall variance of the measured spatial series [17]. In order
to evaluate the importance of group line associated energy to accurate phase-resolved reconstructions
of ocean surface wave orbital velocities, the POD results are compared to orbital velocity maps
produced using the conventional Fourier-based method (FFT), which filters the k-ω spectra on the
linear dispersion relationship for surface gravity waves, and therefore removes all group line features.

We show that inclusion of some portion of the energy in the group line does improve correlation
with GPS wave buoy ground truth orbital velocity time series measurements, although this energy does
not greatly impact wave statistics (e.g., significant wave height) when computed over approximately 20
min time periods [17]. The results show higher correlation with buoy time series when including group
line energy, provided that group line energy is comparable or higher than the energy on the dispersion
relationship. These results are demonstrated with experimental data of bimodal seas. The results of
this study support the numerical findings of Plant and Farquharson [10] with experimental data, and
show that at least a portion of the group line energy is wave field related and contributes to accurate
instantaneous phase-resolved sea surface orbital velocities. Presumably by inference, the interference
pattern referred to by Plant and Farquharson [10] impacts the wave phasing, and should be included
for accurate instantaneous sea surface wave retrievals.

2. Experimental Data

Experimental data for this study was collected during the R/V Melville experiment, which took
place from 14 September to 17 September 2013. Details of this experiment are described in Kammerer
and Hackett [17]; only relevant details are provided here. The data used in this study was collected
using a ship-mounted rotating radar system with a center frequency of 9.41 GHz. It was vertically
(VV) polarized, coherent-on-receive [18], and rotated at 24 RPM. Doppler velocity is calculated using
the pulse-pair processing method [19]. For noise reduction, the mean of 12 pulse-pairs are taken,
generating a Doppler velocity range distribution every 0.86◦ of rotation (or every 0.006 s). The resulting
Doppler velocity distributions are a function of range (r), time (t), and azimuth (ϕ) (D(r,t,ϕ)), and cover
a range of 960 m at a resolution of 3.75 m with a blanking range of 100 m around the vessel. One
“frame” of Doppler data is produced with every full revolution of the radar system.

GPS mini wave buoys developed by the Coastal Observing and Research and Development Center
at the Scripps Institution of Oceanography [20] were deployed during the R/V Melville experiment to
record ground truth wave data for comparison and validation of radar reconstructions. These buoys
were free drifting in and around the area of operation. Only wave buoys in the field of view (FOV)
of the radar are used for this study. Figure 1 shows an example of buoy tracks during collection of
a radar dataset. The GPS wave buoys have a sample rate of 1 Hz. Prior to time series processing,
the buoy data are high pass filtered with a cut off frequency of 0.05 Hz (period of 20 seconds) and
de-trended to eliminate non-wave low frequency signals mostly related to the transitioning of GPS
satellites. To facilitate comparisons with the radar data, the buoy time series are then low pass filtered
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and down-sampled to match the temporal resolution of the radar data. Measurement uncertainty and
other information about the GPS wave buoys can be found in Drazen [20].

Figure 1. Tracks from the four GPS wave buoys in the radar field of view during collection of radar
dataset 1 are shown in red, overlaid on an example frame of Doppler velocity data. The black box
shows a zoom-in of that area.

Two radar datasets from this experiment are used for this study. Datasets were selected based
on availability of wave buoys in the field of view of the radar (Table 1) (and for their unique group
line features). Dataset 2 was taken approximately 25 min after dataset 1 and during this time winds
were decreasing in magnitude (decaying seas). Both datasets were collected under bimodal seas with
wind-waves and swell present. Dataset 1 was collected in higher wind speed (15 m/s), and dataset 2
was collected while wind speed was declining (7 m/s). Figure 2 (panels (a) and (b)) shows the k-ω
spectrum for each dataset. Dataset 1 has a strong group line feature with a high magnitude of group
line energy relative to dispersion curve associated energy, while dataset 2 shows a weaker group line
feature relative to dispersion curve associated energy. The primary difference between dataset 1 and 2
is the amount of group line energy relative to dispersion curve associated energy because they were
obtained in such close proximity in time to each other. Table 1 shows general environmental statistics
for both datasets.

Table 1. Environmental statistics for both radar datasets used in this study. Shown in the table is the
date and time the dataset was collected, as well as the significant wave height (Hs) as measured by the
wave buoys, wind speed (Uw) as measured by a shipboard anemometer, root mean squared surface
velocity (Vrms) as measured by the wave buoys (averaged over all buoys in the radar FOV), angle
between the two wave systems (ΔΘ) during dataset collection based on radar derived directional wave
spectra, and the number of buoys in the radar FOV.

Dataset Date Time Hs (m) Uw (m/s) Vrms (m/s) ΔΘ (◦) Buoys

1 17 September 2013 00:08:45 1.65 15 0.54 41 4
2 17 September 2013 00:33:34 1.48 7 0.49 46 3
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(a) (b) 

Figure 2. (a) k-ω Doppler velocity spectrum for dataset 1; (b) k-ω Doppler velocity spectrum for dataset
2. The white dashed line in both panels shows the linear dispersion relationship (adjusted for currents
and ship forward speed).

3. Phased Resolved Orbital Velocity Maps

Ocean surface wave orbital velocity maps are produced for all possible frames of radar data
using both the POD and dispersion curve filtering methods. The time series of these maps are used to
generate time series of orbital velocity by extracting the orbital velocities from each frame at the location
where a wave buoy was present. Buoy measured wave orbital velocity time series are compared to
orbital velocity time series derived from these radar-based wave orbital velocity maps. Correlation
(c) and root mean squared error (Erms) are calculated between the buoy velocity time series and the
velocity map derived time series for each method for all available buoys in the FOV of the radar, and
these statistics are then averaged across all buoys (see Table 1).

3.1. Pre-Processing

Prior to the POD or FFT wave orbital velocity retrieval methods being performed, pre-processing
steps were applied to the radar data. Both datasets were de-trended along range, converted to
a Cartesian grid (D(r,t,φ) to D(x,y,t)), and georeferenced. Geo-referencing relative to the ship GPS
position is performed for each cell of the Cartesian grid so that an accurate cell location of the wave
buoys can be identified. Due to sensitivity of the POD method to wave direction [17], the data is
rotated such that the dominant wave system is propagating along the direction of the x-axis.

3.2. POD Based Wave Field Extraction

The POD method is applied as described in Kammerer, and Kammerer and Hackett [17,21],
which was adapted from Hackett et al. [22]. Only relevant details are repeated here for the reader’s
convenience. This method takes one frame of Doppler velocity radar data, D(x,y), and decomposes the
signal into a series of orthonormal basis functions (or modes) and spatial coefficients. Mode functions
are determined by the best fit to the variance of the data as opposed to being assumed a priori, as
in Fourier analysis. As mode number (n) increases, the amount of signal variance accounted for in
that mode decreases. The summation of the product of all the mode functions and spatial coefficients
results in reconstruction of the original signal.

Because the variance of the Doppler velocity is dominated by the ocean surface wave orbital
velocities, a summation of the product of the leading mode functions and spatial coefficients results in
a reconstruction of the ocean wave field orbital velocities. This reconstruction method allows energy
associated with the group line as well as the dispersion curve to be maintained depending on how
much they contribute to the overall variance of the map. POD is performed on frames 16 to N-16,
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where N is the total number of radar frames in the dataset. This set is selected to maintain the same
time series length as the FFT-method, which is described subsequently.

3.3. Conventional FFT Based Wave Field Extraction

The FFT based wave field extraction method is applied as described in Kammerer [21], which
was based on the method outlined by Young et al. [1]. After the pre-processing is complete the
Doppler radar data is in the form D(x,y,t) with 141 samples in the x and y directions (i.e., a matrix
of size 141 × 141 × N). The first 32 frames of radar data are extracted and the x and y dimensions
are zero-padded such that the size of D is 256 × 256 × 32. A 3-dimensional FFT is then applied
to D. The subsequent Fourier coefficients are then multiplied by a binary dispersion relationship
filter (dk(kx,ky,ω)):

dk = 1 for σ − WΔω < ω < σ + WΔω

dk = 0 otherwise
(1)

where ω is radian frequency, kx is radian wave number in the x-direction, ky is radian wave number in
the y-direction, Δω is the radian frequency resolution (0.07 rad/s), W is discrete filter width (W = 1 is
used for this study), and σ is the linear deep-water dispersion relationship including current (U):

σ = U·k +
√

g|k| (2)

where, U is the current, k is radian wavenumber, and g is gravitational acceleration.
An inverse Fourier transform (IFFT) returns the filtered Fourier coefficients from the spectral

domain back to the spatial domain (V(x,y,t)). Only the middle frame of the 3D data stack is extracted
and saved as the phase-resolved wave orbital velocity map for the center time of the stack. The
3D stack is then shifted forward by one frame in time for the next set of 32 frames and the process
repeats until the last frame in the stack is frame N. The resulting FFT dispersion-filtered time series of
phase-resolved wave orbital velocity maps consists of frames 16 to N-16.

4. Time Series Extraction for Buoy Comparisons

For each frame in the time series of wave orbital velocity maps, the spatial coordinates of each buoy
in the radar field of view are identified. In order to account for uncertainty in the GPS measurements
of the buoy and ship, the velocity of the identified range cell as well as all eight adjacent cells are
compared to the buoy wave orbital velocity, and the value closest to the buoy orbital velocity is
extracted as the velocity for the radar time series. This process is repeated for each buoy in the field of
view of the radar, and for each frame of the radar time series for both the FFT and POD derived ocean
surface orbital velocity maps. Figure 1 (Section 2) shows an example of buoy tracks overlaid on one
frame of radar data for dataset 1.

Finally, Pearson’s correlation coefficient (c) between each buoy and radar-based time series is
computed. Additionally, the root mean squared error (Erms) between the buoy velocity time series,
and the POD and FFT reconstructed time series are computed. Both statistics are evaluated for each
available wave buoy.

5. Results and Discussion

Figure 3 shows the time series comparisons between the wave buoy, POD, and FFT reconstructions
for dataset 1, and Figure 4 shows the time series comparisons for dataset 2. Note, dataset 1 has four
buoys in the radar field of view, and dataset 2 has three buoys in the radar FOV (see Table 1, Section 2),
with one of the three buoys only being in the field of view for part of the dataset. The number of
leading POD modes used for the example reconstructions shown in Figures 3 and 4 was selected to be
representative of peak correlation (see Figure 5 and Table 2). Dataset 1 is shown using an n = 32 mode
reconstruction and dataset 2 is shown using an n = 6 mode reconstruction. It can be seen in Figures 3
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and 4 that the POD reconstructed orbital velocity time series is generally in-phase, and of comparable
magnitude to the wave buoy measured velocities for both dataset 1 and 2. The dispersion filtered time
series for dataset 1 seems to be of lower magnitude than the wave buoy measured velocities, and out
of phase with the buoy measurements at times. However, for dataset 2, the dispersion filtered time
series seems to perform in a visually similar way to the POD time series.

 
(a) (b) 

(c) (d) 

Figure 3. Time series comparisons between the GPS wave buoys (blue lines), POD reconstructions
using the leading 32 modes (n = 32) (green lines), and dispersion filtered reconstructions (red line) for
dataset 1. (a) are the time series for wave buoy 279; (b) are the time series for wave buoy 283; (c) are the
time series for buoy 286; and (d) are the time series for buoy 289.

 
(a) (b) 

Figure 4. Cont.
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(c) 

Figure 4. Time series comparisons between the GPS wave buoys (blue lines), POD reconstructions
using the leading 6 modes (n = 6) (green lines), and dispersion filtered reconstructions (red line) for
dataset 2. (a) are the time series for wave buoy 279; (b) are the time series for wave buoy 280; and (c)
are the time series for buoy 286.

 
(a) (b) 

Figure 5. Average correlation coefficient (c) between POD reconstructed orbital velocity time series and
wave buoy orbital velocity time series for each (1 to n) mode reconstruction (black line) and average
correlation coefficient between FFT-based dispersion curve orbital velocity time series and wave buoy
time series (red dashed line). Correlation coefficients are averaged over all available buoys. (a) shows
dataset 1 and (b) shows dataset 2.

Table 2. Correlation coefficient (c) and Erms for both wave retrieval methods: proper orthogonal
decomposition (POD) and dispersion filtering (FFT) for each dataset. For POD, the peak c and
minimum Erms are provided with the mode selection (modes 1-n) shown parenthetically.

Dataset POD: c POD: Erms (m/s) FFT: c FFT: Erms (m/s)

1 (group line) 0.93 (modes 1–32) 0.085 (modes 1–33) 0.25 0.23
2 (no group line) 0.90 (modes 1–6) 0.072 (modes 1–43) 0.85 0.092

Figure 5 shows the averaged correlation coefficient between the GPS wave buoy orbital velocity
time series and POD reconstructed velocity time series for POD reconstructions using various numbers
of modes (1 to n) as well as for the FFT–based reconstructed time series for dataset 1 (a) and dataset
2 (b). Note that correlation coefficients are calculated separately for each available buoy time series
and averaged over all buoys. For both dataset 1 and dataset 2, POD reconstructed time series attain
above 0.8 correlation coefficient with buoy time series within the leading 10 modes, and peak in
correlation at ~0.9. For dataset 1, when the group line energy is stronger relative to dataset 2, POD
reconstructions achieve a significantly higher correlation with ground truth wave buoy measurements
then the FFT method regardless of the number of modes used in the POD reconstruction. In contrast,
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for dataset 2, in which dispersion curve energy is higher relative to group line energy, the FFT and
POD methods result in similar correlation coefficients regardless of the number of modes used for
the POD reconstruction. Furthermore, when spectral energy is limited to primarily dispersion curve
associated energy (as in dataset 2), the POD method reaches a correlation “plateau” in fewer modes
than when the energy spectra is more complex (i.e., containing group line energy in addition to
dispersion curve energy). In summary, POD reconstructed orbital velocity time series correlate highly
with buoy-measured wave orbital velocity time series for both datasets, regardless of the group line
to dispersion curve energy ratio; when the ratio of group line energy relative to dispersion curve
energy is high, the POD method attains significantly higher correlations with buoy measurements than
the conventional dispersion curve filtering method. This difference in the correlation coefficients is
attributed to the inclusion of group line energy in the POD reconstructions. Nevertheless, the selection
of the optimal number of leading modes is non-trivial, but any mode selection achieved higher
correlations than dispersion-filtered time series.

The averaged Erms between the reconstructed time series and the ground truth wave buoy time
series for both reconstruction methods and datasets is show in Figure 6. Recall, Erms is computed as the
root-mean-square of the difference in orbital velocity between the time series. The POD method clearly
attains lower Erms than the dispersion curve filtering method for dataset 1 regardless of the number of
modes used. In contrast, for dataset 2, Erms is comparable between the methods. The Erms results are
consistent with the correlation results shown in Figure 5. When significant group line energy is present,
the POD method attains lowers Erms and higher c than the dispersion filtering method (for all mode
reconstructions), and when group line energy is low relative to dispersion curve energy, both wave
retrieval methods perform comparably. A summary of results for both the correlation and Erms metrics
are presented in Table 2.

 
(a) (b) 

Figure 6. Averaged root mean squared error (Erms) between POD reconstructed wave orbital velocity
time series and ground truth wave buoy measured orbital velocity time series for each (1 to n) mode
reconstruction (black line), and between FFT-based dispersion curve filtered time series and wave buoy
ground truth (red dashed line) for dataset 1 (a) and dataset 2 (b).

Because the primary difference in the methods is the inclusion of group line energy, and the
difference between the datasets is primarily associated with the relative strength of group line energy,
we conjecture that the group line energy mostly influences the phasing of the ocean surface wave
field and its inclusion in the wave retrieval improves the comparisons with time series buoy data.
Figure 7 shows the k-ω Doppler velocity spectrum of the POD reconstructions for datasets 1 and 2
(n = 32 and n = 6 respectively) as well as the k-ω spectra of the dispersion curve filtered reconstructions.
The k-ω spectra of the POD reconstructions for both datasets contain energy both associated with the
linear dispersion curve and with the group line feature. Note that dataset 1 (a) has high group line
energy relative to dataset 2 (b), and the dispersion-filtered reconstructions do not contain any group

131



Remote Sens. 2019, 11, 71

line energy (c and d). Because the POD reconstructed time series correlate more highly with ground
truth buoy time series than the dispersion curve filtered time series for dataset 1 and show smaller
Erms, and because the k-ω POD reconstruction spectrum contains significant energy associated with
the group line, we surmise that the group line contains energy from the wave field, whose inclusion in
wave retrieval contributes to more accurate phase-resolved wave orbital velocity reconstructions.

  
(a) (b) 

  
(c) (d) 

Figure 7. (a) an example k-ω POD reconstruction spectrum for dataset 1 using 32 modes (n = 32);
(b) k-ω POD reconstruction spectrum for dataset 2 using 6 modes (n = 6); (c) k-ω spectrum for the
dispersion curve filtered result for dataset 1 and (d) k-ω spectrum for the dispersion curve filtered
result for dataset 2. Energy that appears above and to the left of the dispersion curve in (c) and (d) is an
artifact of the 3D dispersion cone filtering integrated into 2D for presentation of the figure.

6. Summary and Conclusions

This study has shown that when group line energy is high relative to dispersion curve energy,
POD orbital velocity time series attain higher correlation with ground truth wave buoy velocity
measurements (and lower Erms) than conventional FFT-based dispersion curve filtering derived wave
retrieval. In contrast, when the dispersion curve energy is higher than group line energy, FFT-based
dispersion curve filtering attained similar correlation with ground truth measurements than POD;
similar Erms is also observed for this dataset. Furthermore, peak correlation between POD-based time
series and buoy time series is attained in fewer modes in this case (dataset 2). It is demonstrated
that accurate phase-resolved reconstructions of ocean surface wave orbital velocities can be produced
from X-band Doppler measurements of the ocean surface using POD and buoy data. More research
on automating mode selection is needed in order to use the POD method without optimizing it to
buoy data.

The combination of group line energy contained in the POD reconstructed k-ω spectra and the
improvement in correlation with ground truth buoy measurements over the conventional dispersion
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curve filtering method (for dataset 1, with high group line to dispersion curve energy ratio) shows
experimental evidence that some portion of the energy associated with the group line feature contains
contributions from ocean surface waves. The inclusion of this portion of group line energy increases
phase accuracy when the ratio of group line to dispersion curve energy is high. When the ratio of
group line energy to dispersion curve energy was lower (dataset 2) performance of the FFT-method to
produce phase-resolved maps was more comparable to the POD-based reconstruction method. Thus,
the POD method can accurately reconstruct phase-resolved ocean surface velocity maps regardless
of the ratio of group line to dispersion curve energy, whereas the conventional FFT-filtering method
performs sub-optimally when group line energy is high.

The experimental evidence in this paper supports the numerical results of Plant and
Farquharson [10], showing that at least a portion of the group line energy is associated with wave field
features, and inclusion of these features contributes to more accurate phase-resolved reconstructions
of the ocean surface wave field. The wave field statistics (e.g., those derived from 1D wave spectra) do
not appear to be significantly impacted by neglect of the group line energy as shown in Kammerer [21],
but the phase-resolved wave field does appear to be impacted as shown in this manuscript. This
result implies that the group line mostly influences the phase-resolved wave field, which supports
the findings of Plant and Farquharson [10] that attribute the group line feature to wave interference
effects that would presumably also affect wave phasing due to the influence of superposition. Further
research should examine the significance of the group line energy in phase-resolved wave retrieval for
a wider range of conditions.
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Abstract: This study aimed at analyzing the effect of Synthetic Aperture Radar (SAR) imaging
parameters and environmental conditions on the standard deviation of the co-polarized phase
difference (σϕC ) evaluated over sea surface. The latter was shown to be an important polarimetric
parameter widely used for sea surface target monitoring purposes. A theoretical model, based on the
tilted-Bragg scattering, is proposed to predict the behavior of σϕC against incidence angle for different
roughness conditions. Then, a comprehensive experimental analysis, based on the processing of L-,
C- and X-band polarimetric SAR scenes collected over different test areas under low-to-moderate
wind conditions and covering a broad range of incidence angle, was carried out to discuss the
effects of sensor’s and environmental parameters on sea surface σϕC . Results show that SAR imaging
parameters severely affect σϕC , while the impact of meteo-marine conditions, under low-to-moderate
wind regime, is almost negligible. Those outcomes have significant relevance to support the design of
effective and robust algorithms for marine and maritime applications based on σϕC , including the
detection of metallic targets (ships and offshore infrastructures as oil/gas platforms, aquacultures,
wind farms, etc.) and polluted areas.

Keywords: oceans; Synthetic Aperture Radar; polarimetry; co-polarized phase difference

1. Introduction

The preservation and sustainable management of ocean resources and ecosystems are mandatory
goals according to several international strategies, policy programmes and technical reports as the 2030
Agenda, the Blue Growth European Union program and the United Nations report for sustainable
development [1–5]. Within this context, remote sensing tools, due to their synoptic view and frequent
revisit time, are of paramount importance for a broad range of applications including global weather
predictions, storm and hurricane warnings, wave and current forecastings, coastal storm surges,
ship routing, commercial fishing and climate change [6].

Microwave imaging of sea surface from space allows the retrieval of several geophysical
parameters that, once tailored models are available, can be transformed into added-value products that
include, among others, significant wave height from radar altimeters, wave spectrum from Synthetic
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Aperture Radars (SARs), sea surface wind field from scatterometers and sea surface temperature and
salinity from radiometers [6]. Furthermore, additional information on ocean targets of interest such as
sea ice extent, pollutants, metallic infrastructures, icebergs, ships, etc. can be derived.

When dealing with microwave active remote sensing of the oceans, the unprecedented benefits
offered by SAR sensors operating in multi-polarization modes is unambiguously recognized for a
wide range of marine and maritime applications, including coastline extraction [7–9], metallic target
detection [10–12], sea pollution monitoring [13–16] and sea ice observation [17–19]. All the approaches
share a similar physical rationale that relies on the exploitation of the different polarimetric properties
that characterize the target of interest and the sea clutter. Nonetheless, the performance is significantly
affected by the amount of scattering information available that, in turn, depends on [8,10,14,20,21]:

• SAR acquisition parameters, e.g., polarization, Angle Of Incidence (AOI), incident wavelength
and Noise-equivalent sigma zero (NESZ);

• target features, e.g., damping properties of the pollutant, ship orientation and ice layer thickness; and

• meteo-marine conditions, e.g., sea state, swell and wave patterns.

Among the different polarimetric SAR architectures, conventional dual-polarimetric SAR imaging
modes, i.e., the ones that consist of transmitting a linearly polarized wave (horizontal (H) or vertical (V))
while receiving coherently in an orthogonal linear basis (H–V), are attracting more attention in the
perspective of operational services since they offer, for a wide range of ocean applications, a sufficient
polarimetric information content over a large swath [7,16,22]. Among the dual-polarimetric SARs,
it is worth mentioning the one operated by the German TerraSAR-X (TSX) mission that provides
coherent HH-VV SAR measurements routinely. Among the polarimetric features that can be extracted
from a coherent dual-polarimetric HH-VV SAR, the standard deviation of the co-polarized phase
difference (σϕC ) has been demonstrated to be a powerful tool for marine and maritime applications.
In fact, it is successfully used to perform the observation of metallic targets [23–26], the monitoring of
oil pollution [14,16,27,28] and iceberg detection/sea ice classification [29,30].

All those applications share the same physical rationale, i.e., they exploit σϕC as a reliable and
robust estimator of the correlation between the co-polarized channels. This means that, at least from a
theoretical viewpoint, since sea surface scattering is ruled by the Bragg mechanism, the co-polarized
channels result in a unitary correlation that makes the co-polarized phase difference statistical
distribution resembling a Dirac delta function [31–34]. In real cases, when a low-depolarizing scenario
is considered, e.g., a sea surface Bragg scattering, a large correlation between co-polarized channels
applies that results in a narrow co-polarized phase difference distribution. Hence, marine targets, e.g.,
ships, oil slicks, icebergs, etc., that result in departure from Bragg scattering are characterized by a
broader co-polarized phase difference distribution. This means that σϕC can be successfully exploited to
emphasize non-Bragg scattering targets with respect to the Bragg-like sea surface background.

Following this rationale, in the literature, σϕC has been mainly investigated in terms of sea/target
separability (e.g., mean contrast and average target-to-clutter ratio are usually adopted as figures of
merit [17,20,23,26,35]). In [28], σϕC values spanning the range ≈ 3–18◦ have been reported, at C-band,
over sea surface under low-to-moderate wind conditions over different geographical locations.
Dierking and Wesche [29] found that, at C-band, larger σϕC values are in place when the measured
co-polarized channels approach the sensor’s noise floor. In [30], σϕC values of about 6◦ have been
measured at C-band with AOI = 40◦ over sea surface and thin sea ice. In [10], larger σϕC values, i.e.,
about 30◦, have been measured over sea surface at X-band. The authors also observed a sensitivity of
σϕC with both the estimation window’s size and the sea state parameters. In [36], the behavior of σϕC is
investigated with reference to a specific test case, i.e., the Taylor Energy oil seep in the Gulf of Mexico,
where a large TSX SAR dataset was considered under limited SAR imaging configuration (X-band,
AOI = 26◦, 34◦ and 43◦).

Hence, literature studies clearly point out the dependence of σϕC on both sensor’s and
environmental parameters. Nevertheless, the behavior of σϕC is analyzed for specific applications
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only, i.e., for a given target (ships and oil slicks); sensor’s configuration, i.e., for a given frequency
and/or limited AOI range; and environmental conditions [16,23,29,30,37]. In no case, to the best of
our knowledge, the role of sensor’s and environmental parameters on σϕC is investigated in a
systematic way.

In this study, a significant extension of the work carried out in [36] was made. The analysis
undertaken in [36] was improved as follows:

• The analysis on the effects of different frequencies, i.e., L- and C-band, and sea surface tilting
angle on sea surface σϕC was included.

• The analysis on the influence of incidence angle on sea surface σϕC was undertaken on a much
broader AOI range, i.e., about 20–60◦.

• The behavior of sea surface σϕC with respect to AOI was investigated by comparing model
predictions’ with actual SAR measurements over the whole range of Bragg AOIs (≈20–60◦).

Hence, a comprehensive analysis on the behavior of σϕC over sea surface was provided for the
first time. A large polarimetric SAR dataset collected in a wide range of SAR acquisition parameters
(frequency, AOI, and NESZ) and meteo-marine conditions (sea surface roughness and wind speed (WS))
was considered to give a more complete understanding on how those parameters affect sea surface
σϕC . Furthermore, to better interpret the experimental results, a theoretical scattering framework,
based on the polarimetric X-Bragg model, is proposed that allows giving a physical understanding of
the behavior of sea surface σϕC under noise-free conditions. It must be explicitly pointed out that this
comprehensive study is of paramount importance to support all the operational techniques based on
σϕC , e.g., to find the most suitable SAR configuration in relation with the ocean target to be detected.

The remainder of the paper is organized as follows: in Section 2, the theoretical background
that lies at the basis of the sensitivity analysis is presented; in Section 3, SAR dataset and ancillary
information are provided; in Section 4, the experiments based on the theoretical model provided in
Section 2 are presented and discussed; in Section 5, experiments related to the sensitivity analysis
undertaken on the actual SAR dataset are presented and discussed; and conclusions are drawn in
Section 6.

2. Polarimetric Framework

The co-polarized phase difference was theoretically predicted over sea surface using a polarimetric
sea surface scattering model. The latter, based on the X-Bragg scattering model developed in [36],
assumed that sea surface is mainly governed by the tilted-Bragg scattering mechanism. This is
a reasonable assumption under low-to-moderate wind conditions (i.e., ≈ 2–14 m/s) and under
intermediate AOIs (i.e., ≈ 20–60◦).

From the scattering viewpoint, sea surface is considered as a distributed low-depolarizing scene.
Hence, second-order descriptors, i.e., the covariance matrix C, are needed to describe sea surface
polarimetric scattering [38]. In the monostatic backscattering case, invoking reciprocity and the
reflection symmetry property, the 3 × 3 Hermitian and semi-definite positive covariance matrix C

can be defined as follows [38]:

C =

⎛
⎜⎝ C11 C12 C13

C12
∗ C22 C23

C13
∗ C23

∗ C33

⎞
⎟⎠ =

⎛
⎜⎝ 〈|Shh|2〉 0 〈ShhSvv

∗〉
0 2〈|Shv|2〉 0

〈SvvShh
∗〉 0 〈|Svv|2〉

⎞
⎟⎠ , (1)

where Spq is the complex scattering amplitude with {p, q} = {h, v}, while 〈·〉, | · | and ∗ stand for
ensemble average, modulus and complex conjugate operators, respectively.

According to the X-Bragg scattering theory, the sea surface covariance matrix can be predicted as
follows [39–41]:
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CX =

⎛
⎜⎝ CX11 0 CX13

0 CX22 0
CX13

∗ 0 CX33

⎞
⎟⎠ =

U−1

⎛
⎜⎜⎝

|Bh + Bv|2 (Bh + Bv)(Bh
∗ − Bv

∗)sinc(2β) 0

(Bh
∗ + Bv

∗)(Bh − Bv)sinc(2β) 1
2 |Bh − Bv|2

(
1 + sinc(4β)

)
0

0 0 1
2 |Bh − Bv|2

(
1 − sinc(4β)

)
⎞
⎟⎟⎠U ,

(2)

where the subscript “X” stands for X-Bragg model and U is a con-similarity linear transformation
given by [38]:

U =
1√
2

⎛
⎜⎝1 0 1

1 0 −1
0

√
2 0

⎞
⎟⎠ . (3)

In Equation (2), β is the surface local tilting angle, while Bh and Bv are the Fresnel complex
coefficients for Bragg scattering under horizontal and vertical polarizations, respectively, which are
given by [41]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Bh =
cos(AOI)−

√
ε−sin2(AOI)

cos(AOI)+
√

ε−sin2(AOI)

Bv =

(ε−1)

(
sin2(AOI)−ε

(
1+sin2(AOI)

))
(

ε cos(AOI)+
√

ε−sin2(AOI)

)2

. (4)

In the X-Bragg sea surface scattering model, β is related to the amount of surface roughness
and it rules both the cross-polarized backscattering and the HH-VV coherence, while the Bragg
scattering coefficients are related to the incidence angle and to the frequency-dependent relative electric
permittivity of seawater, ε [41]. β was assumed to be uniformly distributed in the range [−90◦, +90◦],
where β ≈ 0◦ describes an almost flat sea surface (negligible cross-polarized backscattering and
HH-VV coherence close to 1), while β ≈ ±90◦ characterizes an extremely rough sea surface (significant
cross-polarized backscattering and HH-VV coherence that tends to 0) [41]. In [15,40], it is found that
reliable β values fall within the range [−30◦, 30◦].

Once C is predicted according to the X-Bragg scattering model, the co-polarized phase difference
can be obtained:


 CX13 = 

(

1
2
|Bh + Bv|2 − 1

4
|Bh − Bv|2

(
1 − sinc(4β)

)− j�(Bh
∗ + Bv

∗)(Bh − Bv)sinc(2β)

)
, (5)

where 
 (·) and �(·) mean phase and imaginary part, respectively. Note that Equation (5) allows
explicitly pointing out the relationship between the co-polarized phase difference and SAR acquisition
parameters (through the Bragg scattering coefficients, i.e., AOI and frequency) and geometric/dielectric
properties of sea surface (through β and ε). Hence, it is a starting point to understand the effects of
such parameters on the co-polarized phase difference distribution.

3. Datasets

In this section, the SAR dataset and the ancillary data are briefly described.

3.1. SAR Dataset

The L-, C- and X-band polarimetric SAR dataset consists of 14 scenes acquired between June 2006
and July 2013. The two L-band Single-look complex (SLC) full-polarimetric Uninhabited Aerial Vehicle
Synthetic Aperture Radar (UAVSAR) scenes were acquired with an AOI ranging from about 22◦ to
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65◦ in the northern part of the Gulf of Mexico. The UAVSAR system operates at center frequency of
1.26 GHz and is characterized by a NESZ of about −53 dB at mid-swath [42].

The four L-band SLC full-polarimetric ALOS PALSAR-1 (AP) scenes were acquired between June
2006 and April 2009 with an AOI from about 22◦ to 25◦ in the northern part of the Gulf of Mexico and
off the northeastern coast of Brazil. The Japanese AP system operates at center frequency of 1.27 GHz
with a NESZ of −29 dB at near range (21.5◦) [43].

The four C-band SLC full-polarimetric RADARSAT-2 (RS) scenes were collected between January
2009 and May 2010 with AOI ranging from about 22◦ to 41◦ in the northern part of the Gulf of Mexico
and off the California coast. The Canadian RS system operates at center frequency of 5.40 GHz with a
NESZ of −35 dB [44].

The four X-band SLC dual co-polarimetric HH-VV TSX scenes were collected between December
2011 and July 2012 with an AOI range of 25◦ to about 35◦ in the northern part of the Gulf of Mexico.
The German TSX system operates at center frequency of 9.60 GHz with a mean NESZ of −22 dB [45].

Figure 1 shows excerpts (1000 × 1000 pixels) of the VV-polarized intensity images of the whole
SAR dataset representing homogeneous sea surface areas. Figure 1 is organized in a matrix format,
where rows refer to the different SAR sensors (UAVSAR, AP, RS and TSX from the top to the bottom)
and columns are arranged according to increasing AOI (from left to right). Note that, even though
the same decibel (dB) scale is adopted, i.e., [0 -40], the sea surface patterns and, therefore, the
backscattering change significantly according to the SAR imaging parameters and meteo-marine
conditions. An overview of the SAR dataset is provided in Tables 1 and 2. Note that the whole SAR
dataset is partitioned according to three AOI ranges: low (22–27◦), intermediate (31–35◦) and high
(38–42◦) (see Table 2).

Table 1. General information on SAR imagery.

SAR Sensor UAVSAR AP RS TSX

Frequency (GHz) 1.26 1.27 5.40 9.60
Imaging mode Full-polarimetric Full-polarimetric Full-polarimetric Dual co-polarimetric

Slant range x azimuth resolution (m) 1.7 x 1.0 9.4 x 3.6 4.7 x 5.1 1.2 x 6.6
Number of scenes 2 4 4 4

Nominal NESZ (dB) −53 −29 −35 −22

Table 2. Overview of the dataset.

SAR Data Ancillary Wind Info

SAR Sensor Scene ID Acquisition Date AOI Range (◦) Speed (m/s) Direction (◦)

UAVSAR

1 25/07/2013
22.0–27.0

4.2 115.431.0–35.0
38.0–42.0

2 22/06/2010
22.0–26.0

7.1 321.031.0–35.0
38.0–42.0

AP

3 02/04/2009 22.7–25.0 3.1 232.0
4 20/06/2006 22.7–25.0 4.9 298.6
5 14/03/2007 22.7–25.0 7.4 332.2
6 19/03/2009 22.7–25.0 8.0 243.3

RS

7 31/01/2009 22.6–24.2 9.0 215.1
8 04/05/2010 23.4–25.3 4.3 129.3
9 26/09/2009 31.3–33.0 4.7 142.9
10 01/05/2010 39.3–40.7 12.0 331.3

TSX

11 01/07/2012 25.0–26.7 4.1 1.3
12 05/12/2011 25.0–26.7 9.2 5.1
13 17/05/2012 33.0–34.5 3.8 168.6
14 19/06/2012 33.0–34.5 8.4 305.0

139



Remote Sens. 2019, 11, 18

Figure 1. SAR dataset. VV-polarized intensity images (excerpts’ size: 1000 × 1000), in dB scale, over
homogeneous sea surface area. Rows refer to the different SAR sensors: (a,b) UAVSAR; (c–f) AP;
(g–j) RS; and (k–n) TSX. Columns are organized according to increasing AOI: (a,c,g,k) low, i.e., 22–27◦;
(d,e,h,i,l,m) intermediate, i.e., 31–35◦; and (b,f,j,n) high, i.e., 38–42◦.

3.2. Ancillary Wind Field Information

The wind information was provided by the Physical Oceanography Distributed Active Archive
Center (PO.DAAC) that makes available science data to a wide user community [46–48]. The wind
information was collected from two different sources depending on the SAR imagery acquisition period.
The wind field co-located to SAR scenes acquired before 2012 was collected from the Cross-Calibrated
Multi-Platform (CCMP) project, while the wind field related to the SAR scenes acquired since 2012
was collected from the Advanced Scatterometer (ASCAT) instrument on MetOp-A (Meteorological
Operational Satellites) satellite.

The CCMP product is characterized by a spatial resolution of about 25 km and combines
cross-calibrated satellite winds from RMS Remote Sensing Systems derived from microwave
radiometers and from scatterometers, in situ measurements and reanalysis data from the European
Center for Medium-Range Weather Forecasts (ECMWF) ERA-40 Reanalysis [49]. The wind products
obtained from ASCAT are characterized by an effective resolution of 50 km and are delivered by the
European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) Ocean and Sea
Ice Satellite Application Facility (OSI SAF) through the Royal Netherlands Meteorological Institute
(KNMI) [50].
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The SAR scenes were all collected under low-to-moderate wind conditions, i.e., from about 3 m/s
to 12 m/s. The wind information is summarized in Table 2.

4. Model-Based Experimental Results

In this section, the behavior of σϕC against AOI and β is discussed using both the theoretical
model presented in Section 2 and actual polarimetric SAR measurements collected by UAVSAR
(see Tables 1 and 2). The latter, on the one side, is characterized by a very low NESZ that guarantees
high-quality measurements even at larger AOIs, while, on the other side, UAVSAR scenes cover a
broad range of AOIs (spanning from about 20◦ to 60◦) and, therefore, they make possible comparing
theoretical predictions with actual measurements over the whole range of Bragg AOIs.

To predict realistic σϕC values, we used β values estimated from the UAVSAR scenes using the
formula proposed in [51]:

sinc(4β) =
Tr(C)− 2C22 − 0.5�(C13)

Tr(C)− 0.5�(C13)
, (6)

where Tr(·) is the trace operator and �(·) means real part. Hence, for each SAR scene, three equal-sized
homogeneous sea surface regions of interest (ROIs) were excerpted that are characterized by low
(22–27◦), intermediate (31–35◦) and high (38–42◦) AOI, respectively. Accordingly, to better understand
the behavior of β, normalized histograms were computed (see Figure 2). It can be noted that the
empirical statistical distribution of β (see blue histograms) resembles a Gaussian bell for any AOI,
as witnessed by the fitted distribution (see red curves) that satisfies the chi-square test with 0.05
confidence interval.

Once β was obtained, to predict σϕC , a Monte Carlo approach based on 1000 independent
simulations for each AOI was implemented.

Figure 2. Normalized β histograms and fitted Gaussian distributions referring to: (a–c) UAVSAR scene
ID 1 acquired at low (22–27◦), intermediate (31–35◦) and high (38–42◦) AOIs, respectively; and (d–f)
the same for UAVSAR scene ID 2.

For each simulation, β was randomly selected according to a Gaussian distribution whose mean
and standard deviation values were obtained from the UAVSAR ROIs, i.e., 9.9◦ and 0.8◦ for the
UAVSAR scene ID 1 and 7.3◦ and 0.7◦ for the UAVSAR scene ID 2 (see Table 3).

Simulation results are depicted in Figure 3a, where the continuous and dashed lines are related to
β extracted from UAVSAR scenes ID 1 and ID 2, respectively. It can be noted that, in both cases, σϕC

increases with AOI, with σϕC values ranging from about 0.01◦ at near range to about 0.15◦ at far range.
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σϕC values measured from actual UAVSAR scenes using a 9 × 9 moving window are depicted in
Figure 3b, where continuous and dashed lines stand for UAVSAR scene ID 1 and ID 2, respectively.
It can be noted that both measured and simulated σϕC increase with the incidence angle. This witnesses
that the X-Bragg model succeeds in predicting the actual behavior of σϕC with respect to AOI. However,
the simulated and measured σϕC values are completely different, i.e., the simulated σϕC values are about
one order of magnitude smaller (measured σϕC values range from about 0.5◦ at near range to about 4◦

at far range). Nonetheless, this is not a surprising result. The theoretical scattering model predicts a
noise-free behavior referred to a low-depolarizing Bragg scattering surface, i.e., the co-polarized phase
difference distribution should resemble, ideally, a Dirac delta function (i.e., σϕC = 0◦), while UAVSAR
measurements, although very accurate, are noisy and refer to a real scattering surface, i.e., sensor and
environmental parameters cause decorrelation between the co-polarized channels that results in a
broader co-polarized phase difference distribution (i.e., larger σϕC values). Note that a similar trend for
σϕC is experimentally observed in [42]. Notwithstanding that, the global σϕC behavior with respect to
AOI is well-described by the X-Bragg scattering model.

Figure 3 also shows that the model succeeds in predicting σϕC values related to the UAVSAR
scene ID 1, which are slightly larger than the corresponding ones related to the UAVSAR scene ID 2.
This is because actual β values were used in the simulations.

Figure 3. Simulated (a); and measured (b) behavior of σϕC with respect to AOI relevant to UAVSAR
scenes ID 1 (red line) and 2 (blue dashed line).

5. Experimental Results

The sensitivity of σϕC with respect to acquisition parameters, i.e., AOI, NESZ and incident
wavelength, and meteo-marine conditions, i.e., WS and β, was analyzed using actual polarimetric SAR
data (Tables 1 and 2). When dealing with SAR imaging parameters, hardware and technical constraints
suggest that there is a close relationship among NESZ, AOI and wavelength [45,52]. In addition,
from a scattering viewpoint, when a Bragg surface backscattering is considered, the larger is the
AOI, the lower is the signal-to-noise ratio (SNR), i.e., the mean ratio between co-polarized sea surface
backscattering and the nominal NESZ [36,42]. When dealing with meteo-marine parameters, both β

and near-surface wind speed are related to geometrical sea surface characteristics, i.e., sea surface
roughness. Hence, a preliminary analysis devoted to understanding the relationship between β and
WS is due.

To accomplish this task, the normalized β histograms were evaluated for each ROI belonging to
AP and RS SAR scenes for low, intermediate and high AOIs (see Figure 4), where the mean WS values
obtained from the external sources described in Section 3.2 were also annotated. First, it can be noted
that β normalized histograms are broader (about 2–3 times) than the corresponding UAVSAR ones
(see Figure 2). This is most likely due to the higher NESZ that characterizes AP and RS rather than
rougher sea state conditions (see Table 3). In addition, no clear relationship between WS and β was
observed. This suggests that, although both β and WS are related to the sea surface roughness, there is
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no clear link between them. Consequently, the sensitivity of σϕC with respect to WS and β deserves to
be analyzed separately.

Figure 4. Normalized β histograms, evaluated over the homogeneous sea surface ROIs. The figure is
organized in a matrix format. Rows refer to: AP (a–d); and RS (e–h) SAR sensors. Columns refer to
the AOI: (a,e) low (22–27◦); (b,c,f,g) intermediate (31–35◦); and (d,h) high (38–42◦). The corresponding
mean WS values are also annotated.

Hence, the whole SAR dataset was processed according to the methodology described in Section 4
for the UAVSAR case. The only difference relies on the fact that AP, RS and TSX SAR scenes are
characterized by a significantly narrower AOI range if compared to UAVSAR (less than 3◦ from near
to far range, see Table 2) and, therefore, only one ROI was selected for each scene. σϕC maps, obtained
according to Migliaccio et al. [28], are shown in Figure 5, where it can be noted how σϕC is affected by
both SAR imaging parameters and environmental conditions. In fact, σϕC values range from about 0◦ to
more than 15◦ along the whole dataset. The lowest σϕC values are shown in Figure 5a,b, corresponding
to UAVSAR acquisitions (L-band, NESZ = −53 dB), while the largest values are related to TSX
acquisitions (X-band, NESZ = −22 dB) (see Figure 5m,n). In addition, since columns in Figure 5 are
organized according to increasing AOI (as in Figure 1), it can be noted that σϕC increases with AOIs, as
suggested by the model-based analysis presented in Section 4.

The visual interpretation was confirmed by the quantitative analysis undertaken on 1000
independent samples, randomly selected from the ROIs, whose σϕC mean and standard deviation
values were evaluated together with the average SNR (see Table 3). In Table 3, mean and standard
deviation values of the β parameter estimated from the whole dataset according to Equation (6) are also
listed. It must be noted that β values related to TSX SAR scenes are not available since full-polarimetric
information is needed to estimate β. The following subsections focus on the quantitative analysis of
the effects produced by sensor and scene parameters on sea surface σϕC , separately.
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Figure 5. σϕC (◦) images evaluated over the ROIs shown in Figure 1. Rows refer to the different
SAR sensors: (a,b) UAVSAR; (c–f) AP; (g–j) RS; and (k–n) TSX. Columns are organized according
to increasing AOI: (a,c,g,k) low, i.e., 22–27; (d,e,h,i,l,m) intermediate, i.e., 31–35; and (b,f,j,n) high,
i.e., 38–42.

5.1. Sensitivity Analysis: Meteo-Marine Parameters

The influence of WS and β on σϕC was analyzed. When dealing with the effects of WS on σϕC ,
according to Table 2, the AP SAR imagery were considered since the four SAR scenes were acquired
under very similar SAR imaging parameters, i.e., the same AOI (≈24◦) and incident wavelength
(L-band), and by almost the same estimated mean SNR, i.e., ≈19–22 dB for both channels (see Table 3).
Results listed in Table 3 clearly point out that, although the AP SAR scenes were collected under
different wind conditions, i.e., ≈3 m/s and 8 m/s for SAR scene ID 3 and 6, respectively, they are
characterized by very similar σϕC mean values, i.e., ≈ 3.1◦. In addition, WS does not affect significantly
the variability of σϕC —see the standard deviation of σϕC in Table 3, which is close to ≈ 1.3◦ for all AP
SAR scenes. The same comments apply for SAR scene ID 4 and 5. Hence, it can be concluded that,
under low-to-moderate wind conditions, σϕC is almost unaffected by WS.

To discuss the effects of β on σϕC , it is worth analyzing results that refer to AP and RS SAR
imagery—see ID 5–8 in Table 3, since they refer to SAR scenes collected under similar acquisition
parameters, i.e., L-band, AOI of ≈ 24◦ and average SNR of about 21 dB (C-band, AOI of ≈ 24◦ and
average SNR of about 28 dB). It can be noted that, from the results in Table 3, SAR scenes ID 5 and 6 are
characterized by almost the same σϕC values, i.e., 3.1◦ ± 1.3◦, although SAR scene ID 6 is characterized
by a β value that is about 30% larger than the one related to the SAR scene ID 5. The same comments
apply for SAR scene ID 7 and 8, which are characterized by almost the same σϕC values, i.e., 4.0◦ ± 2.0◦

and 3.7◦ ± 1.7◦, respectively, although the β parameter estimated from SAR scene ID 7 is about 25%
larger than the one evaluated from SAR scene ID 8.
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Hence, this experimental analysis shows that there is no clear trend between β and σϕC .
In particular, β does not play a dominant role in broadening/shrinking the co-polarized phase
difference distribution.

Table 3. Values of σϕC , β and HH and VV SNR evaluated within ROIs selected over a homogeneous
sea surface area. σϕC and β are presented as mean ± standard deviation value.

SAR Sensor ID AOI (◦) σϕC (◦) WS (m/s) β (◦)
SNR (dB)

HH VV

UAVSAR

1
22.0–27.0 1.0 ± 0.4

4.2
9.6 ± 0.8 39.0 38.7

31.0–35.0 1.1 ± 0.5 10.2 ± 0.9 35.6 35.9
38.0–42.0 1.4 ± 0.5 10.0 ± 0.7 30.1 32.1

2
22.0–26.0 0.7 ± 0.3

7.1
6.6 ± 0.7 38 40.3

31.0–35.0 1.0 ± 0.4 7.7 ± 0.7 35.7 38.7
38.0–42.0 1.3 ± 0.5 7.5 ± 0.6 30.2 34.9

AP

3 22.7–25.0 3.0 ± 1.3 3.1 8.3 ± 2.0 18.7 20.3
4 22.7–25.0 3.2 ± 1.3 4.9 8.2 ± 2.0 19.3 20.3
5 22.7–25.0 3.2 ± 1.4 7.4 7.3 ± 1.7 21.2 22.0
6 22.7–25.0 3.0 ± 1.2 8.0 9.5 ± 2.3 20.8 21.5

RS

7 22.6–24.2 4.0 ± 2.0 9.0 5.9 ± 1.7 27.8 28.2
8 23.4–25.3 3.7 ± 1.7 4.3 6.7 ± 1.9 27.4 27.8
9 31.3–33.0 5.0 ± 2.3 4.7 8.4 ± 2.6 19.2 21.4
10 39.3–40.7 8.0 ± 4.0 12.0 9.6 ± 3.2 14.5 18.2

TSX

11 25.0–26.7 8.8 ± 6.4 4.1 – 9.2 9.8
12 25.0–26.7 7.4 ± 5.7 9.2 – 10.2 10.4
13 33.0–34.5 18.4 ± 16.5 3.8 – 2.7 3.8
14 33.0–34.5 12.6 ± 10.0 8.4 – 5.8 7.9

5.2. Sensitivity Analysis: SAR Imaging Parameters

The influence of noise floor, incidence angle and wavelength on σϕC was analyzed. As explicitly
pointed out above, it is not straightforward to isolate their individual contribution since they
are inter-connected.

To analyze the effects of NESZ on σϕC , SAR scenes collected by the L-band UAVSAR and AP
platforms were considered since they are characterized by completely different NESZ values, i.e.,
−53 dB and −29 dB, respectively (see Table 1), while sharing the same operating frequency. In addition,
the AOI range that characterizes AP SAR scenes was included into the one provided by UAVSAR.
Hence, those datasets allow a fair analysis of the impact of noise floor in broadening/shrinking the
co-polarized phase difference distribution. UAVSAR scenes ID 1 and ID 2 and AP SAR scenes ID 3–6
are characterized by a SNR equal to ≈39 dB and ≈21 dB, respectively (see Table 3). Their mean σϕC

values are 0.85◦ and 3.1◦, respectively. Hence, one can note that, when halving the SNR, σϕC increases of
about four times. In addition, results listed in Table 3 show that a lower SNR corresponds to a larger
σϕC variability, whose standard deviation increases from 0.35◦ (UAVSAR scenes ID 1–2, low AOI) to
1.3◦ (AP SAR scenes ID 3–6), i.e., about four times.

When dealing with the effects of AOI on σϕC , first results presented and discussed in Section 4,
obtained considering UAVSAR imagery, suggest that AOI significantly affects σϕC (see Figure 3).
It was found that UAVSAR σϕC increases of about 23% (29%) when moving from low to intermediate
(intermediate to high) AOI. Nonetheless, to further confirm those results, RS and TSX SAR datasets
were analyzed according to Table 2. In particular, RS (TSX) SAR scene ID 9 (11) and SAR scene ID 10 (14)
were considered for lower and higher AOI, respectively. It must be underlined that both couples of
SAR images were acquired under the same incident wavelength and they are characterized by almost
the same SNR. When dealing with RS SAR scenes, an increase of about 25% in AOI results in an
increase of about 60% in the σϕC mean value, i.e., from 5◦ to 8◦ when AOI moves from about 32◦ to
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about 40◦ (see Table 3). When dealing with TSX SAR scenes, the σϕC mean value grows from about
9◦ to about 13◦ (≈ 43%) when the AOI increases from about 26◦ to about 34◦ (31%) (see Table 3).
The variability of σϕC also increases when AOI increases.

When dealing with the effects of incident wavelength on σϕC , according to Table 1, a fair analysis
cannot be undertaken since each SAR platform is characterized by its NESZ. However, the L-band AP
and C-band RS SAR imagery are considered since SAR scenes are characterized by the closest NESZ
values within the dataset (≈6 dB difference). In addition, they were observed under almost the same
AOI (see SAR scene ID 3–8 in Table 3). It can be observed, in Table 3, that, when moving from L- to
C-band SAR images, σϕC values increase, on average, of ≈24% (from 3.1◦ to 3.85◦), even though it must
be pointed out that the mean SNR that characterizes L-band SAR measurements, i.e., 20.5 dB, is about
36% lower than the corresponding C-band one, i.e., 27.8 dB. Hence, although the larger mean SNR
provided by C-band RS SAR measurements with respect to L-band ones would result in significantly
lower σϕC values (as discussed previously), an increasing trend of σϕC values was observed when
moving from L- to C-band SAR imagery, witnessing the key role played by the incident wavelength
on the co-polarized phase difference distribution. In addition, the σϕC variability, i.e., the standard
deviation of σϕC , also increases from L- to C-band of ≈42%. Results relevant to TSX SAR imagery
listed in Table 3 also confirm the increasing trend of σϕC when decreasing the incident wavelength.
It can be observed how, under almost the same AOI, σϕC values approximately doubled when moving
from C- to X-band (see SAR scenes ID 7–8 and 11–12, and SAR scenes ID 9 and 14). Nonetheless,
a completely different behavior applies for TSX SAR scene ID 13 that is characterized by the largest
σϕC mean and standard deviation values within the whole SAR dataset, i.e., 18.4◦ ± 16.5◦. This is
likely due to the fact that SAR scene ID 13 is severely corrupted by noise due to the high TSX NESZ
(see Table 1): the average SNR lies very close to 3 dB, which is a threshold value usually adopted to
judge the reliability of SAR measurements [24,42]).

6. Conclusions

A theoretical and experimental study aimed at investigating the sensitivity of σϕC with respect to
SAR acquisition parameters (NESZ, AOI, and incident wavelength) and meteo-marine conditions
(WS and β) was performed. The X-Bragg polarimetric scattering model was adopted as a reference
scattering framework to predict the behavior of σϕC over sea surface, while experiments on actual
measurements were accomplished considering a polarimetric SAR dataset that consists of 14 scenes
collected over sea surface under different imaging configurations and environmental conditions.
The main outcomes of this study are summarized as follows:

• The X-Bragg sea surface scattering model allows predicting the increasing trend of σϕC with
respect to AOI over sea surface along the whole range of Bragg scattering incidence angles, i.e.,
≈20–60◦.

• Under low-to-moderate sea state conditions, SAR imaging parameters have a stronger effect on
σϕC than meteo-marine parameters, which play a negligible role.

• Among SAR imaging parameters, incident wavelength and NESZ result in the most pronounced
effect on sea surface σϕC .

These outcomes can altogether support the design of polarimetric SAR architectures/algorithms
that aim at enhancing the contrast between a given marine target of interest (ships, surfactants, icebergs,
etc.) and sea clutter. Future works may include the extension of such sensitivity analysis on a larger
SAR dataset (i.e., to include higher wind regimes) and the application of the proposed approach to
find the most suitable SAR configuration to observe reference targets, e.g., ships.

Author Contributions: Conceptualization, A.B. and M.M.; Methodology, A.B. and F.N.; Software, A.B. and
C.R.d.M.; Validation, C.R.d.M.; Formal Analysis, A.B. and F.N.; Investigation, A.B., C.R.d.M., F.N. and
Domenico Velotto; Data Curation, C.R.d.M. and D.V.; Writing—Original Draft Preparation, A.B. and C.R.d.M.;
Writing—Review and Editing, A.B. and F.N.; and Supervision, F.N., D.V. and M.M.

146



Remote Sens. 2019, 11, 18

Funding: This study was partly funded by the Universitá degli Studi di Napoli Parthenope, project ID DING 202
and by the European Space Agency under the Dragon 4 project ID 32235.

Acknowledgments: The authors would like to thank the German Aerospace Center (DLR) that provided the
TerraSAR-X SAR data under the AO OCE1045, NASA JPL that provided free of charge the UAVSAR SAR data and
the wind field information under the PO.DAAC archive, the Japanese Space Agency (JAXA) that provided the
ALOS PALSAR-1 SAR data under the RA-6 project ID 3064, and the Canadian Space Agency (CSA) that provided
the RADARSAT-2 SAR data under the SOAR-EU project.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the
design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in
the decision to publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

AOI Angle of incidence
AP ALOS PALSAR
ASCAT Advanced Scatterometer
CCMP Cross calibrated multi platform
dB Decibel
ECMWF European Center for Medium-Range Weather Forecasts
EUMETSAT European Organization for the Exploitation of Meteorological Satellites
HH Horizontal transmit-horizontal receive
KNMI Royal Netherlands Meteorological Institute
ID Identifier
MetOp Meteorological operational satellite
NASA National Aeronautics and Space Administration
NESZ Noise-equivalent sigma zero
OSI SAF Ocean and Sea Ice Satellite Application Facility
PO.DAAC Physical Oceanography Distributed Active Archive Center
RMS Remote Sensing Systems
ROI Region of interest
RS RADARSAT-2
SAR Synthetic aperture radar
SLC Single-look complex
SNR Signal-to-noise ratio
TSX TerraSAR-X
VV Vertical transmit-vertical receive
WS Wind speed
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Abstract: The physics of the imaging mechanism underlying the emergence of ship wakes in
Synthetic Aperture Radar (SAR) images has been studied in the past by many researchers providing
a well-understood theory. Therefore, many publications describe how well ship wakes are detectable
on SAR under the influence of different environmental conditions like sea state or local wind,
ship properties like ship speed or ship heading, and image acquisition parameters like incidence
angle or satellite heading. The increased imaging capabilities of current satellite SAR missions
facilitate the collection of large datasets of moving vessels. Such a large dataset of high resolution
TerraSAR-X acquisitions now enables the quantitative analysis of the previously formulated theory
about the detectability of ship wakes using real data. In this paper we propose an extension of our
wake detectability model by using a non-linear basis which allows consideration of all the influencing
parameters simultaneously. Such an approach provides new insights and a better understanding of
the non-linear influence of parameters on the wake detectability and their interdependencies can
now be represented. The results show that the non-linear, interdependent influence of the different
influencing parameters on the detectability of wakes matches well to the oceanographic expectations
published in the past. Also possible applications of the model for the extraction of missing parameters
and automatic for wake detection systems are demonstrated.

Keywords: Wake detection; Synthetic Aperture Radar; support vector machines; detectability model

1. Introduction

The detection of ships on space-borne Synthetic Aperture Radar (SAR) imagery is hardly possible,
when the ship’s construction material is non-conductive and in turn the ship’s SAR-signatures are
not or badly represented in the SAR images [1]. Instead of searching for the signatures of ships
directly, their presence can be determined indirectly through the ship’s wakes [2]. Since the automatic
detection of ships on SAR has become of interest in earth observation, also the automatic detection of
wakes is taken into account [3]. However, the maturity of automatic ship detection methods is further
developed than of automatic wake detection methods, what is also reflected by the diverging amount
of publications proposing different methods for the detection approaches [4–9].

A similar context can also be observed in the existence of approaches for modeling the detectability
of ship or wake signatures in dependency to parameters influencing their detectability in SAR
imagery. In the following these parameters will be called influencing parameters. While different
approaches for modeling ship detectability have been published in past years and tuned for various
SAR missions [10–13], a model for the detectability of wake signatures using real data has only been
published recently [14]. However, theoretical assumptions about the dependency of influencing
parameters with the detectability of certain components of wakes using simulated data and physical
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contemplations exist since decades [15]. The well-known effects of tilt modulation, hydrodynamic
modulation, and velocity bunching are the basis for general theories about the emergence of ocean
surface waves and their visibility on SAR imagery [16–18].

SAR signatures of ship wakes are categorized into the four main wake components: turbulent
wake, narrow V-wakes, ship-generated internal waves, and the Kelvin wake pattern [19]. The turbulent
wake consists of a rough sea region (white water) up to two ship beams aft the ship induced by the
propeller and a calm sea region beginning after it and persisting up to tens of kilometers caused by the
attenuation of ambient short surface waves by ascending bubbles and surfactants. The rough sea region
is responsible of high radar backscatter due to the strong turbulence and breaking waves while the calm
sea region is responsible of low radar backscatter due to the smoothed surface [20–22]. By turbulent
wake in this study we only refer to the long and smooth region, as the white water region is observable
almost independently from the influencing parameters and easily confused with the ship signature
itself. The Kelvin wake pattern consists of transverse, divergent, and cusp waves [23]. The cusp waves
lie on the Kelvin wake arms and constitute the dominant backscattering responsible for the detectability
of the V-shaped Kelvin envelope [15,19]. In this study only high resolution SAR data acquired from
the TerraSAR-X satellite at a center frequency of 9.65 GHz (X-band) is used. Therefore, the narrow
V-wakes cannot be taken into account as their half angle on X-Band is so small that they are expected
being consumed by the turbulent wake [19,24,25]. According to [26] the visibility of Bragg-based
scattering generated by both narrow V-wakes and ship-generated internal waves depends on variety
of mechanisms making them also difficult to discriminate. Indeed, Bragg waves can be modulated by
ship-generated internal waves on the ocean surface making them also visible on X-Band [27], but their
emergence depends among other things on the water depth and the presence of either surface films
or interactions with surface currents [19,28]. These kinds of influences can neither be derived from
SAR automatically nor be provided by oceanographic models in adequate resolution. The requirement
for a large dataset in this study only permits the consideration of influencing parameters which are
automatically derivable. This means internal waves cannot be regarded appropriately and the scope of
this study is restricted to the detectability of only two main wake components: turbulent wake and
Kelvin wake.

Literature is rich in publications describing the dependency of influencing parameters with the
detectability of turbulent wake and Kelvin wake. Most of the conclusions are in good agreement with
each other. The following paragraphs are dedicated to reviewing previous studies about detectability
of ship wakes in dependency to the influencing parameters investigated in this study.

Lyden et al. [19] state that the whole Kelvin envelope is best detectable when observed in
alignment with the azimuth direction, and the individual cusp waves are better visible when traveling
into range direction. This statement is also supported by [15] and [23], while in [15] it is pointed out that
cusp waves propagating towards the radar-looking direction show an increase in backscatter relative to
the surrounding and cusp waves propagating away from the radar-looking direction show a decrease
in relative backscatter. Lyden et al. [19] further suggest that for turbulent wakes the relative-looking
direction to the ship track is less influencing, but a relative looking direction perpendicular to the ship
track produces the best results.

In [19] the authors pointed out that turbulent wakes and Kelvin wakes are best visible under
moderate wind conditions, i.e. wind speed in the value range 2.5–10 m/s [22]. Hence, the minimum
wind speed considered in this study is 2 m/s being also the minimum wind speed retrievable
from SAR imagery [29], and the maximum wind speed is 10 m/s. Hennings et al. [15] describe
that the Kelvin wake arms are better visible with lower wind speeds, as the contrast between cusp
waves and background sea surface roughness decreases under the influence of higher wind speeds.
Additionally, an outcome of the analysis conducted in [15] is the low dependency of detectability of
Kelvin wake arms to relative wind direction.

In [30] the author suggests that signatures of turbulent wakes are visible also under moderate
sea state conditions due the destruction of the ambient wind-generated waves by the wake’s currents,
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although their extent is larger in low sea state conditions. This is confirmed by Tunaley at al. [24]
at least for large vessels. Additionally, wakes generated by large vessels with slow velocities would
further be visible under low sea state conditions and azimuthal wind direction. Reference [24] further
stated that the Kelvin wakes are less visible in high sea state conditions and proposed that velocity
bunching produced by transverse waves is responsible for this. The worse detectability of turbulent
and Kelvin wakes in high sea state conditions is also confirmed by Zilman et al. [18].

Kelvin wakes are expected being better visible in HH-polarized images compared to VV-polarized
images [15,23]. For the turbulent wakes no definite conclusion about the difference regarding HH and
VV polarization was found in the literature, but the SAR imaging of water surfaces smoothed by the
turbulent wakes is similar compared to water surfaces smoothed by oceanic surface films. For oceanic
surface films, Gade et al. [31] found that there is no significant difference between detectability on HH-
or VV-polarized images. A slightly better total detectability on HH images compared to VV images
was also found by [14,21]. As the difference in dependency of detectability to influencing parameters
is insignificant, HH and VV are not distinguished in this study.

The influence of the radar’s incidence angle on wake detectability is similar for turbulent and
Kelvin wakes. While [15] states that the detectability of Kelvin wake arms decreases, when the
incidence angle increases, according to [32] the detectability of smoothed ocean surfaces, such as
turbulent wakes, also decreases with increasing incidence angle.

The model we proposed in [14] only takes three influencing parameters into account at a time
and assumes a linear dependency between the influencing parameters and the detectability of wakes.
Especially for influencing parameters with units measured by degree, a linear model basis is assumed
insufficient. Further, all influencing parameters must be considered simultaneously in one model in
order to obtain comparable probability of detection estimates. This paper presents results achieved
using a model with higher complexity and able to take into account all the influencing parameters
introduced in [14] together. Besides these influencing parameters, additional influencing parameters
are included and evaluated. Finally, possible applications of the extended wake detectability model
are demonstrated.

2. Materials and Methods

The flow-chart in Figure 1 displays the overall procedure divided in three main steps: Extraction of
labelled wake samples (Figure 1A); extraction of the influencing parameters from these samples
(Figure 1B); and building of the detectability model and its visualization (Figure 1C). The first two
steps are fully described in the remainder of this section while the third step deserves a dedicated
section which follows-on.

The data used in this study is based on a dataset of 791 high resolution TerraSAR-X scenes acquired
between the years 2013 to 2017 in North Sea, Baltic Sea and Mediterranean Sea. The scenes were
acquired in Stripmap or Spotlight mode mostly with HH-polarization (in detail: 530 HH-polarized,
81 VV-polarized and 180 dual-co-polarized images). For all images, at least one ship’s self-reporting
message via the Automatic Identification System (AIS) was available. AIS provides information about
ship properties like speed over ground or vessel location, which were used as influencing parameters
as well as to identify possible locations of wake signatures. For the latter, an automatic intersection of
AIS with the SAR images was executed to assign AIS messages to image regions. A manual correction
of these colocations was performed to let the unreliable AIS data fulfill ground truth requirements,
which means colocations have been discarded in case of large amounts of artifacts like ambiguities
or marine objects being present. Then on the basis of these two datasets co-located in space and time
a manual search for moving vessels was conducted (Figure 1(A.1)). During the search the background
of the moving vessels was checked for unambiguous visibility or non-visibility of wake signatures.
By doing so to each wake sample either the class label “detected” or “not detected” was assigned
(Figure 1(A.2)). Detailed information about the manual inspection procedure can be found in [14].
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Figure 1. Flow-chart describing the overall process from data preparation (A) over retrieval of relevant
parameter influencing the detectability (B) up to building of the detectability model and its visualization
(C). AIS: Automatic Identification System; SAR: Synthetic Aperture Radar.

The detectability of wake signatures is affected by a number of influencing parameters
(Figure 1(B.3),(B.4),(B.5)). A comparison of Pearson product–moment correlation coefficients was
conducted in order to select influencing parameters with distinct physical background. The correlation
coefficients are calculated for each influencing parameter between the parameter’s magnitudes of
all wake samples and their respective class labels, where “detected” was quantified as 1 and “not
detected” as 0. Figure 2 shows a graph with all twelve compared influencing parameters and their
absolute correlation scores. From influencing parameters with redundant physical background the
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respective influencing parameters with lower absolute correlation score were discarded (Figure 1(B.6)).
The discard applies to the following three redundant influencing parameters: WRF-Wind-Direction,
which describes the relative wind direction from the Weather Research and Forecasting Model (WRF)
towards the radar beam, SAR-Significant-Wave-Direction, which describes the relative wave direction
towards the radar beam, and AIS-Width, which defines the width of the ship producing the wake.

Figure 2. Plot of absolute correlation coefficients (Pearson product-moment correlation coefficients)
of each influencing parameter with the wake visibility used for selection of parameters with distinct
physical background. WRF: Weather Research and Forecasting Model.

A description of the remaining nine influencing parameters can be found in Table 1. It was decided to
not apply any further dimensionality reduction technique as a meaningful, distinct physical background of
the influencing parameters is supposed to be more important than expressive or independent parameters.
Extreme characteristics of the influencing parameters only rarely occur in reality, e.g., small ships can
hardy travel at high wind speeds and sea state conditions, or large ships cannot exceed their hull speed.
Thus, the value range of the nine selected influencing parameters was restricted in order to obtain a nine
dimensional space non-sparsely filled with wake samples, reducing the risk of curse of dimensionality as
well (Figure 1(B.7)). Additionally, the value range of influencing parameters measured in degrees was
projected down from 0◦–360◦ to 0◦–90◦. The performed projection is displayed in Figure 3. In this way
the complexity of the detectability model is reduced significantly, because only one detectability peak
must be modeled, instead of two with reversed direction as in [15]. After discarding all wake samples
with influencing parameters outside the defined value range, a training dataset consisting of 2156 labelled
wake samples was concluded (Figure 1(B.8))
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Table 1. List of the nine influencing parameters considered in the detectability model along with
a description and the value range, in which all samples in the training dataset lie; also a default
parameter setting used for the plots in Section 3 is provided.

Influencing Parameter Name Description Value Range (Default Setting)

AIS-Vessel-Velocity Velocity of the vessel derived from AIS messages
interpolated to the image acquisition time

0 m/s to 12 m/s
(6 m/s)

AIS-Length Length of the corresponding vessel based on
AIS information

10 m to 390 m
(100 m)

SAR-Wind-Speed
Wind speed estimated from the SAR background
around the vessel using the XMOD-2 geophysical

model function [29,33]

2 m/s to 10 m/s
(6 m/s)

Incidence-Angle Incidence angle of the radar cropped to TerraSAR-X’s
full performance value range

20◦ to 45◦
(30◦)

SAR-Significant-Wave-Height
Significant wave height estimated from the SAR

background around the vessel using the XWAVE_C
empirical model function [34]

0 m to 3 m
(0.5 m)

SAR-Significant-Wave-Length
Wave length estimated from the SAR background
around the vessel using the XWAVE_C empirical

model function [34]

75 m to 350 m
(150 m)

AIS-CoG-SAR-Wave-Direction

Absolute angular difference between AIS-CoG and
wave direction estimated from the SAR background

around the vessel using the XWAVE_C empirical
model function [34]. The 0◦–360◦ value range has
been projected to 0◦–90◦ as displayed in Figure 3.

0◦ to 90◦
(45◦)

AIS-CoG

The course over ground based on AIS information
relative to the radar looking direction (0◦ means

parallel to range and 90◦ mean parallel to Azimuth).
The 0◦–360◦ value range has been projected to 0◦–90◦

as displayed in Figure 3.

0◦ to 90◦
(45◦)

AIS-CoG-WRF-Wind-Direction

Absolute angular difference between AIS-CoG and
wind direction estimated by the Weather Research

and Forecasting Model (WRF) [35] nearby the vessel.
The 0◦–360◦ value range has been projected to 0◦–90◦

as displayed in Figure 3.

0◦ to 90◦
(45◦)

Figure 3. Example for a projection of a ship’s heading from 0◦–360◦ down to 0◦–90◦. The same
projection has been applied to all influencing parameters measured in degrees.
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3. Results

Figure 1 part C displays, where the procedures and results explained in this section are integrated
in the overall workflow executed for this study. In this section the detectability model is detailed and
the selection of the best-performing hyperparameters for adjustment of the model’s complexity is
explained. Further, is explained how the model can be used to visualize the detectability with respect
to the influencing parameters. Finally, the model results are displayed and described.

3.1. Tuning of the 9D SVM Detectability Model

In [14] a linear logistic regression classifier was used for binary classification of wake samples
with the class labels “detected” or “not detected” based on various combinations of three influencing
parameters. The probability of class affiliation to the class “detected” was used to express the
probability of detection. The same approach is adopted for this study, but a Support Vector Machine
(SVM) classifier is trained on all nine influencing parameters together (Figure 1(C.9)). SVM classifiers
have the advantage among other classifiers that they can be easily tuned in their complexity [36].
Actually SVMs are not capable of providing probability estimates of class affiliation, but this drawback
is overcome by training the probability estimates after classifier training as proposed in [37]. By only
considering the probability estimates of class affiliation to the class “detected”, which is calculated
from the nine-dimensional input to the SVM, the model can be expressed by the following simplified
formula:

PoD = f (x1, x2, x3, x4, x5, x6, x7, x8, x9), (1)

where xi ∀i ∈ {i ∈ N|1 ≤ i ≤ 9} denotes one of the nine influencing parameters listed in Table 1 using
the subscript i as index, f is the SVM detectability model and PoD ∈ [0, 1] the derived probability
of detection.

Using a linear kernel in the SVM is similar to the linear logistic regression classifier approach used
in [14]. Multiple settings for hyperparameters of the SVM model were tested for this study. Most of
the settings allowed a representation of non-linear influences of the nine selected parameters on the
detectability and their interdependencies. It turned out that a polynomial kernel with a degree of two
can outperform the linear model. First, a much higher complexity, induced by higher degree of the
polynomial kernel or due to radial-basis or sigmoid-kernel, leads to overfitting [36]. Second, for all the
nine selected influencing parameters only one detectability peak is expected, therefore a polynomial
kernel with a degree of two is sufficient to model this one peaked maximum. Different cost-parameter
values ranging from 0.01 to 100 at steps of multiples of 10 were tried and finally a low cost-parameter
was set, which allows the SVM model to adopt a large margin and account for the noisy dataset.
The gamma-parameter controls the magnitude of curvature of the separating hyperplane. Its tuning
is dependent on the cost-parameter, as a narrower margin requires a stronger bending (i.e., a lower
gamma-parameter) in case of non-perfectly separable classes and vice-versa. Gamma-parameter values
ranging from 0.001 to 0.1 at steps of multiples of 10 were tried, and the best performance was achieved
when gamma is set to 0.01 and cost to 0.1. The tuning of the coef0-parameter was performed over
the value range of 0 to 1000 at steps of multiples of 10. However the effect of this parameter on
the performance turned out negligible. This can be explained by the fact that a polynomial kernel
with a degree of two requires less trading off between the first-order and second-order terms of the
polynomial, compared to polynomial kernels with higher degrees. More detailed information about
tuning of SVM’s hyperparameters can be found in [38]. 10-fold-cross validation was applied to quantify
the model’s performance [39]. The best performing parameterization of the SVM model is given in
Table 2, with which a classification accuracy of ≈87% is achieved.
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Table 2. Settings of the Support Vector Machine (SVM)’s hyperparameters achieving highest
10-fold-cross validation accuracy on the training dataset.

Hyperparameter Name Value

Kernel type polynomial
Kernel degree 2
Cost 0.1
Gamma 0.01
Coef0 100

3.2. Visualization of 9D Detectability Model

As the full visualization of a model with nine dimensions is not feasible by two dimensional
figures, only extracted views into the model can be presented here. The views are constructed in a way
that they visualize the direct dependencies of influencing parameters with the probability of detection
and the interdependencies between the influencing parameters also with regard to detectability.
This means one view into the model can only display the value range of two influencing parameters
(one on the x-axis and one on the y-axis) at a time, when the probability of detection itself is represented
by a color-coded scale (quantifying in a restricted manner values on a z-axis). Such views into the
model are in the flowing denoted as 2D detectability charts or 2D charts. By plotting multiples of
these 2D detectability charts, each with a different fixed value setting for the influencing parameters
not displayed in the chart, the various effects of the influencing parameters on the detectability
can be analyzed. This way of visualizing the models was already proposed in [13] and [14] for the
data-driven 3D and 4D detectability models. While for the 3D model only one and for the 4D model
only two influencing parameters would have to be set to a fixed value in order to obtain one 2D
detectability chart, for the demonstrated 9D model seven influencing parameters must be set to a fixed
value. Therefore, the investigation of the 9D space required repeated combination of settings for the
influencing parameters and repeated plotting and chart interpretation.

The fastest way of producing each required 2D chart was to first sample the whole value range of
the 9D dimensional feature space into a 9D matrix (Figure 1(C.10)). Then each 9D sample from the
matrix was fed into the SVM model and the probability of class affiliation for the class label “detected”
was assigned to the respective sample, expressing the wake detectability for the respective setting
(Figure 1(C.11)). Finally, only the 9D matrix of probability estimates needed to be read out by accessing
the probability values according to the desired settings of influencing parameters for which the 2D
charts were required (Figure 1(C.12)).

3.3. Characteristics of Influences on Wake Detectability

The characteristics of how an influencing parameter affects the detectability can be categorized
into four types. The influences of parameters can also vary in dependency to other influencing
parameters. Such dependencies between parameters are here called interdependencies. In this section
the parameter with index c for which the characteristics are described is denoted as xc and its value
range as Ic. All the respective other parameters xo with indices o ∈ {i ∈ N|1 ≤ i ≤ 9Λi 
= c} are in the
set Xo 
=c and their respective value ranges are denoted Io.

3.3.1. Influencing Parameters with No Influence on Detectability

When no significant variation of probability of detection is observed for all magnitudes of the
characterized influencing parameter over its whole value range in combination with various magnitude
settings of respective other influencing parameters, then the characterized parameter is defined as
having no influence on the detectability. This means:

f ′
(
xc, Xo 
=c

)
=

∂ f
∂xc

= 0, ∀xc ∈ Ic, ∀xo ∈ Io (2)
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3.3.2. Influencing Parameters with Independent Monotonic Influence on Detectability

Detectability models with a linear basis like the ones presented in [13,14] are only capable
of representing independent monotonic influences of parameters on the detectability. Such an
independent monotonic influence on detectability can still be observed for the presented non-linear
SVM detectability model. The monotonic influence of such parameters is independent from the
magnitudes of any other influencing parameters. Therefore, the parameters reach relatively high
absolute correlation coefficients. However, the gradient of detectability’s variation for these parameters
can change with different magnitudes of other influencing parameters, while for a linear model the
gradients are constant. This means:

f ′
(
xc, Xo 
=c

)
=

∂ f
∂xc

≶ 0, ∀xc ∈ Ic, ∀xo ∈ Io (3)

3.3.3. Influencing Parameters with a One-peaked Maximum Influence on Detectability

The benefit of training a polynomial model is best demonstrated by parameters characterized with
a one-peaked maximum influence on detectability. For these the probability of detection reaches one
maximum at xc,max, which is located inside the value range of the influencing parameter’s magnitudes.
The gradient of detectability’s variation switches its sign at this maximum. On either side of the
maximum the influence on detectability is monotonic. This means:

f ′
(
xc,max, Xo 
=c

)
=

∂ f
∂xc

= 0, ∃xc,max ∈ Ic, ∀xo ∈ Io (4)

and

f ′′
(

xc,max, Xo 
=c
)
=

∂ f ′

∂xc

= 0, ∃xc,max ∈ Ic, ∀xo ∈ Io (5)

3.3.4. Influencing Parameters with Interdependent Monotonic Influence on Detectability

The presented more complex model is also capable of representing monotonic influences on the
detectability, which are not independent from the other influencing parameters. Such interdependent
monotonic influences mean that the influencing parameter’s gradient of detectability’s variation can
switch its sign, when the magnitude combination of other influencing parameters reaches a certain
setting Io,turn. On either side of this turning point the influence remains monotonic:

f ′
(
xc, Xo 
=c

)
=

∂ f
∂xc

≶ 0, ∀xc ∈ Ic, ∀xo ∈ Io ∩ Io,turn (6)

Such a turning point in the setting of the interdependent other influencing parameters is
characterized by either the influence of the characterized parameter showing no effect on detectability
(7) or the influence showing an insignificant one-peaked maximum at xc,max over the parameter’s
value range (8) and (9):

f ′
(
xc, Xo 
=c

)
=

∂ f
∂xc

= 0, ∀xc ∈ Ic, ∃xo ∈ Io,turn (7)

or
f ′
(

xc,max, Xo 
=c
)
=

∂ f
∂xc

= 0, ∃xc,max ∈ Ic, ∃xo ∈ Io,turn (8)

and

f ′′
(

xc,max, Xo 
=c
)
=

∂ f ′

∂xc

= 0, ∃xc,max ∈ Ic, ∃xo ∈ Io,turn (9)
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3.4. Categorization of Influencing Parameters by Characteristics of Influences

In the following subsections an extract of 2D detectability charts out of all investigated charts is
presented. These charts were selected in a representative way so that they provide an insight into the
parameter’s influences on detectability and the interdependencies between them. The default setting
of fixed values for the influencing parameters is given in brackets in the right column of Table 1.

3.4.1. AIS-CoG-WRF-Wind-Direction

AIS-CoG-WRF-Wind-Direction has no effect on the detectability of ship wakes. Figure 4 shows
that the probability of detection remains constant for any magnitude of AIS-CoG-WRF-Wind-Direction
for each setting of SAR-Wind-Speed and SAR-Significant-Wave-Height.

Figure 4. 2D detectability charts based on SAR-Wind-Speed, AIS-CoG-WRF-Wind-direction and from
left to right SAR-Significant-Wave-Height with (a) 0 m, (b) 0.5 m, and (c) 2.5 m.

3.4.2. AIS-Vessel-Velocity

AIS-Vessel-Velocity has an independent monotonic influence on detectability. This characteristic
can be observed in the Figure 5, but also in the Figures 8 and 9, which are presented later in this section,
when AIS-Vessel-Velocity is contrasted with the other two influencing parameters, Incidence-Angle and
SAR-Significant-Wave-Length, respectively. Already the relatively high absolute correlation coefficient
of this parameter indicates that it is also the parameter with most influence compared to the other
influencing parameters. With increasing magnitude of AIS-Vessel-Velocity, the detectability increases.

Figure 5. 2D detectability charts based on AIS-Vessel-Velocity, AIS-CoG and from left to right
AIS-Length with: (a) 20 m, (b) 100 m, and (c) 200 m.

3.4.3. AIS-Length

Figure 5 also shows that an independent monotonic influence is present for the AIS-Length
influencing parameter. With increasing magnitude of AIS-Length, the detectability increases.
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3.4.4. SAR-Wind-Speed

The independent monotonic influence of SAR-Wind-Speed on detectability is observable in the
Figure 4. With increasing magnitude of SAR-Wind-Speed, the detectability decreases.

3.4.5. SAR-Significant-Wave-Height

The fourth influencing parameter with independent monotonic influence is
SAR-Significant-Wave-Height. Its characteristics can be retrieved from Figure 4. With increasing
magnitude of SAR-Significant-Wave-Height, the detectability decreases.

3.4.6. AIS-CoG

From Figure 5 a one-peaked maximum influence of AIS-CoG on detectability can be derived.
It is located between magnitudes from ≈30◦ to ≈70◦, interdependently from AIS-Vessel-Velocity.
The maximum is located around 30◦ for low AIS-Vessel-Velocity and shifts towards 70◦ with
increasing AIS-Vessel-Velocity.

3.4.7. AIS-CoG-SAR-Wave-Direction

For AIS-CoG-SAR-Wave-Direction the detectability reaches its one-peaked maximum around
magnitudes from ≈60◦ to ≈70◦, which can be observed in the Figures 6 and 7. The interdependency to
other influencing parameters is negligible.

Figure 6. 2D detectability charts based on Incidence-Angle, AIS-CoG-SAR-Wave-direction and from
left to right SAR-Significant-Wave-Length with: (a) 75 m, (b) 150 m, and (c) 300 m, deviating from the
default setting for this chart AIS-Vessel-Velocity was set to 2 m/s.

Figure 7. 2D detectability charts based on Incidence-Angle, AIS-CoG-SAR-Wave-direction and from
left to right SAR-Significant-Wave-Length with: (a) 75 m, (b) 150 m, and (c) 300 m, deviating from the
default setting for this chart AIS-Vessel-Velocity was set to 12 m/s.
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3.4.8. Incidence-Angle

Incidence-Angle has an interdependent monotonic influence on wake detectability. Its monotonic
influence is interdependent to AIS-Vessel-Velocity, SAR-Wind-Speed and SAR-Significant-Wave-Height.
In the 2D detectability charts in Figure 8 the general sea surface roughness characterized by
SAR-Wind-Speed and SAR-Significant-Wave-Height is expressed by the Beaufort-Scale number
(abbreviated as bft) [40]. In the Figure 6 to Figure 8 the interdependency to AIS-Vessel-Velocity
is observable. When describing the influence of Incidence-Angle on detectability, four different
combinations with different parameter magnitudes must be considered

• For smooth ocean surface the turning point is located around 9 m/s of AIS-Vessel-Velocity:

o Below 9 m/s with increasing magnitude of Incidence-Angle, the detectability decreases by
few percentage points close to 9 m/s up to ~35 percentage points close to 0 m/s

o Above 9 m/s no influence of Incidence-Angle on the detectability is observed

• For rough ocean surface the turning point is located around 6 m/s of AIS-Vessel-Velocity:

o Below 5 m/s with increasing magnitude of Incidence-Angle, the detectability decreases by
few percentage points close to 6 m/s up to ~20 percentage points close to 0 m/s

o Above 5 m/s with increasing magnitude of Incidence-Angle, the detectability increases by
few percentage points close to 6 m/s up to ~20 percentage points close to 12 m/s

• This means, the turning point, at which the gradient of detectability’s variation of Incidence-Angle
switches its sign, decreases from 9 m/s to 6 m/s when the ocean surface gets rougher.

Figure 8. 2D detectability charts based on Incidence-Angle, AIS-Vessel-Velocity and from left to right
Beaufort numbers with: (a) 1 bft, (b) 3 bft, and (c) 5 bft.

3.4.9. SAR-Significant-Wave-Length

Also SAR-Significant-Wave-Length has a monotonic influence, which is interdependent from
AIS-Vessel-Velocity, SAR-Wind-Speed, and SAR-Significant-Wave-Height. All interdependent
monotonic influences are shown in Figure 9. When describing the influence of the
SAR-Significant-Wave-Length on detectability, again four different combinations with different
parameter magnitudes must be considered

• For smooth ocean surface the turning point is located around 3 m/s of AIS-Vessel-Velocity:

o Below 3 m/s with increasing magnitude of SAR-Significant-Wave-Length, the detectability
decreases by few percentage points close to 3 m/s up to ~10 percentage points close to 0 m/s
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o Above 3 m/s with increasing magnitude of SAR-Significant-Wave-Length, the detectability
increases by few percentage points close to 3 m/s up to ~5 percentage points close to 12 m/s

• For rough ocean surface the turning point is located around 6 m/s of AIS-Vessel-Velocity:

o Below 6 m/s with increasing magnitude of SAR-Significant-Wave-Length, the detectability
decreases by ~5 percentage points close to 6 m/s up to ~25 percentage points close to 0 m/s

o Above 6 m/s with increasing magnitude of SAR-Significant-Wave-Length, the detectability
increases by few percentage points close to 6 m/s up to ~20 percentage points close to 12 m/s

• This means, the turning point, at which the gradient of detectability’s variation of
SAR-Significant-Wave-Length switches its sign, increases from 3 m/s to 6 m/s when the ocean
surface gets rougher

Figure 9. 2D detectability charts based on SAR-Significant-Wave-Length, AIS-Vessel-Velocity and from
left to right Beaufort numbers with: (a) 1 bft, (b) 3 bft, and (c) 5 bft.

4. Discussion

The results obtained by the presented detectability model are partially based on influencing
parameters retrieved using other models, i.e., the XWAVE_C model for sea state retrieval, the XMOD-2
model for wind speed estimation and the WRF model for estimation of wind direction. Models possess
only limited capabilities of representing reality and different measures for accuracy apply for each of
them. Therefore, an interesting result of this study is that the detectability model trained on the basis
of these imperfect models and real data is able to reproduce many oceanographic expectations stated
by other researchers in the past. The accuracies of XWAVE_C and XMOD-2 were also considered in
the following discussion.

4.1. AIS-CoG-WRF-Wind-Direction

Hennings et al. [15] found out that the wind direction has a slight influence on the detectability
of the Kelvin wake arms. By using the influencing parameter AIS-CoG-WRF-Wind-Direction in the
detectability model proposed in this study, this behavior could not be reproduced. First, using the WRF
model as a substitute for the actually required high resolution wind direction is insufficient in terms of
local wind field variability. Higher resolution wind direction models or an automatic extraction of
wind direction from the SAR image is required. Second, the real influence is low and the presented
detectability model may also not be sensitive enough to represent this influence or the real influence is
interdependent on influencing parameters, which are not considered in this study.

4.2. AIS-Vessel-Velocity

The most pronounced influencing parameter is AIS-Vessel-Velocity. Figure 10 shows wakes
for the three different vessel velocity classes: slow with AIS-Vessel-Velocity up to 4 m/s
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(Figure 10a), medium with AIS-Vessel-Velocity between 4 m/s and 9 m/s (Figure 10b) and fast
with AIS-Vessel-Velocity above 9 m/s (Figure 10c). The differences between these classes are connected
with forcing waves of different amplitude, period and propagation. For example, for low speed vessels
the Kelvin waves and their SAR signature are weaker than the SAR signatures of turbulent wakes.

 

Figure 10. Slow vessel (a), middle speed vessel (b) and high speed vessel (c); for the slow vessel only the
turbulent wake is visible, for the middle speed the portside Kelvin wake arm produces a stronger signal,
for the high speed vessel the Kelvin wave is steeper producing bright backscatter. All other influencing
parameters have comparable setting for the above wake patches. The transvers waves and divergent
waves producing the Kelvin wakes arms are clearly observable behind the fast right vessel (c).

Briefly, faster vessels are better detectable as depicted by Figure 5 due to two reasons.

• First, a larger velocity results in a more extensive area of the ocean surface being affected in
a shorter time and larger wake signatures are better recognizable.

• Second, the compressed divergent waves are especially well imaged on SAR, because of the steep
waves with dense wave crests and high amplitudes forming shapes similar to corner reflectors
and also the resulting wave breaking [41,42].

In the following, a detailed explanation is given, why wakes from faster vessels are better
detectable. The propagation of wakes is based on the wake’s Froude number [43,44], a non-dimensional
measure for the wave drag behind the ship calculated using length and velocity of a ship by:

Fr = V/
√

gL, (10)

where V is the AIS-Vessel-Velociy, L the AIS-Length and g the gravitational acceleration. The amplitude
of the transversal waves decreases for larger Froude numbers and the V-shaped wave pattern becomes
narrower due to compressing of the divergent waves when the ship exceeds its hull speed [43,44].
Hence, the radar backscatter resulting from these waves is higher for larger incidence angles and so
wakes from fast vessels are better detectable. This is indicated by Figures 7 and 8.

Figures 6 and 8 on the other hand show that for slow vessels lower incidence angles are better
for detection, what can be explained as follows. The V-shaped Kelvin envelope with its delimiting
constant angle of ≈19.47◦ as defined by [45] is visible on SAR due to constructive interference between
the wave crests of divergent and transversal waves. The resulting higher amplitude and sometimes
wave breaking are only present for small Froude numbers, as the transversal waves vanish for larger
Froude numbers so that less constructive interference is present. The backscattering of this effect is
low, when compared to the effects occurring with large Froude numbers. Hardly affected by the ship
velocity is the turbulent wake, which is represented by a smooth ocean surface originating from the
ship’s propeller.

Similar to the detection of oil spills, the detection of the ship’s turbulent wake is easier with lower
incidence angles as the contrast between the smooth wake and the rougher surrounding ocean surface
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is more distinct [32]. With higher ship velocity only the extent of the smoothed ocean surface increases,
not the smoothness itself. In general the detection of smooth ocean surface areas is more difficult than
of the compressed divergent waves. All these different effects finally constitute the reason why an
increase of AIS-Vessel-Velocity generally implies a better detectability of wakes. Figure 8 indicates
additionally that a distinct change of the wake signature due to larger Froude numbers in most cases is
observable with an AIS-Vessel-Velocity between 5 m/s and 9 m/s.

4.3. AIS-Length

Beside the AIS-Vessel-Velocity also the AIS-Length is required for calculation of Froude number.
The Froude number is inversely proportional to AIS-Length, but the ascending slope of the Froude
number is higher for small magnitudes of AIS-Length, while for large magnitudes the gradient is much
smaller. This means small ships have in general larger Froude numbers than large ships. The increased
detectability of ship wakes with larger Froud numbers, as explained in Section 4.2, compensates to
some degree the fact that large ships produce higher waves, what makes them better detectable.
Still, the better detectability of large ships can be observed in Figure 2. When taking into account that
an increase if AIS-Length by a factor of 10 from 20 m to 200 m only leads to an increase of detectability
of only around 10 percentage points, then the effect of this influencing parameter on detectability is
almost negligible, what was already stated in [14].

4.4. SAR-Wind-Speed and SAR-Significant-Wave-Height

The influencing parameters SAR-Wind-Speed and SAR-Significant-Wave-Height are in
practice proportionally connected to each other as they both describe the roughness of the
ocean surface as a result of striking winds. Wake samples with high SAR-Wind-Speed
and low SAR-Significant-Wave-Height (storm formation) or low SAR-Wind-Speed and high
SAR-Significant-Wave-Height (only swell) occur rarely in the dataset, especially in the study area
North Sea, Baltic Sea and Mediterranean Sea. Thus, in the Figures 8 and 9 both influencing parameters
are combined using the Beaufort scale [40]. From Figure 4 a significant decrease of detectability can
be observed with increasing SAR-Wind-Speed and also a decrease of detectability with increasing
SAR-Significant-Wave-Height is pronounced. First, the rougher ocean conditions interfere with the
formation and propagation of all wake components in reality, what means wake signatures can only
occur less distinct and smaller. Second, the bright and inhomogeneous appearance of the ocean surface,
which is surrounding and superimposing the wake signatures, impedes the unambiguous perception
of the respective structures in the images [15].

4.5. AIS-CoG

The propagation direction of cusp waves can be approximated by propagation direction of
divergent waves [15]. The detectability of cusp waves forming the Kelvin wave pattern is expected to
be sensitive to AIS-CoG as the high amplitudes and breaking waves deploy their best backscattering
properties, when exposed perpendicularly by the radar beam contrary to the wave’s running
direction [15,19,23]. Actually the maximum detectability should then be approached for magnitudes
of AIS-CoG around 70.53◦. Indeed, two Kelvin arms exist for each wake, but after projection of the
ship’s heading onto the 0◦ to 90◦ value range both arms are projected onto 19.47◦, where 70.53◦ is the
projection of the perpendicular direction. Thus, also the information about the respective Kelvin arm’s
running direction is dropped during the projection of the ship’s heading. Figure 5 shows that generally
for slow ships and also for fast and small ships the maximum is indeed located around 70◦, but for fast
and large ships the maximum is around 30◦. As explained above, for fast ships the Kelvin wake arms
represent the more distinct feature and therefore actually the maximum should be located around
70◦ especially for fast ships. The maximum around 30◦ is contradicting here. However, the small
gradients around the maximum illustrate that the general dependency of detectability to AIS-CoG
is so marginal that inaccuracies in the AIS dataset could lead to false estimations for this condition,
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as only few samples of fast and large ships are presents in the data. The maximum around 30◦ for fast
and large ships should therefore be neglected.

4.6. AIS-CoG-SAR-Wave-Direction

The maximum detectability of the influencing parameter AIS-CoG-SAR-Wave-Direction is shifted
from ≈70◦ towards ≈60◦ for different magnitudes of SAR-Significant-Wave-Length as depicted in
Figures 6 and 7. The wavelength is directly estimated from SAR subscenes using a 2D fast Fourier
transform (FFT) and a consecutive search for the peak wavelength. Cases of non-pronounced imaged
wave signatures are not discarded from the dataset and this is recognized to lead to some inaccuracies
in the estimation of wavelength. Thus, this shift is also connected to these inaccuracies in wavelength
estimation and should be neglected. Similar to AIS-CoG also for the AIS-CoG-SAR-Wave-Direction
parameter the projection of the angles leads to a perpendicular angle of ocean waves towards Kelvin
wake arms in the magnitude of 70.53◦. A peak around 70.53◦ means that the waves in the two Kelvin
wake arms are colliding with the in parallel running ocean surface waves. Already the resulting
constructive interference and the in turn resulting heightened wave amplitude and wave breaking
increase the backscattering and therefore the wake’s detectability. In cases where the in-parallel
running waves collide with the Kelvin wake arm’s waves in the opposite running directions, this effect
is even more intense. Thus, the maximum around 70.53◦ matches oceanographic expectations.

4.7. Incidence-Angle

According to [15] and [32] Kelvin wake arms and turbulent wake are both less visible under
high incidence angle conditions, which is also observable in the Figure 8 for slow AIS-Vessel-Velocity.
However, according to Figure 8 for higher AIS-Vessel-Velocity the dependency is reversed, which is
an unexpected result regarding oceanographic expectations. This reversed dependency for high
AIS-Vessel-Velocity is not documented in the literature, but it is explained in Section 4.1 by the high
Froude numbers of fast vessels, which produce high amplitude waves and wave breaking at the Kelvin
wake arms.

4.8. SAR-Significant-Wave-Length

Generally, the interaction of wind waves with short wavelengths and steep crests with
the ship’s wake principally differs from the interaction of waves produced by swell with
longer wavelength and smooth crests. The complex dependency of detectability from different
magnitudes of SAR-Significant-Wave-Length is best indicated by Figure 9. In general, for short
SAR-Significant-Wave-Length the Kelvin wave pattern is less visible. The short waves mean the
dominant local steep wind waves, which interfere with the Kelvin wake arms in a destructive manner.
Further, the more inhomogeneous, brighter ocean background makes the recognition of the Kelvin
wave pattern more difficult. This is also observable in the Figures 6 and 7, where the gradients
around the maximum detectability regarding AIS-CoG-SAR-Wave-Direction are more pronounced for
short SAR-Significant-Wave-Length compared to long SAR-Significant-Wave-Length, what means less
influence of AIS-CoG-SAR-Wave-Direction on detectability for this condition.

In case of swell sea state conditions less or no collisions of ocean waves with the Kelvin wake
arms occur, as the swell waves only increase and decrease the general sea surface height without
interference [16]. On the contrary, small magnitudes of SAR-Significant-Wave-Length are slightly better
for recognizing turbulent wakes, what is indicated by Figure 9 for slow AIS-Vessel-Velocity. The reason
is that the darker turbulent wakes have a better contrast to the larger amount of surrounding bright
wave crests, which are flattened by the ship’s propeller in the wake.

5. Applications

Given the case that a wake has been detected, it is possible to reverse the detectability
model in order to derive information about the four missing parameters with independent
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monotonic influence on detectability. Three of these, namely AIS-Length, SAR-Wind-Speed,
and SAR-Significant-Wave-Height, are available in most of the cases or can directly be derived from the
SAR image. Therefore, the model reversion can be used to provide rough estimations of the underlying
AIS-Vessel-Velocity, which a moving object must possess as a minimum to produce a detectable wake
signature. For the plots in Figure 11, a probability of detection threshold of 80% is defined and the
minimum AIS-Vessel-Velocity is derived, for which the model provides a probability of detection
above the threshold. Figure 11 also provides a redundant view on the complex dependency of
Incidence-Angle as well as SAR-Significant-Wave-Length on AIS-Vessel-Velocity, SAR-Wind-Speed,
and SAR-Significant-Wave-Height with regard to detectability.

(a) (b) 

Figure 11. Minimum vessel velocity calculated for the default parameters and changing
Incidence-Angle (a) and SAR-Significant-Wave-Length (b) respectively. Results obtained by
varying SAR-Wind-Speed and SAR-Significant-Wave-Height are displayed by different line markers.
The minimum probability of detection was set to 80%.

Beside the estimation of minimum values for missing parameters, the detectability model can
be used to control an automatic wake detection process. Automatic wake detection based on Radon
Transform as developed by [5] could be accelerated by limiting the search space in the Radon domain
to wake headings, for which a certain level of probability of detection is reached. Also the search for
specific wake components may be skipped in case these components are not detectable under certain
characteristics of influencing parameters.

6. Conclusions

The linear wake detectability model presented in [14] has been extended by a non-linear basis
using a Support Vector Machine classifier with a polynomial kernel of second grade. The model
classifies the input data between the classes “detected” and “not detected”, where the probability of
class affiliation to the class “detected” is taken as measure for the probability of detection of ship wakes
in SAR imagery. Nine influencing parameters, which are affecting the detectability, are considered
simultaneously in a single model. Thus, the model can represent not only the dependency
of detectability from the influencing parameters, but also depict interdependencies between
them. The influencing parameters describe different environmental conditions (i.e., wind speed,
wind direction, sea state height, sea state direction and sea state wave length), ship properties (i.e., size,
heading, and velocity) and image acquisition settings (i.e., incidence angle, beam looking direction).

Most of the statements about the influencing parameters are theoretically expected, but in this
publication they are quantitatively proven using real data. The main outcomes are:

• The higher the vessel velocity the higher the detectability
• The radar beam looking direction and the ocean waves’ traveling direction should be

perpendicular to the angle of Kelvin wake arms for higher detectability
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• Rough, inhomogeneous ocean surface conditions worsen the detectability
• Slow ships are better detectable with lower incidence angles or shorter wavelengths of ocean

surface waves and fast ships are better detectable with higher incidence angles and longer
wavelengths of ocean surface waves

Beside the statements about the interdependencies of the different influencing parameters,
the presented detectability model can also be applied to control an automatic wake detection system.
Another possible application of the model is the estimation of minimum vessel velocities, which must
be present in order to make the ship produce a detectable wake signature, by inverting the model and
setting a fixed level for probability of detection.
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Abstract: Gaofen-3 (GF-3), the first Chinese spaceborne synthetic aperture radar (SAR) in C-band for
civil applications, was launched on August 2016. Some studies have examined the use of GF-3 SAR
data for ocean and coastal observations, but these studies generally focus on one particular application.
As GF-3 has been in operation over two years, it is essential to evaluate its performance in ocean
observation, a primary goal of the GF-3 launch. In this paper, we offer an overview demonstrating
the capabilities of GF-3 SAR in ocean and coastal observations by presenting several representative
cases, i.e., the monitoring of intertidal flats, offshore tidal turbulent wakes and oceanic internal waves,
to highlight the GF-3’s full polarimetry, high spatial resolution and wide-swath imaging advantages.
Moreover, we also present a detailed analysis of the use of GF-3 quad-polarization data for sea
surface wind retrievals and wave mode data for sea surface wave retrievals. The case studies and
statistical analysis suggest that GF-3 has good ocean and coastal monitoring capabilities, though
further improvements are possible, particularly in radiometric calibration and stable image quality.

Keywords: synthetic aperture radar; GF-3; coast and ocean observation; sea surface roughness

1. Introduction

A major reason that synthetic aperture radar (SAR) is favored for many applications in ocean
observations is its high spatial resolution as an imaging radar. Simply put, SAR images allow us to
observe the fine structures of many interesting oceanic and atmospheric phenomena and processes.
Furthermore, as an active radar, SAR has the capability to work independent of sunlight and the
ability to penetrate cloud cover and, to some extent, rain. Despite the short 106-day lifetime of the first
civil ocean SAR onboard the SEASAT mission, it showed great potential for spaceborne SAR ocean
observations [1]. The successful launch by the European Space Agency (ESA) of ERS-1 in 1991 and
ERS-2 in 1995, both of which had onboard SAR sensors, enabled the operational acquisition of data for
a long period of twenty years. In the 1990s, together with the ERS-1 and 2 SARs, another C-band SAR,
Radarsat-1 (launched in 1995) and an L-band SAR, JERS-1 provided a large and diverse body for earth
observations and significantly advanced our knowledge of the ocean, coastal zones, and polar regions.

The ocean is vast, with high spatial variability, therefore, it is preferable for spaceborne SAR to
capture images with a large swath in addition to good spatial resolution. During the last century, the
Radarsat-1 and Advanced SAR (ASAR) have acquired images with a swath width over a few hundred
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kilometers. Wide-swath or ScanSAR images generally have a spatial resolution of tens of meters and,
more importantly, can map a large area of the open sea and coast, which makes them particularly
suitable for studying meso-scale oceanic and atmospheric processes, e.g., by mapping the distribution
of internal ocean waves [2], observing atmospheric solitons [3], estimating the wind speed of tropical
cyclones [4], and measuring sea surface velocity [5].

The year 2007 marks an important advance in the development of spaceborne SAR; two X-band
spaceborne SAR, the TerraSAR-X (TSX) and Cosmo-SkyMed and the C-band SAR, Radarsat-2 (R2), were
launched. Compared with previous spaceborne SAR missions, the new generation of SAR sensors has
several advantages. One advantage is that the new generation can acquire images with a high spatial
resolution of up to 1 m in spotlight mode [6–8]. This offers a unique opportunity to detect targets in
the ocean and coast, e.g., for ship detection [9–11]. The other advantage is that these SAR sensors have
polarimetric capabilities of acquiring data in different polarization combinations of VV, HH, VH and
HV. These SAR polarimetric data are widely exploited for oil spill detection or classification [12–14],
analysis of objects scattering or their classification in coastal intertidal flats [15–17], and sea ice
detection and classification [18–20]. In addition to the general advantages of the aforementioned
high spatial resolution and polarimetry, advanced SARs have constellation configuration design.
The Cosmo-SkyMed, TSX/TanDEM-X (TDX) and Sentinel-1A/1B missions, as well as the forthcoming
Radarsat Constellation Mission (RCM), all operate in constellations, which significantly reduces the
temporal intervals of SAR data acquisition and therefore enhances the capture of dynamic sea surface
information [21–23]. In particular, TSX can cooperate with its twin, TDX, to achieve along-track
interferometry and to retrieve sea surface currents in high spatial resolution from space [24].

During the development of spaceborne SAR, the wave mode of the ESA’s SAR missions has
played an interesting role in ocean observations. These missions acquired “imagettes” (small size
images, approximately 5–10 by 5–10 km) continuously over the global oceans and they are dedicated
to ocean wave measurements, as the name indicates. The wave mode began during the ERS/SAR
mission [25–28] and became operationally available for public users with the delivery of standard
Level-1b (single-look-complex data) and Level-2 (swell spectrum) products. Along with the ASAR
wave mode data, available from October 2002 to April 2012, statistical analysis of global ocean waves
using these data provides additional insight into, e.g., ocean swell propagation and crossing in global
oceans [29]. The current Sentinel-1A/1B SAR missions are continuing to acquire wave mode data with
a larger image size of 20 km by 20 km and alternative incidence angles of 23◦ and 36◦ [30]. Since the
Sentinel-1 wave mode image size is comparable to standard stripmap images, and these images are
acquired globally and consecutively, we can expect wider applications in ocean observations based on
these data. Besides the wave mode data of Sentinel-1A/1B acquired in global ocean, the Interferometry
Wide (IW) swath (250 km) and Extra-Wide (EW) swath (400 km) modes data are acquired intensively
in European water for ocean monitoring, as well as in polar regions for sea ice monitoring. Both the
image modes employ the TOPSAR (Terrain Observation with Progressive Scans SAR, [31]) technique
to avoid scalloping [32] and generate homogenous SAR images in large coverage. This technique can
lead to better sea surface wind retrievals and the Sentinel-1A/1B sea surface wind products (one of the
OCN products) become operationally available.

In August 2016, the Chinese first civil spaceborne SAR, named Gaofen-3 (a phonetic rendition
of the Chinese word for “high spatial resolution”), joined the list of spaceborne SAR missions
in orbit. Several studies have used GF-3 for ocean monitoring, mainly focusing on sea surface
wind and wave retrievals. In [33], 56 data pairs of GF-3 collocations with buoy measurements
were used to preliminarily assess the quality of sea surface wind retrieval; the results indicated a
root-mean-square-error (RMSE) of 2.46 m/s. Ren et al. [34] conducted a more detailed analysis of
sea surface wind retrieval from GF-3 Quad-Polarization Stripmap (QPS) data, not only in the VV but
also HH and HV polarizations. An empirical algorithm was proposed in [35] to derive significant
wave height (SWH) from GF-3 wave mode data. In total, 12 coefficients of the empirical algorithm
were tuned using the collocations of the GF-3 wave mode data with the WaveWatch III mode results.
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However, it seems that only cut-off information derived from the GF-3 data [36] may also yield a
reasonable SWH compared with the rather complicated empirical algorithm in [35].

After over two years of operation, GF-3 has acquired a large amount of global data; therefore,
an overall assessment of its data quality and potential applications is essential. In this paper, we
provide an overview of GF-3’s capabilities in ocean and coastal observations, focusing on presenting
representative cases over a few “super” test sites where similar studies have been conducted using
other spaceborne SAR data, to evaluate the full polarimetry, high spatial resolution and wide-swath
imaging capabilities of GF-3. We also address the quantitative retrieval of sea surface wind and wave
information from GF-3 data. Although some studies on wind and wave retrieval from GF-3 data have
been reported, as previously mentioned, it is important to conduct an intensive investigation on how
accurately we can derive sea surface wind and wave parameters from GF-3 data.

This paper is organized as follows. Section 1 presents a brief introduction of GF-3. Section 2
provides some representative examples of the use of GF-3 for ocean and coastal observations.
In Section 3, we focus on evaluating data for sea surface wind and wave retrievals. Finally, conclusions
and an outlook are given in Section 4.

2. Brief Introduction of GF-3

GF-3, which was launched by the “Long March 4C” rocket on 10 August 2016, operates in C-band
(5.3 GHz) at an altitude of 755 km in a polar sun-synchronous orbit. The repeat cycle of the orbits
is 29 days. Currently, four ground stations in China are receiving the GF-3 SAR data, the Miyun
station (in the Beijing suburb), Kashi station (in Xinjiang, western China), Sanya station (in Hainan,
southern China) and Mudanjiang station (in the northeastern China), as well as an overseas station in
Kiruna, Sweden.

GF-3 has flexible imaging modes. The five general modes are spotlight, stripmap, ScanSAR
and wave. GF-3 also has several subclasses for the various general imaging modes. For example,
the stripmap mode has standard stripmap, quad-polarization stripmap and fine stripmap modes.
In addition, GF-3 can acquire data operationally in full polarization of VV (Vertical-Vertical), HH
(Horizontal-Horizontal), VH and HV (Horizontal-Vertical) with various swath widths (up to 50 km)
and spatial resolutions (up to 8 m). Table 1 lists the details of the available imaging modes of GF-3 and
their technical specifications.

Table 1. Available GF-3 imaging modes and the corresponding technical specifications.

No. Imaging Mode Incidence Angle (◦) Nominal Resolution (m) Swath Width (km)

1 Spotlight Mode 20–50 1 10 × 10

2

Stripmap Mode
Superfine 20–50 3 30

Fine 19–50 5 50
Wide Fine 19–50 10 100
Standard 17–50 25 130

Quad-pol. 1 20–41 8 30
Quad-pol. 2 20–38 25 40

3

ScanSAR Mode
Narrow 17–50 50 300

Wide 17–50 100 500
Global 17–53 500 650

4 Wave Mode 20–41 10 5 × 5

The standard GF-3 products include Level-1a single-look-complex data, Level-1b intensity data
and so-called Level-2 projected and georeferenced intensity data. The data are stored in TIFF format
for each polarization channel, and the ancillary information (i.e., the metadata) is stored in XML files,
similar to the standard products of other present spaceborne SAR missions. Along with the rational
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polynomial coefficients (RPC) file, one can derive geolocation information for individual pixels of each
GF-3 SAR image.

3. Uses of GF-3 for Coastal and Open Ocean Observations

In this section, representative cases including coastal observations of an intertidal flat and
offshore wind farm turbulent wakes and open ocean observations of internal waves, are presented to
demonstrate GF-3’s polarimetry, high spatial resolution and wide-swath imaging capabilities. Some of
these cases are similar to previous studies using other spaceborne SAR data, such as TSX, Radarsat-2
and ENVISAT/ASAR.

3.1. Determination of the Scattering Characteristics of an Intertidal Flat in the Subei Shoal with GF-3 Full
Polarimetric Data

To demonstrate the polarimetric capabilities of GF-3, we use an example from the Subei Shoal,
which has unique radiation characteristics. Surface objects in the region include a complex mixture
of mud flats, tidal current channels, aquaculture rafts and offshore wind farm turbines. Along with
tidal variations, the radar backscatter characteristics of the objects in this area show high spatial and
temporal variations in spaceborne SAR images, particularly in different polarization channels, as they
have different scattering mechanisms. Therefore, the Subei Shoal is an appropriate site to test the
polarimetric capability of SAR.

Figure 1a shows the radiometrically calibrated HV polarization from GF-3 Quad-Polarization
Stripmap (QPS) data acquired on 5 October 2017. In the HV-polarized GF-3 SAR image, the distinct
bright and ordered strip features are rafts composed of bamboo, ropes and nets for Porphyra aquaculture.
Figure 1b is a photo of a single raft, while the photo in Figure 1c shows an array of numbers of rafts
seen from sky. The unique structures of these rafts can induce strong volume scattering and therefore
they are presented as bright patterns in the HV-polarized SAR image. The radar backscatter features of
mud flats in the HV-polarized image are complicated, showing both bright and dark patterns. Thanks
to high spatial resolution of the image, we can see the veering black lines, which are water channels in
the mud flats.

In a previous study [16], by exploiting dual-polarization TSX data (HH and VV polarizations)
and quad-polarization R2 data (VV, HH, VH and HV polarizations), we conducted a detailed analysis
of the polarimetric characteristics of different objects in this area. Here, we apply the same method,
i.e., the four-component scattering power decomposition [37] to GF-3 quad-polarization data to show
various scattering characteristics of objects in the intertidal flat area. Figure 1d is false-color composite
image from the GF-3 QPS data, using the four-component decomposition method where the red, blue
and green channels represent the double bounce, surface and volume scattering, respectively. A brief
description of the four-component scattering power decomposition method follows.

Equation (1) derives the Pauli vector of the polarimetric SAR data, and the coherency matrix is
given in Equation (2):

→
kp =

1√
2

⎡
⎢⎣ SHH + SVV

SHH − SVV
2SHV

⎤
⎥⎦ (1)

〈[T]〉 = 〈
→
kp·

→
k∗p〉 =

⎡
⎢⎣ T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎥⎦ (2)

where SHH , SVV , SHV are the scattering matrix elements, and it is assumed that SHV = SVH satisfies
the reciprocity condition. The symbol 〈·〉 denotes the ensemble average in an imaging window, and
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the superscript ∗ denotes the complex conjugation. The coherency rotation after a rotation by angle θ

is obtained using Equation (3), as follows:

[T(θ)] = [R(θ)]〈[T]〉[R(θ)]∗ (3)

where [R(θ)] =

⎡
⎢⎣ 1 0 0

0 cos 2θ sin 2θ

0 − sin 2θ cos 2θ

⎤
⎥⎦ (4)

The rotated coherency matrix T(θ) is further decomposed into four scattering components
corresponding to the surface, double bounce, volume, and helix scattering mechanisms, as follows:

〈[T(θ)]〉 = fs〈|T|〉sur f ace + fd〈|T|〉double + fs〈|T|〉volume + fh〈|T|〉helix = Ps + Pd + Pv + Ph (5)

where fs, fd, fv and fh are the contributing coefficients, and Ps, Pd, Pv,Ph and are the decomposition
powers for the surface, double bounce, volume and helix scattering mechanisms, respectively.
To determine the dominant scattering mechanism from the decomposition results, each scattering
component is normalized using Equation (6).

Ni =
Pi

Ps + Pd + Pv + Ph
(i = s, d, v, h) (6)

The decomposition result suggests that the polarimetric characteristics of the objects in this area
are complex. The aquaculture rafts show highly variable polarimetric characteristics in different areas.
Near the sea, they generally appear green in the false-color composite image, which indicates that
volume scattering is dominant. This result is likely induced by the dense Porphyra attached to the rafts
(see Figure 1b), as October–November is the high season for Porphyra aquaculture in the area [38].
Away from the sea, the water level decreases, and some rafts are exposed to the air; therefore, the
dihedral angle between the bamboo grid of the rafts and the sea surface can induce double bounce
scattering. Thus, they appear red and yellow (indicating a mixture of double bounce and volume
scattering) in the false-color image. Some rafts even appear magenta, which suggests a mixture of
double bounce and surface scattering. This phenomenon probably indicates few Porphyra attached on
the rafts, so no volume scattering is induced.

An interesting feature is the yellow area in the left-hand part of the false color composition
map, which indicates a mixture of double bounce and volume scattering in the mud flat, whereas the
corresponding HV-polarized signal is very weak, as well as in other polarization channels. We do not
have a plausible explanation for this feature. We conducted an in situ experiment in our previous study
using TSX and R2 and found that visual inspection is very helpful for interpretation of polarimetric
decomposition results in this area. However, in this case, we have only the SAR data and therefore,
our analysis is mainly based on previous experience. The Subei Shoal is a unique area where both
natural and man-made objects can show variable polarimetric characteristics due to changes in the
tidal level and human activities. Further experiments to analyze the GF-3 polarimetric capabilities
should focus on acquiring time-series data, as well as with essential field work to better understand
the different polarimetric characteristic of various objects.
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Figure 1. Cont.
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(d) 

Figure 1. (a) Radiometrically calibrated HV polarization channel of the GF-3 QPS data acquired on
5 October 2017, in an ascending orbit. (b) Photo of a single raft in the study area, adapted from [39].
(c) Top-view photo of aquaculture rafts taken in the GF-3 imaged area. (d) False-color composite image
generated using the normalized four-component decomposition of the GF-3 QPS data.

3.2. Observations of Offshore Wind Turbine Tidal Current Wakes

Numerous offshore wind farms have been constructed worldwide. The offshore wind turbine
wake phenomenon is an important factor that needs to be considered for wind farm construction and
operation. These wakes are generated because the turbine height, which often exceeds 90 m above the
sea surface and the turbine’s rotation induces spirals downstream in the air. When the helix vortices
“touch” the sea surface and modulate Bragg waves, the sea surface roughness is consequently changed;
therefore, when these areas are imaged by SAR, they often appear dark [40]. Spaceborne SAR, due to
its high spatial resolution as an image radar, demonstrates unique advantages in monitoring offshore
wind turbine wakes in terms of determining wake length, deficit velocity and wake meandering [41,42].

Interestingly, the wakes in offshore wind farms observed by SAR are not always induced by the
rotating turbine turbulence in the air. In a previous study [43], a TSX image acquired over the East

176



Remote Sens. 2018, 10, 1929

China Sea offshore wind farm (near Shanghai) shows a distinct wake pattern downstream from each
wind turbine. Based on multiple satellite observations and a numerical simulation, it was concluded
that these patterns were generated by turbulence induced by interactions between the offshore wind
farm foundation and a strong tidal current in Hangzhou Bay. Compared with the offshore wind turbine
wakes generated by turbulence in the air, these wakes have a small spatial scale of approximately
500–1000 m in length, which varies with tidal current intensity and turbine foundation size. Therefore,
these relatively small wakes are usually observed in SAR images with a high spatial resolution, e.g.,
in the TSX stripmap image with a spatial resolution of 3 m.

GF-3 has a fine stripmap image (FSI) mode, with a nominal spatial resolution of 5 m in both
the azimuth and range directions. Figure 2a shows a GF-3 FSI image (HH polarization) acquired at
9:45 UTC on 15 February 2017, over the offshore wind farm in the East China Sea. The upper left part
shows the urban area of Shanghai, and the upper right shows the Changjiang river estuary, where the
visible linear features are induced by ebb tide currents. The wind farm is located to both the east and
west of the Donghai Bridge (the veering line in the middle of the image). The sub-image in Figure 2b
shows better visualization of sea surface features over the offshore wind farm area. In this sub-image,
one can see linear patterns downstream of each offshore wind turbine with an approximately west-east
orientation, whose lengths vary between 500 and 2000 m. One example of variations of the Normalized
Radar Cross Section (NRCS) in the turbulent wake is shown in Figure 2c, which suggests that the NRCS
gradually recovers downstream to a state comparable with that upstream of the turbine; therefore,
the wake length is approximately 1000 m, as marked by the red dashed line in the figure. These
patterns, which were induced by the water turbulence generated by the interaction between tidal
currents and offshore wind turbine piles, are the same as those observed in a TSX image [41]. The piles
are rounded, with diameters of approximately 15 m. In the southern part of the wind farm, there
is a longer and more prominent wake pattern at the bridge induced by water turbulence from the
interaction between tidal currents and the bridge piers. In the figure, we can also observe much longer
bands, particularly apparent in the northwest of Xiaoji Hill, which are wind wakes. The European
Centre for Medium-Range Weather Forecasts (ECMWF) ERA-interim model suggests the sea surface
wind direction was approximately 320◦ at 9:00 UTC on 15 February 2017, which is consistent with
northwest-southeast orientations of these wide and long bands, i.e., suggesting they are wind wakes.

Interestingly, we note that the sea surface wind direction in both the GF-3 and the TSX cases are
cross with the tidal current direction. As previously discussed in the TSX case [43], wind stress plays
an important role in the manifestation of the tidal current wake on SAR images. When the sea surface
wind has a perpendicular component in the turbulent wake direction, it further enhances convergence
and divergence of the wakes. This phenomenon represents one reason why the tidal current wakes
in this case are not as distinct as those in the TSX case, because the sea surface wind speed of this
case is approximately 6.0 m/s (ERA-Interim model result at 9:00 UTC) versus above 9.0 m/s in the
TSX case. Second, the TSX case occurred closer to the spring tide and would have had a stronger
tidal current than the GF-3 case. Finally, the TSX image has a steeper incidence angle of 19.7◦–23.2◦

than that of the GF-3 of 23.9◦–27.7◦ and therefore, one can generally expect strong radar backscattered
signal. Moreover, the X-band SAR is more sensitive to the short scale Bragg waves than the C-band
SAR, according to the Bragg resonant mechanism.

Compared with the wind wakes apparent in high resolution SAR images, the tidal current wakes
have smaller spatial scales. While the former wakes often have a length greater than several kilometers
(and up to tens of kilometers), the latter wakes generally have a length less than a few kilometers.
The high spatial resolution capability of spaceborne SAR allows us to identify distinct tidal current
wakes induced by man-made objects in shallow water. We note that these distinct wind farm turbulent
wakes have also been identified in the North Sea offshore wind farm parks [44]. The promotion of
clean offshore wind energy must not neglect the changes in local hydrodynamics [45] caused by wind
farms and possible associated environmental issues.
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Figure 2. (a) A GF-3 FSI image in HH polarization acquired at 9:45 UTC on 15 February 2014, over the
eastern Hangzhou Bay and Changjiang River estuary, in an ascending orbit. (b) The sub-image of (a)
over the offshore wind farm, showing distinct tidal current wake patterns. (c) Variation of Normalized
Radar Cross Section (NRCS) along a transect (marked by the red rectangle in (b)) through a tidal
turbulent wake. The dashed line indicates recovery of the turbulent wake at approximately 1000 m
downstream of the turbine.

3.3. Observation of Internal Waves in the South China Sea

It is generally understood that the internal waves (IWs) in the northeastern South China Sea (SCS)
are primarily generated by interactions between barotropic tides and sills in the Luzon Strait; these
IWs then propagate westward. Dongsha Atoll is in the pathway of these IWs in the northeastern
SCS. The complicated bathymetry and various oceanic stratification patterns lead to significant spatial
variations in IW at Dongsha Atoll.

The IW refraction, diffraction, reconnection and even reflection dynamics in Dongsha Atoll are all
recorded by spaceborne SAR [46,47]. As there are often a few IW packets arriving at Dongsha Atoll
with varying distances, and these IWs generally have long crests of a few hundred kilometers, it is
preferable to use wide swath SAR images to clearly visualize IW propagation in this area. Therefore,
Dongsha Atoll is a good site to test the capability of ocean surface imaging in wide swath by spaceborne
SAR for observation of IW dynamics.

Figure 3 shows two GF-3 SAR images acquired in the narrow ScanSAR mode (three beams)
with a swath width of approximately 300 km over Dongsha Atoll on 21 October and 24 October
2017, in ascending and descending orbits, respectively. The two images have almost identical spatial
coverages. The clear arc-shape signatures of the internal solitary waves (ISWs) in the two SAR images
reveal that the waves experienced significant spatial variations, i.e., wave refraction and diffraction,
as they passed through Dongsha Atoll (as shown by the clearly visible round shape in the GF-3 image
on 24 October). On the right side of Figure 3, the upper panels show two sub-images covering part
of the ISW southern arms over Dongsha Atoll. The lower panels show the gray value variations in
the GF-3 images across the transects through the ISW packets, indicated by the red lines in the two
sub-images. Because IWs can induce convergence and divergence of sea surface flow, the sea surface
roughness and radar backscatter are consequently changed because the Bragg waves are modulated
by the sea surface flow [48]. Therefore, the significant changes in the image gray values suggests
there are three IW packets (labeled S1, S2 and S3) in the 21 October 2017 image and two wave packets
(labeled S1 and S2) in the 24 October 2017 image. The distance between neighboring ISW crests in
one packet appears to monotonically decrease from front to rear, suggesting that these ISWs were
propagating westward. As waves are assumed to propagate in the direction normal to the wave crests,
it is estimated that the ISWs were traveling toward 272◦–295◦ (clockwise relative to north). Variations
in the gray values also suggest that the front section of the westward ISW is bright and the rear section
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is dark, indicating that the ISWs are depression waves. In the two SAR images, the distance between
the leading wave crests P1 and P2 is approximately 107 km, close to the distance between S1 and S2,
whereas the distance between P2 and P3 is 53 km. Li et al. noted that tidal daily inequality can lead to
different inter-packet distances over Dongsha Atoll [49].

(a) 

(b) 

Figure 3. (a) A GF-3 narrow ScanSAR image acquired on 21 October 2017, in ascending orbit, over
Dongsha Atoll showing ISW signatures (left panel), the sub-image encompassing part of the ISWs
in the southern Dongsha Atoll (upper right panel) and variations in the gray values of the transect
corresponding to the red line in the sub-image (lower-right panel). (b) The same as (a) but for the
image acquired on 24 October 2017, in a descending orbit.

The ISWs in the northeastern SCS often have long crests up to a few hundred kilometers, appear
in successive packets, and have spatial extents of a few hundred kilometers. Therefore, ScanSAR
images are favorable for the observation of IWs in the SCS. The two images in Figure 3 yield a broad
view of the dynamic ISW refraction and reconnection processes in Dongsha Atoll, highlighting the
wide swath imaging capability of GF-3. However, some problems with the GF-3 ScanSAR image
remain to be addressed. In the image acquired on 21 October, the rightmost beam presents a noticeable
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grayscale inhomogeneity compared with the two neighboring beams. In contrast, the image acquired
on 24 October shows a homogeneous gray level transition from the SAR near to far range. Note
that the two images were both radiometrically calibrated, although the normalized values are used
for the current presentation. We were not able to eliminate the distinct sea surface radar backscatter
inhomogeneity from beam to beam. While the image is suitable for qualitative analysis of IW dynamics,
such inhomogeneities can lead to significant bias in quantitative retrieval of marine-meteorological
parameters, such as sea surface wind speed, where absolute radar backscatter values are used.

4. Retrieval of Sea Surface Wind and Wave

In the previous sections, we present three cases demonstrating the full polarimetry, high
spatial resolution and wide-swath imaging capabilities of GF-3. In this section, we examine GF-3’s
performance in the quantitative retrieval of sea surface wind and wave.

4.1. Sea Surface Wind Retrieval Using QPS Mode Data

The QPS mode is a promising GF-3 SAR imaging mode that obtains surface radar backscatter in
four polarization channels of VV, HH, VH and HV. In the previous section, we presented an analysis
of surface object radar backscatter characteristics based on polarimetric decomposition using QPS
mode data. SAR VV polarization data is preferable for sea surface wind retrieval, as the sea surface
generally has stronger radar backscatter in VV than that in other polarization channels. However, the
VV polarized signal becomes insensitive to sea surface wind speeds above 25 m/s. Recent studies
have suggested that SAR cross-polarization signals (VH or HV) increase linearly with increasing sea
surface wind speeds [50,51] and are less dependent on wind direction and incidence angle than the VV
polarization data [52].

Therefore, we started with the QPS mode data for sea surface wind retrieval. Notably, QPS is
among a few imaging modes with the largest volume of data acquired by GF-3 over the ocean. However,
when we attempted to compare the sea surface wind speed derived from QPS VV polarized data with
those derived from wind models or other satellite measurements, we found distinct discrepancies.
As the retrieval of sea surface wind information using C-band SAR data in VV polarization is a mature
method, i.e., a method based on the geophysical model function (GMF), which relates the radar
backscatter cross section σ0 with the sea surface wind speed and direction and the radar incidence
angles, we deduce that the σ0 values of the original GF-3 QPS mode data probably have some
biases. Any SAR data used for quantitively deriving marine-meteorological parameters must be
radiometrically calibrated well. Equation (7) is the general radiometric calibration procedure of SAR
data given in the unit dB. The DN value is the digital number recorded by the instrument, and the
external calibration constant (kcali_constant, positive values in Equation (7)) is provided in the SAR data
annotation file.

σ0(db) = 10 log10

(
DN2

)
− Kcali_constant (7)

To verify the accuracy of the GF-3 QPS mode data in VV polarization, we conducted a simulation
experiment. As the C-band GMF (CMODs), can approximately reflect the sea surface radar backscatter
σ0 of C-band SAR in VV polarization given the sea surface wind speed and direction, we used
CMOD5.N to simulate the GF-3 QPS data σ0 for comparison. A total of 2841 QPS GF-3 SAR images
acquired from September 2016 to November 2017 were collected. Each QPS image was divided into a
few 5 km by 5 km subscenes, which were further collocated with the ECMWF ERA-Interim sea surface
wind field (available every 3 h in a grid of 0.125◦) (available at: http://apps.ecmwf.int/datasets/data/
interim-full-daily/) using a temporal window less than 0.5 h and spatial distance less than 12.5 km.
Next, the simulated σ0_sim was achieved by inputting the collocated ERA-Interim sea surface wind
speed, direction and radar incidence angle of each scene into CMOD5.N.

The GF-3 SAR radar backscatter without radiometric calibration is denoted σ0_raw, which is equal
to 10log10(DN2). Then, the difference between σ0_sim and σ0_raw, Δσ, was treated as the external
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calibration constant value, assuming the simulated σ0_sim is close to the truth of the normalized radar
cross section and neglecting other factors that may affect the GF-3 radiometric calibration accuracy:

Δσ = σ0_sim − σ0_raw = σ0sim − 10 log10

(
DN2

)
= Kcali_rvd (8)

Figure 4 shows the diagram of variations in Δσ with incidence angles. The gray dots are the Δσ

values of each collocated data pair, on which the whiskers are overlaid. The results show that the
Δσ values are scattered and the acquired data irregularly distributed at different incidence angles.
According to Equation (8), in an ideal situation, the value of Δσ should be equal to kcali_rvd; however,
because the Δσ values for each incidence angle are highly variable, we used the median values of
the whiskers (red solid lines within the boxes) as kcali_rvd. In the diagram, the overlaid blue triangles
indicate the “old” calibration constants with respect to the “new” ones released in May 2018, which
are marked by green triangles. The new calibration constants are generally higher than the old ones by
an average of approximately 1.4 dB over different incidence angles. The recently updated calibration
constants are close to the revised ones, i.e., kcali_rvd, particularly for incidence angles ranging from
35◦ to 40◦, where also the QPS mode data amount are the largest. The overall difference between the
old calibration constants and kcali_rvd, is 2.56 dB, whereas the difference between the new calibration
constants and kcali_rvd, decreased to 1.68 dB.

 
Figure 4. Distribution of Δσ for different incidence angles of the GF-3 QPS mode data acquired
from September 2016 to November 2017. The whiskers (red) are calculated from the samples of Δσ.
The upper extreme of each whisker is equal to Q3 + 1.5*IQR, where the IQR is the interquartile range of
the samples (i.e., Q3–Q1) and the lower extreme is equal to Q1 − 1.5 × IQR.

To further verify our assumption, the sea surface wind speeds were retrieved using the three
groups of different calibration constants, which were collocated with WindSat sea surface wind speeds
(available from http://www.remss.com/), treated as an independent dataset because the ERA-Interim
data were used to derive kcali_rvd. Figure 5 shows the comparison. When the old calibration constants
were used, the comparison yields a large bias of 0.74 m/s and an RMSE of 2.38 m/s. When the new
calibration constants were used, the bias and RMSE decrease to −0.15 m/s and 1.72 m/s, respectively;
these results are similar to those achieved using the revised calibration constant for sea surface wind
speed retrieval from GF-3, which has bias and RMSE values of −0.21 m/s and 1.74 m/s, respectively.
The new calibration constants yield better retrievals, with results similar to those derived using
the revised calibration constants. This suggests that continuous efforts to improve the accuracy of
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radiometric calibration are strongly recommended to achieve high quality sea surface wind retrieval
results from GF-3 data.

(a) (b) (c) 

Figure 5. Retrieval of sea surface wind speed from the GF-3 QPS mode data in VV polarization using
(a) the old calibration constant, (b) the new calibration constant released in May 2018, and (c) the
revised calibration constants derived in this study.

Following the analysis of sea surface wind speed retrieval from QPS VV polarization data, we
further examined the possibility of deriving sea surface wind speeds from VH polarization data.
In view of the analysis above, the newly released calibration constants of the VV polarization data
yielded better retrieval results than the old calibration constants, which are close to the retrievals using
our revised calibration constants. This suggests that the radiometric calibration accuracy is improved.
Therefore, we used the new calibration constants to derive the normalized radar cross section σ0

VH
of the QPS cross-polarization data. Next, the mean σ0

VH of the VH polarized data subscenes were
collocated with the ECMWF ERA-Interim sea surface wind field, as shown in Figure 6a and the boxes
and whiskers were overlaid on the scatter plot. The plot suggests some important information about
the GF-3 QPS VH data radar backscatter. First, the lower extremes of the whiskers suggest that the
noise sigma equivalent zero (NESZ) is approximately −38 dB, comparable with the R2 and Sentinel-1
values of −35 dB [50,53]. Furthermore, the median values suggest a linear increase in σ0

VH with sea
surface wind speed, as indicated by the red dotted line. Thus, we fitted a linear relationship between
σ0

VH and the sea surface wind speed, U10, as follows:

σ0
VH = 0.6476 × U10 − 37.1879 (9)

We then used the relationship to derive sea surface wind speed from the VH polarization data
and compared them with the independent wind measurements from WindSat, as shown in Figure 6b.
The comparison yielded a bias and an RMSE of −0.33 m/s and 1.83 m/s, respectively, which are similar
to the values from comparison with the VV retrieved sea surface wind speed (a bias of −0.15 m/s and
an RMSE of 1.72 m/s; Figure 5b). We also compared the sea surface wind speed derived from both
the VV and VH polarization data of GF-3, as shown in Figure 7a. Overall, sea surface wind speeds
retrieved from both channels are in good agreement, with a bias of 0.11 m/s and an RMSE of 1.87 m/s.
For sea surface wind speed values lower than 6 m/s, the retrieved sea surface wind speeds from the
VV polarized data are generally higher than those from the VH polarized data. For sea surface wind
speed values above 8 m/s, the opposite is true and the difference trend tends to increase with wind
speed, which suggests that the GF-3 QPS cross-polarization data can yield a better retrieval of sea
surface wind speed for high winds.
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(a) (b) 

Figure 6. (a) Scatter plot of the GF-3 QPS σ0
VH values and the collocated ERA-Interim SSW. Boxes and

whiskers, as well as linear fitting line are overlaid on the plot. (b) Comparison of the sea surface wind
speed retrieval from GF-3 quad-polarization VH polarized data using Equation (9) with the collocated
WindSat SSW speed data.

Figure 7b shows an example of retrieved sea surface wind speed from the VV (left) and VH (right)
polarized channels of GF-3 QPS data. The collocated WindSat wind vectors are also overlaid on the
plots. The sea surface wind streaks are clearly visible in the maps and are consistent with the wind
directions of the WindSat data. The sea surface wind speeds derived from both polarized channels are
consistent but present discrepancies, particularly in the near range of the SAR geometry (which has a
steeper incidence angle than the far range). The dependence of σ0

VH on the incidence angles should be
further investigated as more data are collected.

 
(a) 

Figure 7. Cont.
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(b) 

Figure 7. (a) Comparison of the sea surface wind speeds derived from the VV and VH polarized data
of GF-3 QPS data. (b) Example sea surface wind speed maps derived from both the VV (left) and VH
(right) polarized data of QPS data acquired on 21 August 2017. The overlaid wind vectors are from the
collocated WindSat data.

4.2. Wave Mode for Ocean Wave Retrieval

As previously mentioned, wave mode is a powerful SAR imaging mode for global ocean wave
measurements because this mode not only acquires two-dimensional ocean wave information but also
regularly samples the global ocean. Correctly retrieving two-dimensional wave spectra from SAR
has been a long effort, because it is generally thought that the imaging process of ocean waves by
SAR is nonlinear, particularly for short waves or waves under a relatively rough sea state. Various
approaches and methods have been attempted to derive full ocean wave spectra, swell spectra or
integral wave parameters. Many of these algorithms are based on the nonlinear retrieval approach
proposed in [54,55], which is called the Max-Planck Institute (MPI) approach. In this algorithm, a first
guess spectrum is generally achieved by running a wave model such as Wave Model (WAM) to
compensate for the lost (short) wave information and solve the 180◦ wave propagation ambiguity
during the imaging process. In this study, we applied this classical algorithm to the GF-3 wave mode
data to derive two-dimensional wave spectra. For a detailed description of this method, one can refer
to the relevant literatures [54,55].

The ECMWF ERA-Interim reanalysis sea surface wind on a 0.125◦ grid was used to force the
WAM model (cycle 4.5.1). The model outputs wave spectra every three hours at the same grid size as
the input wind. The two-dimensional wave model spectrum has 25 bins in frequency and 12 bins in
direction. These two-dimensional wave spectra are used as priori in the MPI scheme to retrieve the
SAR wave spectra.

Figure 8a shows geolocations of GF-3 wave mode data acquired from two orbits on February 13,
2017 off the western coast of the United States. The locations of buoys 46004 and 51000 are marked with
triangles. The SAR-retrieved SWH from these wave mode data were compared with the wave watch III
(WW3) model results (available from http://polar.ncep.noaa.gov/waves/ensemble/download.shtml),
as presented in Figure 8b, c for the two orbits. The sea state covering the area for the orbit 2701 was
slightly low (less than 2.5 m), while that for 2698 was relatively rough (higher than 2.5 m). In general,
the SAR retrievals are consistent with the WW3 model results, but they also pre-sent spatial sea state
variations, particularly in the sea over which orbit 2701 passed.
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(a) (b) (c) 

Figure 8. (a) Geolocation of GF-3 wave mode data in orbits 2701 and 2698 on 13 February 2017 (blue
squares) and the locations of buoys 51000 and 46004 (black triangles). (b) SAR-retrieved SWH (red line)
from the wave mode data of orbit 2701 and the collocated WW3 SWH (black line). (c) The same as (b)
but for the wave mode data of the orbit 2698.

Figure 9 shows the two GF-3 wave mode imagettes near the two buoys and their corresponding
retrievals. Both imagettes present clear swell patterns (the first row in Figure 9). The WAM model
spectra (the second row) in the closest grid to the SAR acquisitions suggest that the swell propagated
southeast and northwest, respectively, in the sea where the two images were acquired. The retrieval
processes did not change much of the model spectra shapes, i.e., the first guess spectra, as found in
the retrieved two-dimensional wave spectra (the third row). However, the retrieval did change the
swell peak wave energy in the comparisons of one-dimensional wave spectra (the fourth row). Thus,
the retrieved SWH is closer than the wave model to the buoy measurements. Interestingly, the two
retrieved wave spectra indicate two different swell systems, although their peak wavelengths are
almost identical. With respect to the retrieval of the GF-3 wave mode imagettes near buoy 51000, we
deduce these swells came from North Pacific storms, whereas for the other image, which was nearer to
the U.S. west coast, the swells likely came from the Southern Ocean, even though orbit 2698 is around
two thousand kilometers east of orbit 2701.

Figure 9. Cont.
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Figure 9. Two retrieval examples of the GF-3 wave mode data from orbit 2701 (left column)
and orbit 2698 (right column). The SAR imagettes are in the first row. The collocated WAM
spectra and the retrieved two-dimensional spectra are in the second and the third row, respectively.
The one-dimensional spectra are compared in the last row.

5. Summary and Conclusions

In this study, we provided an overall assessment of the GF-3 SAR’s capability for selected
ocean and coastal observation. To study radar backscatter mechanisms of complicated objects,
specifically seaweed aquaculture in the Subei Shoal, polarization decomposition based on GF-3 QPS
data appropriately reflects the dominant scattering mechanisms of aquaculture areas. To demonstrate
the high spatial resolution of GF-3, we investigated the Donghai Bridge offshore wind farm, which
highlighted the capability of GF-3 data to observe the tidal current wake rather than the wind wakes
generated by the rotating wind turbines. Tidal current wakes have a smaller spatial scale of hundreds of
meters than wind turbine wakes of tens of kilometers, and we previously used a high spatial resolution
TSX image to identify this type of fine feature. Notably, the GF-3 image of the Donghai Bridge area
clearly showed similar tidal current wakes. Finally, IWs are mesoscale phenomena that often have long

187



Remote Sens. 2018, 10, 1929

wave crests exceeding a few hundred kilometers in the SCS, appearing in wave packets separated with
varying distances. Therefore, it is preferable to use wide-swath SAR images for IWs. The case study of
two GF-3 narrow ScanSAR images acquired in Dongsha Atoll demonstrated that the ScanSAR images
could differentiate ISW refraction and diffraction around Dongsha Atoll and suggested variations in
different wave packets arriving at Dongsha Atoll in one tidal cycle. However, the ScanSAR images
manifested inhomogeneities in radar backscatter from beam to beam. Although this feature is rare, care
should still be taken with the data processing system. We also noticed that the scalloping effect exists
in some ScanSAR and Wide ScanSAR images of GF-3, particularly in the cross-polarization channels.
De-scalloping should be undertaken during postprocessing (e.g., presented in [32]) for quantitative
retrieval of marine-meteorological parameters.

Following these case studies, we investigated the capabilities of GF-3 QPS data for sea surface
wind retrieval. A major conclusion of this investigation is that the recently provided calibration
constants for the quad-polarization data significantly improve sea surface wind retrieval, with a bias of
−0.15 m/s and an RMSE of 1.72 m/s, for wind speeds ranging from 2 m/s to 16 m/s. While the results
were very close to the retrieved wind speed using the derived calibration constants in this study, they
suggest that there is room to improve the GF-3 radiometric calibration accuracy. We also derived a
linear function to derive sea surface wind speed from the GF-3 VH polarization data. The collection of
more data will allow further investigation of the weak dependence of σVH

0 on incidence angles, as well
as its performance in retrieving high wind speeds. Nevertheless, with the current data, we can derive
SSW from both VV and VH polarization data in a consistent manner.

In addition to the ESA’s SAR mission, the Chinese GF-3 can also acquire wave mode data, albeit
only in some regions thus far due to the limited coverage of the ground receiving stations. Nevertheless,
our preliminary studies on the wave mode retrieval of two-dimensional wave spectra using nonlinear
inversion demonstrate the usefulness of GF-3 for wave measurements. We expect that more wave
mode data will be acquired and anticipate joint measurements with Sentinel-1A/1B wave mode data.
In addition, the GF-3 wave mode data are acquired in full polarimetry and might provide a good
opportunity to derive ocean wave information in a polarimetric manner [56].

Although we have presented a few informative examples, further detailed and dedicated efforts
are needed to examine and improve data quality, considering that GF-3 has 12 available imaging
modes and various polarization combinations. For instance, accurate radiometric calibration and
noise estimation are particularly important for deriving the marine-meteorological parameters of sea
surface wind and wave. Furthermore, stable performance is also important for an operational SAR
data processing system. As more GF-3 data are acquired and analyzed, some abnormalities have
been identified. The reasons underlying the occurrence of these cases should be investigated, and
reprocessing of these data should be conducted.
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